

APRIL 1995
 £2.10
 ISDN - inside the world network

Linsley Hood attenuator for audio

Evidence for the slew-rate debate

Self-tuning 50 Hz filter for instrumentation

Sampling tiny currents

Applications: programming PIC processors

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

* Ability to program 3 volt devicas.
* Calibration software to comply with ISO9000.
* Batch software for production programming.
* High quality 42 pin Textool zero insertion force sockets.
* Rugged metal housing and heavy duty screened cable.
* Ground control circuitry using relay switching.
* Protection circuitry to protect against wrong insertion of devices.
* Speed optimised range of programming algorithms.
* Supplied with MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 \& 68HC11.

NOW ONLY

* Programs PIC16 series without adaptor.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* One model covers the widest range of devices, at the lowest cost.
* Over 2000 different devices (including several hundred MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* High speed PC interface card designed for use with all types of PC.
* No need to tie up a slow parallel port.
* More Sunshine programmers sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL.
* Two year free software update.
* Free demo disk with device list available.

ORDERING INFORMATION

Expro-80 complete with interface card, cable, software and manual

£469

Please add $\mathbf{£ \&}$ carriage (by overnight courier) for UK orders, $£ 30$ for export orders and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO. Official orders are welcome from Government bodies and local authorities.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 0181951 1848/9

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 8Mbit EPROM Programmers:
ie: 1 gangf149
4 gang $£ 229$
8 gang $£ 399$
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer.

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16 Mbit , the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPLetc. or by the user. The Expro-80 can even check and identify unmarked devices.

The Expro-80's hardware circuits are composed of 42 set pin-driver circuits each with control of TTLI/O and "active pull up", D/A voltage output, ground, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 volt programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability.

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard.

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

Slew rates become much more important at high levels - Ben Duncan provides evidence on page 303.

FEATURES

276 FRONT-END FILTERING

Notch filters for cancelling 50 Hz hum from instrument inputs can suffer from drift. A self-tuning filter is the answer.

280 THE OPTICAL TECHNOLOGY DRIVE

Praveen Asthana of IBM Corp explores the array of optical disk technologies now in use - and those to come.

287 CAPACITOR DISSIPATION

Power dissipation in a capacitor can lead to early failure, yet it is difficult to evaluate and often overlooked.

292 PHASORS AND STANDING WAVES

How currents and voltages are distributed in a standing wave, explained by Geoffrey Billington.

298 SUMMING UP CURRENT

Sampling currents as small as nano-amps, ready for measurement, is made easy with a precision integrator.

303 SIMULATED ATTACK ON SLEW RATES

Ben Duncan presents evidence to show that slew rates need to be much faster than Doug Self suggests.

311 ISDN - WORLDWIDE NETWORKING

Via isdn, anyone with a telephone can communicate voice and speech at up to $144 \mathrm{kbit/}$. Mike Button explores how.

320 AUDIO ATTENUATOR

By chopping the input signal, Linsley Hood's attenuator achieves 0.005\% distortion yet remains easy to implement.

330 FILTERS IMPROVE USING CF OP-AMPS

Current-feedback devices extend the useful frequency limit of op-amp active filters to well beyond 1 MHz .
346 WINNING DESIGNS
Three entirely new power control circuits incorporating the IR215I.

REGULARS

267

268

COMMENT

Matchsticks and magic mushrooms.

NEWS

Silicon-carbide semiconductors.
272 RESEARCH NOTES
Satellite tomography.
323 LETTERS
Mosfet versus bipolar; Cable noise
336 CIRCUIT IDEAS
Power supply preregulator; Sample rate testing; NiCd discharger.

Special offer - see page 296

340 APPLICATIONS

Simple parallel port PIC programmer, Power from the 'phone line.

351
NEW PRODUCTS

Pick of the month - classified for convenience

Next month:

Free disk offer - Windows circuit simulaior. Plus Migrating to C_{++}, Fets vs bipolars in power amps, 3-way microreflex loudspeaker. MAY ISSUE - ON SALE 27 April

Cover Illustration Jamel Akib

Optical storage technologies - present and future - explained, page 280.

New laser technique could result in fewer visits to the dentist - page 272.

Exclusive to EW+WW readers is the offer of a high-performance 1.3 GHz frequency/period meter, normally costing $£ 134$ - yours for just $£ 85.76$

Analog Module: Tuning an RF front end.
"Electronics Workbench is the best simulator to design and verify circuits."

Gorklon MacDonaild
Production Engineer Technician

Electronics Workbench is a highly productive bench where you design and verify circuits in a fraction of the time Connections are always perfect. Wires route themselves. And the simulated components and test instruments work just like the real thing.

Digital Module: Analyzing a logic circuit.
It's faster than building with actual components because you change connections and component values instantly. And since the simulated components are free, you don't need to replace burnt-out parts or keep an extensive inventory. The result: You save precious time and money. Guaranteed!

The standard for simplicity and power for over six years, Electronics Workbench is the most popular tool of its kind. It has gained woridwide acclaim as the ideal complement to any test bench. Fact: Over 90% of our customers recommend it to their friends and colleagues.

Electronics

Workbench

JuSt £199*

Electronics Workbench
 The electronics lab in a computer ${ }^{\text {тм }}$

Call: 440203233216

Robinson Marshall (Europe) PLC
Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF FAX: (44) 01203233210
*30-day money-back guarantee.
Shipping charges - UK $\mathbf{1 4 . 9 9}$. All prices are pilus Va.t.
All trademarks are the property of thelr respective owners.

EDITOR

Martin Eccles
0181-652 3128
CONSULTANT
Frank Ogden

DESIGN \&

 PRODUCTIONAlan Kerr
EDITORIAL
ADMINISTRATION
Jackie Lowe
0181-652 3614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

E-MAIL ENQUIRIES

martin.eccles@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-652 3620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
0181-652 3620
ADVERTISING
PRODUCTION
Christina Budd
0181-652 8355
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-652 8956
CLASSIFIED FAX
0181-652 8956
SUBSCRIPTION
hotline
01622721666
Quote ref INJ

SUBSCRIPTION

QUERIES
01444445566
NEWSTRADE
DISTRIBUTION
Martin Parr
01816528171
BACK ISSUES
Available at $£ 2.50$
01816523614
ISSN 0959-8332

Matchsticks and magic mushrooms

"We do tend to push the weaker girls no wards IT" the headmistress of one of the better gixls echools once confided in me, as we discusced the use of icmputers. in education.

So there it is. IT is the Domet ic Suleng ar he 90 . fit only for cotton-heads that ougtli to be bal frot and babbit by the time they're sixteen fand would be if their parents weren't so well-to-do, The sort of girl) that's lucky to be leaving school with any's som dr qualification. So push 'em towards IT As ki the more academically-minded girls, well - who can blime them if they consider computers and ieverving to with them beneath their dignity?

I read in a recent issue of CUE Nemplettits. (Computer-Using Educators, Inc wr Alameda, California): "The dilemma in 1990 we lhad the technology, we could create powerful, well-des word-processed documents, charts and graphs, wh name it. What power to unleash in a classroom! Unfortunately my students and I shared The sathe secret - all of these skills onls counted in the domputer classroom." Schandler, writer of the antige thtitited A. Goal Without a Plan is a Dream, goes on to ritsount how things have changed. "The fab had moved frong the place where students wene feaming skills that had little relevance to their real or academic lives to a studio where tools were made available and ceranvely. used."

Assuming that Ms Schandler is not talking through her sweatband, then by comparison we in the Great Britain of 1995 are stuck in a 1980s timewarp. I didn't say 1990s because in the eighties we were ahead of the Californians in the constructive use of computers in the classroom.

But the world moves on - and it seems Britain doesn't. Chris Abbott, writing in Educational Computing and Technology, November 1994, recounts his embarrassment at having to tell erstwhile overseas visitors, who had come to this country to see what had been achieved by the network of LEA centres, that most of them have closed. "The 1993 Education Act suggests that private sector centres will develop overnight, like so many mushrooms, where LEA centres close. No such magical events have taken place." He judges that, "there are only two kinds of organisation which now have the funding, the resourcing and the legal right to develop new structures: the universities and the IT industry."

Both of course have their own agenda. Industry will argue, as its running-dogs have been doing in the correspondence column of Computing, that children

Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if availabie) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + WIreless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. T|x:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Lid, 247 Tottenham Court Road London W1P OAU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oaktield House, Perrymount Road, Haywards Heath, Sussex RH16 HDH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year (normal rate) £ $£ 0$ UK and £43 outside UK.
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.
made be thtyt on 'indultry soundard' software and tiardware Whe'd emplay someboly trained on an Hepm? \&ems ro cimph thó nlatref \& far as they were soncemed.
Of courge forer wer indigulant replies pointing oat uthe chüren being "rraimed' now woin't be looking for jobs for anotior ten years f anftwher price now the industry standards of th jeers ago? (Eight-bit gomputers, five-inch floppies, 64 k\rangle of memory, GISCOBOL seen as the only way to program a seriges. pommercial application on a pe if you were silly Aroughtor sidestep the maihtrame). Chris Abbot aguin: TI only defini on of industry standard whith has Wheteme tred bilit is some thing like sfitness for purpose a low possible ost
tf people really believed that, when purchasing ter the classroom, they wiguld not buy fashionable ndugry standárd"systems which "tre ined" but othe. proved, tinue-proof ones shich "taught" Out wo ld so expensive pack\{ges which are"süpposed to exemplify as chosely as the budget will allow, what ii out there in the Real Wbrld. In would come modellints medif in Whic the mechanisms of a word processor of itancial package (on genetic engineering or an atomic pile) could be modelled, in terms which the pupil (and pen the teacher) could grasp. So it boils down to the choice of a good, cheap durable modelling m dium. ome people build modef ls out of matchsticks Fipecially in soners, who havy the time in the world. Prestimably they woald use a fow level programming language to build a software hodsh Those of us for whom time (and patience) is in short supply need to model with larger components and subassemblies we could in principle build ourselves or at least take apart and understand. More like Lego than Lucifers.

Who can manufacture these goodies for us? Universities? When I worked in a university it was academic suicide to be caught making things easy for people with an IQ of less than 100. And as for industry - well! Who's paying? What are they buying?

I'm not being cynical. Both parties play the game by rules which are handed down to them. It's up to our rulers to make rules which are productive and beneficial, supposing they feel sufficiently motivated to do so. Education of the next generation - isn't that sufficiently motivating? Not if your mentality is straight out of "Chitty-Chitty-Bang-Bang".

Ian Clark, Educational Interfaces, Bishop Auckland

Overseas advertising agents: France and Belglum: Pierre Overseas advertising agents: France and Belgium: Pierre
Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing LId, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Tix 23827.
USA malling agents: Mercury Airfreight International Litd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

Switch for 500Gbit/s data

R
esearchers at the Electro Technical Laboratory in Japan have recently developed an 'Auston' switch that can produce electrical pulses only 570 fs in duration. This very fast electrooptic transducer opens up the prospect of communication at data rates above $500 \mathrm{Gbit} / \mathrm{s}$.
The switching element is a gap only 100 nm wide between the ends of two titanium strips laid down on the surfaces of a special gallium arsenide substrate. The switch is triggered by a 40 fs laser pulse focussed onto the GaAs surface through the gap. The incident energy causes electron hole pairs to be formed in the substrate, briefly connecting the ends of the strips together. The narrow gap and the

A 100mm wide gap between two titanium strips forms the active element of this experimental high-speed switch, developed in Japan.
special cold grown substrate, which ensures that residual pairs recombine rapidly, mean that the switch turns off again in less than $600 f s$.
Actual measurement of the switch closure time is performed using a lithium-tantulate crystal connected to the switch by a transmission line. The electrical pulse from the switch passes under the crystal, changing its refractive index. This change is detected using light pulses from the same laser.
The switch cannot be used as a receiver in current optical communications systems because light from existing optical fibres has insufficient energy (the wave length is too long) to trigger the switch. Development of an effective optical 'up converter' is needed before the full potential of the switch can be realised. The only current practical use is as a detector in nuclear accelerators where the electron-hole pairs are formed by particles passing through the substrate. Steve Bush, Electronics Weekly

- Silicon switching speeds are expected to be pushed close to 100 GHz with the launch this Autumn of the first working devices built using $0.1 \mu \mathrm{~m}$ lithography. The devices are expected to result from collaboration between Sandia National Laboratories and AT\&T Bell Labs. A fast field effect transistor, running at 90 GHz , should be the first device produced with a $0.1 \mu \mathrm{~m}$ gate (see picture caption story on page 271).

Suppliers pressure BT on high ISDN prices
 [SDN equipment suppliers

 ganged up on BT at last week's London ISDN user show, forming a pressure group to force reductions in ISDN charges. They are angry at the high price BT charges for installing basic-rate ISDN lines, claiming it is stifling the ISDN market.Although BT is running a special offer of a $£ 300$ installation fee, down from $£ 400$, this is still much higher than France's $£ 80$ and Germany's $£ 50$. Some suppliers say Mercury should enter the basic rate market (Mercury only supplies primary rate ISDN) and force BT into a price war.
At the show, suppliers held the inaugural meeting of Agis (Action Group of ISDN suppliers), aiming to pressurise BT and exchanging information to ensure interoperability of equipment. Mark Heath, ISDN marketing manager for Chase Research, said: Our intention is not to be a beat-up BT group, although everyone would like to beat them up."
BT agreed to send a representative to an Agis meeting to answer questions. More queries will no doubt be voiced by Dataflex Design, one of the group's founding members, which went into liquidation in mid-February but has now been bought out by Amstrad.

Chip growth beats expectations

Chip boom expectations for the third successive year are causing semiconductor industry analysts to revise their market forecasts for 1995 in a hurry.
Motorola has jacked up its capital expenditure plans this year to $\$ 4.5 \mathrm{bn}$, compared to $\$ 3.3 \mathrm{bn}$ last year, forecasting chip market growth between 17 and 21 percent this year.
Jerry Junkins, president of Texas instruments, reckons that the world chip market will grow 21 percent
this year to reach $\$ 124 \mathrm{bn}$ compared to \$100bn in 1994.
Mike Glennon of US market analysts Dataquest, which had forecast 14 percent worldwide growth for semiconductors this year said, "My personal opinion is that 14 percent was too low; in Europe we're looking at a 15 to 20 percent rise and world-wide we could be seeing 20 to 25 percent increase this year."
If the forecasts turn out to be
correct, this will be an unprecedented third year in a row for 20 percent plus growth in the semiconductor industry. In 1993 the industry grew 31 percent, says Dataquest, and last year it grew 28 percent.
TI believes the European market will grow 22 percent, the US market 22 percent and the Japanese market 17 percent. But the star of the show will be non-Japanese Asia ('AsiaPac') with growth of 32 percent.

Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

TRANSISTORS

SiC grows into power player

- aster power semiconductors, handling substantially higher voltages and temperatures, could be appearing in commercial applications within three years, according to latest Swedish research. The performance breakthrough will come through projected advances in silicon carbide (SiC) technology, from which the new devices will be fabricated.
Theoretical advantages of silicon carbide have been known by electronics engineers for some years. But its high melting point and extreme hardness - the very
properties that have given it such popularity in the tooling industry have made practical electronics application difficult.
Now, findings from a joint power semiconductor research programme conducted by ABB, Industrial Microelectronics Centre and Linköping University, predicts that commercial production of simple devices using SiC will be possible within three to five years. Resultant devices should need less space, have much lower power losses and generate fewer harmonic currents than conventional power semiconductors.

The attraction for power specialist $A B B$ is that the technology could be applied to high-voltage ac (hvac) and possibly high-voltage dc (hvdc) power transmission. But SiC could also enable electronics to be used in environments that have previously proved too extreme, such as car engine and automotive applications and melting furnace sensing.
All three research organisations have now moved into the second phase of their development programme, aimed at commercialising the process. Jonathan Campbell

Above - a production facility for making $0.1 \mu \mathrm{~m}$ geometry chips, built by Sandia National Labs, uses ultra-violet laser focused on a target material. A small lump of the material is vapourised turning into ionised gas. As this gas absorbs more laser energy, it heats and the plasma shines X-ray light. The rays are collimated by a mirror and shone on a reflecting mask made of a substrate coated with layered synthetic material. Circuit pattern is drawn on this with a non-reflecting organic material. A
'Schwarzschild camera', using spherical reflecting surfaces instead of lenses, makes a shrunk X-ray image of the mask pattern on the wafer. Special photoresists capable of working with soft X-rays have been developed.

Cellular battle
A obile communications suppliers Motorola and Interdigital Communications have begun a court battle which could have significant implications for the whole cellular telephone industry. Motorola is the first to contest Interdigital's patent claim over the tdma channel coding protocol forming the basis of most digital mobile 'phone networks, including GSM.

Interdigital is reported to have asked Motorola for a $\$ 200 \mathrm{~m}$ royalty patent. Motorola claimed the patents were invalid and Interdigital is pressing for increased damages and an injunction to stop Motorola making TDMA phone systems.

AT\&T, Siemens and Matsushita have agreed licences with Interdigital, but the world's largest suppliers are awaiting the outcome of Motorola's court case, which is expected to last until April.

Competition for Intel's P6

C
yrix says its M1 microprocessor can take on the Intel P6 and win according to its architect, Mark Bluhm. The firm is readying the microprocessor for a June introduction with samples now being delivered to key customers.
"The figures being put out by Intel show the $P 6$ has about a 33 percent performance advantage over Pentium, given equal clock rates," said Bluhm. "What we are seeing with the M1 is a two times performance increase over the Pentium in some benchmarks and overall a 50 percent advantage."
The current $M 1$ samples run at 100 MHz and Cyrix plans a 133 MHz version to be available early next year. By the third quarter this year

Cyrix anticipates it will be shipping about 100,000 units a month. The majority of those chips will be manufactured by IBM and delivered to about five key customers.
"We've got a P6 class machine that will be delivering revenues months before Intel," added a Cyrix spokesman. "At least one of the customers we are currently sampling plans to make the M1 their high-end microprocessor."
Cyrix originally planned to introduce the MI late last year but problems forced it to delay the chip's introduction. The M1 is similar to the P6 in that it uses a super-scalar, super-pipelined design. Tom Foremski and Simon Parry, Electronics Weekly.

Videoconference standard for analogue lines

Telecommunications manufacturers and operators plan to finalise a videoconferencing standard by the end of the year. It will support videophone and data services over existing analogue telephone lines. The ITU standards committee has approved a first draft of the H324 videoconferencing standard which is the analogue line equivalent of the H320 ISDN-based standard. The intention is to have a final draft ready by November with the first analogue pc videophone cards expected to appear early in 1996. Effectively this will kill off attempts by BT and AT\&T to impose proprietary protocols.
The standard will lean heavily on existing data transmission protocols and silicon. H324 uses the V. 34 $28.8 \mathrm{kbit} / \mathrm{s}$ data modem protocol,
and the channel is divided into a 5.3 or $6.3 \mathrm{kbit} / \mathrm{s}$ audio stream using a new audio compression algorithm. This leaves around $22 \mathrm{kbit} / \mathrm{s}$ for compressed video. Core video compression is the discrete cosine transform based H .261 algorithm used in H.320. To achieve the level of compression needed to squeeze 30 frames/s video picture into a $20 \mathrm{kbit} / \mathrm{s}$ stream, an interpolated motion estimation on P and B frames, similar to that used in the MPEG standard, is implemented.
According to Mike Whybray of BT Research's video group at Martlesham, picture quality is still limited by the $20 \mathrm{kbit} / \mathrm{s}$ bit rate. "It is better than existing analogue videophones but not as good as two channel ISDN videophones", he added.

Folded signal and corresponding digital output for one level

Placing Europe among the leaders in ultra-fast a-to-d converter design, folding interpolating technology uses analogue preprocessing to produce a re-entrant transfer function (above). This reduces the number of comparators needed, which in turn lowers power consumption relative to full flash designs. The reentrant technique reduces the number of input stages needed since quantisation levels between comparator stages are interpolated. In addition, analogue preprocessing of the input means each comparator detects more than one level of input.

UK company Phoenix Design, in collaboration with Thomson,

is currently working on a folding interpolating device capable of converting 8 bits to 1 GHz . This type of device is needed for example in spectrum-surveillance radar counter measures. The technique is already being used to produce commercially available byte-wide converters operating to 650 MHz .

Well off the rails...

Douglas Self's otherwise excellent article on power amplifier distortion derived from the power supply was marred slightly due to the erroneous replacement of Fig. 12 by a duplicate of Fig. 6. Here is the correct Fig. 12. Apologies to you, the readers, and to Douglas of course - ed.

RC filtering of the negative rail is effective at medium frequencies, even with $1000 \mu \mathrm{~F}$ of filtering.
Resistance R is
10S. Top to
bottom, curves
show 0, 10, 100
and $1000 \mu \mathrm{~F}$ decoupling on V -

Building the Tesla coil?

Malcom Wells, author of the article on Like Lightning in the March edition, has sent us these further notes that will be of interest to anyone thinking of constructing Tesla's coil.
t is interesting to note that the main secondary of Tesla's very large Colorado Springs coil has a height/diameter ratio of $1.25: 1$. This, according to a table of values compiled by Medhurst, gives an optimally low value for ' H ' of 0.46 in the secondary self-capacitance equation of my article. Also, the secondary was mounted well off the ground, which further reduced its capacitance. The very useful formula developed by Medhurst allows a coil to be designed for a predictable resonant frequency, to avoid clashing with radio beacons.
In my article, in the box entitled Essential Equations, there was an error in the equation relating to the minimum height per turn for the primary coil. In addition, the equation should have been separated from the text. The equation should have read,
Minimum height per turn $=\left[\frac{3 V_{c}}{N_{p}}+D_{\text {wire }}\right] \mathrm{mm}$

where $V_{\mathrm{c}}=$ peak primary capacitor voltage in kilovolts, N_{p} is the number of turns and $D_{\text {wire }}$ is the diameter of the pipe - which should be as large as possible - used for the primary coil in millimetres. This gives a minimum clearance of $3 \mathrm{~mm} / \mathrm{kV}$ between turns.
The sphere should be mounted $d \mathrm{~mm}$ above the secondary, and finally, the toroidal terminal should be mounted $d_{1} / 2 \mathrm{~mm}$ above the coil.

RESEARCH NOTES

Jonathan Campbell

No-cavity laser

As the laser melts tooth enamel to improve cavity resistance, a computer monitor plots the
temperature of the tooth during heating $u p$ and cooling. (Picture James Montanus)

Lew people, outside the most fanatical of curry eaters, will have wondered what it it might be like to have their teeth melted. But if scientists from the University of Rochester and Eastman Dental Center reach their goal we could all one day share in that experience - and have healthier mouths into the bargain.
The trick is, say the researchers, to use a specially-tuned CO_{2} laser to raise the outermost $5 \mu \mathrm{~m}$ of the tooth to $1000^{\circ} \mathrm{C}$, instantaneously melting, then fusing, the enamel coating.

Enamel that is more chemically resistant to the acids that cause cavities should be the effect, with fewer fillings needed.
The laser is tuned to 9.3 or $9.6 \mu \mathrm{~m}$, rather than the conventional $10.6 \mu \mathrm{~m}$, as at these wavelengths the light is absorbed almost completely by the enamel. This, and using $25100 \mu \mathrm{~s}$ pulses at a time, enables the surface of the tooth to be melted while its core is unaffected. When the enamel fuses after treatment, it is claimed to be $70-85 \%$ more resistant to attack -

Following the road to driverless cars

[leets of autonomous vehicles effortlessly steering their way between our towns and cities may be the stuff of science fiction. But work being carried out at the Robotics Institute, Carnegie Mellon University, and the National Institute of Standards and Technology (Nist), is bringing that day ever closer. Nist has already linked together a perception system and steering/control on a robotic vehicle.
Now, using a new algorithm (Henry Schneiderman and Marilyn Nashman, A discriminating feature tracker for vision-based autonomous driving, IEEE
Transactions on robotics and Automation, Vol 10, No 6) the vehicle has been kept centred in its lane, under a variety of conditions,
at speeds of up to $100 \mathrm{~km} / \mathrm{h}$. It was even able to keep on track in the rain, at dusk and at night with headlights.
The researchers say that their new algorithm is different because it explicitly addresses the uncertainty concerning how quickly the road changes with time, and also takes into account the uncertainty of the visibility of lane markers in each individual image. As a result the vehicle is able to cope with 7 m gaps in lane markers (pavements edges, white lines etc) and momentary loss in their visibility.
Though the system is reported to have performed well, the researchers say they must now develop algorithms of increasing reliability and robustness under all driving conditions.
a figure reached by dunking treated teeth in acid for 7 h then in a salivalike solution for 17 h to simulate conditions in the mouth.
So far the researchers have used only extracted teeth in the laboratory, and more studies are needed before tooth melting is a useable technique for dentists.
But why wait. Just insult the waiter before you order your next chicken madras and try it out for yourself.
And not a laser in sight.

Dope hope for drams

arge doping concentrations _required for some elements of high-density drams make in situ arsenic doping of polycrystalline silicon an attractive option for vias or substrates. With arsenic, autodoping effects on access devices are lower than with phosphorus-doped polycrystalline silicon.

But transferring arsenic doping development technology into manufacturing reality has been difficult because of slow deposition rates and radial nonuniformity across the wafer caused by addition of the dopant gas.

RPS Thakur and C Turner of Micron Semiconductor look to have found a straight-forward solution using conventional low pressure chemical vapour deposition (Appl Phys Lett, Vol 65, (22), pp.2809-2811).

The two researchers have simply used a standard vertical thermal reactor to deposit a stack of doped and undoped layers up to a target thickness. Redistribution of the dopant is then achieved by post-annealing.

The method could be easily integrated for high volume production of thicker polycrystalline silicon films used for dram access memory cell capacitor plates in cmos semiconductor technology.

Splinter in the eye could be a chip

S
uccessful bench-testing of a prototype microchip retina, designed to be surgically implanted in the eye, is being hailed as real advance in development of a bionic vision system. Such a system could help overcome one of the world's most common forms of blindness.
In a complete system, the ultrathin microchip will work with a miniature camera and laser fitted on a pair of spectacles. Its purpose is to by-pass defective rods and cones by stimulating healthy nerve cells in the eye directly with tiny electrical currents. If successful, the project could mean a breakthrough for people suffering from retinal diseases where the rod and cone cells - the cells in the eye that receive light - have been destroyed. Retinitis pigmentosa is the leading inherited form of blindness, affecting about 1.2 million people worldwide. The condition causes a slowly progressive loss that first affects peripheral vision but eventually consumes all vision. Similarly, macular degeneration impairs central vision and removes the ability to read, though peripheral
vision is maintained. In both, the healthy retinal nerve cells that would have passed on the visual signals from the rods and cones cannot transmit that information to the brain. Blindness is the result.

Now, in a project led by Professor John L Wyatt of Massachusetts Institute of Technology's Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics, and by Dr Joseph F Rizzo of the Massachusetts Eye and Ear Infirmary and Harvard Medical School - a wide variety of scientists from different fields is making progress towards a working technology.

So far the team has designed, and successfully bench-tested, a prototype of the microchip, using an external laser. The laser powers the chip via an invisible infrared beam that will also convey the visual information sensed by a tiny electronic camera (the researchers have not yet tested the laser with the camera). Both camera and laser will fit on a pair of spectacles.

As part of the programme,
researchers have also developed new techniques for implantation and have completed a number of tests to determine the electrical stimulation thresholds of cells in the eye.
Many challenges still lie ahead, with perhaps the greatest being the potential for damage to delicate retinal tissue at the interface between retina and implant.
But the team's immediate objective is to refine the method for applying the silicone coating now used on the implant. Tests have revealed tiny leaks in the coating, so a more reliable encapsulation method must be developed, possibly employing new materials. Even the smallest leak of salt from the eye into the implant would destroy the function of the chip.
So far the researchers have successfully recorded signals from the visual part of animal brains following electrical stimulation to an area of the retina roughly as large as the implant will stimulate. The next major goal will be surgical implant of the completed prosthesis and verification of the brain's response to the implant.

Toning up hearing aid control

Clever design of a small, simple and low power wireless receiver promises to make life a little easier for the hard of hearing. Building the receiver into a hearing aid will allow users to vary their aid volume via simple remote control, while the dual-tone multifrequency technology exploited is only a small step away from wireless programming of aids to suit individual ear characteristics.
The volume-control receiver measures $1918 \mu \mathrm{~m}$ by $1109 \mu \mathrm{~m}$ and is being fabricated in low-threshold-voltage cmos by AMS International of Austria. It has been designed by Alexander Reyes and Edgar Sanchez-Sinencio at Texas A\&M University, and J Francisco Duque-Carrillo at the University of Extremadura in Spain (A Wireless Volume Control Receiver for Hearing Aids, IEEE Trans on Circuits and SystemS II: Analog and Digital Signal Processing, Vol 42, No 1, 1995). The design has three main blocks: a detector to select the correct incoming dtmf signals; a decoder to process the frequencies and decide if a valid command is present; and a gain stage which changes the volume of the hearing aid to a new value.
Frequency range for most hearing aids is 100 Hz to 8 kHz , so audio frequencies are used to activate the receiver, with the dtmf control frequencies selected to avoid harmonics and distortion.
Previously, dtmf receivers have called for at least two filters and usually amplitude detectors, digital logic, voltage references, zero crossing detectors etc. Typically they are implemented in a layout at least 2.4 by 3.2 mm and consuming 1.25 mW .
But high performance of the new receiver - it detects and decodes audio frequencies within 0.41% of their nominal values has been obtained by squeezing the most out of each of the various sub-circuits. For example the operational transconductance amplifier (ota) yields a high voltage-gain of 87 dB , and dissipates only $9.3 \mu \mathrm{~W}$, while the single switched capacitor bandpass filter provides high Q and a variable centre frequency control from minimum capacitance area.

Finally, static flip-flops replace other common memory cells, reducing the space needed to implement the control logic.

Using a similar design to decode and store the configuration for hearing aid signal-processing-unit-equalisers could allow the next generation of programmable units to break free of the physical connections now necessary to customise a hearing aid for individual hearing characteristics.

Small-size and low-power dtmf receiver designed to make life more

Squeaks of pleasure

For serious audiophiles already feeling nervously inadequate about how the upper limits of their equipment may be affecting enjoyment (see Ben Duncan's article this issue, and Letters, passim), there is good news: cds may no longer be limited to their miserably deficient (??) bandwidths.
Any technique to increase the bandwidth and dynamic range of cds and dat has the problem that it

Encoder in a new dat/cd audio system capable of wringing 50\% more bandwidth from conventional cd technology.
has to be compatible with current products. Unfortunately, as Mituya Komamura of Pioneer Electronics Corporation reminds us (Wide-band and wide dynamic-range recording and reproduction of digital audio, J Audio Eng Soc, Vol 43, No 1/2, 1995), previous work has shown that high-frequency components in music above 20 kHz induce the activation of α-eeg rhythms and can affect the perception of sound quality. He also points to a wideband dat recorder, able to record frequency bandwidths up to 44 kHz , that has been gaining a good reputation with audio engineers.
Komamura's solution is that input digital-audio data could be quantised by 16 bits at 96 kHz sampling frequency, and bandlimited up to 36 kHz by a low-pass
filter. Low-pass output would be split into two sub-bands (dc to 24 kHz and $24-36 \mathrm{kHz}$) by a quadrature mirror filter bank. The 96 kHz sampling frequency of the lower band signal could then be divided by two, and the higher one by four, so that the sampling frequencies become 48 and 24 kHz . The higher band signal would then be coded by two-bit adpem and embedded in the least significant bits of 16 bit data slots. Such a system would have a bandwidth 1.5 times that of conventional technology. The lower band, coded by 15 bit noise shaping quantisation with subtractive dither, would have a dynamic range wider than of cd and dat but would be compatible.
It makes my α-eeg rhythms syncopate just to think about it.

Satellite tomography maps out ionospheric disturbances

J
oint US and Russian trial of a monitoring method that allows electron densities in the upper atmosphere to be plotted as a 'map' has opened the door to better prediction of the ionospheric storms that disturb radio signals and wreck satellites.
The technique - ionospheric radio tomography - has been around for some years. But it is only as a result of the US/Russian study, directly comparing satellite radio tomography with conventional approaches, that the technique has been shown to give good results (International Journal of Imaging Systems and Technology, Vol 5, pp.148-159).
The ionosphere is a highly variable part of the atmosphere between $100-1000 \mathrm{~km}$. In radio tomography, a satellite sends radio
signals through the ionosphere to receivers located at intervals on the ground. Analysis of the radio signals once they reach Earth indicates variations in the density of the electrically charged gas that makes up the ionosphere. The variations can be plotted as contour maps that indicate the general structure of the ionosphere, including small-scale phenomena.
Conventionally, the large radar facilities used to produce images of the ionosphere there are currently six in the world - are expensive to build and operate, precluding a large world-wide network. But radio tomography opens up the real possibility of global maps of the ionosphere because the receivers involved are small and portable, and can be widely distributed.

In the US/Russian experiment, the scientists placed four receivers provided by the Russians in a north-south line along the north-eastern US and eastern Canada. Russian navigation satellites flew over these sites every hour, sending down radio signals to all four receivers simultaneously. The resulting data were then analysed to produce an image of the ionosphere using mathematical algorithms developed by the Russians.
Air Force scientists also placed US receivers at the same four sites and recorded signals from US satellites, analysing the data with their own set of algorithms.
Images produced by the US and Russian experimental tomographic techniques were then compared to actual images of the ionosphere made over the same period from the Millstone Hill radar facility in the America.
The result? Both the tomographic images "compared very well to the Millstone Hill results," according to principal investigator for the work John Foster of the Atmospheric Sciences Group, MIT Haystack Observatory
A bonus to the experiment is that it coincided with a severe ionospheric storm. The large amount of data on the storm, coupled with the severity of the event itself, means that scientists "will publish many more papers on the geophysics of what took place," concluded Dr Foster.

Radio tomography plot obtained with the Russian Cicada navigation satellite shows good agreement with the conventional plot from the radar station at Millstone Hill. The plots show the situation shortly after onset of. the severe storm.

SPECIAL BUY

AT 286
$40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram
LIMITED QUANTTTY only of these 12 Mhz HI GRADE 286 systems designed for total reliability. The compact case houses the motherdrive \& integral 40Mb hard disk drive to the front. Real time clock
with battery backup is provided as standard. Supplied in oood used
condition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{MD}$ RAM, Oos 4.01 anc go DYY Ful Guarantee Reayto Run

Optional Fitted extras: VGA graphics card 1.4Mb $3 \% / \mathrm{s}^{\prime \prime}$ tioppy disk drive (instead of 1.2 Mb) NE2000 Ethernet (thick, thin or twisted) network card	
FLOPPY DISK DRIVES 312"-8"	

present prime product at industry beating low prices! All units (unliss
stated) are BRAND NEW or removed from often brand new equipment and are fully tested guarantee and operate from standard voltages and are of standard $3^{1 / 2 / 2 "}$ Panasonic JU363/4 720 K or equivalent $31 / 2 "$ Mitsubishi MF355C-L. 1.4 Meg. Laptops only
$31 / 2$ Mitsublshi MF355C-D. 1.4 Meg. Non laptop Teac FD-S5GFR 1.2 Meg
BRAND NEW Mitsublshi MF501B 360 K Shugart 800/801 8^{4} SS refurbished \& tested Shugart 851 8" double sided refurbished \& lested Mitsubishi M2894-63 $8^{\prime \prime}$ double sided NEW
Mitsubishi M2896-63-02U ${ }^{\text {D }}$ DS slimilne NEW
Dual $8^{8 \prime}$ drives with 2 mbyte capacity housed in a smart case with
buitt in power supply. Ideal as exterior drives!
$\varepsilon 499.00(F)$

HARD DISK DRIVES	
End of line purchase scoop! Brand new NEC D2246 of hard disk storagel Full incustry stan dard SMD Inter model. complete with manual. Only	$\begin{aligned} & \text { tace Ulitra } \\ & \text { equivant } \\ & \text { c29.00(E) } \end{aligned}$
FUJIIFK-309. 2620	
Fe	

THE AMAZING TELEBOX	
Converts your colour monitor into a QUALITY COLOUR TVII	
	TV SOUND \& VIDEO TUNER!

The TELEBOX consists of an attractive fully cased mains powered unit, containing ale electronics ready to plug into a host of video mont SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD OAC. The composite video output will also plug directly into most video
recorders allowing receptlon of $T V$ channeis not normally receivable
 sion frequencies VHF and UHF Including the HYP HRBAND as located on the rear panel for direct connection to most makes of
monitor or desktop video systems. For complete compatibility- even low level Hi Fi audio output are provided as standard. TELEBOX ST for composite video input type monitors TELEBOX STL as ST but with integral speaker

TELEBOX M8 Multiband VHF-UHF-Cable- Hyperband tuner | |
| :---: |
| $£ 39.95$ |
| 1.95 |

FANS \& BLOWERS

$\begin{array}{ll}\text { MITSUBISHI MMF-09B12DH } 92 \times 25 \mathrm{~mm} 12 \mathrm{VDC} \quad £ 5.9510 / £ 53 \\ \text { PANCAKE } 12-3.592 \times 18 \mathrm{~mm} 12 \mathrm{VDC} & \varepsilon 7.9510 / \varepsilon 69\end{array}$ EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or $240 \vee \mathrm{E}^{\mathbf{E}} .95$ VERO rack mount $1 \mathrm{U} \times 19^{*}$ fan tray specity 110 or 240 V £45.95(8) IMHOF $B 261900$ rack

 IC's -TRANSISTORS - DIODES 5,000,000 items EX STOCK For Major SAvings. SAE or CALL FOR LATEST LIsT Seaward pat 2000 oual vonage compulirised PAT testerIssue 13 of Display News now avoilable - send large

PC SCOOP
 COLOUR SYSTEM ONLY £99.00

ready to run colour PC system at an unheard of price! The Display Electronics PC99 system comprises of fully compatible and expandable XT PC with 256k of RAM, $51 /{ }^{*} " 360 \mathrm{k}$ tloppy disk drive, 12" CGA colour monitor, standard 84 key keyboard, MS DOS and all connecting cables - just plug in and go !! Ideal students, schools or anybody wishing to learn the world of PC's on an ultra low budget. Don't miss thls opportunity. Fully guaranteed for 90 Days. VIDEO MONITOR SPECIALS Superb quallty 14° FOREFRONT MTS-9600 SVGA Multisync Multimode monitor $0.28^{\prime \prime}$ dot pitch with resolution of 1024×768. The mutti mode input allows direct connection to a host of computers including IBM PC's in CGA, EGA, VGA \& SVGA modes, BBC, COMMODORE (including Amiga 1200), ARCHIMEDES etc. The H version will also function with the ATARt in all modes inc HI RES monochrome. Complete with 'ext' switching for WP use. (possible minor screen bums) Syncs down to 15 kHz . Supplied in EXCELLENT little used condition with full 90 day guarantee. Order as MTS-9600 / H for ATARI All modes as above Order as MTS-9600 / S ELECTROHOME ECM-1211SBU 12" VGA multisync monltor with resolution 640×480. Multi input selection; 9pin CGAN EGA; 15 pin VGA or 5 BNC connectors. 0.31 pitch. Compatible with PCs. Amiga, Atari and others. In good used condition (possible minor screen burns) 90 day guarantee. £99.00 (E) KME $10^{\prime \prime}$ high definition colour monitors. Nice tight $0.28^{\prime \prime}$ dot pitch for superb clarity and modem styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes \& BBC. Measures only $131^{\prime \prime} \times 12^{\prime \prime} \times 11^{\prime \prime}$. Only $£ 125$ (E)

Good used condition. 90 day guarantee.
PHILPS HCS31 Ulira compact 9 " colour video monitor with standard composite 15.625 Khz video input via SCART socket. Idea for all monitoring / security applications. High quallty, ex-equip ment fuly lested with a 90 day guarantee. In atiractive square cream plastic case measuring wi 679.00 (D)

20" 22" and 26" AV SPECIALS Superbly made teak style cass. Perfect for Schools, Shops, Disco, Clubs, etc.In 20"...£135 22"....£155 26"....£185 (F) $12^{\prime \prime}$ Mono. Phillps BM7542/05G for CCTV NEW $\varepsilon 69.95$ (C) DC POWER SUPPLIES
10,000 Power Supplles Ex Stock
Call for infollist
Power One SPL200-5200P 200 watt (250 w peak). Seml open frame giving $+5 v 35 a,-5 v 1.5 a,+12 v 4 a$ (8a peak), $-12 v 1.5 a,+24 v$
$4 a$ (6 a peak). All outputs fully regulated with over voltag proiection $5^{\prime \prime} \times 212^{2}$. Fully guaranteed RFE.
Power One SPL 130. 130 watts. Selectable for $12 \mathrm{~V}(4 \mathrm{~A})$ or 24 V (B)
 Lambada LYS-PV 12200 watt switch mode +12 V DC 29 a semi enclosed, $1^{\circ} \times 5^{\circ} \times 5^{\circ}$. RFE and fully tested.
Conver AC 130.130 watt hi-grade VDE spec. Switch

SPECIAL INTEREST

NTEL SBC 486133SE Multibus 486 system. 8Mb Ram

HPGL

Trio 0-18 vdc bench PSU. 30 amps. New
Fullisu M3041 600 LPM band printer
VG Electronics 1035 TELETEXT Decoding Margin Meter
Andrews LARGE 3.1 m Satelite Dish + mount II
RED TOP IR Heat seeking missie (not armed II)
KNS EMC / LIne interference tester NEW
Thurlby LA 160 B logic analyser
GEC 1.5 kw 115 v logic analyser
Brush 2Kw 400 Hz 3 phase frequency converter
Anton Plllar 75 kW 400 Hz 3 phase frequency converter COMPONEDEX T1000 Portable TELEX tester NEW Sekonic SD 150 H 18 channel digital Hybrid chart recorder HP 7580A A1 8 pen HPGL high speed drum plotter Kenwood DA-3501
 Computer Controlled Laser Video Disk Player
One of the most amazing surpiu
youl The Phillos VP41
unit features tuil disks with starting visual and audolo plays sity ity in wo thand 12 . Laservisision or mono. When controlled by a computer, it may also be used as a
versatile high quality storage / retrieval medium. It will play back versatile high quality storage / retrieval medium. It will play back (which covers most types of commercially available pian discs) Some of the many features of this Incredible machine are:
RS-232 INTERFACE
RGB/COMPOSITE VIOEO OUTPUT $\begin{array}{ll}\text { BNC+SCART INTERFACE } & \text { PAL/RGB DECODER } \\ \text { IR+WIRED REMOTE CONTROL } & \text { FAST RANDOM ACCESS }\end{array}$
SPEEIRL PUREHRSE Only £399.00

19" RACK CABINETS

 Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality ${ }^{19 "}$ rack cabinets made in UK byOptima Enclosures Lid. Units feature designer, smoked acrylic lockable front door and removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket
switched mains disitribution strip make these racks some of the most versatile we have
ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in bays

OPT Rack 1 Complete with removable side panels. $£ 335.00$ (G) OPT Rack 2 Rack, Less side panels
225.00 (G)

Over 1000 racks in all sizes $19^{\prime \prime} 22^{\prime \prime} \& \mathbf{2 4 "}^{\prime \prime}$
3 to 44 U. Available from stock !!
Call with your requirements.

TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen TechnologY'

 MicroTouch - but sold at a price below cost II System consists ofa flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ connected to a PCB with on board sophisticated electronics. From the board comes a standard serlal RS232 or TRL output. The out put continuously gives simple serial data containing positional X \& Y ger moves, as to where a finger Is touching the panel -as the fingiven at an incredible matrix resolution of 1024×1024 positions over the screen size !!! So, no position, however small fails detection. A host of avallable translation software enables direct con-
nection to a PC for a myriad of applications including: control pannection to a PC for a myriad of applccations including: control pan-
els, pointing devices, POS systems, controllers for the disabled or computer un-trained etc etc Imagine using your finger in 'Windows' instead of a mouse II (a driver is indeed available!) The applice-
fions for this amazing product are only limited by your imaginaflonII Supplied as a complete system including Controller, Power Supply and Data at an incredlble price of only:
RFE Full Sonware Support Avallable - Fully Guarantoed
$£ 145.00$ (B)

LOW COST RAM \& CPU'S

INTEL ABOVE Memory Expansion Board. Full length PC-X and PC-AT compatible card with 2 Mbytes of memory on board and above memory Full data and driver dlsk supplled In good used condition fully tested and guaranteed. $559.95(A 1)$ Used condition fully tested and guaranteed.
Windows compatible. Order as: ABOVE CARD 59.95 (A
Half length 8 bit memory upgrade cards for PC AT XT expands Half length 8 bit memory upgrade cards for PC AT XT expands
memory either 256 k or 512 k in 64 k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order as: XT RAM UG. 256k. £32.95 or
$1 \mathrm{MB} \times 9$ SIMM 9 chip 120 ns
4 MB 70 ns 72 pin SIMM module

SPECIAL INTEL 486-DX33 CPU tew only $£ 79.99$ (A1)

NO BREAK UNINTERRUPTIBLE PSU'S

Brand new and boxed 230 volts 1 KVa uninterruptible power su system from Densel. Model MUD 1085-AHBH. Complete with system from Densel. Model MUD 1085-AHBH. Complete with

 sealed lead acid batteries in matching case. Approx time from inter-rupt is 15 minutes. Complete with full manual.
$\mathbf{\Sigma 5 7 5 . 0 0}$ ial EMERSON ACCUCARD UPS, brand new 8 Bit half length PC compatible card for all IBM XT/AT compatibles. Card provides DC power to all internal system components in the event of power sup ply failure. The Accusaver software provided uses only 6k of base
RAM and automatically copies all system, expanded and video RAM and automatically copies all system, expanded and video is returned the machine is returned to the exact status when the power falled II The unit features full self diagnostics on boot and is supplied brand new, with full, easy fitting instructions and manual.
Normally $£ 189.00$ NOW! $£ 69.00$ or 2 for $£ 120$ (B)

All prices for UK Mainland UK customers add 17.5% VAT to TOTAL order amount. Minimum order $£ 10$. Bona Fide accoumt orders accepted from Government, Schooks
Universties and Local Authorties - minimum acoount order $£ 50$. Cheques over $£ 100$ are subject 1010 working days dearance. Camage charges (A)=£3.00, (A1)=£4.00
 Standard Conditions of Sale and unless stated guaranteed for 90 days. All guarantees on a retum to base basis. All nghts reserved to change prices / specifcations without pror

ANALOGUE FILTERS

Front-end FILTERING

Interference from the mains can degrade

 performance in sensitive instrumentation. A simple notch filter will not always remove hum due to frequency and component drifts, but Radhakrishna Rao has designed a selftuning filter that overcomes the usual problems.Active notch filters have become indispensable in many applications where a signal is corrupted by a dominant, sin-gle-frequency interference signal. Such a signal is the 50 Hz power supply hum in bio-medical systems.
The analogue front-end proposed here is for cancelling the 50 Hz power line interference and its harmonics from ecg-emg signals in bio-medical applications. The configuration uses only operational amplifiers and matched mosfets. It requires no precision components and is based on a simple frequency-correction scheme using both phase and magnitude comparison. The scheme could be implemented as a monolithic device.

Common problems

When the frequency of the interference signal is fixed and known, a symmetrical narrow-

Fig. 1. A Kerwin-Huelsman-Newcomb (KHN) biquad notch filter is modified by adding linearised mosfets to form voltage controlled resistors. Error signal to control the mosfets (N_{C}) is derived by magnitude and phase comparison of the highpass and notch outputs (Fig. 2).

band notch filter can be used to remove it. For this, the pole ω_{p} and zero ω_{z} frequencies of the filter must be made equal to the interference frequency using precision, low-tolerance passive components.
In practice, either there is an uncertainty in the frequency of interference or there is a drift in the values of passive components that determine ω_{p} and ω_{z}. Furthermore, the tolerances of passive components cause ω_{p} to be different from ω_{z}
The solution to this problem involves a selftuning notch filter. Here, the filter is automatically tuned to the incoming interference frequency by making both ω_{p} and ω_{z} voltage-controlled.
Power line interference consists of the dominant 50 Hz component and its harmonics at 100 Hz and 150 Hz . The four op-amp modified Kerwin-Huelsman-Newcomb biquad ${ }^{1}$ is used for the basic notch filter owing to its low passive and active parameter sensitivities, especially at low frequencies. For this filter, Fig. 1 a , both ω_{p} and ω_{z} are determined by the same set of passive components. Independent outputs for bandpass, lowpass, highpass and notch are available simultaneously. These are voltages V_{1}, V_{2}, V_{3} and V_{4} respectively.
The filter is tuned to the incoming interference frequency by replacing the frequencydetermining resistors with voltage-controlled resistors. The control voltage for these is derived by a frequency-correction scheme. As Fig. 1a shows, the frequency-determining resistors, R_{1} and R_{2}, have been replaced by voltage-controlled equivalents using matched pairs of linearised CD 4007 mosfets 2. The Tnetwork is used to increase the effective variation in resistance offered by the fet. Since a notch filter needs to be tuned, a scheme for filter zero tuning is more appropriate. This is because zeroes control the significant characteristics for the notch filter. Such a scheme is

shown in the lower half of Fig. 2.
Frequency correction in this method is based on both magnitude and phase comparison using notch and highpass or lowpass outputs for deriving the error signal. The magnitude of this error signal is proportional to the difference between the input frequency and the zero frequency to which the filter is to be tuned and is obtained using the notch output.
The direction of tuning is obtained by detecting the phase difference between notch
and highpass outputs. The magnitude of this error signal is then compared with a reference voltage ($V_{\text {ref }}$) in order to generate a dc control voltage (V_{0}) which is used for varying the voltage controlled resistances in the filter. The above arrangement, thus, forms a stable neg-ative-feedback frequency-correction loop.
The analogue front-end is then developed as shown in Fig. 2. A cascade of three modified KHN biquads with notch frequencies at 50 Hz , 100 Hz and 150 Hz is employed. The first-stage

Fig. 3. Acting as a slave filter, the fourth-order elliptic bypass filter also uses cascaded KHN biquads to track the zero frequency of the master filter.

