Key Internet modem parts for under £60

WORLD

+ WIRELESS WORLD

Denmark DKr. 65.00
Germany DM 15.00 Greece Dra. 950 Holland Dfl. 14 Italy L. 8000 IR £3.30

Isolate RS232
 Opfoelectronics investigated Mathplus reviewed
 Transforms in C_{++}

14arirlicud
fax/dari ridedem
Power and Class-C
Linsley-Hood noise reducer
Applying the ZR78L05 regulator
EW+WW exclusive - magnetic sensor offer Amily MICRO-RSO

TWO FREE microcontrollers
PSU, parallel cable \& data sheets OIUS FREE IC extractor tool in fuded
(1) FAST data transfercennects to PC parallel port
(2) Field prograumate hardwarefor FREE future device support
(4) MICRO PRO is approved by ATME for programming their completerange of FLASH micracentrollers

THE FULL ATMEL FLASH MICRロCDNTRDLLER RANGE

229, Greenmount Lane, Heaton, Bolton, Lancashire BL1 5JB. UK.

Tel: (01204) 492010 Fax: (01204) 494883 Int. dialling code (UK (+44 1204)
E-mail: sales@equintec.demon.co.uk Visit our Web page at: www.demon.co.uk/equintec

917 POWER-SAVING REGULATORS

New regulators designed for high-performance and reduced power consumption.

922 INTERNET MODEM
 Joining the net? Phil Collins discusses an intelligent pc modem/fax card capable of sustained $57.6 \mathrm{kbit} / \mathrm{s}$ throughput.

930 A NEW DIRECTION IN MAGNETIC SENSING

A new three-terminal magnetic sensor offers benefits in temperature sensitive field detection - even down to 10 nT .

Magnetic sensors offer

EW+WW readers can obtain 20\% discount on a new three-terminal magnetic sensor capable of detecting down to $10 n T$. See pages 930 and 933.

938 CONTROLLING AUDIO DYNAMIC RANGE

John Linsley-Hood's low-thd audio dynamic range controller incorporates a switched attenuator.

952 SURROUND SOUND STANDARDS POLARISE

Peter Willis looks at the pros and cons of two competing surround-sound standards - Dolby's AC-3 and Europe's MPEG-2.

954 ISOLATING RS-232
 Douglas Clarkson shows how to isolate RS-232 without involving an independent power source.
 960 DEEPER INTO DC ANALYSIS

Owen Bishop looks at dc analysis issues, including component value sweeping and the pitfalls of simulating oscillators.

964 MAXIMISING POWER TRANSFER IN CLASS-C

Researchers from Ontario present their evidence to disprove a recent statement concerning maximum power transfer.

970 REFLECTIONS ON OPTO-ELECTRONICS

Ian Hickman explains how to get the best out of opto-electronic emitters/detectors.

975 MATHPLUS OR MINUS?

Allen Brown looks at a piece of software designed to help teach and learn engineering mathematics.

979 TRANSFORMING

 IN C++Gerard Moloney outlines how he developed a C++ library for performing geometric transforms.

989 WHAT'S THE DIFFERENCE?

Steve Winder discusses how to choose the right differential amplifier configuration.

REGULARS

907 COMMENT

PhoneDay fiasco

NEWS

Digital tv, Canada to adopt DAB, Standards delay video disk, Optical switching advances, GI wants Pace.

912 RESEARCH NOTES
Leeches and control technology, NASA and deep space, Mag-lev, From Albert Hall to Albert Terrace, Opto gyroscope for car navigation.

943 CIRCUIT IDEAS

20 Hz to 250 kHz generator, vco, mercury-cell replacement, digital mark:space, programmable switcher, high-input comparator, debouncer.

LETTERS

Shifting cultures, Sallen \& Key distortion, hearing-aid plea,

NEW PRODUCTS
Pick of the month - classified
for convenience.

APPLICATIONS

Power switchers for lcd backlights, Power factor correction for power supplies.

Next month: Electronics in engine management, New thoughts on distortion, Interfacing GPS.
DECEMBER ISSUE - ON SALE 30 NOVEMBER

Cover - Jamel Akib

Audio - John Linsley Hood's expander and compressor is based on a switched attenuator - see page 938.

NASA has developed a pilotless, remotely-controlled aircraft powered by the sun - page 913

$E W+W W$

READER OFFER

Key Internet modem parts for under $£ 60$. This $14.4 \mathrm{kbit} / \mathrm{s}$ fax and data modem for the pc is capable of $56 \mathrm{kbit} / \mathrm{s}$ sustained throughput thanks to error checking and data compression - see pp. 922-926.

quickroute 3.5

Schematic \& PCB design for Windows 95 and 3.1

"moving from schematic to layout could not be easier" review of Quickroute 3.0 in Electronics World \& Wireless World Jan 95

Quickroute, the integrated electronics design solution, available with:

- Schematic capture, net-list import \& export, Gerber file import \& export, WMF, DXF, SPICE \& SpiceAge export.
- Integrated auto-routing on 1, 2 or up to 8 layers. Copper fill for creating regions of copper.

E Engineering change allows changes on a schematic to be propogated forward onto a PCB.

Prices range from $£ 399.00$ down to just $£ 68.00$ (prices exclude post\&packing, and V.A.T).

PhoneDay fiasco

EDITOR

Martin Eccles
01816523128

EDITORIAL

ASSISTANT
Rob Allcock
01816528638

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden
DESIGN \&
PRODUCTION
Alan Kerr
EDITORIAL
ADMINISTRATION
Jackie Lowe
0181-6523614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-6523620

DISPLAY SALES

EXECUTIVE
Malcolm Wells
$0181-6523620$

ADVERTISING

PRODUCTION
Christina Budd
0181-6528355
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-6528956
CLASSIFIED FAX
0181-6528956
SUBSCRIPTION
HOTLINE
01622721666
Quote ref INJ
SUBSCRIPTION QUERIES
01444445566
FAX
01444445447
NEWSTRADE
DISTRIBUTION
David G. Sanders
01816528171
BACK ISSUES
Available at $£ 2.50$
ISSN 0959-8332

REED
BUSINESS
PUBLISHING

Responding to criticisms from BT and Mercury that he is accountable to nobody, Don Cruickshank, director-general of telecomms watchdog agency OFTEL, has belatedly admitted that his decisions would be better made by a committee and in public. This dramatic conversion comes too late, however, to reverse one of his department's biggest mistakes - this year's National Code Change.
Peripheral as this might sound to you, it's not because you paid for it. You and other UK phone users shelled out $£ 3,250$ million in return for a change which did not even solve the most urgent problem the imminent exhaustion of phone numbers in several UK cities (cost estimate courtesy of the
Telecommunications Managers Association). Despite Don Cruickshank's proud boasts on television of new numbers which would not change again in our lifetime, the likelihood is that we shall need new ones well before the end of the decade - let alone our lifespan.
According to Oftel's consultative document, Numbering: Choices for the Future, the new code plan is a numbering scheme for the 21 st century. Given that the European Telecommunications Office has not yet come to a decision on a pan-European numbering scheme, it would appear that our 1995 plan is already out of date. At this stage it is also difficult to predict the extent of the demand for location-independent numbers occasioned by personal numbering and UPT, the mixed wire-line and radio-based universal personal telecommunications service also known as 'one person, one number'. All these require a total re-think of phone numbering, as will pressures for pan-European number harmonisation.
PhoneDay was a wasted opportunity therefore. Oftel deliberately chose to ignore specialist advice, while refusing to provide statistical information to experts who questioned its machinations. Subsequently the department came up with an even more ill-conceived scheme for adding new codes beginning with 02 and this time reaction was so negative - with operators like BT and Mercury distancing themselves from the plan - that Oftel had to think again. It seems hardly coincidental that the architect of all these hair-brained schemes has been removed from the post of numbering-scheme manager. It is also notable that one of Oftel's officers most responsible for pushing through the code change and who made several statements which have since been proved wrong left for another government department.
Phone users have just cause for grievance with this inelegant arrangement: Londoners have already suffered two code changes since 1990 and it looks highly likely that a third will be necessary well before the decade is out. Even more lamentable is the lack of consultation. For reasons of 'commercial confidentiality', Oftel will not reveal statistics on number distribution and utilisation. The department

[^0]also refuses to make available numbering allocations inside area code groups, except to network operators, making it impossible to validate its judgements and projections or for large users to plan new facilities.
Don Cruickshank's offer to make Oftel more accountable is welcome but must be scrutinised. Earlier this year powerful arguments were expressed for delaying the introduction of a new national numbering plan but Oftel took the view that "details of the new numbering scheme cannot be debated indefinitely." Observers contend there was no debate at all and in the absence of an open forum or even a situation where all telecomms industry interests are represented, it is hard to suppress the feeling that Oftel has not served phone users well in manipulating what is a scarce national resource.
There are signs that a change of attitude in Oftel will now produce a more effective régime; this is to be welcomed but it will not recoup the wasted $£ 3$ billion.

> Don Cruickshank's decisions would be better made by a committee and in public

Back in 1992, the then chairman of TMA, Nick White, expressed the view: "The topic of telephone numbering and code changes does not attract widespread attention but the planned changes are widespread and will hit every customer's pocket. Therefore any changes must be optimised by an expert planning and consultation process to minimise the cost of the changes to the customer and to deliver a solution that will last well into the next century." It is as valid now as it was then.
Andrew Emmerson

[^1]
Digital TV a bit nearer

E urope appears to be favouring a digital terrestrial TV scheme based on a 2000 carrier modulation scheme, increasing the likelihood that the UK will meet the challenge of employing a service by late 1997, as proposed by the recent government's white paper.
Last week's meeting of the European Digital Video Broadcasting (DVB) project addressing digital terrestrial television concluded with the setting up of three adhoc groups. The first group is to produce a document transferring the current 8000 carrier-QAM draft proposal to one based on 2000 carriers. The
second group, comprising Deutsche Telekom and NTL, will independently appraise the offshoot 2000 carrier differential amplitude modulation scheme, 2000-DAPSK, while the third will investigate the feasibility of a scalable 2000-8000 system, allowing 8000 carrier transmissions to be decoded by a 2000-QAM receiver.
Bob Anderson, Motorola's consumer segment manager, commenting on the meeting's outcome, said: "In effect, the current Strawman " 8000 carrier" specification is no longer favoured. This is excellent news for the UK,
allowing a manufactured solution for the end of 1997 timescale." Motorola argues that an 8000 carrier system is too costly and unlikely to be manufactured in time to meet such tight timescales.
Jeff Gledhill, group leader of NTL's digital terrestrial group said: "NTL is happy that the solution is moving towards a 2000 solution. Europe is taking notice of market pressures."
NTL is advocating the 2000DAPSK solution, which it believes will simplify greatly the complexity of the receiver.
Roy Rubenstein, Electronics Weekly

Canada goes for DAB

Europes digital audio broadcasting E(DAB) system, based on the Eureka 147 implementation, is a step closer to becoming an internationally adopted standard.
Canada is to adopt the system following the BBC's decision to introduce a DAB service later this year in the Greater London area.
"It is the strongest and probably the most known system," sid John Lee, manager for networks and technology at the Canadian Broadcasting Corporation.
In the meantime the US is testing eight additional systems before it decides on a national standard.
The nine systems provided with

Standards delay video disk

Thhe launch of digital video discs DVDs - is to be delayed following the recent agreement of a common standard by the two opposing alliances led by Toshiba and Sony/Philips respectively.
The Super Density - SD - alliance, led by Toshiba, had originally scheduled the launch of its format for

SD-18 Disc: Double Sided, Dual Layer $=18$ GB

June 1996, but due to necessary design changes, incurred by the newly adopted standard, this launch will be postponed by at least three months.
Nevertheless, DVDs are expected to soon start raising revenues for the consumer electronics industry. The impact will be even greater with the arrival of other consumer electronics systems, such as high-resolution widescreen tvs, audio speakers and amplifiers which will support Dolby AC3 discrete five-channel soundtracks, that DVDs will spur.
The 'new' DVD format will incorporate the best features from both the Super Density CD and Multimedia CD. It will be a twoside, double-layer CD with a substrate thickness of 0.6 mm and capacity of 4.7 Gbyte per layer giving 18.8Gbytes per disc. Signal modulation will be based on the efm Plus technique adopted from Multimedia CD technology, and will use Reed-Solomon error correction.

Electronic Industries Association (EIA) for testing are AT\&T's In-Band/Adjacent-Channel (IBAC), AT\&T/Amati Communications Corporation's Inband/On-Channel (IBOC), Eureka 147's DAB system, one AM and two FM implementations of IBOC from USA Digital Radio, and Voice of America/Jet Propulsion Laboratory's new-band/directbroadcast satellite system.
Eureka 147 uses the coded orthogonal frequency division multiplex modulation technique specifically designed for interferencefree reception by portable and mobile receivers.
"Eureka 147 does very well in audio quality and multipath tests. Others don't do well in multipath but do well in audio quality," said one EIA spokesperson.
Although the DAB service is favoured in many countries including Australia, Israel and China, highvolume production of DAB receivers, which should lower prices and sizes, has not begun yet.
Grundig currently manufactures 4000 to 6000 sets per annum, but hopes to increase volumes next year. Receivers are expected to be widely available to consumers by 1997.
Canada will provide a DAB service in the L-band (14521492 MHz), whilst the UK will use the vhf band ($217.5-230 \mathrm{MHz}$).

Svet!ana Josifovska, EW

Gl wants Pace

Si
ources close to General Instrument (GI) have confirmed it is targeting UK satellite and cable receiver maker Pace Micro Technology in a takeover bid. Talks are taking place and Gl is confident a deal will be struck this week.
GI, which is one of the largest American cable television equipment suppliers, sees an opportunity to capitalise on Pace's strong presence in digital tv decoders. There was no official comment from GI's corporate headquarters in Chicago.
A deal had been expected sooner but the two firms have had difficulties agreeing a price. GI believes Pace leaked details of the talks in a bid to boost the value of the company. Reports indicate the wrangling centres on a price of $£ 120 \mathrm{~m}$.
Pace is Europe's biggest satellite receiver maker and has been keen to indicate other potential bidders were involved.
"We've been growing extremely quickly, said a Pace spokesperson. "Business has been growing from strength to strength. As a consequence there have been many rumours. There are always things bubbling around. GI have been talking to us, but no more than that."
The spokesperson added that
potentially it could be "a partnership similar to that one with NTL". Pace and National Transcommunications (NTL) officially joined forces in April last year and formed Pace-NTL, an MPEG-2 based digital TV equipment manufacturer.
Earlier this year Pace began volume production of digital TV set-top boxes - the world's first company to do so. The boxes employ the SGSThomson Microelectronics MPEG2 chipset. Pace manufactures the boxes at its headquarters in Shipley, Bradford with extra capacity provided by contract manufacturer D2D.
GI has pushed its alternative DigiCipher II digital compression system but has lost out to the MPEG2 scheme as broadcast standards have been finalised.
Pace started eleven years ago by selling modems from one of the founder 's bedrooms.
Last month Pace sold its modem manufacturing business to its management team for $£ 3 \mathrm{~m}$. Pace wished to concentrate on its digital TV business although the modem company, Pace Micro Communications continues to operate from the Saltaire site.

Svetlana Josifovska, EW

Siemens has produced a new detection system for the front-passenger airbag. It improves the safety of children placed in rear-facing child seats. The system only triggers if a person is sitting in the front passenger seat. If a child seat is mounted on the seat, occupied or not, triggering of the airbag is prevented. Required signals come from a pressure-sensitive forcesensing resistor foil responding to a pressure of 12 kg or more.

New light on optical switching

Optical routers with femtosecond switching speeds are the goal of research by Hitachi and Cavendish Laboratories, in Cambridge. The pioneering work uses delayed, short duration, light pulses to improve optical semiconductor switching characteristics by over three orders of magnitude.
Optical switches use light to control the conducting state of the semiconductor material. "This interaction of light creates electrons and holes which exist in the material for up to a nanosecond until recombining naturally," said Dr Jeremy Allam, the project's group leader. It is this duration that limits the switching speed since the material's state cannot be changed until the carriers recombine.

The tack employed by the group is to follow the controlling light pulse with a carefully delayed, second one. This accelerates the overall recombination rate, even though the
delayed pulse introduces yet further electrons and holes.
"The idea's novelty is in exploiting the phase of electrons. Electrons and holes remember for some l0ps the oscillations generated by the light field. By synchronising the second light pulse, destructive interference results," said Dr Jeremy Baumberg, a researcher at Hitachi Cambridge Lab.

Applying this technique at 4 K $\left(-269^{\circ} \mathrm{C}\right)$, up to 70% of the carriers recombine within 100 fs . The reason why a percentage of the electrons still remain is unclear.

Dr Baumberg believes that the achieved performance can be demonstrated at 70 K . Using quantum dot semiconductor structures, the operating temperature is likely to be pushed up further still. Moreover, by implementing delayed light pulses on a chip's surface, greater robustness to vibration and thermal drift is expected.
Roy Rubenstein, EW

Three-fold increase in optical switching speed - bringing switching capability to femtosecond levels - could be possible thanks to research by Hitachi and Cavendish Laboratories.

2.5 THz receiver is a stage nearer commercial application

A
team at the Rutherford Appleton Laboratories claims to have made the first waveguide based radio receiver to work at 2.5 THz . Other receivers have been made that work at this frequency but these have been based on less robust structures that do not have well defined directional characteristics.
The receiver is based around a Schottky diode mixer and a tiny horm antenna which are connected by a waveguide only $100 \mathrm{\mu m}$ wide by $25 \mu \mathrm{~m}$ high.
The horn and waveguide are made
by electro-forming. Fabrication begins with a 'former' that is machined to be the same shape as the desired interior of the horn and waveguide.
This is thickly electroplated, then the former is dissolved leaving the complete electroformed antenna.
The finished assembly is 3 mm long and is held above the chip containing the Schottky diode.
A far-infrared laser is used as a local oscillator for the receiver. The laser output is directed onto the diode which mixes the optical and
incident Radio-frequency energy down to more 'conventional' frequencies.
The receiver is not just a scientific curiosity. It has been developed to detect decimillimetric radiation from molecules in the atmosphere as a way of assessing pollution levels and ozone depletion.
Another mixer, based on a superconducting tunnel junction, can be used to raise the signal to noise ratio at the expense of a 1 THz maximum frequency.

At the moment, three ICs is the minimum for a GSM 'phone chip set. Next year, it will be down to two.

Mobile phone chip-count reduced

A
nalog Devices will introduce one of the most highly integrated GSM mobile phone designs next year with the appearance of its two-chip baseband chipset.
The company is currently selling the AD20msp 410 three-chip GSM baseband design, but-according to Jurgen Krogh, marketing director for wireless communications products, a two-chip design will be introduced in the first quarter of 1996.
"Within four to five months the 410 design will move to two chips," said Krogh. The new chipset, to be called the $A D 20 \mathrm{msp} 415$, will include the AD7015 baseband codec from the 410 chipset, and the speech and channel coders, as well as channel equaliser and $H 8$ microcontroller.

In addition, Krogh said that Analog would have a two-device rf front end design which will be suitable for both 1.8 GHz and 1.9 GHz frequency rates.

Analog, which has developed a full software and hardware GSM reference model with UK developer the Technology Partnership, intends to support the proposed enhanced full rate speech coder design when approved by ETSI possibly next month.

Krogh, who believes that Nokia's EFR proposal is the favoured design, admitted there would be a small premium on enhanced rate designs which improve speech quality, largely due to increased memory requirements.

Quieter digital cellular

Mobile phone technolgy developer Qualcomm has demonstrated a low noise rf front end for its CDMA digital cellular system using superconducting cryoelectronic technology.
The Califormian pioneer of the CDMA - code division multiple access - radio protocol, which is competing with GSM-based systems in the US digital cellular market, used a cryoelectronic rf circuit developed by Superconducting Core Technologies (SCT) in a 2 GHz PCS radio test. The company claims a 6 dB improvement in the rf circuit noise figure.
Qualcomm used Colarado based SCT's refrigerated cryoelectronic radio circuits in a basestation receiver which included narrowband, multipole filters made from superconducting materials, and a cryogenically-cooled low-noise input amplifier. High temperature superconducting circuits work above
the 77 K boiling point of nitrogen and so each basestation required its own refrigeration compressor.
The CDMA spread spectrum digital radio system relies on the sensitivity of the receiver much more than TDMA-based GSM systems. Because the CDMA radio signal is spread across the entire frequency band and not confined to narrow radio channels, it can be close to the noise floor of the receiver.
A 6 dB improvement in the sensitivity of the basestation receiver, according to Qualcomm, will improve system performance in the presence of interference from reflected signals. Qualcomm, which is obviously aware of the competitive situation in the US digital cellular phone market, claimed that noise performance improvement could ultimately reduce the number of basestations required in PCS networks by up to 50 per cent. Richard Wilson, Electronics Weekly

UK semi billings up...

UK semiconductor billings in August were significantly above the seasonal average and new orders also hit a record high in July for the first time, according to the FEI's Semiconductor Manufacturers' Association.
There has now been a prolonged period in which demand has exceeded supply," said FEI statistician Malcolm House. "At present, this very strong demand cannot be satisfied due to capacity limitations." The provisional book-to-bill ratio for August was 0.84 in the UK and 0.95 in the UK and Eire.
For the year to date the book to bill ratio for the UK and Eire is 1.25 compared to 1.12 for the sane period last year. New orders are 46% above and billings 32% up on last year's level. "Strong growth will continue into 1996," added House.
...while US billings are down
The Semiconductor Industry Association's barometer of the health of the chip industry, the book-to-bill ratio, fell in August but demand for semiconductors still remains high.
The August book-to-bill ratio was 1:18 compared with 1.23 in July. The SIA said that US chip makers shipped $\$ 3.88 \mathrm{bn}$ worth of chips in August compared with $\$ 3.78 \mathrm{bn}$ in July and $\$ 2.8 \mathrm{bn}$ for the same period last year.
New orders dropped by 1.3% in August to $\$ 4.5$ bn compared with July orders of $\$ 4.64 \mathrm{bn}$. While the book-to-bill ratio was slightly down in August, the SIA says that chip demand remains high.
Record demand for chips has led to shortages, especially in pc related areas, which are not expected to ease until the first quarter next year.

For all your Power Distribution Olson offer a varied choice

Sucking life into control technology

Leech fixation.
Steve DeWeerth of the GeorgiaTech School of Electrical and Computer Engineering displays a VLSI chip that contains one segment of the leech system

Better pumps and improved motor control systems for robots are the goals of research at Georgia Institute of Technology and Emory University - from work being carried out into leeches.
Neuromorphic analogue vlsi circuits - circuits based on biological systems - that model the circulatory and swimming neurosystems of the leech have already been built. Previously,

most neurosystem modelling with analogue vlsi has been in the area of sensory systems - for example, visual processing in the retina or auditory processing in the cochlea.

But little has been done with visi in modelling motor systems. Similarly, although many mathematicians and biologists are studying biological motor systems, few research groups are doing circuit modelling of them.
The Georgia and Emory workers picked on the leech because its swimming and circulatory control systems contain a fairly large but manageable number of neurons. This is important if researchers are to depict behaviour on both the cell and system levels, in real time.
The neurons are also part of reasonably regular, repetitive structures. The circuitry and connections in each segment are almost identical to those found in every other segment. Motor systems of the leech are also well known.
The leech's movement is itself quite interesting. Each of 20 segments in the animal houses motor controllers for swimming, and the controllers work together to cause the leech body to move. The kind of oscillation they induce produces a constant phase lag.
"If you think of the position of the body as big sine wave, each stage is a little bit out of phase of the one behind it. It's just like a wave moving down the body," says Steve DeWeerth, assistant professor in the School of Electrical and Computer Engineering at GeorgiaTech.

When leeches move faster, they keep the same phase, they just increase the frequency.
So far circuit models of the leech's circulatory and swimming neurosystems have been built, and have been linked together using simple oscillators - not of course exact replicas of the neurosystems involved.
The problem here is that modelling biological motor systems on both the cell and system levels, as DeWeerth is doing, is constrained by the large amounts of hardware and computer time required, and there is currently no hope of running the simulation in real time.
"The challenge is to build the entire system and get it to work - and better yet, get it working in real time," says DeWeerth
The researchers are designing the integrated circuits they need based on their knowledge of the two neurological systems, having the chips fabricated, and then assembling and testing them.
Individual segments have already been modelled and the team is now designing the chips that will connect these segments.
Future goals include incorporating the electrical systems into a larger one that includes sensor feedback and adaptation:

Solar drive will take Nasa into deep space ...

Launch of a small Nasa spacecraft Lestined for a fly-by of an asteroid and a comet in 1998 will be the first to rely on solar electric propulsion for its main source of thrust, rather than conventional solid or liquid propellant-based systems.
Propulsion-related technology for the mission is currently under development by two separate programs run by Nasa and the US Air Force Ballistic Missile Defense Organization.
Thrust during the mission will be
generated by one 300 mm diameter 'ion-drive' thruster, which expels from the spacecraft a high-velocity beam of xenon gas that has been ionised using the electricity produced by solar arrays.
Ion-drive systems should be much more efficient than chemical propulsion systems, which typically require two or more chemical propellants for fuel and oxidiser.
Smaller versions of such thrusters have been used occasionally on Earthorbiting satellites for adjusting
spacecraft attitude or executing small orbit changes, but no space vehicle has yet employed solar electric propulsion as its primary means of thrust.
The idea has actually been around for some time, and the dramatic benefits of ion propulsion for a wide variety of deep space missions have been appreciated. But Nasa science mission managers have never felt that the technology was mature enough to be used.
But the 1998 craft, part of the New

Millennium programme - will bring full-scale solar electric propulsion out of the lab and into space - once and for all.
The craft is also expected to test a variety of advanced technologies that may find their way onto ambitious deep space and Earth-orbiting missions planned by Nasa for next century.
For example, a miniaturised deep space antenna and related telecommunications equipment, advanced solar arrays and lithium ion spacecraft batteries, and low-mass spacecraft structures.

The instrument pay-load will include a miniaturised imaging spectrometer that will make chemical maps of the target asteroid and comet New mission operations techniques are promised to give the spacecraft independent decision-making abilities - unprecedented for such a deep space mission.
"These technologies represent significant leaps over the existing state of the art for deep space vehicles," says Kane Casani, New Millennium programme manager at the Jet Propulsion Laboratory. "We'll have a very capable yet very
advanced flight computer as well as a prototype multispectral science instrument that is at most a tenth of the mass of similar instruments on the Voyager probes. The autonomous navigation capabilities will deliver performance equivalent to sailing a ship across the Atlantic Ocean handsfree while arriving at the port in Europe a few steps away from the dock."
Depending on the launch date, the primary asteroid and comet fly-by mission is expected to last 12 to 18 months.

...And up into the clouds:

A Nasa pilotless, remotely-controlled aircraft, using the Sun's energy to fly to stratospheric altitudes, has achieved a milestone flight demonstration that could lead to better understanding of the upper atmosphere - and the effect of greenhouse gases on Earth's environment.
Pathfinder is one of several pilotless prototype research vehicles under study by Nasa, and the flight at Nasa's Dryden

Flight Research Center was the first in a series of high altitude tests of the solarpowered aircraft, developed by AeroVironment.
During the near 12-hour mission, Pathfinder - controlled from a ground station - reached an altitude of 2385 m , a new record for a solar-powered aircraft.
The all-wing aircraft, weighing less than 270 kg , is being evaluated by a

Nasa-industry alliance in a programme to develop technologies necessary to operate pilotless aircraft at altitudes of up to 4700 m on environmental sampling missions lasting up to a week or more. Previous holder of the solar aircraft record of 660 m was the Solar Challenger, also built by AeroVironment Inc. The company also developed the humanpowered Gossamer Condor and Gossamer Albatross lightweight aircraft.

From Albert Hall to Albert Terrace

How would you like to experience your favourite music, at home, as though you were sitting in one of the best seats at the Royal Albert Hall. Or perhaps you'd like to travel a little further. How about putting your feet up at Carnegie Hall?
Such a venue choice could soon be possible if the work being carried out by Ducksoo Lee in the Image \& Media Lab at LG Electronics, and Koengmo Sung, at the Department of Electronics Engineering at Seoul National University is taken up.
The two researchers have developed a sound field processor system designed to create the aural impression of a concert hall at home, using normal recording tapes or cds. Listening tests are reported to show an increased spatial awareness with the created sound - generally preferred to the original sound.

Researchers have experimented before with adding concert hall data into recordings but these have been limited by specialist hardware required. Other approaches have been to create reflections by placing a number of loudspeakers in the room. But most of the sound processing systems of this kind are based on single-point source models to create the reflections.
dial signal processing technology needed to bring concert hall effects into your front room.

Lee and Sung propose ('Sound Field Processor for Creating Virtual Concert Hall Impression in the Home, IEEE Transactions on Consumer Electronics, Vol 41, No 2, pp.273-281) an enhanced sound field processor system that makes optimal use of the two channel information contained in conventional stereo recordings, in a four-speaker system.
Firstly, they obtained the reflection data of a real concert hall by ray tracing simulation with two sound sources to create the reflections originating from the left and right channel.

These data are then processed as 'panning' information, which will act to give the impression of the image source moving from speaker to speaker.
A digitally processed sound field processing unit creates the reflections and reverberation signal from the two channel input signal.
Left and right input signals, digitised with a sampling frequency of 44.1 kHz , are stored separately in the delay lines, then multiplied by gain coefficients to build up the sound, sample by sample. Panning signals from the front left/right channels are
mixed with the direct sound, while only panned information is routed to the rear channels.
In the current system, the coefficients of several concert halls are stored, while room parameters such as initial time delay, size of hall and 'liveness' can be changed to alter the listening effect.

Obviously painstaking fine-tuning by a listener is still necessary to get that perfect concert hall effect in the front living room. But at least the drinks are cheaper...

Optical gyro puts motorists on the map

Global positioning satellite technology, as the basis for navigation systems, is pretty popular at the moment. Unfortunately, for navigating a car, gps has certain serious shortcomings - it suffers signal blocking due to tall buildings, and its location results are really too

Optical system making use of the Sagnac effect to monitor rotation.
noisy to identify a street.
But three Japanese researchers at Hitachi have demonstrated a practical automotive navigation system using a prototype optical gyroscope in combination with a map-matching algorithm, that offers a practical alternative to gps. It also addresses many of the problems associated with current gyroscope navigation. In particular, the researchers say electronics have been used to restrict the resolution and bias error of the gyroscope, while a microcomputer can compensate for the scale error due to the optics.
Basis of the system is the fibre ring interferometer. Laser light is split into two beams by the coupler then launched into the 300 m fibre loop (10 cm in dia) from different fibre ends so as to propagate in different directions. After circulating in the fibre loop, the two beams combine into an interference beam. According to the Sagnac effect, the two beams experience a different phase shift
when the system is rotating, so a rotation-dependent change results in the interference pattern.
In a test, the researchers were able to show ("Optical Fiber Gyroscope for Automotive Navigation", IEEE Transactions on Vehicular Technology, Vol 44, No , pp.698705) that a car containing the system could successfully track itself on a digitally-stored map. Run length was measured by a conventional speedometer and heading information was obtained from the gyro, constantly adjusted by the system so that the car's position matched up with a stored digital map.
A crucial test of the system was when the car turned into an area not detailed on the chart, effectively disappearing from the screen and being totally dependent on its sensors. The Hitachi team reports that when the vehicle did eventually turn into a mapped area, it once again appeared back on the map in precisely the right position.

Mag-lev has profound effect on chips

agnetic levitation technology, developed by MIT in the US, is being used to increase precision in integrated circuit production.
The mag-lev technique, developed by David Trumper of the Department of Mechanical Engineering, offers the promise of extremely fast and accurate frictionless positioning of the silicon wafers on which integrated circuit chips are fabricated.
MIT has licensed the process to Integrated Solutions Inc (ISI), a developer of ultra-precise machines for semiconductor production, where
it will be used in the design and manufacture of ISI's wafer stepper tool for printing integrated circuit patterns.
ISI engineers say they expect to be able to position stepper stages, on which wafers are photographically imaged, with accuracy measured at better than 10 nm . Mag-lev technology will be used to replace the current fine set stage and long travel stages of a wafer stepper, capable of 200 mm of travel, according to Larry Thomson of Integrated solutions.
The MIT technology
developments will be incorporated with a recently announced Crada (cooperative research and development agreement) for ISI to share mag-lev technology research results with Sandia National Laboratories.
Thomson says he has: "no doubt that this new mag-lev precision measurement and motion technology will have a profound effect on next generation semiconductor production equipment, such as wafer steppers, already under development.

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK Tele: +44 (0115) 986 4902/ +44 (0115) 986404124 hr answerphone Fax: +44 (0115) 9864667

HP 3582A DYNAMIC SPECTRUM ANALYSERS
$0.02 \mathrm{~Hz}-25.6 \mathrm{~Hz}$ with 0.02 Hz Resolution
Twin Channel Dynamic with Transfer \& Coherence $£ 1495$
Digital Averaging. On Screen Readout \& Prompts IEEE 488 option fitted

HP 3325A SYNTHESISED FUNCTION GENERATORS
$1 \mathrm{uHz}-21 \mathrm{Mhz}$ (to 61 Mhz on Aux O/P) Sweep Facility
1 mV to 10 V into 50 ohm Output in 0.01 db steps Sine Square. Triangle Ramp Functions £1100

HP 14IT + 8552B+8555A SPECTRUM ANALYSERS
10 Mhz to 18 Ghz with $100 \mathrm{~Hz}-300 \mathrm{Khz}$ Bandwidth $2 \mathrm{Khz}-200 \mathrm{Mhz}$ pr cm Scan. Storage Facility Now back in stock in quantities large enough
£1100 for us to advertise

HP 8445B AUTOMATIC TRACKING PRE-SELECTORS
For use with the above 14IT Analyser system DC-18GHz. No Cables hence only
£250

Variable Phase Output. Fully Programmable. HB-IB fitted

PHILIPS 8927 LINE VIDEO CORRECTORS

Complete Video Correctors with 5 preset
frequency controls. LF MF HF1 HF2 HF3
and overall Gain. Balanced and Un-Balanced
75 Ohm Video Output

AMBAC MV2 MERCURY VAPOR SNIFFER

Hand Held Mercury Sniffer with two ranges
$0-2$ and $0-10 \mathrm{mg} /$ cubic metre
With Book Case and Battery Charger (110V)
MEGGER BR4 BRIDGE TEST SETS
250 V Test Voltage with $0-500 \mathrm{Mohm}$ Range Bridge, Varley, Murray Loop Test

NEC VISI-GRAPH OSCILLOGRAPH

9 Channel Optical Recorder. 10 mV -10V/cm
with $10 \mathrm{~cm} / \mathrm{min}$ to $400 \mathrm{~cm} / \mathrm{sec}$ chart speed
Event Marker and Reference Grid. As New

SORENSEN DCR 150-12B
Regulated Power Supply, 0-150V at 0-12A Output
Twin LCD Meters Constant Volts or Current
£225

CIRRUS CRL254 \& CRL 511D
Integrating Sound Level Meter and Acoustic Calibrator SPL, LEQ, dbC, dbA
£175
with Case and Books
MEGGER 9A INSULATION TESTERS
Insulation. Continuity. Audio Bleep
Hand Held. Fully Transistorised Cased
H00V
1000V Hand Held. Fully Transistorised Cased 5065
500 V or 1000 V Output

FDB RCB TEST SETS
For Testing RCB's to BS 4293 $120 \mathrm{~V} / 240 \mathrm{~V} .100 \mathrm{mS} / 1 \mathrm{sec}$ test time
£85 3 mA to 1 Amp trip Current

GOULD OS4000 DIGITAL STORAGE SCOPES
DC to 10 Mhz Band-width (typ usable to 35 Mhz)
with 18 Mhz digital sample rate giving a usable
Digital 'Bandwidth' of 450 Khz 1 uS to 20secs timebase
Twin Trace. Roll and Pre-Trigger

Special Offer

 £235 for One Month OnlyFLUKE 77 LCD DIGITAL MULTIMETERS
Last few available. THE Standard Hand Held LCD MultiMeter. Supplied Fully Tested and Calibration. Verified complete with Carry Case and Protective 'Bumper' Holder for Belt mounting or Bench use. Supplied with Leads and Probes ALSO FLUKE 80TK Digital Thermometer add-ons for the 77 C and FK type probe

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage
All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty

Dave Brotton and Dave Bradbury look at the design and application of energy-efficient power ICs.

What are some of the most important considerations for today's modern systems? How efficient and how small can I make my product? This is particularly relevant to many battery powered systems.
While most IC manufacturers concentrate on ever more complex products the important area of power management is often overlooked. Advances in product requirements, for example, portable equipment such as mobile phones, demand smaller components which consume less power and extend battery life as much as possible.

Extending battery life

For power-sensitive applications, device quiescent current is important. Industry standard
regulators - the $L M 78 L$ and $L M 431$ - commonly feature quiescent currents of 2 mA and $400 \mu \mathrm{~A}$ respectively. We have designed equivalents featuring quiescent currents of only $350 \mu \mathrm{~A}$ and $35 \mu \mathrm{~A}-$ representing a potential power saving of up to 11 times.

Elements of the ZR78L

Circuit design of the $Z R 78 L$ three-terminal regulator, Fig. 1, is based on a bandgap reference, $T r_{1-5}$, which forms the core of the regulator. Closing the feedback loop around the reference is amplifier $T r_{6-9}$.
Output voltage of the regulator is programmed by tapping off from a resistor chain R_{8-13}. The value of this resistor was chosen as high as possible to assist minimising the quiescent current of the circuit. The remainder of the device quiescent current is defined by the bias generator $T r_{11}$ to $T r_{15}$ which has been set as low as possible.
An important feature of the circuit is that its current is almost entirely determined by a V_{BE} and a resistor. This means that it is largely independent of supply voltage leading to exceptional voltage regulation.
The final part of the circuit is formed by transistors $\operatorname{Tr}_{16-18}$ which operate as a thermal shutdown for the device. We find this device out-performs the typical competition in almost

Dave Brotton and Dave Bradbury are with Zetex

Fig. 2. Pinout of the ZR78L05C three-terminal, 5V regulator.
every respect - most notably the quiescent currnt is six times lower, despite the fact that the device is able to deliver twice the load current, up to 200 mA .
In Fig. 2, you will see the pinout for the 5V ZR78LO5C, while Table 1 shows the device's specification.

Applying the ZR78L regulator

ZR78L05-A particular feature of the Zetex version of the popular 78L series regulator is its low quiescent current, $l_{\text {q }}$. At only $600 \mu \mathrm{~A}$ $\max -350 \mu \mathrm{~A}$ typical - it is $5-11$ times lower than competitive devices. Whilst always desirable for battery powered circuits, low quiescent current is particularly important when the regulator is used in the following circuits. Figure 3 shows the ZR78LO5 providing a 7.2 V source for battery charging applications. Normal 5 V output of the regulator is boosted by using a potential divider comprising R_{1} and R_{2} to raise the ground reference of the regulator by 2.2 V . The maximum value that can be used for R_{2} is controlled by the quiescent current of the regulator. Resistor R_{2} is chosen so this current has an insignificant effect on the voltage dropped across it. Hence, the lower the quiescent current, the lower the current needed in this divider chain.
Omitting R_{2} giving the circuit of Fig. 4 allows the $Z R 78 L 05$ to be used as a precision current source. The output current provided by the circuit is given by $\left(5 / R_{1}\right)+l_{\mathrm{q}}$. Low quiescent current of the regulator allows this circuit to be used down to much lower currents than normal before accuracy is degraded by I_{q}.

Other regulators in the family

We based the ZR43I on the design of one of our standard voltage references, described in $E W+W W$ December 1992. The circuit core is based on a bandgap cell used in all Zetex ZRA, B and C reference designs. This circuit gives exceptional performance with temperature coefficients as low as $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and, importantly for power considerations, working currents from as low as $15 \mu \mathrm{~A}$.
The generic 43 1 is the mainstay reference for the switch-mode power industry and so is manufactured in immense volumes. Consequently the device is one of the lowest cost bandgap regulators available.
Despite this the ZR43l is a high specification device featuring a quiescent current of below $50 \mu \mathrm{~A}$, a slope resistance of less than 0.75Ω and a temperature coefficient under $55 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The part is basically a 2.5 V voltage regulator manufactured with its voltage reference sense input connected to a separate pin. By wiring an external potential divider to this pin, the reference can be multiplied to give a shunt regulator of any voltage from 2.5 V up to 20 V . Input current of the reference is only 120 nA so resistors used in the divider chain can be very high value. The device is configured in Fig. 5.
The 431 regulator is commonly used in the feedback loop of isolated switch-mode power supplies as shown in Fig. 6. Here the cathode

Table 1. Key specifications of the ZR78LO5C

Absolute maximum ratings

Input voltage
Package power dissipation
Output current I_{0}
Operating temperature
Storage temperature

20V
TO92 0.6W
200 mA
-55 to $125^{\circ} \mathrm{C}$
-65 to $150^{\circ} \mathrm{C}$

Electrical characteristics

Test cond	ditions, unless otherwie	stated, T_{j} is $25^{\circ} \mathrm{C}$	${ }_{0}$ is 10	$n A$, and	$V_{\text {in }}$ is 9	
Symbol	parameter	conditions	min.	typ.	max.	units
Vo	output voltage		4.875	5	5.125	V
		$10=1$ to 200 mA	4.8		5.2	V
		$T_{j}=55$ to $125^{\circ} \mathrm{C}$				
		$V_{\text {in }}=7$ to 20 V	4.8		5.2	V
		$\mathrm{I}_{0}=1$ to 100 mA				
		$T_{i}=55$ to $125^{\circ} \mathrm{C}$				
ΔV_{0}	line regulation	$V_{\text {in }}=7$ to 20 V		10	40	mV
ΔV_{0}	load regulation	$\mathrm{I}_{0}=1$ to 200 mA		5	25	mV
		$l_{0}=1$ to 100 mA		2		mV
la	quiescent current	$T_{j}=55$ to $125^{\circ} \mathrm{C}$		350	600	$\mu \mathrm{A}$
$\Delta l_{\text {a }}$	quiescent current	$\mathrm{l}_{0}=1$ to 200 mA			50	μA
	change	$V_{\text {in }}=7$ to 20 V			100	μA
$V_{\text {n }}$	output noise voltage	$f=10 \mathrm{~Hz}$ to 10 kHz		75		$\mu \mathrm{V}$ rms
$\Delta \mathrm{V}_{\mathrm{in}} / \Delta \mathrm{V}_{\text {o }}$	ripple rejection	$V_{\text {in }}=8$ to 18 V				
		$f=120 \mathrm{~Hz}$	48	62		dB
$V_{\text {in }}$	input voltage required					
	to maintain regulation		7	6.7		V
$\Delta \mathrm{V}_{0} / \Delta \mathrm{T}$	average temperature	$I_{0}=5.0 \mathrm{~mA}$				
	coefficient of V_{0}	$T_{\mathrm{j}}=-55$ to $125^{\circ} \mathrm{C}$		0.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Fig. 6. The 431 shunt regulator is often used in the feedback loop of a switch-mode power supply. In this circuit, the device is not wired directly to the sense divider. The device drives the led of an .opto-isolator

Fig. 4. Removing Fig. 1's resistor to
ground produces a precision current source.

pin of the device is not directly wired to the sense divider. Instead it has the led of an optocoupler in series which feeds error signals to the pulse width modulator of the power supply across the isolation barrier.
There are occasions when a reference with a large and closely defined temperature coefficients are required. It is vitally important that the specified terminal voltage of sealed leadacid batteries is not exceeded during charging but ensuring this can be difficult due to large temperature dependence of the batteries voltage. By adding diodes with a known temperature coefficient to the reference input circuit of the ZR431, a reference with the same coefficients as the lead-acid batteries can be produced. Figure. 7 shows a 6.9 V reference which has a temperature coefficient of $-11.7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, matching a three cell lead-acid battery pack terminal voltage temperature.

Saving space

Mechanical constraints in battery applications often mean that the circuits used should be as compact as possible. Traditionally, the ZR43I has been provided in a through hole TO92 package, however space saving requirements today are driving manufacturers to surface mount packages.
The commonest surface mount package for the industy standard LM431 has been SO8. Zetex part is available in the SOT23 package, which at just 3 mm by 1.5 mm offers a 75% saving in pcb space when compared to the alternative SO8. Not only that but just three connections are required to assemble the device onto the board.
Another feature of Zetex surface mount pakaging capability comes into account where high dissipation may be expected but space saving is still important. Typically the LM78L standard devices have been made available for surface mount appliations in the SO8 package. Thermal contraints for this package often limit the dissipation of the competitive parts. Zetex ZR78L series surface mount regulators can utilise the SOT223, 7 mm by 4 mm package, to attain dissipation up to $2 W$ perhaps three times the SO8 alternatives. This means you can use the regulators up to their 200 mA load

Fig. 7. When charging a lead-acid cell, terminal voltage must not be exceeded. This circuit tracks the large change in terminal with temperature..

Inside the low-drop-out regulator

Critical to performance in this type of regulator is the pass device. Traditional linear regulators use an npn pass element - usually a darlington - to provide drive current. This results in an input to output voltage differential in the region 1.5 to 2 V . Such a high voltage drop, at the level of drive current required, results in high dissipation.
Replacing the pass element with a pnp transistor reduces dropout voltage to the saturation voltage of the output device so greatly reducing the wasted dissipation in the regulator. Typically integated output pnp devices have given poor saturation voltages with hundreds of milliamps load current. In addition, relatively poor beta has resulted in high base current drive requirement and so high quiescent current.
In the configuration below, output device ${T r_{15}}$ features very low saturation voltage - only 35 mV at 100 mA . The pass transistor also has a high beta, contributing minimally to the device total quiescent current of $600 \mu \mathrm{~A}$.
The basic regulator circuit comprises a bandgap cell similar to that used in the $Z R 78 L$ regulator. It provides the base current drive to the pnp pass device. The loop is closed by the divider resistor $R_{11,12}$ to enable voltage programming of the circuit during manufacture. A battery low indicator is provided through a sense circuit. It indicates a potential error, at $T r_{10}$, should the supply voltage fall to within 300 mV of the defined output voltage. A shutdown feature turns off the main bias circuit and reduces quiescent current to typically only $16 \mu \mathrm{~A}$.

current limit with a wider range of input voltages not supported by alternative products.

Low drop-out voltage

Extension of battery life is all important to users of battery powered equipment. Of course quiescent current in the power management circuit is important here, but another consideration comes into play.
As a battery runs down, so its output voltage falls. To ensure that the equipment continues to function as long as possible demands the battery regulator has the lowest possible dropout voltage.
Dropout voltage is the minimum input to output voltage differential required to maintain regulation. Our design approach produces regulators with exceptionally low dropout voltage - down to 35 mV with 100 mA load current.

