

SEPTEMBER 1994
 $£ 1.95$

FRE.
 High

 performance Zetex power transistors**UK readers only
RF DESIGN
Direct conversion SSB receiver

REVIEW
Easy acquisition under Windows?

PC ENGINEERING Parallel port for data exchange
AUDIO
The ultimate slew rate?

APPLICATIONS
Power solutions to supply problems

Circuit design for RMS measurement

Programming Solutions

SMART Communications offer the best range of low cost programmers for your every need. Unrivalled device support includes the latest MACH, pLSI, MAPL, PIC, WSI, Atmel, Xilinx and Intel parts.

ALL-07 Universal Programmer
Pin driver expansion can drive up to 256 pins.
Supports over $2000 \mathrm{Jl}^{\prime}$'s -3 and 5 volt devices.
EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs up to 16 Mbits parts, over 150 Microcontrollers and PLDs, EPLDs, PEELs, PALs, GALs, FPGAs etc...
Universal DIL (up to 48 pins), PLCC and gang PACs

- significantly reduces the number of adapters required.

Powerful full colour menu system.
Connects to the pc printer port with its own power supply. Latest programming algorithms.
Tests TTL, CMOS and SRAM devices

- even identifies unknown parts.

Approved by AMD for their range of programmable logic.
£595

EMP-20 Multi-Device Programmer

EPROMs, E2PROMs, Flash, Serial EPROMs to 16 Mbits. PLDs, GALs, PEELs, WSI PSDs. Intel, Microchip, Motorola and Zilog Microcontrollers. Fast programming algorithms.
$£ 325$

Erasers \& pin convertors

AT-701 - Chiprase
Ultra-violet eraser. Very compact 16 chip capacity Built in timer

Pin convertors

from DIL to
PLCC, SOP, SOLC etc...

from $£ 50$

PB-10 Programmer

Low cost programmer.
EPROMs, E2PROMs, Flash and 8748/8751.
Fast programming algorithms.
Simple but powerful menu driven software.

£139

SMART Communications have a full range of dedicated programmers for the Microchip PIC range of microcontrollers - both single and gang for DIL and SOIC variants.

We also supply a wide range of development tools - Assemblers, Compilers, Simulators and Emulators - for a wide range of microprocessors, especially the Microchip range. Our ROM emulators start at just $£ 99$.

CONTENTS

FEATURES

READING RMS................. 719
Metering sine-wave amplituces is easy but estimating the true value of a complex waveform is fraught with difficulties particularly at higher frequencies. We look at devices aimed at simplifying the task.

THE OPTICAL TECHNOLOGY DRIVE
735
Both worm and rewritable optical disks can now hold up to 1.5 Gbyte , and the technology is becoming much more accessible as prices fall. Martin Eccles looks at three frequently used media types.

NEW-WAVE MICROWAVES 736
Mike Hosking examines the fascinating world of microwave tuning, which involves ferrites and ceramics that are of little use at lower frequencies.

DIRECT-CONVERSION SSB RECEIVER
Direct conversion reception is producing alternatives to expensive and bulky components. Frank Dorey shares his SSB development board - the principles of which can be adopted for other applications.

LIGHTING SWITCHES .752
Performance of medium-power switching transistors -
such as those presented free on this month's cover - is now so high that it is possible to make tiny fluorescent lamp drivers with around 90% efficiency. Martin Eccles looks at how.

REAL-WORLD CONTROL VIA LPT.................... 755
Implementing i/o via PC expansion slots produces versatile but complex and relatively expensive results. For many simple tasks, the Centronics port can be more than adequate, as John Davies describes.

HIGH-SPEED AUDIO POWER .760
Although not wholly convinced of the merits, Doug Self embarked on the task of designing an audio power amplifier with a high slew rate. At first, the job seemed an easy one.

RF TRANSISTORS

Compensation terms and networks: Norm Dye and Helge Granberg show how frequency affects the way that impedance compensation networks are designed and why negative feedback is so effective.