The voltage-controlled resistor

When mosfets are operated in the non-saturating region with small values of $V_{D S}\left(V_{D S} \leq V_{G S}-V_{T}\right)$ the drain-tosource resistance is almost linear and bi-directional. By varying the gate voltage, the drain-to-source resistance can be altered and the device acts as a voltage controlled resistor.
Feeding back half the drain voltage to the gate with two large-value resistors, extends the linear operating range. The advantage of using matched mosfets is that precisely matched resistors can be avoided. Mos theory demonstrates how the drain-source resistance varies.
In the current saturation region where $V_{\mathrm{DS}} \geq V_{\mathrm{GS}}-V_{\mathrm{T}}$,

$$
I_{\mathrm{DS}}=\mathrm{K}\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right)^{2}
$$

In the non-saturating region where $V_{\mathrm{DS}} \leq V_{\mathrm{GS}} V_{\mathrm{T}}$,

$$
\begin{aligned}
& I_{\mathrm{DS}}=2 \mathrm{~K}\left[\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right) V_{\mathrm{DS}}-\frac{V_{\mathrm{DS}}^{2}}{2}\right] \\
& I_{\mathrm{DS} 1}=2 \mathrm{~K}\left[\left(V_{\mathrm{c}}-V_{\mathrm{T}}\right) V_{\mathrm{DS}}-\frac{V_{\mathrm{DS}}^{2}}{2}\right] \\
& I_{\mathrm{DS} 2}=2 \mathrm{~K}\left[\left(V_{\mathrm{DS}}-V_{\mathrm{T}}\right) V_{\mathrm{DS}}-\frac{V_{\mathrm{DS}}^{2}}{2}\right] \\
& I_{\mathrm{DS}}=I_{\mathrm{DS} 1}+I_{\mathrm{DS} 2} \\
& r_{\mathrm{DS}}=\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{I}_{\mathrm{DS}}}=\frac{1}{2 \mathrm{~K}\left(\mathrm{~V}_{\mathrm{C}}-2 \mathrm{~V}_{\mathrm{T}}\right)}
\end{aligned}
$$

Part of a 4007 cmos dual complementary pair is used for its matched mosfets. External connections are made according to the dotted lines.

The resulting circuit is a pair of linearised matched mosfets which are used as a voltage controlled resistor.

ANALOGUE FILTERS

notch filter is self-tuned to the incoming interference frequency - the dominant 50 Hz component - using the above scheme.
The second and third stage notch filters are self-tuned to their respective notch frequencies $(100 \mathrm{~Hz}$ and 150 Hz , these being the harmonics of the 50 Hz component) using the masterslave approach ${ }^{3}$. To this effect, the first-stage filter is taken as the 'master' and the second and third stage filters as the 'slaves'. The fre-
quency determining resistors in the slaves are replaced by voltage controlled resistors of the same value as for the master's. Matched pairs of mosfets are used for this. The control voltage for these resistors is obtained from the same tuning circuit for the master, Fig. 2. With this mechanism the zeroes of the slave filters, which are filters with notches at 100 Hz and 150 Hz , are made to track the zeroes of the master; a filter with a notch at 50 Hz . Notch

Fig. 4. Tuning ranges for the slave filter are shown in this magnitude response plot. The zeros, $f_{z 1}$ and $f_{z 2}$ of the slave were made to track the zero frequency f_{0} of the master over the entire tuning range of the master.
The master tuning range, $T R_{m}=1.8 \mathrm{kHz}$
Slave ranges are at $f_{21}=735.6 \mathrm{~Hz}$ and $f_{22}=1348.7 \mathrm{~Hz}$
Fot the band $f_{z 1}^{\prime}$ to $f_{z 1}$ this gives $f_{z 1}=T R_{m} \times f_{z 1} / f_{0}$ and for $f_{z 2}^{\prime}$ to $f_{z 2} f_{z 2}=T R_{m} \times f_{z 2} / f_{0}$

Fig. 5. The tracking accuracy can be determined from these plots; the slope given by the ratio between the the zero frequencies of the slave and the master filters.
frequencies for the slaves are now determined only by the ratios of capacitor values of the slaves to the master's.
Fets rather than multipliers are recommended for voltage controlled resistors. This is because the tuning range obtained using fets can be made just sufficient to cancel the varying frequency components. These are typically 48 to 52 Hz for a 50 Hz component.

Further applications

The above configuration, therefore, forms an analogue front-end for cancellation of powerline interference in bio-medical systems. The scheme can also be extended to the tuning of other monolithic filters such as the inverse chebyschev and the elliptic. The zeroes of the master, which is a self-tuned notch filter, can be made to tune the zeroes as well as poles of such monolithic filters, which now function as slaves.
As an illustrative example, a fourth-order elliptic lowpass filter using cascaded KHN biquads (for which the pole and zero frequencies can be made different) was used as the slave filter, Fig. 3. The self-tuned modified KHN biquad functioned as the master. The zeroes, $f_{z 1}$ and $f_{z 2}$ of the slave were made to track the zero frequency f_{0} of the master over the entire tuning range of the master, as observed in Fig. 4. Tracking accuracy can be deduced from Fig. 5, The slopes of the plots are given by the ratios of zero frequencies, f_{21} and $f_{z 2}$ of the slave to the master zero frequency, f_{0}.
The given configuration is thus shown to be applicable as an analogue front-end as well as for realisation of monolithic filters. The basic filter section employs only single-ended opamps in inverting mode and all resistor values in it can be made equal. The frequencies of interest are governed only by the ratios of capacitor values. This allows frequency scaling of the filter's response. Tuning of the filter relies on commonly available matched pairs of mosfets. Such an isotopic nature of the filter topology is suitable for its implementation at visi level.

References

1. Kerwin, W. J., Huelsman, L. P., Newcomb, R. W. State-variable synthesis for insensitive integrated circuit transfer functions, IEEE J Solid-State Circ., vol. SC-2, pp. 87-92, Sep. 1967. 2. Rao, K.R., Sasikumar, A novel linear voltagecontrolled resistor, Elect. Eng., p.32, Sep. 1985. 3. Rao, K.R., Sethuraman, V., Neelakantan, P.K. A novel follow-the-master filter, Proc. IEEE, vol. 63, pp.1725-1726, Dec. 1977.

For all your Power Distribution Olson offer a varied choice

D(BII Oinribution

ELECTRONICS LINITED

The opical drive

Just as you cannot be too thin or too rich, you can never have too much data storage space. The increasing size of application programs, operating systems, and data files has quickly rendered every generation of hard-drive capacity inadequate.
Furthermore, the trend towards multimedia and image-based files has strained the storage capabilities of hard-disk drives. An alternative to continuously buying new and bigger hard drives is provided by optical disk-drive technology.
An optical disk-drive can provide infinite storage capabilities since extra storage space is easily obtained by using additional disk cartridges. These ane relatively inexpensive.
Tape is also capable of providing infinite storage in this fashion, but it is far too slow to be a real alternative, especially when the data needs to be accessed randomly.
Optical disks provide the ideal combination of robustness, low cost and performance. The random access capabilities of optical drives are now approaching those of low end magnetic hard drives.
Optical drives are available in four basic types - compact disk (cd) based, magneto-optic based, phase-change based, and ablative-worm based. While these technologies are all different, the drives do share some similarities in their opto-mechanical technology. I will examine in detail a magneto-optical (MO) drive as it is the most complicated. Designs for the other classes of drives are essentially subsets of the magneto-optical drive design. The recording technologies that define the different optical drives will then be explained.

Optical head technology

The purposes of the optical head are to transmit the laser beam to the optical disk, focus the laser beam to a diffraction limited spot, and to transmit readout signal information from the optical disk to the data and servo detectors.
Whether the recording technology is magneto-optic, ablative 'write-once, read-many', or phase change, the laser diode is the key component in optical storage. The first two generations of optical drives used infrared lasers emitting in the 780 nm or 830 nm wavelengths. The next generation of drives will use red laser wavelengths emitting at around 690 nm . Continuous laser output power is typically around 40 mW . In order to ensure good wavefront quality, the lasers need to be index guided.
A schematic of the optical head in a magneto-optic drive is shown in Fig. 2. Output of the laser diode is collimated - i.e. made into a plane wave - by a lens and then passed through beam shaping optics. These adjust the elliptic profile and astigmatism of the beam. The beam then passes through a polarising beam splitter, which reflects some 30% of the beam towards a detector and transmits the rest towards the disk.
The light that is reflected is incident on a light detector. This detector is part of a power servo loop designed to keep the laser at a constant power; output of the detector is connected to the laser driver circuitry. This is very important. Without a power servo loop, the laser power will fluctuate as the laser junction heats up, which can adversely affect the read performance.

The beam transmitted by the beam splitter travels to a turning 90° mirror, called a beam bender, mounted on a movable actuator. During track-seeking operations, this actuator can move radially across the disk. The beam reflected by the turning mirror is incident on an objective lens - also mounted on the actuator - which focuses the light on the disk.
This type of optical head design in which the laser, the detectors, and most of the optical components are stationary while the objective lens and beam bender are movable, is called a split optics design.
In early optical drive designs, the entire optical head was mounted on an actuator and moved during seeking operations. This led to slow seek times of around 200 ms because of the mass on the actuator. A split optics design, which is possible because coherent light can be made highly collimated, lowers the mass on the actuator, allowing much faster seek times of around 30 ms .
The objective lens also acts as a collector for the light reflected from the disk. This light, used for the servo systems and during reading, contains the readout information. Reflected light follows the incident path up to the fixed optical element. The portion of the light transmitted by the beam splitter is, unfortunately, focused by the collimating lens back into the facet of the laser. Optical feedback affects the laser by causing it to mode-hop randomly, which results in amplitude noise in the laser output beam.
This amplitude noise affects the data signal sufficiently to be considered a major problem. To control the laser noise, injection of high frequency current, also called hfm , into the laser is used in practice. The hfm is usually around $350-500 \mathrm{MHz}$ and is of sufficient amplitude to drive the laser below threshold at that frequency. This technique prevents the laser from becoming single mode, because it turns the laser off before it can settle into a single mode. In this way the effects of optical feedback are greatly reduced and the coherence length of the laser is less.
In general, increasing hfm current can decrease the amount of noise. But as a practical matter, the hfm injection current cannot be made too large as it may violate government limits, such as FCC, on allowable electromagnetic radiation from computer accessories.
The light reflected by the first beam-splitter is further split by a second beam-splitter into two components: one for the servo and the other for the data. In this head design, two detectors are shown for data detection. This is specific to magneto-optic read back in which two detectors are needed to implement what is known as differential detection, i.e. the difference in the signals incident on the two detectors is taken.
Phase-change, cd and WORM drives only need one data detector. Light transmitted through the second beam-splitter is incident onto a special multi-element detector which is used to generate the servo signals. The servo system is discussed in more detail later. It is by no means an overstatement to say that the

Fig. 1. This 5.25in Powerbox optical drive, designed as an external SCSI peripheral for pCs and workstations, holds up to 1.3Gbyte per disk. Its 3.5in counterpart holds up to 230Mbyte.

development of high quality servo systems has played a vital role in making high capacity optical disk drives a reality.

The servo system

The servo system is what enables the focused laser spot to be positioned with accuracy on to any of the tracks on the disk. The extremely high track densities of optical disks - in the region of 18000 tracks per inch - require that the laser spot position is controlled to within a fraction of a micrometer.
To be able to move across the entire disk surface requires a large actuator. But the larger the actuator, the higher the mass that needs to be adjusted to the rapid changes in the track position - due to run-out in the disk - as the disk spins. Consequently, a compound actuator consisting of a coarse actuator and a fine actuator is used to control the radial position of the laser beam on the disk.
The fine actuator, with its very low mass,
can change the spot position rapidly over a limited range. The coarse actuator has a slower response, but has a much wider range of motion and is used for long seek operations. Writable optical disks have a continuous spiral groove, as in a phonograph record, to provide information on the relative track location.
In addition to tracking and seeking, the laser spot in an optical drive must be kept in perfect focus on the disk regardless of the disk's motion. There can be quite a lot of vertical motion if the disk has tilt or is slightly warped. To achieve focus, the objective lens must be constantly adjusted to correct for the axial motion of the disk surface as the media spins.
Lens position is controlled by a focus servo mechanism. A typical focus actuator consists of an objective lens positioned by a small linear voice coil motor. The coils are preferably mounted with the lens to reduce moving mass, while the permanent magnets are stationary. The lens can be supported by either a bobbin

Fig. 3. Key electrical functions and interfaces of an optical drive. The VFO is the variable-field oscillator used to synchronise data.

Fig. 4. Optical recording techniques compared. The primary difference is the material used. A magneto-optical drive could record on phase-change or WORM media too.
on a sliding pin or elastic flexures. Critical factors in the design are range of motion, acceleration, freedom from resonances, and thermal considerations.
As mentioned earlier, the tracking mechanism consists of a coarse and a fine actuator. In high performance drives, the coarse actuator consists of a linear voice coil motor driving a rail mounted carriage while the fine actuator acts to produce small radial displacements of the laser spot on the disk. The compound tracking actuator configuration has advantages over a single actuator not only in track following performance, but also when seeking between tracks.
I have discussed the servo and actuator technology required to ensure proper focus as well as the track following and seeking operations of the laser stylus. The optical head, servo, and actuators cover the essential opto-mechanical part of the drive. Next I will consider the formatting, recording, and reading out of data.

The data channel and SCSI

Most optical drives connect to host computer systems using the Small Computer Systems Interface, or SCSI. A schematic block diagram of the functions in an optical drive, based on the IBM 0632 CHA model. This 1.3Gbyte half-high optical drive is shown in Fig. 3.
The SCSI controller handles the flow of information to and from the host - including commands. It also provides arbitration and disconnect/reconnect functions. Through the logic gate arrays, the drive control microprocessor unit controls all the functions of the optical drive. These include,

- servo control
- spindle motor spin up/down
- actuators
- laser driver
- magnetic bias coil - an electromagnet used in magneto-optical recording
- loading mechanism for disk load/unload
- library interface providing control lines useful in a jukebox environment.

The rom is the control storage for the microprocessor while the ram provides the microprocessor working storage. The optical disk controller, ode, is a key controller of the data path. It transfers commands from the SCSI controller to the microprocessor for interpretation. In addition it provides handshake lines to channel data appropriately through the buffer ram to the write channel, or from the read channel to the SCSI output (through the ram buffer).
Buffer ram varies in size from 1Mbyte to 4Mbyte and provides temporary storage of data read out or data to be written. Used appropriately, the buffer ram can enhance performance of the drive by providing read-ahead cache or segmented write-cache capabilities.
Data input to the drive over the SCSI for recording is first broken up into fixed block sizes of, for example, 512 K byte or 1024 K byte length. It is then stored in the data buffer ram.

Fig. 5. A good optical recording medium must have a sharp threshold for the onset of writing. This ensures that a lower power beam can read out the information without affecting the written information. Shown is the threshold property of a commercial ablative WORM medium. At 8 mW , above, perfect marks are formed, but at 7 mW of writing power, right, there is hardly any marking. This means that a read power of 1 mW should be perfectly safe.

Fig. 6. Basic structure of a recordable CD-R disk. The groove is for tracking and timing information. A cd-rom drive reading this disk cannot sense the groove.

Magneto-optic, phase-change and worm drives can be classified as fixed block architecture technologies in which data blocks are recorded much like in hard drives (Marchant, 1990). Blocks of data can be placed anywhere on the disk in any sequence. The current cd recordable, or CD-R, drive is, on the other hand, an example of a non-fixed block architecture (because its roots are in cd-audio). In current recordable cd drives, input data is recorded sequentially, like a tape player, and can be of any continuous length.

Error correction and control, ecc, bytes are added to each block of data. Optical drives use Reed-Solomon codes which are able to reduce the error rate from 1 in 10^{5} to about 1 in 10^{13}. Error-correction encoding and decoding is managed by the optical disk controller.

To extract ones and zeros from the noisy analogue signal from the photodetectors, optical drives use a number of techniques such as equalisation which boosts the high frequencies and thus provides greater discrimination between spots. Using an analogue-to-digital converter, the analogue data signal is converted into channel bits. These channel bits are converted back into customer data bytes using basically the reverse of the encoding process.
Clocking of data coming off the disk is provided by the variable field oscillator, or vfo. Data is clocked into the decoder, which removes the modulation code. Remaining special characters are removed from the data which is then fed into the forty-byte ecc alignment buffer to correct any errors. Once data
has been read from the disk, it is stored in a ram buffer and then output to whatever readout device is hooked by SCSI to the drive.
Having outlined how data is recorded on a spinning disk, I will now turn to specific topics such as recording physics that delineate the various recording technologies, Fig. 4.

Phase-change recording

Phase-change recording takes advantage of the fact that certain materials can exist in multiple metastable - i.e. normally stable - crystalline phases. Each of these phases has differing optical properties, such as reflectivity. Thermal energy, as supplied by the focused beam of a high power laser, above some threshold can be used to switch from one metastable state to another.

Energy below the switching threshold should have no effect. In this way a low power focused spot can be used to read out the recorded information without affecting it. In any optical recording system, it is critical to have a sharp threshold for the onset of writing in any recording technology to ensure that readout can be performed without degradation of recorded marks. Figure 5 is an example of the sharp threshold for writing.
To achieve this kind of multiple metastable states, phase change materials typically are a mixture of several elements such as germanium, tellurium and antimony $\left(\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}\right)$. In an erasable material, recording is affected by melting the material under the focused spot and then cooling it quickly enough to freeze it
in an amorphous phase. Rapid cooling is critical, so the design of the heat sinking capability of the material is important. Erasing of phase change material is achieved by an annealing process. This involves heating the material to just below the melting point for a long enough period to recrystallise the material and erase any amorphous marks.
Phase-change drives are simpler than mag-neto-optical drives. They need less complicated optical heads and do not need a bias magnet. However, most rewritable optical drives are based on magneto-optical technology. This is largely because early phase change disks had very limited number of overwrite cycles, of the order of a thousand, while magneto-optic disks were shown to have a million overwrite cycles.
Phase change technology has come a long way since then, even achieving on the order of 100,000 overwrite cycles.

WORM technology

Write-once-read-many technology has a clear place in data storage because it allows permanent archiving capability. Neither magnetic disk storage, nor magnetic tape storage can provide similar write-once capabilities. There are at least four different types of optical write once technologies that are found in commercial products: ablative, moths-eye, phasechange, and dye-polymer.

Ablative WORM disks consist of tellurium based alloys. Data is written using a high power laser to burn a hole in the material. IBM offers 5.25 in drives with current capacities of 1.3 Gbyte that use this type of WORM technology.

A second type of WORM material is what is known as textured material, such as in a moth's eye pattern. The material is usually a platinum film. Writing is accomplished by melting the textured film to a smooth film, which changes the reflectivity.

Phase-change technology provides a third type of WORM technology using materials such as tellurium oxide. In the writing process, amorphous (dark) material is converted to crystalline (light) material by applying heat

Disk at once (single session Disk at once (single session

Track at once

can also be written in multisession mode
But max number of tracks on disk is 99

Multisession

Incremental packet recording

Fig. 7. Recording modes available for recordable cd technology. Incremental packet recording increases flexibility of recordable cd and makes it more suitable as a mass storage device for the desk-top. In packet recording, unlike other modes, there is no limit to the number of recordings - provided that there is space on the disk.
from a focused laser beam. The change cannot be reversed. Dye-polymer media, the fourth type of WORM media, are used in recordable cd drives and is discussed in more detail later.

Magneto-optic technology

In a magneto-optical drive, data recording is achieved through a thermo-magnetic process. This process relies on the threshold properties of the Curie temperature of magnetic materials. Energy within the focused optical spot heats the recording material past its Curie point of about $200^{\circ} \mathrm{C}$, a threshold above which the magnetic domains of the material are susceptible to external magnetic fields of the order of 300 gauss.
The extemal magnetic field is used to set the state of the magnetisation vector in the heated region to either 'up' (a one bit) or 'down' (a zero bit). This vector represents the polarisation of the magnetic domains. When the material cools to below the Curie point this orientation of the magnetic domains is fixed.
This recording cycle has been shown to be highly repeatable - over more than a million cycles - in any given region without degradation of the material.
Magneto-optical disks can be safely read by low power laser beams of about 2 mW at the disk surface. This is because the coercivity of a magneto-optic material remains high until very close to the Curie temperature. Near the Curie temperature, at about $200^{\circ} \mathrm{C}$, coercivity rapidly drops by two or three orders of magnitude as the magnetic domain structure becomes disordered. Until the Curie point, it is
not affected by magnetic fields or laser light
During readout, the recorded ones and zeros are sensed by a low power linearly polarised readout beam and by utilising the polar Kerr effect. In this effect the plane of polarisation of the light beam is rotated by 0.5° or so by the magnetic vector. The direction of rotation, which defines whether the bit is a one or a zero is converted by the polarisation optics into an intensity change which is sensed by the readout detectors and channel.

Although the tiny amount of Kerr rotation results in a very small amount of signal modulation riding on a large dc bias, the technique of differential detection permits acceptable signal-to-noise ratio (snr) to be achieved.

Recordable compact disk - CD-R

The writable - i.e. write once - version of the popular cd-rom is known as CD-R and was introduced about four years ago. A CD-R disk can store about 650 Mbyte of data. A recorded disk looks very much like a stamped cd-rom, and is playable in most cd-rom players.

Early CD-R drives were very expensive - of the order of $\$ 50,000$ each - and were used only by professionals mastering cd-rom disks. Over the next three years, CD-R drive prices fell quickly to around $\$ 10,000$ in 1993.
By the end of 1994, the drive price had fallen to less than $\$ 2000$, with blank disks costing about $\$ 12$ per disk in the shops. The OEM price for CD-R drives has already fallen to less than $\$ 1000$ for small quantities. The dramatic drop in prices, combined with the fact that recordable disks were compatible with cd-
rom players has created a great deal of interest in this technology.
A recordable cd is coated with an organic polymer that can change its local reflectivity permanently upon sufficient heating by a laser spot. Structure of a CD-R disk is shown in Fig. 6. When the organic dye polymer is locally heated by the focused spot of a laser beam, polymeric bonds are broken or altered resulting in a change in the complex refractive index within the region. This refractive index change results in a change in the material reflectivity. There are half a dozen organic dye polymers that are commercially being used. Two examples are phthalocyanine and polymethane cyanine.
Like cd-rom drives, CD-R drives have relatively low performance compared with optical or hard drives. Just as in a cd-rom drive, the seek times are on the order of a few hundred milliseconds while the maximum data rate for a quad-speed drive is about $600 \mathrm{Kbyte} / \mathrm{s}$.
Seek time is slow because recordable drives spin the disks in constant linear velocity (clv) mode as defined in the Red Book standards. Constant linear velocity means that the disk rotation speed varies with the radius at which the read head is positioned in such a way as to ensure that the linear velocity is constant with radius. In contrast, constant angular velocity devices like optical WORM disks have seek times on the order of 40 ms .

Recording CD-Rs

To understand the attributes and limitations of recordable cd, it is important to understand the various recording modes that it can operate in. For fixed block architecture devices such as magneto-optical drives, the question of recording modes never comes up as there is only one mode, but in recordable cd, there are four modes, as in Fig. 7.
The four recording methods in CD-R drives are: disk-at-once, or single session, track-atonce, multisession, and incremental packet recording. In disk-at-once recording, one recording session is allowed on the disk, whether it fills up the whole disk or just a fraction of the disk. The data area in a single session disk consists of a lead-in track, the data field, and a lead out track. Information such as the table of contents is within the track lead-in.
In single-session writing, once the lead-in and lead-out areas are written, the disk is considered 'finalised'. Even if there are blank areas on the disk, further recording cannot take place. After the disk is finalised - and only then - it can be played back on a cd-rom player, which needs the lead-in and lead-out tracks present just to read the disk.
Having only the capability of recording a single session can be a quite a limitation for obvious reasons, so the concept of multisession recording was introduced. An early proponent of multisession recording was Kodak which wanted multisession capability for its PhotoCD products. In multisession recording, each session is recorded with its own lead-in and lead-out areas.
Multisession recorded disks can be played
back in cd-rom drives that are marked multisession compatible, assuming that each session on the disk has been finalised with lead-in and lead-out areas. Unfortunately, the lead-in and lead-out areas for each session take up lots of overhead; about 15 Mbyte . With this kind of overhead, the ultimate maximum number of sessions that can be recorded on a 650Mbyte disk is 45 sessions.
Rather than do multisession recording, the user may opt for track-at-once recording. With this technique, one or more tracks can be written in each session. The maximum number of tracks that can be written on the disk is 99 . However the disk or session must be finalised before it can be read on a cd-rom drive.
Because of the way input data is encoded and spread out, it is imperative to maintain a constant stream of information when recording. If there is an interruption in the data stream, it affects the whole file being recorded - not just a sector as in magneto-optical or WORM drives. If the interruption is long enough, it will usually lead to the disk being rendered useless - a 'golden coaster' as it is referred to in the industry. For this reason, it is important to have a fast hard drive capable of feeding data to the drive buffer continuously.
It is inconvenient to use the hard drive of the personal computer to directly feed the CD-R drive, because it ties up the hard drive and basically the whole computer. To address this issue, some CD-R drives come in a package that includes a dedicated 1 Gbyte hard drive. This solution, however, raises the cost of using recordable ed.
Many of the above problems or inconveniences can be alleviated through a new recording method just being introduced. Called incremental packet recording, this method involves breaking the input data up into packets of specified size, for example 128 Kbyte or 1 Mbyte .
Each packet consists of a link block, four run-in blocks, the data area, and two run-out blocks. Run-in and run-out blocks help delineate packets and allow some room for 'stitching' - i.e., providing overlap if perfect synchronisation is not achieved when recording an adjacent packet in a different recordable cd drive.
Packet recording has several advantages. To begin with there is no limit to the number of packets that can be recorded, up to the space available on the disk of course. In this way, limitations imposed by track-at-once, multisession or disk-at-once can be avoided.
Secondly, if the packet size is smaller than the drive-buffer size - as is likely to be the case - a dedicated hard drive is not needed while recording. Once the packet of information has been transferred to the drive buffer, the computer can do other tasks while the CD-R drive carries out the recording.
With the advent of packet recording, recordable ed technology becomes much more flexible than in the past. As a result, the technology is much more attractive as a general purpose removable data storage device. It can be used for back up purposes as well as for storing smaller files.

Table 1. Optical technologies compared.

	Multifunction Optical 5.25in MO/WORM	3.5in Optical	CD-R/CD-E	Phasewriter Dual (PD)
Disk diameter	130 mm	90 mm	120 mm	120 mm
On-line capacity	$650 \mathrm{Mbyte}{ }^{1}$	230Mbyte	650 Mbyte	650 Mbyte
Function	Rewritable and write-once	Rewritable	Write once but CD-E will be rewritable	Rewritable
Performance				
read data rate	$1200-2300 \mathrm{~KB} / \mathrm{s}^{2}$	600-1300KB/s	$700 \mathrm{~KB} / \mathrm{s}$	$870 \mathrm{~KB} / \mathrm{s}$
write data rate	400-800KB/s (mag-opt) $660-1200 \mathrm{~KB} / \mathrm{s}$ (WORM)	$200-400 \mathrm{~KB} / \mathrm{s}$	$700 \mathrm{~KB} / \mathrm{s}$	870 KB/s
seek time	30 ms	35ms	300 ms	200ms (average)
Mean time between				
failure (MTBF)	180000 hours	40000 hours	30000 hours	-
Current drive price	\$2000	\$700	\$1700	\$1000
Current media price	\$100	\$30	\$12	\$100
Expected drive price (May '96)	\$1500 ${ }^{3}$	\$600	\$700	\$700
Key attrlbute	High performance	Portability (shirt-pocket size disks)	Can read cd-rom Readable in cd drive	Can read cd-roms
Migration path	21300MB (early '96)	$\geq 650 \mathrm{MB}$ (early '96)	$\geq 3 G B y t e$ (late '97)	not clear
Upward compatible with next generation				
drives?	Yes (read/write compatible)	Yes (read/write compatible)	not clear (current CD-R disks not readable in HDCD drives)	not clear

Notes:

1) On-line capacity means capacity available without human intervention - i.e. capacity on a single side
2) In constant angular velocity (CAV) drives, linear velocity varies as a function of radius. Thus, data rate varies as a function of the radius of the read/write head because the linear data density is constant as a function of radius. The higher data rate is possible when the head is at he outer radius of the disk, while the lower data rate occurs when the head is at the inner radius. 3) These are projections based on industry consultant forecasts.

There is an interchangeability problem with some cd-rom players as they post a hard error when they encounter the link block at the beginning of each packet. To address the problem of interchange with packet written disks, the Optical Storage Technology Association is investigating whether an appropriate device-driver utility will enable older cd-rom drives to accept packet written disks.
An alternative is to use variable sized packets in which the packet size is equal to the file size. This technique is attractive because it reduces the incompatibility with cd-rom drives, but it also has its own problems - further illustrating the point that converting a recordable cd into a mass storage technology will require a certain amount of compromise and reduced expectations.

Cd-rom compatibility issues

One of the key attributes of recordable cd drives is that in principle the disks they write can be read by cd-rom drives. Given the phenomenal success of cd-rom and the rapidly growing installed base of titles and drives, it is clearly advantageous for an optical drive to be cd-rom compatible in some way.
Recordable ed drives can read cd-rom disks, and write recordable cd disks that can be read on cd-rom drives. However these disks are write-once only.
Several companies are working on a new technology called CD-E or compact-diskerasable which is a recordable cd based on phase-change material. The CD-E drives will supersede CD-R drives since they will have not only all the features of the recordable cd drives but also those of erasable cds. CD-E drives have the potential to become a mass storage medium and to replace the floppy drive on desk top computers.
Recognising the importance of cd-rom compatibility, Matsushita Corporation (Panasonic) recently announced a new rewritable optical drive called phasewriter dual or 'PD'. This
drive has the capability to read cd roms. The phasewriter-dual drive writes to a phase change rewritable media. However, unlike CD-E drives, the disks written by the pd drive cannot be read back by cd-rom drives, and thus cannot take advantage of the installed base of cd-rom drives.

A bewildering array of choice in 1995
How do optical drives available now, or being introduced in 1995, compare with each other? There seems to be a bewildering array of choices for the consumer. Which should the consumer choose? Of course this depends on what is important to the user - capacity and performance or low cost or cd-rom compatibility. A comparison of the various technologies are given in Table 1.
The primary delineators are performance and cost. Magneto-optical/WORM and phase change drives offer much higher performance than recordable ed drives. On the other hand, recordable cd offers cd-rom compatibility and has a greater possibility of being low cost because of the cd-rom base.
Over the next three years, the market will decide in which application segments each of these features is most important.

The next generation: HDCD and DVD

The 650 Mbyte capacity of current cd-rom and recordable CD-R drives has remained unchanged since the introduction of cd-rom in 1985. However, the growing interest in putting video on cd is forcing the need to increase the capacity - video is very storage intensive.
The motivation for developing video cds is that they will replace the video tape, just as audio cds replaced the phonograph record and audio tape in the mid eighties. Furhermore the high-capacity cd is also needed in computer applications to replace cd-rom disks.
In december 1994, Philips and Sony proposed a new compact disk standard called HDCD, high-density cd, which can hold

3.7Gbyte on a single disk. A second version of the HDCD is likely to have two data layers, as shown in Fig. 8, thus doubling the capacity on a single platter to about 7Gbyte.
A two layer HDCD should cost only marginally more than a single layer HDCD. Not to be outdone, Toshiba and Time Warner with support from Matsushita released an alternative standard for a videoCD in January 1995. Toshiba calls it the DVD or digital video disk but it has also been referred to as SD or super disk. This disk is double sided and can store about 5 Gbyte per side. A comparison of the two mutually incompatible standards is given in Table 2.
How will the increases to HDCD or DVD capacity be achieved? In any disk based system the main way of increasing capacity is to make the marks smaller and put them closer together since there is no chance of increasing the size of the disk. To go from current cdrom capacities to HDCD or DVD capacities a factor of at least five jump in storage density - requires shorter wavelength lasers, higher numerical aperture lenses, tighter track pitches and higher linear densities.

The laser chosen for the next generation cds will be a red emitting type operating at 635 nm , as opposed to the 780 nm of currently used for cds. However the switch to a red laser leads to a potential problem in compatibility. This is because current dye-polymer media formulations for recordable cds are not compatible at red laser wavelengths. As a result, the recordable disks you are using today will not be read back by the next generation of higher density compact disk drives. Lack of upward compatibility, though not widely advertised, will not be warmly greeted by any
users who are currently archiving data or photos on recordable cd media.
Several US and Japanese media companies are working on recordable ed media that is compatible at both the infra-red laser wavelengths, found in current drives, and the red laser wavelengths. An introduction of such media into the commercial market is imminent and will solve the current upwards-compatibility problem.
The fact that two competing proposals have been introduced for the videoCD standard has caused quite a stir, bringing back memories of the VHS versus Betamax videocassette standard wars. The videoCD standards could well be a replay of the videocassette war unless the two sides get together and compromise on a single standard.
Currently in Toshiba/Time Warner's favour is the fact that several of the Hollywood studios - the 'content providers' - seem to be supporting DVD. Sony and Philips have been lining up the major computer and software makers to support HDCD as the next generation replacement to the immensely popular and widespread cd-rom.Realising the importance of cd rom, Toshiba has agreed to modify its standard so that it will support cd rom, and has begun talks with computer and software companies, Which of the two competing standards the industry will adopt is still up ion the air, but hopefully, Sony/Philips and Toshiba can sort out their differences and converge to a single standard.

Optical technology trends

Whichever specific format is adopted, optical drives will continue to see both incremental and radical improvements from a technology

Table 2. Comparison of proposed high density compact video disk standards - Sony/Philips' IDCD versus Toshiba/Panasonic's DVD.

	Sony/Phillips HDCD	Toshiba/Panasonic DVD
Number of sides	Single sided (but up to 2 data layers)	Double sided
Disk capacity.	3.7 GB (7.4GB for 2 layer)	$5 \mathrm{~GB} /$ side (10 GB total)
Playing time	$135 \mathrm{~min} / \mathrm{layer}$	$142 \mathrm{~min} / \mathrm{side}$
Track pitch	$0.84 \mu \mathrm{~m}$	$0.725 \mu \mathrm{~m}$
Laser Wavelength	635 nm	635 nm
Numerical aperture	0.52	0.6
Plays current cd-rom titles	Yes	not clear

Fig. 8. Announced earlier this year, Sony's new 3.7Gbyte high-density compact disk is claimed to be capable of recording up to 135 minutes of MPEG-2 compressed video.
perspective. The incremental improvement process will concentrate on the four core technology elements: the laser, the media, the recording channel, and the opto-mechanics.
The laser will see continual improvements in its operating life and power, which in turn will allow disks to spin faster. Media will see improvements in substrates and active layers. Optics and actuator systems will have improved servo systems to allow finer positioning. In addition there will be reductions in noise, smaller optical components, and lighter actuators for faster seek operations.
The recording channel and electronics will see an increase in the level of electronics integration, a reduction in electronic noise and power consumption, and better signal processing and error correction.
There is a considerable amount of technical growth potential for optical drives, in both performance and capacity. After all, optical drives are a relatively new commercial technology. Remember that the first rewritable optical drives only started being marketed about six years ago.

Acknowledgments

Thanks to Lee Jesinowski of IBM Tucson for the electronic block diagram of the optical drive, and to Blair Finkelstein of IBM Tucson for the photograph on WORM threshold mark formation.

Probing further

There is a number of excellent books that provide an overview of optical disk systems. A classic is Optical Recording by Alan Marchant (Addison Wesley, Reading, MA, 1990) which provides an overview of the various types of recording as well as the basic functioning of an optical drive. A more detailed study of optical disk drives and their opto-mechanical aspects is provided in Principles of Optical Disc Systems by G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink (Adam Hilger Ltd, Bristol 1985).
For recent developments in the field of optical storage, you are advised to attend the meetings of the International Symposium on Optical Memory (ISOM) or the Optical Data Storage (ODS) Conferences (held under the auspices of the IEEE or the Optical Society of America).

> Perfect capacitors dissipate no power, but in the real world, many factors combine to reduce efficiency and increase failure rate as capacitor consultant Cyril Bateman explains.

Capacitors don't take power. So began my lecturer when introducing the topic of capacitor phase angles. I remembered these words only too clearly some years later when investigating capacitor failures occurring in the line time-base circuit of the first all solid state 110° colour televisions.
My experiences as a capacitor designer and applications engineer have clearly demonstrated that all capacitors have a limited power handling capability, similar to the safe operating area of semiconductors.
Directly or indirectly, overstressed capacitors are involved in most circuit failures. Obviously, all components wear out eventually. But overstressed capacitors used with pulse waveforms in power switching circuits can fail very quickly. Worse still, before the capacitor ultimately fails, it can directly contribute to the failure of switching semiconductors, and in doing so, mask the prime failure mechanism.
Manufacturers sometimes determine the power rating of a capacitor by subjecting samples to sinewave stress while monitoring the temperature rise. To confirm long term reliability, this is often supported by stressing at elevated temperature. These results can be related to end-use conditions provided that the capacitor's rms power level in circuit can be measured or calculated.
Why should capacitors cause such problems used with pulse waveforms? Power dissipated
in a capacitor is dependant on l^{2} esr, alternatively $V /$.tan δ. While capacitive reactance is inversely proportional to frequency, equivalent series resistance, or esr, is not. Depending on frequency and capacitor type, while esr generally reduces with rising frequency, this is not always the case. In some combinations esr can exceed the capacitive reactance, and can also increase with frequency.
Since the esr of a capacitor is frequency dependent, the capacitor's power dissipation can be measured in circuit only when using sinewave stimulation. Given a mathematically defined waveform, however, power level can be calculated following the classical methods.
This article proposes a method of calculating capacitor power dissipation for any waveform, - demonstrated by two recent applications reported in Electronics World - together with
a prototype 'snubber' circuit ${ }^{1,2,3}$.
In the first of these applications, an article on Cuk converters, Finnegan found that using a standard electrolytic component for the $3.3 \mu \mathrm{~F}$ capacitor of Fig. 1 was unsuitable. Equivalent series resistance caused overheating. In the second article, physically small capacitors are needed for C_{1} and C_{2} of Fig. 2. The choice of ceramic type matters here since some exhibit more losses than others and an incorrect type could easily result in overheating.
According to the Fourier theorem, time and frequency domains interrelate and can be transformed with no loss of information - provided complete waves are used and sufficient harmonics are computed. In theory an infinite number of harmonics is required. In practice fifty harmonics have proved to suffice.
Converting from the time domain into the

Resistance in capacitors

For a capacitor, equivalent series resistance, esr, is a single lumped resistive value representing all real losses. This loss comprises three main sources:

- True series resistance, tsr, comprising the actual metallic resistances.
- R_{p} comprising:
a) Dielectric loss due to molecular and interfacial polarisation.
b) Leakage resistance, measured at de volts.

$$
e s r=t s r+\frac{R_{p}}{1+\omega^{2}\left(R_{p}\right)^{2} C^{2}}
$$

esr $=\tan \delta \times X_{c}$
est $=\cos \theta \times|Z|$
Equivalent series resistance tends to reduce with increasing frequency, but by considerably less than the
theoretical halving for each doubling of frequency. Ultimately attaining a minimum value when $X_{\mathrm{C}}=X_{\mathrm{L}}$, i.e. at the series resonance of the capacitor as a series LCR system. ${ }^{8,9,10}$

In the capacitor equivalent circuit a), true series resistance is caused by actual metallic resistances inherent in the component makeup. Solving this equivalent circuit mathematically into real and imaginary terms results in the series equivalent model b). This is an equivalent series resistance representing all real capacitor losses.
frequency domain for calculations offers many benefits. Not least of these is the ease with which frequency dependent parameters can be accommodated, since all calculations are also simplified.
With capacitors subjected to non-sinusoidal waveforms, the resulting capacitor current by harmonic depends on the harmonic amplitude multiplied by the harmonic number. Given an ideal capacitor and ideal square wave, the current resulting from each harmonic equals that of the fundamental frequency. For other waveforms it is possible that harmonic currents can exceed that of the fundamental. Since the equivalent series resistance change by harmonic is always less than ideal, the power contributed by a harmonic can considerably exceed that of the fundamental, Table 1
Having established the need to avoid early
capacitor failures, the sequence for calculating capacitor power dissipation is:

- Fourier transformation of the stimulus waveform observed across the capacitor terminals, into the frequency domain, by amplitude and phase.
- Determination of esr for each harmonic frequency, by measurement or from published characteristics.
- Determination of relative capacitor current and phase for each harmonic frequency.
- Complex multiplication of stimulus waveform harmonic amplitude and phase with capacitor current and phase for each harmonic frequency.
- Reverse Fourier transformation
(synthesis) back into time domain.

Calculation of capacitor power by each harmonic and relevant esr, over one period of the fundamental waveform.

- Calculation of rms power dissipated in the capacitor

A closer look

Many suitable fast Fourier calculation routines have recently been published. The essential requirements are sufficient data points for accuracy, say 256 minimum, the provision of $k(0)$ (mean) data, with sufficient harmonic data by amplitude and phase, such that reverse transformation accurately recovers the original time-domain voltage waveform's shape and amplitude.
I have successfully used an enhanced version of the Larsen-Dyrik BBC Computer program adapted to run on the Archimedes ${ }^{4}$

Table 1. These results, derived from the 22 nF snubber, show that power loss due to harmonics can exceed that of the fundamental.

Marmonic number	Amplitude (V)	Phase $\left({ }^{\circ}\right)$	Current (A)	Power (W)
k(0) (mean)	113.13	0	0	0
$k(1)$	118.5	236.9	1.64	3.75
$k(2)$	89.72	202.5	2.48	4.87
$k(3)$	53.32	164.5	2.21	2.79
$k(4)$	21.5	112.7	1.19	0.64
$k(5)$	9.72	354.3	0.67	0.18
k(6)	14.66	272.4	1.22	0.49
k(7)	14.05	215.1	1.36	0.56
k(8)	10.7	151.2	1.18	0.38
K(9)	8.28	79.05	1.03	0.27
$k(10)$	6.8	6.96	0.94	0.21

Capacitor
 performance simulations

The procedure used to generate these results graphs commenced with time domain simulation of the circuit using Pspice. This produced the voltage waveform which would be measured across the capacitor if displayed on an oscilloscope. The 22 nF snubber was in fact derived from an oscillogram.
This waveform was digitised into
$256 \times Y$ co-ordinates and stored on disk using a custom program. The data file became input to calculation programs running on my Archimedes. These are FFT conversion, followed by frequency domain analysis, complex multiply and reverse FFT to restore to time domain.
The results are displayed on screen exactly as shown here. To provide the best resolution, I wrote a dedicated routine to output these curves as a vector datafile in Archimedes Draw format. This permits easy conversion to formats compatible with other machines.

Plot 1. Energy transfer for capacitor C_{3} of Cuk converter Fig. 1. This 160 V rated component is $3.3 \mu \mathrm{~F}$. A Wima MKS4 metallised polyester gives acceptable power loss for long life.

Plot 2. Experimental snubber using 22nF chip capacitors made from $X 7 R$ ceramic was unsatisfactory. Capacitor seriously overheated and failed - ${ }^{\circ}$ quickly.

Fig. 1. An important capacitor in this Cuk converter is the $3.3 \mu \mathrm{~F}$ device C_{3}, coupling pins 2 and 3 of the transformer. Finnegan found that ordinary electrolytic capacitors overheated and low-esr types were not available for such high voltages.

Plot 3. Energy transfer for 1.1 μ F capacitor C_{1} of the Harris/IBM converter, Fig. 2. Photograph in Jan '93 EW+WW, p58, shows parallel capacitors make up these values. With careful choice of ceramic dielectric power spread over 7 surface-mount capacitors should be satisfactory.

20v	10 A		-..--.-.--..-.-...-.
16v	8A		Volts
12v	8A		
8 v	4 A		\ldots
4 V	2 A		
ov	$0 A$	10w	
4 V	2 A	8W	------..-- - - -
8v	4 A	6 W	
12 v	8A	4W	Peak Power Mean Power
16v	8 8	2 W	
20V	10 A	ow	-
			I-PeakPeak +5.435 -7.693 Amps V-PeakPeak $+13.88+11.45$ volts RMS Volis 12.9 v RMS Current 4.867 A RMS Watts 0.8711 W

Plot 4. Performance of $0.88 \mu \mathrm{~F}$ reservoir capacitor C_{2} in Harris/IBM converter, Fig. 2. Parallel capacitors make up the value, as for plot three, but here, only six devices are needed.

Before any fast Fourier transform can be run, one period of the waveform must be described, mathematically if feasible, or more generally as X and Y co-ordinates, matching the input needs of the chosen FFT calculation.
Fundamental to this method is the assignment of esr and capacitance values for each harmonic frequency used. Whenever possible these should be interpolated from the nearest practical measured frequency.
Modern LCR bridges can measure at many frequencies to at least 1 MHz . At these higher frequencies the best four-terminal measurement techniques must be used, and preferably with short component lead lengths.
At frequencies greater than are possible with $L C R$ bridges, network analysers measuring by $|\mathrm{Z}| \angle \theta$ are most appropriate. Since most capacitors of interest will resonate below 10 MHz , as an unreducible minimum, a measurement of impedance with frequency can determine the minimal value of equivalent series resistance, at the resonant frequency.

Simulating capacitor performance

Analogue circuit simulators are based either on frequency-domain or timedomain simulation methods. Time-domain based simulators can allow for amplitude dependant anomalies that are typical of semiconductor junctions.
At the University of California, Berkeley, a development grant from Sprague Electric in 1970-71 funded the preliminary development of the Cancer program - from which Spice, subsequently Spice 2, developed. This work was specifically targeted to the needs of the integrated-circuits group at the University. Indeed the word Spice derives from 'Simulation Program with Integrated Circuit Emphasis'.
Full details of the development of Spice2 are contained in Laurence Nagel's doctoral thesis, memorandum No. ERL-M520, 9 May 1975.
Spice2-derived simulators comprise small-signal frequency-domain analysis together with time domain transient response and dc transfer functions.
Consequently, although Spice 2 based simulators are able to calculate power dissipation, use of the time-domain calculations, inhibits frequency dependency. ${ }^{11,12}$
While many nodal frequency domain simulators do not support frequency dependency, provided matrix reduction techniques are not used, this enhancement is possible.
With non-sinusoidal waveforms, substantial errors of power result from the capacitor's frequency dependent equivalent series resistance. Eliminate these errors by simulating in the frequency domain and using the appropriate esr values. I have built this capability built into my simulators for the Archimedes.

Fig. 2. This single-ended primary-inductance converter, based on a chip produced by Harris and IBM, involves small capacitors which are susceptible to overheating if the wrong ceramic is chosen. In the article here, 36 V input and 5 V output are assumed.

Provided that the frequency of the highest significant harmonic is below the capacitor self resonance, current and phase by harmonic relative to unity input stimulus can be calculated by many means - including pocket calculator. Should there be any harmonics having significant power above this resonant frequency, then a full capacitor model together with simulation software is preferred. This model has to include inductance and equivalent series resistance.
Complex multiplication of each harmonic component of the stimulus waveform with the relative capacitor current and phase provides. the final frequency-domain result. These are output when required. Complex multiplication is simplified if data by magnitude and phase angle is used. In this case multiply the respective magnitudes but add the angles. ${ }^{5}$
Capacitor current in rms can be calculated directly from the above complex multiplied frequency domain results. ${ }^{6,7}$
The reverse fourier transform or synthesis, provides the time domain capacitor current
waveform and the rms power dissipated by the capacitor. Additionally an estimate of the peak and mean power levels throughout the waveform can be deduced. This can be used to reduce power levels by fine tuning the waveshape. These capacitor power levels should be calculated by harmonic frequency, amplitude, phase and relevant esr for each of the data points through one waveform. ${ }^{6}$
This proposed method applies not only to switched mode supply simulation. The above sequence is simple and quick, if performed using dedicated computer routines. I have developed some of these myself.
Preparing X, Y data points defining the stimulus waveform is simplified by using a curve fitting routine. All subsequent data transfers can be automated. For any stimulus waveform, data from the fft can be stored as a library file, and reused as needed, until a different stimulus is desired.
Given capacitor data-file libraries, the traditional method of choosing capacitors by trial and error becomes obsolete.

References

1. Design Brief: $60 W$ Cuk converter, $E W+W W$, July 1991.
2. Switched-mode PSU technology runs at IMHz, $E W+W W$, January 1993
3. Intelligent Power ICs Databook, Addendum AN9208, Harris Semiconductor, Camberley. 4. Fast Fourier Transforms using a microcomputer, $E W+W W$, Sept. 1985.
4. Handbook of Line Communications, Vol. 1, HMSO.
5. Analysis \& Synthesis of Electric Circuits, MIR Publishers, Moscow.
6. Advanced National Certificate Mathematics, Vol. 2, English Universities Press.
7. Designer's Guide to RCL Measurements, Application Note 5952-4800, HP, Bracknell. 9. News from Rohde \& Schwarz, No 23, Fleet. 10. General Radio EID12.
8. A Guide to Circuit Simulation \& Analysis Using Pspice, Prentice Hall.
9. Spice2, Memorandum No ERL-M250, University of California, Berkeley.
10. Reference Data For Radio Engineers, H.Samms \& Co
11. Faster Fourier Transforms, EW+WW, June 1986.