High-performance, low drop-out

The Zetex low-drop-out device can be remotely shut down under direct low-power logic control. It also includes a low supply warning flag which goes valid when voltage across the regulator falls to below 300 mV . At this differential voltage, the $Z L D O$ still regulates correctly so the flag gives a warning of impending failure, not an alarm of failure occurring. This gives time for an orderly system shut
down of battery powered microprocessor systems.

Conclusions

The circuit approaches and packaging technologies described here solve some of the most important problems for today's power management applications.
Look for economy combined with low quiescent current and low dropout voltage, and look for space saving with small outline packages.

Best rf article '95

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available if ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

Win a £4000 programmable signal

 generator from Hewlett-Packard

The prize for the coming year's award is a £4000 Hewlett-Packard HP8647A 1 GHz programmable signal generator. If features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

For further details about our quest for the best, call or write to:
Martin Eccles, Edifor, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Tel 081-652 3128

JOHN MORRISON HARDWARE \& SOFTWARE

PIC ICE II

In Circuit Emulator for PIC16C54-55-56-57-71 \& 84 Replaces all 18 or 28 pin PIC's. All ports Bidirectional OSC2 output, RTCC input, on board A/D converter for PIC18C71. Supplied with PICDEV software suite, user manual, connecting leads and headers asrn, user sample files and hardware circuit projects.
£159.95

MEGAPROM EPROM PROGRAMMER

EPROMS, E ${ }^{2}$ PROMS \&
FLASH memories
from 2 Kb to 8 Mb
INC. MICROCHIP 24L series.
Operates via host IBM PC and centronics port, uses standard printer cable, on board production quality ZIF socket.
£99.95

PIC PROGRAMMER

PIC 16C54-55-56-57-71 \& 84
Centronics port interface, powerful editing software allows the user to Read, Write \& Copy PIC ware allows the user to Read, Write \& Copy PIC
devices including data memory in PIC16C84. Supplied with Editor Assembler software suite. Sample files and notes.
£99.95
Centronics port interface, powerful editing sort-

EPROM EMULATOR

SMARTCARD/PIC CHIP PROGRAMIMER

ON BOARD ISO 7816 INTERFACE, sottware runs on host IBM PC allowing the user to program SmartCards or PIC16C84's on a SmartCard emulator, also Programs PIC16C84 on a target board via an on board header. The perfect SmartCard development tool. Supplied with a full suite of software.

For ROM from 1 Kb to 32 Kb

Operates via host IBM PC and centronics port, uses standard printer cable. Very fast download to target board EPROM socket, operates with or without our development software suite.

£69.95

DEVELOPMENT SOFTWARE

Develop software on your IBM PC for other Microprocessors, Controllers, PIC Chips etc. Each software suite has a fully integrated Text editor, Assembler, Disassembler and Simulator included. Code can be downloaded directly to our emulators. All software supplied with operator instructions and sample code. MCS8051/52/552 - MCS8048/49 - PIC16C54/55/56/57 PIC16C71/84 - HD63/6809 - R6502 £19.95 ea

Internet

 Phil Collins discusses the design of a $14.4 \mathrm{kbit} / \mathrm{s}$ intelligent modem/fax card, ideal for Internet applications.

Highly integrated, Rockwell's RC144 series of single device modem ICs handle data, fax and voice to 14,400 bits per second with few additional components. This design example shows how RC144 $A T$ options develop into low-cost pc cards that are transparent in Internet applications and are capable of sustained data throughput of $57 \mathrm{kbi} /$ /s.
Data compression and error correction facilities are integrated into the RC144 AT modem chips. The devices handles fax and data at rates of up to $14,400 \mathrm{bits} / \mathrm{s}$ - i.e. V.32bis/V.17..In data mode - due to the integral compression and error correction facilities - it is possible to design a low cost, minimal component modem capable of data throughput of up to $57,600 \mathrm{kbit} / \mathrm{s}$.
Figure 1 is a block diagram of the Internet modem for a parallel PC bus configuration..Alternative devices are available which allow a serial option Fig. 2.

RC144AC/AT modem family

From the basic RCI44 device, there are twen-ty-four variants. One of the major options is

Phil Collins is sales manager, TDC
serial or parallel interfacing. Further options are listed in Table 1
While the table appears daunting, it is quickly be explained. Suffix $A T$ versions require the host computer to perform data compression and error correction for the modem. A package called WinRPI does this in Windows 3.1, Win95 already includes this software. Suffix $A C$ versions use external static ram to enable them to perform the same error correction and compression. Another benefit of using the $A C$ version is that MNP-10, the cellular data trans-

[^2]

Fig. 2. Options of the RC144 fax/data modem chip allow interfacing to a pc COM port via a standard serial interface.

Table 1. There are twenty-four variants of the basic RC144 modem chip. One of the major options is serial or parallel interfacing.

Model	ECC	Fax	Voice	US/World	RAM	ROM
RC144ACFD-P	Built-in	No	No	US	$32 K$	No
RC144ACF-P	Built-in	Yes	No	US	32 K	No
RCV144ACF-P	Built-in	Yes	Yes	US	32 K	No
RC144ACFWD-P	Built-in	No	No	World	32 K	128 K or 8 K
RC144ACFW-P	Built-in	Yes	No	World	32 K	128 K or 8 K
RCV144ACFW-P	Built-in	Yes	Yes	World	32 K	128 K or 8 K
RC144ATFD-P	Via host	No	No	US	No	No
RC144ATF-P	Via host	Yes	No	US	No	No
RCV144ATF-P	Via host	Yes	Yes	US	No	No
RC144ATFWD-P Via host	No	No	World	No	128 K or 8 K	
RC144ATFW-P	Via host	Yes	No	World	No	128 K or 8 K
RCV144ATFW-P	Via host	Yes	Yes	World	No	128 K or 8 K

fer protocol is included.
Secondly, W versions are what Rockwell term 'world-class' products. This means that they can easily be configured for any country in the world, and be approved in that country..TDC provides Rockwell software called ConfigurAce which allows the various country parameters to be fine-tuned.
The use of 128 K on-board rom allows multiple country selection to be performed, while 8 K of rom provides only single country sup-
port. Normally, only 8 K is used since the line interface needs to be changed for each country in a multiple-country version.
Versions suffixed $R C V$, for example the RCV144ACFW - add voice capability to the modem. There are extended $A T$ commands which allow voice to be sampled and played back from the telephone line. With appropriate software - many fax packages include this facility - it is even possible to turn your pc into an answering machine. Voice mode also

Components for the Internet modem		L_{1}	$10 \mu \mathrm{H}$
Parts shown in bold type are required for the discrete line interface, and.are not required when the Xecom DAA is used.		$L S_{1}$	IMO 41T70
		PCB	TDC AE122C (see panel)
		R_{1}	100R
Reference	Value	R_{10}	4 k 7 (6 k 8 if Xecom DAA is used)
C_{1}	18pF	R_{11}	560R
C_{10}	15nF	$R_{12,15,16,5}$	10k
$C_{10 a}$	3.3 nF	R_{14}	1k
$C_{11,2,20,21,22,23,24}$	$10 \mu \mathrm{~F}$	R_{17}	TBD
$C_{3,6,8,14,13,15,16,25}$	100nF	R_{18}	10R
C_{17}	100nF	$R_{2,6}$	680R
C_{18}	100 F	R_{3}	330 R
C_{19}	220 1 F	R_{4}	10k
$C_{4,5}$	22pF	R_{7}	8k2
c_{7}	$0.47 \mu \mathrm{~F}$	R_{8}	1M
C_{9}	$10 \mu \mathrm{~F}$	R_{9}	56R
D_{1}	IN4148 NSC	T_{1}	1165
$D_{2,3,4,6}$	BZX79CV3	Tr r_{1}	BC212B
D_{7}	BZX79C12	Tr_{2}	ZVN3306A
$D_{8,9,10,11}$.	IN4004	χ_{1}	$35.2512 \mathrm{MHz}$
$I C_{1}$	AT27C010-70DC or AT27C64-70DC (70ns) 32 pin DIL 0.6 in	XCOM ${ }_{1}$	Xecom XE0054SIP DAA (not needed for component line interface)
IC C_{1} skt $I C_{10}$	32 pin DIL 0.6 in CD74HCT245E	Parts re	(not needed for component line interface) C amplifier
$1 C_{2}$	HY62256ALP70 (70ns)	Ref	Value
$1 C_{2}$ skt	28 pin DIL 0.6in	C_{13}	100nF
$1 C_{3}$	RC144ACFW	C_{14}	100 nF
$1 C_{3} \mathrm{skt}$	68 pin PLCC	C_{18}	$10 \mu \mathrm{~F}$
$1 C_{4}$	TLP627	$1 C_{6}$	LM386N3
$1 C_{5}$	4N35	R_{14}	1k
$1 C_{7}$	CD74HCTO4E	R_{13}	750R
$1 C_{8}$	ST24C02AB1	Parts requ	ransistor amplifier
$1 C_{9}$	PCF74HCT30P	Ref	Value
J_{2}	FCC68	C_{18}	100 F
$J P$ SKT $\times 3$	Jumper sockets	R_{13}	10R
$J P_{1,2,3,4,5}$	3 way 0.1 in pitch jumper connectors	R_{19}	39R

©
Complete 14.4kbit/s fax/data modem for Complete 14.4kbit/s fax/data modem for
interfacing to the pc via an expansion slot. Due to integral data compression and error correction, the RC144 is capable of
sustained data throughput of up to 57.6kbit/s.

C3 $=$ IOON DECOUPLING
C22. CZ3.C24 $=$ IOUF DECOUPLING
COMPONENTS RETUIRED FOR XEOOS4P
VITHIN DASHED OUTLINE ARE
WITHIN DASHED OUILINE RAE
RI6. RII. RIO A4, XCOMI

includes the ability to detect dual-tone multi-ple-frequency, or dtmf, tones allowing signalling and control to be performed from an ordinary telephone
Versions with D in the part number are data only and do not include fax. The $-P$ at the end of the part number indicates the chip is a parallel version for pc -card or PCMCIA designs.. The alternative is $-S$, which specifies serial normally used in external desktop modems.
A board designed to take one particular parallel device will accept any of the devices with the $-P$ suffix. This makes it is possible to choose the feature set after the modem has been designed. Of course the same applies to the serial product family.

Modem architecture

As with all modems these chips comprise a number of basic building blocks.

DTE interface. This is usually either RS232 serial or parallel pc bus.

Modem data pump. The data pump is the heart of the modem. It is a fast digital signal processor which modulates and demodulates signals carried across the telephone line.

Modem controller. A microprocessor - the modem controller - handles the AT commands, data compression, line control etc. In this modem, both the data pump and controller are integrated into the one 68 -pin PLCC package. Rockwell uses novel $H y P A C$ technology which puts a number of different silicon die into a special leadframe providing the interconnects. This allows Rockwell to simply integrate the digital and analogue technologies into the one device.

Table 2. The Internet modem card can be set for communication via any one of the four standard COM ports on the pc.

Table 3. On the modem card, jumpers are provided for non-standard address and IRQ selections.

Jumper	Function	High	Low
1	A4 address select	F	E
2	A8 address select	3	2
3	IRQ line selection *	3	4
4	IRQ line selection *	5	6
5	IRQ line selection *	7	2
5			
"Note that only one IRQ line should be			
selected at any one time.			

Contacts and technical support

TDC is the distributor for Rockwell and Xecom in the UK, and specialise in the supply of modem components to the communications industry. A manufacturing package is available from TDC which includes full documentation, and a disk with Gerber files, e-prom image etc. This package allows manufacture of this modem in volume at a minimum cost. Its price is $£ 75$ plus VAT and carriage..The 8 K e-prom image for the UK is available free of charge on TDC's BBS, file name TDC144.HEX. TDC can also help with BABT approvals.
For readers wanting to produce small quantities or one-offs, Siskin Electronics, tel 01703 243400, can supply the pcbs, programmed e-proms and other parts.
Once you have the modem working, you can connect to Rockwell's home page - http://www.nb.rockwell.com - to read about the latest developments in modem technology.. You can even ask BaudMan - SuperHero of the SuperHighway - a question about modems.
The author can be contacted at TDC on 01256 332800, BBS 0125657900 , or via Compuserve on 100702,1162.

The RCl44 contains three pieces of silicon, the DSP, controller and an integrated analogue device.

Non-volatile ram. although not essential, this device is useful for storing frequently dialled telephone numbers and personalised configurations.

Line interface. This connects - and isolates the modem to the telephone line. Most countries have different standards and connectors for telephone line connection, and of course it is illegal to connect a modem which is not approved for that country. The design here has not been approved for use in the UK, although it has been designed to be approvable.
You can choose between two types of line interface on the pcb - a discrete line interface
made up of individual components (BABT approvable), or an encapsulated line interface manufactured by Xecom. The pre-built option replaces some 25 or so components - including the transformer and some special opto-isolators.. The module provides all of the line isolation, ring detect and line hold functions.

Designing a pc card modem

The circuit is based upon a pc half-card design, and of course is dominated by the Rockwell chip. A 32 K ram and 128 K eprom are provided for, with the latter being replaced by an 8 K eprom for the single country option.

The PC bus is a standard 8-bit ISA type, so should be compatible with most pcs. A $74 H C T 245$ bi-directional buffer isolates the modem from the pc bus when it is not being accessed.

In order for digital data to pass over a normal telephone line, it needs to be converted to analogue form at the sending end and back to digital at the receiver. Ones and zeros travelling over the line are usually represented by two tones.

Voice-band telephone channel -300 Hz to 3 kHz

Typical hearing limits -20 Hz to 20 kHz

[^3]For communicating between the card and pc , the RC144 chip emulates a 16550 fast serial port. As a result, the modem appears as a COM port.
When setting up COM ports, it is important to be aware of COM ports already in use within the pc. If your pc already has COM1 and COM2, the natural selection is of course COM3. However, the standard setting for COM3 shares an interrupt with COM1, the outcome of which is an interrupt clash with some other device - usually causing lost data.
It makes sense therefore to change the interrupt used from the default IRQ4 to, say, IRQ5.

Rockwell

Rockwell has been the main supplier of silicon to the modem industry since it began, now supplying over 70% of the world's data modem devices and over 80\% of fax modems. The RC144AT and AC family represent just a small part of the company's product portfolio, which comprises $V .34$ down to V. 21 modem chips and fax/voice chips. Rockwell also manufactures the MicroTracker LP GPS receiver, featured in the August issue of $E W+W W$.

Windows 3.1 allows you to set the new interrupt, but other packages may not. Check for these compatibility problems before suspecting something is wrong with the modem.
The modem incorporates expanded COM port setup facilities to allow for maximum flexibility. There are five jumpers on the board. Table 2 shows the standard dos configuration you should select for each port. The diagrams are shown with the edge connector facing down. Table 3 shows jumper functions for those who wish to use non-standard configurations.
The speaker allows for call progress monitoring. It has two drive circuit options. The lowest cost option is a single transistor amplifier using $T r_{2}, R_{19}$ and R_{20}. A link should be fitted in $L K_{1}$ when using this option.
Better audio output is provided by using an LM386 amplifier, C_{14}, R_{14}, and C_{13}. If no audio output is required, for example in an unmanned or embedded system, then these components can be left out.
Many more components are omitted when the Xecom DAA is used, but note that R_{10} needs to be changed to $6.8 \mathrm{k} \Omega$ in this case.

Gaining approval

Although the modem described here is UK approvable, prospective manufacturers may wish to make use of a UK approval service offered by TDC. The modem can be approved

Modem seminars

Modem Seminars covering the theory of operation, approvals, new technologies, line interfaces etc, are organised by TDC. The next is scheduled for the 18th of January 1996 in Basingstoke. The cost is $£ 25$, which covers seminar hand-outs and lunch. TDC also runs GPS seminars covering the Rockwell GPS receivers.
and manufactured in your own name.
Those with experience of modem design will note the absence of a 2 -to-4 wire hybrid..Remember that a telephone line is based on two wires, and both sides - transmit and receive - of a conversation take place simultaneously. For a modem to operate, the received signal needs to be isolated from the transmitted signal. In many modems this is performed externally using an op-amp, but on the Rockwell device, this circuitry is included.
A 24C02 non-volatile ram provides parameter storage for the modem. But if the modem is initialised every time by host software, this may not be required - again reducing cost.

This article is based on a Rockwell application note, a copy of which is available to modem designers from TDC.

Internet Modem - an Electronics World exclusive reader offer

Key components for the $14.4 \mathrm{kbit} / \mathrm{s}$ Internet modem described in the article on page 923 are available from Siskin for $£ 49.95$ excluding VAT. These components are the RC144 chip, a pcb, ready-programmed eproms and a technical manual. Note that the modem is based on the UK telephone standard. Please add $£ 1.50$ carriage with your order and make your postal order payable to Siskin Electronics. Credit card details should include type of card, card number and expiry date. Send the order to Siskin at Unit 1A, Hampton Lane, Blackfield, Nr Southampton, SO45 1WE, tel. 01703243400 , fax 01703 243500.

PC interfacing 14.4kbit/s modem includes error correction and compression to achieve sustained data throughput of 57kbit/s.

Field Electric Ltd. Tel: 01438-353781 Fax: 0143835939 Tel: 01625434623 Mobile: 0836-640328/0860-213370 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8	VISA
102 Key IBM compatible keyboard terminated to 6	¢8.00 ${ }^{\text {p } £ 3.75}$
Yuasa NP 1066 v 10ah sealed lead acid battery New	£7.95 dp £4.00
PC PSU new 200 watt square type standard plus	£15.00 cp ¢ 5.00
NECCMV 123ne 12"colour VGASVGA 800×600	£75.00 dp £14.00
NECCMV $1039^{\prime \prime}$ Colour VGASVGA 800×600	¢60.00 cp ¢12.00
Sony 9° colour Trinitron KTM 1000ub data for RGB	£50.00 dp $£ 12.00$
$12^{\prime \prime}$ Mono VGA (paper white) chassis enclosed 240V	£30.00 C/p §15.00
AT\&T 16 " graphics colour monitor terminal 25 pin D connector with keyboard new \& boxed	£90.00 $\mathrm{c}^{1} £ 18.00$
Coutant DCDC converter new 48v in 5 v out 5 a	£6.00 cp ¢ 2.50
240 v 10 110v 80 W Toroidal franstormer auto new	£7.00 cip E3.00
12 vdc Fans $90 \times 25 \mathrm{~mm}$ qly discount	£3.00 cip 11.50
Laser drive inc: Model 134 HE NE gas laser input 10-14v output DC 1250	£100.00
Sony video cassette player VP5040 NTSC/PALSECAM	£280.00
Star Serial (RS232) interface IS-8XM new boxed	£4.00 cp $£ 2.00$
Calcomp 2200 digitizer (sight case damage)	£100.00 cip §15.00
CCD Barcode reader ideal for EPOS etc: reads high and low density barco	£70.00 cip ¢6.00
Dicanix 300 inkjet printer new boxed 308 CPS 80 col: parallel	£190.00
RS H.V Probe 610-281 new boxed	£20.00 cp $£ 5.00$
Mains conditioner and UPS please ring	
HP 1727a 275Mhz storage oscilloscope	£490.00
HP 7470a Plotter IEEE including interiace cable	¢95.00 c/p ¢17.00
HP 3551a Transmission lest set	£565.00
Tektronix 7A18 dual trace amp plug in	£75.00 cpp 99.00
Tektronix 7853 dual time base pug in	£75.00 cpp $£ 9.00$
Tektronix 7A15A amp plug in	£175.00 cip £10.00
Tektronix 7CTIN curve trace plug in	£450.00 do £12.00
Tektronix 7 D 12 AD converter plug in	£140.00 c/p £10.00
Switchcratt plug new gty discounts	£1.50
Chessel 301 chat recorder	£40.00 c/p E15.00
Mannesman Tally 910 laser printer (needs some attention)	£110.00
Astec SA 30-1306 +5@2A +15@1.8A-15@3A new boxed	¢8.00 cip $£ 2.00$
ATAT Starlan 10 network hub model E	£ $150.00 \mathrm{c} / \mathrm{¢}$ ¢ 16.00
Racal Dana 93019 R.F millivotimeter true R.M.	£185.00 cip $£ 15.00$
Stag Prom eraser SE100	£110.00 c/p £ 16.00
Elan E9D copier/programmer EPROM/EePROM editing and interface new boxed	£325.00 c/p §18.00
PLEASE ADD 17.5\% VAT. TO ORDER: RING FOR C/P PRICES NOT SHOWN: OFFICIAL ORDERS AND OVERSEAS ENQUIRIES WELCOME	
TO ALL SMALL BUSINESSES AND COMPANIES. WE WOULD LIKE TO BUY YOUR SUAPLUS OR REDUNDANT COMPUTER HARDWARE/GOOD TEST EQUIPMENT ETC.	

CIRCLE NO. IIION REPL Y CARD

EMBEDDED C ASSEMELY SIMULATION

8051

C compiler, first released in 1991, now features:

- Easy to use interrupt support with reglster bank switching
- IEEE floating point arithmetic
- IEEE 695 source level debug output

Intergrated relocatable assembler
Simuiator running under Microsoft Windows provides extens've support for the 8051 code development

68000

Our frst C compller/assembler package

- now supports flooting point arithmetic
has been widely adopted by many OEM's to support their 68000 and 68307 hardware

CPU32

68020 C compiler/assembler, originaily developed to accompany Motorola's 68020 and 68ECO20 evaluation models

- Now supports the CPU32
- 68881 co-processor support

IEEE 695 source level debug output

[^4]
COMPONENTS FOR MODEMS

Telecom Design Communications - the one-stop shop for all your modem needs.

Modem Chipsets

Rockwell's range of market-leading modem devices provides high-speed 28.8 kbps , through single-chip 14.4 kbps with data/fax/ voice, to low power, low cost 2400 bps data only. Call TDC for superb solutions for fast
 Internet access.

SocketModems ${ }^{\text {TM }}$

Rockwell SocketModems ${ }^{\text {TM }}$ make intégration of voice, data, and fax functionality a breeze. Connect with one of our BABT line interfaces for rastest time to market.

Digital Simultaneous Voice \& Data

Operating at 28.8 kbps , DSVD is ideal for new and expanding markets like business presentations and interactive games - play and talk simultaneously on a single standard phone line!

Line Interfaces

Carrying a BABT Certificate of Recognition to ease the path to full UK approval, Xecom Inc. line interlaces are the compact solution to PSTN connection. Other country versions are also available.

Modem Manufacturing Packages

Aimed at OEMs and System Integrators wishing to incorporate modem functionality into their products, TDC have introduced an evaluation board based on Rockwell's single-chip V.32bis data/fax/voice device.

If you need communications facilities, our team of applications engineers can assist you at every stage from design and integration through to BABT approval.

Telecom Oesign Communications; Connect House, Stroudley Road, Basingsloke, RG24 OUG. Tel: 01256332800. Fax: 01256332810. BBS: 0125657900.
$51^{\circ} 96.16^{\prime} \mathrm{N}, 0^{\circ} 1.04^{\prime} \mathrm{W}:$ SU 653535.46531535

Radio Engineer's Pocket Book

by John Davies, 240 pp , hardback Order - ISBN 0750617381 Price $£ 12.99$

Contains: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; piezo-electric devices; bandwidth requirements and modulation; frequency planning; radio equipment; Microwave comms; information privacy and encryption; multiplexing; speech digitisation and synthesis; vhf and uhf mobile communication; signalling; channel occupancy, trunking; mobile systems; base station management; instruments; batteries; satellite comms; connectors and interfaces; broadcasting; abbreviations and symbols; tables and data; glossary.

Covers all aspects of radio and communications engineering from very low frequencies to microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods, connectors and interfaces, are all included in this book.

Audio Recording and Reproduction

Michael Talbot-Smith, 204pp, paperback
Order - 0750619171
Price $£ 12.99$
Contalns: Physics of sound waves; hearing; basic acoustics; microphones; loudspeakers; public address; stereo; simple mixing equipment; recorders; introduction to digital audio; music and sound effects; miscellaneous data.

This book gives a simple and straightforward approach to audio techniques, detalling technical and practical information for those with no specffic tralning in the subject.

Circuit Designer's Companion

by T Williams, 320pp, paperback Order-075061756 X Price 115.99

Contains: grounding and wiring; printed circuits; passive components; active components; linear integrated circuits; digital circuits; power supplies; electromagnetic compatibility.

Valued by linear and digital designers alike, this guide explains and outlines solutions that take Into account the imperfect behaviour of real components, interconnections and circuits.

Servicing Personal Computers

by Michael Tooley, 304pp, hardback Order - ISBN 0750617578 Price $£ 25.00$

Contains: Microcomputer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM pc compatibles and 68000 -based computers.

This completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also includes a guide to developments and trends such as the new generation of diagnostic software code included - and applications such as serial communication, and memory and hard disk management..

Newnes Audio and Hi-Fi Handbook

by lan Sinclair, 656 pp , hardback Order - ISBN 075060932 X Price $£ 40.00$

Contains: Sound waves and acoustics; studio acoustics; microphones; sound synthesis; introduction to digital principles; compact disc technology; other digital systems - DAT, NICAM, DCC, MD analogue tape recording; noise reduction systems; LP records; disc reproduction; tuners and radio receivers; preamps and inputs; voltage amplifiers/controls; loudspeakers and enclosures; Headphones; public address; in-car audio; interconnections; the future.

Covers a wide perspective of highquality sound reproduction,
including reproduction under adverse circumstances, from less conventional sources and with regard to the whole technology from studio to ear.

TV \& Video Engineer's Reference Book

by Boris Townsend, 876pp, paperback Order - ISBN 0750619538 Price $£ 40.00$

Contains: Materials; components and construction; colour tv fundamentals; broadcast transmission; distributing broadband; DBS; tv studios; mobile and portable equipment; tv sound; tv receivers; servicing tvs; video recorders; teletext etc; HDTV; other applications of tv ; performance measurements.

Covers information on every aspect of modern broadcast technology. Of value to all practicing engineers and managers involved with broadcast, cable and satellite services.

Masts, Antennas and Service Planning

by Geoff Wiskin, 256pp, hardback Order - ISBN 0240513363 Price $£ 49.50$

Contains: Antennas; antenna support structures; service planning.

Covers all aspects of information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobileradio coverage, or designing, installing and maintaining antenna systems.

Operational Amplifiers

by Jlri Dostal, 400 pp , hardback Order - 0750693177 Price $£ 40.00$

Contents: The operational amplifier; basic concepts; operational amplifier parameters; operational amplifier properties; the operational circuit; the ideal operational circuit; analysis of the real operational circuit; static and dynamic errors in the frequency domain; dynamic errors in the time domain; input and output impedances;

offset; noise; stability; good laboratory practices.

Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits. Provides the reader with practical knowledge necessary to select and use operational amplifier devices.

Servicing Video

 Cassette Recordersby Steve Beeching, 250pp, hardback Order - ISBN 0750609354 Price $£ 25.00$

Contains: Vcr systems; azimuth tilt;;Frequency modulation; servo mechanisms; colour systems; systems control; long play; VHS-C \& camcorders; a-v sockets.

Written for students and people involved with vcr servicing, this book is an invaluable guide and reference covering all aspects of modern vcrs. Contains new material on basic magnetic theory to C\&G 224

Principles of Transistor Circuits

by S W Amos, 384pp, paperback
Order - 0750619996
Price $£ 17.99$
Contains: Semiconductors and junction diodes; basic principles of transistors; common-base and common-gate amplifiers; commonemitter and common-source amplifiers; common-collector and common-drain amplifiers; bias and dc stabilisation; small-signal af amplifiers; large-signal af amplifiers; dc and pulse amplifiers; $i f$ and if amplifiers; sinusoidal oscillators; modulators, demodulators, mixers and receivers; pulse generators; sawtooth generators; digital circuits; further applications of transistors and other semicanductor devices.

This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser dlodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switchmode power supplies.

Logic Designer's Handbook

by Andrew Parr, 488pp, paperback Order - 0750605359 Price $£ 30.00$

Contains: Simplified data on a comparative basis of tl and cmos ics; storage devices; logic circuits; timers; counters; drivers; interface circuits; logic gates; definitions of ic characteristics; event driven logic; communication and highways; analogue interfacing; practical considerations; summaries by function of all relevant circults; individual pin-out diagrams.

Easy-to-read, but nonetheless thorough, this book on digital circuits is for use by students and engineers, and is a readily accessible source of data on devices in the $t 1$ and cmos families.

The Art of Digital Audio

John Watkinson, 490pp, hardback Order - 0240513207
Price $£ 49.50$
Contains: Why digital?; conversion; AES/EBU; digital audio coding and processing; digital compact cassette (DCC); advanced digital audio processing; digital audio interconnects; digital recording and channel coding; error correction; rotary head recorders; stationary head recorders; NAGRA and data reduction; Digital Audio Broadcasting (DAB); the compact disc/mini disc.

New edition, completely updated to include all the latest developments, including DCC, the mini disc and digital audio broadcasting.

Microphone

 Engineering Handbookby Michael Gayiord, 384pp, hardback
Order - 0750611995 Price $£ 65.00$

Contalns: Microphone techniques; precision microphones; optical microphones; high quality if microphones and systems; radio microphones and ir systems; microphone testing; ribbon microphones; microphone preamplifiers; stereo microphones; microphone standards.

Comprehensive and authoritative book for engineers, technicians, students and anyone else concerned with the design and use of microphones.

MIDI Systems and Control

by Francis Rumsey, 256pp, paperback
Order - 0240513703
Price 19.95
Contains: Introduction to principles and terminology; synchronisation and external machine control; common implementations; systems control sequences and operating systems; implementation of midi with peripheral devices; practical systems designs.

Second edition is updated and enlarged to take MIDI evolution into account. More examples of real implementations, more diagrams and the whole book has been rewritten to include a far greater practical element, to complement its existing technical strengths. Several completely new sections and complete chapters have been added Including a new opening chapter as an introduction to principles and terminology; MIDI timecode; librarians and editors.

Loudspeaker and

 Headphone Handbookby John Borwick, 224pp, hardback Order - 0240513711 Price $£ 35.00$

Contains: This book brings together in a single volume every aspect of loudspeaker and headphone theory and practice in sufficient depth to equip students and practitioners alike with a solid working knowledge of the subject. A comprehensive technical reference on the theory and practice of loudspeaker and headphone performance, design and operation.

The Art of Linear Electronics

by John L Hood, 400pp, paperback Order - 0750608684 Price $£ 16.99$

Contains: Electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semi-conductor components; dc and low frequency amplifiers; feedback negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generators; tuned circuits; high frequency amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio, instrumentation and television.

Servicing Audio and Hi-Fi Equipment

by Nick Beer, 304pp, hardback Order - 0750621176
Price $£ 25.00$
Contalns: Introduction; tools and test equipment; radio receivers; amplifiers; power supply circuits; portable audio; cassette deck mechanics; cassette electronics; turntables; system control; motors and servo circuits; compact disc; mini disc; digital audio tape; digital compact cassette; speakers, headphones and microphones; repalr, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repalr and testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines.

EMC for Product

Designers

by Tim Williams, 304pp, hardback Order - ISBN 0750612649 Price £25.00

Contains: What is EMC? standards; EMC measurements; interference coupling mechanisms; circuits; layout and grounding; interfaces; filtering and shielding.

EMC

FOR

> PRODUCT
> DESIGNERS

'This book is likely to become essential reading for those designing electronic products for the European market,' according to New Electronics. Widely regarded as the standard text on EMC, providing all the information needed to meet requirements of the EMC Directive

Build Your Own PC

by lan Sinclair, 256pp, paperback Order - ISBN 0750620064 Price 16.95

Contains: Assembly from scratch mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-drive details; improvers and modifiers for graphics and I/o; DOS operation and hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their pc themselves.

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

Qty	Title or ISBN	Price

Please add $£ 2.50$ UK Postage, $£ 5.00$ Europe $£ 7.50$ Rest of World Total \qquad

Name
Address

Post code Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Publishing Credit card no
Card expiry date
Signed

A new direction in
magnetic sensing

Richard Noble looks at how a new three-terminal magnetic sensor offers benefits in temprerature sensitive field detection applications down to $10 n T$.

British company Speake \& Co has developed a high-sensitivity magnetic field sensor operating in the $\pm 50 \mu \mathrm{~T}$ range. Having only three terminals and an output preiod proportional to field strength, the device is easy to interface. In addition, the device runs from a single 5 V supply.
Unlike Hall-effect sensors, which are difficult to apply at these field levels because of their sensitivity to temperature, the FGM-3 senosr has a typical temperature coefficient of $0.003 \% /{ }^{\circ} \mathrm{C}$ at around $25^{\circ} \mathrm{C}$. Its operating temperature range is $0-50^{\circ} \mathrm{C}$.
Output of the device spans $\sim 50 \mathrm{kHz}$ to $\sim 120 \mathrm{kHz}$. As the lowest effective Nyquist sampling rate is $\sim 50 \mathrm{kHz}$, appropriate digital filtering can provide an ac field bandwidth from dc to around 20 kHz .

[^5]Since the range covers the Earth's magnetic field, multiple sensors can easily be arranged to provide compass orientation, or full threedimensional orientation systems, using the local Earth's magnetic field as a reference. Other applications include conventioinal magnetometry, ferrous-metal detection and vehile re-orientation alarms.
Decoupling and power supply regulation
If long leads are used with the sensor, it is advisable to provide some local decoupling close to the sensor itself where possible. A $10 \mu \mathrm{~F}$ electrolytic capacitor is suitable for this.
Since the sensor has a sensitivity of a few percent to power supply variations, it is necessary to provide it with some power regulation in most cases. For many applications, such as ori-
entation devices, a single fixed voltage regulator of the $L M 98 L 05$ or equivalent type is adequate. However, for applications such as earth field magnetometry or where extremely small field variations are being studied, supply voltage variation needs to be reduced to a level which permits the temperature coefficient of the device to be the limiting performance factor.
Double regulation from $12-15 \mathrm{~V}$, first down to 9 V and then to 5 V , using the $L M 98 L 09$ and LM98L05 provides a low-cost solution, Fig. 1.

Sensor calibration

For many applications, such as simple field detection or orientation measurement systems, calibration of the sensors is not necessary.
For applications that do need to measure field strength, a reasonably accurate calibration can be made using simple equipment. A single-layer solenoid can easily be made by close-winding enamelled wire on to a tube having an internal diameter large enough for the sensor to be inserted in it. The field inside a long solenoid is given simply by the product of the current flowing in it and the number of turns per metre with which it is wound. Both these items can be measured reasonably accurately, one with a ruler, the other with an ammeter.
For most purposes, a winding at least twice as long as the sensor will give a good calibration, consistent with the likely turns/metre measurement accuracy using a ruler - provided its diameter is no greater than necessary.
Single axis sensors are the easiest in this respect because they have a small diameter and can be inserted into a small diameter tube. The following should be helpful in the the design of calibration coils.
First, the field at the centre of a cylindrical coil of the type suggested is given by,

$H=$ geometry-factor×turns/metrexcurrent

where H is in A / m and geometry-factor is shown in Table 1.

Table 1. Factors needed to calculate field produced by the magnetic calibrator.

Length/	Geometry diameter factor
5	0.9806
6	0.9864
7	0.9900
8	0.9923
9	0.9939
10	0.9950

This permits calibration of the coil centrefield. The correction is small, somewhere

Double Regulation Supply
Fig. 1. The three-terminal sensor is very stable with temperature, but it needs a doubly regulated supply for best perfromance.
between 0.5 and 2%, but may be worthwhile in appropriate cases.
Away from the centre of the coil the field falls off towards either end. On the assumption that the coil is twice as long as the sensor, Table 2 gives a factor for this reduction, at either end of the sensor, for various coil geometries. It also shows, in the third column, the percentage by which the field differs from being uniform along the length of the sensor, assuming that the sensor is centrally placed.

Table 2. Reduction factors to compensate for falling off of field towards the ends of the calibration coil.

Length/	Reduction Diameter factor	Uniformity
5	0.9788	$\pm 1.06 \%$
6	0.9847	$\pm 0.77 \%$
7	0.9884	$\pm 0.58 \%$
8	0.9910	$\pm 0.45 \%$
9	0.9938	$\pm 0.31 \%$
10	0.9942	$\pm 0.29 \%$

The geometry-factor from Table 1 should be reduced by this percentage to arrive at a mean calibration factor for the coil, for the most accurate results.
Calibration currents required are modest. Since the usable range of the sensor is around ± 0.5 oersted or $40 \mathrm{~A} / \mathrm{m}$, a single-layer winding of 0.5 mm enamelled wire, with a diameter of around 0.559 mm , will only require 23 mA to reach maximum calibration field strength.
In carrying out such a calibration with a solenoid coil, the coil and sensor should be aligned at right angles to the direction of maximum local field, as determined by the sensor alone. Where only relative field measurements are needed this can be done by simply aligning the coil and sensor in an east-westerly direction.
If an accurate zero field calibration point is required the sensor will need to be placed in a zero-field location, such as the inside of a
small mumetal container, aligned east-west.

Measuring in the field

The simplest way of making field measurements is to use a frequency meter set for period measurement directly on the output of the sensor. In most cases, designers will prefer to dedicate some specific hardware to carry out the conversions automatically.
Hardware configurations can vary from minimal, battery powered meter-display detectors through to complex, multiple sensor, computer controlled data collection systems. The following notes describe some useful techniques.

Meter or chart-recorder outputs

Low cost equipment can be made by using a semiconductor frequency-to-voltage converter such as the LM2917. A circuit for a portable, direct reading instrument is shown in Fig. 2.
Since the field strength is inversely proportional to frequency, the output is not linear but over the ± 0.5 oersted range the non-linearity is modest and provides an acceptably spaced meter scale. At higher sensitivities over a more limited full scale range, the non linearity becomes increasingly neglegible and gives an almost evenly spread scale.
Where the converter is unable to handle the highest frequency output, simple binary division in a prescaler will bring the sensor output into an acceptable range.
As an alternative to the diode pump type of converter, a phase locked loop can also be configured to provide similar performance.

Digital heterodyning

If the full range of the sensor is not required, such as in ferrous material detection or the measurement of small field fluctuations, a technique of digital heterodyning is useful.
This is not a true heterodyne process but is similar when used over small frequency ranges. It is more akin to the production of
aliasses by undersampling and gives very high sensitivity to small signal fluctuations. This makes it useful for detecting remote moving ferrous objects or for measuring Earth field fluctuations during magnetic storm activity.
The technique requires a stable but adjustable source of clock pulses of similar frequency to the sensor output. These are used to undersample the sensor output and produce a much lower frequency square wave. One easy way to achieve this is to use the sensor output as the D-input of a D-type bistable and the clock source as the trigger input, Fig. 3.
The sensor is used in a fixed position and the clock signal is set to a frequency close to the sensor frequency. Output of the bistable is a square wave of frequency equal to the difference between sensor and clock frequencies, similar to a heterodyne mixer.
A small percentage change in the sensor frequency becomes a large percentage change in the bistable frequency. This can be converted to a voltage as before, for meter or chart recorder, but gives a large increase in apparent sensitivity without the need for high gain amplifiers.
The cmos oscillator above is more stable than most and is suitable for applications such as ferrous metal detectors. Some care is needed in decoupling both the oscillator and the sensor to prevent a tendency to frequency lock, if the highest sensitivity is required. However such an arrangement has successfully detected passing vehicles and a measure of its sensitivity can be obtained from the fact

$C 1, C 2$ and R selected to give required
range (see LM2917 data sheet)
Fig. 2. Since the sensor provides an output whose period is proportional to magnetic field, adding a frequency-to-voltage converter produces a simple portable meter output instrument.
that it could pick up a motorcycle in the far lane of a three lane motorway from the grass verge.
More critical applications of earth field or materials magnetometry need a more stable oscillator, such as a crystal controlled type, but a fixed frequency is normally adequate, since such instruments are not usually mobile.
The technique is equally applicable to ferrous object detection or counting of smaller objects passing on a conveyor belt, the sensitivity and range being adjusted to suit the indi-
vidual system. In this context it is useful to remember that the field produced by a given magnetic moment falls off as the inverse cube of the distance - not the inverse square.
All of the above hardware approaches can be simulated by software in a computer or microcontroller, often resulting in minimal hardware to achieve sophisticated results.

Detecting the Earth's field

A block diagram of a modest earth field magnetometer, Fig. 4, uses the type of circuitry

Applying the sensor with computers and microcontrollers

TThe sensor's large output pulse gives considerable noise immunity permitting the use of transducers sited at long distances from the main system.
Interfacing is simple in that it requires only one bit of a digital input port per measurement channel, the technique being to count input pulses for a fixed period to determine the frequency of the incoming signal. From this, the field can be calculated.
Where faster response is needed, the time between successive like edges permits direct determination of period, from which again the field can be calculated. With microcontrollers, this usually presents no problem, but with systems using many interrupts or extensive multi-tasking it may be necessary to buffer the input signals to deal with the high data rate. However this usually means no more than the addition of a single triple-counter i/o chip - even for three-dimensional orientation systems.
For applications such as Earth field magnetometry, where readings may only be required at relatively long intervals, simple binary division with a 12 or 14 stage divider will reduce the input period to a level where data rate ceases to be a problem to the computer. Alternatively, in such applications where the field variation is extremely small, digital heterodyning with a stable oscillator will also reduce the period but simultaneously maintain the high sensitivity, in hertz/oersted, to field variations.
For applications needing absolute field magnitude without any orientation sensitivity, it is necessary to use three orthogonal sensors and exploit the fact that the sum of the squares of the three signals is constant regardless of orientation. Provided that the zero offsets, channel sensitivities and linearisation are appropriate to the required absolute sensitivity, this will permit free move-
ment of the sensor head while measuring small changes in absolute field. If the sensor is in constant angular motion, advantage can be taken of this to provide some level of auto-calibration of zero offset and channel sensitivity.
Where the sensor can be permanently fixed, only one sensor is necessary, the zero offset being adjusted to suit the local ambient field strength. This technique is appropriate to fixed ferrous metal detection systems such as conveyor belt counters, vehicle and ship passage detectors and materials magnetometry. A limit to the range of such systems results from the fact that the Earth's field itself fluctuates at a low level continuously.
The effective range is a function of the size or likely magnetic moment of the objects being detected - ships generally giving a larger range than vehicles or hand guns. Appropriate filtering of the input frequency variations will enhance range.
Where extremely high sensitivity is required it may be possible to use two sensors in a gradiometer configuration to cancel out the micro-fluctuations of the Earth's field. However, this will not always increase range, since the gradiometer sensitivity falls off faster with range than the simple field sensor.
In this context, you should remember that the field produced at range by a magnetic moment falls off as the inverse cube of the range, so the gradiometer configuration will fall off as the inverse fourth power. However such systems may be useful as short range high sensitivity detectors and materials measurement systems. An example might be extremely small magnetic moment inert particles introduced into fluid flow systems for movement detection, such as chemical processing plants or animal internal fluid flow systems in medical research applications.
described above.
The sensor should be located in an east-west orientation and its mean frequency is measured. A crystal oscillator and binary divider are then selected to produce a frequency around 500 Hz below the sensor frequency. The sensor signal and the divided clock are fed to a digital heterodyne circuit as described earlier.
Sensitivity of the FGM-3 is such that this arrangement will give a swing of about 0 to 1000 Hz for a variation in field of around $\pm 500 \gamma$ (1γ is 10^{-5} oersted). This gives enough headroom for most magnetic storms likely to be observed. The exact range can, if required, be calibrated as outlined earlier.
Output of the digital heterodyne can be taken to a voltage-to-frequency converter for chart recorder use or to a computer to store or plot the data in whatever form is appropriate. If the sensor is calibrated, the results can easily be converted to angular or azimuth variations by dividing by the local horizontal component. This can be measured by a north-south oriented calibrated sensor. Output is variation in radians, which is readily converted to the more suitable minutes of arc.
A magnetometer of this kind needs to be installed in a location far removed from potential sources of magnetic field interference. Such sources are mains transformers and motor vehicles. Fortunately the inverse cube law mentioned previously helps considerably with this aspect.
One exception to this rule can be exploited

Fig. 4. Digital heterodyning is a useful building block for a magnetometer capable of measuring the Earth's magnetic field, but the oscillator needs to be stable.
in the initial commissioning of the equipment. If difficulty is experienced in finding an appropriate combination of crystal and binary divider to nearly match the sensor output, in the magnetically quiet location needed, the strategic placement of a small ceramic mag-
net, at a suitable range, can be used to 'pull' the sensor frequency instead.

Materials magnetometer

A setup with this kind of sensitivity is equally capable of being used as the measurement tool

FGM-3 three-terminal magnetic sensor - exclusive Electronics World special offer

improvement over non-compensated Hall-effect devices. Send your postal-order or cheque payable to Speake \& Co Ltd to Speake \& Co Ltd, Elvicta Estate, Crickhowell, Powys NP8 1DF, tel. 01873 811281, fax 810958. Please note that any queries about this offer, or the FGM-3 sensor, should be directed to Speake \& Co, not $E W+W W$.
Please note that this offer applies to overseas readers, but excluding those in Canada and North America.

Normally, the FGM- 3 sensors sells at $£ 16.45$ but as a special introcuctory offer to EW+WW readers, Speake \& Co is making up to two sensors per reader available at the 20% discount price of $£ 13.16$ each - fully inclusive of VAT and postage.
The FGM- 3 is a three-terminal sensor - ground, +5 V and output - that produces a frequency between 50 kHz and 120 kHz . The period of this output represents magneitc fields in the range $\pm 50 \mu \mathrm{~T}$. At $25^{\circ} \mathrm{C}$, temperature stability is 0.003% - a significant

Output Frequency v Field

The FGM-3 outputs a frequency between 50 kHz and 120 kHz whose period represents magnetic fields in the range $\pm 50 \mu T$ and is highly stable with temperature.
in a classical Gauss-type materials magnetometer.
Figure 5 shows the usual configuration of this instrument. It comprises a controllable magnetising arrangement in the form of an aircored solenoid in conjunction with a field measuring device. As shown, the arrangement is for low susceptibility specimens. Alternatively, an electromagnet type yoke can be used to reduce demagnetising effects with high susceptibility materials. The demagnetising field measured by this device is related to the magnetic induction in the specimen.
Taking the magnetising coil through positive and negative cycles large enough to reach saturation in the specimen produces a measured field displaying the hysteresis loop characteristics of the sample. To avoid shearing the hysteresis loop, it is necessary to use a specimen with a small demagnetising coefficient. Alternatively, use one with a known demagnetisation coefficient which can be corrected for, such as a cylinder.