RIPPLES IN THE ETHER .778
In 1894, Marconi, embarked on research that enabled the world to take the first steps towards modern communications. John Powell Riley pinpoints the key moments in the life of this genius.

COMMENT

.707

The sound of indifference.
UPDATE .708

RESEARCH NOTES

713
Thunderstorms that rain gamma rays, Do memory systems forget civil liberties, Babbling helps make sense of cerebral palsy, Joint approach finds new solder approach, Hard rain, Filters tune with fuzzy logic,
Neural nets put the squeeze on moving pictures.

PC ENGINEERING

 .725Although not a real-time operating system in itself, Windows provides an ideal graphical user interface to process-control type platforms. Allen-brown looks at Visual Designer - a PC data acquisition package.

DESIGN BRIEF

 730The golden ratio, e, pi, $(\sqrt{ } 5+1) / 2$, tossing a coin? Ian Hickman investigates the relevance of magic numbers to modern electronics.

[^0]NEW PRODUCTS ... 767
Comprehensive round-up of the industry's new products, presented in the industry's most readable format.

Your free transistors

The two high-performance Zetex transistors, presented free to UK readers on this month's front cover, are detailed on page 752 .

CIRCUIT IDEAS

Capacitive fluid-level detector, VFO uses a single current-mode IC, Power isolator, Micropower logic coupler, Switched-mode constant-current charger, Mosfet stabilises Wien amplitude, Simple servo, Gatevoltage generator.

LETTERS

 787Objective assessment, Quantified listening pleasure, Simpler circuit, Amp designers top ten, No military/civil distinction, Where is non-magnetic power? Hall's well that ends well, Old radio club, c change? Dying light, Bad references, Clock mechanism, Private progress - public property, Two wrongs...?

PROGRAM 8

 CHIPS IN THE TIME IT TAKES FOR ONE!At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 827 COlO 's mean your throughput can now be faster than ever before.

CIRCLE NO. 103 ON REPLY CARD

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

CIRCLE NO. 104 ON REPLY CARD

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$.

CIRCLE NO. 105 ON REPLY CARD
DISTRIBUTORS
BENELUX: + 3255313737;
CYPRUS: 02485378 ;
DENMARK: 04814।885:
FINLAND: 070039000;
FRANCE: 0139899622 ;
GERMANY: 060827421615;
GREECE: 0190201I5;
ITALY: 0245784I;
JAPAN: 053865501
NORWAY: 063840007;
SINGAPORE: 04831691;
SOUTH AFRICA: 011974121 I/I521;
SPAIN: 013270614
USA: Distributors required.

FREE SOFTWARE UPGRADES! KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0)$ 1226761181, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.

CIRCLE NO. 106 ON REPLY CARD

AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!

The latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3 V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,
making them flexible enough whatever your programming needs.
Not only that, as new devices come onto the market we give free software upgrades and the units' modular design, with easy upgrade path, protects your investment.

Available now and priced from £495 they are everything you'll need for programming, chiptesting and ROM emulation.

FEATURES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.

FREE software device support upgrades via bulletin board.

- Next day delivery.

CIRCLE NO. 107 ON REPLY CARD

Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89C51, 87C751, MC68HC705, ST6, Z86 etc.
$£ 625$

8 bit Emulator card

Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 8$.

$£ 125$
 16 bit Emulator card

Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.

£195

Call now to place your order, for more details or a free demo disk, 8 or call our bulletin board to download the latest demo Alternatively clip the coupon or circle the reply number.
\qquad

[^1] South Yorkshire, S30 6HG, UK.
$\mathrm{Tel}+44(0) 1226767444$, Fax $+44(0) 1226370434$, BBS $+44(0) 1226761181$

EDITOR

Frank Ogden
081-6523128

DEPUTY EDITOR

Martin Eccles
081-652 8638

CONSULTANT

Derek Rowe
DESIGN \& PRODUCTION
Alan Kerr
editorial
ADMINISTRATION
Jackie Lowe
081-652 3614

ADVERTISEMENT

MAN'NAGER
Richard Napier
081-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-6523620