Fourier transforms - forward and reverse

The forward Fourier transform $F(y)$ of a function of the real variable $f(x)$ (where $f(x)$ may be real or complex) is defined by the integral. ${ }^{13}$

$$
F(y)=\int_{-\infty}^{\infty} f(x) \exp (-j 2 \pi x y) d x
$$

In the context of this article, the above expression states that a timedomain measurement can be transformed into the frequency domain with no loss of data.
Displaying the sinusoidal component frequencies which comprised the original time domain waveform by their respective amplitudes and relative phases. An example of a time-domain measurement is an oscilloscope displaying amplitude by time.
This transform is subject to certain conditions. The waveform described must be periodic - e.g. one complete cycle of a repetitive waveform. In addition, the waveform must have a finite average value. The waveform must have a finite number of maxima and minima in a period.
Provided that the time-domain waveform sampling rate satisfies Nyquist and the number of samples is a multiple of two, the transform can be mathematically simplified as defined by the fast fourier transform. ${ }^{14}$
Note that since each harmonic data pair contains two dimensions, the
number of data pairs is restricted to one half of the number of samples used for the time domain.
Having performed an fft on the waveform, the resulting data is a number of data pairs describing amplitude and phase by harmonic, Table 1.
Having Fourier-transformed the waveform, subsequent calculations can follow the rules of conventional sinewave analysis.
Results from the reverse Fourier transform can be obtained simply by evaluating, harmonic by harmonic from time $t=0$ to 2π radians and by the number of samples the following expressions,
where, k is the harmonic number, and ψ is relative phase angle in degrees. Expressions $|\mathcal{M} \mathcal{V}(k)|,|P \cup(k)|,|M C(k)|$ and $|P C(k)|$ are the magnitude and phase results of the FFT and complex multiply respectively.

$I(k)=(I M v(k) \mid \omega \mathrm{kC}) \sin (\mathrm{K} \omega t+\psi \pi / 180+\pi / 2)$

(Ref. 4)
$I(k)=(|M c(k)| \sin (t k+|P c(k)| \pi / 180))$
(Ref. 4-6)
$V(k)=(|M v(k)| \sin (t k+|P v(k)| \pi / 180))$
Current, rms $=\left((|M c(k 1)| / \sqrt{2})^{2}+(|M c(k 2)| / \sqrt{2})^{2} \ldots\right)^{0.5}$
Voltage, $r m s=\left((M \nu(k 1) / / \sqrt{2})^{2}+(|M v(k 2)| / \sqrt{2})^{2} \ldots\right)^{0.5}$
Watts, $1 m s=\left((|M c(k 1)| \sqrt{2})^{2} e s r(k 1)\right)+\left((|M c(k 2)| / \sqrt{2})^{2} e s r(k 2)\right)+\ldots$
(Ref. 4-6)
(Ref. 4,10)
(Ref. 4,10)
(Ref. 4)

High Specification PIC Tools from PARALLAX

ClearView In-Circuif Emulafors

$20-\mathrm{MHz}$ in-circuir debugging for PIC $16 C 5 x / 64 / 71 / 84 /$
Set breakpoints, step through code, modify registers.
Friendly DOS and Windows software. From $\mathbf{£ 3 9}$ (separate units for " 5 x " and "xx" PICs)

PIC Programmer Pack

Programmer for
PIC16C5x/64/71/84/
Documentation on disk.
User supplied cables and power supply.

Jusif89

Stamp-sized Computer Modules Run BASIC

$81 / 0$
100 line capacity: $4-\mathrm{MHz}$ Clock
£29
Two NEW BASIC Stamp Controllers offering even more flexibility to Industry, Education and the Hobbyist. Both run Parallax "PBASIC" with familiar BASIC commands plus serial I/O, pulse measurement and button debounce. The BS2-IC includes additional support for LCDs, keypad, DTMF encoding/decoding, X - 10 transmit and external time clocks.
The BASIC Stamp programming package at $£ 66$ contains editor software, cables, manual and extensive application notes; everything you need to program Stamps using your PC.

All prices exclude VAT and $£ 3$ shipping per order.
For further details on any of these products please 'phone for our new colour catalogue.

MILFORD INSTRUMENTS

Milford House, 120 High Sireet,
SOUTH MILFORD, Leeds LS25 5AC
Telephone 01977-683665 (24 hour) 01977-681465 (fax)

Finally an upgradeable PCB CAD system to sult any budget ...

BoardCapture - Schematic Capiure

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Extensive component-based power

BoardMaker

BoardMaker1 - Entry level
PCB and schematic dratting
Easy and intuitive to use

- Surface mount support
- 90, 45 and curved track comsers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level
All the features of BoardMakert plus

- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical

Top down modtfication from the schematic Component renumber with back annotation

- Report generator - Database ASCII, SOM

Thermal power plane support with full DRC

BoardRouter - Gridless autorouter
Simultaneous multi-layer routing

- SMD and analogue support

Full interrupt, resume, pan and zoom while routing
Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - Áll Gerber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further
information on
Tel 01354695959
Fax 01354695957

tsien

Phasor and standing
 Phasor diagrams are extremely useful in combining voltages present at a point on a transmission line from forward and reflected waves. Finding the resulting, measureable voltage at a point is made very much simpler with a phasor parallelogram. This is taken a step further with a novel combined voltage and current diagram which allows currents and impedances to be dealt with.
 Once steady state has been reached, power is
 Geoffrey Billington looks at how currents and voltages are distributed in a standing wave and how these can be represented with phasor diagrams.

Power considerations

Power considerations

 delivered to the line at a steady rate and dissipated in the load at a steady rate. If the line is loss free, these two rates are equal.Energy injected into the line before steady state is achieved remains there in the form of the forward and reflected waves. In the steady state, energy stored on the line is continually leaking out at one end and is being continually topped up at the other by the transmitter. The energy returned by the reflected wave helps to maintain the forward wave.
When the generator is switched off, the energy stored on the line will leak rapidly away as the waves echo back and forth.
As both the forward and backward waves are energy carriers, the terms 'forward power' and 'reflected power' are frequently used. Reflected power does not mean wasted power so there is no reason why an ideal line should not transmit energy efficiently even if there is appreciable reflection; a high standing wave ratio. On the other hand, using practical transmission lines, the existence of voltage and current maxima is likely to result in increased energy losses. These losses increase with the

square of the current in the lines and the square of the voltage between them, so reduced losses at minima will not compensate for increased losses at maxima.

Travelling wave voltages

Imagine a continuous train of periodic waves moving down a long line from left to right. Everyone invariably forms a mental picture of a series of ripples of constant wavelength travelling down the line at a constant speed, but it is important now to think more carefully about what this picture really represents.
To monitor the variation of voltage along the line, let everything happen in slow motion and let centre zero voltmeters be connected at various points, shown in Fig. 1. Each meter swings from side to side over the same range as the wave passes, but there is a phase lag which increases steadily with distance moving down the line. For instance, voltmeter V_{2} is playing follow-the-leader with V_{1} but lags,
reaching its maximum a little later. Similarly, V_{3} lags V_{2}, and so on. By the time we reach $V_{\lambda 2}$ the lag has increased to half a cycle, and the lag of V_{λ} is one full cycle; it has come back into step with V_{1}. This pattem repeats all along the line. The distance between V_{1} and V_{λ} is defined as one wavelength (λ) or the 'repetition distance'
"For a wave travelling from left to right, the phase lag produced by moving a distance 'L' to the right is L / λ cycles. Moving a distance to the left produces a lead of L / λ cycles." In other words, a movement of one tenth of a wavelength causes a phase shift of one tenth of a cycle. For waves moving in the opposite direction, the above statements apply by simply interchanging the words 'lag' and 'lead'.

Instantaneous and rms measurements

From now on, phrases such as 'the voltage' or 'the current' will normally be referring to rms values, not instantaneous ones.

Standing-wave maxima and minima

At any point on a mismatched line there are two alternating voltage components. One is due to the forward wave and one is due to the reflected wave. What we actually measure with a voltmeter is the resultant of these two components. This depends on the phase difference between the component voltages at that point which varies from point to point.
Providing the line is long enough there will be at least one point where the component voltages are in phase or, strictly speaking, where the phase difference is a whole number of cycles. Suppose P is such a point. If the for-

ward-wave voltage component is v and the reflected component is $\mathrm{k} v$, the resultant voltage will have its greatest possible value of $v+\mathrm{k} v=v(1+\mathrm{k})$.
Now imagine we move down the line towards the antenna. As the distance increases, the forward wave is delayed an increasing amount while the reflected wave arrives earlier. This means a greater and greater phase difference between the components.
After moving a quarter wavelength, the forward wave will lag on its phase at P by one quarter of a cycle, while the reflected wave will lead by a similar amount. The result will be that the component voltages are half a cycle out of phase, and the resultant voltage will be $v(1-\mathrm{k})$. This is the minimum possible value of the voltage.
A further movement of one quarter wavelength will bring the components into phase and yet another quarter wavelength will bring them into opposition. This stationary pattern will repeat continuously, if the line is long enough, and is termed a 'standing wave'.
All this becomes quite obvious when the component voltages are represented by phasors. Resultant voltage at any point on the line is found by drawing a phasor parallelogram.

Using phasors

The two component voltages are represented by phasors drawn like the hands of a clock. The long hand is v units long and the short hand is $k v$ units. In practice it is often convenient to assume that $v=1$ and that the lengths are 1 and k units
At a point like P, a voltage maximum, the two hands are both pointing in the same direction. Say both point to 12 o'clock. As we move down the line the hands are rotated through equal angles in opposite directions, the angle representing change in phase; for instance a movement of one quarter of a wavelength is represented by rotating each phasor through 90°. This brings the hands pointing to three o'clock and nine o'clock. Phasor lengths must be subtracted to give $v(1-\mathrm{k})$, a voltage minimum in this case.
A further quarter of a wavelength will bring both hands pointing to six o'clock, another voltage maximum. However they are pointing in the opposite direction to when they were at 12 o'clock, so the resultant voltage at the new maximum is in antiphase with the original case, Fig. 2a,b,c.
Further movement down the line causes the phasors to cross over and arrive at another voltage minimum after another quarter wavelength, then arrive at their starting position. After a total movement of one full wavelength down the line, the voltage maximum at this point is in phase with the voltage at P.

Rotation convention

In moving down the line towards the antenna the forward wave is delayed, ie lag is introduced, and the reflected wave arrives earlier, ie it leads. Conventionally, lag is represented by a clockwise rotation and lead is represented by an anticlockwise rotation.

Fig. 3. A point $\lambda / 10$ from a maximum is represented by two phasors rotated 36° in opposite directions from the zero line, (a). The resultant voltage at this point on the line is found using a phasor parallelogram which combines two components; the voltage due to the forward wave and the voltage due to the reflected wave, (b).

Finding resultant voltage at a point

 Suppose that the point of interest is one tenth of a wavelength from a voltage maximum. With the clock hands both at 120^{\prime} clock, rotate each hand through one tenth of a cycle, 36°, in opposite directions, Fig. 3a.Now construct a parallelogram, Fig. 3b, with the clock hands as sides. The resultant voltage is given by a diagonal drawn from the junction of the clock hands. It should be clear that when the components are in phase or in antiphase, the parallelogram collapses into a straight line. When this happens, the figure still works, giving the same answers as obtained by a straightforward addition or subtraction.
The phasor voltage parallelogram (clock hand diagram) shows how the numerical value and phase of the line voltage varies from point to point. Surprisingly enough it can be easily modified to also give current.

Voltage and current parallelograms

The currents may also be represented by phasors and it is a fairly simple matter to draw current and voltage phasor diagrams side by side with the correct phase relationships.
One thing which holds for both forward and reflected waves is that at all times and all points in the circuit, voltage/current $=Z_{0}$. Note that this is not true for the resultant values of voltage and current.
First think about the forward wave. As $V / I=Z_{0}, V$ and I must be in step and peak at the same instant. We therefore draw the forwardwave current and voltage phasors in parallel, ie the phase difference is zero. The length of this current phasor must be equal to ν / Z_{0}, where v is the rms voltage.
Now think about the reflected wave. Once again the current must peak at the same instant as the voltage but it has already been pointed out that reversing the direction of the wave reverses the sign of the current relative to the voltage. For the reflected wave, the current phasor must point in the opposite direction to the voltage phasor.
Mathematically speaking, reversing the sign of the current without reversing the sign of the voltage means that $V X I$ is negative, ie the flow of power is reversed, which is of course true for the backward wave.
The length of the reflected wave current phasor is $\mathrm{k} / \mathrm{Z}_{0}$. The resultant current is given by the diagonal drawn from the junction of the current phasors, Fig. 4.
"If the current diagram is scaled up by a fac-

(b)

Fig. 4. Current is easily represented on the same phasor diagram as voltage with a small calculation to take into account the line impedance.

Fig. 5. Placing voltage and current phasors on one parallelogram enables the phase angle, A, between them to be seen. $\mathrm{PV}=$ resultant voltage, $\mathrm{PI}=$ resultant current $\times Z_{0}$.

tor Z_{0}, it becomes identical to the voltage parallelogram, except that the other diagonal gives the resultant."

Combined voltage-current parallelogram

The voltage parallelogram and the scaled up current parallelogram may be superimposed to give a combined voltage-current parallelogram, Fig. 5. In this the length of the diagonal drawn from the tip of the short clock hand to the tip of the long clock hand represents the current, scaled up by a factor Z_{0}. Angle A between the diagonals is equal to the phase difference between voltage and current.
The combined diagram is a very powerful tool. It gives a complete description of the voltage and current at any point on the line, and enables this to be compared with the voltage and current at any other. This is illustrated very well when it is applied to a line terminated in a perfect reflector, ie when $\mathrm{k}=1$.

Investigating the case when $\mathrm{k}=1$

It is worth while drawing a few diagrams for the case when $\mathrm{k}=1$, and thinking about what they mean. For instance, as the sides of the parallelogram are all equal the diagonals are always at right angles no matter what size the figure is. Voltage and current are in quadrature
at all points. The phase of the current also remains constant apart from a sudden reversal on passing a current zero: the voltage behaves in a similar way. You will notice that the electrons in neighbouring half wavelength segments are surging back and forth in opposition, causing maximum voltage fluctuation at the points of zero current.

Line impedance, Z

In general, reflection coefficient, k, have any value between zero and unity. The ratio of voltage to current is termed the line impedance Z, and on an unmatched line Z will vary from point to point. At the output end of the line, reflection must take place so that Z is identical to the terminating impedance. At the transmitter end of the line, Z is the impedance the line presents to the transmitter.
As the diagram allows you to measure the relative magnitudes of line voltage and current and their phase difference, Z may be found at the point in question. ('Line' values of voltage or current means the resultant values). On a matched line, $Z=Z_{0}$ and does not vary.

Simplifying phasor diagrams

To simplify matters slightly, instead of rotating both clock hands, it is easier if the long hand is kept vertical and the small one is rotated through the double angle. If you do this, the diagrams no longer enable you to compare the phases of voltages and currents at different points on the line. But this is immaterial in finding the line impedance at a given point.
Secondly, the diagram itself may be simplified. Figure 6 shows the voltage and scaled up current parallelograms for a point on the line. They are close together and side by side. Figure 7 shows how unwanted lines can be
Fig. 6. With current
scaled by a factor Z_{0}
onto the voltage
parallelogram, $P O$
represents both the
forward wave voltage
and the forward wave
current.

omitted to give a single diagram. The scale is immaterial. Vector length $\mathbf{P O}=1$ unit and $\mathrm{OV}=\mathrm{OI}=\mathrm{k}$ units. PV represents the resultant voltage while PI represents the resultant current, scaled up by $Z_{0} L$. Angle A gives the phase difference between the line voltage and current. Vector VOI acts as an indicator which can be rotated to reveal conditions at any point on the line.
An arrowhead is placed at V. It is helpful to imagine a clock face behind the indicator with the 12 o'clock and 6 o'clock points marked $V_{\text {max }}$ and $V_{\text {min }}$ respectively. Figure 7 shows the indicator set for a point one tenth of a wavelength from a voltage maximum. This requires a rotation of $2 \times 36=72^{\circ}$ from the 12 o^{\prime} 'lock position, Fig. 7. A clockwise rotation is shown in Fig. 7 so the point in question must be on the transmitter side of the voltage maximum. If there is sufficient information to draw the diagram for a given point, then the line impedance, Z at that point can be found.

Z=resultant volts/resultant amps
 Resultant volts $=\mathbf{P V}$, Resultant $\mathrm{amps}=\mathrm{PI} / \mathrm{Z}_{0}$. $Z=Z_{0}(P V / P I)$ or $\left(Z / Z_{0}\right)=(P V / P I)$.

Now imagine that the indicator is set at 12 o'clock and then rotated to show the effect of moving along the line. As the indicator is rotated, the diagram changes shape, $\mathbf{P V}$ and PI change in length, and the angle between them, A, opens and closes.

Maxima and minima

At 12 o'clock, PV has its maximum length and PI has its minimum length. This point is a voltage maximum and a current minimum. PV and PI lie one on top of the other, so here angle A is zero. Voltage and current are in phase so Z is purely resistive and at its maximum value which is greater than Z_{0}. At 6 o'clock, current is at a maximum and voltage at a minimum, so Z has its minimum value which is less than Z_{0}, therefore purely resistive. At all other points A is not zero, voltage and current are not in phase, so Z is complex.
Complex values of Z may be represented either by a resistance R_{s} and a reactance X_{s} connected in series, or alternatively by a parallel combination of R_{p} and X_{p}.
Standard ac theory gives:

$$
\begin{array}{ll}
R_{\mathrm{s}}=\mathrm{Z} \cos A, & R_{\mathrm{p}}=\mathrm{Z} / \cos A \\
X_{\mathrm{s}}=\mathrm{Z} \sin A, & X_{\mathrm{p}}=\mathrm{Z} / \sin A
\end{array}
$$

Provided a suitable rotation convention is used the diagram also shows whether X is inductive or capacitive. If movement along the line away from the transmitter is represented by an anticlockwise rotation and movement towards the transmitter by a clock wise rotation, X will be capacitive if PV is on the right of IV, and inductive if on the left.

A numerical example

One tenth of a wavelength of 50Ω coax is terminated with a 100Ω resistor. The termination is a pure resistance which is greater than Z_{0}, so the termination will be a voltage maximum. Standing wave ratio $=100 / 50=2$. This gives:
$\mathrm{k}=(2-1) /(2+1)=0.33$
One tenth of a wavelength is represented by a rotation of $2 \times(360 / 10)=72^{\circ}$.
The indicator is initially set to 120 'clock to represent conditions at the termination, and then rotated clockwise through 72°. Figure 7 should be drawn with $\mathrm{k}=0.33$ and could then be used to solve this problem. Vectors PV and PI and angle A are measured and PV/PI is evaluated. Then,
PV/PI=1.2 and $A=35^{\circ}$.
$\mathrm{Z}=\mathrm{Z}_{0}(\mathrm{PV} / \mathrm{PI})=50 \times 1.2=60 \Omega$.

The series components of Z are:

$R_{\mathrm{s}}=60 \cos 35^{\circ}=49 \Omega, X_{\mathrm{s}}=60 \sin 35^{\circ}=34 \Omega$.
The equivalent parallel components are:
$R_{\mathrm{p}}=60 / \cos 35^{\circ}=73 \Omega, X_{\mathrm{p}}=60 / \sin 35^{\circ}=105 \Omega$.
As PV is on the right of PI, X is capacitive. This applies to both series and parallel cases.
Alternatively, using the rotation convention, PI leads PV ; the current leads the voltage so ' Z ' is capacitive.
If the termination of the line had been a resistance of 25Ω (ie $Z_{0} / 2$ instead of $2 Z_{0}$) ' k ' and the swr would have been the same numerically, but the termination would have been a voltage minimum so the initial position of the indicator would have been at six o'clock.

The diagram as a visual aid

The real beauty of the diagram is that it reveals and clarifies so many aspects of transmission line behaviour. You only need a few rough sketches wihout any maths to get a good idea of how impedance, voltage and current and their relative phase all vary along an unmatched line. Try investigating the result of altering ' k ', including making it very nearly zero and very nearly unity. Remember that the greater the angle, A, the larger the reactive component compared to the resistive component. When $k=1, A$ is a right angle and so Z is a pure reactance.

Comparing phases at different points I have already pointed out that because one of the phasors is kept fixed, the diagram cannot be used to compare the phase of voltage or current at one point with that of another. If you are interested in making such comparisons, go back to the combined voltage-current parallelogram.

The diagram and the Smith chart

Those of you familiar with the Smith chart may notice that if the diagram had been drawn upside down with P vertically above ' O ', giving $V_{\min }$ at 120^{\prime} clock and $V_{\max }$ at six o^{\prime} clock, the operating rules become similar to those of the smith chart: ' X ' will be inductive when the indicator points to the right, and capacitive when it points to the left. Otherwise the diagram is used exactly as before.

Further reading

'An impedance diagram for transmission lines', Radio Communication, January, February 1992.

In Visualising electron disturbances, March 1995, the paragraph beginning "This is because the termination of a line . . $'$, pp 235, should be preceded by the heading 'Why reflection occurs' - Ed.

PROGRAM 8 CHIPS IN THE TIME IT TAKES FOR ONE!
At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27C010's mean your throughput can now be faster than ever before.

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$.

DISTRIBUTORS
BENELUX: +3255313737;
CYPRUS: 02485378; DENMARK: 048141885; FINLAND: 070039000; FRANCE: OI 39899622; GERMANY: 060827421615; GREECE: 019020115; ITALY: 0245784I; JAPAN: 053865501; NORWAY: 063840007; SINGAPORE: 04831691 ; SOUTH AFRICA: $011974121 / / 1521$; SPAIN: 013270614 USA: Distributors required.

FREE SOFTWARE UPGRADES! KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0)$ 1226761181, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk. * for DIL up to 40 pins.

AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!

The latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,
making them flexible enough whatever your programming needs.
Not only that, as new devices come onto the market we give free software upgrades and the units' modular design, with easy upgrade path, protects your investment.

Available now and priced from $£ 495$ they are everything you'll need for programming, chiptesting and ROM emulation.

FEATURES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.

High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).

- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

CIRCLE NO. 109 ON REPLY CARD

Call now to place your order, for more details or a free demo disk, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number.

All major credit cards accepted

SpiceAge competition results
 Here are solutions to the competition held in the February

 1995 edition of $E W+W W$.The two best entries answered all the questions correctly and completed the tie breaker with interesting and viable applications for SpiceAge.
Congratulations to winners, Andrew Pate of Keighley and R. Smedley of London who will each be receiving a copy of SpiceAge for Windows Level 3.

Q1. SpiceAge for Windows is written in which country: USA, Germany, UK, Israel, Australia, Japan?
A1. In the UK by Graham Baxter.
Q2. In a lossless circuit, resonance is given by $\omega=1 /(L C)^{0.5}$ $\mathrm{rad} / \mathrm{s}$. Write down the analogous expression for a mechanical spring + mass system. Please define completely the terms within your expression.
A2. $\omega=(\mathrm{km})^{0.5}$ where ω is angular velocity (for example in $\mathrm{rad} / \mathrm{s}$), k is spring stiffness (for example in N / m) and m is mass (for example in kg). Frequent wrong answers included some dependency on the gravitational constant and hence orientation of the system. (May be that's why upright pianos sound different from grands!)

Q3. Which of the following traces which show the current in the terminating resistor is the correct response of a 75Ω transmission line terminated with a 150Ω resistor to which a current of 1 A is suddenly applied.
A3. Working man's answer is that it cannot be trace 2 as that corresponds to a matched terminating resistor. It cannot be trace 1 which is showing no dissipation in the system (the output is in fact short circuited). It must be trace 3.

Which of the following traces showing current in a terminating resistor is the correct response of a 75Ω transmission line terminated with a 150Ω resistor to which a current of 1A is suddenly applied? See Q3.

Q4. You are on site repairing a board for which you need a $20 \mathrm{k} \Omega 5 \%$ resistor. You have just dropped your ohmmeter in a puddle and your toolkit contains only one each of 5% values fitting the $10,12,15,18,22,33$ and 47 decade multipliers between $1 \mathrm{k} \Omega$ and $47 \mathrm{k} \Omega$. What do you do to keep within the original value to three significant figures?
A4. The tolerances are of course a red herring because it is the same for both the target and element values. The problem may thus be reduced to finding the simplest (series and/or parallel) combination of nominal values. There are several solutions but the exact answer is given by $18 k+\left((2.2 k)^{-1}+(22 k)^{-1}\right)^{-1}$. Only one person found this solution-

Unique EW+WW reader offer
 30% discount on TTI's PFM1300 1.3 GHz frequency meter

With a resolution of 0.0001 mHz , the professional PFM1300 hand-held frequency meter from Thurlby Thandar measures from 5 Hz to 1.3 GHz with very high sensitivity of all frequencies.

5 Hz to 1.3 GHz hand-held frequency/period meter for just $£ 85.76$, fully inclusive - almost a third lower than the normal price of $£ 134.55$.

This battery-powered instrument also features a reciprocal counting technique providing superior accuracy, and a push-to-measure function with auto power down. Readings to eight digits are shown on a large eight-digit display and the meter incorporates a full range of annunciators.

Measurement - range \mathbf{A}	
Frequency range	$5-25 \mathrm{MHz}$
Resolution	$10^{-7} \mathrm{~Hz}$ to 10 Hz
Accuracy	± 1 digit + timebase error
Measurement - range B	
Frequency range	$20 \mathrm{MHz}-1.3 \mathrm{GHz}$
Resolution	1 Hz to 1 kHz
Accuracy	± 1 digit + timebase error
Period	
Frequency range	$5-25 \mathrm{MHz}$
Resolution	$10^{-7} \mathrm{~ns}$ to $1 \mu \mathrm{~s}$
Accuracy	± 1 digit + timebase error

Note: resolution depends on measurement time and input frequency.

Input $\mathrm{A}, 5 \mathrm{~Hz}-\mathbf{2 5 M H z}$
Impedance
Sensitivity
to 20 MHz
$1 \mathrm{M} \Omega / 25 \mathrm{pF}$
sine, 15 mV rms, 10 Hz

Input B, $20 \mathrm{MHz}-1.3 \mathrm{GHz}$

Impedance
Sensitivity

Input A/B limits
Abs. maximum l/p voltage $250 \mathrm{~V} \mathrm{dc}, 250 \mathrm{~V} \mathrm{rms}$
50 Hz to 400 Hz i/ps A,B,
1 V rms $>1 \mathrm{MHz} \mathrm{i} / \mathrm{p} A, 1 \mathrm{~V}$ rms 20 MHz to 1.3 GHz for $\mathrm{i} / \mathrm{p} B$.

Detailed specifications available - send s.a.e. marked Meter Details to
EW+WW, Room L330 Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

10 mV rms, 20 MHz to $700 \mathrm{MHz}, 50 \mathrm{mV}$ rms to 1.3 GHz
able - send s.o.e. marked

The PFM1300 - the hand-held frequency meter with bench-top performance.

Fully-inclusive price UK £85.76 Europe £90.44 Rest of world* $\mathbf{~} 97.46$ Cheques payable to Reed Business Publishing Group Ltd please, and posted to address above

Total
Name

It will be...PRECBELY!

It's common knowledge that the average PC Clock is not the most accurate time-keeping device. Until the DC-76 Atomic Controlled Clock!

Now your PC can be accurate to \pm one second in a million years. Synchronised to the atomic clock at Frankfurt Germany within a radius of 2,500 Km. Choose between serial/game-port versions. Software for Windows and DOS is standard. Drivers for Novel, OS/2,
Warp, LAN Server, LINUX and SCO UNIX are optional. Installation is as easy as connecting a new mouse!

The DC-76 is complete, consisting of, receiver, connecting cable with software and user manual.

It's only available from ON-TIME SYSTEMS and fully supported right here in the UK! Call now to place your order! VISA and MasterCard accepted.

TEST \& MEASURING INSTRUMENTS A SLIPERE RANGE OF OVER 100 GUALITYINSTRUMENTS. Available from
B.K.ELECTRONICS

FM-AM Signal Generators * Colour Pattern Generators *Video Signal Analyser *Video Timing Analyser \ddagger Video Noise Meter * Distortion Meter * Waveform Monitors

- Vectorscopes *Audio Generators * Wow and Flutter Meters $\begin{gathered}\text { Mectronic Voltmeters }\end{gathered}$
* Digital Multimeters * Function Generators *Frequency Counters * Bus Analyser
* Resistance Attenuator * Dscilloscopes * Fully Programmable Digital Storage Dscilloscopes * Regulated D.C. Power Supplies

A free, 50 page colour brochure, including price list, is available on request. Please make your request on company headed notepaper, by post or by fax, to:

B.K. ELECTRONICS

Tel: 01700 -507578
Fax: 01702.420243
CIRCLE NO. 111 ON REPLYCARD

RF EOUIPMENT

WIDEBAND AMPLIFIERS

TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain 30dB
Output $12.5 \mathrm{dBm}, 18 \mathrm{~mW} .50$ ohms£175

TYPE 9302 10MHz-1GHz. NF 2 dB at 500 MHz . Gain 30 dB . Output $12.5 \mathrm{dBm}, 18 \mathrm{mw} .50$ ohms.
. 175
TYPE 9008 Gasfet. 10MHz-2GHz. NF 2.5 dB at 1 GHz . Gain 10 dB
Output $18 \mathrm{dBm}, 65 \mathrm{~mW} .50 \mathrm{hms}$
TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB
Output 20dBm, 100 mW . 50 ohms.£195

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channel in bands I, III, IV or V
TYPE 9252 10mW input, 500 mW output£390
TYPE 925450 mW input, 2 watts output £435
TYPE 9259500 mW in put, 3 watts output £416
TYPE 9263 2-3 watts input, 12 watts output. $£ 700$
TYPE 93643 watts input, 22-25 watts output $£ 1370$transistor protection£2110
TYPE 936750 watts input, 150 watts output. Integral forced air cooling \& outputtransistor protection.£4345
PULSE TELEMETRY AMPLIFIERTuned to your specified frequency in the range $250-470 \mathrm{MHz}$TYPE 9127 100mW input, 5 watts output£575
TYPE 9128500 mW input, 10 watts output £575
AUTOMATIC TRANSMIT/RECEIVE SWITCHING AMPLIFIERSTuned to your specified frequency in the range $400-470 \mathrm{MHz}$TYPE 9405100 mW input, 5 watts output........ £775 (Inc. gasfet preamp......... £960)TYPE 9406500 mW input, 10 watts output........ $£ 795$ (Inc. gasfet preamp........... $£ 980$)TYPE 94073 W input, 25 watts output............. $£ 895$ (Inc. gasfet preamp.

NARROW ANO BROADBAND GASFET LNA's $5 \mathrm{MHz}-2 \mathrm{GHz}$

50 ohms. NF 0.6 dB£195
TYPE 9304 250-1000MHz. NF 0.7 dB . Gain 25dB. 50 ohms. £250
TYPE 9303 As above with active stripline filter. BW 1\% to 10% of CF £295
TYPE 9308 1-2GHz. NF 0.7dB. Gain 20dB. 50 ohms. £350
YYP 9305 As above with active stripline filter. B/W 1\% to 10% of CFf65
TYPE 9010 Masthead weatherproof unit for preamplifiers $£ 18$

PHASE LOCK LOOP FREQUENCY CONVERTER

TYPE 9115 Up/down converter. I/p \& o/p frequencies 20MHz-2GHz. BW up to 50 MHzNF 0.7 dB . Gain 60 dB variable. $0 / \mathrm{p}$ up to $10 \mathrm{~mW},+10 \mathrm{dBm}$. AGC£750
PHASE LOCK SIGNAL SOURCES 20-2000 MHz
TYPE 8034 Freq. as specified in the range $20-250 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW}$ £250
TYPE 9036 Freq. as specified in the range $250-1000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$ £350
TYPE 9038 Freq. as specified in the range $1-2 \mathrm{GHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$ £4200/p 10 mW£465
TELEVISION TRANSMISSION MODULESSound channel£395
TYPE 9269 PLL TN exciter. Single channel. Bands I, III, IV or V. $0 / \mathrm{p} 10 \mathrm{~mW}$. £750
TYPE 91158 PLL TN transposer. Up to 10 adjacent channels in bands I, III, N orV. $0 / \mathrm{p} 10 \mathrm{~mW}$. f 750

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel: 01303893631

Fax: 01303893838

Using variable

 integration, the ACF2101 switched integrator has a wide dynamic range, measuring currents down to a few nanoamps. Douglas Clarkson discusses using the device for detecting currents at photodiode levels.As the number of applications involving currents generated by sensing devices increases, so also are refinements being sought in measurement circuits. With photodiodes, for example, where the induced current is proportional to received signal levels, current measurement may be over a broad range. It may also vary significantly with time.
Where photodiodes are measuring light levels directly or indirectly in the case of ionising radiation there is often the requirement to measure the total amount of a pulse of light or a pulse of radiation. Manufactured by BurrBrown, this precision dual integrator can be used to undertake precision integration in a variety of modes to cater for such measurements.
The advantages of such a device are com-
pactness and low droop voltage with time. Such units can be controlled with standard ttl logic levels.
General applications include current to voltàge conversion, photodiode signal integration, current measurement, charge measurement, ct scanner front end and general medical, scientific and industrial instrumentation.

Device basics

Figure 1 shows the block diagram of the ACF2101, which is designed to operate on +5 V and -15 V supplies and draws typically 3 mA on the negative supply and 12 mA on the positive supply. Control of the device is basically undertaken by means of hold and reset logic pins, shown in Fig. 2. When hold is high and reset low (on condition), input current is

Fig. 1. Functional diagram of the ACF2101, precision integrator from Burr-Brown. Features include droop characteristics of $1 \mathrm{n} V / \mu \mathrm{s}$ and integrate slew rates of $3 \mathrm{~V} / \mu \mathrm{s}$.

Fig. 2. Pinout of the ACF2101 dip. The pins are arranged this way to allow for the stray-current guard rings.

Out 1	Sw Out A	24
Gnd A	Sw Com A	23
$\operatorname{Com} A$	Select A	22
Cap A	Reset A	21
$\ln A$	Hold A	20
Sw $\ln \mathrm{A}$	V+	19
Swin B	V-	18
in B	Hold B	17
Cap B	Reset B	16
Com B	Select B	15
Gnd B	Sw Com B	14
Out B	Sw Out B	13

ON: Switch shorted; Logic 0 input. OFF: Switch open; Logic 1 input.

Fig. 3. Input current is integrated when the hold line is high and reset line is low.

Fig. 4. Connections to the IC when using the internal precision capacitances is very straightforward.
integrated and the output voltage falls below 0 V . The limit to negative integration voltage is -10 V . Logic control is outlined in Fig. 3.
The device has an internal precision 100 pF capacitance for each channel selectable using the circuit connections of Fig. 4. Where larger currents need to be integrated, a separate external capacitor can be included in each circuit as shown in Fig. 5.
Using the relationship,

$$
V_{\text {out }}=-\frac{I_{\mathrm{in}} \times \mathrm{dt}}{C}
$$

where $I_{\text {in }}$ is the input current, dt is the time of integration and C is the integrating capacitor, values of $I_{\text {in }} \mathrm{dt}$ and C can be calculated for a full scale value of $V_{\text {out }}$ of -10 V .
In applications in optical measurement, data can be required to be captured rapidly in micro seconds or over longer time periods, up to several 50 Hz cycles. For longer periods, if a signal is being sampled over 50 half cycles at 10 ms per half cycle then the sample time is 0.5 s . With a typical photodiode current of $5 \mu \mathrm{~A}$ the required capacitance will be $0.5 \mu \mathrm{~F}$.
It is important that the capacitance used is of sufficiently good quality. A high performance polypropylene type will minimise leakage losses, for example. Such integrators are valuable for example in measuring levels of light from sources which are varying rapidly, such
as fluorescent tubes. The integrator can be switched on for a set period in order to capture an integral number of cycles of visible or ultra-violet light output.
In addition each output amplifier has an output select switch which allows for multiplexing of devices using an instrumentation amplifier as shown in Fig. 6. For all devices unselected, the integrated charge is held in each device and the output is not connected. For selection of a device, the output is communicated to the instrumentation amplifier. In this way a series of channels can be controlled by a common set of logic signals and individual integrated channels can then be selected.

Functional use

Normally the cycle of operation will be:
reset - clear residual charge, hold, integrate, hold - maintain final voltage and read value. Data would normally be read at some point during the hold cycle. Voltage droop taking place during the hold cycle is given by

$$
\text { droop }=\frac{200 f A}{C}
$$

where C is integration capacitance in farads and fA is femto amps.
For a 100 pF capacitance and with no additional leakage currents this is equivalent to $2 \mathrm{mV} / \mathrm{s}$ or $2 \mathrm{nV} / \mu \mathrm{s}$.
The logic switching of hold and reset will

Table 1. Values of input current integration time and Integration capacitance to achieve full scale output of -10 V .

$\ln (\mu \mathrm{A})$	$\mathrm{dt}(\mathrm{s})$	$\mathrm{C}(\mathrm{pf})$
0.01	0.1	100
0.1	10 m	100
1	1 m	100
10	100μ	100
100	10μ	100
10	1 m	1000
100	1 m	10000

cause charge transfer to take place. It will be of a sign which is a function of the sign of the transition - positive going or negative going. The magnitude of this switch is typically 0.1 pC and this corresponds to a voltage offset of 1 mV for a 100 pF capacitance. Where this effect becomes significant, its impact can be minimised by ensuring that the reset and hold logic transitions cancel out.
These effects of voltage droop and charge transfer are reduced for larger values of capacitance. Thus for $10,000 \mathrm{pF}$ the voltage droop will be $0.2 \mathrm{mV} / \mathrm{sec}$ and the charge transfer voltage $10 \mu \mathrm{~V}$.

Timing control

Control of the ACF2101's integration time is a key element of successful use of the device. Timing needs to be accurate for a set config-

MEASUREMENT

uration, but options should be available to select various integration times. Thus reproducibility of integration period needs to be good. There are many ways in which such consistency and control of timing can be achieved. Some of them are considered here. Assuming a logic level transition is used to initiate a timing sequence, a device such as the

4538 dual retriggerable monostable multivibrator provides a convenient way of producing an reproducible integrating pulse width, as shown in Fig. 7. With an input low to high transition on pin 4, the inverse output on pin 6 gives the required logic transition for time t where $t=0.7 R C$. Table 1 indicates how a range of values of t can be configured

Table 1. Value of pulse duration with cmos 4538 monostable.

Value R	Value C	Time t
10 k	$0.1 \mu \mathrm{~F}$	0.7 ms
100 k	$0.1 \mu \mathrm{~F}$	7 ms
1 M	$0.1 \mu \mathrm{~F}$	70 ms

Fig. 5. Precision capacitances with low leakage current are used externally from the ic to alter the time constant of the integrator.

Fig. 6. Signals may be multiplexed using the output switches of the ACF2101 and an instrumentation amplifier.

Fig. 7. An integrating pulse is provided by a simple stand alone retriggerable monostable.

In this configuration the timing is a function of the specific values of R and C. There is also the short term problem of temperature drift and long term problem of device aging. For a resistor with a temperature coefficient of +500 ppm (parts per million) a 10° rise in temperature will result in a change of value of 0.5%. For a few extra pence per component, resistors with a temperature coefficient of +50 ppm can be obtained - reducing the percentage change in value for a 10° rise in temperature to 0.05%.
Stable capacitors such as polypropylene have a negative coefficient of around -200 ppm while types such as polyester have values of around +300 ppm . Where possible, temperature coefficients should be of equal magnitude but of opposite sign. Often, however, more control is required over timing - both for accuracy and range of values. The circuit of Fig. 7. can be triggered with a value of $R C$ large enough to complete long pulses of several seconds, but with an external timing transition to reset the output. This output can be, for example, a timing line derived from a crystal of value 32.642 kHz and divided down by a 4020 14 -stage binary counter. The positive going start pulse could initialise the counter and set the inverted output of the 4538 monostable low as a long pulse (several seconds is triggered.

Choice of integration period can be influenced by the nature of the signal being captured. Where, for example visible or ultra violet light levels from fluorescent sources are being measured, then the light output takes the form of rectified sine waves. At 50 Hz cycles, the period of each positive cycle is 10 ms . It would be appropriate to use a 250 ms or 500 ms integration pulse width with such signals to minimise problems of signal aliasing.

Circuit design using ACF2101 devices The ultra low operational amplifier bias current of around 100 fA , requires careful pcb design. Figure 8 indicates how so called guards are required to protect the inputs. Current which could flow from other tracks to the input track is instead trapped at the guard track. Handling boards can also increase voltage droop. Cleaning boards using solvents and de-ionised water minimises this effect.

Summary

The ACF2101 device has wide application in circuits measuring currents over a wide dynamic range. Care is needed with circuit layout in order to prevent leakage currents being picked up by the device as 'current signal'. Obtain a current data sheet on the device and not a preliminary one.

Further reading

AC2101 data sheet, Burr Brown International, 1 Millfield House, Woodshots Meadow, Croxley Centre, Watford, Herts, WD1 8YD.

the new
 CRICKLEWOOD Electronics Verry limuenrestimg CATALOGUE
 ASTRONOMICAL RANGE AT DOWN TO EARTH PRICES

- TRANSISTORS+ICs+SEMICONDUCTORS
- RESISTORS+CAPACITORS+INDUCTORS
- SURVEILLANCE+SECRECY+SECURITY
- PLUGS+SOCKETS+LEADS+CONNECTS
- TV \& VIDEO SPARES (inc Video Heads)
- HIFI+DISCO+HIFI GADGETS+SPEAKERS
- AUDIOPHILE COMPONENTS (inc Capacitors)
- IN CAR AUDIO+SPEAKERS (inc Bass tubes)
- COMPUTER ACCESSORIES+BOARDS
- TOOLS+TEST EQUIPMENT+BENCHWARE \& much much much more (over 10,000 lines). SEND TODAY FOR THE VERY INTERESTING CATALOGUE
Pay by PO, Cheque, Credit Card or tape Coins to Paper
Please send mecopies of the 1995 Cricklewood Catalogue. I enclose $£ 2.50$ per copy (UK \& Europe). $£ 5.00$ overseas Name.
Address

Please Charge my Credit Card..
Expiry Date.........................Tel no. \qquad .WW
Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway London NW2 3ET Tel O181450 0995 Fax 01812081441

CIRCLE NO. 113 ON REPLY CARD

UPGRADE YOUR 68040!

ARIES Electronics Upgrade Socket (57-S68060) allows you to upgrade from 68040 to 68060 seamlessly, thus taking advantage of its faster speed and lower power consumption.

Aries Electronics (Europe)

Unit 3, Furtho Court, Towcester Road
Old Stratford, Milton Keynes MK19 6AQ
Tel: +44 1908260007 Fax: +44 1908260008

CIRCLE NO. 114 ON REPLY CARD

MONO VGA MONTORS

Some with slight screen bums but OK at $£ 19.96$ Re EF40 and some without burns at £29.96 Rof EF39.

A4 DTP ${ }^{\text {Hin ONTORS }}$ Brand new, 300 DPI. Complete with diagram but no interface details.(so you will have to work It outl) Bargain at just $£ 12.99$ eachilli OPD MONTTORS 9° mono monitor, fully cased complete with rasterboard, switched mode psu etc. CGA/TTLinput (15way D). IEC
mains. 15.99 ref DEC23. P Ace Including kit to convert to composite monitor for CCTV use elc is $£ 21.99$ rel DEC24
PC CONTROLLED 4 CHANNEL TMER Control (on/off times etc) up to 4 items (8 A 240 v each) with this sit. Complete with Software, relays, PCB etc. E25.99 REI 95/26
COMPLETE PC 300 WATT UPS SYST EM Top of the range UPS system providing protection for your computer system and valuable software aganstmainspower fuctuations and culs. New and boxed. UK made Provides up to 5 mins running time in the event of
complete power failure toallow youto run your system down correcty. complete power failure to allo
SALE PRICE just E 119.00 .
RACAL MODEM BONANZA! 1 Racal MPS 1223 1200/75 modem, telephone lead, mainslead, manual and comins sotware, the cheapest way onto the netl all this for just E 13 ref DEC 13 HOW LOW ARE YOUR FLOPPIES? $3.5^{\prime \prime}(1.44)$ Unbranded, We have sold $100,000+$ so okl Pack of 50 £24.99 ref DEC 16 BRTISH TELECOMM MULTMETERS SA9083 These are 'returns' so they may have faults but look ok. Complete with new leads and leather case. Price for two meters \& 1 case is $£ 10$ ref DEC89. 6 mw LASER POINTER. Supplied in kit form, complete with power adjuster, $1-5 m w$, and beam divergence adjuster. Runs on 2 AAA batterles. Produces thin red beam ideal forlevels, gun sights. expeiments etc. Cheapest in the UKI Just $£ 39.95$ ref DEC49
SHOP WOBBLERSISmall assemblies designed to take D size batteries and wobble' cardboard model signs ab out in shop windows! E3.99 Rel SEP4P2.
RADIO PAGERSBrand new, UK made pocket pagers dearance price is Just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bitsl Ref SEP5. BULL TENS UNT Fully built and tested TENS (Transcutaneous Eiectical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70% of
sufferers. Drug free pain relief, safe and easy to use, canbe used in sufferers. Drug free pain relief, safe and easy to
conjunction with analgesics etc. E49 Ref TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellen quality modem units, (like wyse 50, s) $2 \times R S 232,20$ function keys, 50 thro to 38,400 baud, menu driven port, screen. cursor, and keyboard setup menus (18 menu's). £29 REF NOV4.
OMRON TEMPERATURE CONTROLLERS (E6C2).Brand new controllers, adjustable from -50 deg C to $+1,200 \mathrm{deg} \mathrm{C}$ using graduated dial, 2% accuracy, themocouple input, longlife reay output . $3 \mathrm{~A} 240 \mathrm{vo} / \mathrm{p}$ contacts. Perfect for exactiy controling a temperature. Normal trade £50+, ours £15. Rel E5C2
ELECTRIC MOTOR BONANZA! $110 \times 60 \mathrm{~mm}$.Brand new precision, cap start (or spin to start), virually silent and features a moving outer case that acts as a fly wheel. Because of their unusual design we think that 2 of these in a tube with some homemade fan bades could form the basistor a wind tunnel etc. Ciearance pice is /ust
£49 FOR A PARI (note-these will have to be wired in sentes for 240 v £4.99 FOR A PARI (n
operation Ref NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$.Similar to the above motor but more suitable formounting vertically(ie tumtable etc). Again you will have to wire 2 In senes for 240 v use. Bargain price is just $£ 4.99$ FOR A PAIRII Ref NOV3.
OMRON ELECTRONIC INTERVAL TIMERS.
MInature adjustable timers, 4 pole o/o output 3A 240v, HY1230S, 12 VDC adjustable from $0-30$ secs. $£ 9.99$ HY1210M, 12VDC adjustable from $0-10$ mins. $£ 9.99$ HY1260M, 12vDC adjustable from 0-60 mins. $£ 9.99$ HY2460M, 24VAC adjustable from $0-60$ mins. $£ 5.99$ HY241S, 24VAC adjustable from 0.1 secs. $£ 5.99$ HY2460S, 24VAC adjustable from $0-60$ secs, $£ 5.99$ HY243H, 24VAC adjustable from 0-3 hours. £8.99 HY2401S, 240 V adjustable from $0-1$ secs. $£ 9.99$ HY2405S, 240 V adjustable from $0-5$ secs. $£ 9.99$ HY24060m, 240 N adjustable from $0-60$ mins. $£ 12.99$ PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with built in psu, lead and s/ware.
£49.95. Ideal forlaptops or a cheap upgrade. We also can supply this $£ 49.95$. Ideal forlaptops or a cheap upgrade. We also can supply this in lit form for home assembly at $£ 34.95$ ref EF54.
DRIN KING BIRD Remember these? hook onto wine glass (supplied) and they drink, standup, drink, standup ETCI $£ 4$ each Ref EF1 EM ERGENCY LIGHTING UNIT Complete unit with 2 double bulb boodiights, bult in charger and auto switch. Fully cased. 6v 8AH lead acid req'd. (secondhand) $£ 4$ rel MAG4P19
GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core Insulated cable, 281 bs breaking strain, less than 1 mm thick! Ideal larms, intercoms, fishing, doils house's etc. $£ 14.99$ ret MAG15P5 300 v PANEL M ETER $70 \times 60 \times 50 \mathrm{MM}, \mathrm{AC}$, 90 degree scale. Good quality meter, $£ 5.99$ ref MAG 6P14. Ideal for monitoring mains etc. ASTEC SWITCHED MODE PSU BM41012 Gives +5 3.75A. +12@1.5A, -12@.4A. 230/1 10, cased, BM41012. £5.99 ret AUG6P3. TORRODLAL TX 30-0-30 480VA. Perfect for Mosfet amplifiers etc. 120 mm dia 55 mm thick. $£ 18.99$ rel APR19.
AUTO SU NCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre leadfitted with a dgarplug. 12v 2watt. £9.99 ea ref AUG10P3. FLOPPY DISCS DSDD Top quality 5.25^{\prime} discs, these have been ritten to once and are unused. Pack of 20 is $£ 4$ rel AUG4P4 ECLATRON FLASH TUBE As used in police car flashing lights etc. full spec supplied, 60-100 Hashes a min. 9.99 ref APR10P5 24v AC 96WATT Cased power supply. New. £ 13.99 rel APR14. MILITARY SPEC GEIGER COUNTERS Unused anstraightfrom Her majesty's forces. E50 ref MAG 50P3. STETHOSCOP E Fully functioning stethoscope, ideal for ilstening to hearts, pipes, motors etc. $£ 6$ rel MAR6P6.
OUTDOOR SOLAR PATH LIGHT Captures sunlight during
the day and automatically switches on a builh in lamp at dusk. Complete with sealed lead add battery etc $£ 19.99$ ref MAR20P1
A LARM VERSION Of above unit comes with built in alarm and pir to deter Intruders. Good value at just $£ 24.99$ ref MAR25P4
CARETAKER VOLUM ET RIC AJarm, will cover the whole of the ground foor against forcred entry. Includes mains power supply and integral battery Dack up. Puwerfulinternal sounder, will take external bell req'd. Retail $£ 150+$. ours? $£ 49.99$ ref MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips. Ideal 'phone extns etc. $£ 7.99$ ref MARBP3.
MICRODRNE STRIPPER Small cased tape drives ideal for stipping, los of useful goodies including a smart case, and lots of components. £2 each ref JUN2P3.
SOLAR POWER LAB SPECLAL You get TWO 6 " 6° 6v 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit just £5.99 REF: MAG6P8
SOLID STATE RELAYS WiH switch 25A mains. Input $3.5-26 \mathrm{vDC}$ $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10
BUGGING TAPE RECORDER Small voice activated recorder. uses microc as sette complete with headphones. E28.99 refMAR29P1. ULTRAMINIBUG MIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ madeby AKG. 5 - 12 velectret condenser. Cost £12 ea, Ours? just four for $£ 9.99$ REF MAG10P2. RGB/CGAEGATTL COLOUR MONTORS 12^{*} in good condition. Back anodised metal case. £79 each REF JUN79
ANSWER PHON ES Retums with 2 faults, we give you the bits for 1 fautt, you have to find the other yourself. BT Response 200 's $£ 18$ ea 1 faut, you have to find the other yoursell.
REF MAG18P1. PSU £5 ref MAG5P 12.
SWITCHED MODE PSU ex equip. $60 \mathrm{w}+5 \mathrm{v}$ @5A. -5 ve . 5 A . $+12 v @ 2 A$-12v@.5A 120/220v cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socke 6.99 REF MAG7P1

PLUG IN PSU 9V 200 mA DC $£ 2.99$ each REF MAG3PS
PLUG IN ACORN PSU 19v AC 14w . 22.99 REF MAG3P10
POWER SUPPLY fully cased with mains and op leads $17 v$ DC arf)mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCHIMEDES PSU +5 V © 4.4A on/oft sw uncased. selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2
GEIGER COUNTER KIT Low cost professional twin tube, comlete with PCB and components. Now only £19 REF AUG19.
9v DC POWER SUPP LY Standard plug in type 150 ma 9 v DC with ead and DC power plug. price for two is $\vDash 2.99$ ref AUG3P4.
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$, £3 a pack. REF MAG3P11
13.8 V 1.9 A psu cased with leads, Just $£ 9.99$ REF MAG10P3

PPC MODEM CARDS. These are high spec plugin cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with eads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our clearance price is just $£ 2$ REF: MAG2
200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC into either 110 v or 240 vAC . Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, cigar plug, AC outiet socket.Auto overioad shutdown, auto short circult shut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alam), auto temp control, unit shuts down if overheated and sounds audible alarm. Fused reversed polarity rotected. oulputrequency within 2\%, valtage within 10\%. Aextremely well built unit at an excellent price. Just $£ 64.99$ ref AUG65.
UNNERSAL SPEED CONTROLLER KT Designed by us for the C5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
MAINSCA BLEPrecut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPUTER COMMUNICATIONS PACK Kit contans 100 m of 6 core cable, 100 cable dips, 2 line divers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating beween PC's over a long distance. Complete ktt £8.99.
MINICYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ runs on PP3 Dattery complete with shrill sounder. Cheap protection at only $£ 5.99$ ref MAR6P4.
ELECTRIC MOTOR KIT Comprehensive educational hitincludes ail you need to build an electric motor. £9.99 ref MAR10P4.
VIEWDATA SYSTEMS made by Phillips, complete with internal 20075 modem, keyboard, psu etc RGB and composite outputs, menu driven, autodialler etc. $£ 18$ each Ref EF88
BOOMERANG High tech, patented poly propylene, 34 cm wing span. Get out and get some exercise for $£ 4.99$ ref EF83
AIRRIFLES . 22As used by the Chine se army for training puposes, so there is a lot aboutl $£ 39.95$ Rel EF78. 500 pellets $£ 4.50$ ref EF80. PEANUT TREE Complete kit to grow your own peanutst full instructions supplied. £3 Ref EF45.
PLUG IN POWER SUPPLYS Plugs in to 13A socket with output lead. three types available, 9 vdc 150 mA ©2 ref EF58, 9 vdc 200 mA £2.50 ref EF59, 6.5vdc 500mA £3 ref EF61.
VIDEO SENDER UNTT. Transmits both audio and video signals rom either a video camera, video recorder. TV or Computer etctoany Pand is sis REF. MAG15 $12 y$ psu Is $£ 5$ exra REF. MAG5P2 p. Price is $£ 15$ REF: MAG15 12v p.su is $£ 5$ extra REF: MAG5P2 FMM CORDLESS MICROPHONE Small hand held unit with a 500 ' rangel 2 transmitpowerlevels. Reqs PP3 9v battery. Tuneable to
FM receiver. Price is $£ 15$ REF: MAG 15P1 any FM receiver. Price is £15 REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200'. Ideal for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG 8P1 $2 \times$ PP3 req'd.
-MINATURE RADIO TRANSCENERS A pair of walkje talkles
BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX
BN3 5QT(ESTABLISHED 50 YEARS) MAIL ORDER TERMS: CASH PO OR CHEQUE WTH ORDER PLUS $£ 3,00$ POST PLUS VAT.

PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY
TELEPHONE ORDERS WELCOME
TEL: 01273203500
FAX: 01273323077
with a range of up to 2 km in open country. Unismeasure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and eap'ces. $2 \times P$ P3 req' $\mathrm{C} . ~$
COMPOSTTE VinEO KIT. Converts composite video into sepa COMPOSITE VinEO KI. Converts composite video into
rate H sync, V sync, and video. 12v DC. £8.00 REF: MAGBP2. rate H sync, V sync, and video. 12v DC. 58.00 REF: MAG8P2.
LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, steppermotors etc etc in fact everyihing bar the case and electronics, a good stripper! £5 REF: MAG5P3 or $\mathbf{2}$ for $£ 8$ REF: MAG8P3
LED PACK of 100 standard red 5 m leas $£ 5$ REF MAG5P4
UNNERSAL PC POWER SUPPLY complete with fiyleads, switch, fan etc. Two types available 150w at £15 REF:MAG15P2 ($23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at 20 REF: MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$)
GYROSCOPE About 3^{\prime} high and an excellent ed ucational toy for all GYROSCOP About 3^{\prime} high and an excellente
ages! Price with instruction booklet 56 Ref EF15.
ages! Price with instruction bookleice Rel EF15.
FUTURE PC POWER SUPPUES Theser
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$,
4 drive connectors 1 mother boand connector. 150 watt, 12 v fan, iec
inlet and on/off switch. $£ 12$ Ref EF6. inlet and on/off switch. £12 Ref EF6
VENUS FLYTRAP KTT Grow your own carnborous plant with this simple kit E3 rel EF34.
PC POWER SUPPLIES (retums) These are $140 \times 150 \times 90 \mathrm{~mm}$. of PS are $+12,-12,+5$ and $-5 v$. Builh In $12 v$ fan. Thes
may well need repairingl $£ 3.50$ each ref EF42.
"FM TRANSMITTER KIT housed in a standard working 134 adapterll the bug runs directly off the mains so lasts forevert why pay E700? or price is $£ 15$ REF: EF62 Transmits to any FM radio. (this is in kit form with full instructions.)

- FM BUG KT New design with PCB embedded coil for extra stability. Works to any FM radio. 9v battery req'd. £5 REF: MAG5P5
- FM BUG BUILT ANDTESTED superior design to kit. Supplied to detective agencies. $9 v$ battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER ofiginally made to retail atE79 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes bioken hinges. However they canlbe adapted for their original use or used for something else?? Price is just E3 REF: MAG3P1
TOP QUALTTY SPEAKERS Made for HI FI televisions these are 10 watt 4R Jap made 4^{4} round with large shielded magnets. Good quality. $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ REF: MAG6P2
TWEETERS $2^{\prime \prime}$ diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small mod to run on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Price $£ 6$ REF: MAG6P3 HEADPHON ES Ex Virgin Atlantic. 8pairs forE2 REF: MA G2P8 DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just $\mathbf{5 5}$ REF: MAG5P8 Worth it just for the very comprehensivemanual! $5.25^{\prime \prime}$ only
GAS HOBS Brand new made by Optimus, basic three bumer suitable for small fat etc Dargain price just $£ 29.95$ ref EF73
GAT AIR PISTOL PACK Complete with pistol, darts and pellets $£ 12.95$ Ref EF82 extra pellets (500) $£ 4.50$ ref EF80.
CHRISTMAS TREE KTT Start growing it nowl £3 ref EF53. DOS PACK Microsoft version 5 Original software but no manuals hence only $£ 5.99$.
3.5^{4} only
PIR DETECTOR Made by famous UK alamm manufacturer these are hi spec, long range Internal units 12 k operation. Slight marks on case and unboxed (although brand new) £8 REF: MAG8P5
MOBILECAR PHONE£ 5.99 Well almost! completein carphone exduding the box of electronics normally hidden under seat. Can be made tollluminate with 12 also has built in light sensor so display only illuminates when dank. Totally convincing! REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on ALARM BEACONS Zenon strobe made to mount on an extemal bell box butcould be used for caravans etc. $12 v$ operation. Just connect
up and It flashes regulary) £5 REF: MAG5P11
$6^{\prime \prime} \mathbf{K 1 2 " ~}^{\prime \prime}$ AMORPHOUs SOLAR PANEL
6"X12" AMORPHOUS SOLAR PANEL 12
130mA. Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P 13 ldeal for experimentersi 30 m for $£ 12.99$ rel MAG13P1 HEATSINKS (Anned) TO220. designed fo mount vertically on a pcb $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN1P11 STROBE LIGHT KTT Adjustable from 1 hz right up to (eectronic asssembly kit with full instructions) $£ 16$ ref EF28.
ROCK LIGHTS Unusual things these, two pieces of rock ROCK LIGHTS Unusual things these, two pieces of rock that g
when rubbed togetherl belived to cause ranl§3 a par Ref EF29

NEW HIGH POWER LASERS

15 mW , Helium neon, 3 switchable wavelengths . $63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 0 them areinfrared) $500: 1$ pola $n z e r$ buillin so good for holograp ty EXTREME CAUTION AND QUALIFIED GUIDANCE. E349+Vat
"wexmmums sock oxacem

FREE CATALOGUE

1995100 PAGE CATALOGUE NOW AVAILLABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE. $£ 59.00$
A Hand held personal Gamma and X Ray detector This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990

Simulated attack on slew rates

Slew rate limits based on Baxandall's 2.2 kHz criterion may be true of classical music recorded with dynamic mics, analogue taped and cut onto vinyl with twenty year old technology. But for most music reproduced by power amplifiers today that limit is patently false.
Take live performances: a glance at the spectrum analyser during an Iron Maiden gig - engineered by my colleague Doug Hall - would show the 20 kHz led lit almost solidly throughout numerous concerts over the past decade or so.

Consistently high hf levels, with amplitudes as large as the loudest bass notes, are unexceptional with certain genres of music. Iron Maiden achieves them with nothing more than traditional (if heavily thumped) percussion instruments.

Low mass modern capacitor microphone capsules and local buffering to reduce $h f$ attenuation and loading dips in stage-to-mixer cabling have boosted the acquisition of percussive edges with quasi-fundamentals of 15 kHz and above ${ }^{1}$. Live sound and recording consoles have equalisers on every input channel, and most are in use. But I have measured none that does not also increase ultrasonic frequencies when any kind of boost is dialled up on the hf control(s), pushing frequencies above 4 kHz . This unadvertised - and not readily avoidable - ultrasonic boosting can at least counter, if not overwhelm, rf filtration and band-limiting in the system. In

> Late last year, Douglas Self discussed some practical limits for slew rates. But were his arguments relevant to modern music? "No," says Ben Duncan, and sets out his simulations to prove it.

this way, unexpectedly high level ultrasonic signals can appear at the power amplifiers' inputs.
As for recorded replay in studios and homes, cd and dat can handle full level at 20 kHz . While for direct-cut vinyl recordings, the bandwidth above which no additional musically significant cues are heard can range, for some listeners, to 200 kHz .

Unfortunately, old data ignores the break-neck development in the past seven years, such as fm synthesis of electronically generated, manipulated and sample-based music. In effect new 'virtual instruments' have been created to add to the family employed by mainstream music, untrammelled by

AUDIO

Fig. 1. Benchmarking Self's slew analysis with MicroCAP IV begins with the generic circuit, using ideal current sources. The upper panel shows (uppermost) the input test step magnitude, which rises at $100 \mathrm{~V} / \mu \mathrm{s}$, multiplied by the gain, followed by the amplifier's output responses. The lower panel is scaled in V/us. Unlike physical test circuits, testing can be simultaneously carried out with both $+V$ and $-V$ signals. Note the negative output signal (lowermost) is worryingly prolonged.

the limits of wood and metal.
Many of these new sounds and 'instruments' can include or produce full $(0 \mathrm{~dB})$ levels at 20 kHz . Even the breathy sounds of close-miked vocals can become unacceptably sibilant when handled live by some bipolar power amplifiers - a problem widely experienced as disappearing when faster mosfet amplifiers are substituted.

RF filtration

Must an amplifier have rf filtration on its input port?
The ideal per-stage bandwidth for high quality music reinforcement, monitoring and reproduction should be at least 100 kHz and ideally no more than -3 dB at $200 \mathrm{kHz}^{3}$. Above this, input filtration is positively desirable. Without it, whether the incoming program can slew at a rate that taxes the amplifier is not an issue. Radio frequency can (and regularly does) make egress in the cabling preceding most power amplifiers. Self's design (his Fig. 1 in ref. 2) omits input filtration, yet a 900 MHz mobile phone signal need only peak at 100 mV to slew at $500 \mathrm{~V} / \mu \mathrm{s}$. Just 11 mV peak ingress would out-slew even a $50 \mathrm{~V} / \mathrm{\mu}$ s capability.

Radio frequency filtration does not slow fast edges; it just reduces the amplitude portion of the 'rate' or amplitude-frequency product. So input (and other portal) rf filtering (cf interior band-limiting) only protects an amplifier with a marginal slew rate if rf levels are below a certain threshold.

In the real world, the ubiquitous rf debris that is part of urban living may be less obliging. Fast-edged 'clicks' caused by dust particles on vinyl striking a stylus can also tax amplifiers harder than the toughest programme.

Rateable values

The foregoing shows why higher slew limits than those needed to reproduce a 20 kHz - let alone 2 kHz - sine wave at 0 dBr , can be justifiable. For any given degree of hf filtration, more-than-adequate slew limits alone can distance the ears from the very unpleasant and ear-fatiguing distortion that can begin when an amplifiers' slew limit is approached by a factor of two, or even a ten. At the point where visible slewing begins, when signal slew is equal to the amplifier's limit, thd is already about 1% and the damage - with grating high harmonics - has already been done.

These events may happen rarely in many systems and situations, and in others not at all. But no-one should not dismiss the validity of higher-than-expected slew rates as being beneficial to sonic quality because a difference could not be heard with casual listening. No-one would remove the rear fog lamps from a car on the grounds that other vehicles had never run into it.

Walt Jung's original and in-depth work on slewing ${ }^{4}$ covered this ground 18 years ago and should be compulsory reading for anyone writing on this topic.

Slewing can trigger prolonged indigestion in amplifiers. Even when it doesn't, as little as 1-2s of gross distortion due to slew-limitation during a performance can effect listener enjoyment for several minutes afterwards - an effect analogous to gross video corruption when watching a spell-binding film.
The upshot is that prudent minimum slew limits for quality audio should be at

SR-SR-3: Self Rebuttal, Slew Rate of Fig. 1 circuit with modified full,CC model (Sept EW+WW)
c. BDR 29. Nov. 94, Rev. 1 10. Dec. 1994 c. BDR 29. Nov. 94, Rev. 1 10. Dec. 1994
. MODEL Slewtst2 PUL (VONE=2.50 P1=10n P2=438n P3=5u P4=5.45u
. MODEL 2T_XP3 PNP $(B F=250 \quad B R=50 \quad$ XTB=1.5 \quad IS $=382.06 \mathrm{~F} \quad \mathrm{CJC}=45.5 \mathrm{P}$ $\mathrm{CJE}=278 \mathrm{P} \quad \mathrm{RB}=40 \mathrm{M} \quad \mathrm{RC}=65 \mathrm{M} \quad \mathrm{VAF}=154 \mathrm{TF}=780 \mathrm{P} \quad \mathrm{TR}=30 \mathrm{~N} \quad \mathrm{MJC}=453.4 \mathrm{M} \quad \mathrm{VJC}=577.4 \mathrm{M}$ MJE=347.71M VJE=281.65M CJS=1F VAR=38 NF=1.0025 NR=1.0012 ISE=103.5F $I S C=700 \mathrm{~F} \quad I K F=1.15 \quad I K R=420 \mathrm{M} \quad \mathrm{NE}=1.3642 \mathrm{NC}=1.19 \quad \mathrm{RE}=87.5 \mathrm{M} \quad \mathrm{IRB}=1 \quad \mathrm{RBM}=100 \mathrm{M}$ $V T F=1 \mathrm{~K} \mathrm{MJS}=500 \mathrm{M}$)
. MODEL ZTX_N3 NPN ($B F=200 \quad \mathrm{BR}=33 \mathrm{XTB}=1.5$ IS=320.07F CJC=80P CJE=350P $\mathrm{RB}=87 \mathrm{M} \mathrm{RC}=70 \mathrm{M}$ VAF $=76 \mathrm{TF}=860 \mathrm{P} \quad \mathrm{TR}=24 \mathrm{~N} \mathrm{MJC}=489.6 \mathrm{M} \mathrm{VJC}=767.6 \mathrm{M} \mathrm{MJE}=376.61 \mathrm{M}$ $\mathrm{VJE}=440.67 \mathrm{M}$ CJS $=1 \mathrm{~F} \quad$ VAR $=51 \mathrm{NF}=1.0041 \mathrm{NR}=1.0008$ ISE=80F ISC=60F IKF=1.6 $I K R=450 \mathrm{M}$ NE=1.57 NC=1.079 $\mathrm{RE}=80 \mathrm{M} \quad \mathrm{IRB}=1 \mathrm{RBM}=100 \mathrm{M} \mathrm{VTF}=1 \mathrm{~K} \mathrm{MJS}=500 \mathrm{M}$)
.MODEL N1386 NPN ($\mathrm{BF}=43 \mathrm{XTB}=1.5$ IS=33.69F CJC=352P CJE=13.4N RB=400M RC=13M VAF=75 TF=4.54N TR=1000P $\mathrm{MJC}=336.47 \mathrm{M}$ MJE=500M VJE $=800 \mathrm{M}$ CJS $=1 \mathrm{~F}$ $\mathrm{VAR}=100 \quad \mathrm{ISE}=6.279 \mathrm{P} \quad \mathrm{ISC}=0.1 \mathrm{~F} \quad \mathrm{IKF}=21.3 \quad \mathrm{IKR}=1 \mathrm{~K} \quad \mathrm{RE}=100 \mathrm{M} \quad \mathrm{IRB}=500 \mathrm{M} \quad \mathrm{RBM}=100 \mathrm{M}$
.MODEL P3519 PNP ($\mathrm{BF}=169.339 \mathrm{BR}=10$ XTB=1.5 IS=956.328F $\mathrm{CJC}=1.06282 \mathrm{~N}$ $\mathrm{CJE}=151.61 \mathrm{P} \quad \mathrm{RB}=370.37 \mathrm{M} \mathrm{RC}=359.275 \mathrm{M} \quad \mathrm{VAF}=100 \mathrm{TF}=3.90097 \mathrm{~N} \mathrm{TR}=76.5695 \mathrm{~N}$ $\mathrm{MJC}=468.399 \mathrm{M}$ VJC $=775.989 \mathrm{M} \quad \mathrm{MJE}=330.622 \mathrm{M}$ VJE=781.588M CJS=1F VAR=100 ISE $=4.36566 \mathrm{P} \quad$ ISC $=0.0000121848 \mathrm{~F} \quad$ IKF $=6.06776 \quad$ IKR $=1 \mathrm{~K} \quad \mathrm{NE}=1.33389$ MJS $=500 \mathrm{M}$)
define load 8
define Rbias 320
define Rsens 1m
define load 8
define Rbias 320

Self enhanced BJT DCS:

Fig. 4. Simulation circuit used for Fig. 3 precisely follows Self's own Fig. 1^{1} schematic. British semiconductor models are used for the small signal bits; Zetex (ex-Ferranti) is the only general semiconductor maker in the world so far to issue Level 3 (Gummel-Poon) bit data. Output devices are odern, fast (20MHz), To3P. Models were created with extra data supplied by the fapanese maker. This was program (PEP), to depive the L evel 3 parameters. progra (PEP), to derive the Leve 3 parameter. The sister circuits used to plot Figs. 1 and 2 differ as In Fig. 1, all the current source circuitry is replaced by ideal, independent sources. In Fig. 2, current source ill connections are as shown in sell's fig. 1. scaled to permit accurate results up to $500 \mathrm{~V} / \mu \mathrm{s}$.
least Walt Jung's 18 year old recommendation of $0.5 \mathrm{~V} / \mu \mathrm{s}$ per peak output volt ($\mathrm{pk} \mathrm{V}_{\mathrm{o}}$). This allows an 80 kHz power bandwidth (referred to 1% distortion) and remains almost safe for a great deal of reproduced sound: by a factor of four for cd and dat, and at least five for live BBC (vhf, fm) broadcasts. The $55 \mathrm{~V} / \mu \mathrm{s}$ per 40 V rms cited of Pass amounts to $1.4 \mathrm{~V} / \mu \mathrm{s}$ per pk V_{0} and corresponds to 200 kHz bandwidth. That figure, independently established by Rupert Neve, is ideal both for live music reproduction and a first rate recording chain.
Taking Pass's criteria as the reference for today's highest quality design, then a 75 W into 8Ω (i.e. 35 V peak swing)

Fig. 5. When launched in 1984, the Rauch DVT250s was the fastest slewing professional power amplifier. The plot demonstrates at least +80 and $-70 \mathrm{~V} / \mu \mathrm{s}$, this before any speed-up emitter degeneration resistors are added. For magnified detail, upper and lower panels have been combined, so the Y scale reads both magnitude of the inner three plots in volts; and slew rates in $V / \mu s$ of the three outermost plots (Vid \& VoD+, VoD-).

AUDIO

.MODEL 2 SK 227 NMOS ($V T O=-284 \mathrm{M} \mathrm{KP}=20 \mathrm{U} \quad \mathrm{L}=2 \mathrm{U} \mathrm{W}=36.6 \mathrm{M}$ GAMMA $=0$ PHI $=600 \mathrm{M}$ LAMBDA $=8.47 \mathrm{M}$ RD $=338 \mathrm{M}$ RS $=52 \mathrm{M}$ $C G S O=358.7 \mathrm{P} \quad \mathrm{CGDO}=358.7 \mathrm{P} \quad \mathrm{TOX}=100 \mathrm{~N} \quad \mathrm{NSUB}=0$ NSS=0 TPG=1 $\mathrm{UO}=600 \mathrm{KAPPA}=200 \mathrm{M}$)
. MODEL 2SJ83 PMOS (VTO $=168.5 \mathrm{M} \mathrm{KP}=20 \mathrm{U} \mathrm{L}=2 \mathrm{U} \mathrm{W}=38.5 \mathrm{M}$ GAMMA $=0$ PHI $=600 \mathrm{M}$ LAMBDA $=50.4 \mathrm{M}$ RD=26U $\mathrm{RS}=396 \mathrm{M}$ $C G S O=358.7 \mathrm{P} \quad \mathrm{CGDO}=358.7 \mathrm{P} \quad \mathrm{TOX}=100 \mathrm{~N} \quad \mathrm{NSUB}=0 \quad \mathrm{NSS}=0 \quad \mathrm{TPG}=1$ $\mathrm{UO}=600 \mathrm{KAPPA}=200 \mathrm{M}$)
define Cc 2.2p
. define Lar 910
. define Rg 620
define rsw $1 u$
. define Rbias 150
define load 8

Fig. 7. Testing the high speed topology with a $485 \mathrm{~V} / \mu \mathrm{s}$ step yields about $+315,-405 \mathrm{~V} / \mu \mathrm{s}$. The mild asymmetry is academic, with nearly $2 \mathrm{~V} / \mu \mathrm{s} / \mathrm{N}_{o}$ pk available for 160 V swings (800 W into 16Ω). Speed is readily increased further. Physical (as opposed to simulated) slew testing of this order needs care, as aside from the usual high speed traps [7] the low resistance differentiator networks shown dissipate heavily.

Virtual spectrum analysis

Using MicroCap IV as a spectrum analyser is straightforward, requiring just the Harm operator (Harm [v[nn]] where $n n$ is usually the output) an analysis period that is an integer of the stimulus period, and adequate memory. Here, just over 1 MB (of 4 MB system memory) was free for use. A 486-DX with Dos-6 is a sensible minimum. Even with MicroCap IV - the fastest pc software simulator - each high-accuracy run will offer you a minute or two to spare.

Fig. 6. The DVT has simpler drive circuitry than Self's, coupled to complementary power mosfets. The drive IC is a macro of a fast opamp built from discrete components (DT). For fair comparison with Figs 1-3, the 8Ω load, gain and differentiator values (10 2 and 100pF) are identical. Switch resistors 'rsw' allow $3 / 4$ of the output mosfets to be disconnected to view the performance of one mosfet pair.

Fig. 9. Simulated harmonics in Self's Fig. 1 circuit, 0.5 dB below clip. The top left marker tells us that the 1 kHz fundamental is at 44 V (discovered by using MicroCap's cursor function). So the ugly ninth harmonic, at $115 \mu \mathrm{~V}$, is about $\mathbf{0 . 0 0 0 3} \%$. This is audibly more significant than it appears.

Fig. 10. With the input stage current unbalanced 'by uninspired guesswork', here increasing R_{c} to $3.9 \mathrm{k} \Omega$, the harmonic structure changes. Here, the evens are strengthened over Fig. 9, but not enough.

. MODEL Slewtst2 Pul (Vone=0.53 P1=10n $P 2=220 n \quad P 3=2.0 u \quad P 4=2.2 u \quad P 5=5 u$)
. MODEL 2SK175 NMOS (VTO $=-284 \mathrm{M} \mathrm{KP}=20 \mathrm{U}$
$\mathrm{L}=2 \mathrm{U} \quad \mathrm{W}=36.6 \mathrm{M} \quad \mathrm{GAMMA}=0 \quad \mathrm{PHI}=600 \mathrm{M}$
LAMBDA $=8.47 \mathrm{M}$ RD $=338 \mathrm{M}$ RS $=52 \mathrm{M}$
$\mathrm{CGSO}=358.7 \mathrm{P} \quad \mathrm{CGDO}=358.7 \mathrm{P} \quad$ TOX $=100 \mathrm{~N}$

NSUB $=0$ NSS=0 TPG=1 UO=600 KAPPA=200M)
.MODEL 2SJ55 PMOS (VTO=168.5M KP=20U L=2U
$W=38.5 \mathrm{M}$ GAMMA $=0$ PHI $=600 \mathrm{M} \quad$ LAMBDA $=50.4 \mathrm{M} \mathrm{RD}=26 \mathrm{U}$ $\mathrm{RS}=396 \mathrm{M} \quad \mathrm{CGSO}=358.7 \mathrm{P} \quad \mathrm{CGDO}=358.7 \mathrm{P} \quad \mathrm{TOX}=100 \mathrm{~N}$ NSUB $=0$ $\mathrm{NSS}=0 \quad \mathrm{TPG}=1 \mathrm{UO}=600 \mathrm{KAPPA}=200 \mathrm{M})$
.MODEL FR4933 D (IS=139.577N RS=14.1313M
$T T=100 \mathrm{P} \quad \mathrm{CJO}=1.10199 \mathrm{~N} \quad \mathrm{VJ}=217.281 \mathrm{M} \quad \mathrm{M}=380.094 \mathrm{M}$ $\mathrm{EG}=850 \mathrm{M} \mathrm{XTI}=2 \mathrm{BV}=270 \mathrm{RL}=1000 \mathrm{G}$)
. define Rbias 50
. define load 8
. define rsw 1u
. define Rso 100
.define Rg 50
. define CC 2.2p
amplifier, even modified to $\pm 50 \mathrm{~V} / \mu \mathrm{s}$, is just about acceptable. But it is certainly unsuited for the higher swings often required into inefficient speakers that are the domestic norm. And also for today's weight- and volume-challenged live music monitoring and reinforcement amplification.
In practice, with advanced hf drive units (both dome tweeters and compression drivers) used in professional live music monitoring able to handle music transients above 165 V without tearing, serious listeners can safely use amplifiers with swings much higher than the 35 V on offer.
Like a powerful car in experienced hands, the headroom is demonstrably safer for drive units and ears alike - no matter how counter-intuitive this seems.
The present record of about $160 \mathrm{~V}_{\mathrm{o}}$ pk output per channel is set by one of my own designs - made by a UK company and two similarly rated units from US competitors. Their seemingly outrageous one-and-a-bit kilowatts into $8 \Omega /$ channel provides about 2 dB of headroom when full range monitor speakers are called on to replay at live-performance spls. Using the Pass criterion, and assuming these goliath amplifiers are intended to handle full range music signals, then their slew limit needs to be over of $220 \mathrm{~V} / \mathrm{\mu s}$.
In his article, Self comments: "There was an isolated claim of $200 \mathrm{~V} / \mu \mathrm{s}$, but I doubt it". This is undoubtedly a reference to an unpublished circuit drawing I supplied to aid Doulas's research. It did indeed show an amplifier slewing at $200 \mathrm{~V} / \mathrm{\mu s}$.
Using simulation, I will now put the slew limitations of the Self amplifier in perspective.

Fig. 8. The high speed topology again employs lateral mosfets. Also like the DVT, it has a discrete op-amp drive stage. The number of mosfets does have an effect on slew limit, and besides, six are needed to comfortably drive 8Ω speakers at 113 V rms. In real use, the fast recovery diodes are important for spike protection. The 'OPAPWR' box is a dual rail psu macro for the driver op-amp stage.

Out-slewn

Figure 1 shows the slewing performance of Self's Fig. 1^{1} based - with one crucial simplification - on an earlier circuit ${ }^{5}$. Upper panel of the transient analysis plot shows the output signal - which should eventually reach 42 V - and the input test signal multiplied by the 1 kHz (midband) gain.
At $5 \mu \mathrm{~s}$, where the positive output has nearly settled, hf rolloff caused by $C_{f}\left(C_{7}\right)$ and $C_{\text {dom }}\left(C_{3}\right)$ accounts for the difference in actual 40 V and predicted 42 V amplitudes.

Lower panel shows input and output signals as above, but with the voltage differentiated so the Y scale is in $V / \mu \mathrm{s}$. In MicroCap, these rate-of-change graphs can be achieved by simply entering $\mathrm{D}(\mathrm{v}(\mathrm{nn}))$ where mm is either the node name (in this instance ViD and VOD, meaning differentiated $V_{\text {in }}$ or $V_{\text {ou }}$), or the automatic node number. This is MicroCAP's equivalent of Self's "Agricultural Spice" plots in his Figs 4 and 5^{1}. But to include the effect of loading the output with the differentiation network needed for real physical measurements, the differentiated signals are all derived from simulated $R C$ differentiators.

Simulated differences

The circuitry entered in MicroCap IV to produce Figs. 1 3 differs from Self's explicit circuit in only minor respects which will not greatly affect the predictions.
The supply comprises perfect dc from 50 V batteries, albeit with $30 \mathrm{~m} \Omega$ series resistance, so the rails do drop slightly when loaded.
All transistor parameters are perfectly matched between identically named individuals.

Protection diode D_{1} and the input dc blocking cap C_{1} are excluded, and electrolytic capacitors C_{2} and C_{4} are modelled as ideal non-polar components. All the small signal bipolar transisotrs are Level 3 (Gummel-Poon) models.
All simulations were carried out at $27^{\circ} \mathrm{C}$, the default temperature. Stepping over more realistic operating temperatures - up to $80^{\circ} \mathrm{C}$ in some cases - is straightforward but requires individual graphs for clarity.

Fig. 12. With the input stage almost perfectly re-balanced without the current mirror, the harmonic structure is once again different, and the seventh is thankfully reduced. Note inter-collector current waveform discrepancies in the upper panel. In the top panel, the lighter curve is 5,17 while the darker is 2,10 .

Fig. 11a. Sub-circuit simulated in Fig. 9. Network b) is employed in Figs 10 and 12. Putting a single R_{c} in the forward leg causes a major imbalance.

The output referred $100 \mathrm{~V} / \mu \mathrm{s}$ test signal would be well above the scale maximum of $50 \mathrm{~V} / \mu \mathrm{s}$. Multiplication by 492 rather than 1000 - the factor needed to get the differentiator outputs converted so each volt $=1 \mathrm{~V} / \mu \mathrm{s}-$ brings it into visibility.
According to the model, the topology used by Self is slewing at $+37 \mathrm{~V} / \mu \mathrm{s}$ in the main flattish region, though peak slew is $+45 \mathrm{~V} / \mu \mathrm{s}$. Negative slew rate has no flat region, but peaks at over $-50 \mathrm{~V} / \mu \mathrm{s}$, and asymptotes about $-37 \mathrm{~V} / \mathrm{\mu s}$.
Only one exception to a full, frank simulation was used to achieve these results: ideal current sources were used in place of $T r_{1,6}$ and $T r_{14}$ and surrounding parts (see Simulated differences panel).
In Fig. 2 the current-sources were re-entered exactly as in Self's circuit. Here, the flat portion of the positive slew limit reduces to $+18 \mathrm{~V} / \mu \mathrm{s}$, and the peak to about $+32 \mathrm{~V} / \mu \mathrm{s}$. Negative slew $\left(\mathrm{V}_{0}-\right)$ peaks at $-43 \mathrm{~V} / \mu \mathrm{s}$, and if there were a flat region, it would be about $-30 \mathrm{~V} / \mu \mathrm{s}$.

After rewiring with Self's Fig. 7 current-source improvements (Figs. 3 and 4) we are back to $+36 \mathrm{~V} / \mu$ s or a peak of $+42 \mathrm{~V} / \mu \mathrm{s}$, and as much as $-45 \mathrm{~V} / \mu \mathrm{s}$. This is not quite the $\pm 50 \mathrm{~V} / \mu$ s claimed by Self, but it is near enough, and follows the right pattern. The feedthrough 'braking' effect on positive slewing is real and undisputed.
What is disputed is the ability of other designs to outpace the Lin topology employed by Self, which dates back forty years. Quality-conscious designers have long ago moved on,

having discovered that as soon as one aspect of this cantankerous topology is perfected, another collapses into disorder or asymmetry.
Figure 5 shows the slewing of the DVT250s $440 \mathrm{~W} / 4 \Omega /$ channel professional mosfet amplifier, Fig. 6, first produced in 1984 by Rauch Precision, a company founded by Jerry Mead.
When launched, its slew performance was exceptional, though the circuitry was fairly conventional. In the later version simulated here it employs six transistors - excepting the output mosfets, current source and mirror. Distortion is higher than Self's. But it still meets the essential raw criterion of well below 0.1% thd into any rated load at any level below clip, at any audio frequency.

The plots confirm that the DVT's slew rate is about +85 and $-70 \mathrm{~V} / \mu \mathrm{s}$ in the flat portion, ie, at least $0.88 \mathrm{~V} / \mu \mathrm{s}$ per pk V_{o} for the 62 V peak swing. Peak slew is $120 \mathrm{~V} / \mu \mathrm{s}$.
Tellingly, second-hand samples are much sought after today and reach high resale prices. An oft cited reason is effortless treble quality that sound engineers have realised they are not experiencing in more recent amplifiers.
In the past decade, leading designers charged with creating quality high-power amplifiers for music have had to develop topologies to ease provision of the higher slew rates needed for high swings, above 90 V .

Figure 7 demonstrates graceful and only mildly asymmetrical slewing in excess of $\pm 300 \mathrm{~V} / \mu \mathrm{s}$, in response to the $485 \mathrm{~V} / \mu \mathrm{s}$ test signal - a performance achieved with my 160 Vpeak-capable design as well as Fig. 8. Speed can readily be pushed higher, yet percentage thd is not being traded: at over 1300 W into 8Ω, it can be as good as 0.02% at 20 kHz . In all cases, mosfets are used. Bipolar junction devices would be vapourised without added anti-saturation circuitry.

When amplifiers with such a high swing and high slew are bare-tested with rf filtration removed, even heavy-gauge pvc cabling made for 50 Hz mains can melt, demonstrating the gross energy abstraction of pvc as dielectric. Naturally, this does not occur with 'audiophile' cables of ptfe construction.

Harmonic argument: Self rebuttal

In Distortion in Power Amplifiers ${ }^{5}$, Self describes the thdreducing effect of perfectly balancing the collector currents in the input differential pair transistors. He makes no mention of a classic $E W+W W$ article ${ }^{6}$ on this topic however. Instead, he infers that some practices in this area are 'misguided': for example when the collector resistor (i.e. R_{2} in his Fig. 7a) is set for pair current imbalance. But simulation can demonstrate that there is method in the apparently wayward component values used in some highly-rated amplifier designs.

Figure 9 shows MicroCAP-IV's powerful spectral analysis being used to give a second opinion on the same very high order (below three parts per million) spectral resolution carried out with the Audio Precision System One test set. As before (Figs. 3, 4), the circuit being simulated is Self's, with full current source modifications.

The amplifier is being driven about 0.5 dB below true clip, with a near perfect pure dc power supply (batteries), and a 1 kHz stimulus, into an 8Ω load. This is one of the most benign conditions a real power amplifier can expect.

The amplifier does indeed demonstrate low harmonics in this static domain. But notice that while the second is the greatest, the next largest are the scarcely benign fifth and the positively metallic sounding seventh harmonics.

Even harmonics are depressed by comparison, and the second is not good at masking this. Worse, the real order - to our ears - greatly emphasises the high harmonics, including some distinctly grating components above the tenth, not plotted here for clarity. While small, these are not necessarily masked by much higher, but paradoxically less audible lower order distortions created by loudspeakers.

In Fig.10, the current mirror (Fig. 11a) used to enforce close current balancing has been removed and replaced with Self's original arrangement ${ }^{5}$, a single R_{c} in the forward leg. Here (Fig.11b) it is $3.9 \mathrm{k} \Omega$, which causes a major imbalance. The upper plot shows how the forward leg current $(I(2,10)$ seen lowermost, is about $250 \mu \mathrm{~A}$, starving the voltage amplification stage of current drive.
Although thd has increased (try summing the heights of the triangles) the sonic qualities will be different and, to many ears, more pleasant and more rounded. The reason is that the odd and even harmonics are almost evenly paired, with the exception of the recessed sixth and tenth. These same considerations have been used for centuries by musical instrument makers to adjust timbre.
Lastly, Fig. 12 shows what happens when R_{c} is readjusted for near perfect balance without the current mirror. Note how the much-magnified current plots in the upper panel show how the current waveforms, while dc matched, are dissimilar in amplitude and harmonic content, making a nonsense of perfect quiescent matching.

Once again, the harmonics are different. The seventh is below the noise floor, the tenth is nearly masked, while the second is recessed. Overall, a hard, nasal sound would be predicted by the harmonically conversant.
So much for balancing.
Douglas Self's series on amplifiers provides a lucid insight
into the nth degree static linearity of low frequency amplifiers for industrial loads, test equipment satisfaction and low common denominator 'consumer audio'.

But in the context of true high fidelity audio and what analogue electronics can offer to the unfettered reproduction of all kinds of music, it falls far short.

References

1. D. Self, High speed audio power, EW+WW, Sept 1994.
2. B. Duncan, Restoring stage mic performance, Line Up (Journal of Institute of Broadcast Sound), Sept 1992.
3. B. Duncan, Signal chain, Studio Sound, Jun 1991.
4. W. Jung, M. Stephens and C. Todd, Slewing induced distortion and its effects on audio amplifier performance, 57th AES, May 1977; also Slewing induced distortion, parts 1-4, Audio Amateur, 1977, and An overview of sid and tim, Audio, Jun-Aug 1979. 5. D. Self, Distortion in power amplifiers, Part 2, EW +WW, Feb 1994.
5. E. F. Taylor, Distortion in low noise amplifiers, EW+WW, Aug 1978.
6. J. Williams, High speed amplifier techniques, Linear Technology, AN-47, Aug 1991.

THE clock for your computer

The ADC-60 brings the accuracy of a time standard to your computer. It provides a data source which can be used by any system which has a serial port such as a PC, MAC or mainframe. The ADC-60 offers improved reliability by using both the British MSF and German DCF time standards. If one of the signals cannot be received the other source will automatically be used.

Other ADC-60 Features include:

- LCD display showing current time and date together with the lock status of the unit.
- Provides GMT or Local time outputs together with the date
- Serial output in ASCII or BCD format
- Includes 2 software packages, the first is a TSR which runs under DOS, the second runs as a minimised window in Microsoft Windows
Contact us today for further information on this superb product

AD 4 Northville Road, Northville Bristol BS7 ORG Tel: 01179699352 Fax: 01179872228

Components \& Systems from Iosis

Industrial Spec Components and Systems

386SX-40 All-in-one CPU Board on PC half card from £215. Requires only display adapter and RAM to complete the core of a PC-compatible system. PC/104 or ISA bus expansion. PC/I04 display adapter from $£ / 35$. Desktop LCD mono VGA monitor with display adapter and passive backplane from $£ 499$. Please enquire for complete systems. Prices exclude VAT and carriage.
2c Chandos Road, Redland, Bristol BS6 6PE, UK Tel: 01179730435 Fax: 01179237295

the worldwide network

The demand for data traffic in today's high technology world has fuelled an incredible growth in the requirement for data-communications equipment, which includes fax, telex, X25 packet switching, lans and modems.
Data communication requires either its own separate digital network or modems that convert digital information for transmission over analogue telephone lines. Modems give access via the world-wide telephone network, but are slow and inefficient. Separate digital networks are more efficient but expensive to install. In addition they are generally proprietary offering little or no equipment portability.
Digitization of the telephone network began in the 1960s on the trunk lines between public exchange switches. Around a decade later the first digital telephone exchanges appeared. Currently, the only part of the network remaining exclusively analogue is the subscriber line connecting the telephone to the public or private telephone exchange. The majority of today's telephone lines are still analogue, optimized for transmission in the voice spectrum of 300 Hz to 3.4 kHz , but this is changing.

The digital future

Tomorrow's telephone network, available now, will be digitized from end to end. It will provide integration of voice and data communications giving an efficient and compatible world wide network. Transmission rates will increase dramatically while errors decrease to a negligible level, making communications faster and more efficient. More than one signal may be sent simultaneously on a single telephone line. Both voice and a wide variety of data services will be available to users over one network with standard interfaces and recognised set-up procedures without the expense of additional or special lines. Ultimately this will bring cheaper equipment and a wider range of services. This network is called isdn.

Standards for inter-connectability

The international telegraph and telephone consultative committee, CCITT - a United Nations organization began working on standards for isdn in 1978. It published a series of recommendations that have become a world-wide industry standard. Fundamentals of the isdn structure are specified

> Integrated services digital network - isdn makes it possible for anyone with a telephone line to communicate digitised speech and data world-wide at up to 144kbit/s. Mike Button explains how.

COMMUNICATIONS

in the CCITT I. 411 recommendation which assumed a network architecture using the existing analogue telephone network. It is based on a $64 \mathrm{kbit} / \mathrm{s}$ channel where the analogue voice signals are converted to an 8 bit byte transmitted at $8 \mathrm{kbytes} / \mathrm{s}$. One of the features of isdn is that it retains, in general, this transmission rate and allows either voice or data to be carried on the channel.
The isdn definitions specify two classes of service each with a different transmission rate. See the panel on services for a description.

Isdn features

One of the main features of isdn is its flexibility. Once a connection has been made, two or more compatible terminals can process the data in any chosen manner. Analogue voice signals can be mixed with data in any combination but communicating terminals must know what each other is doing.
Both the basic rate and the primary rate transfer channels of data at an effective rate of $8 \mathrm{kbytes} / \mathrm{s}$. The basic rate handles an 18 -bit word ($18 \times 8000=144 \mathrm{~K}$) and the primary rate a 248 bit word $(256 \times 8000=2.048$ M $)$. For example, the basic rate can be partitioned in ways other than ' $2 B$ plus D '. Both the ' B ' channels could be combined to give 16 kbit data at 8 kHz which would be adequate for a high definition slow scan television picture. Alternatively the full bandwidth of the primary rate can be employed to give a $1.92 \mathrm{Mbit} / \mathrm{s}$ 'H12' channel. The permutations are endless.

Isdn architecture according to CCITT In order that users may have a common language to express and define their requirements the CCITT has a set of definitions which all users can 'understand'. The hardware is divided into several segments called 'termination equipment' and the functionality of the network is defined by 'reference points'. Isdn configuration does not depend on whether the basic or primary rate is employed.
Figure 1 shows the topography of the network identifying specific classes of equipment at CCITT defined reference points. The isdn equipment, listed below, is classified by its function and location within the network.

Termination equipment. The exchange termination is the interface between the telephone switching network and other parts of the exchange. This includes the interface to the line termination and to other parts of the switching network. The line termination is located at the telephone exchange and performs osi physical layer functions for the ' B ' and ' D ' channels plus the osi layer two and three for the ' D ' channel. See panel below for details on the osi reference model.
Network termination, $N T$, is divided into two types; type NTI performs such functions as line length extension and two-to-four wire conversion (U to S interface).
Termination $N T I$ deals only with layer one of the osi model and as such has no intelligent logic. NT2 types are intelligent devices that

Isdn services

Basic rate. The basic rate runs at $144 \mathrm{kbit} / \mathrm{s}$ and provides two $64 \mathrm{kbit} / \mathrm{s}$ bearer channels for either voice or data and one $16 \mathrm{kbit} / \mathrm{s}$ data channel for signalling or data. This ' $2 B$ plus D^{\prime} arrangement is the standard service provided to the user. This basic rate service is now available from BT as 'Isdn 2'

Primary rate, Europe. The primary rate runs at $2.048 \mathrm{Mbit} / \mathrm{s}$ and provides 30 bearer channels, one data channel and one synchronization/control channel - all at $64 \mathrm{kbit} / \mathrm{s}$. This '30B plus D' arrangement is provided when more traffic or data handling capacity is required. In North America and Japan the primary rate runs at $1.544 \mathrm{Mbit} / \mathrm{s}$ and is configured as '23B plus D^{\prime}. The primary rate is used to connect private branch exchanges to public exchanges or to interconnect basic rate services within and between exchanges Private branch exchanges can be interlinked to form large private networks and computers can be interconnected via telephone networks. Local area networks have been developed using the primary rate to interface with other lans. This primary rate service is now available from BT as 'Isdn 30'
actively participate in call routing and control functions. They can be connected, simultaneously, to multiple isdn line types. Network terminations often form the boundary between

The open system interconnect (osi) model for networks

In the early 1970s data communications had no recognised standard and hence there was no compatibility between product vendors. It soon became apparent, as the market for data communications grew, that it was in everyone's interest to have the capability to interconnect equipment from different manufacturers.
In 1978 the International Standards Organization (ISO) commenced work on the open system interconnect reference model to provide the framework for orderly communication across different data networks. The work of this committee was supported by the CCITT in their recommendation, X. 200.
The model chosen by the ISO is a seven layer structure in which each layer provides particular logic services that belong to each other.

5 The session layer co-ordinates the interaction of the application processes at each end. It controls session establishment, management and release together with error reporting.
6 The presentation layer provides for code conversion data between different types of termination.
7 The application layer is the layer that is application specific and communicates directly with its opposite number.
The main objective of the osi definitions is to simplify the communication between different layers. Each layer is defined to provide services to the next higher osi layer. Adjacent layers interact with predetermined requests and responses called primitives. At each layer there is a 'peer' protocol to govern the layer interaction.

1 The physical layer, the lowest layer in the CCITT X. 200 architecture, provides mechanical and electrical functions and procedures for the installation and maintenance of power supply, hardware clock and timing, provision of connectors and so on.
2 The data link layer residing immediately above the physical layer provides for the transfer of units of information between the two ends of the physical link such as framing, flow control and error detection. In isdn the CCITT Q.921, lapd (link access procedure d), is the key layer 2 protocol for signalling on the 'D channel'. Examples of data link layer protocols are - bisynchronous, and synchronous data link control (sdlc) of IBM's sna, digital communications message protocol (ddcmp) of DEC's Decnet, Ethernet's local area network (lan) IEEE standard. ISO's high level data link control (hdic), a subset of which is known as lapb (link access procedure balance).
3 The network layer is responsible for addressing, switching and routing functions that are needed to set up a path for transparent transmission. 4 The transport layer is responsible for providing the required performance at a minimum cost based on the current state of the network.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

 ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopgate Street, Leeds LS I 4BB
Tel: (0532) 435649 Fax: (0532) 42688I

Tektronix 2445

$£ 1,150+$ PRP + VAT
M\&B Radio DEALERS IN SURPLUS ELECTRONIC TEST EQUIPMENT 86 BISHOPGATE STREET LEEDS LS1 4BB

TEL:01132 435649 FAX:01132 426881

COMMUNICATIONS

the subscriber equipment and public exchange. Terminal equipment can be telephone instruments, computers and faxes that are directly compatible with isdn. Terminal adapters are provided to connect non isdn compatible equipment to the network. They convert the communications protocol used by non isdn equipment to either the basic or primary rate. The DP2000 isdn telephone, available from $B T$, is piece of terminal equipment with a combined terminal adapter for additional data or voice equipment.

Reference Points

Reference points identify the connection points between equipment classes only. They
do not specify any implementation or protocol of this inter-connection. Reference point ' R ' is the boundary between non isdn compatible equipment and the network. Reference point ' S ' is the boundary between the $N T 2$ equipment and the terminal equipment/adapter. If there is no NT2 equipment then the reference point ' S ' will not exist. Reference point ' T ' is the boundary between the $N T 2$ equipment and either the $N T l$ or terminal equipment
Reference point ' U ' is the boundary between line termination and network termination. Reference point ' V ' is the boundary between the exchange switch and the line termination (LT). The ' R ' reference point is defined as an interface between the isdn and a non isdn

data books on their range of isdn integrated circuits and I have found the distributor, Electronics 2000, very helpful. The more common circuits are given below.