For straightforward quantitative work distance r should be large compared to the magnetic length of the specimen if induction is to be measured. This requires high sensitivity in the detector. Comparative work and coercive force measurement are not so demanding.
Calibration is often carried out using a standard comparison sample of known demag-

netisation coefficient and magnetic properties. The arrangement shown can also deal with the process of anhysteretic magnetisation if an alternating current source is superimposed on the de supply. The more common ac-driven type of $B-H$ loop tester has difficulty with this since it cannot measure static fields.
Similar arrangements are used by naval establishments under the name of fixed or portable ranges. These determine the efficiency of the various degaussing equipments used to maintain the 'magnetic hygiene' of
vessels and items taken on board. The other side of this coin is that even more sensitive systems attempt to locate such vessels by detecting the magnetic anomaly caused by their presence.
The latter type of detector, however, needs to be insensitive to its orientation in order to avoid avoid the effects of the earth's field when it is in motion. Provided they can be made orientation insensitive, such detectors can be used as remote wreck-finders by divers.

KESTREL ELECTRONIC COMPONENTS LTD

\sharp All items guaranteed to manufacturers' spec. \hbar Many other items available.
'Exclusive of V.A.T, and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.60	1.80	628128LP-85	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.00	2.70
27C256-15	2.20	1.70	6264LP-10	2.10	1.65
27C512-15	2.20	1.70	MM58274CN	4.90	3.75
27C010-15	3.95	2.80	ULN2003A	0.43	0.30
27C020-15	6.00	4.25	7805	0.32	0.25
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.95	7406	0.35	0.23
8255AC-2	2.00	1.45	7407	0.35	0.23
Z80A CPU	1.80	1.00	$74 H C 244$	0.35	0.24
P1C16C84-04P	4.80	3.95	$74 H C 245$	0.35	0.24
75176BP	1.35	0.85	$74 H C 373$	0.35	0.25
68W PLCC skt	0.90	0.70	74 HC374	0.32	0.25

74LS, $74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey, England CR8 4HA Tel: 0181-668 7522. Fax: 0181-668 4190.

LANGREX SUPPLES LTD												
PHONE 0181684 1166 24		DISTRIBUTORS OF ELECTRONIC VALVES							FAX			
		TUBES, SEMICONDUCTORS AND I.C.S.						0181684				
	1 MAYO ROAD - CROYDON - SURREY CRO 2QP								3056			
	24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS											
	£	E186	2.75	PY500A	4.00	6847	5.00	6SK7	3.00			
A231	5.00	$E 191$	3.00	PY800	1.50	686^{6}	1.50		4.50			
CBL31	E12.50	E195	2.00	PY801	1.50	68H6	2.50	6SN7GT	4.50			
C133	10.00	EL360	18.50	cavoz-6	-12.00	68316	2.25	6557	3.00			
DY86/7	1.50	EL509	12.00	Qavo3-10	5.00	68N6	2.00	6UBA	1.50			
E88CC Mul	8.50	EM34	15.00	covo3-20A	15.00	6807a	3.50	6 VGGT	4.25			
E180F	3.50	EM81	4.00	QOVO6-40A	17.50	68R7	6.00	6×4	3.00			
E810F	22.00	Em84	4.00	Qv03-12	10.00	68R8A	4.00	6x56I	250			
Eabc80	2.00	EM87	400	$\checkmark 19$	10.00	${ }^{\text {6BS7 }}$	6.00	12×17	3.00			
E891	1.50	EN91 Mull	7.50	UABC8C	1.50	${ }^{68} \mathbf{6} 6$	4.50	12407	3.00			
EBF80	1.50	EY51	2.50	ubcal	4.00	68W7	1.50	12×7	3.50			
EBF89	1.50	EY86	1.75	UBF99	6.50	6826	2.50	12AX7A GE	7.00			
Exl31	15.00	EY88	1.75	UCH42	4.00	6 CL	2.00	-12846	2.50			
ECC33	7.50	E280	3.50	UCH81	2.50	$6 \mathrm{C6}$	5.00	128E6	2.50			
ECC35	7.50	E281	3.50	UC182	2.00	6С86A	3.00	128h7a GE	6.50			
ECC81	3.00	GY501	3.00	UC183	3.00	6C06GA	5.00	12Br7age	7.00			
ECC82	3.00	G732 Mull	8.50	UF89	4.00	${ }^{6 C L 6}$	3.75	12 El	15.00			
ECC83	3.50	6733	6.00	UL41	12.00	${ }_{6067}$	7.50	${ }^{12 \mathrm{HG} / 7 / 12 \mathrm{Mm}}$	${ }_{6}^{6.50}$			
ECC85	3.50	G734 GE	7.50	UL84	3.50	${ }^{6 \text { CH6 }} 6$	6.00	30FL1/2	1.50			
ECCB8 Mul	6.00	${ }_{6}^{6237}$	6.00	UY41	4.00	${ }^{6}$ CW4	8.00	30 P 19	250			
ECC91	2.00	KT61	10.00	UY85	2.25	606	5.00	3008(PR)	110.00			
ECF30	1.50	K766	10.00	VR105/30	2.50	6005 GE	17.50	5728	70.00			
ECH35	3.50	KT88	15.00	VR150/30	2.50	6 C 668	12.50	805	50.00			
ECH42	3.50	W78	9.00	2759	25.00	6EAB	3.50	807	5.75			
ECH81	3.00	OA2	270	28036	25.00	6tM5	1.85	811A	18.50			
EC180	1.50	OB2	2.70	2021	3.50	$6 \mathrm{F6}$	3.50	${ }^{812 A}$	65.00			
ccis2	3.00	CC3	2.50	3828	15.00	6 ¢07	¢7.50	813	27.50			
[C183	3.00	003	2.50	4 CX 2508 SIC	55.00	66\%6	4.00	833A	8500			
ECL86 Mull	3.50	PCF80	2.00	${ }^{\text {SR4GY }}$	6.00	${ }^{5} \mathrm{H} 6$	3.00	866A	25.00			
ECLI800	25.00	PCF82	1.50	5446	5.25	$6 \mathrm{HS6}$	4.95	${ }^{872 \mathrm{~A}}$	20.00			
EF37A	3.50	PCF86	2.50	5 5 40	4.00	6.5	3.00	931A	25.00			
EF39	2.75	PCF801	2.50	5\%3GT	2.50	${ }^{6} 16$	3.00	2050A GE	10.00			
EF40	5.00	PCF802	2.50	573	4.00	6.7	4.00	5751	6.00			
EF41	3.50	${ }^{\text {PCLI }} 82$	2.00	524GT	2.50	618bage	19.00	5763	10.00			
EF42	4.50	PC183	3.00	6aH6	400	6.E6C	20.00	5814A	5.00			
EF80	1.50	PC184	2.00	6aks	1.50	6.S6C GE	17.50	5842	12.00			
EF85	1.50	PCL85	2.50	64.5	1.00	6K6GT	3.00	6080	1.50			
EF86	7.50	PCL186	2.50	6ам6	2.00	6K7	4.00	6146B GE	15.00			
Ef91	2.00	PCL805	2.50	6AN5	5.00	$6 \mathrm{K8}$	4.00	6550AGE	20.00			
Ef92	2.00	P0500	6.00	6AM8A	4.50	6166	8.50	6883 BGE	16.00			
EF183	2.00	Pl36	2.50	6405	3.25	6.6GCSY	12.50	7025 GE	7.00			
EF184	2.00	Pl81	1.75	6AA5	25.00	${ }^{616 G C}$ Siemens	7.50	7027A GE	17.50			
E132	2.50	Pl82	1.50	6AS6	3.50	616GC GE	12.50	7199	12.00			
E133	10.00	PL83	2.50	${ }^{\text {6asidg }}$	9.50	$6{ }^{6} 7$	350	7360	25.00			
El34 Siemens	8.00	P184	2.00	${ }^{\text {6AT6 }}$	2.00	6106	20.30	${ }^{7581 A}$	15.00			
EL36	4.00	PL504	2.50	6AU5GT	5.00	607	4.00	7586	15.00			
E141	3.50	P1508	5.50	6allb	2.50	6RHH/6/6NE	12.00	7587	23.00			
E4180	25.00	P1599/P1519	6.00	6AW8A	4.00	65A]	3.00	7868	12.00			
E181	5.00	P1802	6.00	687	4.00	6SC7	3.50	Prices correct when going to press				
E184	2.25	PY81	1.50	688	4.00	${ }_{6567}$						
E184 Mull	6.00	PY88	2.00	6Ba6	1.50	6517 3.00						
OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY. OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETE ITEMS A SPECIALITY. QUOTATIONS FOR ANY TYPES NOT LISTED. TERMS: CWO/VISAACCESS. POST \& PACKING: 1-3 VALVES £2.00, 4-6 VALVES £3.00. ADD 17.5\% VAT TO TOTAL INC. P\&P.												

> If you have never lost a file, never ran out of disk space or love re-installing software, don't read any further.

Backer ${ }^{\text {® }}$ is a high performance back-up system designed specifically for the home user. For less than the price of most PC games, you can store up to 1.5 Gbytes of data on a single VHS video tape, the equivalent of 3 CD-ROMs. Backer ${ }^{\circledR}$ utilises your existing video recorder to transfer data from your hard disk at up to 9 Mbytes per minute, faster than many of the significantly more expensive tape streamers.

- Free up extra disk space by archiving less frequently used files
- Protect important files by keeping back-up copies
- Transfer data between PCs, copy hundreds of Megabytes quickly and easily
- Runs under Windows ${ }^{\text {® }}$ in the background, allowing you to continue working with other applications
- Uses low cost standard video tapes
- Comprises of an expansion card and easy-to-use software
- State of the art sophisticated error correction ensures reliable operation
- Back-up selected files or the whole hard disk

Order now by ringing 0160644244 quoting your Access or Visa number or by sending your cheque or postal order for $£ 37.45$ (*£ 34.95 inc. VAT + P\&P $£ 2.50$) to Danmere Technologies Ltd., Darland House, 44 Winnington Hill, Northwich, Cheshire CW8 IAU.

Distributor enquiries welcome.

Danmere

The PC hard disk back-up system CIRCLENO. 115 ON REPLY CARD

The power to take BIC applications on board!

The NEW CMS Mini-Module

A UNIQUE LOW COST HIGHLY DEVELOPED MODULE

The Mini-Module is a small 100 x 118 mm all CMOS microcontroller containing a 32 bit microprocessor, 32 digital I/O, 4 analogue in, 1 analogue out, direct output to LCD displays, keyboard input, serial port, I ${ }^{2} \mathrm{C}$ port, 512 k EPROM space, 128K SRAM, RTC, Timers, plus much more. The board, on its own, or in combination with other peripheral cards, is capable of outstanding performance.

The programming environment is very simple to use. When connected to an IBM PC, programs can be written from
most word processors and can be down loaded into the module. The module will compile the program into very fast executable code.

- PROGRAM IN C, C++ OR MODULA-2.
- CHOICE OF OPERATING SYSTEMS OS9 68K OR MINOS.
- IDEAL FOR ONE OFF APPLICATIONS
- EASY TO USE, VERY FAST DEVELOPMENT.
The Mini-Module provides the complete solution to many applications and can be customised or expanded to suit your needs.

Cambridge Microprocessor Systems Limited
Unit 17-18, Zone 'D', Chelmsford Road Ind. Est., Great Dunmow, Essex, UK. CM6 1XG Phone 0371875644 FAX 0371876077

High Quality, Low Cost Instrumentation

- Multimeter MX-620 Combines: Five DC volts ranges (200 mV 1000 V) Five $A C$ volts ranges ($200 \mathrm{mV}-750 \mathrm{~V}$) Six DC amps ranges (20microA - 20A) Six AC current ranges (20microA - 20A) Seven resistance ranges (200ohms - 200Mohms) Five frequency ranges ($2 \mathrm{KHz}-20 \mathrm{MHz}$) Six capacitance ranges (2 ninaF - 200microF) NPN/PNP Transistor hFE test, Diode test, Logic test, Built-in Continuity beeper, Safety test leads, Tilt Stand, Operator Manual and Carrying Case.
Frequency Counter, Function Generator, Power Supply and Digital Multimeter. The All-in-One Instrument. Combines the following: Frequency Counter: Range 1 Hz to $100 \mathrm{MHz}, 70 \mathrm{MHz}$ to 1 GHz Sensitivity 15 mV rms on 100 MHz range and 25 mV rms up to 1 GHz . Gate Time $10 \mathrm{~S}, 1 \mathrm{~S}, 100 \mathrm{mS}, 12.8 \mathrm{~S}, 1.28 \mathrm{~S}, 128 \mathrm{mS}, 12.8 \mathrm{~ms}$. 8 Digit LED display with Units Annunciators.
Function Generator: Output Sine, Square, Triangle, Skewed Sine Pulse, TTL Level Square. Frequency 0.02 Hz to 2 MHz , Output 0.1 Vpp to 20 Vpp , Linear and Log Sweep internal 20ms to 2S, External 100:1 (VCF) Output impedance $50 / 600$ ohms.
Power Supply: Triple Output, 1: 0 to 30V, 3A, 2: 15V, 1 A Fixed. 3: 5V, 2A fixed. Ripple $1,2 \& 3$ is 2 mV max. Full Over Current Protection, $31 / 2$ Digital LCD Readout of Voltage and Current.
Digital Multimeter: Measurement Functions of DCV, ACV, ohms, DCA, ACA. Auto/Manual ranging, data hold function, $31 / 2$ Digit LCD display, basic accuracy $+/-(0.5 \%+2$ dgts) Memory mode for Zero ohms.
Imput impedance 10 Mohms.
I would like to purchase the following:
Quantity......MX-620 Multimeters@ Special Introductory Price of $£ 66$ each Quantity....... All-in-One @ Special Introductory Price of $£ 390$ each. Prices include VAT and UK P\&P.
I enclose a cheque/Postal Order made payable to Simextron Global. Sent to Simextron Global, 1 Farm Row, Dunfermline, Fife KY12 OTX.
Name.
Address \qquad
\qquad

Reference books to buy

For Audio Engineers

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Subjects include

Recording, microphones and loudspeakers

Digital audio techniques Basic audio principles

Acoustics and psychoacoustics
Audio and television studios and their facilities

Radio and telephony

Invaluable reference work for anyone involved with audiofrom broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

For TV \& Video Engineers

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include

Fundamentals of colour TV
TV studios
High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and audio recording and playback
Teletex \ddagger

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \qquad copies of the Audio Engineer's Reference Book, (ISBN 075060386 O)
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide £78. Please add vat at local rate where applicable.

Please supply me \qquad copies of the TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$,
Worldwide $£ 58.00$, Please add vat at local rate where applicable

Remittance enclosed $£$ \qquad
Cheques should be made payable to Reed Business Publishing Group Ltd
Please rełurn to: Jackie Lowe, Room. L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No \qquad Exp date

NAME (Please print) \qquad
ADDRESS \qquad
\qquad

POST CODE \qquad
DATE \qquad TEL \qquad

signature

VAT RATES

6\% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4% Greece, 4\% ltaly, 3\% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPIY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VATNO. \qquad
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied books may be returned within 30 days in a resalable condition for a full refund.

AUDIO

Controlling dynamic range

Based on a chopped aftenuator, John Linsley-Hood's audio processor expands and compresses by around 26dB with very low thd.

n an ideal world, music, speech or drama when recorded and replayed, would be reproduced in similar surroundings, with identical sound-level intensities. In practice of course, this ideal is rarely achievable.
When performing live, popular music the artists have to make themselves heard in competition with the audience. Some information may be lost during quiet passages, but generally, reproducing such music presents few problems in audibility.
At the other end of the loudness scale - for example plays - the contrast between loud and quiet may be an essential aspect of the dramatic content. In this case, realism depends on the quiet parts being heard as effectively as the loud. For this purpose, desirable dynamic range would be at least $50-60 \mathrm{~dB}$
In the performance of 'classical' music - particularly with a large scale modern orchestra in a

Fig. 1. Low-distortion, gain-controlled block based on a high-speed electronic switch. Over most of the audio range, distortion is just $\mathbf{0 . 0 0 5 \%} \%$. On and off durations of the switch are determined by an externally applied dc voltage.
well-designed auditorium - sound pressure levels ('spl' is in decibels referred to $2 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$) can range from less than 15 dB to greater than 100 dB .
In a domestic environment, the situation will not be as favourable. Background sound-levels of a quiet room are likely to be around 25 dB , while the tolerance limit of family and neighbours may demand that sound-pressure levels of loud passages are held significantly lower than 100 dB .
For listening in a car, the background noise level when travelling on the open road is at least 55 dB , and higher when driving in urban traffic. This would be acceptable for listening to loud music but hopeless for a radio play or orchestral concert.
In reality, there are mitigating factors. In most radio broadcasts there is a degree of dynamicrange compression, as well as peak level limitation. This is introduced to avoid overloading the transmitter systems. In programme material transferred to tape, there will be a significant amount of inadvertent maximum recording level compression. This is an inherent characteristic of the magnetic tape record/replay system.
During the manufacture of vinyl records, a substantial amount of short-term peak recording level compression results from the recording engineer's manipulation of the level controls. This is needed to ensure that loud passages do not cause groove-to-groove breakthrough at recording levels. It is chosen so that quiet portions of the programme are adequately above the surface noise floor of the disc. For this reason there is a degree of dynamic range compression imposed both in the initial recording and in the user's subsequent copying on to cassette tape - often listened to in the car.

CDs and dynamic range compression
In cds and, to a lesser extent, the digital compact cassette and Sony's Mini-Disk, digital signal processing has lowered the noise floor of recordings. It has extended the dynamic range available in the recording system to some 90 dB . This range is even greater in some of the better machines.
Unfortunately, wide dynamic range recordings make unsatisfactory programme sources when the replay system is being listened to in a noisy environment such as an automobile, or when the listener has impaired hearing. Such situations benefit some form of dynamic range compression in the replay chain.
Conversely, if some form of external dynamic range control is available, this could
equally well be used in more favourable conditions. One example is for expanding the range available from a standard vinyl disc, by making the loud passages louder or the quiet ones quieter - a process which would also A reduce the audibility of the disc surface noise and turntable 'rumble'.

Controlling dynamic range

I described a low-distortion, gain-controlled block based on a high-speed electronic switch in $E W+W W$, April 1995. This switch, outlined in Fig. 1 had on and off durations controlled by an externally applied dc voltage.
Using a switch in this way removes the transistor matching problems normally associated with high-performance attenuators. Over the

Fig. 2. Audio compression and expansion system based on a low-distortion switched attenuator.

Fig. 3. Audio dynamic range controller incorporating a switched attenuator. The j fet provides the attenuation, under control of square waves from oscillator, fig. 4.

Fig. 4. Analogue signal conditioning provides a dc control voltage for the controlled oscillator based on a 4069 c-mos logic buffer.

Fig. 5. Frequency response of two consecutive third-order Sallen and Key low-pass filter stages between the chopper stage and af output. The circuit gives about 90 dB rejection of the switching waveform in the af output.
range 100 Hz to 10 kHz , the chopping attenuator achieves a thd figure in the region of 0.005% for a IV rms input.
With this arrangement, Fig. 2, system gain can be caused to change rapidly in response to a control voltage derived from the audio signal level. This voltage can be derived either from the signal present at the output of the gain controlled block - if peak level compression is needed - or from the signal input, where dynamic-range expansion is required: there would otherwise be positive feedback around the control loop.
Figures 3 and 4 show the circuitry of the gain-control and filter block, and the control voltage and rectangular wave generator.

Overall system operation

The system operates in dynamic-range compression mode by using the chopper fet, $T r_{1}$, to cut segments out of the audio signal waveform present at its drain electrode.
The duration of the chopped out segments becomes greater as the input control voltage fed to the oscillator becomes more positive. This happens as the size of the audio signal fed to $I C_{6}$ increases - an arrangement which reduces amplitude of the output signal.
The converse effect is obtained if the rectangular waveform generator is connected so that duration of the chopped out segments increases as signal size decreases. This effect occurs if drive signal to the gate of $T r_{1}$ is taken from the oscillator $\overline{\mathrm{Q}}$ output rather than the Q output.
Some form of threshold control, shown as $R V_{2}$ in Fig. 2, is necessary when the circuit is used in its dynamic-range expansion mode. It would otherwise be possible for the circuit to suppress low-level signals entirely, unless some residual input voltage is fed to the CD4069 oscillator. Magnitude of this voltage can be chosen to set the minimum size for low
signal-level transmission.
The 130 kHz chopping frequency is well above the audible range, but it is necessary to remove notches due to the chopped out segments in order to recover the original distor-tion-free waveform. This is achieved by introducing two consecutive third-order Sallen and Key low-pass filter stages, $I C_{2,3}$ and $I C_{4,5}$. These sit between the chopper stage and audio-frequency output.
Frequency response of this circuit, Fig. 5, gives about $90 \mathrm{~dB}(32,000: 1)$ rejection of the switching waveform in the af output. In practice, it is likely that any detectable 130 kHz signal present will be due to breakthrough by way of stray circuit capacitances. The circuit layout should take this into account.
It is necessary to prevent signal components within 20 kHz of the chopping frequency reaching the input to the chopper fet. The input buffer amplifier, $I C_{1}$, is connected as a simple hf roll-off stage, with a -3 dB point at 33 kHz , for this purpose.

Implementing the controlier

It is necessary to mount this unit in a metal enclosure to avoid interference with adjacent radio receivers. This occurs as a result of the fairly large hf signal voltage in the oscillator circuit, when the unit is used as an adjunct to an existing high-fidelity system. With this simple precaution, I have noticed no if interference from my prototype.
For domestic use, a conventional IC stabilised $\pm 15 \mathrm{~V}$ mains operated power supply unit will provide all the necessary supplies. An led in series with the positive rail to the CD4069 provides an 'on' warning light.
For use in car, the positive battery supply will need to be supplemented with a -12 V feed to the op-amps. This is best provided by a pcb mounting dc-to-dc converter such as a Newport NMF1212S.

> The Art of Linear Electronics - 10\% $E W+W W$ reader discount

While stocks last, Electronics World \& Wireless World is offering John Linsley-Hood's book 'The Art of Linear Electronics' at the 10% discount price of $£ 15.29$ - instead of the normal retail price of £16.99.
'The Art of Linear Electronics' order - ISBN 0750608604 - contains electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semiconductor components; dc and low-frequency amplifiers; feedback, negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low-frequency oscillators and
waveform generators; tuned circuits; high-frequency amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical 340pp handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio instrumentation and television.

Send your order with a cheque made payable to Reed Business Publishing Group Ltd, to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

PC SCOOP

COLOUR SYSTEM ONLY $£ 79.00$

Superb quality 6 foot $40 U$ Virtually New, Ulira Smart Less than Half Price! Top quality 19 r rack cabinels made in UK by
Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front doo full height lockable half louvered back and louvered removable side panels. Fully for any contiguration of equipment mounting
plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make ever sold Racks may be stacked side by side and therefor quire divo side panels to stand singly or in multiple bays. OPT Rack OPT Rack 2 Rack, Less side panels

32U - High Quality - All steel RakCab

VIDEO MONITOR SPECIALS

One of the highest specification monitors you will ever see Mitsubishi FA3415ETKL
 Only £139 (छ
Tilt \& Swivel Base $\varepsilon 8.00$ Leads for IBMPC $£ 8.95$ (A)
External Cables for other computers ECAL
PHILIPS HCS35 (same style as CM8833) attractively styled $14^{\prime \prime}$ colour monitor with both AGB and standard composite 15.625
Khz video Inputs via SCART socket and separate Khz video inputs via SCART socket and separate phono jacks.
Integral audio power mpp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal all monitoring seacrurty apopications wilt direct connection to
most colour cameras
High quality with many features such as most colour lameras. High quality wint many features such as

Special Offer save £16.95-Order TELEBOX ST \& HCS35 together - giving you a quality colour TV \& AV system for Only £122.50 (E) KME 10" high defintion colour monitors. Nice tight 0.28° dot pitch for superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari Commodore Amiga, Acorn Archimedes \& BBC Measures only $131 / 2^{2} \times 12^{2} \times 11^{2}$. Only $\varepsilon 125(E)$ $2 \times 12 \times 11$. Only £125 (E)

TV SOUND \& VIDEO TUNER!

The TELEBOX consists of an attractive fully cased mains powered tors made by mekers such as MicRovitc, ATARI, SANYO SONY, COMMODORE, PHLLIPS, A ANG, AMSTRAD etc. The
 colour television channels. TELEBOX MB covers virtually all televiused by most cable TV operators. A composite vide located on the rear panel for direct connection to most makes bility - even for montions withoui sound - An Integral 4 watl audi amplifier and dow level HiFi iadiou sount are provided as standard. $\begin{array}{ll}\text { TELEBOX ST for composite video input type monitors } & \text { £34.95 } \\ \text { TELEBOX STL as ST but with integral speaker } & \text { £37.50 }\end{array}$ For overseas PAL versions state 5.5 or 6 mhz sound specitication

FANS \& BLOWERS

MITSUBISHI MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 v$ DC $£ 4.9510 / \mathrm{m} 42$ MITSUBISHI MMF-09B12DH 92x92x25 mm 12v DC $£ 5.9510 / £ 53$ EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC fans - tested specify VERO IMHOF B26 1900 rack mnt 3U $\times 19^{\prime \prime}$ Blower 110/240v NEW $£ 79.95$

IC's -TRANSISTORS - DIODES

 5,000,000 items EX STOCK
Issue 13 of $\mathcal{D i s p l a y}$ News now

Mace by Eurocratt Enclosures Lid to the highest possible spec, with top and side lourres. The 100 panel may be removed for fiting
of integral fans to the sub plate etc. Other features incluce: fited castors and floor levelers, prepunched utifiy panel at lower rear for
cable / connector accoss etc. Supplied in excellent, slightly used

Sold at LESS than a third of makers price !!

A superb buy at only $£ 195.00$ (G) Over 1000 racks in all sizes 19" 22 " \& 24"
3 to 44 U. Available from stock !!

3 to 44 U. Available from stock ! Call with your requirements.
TOUCH SCREEN SYSTEM
The ultimate in 'Touch MicroTouch-but sold at a price below cost !! System consists of
a flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ a standard serial RS232 or TTL output which controlinuously gives simple serial data contalning positional $X \& Y$ co-ordinates as to where a finger is touching the panel - as the finger moves, the data
Instantly changes. The $X \& Y$ information is given at an Incredible matrix resolution of 1024×1024 positions over 'the entire screen size !! A host of available translation software enables direct con els, polnting devices, POS systems, controllers for the disabled or Window', insteained etc etc. Imagine using your finger with appllcations for thls amazing product are only limlted by your and Data supplied at an incredible price of only: $\quad \mathbf{E 1 4 5 . 0 0}$ (B)
Full MicRoTOUCH Soltware Support Pack
\qquad

LOW COST RAM \& CPU'S

 INTEL 'ABOVE' Memory Expansion Board. Full length PC-XTand PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processo
 Half length 8 blt memory upgrade cards for PC AT XT expanas memory either 256 k or 512 k in 64 k sleps. May also be used to fill
in AAM above 640 k DOS limit. Complete with data. Order as: XT RAM UG. 256 K . E32.95 or

PHILIPS - LOW COST PRINTERS

 A masterpiece of engineering, the PHILIPS model NMS 1436 fully featured MULTIMODE matrix printer packs a host of teatures into unit weighing just over 4 Kg and measuring onFully Epson compatlble with adjustable accepts upto 9.5^{n} sprocket ted paper and adjusts down to handle in a host of fonts and type sizes and in draft mode 'whizzes' along at 120 characters per second! Many other features include mos
European character sets, IBM, EPSON, MSX \& Prestel emulations.

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Dept Ww. 32 Biggin Way Upper Norwood
ONDON SE19 3XF Info on $15,000+$ stock litems
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-9036126

Please send $£ 1$ P\&P and VAT at 17.5%. Govt, Colleges, etc.
Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. V and video parts sold are replacement parts.
Access \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.
TRANSISTORS
?
Price

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

his is a complete instrument, using an ICL8038 to give sine, square and triangular waves up to 250 kHz in four ranges, and can be made to operate down to 5 Hz .
At the core of the circuit is the 8038 IC, whose frequency of operation is set by the linear pot. P_{1} and the switched capacitors $C_{3,4,5,6}$. Resistors $R_{1,2,3,9}$ and the pot. R_{1} set the bias on the 8038 internal charge pumps, R_{1} being used to achieve symmetry of the output waveform and P_{2} and R_{10} adjusted for minimum distortion. Diode D_{l}
extends the coverage of each band, selected by the switched capacitors. Square output is symmetrical about zero volts and is not, therefore, useful as a ttl drive; Tr_{2} is used as a level shifter and Tr_{3} as an output emitter follower. $R C$ components $R_{13,15}$ and $C_{7,8}$ improve rise and fall times.
The triangle output of the ic is taken to emitter follower Tr_{4} and then to a high-frequency op-amp, the $N E 5539$, which has a 500 MHz bandwidth, biased to zero by $R_{22,23}$ and having a gain of 2.5 . The
sprinkling of 150 pF capacitors reduces the severity of interaction between triangle and sine outputs. Sine output is ac-coupled to a further NE5539, which drives the two followers to obtain an output symmetrical about zero, set by P_{4}. This output drives the output stage. Emil Vladkov Sofia University
Sofia
Bulgaria

Function generator using the ICL8038 to give sine, triangle and square outputs from $20 \mathrm{~Hz}-250 \mathrm{kHz}$.

YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Programming Solutions

Multi-Device Programmer

- EPROMs, E2PROMs, Flash EPROMs, Serial E2PROMs, PLDs, GALs, PEELs, EPLDs, MACHs \& WSI PSDs Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Prices exclude VAT \& Delivery

Universal Programmer

- Uses standard pc printer port works with notebook and handbook pc's
- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, EPROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc..
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

EPROMs, E2PROMs, Flash and 8748/51 micros.
Fast programming algorithms. Simple colour menu operation.

> | EMULATORS•SIMULATORS • COMPILERS • ASSEMBIERS |
| :--- |
| PROGRAMMERS•8051 $8085 \quad 28 \quad 68020 \quad 77 C 82$ |
| $320 C 25 \quad 68 H C 11$ |

and that's just o the half of it!..

features

- $16 / 32$ bit 68307 CPU for fast operation - Up to 1 Mbyte of EPROM space onboard - UD to S12Kbyte SRAM space onboard - 32 Kbyte SRAM fitted as standard - RS232 serial with R5485 option - MODBUS \& other protocols supported - Up to 22 digital IIO channels - 2 timer/counter/match registers
- I'C port or Mbus \& Watch dog facillies - Large Proto-ryping area for user circuits - Up to $\$$ chip selects available
- Program in C C++, Modula-2 \& Assembler
- Real Time multtrasking Operating System
- Real Time multasking Operating System - OSS or MINOS with free run time license
option
- Manufa

Manufacturing available even in low

- A full range of other Controllers availabl
P.C. 'C' STARTER PACK AT ONLY $£ 295$ + VAT The Micro Module will reduce development time for quick turnaround products/projects and with the P.C. 'C Starter pack allow you to start coding your application immediately, all drivers and Ilbraries are supplied as standard along with MINOS the real time operating system all ready to run from power on.
The ' C Starter pack includes: A Micro Module with 128 Kbyte SRAM, PSU, Cables, Manuals, C compiler, Debug monitor ROM, Terminal program. Downloader, a single CODy of MINOS. Extensive example software, and free unlimited technical support all for $£ 295$ + VAT.

Cambridge Microprocessor Systems Limited

Unit 17-18. Zone ' D', Chelmsford Road Ind. Est.,
Great Dunmow, Essex, U.K. CM6 1XG
Phone 01371875644 Fax 01371876077

Switch debouncer

T
his was meant to debounce the contacts of a semi-automatic
Morse key, but has since been used for many other types of switch. It takes a pair of contacts and introduces no delay, apart from that inherent in the circuit, which is insignificant when used with mechanical contacts.

A pulse of around 30 ms formed by $C_{2} R_{3}$ removes the bounce when the contacts make. The pulse generated by $C_{3} R_{4}$ performs the
same function as the contacts open, R_{3} and R_{4} being varied as needed. $\mathrm{IC}_{1(a)}$ and $\mathrm{IC}_{1(b)}$ extend the duration of a short contact closure and $\mathrm{IC}_{1(\mathrm{~d})}$ can be used to inhibit a second intentional closure for a time determined by the values of $C_{3} R_{4}$.
Output comes from $T r_{1}$'s open collector, the transistor allowing level shifting, if needed, but $T r_{1}$ and R_{5} may be left out and the output taken from pin 3 of IC_{1} Supply voltage is adjusted to give
the correct logic levels; the supply for the circuit shown is under 5 V to about 18 V .
$\mathrm{IC}_{1(c)}$ gives a bleep when the contacts are closed or a shorter one if a $C R$ is used before pin 9 of IC_{1}, If $C_{4} R_{6}$ are omitted and pins 8 and 9 of IC_{1} are connected, $\mathrm{IC}_{1(\mathrm{c})}$ gives an inverted output.
Ted Crowley
Invotron Ltd
Bray
Co. Wicklow

Switch debouncer, originally for a Morse key, has been used for many other applications, introducing no extra delay and producing a beep when contacts are made.

Mercury battery replacement

Mercury batteries in older light meters and cameras have had a very bad press and some manufacturers recommend simply using alkaline or silver oxide cells instead, even though the terminal voltage may not be correct.
Placing an HP 5082-2835

Schottky diode in series with a 1.55 V silver oxide cell reduces the output of the circuit to almost exactly the 1.35 V of a mercury cell, due to the 0.25 V drop across the diode at a typical load current of 0.1 mA . Note that cameras usually have a positive chassis ground.

Someone could do the industry a service by packaging a Schottky in a little wafer to stack on a button cell or even to go inside it. Michael A Covington Artificial Intelligence Center University of Georgia USA

Instead of junking older photometers using banned mercury cells, use a Schottky and a silver oxide cell.

CADPAK is especially suited to educational, hobby and small scale schematic and PCB design. CADPAK includes both schematic drawing and 32-bit PCB drafting tools but as an entry level product, there is no netlist link between them.
CADPAK FOR WINDOWS £ 149 CADPAK FOR DOS $£ 79$

PROPAK has all of the features in CAPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functionality for all but the most demanding applications.
PROPAK FOR WINDOWS £ 495 PROPAK FOR DOS £ 395

Call or fax today for a demo pack. Please state whether you would like a DOS or Windows pack.

53-55 Main St. Grassington, N. Yorks. BD23 5AA Tel: 01756753440 Fax: 01756752857

[^6]CIRCLE NO. 123 ON REPLY CARD

DID YOU KNOW?

More than half the world's PCs wake up to our BIOS! And we're doing pretty well with hardware products too! Motherboards:

> TITAN $-2 \times$ P5 EISA/PCI
> ATLAS - P5 ISA/PCI
> APOLLO-P5 Triton ISA/PCI ATLAS LPX-P5 Triton ISA/PCI

Peripherals:
MegaRAID" - PCI/SCSI/RAID
And more...Call us for more information! PLUS - Coming soon PC-CARE ${ }^{\text {TM }}$ (AMIDiag for Windows) Watch this space!

OEM enquiries welcome on all products, Hardware / Software and BIOS.

American Megatrends Intl. Limited Untt C5, Worth Corner, Pound Hill, CRAWLEY, W.S. RH10 7SL Tel 01293882288 - Fax 01293886550
$\xlongequal{=}=$ Megatrends

CIRCLE NO. $12+$ ON REPL Y CARD
COMPONENTS \& SYSTEMS FROM IOSTS

System Components from ISO9001 Source Half Size ISA Single Board Computers 386SX-40 to 486DX4-100 with PC/104, 2 Serial Ports IDE \& FDD \& Printer Port and a variety of on-board functionality's: FLASH/ROM Disc. Cache. VGA CRT/Flat Panel Controller PC/104 Modules:
386 \& 486 CPUs, Solid State Disc, Isolated RS232/485
VGA CRT/Flat Panel Display \& SVGA Controllers PCMCIA types I, II \& III
System Enclosures with Passive Backplanes Colour \& Mono Flat Panel LCD Displays System Integration and Support

Digital, programmable mark:space converter

With no effect on frequency, this circuit allows the digital programming of a rectangular wave duty cycle, in 1% steps, from 0 to 99% over a wide range of frequencies.
$\mathrm{IC}_{1 \mathrm{a}}$ is a free-running oscillator driving a 12 -bit down counter, $\mathrm{IC}_{5,6,7}$, directly and, by way of a synchronous decade rate multiplier $\mathrm{IC}_{3,4}$, the 12 -bit up counter IC $_{2}$
A narrow pulse derived from the leading edge of the input signal loads the data from IC_{2} into the down counter and provides reset and clear for the up counter and rate multiplier. Data output N of the up counter is determined by the input signal period, by the rate input M to the rate multiplier and by the clock frequency, giving $N=f_{\mathrm{c}} M / f_{\text {in }}$.
After data is loaded, the output at RCO goes high until the output of the down counter reaches zero, where it stays until new data is loaded. Since the
loaded data is N and since the down counter's clock also comes from the oscillator, the output stays high for a duration

$$
T_{1}=N / f_{\mathrm{c}}=M / f_{\mathrm{in}},
$$

so the duty cycle at the down counter output is given by

$$
T_{1} f_{\mathrm{in}}=M
$$

Since neither $f_{\text {in }}$ nor the clock fre-
quency figure in this, the circuit is insensitive to both and depends solely on M.
As an example, if the output frquency is 500 Hz , the rate is 0.25 and the clock runs at 500 kHz . The maximum count in the up counter is 250 , so the output pulse duration is $250 / 500 \mathrm{kHz}=0.5 \mathrm{~ms}$. As the output frequency is 500 Hz , the duty cycle is 25%.

Yongping Xia

Torrance
California

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Audio Kits and factory assembled unlis use the unique combinaton of circuir designs by the renowned John LInsley Hood, the very best auciophile components, and our own engineering expentise, to give you unbeatable performance and unbelievable value for money. sional standards. even in the sixties we were using easily assembled printed circuits when Heathkit in America were still using tagboards!. Many years of experience and innovation, going back to the early Dinsdale and Bailey classics gives us incomparable design back. building a Hart kit is a real pleasure, resulting in a piece of equipment that not only saves you money but you will be prouc to own.
Why not buy the reprints and construction manual for the kit you are interested in to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent ktt purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hiff system. This kit is your way to get uK performance at bargain basement pnces. Unique design features such as fully FET stabilised power supplies give this ampinter World Class performance with starting of components and ease of construction
of components and ease of construction.
Usenul oplions are a stereo LED power meter and a versatie passive tront end giving switched inputs, with ALPS precision Blue Veivet
low-noise volume and baiance controls. Construction is very simple and enjoyable with all the difficult work done for you, even the wring is preterminated, ready for instant use!. All versions are available with Standard components or specially selected Super Audiophite components at $£ 29.60$ extra per channel, plus ú2.40 if you want to include Gold Plated speaker terminals.
K1100B Complete STANDARD Amplifier Kit.
A11008 Factory Assembled.
K1100SC Complete SLAVE Amplifier Kit,
K1100M Complete MONOBLIO
A1100M Factory Assembied
A1100M Factory Assembled..
RLH11 Reprints of latest Amplifier articles.
K1100cM Construction Manual with tull
.$£ 395.21$
E333.62
E333.62
E422.62
£261.20
£329.20
"CHIARA" SINGLE ENDED CLASS "A" HEADPHONE AMPLIFIER.

This unit provides a high quality headphone output for 'stand alone' use or to supplement those many power amplifiers that do not have a headphone facility. Easily installed with special link-through feature the unit draws its power from our new Andante Ultra High Quality lin it features the widy. Housed in the neat, black finished, Rar minibox ity' that one associates with designs from the renowned John Linsley Hood. Pre-terminated interconnecting leads and PCB mounted sockets prevent supply polarity reversal and on-board diagnostics provide visual indication of supply line integnty. Volume and balance controls are Alps "Blue Velvet" components. Very easily bult, even by beginners, since all components fit directly on the single printed circult board. The kit has very detaled instructions, and even comes with a complementary roll of hart audiograce siver solder. If can also be
 cost of all the components, if they were bought separately, this unit attractive and harmonious addition to any nifi system.
K2100 Complete Kit.
K2100SA Series Audiophile version with selected audio . . . $£ 109.50$ components. . .$£ 112.46$ A2100SA Series Audiophlie version, factory Assembled. K3565 "Andante" Power Supply Kit to suit "Chiara". A3565 Power Supply, Factory SPECIAL OFFER. Both units together, Kit Form $£ 184.50$

"Andante" SERIES 20VA AUDIOPHILE POWER SUPPLIES

 Specially designed for exacting audio use requiring absolute mini-mum noise, low hum field and total freedom from mechanical noise this unit is a logical development from our highly successtul 1550
Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for any module requiring fully stabilised $\pm 15 \mathrm{v}$ supplies.
Two versions are available. K 3550 has $2 \pm 15 \mathrm{v}$ suppties and a single 15 v for relays etc. and can be used with our K1400 preamp and ou K1450 RIAA pickup preamp, as well as other useful modules soon to be introduced. The K3565 is identical in appearance but only has the
$\pm 15 \mathrm{v}$ lighter current supply for use with the K1450 RIAA pickup pre $\pm 15 \mathrm{v}$ lighter current supply for use with
amplitier or "Chiara" headphone amplifier. K3550 Full Supply with all outputs. K3565 Power Supply for K1450 \& K2100..
.593 .75
.585 .42

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Han exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motorised versions have 5 v DC moto MANUAL POTENTIOMETERS
2-Gang 100K Lin.
. $£ 15.67$
2-Gang 10K, 50 K or 100 K Log
. 16.40
2-Gang 10K Special Balance, zero crosstalk and zero
. 17.48
MOTORISED POTENTIOMETERS
. 226.20
2-Gang 20K Log Volume Control
10% loss in centre postion
. 2.26 .98
TECHNICAL BOOKSHELF
NEW! Another Classic by John Linsley Hood. "AUDIO ELECTRON ICS" Following the enormous ongoing success of his "Ant of Linear
Electronics" the latest offering is the all-new edition of "Audio Electronics" the latest offering is the all-new edition of "Audio
Electronics". now entirely re-writen by the master himseif. Electronics". now entirely re-written by the master himself Underlying audio techniques and equipment is a wortd of electronics that determines the quality of sound. For anyone involved in designing, adapting or using digital or analogue audio equipment under-
standing electronics leads to far greater control over the reproduced standing electronics leads to far greater control over the reproouced
sound. The subjects covered include tape recording, tuners, power output stages, digital audio, lest instruments and loudspeaker crossover systems. John's lifetime of experience and personal innovation in this field allow him to apply his gift of being so familiar with his subject that he can write clearly about it and make it both interesting and comprehensible to the reader. Containing 240 pages and over 250 line illustrations this new book represents great value for
money at only. 18.99 .

"THE ART OF LINEAR

ELECTRONICS."

The definitive linear eiectronics and audio book by John Linsley Hood. This $300+$ page book will give you an unparalleled insight into diagrams and understand amplifiers and how they are designed to diagrams and understand ampifiers and how they are designed to
give the best sound. The virtues and vices of passive and active give the best sound. The virtues and vices of passive and active power supplies and the sources of noise and hum. As one would expect from this wnter the history and derivation of audio amplifier circuitry have an entire chapter, as does test and measurement equip. ment. Copiously illustrated this book is incresitile value for the amount of information it contains on the much neglected fieid of linear, as opposed to dgital, electronics. Indeed It must be destined to become the standard reference for all who work, or are interested in, this field. Latest reprinted edition with extended index. 199434 Pages. $247 \times 190.1 \mathrm{Kg} .0-7506-0868-4$. $£ 16.95^{*}$
"DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY" 0.7506.0614-2 .E17.95 SAMPLING. ISBN
 "TOWERS' INTERNATIONAL TRANSISTOR SELECTOR"

0-572-01062-1.

"AUDIO" FA. Wilson. BP111
£19.95
.
.83 .95
"HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT"
R.A.Penfoid. BP267. ${ }^{\text {TTHE LOUDSPEAKER DESIGN COOKBOOK" Vance Dickason. }}$
(4th Edn.) 0-9624-191-7-6 ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUC tion Ronald Wagner BKT6 185 "AN INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE
 "LOUDSPEAKERS FOR MUSICIANS" BP297 "THE HART PRINTED CIRCUIT BOARD CONSTRUCTION

VALVE \& EARLY CLASSIC BOOKS

THE VTL BOOK David Manley BKVT1 17.95 LOUDSPEAKERS; THE WHY AND HOW OF GOOD REPRODUCMULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAAP7

HE WILLIAMSON AMPLIFIER." 0-9624-1918-4. AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN. GEC 1957, 1-882580-05-2 18.95 AUDIO ANTHOLOGIES, articles from Audio Engineering. Six voumes covering the days when aucio wasyoung and valves were king!. BKAA3/1 to 6. Al £13.95 each. "A SIMPLE CLASS A AMPLIFIER" J.L.Linsley Hood MIIE.E. 1969.
RLH12. $\mathbf{5} .50$ RLH12. 2.50 Postage on all books, unless starred, is only u 1.50 per book, maxi-
mum út. 50 for any number, any size!. Starred items are heavy books costlng 22.50 to send. PPECIAL OFFER. All book orders over $£ 15$ will recelve a FREE Jahn insley Hood monograph entitled "Digital versus Analogue, Black Disks or Silver?"

SPECIAL OFFER

PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks thathree most important tape parameters without test equlpment, Ideal when fitting new heads. can afford. Test Cassette TC1D. Our price only. $£ 9.99$.

HC80 Replacement Stereo Cassette Head.

The excellent performance of modern cassette recorders depends otally on the quality of the R/P head.Even the slightest amount of wear can impair the frequency response and distortion levels. Our HC80 is atop quality head from one of the foremost manufacturers in and will transform the performance over a worn head. Only the fact that we buy these in vast quantities enables us to offer them at the amazing price of only $£ 11.70$ each or 2 for $£ 17.60$.
We also stock a range of other heads, including ${ }^{\circ}$ reel-to-reel stereo heads.

SOLDERING

The size of modern components makes the right soldering equipment essential for good results. Everything we offer we actually use in our own workshops'. See our Lists for the full range. 845-820 XS240 ANTEX 240 v 25 w Soldering lron. This is the ideal Multi-purpose iron heat transfer. This excellent design also means that atthough it is small and handy enough for modern components its heating capacity is better than larger frons of conventional construction. Excellent value. .
845-080 ST4 Lightweight Soldening Iron Stand. This has provision for

HART SUPER AUDIOGRADE SILVER SOLDER.

Hart Super Audiograde Silver Solder has been specially formulated for the serlous audiophile. Not only does it give beautiful easy-to-make joints but it is designed to melt at normal soldering temperatures for special high temperature irons. A very low residue flux makes perlect joints easy but eliminates the need for board cleaning ater assembly.