ADVERTISING

PRODUCTION
Paul Burgess
081-6528355
PUBLISHER
Susan Downey
EDITORIAL FAX
081-6528956
CLASSIFIED FAX
081-652 8956

SUBSCRIPTION

HOTLINE
0622721666
Quote ref INJ
SUBSCRIPTION QUERIES
0444445566
NEWSTRADE
DISTRIBUTION
Martin Parr
0816528171

BACK ISSUES

Available at $£ 2.50$
0816523614
ISSN 0959-8332

The sound of indifference

t is now five years since the nicam television stereo sound system first entered public service. Currently only about 20 per cent of all sets sold are equipped to receive stereo transmissions.
Those of us who have a nicam set will testify to the stunning quality available on ITV and Channel 4 sound tracks. They invariably demonstrate a crystal clear spatial sound image - particularly in drama productions which adds immeasurably to programme enjoyment.
I would go so far as to say that the attention which production staff put into sound quality exceeds that of most radio programmes, more noticeably so when played through a good pair of speakers separated physically from the television.
Most people would never know this The television companies have done virtually no promotion on the nicam system. For those with long mernories, compare situation to the publicity which surrounded the launch of the colour service nearly 30 years ago.
I personally have never heard a BBC nicam sound transmission but I am sure that it would be equally good: the transmitter which serves our area will not be delivering a nicam service for at least another ten years.
If you talk to broadcasters - particularly the BBC - they will tell you that they simply don't have the money to adapt transmitters in service to radiate the extra subcarrier signal.
They can only afford to equip for stereo sound when station equipment naturally comes up for replacement. In the meantime, the below-the-line policy is not to mention this service so that people who are being forced to wait for decades "won't get jealous" in the words of one Corporalion person.
The reticence of the of the independent
television companies is harder to understand. One would have thought that one company or region would have made whatever competitive capital it could out of the enhanced sound service. Perhaps they feel that their viewers are too stupid to appreciate sound quality and that they don't want the advertisers to know.
Either way, nicam offers benefits to viewers and licence payers which most will never appreciate. This is ironic since the BBC played a major role in the design of this most excellent system.
One understands the pressures from the political agenda which broadcasters face; the process leading up to publication of the recent White Paper on the future of the BBC must have put all forms of capital expenditure on hold. Its publication should have cleared the air but reports coming from inside the Corporation suggest that financial easement will benefit programmes rather than engineering development.
Even though the Corporation has produced world class technical developments, continued financial constraint is likely to prevent these entering service. Thus when it makes pronouncements on such things as digital audio broadcasting or DVB, no one should take it seriously, least of all the setmakers who would otherwise invest heavily in new design and production. This is a great shame because it stunts development of a much wider electronics industry infrastructure. When the Government allowed the renewal of the Corporation's charter on largely unchanged terms, it missed an opportunity to enable the BBC to participate in the future development of broadcasting. This is far more important than it might appear.

Frank Ogden.

Electronics Wortd + Wireless World is published monthly. By post current issut $\uparrow 25$, back issues (it availabe) $¢ 250$ post, curn issur Orders, payments and general correspondence t) L333, Electronics Wort + Wireless World, Quadran: House, The Quadrant, Suttor, £urrey SM2 5AS. T|x:89298\&REED BP G. Cheques should te nade payable to Reed Busiress Publishing Group
Newstrade: Distr bu'ed by Marketforce (UK) Lid, 247 Tottenham C Jur. Road London W1P OAU O71 261-5555. Subscriptions: Cuadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444445566 . Please notify change of address. Subscription rates 1 year (normal rate) 530 UK and £43 outside UK.
USA: $\$ 52.00$ airrrail Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