Coder decoder. A codec provides the conversion between the voice-band analogue signals from the telephone instrument and the digital signals required by a pcm (pulse code modulation) signal as used by isdn. It is manufactured as a single integrated circuit incorporating digital to analogue and analogue to digital converters operating at a sample rate of 8 kHz to accommodate the 300 Hz to 3.4 kHz audio bandwidth. Codecs from different manufacturers vary slightly in function but they all have the following features in common:

- Operation at basic and/or primary rate. - Analogue input with corresponding digital output.
- Digital input with corresponding analogue output.
- Chip select or synchronization input.
- A non-linear analogue to digital companding, A-law or μ-law.
In order to maintain an acceptable dynamic range the analogue signal is converted to or from an eight-bit digital signal in a non linear manner. There are two companding (conversion) laws presently en vogue. Generally the A-law is used in Europe and the μ-law in North America, Table 1.
Subscriber line interface circuit, slic This device, normally a hybrid circuit, provides all the 'borsch' functions (battery feed,

Table 1. European and North American codec companding laws convert the analogue signal to an eight-bit digital signal, made up of a sign bit, (S), three cord bits, (C) and four step bits (D).

Companded digital signal									European A-law		North American μ-law	
7	6	5	4	3	2	1	0		Chord Value	Step Value	Chord Value	Step Value
S	C	C	C	D		D	D		(mV)	(mV)	(mV)	(mV)
	0	0	0					0	0.0	1.221	0.00	0.61
	0	0	1					1	20.1	1.221	10.11	1.226
	0	1	0					2	40.3	2.44	30.3	2.45
	0	1	1					3	80.6	4.88	70.8	4.90
	1	0	0					4	161.1	9.77	151.7	9.81
	1	0	1					5	332.0	19.53	313.0	19.61
	1	1	0					6	645.0	39.1	637.0	39.2
	1	1	1					7	1289.0	78.1	1284.0	78.4
Examples									Cord $=3$			
S	C	C	C	D		D	D					
1	0	1	1	0		0	0		$80.6+(4 \times 4.88)$		$70.8+(4 \times 4.9)$	
$+$	3				4				$=+100.12 \mathrm{mV}$		+90.4mV	
0	0	1	0	0	1	1	1		Cord $=2$		$30.3+(7 \times 2.45)$	
-	2				7				-57.		$=-47.45 \mathrm{mV}$	

Fig. 2b. At the receiving 'slave' circuit, data and audio channels can be recovered with the same chipset as the master circuit, the only difference being that timing is derived from the line.

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED

HP141T + 8552A or B IF - 8553B RF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF $£ 600$ or $\mathrm{BIF}-£ 700$.
HP141T + 8552A or B IF - 8554B RF - 100kHz $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or $\mathrm{BIF}-£ 900$.
HP141T + 8552A or B IF - 8555A RF - $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP 141T + 8552A or B IF - 8556A RF - $20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP 141T Mainframe - £350-8552A IF - £200-8552B IF - £300-8553B RF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554$ B RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{~A} \mathrm{RF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000$. 8556A RF-20HZ $-300 \mathrm{KHZ}-£ 250$.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}$ - £300-£400.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400$ £600 or HP8445A - £250.
HP8444A Tracking Generator $-£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator - $£ 1000-1500 \mathrm{Mc} / \mathrm{s}$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553 B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $£ 700$.

Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc/s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
HP Frequency comb generator type 8406-6400.
HP Vector Voltmeter type 8405 A - E 400 to $£ 600$ - old or new colour.
HP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}$ + plug-ins from $10 \mathrm{Mc/s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R. HP Network Analyzer type 8407A + 8412A $+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500-£ 1000$. HP Amplifier type 8447A-1-400MC/s £200-HP8447F. 1-1300 Mc/s £400.
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz}$ £ 1000 - rear output $£ 800$.
HP $8410-\mathrm{A}-\mathrm{B}$-C Network Analyzer $110 \mathrm{Ma} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up - 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From E 1000 .
Racal/Dana 9301A - 9302 RF Millivoltmeter $-1.5 \cdot 2 \mathrm{GHz}$ - $£ 250-£ 400$.
Racal/Dana Counters 9915 M - 9916 - 9917 - 9921 - $£ 150$ to $£ 450$. Fitted FX standards.
RacallDana Modulation Meter type 900
Marconi RCL Bridge type TF2700- $£ 150$
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A-6057A - 6056 $£ 250-£ 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF 1245 Circuit Magnification meter + $1246 \& 1247$ Oscillators - E100-£300. Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$. 40 GHz - $£ 1000$ or PI only $£ 600$. MF only $£ 250$.
Marconl distortion meter type TF2331- ©150. TF2331A - 200.
Tektronix Plug-ns 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 -WR501-DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7B92A
Gould J3B test oscillator + manual - $£ 200$.
Tektronix Mainframes $-7603-7623 \mathrm{~A}-76$
7904-7834-7104-7623-7633
Altech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - $£ 2000$.
Marconi 6155A Signal Source - 1 to 2GHz - LED readout - $£ 400$.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - £150
Marconi TF2163S attenuator -1 GHz . $£ 200$.
Marconi TF2163S attenuator - 1 GHz . $£ 200$.
Farnell power unit H60/50 - $\mathbf{f 4 0 0}$ tested. H60/25 - $£ 250$.
Racal/Dana 9300 RMS voltmeter - $£ 250$.
MP 8750 A storage normalizer - © 400 with lead + S.A or N.A Interface
Marconi TF2330 - or TF2330A wave analysers - $£ 100-£ 150$
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{£} 500$
Racal/Dana signal generator $9082 \mathrm{H}-1.5 \cdot 520 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 600$
Tektronix - 7S 14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304- £250.
HP 5065A rubidrum vapour FX standard - $£ 2.5 \mathrm{k}$.
Systron Donner counter type 60548 - $20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - f 1 k .
Racal/Dana 9083 signal source - two tone - £250.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - 6600 .
Tektronix TM515 mainframe + TM5006 mainframe-E450- $\mathbf{E 8 5 0}$.
Rhodes \& Schwartz power signal generator SLRD - $280-2750 \mathrm{Mc} / \mathrm{s}$ - £250-£600.
Ball Efratom rubidrum standard electronic load type RB $1030-35-\mathbf{E 3 5 0}$.
Farnall
Racal/Dana counters - 9904 - 9905 - 9906 - $9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-£ 100$ -E450-all fitted with FX standards.
HP4815A RF vector impedance meter c/w probe- $£ 500-£ 600$.
Marconi TF2092 noise receiver. A, B or C plus filters - $\mathbf{£ 1 0 0}-\mathrm{f} 350$.

Marconit TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$.
HP180TR, HP 182 T mainframes $£ 300-£ 500$.
Fluke 8506A thermal RMS digital multimeter. $£ 400$.
Philips panoramic receiver type PM 7900 - 1 to 20 GHz - $£ 400$.
Marconi 6700A sweep osclllator $+6730 \mathrm{~A}-1102 \mathrm{GHz}-£ 500$
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - £4k
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter type $527 \mathrm{E}+$ rubidium standard type $9475-£ 2750$.
MP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
MP 432A-435A or B-436A-power meters + powerheads - Mc/s - 40 GHz - $£ 200-£ 1000$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}$
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}-£ 900$. high pass + low pass $-£ 150$.
Marconi TF2370 spectrum ANZ + TK2375 FX extender $1250 \mathrm{Mc} / \mathrm{s}+1 \mathrm{st}$ gen - £ 1.5 k .
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
MP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$.
MP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1500$.
MP 3336 A or B syn level generator - $£ 500-£ 600$.
MP 3586 B or C selective level meter $-£ 750-£ 1000$.
HP 3586B or C selective level meter - E750-E1000.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-\mathrm{E}$
HP 8671A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{E} 2 \mathrm{k}$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$ - opt 001 - 003 - $£ 4.5 \mathrm{k}$.
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. $\mathrm{AM}+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Md} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
2500Me/s- $\mathrm{f} 750-\mathrm{f} 2800$.
MP 8640 B S/G AM-FM $512 \mathrm{Me} / \mathrm{s}$ or $1024 \mathrm{Nic} / \mathrm{s}$. Opt 001 or 002 or 003 - £800-£1250.
HP 8656A S/G AM-FM 0.1 -990MC/s - E1500.
HP 8622 B Sweep $\mathrm{PI}-01-2.4 \mathrm{GHz}+\mathrm{ATT}-£ 1750$.
HP 8629A Sweep PI-2-18GHz-؟1000.
MP 86290 S Sweep PI - 2 - 18 GHz - E 1250 .
HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-\mathrm{f} 1 \mathrm{k}$.
MP 8620C Mainframe - £250. IEEE - $£ 500$.
MP 8615 A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{MC} / \mathrm{s}$ - opt 002 - E 1 k .
HP 4261A LCR meter + 16038 A test leads- $£ 400$.

HP 3488 A HP - IB switch control unit - $£ 500$ + control modules various - $£ 175$ each.
HP 3561 A Dynamic signal ANZ - $£ 3 \mathrm{k}$.
HP 8160A 50Mc/s programmable pulse generator - $£ 1400$.
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mids}-£ 2500$.
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{£} 4 \mathrm{k}$.
HP 3585 A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}$.
HP 8569B Analyser. $01-22 \mathrm{GHz}-\mathrm{f5k}$.
HP $\mathbf{~} \mathbf{1 9 8 0 0}$ O Oscilloscope measurement system - $£ 600$.
HP 3455A Digital voltmeter - $£ 500$.
HP 3437 A System voltmeter - $£ 300$.
HP 3537C Selective voltmeter - $\mathbf{~ H} 500$.
HP 5335A Universal counter - 200 M ds - $£ 500$.
HP 5328A Universal counter - $500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 250$.
HP 6034 A System power supply $-0-60 \mathrm{~V}-0-10$ amps - $£ 500$
HP 3960A 3964 A Instrumentation tape recorders - $£ 300-£ 500$.
HP 5150A Thermal printer - $£ 250$.
HP 1645A Data error analyser - fi50.
HP 4437A Altenuator-f150.
HP 3717 A $70 \mathrm{Mc} / \mathrm{s}$ modulator - $£ 400$.
HP 3710A - 3715A - 3716A - 37028-3703B-3705A - 3711A - 3791B-3712A -3793B HP 3730 A + B RF link analyser - P.O.R.
HP 3730A + B RF down converter - P.O.R.
HP 3552A Transmission test set - £400.
HP 3763A Error detector - $£ 500$.
HP 3764A Digital transmission analyser - $£ 600$.
HP 3770 A Amp delay distortion analyser - $£ 400$
HP 3781 A Pattern generator - $\mathbf{E 4 0 0}$.
HP 3781 A Pattern generator - $£ 400$.
HP 3781 B Pattern generator (bell)- $\mathbf{~} 300$.
HP 3782 A Error detector - $£ 400$.
HP 37828 Error detector (bell) - $£ 300$.

HP 8006A Word generator - $£ 100-£ 150$.
HP 8016 A Word generator - $£ 250$.
HP 8170 A Logic pattern generator - $£ 500$.
HP 59401 A Bus system analyser - $£ 350$.
HP 59500 A Multiprogrammer HP - IB - $£ 300$.
Philips PM5390 RF syn - 0.1 - 1 GHz - AM + FM - 11250
Philips PM5519 Colour T.V. pattern generator - $£ 250$.
S.A. Spectral Dynamics SD345 spectrascope 111 -LF ANZ - $£ 2500$.
S.A. Spectral Dynamics SD 345 spectrascope 111 -LF ANZ - $£ 2500$.
Tektronix R7912 Transient waveform digitizer - programmable $-£ 400$.

Tektronix 496 Analyzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}$ - $£ 3.5 \mathrm{k}$.
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}$ - f 1 k - or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 577 Curve tracer + adaptors $-£ 900$.
Tektronix 1502/1503 TDR cable test set - $£ 1000$.
Tektronix $7 \mathrm{LL5}$ LF analyser - 0 - $5 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 800$. OPT $25-£ 1000$
Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$.
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - $\mathbf{£ 7 5}$ - $£ 350$.
Tektronix 465-4658-475-2213A-2215-2225-2235-2245-2246-€250-£1000.
Farnell PSG520 Signal generator - f 400 .
Nicolet 3091 LF oscilloscope - $£ 1000$.
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900.
Tek 2445 150Mc/s oscilloscope-£1400.
Fluke $80 \mathrm{~K}-40 \mathrm{High}$ voltage probe in case - BN - f 100 .
Racal Recorders - Store 4-4D-7-14 channels in stock - £250-£500.
Racal Store Horse Recorder \& control - £400-£750 Tested.
EIP 545 microwave 18 GHz counter - $£ 1200$.
Fluke 510 A AC ref standard - 400 Hz - $€ 200$.
Fluke 355A DC voltage standard - E300.
Schlumberger 5229 Oscilloscope - $500 \mathrm{Mc} / \mathrm{s}-£ 500$.
Solartron 1170 FX response ANZ - LED dislay - $£ 280$
Solartron 1170 FX response ANZ - LED dislay - $£ 280$.
Wiltron 610 D Sweep Generator +6124 C PI $-4-8 \mathrm{GHz}-£ 400$.
Wiltron 610D Sweep Generator $+6124 \mathrm{CPI}-4-8 \mathrm{GHz}-£ 400$.
Wiltron 610 D Sweep Generator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-£ 500$.
Wiltron Electronics 9814 Voltage calibrator- E 750 .
Time Electronics 9811 Programmable resistance - $£ 600$
Time Electronics 2004 D.C. voltage standard - $£ 1000$.
HP 86998 Sweep PI YIG oscillator . $01-4 \mathrm{GHz}$ - $£ 300$. $86908 \mathrm{MF}-£ 250$. Both £ 500 .
Schlumberger 1250 Frequency response ANZ - $\mathbf{E 2 5 0 0}$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors, etc.
W\&G ins in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell-HP-Weir - Thurlby - Racal etc. Ask for list.

Items bought from hm government being surplus. price is ex works saefor enouiries. phone for appointment or for demonstration of any items, ayallability or price change vat and carriage extra items marked tested have 30 day warrantr. wanted: test equipment-valves-plugs and sockets-Syncres-transmitmng and recelvng eaupment etc.
Johns Radio, Whitehall Worts, 84 Whitehall Road East, Birkenshaw, Bradiord BD11 2ER. Tel. No: (012741684007. Fax: 651160
overvoltage protection, ringing feed, line supervision and 2 to 4 wire conversion) needed to connect a telephone instrument to a telephone line. It receives the audio signals from the codec and is controlled by the ' D ' channel.

Subscriber line audio circuit, slac

This device, normally a hybrid circuit, is called a central office interface by the Americans. It provides a complete audio and signalling link between a telephone exchange line circuit and a telephone line. It looks and behaves like a telephone instrument providing loop seize and ringing detector circuits. It takes and receives the audio signals from the codec and is controlled by the 'D' channel.

Digital network line circuits (dnic, dsic, dsc, isac-s)

The connection between the telephone exchange and an isdn terminal is normally a twisted pair line. To transmit isdn data over this medium some form of electrical conversion is needed to enable both data detection and synchronization. A number of interface circuits have been devised to provide a variety of signalling codes over both two-wire and four-wire circuits. Some of the more common signalling codes used by these devices are described below.
2B1Q - Two binary to one quaternary. This takes two bits of isdn code and converts them to a four level signal. It halves the transmitted baud rate.
4B3T - Four binary to three temary. This takes four bits of isdn code and converts to a three level signal. It reduces the transmitted baud rate by three quarters.
Biphase. Converts the isdn signal into level transitions. (Binary ' 0 ' = falling edge and binary ' 1 '= rising edge, similar to 'Manchester code'). It does not reduce the transmitted baud rate but does have the feature of concentrating the power spectrum in a relatively narrow bandwidth.

Data rate adapters. These provide the means whereby low speed signals such as RS232 can be converted to the basic rate. They have similar functions to a codec except that they handle serial/parallel data signals instead of analogue signals.

Digital Switches. Within a telephone exchange digital switches are used to cross connect basic and primary rate signals.

Circuit example

Most integrated circuit manufacturers now produce chip sets to provide isdn facilities. It is now relatively easy to use this technology to produce equipment to access isdn.
The circuit example given in Figs 2(a) and 2(b), taken from an existing design, show how a single twisted pair line can be used to carry two speech channels and one data channel at distances up to one kilometre. Figure 2 gives details of how this circuit fits into the isdn scheme. Figures 2(a) and 2(b) give actual circuit details. This circuit pair could be used, for

Fig. 3. Timing is synchronised with the frame-start signal on the Mitel st bus. A 2.048 MHz quadrature signal is generated by IC12 to control the codec.

Design overview

The dnic operates in either a 'master' or 'slave' mode. When used as a 'slave' all timing and framing information is derived from the line signals and these pins are configured as outputs. The distant end 'master' must generate these timing signals and therefore needs the clock and framing signals as inputs. At the 'master' end a second dnic provides a low cost source for these signals. Apart from these differences the two circuits have the same logic and control circuit.
The dnic assumes the data input (D| pin) and output (DO pin) are at the primary rate and uses the well defined Mitel st bus. The channels used for the speech and signalling data are predefined by the dnic. Channel ' 0 ' is used for the signalling data and channels ' 2 ' and ' 3 ' for the analogue data. (Channel ' 1 ' is allocated to dnic control functions not employed in this example.)
The complex analogue signals on the line pair are fed via the transformer $T R_{1}$ into the $L_{\text {IN }}$ and $L_{\text {OUt }}$ of the dnic $\left(/ C_{2}\right)$. These are in the frequency range of 10 kHz to 500 kHz . The network comprising R_{1}, R_{2}, C_{1} and C_{2} provides the necessary feedback to enable the on-board digital signal processor to control the internal phase locked loop circuit and obtain timing and framing signals. The 10.24 MHz signal is either generated by a phase locked loop controlling a crystal oscillator at the 'slave'
example, to enhance the facilities of a field telephone at fêtes and galas.

For simplicity, circuits for the termination equipment are not given. The analogue signal inputs and outputs could be connected to buffer amplifiers to drive operator's headsets
end or via $/ C_{15}$, double buffered by $/ C_{11 \mathrm{~A}}$ and $/ C_{1 / \mathrm{B}}$, at the 'master'end.
The frame start signal on the st bus, \bar{F}_{0} is gated via $I C_{10 \mathrm{~A}}$ and $/ C_{10 B}$ with the C_{4} clock to produce a frame start reset. The connection on the dnic C_{4} pin is fed, via an inverter, into a d-type flip-flop $/ C_{12 \mathrm{~A}}$ which, together with $I C_{12 B}$, generates a quadrature 2.048 MHz signal. The output of $/ C_{12 B}$ is connected to 74163 counters $I C_{7}$ and I_{8} which, with the 74138 decode $/ C_{9}$, generate the Mitel st bus timing signals. A timing diagram is given in Fig. 3.

Timing uncertainty only applicable during the period when there is no synchronization between the master and slave end. Output \bar{Q} of $I C_{12 B}$ is connected to the codec $\mathrm{C} 2 I$ input and controls the codec (MT8965). A rising edge causes the codec to present data to the DI bus and the falling edge causes the Codec to read signals from the DO bus. Output Q of $I C_{12 B}$ clocks the signals in and out of the shift registers (74299). Output \bar{Q} of $I C_{12 \mathrm{~A}}$ clocks the 7474 buffers at the start of each st bus bit. Outputs of the 4 bit counters $/ C_{7}$ and $/ C_{8}(74138)$ are connected to a three-to-eight bit decoder, $I_{9}(74138)$, which generates the channel time signals for the st bus. Channel time $0\left(/ C_{9} Y_{0}\right)$ is the data channel. ('D' port). Channel time 2 ($/ C_{9} Y_{2}$) is the first audio channel (B_{1} port). Channel time $3\left(/ C_{9} Y_{3}\right)$ is the second audio channel (B_{2} port).
or two slic standard telephone instruments may be connected at each end.
The data inputs and outputs may be connected, via suitable buffers, to a key and lamp unit or directly to a slic control input.
Integrated circuits used to provide isdn facil-
ities are supplied by Mitel; a brief description of these circuits is given below. Full details of the dnic and codec are abailable in data sheets of the devices, available from Mitel or their distributors.

Digital network interface circuit, dnic The MT8971B device is intended for use as an interface for the integrated services digital network. It may be used in practically any application requiring high speed basic rate duplex data transmission over two wires. It is a multifunction device capable of providing transfer of speech or data over a distance of a kilometre or more.
With the more expensive MT8972B and a loop extender circuit distances of up to seven kilometres can be achieved. An adaptive echoing technique is used by the on-circuit digital signal processor to transfer data in a ' 2 B' + 'D' format.
Several modes of operation are available. In this example, modes two and six are used for transferring speech and data in master and slave mode. In order to provide framing and control signals, extra bits are added to the serial data steam and the data plus synchronisation signals are transmitted at $160 \mathrm{kbit} / \mathrm{s}$.

The MT8965 coder decoder

This device provides the conversion interface between the voiceband analogue signals and the digital signals required in a digital pemswitching system. An 'A-law' encoding and decoding is provided to CCTTT specifications.

Line signalling

The line signalling ' D ' channel is controlled by two universal shift registers $I C_{5}$ and $I C_{6}$. Output Y_{0} from $I C_{9}$ performs the following functions.
The tri-state buffer is enabled which presents the output of $/ C_{13 \mathrm{~A}}$ to the di bus.
$I C_{6}$ is changed from the parallel load mode to the 'shift right' mode.
Next, $I C_{5}$ is changed from the 'hold' mode to the 'shift left' mode.
At the rising edge of output Q of $I C_{12 \mathrm{~A}}$ (which occurs at the start of each bit period) data from $I C_{6}$ is clocked into the 'd-type latch' I $C_{13 \mathrm{~A}}(7474)$, the output of which is then presented to the DI bus via the enabled tri-state buffer $I C_{14 \mathrm{~A}}$.
At the rising edge of Q of $I C_{12 \mathrm{~A}}$ which occurs three quarters through each bit period, IC $C_{5 \% 6}$ are clocked and the data present is shifted left once. This process continues during the period that output Y_{0} from $I C_{9}$ is active (0 V).

Availability

BT is currently offering an isdn service to its customers. Both basic rate and primary rate services are available, together with compatible terminal equipment. Akin with the early days of the Post Office telephone service, the installation and rental charges will prohibit installation of isdn to all those but the most affluent or those with a real need.
The installation charge for a single line basic rate service is $£ 400$ with a quarterly rental of $£ 84$. The provision of a primary rate service
starts at an installation charge of $£ 594$ with a quarterly rental of $£ 508$. A telephone type terminal suitable for these services is $£ 699$.
All these charges are excluding vat. Full information is available from BT on their freephone number 0800181514.
Prospective users with a high volume of data traffic will see savings on call connection charges as data can be sent at a much higher rate than currently available from modems. This, of course, assumes the distant end also has the isdn service connected.

Mike Button is a consultant design engineer with
TDR Lid. He can be contacted on 01666577464.

Further reading

Henshaw J. OSI Explained: End-to End Computer Communications Standards,
John Wiley \& Sons, 1988.
Brewster, R.L. Telecommunications Technology, John Wiley \& Sons, 1986.
Reference model of Open System Interconnection for ccitt Applications, CCITT Recommendation X. 200 .

Open System Interconnection Layer Service
Definition Conventions, CCITT Recommendation X. 210 .

Isdn Protocol Reference Model, CCITT
Recommendation I. 320.
Semiconductor Digital \& Analog
Communications Handbooks, Mitel.
IC Handbook, GEC Plessey Telecoms.
Products Data Book,.SGS Telecommunications.
ICs for Communications Handbook,.Siemens

Telecom.

1MD Isdin Data Bowek.

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Malcolm Wells on 0181-652 3620
All advents will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

PROFFSSIONAL SGHEMATIC CAPTURE AND PCB SOFWARE FOR WNDOWS NEMN:

 NEMN:}

At last, professional schematic and PCB design software for Microsoft Windows is available at prices that won't break the bank. CADPAK for Windows offers entry level schematic and PCB drafting whilst PROPAK for Windows adds netlist integration, multi-sheet schematics, highly effective autorouting, power plane generation and much more.

Prices exclude postage ($£ 5$ for UK) and VAT. All manufacturers trademarks acknowedged.

Call us today on 01756753440 or else fax 01756752857 for a demo pack - please state DOS or Windows as these products are available for both platforms.

CIRCIE NO. 121 ON REPIY CARD
63-55 Man S. Gresshotion, N. Yorks. BE23 544

AUDIO

Low distortion attenuator

Anumber of circuit arrangements have been proposed to allow the magnitude of an audio signal to be controlled by an externally applied dc voltage. Most of them, however, introduce a relatively high level of harmonic distortion into the signal being controlled.
A typical layout, using a junction fet as a voltage controlled resistor in one limb of a resistive attenuator, is shown in Fig. 1. Unfortunately the channel resistance is modulated by changes in the gate-drain potential. This leads to substantial signal distortion.
The classic method of minimising this is by introducing some negative feedback from the drain circuit. A typical layout for this, from Siliconix application note AN73-1, is

> With a distortion figure of just 0.005% over most of the audio range, this switch-mode attenuator designed by John Linsley Hood removes the transistor matching problems normally associated with high-performance attenuators.

shown in Fig. 2. The resistor ratio suggested by Siliconix is $\left.R_{2}=R_{3} \geq\left(10 R_{1} / / r_{\mathrm{ds}(\max)}\right) / R_{\mathrm{L}}\right)$. This reduces the distortion at IV rms and 1 kHz from $10-15 \%$ to $1-1.5 \%$. Although this value decreases as the signal level is reduced, it is not good enough for hi-fi applications, where ideally a thd figure of less than 0.01% is sought.
Figure 3, from Precision Monolithics application note $A N$ $105,1 / 86$ is a much better arrangement. In this design, input signal voltage is caused to modulate the stage current of two matched long-tailed pairs comprising a matched quad-transistor array. Even-order harmonic distortion, caused by the curvature of the transistor $V_{\mathrm{b}} / I_{\mathrm{c}}$ characteristics, is minimised by driving the two halves of the circuit in push-pull.
A thd of less than 0.03% is claimed, at an unspecified signal level or operating frequency. Experimentation indicates that achieving this performance demands a very high degree of matching of all four transistors.

Using two separate monolithic matched pairs is not satisfactory. The Precision Monolithics circuit philosophy is also applied, in simplified form, in the Motorola MC3340. At one time, this device was widely used as the basis for remote volume controls in televisions. It was claimed that the IC had a thd figure of 0.6% at less than 0.5 V rms. Unfortunately, this performance is only achievable at low attenuation levels. At 50 dB attenuation the quoted thd has worsened to greater than 3%.
A better and more modern circuit is the National Semiconductors LM1040 for which a thd figure, at 300 mV and 1 kHz , of $0.06-0.03 \%$ is claimed. This device is intended for use as a voltage controlled gain, tone and balance sys-

Fig. 2. Introducing negative feedback from the drain helps linearise the fet attenuator, but this does not reduce distortion to levels acceptable for hi-fi.

AUDIO

Fig. 3. Offering a significant improvement over the simple fet attenuator, this arrangement involves two matched long-tail pairs whose stage current is modulated by the input.
tem for an audio pre-amplifier. It incorporates a very similar balanced long-tailed pair gain control circuit to the PMI MAT-04.
Problems raised by the necessity for matched components can be avoided by using the switch-mode attenuator system shown in Fig. 4. Here, the output signal level after removing the switching waveform depends on the ratio of the 'open' to 'closed' durations of the switch.
If the switching frequency is sufficiently high, the removal of the switching artifacts can be done without the need for excessively steep-cut low-pass filtering. In the circuit proposed the chopping frequency is 130 kHz . This is adequately separated from either the 44.1 kHz cd sampling frequency or the 176 kHz four-times over-sampling frequency used in cd players to avoid possible trouble on this account. On the other hand, the chopping frequency is high enough to permit the full 20 Hz to 20 kHz audio pass-band to be transmitted.

A rectangular-wave signal with adjustable mark-to-space ratio can be generated by a hex inverter IC. Figure 5 shows a configuration with a CD4060 hex inverter running from a +12 V supply line. In this example, $/ C_{1}$ and $I C_{2}$ form a bistable latch. This latch is caused to flip backwards and forwards between its two stable modes when the phase-inverted triangular waveform generated by $I C_{3}$ overrides the voltage derived from $I C_{2}$ via R_{1}.
The resulting triangular voltage waveform and an input dc control voltage are summed at the input of a chain of inverters, $I C_{4-6}$. This produces a rectangular waveform output whose mark-to-space ratio can be made to lie within the range $5 \%: 95 \%$ to $95 \%: 5 \%$ depending on the dc input voltage and the relative values of R_{4} and R_{5}. Output waveform is then fed to a switching fet, such as the NS JIII, to give the final voltage controlled attenuator layout shown schematically in Fig. 6.
At 1 V rms, over the range 100 Hz to 10 kHz , the thd was of the order of 0.005%, and not

Fig. 4. The switch-mode aftenuator offers high performance without the need for matched components .
greatly increased at higher attenuation levels. The effect of the circuit on a 1 kHz square wave input was only that to be expected from the pre- and post-chopping low-pass filtration. In the prototype, this was provided by a cascaded pair of third order unity-gain Sallen and Key low-pass filters with an f_{T} of 23 kHz .

Fig. 5. A cmos hex inverter chip is ideal for producing the rectangular waveform needed to drive the chopping attenuator.

Fig. 6. Over the range 100 Hz to 10 kHz , this high-performance chopping attenuator for audio produces a thd figure in the region of 0.005% for a 1 V rms input.

DECEMBER 1993
Low cost spectrum andy sis
IBM PC on a chip
Electronic power foctor correction
The stote of stato mochines

may 1994
Designer's guide to optoelectronics
Ultra-low distortion test
oscillator
Working with current mode
amplifiers

OCTOBER 1994
Signol processing of microwave frequencies
New drcuits for one-chip
function generaters
The best schemotic under Windows?
Feed forw ord beats foodback audio?

FEBRUARY 1994

JANUARY 1994

JUME 1994
Mointain control with RS232
Designer's guide to selcall
Synchronous alternative
to Plls?
Pikting up on wireless LANs

NOVEMBER 1994
Transformerless LCR bridge Spice-Circuits by design Spice-Circuits by design
Superconductor evolution Superconductor evolution
Magnets for storage and Magnets for
switching

JULY 1994
New look to amplifier design? Sorting signals from noise Using Hall to good effect Precision op-amps: First ever mass review

DECEMBER 1994
Communicating underground Digitol sines ond casines Digitol sines ond cosines Electrolytic rif detection Moximising monopole bandwidth
Hormonic effects
Miniature if link for remote control

MARCH 1994
Designer's guide to SMPS
Polyphase SSB receiver
Closs A ultra-low
distortion amplifier Using the Smith chart

AUGUST 1994
The doto path to multimedio
Applying IPGA
Designing combiners
and splititers
Charting Smith's
computer world

JANUARY 1995
Filters for digitol audio
Impedance matching
Routeing pebs vio the PC
Routeing pcbs vio the PC
Buthering for piezoelectric
cable output
Advances in a-ro-d canversion
Iron out distortion

APRIL 1994
New wave microwave
Chips for oudio noise reduction
Eight bit wireless
duplex data link
Test generator for better
video links

SEPTEMBER1994
Gircuit design for RMS
meosurement
Power solutions to supply
prablems
The ultimate slew rate?s

BACK ISSUES

Back issues of Electronics World are available, priced at $£ 2.50$ in the UK and $£ 3.00$ elsewhere, which includes postage. Please complete the coupon and send with correct payment to: Electronics World, Quadrant House, The Quadrant, Sutton,
Surrey, SM2 5AS.

Note that all issues are subject to availability and please allow 21 days for delivery.

With every back issue - Engineer's Pocket Book Worth £4.95

Issue (Month/Year)	Quantity	Price	Total	Name
				Address
			Total Order	Postode
	Telephone			

Expiry Date
Signed

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Statistically significant

In his reply to my letter (February, $E W+W W$) Douglas Self questioned the "statistical evidence" that mosfets in general have lower distortion than bipolars, in reference to audio circuitry: I thought he'd never ask.
Take first the Hitachi power mosfet data book 1-15a in which two 100 W amplifiers are described, one of hybrid design, the other, all fet.
The hybrid offers 0.01% distortion at 100 kHz , but within the audio range offers 0.002% at 1 kHz , and 0.003% at 20 kHz .
The all fet version offers 0.01% distortion at 50 kHz and within the audio band falls to under 0.002% at 1 kHz and about 0.0035% at 20 kHz . But these distortion figures are largely unchanged at full power, at the rated output of the amplifiers: $100 \mathrm{~W}, 8 \Omega$ load.
There is also the series of amplifiers by J P Rimmer, formerly of Pantechnic. These used Hitachi type circuitry but with selected transistors in the driver stage in which the overall distortion was slightly better than the Hitachi version. Results were 0.002% at 1 kHz and better than 0.005% anywhere in the audio band $(20 \mathrm{~Hz}$ -

Shifted search

Can any reader help me? I have been looking, with little success, for a number of months for a frequency shifter circuit diagram. My aim is to construct a frequency shifter with a microphone input, having the capacity to shift the frequency down to 1 Hz and up to $25,000 \mathrm{~Hz}$.
The output would be to a socket so that a loudspeaker or recording equipment could be plugged in. Stepping of the shifted frequency should be smooth not doubled or in octaves etc, and I need the circuit diagram to be fairly idiot proof - I am a fairly competent constructor but no expert.
PH Cope
6 Marlborough House
Langton Close
Lincoln
LN2 2HI

20 kHz) and any power up to 150 W for the PFA200 version.
A confirmation of this kind of performance was given in a review by Gordon J King (ETI, June 1978) of the Hitachi commercial amplifier HMA7500 (80W/channel). It was severely tested by King using $15 \mathrm{kHz} / 16 \mathrm{kHz}$ tones into 5Ω modules of impedance and 60° phase angle at 16 kHz (for intermodulation tests). The two tone signal at the output of the amplifier had a peak value of 28 V across the complex load.
Second order product of the difference frequency (1 kHz) was -78 dB or 0.012%, while distortion measured under normal testing was typically $-90 \mathrm{~dB}, 0.003 \%$ at 80 W .

Moving on to the ET15000 design by Dave Tilbrook (ETI, June, 1982), distortion is almost non-existent at 0.0007% at 1 kHz and 100 W and 0.003% at 10 kHz and 100 W .
John Linsley Hood's mosfet design (ETI, July, 1984) showed a distortion at 80W (full power) of -94 dB at 1 kHz , about 0.002%, and at $10 \mathrm{kHz} 0.021 \%$ at 80 W . Hood's amplifier had a greater input sensitivity than others quoted and would probably give better distortion figures, gain for gain. Also, the description implies that the low levels of distortion were mainly from the signal source itself.

Excellent linearity was demonstrated by the David Hafler DH200, DH220, DH500 series of amplifiers. The oldest, DH 200 , offered 0.0015% at $1 \mathrm{kHz}, 0.005 \%$ at 10 kHz and 0.01% at $20 \mathrm{kHz}, 100 \mathrm{~W}$, 8Ω load. The design is now some 20 years old, and figures would be improved with a more substantial power supply.

The American Company, Musical Design - where circuits bore a remarkable similarity to the David Hafler, except for fet drivers offered low distortion from its D140 and D180 amplifiers: typically 0.006% at 1 kHz and 140 W .

Moving on to Sage Audio and the Supermos series, these amplifiers were exceptional at $0.0002 \%, 1 \mathrm{kHz}$ and rated power.

Of course some designs have given poorer distortion figures. But the statistical evidence is overwhelmingly in favour of the lower distortion variety.
Distortion in bipolar amplifiers is
much more markedly distinguished with increased power and frequency.
One amplifier that should be considered is that by Edward Cherry whose 60W nested differential feedback loop amplifier (ETI, May, 1983) produced 0.002% at rated output and 1 kHz , falling to 0.015%, 2nd and 3rd harmonic at 6 kHz . But the circuit was complicated and required special earthing arrangements on the board. By contrast the simple Hitachi mosfet configuration must be a clear winner in every respect, barring the cost of mosfets.

All the circuits I have described, except the Sage modules, have used Hitachi mosfets and as such have been set for 100 mA bias current per pair of output devices. The Hafler circuits used slightly more quiescent at 275 mA for two pairs. In my earlier letter I suggested that the low 45 mA quiescent value in Self's mosfet circuit would be significantly contributing to the crossover distortion artefacts observed.
I also can not agree with Self's comment regarding the independence of slew-rate limit and bandwidth. In absolute terms it is difficult to separate one from the other. Any amplifying device fed with a signal of changing rate will suffer from an upper limit at which it can reproduce that rate of change, thus encompassing both bandwidth and slew-rate. There is surely no mystery in mosfet amplifiers having vastly superior slew rates simply because they can be used at much higher frequencies (implying wider bandwidths).
Returning to distortion and early rate of roll off of frequency in bipolars, the major source of distortion comes from the relationship between current gain and collector current. In power bipolars this is a graph shaped like a parabola - ie very non-linear, showing the gain varying according to the collector current. Variation is marked, offering quite a gain spread, with the lowest at low and high currents and highest at intermediate currents. Added to this is the relationship between gain and frequency in which the power bipolar rapidly loses gain as the frequency increases. Using typical figures of $F_{\mathrm{T}}=2 \mathrm{MHz}$ and gain of 100 this device will only offer a gain
of 1 at $20,000 \mathrm{~Hz}$. Clearly, as the frequency rises the normal overall feedback decreases, and so distortion rises.

The situation is quite different with mosfets. Here the V_{g} / I_{d} characteristic is very linear and since the devices are much faster they have less trouble coping with high frequencies - provided they are driven by low impedances. Distortion tends to fall as the drain current (I_{d}) increases (run at $100 \mathrm{~mA}+$ please). Bipolars also suffer 'notch' distortion due to storage of minority charge carriers.

I have said before that in my experience, going back 25 years of reading test reports from most of the major journals, I have found with few exceptions that amplifiers containing bipolar output devices regularly roll off at around 15 kHz at full power, many starting before this frequency. This experience is a matter of public record and the evidence is there for anyone who cares to sift through all of the reports in the same way I have done.

The reasons for this behaviour are, as I have shown, that output devices are being selected which are simply too slow: that is also a statistical fact. Faster devices are less rugged and more expensive.
I have most of the articles and literature referred to for mosfet amps if further doubt is expressed.

V/Hawtin

Middlesex

Defence or attack

If it were true, as Colin Long (Letters, January) seems to imply, that high military spending makes good economic sense then we might reasonably expect to see the major industrialised military economies outperforming their non-military competitors.
In fact we see the reverse, because such activity is bad for any economy, whether an autocratic command system of the (old) USSR or the democratic demand economy of the USA. Even with rich oil and mineral reserves, they are so obviously outperformed by Germany and Japan, as indeed is the UK.
Mr Long questions why the MoD has come in for such criticism. It is because it has compounded the

Quickroute 3.0

Integrated Schematic \& PCB Design for WIndows

"moving from schematic to layout tould not be easier". Ebestronke worico inw imm se

"For some tirme Quickfoute has been one of the leseding PCB CAD notware packages. The lantet Windowe version is well worth examining"

Eweryoty with Practicat Ewctronies Feds 06

1R () 240

"Schematic \& PCB Design *Schematic Capture 'Integrated Ruis-Nest Generation "Aulo-router *Net-List Export *Support. Windows printers/plotter" *CAD-CAM oupults.

As the PRÓ but alse Includes *Advapced schemnalie Capture flusses, Prwer ralls, ete) 'Larger Schematic a PCB Designs "Gerber file IMPORT for Fle Exehange.

Aso available the low cest DESICNER aeries, starting at just fape.00\%

Tel/Fäx 01614497101

POWERware, 14 Ley Lame, Marple Eridge Stockport, SK SBDD, UK email Infogpownware cilemon,co, thk Pices exchude VAT and P+P.

DEMO DISK Available

JPG Electronics

CROSS DEVELOPMENT SOFTWARE TOOLS FOR DOS
C. COMPILERS

CROSS•ASSEMBLERS
FULLY SUPPORTED
QUALITY SOFTWARE
You might only need a simple absolute cross assembler for your first project. Later you might decide that you need the sophistication of a fully relocatable package (and of course you will want your existing source code to migrate effortlessly with you). You might decide to make \mathbf{C} your primary language, with full IEEE floating point maths available whenever you need it. If you do, you will certainly want to keep your options open by being able to integrate C and assembler
Whatever your choice you will want the benefit of a user friendly environment with a sophisticated multi-file, multi-window editor/workbench and comprehensive on-line help.
That's why we have configured our product range the way we have.
XPC series: absolute cross assemblers @ $£ 99.00$ each XDS series: relocatable cross assemblers @ $£ 169.00$ each PSDS series: C compilers \& cross assembler @ $£ \mathbf{3 4 9 . 0 0}$ each

Further information from:
CROSSWARE PRODUCTS
Melbourn, Royston, Herts, SG8 6BA, UK
Tel: +44 (0) 1763261539 , Fax: +44 (0) 1763262983
BBS: +44(0)1763261716 (8-N-1), Internet: sales@crossware.com
problem through damaging interference. Using a variety of devices, including its 'massive purchasing power', the MoD has taken a vigorous and broad-based electronics industry and reduced it to a single, essentially military, supplier. An industry that once supplied a rich variety of products to its domestic market is now reduced to a critical dependence on the taxpayer.
Like Mr Long, I also want to see Britain at the top, with British products in the high street again, designed and manufactured by British industry using British components.
I want to see our industry competing in foreign markets, with self respect restored. But the remedy is not to spend larger amounts of tax-payers' money on more armament manufacture.
Dwight D Eisenhower, possibly this century's greatest warrior, summarised the situation: "...we must guard against the acquisition of unwarranted influence, whether sought or unsought, by the militaryindustrial complex, we must never let the weight of this combination endanger our liberties or our democratic progress".
Pacifism Mr Long. No,
pragmatism.
R M Burfoot
Avon

Follow the leader

Research Notes has always received my best attention, being an inspirational source of new ideas. But the "Voltage follower that gives the lead" (January, p.12) immediately brought up memories of a similar circuit, titled "Feedforward floating power supply (High-response-speed equalizer circuit)" by Eiichi Funasaka and Hikaru Kondou, Journal of the Audio Engineering Society, Vol 30, No.5, May 1982, p.324-329.

With due respect to the
remarkable work of Mr Lidgey, it is surprising not to see the early reference mentioned.
Erik Margan
Slovenia

Percentage player

As a fascinated bystander in the debate on audio amplifier distortion, may I request a stronger distinction be made between harmonic and nonharmonic distortions?

Most musical sounds, including the voice, are generated by physical mechanisms which produce a harmonic series, the relative amplitudes of which determine the characteristic 'sound' of the instrument. A variation of a few percent in the absolute level of these harmonics is generally perceived (if at all) as a subtle change in timbre or
brightness, of the kind also produced by a great many non-electronic effects including room acoustic. So provided that an amplifier produces harmonic distortions which drop sufficiently quickly with increasing order n to avoid masking the genuine harmonics of typical signal sources, can we not virtually ignore its thd figure?
In my experience the overall 'sound' of a good amplifier is far more affected by slight frequency response deviations from flatness than purely harmonic distortions or, for that matter, phase distortions.
In contrast, non-harmonic distortions are audible even in very small amounts. Intermodulation distortion in particular multiplies with the complexity of the musical signal to produce a thick muddy or tinny background which obscures musical detail and can make listening quite unpleasant.

If, as I would suggest, the nonharmonic distortion of an amplifier is much more audible than the harmonic, then it follows that the preoccupation of your recent contributors with harmonic distortion is misplaced, even if an entirely (harmonically) distortionless amplifier would in principle produce no intermodulation distortion.
Furthermore, should not distortions produced by non-linearity be directly dependent on signal level (as in rf mixers), and percentage distortion figures therefore strictly meaningless?
Perhaps we should abandon the increasingly irrelevant \% thd figure and standardise on one of the various multiple-tone intermodulation measures available, preferably with a graph of measured signal to noise+distortion ratio, in decibels, versus signal level? A New
Bristol

Cables and cars

I was interested to read in Barry Gillebrand's article, 'Interfacing piezoelecric cable', January, pp. 21-23, that the type of cable we used some 40 years ago in an application for traffic speed measurement, has now become a fully fledged product.
My colleague Joop van der Kam had discovered that if insulated wire

Worse performance...

I was intrigued to read the item in Research Notes (February, EW + WW) concerning electronics making us worse drivers. From bitter experience I can report that although "we all expect shorter stopping distances", under adverse conditions the ABS system will reduce the stopping distance from what it might have been without ABS, but will not reduce it to what it would have been under normal or dry surface conditions.

My experience only cost me an increased insurance premium. What is more worrying is the phenomenon of the side-road speeder who can be seen approaching a stop sign at an almost insupportable rate of deceleration, because he does it every morning under normal conditions. I just hope the morning there is a film of black ice on the road is the morning I go a different way to work.
Incidentally, recent experience in Montreal indicates that drivers quickly lose their caution after the first snowfall and become careless on adverse surfaces. This appears to parallel the learning mechanism for drivers of $A B S$ equipped cars.

That is until you find out the hard way.
Nic Houslip
Birmingham

...from electronic systems

Research Nores (February, EW + WW) posed the question: "Does electronics make us worse drivers?"
I would like to take the point further. Not only does electronics make us worse drivers but it also has the capability to make us worse pilots, worse managers, worse designers and even worse mothers and fathers!
For example how many parents can say with hand on heart that we have not used the technology of the TV and video recorder just a little too much to give us that occasional peace and quiet. Indeed, how many of us can cope with the modern technology of the video recorder at all. A four year old child may be able to deal with the situation but isn't the technology supposed to be designed for the users irrespective of age?
Anything, used to excess can be damaging, and the same is true of technology. Whether it be video recorders that have too many glossy features, or industrial manufacturing systems that are supposed to be the 'solution' to all business ills.
The answer to these far-reaching problems lies with engineers. It is high time we stopped doing things right (just because it is technologically possible) and started doing the right things! Andrew Ainger
Berkshire
is squeezed in a vice, a voltage is generated between its core and the metal of the vice. In fact any cable insulated with modern plastic materials generates electric noise when flexed ${ }^{1}$ and special measures have to be taken to get rid of unwanted flexural noise in cables used for low-level electrical signal sources, such as microphones, etc.
Cause of the noise is separation of electrical charge that takes place when two different materials are brought in close contact. This can easily be demonstrated by pressing a

coin onto a plastic bag. When the coin is removed, the deposited electrical charge can be made visible by dusting the plastic with fine particles (flour, pencil lead filings, etc), revealing the coin's features.
The discovery led to development of a traffic speed measuring apparatus in 1957^{2}. It became rather popular because its cost was only some 10% of the competing radar device (in the era of the radio valve and klystron) and the prosecuting authorities liked the easy proof of whodunit' because of the direct physical contact between car and cables. A radar device relies of course on an invisible beam and unless the conditions were ideal, you could never be completely sure whether the return signal had been influenced by it reflecting off buildings or other traffic participants.
Today I would design the traffic speed meter with digital electronics, but in 1957 we did it as depicted in the figure.
Two, toughened coaxial cables
were laid at 2 m distance across the road. Given the high input impedance of radio vales there was no particular cable interfacing problem to solve. The input amplifiers triggered two thyratrons, one of which started, while the other stopped, the charging of a low-loss capacitor when the front wheels of a vehicle crossed the cables. Thus the voltage across the capacitor was directly related to the time interval between the cable signals and hence to the vehicle's speed.
Voltage was measured by a high input impedance amplifier connected to a meter and a level discriminator. The scale of the meter in km / h (or mile/h) could be calculated from a simple exponential function and calibration was very straightforward. Adjustment of the level discriminator allowed the apparatus to be reset automatically for vehicles below a set speed limit, while trespassers would initiate automatic action such as triggering a camera or alerting a police officer down the road.
On completion of an operational cycle, the capacitor would be discharged, the thyratrons extinguished and the apparatus would be ready for the next measurement. Counters could be connected for automatic traffic analysis and the unit could be powered from a car battery.
Joop van Montfoort
Somerset

References

1. R A Rasmussen. "Flexural noise in cables", Bell Lab Rec, 37, 8, p.305, August 1959
2. JC van der Kam and JE van Montfoort. Een Electronische Verkeerssnelheidmeter, 13.8.1958 (unpublished internal report Philips, Eindhoven).