845-007 3mtrs 22SWG in Hart Mini Tube
.83 .90
$345-008$ 100g. Reel Special Valve Grade, 20swg $\mathbf{\varepsilon 1 2 . 9 0}$
845-009 100g. Precision PCB Grade, 22swg £14.75
$845-110100 \mathrm{~g}$ Reel Superline 24 swg for ultra precise control and
easy working
and

Multiplying d-to-a converter

This is usable as a multiplying digital-to-analogue converter or as a triangle generator, given a counter to drive it.
Figure 1 shows the idea. Gain of this basic circuit is given by,

$$
G=\frac{2\left(R_{V}+A R\right)}{R_{V}+A R+(1-A) R}-1
$$

If $R_{\mathrm{V}}=R$, gain becomes $G=A$, so that if R changes from 0 to R, gain changes accordingly from 0 to 1 . With $R_{V}=0$, gain is $2 A-1$ and a change of R from 0 to R changes gain from -1 to +1 .
The practical circuit in Fig. 2 uses a $4066\left(I C_{3}\right)$ switching the resistor chain to form $A R$ and $I C_{2}$ to provide $(1-A) R$. Data changing from 0000 to 1111 varies the gain from 0 to 1 with the shorting link open and from -1 to +1 with it closed. Driving the data inputs by
means of an up/down counter gives a triangle at the output.
W Dijkstra
Waalre
The Netherlands

Fig. 1.Principle of the digitally controlled, multiplying d-to-a converter.

Voltage-controlled oscillator

Here is a low-distortion, variable- Q, voltage-controlled oscillator. A vital part of the circuit is the arrangement in Fig.1, which provides the frequency control using a MPY634 multiplier. Since Z drives the inverting output of the amplifier, feedback is negative and the output voltage is given by,
$V_{\text {out }}=A\left(V_{\text {in }} V_{c} / S F-V_{\text {out }}\right)$
where $S F$ is a scale factor, nominally 10 V . When A approaches infinity, output voltage is $V_{\text {out }}=V_{\text {in }} V_{\mathrm{c}} / S F$, which may be written,

$$
V_{o u t}=V_{i n} / \mathrm{s} C R^{\prime}
$$

where,
$R^{\prime}=R V_{c} / S F$
and V_{c} is the control voltage.
In Fig. 2, cut-off frequency and Q of the state-variable filter, using the two integrators are given by,

$$
\omega_{0}=\frac{V_{c}}{R C . S F}
$$

and
$Q=\frac{1+R_{1 /} R_{2}}{3}$

So Q is adjustable to any value by varying the ratio R_{1} / R_{2}, with no effect on cut-off frequency. Feeding the filter output back to the inputturns the circuit into an oscillator, in which integrator $I C_{4}$ smoothes the rectified output to give a control voltage for the fet, whose variable channel resistance balances positive and negative paths for low distortion.

Kamil Kraus

Rokycany
Czechoslovak Republic

Fig. 1. Multiplier and integrator form part of state-variable bandpass filter, the frequencydetermining element of the oscillator.

Fig. 2. Complete oscillator circuit, in which frequency is determined by $R C$ in Fig. 1 and Q by the ratio of R_{1} and R_{2}.

Switching power supply is programmed for power instead of voltage or current, giving up to 100 W from 40 V input.

Comparator accepts
higher input levels than is normally allowed and is useful for series power supply current sensing.

Simple programmable switcher gives 100 W

W
/e have used this power supply to give 100 W at an efficiency of better than 70% and with ripple at about 50 mVpk -pk. The control signal, V_{DAC}, sets output power, rather than voltage.
Effectively, the circuit is that of a switching down-converter, using a commercial pulse-width modulator,
the $L M 3578 . I C_{3(\mathrm{a})}$, one half of an LM13700 transconductance amplifier, takes as its input the voltage drop across R_{4}, the current sensing resistor. Current at its output, which is proportional to I, determines the gain of the other half amplifier, whose output current is converted to the voltage V_{w} by

High input-voltage comparator

Using a single power rail, this comparator allows the input voltage to exceed that specified for the op-amp in use.
In this case, the circuit is used to sense the small voltage caused by a current drop in series resistor between a power supply and its load. Both inputs of the comparator in a basic circuit would be at or approaching the full rail voltage in this instance 36 V , far outside the
permissible limits.
In the gating comparator shown, the voltage drop across the currentsensing resistor R_{s} is taken to the inverting op-amp input, being divided by $R_{1,2}$, the reference voltage derived from the zener and its dividing chain going to the other input. When no gating pulse is present, this divider consists of $R_{5,6}$ and of $R_{5,6,8}$ when the gate pulse turns Tr_{1} on.
feedback resistor R_{8}, V_{w} being compared in $I C_{2}$ with the control voltage. If $I C_{2}$ output is under IV, the pwm opens pass transistor T_{1}.
Values of $R_{4,7}$ and P_{2} are chosen so that $I C_{3(a)}$ and $I C_{3(b)}$ inputs stay below 100 mV under conditions of maximum current and voltage of the down-converter, so that V_{w} is in proportion to output power over three decades, within 1%. Variable P_{1} trims V_{w} to a maximum above 10 V to give linearity over the 0 $10 \mathrm{~V} V_{\mathrm{DAC}}$ range or below 10 V to drive the power supply at full power.
Low power is trimmed by the 741 correction circuitry, which is not shown, to make the supply turn off when the number controlling $V_{\text {DAC }}$ goes from 0 to 1 .
Umberto Ruffina and

Marco Villa

University of Pavia
Pavia
Italy

Assuming that all the divider resistors are equal, differential voltage at the op-amp inputs is $V_{\text {supp }}-V_{\mathrm{s}}=\left(V_{\text {ref }} V_{\mathrm{s}}\right) / 2$; when V_{s} exceeds $V_{\text {ref }}$, the op-amp output goes high. When the gate pulse appears, the differential voltage is approximately $V_{\mathrm{s}} / 6$ and the output goes low.
NI Lavrentiev
Kaliningrad
Moscow Region, Russia

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

Powerful, Practical and Sensibly Priced

The CPU is Motorola's 16 bit 68302, a highly integrated 68000 processor running at 16 Mhz . This processor has 3 full high speed serial ports operating in UART, HDLC/SDLC, BISYNC or DDCMP modes. It also has DMA channels. Interrupt controller, 28 parallel I/O lines 216 bit timers with compare and capture, Watchdog timer and low power (standby) modes. (We can supply the MC68302 Data Book.)
The Memory Up to.1M byte of EPROMs - 1 M byte of FLASH EPROM and 64 k Up to.1M byte of EPR
Bytes of static RAM.
The EM68 Expandable to 16 M byte, the EM68 is constructed on a Multilayer PCB with full power and ground planes and has a small $7.62 \mathrm{~cm}^{2}$ footprint.
Prices range from $£ 255.50$ ($\mathbf{1}$ off - 1M Byte FLASH) down to $\mathbf{£ 9 5 . 0 0 (1 0 0 + N o ~ F L A S H) ~}$ Our Catalogue lists products based on the $64180,80 \mathrm{C} 31$, Dallas $80 \mathrm{C} 320,80 \mathrm{C} 552$, 80 C 188 processors, and a wide range of peripheral modules, A/D, D/A, Serial, Opto, Relay, Transistor drive, Stepper drive, Thermocouple etc. with power supplies, backplanes and cases. Request a copy today.

CIRCIE NO. 127 ON REPL Y CARD

TELFORD ELECTRONICS

HP EQUIPMENT

4P8161a Programmable Pulse Generatoc ont 001-020
HPS3708 (HP18) Universad Tiume Inteval Counter
HPAH 56 Automatic Presector (0 opt. 002-0033)
HP8656a Signal Generato (Oxt. 001)
HP8901A Modulation Aralyer
HP3586B Selective Level Meter
1P95335A Unnersal Countiler (opt. 020004
HP3336B Smithestren/Level Gene
HP557OA Network Analzet
HPsolba Word Generator
HP3571A Tracking Spectrum Analyzer

HP3 399 Distottion Measurement Set
hP5328A Universal Counter
HPIII2ZA Sensor Mod ule
HPRP5 532 A frequence Meter
Hen
HP8761A S. PD.T. RF Switch
HP435A (B) Powe Meter cw RF Head
HPC 32 A Power Meler cw RF Head
1P81709 Logle Pattern Generator
HPS5501A Power Supply Programmer
HP59307A VHF Swith
HP99306A Relay Actu
HP461A Amplifier
if 40 OFIAC. Votime
HP32008 WFF Oscillator

HP35650 System [8 slot] COW HP356528 x4, HP356534 HP 35651
1 P488A Tremistor Mount
LP6920 Meter Cal libator
VARIOUS HP PLOTIERS IN STOCK - PLESSE ASK FOR OTTALIS
IPI 17404 100MHiz Dual TraceStora ge scope

HP1742A 100WHz Dual Irace Storage scope
HP8654A $10-52$ MMHz Signal Generator
HP86144 0.8-2 24GHz Signal Generator
HP8616A1. 8-4.5GHE Signal Generator
HP420AA 10H2. IM M L LF Oscilletor
HP651B Test Oscillato

- HPS22618 O-20Y 0.504 Power Supar

HP5 342 A Mcrowave Frequency Meter I 18 GHz
HPS530s4 75MHz Counter/finer
IP5305A 1! COM Mrz Counter

TEKTRONIX EQUIPMENT
TEN1401 Digtising Oscilioscope Cw lla34
TEK2465A 35 MHz Oscilloscope
TEFTV904, 7854, 7603, 7704A. 7633 , TM 504 , TM503 IN STOCK
TER Plug -ins: 7A16A 7B51. 7B87, OfI, 7001, 7A26, 7B36A DC509, DC504A. AM503, 7B92A 7 7853A, MANY MORE IN STOCK
MARCONI EQUIPMENT
64601 Power Meter Cw Sensor Head $10 \mathrm{MHz}-18 \mathrm{GHz}$
2830 Mutiplear Tester
2829 Digital Anabyer
2831 Cha neine Access Switch
2833 Digital Line Mentor
MARCONI Microwave Eductation Test Bench 'X' Band - Brand New
2015 Signal Generator $10-520 \mathrm{MH}$ -
2019 Signal Generator 80 OH $\mathrm{H}-10404 \mathrm{MHz}$
OTHER TEST EQUIPMENT
ROHDE \& SCHWARZ SWS Signal Generator 0.4-5201HZ
ROHDE \& SCHWARZ SMUV Signal Geneation IOKHz:130MHz
WATSU SASS 130 Waveform Anabyzer Cw SH-18 PI D.C-3. 5 CO Hz
WAATSU DN2350 Digtal Memory 10Br 20ns
marsu Dim 630 Digto Memory Scope
KIKUSUII TOS5850 W/ Auto Tester

NARDA SMA M Minature Strpine Couples $2-4 \mathrm{CHz}$
NARDA various SMA Antenuators $\mathrm{CC}-6 \mathrm{~Hz} \mathrm{HC}-12 \mathrm{CHz}$
SOARTRON 7045 Digital Multit Meter $4^{1 / 2}$ Digigh
FUKE 88604 Digital Muta Meter
FERROGFAPH Recorces Test Set RTS2
TOOL CHESTS (8 dramer) Made by H Fine \& Son (BRANO NEW
CLARE Flash Tester Model GCHOMP
RFCAL 9081 19082 520 MHz Sy:thesized Signal Generator
COULD J3B 10 Hz - 1001 KHz Law Distartion Oscillator
RROFOPD LDOA Low Distortion Oscillator
RADFOPO LDMS222 Llow Distotion Measuring Set
PHILIPS PM5 132 Function Generatar 0.1 l - -50 MHz
PHIUPS PM5715 Pulse Generato 1 Hz -50 MHz
ARRET TyNe 2230AA
ROHOE \& SCHNART SUF

VARIOUS LMMBOA \& MEPCO PSU''s IN STOCK
HAVE Temperature Calibato OTB-5 5 oilwate
HaveN Thermo Cal IS Thermocouple Simulator Caribrator

TME CD MIl wolt POT Source Model 404 N
LEADER LOCTOS SCope Calibrator
CASELIA WBGT
PPM 411 F Current Refierence
CROPPCO Resstance Standards - Various in stock
HTIMSLEY Resistance Bñdge Type 5761
WML LAEI \& DERNM Preciston Pneuntratic Cal ibrator
MCRODINE Telemertr Recover 2.2-230 Hz
FUKE 8000 A Digtal Mulit Meter
RACA 99045 SOMH2 TimesiCounter
RACA 991 1/99149915/9916/P917/1992/1998 Frecuency Counters
RACA INSTRUMEMTATION RECORDERS ADS/TOS
RACA WORD SAE 8 trách 48 Hour, Secure voice recorder
raccal TAl 885 Auto tuned Hf Transmititer $1.5-30 \mathrm{OMHz} 1 \mathrm{MW}$ output
RACAL TA1880 HF Linear Ampliter 2-30 WHz IOKW Output (all mode)
OYE T300AM 68 -17 7 MHHz 30WW output
HARRRIS ATU $601 \mathrm{Al} 1-30 \mathrm{MH}$. I KW
CAIAAAB DKJO8O Programmable Transient Reconder
ROIEX ACDC Precision Calibrator
RACA 9084 Symithesized Generator cw CPPB Interiace
ROIAND Crating Ploter A2. DPX-2200 Varnus interiaces 8 pen
ROLAND DG X-Y Ploter $A 3 D X X Y$ - 880 A Varous interfaces, 8 pen
KROH N HIT Finter Madel 3202R
CABIIERON Systems RR3000 CWw lanview fibre ontic repeater
anRTTSU Channel Selector MS 2204
BRUEL \& KALER Vibration PTogrammee ZHO100
MINOUTA TV Colaur Analyeer Cw Probe TVI 140
CORNX $48 / 48$ Audio Switch Matro Type $9218 /$
P4OENX Telecom munications Anayzer 5500 M
2nd Unit; Phoenx 5500 -MSU $5500-200$

3 rud Unit, Phoeno Conter Mocule $5500-200+5500 \mathrm{~A}-828$
the above 3 items come as one unit
WATKINS IOHNSONS EQUIPMENT
Micowave Tuning Frame $4-86 \mathrm{~Hz}$
Freauency Extencer $2-4 \mathrm{GHz}$
Demodulator DM1125
Signal Monitor
Receiver WI86178 2 -500MHz
MICROWAVE COAXIAL SWITCHES

FENMEL COAXIA CABLE CUZY Size I 1 Stin 50 Onm

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE
Postage and packing must be added. Please phone for price. VAT @ $171 / 2 \%$ to be added to all orders. Please send large SAE for details.
Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ
Tel: 01952605451 Fax: 01952677978

Surround-sound standards polarise

Peter Willis looks at the pros and cons of two competing surround-sound standards - Dolby's AC-3 and Europe's MPEG-2.

Surround sound is set to enter a new dimension in the digital era, but differences between broadcasting standards in America and Europe could perpetuate the film studios' use of the PAL/NTSC division to control the territorial release of new titles.
Dolby's AC-3 system, demonstrated in Berlin and again at Live ' 95 in London, has been selected by the American FCC as the standard for its digital television system. Soundtracks in AC-3 are already being included on NTSC versions of Laserdiscs, with 50 titles due out by the end of the year. Players, and outboard demodulators are becoming available.

Operating at $384 \mathrm{Kbit} / \mathrm{s}, \mathrm{AC}-3$ is a 5.1 channel system providing totally discrete signals to each of the five speakers - left, centre, right and rear left and right - in a surround-sound set-up. The ' .1 ' refers to the optional subwoofer.
This standard won't replace existing Pro-

Logic, but because it does not have to be mixed through a matrix, lateral diagonal effects become possible, and the sense of space is increased. It is however a multichannel system - not just five separate channels; the coder looks at what all the channels are doing together, enabling it to optimise the available bits, and to apply psychoacoustic principles. It also enables the datastream to be downmixed to four, two or one channel, with acceptable balance, as required.

And in Europe...

Europe, meanwhile, has chosen the Musicambased MPEG-2 system for its Digital Video Broadcasting standard. This was inevitable, since backwards compatibility with stereo MPEG-1 - which can carry the two-channel Pro-Logic matrix - was a criterion.
MPEG-2 becomes a true five-channel system by adding an 'Aux Data' bitstream carrying the centre and rear channels. Unfortunately
this has the effect of depriving the MPEG-1compatible Left and Right channels of vital information, notably dialogue, so the Aux Data has to be put through a matrix to restore the information. This, however, increases the apparent noise. As a result, the bit-rate has to be increased by some 40% to compensate, exceeding the available transmission limit. Not surprisingly, the people at Dolby see this as something of a bodge.
The real question, however, is what will go onto high-density MPEG-2 digital video discs when they start to be released next year. The SD group has publicly indicated that European discs will have MPEG-2 soundtracks. This would make for compatibility between players and broadcast receivers, but inhibit global traffic in prerecorded discs. In fact, such is the capacity of the discs that they would have room for both soundtracks - provided the film studios don't intervene.

5.1- ch. digital soundtrack

With AC-3, it possible to fit a 5.1-channel digital sound track between the sprocket holes on 35 mm prints. Among the benefits are high-quality sound and a track that is highly resistant to wear due to a relatively large bit size.

SEETRAX CAE RANGER PCB DESIGN WITH COOPER \& CHYAN AUTOROUTER

RANGER3 - DOS
- Windows\NT
$£ 2900$

Hierarchical or flat schematic linked to artwork. Unlimited design size, 1 micron resolution Any shaped pad, definable outline library
Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC COOPER \& CHYAY SPECCTRA
autorouter (SP2)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet,

HP-GL, Gerber,
NC Drill, AutoCAD DXF

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036 + VAT \& P.P

SYNTHESISED SIGNAL SOURCE

an innovative design from an established 'Off-Air' Company

- dc to 16 MHz in 0.01 Hz steps
- Sinewave output 0dBm into 50Ω
- Can be run independently or genlocked to external source
- Custom designed chip set
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available Models available October, contact us for prices
‘OFF-AIR’ FREQUENCY STANDARD

CIRCLE NO. 131

Variants from
£249 + var

- Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
- Use fif or calibrating equipment that relies on quartz crystals, Thas. Vxcos, oven crystals

CH (rubidium controlled and

* For ADDED VALUE also phase locks to ALLOUIS (cesium - controlled and traceable to OP - French eq to NPL) * Bnitish deslgned and British manufactured - Options available include enhanced receiver, sine wave

Output frequencies OMHZ, $5 \mathrm{MHz}, 1 \mathrm{MHz}$ han $1 \times 10^{-8}(1 \mathrm{sec})$ bette Typical $-4 \times 10^{-9}(1 \mathrm{sec})$ Long torm - tends to $2 \times 10^{-12}(1000 \mathrm{sec})$ Call or 'Ott-Air' Standardis:

TEST EQUIPMENT Cligaeno.

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

CIRCLE NO. 133 ON REPLY CARD

Technical support

Maxim Components, Unit 3, Theale Technical Park, Station Road, Theale, Berkshire RG7 4XX, tel. 01734303388 , fax 305577. Newport Components, 4 Tanners Drive, Blakelands North, Milton Keynes, MK14 5NA, tel. 01908 615232, fax 617545.

A range of companies including Schott Corporation (type 67114760), MiniMagnetics (type MM2557) and BH Electronics (type Q6471-1) also provide suitable transformers.

Transformer alternatives

Newport manufactures a range of transformers, outlined below, providing a range of isolation levels for use with the MAX250 and MAX251 chipset.

Type	Isolation	Package
76250	1500 V rms	DIP6
76250 M	1500 Vms	SM28
76250 HVR	2000 Vrms	DIP6
76250 HVRM	2000 Vrms	SM28
76250 KV 4	4000 Vrms	DIP6
76250 KV 4 M	4000 Vrms	SM28
$76250 \mathrm{EN}^{*}$	4000 Vrms	DIP6

* a special designed for EN60950 approval.

Abstract

Combined with opto-couplers, this pair of ICs isolates an RS-232 line to 1500 V rms - without the need for an independent power source at the remote end of the link - as Douglas Clarkson explains.

An increasing level of connectivity between computers and electronic equipment - generally via the RS-232 COM port - provides a convenient universal approach to control and data logging.
Many applications demand high noise immunity and isolation. Standards for telecomms and electrical safety often demand isolation between a computer and its remote monitoring subsystem or sensors. In many data-capture applications, optically-isolated digital interfaces are available.
Increasingly, the RS-232 interface provides control, in addition to data transfer. This development is, for example, incorporated into the Harris HI-7159A, where a single RS-232 line can control and abstract data from a $5 \frac{1}{2}$ digit a-to-d converter.
When considering electrical isolation, distinction is usually made between the 'cable' ground and the $\mathrm{ttl} / \mathrm{cmos}$ logic system ground,
as in Fig. 1. Generally, isolation is achieved through optical coupling but some newer isolation interfaces take advantage of capacitive coupling.

With a mains powered pc , the ground signal of the RS-232 interface is usually tied close to the mains ground and is therefore not floating.

Isolation criteria

Not only is data passed across an isolation interface, but it is usually level shifted from the $\pm 10 \mathrm{~V}$ or so RS-232 levels into cmos/ttl logic levels for the external logic system and vice versa, Fig. 2.

The level of electrical isolation required determines the specific solution. For isolation up to 1500 V ms , a device such as the Newport NM232DD provides two incoming and two outgoing lines. This component is a convenient device, having the dc to dc converter unit and photo-electric devices pack-

Fig. 1. Distinction between 'cable' ground at the remote end of an isolated RS-232 system, and the logic system ground, which will typically be the O V potential of a pc .

Fig. 2. RS-232 isolation systems usually involve both RS-232 and standard cmos/ttl logic levels.
aged together in a modest 24 -pin module. A point worth noting with these devices is that when laying out a pcb, tracks in the mid-line zone under the device should be avoided.
A limitation of the NM232DD is the electrical isolation achievable between components. If isolation greater than 1500 V rms is required, it is necessary to separate logic components and the dc-to-dc converter transformer. The MAX250 and MAX251 and their associated discrete components provide a convenient option for constructing such a module.
If connections of the MAX250 and MAX251 are appropriately routed, it is the quality of the optical components - especially that of the dc-to-dc converter transformer - which determines the level of isolation achievable.

Circuitry for RS-232 isolation

Figure 3 outlines the Maxim chip set with $4 N 26$ opto-isolators. Such a configuration should be capable of transmitting and receiving at rates of $19.2 \mathrm{kbit} / \mathrm{s}$. Using the higher specification 6 NI 36 with external pull-up resistors, rates of 90 kHz can be achieved. This is also the case for $6 N 136$, but their pin-out is different, Fig. 4.
Standard eight-pin devices in DIL packages usually have 0.3 in row separation. The 6 N 136 W set of opto-isolator devices are 0.4 in wide and provide increased isolation protection.
In the MAX250, a pair of open-drain n-channel mosfets drive an external 1:1 isolation transformer in push-pull fashion at 150 kHz and 50% duty cycle. This provides nominal voltage rails of +10 V and -10 V around the ground of the remote, isolated side. These rails power the transmitters and receivers in the MAX251. In addition, these supply lines can provide current for limited additional circuitry on the remote side.
All four driver outputs of the MAX250 source 7 mA via internal current sources. They do not require limiting resistors when driving grounded opto-coupler leds or cmos/ttl logic inputs. RS-232 inputs and outputs of the MAX251 comply with all EIA RS-232 and CCITT V. 28 specifications. Received outputs R1L and R2L source 7 mA and can drive opto-coupler inputs without external current limiting resistors.
The MAX250 has a shutdown facility which activates when the shutdown input is high. On restoring the shutdown input low, the power rails establish themselves usually within 2 ms . During shutdown, total power consumption of the chip set is around $5 \mu \mathrm{~W}$ - a convenient power saving option for battery equipment.

Fig. 4. High speed 6N136 couplers improve speed, but their pin-out is different.

Figure 5 indicates a recommended pcb layout for the MAX250/MAX251 chipset with a generic transformer. A key design element is to prevent any tracks from crossing the isolation barrier. In the specified circuit, a single or double-sided board can be used. Thicker lines shown are on the underside of the board. Lines broken by a thin line can either go on the top board or bottom side, with jumpers where the thin lines appear.

Summary

The MAX250 and MAX251 are convenient building blocks for providing electrical isolation in excess of 1500 V rms between RS-232 and $\mathrm{tt} / \mathrm{cmos}$ logic systems. Within this design framework, manufacturers are also developing higher isolation properties into both optical isolators and transformers in order to improve the levels of isolation attainable.

Fig. 3. Standard configuration of MAX250/MAX251 chipset featuring low cost 4N26 opto-isolators.

LETTERS

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Shifting cultures

David Manner's may be correct in asserting that there is little chance of any Brit capturing the public imagination with what they are doing in electronics. But whose fault is that?
Sir Clive was adept at spotting opportunities for wringing the last drop of processing power from available technology, but it is difficult to remember anything he did which has had a lasting impact. Journalists presented him as the archetypal egghead and building an electric car was made to seem more exciting than say, the innovation of putting sails on oil tankers.
Ignored in Britain the idea of sails has been thought good enough to raise Japanese interest. No doubi they will be ready to sell the technology back to us if given the opportunity.
Acorn Computers is another example of British innovation ignored. The company's chips are sold back to us in the Apple Newton, Samsung, TI, Sharp, IBM, DEC products, and GEC/Plessey produces ARM based products under licence.
Bill Gates is not the 'richest man on the planet' because of his technical brilliance. The UK media is ever willing to give him oodles of free publicity, while our home grown innovators are at best ignored. Even our technical and computing journalists seem to want to wait for another Sir Clive to come along, rather than to look at the technology and evaluate it for themselves.
Les May
Rochdale
Lancashire
In last month's editorial I felt Dave Manners was too quick to write off the UK electronics industry. All is not lost in UK Electronics where, there are many fast growing, exciting entrepreneurial companies like my own emerging.
The Electronics - and especially the Semiconductor Industry - is truly International. To be successful in this business you must think globally yet act locally. This means you should employ staff internationally but concentrate specific activities in a particular country, where this gives you the greatest strategic advantage.
As the business is truly global and the prize of success goes to a few
winners in a particular space, it is important to apply and deploy your energies to ensure you are the world's best in all you do. Following through on this, all companies in electronics or information technology need to 'partner for success'.
As the black and white films of 'men in white coats' show in the engineering companies of the early fifties it was appropriate to do everything yourself, design, machine shop, spray shop, drawing office, production of every detailed part.
Today however, low cost, short time to market and flexibility are key strategic weapons in being a global player. So it is necessary to harness your resources to be able to respond to rapid change. For example as the life cycle of a pc today is only eight months, it is important to launch your product on time, control your inventory and to be sure your next product is available and better than the competition.
Another trend of large corporations has been what I call 'downsizing' or the Americans call 'right sizing'. This is the need in corporations to shed thousands of jobs in order to re-establish competitiveness from a cost point of view. Every electronics job today is a global job. In the West, we compete with our brain power and more automation with a hard working lower paid worker in a less developed part of the world.
It is vital that we concentrate in our research and development programmes on exploitation, job and wealth creation as the more esoteric research activities of the past. Thus in the European Fourth Programme the emphasis is rightly more market and exploitation oriented than previously.
Robin Saxby
MD, Advanced RISC Machines Cambridge

Help someone hear

Can anyone solve a problem that I have wrestled with for some time? I would like to help my mother overcome a specific type of hearing disability, which she and many others suffer from. The right solution could dramatically improve her quality of life.
Conventional hearing aids help under ideal conditions but their ultra compact size obviously reduces their

Can anyone
design a hearing aid circuit to compensate for this type of non-linear hearing impediment?
performance. For people like my mother, uniform sound amplification is not sufficient as they hear different frequencies at significantly different sound levels.
For people like my mother, uniform sound amplification is not sufficient as their sensitivity to different frequencies varies significantly with sound level. The graph shows the results of her latest hospital test, for example.
My challenge is to create a pocket sized, programmable amplification unit which would process the greatest number of frequency ranges with the highest possible sound quality. Cost or appearance is not a serious consideration.
If any reader is willing to rise to the challenge, I will gladly provide whatever information and help that I can.
Hayden Sykes
Bedlington
Northumberiand

Delayed audio unjustified?

Douglas Self has described Ben Duncan's method of scientific enquiry as to take someone else's circuit, alter it until it doesn't work very well, and then rubbish the original. That is a pretty fair summary of his Delayed Audio Signals - EW \& WW May 1995 which is largely a critique of one section of my Ironing Out Distortion - EW\&WW Jan 1995.

Readers can be assured that my original circuit for compensating low-frequency phase and group delay (as distinct from Mr. Duncan's mutilation of it) performs exactly as I claimed.
Mr. Duncan states that my phase-compensation method requires "...an exact ratio between three electrolytics...". In fact the original circuit contains two relevant
capacitors, only one of which is an electrolytic. Everything Duncan says about tolerances should be divided by three for a start.
I don't know where Duncan got the values he attributes to me in his Fig. 1. Inspection of any audio power amplifier circuit I have ever published will show that lowfrequency phase-compensating capacitor - C $_{\mathrm{F} 3}$ in my Fig. 11 - is somewhere around $1-2 \mu \mathrm{~F}$, and circuit-board layouts show it to be a non-electrolytic type. Usually I lay this capacitor out as a main unit somewhat less than the nominal value, plus a small parallel select-on-test tweak. This involves about five minutes' work with a squarewave generator and oscilloscope at the initial setting up of an amplifier, and the whole question of tolerances becomes irrelevant.
Mr. Duncan's approach to lowfrequency group delay is to provide a gigantic time constant for the dominant pole; this is 1 s in his Fig. I compared with 30 ms for my unmutilated original. It is a fact of life that real audio amplifiers are occasionally subjected to overdrive. It is also a fact that real audio waveforms are unsymmetrical. When an amplifier is overdriven by an unsymmetrical waveform, excess charge accumulates on the lowfrequency capacitors and this charge must dissipate before the amplifier returns to normal operation.
My original recovers about 30 times faster than Duncan's circuit. There was a reason behind my choice of component values.
Duncan makes a number of other assertions which he should substantiate before readers take them seriously.
Please justify the statement that "...without hundreds of volts of If headroom extension, Cherry's phase compensation can in practice only be used once or twice." Two parts to the answer, please.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers
HP141T $8552 \mathrm{BIF}+8553$ B RF $-1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 700$.
HP141T+8552B IF $+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-£ 700$.
Special Offer just in from MOD Qty 40 HP 8555 AF Rnits $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$
HP141T+8552B IF $+8555 A 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-£ 1200$.
HP ANZ Units Available separately - New Colours - Tested
HP141T Mainframe - 5350 .
HP141T Mainframe
HP8552B IF- $£ 300$
HP8552B $\mathrm{F}-£ 300$.
HP8553B RF 1 KHz to $110 \mathrm{Mc/s}-£ 200$
HPP554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-£ 800$.
HP 8556 A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}$ - $£ 300$
HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-\mathrm{£} 350$.
HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ ANZ - $£ 750-£ 1000$.
HP3582A. 02 Hz to 25.6 KHz - f 2 k .

HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-\mathrm{f} 4 \mathrm{k}-£ 4.2 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHzOpt} 1+2+3-\mathrm{f} 4.5 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz} \mathrm{Opt} 1+2+3-\mathrm{f} 4.5 \mathrm{k}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHzOpt} 1+2+3-£ 5 \mathrm{k}$
TEK 494AP $1 \mathrm{KC} / \mathrm{S}-21 \mathrm{GHz}-\mathrm{E} 7 \mathrm{k}$.
TEK 496P $1 \mathrm{KHz} \mathbf{- 1 . 8 G H z}-\mathrm{f} 4 \mathrm{k}$.
TEK $5 \mathrm{~L} 4 \mathrm{~N} 0-100 \mathrm{KHz}$ -
TEK 5L4N $0-100 \mathrm{KHz}-\mathrm{f400}$
TEK $7 \mathrm{LL}+\mathrm{L1}-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 700$

TEK $7 \mathrm{~L} 12-100 \mathrm{KHz}-1800 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1000$.
TEK 7L18-1.5-60GHzs - f 1500
TEK 491 10MC/s-12.4GHzs-40GHzs - E 750 . 12.4Gh2s-40Ghzs with Mixers.
Tektronix Mixers are a vailable for above ANZ to 60GHzs
Systron Donner 763 Spectrum ANZ + 4745B Preselector . $01-18 \mathrm{GHz}+$ Two Mixers $18-40 \mathrm{GHz}$ in Transit Case-£3k.
HP8673D Signal Generator $.05-26.5 \mathrm{GHz}$ - $£ 20 \mathrm{k}$
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s} 2-18 \mathrm{GHzs}$
ADRET 3310A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}$ - f 600 -
HP8640A Signal Generators - 1024Mc/s - AM FM - £800.
HP3717A $70 \mathrm{Mc} / \mathrm{s}$ Modulator - Demodulator - 5500.
HP 8651 A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200 W.
HP6825A Bipolar Power Supply Amplifier
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ
HP3770B Telephone Line Anslyser.
HP8182A Data Analyser
HP59401A Bus System Analyser.
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector.
HP3730A+3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - £250
HP105B Quartz Oscillator - $£ 400$
HP5087A Distribution Amplifier
HP6034A System Power Supply 0-60V 0-10A-200W - 5500 .
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2 \mathrm{Amp}$.
HP4275A Multi Frequency L.C.R. Meter
HP3779A Primary Multiplex Analyser.
HP3779A Primary Mu tiplex Analyser
HP3779C Primary Multiplex Analyser
HP8150A Optical Signal Source.
HP 1630 G Logic Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C.
HP59501B Isolated Power Supply Programme
HP8901A Modulation Meter AM - FM - also 8901B.
HP5370A Universal Time Interval Counter
Marconi TF2370-30Hz-110Mc/s 750HM Output 12 BNC Sockets + Resistor for 500HM MOD with
f650
Marconi TF2370 as above but late type - $£ 850$ - $£ 750$
Marconi TF2370 as above but late type Brown Case - $\mathbf{f 1 0 0 0}$
Marconi TF2374 Zero Loss Probe - £200.
Marconi TF2440 Microwave Counter - 20GHz - £1500.
Marconi TF2442 Microwave Counter - 26.5 GHz - $£ 2 \mathrm{k}$.
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - £2k.
RacalD 9303 True RMS Levelmer Hontroler $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards
TEKA6902A also A6902B Isolator - $£ 300-£ 400$.
TEK 1240 Logic Analyser - $£ 400$.
TEK FG5010 Programmable Function Generator 20Mc/s - f 600
TEK2465A $350 \mathrm{Mc} / \mathrm{s}$ Oscilloscope $-\mathrm{f} 2.5 \mathrm{k}+$ probes -E 150 each
TEK CT-5 High Current Transformer Probe - $£ 250$.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - £300.
TEK J16 Digital Photometer + J6503 Luminance Probe
ROTEK 320 Calibrator +350 High Current Adaptor AC - OC 5500.
ROTEK 320 Calibrator +350 High Current Adaptor AC-DC $-£ 500$
FLUKE 5102B AC-DC Calibrator - E 4 k
Tinsley Standard Cell Battery 5644B- E 500 .
Tinsley Transportable Vohtage Reference - E 500 .
FLUKE Y5020 Current Shunt- $£ 150$.
HP745A + 746A ACCalibrator - $£ 600$.
HP8080A MF $+8091 A ~ 1 G H z ~ R a t e ~ G e n e r a t o r ~+~ 8092 A ~ D e l a y ~ G e n e r a t o r ~+~ T w o ~$
2 $H P 8080 A \mathrm{MF}+8091$ A
$+15400 \mathrm{~A}-£ 800$.
HP54200A Digitizing Oscilloscope.
HP11729B Carrier Noise Test Set . $01-18 \mathrm{GHz}$ - LEF - $£ 2000$
HP3311A Function Generator - $£ 300$
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ -
tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type 8406 - $£ 400$
HP Frequency comb generator type $8406-£ 400$.
HP Vector Vottmeter type 8405A- $£ 400$ new colour.
HP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R., HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500-\mathrm{E} 1000$.
HP Amplifier type 8447A - 1-400Mc/s £200-HP8447A Dual - £300.
HP Frequency Counter type 5340A - 18GHz $£ 1000$ - rear output $£ 800$.
HP 8410 - A - B - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up -8411a - 8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From $£ 1000$
Racal/Dana 9301A-9302 RF Millivoltmeter-1.5-2GHz- $£ 250-\mathrm{f} 400$
Racal/Dana Modulation Meter type 9009 - $8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - f 250 .
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A - 6057A -6056-£250-f350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - f100-£300
Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or Pl only $£ 600$. MF.only $£ 250$.
Marconi distortion meter type TF2331 - £150. TF2331A - £200.
ektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 ould - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7B92A
Gould J3B test oscillator + manual - $£ 150$.
Cknonix Mainframes - 7603 - 7623A - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 -7904A-7834-7623-7633.
Marconi $6155 A$ Signal Source -1 to 2 GHz - LED readout - £ 400 .
Barr \& Stroud Variable fitter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass $-£ 150$
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$
Marconi TF2163S attenuator - 1 GHz . $£ 200$.
Farnell power unit H60/50-£400 tested. H60/25-£250.
HP 8750A storage normalizer - $£ 400$ with lead $+S$. A or N,A
Marconi TF2330 - or TF2330A wave analysers $-£ 100-£ 150$
Teltronix - 7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304-£250.
HP 5065A rubidrum vapour FX standard - $\mathrm{f1} 1.5 \mathrm{k}$
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Racal/Dana 9083 signal source - two tone - $£ 250$.
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner - sinfre
Racal/Dana counters - 9904 - 9905 - 9906 - $9915-9916-9917-9921$ - $50 \mathrm{Mc} / \mathrm{s}$ - 3 GHz - f 100 -
£450- all fitted with FX standards.
HP4815A RF vector impedance meter c/w probe - $\mathbf{£ 5 0 0}$ - $\mathbf{6} 600$.
Marconi TF2092 noise receiver. A, B or C plus filters - $£ 100-\mathrm{f} 350$.
Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$.
HP180TR HP182T mainframes $£ 300$ - 550
Philips panoramic receiver type PM7900-1 to $20 \mathrm{GHz}-£ 400$.
Marconi 6700 A sweep oscillator +18 GHz Pl's available.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer $-£ 4 \mathrm{k}$
HP8505 network ANZ $8505+8501$ A +8503 A.
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter type $527 \mathrm{E}+$ rubidlum standard type $9475-£ 2750$.
HP $432 \mathrm{~A}-435 \mathrm{~A}$ or $\mathrm{B}-436 \mathrm{~A}$ - power melers + powerheads - MC/s -40 GHz - $£ 200-£ 1000$.
Bradley oscilloscope calibrator type $192-\mathrm{f} 600$.
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$,
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour f 400 .
HP 3325 A syn function gen $20 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1500$.
HP 3336A or B syn level generator - $£ 500-\mathrm{f} 600$.
HP 3586 B or C selective level meter - $£ 750-£ 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-£ 400$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$ - opt 001 - $003-£ 4.5 \mathrm{k}$
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Md} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
HP 8640B S/G AM-FM 512Mc/s or 1024Mc/s. Opt 001 or 002 or 003 - E800- -1250.
HP 86222BX Sweep Pi-01-2.4GHz + ATT-£1750,
HP 8629A Sweep PI-2-18GHz-£1000.
HP 86290 S Sweep PI $-2-18 \mathrm{GHz}-£ 1250$.
HP 86290 B Sweep PI-2-18G Hz - f 1250 .
HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-\mathrm{f} 1 \mathrm{k}$.
HP 8620C Mainframe - £250. IEEE - £500.
HP 8615A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}-$ opt 002 - E1k.
HP 3488A HP - IB switch control unit - $\mathrm{E} 500+$ co
HP 81604 50Mc/spron
HP 853A MF ANZ - $\mathrm{E}^{1} .5 \mathrm{~K}$.
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 4 \mathrm{k}$.
HP 8569B Analyser . $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 3580A Analyser 5 Hz - 50 kHz - $\mathrm{f1k}$.
HP 1980 B Oscilloscope measurement system - $\mathbf{£ 6 0 0}$.
HP 3437A System voltmeter - $£ 300$.
HP 3581C Selective voltmeter - $£ 250$.
HP 5370A Universal time interval counter - $£ 450$.
HP 5335A Universal counter - $200 \mathrm{Mc} / \mathrm{s}$ - f 500 .
HP 5328 U Universal counter $-500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 250$.
HP 5328A Universal counter - $500 \mathrm{Mc} / \mathrm{s}-£ 250$.
MP 6034A System power supply - 0
HP 5150A Thermal printer - $£ 250$. 150 .
HP 1645A Data error analyser- E 150 .
HP 4437A Attenuator - 1150 .
HP 3717 A 70 Mc .
HP 3710A - 3715A - 3716A - 3702B-3703B-3705A-3711A-3791B-3712A-3793B
MPicrowave link analyser - P.O.R.
HP 3730A + B RF down converter - P.O.R
HP 3552A Transmission test set - $\mathbf{f 4 0 0}$.
HP 3764A Digital transmission analyser - $£ 600$.
HP 3770 A Amp delay distortion analyser - f 400 .
HP 3780A Pattern generator detector - f 400 .
HP 3781A Pattern generator - $£ 400$.
HP 3781B Pattern generator (bell) - $£ 300$
HP 3782 B Error detector (bell)- $£ 30$
HP 3785 A Jitter generator + receiver- $£ 750-\mathrm{E} 1 \mathrm{k}$.
HP $8006 A$ Word generator - $£ 100-£ 150$.
HP 8016A Word generator - $£ 250$.
HP 8170 A Logic pattern generator - $£ 500$.

Philips PM5390 RF syn - $0.1-1 \mathrm{GHz}-\mathrm{AM}+\mathrm{FM}-£ 1000$
S.A. Spectral' Dynamics SD345 spectrascope 111 - LF ANZ - $£ 1500$.

Tektronix R7912 Transient waveform digitizer - programmable - £400..
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}$ - £1k - or TR502.
Tektronix TR503 + TM503 tracking generator 0.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 577 Curve tracer + adaptors - $£ 900$.
Tektronix $1502 / 1503$ TDR cable test set - f /f/frame - $£ 1000$
Tektronix SC501 - SC502 - SC503 - SC504 ascilloscopes - $f 75$ - $£ 350$
Tektronix $465-465 B-475-2213 A-2215-2225-2235-2245-2246-£ 250-£ 1000$.
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS $6100 \mathrm{M}-£ 350$.
Nicolet 3091 LF oscilloscope- $£ 400$.
Racal 1991-1992-1988-1300M M/s counters - $£ 500-\mathrm{f} 900$
Fluke $80 \mathrm{~K}-40$ High voltage probe in case-BN - $£ 100$.
Racal Recorders - Store 4-4D-7-14 channels in stock-£250-£500.
EIP 545 microwave 18 GHz counter - $£ 1200$.
Fluke $510 \mathrm{~A} A C$ ref standard $-400 \mathrm{~Hz}-£ 200$.
Fluke 355A DC voltage standard - E 300 .
Wiltron 610 D Sweop Generator $+6124 \mathrm{CPI}-4-8 \mathrm{GHz}-\mathrm{E} 400$.
Wiltron 610D Sweep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
Time Electronics 9814 Voltage calibrator - $£ 750$.
Time Electronics 9811 Programmable resistance - $£ 600$
HP $8699 B$ Sweep PI YIG oscillator . $01-4 \mathrm{GHz}-£ 300$. 8690 B MF-£250. Both $£ 500$.
Schlumberger 1250 Frequency response ANZ - $£ 1500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors. B8,K liems in stock - ask for list.
WhG liems in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell-HP - Weir - Thurlby - Racal etc. Ask for list.
TEEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENOUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 3 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road Esst, Birkenshaw, Bradiort BO11 2ER. Tel. No: (101244|1684007. Fax: 651160
b) where do large infrasonic signals come from? - give us the frequencies and amplitudes relative to peak audio. And no new safety factors, please. All of these should have been included in the precompensation design.
Please justify the statement that "...scaling R up and C down is just not practical on the grounds of noise, microphony, and increased electrostatic/emi sensitivity." Each ground separately please, and again some numbers rather than handwaving.
What should readers understand by the terms damping and Q in connection with my circuit, when all its poles are on the negative real axis and the step response does not contain any decaying sinusoids? Precise definitions, please. (Incidentally, if Duncan cares to simulate 70 of his BDR amplifiers in cascade, with step input, he will find the same oscillatory behaviour he is so critical of-except that everything is much slower, Duncan will need to simulate for about 20 seconds in order to see it die away.)
Edward M. Cherry,
Monash University
Australia

Sallen \& Key distortion

The well-known Sallen and Key active filter circuit appears as an 'application' in the data-sheets of low-distortion op-amps, such as the OPA2406 and the LM833, both dual devices. Distortions of 0.0003% ($3 \mu \mathrm{~V} / \mathrm{V}, 3 \mathrm{ppm}$) and 0.002% (20ppm) respectively are claimed. The Sallen and Key low-pass shown here, with an F_{c} of 1 kHz and Q of 1.6 , was intended to reduce the already low harmonic content of a 1 kHz 1 Vrms source, but had the opposite effect; for example, an OPA2406 section generated 270 ppm second harmonic, and an LM833 section generated 150 ppm ; raising the input to 2 V gave 540 and

Sallen and Key filter was found to introduce distortion. Changing to Rauch solved the problem.

290 ppm.
Changing to a Rauch configuration -i.e. an inverting input - solved the immediate problem; a TLO72 section did the job.
Further investigation showed that, in the straight follower connection, all three types add less than 2 ppm ; the distortion comes when there is resistance (impedance) in series with the non-inverting input - as there necessarily is in the Sallen and Key circuit.
The table shows some readings of the internally-generated second harmonic with a 100 k input resistor only (less than one millionth of the data-sheet input resistance). Other resistor values give roughly proportional distortion.
Whatever the mechanism may be, one must conclude that the Sallen and Key circuit is not generally usable for hi-fi, at least with these devices.
AD Ryder
Bolton
Lancashire

Need we debate feedback?

In the October issue, p. 887, Doug Self calls for an informed debate on the amount of global feedback that can be considered safe in an audio power amplifier.
I must admit that I have a lot of time for Self and his powers of rational thought. I think the concept of a blameless amplifier is a useful one in an audio systems context. I admire his patience in dealing with the seemingly inexhaustible supply of sloppy thinking which been directed at him recently.
However, I am not sure that a debate is even necessary because there isn't a problem. All we are trying to do is amplify a waveform over a relatively small voltage and frequency range by electronic standards - a straightforward control problem.
Audio is not the only area in which feedback is used in a control system. These crop up in countless aerospace, marine, defence and industrial applications. Why is it that there is no debate about the criteria for stability in these communities?
In reality, audio is seldom designed as a system. Too much effort is expended in one area and not enough in another. To debate amplifiers is missing the point. Today's amplifiers have been refined to the point where they can be blameless, yet they are invariably connected to loudspeakers which are as blameless as Attila the Hun,
Most of today's hi-fi loudspeakers
produce distortions, both linear and non-linear, which exceed those of amplifiers by orders of magnitude, yet they are never quoted. Try putting a squarewave into a loudspeaker and see what comes out - generally garbage.