Oversess advertising agents: France and Belgium: Pierre Mussard 18-20 Place de la Madeleine, Paris 75008. United States or America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 4 2nd Street, NY 10117. Telephone (212) 867-2080. TIx 2382 E.
USA ma ling agents: Mercury Airfreight International Ltd Inc, 10(b) Erglehard Ave, Avenel NJ 07001. 2nd class postage paid at Fahway NJ Postmaster. Send address changes to above.
Printed sy BPCC Magazines (Carlisle) Ltd, Newtown Trading
Estate, Carlisle. Cumbria, CA2 7NR
Typeset כy Marlin Graphics 2-4 Powerscrof: Road, Sidcup, Kent DA」450T
©Reed Business Publishing Ltd 1992 ISSN 09598332

Widescreen television for UK

After fifty years of watching box-shaped tv screens, British tv viewers will now get the chance to receive wide-screen broadcasts. On new tv sets these will give clearer pictures of shape similar to a cinema screen. But a deep-rooted policy difference between the BBC and commercial tv stations means that viewers will have to chose between two different
transmission technologies, or buy two different wide screen reception systems.
The commercial tv stations will use an analogue system called PALplus which builds on the existing PAL tv system used in Europe and Australia and will be ready this year. The BBC will wait three years and use all-digital technology which is not yet ready.

The BBC's digital wide-screen programmes will be completely separate from its analogue channels BBCl and BBC , use spare frequencies which are sloted between them, and be wholly incompatible with all existing sets. The Department of National Heritage recently cleared the way for this in its White Paper, The Future of the BBC. Viewers who

Pressure on for better engine management

n an internal combustion engine, nitrogenoxide and carbon-dioxide pollutants can be minimised by increasing the air to fuel ratio for the engine.

Running at a much higher air to fuel ratio dramatically reduces these emissions but at the same time will increase the chances of misfiring which in itself increases emissions

of unburnt fuel
To minimise this effect, Toyota has developed a pressure sensor that fits in a vehicle's combustion chamber enabling the engine management system to detect misfiring and adjust the vehicle's air to fuel ratio accordingly, thus controlling the airpolluting nitrogen-oxide emissions.
"I was there in Japan at Toyota and saw the sensor. We even tested it for research purposes. It is more or less used for misfiring detection and it works close to the lean burn engine limit," said Rolf Kuratle, a product manager for combustion engine measurements at the Swiss firm Kistler Instruments which develops and manufactures automotive electronics.
Toyota claims that this is the first combustion chamber pressure sensor in the world to be mass-produced as an automotive part. It has been fitted in the Toyota Carina E , at the moment only available in Japan.
This sensor cannot be retrofitted in a car but it looks set to become an integral part of future car engines.
"In theory this is fine," said Peter Lanscott, a representative of Kistler Instruments UK. "But it is very expensive.

> A Kawasaki GPX750R motorcycle engine undergoing high-speed combustion analysis $10,500 \mathrm{rev} / \mathrm{min}$ - at Ricardo, the Shoreham based research, development and consulting organisation. Readings for the Toyota pressure sensor are averaged over several engine cycles.
want to receive the new programmes will have to buy a new wide-screen tv set, with digital decoder. Everyone else will continue to watch BBCl and
$B B C 2$, as normal, on their existing PAL sets.

Commercial station Channel
Four wants to get in earlier and will this October start wide screen broadcasting with analogue PALplus. Granada has confirmed it will start PALplus transmission before the end of the year Viewers with PALplus sets see pictures which are not just wider than normal, but clearer too, with more fine detail and fewer artefacts like spurious colour patterns on check jackets. Viewers with existing PAL tv sets receive the same programmes, but they will see them in letterbox format, with a black border at the top and bottom of the screen
PALplus was developed by a consortium of European
electronics companies and broadcasters. Work is a year ahead of schedule and electronies company Nokia of Finland will have wide-screen tv sets with built-in PAL-plus decoders ready for sale for 1300 pounds this October.
A conventional PAL tv picture, of $4: 3$ boxy aspect ratio, is built from 625 horizontal scanning lines. Of these, 576 are "active" lines which are used to trace the picture on the screen. The other 49 lines define the black borders which are largely lost off the top and bottom of the screen
With PALplus, the programme is broadcast in wide-screen $16: 9$ aspect ratio, using 432 active lines. The other 144 lines appear as thick black bars at the top and bottom of a $4: 3$ screen. A PALplus tv set with wide-screen picture tube expands this letterbox image to fill the full screen. So the expanded image is built from only