Bye-bidirectional $\mathrm{I}^{2} \mathrm{C}$

Jean-Paul Brodier (Letters,
February) is incorrect in stating that the SCL line in an $\mathrm{I}^{2} \mathrm{C}$ system needs to be bidirectional to handshake properly. $\mathrm{I}^{2} \mathrm{C}$ handshaking is done via acknowledge bits on the SDA line. The only time a bidirectional SCL line is needed is in a multimaster system, which also calls for additional hardware for arbitration.
Correction: in editing my Circuit Idea the word programmed was left out of the following phrase:
"...writes 01 to a location
programmed as 00 in the eprom..." Mike Harrison
White Wing Logic
Essex

Figured out

In Fig. 6 of the article 'Analogue design with a 5 V supply' (February, $E W+W W$, pp.162-165) by Walt Jung and James Wong the equations should read:
for $\mathrm{G}=100$,
$\left(R_{1}+R_{2}\right) / R_{3}=\left(R_{5}+R_{6}\right) / R_{4}=99$ for $\mathrm{G}=10$,
$R_{1} /\left(R_{2}+R_{3}\right)=R_{6} /\left(R_{4}+R_{5}\right)=9$
These respective resistor ratios should match to 0.01% or better. Laurence Marchini
Oxon

Cathode ray conundrum

I am intrigued by the possibility that a cathode ray tube is capable of generating a reactionless force.
Consider what happens in an oscilloscope when the trace is directed towards the top of the screen. First, a beam of electrons is deflected upwards by deflector plates. These electrons then will have a small upwards momentum
which is balanced by a downwards force on the deflector plates in accordance with Newton's equations of motion.
It occurs to me that what happens next is unusual and we cannot safely use our experience of mechanical systems to predict the precise effects. The beam of electrons is accelerated forwards towards the screen through a high potential, usually over $10,000 \mathrm{~V}$. Such voltages are sufficient to impart a velocity to the electrons which is a significant proportion of the velocity of light, c. According to Relativity theory, the electrons will undergo an increase in mass. Assuming their upwards velocity is not affected by this sideways acceleration, they will have acquired increased upwards momentum without any increase in the downwards reaction force. This will be realised as a net reactionless upwards force on the entire device when they hit the cathode.
I understand that when this particular problem is considered in text books, the answer given is that the vertical velocity of the electrons is somehow reduced (in the absence of any downwards force and contrary to Newton's second law) so that Newton's third law should be preserved in some form. This is an answer I had already considered and rejected. The trouble is that the amount that the vertical velocity of the electrons would have to change is a function of the vertical velocity of the reference frame from which the problem is considered - even when that velocity is an insignificant proportion of c. This would be absurd. I may have made a mistake but I am unaware that the conventional view has been tested by experiment, and unlike some other ideas that have been put forward on these pages, this idea is
definitely testable. In any case, I don't see why Newton's second law should be so readily discarded to save his third law.
I do not suggest it might be possible to measure this force in an oscilloscope. I calculate that for a typical oscilloscope (Tektronix 2235), the magnitude of the reactionless force (if it existed) would be sufficient to produce an apparent weight reduction of only $0.3 \mu \mathrm{~g}$ for 1 mA of anode current. I have made enquiries about getting a purpose-designed thermionic device built where the level of predicted weight loss would rise to milligrams and so unambiguous measurements could be made. Building of a suitable device to do this seems to be possible, but it is unfortunately beyond my resources.
Has the idea been experimentally tested before or would anyone be interested in helping test it?
Interestingly, one of the few other places where this force might be expected to arise is in a force precessed gyroscope, although once again the level would only amount to a weight change less than one $\mu \mathrm{g}$ for any practical system, and it would not be practical even to attempt to measure it this way.
The possibility of this force has nothing to do with precession, which is in fact a nuisance.

Unfortunately, even if this force exists, I do not see many practical applications for it. However, if it were implemented, the amount of kinetic energy that would have to be stored in a device in order for it to be able to lift its own weight would be enormous and certainly beyond any technologies we have at present. Nevertheless, it has a certain
theoretical interest.
R Lerwill
Clwyd

> SOFT INDEX ON DISK

A computerised index of Electronics World + Wireless World magazine is now available. It covers the five years 1990 to 1994 - volumes 96 to 100 - and contains over 1400 references to feature articles, circuit ideas and applications, with a synopsis for each. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K ram and a hard disk. Each disk is scanned before shipping with the current version of Dr Solomon's Anti-Virus Toolkit.

For the UK, the five year index is priced at £20. Please specify $5 \frac{1}{4}$ or $3 \frac{1}{2}$ in format. This price includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.

Photo copies from back issues of $E W+W W$ are available at 50 p per page plus VAT (in EC) and a flat postage charge of 50 p UK, $£ 1$ rest of EC, and $£ 2$ rest of world. For enquiries about photo copies send an sae to Video Interiace Products.

Please allow up to 28 days for delivery. Cheques should be made payable to Video Interface Products, not EW\&WW or Reed Business Publishing.

Please post your request to Video Interiace Products Ltd, 1 Vineries Close, Cheltenham GL53 ONU, UK.

SECOND USER TEST EQUIPMENT \& COMPUTERS

Broad Product Range?........... No Problem DC to Light?...........................No Problem
BS5750 Registered?............... No Problem
Onsite NAMAS Lab?.............. No Problem
Sale Or Return?..................... No Problem
Full Warranty? No Problem
Part Of Livingston Hire?........ No Problem Outstanding Service?............ No Problem
Call now or check the card for your monthly copy of our Measurement \& Computing Catalog Europes most comprehensive guide to second user Test Equipment and Computers

2-6 Queens Road, Teddington, TW11 OLR The Intelligent Alternative to New

- Analytical \& Environmental
- Calibrators
- Communications Test
- Component Analysers
- Computers \& Peripherals
- Digital Design \& Test
- Electrical \& Power
- EMC Test
* Frequency Counters
- Noise Source / Measure
- Oscilliscopes
- Power Meters
* Power Supplies
- Radio Comps
- Recorders \& Data Acquisition
- Signal Analysers
- Signal Sources
- Voltmeters \& Multimeter

DID YOU KNOW?!

The world's largest producer of BIOS, American Megatrends Inc., produces a complete range of hardware too?

- For 486, PENTIUM,', P5, P54C
- Motherboards EISA-VLB-PCI
- PCI SCSI RAID Controllers
- MULTIMEDIA - TeleCom Adapters
- SCSI \& Graphics Adapters
- PCMCIA Adapters \& Software
- Diagnostics Hard \& Software

Best of all, did you know that we have an office right here in the U.K. to serve you. Call us for more information!

The first 500 callers get a FREE copy of AMIDiag 4.5 (trial) for evaluation!
American Megatrends IntI. Limited Unit C5, Worth Corner, Turners Hill Road Pound Hill, Crawley, West Sussex RH 107SL
Tel: 01293882288
Fax: 01293886550

American
Megatrends

INTERFACING WITH C

HOWARD HUTCHINGS

f you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Please supply \quad copies of
INTERFACING WITH C
Please supply \qquad copies of
Disk containing all the example listings £29.96
Remittance enclosed $£$ \qquad
Interfacing with C can be obtained from
Jackie Lowe, Room L333, Quadrant House,
The Quadrant, Sutton, Surrey, SM2 5AS
Cheques should be made payable to
Reed Business Publishing Group LId
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credir Card No.
Exp dare
NAME (Please print) \qquad
ADDRESS \qquad

> Credit card orders accepted by phone. Call 01816523614.

A disk containing all the example listings used in this book is available, Please specify size required

Reference books to buy

For Audio Engineers

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

For TV \& Video Engineers

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from maferials and construction to medical and defence applications of television.

Subjects include

Fundamentals of colour TV
TV studios
High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and audio recording and playback

Teletext

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students.
Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \qquad copies of the
Audio Engineer's Reference Book, (ISBN 075060386 0).
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide £78. Please add vat at local rate where applicable.

Please supply me \qquad copies of the
TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK £42.50, Europe $£ 48.00$, Worldwide $£ 58.00$, Please add vat at local rate where applicable.

Remittance enclosed $£$ \qquad
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No.
Exp date
NAME (Please print) \qquad
ADDRESS \qquad
\qquad

POST CODE

\qquad
DATE \qquad TEL

SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Filters improve using op-amps

Historically, analogue designers have relied on passive filters for applications involving frequencies greater than a megahertz. But with current feedback op-amps designers can now make active filters capable of working at a megahertz and above, as Doug Smith explains.

This article first appeared in EDN.

Until recently, designing viable active filters with cut-off frequencies at 1 MHz or greater was difficult because voltage feedback amplifiers with sufficient gain-bandwidth products and short propagation delays were simply too expensive.
The emergence of current feedback or transimpedance amplifiers has significantly changed this picture. Using these amplifiers, together with a conscientious design and pcb layout, you can design active filters that operate at high frequencies. Active-filter applications are no longer restricted to the audio-frequency range.
Active $R C$ filters have many advantages over passive filters, these becoming increasingly important as frequency increases. For example, there is no insertion-loss penalty and you can even have power gain if needed.
A doubly-terminated passive filter would attenuate the signal by at least 50%. The elimination of inductors is the biggest advantage offered by active filters. This advantage doesn't involve size considerations alone.
Passive inductors are only linear for low power levels, much like transistors with no negative feedback. As you pump more current through the inductor, the magnetic core material begins to saturate and the inductor generates its own harmonic-distortion terms. The filter's transfer response will not necessarily suppress these signals. In an active $R C$ filter, the amplifier quality and design sophistication set the dynamic range. Theoretically, designers have a good deal of control over both of these parameters.
As a case study, consider three situations - a low-pass antialiasing filter, a band-pass filter, and a high-Q notch filter - in which active filters that incorporate current-feedback amplifiers provide a viable alternative to passive filters. All three filters will be designed around the Burr-Brown OPA603.
You could implement the three designs using carefully selected, video-speed conventional op-amps. However, current feedback amplifiers more readily satisfy the low transit time and large bandwidth at high gain require-
ments for the example circuits. Let's start with the design of an antialiasing filter, Fig. 1, to drive the input of an ADC603 - a 12-bit, 10 MHz a-to-d converter.
When dealing with a-to-d converters in filter work, the Nyquist theorem states that if any converter input harmonic frequency is greater than half the sampling rate, those frequencies must alias, or fold back, into the passband. Normally, this condition is not desirable. To skirt the issue, you must suppress any input frequencies that exceed the Nyquist rate before the converter sees them.
The result of this manoeuvre is that the required attenuation becomes a function of converter resolution. It is also important for the filter to roll off as fast as possible. An elliptic response is the best choice because the addition of transmission zeros in the stop band creates the sharpest roll-off theoretically possible for a particular number of poles without having to rely on mutual inductance.
The first step in designing the filter is calculating the attenuation requirements. You can do so by estimating the theoretical signal-tonoise ratio, snr, using the expression

$s n r=6.02 N+1.8 \mathrm{~dB}$,

where N is the number of bits. For the ADC603, the expression yields,

$$
s n r=6.02 \times 12+1.8=74.04 \mathrm{~dB} .
$$

The calculation shows that the guaranteed stop-band attenuation must be greater than 74 dB . A search of standard design tables shows that a fifth-order elliptic lowpass response is a reasonable compromise between the transition width and the filter order. The general transfer function for this filter is,

$$
\begin{aligned}
T(s)= & \left(H_{a} \frac{s^{2}+b_{0 a}}{s^{2}+a_{1 a} s+a_{0 a}}\right) \\
& \left(H_{a} \frac{s^{2}+b_{0 b}}{s^{2}+a_{1 b} s+a_{0 b}}\right)\left(\frac{a_{0}}{s+a_{0}}\right)
\end{aligned}
$$

Fig. 1. You need an antialiasing lowpass filter when you're driving an A / D converter. A fifth-order elliptic design (a) proves to be the best choice in such an application. You can use two second-order sections and one firstorder section (b) to form the necessary filter.

You can now form the filter by cascading two second-order sections and one first-order section, Fig. 1b. The essential equations for the second-order sections are,

$$
\begin{aligned}
T(s) & =H\left(s^{2}+b_{0}\right) / s^{2}+a_{1} s+a_{0} \\
p & =\frac{1}{\sqrt{b_{0}}} \\
q & =\frac{\left(b_{0} / a_{0}\right)-1}{2 \sqrt{b_{0}}} \\
K & =2+\frac{\left(b_{0} / a_{0}\right)-1}{2}-a_{1} \sqrt{b_{0}}
\end{aligned}
$$

The essential equations for the first-order section are,
$T(\mathrm{~s})=a_{0} / s+a_{0}$
$a_{0}=1 / R C$.
The task is to design a fifth-order elliptic antialiasing filter Fig. 1a with a guaranteed stop-band attenuation of 75 dB and no more than 3 dB of passband ripple. In addition, the maximum attenuation should begin at 5 MHz , which is half the sampling rate.
Transfer coefficients ${ }^{1}$ for this case are
$a_{\mathrm{la}}=0.096035$
$a_{0 \mathrm{a}}=-0.945044$
$b_{0 \mathrm{a}}=10.47185$
$a_{1 \mathrm{~b}}=0.285481$
$a_{0 \mathrm{~b}}=0.413907$
$b_{0 \mathrm{~b}}=4.328514$
$a_{0 c}=0.191095$.
Corresponding component values are,
$p_{\mathrm{a}}=0.309021$
$q_{\mathrm{a}}=1.557592$
$K_{\mathrm{a}}=6.875982$
$p_{\mathrm{b}}=0-480652$
$q_{\mathrm{b}}=2.272930$
$K_{\mathrm{b}}=6.011362$
$R=1$
$C=5.232999$.
This filter prototype has an f_{3} bandwidth of $0.15912(1 \mathrm{rad} / \mathrm{s})$, and its maximum attenuation begins at a stop-band frequency of 0.3171 . In this case, you have to scale the frequency to the stop-band frequency, rather than to f_{3}. In addition, you can arbitrarily scale the impedance to $1 \mathrm{k} \Omega$. Multiply each resistor by this impedance value; divide every capacitor value (p, q and C) by the frequencyimpedance scaling factor, K_{f},

$$
K_{f}=1 \mathrm{k}\left(5 \times 10^{6} \mathrm{~Hz}\right) / 0.3171 \mathrm{~Hz}=1.577 \times 10^{10}
$$

Final component values, rounded to three significant figures, are,

$$
\begin{aligned}
& p_{\mathrm{a}}=19.6 \mathrm{pF} \\
& q_{\mathrm{a}}=98.8 \mathrm{pF} \\
& K_{\mathrm{a}}=6.88 \\
& p_{\mathrm{b}}=30.5 \mathrm{pF} \\
& q_{\mathrm{b}}=144 \mathrm{pF} \\
& K_{\mathrm{b}}=6.01 \\
& C=332 \mathrm{pF} .
\end{aligned}
$$

Using a feedback resistance of 499Ω you can choose the closest 1% values for gain resistors, $R_{\mathrm{G} 1}=84.5 \Omega$ and $R_{\mathrm{G} 2}=100 \Omega$.
High-Q bandpass filters have many uses. One is isolating a particular harmonic of a distorted sine wave before amplifying the signal to more easily measure the magnitude. Many common active filter configurations run into
problems in such applications because the value of Q is highly sensitive to changes in the gain - and thus the frequency response - of the amplifier. One of the best filter topologies in this situation is an extension of the basic Sallen-Key circuit Fig. 2a ${ }^{2}$. Adding a second amplifier can raise the potential value of Q by two orders of magnitude.
For stable operation, K_{1} should be greater than zero and K_{2} should be less than zero. The transfer function is,

$$
T(s)=K_{1} \times K_{2} s /\left(\left(1-K_{1} K_{2}\right) s^{2}+\left(4-K_{1}\right) s+2\right) .
$$

From this expression, you can determine that,

$$
\begin{aligned}
& Q=\sqrt{\frac{2\left(1-K_{1} K_{2}\right)}{4-K_{1}}} \\
& \omega_{0}=\sqrt{\frac{2}{1-K_{1} K_{2}}}
\end{aligned}
$$

Sensitivities of most concern involve the variations of Q when the gain of either amplifier changes. Analysis shows that,

$$
\begin{aligned}
& S_{\mathrm{KI}}{ }^{\mathrm{Q}}=K_{1}\left(1-4 K_{2}\right) /\left(4-K_{1}\right)\left(1-K_{\mathrm{l}} K_{2}\right) \\
& S_{\mathrm{K} 2}^{\mathrm{Q}}=K_{1} K_{2} / 1-K_{\mathrm{l}} K_{2} .
\end{aligned}
$$

You can neglect $S_{\mathrm{K} 2} \mathrm{Q}$ because it is approximately equal to 1 and is not a serious limitation. Although its probably not obvious, there's a tradeoff between K_{2} and $S_{\mathrm{K} 1}{ }^{\mathrm{Q}}$. The higher the gain of K_{2}, the lower the value of $S_{\mathrm{Kl}}{ }^{\mathrm{Q}}$. In a voltage type op-amp, higher gain inherently means lower bandwidth. However, a transimpedance amplifier has the ability to maintain its bandwidth at high gains. This characteristic gives current feedback amplifiers a clear advantage in this situation.

Measure \& Record Temperature

 on your PC.Pico's NEW TC-08 is a 8 channel thermocouple to PC converter. Supplied with PicoLog datalogging software it is designed to allow simple yet accurate temperature recording onto a computer.
TC-08 has provision for up to 8 thermocouples
-B,E,J,K,R,S and T types. For type K the resolution over $-270^{\circ} \mathrm{C}$ to $+1300^{\circ} \mathrm{C}$ is better than $0.1^{\circ} \mathrm{C}$ and accurate to $\pm 0.1^{\circ} \mathrm{C}$. NEW from Pico TC-08 \& 199.00
complete with PicoLog, software drivers and connecting cable. A range of thermocouple probes is available.

Call for your Guide on
'Virtual Instrumentation' and Release your PC Potential.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK. Tel: 01954-211716 Fax: 01954-211880
Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT. Carriage Overseas Cg CIRCLE NO. 127 ON REPLY CARD

‘OFF-AIR’ FREQUENCY STANDARD

- Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
- Use in for calibrating equipment that relles on quartz crystals.

TCXOs. VXCOs, oven crystals

* Phase locks to DROITWICH (rubidium controlled and traceable to NPL L
- For ADDED VALUE also phase locks to ALLOUIS (cesium Controlled and traceable to OP - French eq to NPL)
- British designed and British manufactured
outputs and 13 MHz output for GSM. Prices on application.

Variants from £195+va

Output frequencies $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ Short term stability - better than $1 \times 10^{-8}(1 \mathrm{sec})$ Typical - $4 \times 10^{-9}(1 \mathrm{sec})$ Long lerm - tends to
$2 \times 10^{-12}(1000 \mathrm{sec})$

Call for 'OH-Air' Standard list

TEST EQUIPMENT

We are well known for our quality, new and used Test Equipment. Our list is extensive, the following will give some idea of our range and prices:

TIME 404S Precision mV source TiME 2003N DCV PotCal, 0-10V, null, etc TIME 2004 DC Vott standard 0.005% HP134CA X-Y displays E.V. EV4020A NTSC V/scope LEADERLG398 NTSC pattern generator PHILIPS 5509 PAL pattem generator PHILIPS 5519 PAL pattern generator PHILIPS PM5134 tunction generator
£95 PHILIPS 5716 pulse generator
£249 FEEDBACK DPM609 10Hz 100 Hz phase meter $£ 425$ £945 FEEDBACK SSO 0031 MHz s sine/square oscillator $£ 125$ £95 TEKTRONIC 2465300 MH 24 trace, dual delay T/B $£ 1950$ £395 TEKTRONIC 221560 MH 2 dual trace, dual delay $T / B £ 450$ £395 MARCONI TF2370 100MHz spectrum analyser £995 £195 DRAKE MN2700 ATUPSU £380 £295 ADRET 740A $0.1 \mathrm{MH}-1.2 \mathrm{GH} 2$ sig. gen. AMFMPM $£ 1450$ $£ 1495$

Call for Equipment list

ONE ONLY OFFER

One only, mint condition VIDEO/COMPUTER PROJECTOR as used in $A V$ theatres, and similar large screen or wall projection applications. Can be ceiling or bench mounted. This is a very high quality instrument, new price upwards of $£ 10 k$, serious offers only.

HALCYON ELECTRONICS VEA

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR
SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340
CIRCLE NO. 128 ON REPLY CARD

Fig. 2. To develop high-Q bandpass filters, you can add a second amplifier to the the basic KRC circuit (a) to raise the potential Q by orders of magnitude. The actual bandpass response of the filter is very close to the theoretical value (b), although the response shows a slightly lower gain.

Putting theory into practice

Choosing a bandpass filter with a centre frequency of 1 MHz and $\mathrm{a}-3 \mathrm{~dB}$ bandwidth of 40 kHz , the sensitivity to variations in gain should be no greater than 9.
First, the required value of Q is,

$\mathrm{Q}-\mathrm{f}_{0} / B W=1 \mathrm{MHz} / 40 \mathrm{kHz}=25$.

Simultaneously solving the equations for Q and $S_{\mathrm{KI}} \mathrm{Q}$ gives $K_{1}=3.556357$ and $K_{2}=-17.01347$. The corresponding centre frequency for this prototype is then $f_{0}=0.287996$. This centre frequency needs to be scaled to 1 MHz . Arbitrarily choosing a value of $1 \mathrm{k} \Omega$ for the resistors gives a final value of $C=115.3 \mathrm{pF}$. The required K_{1} gain can be realised using a 499Ω resistor for the feedback and a 196Ω resistor for R_{1}.
Gain, K_{2} is a different situation because the feedforward resistor of the second amplifier is the load resistance of the first amplifier. As a result, the feedforward resistor value needs to stay reasonably large. If you limit the second feedforward resistance to 50Ω, the second stage feedback resistor will be 866Ω and R_{2} will equal 51.1Ω.
The dynamic range of high-frequency, moderately priced spectrum analysers is often less than 80 dB . However, you can effectively increase the measurement range by suppressing the fundamental frequency of the input signal by a known amount without affecting the rest of the frequency spectrum. This application doesn't require a high-order, band-reject filter a low order high Q notch filter will work well.
The classic twin-T network, Fig. 3a is a promising candidate for the job. The transfer function of this network is,

$$
T(\mathrm{~s})=s^{2}+\omega_{0}^{2} / s^{2}+4 \omega_{0} s+\omega_{0}^{2}
$$

This circuit has two drawbacks - it is somewhat sensitive to passive component toler-
ances, and it has an intrinsic Q value of 0.25 . The first drawback creates no problem but the second drawback must be overcome. You can substantially increase circuit Q value by adding a second amplifier to the network ${ }^{3}$.
The new transfer function is now,

$$
\mathrm{T}(\mathrm{~s})=s^{2}+\omega_{0}^{2} / s^{2}+4 \omega_{0}(1-K) s+\omega_{0}^{2}
$$

and the Q value is now a function of K,
$\mathrm{Q}=1 / 4(1-K)$.
As K approaches 1 from below, Q increases in an unlimited fashion. If K is greater than 1 , however, the circuit is unstable. Although wide bandwidth at high gain is not as important here as it was in example Fig. 2, the comparatively lower transit time of a current-feedback amplifier should yield superior performance in this application.
A specific example will prove the point. The task is to design a 1.5 MHz notch filter that has a -3 dB bandwidth of 225 kHz . The first step is to calculate Q using the expression,

$$
\mathrm{Q}=f_{0} / B W_{-3 \mathrm{~dB}}=1.5 \mathrm{MHz} / 225 \mathrm{kHz}=6.66 .
$$

You can use this value to calculate,
$K=1-(1 / 4 \mathrm{Q})=0.9625$.
If R_{1} is set equal to $1 \mathrm{k} \Omega$ then,
$C=1 / 2 \pi f_{0} R_{1}$.
If you let R_{2} also equal $1 \mathrm{k} \Omega$ then $(1-K) R_{2}=37.5$ and $K R_{2}=962.5$. Figure 3b shows the final notch filter design. Both amplifiers are configured as unity gain buffers, and the feedback resistance is set at 499Ω. The actual response, Fig. 3c shows a slight excess attenuation beyond the notch frequency, but the performance is still good.

Making the case for current feedback Don't get the idea that something is inherently wrong with voltage feedback, even at high speed. In fact, voltage-feedback amplifiers generally have a lower noise-floor specification than current feedback amplifiers. However, when comparing voltage and current feedback amplifiers, you must take the application into consideration. Current feedback, or transimpedance, amplifiers have some distinct performance advantages as waveform speed gets higher and higher. These advantages can translate into higher-performance active filters.

The most striking difference between voltage feedback and transimpedance op-amps is that with a fixed feedback resistor, the current feedback amplifier has very low gain bandwidth tradeoff. Transimpedance amplifiers maintain bandwidth at high gain settings - an advantage in active filter topologies because a large gain is needed to minimise sensitivity.
In addition, transimpedance amplifiers have very high slew rates compared with those of conventional voltage op-amps. A typical slew rate for a video-speed voltage feedback amplifier is in the 200 to $300 \mathrm{~V} / \mu \mathrm{s}$ range. A comparable current feedback amplifier might slew as fast as $2500 \mathrm{~V} / \mathrm{s}$. This slew-rate disparity is easy to explain. In a conventional amplifier, the slew rate is the ratio of the bias current flowing through the slewing node to the capacitance that can be referred back to that node.
In a transimpedance amplifier, the feedback current mirrors and adds to the bias current flowing through the slew-rate limiting node. Because more current is available to charge the capacitance, the slew rate increases. The feedback current is proportional to VOUT, which is proportional to $V^{\text {IN }}$. So the harder you drive a current feedback amplifier, the faster it slews. In practice, this effectively eliminates slew rate as a limiting factor in high speed, active filter design.

Fig. 3. When you need a high-Q notch filter, the classic twin-T network (a) is a good starting point. By adding a second amplifier (b), you can substantially raise circuit Q. The actual response of the filter (c) shows a slight excess attenuation beyond the notch frequency
(a)

(b)

0.1% (10 bits) or 0.02% (12 bits) in as little as 15 ns , the settling time to 0.01% can be relatively long. The same current flow that increases the slew rate of a transimpedance amplifier also upsets the amplifier's bias point slightly, and a finite amount of time is required for the bias point to return to equilibrium. This effect is small, but it can often extend the 0.01% settling time to several microseconds.

References

1. Kerwin, W J, 'An Active RC Elliptic Function Filter', IEEE Region Six Conference Record, Volume 2, April 1966, p647.
2. Kerwin, W J, Linear Active Circuit Design, Part 4, Course Notes for ECE-553, University of Arizona, Spring 1987, p. 51.
3. Williams, Arthur B, Electronic Meter Design Handbook, McGraw-Hill, New York, 1981, p6.

[^0]

Multi-Device Programmer

- EPROMs, E²PROMs, Flash EPROMs, Serial E2PROMs, PLDs, GALs, PEELs, EPLDs, MACH \& \& WSI PSDs Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.
$£ 325$

ing Solutions

Universal Programmer

- Uses standard pc printer port works with notebook and handbook pc's
- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc...
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

EPROMs, E2PROMs, Flash and $8748 / 51$ micros.

```
EMULATORS - SIMULATORS - COMPILERS • ASSEMBLERS
PROGRAMMERS • 8051 8085 Z8 68020 77C82 80C552
320C25 68HC11 6301 6502 87C751 65816 Z80 6809
    PIC }7720\mathrm{ MIPS etc.
```

MART
COMMUNICATIONS

2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England
Telephone $+44(0) 1814413890$ Fax $+44(0) 1814411843$
CIRCIE NO. 130 ON REPIY CARD

KESTREL ELECTRONIC COMPONENTS LTD

\& All items guaranteed to manufacturers' spec. $\dot{\sim}$ Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.00	1.45	628128LP-80	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.00	2.20
27C256-15	2.20	1.65	6264LP-10	2.10	1.40
27C512-15	2.20	1.65	MM58274CN	4.90	3.75
27C010-15	4.00	2.20	ULN2003A	0.43	0.25
27C020-15	6.00	3.99	LM555	0.30	0.18
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.65	7406	0.35	0.23
80C32	3.00	2.40	7407	0.35	0.23
80C85ARS	2.90	2.30	74HCT244	0.35	0.27
82C55-5	3.25	2.70	74HCT245	0.35	0.27
D8748H	4.30	3.35	74HCT373	0.35	0.26
D8749H	4.40	3.45	74HCT374	0.32	0.26

74LS, 74HC, 74HCT Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road, Purley, Surrey CR8 4HA Tel: 081-668 7522. Fax: 081-668 4190.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warrantv. 10 day money back guarantee.

MQP ELECTRONICS LId. Park Road Centre
Malmesbury, Wiltshire SN16 OBX, UK
TEL. 016666825146 FAX. 01666825141 CIRCIE NO. 132 ON REPIY CARD

ASK FOR FREE INFORMATION PACK

IRELAND 1-2800395 GERMANY 089/4602071 NORWAY 0702-17890 $\begin{array}{ll}\text { ITALY } & 0292103554 \\ \text { FRANCE } & 169301379\end{array}$ | FRANCE $\quad 169301379$ |
| :--- |
| SWEDEN |
| 859032185 | SWEDEN 0859032185 Also from ELECTROSPEED UK

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Power supply preregulator with no moving parts

Using no relays, this circuit switches the ac input to a series of full-wave bridge rectifiers, providing smoothed and regulated dc output.
At switch-on, the op-amp outputs are both high and $S C R_{1,2}$ fire altemately to form a fullwave bridge driven from the 42.5 V transformer tap. When $V_{\text {out }}$ increases above about 48 V , $\mathrm{IC}_{1 \mathrm{~b}}$ output goes low, allowing $S C R_{3,4}$ to fire altemately, the 85 V tap now driving the bridge. Similarly, as $V_{\text {out }}$ reaches 96 V , both op-amp outputs are low and $\mathrm{SCR}_{5,6}$ fire to form a bridge driven by the 127.5 V tap. Optocouplers MOC3041 enable zero crossing triggering of the scrs.
If the output is short-circuited, only $S C R_{1,2}$ fire to minimise dissipation.
Gregory Freeman
Nairne
South Australia

Series of scr bridges replaces relays on a tapped transformer secondary.

Polarity-dependent switch

Depending on the polarity of the input voltage, this low-loss mosfet connects or disconnects the supply to the load; it is used as a polarity discriminator or simply as a self-synchronising switch.
With a positive input, the parasitic diode across the mosfet conducts, the positive feedback causing the mosfet to saturate to an $R_{\mathrm{ds}\left(\mathrm{on}^{\prime}\right)}$ of $30 \mathrm{~m} \Omega$. When the input is negative, no current flows and V_{gs} remains at zero, the input voltage possibly reaching the mosfet rated breakdown, in the case of the MTP50P03HDL 30 V .
Do not allow the positive excursion of input voltage to exceed the 10 V gate/source voltage of the mosfet.

Kristen Ellegard

Oslo, Norway

YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $\mathbf{\Sigma 1 0 0}$ monthly star author's fee, together with $£ 25$ for all other Ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Testing sampling rate

For correct sampling of a sinusoid,
F samples must be taken at least twice per cycle - the Nyquist rate. This circuit gives a positive indication as to whether this is taking place.
Transistor Tr_{1} behaves as an emitter follower when $T r_{2}$ is off and as a diode when $T r_{2}$ is on, it being controlled by V_{s} in Fig. 2c, itself derived from the sampling voltage.
When a sampling pulse arrives during a negative half-cycle, $T r_{2}$ is off and $V_{\text {in }}$ appears at V_{p}, which is shown in Fig. 2d for a correctly sampled wave and at Fig. $2 e$ for an incorrect one.
Voltage V_{p} goes to comparators $O A_{1,2}$,
$D_{1,2}$ clamping the negative outputs to ground; $O A_{1}$ output is high during positive half-cycles, but OA_{2} goes high only when a negative-going pulse appears. Bistable
device $F F_{1}$ is reset at the start of each halfcycle and set at the first negative pulse. Bistable $F F_{2}$ is set by $O A_{3,4}$ at the start of negative half-cycles.
Since $F F_{2}$ depends for its reset pulse on the setting of $F F_{1}$, which itself is set by the appearance of a negative pulse, Q_{2} will remain high and $V_{\text {out }}$ low if the pulse does not arrive, indicating that incorrect sampling is taking place.
If sampling rate equals input frequency exactly, the circuit fails since the negative half-cycle may be sampled each time. K N Sunil Kumar
Visakhapatnam
India
If sampling rate of a sinusoid is below Nyquist rate $\left(2 f_{i n}\right)$, this arrangement, below and right, provides a constant low at the output.

Noise source from an optocoupler

Output from this photoelectric noise source is typically $12 \mu \mathrm{~V}$, which is about 28 dB above thermal noise; some samples of $4 N 26$ opto-isolators give a much greater output. Noise output was measured over a 10 kHz bandwidth, in which $1 / f$ or flicker noise is likely to be large.
Connected as shown, the led controls the transistor working point accurately. Output impedance is $1 /\left(20 I_{\mathrm{c}}\right.$) or about $1.4 \mathrm{k} \Omega$ in this
case and the output can be matched to loads of $50-600 \Omega$ or more. Grounding pin 3 reduces hum pickup.
W Gray
Farnborough
Hampshire
Noise source, after Hickman (EW+WW, November 1993) uses opto-isolator which also controls transistor working point.

High-speed buffer features low input-capacitance

$A \mathrm{n}$ input capacitance of 1.2 pF or 2.7 pF , depending on devices, and a bandwidth of 50 MHz with 10 mV offset come from the use of a bootstrapped fet input buffer, as described by Horowitz and Hill*.
Both the OPA620 or the EL2070 op-
amps have been tried as bootstrap driver,
with no discernible difference in performance, although the EL2070 is a current-feedback type and needs at least 220Ω in the feedback path to ensure stability. Since the OPA620 is a voltagefeedback op-amp, the feedback resistor could be shorted.
Output impedance is 50Ω in the circuit
shown, but the $R C$ output circuit could be dispensed with to avoid the 6 dB loss in gain due to the resistor and to obtain a dc response; at dc, resistor R_{4} should be adjustable to maintain a reasonable input offset. No output snubbing is needed to stop oscillation with a reactive load if load impedance is $50-200 \Omega$ and resistive, otherwise the resistance should be over 20Ω.
Both $U 402$ and $U 440$ dual fets work well in the circuit. Using the U402, bandwidth is more than 50 MHz and input capacitance with R_{G} at $10 \mathrm{k} \Omega$ is 2.7 pF . The $U 440$ gave an input C of 1.3 pF , but with a greater input offset.
Phil Denniss
University of Sydney
NSW
Australia

Reference

Horowitz and Hill. The Art of Electronics, second edition, p. 135.

Bootstrapped fet input and a fast op-amp give a 50 MHz bandwidth, very low input capacitance and low input offset.

Due to the high speeds involved, the pcb for the buffer needs careful layout. These patterns are approximately 1:1.

Safe NiCd battery-pack discharger

$\mathrm{A}_{\text {need regular charge/discharge cycles }}^{\text {lthoug nicel }}$ the discharge must be limited to avoid reverse charging of weak or partially discharged cells in the pack. This circuit limits the discharge of an eight-cell pack to a 1 V terminal voltage per cell.
Connecting the battery takes pin 6 to the 5.6 V zener voltage, the transistor conducts and the led indicates discharge. When battery voltage reaches $1.5 V_{\mathrm{ZDI}}, \mathrm{pin} 3$ goes low, the transistor turns off and battery discharge stops: the led turns off.
To take any number of cells up to a maximum of 12 , the zener voltage should be $2 / 3$ the final terminal voltage and zener current adjusted by R_{2} to 0.5 A .

Bill Hume

Newmilns
Ayrshire

NiCd battery-pack discharger, for up to 12 cells, limits discharge to avoid damage to less than perfect cells.

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$. Detailed on page 139 of the February 1994 issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion of 0.0015% at 50 W and follows a new design methodology.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.
Each board pair costs £45, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 0181-652 3614. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS.

Please mention Electronics World + Wireless World when seeking further information.
 worst-case conditions. It also meets the one condition imposed on line current by the phone system: off-hook current must exceed 20 mA to ensure activation of a networkaccess relay in the central office.

5 V isolated supply

Diode D_{1} provides approximately 6.8 V to the center tap of T_{1} and 5 V to the Vcc terminal of $I C_{1}$. A 400 kHz oscillator driving a flip-flop, inside $I C_{1}$, generates two push-pull, 50% duty-cycle, 200 kHz square waves that drive internal, ground-referenced switches. , in turn, these connect to the primary of $T 1$. Isolated power on the secondary side is first rectified by schottky diodes, $D 2$ and $D 3$, and then regulated to 5 V by the low-dropout linear regulator $I C_{2}$.

Transformer, T_{1} has a center-tapped winding whose $E T$ product (a voltage-time product of $25 \mathrm{~V} \mu \mathrm{~s}$) is sufficient to prevent saturation under worst-case conditions. Similarly, the turns ratio should provide the minimum-required output voltage for maximum load and minimum input voltage. This calculation must assume worst-case losses in D_{2} and D_{3}. This turns ratio produces a much higher secondary voltage for best-case conditions and, for some applications, that is acceptable. Otherwise, add the linear regulator, $I C_{2}$, as shown.

For isolated 5 V outputs, the ideal turns ratio is $1.2 \mathrm{ct}: 1.0 \mathrm{ct}$ (ct is center tapped). The transformer should be wound on Magnetics Incorporated 'W', Fair-Rite " 76 " or other high-permeability magnetic material. To minimize radiated noise, choose a pot core,

E/I/U type core, toroid, or other geometry with closed magnetic paths.

Consider a typical toroid such as the 40603-TC from Magnetics, Inc. (0.125" thick with a $0.230^{\prime \prime}$ outside diameter). For 6.8 V inputs this core should have a 48 turn primary (24 turns on either side of the centre tap), which yields a nominal, end-to-end primary inductance of 8 mH . The secondary can be scaled for any reasonable output voltage required. Forty turns, for example, (20 either side of the centre tap) delivers 5.2 V minimum as required by the linear

In-circuit programmer from LPT1

With the capability of programming a PIC16C84 microcontroller without removing the device from the target circuit, this low-cost serial programmer is controlled using a pc parallel port. Microchip's application note AN589 describes a circuit which can also read back internal PIC data. This feature is very useful where changes in program code or constants are necessary to compensate for other system features.
For example, an embedded control system may have to compensate for variances in a mechanical actuator performance or loading. The basic program can be programmed and tested in design. The final program and control constants can be easily added later in the production phase without removing the microcontroller from the circuit.
Automatic software and performance upgrades can also be implemented via insystem programming. Upon receiving new
system software via disk or modem, a control processor with the included programming code could perform an in circuit reprogramming of other microcontrollers in the system.
This programmer can load program code, part configuration, and eeprom data into the PIC16C84. In read back mode, it can verify all data entries.

Parallel interface

The PIC16C84 microcontroller is put into programming mode by forcing a logic low level on $R B_{7}$, pin 13 and $R B_{6}$, pin 12. Pin 4, Line $M C L R$, is first brought low to reset the device and then brought to the program/verify voltage of 12 V to 14 V , where it remains for the rest of the programming or verification time. After entering programming mode, $R B_{7}$ is used to serially enter programming modes and data
into the device. A high-to-low transition on $R B_{6}$, the clock input, qualifies each bit of the data applied on $R B_{7}$. The first six bits form the command field and the last 16 bits form the data field. The latter is composed of one zero starting bit, 14 data bits, and one zero stop bit. The incremental address command is the command field only.
The read mode is similar to programming mode except that the data direction of $R B_{7}$ is reversed after the six bit command to allow the requested data to be returned to the programmer. After the read command is issued, the programmer tri-states its buffer to allow the device to serially shift its internal data back to the programmer.
The rising edge of clock input $R B_{6}$ controls data flow by sequentially shifting previously programmed data bits from the part. The programmer qualifies this data on the falling edge of $R B_{6}$. Note that 16 clock cycles are needed to shift out 14 data bits.
Accidental in-circuit reprogramming is prevented during normal operation by the $M C L R$ voltage which should never exceed the maximum circuit supply voltage of 6 Vdc and the logic levels of port bits $R B_{7,8}$. After programming or verification, the $M C L R$ pin is brought low to reset the target microcontroller and electrically release it. The target circuit is then free to activate the MCLR signal.
If $M C L R$ is not forced by the target circuit, a $2 \mathrm{k} \Omega$ pull up resistor in the programmer, R_{4}, provides a high logic level on the target microcontroller. This enables execution of its program, independent of the programmer connection. Provision should be made to prevent the target circuit from resetting the target microcontroller with MCLR or affecting $R B_{6}$ and $R B_{6}$ during the programming process. In most cases this can be done without jumpers.
A logic high on parallel interface latch bit, D_{4}, turns on Q_{3} causing $M C L R$ to go low and place the target device in reset mode.

The PIC16C84 can be programmed with the aid of a single tri-state buffer ic, a regulator and a handful of discrete components without removing it from circuit.

Reset is then removed and the program or verify voltage is applied by a logic high on D_{3} and a logic low on D_{4}. This turns off Q_{3} and turns on Q_{2} and Q_{1}. Simultaneous reset and program mode is prevented by connecting the emitter of Q_{2} to latch bit D_{4}. Data and clock are connected to the device via a tri-state buffer U_{2}. Pc parallel port interface bit D_{0} is used for data and port bit, D_{1} is used for clocking.
During programmng mode both clock and data buffers are enabled by port bits D_{2} and D_{5}. During read mode, the data buffer is tristate activated via D_{2} and the data

APPLICATIONS

}

```
```

```
#define PROGRAM_MODE
```

```
#define PROGRAM_MODE
                65 // initialize program mode
                65 // initialize program mode
#define RUN
#define RUN
66
66
#define RUN
#define RUN
#define PROGMR_ERROR
#define PROGMR_ERROR
-2
-2
#define PTR 0
#define PTR 0
int ser_ picl6c84(int cmd, int data)
int ser_ picl6c84(int cmd, int data)
    i
    i
        int i, s_cmd;
        int i, s_cmd;
        if(cmd <=MAX_PIC_CMD)
        if(cmd <=MAX_PIC_CMD)
        {
        {
        biosprint (0, 8, PTR);
        biosprint (0, 8, PTR);
            s_cmd = cmd;
            s_cmd = cmd;
            for (i=0;i<6;i++)
            for (i=0;i<6;i++)
            {
            {
            biosprint (0, (s_cmd&0x1) +2+8, PTR);
            biosprint (0, (s_cmd&0x1) +2+8, PTR);
            biosprint(0, (s_cmd&0xl) +8,PTR);
            biosprint(0, (s_cmd&0xl) +8,PTR);
            s_cmd >>=1;
            s_cmd >>=1;
            }
            }
        if ((cmd ==INC_ADDR)|(cmd ==PARALLEL_MODE)
        if ((cmd ==INC_ADDR)|(cmd ==PARALLEL_MODE)
            return 0;
            return 0;
            else if (cmd ==BEGIN_PROG)
            else if (cmd ==BEGIN_PROG)
            |
            |
            delay(10);
            delay(10);
            return 0;
            return 0;
            }
            }
        else if((cmd ==LOAD_DATA)|(cmd ==LOAD_DATA_DM)|(cmd ==LOAD_CONFIG)) // output 14 bits of data
        else if((cmd ==LOAD_DATA)|(cmd ==LOAD_DATA_DM)|(cmd ==LOAD_CONFIG)) // output 14 bits of data
            {
            {
            for (i=200;i;i-) // delay beteen command & data
```

```
            for (i=200;i;i-) // delay beteen command & data
```

```


```

```
        biosprint(0, 2+8, PTR); 8,PTR); }\quad1/\mathrm{ set bits 001010, clock hi; leading bit
```

```
        biosprint(0, 2+8, PTR); 8,PTR); }\quad1/\mathrm{ set bits 001010, clock hi; leading bit
            for (i=0;i<14;i++) ;
            for (i=0;i<14;i++) ;
            {
            {
            biosprint(0, (data&0xl) +2+8,PTR);
            biosprint(0, (data&0xl) +2+8,PTR);
            biosprint(0, (data&0xl) +8,PTR);
            biosprint(0, (data&0xl) +8,PTR);
            data >>=1;
            data >>=1;
            }
            }
            biosprint(0,2+8,PTR);
            biosprint(0,2+8,PTR);
        biosprint(0, 8,PTR);
        biosprint(0, 8,PTR);
        return 0;
        return 0;
        }
        }
        else if((cmd ==READ_DATA)|(cmd ==READ_DATA_DM))
        else if((cmd ==READ_DATA)|(cmd ==READ_DATA_DM))
        f
        f
            biosprint (0,4+8,PTR); // set bits 001100, clock low, tri state data buffer
            biosprint (0,4+8,PTR); // set bits 001100, clock low, tri state data buffer
            for (i=200;i;i-);
            for (i=200;i;i-);
                {}\mathrm{ biosprint (0, 2+4+8, PTR);
                {}\mathrm{ biosprint (0, 2+4+8, PTR);
                {
                {
            biosprint (0, 2+4+8, PTR);
            biosprint (0, 2+4+8, PTR);
            data =0;
            data =0;
                for (i=0;i<14;i++)
                for (i=0;i<14;i++)
                {
                {
            data >>=1; // shift data for next input bit
            data >>=1; // shift data for next input bit
                biosprint (0, 2+4+8,PTR);
                biosprint (0, 2+4+8,PTR);
                biosprint (0, 2+4+8, PTR);
                biosprint (0, 2+4+8, PTR);
                            // set bits 001110, clock hi
                            // set bits 001110, clock hi
                biosprint(0, 4+8,PTR); // set bits 001100, clock low
                biosprint(0, 4+8,PTR); // set bits 001100, clock low
                if(!(biosprint (2,0,0)&0x40)) data += 0x2000;
                if(!(biosprint (2,0,0)&0x40)) data += 0x2000;
            }
            }
        biosprint (0, 2+4+8, PTR);
        biosprint (0, 2+4+8, PTR);
        biosprint(0, 4+8,PTR);
        biosprint(0, 4+8,PTR);
        return data;
        return data;
        }
        }
        else return PIC_PROG_EROR;
        else return PIC_PROG_EROR;
    }
    }
    else if(cmd == RESET)
    else if(cmd == RESET)
        {
        {
        biosprint (0,32+16+4,PTR);
        biosprint (0,32+16+4,PTR);
        delay(1);
        delay(1);
        biosprint(0,32 +4,PTR);
        biosprint(0,32 +4,PTR);
        return 0;
        return 0;
    }
    }
    else if (cmd ==PROGRAM_MODE)
    else if (cmd ==PROGRAM_MODE)
        {
        {
        biosprint (0,32+16+4,PTR);
        biosprint (0,32+16+4,PTR);
        delay(10);
        delay(10);
        biosprint(0,8,PTR);
        biosprint(0,8,PTR);
        delay(10);
        delay(10);
        return 0;
        return 0;
        }
        }
    else if (cmd == RUN)
    else if (cmd == RUN)
    |
    |
    biosprint(0, 32+4,PTR);
    biosprint(0, 32+4,PTR);
    return 0;
    return 0;
    }
    }
    else return PROGMR_ERROR;
    else return PROGMR_ERROR;
```

-1

```
-1
        biosprint(0, 2+8, PTR); 8,PTR); }\quad1/\mathrm{ set bits 001010, clock hi; leading bit
        biosprint(0, 2+8, PTR); 8,PTR); }\quad1/\mathrm{ set bits 001010, clock hi; leading bit
                                    // 14 data bits lsb first
                                    // 14 data bits lsb first
    // set bits 001010, clock hi
    // set bits 001010, clock hi
    // set bits 001000, clock low
    // set bits 001000, clock low
                                    // set bit s001010, clock hi; trailing bit
                                    // set bit s001010, clock hi; trailing bit
    // set bits 001000, clock low
    // set bits 001000, clock low
                                    // read 14 bits from part, lsb first
                                    // read 14 bits from part, lsb first
                // delay between command & data
                // delay between command & data
                                // set bits 001110, clock hi, leading bit
                                // set bits 001110, clock hi, leading bit
                                    // set bit 001100, clock low
                                    // set bit 001100, clock low
                                    // input }14\mathrm{ bits of data, lsb first
                                    // input }14\mathrm{ bits of data, lsb first
                                    // use ack line for input, data lsb first
                                    // use ack line for input, data lsb first
                                    // set bits 001110, clock hi,trailing bit
                                    // set bits 001110, clock hi,trailing bit
                                    // set bits 001110, clock hi,trailing bit
                                    // set bits 001110, clock hi,trailing bit
                // programmer error
                // programmer error
// reset device
// reset device
// set bits 110100, MCLR=low (reset PIC, programmer disconnected)
// set bits 110100, MCLR=low (reset PIC, programmer disconnected)
// 1ms delay
// 1ms delay
|ms delay
|ms delay
        // use device #0
        // use device #0
    // electricaliy disconnect programmer
    // electricaliy disconnect programmer
#derine PIC_PROG_EROR
#derine PIC_PROG_EROR
1
1
    // custom interface for pic 16c84
    // custom interface for pic 16c84
    // all programming modes
    // all programming modes
    // set bits 001000, output mode, clock & data low
    // set bits 001000, output mode, clock & data low
// retain command "cmd"
// retain command "cmd"
// output 6 bits of command
// output 6 bits of command
    // set bits 001010. clock hi
    // set bits 001010. clock hi
    // set bits 001000, clock low
    // set bits 001000, clock low
    // command only, no data cycle
    // program command only, no data cycle
    // program command only, no data cycle
    // 10ms PIC programming time
    // 10ms PIC programming time
                        ,PTR);
                        ,PTR);
            data >>=1;
            data >>=1;
            l urn data;
            l urn data;
// set bits 100100, MCLR=high
// set bits 100100, MCLR=high
// enter program mode
// enter program mode
// set bits 110100, Vpp off, MCLR= low (reset PIC16C84)
// set bits 110100, Vpp off, MCLR= low (reset PIC16C84)
// 10ms allowing programming voltage to stabilise
// 10ms allowing programming voltage to stabilise
// set bits 001000, Vpp on, MCLR=13.5V, clock and data connected
// set bits 001000, Vpp on, MCLR=13.5V, clock and data connected
// 10ms allowing programming voltage to stabilise
// 10ms allowing programming voltage to stabilise
// disconnects programmer from device
// disconnects programmer from device
// set bits }10010
// set bits }10010
// command error
```