I have yet to find a passive crossover which can meet the criteria of blamelessness. If you own a blameless amplifier with only one channel per loudspeaker you cannot hear blameless audio.
Cabinet resonances and other energy storage mechanisms add a layer of grime which swamps the thd $+N$ of the preceding electronics. A loudspeaker effectively has a signal-to-noise ratio because of these effects, yet it is never measured. Cabinet diffraction produces a polar diagram like a hedgehog.
With today's loudspeakers in series, further refinement of already blameless amplifiers and any debate about them is a complete waste of time. All that can be done is to make them cheaper. As Self says, there are better things to do.
John Watkinson,
FAES

Updates

Bigger bass smaller box
These are corrections to Fig. 1 of
Jeff Macaulay's full-range loudspeaker design, 'Bigger bass, smaller box', which appeared in the June issue.
There are several resistors marked $R_{7,8,9}$. All of these are 10 k except the R_{9} associated with A_{6}. This is 22 k .
Capacitors $C_{26,27}$ are $100 \mu \mathrm{~F}$ decoupling for the op-amps. Resistors R_{31-36}, listed as 100Ω, were originally used to further decouple the op-amp supply pins. Due to persistent problems with 12 V regulator parasitics, Jeff finally increased these to $2 \mathrm{k} \Omega$ and connected them directly ro the supply lines.

Probing for

switching losses
Due to typographical errors, the term mAs instead of μ As occurred several times in the article 'Probing for switching losses' in the October issue. All the errors occurred on page 832 and are as follows 76.5 mAs , line $35,8 \mathrm{mAs}$, line 48 and $8 \mathrm{mAs} / 50$ line 51 . Apologies.

Delayed voice recorder

This components list for the article delayed voice reorder in the September 1995 issue was overlooked - apologies.

$I C 1_{1}$	MSM6310	OKI	R_{47}	$270 \Omega^{*}$	
$1_{2,3}$	MSM41256A	OKI	R_{51}	$68 \mathrm{k} \Omega^{*}$	
$1 C_{4}$	LM317LZ	NS	R_{52}	12kS*	
$1 C_{5}$	SL6270	Plessey	R_{55}	$91{ }^{*}$	
$1 C_{6,7}$	14053BD \dagger		R_{56}	4708*	
$11 C_{8}$	14044BD \dagger		C_{2}	$1 \mu \mathrm{~F}$ poly	
$1 c_{9}$	MSC1191	OKI	$\mathrm{C}_{3,4}$	22pF cer.	
$I C l 0_{10}$	LM324M	NS	C_{5-7}	$33 \mu \mathrm{~F} \ddagger$	
C_{11+5}	14011BD \dagger		$\mathrm{C}_{8,27}$	100 nF cer.	
${ }_{1} C_{16-17}$	14001BD \dagger		$C_{9.20}$	220 nF cer.	
$\operatorname{Tr~}_{1.5}$	MPSA14 \dagger		$\mathrm{C}_{10.17}$	4.7nF cer. chip	
$T r_{6}$	BC847 \dagger		C_{12}	1 nF cer. chip	
$T r_{7}$	MP2222A \dagger		$\mathrm{C}_{13.23}$	$220 \mu \mathrm{~F} \ddagger$	
Tr ${ }_{8}$	MPS6531 \dagger		$C_{14.24}$	$10 \mu \mathrm{~F} \ddagger$	
D_{1}	BAS16	Thomson	C_{15}	47 $\mu \mathrm{F} \ddagger$	
D_{2}	HLMP1700	HP	C_{16}	068 UFま	
D_{3}	BZX84C5V1	Thomson	$C_{18,19,22}$	$100 \mu \mathrm{~F} \ddagger$	
D_{4}	HLMP1790	HP	C_{21}	2.2 nF cer. chip	
$R_{1-5,13,14}$	L08-1-R10K	Beckman	$\mathrm{C}_{25.28}$	0,68 $\mu \mathrm{F} \ddagger$	
$\mathrm{R}_{6,41}$	$15 \mathrm{k} \Omega^{*}$		$C_{1,1+26,29,3}$	$1 \mu \mathrm{~F} \ddagger$	
R_{7}	$12 \Omega^{*}$		SW1	436230205	Secme
$\mathrm{R}_{8,53}$	$1 \mathrm{k} \Omega^{*}$		SW2	436231205	Secme
F_{9}	$5 \mathrm{k} 6 \Omega^{*}$		SW_{3}	JSA 1320-0201	SMK
R_{10}	2208**		$S W_{4}$	JSA 2220.0201	SMK
R_{11}	$56 \Omega^{*}$		SW W_{5}	JSB 1320-0101	SMK
$R_{12,59}$	$390 \Omega^{*}$		SW6	PB 710	Lorlin
$R_{15-22.29 .37,}$	$10 \mathrm{k} \Omega^{*}$		SW_{7}	PVA 2	Farnell
$R_{44,60.62}$	$10 \mathrm{k} \Omega^{*}$		$X_{\text {tal }}$	MG3A-0800M20	Meiden
R_{23-25}	$100 \mathrm{k} \Omega^{*}$		$J_{1.2}$	SG 8035	SMK
$R_{28,30 \cdot 34,40}$	100ks ${ }^{*}$		P_{1}	R0600416-10k Ω	Ruf
R_{26}	82k ${ }^{*}$		P_{2}	0050-100-10k	Ruf
$R_{27.49}$	33k ${ }^{*}$		S_{p}	KDS 2908-88-0.	
$\mathrm{P}_{35,54}$	$1 \mathrm{M} \Omega^{*}$		Kingstate		
$\mathrm{R}_{36.57,58}$	22ks**		Mic	EM 76	LEM
$R_{38,48}$	$3 \mathrm{k} 3 \Omega^{*}$		$H_{1,2}, S W_{8, S}$	$M_{\mathrm{O}, \mathrm{I}}$ are built into	he Olympus
R_{39}	150 ${ }^{*}$				
$\mathrm{R}_{42,43,50}$	$47 \Omega^{*}$		* chip Roe	derstein	
R_{45}	$18 \mathrm{k} \Omega^{*}$		\ddagger 10V Tan		
R_{46}	$8 \mathrm{k} 2 \Omega^{*}$				

PERRYBEE (UK) LTD

We offer a comprehensive service designed to assist the OEM in the procurement of components and the search for new export markets.
\star With our own office in Germany, we offer access to all types of German products.
\star Component sourcing for actives and passives.
\star Market research service.
\star Export documentation and consolidation service.

\star Prompt and professional response guaranteed.

Perrybee (UK) Ltd, Maple House, 8 Keveral Gardens, Seaton, Torpoint, Cornwall PL11 3JH

Tel: 01503250354
Fax: 01503250657

CIRCIE NO. 135 ON REPIY CARD

INTERCONNECTIONS LTD

Unit 5I, InShops, Wellington Centre, Aldershot, Hants GUl1 5DB
Tel: (01252) 341900 Fax: (01293) 822786

MExpiress
At last - a powerful 4GL that lets you compile your routines as standalone executables!

New MExpress lets you develop powertul 4GL applications and compile them as standalone windows. exe programs, or run them in interactive interpeted mode! MExpress offers fast and flexible programming and seamless integration of maths and graphics.
Call Adept Scientific today for more intormation or fill out the coupon below and send to us.

Adept Scientific plc

6 Business Centre West, Avenue One, Letchworth, Hertfordshire, SG6 2HB, UK Tel: 01462480055 Fax: 01462480213
Email: mexpress@adeptscience.co.uk WWW: http://www.adeptscience.co.uk
Please fill out and fax back or post this coupon
to Adept Scientific for your FREE MExpress
information pack!
Name
Telephone No.
Position
Company
Department
Address
Town
County
Post Code

PC ENGINEERING

Deeper into dc

Owen Bishop looks at more

 aspects of dc analysis, including component value sweeping and the piffalls of simulating oscillators.

Fig. 1. This schematic of a zener diode stabiliser was produced using the SpiceNet software. Node numbers are displayed (in red), except for the ground line, which is node 0 . The Y-shaped symbol is an optional way of indicating a test point.

Fig. 2. Intuscope postprocessor software produces an oscilloscope-like display of the dc sweep of the zener stabiliser circuit. The zener, nominally 4.7V, produces a stabilised output at approximately 4.65 V .

0ne useful feature of Spice is its ability to repeat the analysis while sweeping the values of components over a specified range. This allows the designer to check that the circuit is immune to variations due to component tolerances.

Temperature sweeps are used to confirm that circuit operation is reliable within a specified temperature range. Sweeping the value of a voltage source provides a convenient way of investigating the action of the simple zener diode voltage stabiliser of Fig. 1.
Nominal supply voltage (V1) is 6 V , as shown in the IsSpice netlist, Table 1. For the dc analysis it is swept from 0 V to 7.5 V in steps of 2.5 V . This more than covers a $\pm 25 \%$ variation in supply voltage to the regulator. This netlist has a line beginning with the command 'include'. This is not a Spice command, which is why it is preceded by an asterisk, but is a direction to an IsSpice pre-processing routine to use the 'Diode.Lib' file to obtain the model for the diode.
Run the simulation, exit the analysis, then select Edit Text File. Clicking the 'Out' button displays the output file. As well as listing the netlist with the diode model expanded, the file has a table of thirty values of $\mathrm{V}(1)$ against V1. Note that V1 is the name of the voltage source, while $V(1)$ is the symbol for the voltage at node 1 .
As you might expect, Table 1 shows that $V(1)$ is equal to $V 1$ for all values of V1 up to 4.25 V . From then on, cur-
rent begins to flow through the diode and $V(1)$ shows relatively small increases, finishing at 4.65 V when V 1 is 7.5 V . The effect is better seen on the Intuscope display, Fig. 2.

Having seen that stabilisation is satisfactory with regard to supply voltage, the next step is to investigate the effects of varying the load. As well as a load resistor R2, Fig. 3 has an additional dummy voltage source, sometimes referred to as a current meter. Spice computes node voltages but not branch currents.
In a simple circuit such as this it is easy to read off the voltages at node 2 , and use a calculator to divide by the resistance of R2. This gives the currents through R2 at each step of the sweep, but results of such calculations are not then available for plotting by the computer.
As noted last month, Spice calculates the currents through voltage sources. If there is an active voltage source in a branch, find the current by asking Spice to PRINT or PLOT I(Vname), where Vname is the name of the source. If there is no active voltage source in the branch, place a dummy source there. This adds a complication to the netlist, but is the only way to get Spice to calculate the required current.
Some Spice-based simulators automatically calculate current through all devices, and this manoeuvre is not necessary. There is no active source in series with R2, so the netlist, Table 2 , shows a dummy source V2, voltage 0 V . The new circuit has different
node numbers, so the stabilised output is now from node 2. The command to sweep Vl is the same as before, but the .PRINT command now includes the output voltage and the current through the dummy source.
Spice can plot two or more quantities simultaneously, but plots them all on the same scale. Because the magnitude of the current is much less than that of the voltage, they need to be plotted separately, using two .PLOT commands. Incidentally, the .PRINT command is not essential, because the plots show all that is required. The reason for including it is that Intuscope takes its data from .PRINT, not from .PLOT, and it is intended to use Intuscope after the analysis to show voltage and current on the same axes.
Running the simulation produces a plot of $\mathrm{V}(2)$, formerly $\mathrm{V}(1)$, almost identical to the previous one, shaped like Fig. 2. When V1 is 5 V or more the current through R2 is steady at $46 \mu \mathrm{~A}$ - this is to be expected as R2 has a high

Table 1. Netlist used to investigate behaviour of the zener diode regulator circuit of Fig. 1.

CBDO6-ZENER DIODE STABILISER,

 4.7 V*INCLUDE DIODE.LIB
R1 211 K
D2 $0 \quad 1$ DN750
$\begin{array}{llll}\text { V1 } & 2 & 0 & 6\end{array}$
$\begin{array}{llllll}\text {.DC } & \text { V1 } & 0 & 7.5 & 0.25\end{array}$
.PRINT DC V(1)
.PLOT DC V(1)
.END
Table 2. Netlist of the zener diode stabiliser is now under test to find out how much current it can supply. Current is measured through the dummy voltage source $\sqrt{ } 2$.

CBD06a - ZENER DIODE STABILISER, 4.7 v , with load
*INCLUDE DIODE.LIB

R1	1	3	1 K	
R2	2	0	100 K	
D4	0	3	DN750	
V1	1	0	6	
V2	3	2	0	
.DC	V 1	0	7.5	0.5
.PRINT DC	$\mathrm{V}(2)$	$1(\mathrm{~V} 2)$		
.PLOT	DC	$\mathrm{V}(2)$		
.PLOT	DC	I(V2)		
.END				

Table 3. Plotting dc transfer characteristic of an NMOS transistor, using Spice's doublesweeping facility.

CBD06b - MOSFET transfer characteristic *INCLUDE MOSFET.LIB
V2 3008

M1	4	1	0	2	VN1OKE			
V3	3	4	0					
V1	1	0	4					
.DC	V2	0	5	0.2	V1	3	5	0.2
.PRINT DC	I(V3)							
.END								

value. Return to $I S E d$, edit the netlist to make R 2 equal to $8.2 \mathrm{k} \Omega$ and re-run the simulation. The current is now a more-or-less steady $560 \mu \mathrm{~A}$, varying from $542 \mu \mathrm{~A}$ when the supply is 5 V to $565 \mu \mathrm{~A}$ when the supply is 7.5 V . Try for a greater output current by re-editing R2 to $4.7 \mathrm{k} \Omega$ - stabilisation does not occur until the supply is 6 V or more, Fig. 4. Intuscope plots the output voltage and current on the same axes but with different scales, Fig. 5.

Double sweeping

In dc analysis, Spice is able to sweep two voltage or current sources simultaneously. The two sources and the extent of their sweeps are defined in the command line. The first source, inner variable, is swept over its whole range at each step in the sweep of the second source, outer variable.
Figure 6 shows a circuit for finding the transfer characteristic of a mosfet by sweeping the drain and gate voltages and measuring the resulting source current. The netlist, Table 3, refers the preprocessor to the mosfet library. Voltage V3 is the dummy source. Gate voltage V 1 is swept from $3-5 \mathrm{~V}$ in 0.2 V steps. For each value of gate voltage, V2, drain-source voltage is swept from $0-5 \mathrm{~V}$ in 0.2 V steps.
The printout does not set out results in a way that can be readily interpreted, so a post-processor such as Intuscope is used to view them. This displays a set of curves, Fig. 7, showing the transfer curves of drain current against drain voltage for a number of different gate voltages. Curves from the lowest to the highest represent the drain current against sourcedrain voltage for each gate voltage from 3 V (lowest curve) to 5 V (top curve).
Saturation current increases with increasing gate voltage. Flat parts of the curve are more widely spaced for higher gate voltages showing that transconductance increases with increasing source current. The same method can be used to plot the transfer characteristic of different transistor types and certain other devices.

Simulating oscillators

The dc analysis of the astable circuit of Fig. 8, netlisted in Table 4, gives an insight into one of the pitfalls of simulating oscillators. At the beginning of an analysis, Spice assumes that all nodes are at zero voltage. Then it runs through a series of iterations to establish the actual voltages, with capacitors open-circuited and inductors short circuited.
To the simulator, all resistors of a given value and all transistors of a given type are identical. Consequently, dc analysis of a symmetrical circuit such as Fig. 8 results in symmetrical voltages at the dc operating point,

Fig. 6. Circuit for measuring the transfer characteristic of an nmos transistor. Drainsource voltage $V 2$ is swept up from $0-5 \mathrm{~V}$ at each stage of sweeping the gate-source voltage V1 from 3-5V. V3 measures drain current.

Fig. 3. Load resistor and dummy voltage source, added to stabiliser Fig. 1. Source V2 has zero output, but is included so that the load current can be measured.

Fig. 4. With a low-value load resistor in circuit, current through the load rises as supply voltage is ramped from $0-7.5 \mathrm{~V}$, stabilising between $4.6 \mu \mathrm{~A}$ and 4.7 $\mu \mathrm{A}$.

Fig. 5. An Intuscope plot shows how V(2), the output voltage at node 2 (curve 1), and I(V2) the output current through source V2 (curve 2), vary as supply current V1 is swept up from $0-7.5 \mathrm{~V}$.

PC ENGINEERING

Fig. 7. Plots of the drain current of an nmos transistor as drain-source voltage is swept up from $0 \mathrm{~V}-5 \mathrm{~V}$. The family of curves show the transfer function for a series of gate-source voltages from 3 V (lowest curve) up to 5 V (top curve) in steps of 0.2 V .

Fig. 9 Outputs (collector voltages) of the astable after it has been stimulated into oscillation by one of the techniques described in the text. After a 1 ms settling period, V(2) becomes a square-wave, upper curve. $V(5)$ is in antiphase to $V(2)$, lower curve.

Fig. 10. This Mathematica-based sensitivity analysis of the filter in Fig 11 is adaptable to a wide range of circuits.

Fig. 8. An astable circuit such as this has a symmetrical operating point in a dc analysis, Table 5.

Table 5. Further iterations produce no further changes in the values, so Spice takes this to be the final solution. Because of manufacturing tolerances, such symmetry does not exist in real life. At power-up, the imbalance of the resistances, capacitances and gains causes a real circuit to take on one of its two possible asymmetrical states, with one transistor on and the other off.
As a dc operating point analysis, these results are acceptable, but problems arise when Spice is asked for a transient analysis. It begins by performing a dc operating point analysis and uses the results of this as a starting point for the transient analysis.
In Table 4, the netlist calls for a listing of the voltages at nodes 2 and 5 , for a period of 100 ms , sampled at $200 \mu \mathrm{~s}$ intervals. Spice first of all carries out the dc operating point analysis, and prints the results as in Table 5, but calling it the Initial Transient Solution. A transient analysis which begins with a stable solution may not be able to get any further. In this example, the printout of the Transient analysis lists both $V(2)$ and $V(5)$ as constant at $1.334727 \mathrm{e}-01$ for the whole 100 ms .
Although the astable is an obvious case, it is possible that a similar situation may arise in other types of circuit - especially those with feedback. If an oscillator fails to oscillate or the analysis of another circuit gives unexpected results, the reason many be something of this kind.
Spice has the .NODESET command which sets the voltage at any node to a given value at the beginning of the dc analysis. The aim is to help Spice get started in the right direction by suggesting suitable starting voltages or currents for the circuit. In the astable a sensible set of values might be supplied by adding this line to the netlist,
.NODESET $\mathrm{V}(1)=12 \mathrm{~V}(2)=200 \mathrm{M} \mathrm{V}(3)=700 \mathrm{~m}$ $\mathrm{V}(4)=-7 \mathrm{~V}(5)=12$
It is not necessary to provide values for every node but the more values provided, the easier Spice will find it to get the analysis working along the correct lines. Also, the more realistic the values supplied, the more quickly will the analysis converge on to the correct output. With the .NODESET command added to the netlist, the Transient analysis gives the expected square-wave output at from both nodes 2 and 5, as shown by Intuscope display Fig. 9.

Table 4. Netlist of the bjt astable, Fig. 8, set up for a transient analysis, with questionable outcome.

Table 5. An astable, Fig. 8, is in a symmetrical but metastable state at its operating point, as this analysis shows. This dc operating point solution is taken as the initial transient solution in a transient analysis.

Node	Voltage
1	$1.200000 \mathrm{e}+001$
2	$1.334727 e-001$
3	$7.348223 e-001$
4	$7.348223 e-001$
5	$1.334727 e-001$

Fig. 12. The 3-D plot shows the sensitivity of the filter to variation in the value of capacitance C in Fig 11. Plotting ranges are easily changed to investigate sensitivity at other frequencies and with larger or smaller capacitances.

An alternative technique that may be used in circuits which contain semiconductors or switches is to specify that the device is to be in the 'off' state at the beginning of the analysis. This is done by adding the command OFF to the statement. For example, in the netlist of the astable, having deleted the :NODESET line, amend the Q1 line to,

Q1 BC109C OFF

The Transient analysis then produces a squarewave output similar to Fig. 9, differing only in detail during the 1 ms start-up period.
Another way around the problem, which is more applicable to other types of circuit, is to add a pulse generator to the circuit to 'kickstart' it into action with a single short pulse at time $t=0$. Having deleted the OFF command, add this line to the netlist,

V2 40 PULSE (0120001 M)

This connects a voltage source between the 0 V line and the base of Q1. The source is defined as a pulse generator, with initial output 0 V , and pulsed value 12 V . The next three parameters define the delay time, rise time and fall time. Delay time is zero so the pulse begins when the analysis starts.
The rise and fall times are given zero value, but a default value TSTEP, the time-step of the analysis, is automatically substituted. The last parameter to be defined is the pulse width and 1 ms is a suitable size for this. The PULSE command can also take a final parameter, the period of a repetitively pulsed signal. Omitting this parameter causes a single pulse to be generated. When the analysis is run, the pulse turns Q1 fully on for 1 ms after which the astable starts oscillating as before.

Fig. 11. Low-pass active filter circuit used to demonstrate sensitivity analysis.

Analysing sensitivity

The command 'SENS' followed by the names of output variables causes Spice to print out a list of all circuit parameters including the parameters of semiconductor models - and to express the sensitivity of each specified output variable in relation to a 1% variation in each parameter. This command is available on the full implementation of Isspice, but is lacking from many Spice-based simulators. The electrical engineering pack associated with Mathematica provides a simple and flexible routine for determining sensitivities, Fig. 10. After calling for the EE 'Master' routines to be loaded, it defines a function vo, which is the output voltage of the low-pass filter shown in Fig. 11. The parameters comprise s, the complex frequency variable, vi, the input voltage, and the values of the filter components shown in Fig 11. The function is defined as,

$$
v o=v i \times \frac{(1+r f / r a) r c}{s+1 / r c}
$$

A second function, sensitivity, is defined in terms of a function (func) and a specified parameter (param) of that function. The sensitivity is the first-order differential of the function with respect to the parameter, normalised by multiplying by the parameter and dividing by the value of the function.
The last step in the analysis is to call for a 3-dimensional plot of the sensitivity of vo, in decibels. The notebook has been set up to calculate the sensitivity of vo to capacitance over a range of frequencies. In the statement of parameters, $r a, r f, r$, and $v i$ are given particular values, but c is left as a symbol. The term $j \times 10^{\text {wlog }}$ is substituted for s - except that Mathematica uses I for j - with the result shown in Fig. 12, overleaf.
On the \log frequency scale, numbers correspond to frequencies of $10^{\mathrm{n}} \mathrm{Hz}$. For example ' 3 ' on the scale corresponds to 1 kHz . It is seen from this graph that the circuit is relatively insensitive to variations in capacitor value when capacitances and frequencies are high.
This routine is easily adaptable to any other circuit for which the transfer function is known in symbolic form - simply substitute the parameters in the square brackets following vo. The sensitivity function is a generalpurpose one applicable to all circuits. To obtain the plot, substitute actual values for all except one of the parameters. Figures in the first pair of curly brackets set the frequency range, and
those in the second pair set the range of the parameter.

Modelling with spice

Resistors, capacitors, voltage generators and several other component types are specified in a netlist by specifying their connections and value. Components with more complicated behaviour are specified either as subcircuits or as models. A bjt, for example, may be included as a subcircuit consisting of diodes, resistors, a capacitor and voltage-controlled current source.
The subcircuit is filed as one of a library of netlists and is incorporated into a circuit netlist simply by quoting its filename. This is a quick and simple way of modelling 'a transistor'. A sub-circuit is satisfactory for many purposes, but it is obvious that it can not be expected to behave exactly like any particular type of transistor, for example the BC109C used in the astable circuit of Fig. 8.

For greater precision, Spice provides algorithms for modelling specified types of component much more accurately. In Table 4, the model BC109C is called for, but parameter details are not given. All that is necessary is a reference to the library file in which these details are stored. When the output file is printed following an analysis, the model file is listed in full. In the case of the $B C 109 \mathrm{C}$, this extra line appears in the output file,

.MODEL BC109C NPN (IS=1.02E-14 $\mathrm{NF}=1.0 \mathrm{BF}=845$)

The model description gives the model name, followed by its type npn or pnp. Then a number of parameters are listed in brackets. A full Spice model of a bjt specifies 40 parameters, but it is not necessary for the user to assign values to all of these. Each parameter has a default value which is used when an explicit value is not specified.
The BCIO9C model lists 18 parameters of which only the first 3 are shown above. Taking these as examples, IS is the saturation current in amps, NF is the forward emission coefficient and BF is the forward current gain.
Similar Spice models are used for diodes, jfets, mosfets, mesfets, and for high-precision modelling of resistors, capacitors, voltage sources, current sources and switches. Many semiconductor manufacturers publish Spice models for use by designers. Spice models give greater precision but they require more evaluation time than a sub-circuit model.

Maximising power transfer in Class-C

Abstract

Researchers from Ontario challenge a recent statement that maximum power transfer does not occur under conditions of conjugate matching. Dennis Roddy, Oliver Buelow and Rob Williams* present their evidence.

[^7]Arecent paper by Warren Bruene ${ }^{1}$ purported to show that maximum power transfer for a class-C amplifier does not occur under conditions of conjugate matching. This view has been challenged in correspondence between us, Bruene and Jack Belrose ${ }^{\dagger}$. The following investigation was initiated as a result of this correspondence.

Maximum power transfer theorem and conjugate matching

Maximum power transfer theorem ${ }^{2}$ states that the average power transferred from a source to a load will be a maximum when the load impedance is equal to the complex conjugate of the internal impedance of the source, or $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{S}}^{*}$. Denoting the source impedance by,

$$
\begin{equation*}
Z_{s}=R_{s}+j X_{s} \tag{1}
\end{equation*}
$$

and the load impedance by,

$$
\begin{equation*}
Z_{L}=R_{L}+j X_{L} \tag{2}
\end{equation*}
$$

then conjugate matching requires that,

$$
\begin{equation*}
X_{L}=-X_{S} \tag{3}
\end{equation*}
$$

and,

$$
\begin{equation*}
R_{L}=R_{S} \tag{4}
\end{equation*}
$$

The first requirement is simply a statement
\dagger Belrose, J., (VE2CV), Radio Sciences,
Communications Research Centre, Ottawa
of series resonance maximising current through the load. The second is obtained by equating to zero the differential coefficient of load power with respect to load resistance giving the R_{L} required for maximum load power.
Maximum power transfer theorem invokes very simple concepts with no question of its validity. However, it does imply that the source can be represented by an independent voltage source in series with a linear impedance, Fig. 1a) and Fig. 1b). A dual situation can be developed for an independent current source.
An independent voltage source is a source whose emf is independent of the current drawn from it. Linear impedance is an impedance which is independent of the voltage across it or the current through it. This is a common representation of an equivalent voltage source. In certain instances the source or internal impedance can be identified by some physical element within the source, for example the resistance of the electrolyte and electrodes in a battery.
The voltage equivalent generator described to this point is the key to the understanding of conjugate matching applied to amplifiers. However, the problem of establishing any equivalences between the actual circuit and the equivalent source has to be achieved entirely through external measurements.
If the results of terminal measurements can

be manipulated into a form consistent with those expected from the equivalent voltage generator, then the source emf and impedance may be identifiable in terms of operating parameters of the amplifier. This is the approach used here for the class-C amplifier.

Theoretical results for the class-C amplifier

A thorough analysis of vacuum tube class-C amplifiers is given in a book by Heyboer and Zijstra ${ }^{3}$. This work is used as the basis for the following analysis.
The results are sufficiently general to be applied to class-C mosfet amplifiers. Two sets of device characteristics are required - the transfer characteristic, Fig. 2a), and the output characteristics, Fig. 2b). For convenience the notation is the same as that used by Heyboer and Zijstra .
These authors derive a number of functions related to the conduction angle shown in Fig. 2 a), and to the index k where the transfer function is described by,

$$
\begin{align*}
i_{a} & =c v_{s}^{k} v_{s}>0 \tag{5}\\
& =0 \quad v_{s}<0
\end{align*}
$$

For mosfets where $k=2$, the function of interest is given by eq.(3.23) in Heyboer and Zijstra as,

$$
\begin{equation*}
f_{1}(\theta)=\frac{2}{\pi} \frac{\sin \theta-\frac{1}{3} \sin ^{3} \theta-\theta \cos \theta}{(1-\cos \theta)^{2}} \tag{6}
\end{equation*}
$$

The expression given for power output, eq.(3.42) in Heyboer and Zijstra is,

$$
\begin{equation*}
W_{o}=\frac{1}{2} \frac{\sigma R_{a} f_{1}^{2}(\theta)}{\left(1+\sigma R_{a} f_{1}(\theta)\right)^{2}} \sigma V_{a}^{j^{2}} \tag{7}
\end{equation*}
$$

In Heyboer and Z j stra, R_{a} is used to denote load resistance, V_{a} is the steady anode or plate voltage, and σ is the slope of the limit characteristic shown in Fig. 2b).
Equation 7 can be rearranged as,

$$
\begin{equation*}
W_{o}=\frac{V_{a}^{2}}{2} \frac{R_{a}}{\left(\frac{1}{\sigma_{1}(\theta)}+R_{a}\right)^{2}} \tag{8}
\end{equation*}
$$

By modelling the amplifier shown in Fig. 1b), where R_{L} is the load resistance corresponding to $R \mathrm{a}$ of Heyboer and Z ijstra , power output is,

$$
\begin{equation*}
W_{o}=\frac{E_{s}^{2} R_{L}}{\left(R_{S}+R_{L}\right)^{2}} \tag{9}
\end{equation*}
$$

Comparing equations 8 and 9 the equivalent source emf is seen to be given by,

$$
\begin{equation*}
E_{s}=\frac{V_{a}}{\sqrt{2}} \tag{10}
\end{equation*}
$$

and the equivalent internal resistance by,

$$
\begin{equation*}
R_{S}=\frac{1}{\sigma_{1}(\theta)} \tag{11}
\end{equation*}
$$

Internal elements of the equivalent source are given in terms of constant device parameters. This allows the amplifier to be modelled as an equivalent voltage generator.

Computer simulation

Since the object of the exercise is to find the load resistance which extracts maximum power from the amplifier, the circuit was kept
as simple as possible. A single tuned circuit consisting of C, L, and R_{L} in parallel formed the output load.
Class-C bias was obtained from a separate fixed source with the input signal superimposed on this. The basic circuit is shown in Fig. 3. Initially, the simulations were carried out for a number of transistors - a 2 N5400 bjt and IRF5IO and IRF7IO mosfets.
Early on, we found that forward biasing of the collector-base junction occurred in the bjt which obscured results. Also the current drive required for the bjt exceeded the capacity of

Power transfer results for two mosfet types in a Class-C amplifier.

Legend: i=subscript ranging from 0 to $5 ; R L_{i}=$ load resistance in Ω.
Simulated, measured, and theoretical values for power in watts are; $\mathrm{P} \mu \mathrm{CAP} \mathrm{P}_{\mathrm{i}}=$ Microcap simulation results; PpSPICE $_{i}=p$ Spice simulation results; $\mathrm{Pl}_{\mathrm{ab}}=1$ laboratory measured values; $\mathrm{P}_{\mathrm{i}}=$ theoretical values.

IRF710

RLi	$\mathrm{P}_{\mu} \mathrm{CAP}_{1}$	PpSpice ${ }_{\text {}}$	Plab ${ }_{1}$	RLi	$\mathrm{P}_{\boldsymbol{\mu}} \mathrm{CAP}_{1}$	PpSpice ${ }_{\text {}}$	Plab ${ }_{\text {i }}$
2Ω	0.46 W	0.55W	0.13W	2Ω	2.8W	3.06 W	0.5W
3.4Ω	0.65W	0.68 W	0.33W	3.4Ω	3.25 W	3.32 W	2.1W
5Ω	0.81W	0.83W	0.5W	5Ω	3.02W	3.19 W	1.9W
10Ω	1.2W	1.06W	0.62 W	10Ω	2.21W	2.28W	1.3W
17Ω	0.97W	0.89W	0.40W	17Ω	1.65 W	1.65 W	0.95W
68Ω	0.38W	0.4 W	0.09W	68Ω	0.47 W	0.47 W	0.41 W
$\begin{aligned} & \theta=60^{\circ} \\ & \sigma=0.3 \end{aligned}$	(IRF710)			$\begin{aligned} & \theta=60 \\ & \sigma=0 . \end{aligned}$	(IRF510)		

$$
\begin{gathered}
f_{1}(\theta)=\frac{2}{\pi} \frac{\sin \theta-\frac{1}{3} \sin ^{3} \theta-\theta \cos \theta}{(1-\cos \theta)^{2}} \\
V_{D D=7.5 \mathrm{~V}} \quad E_{S}=\frac{V_{D D}}{\sqrt{2}} \quad R_{S}=\frac{1}{\sigma f_{1}} \quad P_{i}=\frac{E_{S}^{2} R L_{i}}{\left(R_{S}+R L_{i}\right)^{2}}
\end{gathered}
$$

$R_{S}=10.4 \Omega$, IRF710
$P_{\mathrm{i}} /(W)$ plots: $0.4,0.5,0.6,0.7,0.6,0.3$
$R_{\mathrm{S}}=3.5 \Omega$, IRF510
$P_{\mathrm{i}} /(W)$ plots: $1.9,2,2,1.6,1.1,0.4$

our test equipment. Because of this, relatively low powered mosfets were chosen to suit the test equipment available.
Another consideration was that of keeping the circuit's Q-factor constant. A value of 10 was chosen as being representative of practical values and an operating frequency of 1 MHz was used. For high quality coils, dynamic resistance of the circuit is given, to a very close approximation by load resistance R_{L}. As a result, the expression for Q -factor is,

$$
\begin{equation*}
Q=\omega_{o} C R_{L} \tag{12}
\end{equation*}
$$

In the simulations carried out in Microcap and PSpice, values were chosen to be close to the values used in the practical measurements. These are shown below.

Calculated values for C and L for given R_{L} values and a fixed Q of 10 .

$R_{\mathrm{L}}(\Omega)$	$\mathrm{C}(\mathrm{nF})$	$\mathrm{L}(\mathrm{nH})$
2	795.8	31.83
3.4	468.1	54.11
5	318.3	79.58
10	15.92	159.2
17	93.62	270.6
68	23.41	1,082

Power output was determined from the peak-to-peak voltage across the tuned load using,

$$
\begin{equation*}
P_{o}=\frac{V_{p p}^{2}}{8 R_{L}} \tag{13}
\end{equation*}
$$

The limit-line slope was determined from the output characteristics for the two mosfets used. Resistance $r_{\text {DD }}$ shown in series with the V_{DD} supply represents the internal resistance of the battery supply. A value of 0.41Ω was estimated for this in the simulations.

Measured results

Circuit Fig. 3 was set up in the laboratory with commercially available values selected to be as close as practicable to the R_{L} and C values shown in Table 1. Coils were wound to the
required inductance. Peak-to-peak voltage across the tuned circuit was measured and the power calculated using equation 13.
For a given mosfet the results show the power curves all peak at about the same value of load resistance. For the IRF510, the theoretical value as given by equation 11 is 3.5Ω, and for the IRF710 it is 10.4Ω.
The simulated curves show the power peaking at the same value of load resistance as the theoretical and measured curves, but reaching considerably higher peaks. This may be a result of inadequate modelling of the effect of the series resistance of the battery source.

Also, the effect of losses in the tuned circuit were ignored assuming that the dynamic impedance of the tuned circuit was much greater than the load resistance connected in parallel.

Accurate determination of the slope σ was not easy as the individual curves peeled off rather gradually from the limit-line. The esti-

Fig. 3. Simple circuit designed to find load resistance extracting maximum power from the amplifier. Output load is a single tuned circuit comprising C, L and R_{L}. Class-C bias comes via a separate fixed source superimposed with the input signal.
mated uncertainty in σ is about $\pm 10 \%$. The results clearly show however that peaking occurs at the predicted values of load resistance. Since the circuit was tuned to resonance for each measurement it can be concluded that the maximum power transfer theorem is valid for the class-C amplifier.
Finally, note that this investigation was limited to verifying the conjugate matching condition. No attention was paid to limitations imposed by voltage and power ratings of the transistors, or to the difficulties which might be experienced in practice in trying to achieve the necessary matching conditions.
In recent correspondence from colleague James Diggins ${ }^{\ddagger}$, who has designed class-C amplifiers ranging from $5-10 \mathrm{~kW}$, he states that he has never had to include the internal resistance in his sums. The exception was when it affected the Q of the tank circuit, when a guessed value was used.

References

I. Bruene, W., 'RF Power Amplifiers and the Conjugate Match', QST pp31-32, Nov 1991. 2. Skilling, H.H., 'Electrical Engineering Circuits'. John Wiley \& Sons Inc, 1967. 3. Heyboer, Ir J.P., and Ir. Zijstra, Ir P., 'Transmitting Valves.' Philip's Technical Library. The Netherlands, 1953.

[^8]

DECEMBER 1993
Low cost spectrum onolysis IBM PC on a chip
Electronic power factor correction
The state of state machines

MAY 1994
Designer's guide to
optoelertronics
Ultra-low distortion test
oscillator
Working with current mode
omplifiers

OCTOBER 1994
Signal processing of microwove
frequencies
New circuits for one-chip
function generotors
The best schematic under
Windows?
feed forward beots feedbock oudio?

JANUARY 1994

FEBRUARY 1994

JUNE 1994
Mointain control with RS232 Designer's guide to selcall
Synchronous alfernative to Ples?
Picking up on wireless LANs

NOVEMBER 1994 Tronsformerless LCR bridge Spice-Circuits by de sign Superconductor evolution Superconductor evolution
Mognets for storage and mognetching

MARCH 1994
Designer's guide to SMPS Polyphose SSB receiver Polyphose SSB rece disss A ultro-low distortion amplifier
Using the Smith chart

AUGUST 1994
The dato poth to multimedia
Applying FPGA
Designing combiners
and splitters
Chorting Smith's
computer world

JANUARY 1995
filters for digitol oudio
Impedance mathing
Routeing pcbs vio the PC
Buffering for piezoelectric
cable output
Advances in $0-\mathrm{to}-\mathrm{d}$ conver sion Iron out distortion

APRIL 1994
New wove microwave
Chips for audio noise reduction
Eight bit wireless
duplex doto link
Test generotor for better
video links

SEPTEMBER1994
Gircuit design for RMS
measurement
Power solutions to supply
problems
The ultimote slew rate?s

BACK
 ISSUES

Back issues of Electronics World are available, priced at $£ 2.50$ in the UK and $£ 3.00$ elsewhere, which includes postage. Please complete the coupon and send with correct payment to: Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Note that all issues are subject to availability and please allow 21 days for delivery.

If you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr

Please supply \qquad copies of
INTERFACING WITH C
Price $\mathbf{£ 1 4 . 9 5}$
Please supply \qquad copies of
Disk containing all the example listings $£ \mathbf{1 5 . 0 0}$
Remittance enclosed $£$
Interfacing with \mathbf{C} can be obtained from
Jackie Lowe, Room L333, Quadrant House,
The Quadrant, Sutton, Surrey, SM2 5AS
Cheques should be made payable to
Reed Business Publishing Group Ltd
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad
\qquad
\qquad

POST CODE \qquad
DATE \qquad TELE \qquad
Credit card orders accepted by phone. Call 01816523614.
\qquad

HSPS - Filter Designer

Windows based, designs Analog IIR and Digital IIRFIR filters. Includes the standard designs plus first and second order parametric filters. Analog filters can be mapped to the digital Domain by a choice of transforms.
Easy filter specification, screen prompts change appropriately for the filter design, View fitter Amplitude, Phase, Transient Response, Group Delay, Pole-Zero Map View more than one filter at the same time. Direct manipulation of Poles and Zeros with the mouse. Graphical Interface allows zooming in on response and map detail Converts Analog Designs to component values for active fitters giving E12 resistor and capacitor combinations.
Converts Digital Designs to Filter Coefficients.
Interfaces directly with PC-DSP1, for instantly running digital designs or analog designs mapped to digital domain. IIR tilters can be cascaded within one channel. Supports multiple card systems.

PC-DSP1 signal processing card

DSP card for PC. Occupies 8 bit ISA slot, link selectable PC IIO address. Software control from Filter Designer. Two 16 bit Analog channels. Sample Rates from 5.125 to 48 KHz , including 44.1 and 32 Khz . Uses two 13 MIPs 16 bit DSPs.

Benefits

Speed the design process with fast prototyping of analog and digital filters. Windows graphical interface gives results that are directly usable in documentation. Investigate and implement non-standard filters by direct placement of poles and zeros. Interactive interface provides a practical approach to understanding pole-zero maps, their responses and the effects of mapping from analog to digital domain.

HSPS Ltd, 53 Mill Road, Over, Cambridge CB4 5PY Tel/Fax: 01954230057

CIRCLE NO. 138 ON REILI Y CARD

New Analog \& Mixed Mode Simulation
 Easy To Use, Full Systems from $£ 450$ to $£ 2300$
 Professional Level
 1st Class, Free UK technical support
 ICAP/4, The Virfual Circuit Design Lab, is a complete circuit design system. It features

 schematic entry, interactive analog and mixed mode simulation, extensive device libraries, and powerful data processing, all integrated in one easy to use environment. With ICAP/4 you can simulate all types of designs including Power, ASIC, RF Mixed Mode, Control Systems, and Mixed TechnologiesInteractive SPICE $3 F$ based Simulator (AC, DC, Transient, Temperature, Noise, Distontion, Fourier, Monte Carlo, and Sensitivity (AC/ DC) analyses)

Native Mixed Mode - includes 12 state Digital Logic Simulator
Interactive Parameter Sweeping and Measure ments
Real Time Cross Probing Directly on the Schematic
Over $6000+$ Models Available including Special RF and Vendor Libraries
Multiple Platform Support - Windows (32s), Windows NT on the PC, Digital Alpha \& MIPS, DOS, Macintosh, and Power PC
or Entry Level

- SPICE 3F based simulator (AC, DC, Transient Temperature; Operating point)
UNLIMITED CIRCUIT SIZE
- Over 500 device models
- Separate upgrades avallable, when you need them, for Schematic Entry, Models Library, Spice Engine \& Graphical Post-processor
Windows \& Windows NT
and both with
- Integrated Schematic Entry
- High Performance 32-bit Simulator
- Real Time Waveform Display
- Thlrd Party Support - Works with all popular schematic entry systems

The Future is Interactive!

Call or write for free information and eval SW: Technology Sources Ltd - Falmouth Avenue Newmarket - Suffolk CB8 OLZ
Ph: 01638-561460 Fax: 01638-561721

Ian Hickman explains
how to get the best out of opto-electronic emitters and detectors.

0pto-electronics has come a long way since the days of vacuum photocells with caesium or silver cathodes. Nowadays semiconductor photodiodes of silicon, gallium phosphide or GaAsP are almost universally employed, except in certain specialised applications, such as photometry, where photomultiplier tubes are often found.
Compared to early light sensitive cells, semiconductor photodiodes are small, inexpensive, stable and easy to use. However, there are a variety of types and a knowledge of their characteristics is needed if they are to be applied successfully.

Solid state photo-sensors

Silicon is the commonest material for photodiodes. It is used in various types covering the spectrum from ultra violet to infra red. Light energy impinging upon the diode creates holeelectron pairs, giving rise to a current. The more light energy, the larger the current, the ratio being a function of the material, and hence independent of the area of the diode.
Figure 1 shows sensitivities of some typical silicon photodiodes to light as a function of wavelength. It is clear that the sensitivity is greatest at longer wavelengths - in the infra red - with maximum sensitivity typically being in the range $0.5-0.6 \mathrm{~A}$ per watt. At longer wavelengths still, sensitivity falls off rapidly. This is because each individual photon has insufficient energy to create a hole/electron pair in the material.
The formula relating the energy of a photon E to its frequency f, is $E=\mathrm{h} f$, where h is Planck's constant. From this it seems evident that once the photon energy was large enough to create hole/electron pairs - i.e. in the infra red - the response should remain constant or even increase with frequency. Energetic, very short wavelength, photons perhaps create more than one hole/electron pair. But in fact, as Fig. 1 shows, the reverse is the case. The reason becomes clear when the detailed operation of a silicon photodiode is considered.

Fig. 1. Sensitivity of typical silicon photodiodes as a function of wavelength.*

(b): Photodiode P-N Junction State

Fig. 2a). Diagrammatic cross-section of a typical planar diffused silicon photodiode. b) Bandgap diagram for a).*

V-I Characteristics

Fig. 3a). How the normal diode characteristic of a photodiode is shifted when light falls upon it.

Current generated by the incident light (proportional to the amount of light)
Diode current
Junction capacitance
Shunt resistance

How silicon photodiodes work

Figure 2a) shows - diagrammatically and not to scale, for clarity - the cross section of a typical planar diffused silicon photodiode. Incident light creates hole/electron pairs.
Under the influence of the potential barrier represented by the depletion layer, electrons liberated in the P layer migrate to the N layer while holes created in the N layer move in the opposite direction, Fig. 2b). This creates a current which flows through the external circuit if the diode is short-circuited, or notionally through the diode itself. If the diode is open-circuited, this establishes a voltage across it, Fig. 3a). Thus the diode can be represented by the equivalent circuit of Fig. 3b).
When load resistance R_{L} is open circuit, the illumination causes a voltage across the diode. As with any diode this is logarithmically related to current, and shows a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Consequently, open-circuit operation is unsuitable for light intensity measurements.
By contrast, in the short-circuit case, the current I_{L}, is extremely linearly related to the incident light energy. This current all flows in the external circuit if the resistance of the 'short' is negligible compared to the diode series resistance R_{5}. When I_{L} is in the range 10^{-12} to 10^{-3}, the achievable range of linearity is greater than eight orders of magnitude, depending on the type of photodiode and its operating circuit. It is limited at the bottom end by noise.
The above description applies to a basic planar diffused silicon photodiode, but many variations of this basic type are possible. These include low junction-capacitance types, and PIN photodiodes for high speed response, operated with a reverse bias of up to 100 V depending upon type.
Another high-speed type is the silicon avalanche photodiode, also operated with a reverse bias voltage. The avalanche multiplication effect provides internal gain in the diode itself, making it a sort of solid state analogy of a photomultiplier tube. The high value

Series resistance
Shunt resistance current
V_{D} : Voltage across the diode
I_{0} : Output current
V_{0} : Output voltage
of I_{L} due to the internal gain - up to $\times 100-$ enables the diode to be used in a Fig. 4a) type circuit, with a much lower value of R_{L} compared to a normal photodiode.
Small-area silicon avalanche diodes, operated with $R_{\mathrm{L}}=50 \Omega$, can achieve a cut-off frequency in excess of 1 GHz , due to their low junction capacitance of around 2 pF . Other types include Schottky junction photodiodes fabricated in GaP or GaAsP, offering high sensitivity well into the ultra-violet region.
Returning to the variation of sensitivity with wavelength, Fig. 2a) indicates that longer wavelength radiation penetrates further into the material than shorter wavelength radiation, due to absorption. The shorter the wavelength, the greater the degree of absorption of light within the surface diffusion layer, leading to reduced sensitivity, since most photons do not reach the depletion layer. In silicon photodiodes with enhanced ultra-violet sensitivity, therefore, the surface diffusion layer is made very thin. As a result, the depletion layer is very close to the surface.

Using silicon photodiodes

Figures 4a) and b) show two ways of operating silicon photodiodes in the current measuring mode, i.e. with and without reverse bias. In Fig. 4a), reverse bias results in fast response to light pulses, making the arrangement attractive for high speed data links.
On the down side, linearity is poorer, noise

(Above) Fig. 4a). Circuit for photodiode operation with reverse bias. b) Circuit for operation where R_{L} is short circuit.*

Fig.5a). Experimental photodiode circuit. b) Square wave flashing light circuit used to illuminate the photodiode.

3b) Photodiode equivalent circuit.*

Fig. 6a). Output of the op-amp when the photodiode is receiving square wave on/off modulated light, Cf not in circuit. b) As a), but Cf in circuit.

Fig. 7a). Output of the TLE2161 when the photodiode is receiving square wave on/off modulated light, Cf not in circuit. b) as a), but Cf (reduced to 0.9pF) in circuit.
greater and leakage via $R_{\text {sh }}$, Fig. 3a), results in a dark current in the absence of illumination, although $R_{\text {sh }}$ is typically in the giga-ohm range. The arrangement of Fig. 4b) requires no bias source, and is very common. The high gain of the op-amp ensures a near perfect virtual earth, resulting in no voltage appearing across the diode and hence no dark current. However, the op-amp's bias current at the inverting input has to be supplied via R_{f}. As a result, if R_{f} is made large in order to secure high gain and high sensitivity, then an op-amp with very low input bias current is necessary.

Sensitivity of silicon photodiodes, illustrated in Fig. 1, is the steady state or dc response. It varies as a function of the wavelength of the light as shown. However, the ac response, when the intensity of the light varies at some frequency or other, is a little more complex. This is due to a characteristic of silicon already mentioned.
The transit time of carriers liberated within the depletion layer is determined by the potential gradient therein. In turn, the gradient is set by the voltage across the layer. This may be just the band gap voltage in a Fig. 4b) type circuit, or an externally applied bias as in Fig. 4a). But carriers liberated outside the depletion region are not subject to this potential gradient and hence take much longer to diffuse to the anode, or to the cathode as the case may be.

Response is slower at infra-red

As Fig. 2a) illustrates, longer wavelength radiation penetrates more deeply into the silicon. As a result, energy in the infra-red may release carriers in the bulk of the N material, having passed right through the depletion layer before creating hole/electron pairs. Thus when infrared illumination first strikes the diode, current due to carriers liberated in the bulk region appears at the terminals later than the component of current due to carriers liberated in the depletion region. At shorter wavelengths, where the luminous energy does not penetrate so deeply, this effect is much reduced or even absent entirely.
Response speed of a photodiode, expressed as the rise time t_{r} is determined by three factors. Time t_{r} is related to cut-off frequency f_{c} by the approximate relationship $t_{r}=0.35 / f_{c}$. The first of the three factors is the time constant formed by the diode terminal capacitance $C_{1}-$ including the junction and package capacitance and any circuit strays - and load resistance R_{L}. The second is the transit time of carriers released in the depletion region, and the third is the diffusion time of carriers released outside the depletion layer, which as noted above move much more slowly.

Experimenting with opto-electronics

To investigate some of the above effects in a practical way, I carried out some experiments using a Semelab silicon photodiode type SMP600G-EJ. This 4-by-4mm square silicon die has an effective area of $14.74 \mathrm{~mm}^{2}$, a responsivity at 900 nm of $0.55 \mathrm{~A} / \mathrm{W}$ and a
capacitance at 0 V reverse bias of 190 pF .
The device is mounted in a two lead TO39 package with a standard glass window. I connected it in a Fig. 4b) type circuit. The actual arrangement is shown in Fig. 5a), using a TI internally-compensated TLE2061 op-amp.
In a photographic darkroom, the photodiode was illuminated by a light source modulated at about 1.2 kHz , which is shown in Fig. 5b). For this purpose, the red led - a 3000 mcd high brightness type - is used.
Comparing Fig. 4b) and 5a), the latter has provision for a capacitor C_{f} in parallel with the feedback resistor R_{f}. Figure 6 a) shows the output of the op-amp when the photodiode is illuminated by the led, at a suitable level. Capacitance Cf is not in circuit and severe ringing is evident.
One advantage of the circuit Fig. 4b) is that, as the photodiode is connected to a virtual earth, R_{L} is zero. The first factor limiting the speed of photodiode response mentioned earlier - the time constant $C_{\mathrm{t}} R_{\mathrm{L}}$ - is apparently eliminated. Thus the speed of response should be limited only by the other two factors. But while the large gain of the op-amp at 0 Hz ensures an ideal virtual earth in the steady state, as the frequency increases, the gain of the op-amp falls. As a result, a finite drive voltage is now required at its inverting input.
The op-amp's gain typically falls at $6 \mathrm{~dB} /$ octave beyond 10 Hz , for example in an internally compensated op-amp with a single dominant pole. This is associated with a 90° phase lag. The passive $C R$ circuit comprising R_{f} and C_{1} contributes another -6 dB /octave roll-off and 90° phase lag at frequencies well beyond its -3 dB corner frequency. If this occurs well below the op-amp's unity gain frequency - as it usually does - then at the frequency where the op-amp gain equals the attenuation through the $C R$ feedback circuit, the loop gain is unity and the phase shift perilously close to 180°. The circuit therefore exhibits a gain peak at this frequency, and the fast edges of the square wave illumination excite this and cause the ringing observed.
Adding C_{f} provides a phase advance, reducing the loop phase shift and avoiding the ringing, Fig. 6b). The appropriate value for the circuit of 5a) was found by experiment to be 2.2 pF , the rise time being about $40 \mu \mathrm{~s}$. In this case, the response speed is limited by the characteristics of the op-amp, not by the transit time of carriers released in the depletion region. Substituting a faster one naturally improves matters.
Figures 7a) and b) show performance with the same light source and photodiode, but with a decompensated version of the op-amp, a TLE2161, substituted for the TLE2061. Faster response is illustrated by the much higher frequency ringing in Fig. 7a), where $C_{\mathrm{f}}=0 \mathrm{pF}$, and by the reduced rise time of about $11 \mu \mathrm{~s}$ in b), where C_{f} is 0.9 pF , i.e. two 1.8 pF capacitors in series.
Figures 8a) and b) show the effect, mentioned earlier, of carriers released outside the

Fig. 8a) Output of the the circuit of Figure 5 a) (using the TLE2061) when illuminated by light from a green led (3 mm ultra-bright green, 590-345). b) As a) but receiving light from an infra red led, T.I. GaAIAs IR diode
TIL901. Note the delayed contribution from carriers released in the bulk material, outside the depletion region.

Fig. 9.a) Increasing the bandwidth by connecting negative capacitance in parallel with the photodiode. b) Increasing the bandwidth by bootstrapping, applied to an OPT211 integrated photodiode/op-amp type. ${ }^{\dagger}$
depletion region by long wavelength radiation, which penetrates further into the material. In a), the illumination was from chopped light from an 'ultra-bright' 590-345 green led, and the edges of the waveform are square.
In b), the illumination was from an infra-red emitting GaAIAs diode type TIL901. The majority of the response is due to carriers released in the depletion region, and hence is as prompt as in a). But the output then rises or falls - further, due to the much slower diffusion of those carriers released outside the depletion region.
When using silicon photodiodes, the amplifier will often be the limiting factor as far as frequency response goes. The exception is when using a photodiode - especially a low capacitance type - in a Fig. 4a) type circuit with a low load resistance. This allows a wideband rf amplifier to be used in place of an opamp. However, the low value of load resistance implies a relatively low sensitivity, so when detection of very low light levels is desired, a Fig. 4b) type circuit is used.
Since designers often demand both high sensitivity and wide bandwidth, any method of extending the bandwidth of Fig. 4b) is welcome. In this circuit, as the frequency rises, the op-amp gain falls, thus requiring a larger drive voltage at its inverting input - the virtual earth fails.

Extending bandwidth

Instead of adding capacitor C_{f} to prevent ring-

Total noise referred to input $=e_{1}$

$$
e_{t}=\sqrt{\theta_{n}^{2}+e_{t}^{2}+\left(i_{n} R_{E O}\right)^{2}}
$$

where $e_{n}, i_{n}=$ voltage, current noise as per datasheet

$$
\begin{aligned}
\theta_{\mathrm{p}} & =\text { resistor noise } \\
& =\left(4 k T R_{E O}\right)^{1 / 2}=0.13 \sqrt{R_{E O}} \mathrm{nV} / \mathrm{Hz} \text { at } 25^{\circ} \mathrm{C} \\
R_{E Q} & =R_{\mathrm{a}}+R_{\mathrm{b}} R_{\mathrm{c}}\left(R_{\mathrm{b}}+R_{\mathrm{c}}\right)
\end{aligned}
$$

Fig. 11. Noise calculations for an op-amp circuit.
level should change. Simple ac coupling of the photodiode op-amp output may suffice. If need be, a sufficiently high l.f. cutoff can be added to suppress 100 Hz ripple due to artificial lighting. But with a high sensitivity system, where R_{f} is large, bright ambient light may saturate the op-amp's output.
The circuit of Fig. 10 can reject very bright ambient light, yet provide high ac gain for best signal to noise ratio. This is possible because of the very large linear range of a silicon photodiode. The auxiliary op-amp keeps the OPT2II's mean output voltage at zero and would thus compensate not only for bright ambient light, but also for the offset due to the base current of a Darlington buffer in Fig. 9b).
Using a silicon photodiode in a Fig. 4b) type circuit, connected to a low noise high gain op-amp it is possible to set up optical data links. Ambient light rejection can be added if necessary, as per Fig. 10.

Such links are subject, of course, to line of sight ranges. On a long link, the received signal will be small, so the range is limited by the circuit noise of the op-amp. Total circuit noise is the sum of contributions from the op-amp's voltage noise and its current noise - both quoted in the manufacturer's data sheets - and the resistor noise originating in resistors in the
input circuit, Fig. 11.
In the case of a Fig. 4b) type circuit, R_{a} is zero, R_{c} is R_{f} and R_{b} is the photodiode's shunt resistance $R_{\text {sh }}$, which is usually very much greater than R_{f}. Given these resistance values, and the data sheet figures for the op-amp's voltage and current noise, the total noise e_{t} referred to the input can be calculated from the formula in Fig. 11.
An experiment was carried out to estimate the range that could be expected for a data link of very modest data rate, using the circuit of Fig. 12a). In the interests of high sensitivity, feedback resistor R_{f} has been raised to about $100 \mathrm{M} \Omega$.
The necessary C_{f} was too small to use a discrete component, so two short pieces of insulated wire were soldered to the ends of R_{f}, which was actually two $47 \mathrm{M} \Omega$ resistors in series. These wires were twisted as necessary to just suppress ringing.
Clearly, the range was greater than could be accommodated in my back garden, so I measured the range for a convenient sized output, monitoring the output of A_{1} rather than A_{2}. Using the 3000 mcd red led, this turned out to be almost exactly two metres, the output from A_{1} being shown in Fig. 12b).

The oscilloscope probe was then transferred to the output of A_{2} and the led aimed off, so as to provide the same amplitude signal, simulating a 40 dB increase in path loss. As Fig. 12c) shows, the signal was still just usable, being adequately above the noise level.
Optical-path loss follows an inverse square law, i.e. increasing by 6 dB for every doubling of the range. 40 dB corresponds to $10(000: 1$ in power, and thus to $100: 1$ in range. This gives an estimated range of 200 m when using the output of A_{2} with the transmitting led properly aligned.

Frequency of the square wave signal is a little under 2 kHz - it was meant to be $2.4 \mathrm{kHz}-$ and can be taken as representing 'revs' (reversals), or a continuous pattern of alternate 0 s and 1s. Thus the link would support NRZ signalling at, say $4.8 \mathrm{~kb} / \mathrm{s}$, as it stands.
This range could be extended by some simple optics. A 50 mm diameter lens at the receiving end would gather one hundred times

12b) Output of A_{1} at a range of $2 m$ from 3000 mcd red led . c) simulated output of A_{2} at a range of 200 m .
as much light energy as the photodiode alone, giving a ten times increase in range when properly aligned. A similar increase could be obtained by a lens at the transmitter to reduce the 15° beam width of the 3000 mcd red led, at the expense of yet more critical alignment when setting up the link.
With 15 mcd types now available, another factor of two on the range is possible, giving a theoretical factor of 200 increase in range, to 40 km . This is more than one is likely to use. Range can be traded for bandwidth by reducing R_{f}, permitting a higher data rate at a more practical range, e.g. for a cordless optical link between a computer and laser printer.

Fig. 12a) Receiving end of a long range optical data link.

Reference

1. 'Negative approach to positive thinking', Ian Hickman, $E W+W W$, Mar'93 pp 258-261.
\dagger Pictures courtesy Burr-Brown Corporation.
*Pictures courtesy Hamamatsu Photonics UK Lid.

Allen Brown looks at a piece of software designed to help teach and learn engineering mathematics.

Mathplus or minus

Mathematical software packages are an essential tool for aiding design and performing modelling or simulation processes. Since the teaching and learning of maths can be an arduous process, such packages can be of enormous benefit to students and engineers, One such package is Mathplus, from Waterloo Maple of Canada.
Based on the Maple kernel - reviewed in the May 1995 issue, p379 - MathPlus is able to perform symbolic and numerical operations. Versions are available for the pc, running under Windows, and Mac.

MathPlus differs from packages such as MathCAD in that it is primarily a teaching aid. When performing an integration in MathCAD for example, the user merely expresses the integral, clicks on 'evaluate' and there's the symbolic result. In MathPlus the user is expected to provide the necessary substitutions in the intervening steps, Fig. 1.
It is possible to manipulate equations, perform substitutions, expand expressions, and carry out a variety of other functions. In addition there is a wealth of graphing options including three-dimensional plotting and animation, which is very easy to set up.

User access via palettes

To help the user to access the many features of MathPlus there are two palettes. Figure 2 shows a typical palette incorporating a number of functions. One obvious icon which is absent is the derivative d/dt. Each time it is required, the user has to type it in - including the sets of brackets.
There is a D operator which, according to the manual, does the same task, but as far as I can see, it seems quite useless. The palette does have a partial derivative, but its use, as illustrated in the examples provided, is unconventional. Partial derivatives are not the same as whole derivatives and should not be treated as such.
One useful feature is the option for rearranging equations. Given an equation you can make any variable appearing in it as the object, provided it does not appear more than once. Figure 3 shows an example of making x the subject using the isolate option.
Once a function has been defined it is possible to generate a table or a graph of the function. This table can be stored on disk for future processing. In fact there are several algebraic manipulation operations available - typically the operations that you would use when applying algebraic operations on paper. The difference is that MathPlus tells you when you go wrong or attempt to make a mistake.
() Performing an integration
$\square \int \frac{1}{x^{2}+1} d x$
$\Delta \int \frac{1}{x^{2}+1} d x=\int \frac{(\sec [u])^{2}}{(\tan [u])^{2}+1} d u$ $\Delta \int \frac{1}{x^{2}+1} d x=u \quad$ Substitute
$\Delta \int \frac{1}{x^{2}+1} \mathrm{dx}=\arctan (\mathrm{x})$ Substitute
$\square x=\tan (u)$
$\triangle u=\arctan (x) \quad$ Isolate

$$
\square(\tan [u])^{2}+1=(\sec [u])^{2}
$$

Fig. 2. Features of the package can be accessed via mouse activated icons on the Function Palette.

Plotting in three dimensions

Graphics options on MathPlus are impressive and easy to use. Once a function has been defined it is highlighted. When the graphics icon in the palette is clicked, the plot appears instantly.
Several traces can be added to the same graph. Each graph has a number of icons that allow the user to change the settings - axis, scales and zoom. MathPlus allows you to visu-

Fig. 1. MathPlus allows you to manipulate equations and perform substitutions in a similar way to that normally performed in long-hand.
However the software stops you from making mistakes.

$$
\begin{aligned}
& \text { (눈) Making } x \text { the subject of the equation. } \\
& \square y=\sqrt{\frac{2.35}{x^{4}-\alpha+3 \frac{\phi}{\beta}}} \\
& \Delta x=\left(2.35 \frac{1}{y^{2}}-3 \frac{\phi}{\beta}+\alpha\right)^{\frac{1}{4}} \text { Isolate }
\end{aligned}
$$

Fig. 3. Equation manipulation is very easy, but it only works provided the variable you want to isolate only appears once.

Fig. 4. Three dimensional plotting is achieved with relative ease. Creating 3D polar plots would have been a major task only a few years ago, but with MathPlus a few mouse clicks and there it is.

Fig. 5. Spherical plots are created with ease, and you are able to rotate in any direction to gain'a different perspective. A number of shading schemes are also available for enhancing the three dimensional figure.

Fig. 6. Solving
non-linear
differential equations is also
possible. This is an
example of a
relaxation oscillation in a laser resonator.

System requirements

A realistic minimum is, 386 pc with maths coprocessor
4 Mbyte of ram
10 Mbyte of disk storage

Mouse

Colour VGA monitor

Q Three dimensional shperical plots.

alise three dimensional polar plots very easily. Figure 4 shows an example. Although the equation given above the plot is simple enough, you need a pretty vivid imagination to visualise. Even spherical co-ordinate plots, once the domain of quantum mechanics, can easily be generated as in Fig. 5 it may even become a joy visualising Fermi energy surfaces in solid state devices.

Solving differential equations

Another interesting feature of MathPlus is its ability to solve differential equations, either numerically or symbolically. But I should stress that the symbolic method is by no means as clean as you would wish. Using partial differentials for expressions that contain only two variables is not a practice to be encouraged.

Numerical integration options are far more convincing. You have a choice of two integration algorithms - the fourth order Runge Kutta or the Euler. The Euler algorithm does not achieve the same degree of accuracy but is much faster in execution.
If you attempt to solve a system of simultaneous differential equations with cross coupling non-linear terms, they can be solved without having to convert them in to difference equations. An example of this in operation is shown in Fig. 6, which illustrates the relaxation oscillations in a laser resonator.

Other features

MathPlus also has provisions for matrix manipulation, solving sets of simultaneous equations, finding Eigenvalues, dealing with Bessel functions and generating series. This includes Taylor and summation series for solving differential equations.

Wildcard variables can be used for generating certain types of polynomial series. MathPlus uses a scheme of notebooks in which the user can enter both equations and graphs. These can be customised.
To help the newcomers there is a number of preconstructed notebooks supplied with predesigned palettes for specific applications. For example there is a notebook for easing the task of performing Laplace transforms. Each notebook contains helpful notes for the application in hand. I can foresee third parties producing notebooks for a variety of teaching and learning applications.
To help new users to become acquainted with the package, two manuals are supplied - the Learning Guide and Reference Manual. The Learning Guide provides numerous examples aimed at helping new users gain confidence in using the package. The help menu is a standard Windows format - adequate for most queries.

Summary

If you are looking for a software package for teaching or learning mathematics then MathP/us will not disappoint. The learning curve needed is gentle, although to use the product efficiently you have to remember a number of quirky features and key strokes - use of the escape key for example.
MathPlus will certainly find favour among first year students, whose exposure to maths teaching has not been appropriate for an engineering degree course. It will not only be first year students that benefit from MathPlus but also candidates sitting both A level maths and physics.
The package should also appeal to engineers who - for whatever reason - need to brush up their maths with a minimum of effort.

Availability

MathPlus is available form Robinson Marshall Europe plc at a single user price of $£ 199$ exclusive of VAT and UK postage $£ 5.99$. This includes free unlimited technical support. There is a secondary school unlimited site licence at $£ 995$.
Nadella Building
Progress Close
Leofric Business Park
Coventry CV3 2TF
tel 01203233216 , fax 233210.

M\& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

CIRCIE NO. $1+1$ ON REPIY CARD

Hewlett Packard 8683D

Solid State Microwave Signal Generators

 2.3-13 GHz Freq' Range Wideband FM for satellite AM/FM \& pulse modulation Built in pulse generator £2,950 + Carriage + Vat Options 001/003 fittedSupplied fully tested in as new condition. With 30 days parts \& labour warranty.
M\&B Radio dealers in Surplus electronic test Equipment 86 BISHOPGATE STREET LEEDS LS1 4BB

TEL: 01132435649 FAX: 01132426881

- D Just Take Two Steps to do Your Measurement

You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals.
The TiePieSCOPE - HS508 is supplied complete with user manual software, and two probes.
Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)

凶ロ 28 Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ Tel.: (01480) 460028 - Fax: (01480) 460340

TiePie engineering, The Netherlands

\triangle P.O. Box 115, 8900 AC LEEUWARDEN
Battenserreed 2, 9023 AR JORWERD
Tel.: (31) 51069238 - Fax: (31) 51069704

Tran -rming +

Gerard Moloney outlines how he developed a C++ library for performing geometric transformations.

Within all fields of engineering, matrices are widely applied in a wide variety of settings - in particular within electronic and electrical engineering. They provide a powerful tool in areas such as network analysis, and can generally be applied to solve simultaneous equations. In addition, matrices are useful in situations requiring geometric modelling, such as image processing and cad/cam.
With the advent of computer systems, the study of numerical processing and the development of associated software has become a major topic in its own right, with extensive libraries available commercially, primarily written in Fortran.
This article outlines the development of a C++ matrix class, and specifically a hierarchy of classes for geometric transformations. Its purpose is to look at providing an intuitive design for matrix applications and to discuss issues that arise in trying to provide a generic matrix class based on the $\mathrm{C}++$ template mechanism.
Originally, the idea was to develop a general matrix class, as matrices appeared to be an ideal candidate for implementing in terms of templates.
We envisaged that matrices could be declared along the following lines,

```
matrix < int, 6,4 > matrix1;
```

and the concept developed to allow matrices of different types and size to be manipulated in an intuitive fashion.
Eventually we decided to concentrate on a specific application, namely geometric transformations as there we had an immediate requirement for development in this area. The resulting library for two dimensional transformations is outlined below.

Geometric transformations

In the elementary study of matrices, a graphic application of their use is in the transformation of geometric objects. 'Transformation' generally means the movement and/or sizing of an object.
There is a set of standard transformations, which can be expressed as matrices. Likewise, as the coordinates of a point in space can be expressed as a matrix, this allows matrices and their associated algebra to be presented in a familiar and visual setting.
Rotation of a point about the origin is shown in Fig. 1. It is the set of standard transformations and their associated algebra which we wish to map intuitively onto our classes.

Specifying the library

Prior to the design phase, a number of factors emerged which were thought to be of practical importance with respect to applications to which the library was being applied. Initially, there was a requirement for the library to parallel very closely, the algebra of linear transformations. Optimisation was also required to avoid unnecessary pointer de-referencing and
calls to the standard maths library.
In a number of respects, these mirror considerations must be considered generally during library development. In all cases there should be some compromise between performance and generality. Bearing this in mind, the set of classes for two dimensional transformations was developed, taking as a starting point a general matrix class that had previously been prototyped.

Library hierarchy

The hierarchy for the library, Fig. 2, forms a simple inheritance structure with all classes being derived ultimately from the matrix class. Two subsets divide the library into geometric primitives and transformations.

Homogeneous and non-homogeneous transformations.

By its very nature, a transformation may or may not map the origin onto itself. Those that do, such as rotations are termed homogeneous, whilst those that displace the origin to another point, such as a translation, are termed nonhomogeneous. Intuitively it can be seen that if the origin is rotated it remains at the same point, whereas if moved by so many x and y units it obviously does not. To represent both these types of transformations for two dimensions it is necessary to employ 3 by 3 as opposed to 2 by 2 square matrices. Whereas for homogeneous transformations we have:

$$
x^{\prime}=a x+b y \text { and } y^{\prime}=c x+d y
$$

with non-homogeneous transformations the formula also contains a third constant value:

$$
x^{\prime}=a x+b y+e \text { and } y^{\prime}=c x+d y+f
$$

and our matrix algebra correspondingly changes from
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right] \mathrm{to}\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}a & b & e \\ c & d & f \\ 0 & 0 & 1\end{array}\right]$
The point p can be represented by the column matrix
$\left[\begin{array}{l}x \\ y\end{array}\right]$
and the rotation through the angle A by the square matrix
$\left[\begin{array}{cc}\cos A & -\sin A \\ \sin A & \cos A\end{array}\right]$
and the point p^{\prime} is the matrix product,
 $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos A & -\sin A \\ \sin A & \cos A\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Fig. 1. Equations representing the standard set of transformations for rotation about a point.

Matrix class.

As mentioned earlier, the matrix class forms the basis from which both geometric primitives and transformations are derived. It is a class template which provides a basic matrix implementation as follows,

```
template < class T, int x, int y >
class matrix{
protected:
    T data [x]{y];
    int row;
    int col;
public:
    matrix(): row(x), col(y) ()
    virtual ~matrix() {}
j:
```

This allows matrices of any type and size to be declared - the two integer arguments specifying the matrix row and columns.

Using this as a base, specific matrix types can be derived to represent both geometric primitives and transformations. In this instance the combination of templates and derivation provides a powerful mechanism - in effect allowing precise specialisation to be defined to a very generic concept.

Note that a minimal number of functions is provided by the base class. Support for the multiplication of matrices is provided in the derived classes. This is the organisation chosen to ensure that only valid operations are performed without the need to resort to some type of run-time type checking.

Derived geometric primitives

The fundamental geometric primitive is a point:-

```
class point:public matrix< float,3,1 >{
public:
    point(}:matrix< float, 3,1>0 (data[0][0]=0;
        data[1][0]=0;data[2][0]=0;]
    point(int a,int b):matrix< float,3,1>0 {data[0][0]=a;
        data[1][0]=b;data[2][0]=1;}
    ~point() {)
    friend class transformation;
```

! ;

Default arguments are provided for the template, and thus a point is defined as a 3 by 1 float matrix. Used throughout, this approach provides a solution to the perennial problem of declaring arrays of varying size. It is also equivalent to explicitly declaring an array, as follows,

float point [3][1];

As both homogeneous and non-homogeneous transformations are provided for, points are defined as 3 by 1 as opposed to 2 by 1 matrices refer to panel.
Having defined a point, other objects are specified by their vertices. Two approaches are taken, whereby both a general polygon class and specific object classes are provided.

```
//General base class for two dimensional objects.
//Polygons are specified as arrays of points.
class polygon{
    point* pt;
    int size;
public:
        polygon() {}
        polygon(point* p,int sz): pt(p), size(sz) {}
        virtual ~polygon(){};
        point operator[](int x){return * (pt+x); } //return specified
vertex.
        friend class transformation;
1;
//A triangle: array of points explicitly declared.
class triangle:public polygon{
        point vertices[3];
public:
        triangle(){}
        triangle(point a,point b,point c){vertices[0]=a;ver-
tices[1]=b;vertices[2]=c;}
        ~triangle(){}
        point operator[](int x){return vertices[x];}
        friend class transformation;
```


In this way it is possible to avoid the need to de-reference pointers where this is a requirement. Users may likewise derive their own classes in a similar fashion. A flexibility in approach is thus maintained, while the underlying principle - namely that all objects are defined by their vertices - is adhered to.

Transformations

Having defined all geometric primitives in terms of points it is necessary to implement transformations on the points. A base transformation class is declared as follows,

```
class transformation:public matrix< float, 3,3>1
public:
    transformation();
    ~transformation()(};
    virtual point operator*(point& pt);
    virtual _line operator*(_line& ln);
    virtual triangle operator}\mp@subsup{}{*}{*}(triangle& tr)
    virtual polygon operator*(polygon& poly);
    virtual transformation operator*(transformation& xform);
!;
```

Operators are provided for the multiplication of points, polygons and specifically lines and triangles. Composite transformations are also provided for. These can be combinations of any of the derived transformations. Providing these operators ensures that illegal operations are not allowed, for example the multiplication of two primitives together.
With the algebra of the library in place, we can now proceed to declare a full list of standard transformations including rotations, reflections, enlargements, shears and translations. Also, where possible, optimisations are provided for in order to avoid calls to sine and cosine functions.
Examples are found in the case of rotation through 90° and reflection in the x or y axis.
The derived classes are very simple, requiring only constructors and destructors - -

```
//The rotation class: rotation by angle theta in radians
class rotation:public transformation{
public:
    rotation():transformation() (}
    rotation(angle theta);
    ~rotation(){}
};
```

Constructors supply appropriate values for the matrix data and all multiplications are dealt with by the base transformation class.
It is now possible to create and manipulate our primitives in a highly intuitive manner -
//create a point and rotate it
point pt1 (100, 100);
rotation $\mathrm{r} 1(\mathrm{pi} / 4)$;
pt1=r1*pt1;
//create a line and move it
_line $\ln 1($ point $(0,0)$, point $(100,100))$;
translation $\mathrm{t} 1(40,60)$;
ln1=t1*ln1;
//do composite transformations
triangle tri (point (100, 0), point (150, 50), point (150, -50)); trl=t1*r1*tt1;
and the results can be output to an appropriate display/device driver.

Conclusion

As stated at the outset, the library evolved from investigating templates per-se. By using a combination of templates and derivation, a very intuitive solution was developed fairly quickly in this particular area - one which has been extended to three dimensional transformations.
As far as general matrices are concemed, one problem encountered was in providing arithmetic operators that could be implemented universally for matrices defined in terms of class templates. For example, how can multiplication be simply implemented given two matrices of different types and size. Note, the two matrices will be in effect different types and the resultant in many cases a different type again.
For example, given,
matrix < int, 3,5 > matrix1;
matrix \langle float, 5, 4 > matrix2;
how can the following be best achieved?
matrix3=matrix1*matrix2;

A partial solution for complex numbers was achieved using conversion operators,
But this by no means deals with the general case - especial-

```
//a complexnumber
template <class T,int x=2,int y=2>
class complex:private matrix<T,x,y>{
    T data[x][y];
public:
        complex():matrix<T, x,y>() ()
        complex(T real,T imag);
        ~complex(){delete [] data;}
        operator complex<int>()||
        operator complex<float>()|}
        complex operator+(const complex& compl);
    complex operator-(const complex& compl);
    complex operator*(const complex& compl);
```

ly as in this case all matrices involved are of the same size. A straightforward solution to this problem could be to use class templates. A better approach in designing $\mathrm{C}++$ libraries generally for algebraic types may be to adopt an algorithmic approach similar to that taken in the Standard Template Library. In this case, algebraic operations would be defined in terms of function templates, their arguments being in this instance, matrices. The concept could be extended to cater for a range of algebraic structures to which a given set of operations could be applied.

Further reading

Maxwell, EA, Geometry by Transformations, Cambridge University Press. Pettofrezzo, AJ, Matrices and Transformations, Dover Publications. Stepanov, A \& Lee, M, The Standard Template Library, Hewlett Packard Labs HP tech repor HPL-95-011.

RAPID

Interactive development,
DATA LOGGER
easy to learn and DEVELOPMENT
ready-made libraries with MODULE or without PCMCIA.

जTriangle Digital Services Ltd Tel 0181-539 0285
Fax 0181-558 8110

Uned Equipmont-GUARANIEED. Manuals supplied If posalble. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage.

STEWART of READING

VISA
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: (01734) 268041. Fax: (01734) 351696
Callers Welcome 9am-5.30pm Monday to Friday (until 8 pm Thursday)

8 CAVANS WAY BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Mobile: 0860400683
(Promises sthuated close to Esatern-by-pass in Coventry with easy
OSCILLOSCOPES
OSCILLOSCOPES

Teltronix 498P- 1 KHZ -1.8GHz programmabie....
Towiett Puckard 8590 A - KHZ
Anltiu M $52801 \mathrm{~A}-10 \mathrm{KHz} \cdot 2.20 \mathrm{~Hz}$
1.
(Packer 35eA - dynamic signal analyser, dual channol 87500
Homiont Pactiard $3502 \mathrm{~A}-25 \mathrm{KHz}$ analy

(1)

Schlumberger 1280 - Frequency response analyser ... $£ 500$

Poirnd E41-1 - $10 \mathrm{MHz}^{2-1}$ - Spectum Analyser Imerface.......................... 151000
4tww Peckard 87544 - Network Analyser - 4-1300MHz $E 3250$

 Howhen Packard 8532 A wtit $8559 \mathrm{~A}(0.01-21 \mathrm{GHz})$.. $£ 42500$

TELNET

Hewlett Packard $141 \mathrm{~T}+8552 \mathrm{C}+8555 \mathrm{~A}(10 \mathrm{MH} \mathrm{Hz}-18 \mathrm{GHz})$. .51600

When Performance is more important than size:two new re-programmable BASIC Stamp Computers.

BS1-IC
$81 / 0$ lines

BS2-IC

$161 / 0$ lines
up to 100 program lines
2,000 lines/sec
Comms to 2400 baud
pp to 600 program lines
10,000 lines/sec
Comms to 9600 baud

Programming package £66
Milford Instruments Tel 01977683665 Fax 01977681465

NEW PRODUCTS CLASSIFED

Please quote "Electronics World + Wireless World" when seeking further information

A-to-D and D-to-A converters

12-bit, multiplying d-to-as . Linear is producing LTC8043/8143/7543 and 7541A, all pin-for-pin replacements for the standard DAC and AD type numbered analogue-to-digital converters, and all having reduced vulnerability to temperature and supply variations. Gain and nonlinearity with temperature are better than $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $0.1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, while power supply rejection is $\pm 0.0001 \%$. Linear Technology (UK) Ltd. Tel. 01276677676 ; fax, 0127664851

Discrete active devices

Hermetic power mosfets. IR has new hermetically sealed power mosfets in the TO-257AA package They are rated at 100 W to close the gap between TO-39 types at under 20W and the 150 W TO254AA devices. Ceramic seal feedthroughs are used to cope with the full military temperature range. Both p-channel and n-channel devices are available at $60-500 \mathrm{~V}$ with on-resistance down

Optical devices

Bright blue leds. Blue leds in a range from Sloan AG of Switzerland put out 200, 400, 600 and 1000 mcd at 450 nm . They take 20 mA from 3.6 V , optional resistors being incorporated for higher voltages, and have clear or blue Fresnel lenses to give a 180° viewing angle. These leds are said by stoan to be brighter than some filament bulbs, the 1000 mcd type still emitting 100 mcd at 2 mA . Roxburgh Electronics Lid. Tel., 01724 281770; fax, 01724 281650.
to $40 \mathrm{~m} \Omega$. International Rectifier. Tel., 01883713215 ; fax, 01883714234.

S-m Schottkys. Two ranges of Schottky diodes introduced by International Rectifier are produced in SOT-223 and SMC surface-mounting packages. 20CJQ diodes in SOT-223 cover the $30-100 \mathrm{~V}$ range of reverse voltages and offer a forward voltage drop of, typically, 0.59 V at 2 A and $25^{\circ} \mathrm{C}$ or $0.52 \mathrm{~V}, 2 \mathrm{~A}, 125^{\circ} \mathrm{C}$. In the smc package, the $30 B Q$ series comes in 15-100V voltages, the 15 V type, for example, dropping 0.35 V at 3 A and $125^{\circ} \mathrm{C}$ and is said to be particularly useful for 3.3 V output rectification in portable equipment. International Rectifier. Tel., 01883 713215; fax, 01883714234.

High-side switches. Protected against temperature and overload, the BUK202 and BUK203 fets by Philips are high-side switches offering the choice of an internal, 150Ω groundpin resistor, eliminating extra design work and, as a bonus, saving a little space. Total quiescent chip current Is under 100 nA . These are 50 V devices with a typical $R_{\text {on }}$ of 28Ω and continuous currents of up to 20A. A feature is the integral charge pump to hold the mosfets in conduction to avoid the output spikes generated by other available devices. Philips
Semiconductors (Eindhoven). Tel., 00 3140722091 ; fax, 003140724825.

Memory chips

Fast fifos. IDT claims its 100 MHz 1 bit fifos to be 67% faster than the competition's and up to 30% cheaper. They have depths of 64,256 and 512 bit and include programmable almost-full and almost-empty flags and output enable on an additional pin. Integrated Device Technology. Tel., 01372 363734; fax, 01372 378851.

Low-power flash cards. Epson announces a range of PCMCIA Type 1 flash memory cards in sizes from 4Mbyte to 22Mbyte. Current consumption of the ATA card is $500 \mu \mathrm{~A}$ in sleep mode and

$60 \mathrm{~mA} / 100 \mathrm{~mA}$ for read/write, no dc input being needed to write. Start-up time for sleep-to-ready and rest-toready is 20 ms . Epson. Tel., 01442 227222; fax, 01442227244.

Microprocessors and

 controllersTemperature controller. The BTC2220 Fuzzy Logic and PID controller from Brainchild enables a process to reach a set temperature in a short time with little overshoot or external load disturbance. A 4-digit display indicates the process value and three keys on the front panel for control and input parameters, of which those accessible by the user can be limited by, say, a supervisor. Power is 12 36 V or $90-240 \mathrm{Vac}$ and output is a 3 A control relay and alarm, a 4.20 mA current loop or $0-10 \mathrm{~V}$. The instrument is programmable for various sensors and RS485 communication is provided. Brainchild Temperature Controtlers Ltd. Tel., 01903 216514; fax, 01903219662.

Motor control. NEC's μ PD7836x is a 16 -bit microcontroller, a member of the $78 \mathrm{~K} I I /$ family, which is designed for the pwm control of motors at frequencies up to 400 kHz and for controlling dc motors and uninterruptible power supplies, being equipped with three pairs of pwm timers. Since these functions use only a small part of its processing power, the device is also able to perform other processing tasks for the other parts of the system. Minimum instruction cycle time is 125 ns . Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908263003.

Real-time multi-tasking. MultiTRAX and MegaTRAX by Aries are claimed to be "the ultimate controllers for realtime response". Using code written in Basic or C, they have five features which, we are told, are synergistic: a run-time compiler for speed; multitasking; hardware interrupts; commands to insert machine code into Basic programs; and extended commands for the five optional hardware modules. Development time is low, since the code development system is built in. Aries Electronics (Europe). Tel., 01908 260007; fax, 01908260008.

Single-board controller, VITRAXPLUS combines parallel and serial i/o functions and has self-contained Basic language development; its latest version also possesses expanded memory, and Icd module and software support for transmission to a second port. There is space on the board for a real-time clock and a 10-channel a-to-d converter. Memory consists of ram and eprom for up to 14 Kbyte of code and 16 Kbyte of ram for tables and data. Aries Electronics
(Europe). Tel. 01908 260007; fax, 01908260008.

PIC with analogue features. The new mid-range PIC16C621 8 -bit controller by Microchip has a range of analogue facilities including two voltage comparators, a voltage reference and $4 V$ brown-out protection. It is an eprom-based microcontroller and the 1 K by 14 one time programmable memory allows rapid response to code changes and quick verification. The device is supported by development aids, both by Microchip and others. Arizona Microchip Technology Ltd. Tel., 01628851077 ; fax, 01628850259.

Oscillators

"Smallest" crystal oscillator. AVX has the KT11 Series of crystal oscillators, which are contained in a space of 11 by 9 by 4 mm and which will handle reflow soldering. Frequency range is $12.8-19.2 \mathrm{MHz}$ at a tolerance of 2 ppm , an optional afc function allowing small adjustments by an external voltage. Supply is 3 V or 5V. AVX Ltd. Tel., 01252 770000; fax, 01252770001.

Cameras

Camera/monitor. CPM2104-C by Hitachi is a $21 \mathrm{in}, 400$-line colour monitor with a built-in VK-C15E dsp camera, intended to deter rogues and vagabonds, since the camera output appears on the screen with no very obvious camera position. In addition, the picture is a good deal better than the average from this kind of equipment, the dsp camera giving automatic white balance, iris and backlight compensation. There is an RS232C socket for connection to a video recorder. Hitachi Home Electronics Ltd. Tel., 0181849 2000; fax, 01815692763.

PASSIVE

Passive components

Power chip inductors. Surface mounted power chip inductors in the 1210 range from Coiltronics are in two series: the CTX32, carrying up to 425 mAdc and the CTX32C, which handles 850 mA dc. CTX32 components come in 45 inductance values at $O s$ between 20 and 30 from $0.12 \mu \mathrm{H}$ to $470 \mu \mathrm{H}$ and are meant for use at low levels of current, while there are 16 inductance values in the CTX32C type, from $1 \mu \mathrm{H}$ to $330 \mu \mathrm{H}$, at Os of 10-20. METL. Tel., 01844 278781; fax, 01844278746.

SMT chip inductors. Pulse Engineering's 1008CX and 0805CX miniature chip inductors are wirewound on an alumina substrate and

Small colour ccd. Intended for use in security and industrial applications and remote sensing, Sony's new EVI-331 colour charge-coupled device camera measures 53 by 51 , by 100 mm Features include a $1 / 3$ in image sensor, twelve-times zoom with auto-focus and auto-macro, composite and Y / C output, autotracing white balance, autoexposure, backlight compensation and RS232C control. Horizontal resolution is over 450 lines from a 752 (horizontal) by 582 pixel format, and the exposure speed is $0.02 \mathrm{~s}-0.0001 \mathrm{~s}$. Sensitivity is 7lux at 11.8 . Sony Computer Peripherals \& Components. Tel., 01932816000 ; fax, 01932 817001.
come in values from 3.3 nH to 4700 nH at $Q s$ of over 50 at 50 MHz . Selfresonant frequencies are in excess of 6 GHz . Wire terminations are spotwelded. Silicon Concepts Ltd. Tel., 01428751617 ; fax, 01428751603.

Resistor arrays. Thick-film chip resistor arrays from AVX have up to four components in a three-element 0805 or a four-element 1206 surfacemounting package. The range of values is 10Ω to $2.2 \mathrm{M} \Omega$ and maximum working voltage is 50 V with a 100 V overload. Tolerance is $\pm 10 \%$ (K type) or $\pm 5 \%$ (J type). AVX Ltd. Tel., 01252770000 ; fax, 01252 770001.

Low-impedance capacitors

Rubycon has a miniaturised XYF range of capacitors made by a new process to allow all capacitance/voltage ratios to be contained within standard can sizes, allowing a shorter lead time and lower cost. Voltage ranges are $6.3-100 \mathrm{~V}$, capacitance values $0.47 \mu \mathrm{~F}-15000 \mu \mathrm{~F}$ and temperature range $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. Rubycon Corporation. Tel., 01818423221 ; fax, 01818417691.

Audio products

Digltal audio processor. Philips's TDA1546T bitstream digital filter is effectively a digital audio processor and d-to-a converter that includes the functions of volume control in 0.375 dB steps, balance and tone control, peak signal-level reading, overload detection and spectrum analysis. It uses 128 times oversampling, has digital deemphasis filtering for $32 \mathrm{kHz}, 44,1 \mathrm{kHz}$ or 48 kHz sampling rates and offers thd + noise of -88 dB and wide dynamic range. Philips
Semiconductors (Eindhoven). Tel., 00 3140722091 ; fax, 003140724825.

Connectors and cabling

Filtered D-type connectors. A range of D-type subminiature connectors, ferrite filtered against emi/rfi, is announced by Steatite. Filtering is pln-to-ground and pin-to-pin, preventing common-mode noise in signal or data lines in the $10-300 \mathrm{MHz}$ range. Current rating is 5A, dielectric strength 1000 V ac and the connectors meet FCC, VDE and other emc requirements. Steatite Insulations Ltd. Tel., 01216436888 ; fax, 0121643 2011.

Double-height BNC. Westside offers a double right-angled, pcb-mounted BNC socket, designed to save space. Contacts are silver-plated turned brass with a Teflon insulator and black ABS body. Westside Supplies Ltd. Tel., 01243 536350; fax, 01243 533686.

Mains inlets for portables. Bulgin's Polysnap is a range of miniature, low. profile mains power inlets meant for portable equipment. The connectors are based on the standard Class 1 EN60 320 and have a single-pole or double-pole, lit or unlit rocker switch. Contact ratings are $10 \mathrm{~A}, 250 \mathrm{~V}$ ac resistive or $4 \mathrm{~A}, 250 \mathrm{~V}$ ac inductive The inlets snap fix to panels of $1,1.5$,

2 , or 3 mm thickness with a single rectangular cutout. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734 776095.

Displays

Lcd touch screen. A new type of lcd module, launched by Crystaloid combines a touch screen and Icd in one module, giving a viewing area of up to 72 square centimetres. It contains all Icd drive electronics and touch screen logic. There are four types in the range and the Icd matrix

Low-deflection load cell.
Control Transducers has the
Model JP semiconductor load cell which deflects by a maximum of 0.05 mm for its full load of 900 kg and is intended for use in applications where its presence must not affect mechanical performance. The element is a germanium strain gauge, which gives a full-scale output of 150 mV for an excitation voltage of up to 24 V to an accuracy better than $\pm 0.15 \%$ all-in. Life expectancy is 100 million cycles. Control
Transducers. Tel., 01234 217704; fax, 01234217083.
can be programmed for a variety of information, both alphanumeric and graphic. The touch screen overlay comes with keys in either 6 by 16 or 4 by 16 configuration and is able to accept a range of touch characteristics. Ginsbury (UK) Lid. Tel., 01634 290903; fax, 01634 290904.

12In colour lcd. Having a luminance of $200 \mathrm{~cd} / \mathrm{m}^{2}$, NEC's NL 10276 AC2401 (there must be a reason for all these novel-length type numbers) is more than twice that of the 10.4in types. It is an active-matrix ift colour unit with a display area of 310 by 235 mm , resolving 1024 by 768 pixels. The high luminance is given by four tubes: two for back light and two for edge lighting. Power needed is 16 W . NEC Electronlcs (UK) Ltd. Tel., 01908 691133; fax, 01908670290.

Frugal colour tft. Hitachi has two 10.4in, colour thin-film transistor displays that use 46% less power, are 31% lighter than existing models and are compatible with colour supertwist nematic types. TX26D68VC1CAA (VGA) and TX26D88VC1CAA (SVGA) have a display area of 211.2 by 158.4 mm , power consumption, including backlight, being 1.5 W and 2 W and weight 390 g . Response time is 55 ms and have a brightness of $70 \mathrm{~cd} / \mathrm{mm}^{2}$. Power supply needed is 3.3 V to the internal converter. Hitachi Europe Ltd. Tel., 01628 585163; fax, 01628585160

Hardware

Shielded cabinets. Optima's rii 19 in cabinets are based on the Cabinet range but now have effective interference shielding. They consist of an aluminium extrusion frame coated with Alochrome in accordance with Defstan 03.18 for environmental protection, as are the skins, which are held in gasketed grooves. Earth bonding is by cable loops and doors close on a beryllium copper gasket Rf attenuation at 500 MHz is -52 dB and at $1 \mathrm{GHz}-43 \mathrm{~dB}$.