// command error

```

\title{
The power to take BIG applications on board!
}


\section*{The NEW CMS Mini-Module}

\section*{A UNIQUE LOW COST HIGHLY DEVELOPED MODULE}

The Mini-Module is a small 100 x 118 mm all CMOS microcontroller containing a 32 bit microprocessor, 32 digital I/O, 4 analogue in, 1 analogue out, direct output to LCD displays, keyboard input, serial port, \(I^{2} \mathrm{C}\) port, 512 k EPROM space, 128 K SRAM, RTC, Timers, plus much more. The board, on its own, or in combination with other peripheral cards, is capable of outstanding performance.

The programming environment is very simple to use. When connected to an IBM PC, programs can be written from
most word processors and can be down loaded into the module. The module will compile the program into very fast executable code.
- procram in C, C++ OR MODULA-2.
- CHOICE OF OPERATING SYSTEMS OS9 68K OR MINOS.
- IDEAL FOR ONE OFF APPLICATIONS
- EASY TO USE, VERY FAST DEVELOPMENT.
The Mini-Module provides the complete solution to many applications and can be customised or expanded to suit your needs.
 Systems Limited
Unit 17-18, Zone 'D', Chelmsford Road Ind. Est., Great Dunmow, Essex, UK. CM6 1XG Phone 01371875644 Fax 01371876077

\section*{Electronic Designs Right First Time?}

NEW!- FILTECH Professional Active and Passive Filter Design


> Only £245!

Visa, Delta, Switch, MasterCard and American Express welcome

Affordable Electronics CAD
\begin{tabular}{|c|c|}
\hline LAYAN: Electromagnetic Layout Simulator. Links to EASY-PC Pro' XM and ANALYSER III Pro'. & £495.00 \\
\hline EASY- PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR. & From £195.00 \\
\hline PULSAR: Digital Circuit Simulator & From \(£ 98.00\) \\
\hline ANALYSER III: Linear Analogue Circuit Simulator & From \(£ 98.00\) \\
\hline Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers & £245.00 \\
\hline FILTECH: Active and Passive Filter design & £145.00 \\
\hline FILTECH Professional: Enhanced Filter Design Program including Elliptic Filters (up to 12th order) & £245.00 \\
\hline EASY- PC: Entry level PCB and Schematic CAD & \(\underline{188.00}\) \\
\hline \multicolumn{2}{|l|}{Technical Support FREE forlife! Prices exclude P\&P and VAT.} \\
\hline \multicolumn{2}{|l|}{Special discount schemes for education} \\
\hline
\end{tabular}

Number One Systems Ltd.
Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
For Full Information Please Write, Phone or Fax. Tel: +44 (0) 1480461778
Fax: +44(0) 1480494042


\section*{RADIO}

ENGIEER'S


\section*{Radio Engineer's Pocket Book}
by John Davies, 240 pp , hardback Order - ISBN 0750617381 Price \(£ 12.99\)

Contains: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; piezo-electric devices; bandwidth requirements and modulation; frequency planning; radio equipment; Microwave comms; information privacy and encryption; multiplexing; speech digitisation and synthesis; vhf and uhf mobile communication; signalling; channel occupancy, trunking; mobile systems base station management; instruments; batteries; satellite comms; connectors and interfaces; broadcasting; abbreviations and symbols; tables and data; glossary.

Covers all aspects of radio and communications engineering from very low frequencies to microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods, connectors and interfaces, are all included in this book.

\section*{Audio Recording and Reproduction}

Michael Talbot-Smith, 204pp, paperback
Order - 0750619171
Price \(£ 12.99\)
Contains: Physics of sound waves; hearing; basic acoustics; microphones; loudspeakers; public address; stereo; simple mixing equipment; recorders; introduction to digital audio; music and sound effects; miscellaneous data.

This book gives a simple and straightforward approach to audio techniques, detalling technlcal and practical information for those with no specific training in the subject.

\section*{Circuit Designer's Companion}
by T Williams, 320pp, paperback Order - 075061756 X
Price \(\mathbf{E 1 5 . 9 9}\)
Contains: grounding and wiring; printed circuits; passive components; active components; linear integrated circuits; digital circuits; power supplies; electromagnetic compatibility.

Valued by linear and digital deslgners allike, this guide explains and outlines solutions that take into account the imperfect behaviour of real components, interconnections and circuits.

\section*{Servicing Personal Computers}
by Michael Tooley, 304pp, hardback Order - ISBN 0750617578 Price \(£ 25.00\)

Contains: Microcomputer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM PC compatibles and 68000 -based computers.

This completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also includes a guide to developments and trends such as the new generation of diagnostic software code included - and applications such as serial communication, and memory and hard disk management.


\section*{Newnes Audio and Hi-Fi Handbook}
by lan Sinclair, 656pp, hardback Order - ISBN 075060932 X Price \(£ 40.00\)

Contains: Sound waves and acoustics; studio acoustics; microphones; sound synthesis; introduction to digital principles; compact disc technology; other digital systems - DAT, NICAM, DCC, MD analogue tape recording; noise reduction systems; LP records; disc reproduction; tuners and radio receivers; preamps and inputs; voltage amplifiers/controls; loudspeakers and enclosures; Headphones; public address; in-car audio; interconnections; the future.

Covers a wide perspective of highquality sound reproduction, including reproduction under adverse circumstances, from less conventional sources and with regard to the whole technology from studio to ear.

\section*{TV \& Video Engineer's Reference Book}
by Boris Townsend, 876pp, paperback Order - ISBN 0750619538 Price \(£ 40.00\)

Contains: Materials; components and construction; colour tv fundamentals; broadcast transmission; distributing broadband; DBS; tv studios; moblle and portable equipment; tv sound; iv receivers; servicing tvs; video recorders; teletext etc; HDTV; other applications of tv; performance measurements.

Covers information on every aspect of modern broadcast technology. Of value to ail practicing engineers and managers involved with broadcast, cable and satellite services.

\section*{Masts, Antennas and Service Planning}
by Geoff Wiskin, 256pp, hardback Order - ISBN 0240513363 Price £49.50

Contains: Antennas; antenna support structures; service planning.

Covers all aspects of information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobileradio coverage, or designing, installing and maintaining antenna systems.

\section*{Operational Amplifiers}
by Jiri Dostal, 400pp, hardback Order - 0750693177 Price \(£ 40.00\)

Contents: The operational amplifier; basic concepts; operational amplifier parameters; operational amplifier properties; the operational circuit; the ideal operational circuit; analysis of the real operational circuit; static and dynamic errors in the frequency domain; dynamic errors in the time domain; input and output impedances;

offset; noise; stability; good laboratory practices.

Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits. Provides the reader with practical knowledge necessary to select and use operational amplifier devices.

\section*{Servicing Video Cassette Recorders}
by Steve Beeching, 250pp, hardback Order - ISBN 0750609354 Price £25.00

Contains: Vcr systems; azimuth ilit;.Frequency modulation; servo mechanisms; colour systems; systems control; long play; VHS-C \& camcorders; \(a-v\) sockets.

Written for students and people involved with ver servicing, this book is an invaluable guide and reference covering all aspects of modern vcrs. Contains new material on basic magnetic theory to C\&G 224

\section*{Principles of Transistor Circuits}
by S W Amos, 384pp
paperback
Order - 0750619996
Price £17.99
Contains: Semiconductors and junction diodes; basic principles of transistors; common-base and common-gate amplifiers; commonemitter and common-source amplifiers; common-collector and common-drain amplifiers; bias and dc stabilisation; small-signal a amplifiers; large-signal af amplifiers; dc and pulse amplifiers; if and if amplifiers; sinusoidal oscillators; modulators, demodulators, mixers and receivers; pulse generators; sawtooth generators; digital circuits; further applications of transistors and other semiconductor devices.

This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switchmode power supplies.

\section*{Logic Designer's Handbook}
by Andrew Parr, 488pp, paperback Order - 0.750605359 Price \(£ 30.00\)

Contains: Simplified data on a comparative basis of ttl and cmos ics; storage devices; logic circuits; timers; counters; drivers; interface circuits; logic gates; definitions of ic characteristics; event driven logic; communicatlon and highways; analogue interfacing; practical considerations; summaries by function of all relevant circuits; individual pin-out diagrams.

Easy-to-read, but nonetheless thorough, this book on digital circuits is for use by students and engineers, and is a readily accessible source of data on devices in the ttl and cmos families.

\section*{The Art of Digital Audio}

John Watkinson, 490pp, hardback Order - 0240513207
Price \(£ 49.50\)
Contalns: Why digital?; conversion; AES/EBU; digital audio coding and processing; digital compact cassette (DCC); advanced digital audio processing; digital audio Interconnects; digital recording and channel coding; error correction; rotary head recorders; stationary head recorders; NAGRA and data reduction; Digital Audio Broadcasting (DAB); the compact disc/mini disc.

New edition, completely updated to include all the latest developments, including DCC, the mini disC and digital audio broadcasting.

\section*{Microphone}

\section*{Engineering}

Handbook
by Michael Gayford, 384pp, hardback
Order - 0750611995 Price \(£ 65.00\)

Contains: Microphone techniques; precision microphones; optical microphones; high quality it microphones and systems; radio microphones and ir systems; microphone testing; ribbon microphones; microphone preamplifiers; stereo microphanes; microphone standards.

Comprehensive and authorltative book for engineers, technicians, students and anyone else concerned with the design and use of microphones.

\section*{MIDI Systems and Control}
by Francis Rumsey, 256pp,
paperback
Order - 0240513703
Price 19.95
Contains: Introduction to principles and terminology; synchronisation and external machine control; common implementations; systems control sequences and operating systems; implementation of midi with peripheral devices; practical systems designs.

Second edition is updated and enlarged to take MIDI evolution into account. More examples of real implementations, more diagrams and the whole book has been rewritten to include a far greater practical element, to complement lts existing technical strengths. Several completely new sections and complete chapters have been added including a new opening chapter as an introduction to principles and terminology; MIDI timecode; librarians and editors.

\section*{Loudspeaker and} Headphone Handbook
by John Borwick, 224pp, hardback Order - 0240513711 Price \(£ 35.00\)

Contains: This book brings together in a single volume every aspect of loudspeaker and headphone theory and practice in sufficient depth to equip students and practitioners alike with a solid working knowledge of the subject. A comprehensive technical reference on the theory and practice of loudspeaker and headphone performance, design and operation.

\section*{The Art of Linear Electronics}
by John L Hood, 400pp, paperback Order - 0750608684
Price \(£ 16.99\)
Contalns: Electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semi-conductor components; dc and low frequency amplifiers; feedback negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generators; tuned circuits; high frequency amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio, instrumentation and television.

Servicing Audio and Hi-Fi Equipment
by Nick Beer, 304pp, hardback Order - 0750621176
Price £25.00
Contains: Introduction; tools and test equipment; radio receivers; amplifiers; power supply circuits; portable audio; cassette deck mechanics; cassette electronics; turntables; system control; motors and servo circuits; compact disc; mini disc; digital audio tape; digital compact cassette; speakers, headphones and microphones; repair, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines.

\section*{EMC for Product} Designers
by Tim Williams, 304pp, hardback Order - ISBN 0750612649 Price \(£ 25.00\)

Contalns: What is EMC? standards; EMC measurements; interference coupling mechanisms; circuits; layout and grounding; interfaces; filtering and shielding.
EMC FOR PRODUCT DESIGNERS



This book is likely to become essential reading for those designing electronic products for the European market,' according to New Electronics. Widely regarded as the standard text on EMC, providing all the information needed to meet requirements of the EMC Directive.

\section*{Build Your Own PC}
by lan Sinclair, 256pp, paperback Order - ISBN 0750620064 Price 16.95

Contains: Assembly from scratch mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-drive details; improvers and modifiers for graphics and i/o; DOS operation and hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their pc themselves.

\section*{Refurn to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS}

Please supply the following titles:
\begin{tabular}{l|l|l} 
Qry & Title or ISBN & Price \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Please add \(£ 2.50\) UK Postage, \(£ 5.00\) Europe \(£ 7.50\) Rest of World Total \(\qquad\) Card expiry date Signed

\section*{\(\left.\begin{array}{c}\text { Winning } \\ \text { designs }\end{array}\right]\)}

Three more winning power control circuits representing the best of many excellent entries submitted for the International Rectifier design competition, featured in the October 1994 issue.

\title{
Fourth prize \(-50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) inverter uses a single IC
}

A rugged and efficient square-wave Ainverter for use in automobiles and boats can be constructed around the IR2151 self-oscillating half-bridge driver. This inverter works on a 12 V automobile battery and provides an output of 200 W at 50 Hz or 60 Hz with a 220 V or 110 V output.

This inverter makes use of the following features of the IC.
- Complementary square waves at HO and LO outputs
- Frequency of square waves immune to supply voltage variations.
- Square waves with \(50 \%\) duty cycle.
- Under-voltage lockout.

Lockout in the event of low battery voltage is a very important feature. Without it, under low battery voltage conditions, the power mosfets would not conduct fully and would dissipate power. This in turn reduces inverter efficiency and could result in damage. When battery voltage falls below 8 V , both power mosfets are switched off.
Although the dead time of about \(I \mu \mathrm{~s}\) generated by the IC is sufficient to prevent the cross conduction of the mosfets, it is not sufficient to allow the transformer ringing signals to be dissipated in the appropriate snubber circuits. Fortunately, dead time can be increased to the desired value by adding a few inexpensive


\title{
The new schematic capture program
} Geswin (GESECA for Windows \({ }^{\text {TM }}\) ) adds more than a pretty face to SpiceAge. Upgrade for \(£ 100+\) VAT*
- Geswin DDE links with SpiceAge to provide instant circuit editing. Because this link enables SpiceAge to retain all its simulation settings, the schematic (produced by Geswin) is uncluttered so that you can create clean drawings that may be clipboarded into your other Windows applications.
- You can clipboard sections of your netlist from SpiceAge back into Geswin's attribute Inspector if
 you wish to use patches of existing circuits.
- Geswin has inherited GESECA's speed and ease of use. You will find it's best-loved "bucket of bits" components' store waiting for your instant use from a special self-replenishing window.
- The SpiceAge component library has been expanded and re-drawn into "stubbies". The new symbols allow more components to fit within a given screen area without compromising clarity.
- Multiple windows allow you to scratch pad your designs (simulating as you work) and clipboard them into a fair copy window.
- File compatible with GESECA: schematics and components from GESECA may be read.
- Comprehensive HELP provides reference material; tutorial style manual reassures you of your own intuition.
- Geswin automatically invokes (or switches to) SpiceAge; you can also invoke Geswin from SpiceAge.

Please contact Those Engineers Ltd, 31 Birkbeck Road,
LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969.
*upgrade price from GESECA; \(\mathbf{f} 295\) + VAT new




AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE
Postage and packing must be added. Please phone for price. VAT @ \(171 / 2 \%\) to be added to all orders. Please send large SAE for details.

\title{
Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978
}
components to the basic inverter circuit. Supply voltages \(V_{c c}\) and \(V_{\mathrm{B}}\), and hence the outputs HO and LO , are limited to 9.1 V by components \(R_{1}, C_{1}\) and \(D_{1}\). Oscillator frequency is set by components \(R_{2}\) and \(C_{2}\). When high side output HO goes high, transistor \(\operatorname{Tr}_{1}\) holds the gate of power mosfet \(\mathrm{Tr}_{3}\) low for a dead period of about \(300 \mu \mathrm{~s}\), determined by components \(R_{3}\) and \(C_{3}\).
Diode \(D_{2}\) discharges the gate capacitance
of \(\mathrm{Tr}_{3}\) instantaneously when the HO output goes low. Although the turn-on time of \(T r_{1}\) with this arrangement increases to about \(30 \mu \mathrm{~s}\), it is a very small part of the period of this inverter output.
Components \(\mathrm{Tr}_{2}, C_{4}, D_{5}, R_{4}, D_{4}\) and \(R_{8}\) provide an equal dead period to the low side output LO. Components \(R_{5}, C_{5}, D_{6}\) and \(R_{6}\), \(C_{6}, D_{7}\) provide the snubber action for \(\operatorname{Tr}_{1,2}\).
This circuit configuration is not just
limited to \(50 / 60 \mathrm{~Hz}\) inverter. High-frequency inverters with ferrite-core transformers, and having proper dead times, could form elements of electronic ignition systems and dc-to-dc converters.
By changing \(R_{1}\), the inverter can be powered by batteries of other voltages.
M. S. Nagaraj

ISRO Satellite Centre
Bangalore

\section*{Fifth prize}

\section*{Electroluminescent lamp driver for automobiles}

Th
his driver for electroluminescent displays incorporates all the features normally needed for automotive electronic circuits. Diode \(D_{1}\) serves as protection against reverse polarity. In the event of an overload on the output transformer, \(\operatorname{Tr}_{1}\)
robs \(\mathrm{V}_{c c}\) of voltage and disables the circuit. Capacitor \(C_{1}\) takes care of radio-frequency interference.
Values quoted for \(\mathrm{C}_{\mathrm{T}}\) and \(\mathrm{R}_{\mathrm{T}}\) cause astable operation at 400 Hz , which is suitable for this type of lamp. Over-voltage
protection is taken care of by the IR2151's internal zener diode.
Clyve I. Caines
Nairobi
Kenya


Generating the high voltage needed for an electroluminescent display is easy using the IR2151 and a pair of medium-power mosfets. This circuit, intended for the automotive environment, has additional features such as over-voltage, over-load and reverse-polarity protection.

R1 is \(5 \%\) carbon film, \(\mathrm{C}_{\mathrm{T}}\) is polyester, C 2 is \(1 \mu\) or more, items marked * are determined by the size of lamp used

\section*{Sixth prize}

\section*{1-to-3 phase converter}

Rotary speed of a three-phase motor depends on the frequency of the applied voltage. The motor is linked to the converter by six power transistors contained in a type MP6750 module from Toshiba, a third of which is shown bottom right in the diagram.
Inductance of the motor windings acts as an integrator that converts the pulses of varying widths into a sinusoidal signal
The converter is based on three IR2151 timer circuits. Each voltage supplied to the three pairs of power transistors is phase shifted by \(120^{\circ}\). This is done by reducing the timing capacitors of each IR2151 progressively by a third, i.e. \(C, 2 / 3 C, 1 / 3 C\).
Frequency of the timing circuit, and hence the speed of the motor, is set to a desired value by altering the resistance of three equal resistors, \(R\), only. This method of converting single-phase mains to three-phase can be used to control small three-phase motors up to approximately 700 W , irrespective of whether they are synchronous or asynchronous types.

\section*{Kamil Kraus}

Rokycany
Czech Republic

This 1-to-3-phase mains converter is suitable for driving small motors up to 700W, regardless of whether they are synchronous or asynchronous.



Typical connections for the IR2151 in self-oscillating mode show that the device needs few external components. Power for the high-side switch gate comes from a \(1 \mu F\) bootstrap capacitor. This is charged to around 14 V whenever \(V_{s}\) is pulled low during low-side power switch conduction. The fastrecovery bootstrap diode blocks dc bus voltage when the high-side switch conducts.

At the front end of the IR2151 is a timing circuit that is very similar to the established 555. Two timing pins are available externally, opening up the possibility for numerous applications other than lamp ballasting. Dead-time generators are incorporated to ensure that the two power mosfets being driven by the device do not conduct simultaneously.
The \(I R 2151\) is a fluorescent lamp ballast but, as you can see from the three designs presented here and those shown last month, the device has many potential uses. As the top diagram illustrates, the 2151 is essentially a 555 timer with integral level shifting and power-mosfet drive circuitry. A typical application circuit is shown in the lower diagram.
Features of the device are,
- Floating channel bootstrappable
- Operates to 600 V
- Tolerant to negative transients
- dV/dt immune
- Undervoltage lockout
- Programmable oscillator frequency
- Matched channel propagation delay
- Low side in phase with RT pin


HEWLETT PACKARD HP71B
As easy to use as a calculator but as powerful as a computer


\section*{BARCODE READER \\ Smart wand}
- Automatically recognises and decodes all major bar-code standards.
- A powerful set of basic functions, statements and operators - over 230 in all - many larger computers don't have a s of basic instructions in this complete.
- Advanced statistics functions enabling computations on up to 15 independent variables.
- Recursive subprograms and user defined functions.
- An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.
- A keyboard that can be easily customised for your specific application.
- HP-1L Interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or speak to other computers, 5000 bytes \(/ \mathrm{sec}\). Built in ROM includes 46 separate commands. Interface to HP-1L, HP-1B, RS232C, GPIO or series 80. Includes connection cables

Please rush me
\(\square\) HP71B Powerful Calc/Computer@ \(£ 29.95\)
\(\square\) Bar-code Reader@ \(£ 12.95\)
\(\square\) Power Supply @ 64.95
\(\square\) Keyboard overlay @ \(£ 1.00\)
\(\square\) Memory module @ \(£ 3.00\)
\(\square\) Complete kit of HP71B, Bar-code Reader and Power Supply @ £39.50
Total payment \(£\)
\(+£ 3\) delivery \(=£\)
These are second user systems ex NHS are fully tested and working but have no programming (THAT IS UP TO YOU)
HP71B
Bar-code Reader
AC Power Supply
Supply \(\quad\).......... £12.95
(Works from batteries normally)
Keyboard Overlay
(Limited quantities)
Unknown Program - Memory
Unknown Program - Memo
Modules (2 different types)
(Limited quantities)
Complete kit of HP71B, Bar-code Reader
and power supply ....................... \(£ 39\)
(Prices include VAT - delivery next day E3.00)
(Currently selling in USA for \(>\) E500)
INTERCONNECTIONS LTD
Unit 41, InShops, Wellington Centre
Aldershot, Hants GU11 5DB
Tel: (01252) 341900
Fax: (01293) 822786
Please debit credit card No.
No.
Name: .
Address:

\footnotetext{
MICRO-ENGINE MCS80C31/51 Development board.
Tiny \(72 \mathrm{~mm} \times 42 \mathrm{~mm}\) PCB contains socketed 44 pin CPU, Tumed pin Rom socket, 12 Mhz xtal and Ports 1,3 output on IDC connector. Ideal for stand alone projects or development work. Supplied with CIRCUIT \& MCS8051/52 development software.
PIC ICE II* \({ }^{*}\) In Circuit Emulator for PIC 16C54-55-56-57-71-84.
Replaces all 18 or 28 pin PICs. All ports Bi-directional, OSC2 output, RTCC input.
On board A/D converter for PIC16C71.
Supplied with PICDEV54 and PICDEV71 soft
ASM examples and hardware circuit projects.
\(£ 49.95\)
headers,
\(£ 159.95\)
P1C 1CE 18P In-Circuit Emulator for 18 pin PICs only no A/D. Plugs into the printer port appears to the target system as a normal Pic device including OSC2 and RTCC in/out.
Runs in real time from the IBM PC changes made to File registers reflected on target. Supplied with Development software PicDev 54-57 and PicDev 71/84
\(£ 69.95\)
PICPROG \({ }^{*}\) Programs Pic 16C54-55-56-57-71-84. Centronics port interface.
Powerful editing software to Read. Write \& Copy Pic devices including data memory in Pic 16C84.
Top quality components used throughout including production ZIF socket.
Now includes a Text Editor/Assembler for all above PICs.
\(£ 79.95\)
Requires external power \(15-20 \mathrm{v}\) AC or DC @ 250 ma . (optional extra f 6.50 ).
MEGAPROM programmer. EPROMS, E2PROMS, and FLASH memories from 2 k (2716) to 8 Meg ( \(27 \mathrm{C0} 00\) ). Runs on IBM PC via the centronics port using standard printer cable. Works on all PC compatibles. laptops, and notebooks. No special port requirements. Uses approved programming algorithms. Very fast program \& verify 27C512 = 45 seconds. Full screen editor software supports Bin, Intel Hex, Motorola S and Asc formats. Top quality components used throughout including production ZIF socket. Requires external power supply \(18-25 \mathrm{v}\) AC or DC @ 250 ma . (optional extra \(£ 6.50\) )
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1 k to 32 k Byte the printer appears in the target
Very fast download. Works with or without our Development software. \(\quad \mathbf{~} 59.95\)
DEVELOPMENT SOFTWARE
59.95

Develop software on your IBM PC for other Microprocessors, Controllers, \(£ 19.95\) Software has fully integrated Text Editor, Assembler, Disassembler, and Simulator.
The Simulator displays all, registers along with disassembled code program counter, Condition code register. The user can single-step, go with breakpoints, watch memory, etc. change any/all registers/memory locations at any time (on the fly).
Code can be Saved to disk and/or downloaded directly to our EPROM Emulator. All software supplied with sample. ASM files, and user documentation/manual
Very powerful software as supplied to universities, colleges ITECS and Industry
Available for the following:-
MCS8051/52/552
MCS8048/49
PIC16C71/84
Starred items also available from FARNELL (Leeds)
Starred items also available from FARNELL (Leeds)
\(\$ 1.50\) for Carriage.
}

CREDIT CARD ORDERS SAME DAY DESPATCH
JOHN MORRISON DEPT WW
4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1JR TEL (or FAX) 01132537507

8 CAVANS WAY,
BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Mobile: 0860400683
(Premises anuated close to Eastern-by-pass in Coventry with easy
access to M1, M6, M40, M42, M45 and M69)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ES} \\
\hline Gould OS 4000, OS4200, OS4020, OS245 & 5 \\
\hline Gould OS \(3000-40 \mathrm{MHz}\), dual ch. & ¢250 \\
\hline Gould \(4035-20 \mathrm{MHz}\) digtal storage & £600 \\
\hline Gould \(4050-35 \mathrm{MHz}\) digtal storage & 0 \\
\hline Gould \(5110-100 \mathrm{MHz}\) inteligent oscilloscope & ¢950 \\
\hline Hewlen Packard 1707A, 1707B-75MHz dual ch & from \(\mathbf{E 2 7 5}\) \\
\hline Hewlett Packard 1740A, 1741A, 1744A, 100 MHz du & On £350 \\
\hline Hewlett Packard 54201A - 300MHz digitizing. & ¢1950 \\
\hline Hewlett Packard 54504-400 M Hz diglitizing (As \(n\) & £3500 \\
\hline Hitachi V-212-20MHz dual tr & £175 \\
\hline Hitachi V-422-40 MHz dual ch & ¢30 \\
\hline Nicolet 3091 - Low treq D.S.O & ¢1100 \\
\hline Philips 3315-60MHz D.S.O. & ¢750 \\
\hline Tektronix 468 -100MHz O.S.O. & £600 \\
\hline Tektronix \(2213-60 \mathrm{MHz}\) dual ch. & ¢425 \\
\hline Tektronix \(2215-60 \mathrm{MHz}\) dual ch & 50 \\
\hline Tektronix 2235-100MHz dual ch. (portable) & \\
\hline Tektronis 2335-100 MHz dual ch. (porabie) & 5750 \\
\hline Tektronix \(464 / 466-100 \mathrm{MHz}\), storag & From £350 \\
\hline Tektronix \(465 / 465 \mathrm{~B}-100 \mathrm{MHz}\) dual c & from £350 \\
\hline Tektronix 7313, 7603, 7613, 7623, 7633, 100 M Hz 4 c & from £300 \\
\hline Tektronix \(7704-250 \mathrm{MHz} 4 \mathrm{cr}\) & ¢ £650 \\
\hline \multicolumn{2}{|l|}{Tektronix 7834 wilh 7B42, 7880, 7885 - Plug-ins (Storage} \\
\hline 400 MHz ) & ¢1500 \\
\hline \multicolumn{2}{|l|}{Tektronix \(7904-500 \mathrm{MHz}\)} \\
\hline Telequipment D68-50MHz dual ch. & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Phillps 3206, 3211, 3212, 3217, 3226, 3240, 3243, from \(£ 125\) to \(£ 350\)}} \\
\hline & \\
\hline Phltips PM3208-20Mhiz dual channe & \\
\hline Philips PM3295A - 400MHz dual channel & £1950 \\
\hline 50 MHz dual channel & \\
\hline \multicolumn{2}{|l|}{Other scopes a vallable too} \\
\hline \multicolumn{2}{|l|}{SPECTRUM ANALYSERS} \\
\hline Hewlett Packard 3580A - \(5 \mathrm{~Hz}-50 \mathrm{KHz}\) & \\
\hline Hewiett Packard 3582A - 25 KHz analyser, octar & ¢2500 \\
\hline Hewlett Packard 3585A - 20Hz-40MHz & ¢3750 \\
\hline Hewlett Packard 8590A - \(10 \mathrm{MHz}-1.5 \mathrm{GHz}\) (as new) & £4300 \\
\hline Hewlett Packard 182 T with 8559A ( \(10 \mathrm{MHz}-21 \mathrm{GHz}\) ) & \\
\hline Marcont 2370-110MHz & ¢995 \\
\hline Marconi 2371 - \(30 \mathrm{~Hz}-200 \mathrm{MHz}\) & \(\$ 1250\) \\
\hline Rohde \& Schwarz - SWOB 5 Polyskop 0.1-1300MHz & c2750 \\
\hline Schlumberger 1250-Frequency response analyse & \\
\hline \multicolumn{2}{|l|}{ch 727-22.4G} \\
\hline Alltech 70727 - Tracking Generator for 727 (10kHz-12.4C & 2000 \\
\hline \multicolumn{2}{|l|}{Texscan AL51A - 1GHz..................................................} \\
\hline Tektronlx 7 L 14 with 7603 - Mainframe ( 1.8 GHz ) & ¢2000 \\
\hline \multicolumn{2}{|l|}{Tektronix 7 L 12 with 7603 mainframe ( 1.8 GHz ) .......................... \(£ 1500\)} \\
\hline Tektronix 7L18 with 7603 mainframe (18GH & ...... 2950 \\
\hline \multicolumn{2}{|l|}{\(47.110 \mathrm{MHz}-18 \mathrm{GHz}\)} \\
\hline kard 35601A - Spectir & 11000 \\
\hline
\end{tabular}

 Marcon 23374 Aurammabie intertace \begin{tabular}{l}
5150 \\
5300 \\
\\
\hline
\end{tabular}
 . Marconl 8938 AF power meter.................................E325
 Phillps PM 516710 MHz function gen. .-............................. 500 Phllips 53901 GHz signal gen. Phillps PM 5716 Pulse generator high req. mos
Philips PM 66721 GHz timer/counter WF IEEE Philips PM 8272 XYT chart recorder...
Racal 9301 A True RMS A/F millivoltme
Racal Dana 1992-1300 MHz trequency counter opls \(4 \mathrm{~B}+55\)
Racal Dana \(310040-130 \mathrm{MHz}\) synthesise
Ral
Racal Dana 9000 Mcroprocessing timer/count 52MHz
Racal Dana 9009A Modulation meter (new version)
hacal Dana 9081 Synth, s.g. gen. 520 MHz
Racal Dana 92420 Programmabie PSU \(25 \mathrm{~V}-2 \mathrm{~A}\).
Racal Dana 9301A/9302 R/F Millivolt meter
Aacal Dana 9303 True RMS/RF level meter
Racal Dana 9500 Universal timer/counter 100 MHz
Racal Dana 9921 3GHz frequency counter
Rohde \& Schwarz LFM2 Sweep generator \(0.02-60 \mathrm{MH}\)
Rotek 3980A - AC/OC Precision Calibrator with Hotek 350A Hilor
Current Adaptor \(\operatorname{Si} 4040\) - Siabil...................................EPOA

Shi.....2000
ystems video 1258 Wavetorm analyser +1255 vector monitor +
Tektronix DA59100 Senes Logic Analyser..................................
Tektronix 577 Curve Tracer with fixures..................................
Tme 9811 Programmabe resistance . SW503, SG 502 elc,
Tree 9814 Voltage canbrator
W\& G MU3 Test point scanne
Watanabe WTR211 3 pen piotter
Weller D900 Desodennostation
MANY MORE TTEMS AVAILABLE-SEND
MANY MORE TTEMS AVAILABLE-SEND
LARGE S.A.E. FOR LIST OF EOUIPMENT
ALL EOUIPMENT IS USED - WITH 30 DAYS
    BEFORE ORDERING - CARRIAGE

\section*{SEETRAX CAE - RANGER-PCEDESIGN}

\section*{Kanger \(1 \times 100\)}
* Schentiatc capture linked to PCB
* Parts and wiring list entry

Outline (footprint) library editor
* Manual board layouto
* Full design rule checker
* Back annotation (linked to schematic)
\& Power, memory and signal autorouter - £50


All systems upuard compatible: Trade-indeuls availiable
Call Seeirax CAE cor funther Informationldemo packs Tel 01705591037

Fax 01705599036
Sepux CAE, Hinton Daubuy Fouse, Broadway Lane
Lovedean, Hampshire, PO8.0SG
All trademarks acknowledged.

Ranger 2 e59
nil the features of Rangerl plus
* Gate \& pin swapping, (linked to schemiqitic)
*
**Auto track necking
* Copper flood fill
* Powérplanes (heat-relief \& anni-pads)

4Rp-up\& retryagutosouter

\section*{Ranger3 £3500}

All the features of Ranger2 plus
* UNDX or DOS versions
* 1 Macron resolution and angles to \(1 / 10\) h degree
* Hierarchical or flat schematic
- Unlimited design size
*-Any-shaped pad
* Split power planes
* Optional on-line DRC
- \(100 \%\) rip-up \& haty, push \& shove autoroufer

\section*{Outputs to:}
* \(8 / 9\) frid 24 pin dot-matrix printers/
* HP Desk/Laser Jet, Canon \({ }^{\text {BJJt, Postscript (R3 only) }}\)
* HP-GL, Houston Instruments ploters
\({ }^{*}\) "Gerber photoplọtetss。
* NC Drill Excellon, Sieb \& Meyer
* AutoCAD DXF

\section*{NEW PRODUCTS CLASSIFED}

Please quote "Electronics World + Wireless World" when seeking further information

\section*{ACTIVE}

\section*{A-to-d and d-to-a converters}

10 MHz sampling a-to-d. Datel's ADS-119 is a 12 -bit, 10 MHz sampling converter with guaranteed no missing codes over the military range of temperatures. Signal-to-noise is 69 dB and thd -68 dB , both around 6 dB better than other devices available. It is usable in military and industrial areas and contains a sample/hold amplifier, control and timing logic and error correction. Datel (UK) Ltd. Tel. 01256880444 ; fax 01256880706.

\section*{Discrete active devices}

Power rectifiers. Surface-mounted bridge rectifiers by Shindengen handle reverse voltage up to 800 V . S1Z types are contained within a 5.9 by 2.6 mm footprint, 3 mm thick, and are believed to be the smallest and lightest available. Somewhat larger and \(30 \%\) cheaper are the S1N series

DSP modules. First in LSI's new range of digital signalprocessing modules based on the Texas TMS320C44 are the MDC44T and MDC44S. LSI's hardware provides more functions on the single-width TIM-40 standard, so that the C44 is used to the full. Both modules possess increased memory - In the case of the MDC44S, 8 Mbyte of sram, more than five times that of the earlier MDC40S. In the 44T, two 50 MHz C44 processors allowing improved access to the global memory bus increase flexibility and the true Harvard architecture, which enables simultaneous data and program fetches, maximises the exploitation of the C44's processing capabilities. MDC44S has one processor and is expected to find application In graphics and imaging, where large zero-wallstate memory is essential. Both 40 MHz and 50 MHz grades are to be available to provide maximum operating speeds of 50Mflop/s. Loughborough Sound Images Ltd. Tel., 01509 634300; fax, 01509634333.
with ratings from 100 V to 800 V . Flint Distribution. Tel., 01530 510333; fax 01530510275.

\section*{Digital signal}

\section*{processors}

PC104 DSP board. OROS-SP104 is a digital signal-processing board using the TI TMS 320LC31 processor, the low-power version of the 'C31 taking 120 mA at 33 M flops or 20 mA when idle. It is in the PC104 format, with \(128 \mathrm{Kbyte}-1 \mathrm{Mbyte}\) of ram and can be programmed in C for which a set of development tools is provided. An interface in the host pc is also used for Initial program loading. Oros. Tel. (France), 0033769062 36; fax 00 3376905137.

\section*{Linear integrated circuits}

GaAs MMIC amplifiler. Samsung's SMP-11206 microwave IC is for use in applications up to 5.5 GHz in the industrial, scientific and medical bands. It provides 12 dB of gain at 2.4 GHz , working from one \(4 \mathrm{~V}-9 \mathrm{~V}\) rail, at a low voltage-standing-wave ratio. Dc blocking is provided on the radiofrequency output. Anglia Microwaves Ltd. Tel., 01277 630000; fax 01277 631111.

\section*{Loglc}

Caller ID chip. Mitel has introduced the MT8843 caller line identification circuit, intended for the caller line display service announced by BT and for similar services elsewhere. It provides all alerting tone detection required by BT and in caller line ID on call-waiting systems. Guard time is programmable and the device meets BT's requirement for loop-reversal detection, which is used in applications other than BT's caller ID to provide a ringing detector. Mltel Semiconductor. Tel., 01291 430000; fax 01291430400.

\section*{Memory chips}
'Densest' serial memory. At 128 Kbit , Xicor's X25128 is claimed to be the world's densest serial eeprom. It is meant to support the Serial Peripheral Interface and has a 2 MHz bus frequency, 2.7-5.5 V working and a current requirement of less than \(1 \mu \mathrm{~A}\). Memory can be partitioned into blocks, with a feature called block lock, with levels of write protection, so that access is allowed to some portions while data in others is protected. Micro Call Ltd. Tel., 01844 261939; fax 01844261678.

Thin sram. EDI has a number of 4Mbit static rams in the Thinpack ceramic package, which is only 1.9 mm high, for use in military or high-reliability applications. Leads of the package are trimmed and formed and compatible with the plastic TSOP Type II pack. Micro Call Ltd. Tel., 01844261939 ; fax 01844261678.

\section*{Mixed-sIgnal ICs}

Battery capacity monitor. Meeting the requirements of the Intel/Duracell System Management Bus and Smart Battery Data, Benchmarq's bq2040 capacity monitor is for use with NiCd, NiMH and lithium-ion batteries, sending information on mAh capacity on the SMBus or indicating capacity directly by leds. The device is in a 16 pin SOIC. Sequoia Technology Ltd. Tel., 01734 258000; fax 01734 258020.

Avalanche photodiode. InGaAs/InP avalanche diodes in the EG\&G C30644 and C30645 series are available in the UK. Featuring a gain of 10 , they are intended for use in optical-fibre communications operating at 1300 1550 nm . Fibre pigtails can be supplied with both devices, the C30644 with a monomode pigtail and low back reflection or with a grin lens and multimode pigtail. Quantum efficiency is \(85 \%\) and responsivity 8.9 AW at 1300 nm . Pacer Components Ltd. Tel., 01734845280 ; fax 01734845425.

Laser dlodes. AlGaLnP red laser diodes by Sanyo are now obtainable here. The 635 nm diode has a threshold current of 50 mA , an optical power output of 5 mW and operating temperature \(50^{\circ} \mathrm{C}\), while the 670 nm type works at 30 mA and \(60^{\circ} \mathrm{C}\) and has a high-speed response. Jayex Components Ltd. Tel., 01734810799 . fax 01734810844.

\section*{Programmable logic arrays}

135MHz PLDs. Lattice Semiconductor's ispLSI and pLSI 2032 are 32 -macrocell \(\mathrm{E}^{2} \mathrm{CMOS}\), high-density programmable logic arrays, the 'isp' meaning in-system programmability. They are both \(80 \mathrm{MHz}, 110 \mathrm{MHz}\) or \(135 \mathrm{MHz}, 7.5 \mathrm{~ns}\) devices, supporting the Pentium and Power PC processors. Each has 32 registers and universal i/os, two dedicated inputs, three dedicated clock inputs and a dedicated global output enable, all being connected by a global routing pool. Micro Call Lid. Tel., 01844 261939; fax 01844 261678.


\section*{Single-chip solutions}

Rt receiver. Integrating all the components of a receiver's rf/ff strip,the AD607 and AD608 from Analogue Devices feature an ultra low-power architecture. The two ics are designed for wireless systems using a minimum supply voltage of just 2.7 V down to \(-25^{\circ} \mathrm{C}\) and consume less than 25 mW . They are suitable for applications using protocols such as GSM, cdma or tdma.
The AD607 has a linear IF amplifier with 100 dB range whereas the AD608 has a logarithmic amplifier with 90 dB of RSSI range and limited output. Both devices have low noise mixers a with 500 MHz bandwidth as the first stage with an internal preamplifier which requires only -16 dBm of LO drive. The mixer output will drive an industry standard \(10.7 \mathrm{MHz} 330 \Omega\) filter. Am, fm, cw and ssb are all demodulated by the AD607 with the \(A D 608\) providing fm and pm demodulation capability. Analogue Devices. Tel 01932232222


Passive components
Modem transformer. Integrity Technology introduces the T14Z telephone line-matching transformer, for a transmission speed to \(28.8 \mathrm{~Kb} / \mathrm{s}\) in V.34. Using an EI, 14 mm alloy core and a phenolic bobbin, the transformer is contained in a package about 0.5 in cube with hard copper pins. It is designed to connect directly to \(600 \Omega 2\) lines with zero bias. Primary winding is rated at 80 mA continuous and 125 mA in the ringing cycle. Integrity Technology Corporation Tel., (USA) 00408 262-8640; fax 00 408 262-1680.

Pulse transformer. Occupying a mere 0.625 in square of board space, the same as an earlier single type, DDC's dual pulse transformer is meant for use in MIL-STD-1553 dual redundant data bus systems. It is in diallyl phthalate encapsulation and is available in through-hole, surfacemount or flat-pack versions. All types have centre-tapped primaries and multiple taps on secondaries to cope with existing systems. Data Device Corporation. Tel., 01635 40158; fax 0163532264.

Metal-film chip reslstors. Gothic Crellon has a series of precision metal-film resistors that offer good pulse stability in single pulses up to 200W for \(1 \mu \mathrm{~s}\). Resistance range is \(100 \Omega-100 \mathrm{k} \Omega\) at \(\pm 0.1 \%\) in the E24 or E96 series of values. Temperature coefficient is less than \(2.5 \times 10^{-5} \mathrm{~K}\), power dissipation 0.125 W maximum, voltage rating 100 V dc or rms maximum and thermal resistance 170KW. Gothic Crellon Ltd. Tel., 01734788878 ; fax 01734776095.

\section*{Connectors and cabling}

SM wire-to-board connector Claimed to be the smaliest available, the Molex 53261 connector has a mounted height of 8.5 mm on a 1.25 mm pitch, with a \(250 \mathrm{~V}, 1.2 \mathrm{~A}\) rating per contact. Connectors are supplied In tapes and reels and there is a cable assembly service on offer. Flint Distribution. Tel., 01530 510333; fax 01530510275.

Network outlets. MOD-TAP's range of very low profile wall and floor outlets are for use in boxes of 16 mm depth and are compatible with Euromod and Modsnap accessories. They can be floor-mounted to either flat metal or plastic faceplates with an 18 mm clearance. MOD-TAP Ltd. Tel, 01703701919 ; fax 01703704063.

Pcb terminals. Pcb terminals pitched at 3.5 mm and 3.81 mm from Wieland come in standard and pluggable versions, with the standard type as a vertical or horizontal connection, this having a fixing cam. Pluggable units

\section*{Sensors}

Thermocouples. A package that includes the Picolog datalogging software, Pico's TC-08 is a thermocouple to \(p c\) interface. The unit requires no power supply and connects to the pc via the serial port. Eight different thermocouples can be accomodated (B, E, J, K, R, S A and T types) and the software allows samples as fast a once a second and as siow as one per hour. Advanced temperature processing functions include filetring, min/max detection and alarm setting. A real time display is available in either graphical or text format. Pico Technology Lid. Tel. 01954211716

are of pin-strip or edge-card connection and plug-and-socket. Ratings cover 6A/125V to 12A/125V Wieland Electric Ltd. Tel., 01483 31213; fax 01483505029.

Static control connectors. For establishing connection between different connector types, 4 mm and 10 mm for example, in static control applications, TBA has a range of kits. Where no ground point Is present, a hand tool enables the user to fit studs to make the connection to accept 4, 7 or 10 mm studs and banana plugs TBA Industrial Products Ltd. Tel., 0170647422 ; fax 0170646170.

DIN 41612 connectors. Apfel DIN 41612 connectors in the \(U / L\) range are now obtainable from Westfield. Types available include \(B, C, Q\) and \(R\) (including half types), pcb-mounting solder, wire-wrap, press-fit and idc ribbon models in 16-96 ways.
Contacts are of the dual-beam type in a number of forms. Westfield Distribution Ltd. Tel., 01488685183 ; fax 01488685430.

\section*{Dlsplays}

Contrasty LCDs. Hitachi's LMG7380 graphic/alphanumeric liquid-crystal display has a contrast ratio of 18:1, a six-times improvement over the earlier LMG6380, achieved by the use of a film-retardation layer and a fluorescent backlight. Size is 160 by 68 by 11 mm . Other units in the range include the LMG5738XUFC-OOT VGA display and the LM9520RPCC 320 by 240 colour and IC controller. Eiger Technologies Ltd. Tel. 01928 579009; fax 01928579123.

\section*{Filters}

Piezo IF filter. Narrow-passband filters from Murata, the SFE10.7MV5 and SFE 10.7MT for fm radio and am up-conversion, use the second overtone vibration mode to achieve \(\pm 13 \mathrm{kHz}\) bandwidth and 35 dB spurious response suppression. Murata Electronics (UK) Ltd. Tel. 01252 811666; fax 01252811777.

SAW filters. Surface transversal acoustic wave filters by GPS are on quartz and offer a \(-20^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) temperature range, compared with the \(0-40^{\circ} \mathrm{C}\) range in other materials; group delay is less than 150 ns . First available is the DW9249, intended for use in the IF in DECT digital cordless telephones, operating at a centre frequency of 112.32 MHz with a -3 dB passband of 1.152 MHz . Adjacentchannel rejection is 20 dB . GEC Plessey Semiconductors Lid. Tel. 01793 518510; fax 01793518582

\section*{Hardware}

Sealed cases. Meeting the IP54 rating, instrument cases in ABS by Serpac are suited to use outside and in hostile industrial applications. They come in sizes from 57 by 92 by 38 mm to 83 by 143 by 64 mm and are sealed by a gasket between the box and lid, which is secured by four or six selftapping screws, and O-rings for the

Personal DSOs. Tektronix has produced a range of digitising storage oscilloscopes at a price low enough that they can be considered personal instruments while retaining lab. instrument accuracy and performance. The range of TDS 400A instruments encompasses bandwidths from 200 MHz to 400 MHz with sampling to \(1,00 \mathrm{Msample} \mathrm{s}\) and offers, when coupled with a range of accessories, an array of teatures for all kinds of electrophysical measurement. Both new models have a graphical user interiace and offer automatic measurement of 25 parameters; there is also an FFT/maths option and a 3.5in floppy drive to allow results to be saved and imported to Windows and Macintosh applications. One of the accessories is the P5200 high-voltage differential probe, which allows the 'lloating measurement of voltages up to 1300 V when no ground point is available, the P5200 converting the floating voltage to a ground-referred one with no capacitance penaliy. Record length is 120 K to allow a complete sight of a long signal while retaining the ability to see detail. Tektronix UK Lid. Tel., 01628 486000; fax, 01628474799.
screw holes. Options include the I series with a recessed top for a membrane keypad, the standard type with a flat top and a slanted model for wall mounting, all with pcb mounting pillars. OKW Enclosures Ltd. Tel. 01489583858 ; fax 01489583836.

\section*{Instrumentation}

Sound-intensity probe
Improvements to Bruel \& Kjaer's sound intensity probes increase physical robustness and extend

Snap-in bezels. RMF
bezel/filter assemblies snap into a suitable.panel aperture without the assistance of screws or fasteners of any kind. The ABS bezels are available in a range of sizes to match most types of display, black being standard and colours available to order. Combined coloured tilters have a non-glare surface and come in red and clear for leds and lcds, colour again being available to order. Panel thickness required is 0.04 0.125 in . and the range of sizes is from 1.343 by 1.906 in to 1.656 by 8.531 in. UV-Tec Ltd. Tel., 01252844880 ; fax, 01252 844885.
frequency range. A stainless steel alloy brace replaces all the existing mechanical parts, doing away with adaptors and angle pieces and placing the probes in the IEC 1043 Class I. They come with a pair of microphones matched in phase and amplitude, a spacer allowing a 7.1 kHz frequency range. Upgrade kits for types 3545, 3547 and 3548 are available. Bruel \& Kjaer (UK) Ltd. Tel. 0181954 2366; fax 01819549504

350 MHz DSO. Gould's new DataSYS 940 is a low-noise digital storage oscilloscope with a 350 MHz bandwidth. This figure is guaranteed on all ranges from \(5 \mathrm{~V} /\) div to \(2 \mathrm{mV} /\) div. Display modes include refresh, persistence, roll, \(\mathrm{X} / \mathrm{Y}\) and pre-trigger and live zoom. Each of four channels has a 50,000-word memory. There are also measurement and analysis functions, configurable to user requirements. Gould Instrument Systems Ltd. Tel. 0181500 1000; fax 01815010116.

Power analyser. Dranetz PP1, now for hire from Livingston, is a troubleshooter for power-line problems such as those causing motors to burn out and computers to crash when, according to chart recorders, all seems well. The PP1 reports on individual cycle problems with voltage and current, monitoring trends in voltage, current, power, volt-amps, power factor, harmonics, kilowatthours and demand, being programmed from any of these or from external events such as the switching of equipment. Livingston Hire Ltd. Tel. 0181943 5151; fax 01819776431.

Stepper drive. Digiplan's PDHX is a 4000step/rev ministepper drive, combining all motioncontrol facilities and power supply in one unit, intended to supply the requirements of point-to-point applications needing good dynamics, smooth, low-speed rotation down to. \(0.001 \mathrm{rev} / \mathrm{min}\) and fast response; it reacts to a registration signal from a sensor iǹ under \(15 \mu \mathrm{~s}\). An optically isolated 24 V i/o interface allows input from thumb-wheel switches, remote controls and plcs. The selfadaptive, switched-mode psu handles \(100-250 \mathrm{~V}\) input and supplies a \(70 \mathrm{~V}, 5 \mathrm{~A}\) bus for high-speed torque at speeds up to \(50 \mathrm{rev} / \mathrm{min}\). Indexing is powered by the built-in supply and is programmable over an RS232C serial link from any computer in Parker's X-code control language, which has over 160 high-level
commands, maths functions, subs and constructs such as If-THEN-ELSE and REPEAT loops. Parker Hannifin plc, Digiplan Division. Tel., 01202 699000; fax, 01202695750.

Programmable function generator. Providing full digital control by way of a GPIB interface, TTi's TG1304 analogue function generator's output frequency is accurate to within \(0.01 \%\) Two separate function generators in the Instrument cover \(0.01 \mathrm{~Hz}-13 \mathrm{MHz}\) from \(50 \Omega\) and \(0.005 \mathrm{~Hz}-50 \mathrm{kHz}\) from \(600 \Omega\), the lower-frequency circuit being mainly intended to sweep and modulate the other, although it is suitable for use on its own for sine, square and triangle waves. Both generators output 2 mV -20V pk-pk. Thurlby Thandar Instruments Ltd. Tel 01480412451 ; fax 01480450409.

Audio analyser. Trio-Kenwood has introduced the VA 2230, a microprocessor-controlled combination instrument including a \(0.005 \%\) distortion, \(5 \mathrm{~Hz}-100 \mathrm{kHz}\) audio generator; voltmeter for ac and dc reading in volts, dBu and walts; a distortion meter giving total distortion, harmonic distortion and its analysis; and a frequency counter. \(\mathrm{S}: \mathrm{n}\), channel ratio and sinad are also given. The 100-point programmable memory and GPIB port are provided. TrioKenwood UK Ltd. Tel. 01923 816444; fax 01923819131

Video test generator. VG-812 is an rgb programmable video test generator by Ginsbury that has a 40 program memory. It is intended for testing computer monitors and can be programmed for timing, colour and pattern by the user, a high-speed clock allowing the evaluation of highresolution monitors. It has an RS-232 port for remote control by a PC Ginsbury (UK) Lid. Tel. 01634 290903; fax 01634290904.

Clamp meters. Clamp meters by Yokogawa have both digital and analogue displays, the analogue readout being in the form of a fanshaped bar graph to simulate a moving-coil meter. As well as the usual current measurements found on clamp instruments, these provide digital multimeter functions, a peakhold function being available and analogue output for recording. Martron Instruments Ltd. Tel. 01494 459200; fax 01494535002.

Electric-field meter. Holaday has the HI-3638 to measure ELF/VLF electric fields in the \(5 \mathrm{~Hz}-400 \mathrm{kHz}\) range. Its sensor is cable connected to the digital readout to give complete isolation and fields from \(0.4 \mathrm{~V} / \mathrm{m}\) to \(40 \mathrm{kV} / \mathrm{m}\) can be measured. Holaday Industries. Tel. 01628 478155; fax 01628476871.

Microwave leakage monitor. For continuous monitoring of microwave fields, the HI-2602 Microwave Interlock Monitor takes input from a single remote sensing probe. Relay contacts close and a led illuminates if microwave level exceeds a preset limit up to \(1 \mathrm{~mW} / \mathrm{cm}^{2}\). Holaday Industries. Tel. 01628 478155; fax 01628476871.

\section*{Interfaces}

Analogue-input VME. DVME-614 analogue-input VME boards by Datel


\section*{Vision systems}

Camera on a card. Sony's CCBGC5/P series of cameras are card mounted ( 54 by 86 mm ) providing a 330 -line resolution from a \(1 / 3\) in imager in both NTSC and PAL formats, automatic exposure control and auto tracing white balance. Options include a choice of lens, a Y/C output and cables to allow the ccd head to be up to 150 mm away from the board. Similar in other respects, the \(C C B-G C 7 Y C / P\) gives a 470 line resolution through the Y/C output. Supply is \(7-13 \mathrm{~V}\). Sony Computer Peripherals \& Components. Tel., 01932 816000; fax, 01932817001
have dual, high-speed a-to-d converters to avoid phase skew in synchronous channels. In the 614F, two channels are sampled at up to 2 MHz each at 12 -bit resolution, while the \(614 G\) variant has two \(1 \mathrm{MHz}, 14\) bit channels. Both have fifo memory options to 16 K sample to prevent data loss by sending bursts of samples to the host while conversion proceeds. Datel (UK) Ltd. Tel. 01256 880444; fax 01256880706

16-channel analogue i/o. LSI's PC/16IO8 simultaneously samples 16 12-bit analogue inputs at up to 25 kHz and up to 48 kHz with fewer channels, each channel having its own a-to-d converter for speed and phase alignment. Eight analogue outputs come from two 12 -bit d-to-a converters at update rates of up to 100 kHz . There is a DSPLink parallel interface for control and to enable the PV/16IO8 to be used with peripherals and other i/o boards. Eight buffered ttl-level digital i/o channels allow integration with the host dsp.
Loughborough Sound Images Lid. Tel. 01509634300 ; fax 01509634333

\section*{Literature}

Op-amps. Harris's High-performance Op-amps and Buffers brochure gives full details of the voltage and current feedback op-amps and buffers with bandwidths in the \(45-858 \mathrm{MHz}\) range introduced since the company's 1993-

4 databook. As well as performance figures, there are details of the special features of op-amp design. Harris Semiconductor UK. Tel. 01276 686886; fax 01276682323.

\section*{Connector catalogues. Four} catalogues from Robinson Nugent describe interconnection products. There is a pga socket brochure on sockets for the Pentium; a catalogue on PAK 5 and PAK 8 smt fine-pitch board-to-board connectors; a third on MEMPAK PCMCIA connectors; and one on 2 mm products. Robinson Nugent (Europe) Ltd. Tel. 00314990 75755; fax 0031499077155.

Nolse suppression. Panasonic offers a catalogue of noise suppression and filtering components for power line, signal line and surge pulse protection. Components described include line filters, ceramicdisc and chip capacitors, chokes, emi filters and bead cores and inductors. There is also an introduction to the law and regulations on noise and the principles of its suppression. Panasonic Industrial (Europe) Ltd: Tel. 01344 853827; fax 01344 853803.

Gas plasma displays. A colour brochure from Cherry describes the company's latest range of gas plasma displays, including the Plasmadot family of full-field dot-matrix types and a series of interface controllers and dc-to-dc converters. Technical details and some application information are included. Cherry Electrical Products Ltd. Tel. \(01582763100 ;\) fax 01582 768883.

Light measurement. Instruments for light measurement, applications and the basics of radiometry and photometry are all described in a new catalogue from International Light of Massachusetts, which also includes tutorial information. International Light Inc. Tel. (USA), 00508465 5923; fax 005084620759.

Flexible circuit materlal. Rogers Corporation offers a colour brochure describing, in general terms, its capabilities in the manufacture of flexible pcb substrates in polyimidebased laminates or all-polyimide material and adhesive types in acrylic, butyral phenolic and epoxy. Copper

\section*{NEW PRODUCTS CLASSIFIED}

Please quote "Electronics World + WIreless World" when seeking further information

\section*{Energy management}
controller. Microchip says its new MTE1122 IC, developed in partnership with Coast Energy Management, will reduce power consumption in consumer and industrial equipment using ac motors by up to \(30 \%\) by the use of the company's PIC16/178-bit, riscbased microcontroller. Motor load is digitally-monitored several thousand times per second and power
consumption controlled as required by varying the ac signal to allow a constant speed at reduced power. Arizona Microchip Technology Ltd. Tel., 01628 851077; fax, 01628850259.
cover is rolled annealed or electrodeposited. Rogers Corporation. Tel. (USA), 002037749605 ; fax 00203 7749630.

Sensors. The Sensor Technology Sourcebook lists and describes companies and organisations involved with sensors of all kinds by application and alphabetically, with names and telephone/fax numbers, lists databases, technology transfer specialists and commercial products. Technical Insights Inc. (USA). TeI. 00 201568 4744; fax 002015688247.

\section*{Materials}

EMI/RF seals. At prices not much more than those for ordinary dust and molsture seals, James Walker's Shieldseal 107 conductive elastomer in standard or custom profiles achieves IP65 rating and provides broadband shielding with an attenuation of 120 dB E-field at 1 MHz , 90 dB at 100 MHz and 50 dB plane wave at 10 GHz . Volume resistivity is \(6 \Omega / \mathrm{cm}\). James Walker \& Co, Ltd. Tel. 01483757575 ; fax 01483755711.

CFC-free foam. Jiftycelfoam packaging protection is now made without chlorofluorocarbons or other harmful chemicals, while retaining its physical properties of reusable resilience and capability of being recycled. Jiffy Packaging Co. Ltd. Tel. 01606551221 ; fax 01606592634.

\section*{Power supplies}

Fixed-f smps. Using fixed-frequency switching to meet EN55022 level B EMI needs, XP's NFN 25 and 40 universal-input units are available in 25 W and 40 W versions and various output voltages including 5, 12, 15 and 24 V singles and 5 V with \(\pm 12 \mathrm{~V}\), 5 V with 12 V and -5 V , and 5 V with \(\pm 15 \mathrm{~V}\). Universal input handles \(85-\) \(264 \mathrm{~V}, 47-440 \mathrm{~Hz}\). XP plc. Tel. 01734 845515; fax 01734843423.

PCMCIA power controllers. Micrel's range of controllers now includes the Micrel 2561, a low-cost device in 14 or 16 pin SOIC packaging. It will switch between the three \(V_{c c}\) voltages off, 3.3 V and 5 V and the five \(V_{p \rho}\) voltages off, \(1 \mathrm{~V}, 3,3 \mathrm{~V}, 5 \mathrm{~V}\) and 12 V , selection being by means of two
digital inputs for each output. Output current is up to 750 mA for \(V_{c c}\) and 200 mA for \(V_{p p}\). There is full protection for equipment and power supply. Hawke Components Ltd. Tel. 01256 880800; fax 01256880325.
'Smallest' Ido regulator. Described by National Semiconductor as the smallest and highest-performing low dropout regulator family, the 50 mA LP2980 is one of the company's TinyPak series in the \(8.2 \mathrm{~mm}^{2}\) SOT23 package. Dropout voltage is 120 mV at 50 mA and 7 mV at 1 mA ; quiescent current \(375 \mu \mathrm{~A} / 80 \mu \mathrm{~A}\). Input voltage is -0.3 V to 16 V and output voltage, \(3 \mathrm{~V}, 3.3 \mathrm{~V}\) or 5 V , accurate to within \(\pm 0.5 \%\). National Semiconductor GmbH. Tel. 01049 814110382; fax 01049814103515.

Efflcient regulator. Having a \(4-40 \mathrm{~V}\) operating range, Linear's LTC1159 high-frequency, synchronous, switching regulator is \(90 \%-95 \%\) efficient with loads in the 0.02-2A range while providing 5 V from a 10 V input. Two external mosfets are driven at frequencies to 250 kHz , the unit automatically switching between continuous and burst operation for higher efficiency. Quiescent current is \(250 \mu \mathrm{~A}\) and \(20 \mu \mathrm{~A}\) when shut down and dropout is 200 mV at 1 A and \(100 \%\) duty cycle. Micro Call Ltd. Tel. 01844 261939; fax 01844261678.

\section*{Radio communications products \\ Satellite recelver. R L Drake of Ohio} has introduced the ESR410, a miniature, rack-mounted satellite receiver using synthesised tuning and block conversion. Frequency range is \(950-2050 \mathrm{MHz}\) and the unit is meant for master-antenna television, commercial or industrial audio, video and data. For audio, there is noise reduction and Wegener stereo compatibility, audio subcarriers in the \(5-9 \mathrm{MHz}\) range being tuned at the front panel and the unit has three selectable audio IF bandwidths. R L Drake Company. Tel. 00513866 2421; fax 005138660806.

\section*{Switches and relays}

Photovoltaic relays. Relays in IR's
PVT412 series are designed to meet telecom and electrical safety
requirements of the major countries
without the need for adaptation. They are single-pole, normally-open solidstate relays using an IC photovoltaic generator and IR's Hexfet power mosfets as output switch. Switching performance is \(\pm 400 \mathrm{~V}\) ac peak or dc at up to 140 mA ac and 210 mA dc ; input/output isolation is 4000 V rms Active internal current limiting in the PVT412L meets the FCC Part 68 llghtning-surge requirement up to 200A. International Rectifier. Tel. 01883713215 ; fax 01883714234.

Fused isolators. Expanding its range of Slimline NH fused isolators, Rittal can now achieve fused protected power distribution to 630A by the use of fuse links NHOO, 1, 2 and 3 in widths of 100 mm . The range uses double interruption per phase and double arcing chambers; line feed is either from top or bottom and the units fit directly to busbars on 185 mm centres. Rittal Ltd. Tel. 01709 704000; fax 01709701217.

Surface-mounted switches. Jeil offers a range of surface-mounted switches for 12 V working, having a contact resistance at 50 mA of 100 ms . Travel is 0.25 mm and operating force is chosen from the

Neural network for smart noses. Windows-based neural network by NCS, the NeuRun; is in use by the French firm AlphaMOS to add automatic decision making to the Fox 2000 electronic nose, little effort having been needed to embed artificial intelligence in Fox's LabView-based soffware. NouRun is compatible with pc and windows dos software and hardware, so that it can be used to construct and upgrade applications in a modular manner without the need to program or redesign existing software. In this case, NeuRun is embedded as a background task behind LabView, odour samples being analysed by NeuRun, a decision on the sample made and the decision transterred back for display in less than one second. Neural Computer Sciences Ltd. Tel., 01703667775 ; 1ax, 01703 663730.


100, 160 or 260 g range. Height from the board is between 13 mm and 1.6 mm and overall size is 5.7 by 4 mm to 10 by 6 mm . A dust-proof type, the JTP 1290, is also available. Pedoka Ltd. Tel. 01462 422433; fax 01462 422233.

Cashpoint keyboards.
Programmable keyboards for shops, made by DED are protected from liquid spills and are of the membrane type with feel. POS-Page 854/865 have 120 keys, covered by a transparent sheet which forms a menu page to indicate each key's function, the page being produced using software supplied and the keyboard itself or simply marked up. by pen. Each key can be programmed to generate a macro of up to 16 characters on one level or on each of four concurrent levels. Several options for interfacing to computers, scales and printers are provided. DED Ltd. Tel. 01797 320636; fax 01797320273.

\section*{Transducers and sensors}

Piezoelectric film sensors. Strain sensors from Pro-Wave, based on polyvinylidene fluoride film, offer improved sensitivity over ceramic types. A two-pin, pcb-mounted unit, the FS-2513P, measures 13 by 25 mm , is encased in a moistureresistant coating and has a sensitivity of \(0.5 \mathrm{mV} / \mathrm{g}\) with a \(25-70 \mathrm{~Hz}\) frequency range. Capacitance and output impedance at 1 kHz are 1.5 nF and 100k \(\Omega\). Quantelec Ltd. Tel. 01993 776488; fax 01993705415.

Electret microphones. Future Components handles the complete range of Panasonic's electret capacitor microphone cartridges in the WM-034 and WM-54 series, intended for use in both industrial and consumer application. WM-54B is a new, 4.5 mm deep model with a choice of sensitlvity in the -46 dB to \(-40 \mathrm{~dB} \pm 2 \mathrm{~dB}\) or \(\pm 3 \mathrm{~dB}\), working in the \(20-16000 \mathrm{~Hz}\) range at 2.5 V . WM034B/C are commonly used types operating at 4.5 V with -46 dB to \(-38 \mathrm{~dB} \pm 3 \mathrm{~dB}\) sensitivity, while WM\(034 D\) is a \(1.5-10 \mathrm{~V}\) model and WM034 F a 1.5 V type for \(100-5000 \mathrm{~Hz}\) working with high and low frequency roll-off for telephone use. Future Components Ltd. Tel. 01279 758999; fax 01279757676.

\section*{COMPUTER}

\section*{Data communications}

Plug-and-play IEEE 488.2 controller. National Instruments's IEEE 488.2 controller board is now available in a ready-to-wear, jumperless version. ATGPIB/TNT(PnP) fits 16-bit ISA plug-in slots and is designed for true plugand play operation in compatible systems, in which hardware settings are automatically in place at switchon. In a non-compatible system, the
board provides configuration by means of the NI-488.2 software configuration facility that is supplied with the board, in addition to dos and Windows drivers. It is compatible with LabVIEW, LabWindows/CVI and LabWindows applications packages. National Instruments UK. Tel. 01635 523545; fax 01635523154.

RS232 voltages from transceiver. Linear's LTC1348 RS232 transceiver IC delivers true RS232 voltages from one 3.3 V supply. It is a three-driver, five-receiver DTE unit drawing \(500 \mu \mathrm{~A}\) and needing only three \(0.1 \mu \mathrm{~F}\) capacitors for the RS232 voltages. It has four current-saving modes of operation, including a \(10 \mu \mathrm{~A}\) 'receiver-keep-alive' mode and full protection from esd and overvoltage. LTC1348 supports data rates up to 120 kbaud . Linear Technology (UK) Ltd. Tel. 01276 677676; fax 0127664851.

\section*{Development and evaluation}

8051 emulator. TX51 is a low-cost emulator supporting all rom-less variants of the 8051, including the Dallas DS320, up to an oscillator frequency of 30 MHz and can be configured for 3 V working. The singlecable ROMlink can is also available for the unit. HiTOP development environment is used, in which one can debug code in C, PLM or Pascal
at source level, and view and modify variables while the program runs. On offer is a free information pack and demo disk. Hitex (UK) Ltd. Tel. 01203 692066; fax 01203692131.

\section*{Programming hardware}

Dual programmer. SMS Sprint Dual is a twin programmer for both development and production, its most popular version being capable of handling 48 -pin dips PLCCs up to 84 pins and a JTAG connector for incircuit programming. For production, the instrument will program devices in parallel, speed of operation being enhanced by the use of the host pc's cpu and ram. Concentrated Programming Ltd. Tel. 01279 600313; fax 01279600322.

\section*{Software}

WIndows XRAY Monitor. Microtec offers a Windows version of the XRAY Monitor debugger for the Motorola 68000 family, using all the short-cut facilities of windows for speed, including a button bar for common commands and icon dragging. Assembler and high-level source code are visible together and there is context-sensitive help. Configuration to target hardware is easy and even the faster target processors run at full speed. Microtec Research Lid. Tel. 01256 57551; fax 0125657553.

Mixed-mode circult simulation.
Windows-based IsSpice 4 by Intusoft is an advance on Spice 3 in that it will now simulate both analogue and digital circuitry in the same .EXE. The event-driven IsSpice4 algorithm supports 12 -state digital data, and also real, integer and user-defined data, so that it is capable of simulating, say, dsp functions and sampled data filters in an analogue environment. Real data is handled by the event-driven simulator, so that the sampled-data filter can be simulated quicker than in an analogue model. Intusoft. Tel. (USA) \(010310833-\) 0710; fax 010310 833-9658.

Graphics. Numerical Algorithms Group now distributes template Graphics Software packages, from two-dimensional presentations to high-level three-dimensional visualisation. F/Graph, a 2D/3D charting system for Fortran and C generates line, bar, pie and contour graphs on graphics terminals, IBM mainframes and the \(X\) Window system. FIGARO+ ANSI/ISO PHIGS+ is for graphics in cad/cam on workstations, mainframes and Windows NT. TGS is a licensee of the OpenGL software interiace for 3D applications, and Open Inventor, a \(\mathrm{C}^{++}\)authoring system based on OpenGL. These products complement NAG's IRIS Explorer. Numerical Algorithms Group. Tel. 01865511245 ; fax 01865310139 .


\section*{MIDDAF INTRODUCE}

ฝ 'ENGINEER' brand professional tools from Futaba Tool Manufacturing Co. Ltd. Japan for Electrical/Electronic Engineering Industry.
'GOOT' brand soldering equipment from Taiyo Electric Industrial Co. Ltd. Japan.

We offer competitive prices for these exceptionally high quality products.

For descriptive literature please contact:

\author{
MEJDAF EUROPE LIMITED \\ 196 Preston Road, Wembley, Middlesex \\ Tel: 01819049671 \\ Fax: 01819049546
}

CIRCLE NO. 141 ON REPLY CARD

\section*{Smart Kit Electronics}

\section*{HIGH QUALITY ELECTRONIC KITS}

We feel that most readers will know these kits but if you want more information about them, then we have the official Smart catalogue available. This gives circuit diagrams and illustrations. The price is \(£ 1\) or free if you order kits to the value of \(£ 20\) or more, the prices include VAT. You can send a cheque or postal order or ring and quote your credit card number and please add \(£ 3\) service charge if the order is under \(£ 25\).

CATNO. DESCRIPTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1002 & VU meter with led display & 4.60 & 1070 & Hi-fi preamplifier & 7.47 \\
\hline 1003 & 5 watt electronic siren & 2.53 & 1071 & 4 input selector & 6.90 \\
\hline 1004 & Light switch & 3.22 & 1073 & Voice activated switch & 3.45 \\
\hline 1005 & Touch switch & 2.87 & 1074 & Drill speed controller & 2.76 \\
\hline 1006 & 800 watt music to light & 2.76 & 1077 & 100 watt hi-fi amplifier & 12.50 \\
\hline 1007 & Stabilized powr supply \(3.30 \mathrm{v} / 2.5 \mathrm{~A}\) & 6.90 & 1080 & Liquid level sensor - rain alarm & 2.30 \\
\hline 1008 & SF function generator & 6.90 & 1082 & Car voltmeter with leds & 7.36 \\
\hline 1010 & 5 input stereo mixer with monitor output & 19.31 & 1083 & Video signal amplifier & 2.76 \\
\hline 1012 & Reverberation unit & 5.52 & 1084 & TV line amplifier & 1.84 \\
\hline 1014 & \(3 \times 700\) watt wireless music to light & 5.98 & 1085 & DC converter 12 v to 6 or 7.5 or 9 v & 2.53 \\
\hline 1015 & Mosquito repeller & 2.07 & 1086 & Music to light for your car & 4.60 \\
\hline 1016 & Loudspeaker protection unit & 3.22 & 1087 & Thyristor/triac tester & 2.76 \\
\hline 1017 & 30 watt linear CB & 14.71 & 1088 & Kitt scanner & 10.12 \\
\hline 1020 & 0-5 minute timer & 2.99 & 1089 & Led Flasher/555 tester & 1.61 \\
\hline 1025 & 7 watt hi-fi power amplifier & 2.53 & 1090 & Stress meter & 3.22 \\
\hline 1026 & Running lights & 4.60 & 1091 & Guitar preamplifier & 4.14 \\
\hline 1027 & Nicad battery charger & 3.91 & 1093 & Windscreen wiper controller & 3.68 \\
\hline 1030 & Light dimmer & 2.53 & 1094 & Home alarm system & 12.42 \\
\hline 1032 & Stereo tone control & 4.14 & 1095 & Lead acid battery charger & 4.60 \\
\hline 1033 & 60 watt hi-fi power amplifier & 7.82 & 1096 & 2-30v 5A stabilized variable & 11.04 \\
\hline 1034 & Car battery checker & 1.61 & 1098 & Digital themometer with Icd display & 11.50 \\
\hline 1035 & Space sound effects & 2.30 & 1100 & \(2 \times 18\) watt interated amplifier & 18.39 \\
\hline 1038 & AM FM aerial amplifier & 1.61 & 1101 & Doller tester & 4.60 \\
\hline 1039 & Stereo VU meter & 4.60 & 1102 & Stereo VU meter with 14 leds & 6.67 \\
\hline 1040 & 10 watt hi-fi power amplifier & 2.76 & 1103 & Led power meter & 1.84 \\
\hline 1041 & 25 watt hi-fi power amplifier & 4.60 & 1106 & Thermometer with leds & 6.90 \\
\hline 1042 & AF generator \(250 \mathrm{~Hz}-16 \mathrm{KHz}\) & 1.70 & 1107 & Electronic 1x2 & 3.68 \\
\hline 1043 & Loudness stereo unit & 3.22 & 1109 & 40 watt hi-fi amplifier & 7.36 \\
\hline 1044 & Graphic equalizer & 7.13 & 1110 & Oscilloscope component tester & 2.53 \\
\hline 1045 & Sound effects generator & 3.68 & 1111 & Logic probe & 2.07 \\
\hline 1046 & \(2 \times 25\) watt stereo booster \& sink, & 8.05 & 1112 & Loudspeaker protection with delay & 4.60 \\
\hline 1047 & Sound switch & 5.29 & 1113 & \(2 \times 18\) watt power amplifier & 5.98 \\
\hline 1048 & Electronic thermostat & 3.68 & 1114 & Electronic lock & 4.14 \\
\hline 1049 & Ultrasonic radar & 8.28 & 1115 & Courtesy light delay & 2.07 \\
\hline 1050 & 3 input hi-fi stereo preamplifier & 12.42 & 1117 & TV pattern generator & 5.06 \\
\hline 1051 & Touch dimmer with memory & 4.60 & 1118 & Time switch with triac 0-10mins & 4.14 \\
\hline 1052 & 3 input mono mixer & 6.21 & 1122 & Telephone call relay & 3.68 \\
\hline 1053 & Electronic metronome & 3.22 & 1123 & Morse code generator & 1.84 \\
\hline 1054 & 4 input instrument mixer & 2.76 & 1124 & Electronic bell & 2.76 \\
\hline 1055 & FM receiver incorporation TDA7000 & 6.90 & 1125 & Telephone lock & 3.68 \\
\hline 1056 & 8-20v 8 A stabilized power supply & 12.42 & 1126 & Microphone preamplifier & 4.60 \\
\hline 1057 & Cassette head preamplifier & 3.22 & 1127 & Microphone tone control & 4.60 \\
\hline 1058 & Electronic car ignition & 7.82 & 1128a & Power flasher 12v DC & 2.53 \\
\hline 1059 & Telephone amplifier & 4.60 & 1131 & Robot voice & 3.68 \\
\hline 1060 & +40v 8A power supply & 8.28 & 1133 & Stereo sound to light & 5.26 \\
\hline 1061 & \(12 \vee 0.5 A\) stabilized power supply & 2.76 & & & \\
\hline 1062 & 5 v 0.5 A stabilized supply for TTL & 2.30 & \multicolumn{3}{|l|}{\multirow[b]{3}{*}{}} \\
\hline 1063 & 12v 2A power supply & 2.30 & & & \\
\hline 1064 & +12v \(0.5 A\) stabilized supply & 3.22 & & & \\
\hline 1066 & Motorbike intercom & 7.82 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Pilgrim Works (Dept. WW),}} \\
\hline 1067 & Stereo VU meter with leds & 9.20 & & & \\
\hline 1068 & 18 v 0.5 A stabilized power supply & 2.53 & \multicolumn{3}{|l|}{Stairbridge Lane, Bolney, Sussex} \\
\hline 1069 & Fluorescent tube unit from 12v DC & 2.99 & RH1 & 5 SA Tel (01444)8 &  \\
\hline
\end{tabular}

\title{
CLASSIFIED
}

\section*{ARTICLES FOR SALE}

\section*{ARTICLES WANTED}

\section*{VALVES, and CRTs FOR SALE}

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS.

Large stocks of Russian \& Sovtekitems.
Please ask for our free catalogues of valves or CRTs.

\section*{VALVES, etc. WANTED}

All types considered but especially KT88/PX4/PX25 (£45), KT66 (£30), KT77/EL34/EL37 (£10), ECC81/ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. All VALVE-ERA EQUIPMENT such QUAD, LEAK, GARRARD 301.
If possible, send a written list for a prompt decision. BILLINGTON EXPORT LTD., IE Gillmans Ind. Estate, Billingshurst, Sussex RH14 9EZ. Tel: 01403784961 Fax: 01403783519
VISITOAS STRICTLY BY APPOINTMENT.
MINIMUM ORDER \(£ 50\) plus VAT


ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISȚS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

\section*{Cooke International}

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44) 01243 545111/2
Fax: \((+44) 01243542457\)
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCLE NO. 149 ON REPLY CARD
```

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH mmediare settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO, Unit 58,
Queens Road, Wisbech, Cambs. PE13 2PO
established over 15 Years
Buyers of Surplus Inventory
Tel: 01945584188 Fax: 01945475216

```

RECRUTMENT
Immediate Start
Person required with good knowledge of R.F. design and product manufacture up to 48 Ghz , products for the security industry excellent prospects for the right person including partnership. Tel: Bob Clark 0305786268

\section*{WE WANT TO BUY !!}

\author{
IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.
}

\section*{WANTED}

High-end Test Equipment, only brand names as Hewlett-Packard,

Tektronix, Rhode \& Schwarz,
Marconi etc. Top prices paid.
Please send or fax your offer to:
BTYB ELEKTRONIK
Alter Apeler Weg S,
27619 Schiffdorf, West Germany TEL: 0104947067044
FAX: 0104947067049

\section*{SERVICES}

\section*{DESIGN SERVICES}

Sobttware Design: High and Low Level. Hardware Design: Analogue, Digital, Micro and Embedded.
PCB, Schematic and Production Drawings. Prototyping and Feasibility services.

Archimedes Custom Equipment: Tel 0974282670

\section*{WANTED}

High-end Test, Communication \& Computer Equipment. Top prices pald.

Please send or fax your offer to: Steigerwald 6 mbH Meus serstrasse 9, 80807 Munich South Germany Tel: 01049893615833 Fax: 01049893615899


\section*{\(\theta\)}

Hepworth \&
Hatcher

\section*{25 Shackstead Lane \\ Godalming, Surrey GU7 1RL Tel/Fax: 01483420595}
- Specialists in custom embedded systems
- Software and hardware
- 8031/51 - PIC - 680xx - 80x86

\title{
CLASSIFIED
}

\section*{DISTRRBUTORS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AN5521 & 1.35 & STK4352 & 6.20 & STRD6008 & 10.00 & TEA2026C & 4.50 \\
\hline AN5732 & 1.40 & STK4372 & 5.65 & TA7227 & 1.85 & TEA5170 & 1.40 \\
\hline AN6327 & 9.85 & STK4803 & 7.05 & TA7279 & 2.50 & TUA2000-4 & 4.25 \\
\hline AN6677 & 8.50 & STK4843 & 7.05 & TA7280 & 2.25 & U8848 & 2.35 \\
\hline BA5114 & 1.55 & STK5315 & 5.85 & TA7281 & 2.20 & U4606B & 5.50 \\
\hline BA6218 & 1.85 & STK5332 & 1.80 & TA7698 & 5.00 & UAA1008 & 3.00 \\
\hline BA6219 & 1.20 & STK5338 & 3.25 & TA8200 & 3.50 & UPC1178 & 1.05 \\
\hline HA11423 & 1.65 & STK5361 & 4.15 & TA8210 & 3.00 & UPC1182H & 5.95 \\
\hline HA13119 & 2.50 & STK5372 & 2.85 & TA8214 & 3.00 & UPC1278H & 2.20 \\
\hline KA6210 & 4.99 & STK5372H & 4.45 & TA8215 & 3.00 & UPC1420 & 4.50 \\
\hline LA3220 & 0.60 & STK5412 & 3.75 & TA8205 & 3.95 & UPD1937 & 3.00 \\
\hline LA4183 & 1.35 & STK5471 & 3.85 & TA8659 & 13.00 & 25AB14 & 0.71 \\
\hline LA4445 & 1.90 & STK5490 & 4.95 & TA75339 & 0.75 & 25AB39 & 1.40 \\
\hline LA4495 & 1.40 & STK6732 & 14.00 & TDA1908A & 2.00 & 25A1062 & 1.00 \\
\hline LA4588 & 2.55 & STK7226 & 7.50 & TDA2170 & 3.00 & BU426A & 1.10 \\
\hline LA7835 & 2.35 & STK7308 & 4.05 & TDA2270 & 2.50 & BU500 & 2.45 \\
\hline LB1416 & 2.25 & STK7348 & 4.05 & TDA3562A-TFK & 3.25 & BU506D & 1.50 \\
\hline LM301 & 0.25 & STK7356 & 4.75 & TDA3562A-SG & 3.00 & BU508A(PHIL) & 0.80 \\
\hline LM31T & 1.50 & STK7404 & 6.50 & TDA3645 & 8.00 & BU508AF(PHI) & 1.00 \\
\hline M4918BI & 4.75 & STK73410 & 5.15 & TDA3650 & 8.99 & BU508DF(PMI) & 9.25 \\
\hline M4948BI & 6.75 & STK73410/2 & 5.95 & TDA3850 & 18.99 & BU806A & 1.40 \\
\hline M51393 & 5.95 & STK73605 & 4.50 & TDA4400 & 1.75 & BU807 & 0.85 \\
\hline M58655 & 3.30 & STR441 & 14.75 & TDA4505A & 4.10 & BU908 & 1.15 \\
\hline M83730 & 1.70 & STR451 & 25.00 & TDA4505B & 4.10 & BU932 & 1.50 \\
\hline M83756 & 8.00 & STR3125 & 5.50 & TDA4505E & 4.00 & BUK 444/500 & 2.15 \\
\hline STK078 & 6.00 & STR4211 & 5.50 & TDA4505M & 6.80 & BUK454/600 & 1.95 \\
\hline STK435 & 4.00 & STR4090 & 11.45 & TDA4505K & 6.45 & BUTIIA & 0.70 \\
\hline STK461 & 6.00 & STR20005 & 5.00 & TDA4660 & 4.50 & BUTIIAF(PHI) & 1.20 \\
\hline STK2250 & 7.45 & STR40090 & 4.00 & TDA4950 & 1.40 & BUTIIF & 1.20 \\
\hline STK4121/2 & 7.00 & STR50103A & 3.85 & TDA5660P & 2.50 & BUT12A & 8.10 \\
\hline STK4141/2 & 5.50 & STR54041 & 3.75 & TDA7072 & 3.99 & BUT12AF & 1.10 \\
\hline STK4142/2 & 6.50 & STR58041 & 3.75 & TDA8370 & 14.00 & BUT56A & 0.80 \\
\hline STK4162/2 & 6.25 & STR80001 & 6.00 & TDA8405 & 8.00 & BUT76A & 1.05 \\
\hline STK4171/2 & 8.10 & STR1706 & 4.75 & TDA8732 & 5.95 & BUV48C & 3.10 \\
\hline STK4191/2 & 8.50 & STRD1806 & 4.50 & TEA2018A & 1.50 & BUW13 & 1.50 \\
\hline
\end{tabular}

When you have been let down by the rest come and try us for fast friendly service.

\author{
Qpars 5 \\ Please phone us for the types not listed. Please add 60p post \& packing and then add \(17.5 \%\) VAT to the total. Callers by appointment only. \\ J.J. COMPONENTS \\ 63 THE CHASE, EDGWARE, \\ MIDDX. HA8 5DN, ENGLAND \\ Hotline No: 081-381 1700/081-9524641 Free fax orderline ONL Y: 0800318498 General Fax: 081-3811700
}

\section*{RECRUITMENT}

\section*{Operations Engineer}

\section*{INTERACTIVETELEVISION}

Two Way TV Ltd is a dynamic and growing force in the arena of new entertainment services.
Our requirement is for an enthusiastic, resourceful and responsible individual to join our exceptional technical staff. You will soon play a significant role in the Technical Operations team, helping to keep our Operations Centre running smoothly.
Successful candidates will have a working knowledge of the following areas:
\(\$\) PC and Apple hardware and software
\(\$\) Communications and computer networks
\(\$\) Video, audio-visual and television equipment

Apply in writing to:
The Personnel Officer,
Two Way TV Ltd, The Chiswick Centre, 414 Chiswick High Road, London W4 5TW

Fax: 081-995 1664
NOAGENCIESPLEASE

\section*{ARTICLES WANTED}

\section*{PURCHASE FOR CASH}

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:

\section*{K.B. COMPONENTS, 21 Playle Chase, Gt Totham, \\ Maldon, Eeser CM9 8UT \\ Telephone 0621-893204. Facsimile 0621.893180.}

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{lrlr} 
& \(P A G E\) & & \(P A G E\) \\
Amdat & 309 & Kestral Electronic Co & 335 \\
AMI & 327 & Keytronics & 310 \\
Aries Electronics & 301 & Lab Center & 319 \\
Barnes Elliott Ltd & 297 & M \& B Electrical & 356 \\
BK Electronics & 297 & M\&B Radio (Leeds) & 313 \\
Bull Electrical & 301 & MEJDAF Europe Ltd & 355 \\
Carston Electronics & 327 & Millford Instruments & 291 \\
Citadel Products Ltd & IFC & MQP Electronics & 335 \\
CMS & 343 & Number One Systems & 343 \\
Cricklewood Electronics & 301 & Olson Electronics Ltd & 279 \\
Crossware Products & 324 & Pico Technology & 332 \\
Dataman & BC & Powerware & 324 \\
Display Electronics Ltd & 275 & Ralfe Electronics & 360 \\
Field Electric Ltd & 332 & Research Communications & 297 \\
Grandata Ltd & 269 & Robinson Marshall (Europe) Ltd & 266 \\
Halcyon Electronics Ltd & 332 & Smart Communications & 350 \\
ICE Technology Ltd & 295 & Stewart of Reading & 335 \\
Interconnections & 349 & Telford Electronics & 355 \\
IOSIS & 309 & Telnet & 327 \\
John Morrison (MICROS) & 349 & Those Engineers Ltd & 347 \\
Johns Radio & 316 & Tsien Ltd & 350 \\
JPG Electronics & 324 & Ultimate Technology & 347 \\
\hline
\end{tabular}

\title{
CONTRACT VACANCIES
}

ATE Engineer
ATE Engineer
RF Design
RF Design
RF Design
RF Design Software Engineer RF Design
Senior Engineer
Systems test
Systems Support
PCB Layout
Applications Eng
RF Design
ATE Engineer

Burn in and RF functional test
Special to type, HP Basic, C Pascal
Mobile comms
Mobile comms
Commercial applications
Mobile comms
System 12, GSM
2 GHz , military application
GSM handset, comms satellite
On GSM releases
Management of network systems
Mentorgraphics v8
Embedded processor and digital
To lGHz, mobile comms
HPBasic/HP VEE fibre optics

Notts BC0489
Berks BC0476
Essex BC0490
Hants BC0401
N. France EC0150

Middx BC0373
Germany EC0202
Hants SC0259
Notts BC0450
Wilts BC0448
Netherlands EC0106
Surrey BC0488
Hants BC0484
Cambs BC0478
Essex BC0447

ALL CONTRACTORS PAID WEEKLY BY BACS

\title{
PERMANENT VACANCIES
}

RF Design Engineer
Test Engineer
System Test Engineer
Snr Design Engineer
Digital VLSI Design
RF IC Design
Ánalogue IF Design
Product Systems Des

Circuit des ( 1 GHz ), telecomms
RF PCB fault-find mobile comms
GSM/DCS systems
HF/EHF
GSM, PCN, VHDL, ASICS
Filters, low noise/IF amps
High level modelling, BICMOS
Hardware systems design, GSM
\begin{tabular}{lll} 
£30k & Various & BP0251 \\
£17k & Hants & BP0224 \\
£neg & M4 corridor & BP0287 \\
£neg & M4 corridor & BP0204 \\
£neg & Wilts & SP0268 \\
£neg & Wilts & SP0268 \\
£neg & Wilts & SP0268 \\
£neg & Hants & SP0281
\end{tabular}

\section*{CALL TO DISCUSS OTHER PERMANENT OPPORTUNITIES}

Latest Vacancies on Internet; http://www.cityscape./co.uk/users/ci87/index.html.

92 Broadway
Bracknell
Berks RGl2 1AR
Tel: 01344489489
Fax: 01344489505
E.Mail: cI87@cityscape.co.uk

161 Bitterne Road West Southampton
Hants SO18 1BH
Tel: 01703229094
Fax: 01703220326


TEL: 0181-422 3593. FAX: 0181-4234009

\section*{now} NOW \(\underset{\substack{\mathbb{N} \\ \text { 40th } \\ \hline}}{ }\) YEAR

DISTRIBUZIONE ASSISTENZA. ITALY: TLC RADIO, ROMA (OS) AZ7 190254

16408 serial data analyser 334A dislorion meler 3325 A tunction generator 3400A vollmeter, analogue 10 Hz -10 MHz 3456 A digital mutimeter 3552A transmission test sel 3581 C selective voltmeter 3586A selective level meter 3762A3763A data generator/error cetector, pair 4408 pAimeter, DC vollage source 415 E sw meter
4275A mutt-rtequency cr meter
432AR4865 u unave power mer waveguide \(26-40 \mathrm{GHz}\) 436 A microwave power meter ciw 8481 A detector HPIB opt 5335A 2OOMHz frequency counter w Ops 20 \& 40 5370 B universal time-inte val counter 6012A power supply \(0-60 \mathrm{~V} 0-50 \mathrm{~A} 1000 \mathrm{~W}\) 6033A System power supply 0.20 V 0.30 A 6038 A system power supply \(0-60 \mathrm{~V}-10 \mathrm{~A}\) 6253A Aual power supply 0.20V O-1A twice 64438 power supply \(0-120 \mathrm{~V} 0-2.5 \mathrm{~A}\) 6825 A bipolar power suppyyiampifier \(-20 \mathrm{~V}+20 \mathrm{~V} 0-1 \mathrm{~A}\) 8011A pulse generator 0. \(1 \mathrm{~Hz}-20 \mathrm{M} \cdot \mathrm{Hz}\) 8116A 50MHz pulse generaior 816 A sloted line \(1.8-18 \mathrm{GHz}\) with carriage 809 C and 447 B 8444A traaking generator with oplon 059 8671A synthesized signal generato: 2-6.2GHz 8672A synthe sized signal generator \(2 \cdot 18 \mathrm{GHz}\) 8673 B synthesized signal generator \(50 \mathrm{MHz}-26 \mathrm{GHz}\)
PIEASE NOTE: ALL OUR EQUIPMENTIS NOW OPERATION-VERFICATION TESTED BEFORE DESPATCH BY INDEPENDENTLABORATORY We would be pleased to handle all grades of calloration or NAMAS certification by same laboratory at cost price. All items covered by our 90 -day parts and labour guarantee and 7 -day "Right to Reftuse' (money back) warranty.
all PRICES SUbjectito adomional vat and carriage

〔500
\(£ 300\)
\(£ 1600\) 1600

\(\$ 250\) \(£ 250\)
\(£ 750\) \(£ 750\) \(£ 750\) §1250 £1000 \(£ 3250\) \(\begin{array}{r}\Sigma 2500 \\ \\ \hline\end{array}\) \(\begin{array}{r} \\ \$ 2000 \\ \hline\end{array}\) 1500 £2000 £2000 £2000 £1250 £1250 \(£ 250\) \(؟ 400\) £350 £500 \(£ 500\) §1500 \(£ 2500\) £6000 \(£ 7500\)

23561235720 MHz evel generator/meter, pair 2305 modulation analyser \(50 \mathrm{KHz}-2.3 \mathrm{GHz}\) 2828A2829 digital simulatorlanalyser 2955 mobile radio test set all sold 2955A as above with pocsag. All sold \(605 X\)-series signal sources all in range 646066421 power meter \& sensor \(10 \mathrm{MHz}-12.4 \mathrm{GHz}\) 6500 amplitude analyser ciw 2 c 6514 waveguide detectiors OA2805A pcm regeneratol test sel TF2910:4 non-linear distortion (ndee) lest sol TF2910 TV interval limer

E250
E3750
\(£ 1000\) \(£ 3000\)
\(£ 5000\)
HP8590A portable spectum analyser with npib \& H18(1.8 GHz) option \(£ 500\) HP141T 18GH2 system (85528, 8555A) HP3580A \(5 \mathrm{~Hz}-50 \mathrm{kHz}\) autio Irequency spectrum analyser HP3582A audio trequency ft analyser dua-channel HP8559A 21 GHz spen an in 853 A digital mainframe HPIB ANRITSU MS 628 1700MHz ONX 49221 GHz spectrum analyser with 0203 options (digigtal storage \& 100 Hz resolution) 1 left only £5000 TEK 495P, programmable (GPIB) 1.8 GHz portable spectrum analyser \(£ 5500\)
MARCONINSTRUMENTS


\section*{}
* TELFCDM 8 OATACOM TEST * *

HP37721A DIGITAL TRANSMISSION ANALYSERS Some basic, some with options 001/003 ...... £3250/£ 3500 * HP NETWORK ANALYSER 6GHz * * Only 1 IN STOCK, 8753C/06/010 (6GHz opt \& time domain) with 85047A 6GHz S-Parameter test set ...... \(£ 29500\)
PLEASE REQUEST OUR LATEST UPDATED STOCK LISTS. ULL EXPORT SEAVICE AVAILABLE. WE FAX LISTS \& SHIP
\begin{tabular}{|c|c|}
\hline £4000 & PHILIPS PM3264 100 MHz 4-trace oscilloscope \\
\hline & RACAL V-STORE 16, 16-channel instrumentation tape (VHS) record \\
\hline E500 & RACAL-DANA 1992 trequency counter 1.3GHz \\
\hline ¢350 & SCHLUMBERGER 1250 frequency response analyser \\
\hline \(\pm 2500\) & SYSTRON-DONNER 60548 trequency counter \(20 \mathrm{~Hz}-24 \mathrm{GHz}\) GPIB \\
\hline 5750 & TEKTRONIX 1503 tdr cable tester with printer \& battery options \\
\hline ¢750 & TEKTRONIX transistor curve tracer type 5768577 ea \\
\hline ¢500 & TAU-TRONMN302/M8302N bit error rate tester \\
\hline £250 & UHER report 4200 portable tape recorder \\
\hline 2.50 & WA YNE KERR SR268 source \& detector \\
\hline
\end{tabular}

CIRCIE NO. 144 ON REPLY CARD

\section*{ELECTRONIC UPDATE}

\section*{Contact Malcolm Wells on 0181-652 3620}

Models S2200 and 52400


24 ana gid sel programmest sion


The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

\section*{MQP ELECTRONICS LTD.}

Tel: 0666825146
Fax: 0666825141
CIRCLE NO. 145 ON REPLYCARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.


\section*{NATIONAL INSTRUMENTS 1995 CATALOGUE}

The 1995 National Instruments catalogue describes more than 900 software and hardware products. Engineers and scientists can use these to develop integrated instrumentation systems for test and measurement process monitoring and control, using industry-standard personal computers and workstations.

NATIONAL INSTRUMENTS
FOR FURTHER
INFORMATION CALL
01635523545
CIRCLE NO. 146 ON REPLY CARD


\section*{1995 MASTER PRODUCT CATALOGUE NOW OUT!}

Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems; IEEE488 (GPIB) * DIO * Timer/Counters * RS232 * RS422/485 * A/D * D/A * plus Opto Isolated versions. New Parallel/Serial RS232, Opto Dual RS232, Motion Control. Converter and Repeater for 1995!
SO 9001 Quality guarantee \(\downarrow\)
UK design and manufacture \(\downarrow\)
36 month no-quibble warranty \(\checkmark\)
Telephone hotline support \(\downarrow\)
Competitive pricing on the page \(\checkmark\) Intelligent solutions - friendly service \(\checkmark\) BRAIN BOXES
Unit 3f Wavertree Boulevard South Wavertree Technology Park Liverpool L7 9PF
CIRCLE NO. 147 ON REPLY CARD


\section*{COMPACT AND LOW} COST EPROM ERASER
- Capacity for up to five 24/28/32pin DIP devices or four 40 -pin DIP devices
- Adjustable timer: 0-60 mins
- Anti-static foam lined device drawer
- Power indicator lamp
- Safety interlock on drawer prevents accidental exposure to U-V light
Stag Programmers Limilied
Martinfield, Welwyn Garden City,
Hertfordshire AL7 IJT, UK
Tel: 0707-332148
Fax: 0707-371503
CIRCLENO. 148 ON REPLY CARD

\section*{FROM CONCEPT TO ARTWORK IN 1 DAY}


Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses REAL.TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points ind ULTICap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious nellist checking.


ULTIsh ill, the integrated user interface, makes sure all your design information is transterred correctly from ULTIcap to ULTIboard. Good manual placement tools are vital to the progress of your design, therefore ULTIthoard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further oplimise your layout.

Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CitECK will not allow you to make illegal connectiors or violate your design rules. ULTIboard's poweriul TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.
JLTIboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrix/laser or postscript prints and custom drill files.
CIRCLE NO. 101 ON REPIY CARD

ULTiboard PCB Design/ULTicap
Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacily.
The Enropean quality alternative


\title{
S4 The best by design!
}

\section*{S4'S VITAL STATISTICS:}
- Totally handheld programmer/emulator
- Fast approved programming algorithms; eg. program and verify: National 27 C512 in 16 seconds AMD 29F010 in only 90 seconds
- EPROMs to \(8 \mathrm{Mbit}, 5 \mathrm{v}, \mathbf{1 2 v}\) and BOOTBLOCK FLASH, EEPROMs and PEROMs
- Three year parts and labour guarantee
- Free next day delivery (UK only)
- 30 day trial available (UK only)
- Full 24 byte on-screen editor
- Continuous programming whilst charging (nonstop operation)
- Moulded designer case - feels as good as it looks
- Rubberised colour-coded full travel keypad
- Big, easy-view 80 character supertwist LCD
- Optional modules available to program PICs, 8751, 16-bit EPROMs, Toshiba 4-bit, Hitachi H8
Optional sockets for programming and emulating PLCC devices

S4's 32 pin ZIF socket programs a huge library of 8 \& 16bit EPROMs, EEPROMs, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms. Our free and easily updatable device library enables users to always have the latest software installed. During our sixteen years of designing and selling innovative and fast programming solutions to industry, Dataman has never charged for software updates or technical support.
Bullt In emulation enables you to see your code running before committing yourself to an EPROM. Load your program from an EPROM or download
code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM.
The S4 package comes complete with mains charger, emulation leads, organiser-style instruction manual, PC software and a three year guarantee. S4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow!

Bona-fide UK customers can try S4 for thirty days without risk. 18,000 satisfied users worldwide can't be wrong!

\section*{D \(-1 T / n d n\)}

\section*{Dataman Programmers Ltd}

Station Road, Malden Newton Dorset, DT2 OAE, UK.
Tel: 01300320719 Fax: 01300321012 Telex: 418442 BES: 01300321095 Modem: V.34N.FC/V.32bis

22 Lake Beauty Drive, Suite 101 Orlando, FL 32806, USA
Tel: (407) 649-3335 Fax: (407) 649-3310 BBS: (407) 649-3159 24hr Modem V32bls/16.8K HST```


[^0]:    EDN Designer's Companion is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant,
    Sutton, Surrey, SM2 5 AS.
    Please make cheques out to Reed Business Publishing
    Group Ltd.
    Credit card orders accepted by 'phone on 01816523614. 254pp hardback
    ISBN 0750617217
    Price $£ 25.00+£ 2.50$ UK postage, $£ 5$ Europe, $£ 8$ worldwide.