Stainless steel enclosures.
Enclosures in Rittal's new 19in
Electronic Kombi range come in 3, 6, 9,12 and 15 U heights and 377 mm or 477 mm depth. Doors are of stainless steel or steel with a 4 mm safety glass panel. Protection is to IP55. Rittal Ltd. Tel., 01709 704000; fax, 01709 701217.

Copper gaskets. TBA ECP offers low compression-force gasket strips in beryllium copper, designed for those applications in which there is not enough force to compress standard types for emi shielding. A range of gaskets is produced, in clip-on, stickon and snap-on varieties in a number of different forms. TBA Industrial Products Ltd. Tel., 01706 47422; fax 0170646170.

Instrumentation

Digitising oscilloscopes. Hitachi Denshi has renumbered the VC-7102/7104 as VC7502/7504, having introduced what it calls 'glitch capture' into the instruments, with the intention of displaying and measuring 'uncommon phenomena'. The two are 150 MHz types with $100 \mathrm{Msample} / \mathrm{s}$ sampling on two and four channels, 25 MHz single-shot and up to $8 \mathrm{Kword} /$ channel acquisitlon and storage. A 512 by 328 -dot thermal printer is built in. Sweep time for equivalent sampling is $2 \mathrm{~ns} /$ division to $0.2 \mu \mathrm{~s} / \mathrm{division}$ (7502) and 2ns/div$0.2 \mathrm{~s} / \mathrm{div}$ (7504); in real time: $0.5 \mu \mathrm{~s} / \mathrm{div}-$ $50 \mathrm{~s} / \mathrm{div}$ for the 7502 and $0.5-100 \mathrm{~s} / \mathrm{dlv}$ for the 7504.
Automatic measurement provides auto setup, and the measurement of four pulse parameters out of 17 simultaneously. A memory allows the display to be saved for up to three months and then output to a pc or colour monitor. Hitachi Denshi (UK) Ltd. Tel., 0181202 4311; fax, 0181 2022451.

Four-in-one. From SJ Electronics comes the MkI Universal Electronics System, made by a Far Eastern company with input from SJ. The four instruments are a 250 MHz frequency counter, a 2 MHz function generator, a 4.5-digit multimeter and power supplies, all contained in one case. It has been designed with universitles, schools and servicing in mind, being difficult to absent-mindedly remove and only needing one mains supply. The individual instruments are completely separate and possess specifications well up to and possibly beyond those commonly found in workshop equipment at a cost far below that of four different instruments. S.J Electronics Ltd. tel., 01376562004 ; fax, 01376562215.

Interfaces

Dual-line interface. Crystal Semiconductor announces a lowpower, dual line interface unit (LIU) for short-haul T1 and E1
telecommunication high-volume applications that require low power and high density. The design includes digital cross connects, T1 and E1 line cards, SONET multiplexers and switches. It dissipates 160 mW per channel, with a 50% pulse density and both 3.3 V and 5 V versions of the CS61584 are available. Designers can now make one board to support all T1 and E1 modes, including DSX-1, DS-1 and CCITT G.703, selecting T1 or E1 operating modes through software without changing transformers or external oscillators.

Software-programmable pulse shaping makes it possible to compensate for non-standard line loads, transformers and protection circuits. Each LIU channel contains a line driver, receiver and jitter attenuator. Sequoia Technology Ltd. Tel.. 01734 258000; fax, 01734 258020.

Literature

TV spares and more. The 1996 CPC catalogue incorporates over 39,000 products including nearly 10,000 new items. It features spares for tv and video equipment and the latest electronics/mechanical components and accessories. Also added are several new product sections including opto electronics, pcb prototyping, surface mount, motor control and datacomms/networking. Other popular sections, such as computing, security, semiconductors switches, tools and mains electrical have also been updated and extended. Available free-of-charge to account holders. CPC, tel, 01772 654455, fax 01772654466.

Automotive components. A short catalogue from Panasonic identifies passive and electromechanical components for vehicles, including electronic ignition, fuel injection, climate control and driver information displays. Panasonic Industrial (Europe) Ltd. Tel., 01344 853827; fax 01344853313.

Materials

Square-loop cores. Amorphous metal transformer cores for magnetic amplifiers made by AlliedSignal are in cobalt-based alloy for higher frequency operation and very low losses. Cirkit Distribution Lid. Tel., 01992444111 ; fax, 01992464457

Conductive adhesive. TRA-DUCT 2902 is a two-part, silver-epoxy paste adhesive, with no copper or carbon additives, to be used for bonding circuitry, cables and waveguides or for If and emi shielding. It bonds dissimilar materials such as metals, ceramics, glass and plastic laminates, having a thermal conductivity of $37 \times 10^{-4} \mathrm{cal} \mathrm{cm} / \mathrm{cm}^{2} / \mathrm{s} /{ }^{\circ} \mathrm{C}$ and volume resistivity of $0.002 \Omega \mathrm{~cm}$. It cures at room temperature. TRA-CON Inc. Tel., (USA) 001 (617) 391-5550; fax., 001 (617) 391-7380; e-mail, tcepoxy@ aol.com.

Printers and controllers

Printer saver. With a name like Printoff, description is almost superfluous. It does as it says: if a computer printer is out of use for a time selectable from 2 min to 3 h , this device switches it off, bringing it back on line when a print instruction comes from the computer. Printoff buffers data during the subsequent printer warm-up time to avoid time-out in the computer. No UK dealers as yet for this Swedish equipment. Utronix Elektronlkutveckling AB. Tel., 004613 212750 ; fax, 004613212725.

Power supplies

Dc-to-dc converters . Vicor now offers a standard 110 V dc nominal input for its VI-200 and Mega/Master dc-to-dc converter modules. With an input range of $66-160 \mathrm{~V} \mathrm{dc}$, these modules are primarily for applications relying on 110 V dc battery power. Component-level VI-200 converters measure 117 by 61 by 13 mm and provide 50-150W. Mega/Master modules incorporate one, two or three V/-200 converters in compact, chassis-mount packages and provide 50-450W. Vicor UK, tel 01276 678222 , fax, 01276681269.

More watts - same case. F Series power-factor-corrected power supplies by Unipower have been redesigned using more efficient devices and can now supply up to 1500 W ; existing types provide 650, 800 and 1000 W . Power factor is 0.98 with low harmonics and the units meet EN60555-2, giving universal autoranging. Case sizes are 5 by 5 by 12 in and 4 by 4 by 12 in and there is a cooling fan. Unipower Europe Ltd. Tel., 01273 420196; fax, 01273 417140.

Remote-sensing regulator. Semtech's EZ10875A voltage regulator offers remote sensing of the output voltage to compensate for the resistance of wiring and connectors. Features Include full power use to 5A of load, current limiting and thermal shutdown, 1.3 V dropout, stabilisation 0.015% and regulation 0.1% Semtech Ltd. Tel., 01592 773520; fax, 01592774781

Radio communications products

Low-noise amplifiers. Ranatec's ACAM-7000 range of high dynamic range, low-noise amplifiers comprises ten models, covering the $2-3200 \mathrm{MHz}$ frequency range. Features of the amplifiers include the ability to amplify small signals without distortion in the presence of strong adjacent signals and low noise. The ACAM-7525, for example, exhibits a 1.8 dB noise figure, 17 dB of gain and a third-order intercept point of 40 dBm over the 821 851 MHz band. ACAM-7700 models cover $5-4000 \mathrm{MHz}$ in seven ranges at a wider bandwidth than the 7500 types and power levels of 110 W are offered in the ACAM-7900 instruments in nine wide-band ranges between 0.1 MHz and 2000 MHz . Bandwidth of the 7500 models is $60-157 \mathrm{MHz}$ in a choice of five centre frequencies Anglia Microwaves Ltd. Tel., 01277 630000 ; fax, 01277631111.

Power amplifiers. Wood \& Douglas power amplifiers for radio modems and telemetry. They are available for vhf and uhf and give outputs of up to 30 W from a 0.5 W input. Some have rf-sensed transmitreceive switching for semi-duplex working. All operate from 12 Vdc . Wood and Douglas Ltd. Tel., 01734 811444; fax, 01734 811567.

HF security device. An Analogue Voice Security device from Harris can

Emc emission testing.
Enhancements to the emc emissions test kits made by Laplace are introduced: a broadband antenna and a Windows-based software package. The RF200 antenna is a compact, 1.6 m design and covers the $30-1000 \mathrm{MHz}$ range as required by EN55022 with a flat response, being supplied with antenna factor information to allow Its use with any analyser or receiver. Height is adjustable from 0.9 m to 1.7 m . EMC-Engineer software is for use with the RF-KOx range of emissions test kits, is
compatible with Windows and gives results related to the limits specified by emc standards. Facilities include antenna factor compensation limit line display, correction for antenna distance, autocorrection for preamplifiers and attenuators, logflin frequency axis, $\mathrm{dB} \mu \mathrm{V}$ or dBm scaling and quasi-peak processing. Laplace Instruments Ltd. Tel., 01692 500777; fax, 01692406177.
be used in a Harris RF-3200-E ht radio transmitter-receiver. It is a single board, fitting a slot in the radio and all operation is from the front panel, aided by screen prompts, selection of secure or clear working being by one button. The algorithm, developed by Harris, needs no digital sync. for decoding and the system gives secure communicatlon over the same range as clear voice, also giving tolerance to interfering signal. Coding keys are loaded into a non-volatile memory from a pc or terminal through a rearpanel RS-232 port. Harris Corporation. Tel., 001716 244-5830

Schottky detectors. Anglla
Microwave offers the ACS Series of Schottky diode detectors in narrow

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
and broad-band ranges between 10 MHz and 26 GHz and in three different mechanical forms. Modular, coaxial and bolt channel types are all internally protected against static damage and from video transients. In the coaxial and modular versions, if impedance can be matched by an adjustment of bias level. Both coaxial and modular types have a K factor of 2300-200, the bolt channel models having K of 2000-1800. Frequency response is flat within $\pm 0.5 \mathrm{~dB}$ for the narrow-band types and $\pm 1.5 \mathrm{~dB}$ in the broad-band version. Anglia
Microwaves Ltd. Tel., 01277630000 ; fax, 01277631111.

Protection devices

Undervoltage monitor. ZM33064 by Zetex is an undervoltage monitor to provide the correct initialisation of microprocessors during start-up or when power fails. From 1 V to 4.6 V , the device output is low and reset is applied to the processor, the same occurring if the line voltage falls below 4.6 V during operation, unless the built-in comparator with hysteresis prevents false reset during small line variations. Standby current is $135 \mu \mathrm{~A}$. Zetex plc. Tel., 0161-627 5105; fax, 0161-6275467.

Switches and relays

Solid-state relays. From Teledyne, the C60 Series of solid-state relays are suitable for bidirectional ac or dc switching, a power fet giving a low on resistance and no offset voltage. Switching range of the series is up to 400 V and 2 A , with surge currents up to 14 times rating being handled. The relays are optically isolated. Teledyne Electronic Technologies. Tel., 01815719596; fax, 1081-5719637.

Photovoltaic relays. PVN012 miniature photovoltalc relays by International Rectifier exhibit a lower contact resistance than reed or other mechanical relays at $100 \mathrm{~m} \mathrm{\Omega}$ on ac and $40 \mathrm{~m} \Omega$ with dc . They are normally open, single-pole relays with a 4.5 A mosfet at the output and draw 5 mA , being ttl-compatible. International Rectifler. Tel., 01883 713215; fax, 01883714234.

Television components

Programmable synthesisers
Universal 1.3 GHz frequency synthesisers in the TSA5521/2/6/7 family by Philips are for use in television receivers or video recorders containing microcontrollers, in which they are programmable via $I^{2} \mathrm{C}$ or three-wire buses. They provide the functions for phase-locked loop control of a tuner's local oscillator, including a crystal-controlled reference frequency oscillator and divider and a charge-pump output to give oscillator control voltages up to 33 V . Band switching is provided by four open-collector p-n-p drive transistors. TSA 5520/1 are $1^{2} \mathrm{C}$ or three-wire bus write-only types and the $5526 / 7$ also have the $I^{2} \mathrm{C}$ bus-read mode to allow status information such as in-lock loop condition to be interrogated. All devices are pincompatible, so allowing a single board
design to accept any of them. Philips Semiconductors (Eindhoven). Tel., 00 3140722091 ; fax, 003140724825.

Transducers and sensors

Thermometer calibrator. The accuracy of thermometers and sensors can be checked on site, without the need for extra equipment, using the Hart 9100 hand-held drywell calibrator. It is simply a small bench-top instrument with a digital temperature readout and holes in the front panel into which temperature probes are inserted. Setting the instrument temperature of the instrument and reading the temperature of the user's thermometer allows a comparison to a resolution of $0.1^{\circ} \mathrm{C}$ at an accuracy within $\pm 0.5^{\circ} \mathrm{C}$. The units possess certificates of calibration. Electronic Temperature Instruments Lid. Tel., 01903202151 ; fax, 01903202445.

Linear sensor. Hydrastar by Control Transducers is a developed version of an earlier model and is designed for use inside pneumatic or hydraulic cylinders. This new range is selfcontained, with certificated displacement measurement and three-wire connection. Total length in 2.6 in overall and the range covers $0-20 \mathrm{~mm}$ to 0.610 mm to an accuracy within 0.1%. The electronics can be up to 100 m away from the sensor and can be specified to give different forms of analogue output. Control Transducers. Tel., 01234 217704; fax, 01234217083.

Airbag accelerometer. EG\&G IC Sensors has introduced a micromachined silicon accelerometer, the Model 3255, for use in car side-impact airbags, which need a greater measurement range than frontalimpact types. Two chips are used for lower cost: the sensor chip and an asic in a multi-layer, hermetically sealed ceramic package for surfacemounting. A feature is the self-test facility, by which an electrical signal simulating the effect of an impact by an electrostatic force is applied, the output signal indicating performance. Eurosensor. Tel., 0171405 6060; fax, 01714052040.

COMPUTER

Computer board-level products

Passive backplane. PCA-6105P is a part of Fairchilds new range of passive backplanes for the PCI bus, featuring a mixture of PCl and ISA slots and keeping full ISA compatibility but allowing PCl cards to avoid bottlenecks such as disk i/o, vga or networks. The cpu card slot conforms to the PICMG configuration, so that it can be used with Fairchlld's Pentium card or those from other makers. Backplanes with five, seven and thirteen slots are available. Fairchild Ltd. Tel., 01703 559090; fax, 017035559100.

Data communications

Packet controller. Radiometrix's RPC is a $40 \mathrm{kbit} / \mathrm{s}$ radio packet controller chip providing processorintensive, low-level packet formatting and data-recovery functions for highspeed, bidirectional data links and networks. It is optimised for use with the BiM radio transceiver, simplifying system design and allowing the realisation of the entire 40kbit/s bandwidth and 120 m range at either 418 MHz for the UK or 433 MHz in Europe. Interfacing requires a fourline interface to the host processor and another to the transceiver, the host interface being fully asynchronous and driven by an i/o port from the host. When transmitting, the host writes a 27 byte packet to the RPC transmit buffer, where a preamble is added, together with a start byte and error-check code. The whole is then encoded for security and mark/space balance. In receive mode, the RPC monitors the line from
the transceiver for a valid preamble, performs synchronisation and validation and tells the host to accept data. Low Power Radio Solutions Ltd. Tel., 01993 709418; fax, 01993 708575.

SocketModems. Rockwell's SocketModem concept enables addition of full data, fax and voice communications to a multitude of electronic designs. Packages are pincompatible 25.4 mm by 63.5 mm pin dual-in-line modules, and require only an external eprom and DAA line interface. Due to their compact size and low power consumption -45 mW to 790 mW - they suit anything from remote telemetry via cellular networks to motherboard integration, freeing a valuable expansion slot.
The SocketModem range extends from 2400bps data-only devices to 28,800bps data/fax modems supporting high-speed fax, voice functions, error correction, data compression and cellular protocols. Standards supported include V.34, V.32bis, V. 32 , V. 22 bis, V. 22, V. 23 and V.21, plus Bell 212 and Bell 103. Also supported are, MNP 2-4 and V. 42 error correctlon, MNP- 5 and V. 42 bis data compression, and MNP10 cellular protocols. Both EIATIA class 1 and class 2 fax are possible. High-speed group 3 fax capabilities are available, compliant with CCITT,
V.17, V.29, V. 27 ter and V.21. Volce capabilities include voice, business audio, ADPCM2 and 46it compression and decompression, with silence deletion and interpolation. TDC Ltd, tel, 01256 332800, fax 01256332810.

Development and evaluation

Can development. Hitex has a development board to ease the first stages in the development of a controller area network (can). It is fitted with two can nodes controlled by one microcontroller, network drivers being developed on the one microcontroliers and all communlcations being looped back between controllers. By thls means, a can network is developed using normal tools and with no need for bus analysers, although a simple analyser comes with the demo code to allow monitoring of the final network. The board is either on its own or part of a kit containing C compiler, assembler Hitop monitor and demo code. Hitex (UK) Ltd. Tel., 01203 692066; fax, 01203692131.

Prototype board for rf. Rapid bullding, evaluation and fault-finding of moderately complex analogue and digital circuits working to beyond

300 MHz is facilitated by the new HFP prototyping board. RF prototyping boards already exist but they tend to use socketed components and can hence suffer from intermittent connections. The board accommodates 4 by 8 pin or 2 by 16 pin dil packages. It also features two easily decoupled power supply bus lines, large area ground plane on the top side and four BNC connectors with provisions for eight. Oxtek Ltd, tel and fax, 01865200767.

Programming hardware

Production programmer. From Data I/O, the AutoSite production programmer for automated handling systems now has new features and supports new devices from Altera, AMD, Intel, Lattice, Microchip and Xilinx. Its memory editor and swap data operations now support 32-bit mode and the system handles use of Jedec U data and E fields. Data I/O Ltd. Tel., 01734 440011; fax, 01734 448700.

Software

Message pagers. Hexatec has extended its Windows-based SCAN1000 supervisory and data acquisition system to allow text messages to be transmitted automatically to standard commercial
radio pagers. Each supervisory system equipped with SCAN1000 monitors up to 3000 channels, compares the data to defined criteria and sends the appropriate messages to field operators over the Mercury network. Software has independent data-logging facilities for large numbers of asynchronous processes, running under Windows, NT and Workgroups, also being compliant with Windows 95 standards. No programming is needed. Hexatec Ltd. Tel., 01434 605575; fax, 01434 607800.

Ups power management. From Fiskars, 32-bit power management packages for Windows NT and other operating systems. LanSafe III and FailSafe III provide uninterruptible power supply remote management, power graphics, and data-saving shutdown in Windows NT 3.5. Even when data has not been saved, the software saves it and shuts down in a graceful manner. LanSafe controls any ups from any node in a network, shutting down and rebooting any intelligent component, graphic information from every protected device being available. Failsate is a similar facility for single pcs. Fiskars Electronics Ltd. Tel., 01734 306600; fax, 01734305868.

Measure \& Record Temperature

 on your PC.
Pico's NEW TC-08 is a 8 channel thermocouple to PC converter. Supplied with PicoLog datalogging software it is designed to allow simple yet accurate temperature recording onto a computer.

TC-08 has provision for up to 8 thermocouples
-B,E,J,K,R,S and T types. For type K the resolution over $-270^{\circ} \mathrm{C}$ to $+1300^{\circ} \mathrm{C}$ is better than $0.1^{\circ} \mathrm{C}$ and accurate to $\pm 0.1^{\circ} \mathrm{C}$.

NEW from Pico TC-08 £ 199.00

complete with PicoLog, software drivers and connecting cable. A range of thermocouple probes is available.

Call for your Guide on
'Virtual Instrumentation' and Release your PC Potential.

Finally an upgradeable PCB CAD system to suit any budget ...
Board Capture
BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undoriedo facility (50 operalions)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly fibrary editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMoker

BoardMakert - Entry level

- PCB and schematic drationg
- Easy and Intuitive to use
- Surface mount support
- 90, 45 and curved track comers
- Ground piane illi
- Copper highlight and ciearance checking

BoardMaker2 - Advanced level

- All the features of BoardMakert plus
- Full nellist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modtrication from the schematic
- Component renumber with back annolation
- Report generator - Database ASCll, BOM

Board Roater

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (BM2) information on

Fax 01354695957
tsien

- PEIG GUT

SuperFILTER synthesizes Active, Passive and Digital FIR\IIR filters and ports to SpiceAge for

Those
Engincerrs Licd Windows ${ }^{T M}$ for a complete analysis.

Super FILTER Version 3 for Windows provides the following features.

1. Choice of specifying parameters for desired response includes gain \& phase coordinates, graphical (mouse tracing response), poles and zeroes in S and Z planes and Laplace transfer function coordinates.
2. No order limits of cascaded filters - applies to digital, active and passive types.
3. Types available include Butterworth, Chebyshev, Elliptic, Bessel, Realpole, Gaussian, Linear phase, Inverse Chebyshev, Digital Hilbert FIR, Differentiator, Raised cosine, Squared root raised cosine of LPF, HPF, BPF, APF, Notch filters.
4. Minimum specification of suitable op amps for achieving active filter performance.
5. Analysis of components' sensitivity using Monte Carlo method for analogue filters.
6. Analysis of effect of register characteristics on digital filters and D to A converters.
7. Analysis of inductor losses for passive filters.
8. Defining digital FIR filters by gain using the Remez Exchange algorithm.
9. Supports behavioural modelling within SpiceAge for Windows synthesizing more than 150 topologies
10. Graphic display of the realized versus the ideal filter with best fit options taken from a comprehensive (and user controllable) library of preferred component values.
"This is a stunning program that will save and save again."
For further details and demonstation disk, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 0181-906 0155, FAX 0181-906 0969, CompuServe 100550, 2455.

What's the difference?

Abstract

When choosing a differential amplifier, most people opt for the single op-amp configuration. Steve Winder argues that little consideration is given to how this choice copes with signals presented to it, and sets out to explain the benefits to be gained from a little more thought.

Fig. 1. This circuit has equal impedance into input A and B for common mode signals - but not for differential signals. Consequently, transmission lines may be unbalanced.

Low-amplitude signals, such as those from remote sensors, are normally carried on a twisted pair line. This is also the preferred transmission medium when the signal source and signal processing equipment do not have the same dedicated earth or common connection. In these situations, noise from earth or other circulating currents can be greater than the signal itself, so using a single wire with a common return path is not a viable option.
Where a signal is transmitted over a twisted or screened-pair line, a balanced line termination is required. This could be provided by a transformer, or by amplifiers having a differential input and a single ended output. Unwanted common mode signals may be present on the wires ie signals that are in phase and present on both wires relative, to "earth.
If a transformer is terminating the line, common mode signals can be reduced considerably by providing an earthed metal-foil screen between the coil windings. Common-mode signals are capacitively coupled to earth by this screen.
The foil screen must be insulated so that, when wrapped around the primary winding, it does not form a short circuited turn. This occurs if the end of the foil screen is in metallic contact with its beginning.
If a differential input amplifier is terminating the line, the amplifier's design can be critical in determining the common mode rejection. The input.impedance under both differential and common-mode signal conditions must be considered.
If the amplifier has an unbalanced input impedance, the twisted-pair line becomes unbalanced and susceptible to external fields. The input impedance should also be equal to the characteristic impedance of the line.

Single op-amp differential amplifier
The simplest design uses a single op-amp, Fig. 1. Gain of this circuit is unity if all four resistors have the same value. Generally $R_{1}=R_{3}$
and $R_{2}=R_{4}$, and the gain can be found by R_{2} / R_{1} or equivalently R_{4} / R_{3}.
This design has several shortcomings, particularly in terms of input impedance. Suppose that all four resistors are equal, at, say, $1 \mathrm{k} \Omega$ each. A signal at input B will 'see' a $2 \mathrm{k} \Omega$ impedance because the non-inverting input of the op-amp presents a high impedance and the only load is the two resistors R_{3} and R_{4} in series. Impedance seen at input A will depend on the signal at B because feedback forces the op-amp to maintain an equal voltage at both its inverting and non-inverting inputs.
Suppose that at a certain moment a signal with an amplitude of 1 V is present at input B . Potential divider action of R_{3} and R_{4}, means that the potential at the op-amp's non-inverting input is 0.5 V . The op-amp will therefore try to keep the inverting input at this same potential.
Now, if a common-mode signal of the same amplitude is applied at input A, the potential across R_{1} will be equal to the input voltage minus the inverting input voltage, $1 \mathrm{~V}-0.5 \mathrm{~V}$, which is 0.5 V . Thus the potential across R_{1} is equal to the potential across R_{3} and the two input impedance's are equal. Also, since R_{2} has the same resistance as R_{1} it too must have a 0.5 V drop. Output voltage will be zero.
Suppose now that a differential signal is applied between the two inputs A and B. At a certain moment the potential on input A is 1 V and on input B it is -1 V . As before, the opamp's non-inverting input will have a -0.5 V potential on it and the op-amp will maintain a -0.5 V potential on its inverting input. This time, however, the potential across R_{1} will be -1.5 V, ie $-1 \mathrm{~V}-0.5 \mathrm{~V}$.
Now the potential across R_{1} is three times that of R_{3}, so the current will also be three times as great. Voltage drop across R_{2} must also be 1.5 V , since the current flowing through it is the same as the current through R_{1}. The inverting input of the op-amp is at 0.5 V , so the output must be $0.5 \mathrm{~V}+1.5 \mathrm{~V}$, or

ANALOGUE DESIGN

Fig. 2. This amplifier has the correct input impedance, rejects commonmode signals and has its gain set by a single resistor. This method of gain adjustment makes the design ideal for instrumentation amplifiers.

Fig. 3. Output from this circuit is zero when common mode signals are applied. This option has a gain of $\left(R_{1}+R_{2}\right) / R_{2}$ for differential signals. Matched pairs of resistors are required.

2 V , confirming the circuit's unity gain.
The effective input impedance will be $2 / 3$ of R_{1} at input A and $2 \times R_{1}$ at B . In total, the input impedance at B is three times that of A if R_{1} and R_{3} have the same value. This circuit, using equal valued resistors, works well provided it is driven from a low impedance source. When used to terminate a transmission line, the source impedance is finite and impedance mismatch between the inputs makes it susceptible to noise pick-up.

An alternative differential amplifier

An alternative circuit, presented by Geoff Pomeroy in Electronic Design 16 Dec 1995, suggested that by making the values of R_{1} and R_{3} different, the impedance into input A and B can be equal. Gain, G, and desired input impedance, Z, can be used to find the values of resistors $R_{1-4,}$

$$
\begin{aligned}
& R_{1}=0.5 Z(G /(G+1)+1) \\
& R_{2}=G \times R_{1} \\
& R_{3}=Z-R_{1} \\
& R_{4}=R_{1}-0.5 Z
\end{aligned}
$$

In fact, for a unity-gain amplifier, $R_{1,2}$ are equal and three times the value of $R_{3,4}$. If $R_{1,2}$ have a value of 450Ω and $R_{3,4}$ have a value of 150Ω, the input impedance for differential signals is 600Ω, or 300Ω relative to the common rail at each input. This factor of three tallies with analysis of the previous circuit design.
Now consider a circuit with a gain of one. Suppose a differential signal is applied between inputs A and B. At a particular moment the potential at A is IV , and at B it is -IV.
The op-amp's non-inverting input will have a potential of -0.5 V , forcing the non-inverting
input to follow it. The remaining 0.5 V is dropped across R_{3}. The voltage across R_{1} will then be $1-(-0.5)=1.5 \mathrm{~V}$, or three times that across R_{3}. Voltage across R_{2} will also be 1.5 V , because the same current flows through $R_{1,2}$. When the voltage across R_{2} is added to the inverting input potential, this gives an output of 2 V . However, R_{1} has a resistance of three times that of R_{3}, so the currents flowing through inputs A and B are equal in magnitude and are of opposite sign. The input impedances are therefore equal.
If a common-mode signal is applied to inputs A and B , having a potential of 1 V at a particular moment, the voltage at the op-amp's non-inverting input will be 0.5 V , leaving 0.5 V across R_{3}. The potential at the op-amp's inverting input will be forced to 0.5 V via feedback. At input A, the potential is also IV, giving a potential across R_{1} of 0.5 V .
Voltage over R_{2} will also be 0.5 V , which when subtracted from the potential at the opamp's inverting input gives an output voltage of zero. Impedance into input A will be three times that of B. This is because the current through R_{1} will be one third of the current through R_{3} since its resistance is three times greater. Common-mode signals from an isolated signal source, say capacitively coupled, are generally high impedance, in which case differing input impedance's will have some effect on circuit performance.
This circuit has the correct balanced input for differential signals, with the correct termination impedance. However, the common mode impedance is different for each input.

Instrumentation amplifier

Figure 2 shows a triple op-amp differential amplifier. The output stage uses the same cir-
cuit as Fig. 1 with the four resistors R_{4-7} usually having the same resistance value. Because this stage is driven by two op-amps, $A_{1,2}$, which have a low output impedance, so the impedance looking into the output stage has no effect.
The two input stages are symmetrical. Input impedance at both the op-amp non-inverting inputs is high. Inputs A and B have an impedance set by resistors $R_{\text {in }} / 2$ in Fig. 2. Resistor chain R_{1-3} is symmetrical and sets the gain of the input stages. A single variable resistor R_{2} controls gain.
Consider that a common-mode signal is applied to inputs A and B with a potential at a particular moment of IV . This voltage will be present at the op-amp non-inverting inputs, with feedback forcing the inverting inputs also to 1 V . Since R_{2} has an equal potential on either side, no current flows through it. There can be no current flowing through $R_{1,2}$ either, since there is nowhere for it to go. Output voltage from $A_{1,2}$ must be equal to the input voltage. As discussed earlier, common-mode signals are then rejected by the output stage.
Differential signals can be amplified by the input stages. Suppose the voltage at input A is IV and voltage at input B is -1 V . Also, let R_{1} equal R_{2} and R_{3}. The inverting input of A_{1} will be at a potential of 1 V , due to feedback. Also, the potential at the inverting input of A_{2} will be at -1 V , equal to the potential at the noninverting input.
Voltage across R_{2} will be 2 V , since it is connected between the inverting inputs of $A_{1,2}$. There must also be 2 V across each of R_{1} and R_{3} since the same current is flowing through them as through R_{2}. The output of A_{1} must be 3 V and the output of A_{2} must be -3 V . The amplifier will produce 6 V from a differential
signal of 2 V - overall gain is therefore three. Gain of a differential amplifier can be calculated from a simple single stage gain. Resistor R_{2} has the differential potential across it, but differential signals are symmetrical about the 0 V rail, ie the centre of R_{2} is always at 0 V . In fact R_{2} can be considered as two series connected resistors, each having half the value of R_{2}, with their common point joined to the 0 V rail.
Consider amplifier A_{1}. Its feedback is R_{1} with half of R_{2} connected to 0 V . Gain of such an amplifier is $1+R_{1} /\left(0.5 \times R_{2}\right)$, which is 3 . Performance of amplifier A_{2} is identical.

Dual op-amp differential amplifier

Figure 3 shows a dual op-amp differential amplifier. Inputs A and B are connected to the non-inverting inputs of op-amps $A_{1,2}$, which have a high input impedance. Impedance into input A and B is therefore set by resistors of value $R_{\mathrm{in}} / 2$.
In the dual op-amp circuit R_{1} and R_{4} have equal values as do R_{2} and R_{3}. Circuit gain is calculated using $\left(R_{1}+R_{2}\right) / R_{2}$. Suppose R_{1} is three times R_{2}, then the circuit gain is four.

Let a common-mode signal be applied to inputs A and B with a potential at a particular moment of 1 V . The voltage present at both the op-amp non-inverting inputs will be 1 V .
Feedback forces both the inverting inputs to a potential of 1 V . This means that 1 V will appear across R_{1}, and hence one third of a volt across R_{2}. This occurs because the same current is flowing through each resistor and the value of R_{2} is a third that of R_{1}. Output potential of A_{1} will be 1.333 V .
Potential across R_{3} is the output of A_{1} minus the potential at the inverting input of A_{2}. As a result, R_{3} has 0.333 V across it. Now, the current through R_{3} is the same as R_{4}, but R_{4} has three times the resistance, so the voltage across R_{4} is. 1 V . Resistor R_{4} is connected between the inverting input of A_{2} and the output terminal. Since the potential at the inverting input of A_{2} is IV, the voltage at the output terminal must be zero in order to produce 1 V across R_{4}.
Suppose at a particular moment a differential signal produces 1 V at input A and -1 V at B. The output of A_{1} will be the same as in the common-mode case, 1.333V. A -lV signal at

B produces a potential of -IV at the noninverting input of A_{2}. Feedback also forces the inverting input of A_{2} to -1 V .
Resistor R_{3} now has 2.333 V across it, ie 1.333 V present at the output of A_{1} and -1 V present at the inverting input of A_{2}. Since R_{4} has the same current flowing through it as R_{3}, but with three times the resistance, there is 7 V across R_{4}. The inverting input of A_{2} has a potential of -1 V , so the output must have a potential of -8 V .

Conclusion

This article has shown that single op-amp differential amplifiers of either design has shortcomings that can be overcome by more sophisticated designs using two or three opamps. The dual op-amp design, considered last, requires two resistors and one op-amp more than the simplest design. Increased cost is usually worthwhile, and by using a dual op-amp package the overall increase in board space requirement is minimal.
Where gain adjustment is essential, the instrumentation amplifier using three op-amps provides the best option.

A computerised index of Electronics World+Wireless World magazine is now available. It covers the five years 1990 to 1994 volumes 96 to 100 - and contains over 1400 references to feature articles, circuit ideas and applications, with a synopsis for each. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K ram and a hard disk. Each disk is scanned before shipping with the current version of Dr Solomon's Anti-Virus Toolkit.
For the UK, the five year index is priced at $£ 20$. Please specify $5 \frac{1}{4}$ or $3 \frac{1}{2}$ in format. This price includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Photo copies from back issues of EW+WW are available at 50p per page plus VAT (in EC) and a flat postage charge of 50p (UK), $£ 1$ (rest of EC), and $£ 2$ (rest of world). For enquiries about photo copies send an sae to Video Interface Products.
Please allow up to 28 days for delivery. Cheques should be made payable to Video Interface Products, not EW\&WW or Reed Business Publishing.
Please post your request to Video Interface Products Ltd, 1 Vineries Close, Cheltenham GL53 ONU, UK.

BULL CLEAROUT SALE
 WIRELESS VIDEO BUG KIT Transmits video and audio
 *FM CORDLESS MICROPHONE Small hand held unit with a

signals from a minature CCTV camera (included) to any standard elevision! All the components including a PP3 battery will ft Into a cigarette packet with the lens requirfing a hole about 3 mm diameter. Supplied with telescopic aerial but a piece of wire about $4^{\text {" long will }}$ still give a range of up to 100 metres. A single PP3 will probably give
less than 1 hours operating time. E99 REF EP79. (probably not less than 1
Ilcensable!)
icensable!)
GOT AN EXP ENSIVE BIKE? You need one of ourbotte alarms, they look like a standard water bottle, but open the top, insert a key to actuvate a motion sensor alam builtinside. Fits all standard bottle carriers, supplied with two keys. SALE PRICE E7.99 REF SA32. GOT AN EXPENSIVE ANYTHING? You need one of our cased vibration alarms, keyswitch operated, fully cased just fit it to anything from videos to caravans, provides a years protection from 1 PP3 battery, UK made. SALE PRICE E4.99 REF SA33.
DAMAGED ANSWER PHONES These are probably beyond repair so the
REF SA30.
COMHODORE GAMES CONSOLES. Just a few of these left o dear at $£ 5$ ref SA31. Condition unknown.
COMPUTERDISC CLEAROUT We areleft with a lot ofsortware packs that need clearing sowe are selling at disc value onlyl 50 discs for $£ 4$, thats just 8 p eachll(our choice of discs) SALE PRICE $£ 4$ ref EP66
IBM PS2 HODEL 1602 CASE AND POWER SUPPLY Complete with fan efc and 200 watt power supply. SALE PRICE E9.95 ref EP67
DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyeads and IEC socket. SALE PRICE 69.99 ref EP55
1.44 DISC DRIVES Standard PC 3.5° drives but returns so they will need attention SALE PRICE E 4.99 rel EP68
1.2 DISC DRNES Standard 5.25° drives but retums so they will need attention SALE PRICE $£ 4.99$ ref EP69
PP3 NICADS New and unused but some storage marks. SALE PRICE E4. 99 ref EP52
SOLAR PANELS 3 v output with two flyieads, $100 \times 60 \mathrm{~mm}$ pack of 10 SALE PRICE E6. 99 ref EP56
DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's complete with fly leads, case and fan, pack of two psus PC PSu's complete with fly leads, case
GAS HOBS ANDOVENS Brand new gas appliances, perfectfor small flats etc. Basic 3 burner hob SALE PRICE $£ 24.99$ ref EP72. Basic small bult in oven SALE PRICE $£ 79$ ref EP73
BITS AND BOBS We have a quantity of cased modems, muliplexers etc difierent specs but ideal strippers. SALEPRICE $£ 4$ each ref EP63

RED EYE SECURITY PROTECTOR 1,000 watt outdoor PIR

 switch SALE PRJCE E9.99 ref EP57ENERGY BANK KTT $1006^{\circ} \times 6^{\circ}$ GV 100 mA panels, 100 diodes, ENERGY BANK KIT $10066^{\circ} \times 6^{\circ}$ bv 100 .
connection details etc. $£ 69.95$ ref EF112.
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12v 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCiR, 512×492 pixels, video output is iv p-p (75 ohm). Works directy into a scart or video input on a tv or video. IR sensitive. $£ 79.95$ ref EF 137
IR LAMP KTT Suitable for the above camera enables the camera to be used in total darkness! $£ 5.99$ ref EF138.
PASTEL ACCOUNTS SOFTWARE, does everything for ail sizes of businesses, includes wordprocessor, report writer, windowing, networkable up to 10 stations, multiple cash books etc. 200 page comprehensive manual. 90 days free technical support ($0345-326009$ try before you buyl) Current retall price is $£ 129$, SALE PRICE $£ 9.95$ ref SA12: SAVE £120!!
MINI MICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ sq SALE PRICE E2. Ref SA 13.
REUSEABLE HEAT PACKS, Ideal for fishermen, outdoor enthusiasts elderiy or infirm, warming food, drinks etc, defrosting pipes etc. reuseable up to 10 times, lasts for up to 8 hours per go,
2.000 wh energy, gets up to 90 degC. SALE PRICE £9.95 REF SAZ9 2.000w henergy, gets up to 90 degC. SALE PRICE $€ 9.95$ REF SAZ9
12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard 12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard
IEC socket) and 2 m lead with plug. $100-240 \mathrm{~V}$ P. SALEPRICEE 6.98 IEC socket)
REF SA15.
REF SA15.
PCCONTROLLED4 CHANNEL TIMER Control (onvof times etc) up to 4 items (8 A 240 V each) with this kit. Complete with Software, relays, PCB etc. $£ 25.99$ Ref $95 / 26$
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power fluctuations and cuts. New and boxed, UK made Provides up to 5 mins running time in the event of complete power failure to allow you to run your system down correcty. SALE PRICE Just £ 9.00 .
SOLAR PATH LIGHTS Low energy walkights powered by the sunl built in PIR so they work when you walk past. Indudes solar panel \& rechargeable bat. SALE PRJCE E19,9REF EP62 BIG BROTHER PSU Cased PSU, ov 2 A output, 2 m op lead 1.5 m Input lead, UK made. 220 v . SALE PRICE E4.99 REF EP?

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is a certificate enabling you to reproduce the manuals as much as you like! SALE PRICE €14 REF EP74

RACAL MODEM BONANZAI 1 Racal MPS1223 1200/75 modem, telephone lead, mains lead, manual and comms softw
the cheapest way onto the net! all this for just $£ 13$ ref DEC13.

RADIO PAGERSBrand new, UK made pocket pagers dearance price is just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bits! Ref SEP5. BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70\% of sufferers. Drug free pain relief, safe and easy to use, can be used in conjunction with analgesics etc. E49 Ref TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units, (like wyse 50,5) $2 \times R S 232,20$ function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboard setup menus (18 menu's). £29 REF NOV4.
PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with builtin psu, lead and s/ware.. Ideal or laptops or a cheap upgrade.Supplied in kit form for home ssembly. SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNTT Complete unit with 2 double bulb floodlights, builtin charger and auto switch. Fully cased. 6 v 8 AH lead acid req'd. (secondhand) $£ 4$ ref MAG4P11.
SWINGFIRE GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 281 bs breaking strain, iess than 1 mm thick! Ideal alarms, intercoms, fishing, doils house's etc. SALE PRJCE £ 13.99 ref EP51
ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRICE JUST E4. 99 REF SA28
ASTEC SWITCHED MODE PSU BM41012 Gives +5 e 3.75 A. +12@1.5A, - 12@.4A. 230/110, cased, BM41012. £5.99 ref AUG6P3. AUTOSUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. 12v 2watt. SALE PRICEEB.99 REF SA25.

TOP QUALTY CENTRIFUGAL MAINS MOTORS SALE

 PRICE2 FOR JUST £2.60 REF SA38ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, 60-100 fiashes a min. SALE PRICE E8.99 REF SA15.
24y AC 96WATT Cased power supply. New. SALE PRICE JUST £9.99 REF SA40
MILTARYSPEC GEIGER COUNTERS Unused anstraightfrom Her majesty's forces. SALE PRICE 644 REF SA16
MICRODRNE STRIPPERS Small cased tape drives ideal for tripping, lots of useful goodies including a smart case, and lots of components. SALE PRICE JUST E4.99 FOR FIVE REF SA26
SOLAR POWER LAB SPECIAL You get TWO $6^{\circ} \times 6^{\circ}$ ov 130 mA soiar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit SALE PRICE JUST E4.99 REF SA27
RGBICGAVEATTL COLOUR MONTORS 12' in good condition. Back anodised metal case. SALE PRICE EA9 REF SA16 SWITCHED MODE PSU ex equip, 60w +5 v @5A, $-5 \mathrm{ve}$. . SA , +12 Ve2A. 12 VE 5A 120/220v cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socket 6.99 REF MAG7P

PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17 V DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCH MEDES PSU +5 V ©
4.4A. on/oh sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ SALE PRICE £4.99 REF SA1
13.8V 1.9A psu cased with ieads. Just $\mathbf{2 9 . 9 9 \text { REF MAG10P3 }}$

PPC MODEM CARDS. These are high spec plug in cards made or the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC into either 110 v or 240 v AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy dutypowerlead, cigar plug, AC outtet socket. Auto overioad shutrown, auto short circuit shut down, auto input over voltage shutdown, auto input under voltage shut dow n(with audible alarm), auto temp control. unit shuts down if overheated and sounds audible alarm. Fused reversed polarity protected. output frequency within 2%, voltage
within 10%. A well built unit at an keen price Just $£ 64.99$ ref AUG65 within 10\%. A well built unit at an keen price. Just $£ 64.99$ ref AUG65. UNNERSAL SPEED CONT ROLLER KIT Designed by us for the C5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: WAG17
COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces of 6 core cabre, 100 cable ciips, 2 line divers with RS232 interfaces
and all connectors etc. Ideal low cost method of communicating and all connectors etc. Ideal low cost method of com
between PC's over a long distance. Complete ldt $£ 8.99$.
ELECTRIC MOTOR KIT Comprehensive educational kit inciudes all you need to build an electric motor. £9.99 ref MAR10P4. VIEWDATA SYSTEMS made by Phillips, complete with intemal $1200 / 55$ modem, keyboard, psu elc RGB and composite outputs, menu driven, autodialler etc. SALE PRICE $\mathbf{£ 1 2 . 9 9 \text { REF SA } 1 8}$
AIR RIFLES,22As used by the Chinese army for training puposes,
so there is a lot about! $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80. so there is a lot about! $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80. PLUG IN POWER SUPPLY SALE FROM £1.60 Plugs in to 13A socket with outputlead. three types avalable, 9 vdc $150 \mathrm{~mA} £ 1.50$ ref SA19, 9vde 200 mA £ 2.00 ref SA20, 6.5 vdc 500 mA £2 ref SA21. VIDEO SENDER UNTT. Transmits both audio and video signals rom either a videocamera, video recorder, TV or Computer etc to any tandard TV set in a 100 ' range' (tune TV to a spare channel) 12 VDC -SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UE
BULL ELECTRICAL

WHL: 01245 203500

500 ' range! 2 transmit power levels. Reqs PP3 9v battery. Tuneable to any FM receiver. Price is $£ 15$ REF: MAG15P1
*MINATURE RADIO TRANSCENERS A pair of walkie talkies witha range up to 2 kmin open country. Units meas ure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. 2xPP3 req'd. £30.00 pr.REF: MAG30 FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 dnve connectors 1 mother board connector. 150watt, 12v fan, lec inlet and on/off switch. SALE PRICE $£ 7.99$ REF SA 22
*FM TRANSMITTER KIT housed in a standard working 13A adapterll the bug runs directly off the mains solasts foreven why pay $£ 700$? or price is $£ 15$ REF: EF62 Transmits to any FM radia. (this is in kit form with full instructions.)
-FM BUG BUILT AND TESTED superior design to ktt. Supplled to detective agencies. $9 v$ battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WITH COINSLOT M ECHAN ISMS originally made to retail at£79 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. How ever they can be adapted for their original use or used for something else?? SALE PRJCE JUST E2.50 REF SAZ3
GAT AIR PISTOL PACK Complete with pistol, darts and pellets £12.95 Ref EF82 extra pellets (500) $£ 4.50$ ref EF80.
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA . SALE PRICE E4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ MAGJP13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1

SIDE LEVER . 177 AIR RIFLE Superb, low priced general purpose nife, $18^{\prime \prime}$ tapered, rifed barrel, fully adjustable open sights, wooden stock. very accurate with low recoil, 41" £39.95 ref RB 4X28 TELESCOPIC SIGHTS Suitable for all air nifes, ground lenses, good light gathering properties. £19.95 ref R/7.
RATTLE BACKS Interesting things these, small piece of solid perspex like material that it you try to spin It on the desk it only spins one wayl in fact if you spin it the 'wrong' way it stops of its ow accord and go's back the other wayl $£ 1.99$ ref GI/JO1.
GYROSCOPES Rememberthese? well we have found a company that still manufactures these popular scientifc toys, perfect gitt or for educational use etc. $\mathbf{£ 6}$ ref EP70
EDIBLE LONGLIF ECA NDLES Made from Oleo BeefStearin so you can eat them in an emergency altematively, you could just light
theml Each candle burns for approx 10 hours. 2 for $£ 2.99$ refO/N326. HYPOTHERMIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket, reflects more than 90% of body heat. Also suitable for the foil blanket, reflects more than 90% of body heat. Also suit
construction of two way mirmors! $\mathrm{E3} 3.99$ each ref O/LO41.
LENSTATIC RANGER COMPASS Oil filled capsule, strong metal case, large luminous points. Sight line with magnitying viewer. 50 mm dia, 86 gm . $£ 10.99$ ref OKK604.
RECHARGE ORDINARY BATT ERIES UP TO 10 TMESI With the Battery Wizard! Uses the latest pulse wave charge system 10 charge all popular brands of ordinary batteries AAA, AA, C, D, four atatime! Led system shows when batteries arecharged, automatically rejects unsuitable cells, complete with mains adaptor. BS approved. Price is £21.95 ref EP31.
TALKING WATCH Yes, it actually tells you the time at the press of a bution. Also features a voice alarm that wakes you up and tells you what the time is! Lithium cell inctuded. $£ 7.99$ ref EP26.

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevent even themost responsible of drivers from losing their licencel Adjustable audible alarm with 8 flasting leds gives instant warning of radar zones. Detects X, K, and Ka bands, 3 mile range, 'over the hill' 'around bends' and 'rear trap facililies. micro sizejust $4.25^{\circ} \times 2.5^{\prime \prime} \times .75^{\prime}$ ", Can pay for itself in just one day! $£ 79.95$ ref EP3.
SNOREBUSTER! A small wristwatch style device that detects the noise of snoring and instantly produces a stimulation to the w rist of the snorer without waking them. The bio feedback effectively prevents future bouts of snoring, thus reducing Snorebuster to only occasional use. 10 of 1,000 's sold. $£ 24.99$ ref LA15999.
WORLDS SMALLEST TAPELESS MEMO PENI Notonly is the a smart pen but will record 20 seconds of memos etc. No more scatching about for scaps of paper!! £39.99 ret AA21381.
ELECTRIC TYRE INFLATOR High power mi croair compressor inflates ty
ref J823
MAMOD STEAM ENGINE SP2 Powerful compact model steam engine complete with fuel etc. $£ 39.95$ ref SP2.
SANYO NICAD PACKS $120 \mathrm{~mm} \times 14 \mathrm{~mm} 4.8 \mathrm{v} 270 \mathrm{maH}$ suitable for cordless phones etc. Pack of 2 just $£ 5$ ref EP78.
WE BUY SURPLUS STOCK FOR CASH
FREE CATALOGUE
1995100 PAGE CATALOGUE NOW available, 45P STAMP OR FREE WITH ORDER.
PORTABLE RADIATION DETECTOR
WITH NEW COMPUTER INTERFACE £59 A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Iubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unlt detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring

PORTABLE X RAY MACHINE PLANS Easy to construc plans on a simple and cheap way to build a home X-ray machinel Eflective device. X-ray sealed assemblies. can be used for experimental purposes. Not a toy or for minorsl $£ 6 / \mathrm{set}$. Ref F/XP 1 TELEKIN ETIC ENHANCER PLANS Mystity and amaze your friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special gimmicks yetproducespositivemolionand effed. Excellentforscience projeds, magic shows, party demonstrations or serious research
development of this strange and amazing phychic phenomenon. development of this
EA/set Ref FITKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your controf. Induded is a full several ways to put subjects under your contro. Induded is a full volume reference text and several construction plans that when
assembied can produce highly effective stimuli. This material must assembied can produce highly efiective stimuli. This matenal must be used caubously. It is for use as entertainment at p
by those experienced in its use. $£ 15 /$ set. Ref F/EH2.
GRAVITY GENERATOR PLANS This unlque plan demonstrates a simple electrical phenomena that produces an antigravity effect. You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate.
$£ 10 /$ set Ref
F/GRA1. £ 10/set Ref F/GRA1
WORLDS SMALLEST TESLA COILLIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a ar', St Elmo's fire, Corona, excellent science project or conversation piece. $£ 5 /$ set Ref F/BTC1/ $G 5$.
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to visible green light. High coherency and spectral quality similar to
Argon laser but easier and less costly to build yet far more efficient. Argon laser but easier and less costly to build yet far more efficient.
Thispariculard esignwas developed at the Atomic Energy Commision Thispariculard esignwas developed at th
of NEGEV in Israel. $£ 10 /$ set Ref F/CVL
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into Indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. £6/set Ref FNS9.
PULSED TV JOKER P LANS Little hand held device utlises pulse techniques that will completely disrupt TV picture and sound works on FM too! DISCRETION ADVISED. £8/set Ref F/TJ5.
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technoiogy to detect the presence oflling bodies, warm and hotspots, heatleaks etc. Intended for security, law enforcement, research and developmen1, eic. Excellent security device or very Interesting science project £8/set Ref F/BHT1
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over Invisible beam of heat capable of burning and melting materials over
a considerable distance. This laser is one of the most efficient, a considerable distance. This laser is one of the most efficent,
converting 10% input powerinto useful output. Not only is this device converting 10% input powerinfo useful output. Not only is this device
a workhorse in welding. cutting and heat processing materials but it a workhorse in welding, cutting and heat processing materials but it
is also a likely candidate as an effective directed energy beam is also a likely candidate as an effective directed energy beam
weapon against missiles, aircraft, ground-to-ground, etc. Partide weapon against missiles, aircraft, ground-10-ground, etc. Particle
beams may very well utilize a laser of this type to blast a channel in beams may very well utilize a laser of this type to blast a channel in
the atmosphere for a high energy stream of neutrons or other the atmosphere for a high energy stream of neutrons or other
particles. The device is easily applicable to burning and etching wood, cutting. plastics, textles elc $£ 12$ set Ref $F / \mathrm{LC} 7$
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity, amazing gift, conv
sef Ref F/ANT1K.
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal. produce 'cold' steam, atomize parts etc. £6/set Ref FNLB1
ULTRAHIGH GAIN AMP/STETHOSCOPICMIKESSOUND AND VIBRATION DETECTOR PLANS Ultrasensitive device AND VIBRATION DETECTOR PLANS Ultrasensitive device
enables one to hear a whole new world of sounds. Listen through enables one to hear a whole new world of sounds. Listen through
walis, windows, floors etc. Many applications shown, from law walis, windows, floors etc. Many applications shown, from law
enforcement, nature listening, medical heartbeat. to mechanica enforcement, nature listenin
devices. £6/set Ref F/HGA7
ANTI DOG FORCE FIELD PLANS Highly effective circult produces time variable pulses of accoustical energy that dogs cannot tolerate $£ 6 /$ set Ref F/DOG2
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. £12/set Re F/LLIST1
CRAWLING INSECT ROASTER PLANS Harmless high
frequency energy pulses destroy pests as they crawl into the energy field! $£ 4 /$ set Ref F/RCR1
LASER LIGHT SHOW PLANS Dohtyourself plans show three methods. $£ 6$ Rel $F / L \perp S 1$
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with extemal controls. £6/set Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ulimateln homeforice security and safety' simple to use! Call your home or office phone, push a secret tone on your telephone to access either:A) On premises sound and voices or B
Existing conversatlon with break-in capabillty for emergency Existing conversatlon with break
messages. $£ 7$ Ref FTELEGRAB.
BUG DETECTOR PLANS Is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy! Snifts out and finds bugs and other sources of bothersome mis
ELECTROMAGNETIC COIL GUN PLANS Projects a metal object a considerable distance-requires adult
ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR MANDI $£ 5 /$ set Ref F/EMA
PARABOLIC DISH MICROPHONE PLANS Lisien to distant sounds and voices, open window s. sound sources in 'hard to get' or sounds and voices, open windows. sound sources in 'hard to get' or
hostile premises. Uses satellite technology to gather distant sounds and focus them to our ultra sensitive electrontes. Plans also show an optional wireless link system. £8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATORPLANS Operates on $9-12 \mathrm{Vdc}$, many possible expenments. E10 RefF/MVM7 TCL4.

WOH VERHAMITTO MTRANCH NOW OHIN AT WORCESTHR ST WHAMITON TEI. 01902.22139

MINI FM TRANSMITTER KTT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88 - 108 Mhz but easily changed to cover 63-130
9v (PP3) battery. 0.2 W RF. $\mathrm{E7}$ Ref 1001 .
9V (PP3) battery. 0.2 W RF. E R Ref 1001 .
ELECT RONIC SIREN KT Impressive 5 watt poweroutput. Ideal for carbike alam etc. $6-12 \mathrm{v}$ dc max current $1 \mathrm{~A}, 1.2 \mathrm{khz} £ 6$ Ref 1003 3-30V POWER SUPPLY KT Variable, stabilized power supply for lab use. Short circuit protected, suitable for profesional or amateur use 24 v 3 A transfomer is needed to complete the kit. £ $£ 4$ Ref 1007. 1 WATT FW TRANSMITTER KIT Supplied with piezo electic microphone $8-30 \mathrm{vdc}$. At $25-30 \mathrm{y}$ you will get nearly 2 watts! $£ 12$ ret
FM/AM SCANNER KTT Well not quite, you have to turn the knob your self but you will hear things on this racio that you would not hear your self but you will hear things on this racio that you would not hear
on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on both AM and on an ordinary radio (even TV. Covers $50-160 \mathrm{mhz}$ on
FM. Built in 5 watt amplifier, inc speaker. $£ 15$ ref 1013 .
MOSQuTO REPELLER KT Modern way to keep midges at bay! Runs for about a month on one 1.5 y battery. $£ 7 \mathrm{Ref} 1015$ 3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel, $1,200 \mathrm{w}$ power handiling, microphone included. £14 Ref 1014.
MOTORBIKE/CYCLE TREMBLER ALARM KT Adjustable sensitivity, preset alam time, auto reset Could be connected to horn etc. £ 12 Ref 1011
0-5 MINUTE T MER KTT adjustable, will switch up to $2 A$ mains. Perfect for alams, pholography, elc. E Ref 1020.
4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp incluced. E20 Ref 1028.
STROBE LIGHT KTT Adjustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. $£ 16$ Ref 1037. ULTRASONIC RADAR KT ideal as a movement detector with a range of about 10 metres, automate your cat fap! 12 vdc . $£ 15$ Ref 1049.

LIRUID LEVEL DETECTOR KTTUsefulfortanks, ponds, Daths,
rain alam, leak detector etc. Will switch $2 A$ mains. $£ 5$ Ref 1081 .
rain alam, leak detector etc. Will switch $2 A$ mains. $£$ Ref 1081 .
COMBINATION LOCK KTT $9 k e y$, programmable. complete with keypad, will switch $2 A$ mains. $9 v$ dc operation. $£ 10$ ref 1114. PHONE BUG DETECTOR KT This device will warn you if somebody is eavesdropping on your line. $\varepsilon 6$ ref 1130 .
ROBOT VOICE KTT Interesting circuit that distorts your voice! adjustable, answerthe phone with a different voice! 12vdc£9 ref 1131 TELEPHONE BUG KT Small bug powered by the 'phone line, starts transmitting as soon as the phone is picked upl $£ 8$ Ref 1135. FUNCTION GENERATOR KTT Produces sinu soidal, saw tooth and square waves from $20-20 \mathrm{khz}$, separate level controls for each shape. Will produce all 3 together. 24 vac . £16 ref 1008
3 CHANNEL LIGHT CHASER KT 800 watts per channel, speed and direction controlssuppiled with 12 LEDS (you can fittriacs instead to make kit mains, not suppiied) $9-12$ vdc $£ 17$ ref 1026.
12 V F OURESC ENT LAMP DRNER KT Ught up 4 foottubes from your car battery! $9 v$ 2a transformer also required. $£ 8$ ref 1069 VOX SWTCH KTT Sound activated switchideal formaking bugging tape recorders etc, adjustable sensitivity. $£ 8$ ref 1073.
INCAR SOUNDTO LIGHT KTT Put some atmosphere in yourcar with this mini 3 channel sound to light. Each channel has 6 led's. \& 10 ref 1086
TW HI FI AMPLIFIER KT Usefur, poweriul, ideal for audio systems. intercoms etc. $12-18 \mathrm{vdc} £ 7$ ref 1025.
PHONE CALL RELAY KT Useful device that operates a relay whenever the 'phone rings. Switches mains at 2 A . $£ 10$ ret 1122 . LEAD ACID CHARGER KIT Two automatic charging rates, visual indication of batten's state, ideal for alam systems etc, 100 mA 12Vac 12 ref 1095.
CARALARM KIT Works on voltage drop and vibration, entrylexit delays. adjustable alam duration. Ideal caravans etc $£ 12$ ref 1019. PORTABLEA LARM KTRBased onmercury swith, alm
to sound until reset by owner. Buzzer inc. $£ 11$ ref 1150 .
PREAMP MDER KT 3 input mono mixer, sep bass and treble controls plus individual level controls, 18 vdc , inputsens 100 mA . $£ 15$ ret 1052.
METAL DETECTOR KIT Range $15-20 \mathrm{~cm}$, complete with case, 9vdc. £8 ref 1022.
SIMGLE CHANNEL SOUND TO LIGHT KT Mains operated, add rythum to your party for only £8 ref 1006
SOUND EFFECTS GENERATORKTP Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects trom bird chips to sirens. Complete
to
your proects for just $£ 9$ ref 1045 .
GUTAR P REAMP KIT Complete with tone contrals, smallenough
 16 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamp required 12 -18vdc. can use ground plane, yagi or open dipole. f 69 ret 1021
TELEPHONE AMPLIFIER KTT Very sensidve amplifer which uses apickup coi (supplied) will let you follow a conversation with out holding the 'phone. $£ 11$ ref 1059.
-some of our products may be unlicrensable in the uk
BULL ELECTRICAI

1. . . 412532317 ?

HUMIDTTY METER KTT Builds into a precision LCD humidity meter, 9 ic design, pcb, led display and all components included. $£ 49$ PC TMER KIT Four channel output controlled by your PC, will switch high current mains with relays (supphed). Software supplled so you can program the channels to do what you want whenever you want. Minimum system conifgeration is 286, VGA, $4.1,640 \mathrm{~K}$, serial porl, hard drive with min 100 k free. $£ 24.99$
DMINING RODS Expensive technology cannot challenge the fool proof at ofwaterdivining, passed down from g eneration togeneration. Seeing is belleving. Use in the home, garden, countryside or desent, it's divinely simplel $£ 4.99$ a pair ref E/B.
HUGE BUBBLE MAKING KTT You'll be amazed at the the size of the bubbles you can acheive with this bubble making kit. Once you have got the knacktis possible to make bubbles of up to 40 feetlong £11.99 ref E9.
FM CORDLESSMICROPHONE This unitis an FM broadcasting station in minature, 3 transistor transmitter with electret condense mic+fetamp design resultinmaximum sensitivity and broad frequency
response. $90-105 \mathrm{mhz}$, $50-1500 \mathrm{hz}$, 500 foot range in coen country response. $90-105 m \mathrm{hzz}, 50-150 \mathrm{hzz}, 500100$
PP3 battery required. $£ 15.00$ ref 15P42A.
PP battery required. $£ 15.00$ ref 15 P 42 A .
MAG NETIC MARBLES They have been around for a number of years but still give ise to curiosity and amazement. A pack of 12 is jus E3.99 ref GI/R20
STETHOSCOPES A fully functioning stethoscope for all those intricate projects. Enables you to listen to motors, pipes, heartheats, walls, Insects etc. $\mathbf{E 6}$ ref MAR6P6.
NICKEL PLATING KTT Proffesional electroplating kit that will transform rusting parts into showpieces in 3 hours Will plate onto steel, iron, bronze, gunmetal, copper, welded, siver soldered or brazed joints. Kiti includes enough to plate 1,000 sq inches. You will also need a 12 v supply, a container and 212 v light bulbs. $£ 39.99$ ref NIK 39 . SHOP WOBBLERS! Small assemblies designed to take D size batteries and 'wobble' signs about in shops! $£ 3.99$ Ref SEP4P2. OMRON ELECTRONIC INTERVALTMERS.

> "NEW LOW PRICES TO CLEARII"

Minature adjustable timers, 4 pole c/o output 3A 240 v , HY1230S, 12vDC adjustable from $0-30$ secs. $£ 4.99$ HY $1210 \mathrm{M}, 12 \mathrm{vDC}$ adjustable from $0-10$ mins. $£ 4.99$ HY1260M, 12 VDC adjustable from $0-60$ mins. $£ 4.99$ HY2460M, 24 vAC adjustable from $0-60$ mins. $£ 2.99$ HY243H, 24vAC adjustable from 0-3 hours. $£ 2.99$ HY2401S, 240 V adjustable from $0-1$ secs. $£ 4.99$ HY2405S, 240 V adjustable from $0-5$ secs. $£ 4.99$ HY $24060 \mathrm{~m}, 240 \mathrm{~N}$ adjustable from $0-60$ mins. $£ 6.99$ DRINKING BIRD Remember these? hook onto wine glass (sup plied) and they drink, standup,drink, standup ETCl £4 each Rel EF SOLAR POWER LAB SPECLA LYou get TWO $6^{\prime \prime} \times 6^{\prime \prime} 6 v 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor.Supert value kit just E5. 99 REF: MAG6P8
BUGGING TAPE RECORDER Small voice activated recorder uses mirro cassette complete with headphones. £28.99 refMAR29P1. PLUG IN ACORN PSU 19V AC 14w , E2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17 v DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
9 y DC POWER SUPPLY Slandard plug intype 150 mag 9 DC with lead and DC power plug. price for two is $£ 2.99$ ref AUG3P4
13.8 V 1.9A psu cased with leads. Just $£ 9.99$ REF MAG10P3

INFRA RED REMOTE CONTROLLERS Originally made for hi spec satelite equipment but perfect for all sonts of remote control projects. Our dearance price is just $£ 2$ REF: MAG2
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPOSTE VIDEO KTT. Convents composite video into separate H sync, V sync, and video. $12 v$ DC. $£ 8.00$ REF: MAGBP2. UNNERSAL PC POWER SUPPLY complete with fiye eads switch, fan etc. 200 w at $£ 20$ REF: MAG20P3 ($265 \times 155 \times 125 \mathrm{~mm}$) GYROSCOPE About 3^{3} high and an excellenteducational toy for all ages! Price with instruction book et $£ 6$ Ref EF 15 .
FUTURE PC POWER SUP PLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 dive connectors 1 mother board connector. 150watt, 12 v fan, iec inlet and onforl switch. $£ 12$ Ref EF6.
VENUS FLYTRAP KIT Grow your own carnivorous plant with this simple kt E3 re EF34.
TWEETERS 2^{2} diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAGSP 13ideal for experimenters! 30 m for $£ 12.99$ ref MAG $13 P 1$ ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together beived to cause rain!£3 a pair Ref EF29.
3^{\prime} by 1^{\prime} AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA}$ watts. aluminium frame, screw terninals, $£ 44.95$ ret MAG45. ELECTRONIC ACCUPUNCTURE KTT Buildsinioan electroni ersion instead of needles! good to experiment with. $£ 7$ ret 7P30 SHOCKING COIL KT Build this litte battery operated device into all sorts of things, also gets worms out of the ground! $£ 7$ ref 7×36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and flies! 50 m range $£ 6$ ref EF2.
HIGH POWER CATAPULTS Hinged am brace for stability, tempered steel yoke, super strength latex power bands. Departure peed of ammunition sin excess of 200 miles per hourl Range of over 200 metres! 57.99 ref R/9.
BALLON MANUFACTURING KT British made, small bloo blow sinto a large, Ionglasting balloon, hours of fun! $£ 3.99$ ref G//E99R
WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE ON REGUEST WITH ORDER.

APPLICATIONS

Please mention Electronics World + Wireless World when seeking further information

Power converters for Icd backlighting
 Transistor requirements for
 to react to the changing waveform

backlighting purposes - their mode of operation within the backlighting circuit, important parameters, and their impact on system efficiency - are the primary focus of Zetex Application Note 14. The note also provides several ccfl power supplies for use with lcd backlighting applications.
Around 1 kV is required to strike a fluorescent tube. On striking, the tube's gaseous contents ionise and it begins to conduct at a lower sustaining voltage. This results in a negative resistance characteristic. Other power supply constraints include an intolerance of dc current, sensitivity to waveform crest factor and radio-frequency interference criteria.
For drive waveforms at low frequencies, a fluorescent tube has time

Fig. 1. Generalised Royer converter designed to provide the drive requirements and preferred operating conditions

potential, and effectively re-strikes on each reversal of the waveform polarity. This results in flicker. At high drive waveform frequencies, this effect is not apparent, and the lamp approximates to a resistive load. Usual operating frequencies range from $25-120 \mathrm{kHz}$, dictated by inaudibility requirements and converter inductor size.
Drive requirements dictated by the cold-cathode fluorescent tube's behaviour and preferred operating conditions can be achieved by a resonant push-pull or Royer converter, Fig. 1.
Transistors $\operatorname{Tr}_{1,2}$ are saturated by base drive provided by the feedback winding W4. Base current is defined by resistors R_{1} and R_{2}. Supply inductor L_{1} and primary capacitance C_{1} force the circuit to run sinusoidally. This provides the drive waveform to the load and also results in minimised harmonic generation and rf interference.
Voltage step-up is achieved by the W1:(W2+W3) turns ratio. Secondary winding ballast capacitor C_{2} sets tube current.
Prior to the tube striking, or when no tube is connected, operating frequency is set by the resonant parallel circuit. This comprises primary capacitance C_{1} and the transformer primary windings W2 and W3. Once the tube has struck, ballast capacitor C_{2} plus distributed
tube and parasitic capacitances are reflected back through the transformer, lowering operating frequency.

The secondary load can become dominant in circuits with a high transformer turns ratio, for example, those designed to operate from very low dc input voltages.

Each transistor's collector is subject to a voltage $2 \times \pi / 2 \times V_{\mathrm{s}}$ or $\pi \times V_{\mathrm{s}}$. Voltage V_{s} is the dc input voltage to the converter. To reliably strike the tube this primary voltage is stepped up by the transformer turns ratio Ns: Np . Starting voltage is dependent on display housing, ground plane location, tube age, and ambient temperature.

Longer tube life

Incorporating the converter within a control loop can be used to regulate tube current. This helps maximise tube life, ensure a constant light output as battery pack voltage decreases and enable the adjustment of tube brightness.

The usual circuit employs a Buck or step-down converter driven directly from the battery pack to increase efficiency. It feeds either the centre tap of the transformer or the emitter current of the transistors depending on the controller's technology and capability, Fig 2a) and b).
The controller can monitor tube current directly in the secondary or in some recent systems by the primary

Fig. 2a) and b). Royer converters with pulse width modulation. The circuits employ a Buck or stepdown converter directly from the battery to increase efficiency feeding the centre tap of the transformer, or the emitter current of the transistors.

(a)

Fig. 3a). Linear Technology Icd backlight converter for a fluorescent lamp. Based on the Buck converter current fed Royer scheme of $2 b$), the circuit has a stated electrical conversion efficiency of 88%. b) Maxim /cd backlight converter.

the stated value for Fig. 3 being 88%. Higher efficiencies up to 92% are possible by using larger transformers to reduce copper and core losses.
Additionally, the note lists detailed descriptions on transistor choices
current. Using the primary current method allows the tube to be fully floating with low high-voltage loss. Figures 3a) and b) show circuits based on the Buck converter current fed Royer scheme of Fig 2b). Each
monitors lamp current directly, averaging the positive half cycles of lamp current, and applying this signal to the controllers feedback pin. Electrical conversion efficiency using this form of circuit can be very high, suitable for the Royer converter with regards to performance, efficiency and breakdown characteristics.
Zetex, Fields New Road,
Chadderton, Oldham OL9 8NP, Tel, 0161-627 5105, fax 0161-627 5467.

Active power factor correction for psus

Waveform distortion and overheating of transformers and neutral conductors in three-phase systems are just a few of the effects due to the poor power factor of electronic power conversion equipment.
In its simplest form, poor power factor caused by reactive linear circuit elements results as the current either leads or lags the voltage, depending on whether the load looks capacitive or inductive, Fig. 1a). This type is easily corrected by adding a reactive component of opposite sign in parallel with the load to cancel the reactive term, Fig. 1b.
Alternatively poor power factor
associated with electronic power conversion equipment is caused by nonlinear circuit elements. In most offline power supplies, the ac to dc front end consists of a bridge rectifier followed
by a large filter capacitor, Fig 2a). Current is drawn from the line only when the peak voltage on the line exceeds the voltage on the filter capacitor, Fig. 2b). Since the rate of rise and fall of current is

(b)

Inductive Load

Fig. 1a). Traditional poor power factor - the current either leads or lags the voltage. b) An easy way to correct this type of poor power factor is to add a reactive component of opposite sign in parallel with the load.

Fig. 2a). off-line power supply with a ac-dc front end consisting of a bridge rectifier and large filter capacitor. 2b) Current is drawn from the line only when peak voltage on the line exceeds voltage on the filter capacitor c) Typical input current spectrum of an electronic load. The odd harmonics are generated as a result of poor power factor occurring in electronic loads.

APPLICATIONS

Fig. 3a). Here, correction for poor power factor associated with electronic power supplies is active. A control circuit adjusts a boost voltage to maintain a sinusoidal input current. b) shows waveforms maintained by the active power factor correction circuit of 3b).
(a)

greater than that of the line voltage, and current flows discontinuously, a series of predominantly odd harmonics is
generated, Fig. 2c), causing problems with the power distribution system. Slightly improved power factor of the system of Fig. 2 can be achieved by adding series inductance with the line or decreasing the value of the holdup capacitor, which will lengthen conduction angle. Unfortunately both these solutions limit the amount of power that can be drawn from the line.

Active approach to PFC
During the operation of an active power factor correction circuit, Fig.
3a), incoming line voltage passes through a bridge rectifier producing a full wave rectified output, Fig. 3b), curve A. Since the line peak value is less than the bus voltage, no current flows into the holdup capacitor unless line voltage is boosted above the
voltage present on the holdup capacitor. This allows the control circuit to adjust the boost voltage, Fig. 3 b), curve $\mathbf{B}-\mathbf{A}$, maintaining a sinusoidal input current.
This is maintained by the control circuit using the input voltage waveform as a template. It measures the input current, compares it to the input voltage waveform, and adjusts the boost voltage to produce an input current waveform of the same shape, Fig. 3b), curve 1 .
Simultaneously, the control circuit monitors bus voltage and adjusts the boost voltage to maintain a coarsely regulated dc output, Fig. 3b), curve B. Since the primary function of the control circuit is to maintain a sinusoidal input current, a slight variation in dc bus voltage is allowed.
Because a well designed power factor correction circuit replicates the distortion present in the incoming line
(b)

voltage, it is essential to use a low distortion voltage source when evaluating such circuits.
Figure 3b) illustrates the approach to power factor correction taken with the Vicor VI-HAM harmonic attenuator module, a component-level ac front end that, when used with VI-26x or VI$J 6 x$ dc-to-dc converters, provides a universal input, near-unity power factor and an off-line switching power supply meeting IEC 555.
Using an active power factor correcting circuit results in few discontinuities in input current and consequently low distortion and harmonic content of the input current drawn from the line.
This description represents most of Vicor UK's recent application note on active power factor correction. ■ Vicor UK, Suite 15, Coliseum Business Centre, Camberley, CU15 3YL. Tel, +44(0) 1276-678222, fax, 681269.

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Malcolm Wells on 0181-652 3620
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

[^9]TOROIDAL TRANSFORMERS
High Quality
Low Prices
In addition to our standard range we will be pleased to quote for your special requirements.

PRICE LIST

VA	Mail Order	Quantity Price Excluding VAT \& Carriage				
		2+	$10+$	25+	$50+$	100+
15	14.59	10.21	7.69	5.69	5.52	5.35
30	16.04	11.23	8.45	6.25	6.06	5.89
50	17.83	12.48	9.40	9.95	6.74	6.53
60	18.02	12.61	9.49	7.02	6.82	6.61
80	17.98	12.60	9.49	7.02	6.81	6.60
100	21.07	14.74	11.11	8.21	7.96	7.72
120	21.54	15.08	11.35	8.39	8.15	7.89
150	25.98	18.19	13.70	10.12	9.82	9.53
160	23.83	16.68	12.56	9.28	9.00	8.73
225	30.10	21.07	15.87	11.73	11.39	11.04
300	34.32	24.02	18.09	13.38	12.98	12.58
400	46.19	32.32	24.35	17.99	17.47	16.94
500	50.48	35.34	26.61	19.67	19.09	18.51
625	53.09	41.36	31.14	23.02	21.24	20.57
750	58.39	44.23	33.30	24.62	23.89	23.17
1000	78.80	55.16	41.54	30.70	29.80	28.89
1200	82.45	57.72	43.46	32.12	31.17	30.23
1500	105.10	73.63	55.40	40.94	39.74	38.53
2000	114.45	96.13	72.39	53.51	51.93	50.36
2500	163.04	114.13	85.94	63.51	61.64	59.79

These prices are for 240 volt primary and two equal secondaries with $8^{\prime \prime}$ colour coded fly leads.
Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)
Mail order prices include vat and postage
Please do not hesitate to telephone or write with your particular requirements

16 Knight Street, Sawbridgeworth, Herts CM21 9AT
Tel: 01279600139 Fax: 01279726379

CHART AUDIO LEVELS On-screen colour display or hard copy printout

PPM10 In-VIsion PPM and Chart Recorder generates a display emulating the well known coaxial TWIN movements for monitoring stereo audio levels and mono compatibility. Also: TWIN TWIN PPM comprising two PPM9 boards, featuring inherent stability with law under microprocessor control, the unit gives simultaneous monitoring of A/B on red/green and M/S on white/yellow pointers. Manufactured under licence from the BBC.

* Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz} *$ Stabilizer frequency shift units for howl reduction $* 10$ Outlet Distribution Amplifier $\$$ Stereo Variable Emphasis Limiter \star Stereo Disc Amplifier \& Peak Deviation Meter * PPM9, PPM5 hybrid and PPM8 IEC/DIN -50/+6dB drives and movements \star Broadcast Stereo Coders * Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ *

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

RAPID, ACCURATE ELECTRONICS CAD

Schematic and PCB CAD

EASY-PC Professional

Filter Design

FILTECH

Number One Systems

Europe: Ref: WW, Harding Way, St.Ives, Cambs, PE17 4WR, UK
USA: Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 USA

Email: sales@numberone.com
Tel: $\quad+44(0) 1480461778$
Fax: $\quad+44(0) 1480494042$
Tel/Fax: (408) 395-0249
ТеІनах. (408) 395-0249

CLASSIFIED

ARTIIES WANTED

WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE
CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

WANTED!!
Top prices paid for your test equipment made by HEWLETT-PACKARD, MARCONI, FLUKE, TEKTRONIX, BOONTON, ROHDE \& SCHWARZ etc.

From Europe's No. 1 Test Equipment Leader ROSENKRANZ-ELEKTRONIK, AXEL ROSENKRANZ GROSS GERAUER WEG 55, 64295 DARMSTADT/GERMANY Phone: 0049-6151-3998-0 Fax: 0049-6151-3998-18 CONTACT US NOW!
You are looking for test equipment? More than 10,000 units in stock for immediate delivery. Call or fax for our new 100 page catalogue
\qquad
** WHAT WE DON"T HAVE YOU DON'T NEED **

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Plese submit preliminary information or lists for immediate response to:
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT
Telephone 01621.893204. Facsimile 01621-893180.
WANTED: TEKTRONIX OSCILLOSCOPE Type 547 - Dead or Alive. Good money paid. Telephone Chris on 01869277092 (evenings).

* *WANTED * \star

Test equipment, Electronic Scrap, Valves,
Transmitters/Receivers, Factory \& Warehouse Clearance.
Confidentiality Assured.

TELFORD

ELECTRONICS
Phone: 01952605451
Fax: 01952677978

RECRUITMENT

Axonn Corp. is the leading supplier of high performance, low cost, embedded spread spectrum technology. Axonn's Fortune 500 customers integrate our SW and HW designs into an impressive array of innovative, very high volume applications. Our designers work hand-in-hand with engineers worldwide to create future product lines. Axonn continually researches new, patentable RF communication techniques.

STAFF RF DESIGN ENGINEERS

Hands-on design experience required with frequency synthesizers, receiver, and transmitter designs at 900 and 2400 MHz . Must be proficient with RF modelling software such as Touchstone or Eagleware and experience with surface mount devices.

SOFTWARE ENGINEERS

Must have experience in single chip microcomputer design and assembly language programming. Experience in $\mathrm{C} / \mathrm{C}++$ development, knowledge of DSP techniques desirable.

DSP DESIGN ENGINEER

Experience designing embedded hardware and firmware DSP microprocessor based solutions. Advanced degree and/or experience designing digital filters and transforms desirable. Experience using TMS320C2x, Z89xxx, ADSP21xx a plus.

If you want challenge, variety, design creativity and the growth available in a smaller company, FAX your résumé to ++1-504-282-0999, Dr. Walter Rawle.

101 W. Robert E. Lee Blvd., Suite 202
New Orleans, Louisiana, USA

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity

Prompt service and cash M \& B RADIO
86 Bishopgate Street,
Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

ARIICLES FOR SALE

FOR SALE PHILIPS Video Recorder Type N1501. Good condition with cassettes, handbook. £68. Bovill, 12 Gorselands Close, West Byfleet KT14 6PU.

TEKTRONIX 465 Dual CH Scope complete with Tektronix Mobile Trol ley, Manuals and Probes $£ 350$. Car riage extra. Very clean, working. Tel: 01573224664

VALVES

ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

> COLOMOR ELECTRONICS LTD 170 Goldhawk Road, London W12 8HJ England.
> Tel: 01817430899
> Fax: 01817493934

CLASSIFIED

ARTICLES FOR SAIE

0
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT
Cooke International
ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB
Tel: (+44)01243545111/2 Fax:(+44)01243542457

OPERATING \& SERVICE MANUALS

CONTACT
Cooke International
ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham,
Bognor Regis, West Sussex, PO22 OEB
Tel: (+44)01243545111/2 Fax: (+44)01243542457
CIRCLENO. 150 ON REPLY CARD

INDEX TO ADVERTISERS

PAGE
Adept Scientific Micro
959
Airlink Sales Co
AMI
Anchor Surplus Ltd
BK Electronics
Bull Electrical
Chelmer Valve Company 944
CMS
936, 944
Cricklewood Electronics 951
Crossware Products
Crownhill Associates
Danmere
Dataman
Devantech Ltd
Display Electronics Ltd

Equinox Technologies
IFC
Field Electric Ltd
927

PAGE
Grandata Ltd
Halcyon Electronics
Hart Electronic Kits HSPS Ltd

Interconnections Iosis

Johns Radio JPG Electronics

Kestrel Electronic Co
Lab Center 916,946

Langrex Supplies Ltd
Lloyd Research
M\&B Radio (Leeds) Millford Instruments

Number One Systems
Olson Electronics Ltd

942
953
948
969
959
946
957
969
934
916, 946
934

959

PAGE
934
906
1000
Ralfe Electronics
Seetrax Ltd 953
Simextron Global
Smart Communications
936
944
906
953
981
997
927
$\begin{array}{ll}\text { Technology Sources Ltd } & 969 \\ \text { Telford Electronics } & 951\end{array}$
Telford Electronics
982
Those Engineers Ltd 988
Tie Pie Engineering 978
Triangle Digital Services 981
Tsien Ltd
988
IBC

Radio Books

UK Scanning Directory, Eavesdropping on the British Military, Shortwave Maritime Communications Scanner Busters and many more.
Ask for details and Free catalogue Interproducts Tel. \& Fax: 01738-441199

ARIICLES WANTED

TOP PRICES PA\|D
For all your
valves, tubes, semi conductors and IC's.

Langrex Supplies Limited
1, Mayo Road, Croydon.
Surrey CRO 2QP
TEL:
0181-6841166 FAX:
0181-6843056

 HP141T 1.25 GHz system (8552B, 85548)
HP3580A 5 Hz - 50 WHz audio trequency spectinm analyser HP3582A audio requency fit analyser duaz-channel HP8591E 1.86 Hz synthesized with tracking gen option HP8568A hight-specitication 1.5 GHz spectum analyser MARCON 2388100 Hz -26.56Hz (in 1 Hz Steps!) TEKTRONIX 492 22GHz spectum anayser GPIB
MARCONI INSTRUMENTS

2019A synthesized AMFM signal generator 80 kHz 1040 MHz
2305 modulation analyser $50 \mathrm{KHz}-2.3 \mathrm{GHz}$
2828 A2829 digital simulatorianalyser
2286 2926 TV generator \& insenter (NTSC variant) 64606421 power meter \& sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$ 6500 ampiltude analyser cw 206514 wavegulde delectiors
 OA2805A pam regenerator lest set
TF2910/4 non tinear distorion (video) test set
TF2910 TV interal bime!

- ralfe electronics $0_{1} 1_{\text {proclessisional Tem }}^{\text {en }}$

We are very pleased to announce that we have recently been successful in achieving accreditation to BS EN ISO 9002 (Cert 95/013).

Our continued commitment over the years to provide a genvine quality service has now been received 'official recognition'!

$£ 15000$	
$£ 500$	
$£ 350$	
$£ 2500$	
$£ 1000$	
$£ 750$	\top
$£ 500$	T
$£ 250$	

KIKUSUI 8520 trequency response analyser $20 \mathrm{H}-200 \mathrm{KHz}$ KKUUUU 8520 trequency response analyser $20 \mathrm{H}-200 \mathrm{~K}-\mathrm{z}$
PHILIPS PM8272 X-Y \& Y-t dual-channel pen recorder RACAL-DANA 1992 frequency counter 1.3 GHz IEEE option SULZER LABORATORIES rubidium frequency standard SYSTRON DONNER 1300 symthesized siga generator 100 th- IGHz GPIB TEKTRONIX 1503 C tor with battery \& printer options
 WAVETEK 2520 synthesized signal generator $200 \mathrm{KHz}-2000 \mathrm{MHz}$

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.
 (GPIB BROCHURE) IEEE 488.2 INSTRUMENT CONTROL Eight page brochure covers GPIB interfaces, support products, accessories, and software. Includes information on IEEE 488.2 -compatible interfaces for your desktop PC, Macintosh or workstation, as well as the PCMCIA-GPIB interface, for notebook or laptop computers. These interfaces feature the TNT4882 and 4882C ASICs which are also described. Application software and software drivers for numerous operating systems are discussed, in addition to the new HS488 high-speed GPIB handshake protocol. NATIONAL INSTRUMENTS For further information Freephone 080028987.

CIRCLE NO. 159 ON REPLY CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

CIRCLE NO. 158 ON REPLY CARD

I DON’T BELIEVE IT!

This new 264 page Guide to SMDs now includes 64 pages of SM Connector Systems from AMP, JAE, Molex, Hirose, Oxley, Cinch and Sumitomo and mainly from stock as well. Not only that but it's bulging with new SMDs from over 30 franchises which now include Panasonic. What an incredibly useful publication.

I had better ring
01530510333 for my copy before they run out!
CIRCLE NO. IGOON REPLY CARD

1995 MASTER PRODUCT CATALOGUE NOW OUT!
Test and instrument control solutions. 48 pages of full description and technica data on our own range of solutions to your PC and PS2 interfacing problems: IEEE488 (GPIB) * DIO * Timer/Counters *RS232 * RS422/485 * A/D * D/A * plus Opto Isolated versions. New Parallel/Serial RS232. Opto Dual RS232. Motion Control, Converter and Repeater for 1995! SO 9001 Quality guarantee \downarrow UK design and manufacture \checkmark 36 month no-quibble warranty δ Telephone hotline support f Competitive pricing on the page \checkmark Intelligent solutions 8 friendly service \downarrow BRAIN BOXES
Unif 3f Wavertree Boulevard South Wavertree Technology Park
Tel: 01512202500 Fax: 01
ax: 01512520446

ULTIboard, one of the leading PC based design systems, is supplied worldwide via a network of ULTImate Technology offices \& distributors. ULTIboard's success with professional designers is primarily due to its superior interactive functionality.
REAL TIME Placement Help, REAL TIME Design Rule Check, Reroute-While-Move and Trace shoving, are all features wich will dramatically reduce your design time.
Integration with ULTIcap guarantees smooth data flow between Schematic and PCB editing. The inclusion of third party netlist interfaces ensures ULTIboard will fit into any design environment.
Another of ULTImate Technology's strengths is our flexible growth path. Users may start with a low cost ULTIboard Challenger and grow, step by step, to a 32 -bit Advanced Design system including Ripup and Retry Autorouting.
ULTImate Technology also looks after existing users. With valid maintenance they will be upgraded to a new system based on their original investment. For instance, a 1987 ULTIboard-DOS system has now been upgraded to a 32 -bit Advanced system with 2 Autorouters. Regular User Meetings and -Surveys result in 2 major Updates per year.

ULTImate Technology not only adds value to your investment in a ULTIboard system but backs it up with the highest quality support from our distributors and offices.

SPECIAL OFFER
 ULTIboard Entry Designer* UK: £ 795
 A complete, professional Design System with 1400

 pin Design Capacity:ULTIcap Schematic Capture + ULTIboard Printed Circuit Board Design, including 2 autorouters, introduction \& tutorial manuals, user manual, extensive Shape documentation in binder. FREE UPGRADE TO WINDOWS-95 VERSION 5 AND EMC-EXPERT*!FOB ME UNECDED
*List Price at release: UK: $£ 1.890$
 \section*{HOW INTERACTIVE
 \section*{HOW INTERACTIVE IS YOUR IS YOUR BOARD STRATEGY} BOARD STRATEGY}

Your move
©o you want the best placement
©゚ YOU use SMD Technology
© YOU want 100% design integrity
©O. YOU want 100% automatic routing \qquad
0
ULTIboard's move
Oin In addition to dynamic rats nests, force vectors and density histograms, ULTIboard's Direct Reconnect instantly displays the shortest possible connections. Automatic Gate- \& Pin Swap with full Backannotation guarantee the best.
ULTIboard understands the different soldering techniques that apply to SMT Flip your SMD to the other side of the board and ULTIboard automatically applies the pad definitions for either wave or reflow soldering.
Ultiboard Real-Time DRC does not allow you to accidently connect wrong pins or violate trace clearances. It always respects your design rules.
The ULTIroute GXR Ripup \& Retry Autorouter is able to remove connections that cause a block and automatically reroutes the removed connections. The user can define the Autorouter parameters.
'0 you don't want Autorouters

ULTIboard's acknowledged powerful interactive features s.a. Reroute-While-Move and Trace-Shoving under Real-Time DRC guarantee flawless designs in the shortest time. But for non critical traces you can use our second Autorouter which blends in with your manualy routed traces to allow you to route per net, component or window.

 \title{
The handiest
 \title{
The handiest programmer on earth
}

Here's why:

- Totally handheld programmer/emulator manufactured in the UK
- Fast approved programming algorithms; eg program and verity: National 27 C512 in 16 seconds, AMD 29F010 in only 90 seconds
- EPROMS to $16 \mathrm{Mbit}, 5 \mathrm{v}, 12 \mathrm{v}$ and BOOT-BLOCK FLASH, EEPROMS and PEROMS
- Three year parts and labour guarantee - Full 24 byte on-screen editor
- Continuous programming whilst charging (nonstop operation)
- Designer case - feels as good as it looks
- Big, easy-view 80 character supertwist LCD
- Optional modules available to program PIC (all 16/17 series), 8751, 16-bit EPROMs, MROM-EPROM, 16-bit FLASH, Toshiba 4-bit, Hitachi H8, SERIAL EEPROMS
- Optional sockets for programming and emulating PLCC devices
CIRCIE NO. 103 ON REPLY CARD

plus VAT 3 year guarantee 30 day free trial 4Mbit upgrade only E39 pus VAT

FREE software upgrades for life

EREF emulation leads

FREE Windows and DOS software

S4's 32 pin ZIF socket programs a huge library of 8 and 16-bit EPROMs,
EEPROMS, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms.
Dataman never charge for updates or technical support, a vital factor in determining a cost-effective programing solution for the years ahead. Upgrading your S4's device library couldn't be simpler. As well as our high speed bulletin boards, we also offer full Internet access to our Home Page which contains all the latest software as well as hints and tips.
Built-in emulation enables you to see your code before commiting yourself to an EPROM.

Load your program from an EPROM or download code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM.
The S4 Package comes complete with mains charger, emulation leads, organiser-style instruction manual, Windows and DOS terminal software and a three year guarantee. S 4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow.

Bona-fide UK customers can try S 4 for thirty days without risk.
24,000 engineers
worldwide can't be wrong!

22 Lake Beauty Drive, Suite 101
Orlando, FL. 32806, USA
Tel: (407) 649-3335 Fax: (407) 649-3310 BBS: (407) 649-3159 24hr Modern: V.34/V.FC/V.32bis

[^10]
[^0]: Electronics World + Wireless World ls published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tilx:892984 REED BP G
 Cheques should be made payable to Reed Business Publishing Group. Newstrade: Distributed by Marketforce (UK) Ltd,
 247 Tottenham Court Road London W1P OAU 0171 261-5108.
 Subscriptions: Quadrant Subscription Services, Oakfield House,
 Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.
 USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42 nd Street, NY 10117.

[^1]: Overseas advertising agents: France and Belgium: Pierre Mussard, 18 20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Tlx 23827.
 USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate,
 Carlisle. Cumbria, CA2 7NR
 Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
 ©Reed Business Publishing Ltd 1995 ISSN 09598332

[^2]: Specifications of the
 Internet modem design

 - V. 21 (300/300 bps)
 - V. 23 (75/1200bps)
 - V. 22 ($1,200 / 1,200 \mathrm{bps}$)
 - $V .22$ bis $(2,400 / 2,400 \mathrm{bps})$
 - V. 32 (9,600/9,600bps)
 - V.32bis ($14,400 / 14,400 \mathrm{bps}$)
 - V. 42 and MNP-2-4 error correction
 - V.42bis and MNP-5 data compression
 - Fax send \& rec. to $14 \mathrm{kbit} / \mathrm{s}$ (V.17)
 - Fax class 1 interface
 - MNP-10 cellular throughput enhancement - COM1, 2, 3 or $4 \&$ extended IRQ support

[^3]: When communicating data over the public switched network, data rate is usually limited by the bandwidth of the telephone line, which is only designed to carry part of the voice spectrum. But data compression and error correction can provide significant benefits.

[^4]: Further information from:
 CROSSWARE PRODUCTS
 St john's Innovation Centre, Cowley Road, Cambridge, CB4 4 WS , uK Tel: $+44(0) 1223421263$, Fax: +44 (0) 1223421006 BBS: +44 (0) 1223421207 ($8 \cdot \mathrm{~N}-1$), internet sales@crossware.com

[^5]: Richard is Technical Director of Speake \& Co Ltd.

[^6]: Pricess exdude poslage (t5 for UK) and VAT, All manulactures'! trademanks acknowledged.

[^7]: *The authors are at Lakehead University, Ontario, Canada.

[^8]: \# Diggins, J., MBE, is a retired director from Racal Electronics Plc.

[^9]: Please send your completed forms to:
 Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

[^10]: Via the Internet:
 Home Page: http://www.dataman.com FTP access: ftp.dataman.com Email: sales@dataman.com