432 lines instead of 576 , and would, without extra tricks, look very coarse.
A PALplus tv set rebuilds the lost resolution by using an analogue "helper" signal which conveys high frequency, fine picture detail. This helper is buried in the $I \not 44$ black border lines for transmission.
The helper is generated before transmission, by equipment which separates the active picture lines into groups of four, and then converts each of these groups into a group of three picture lines plus one helper line. PALplus widescreen sets combine the helper lines with their corresponding three-line groups, to reconstitute the groups of four lines. The receiver needs 6 M -bytes of computer memory to do thi';

Channel 4 says it will transmit 500 hours of wide-screen materia before the end of 1905

Damages for multipath viewers

$V_{\text {iewers whose tv }}^{\text {ien }} \begin{aligned} & \text { ictures have been }\end{aligned}$ spoiled by the erection of a tall building in the path of the transmitter have been anxiously awaiting the result of a recent High Court action. Seven hundred people in East London put their names on a writ which claims damages from Canary Wharf Limited, owners of the Tower in Docklands which blocked their tv signals. These viewers now have their pictures back, thanks to a secondary transmitter built by the $B B C$, and are suing for at least two lost years. BF

We developed transducers for the MercedesBenz engine that won the championship in 1990 at Le Mans and it was expensive."
Although Toyota sensor's prime objective is to keep the nitrogen-oxide emissions low, it also improves fuel consumption without affecting vehicle performance, and therefore lengthens engine life
To reduce the nitrogen-oxide levels,
Toyota engineers introduced feedback into the control loop between the combustion chamber and the air intake manifold. The pressure sensor and the in-vehicle computer form an advanced engine management system.
It Is in the air intake manifold that the air to fuel ratio is increased close to the ideal ratio of an advanced lean-burn combustion engine which is $24: 1$ (compared to $14: 1$ ratio in an average petrol engine).

This in itself has proved difficult for the Toyota engineers to achieve, as increasing the air to fuel ratio means that optimal functioning and stability of the engine is difficult to maintain.

The pressure fluctuations in the combustion chamber, usually a sign of an unstable engine, are sensed and several consecutive readings are taken .by the invehicle computer which enables adjustments to the air to fuel ratio to be made.
"It is very dangerous to keep adjusting this ratio after every reading taken in the combustion chamber. That's why a few readings are taken and the amount of adjustment needed statistically calculated," said Katsuhito Hirose, the assistant manager at the homologation and research department at the Toyota Motor Company Europe in Brussels.

Two devices were suitable for use as
combustion chamber pressure sensors appropriate for the vehicle environment. One was a sensor made of a piezoelectric material, PZT ceramic
chamber pressure sensors appropriate for the vehicle environment. One was a sensor made of a piezoelectric material, $\mathrm{P} \sim \mathrm{T}$ ceramic (lead-zirconium-titanate), and the other made of a single silicon crystal.
The single silicon crystal was chosen due to its superior mechanical properties, such as thermostability and durability, and its immunity to electrical noise. The silicon crystal can achieve toughness against large stresses, and accuracy at high temperatures.
Silicon also has a high piezoresistive coefficient (the ratio of electric resistivity to applied stress).
The combustion pressure sensor is installed directly into the vehicle's engine and consists of a pressure detecting part which converts stress into force, a force detector, which converts the force into electric signals and a built-in amplifier which suppresses noise

A key part is the force detector which works on the basis of the piezoresistive effect. In this case Toyota has used a piezoresistive material whose directions of force, driving current and detecting electric field are perpendicular to one another.
The force detector, of a size $1.7 \times 1.7 \times$ 1.9 mm , consists of a metal hemisphere, a transmission block, a silicon chip, and a base block. The metal hemisphere rests over the force transmission block, which is placed over the silicon chip and the base block. A hemisphere design was chosen due to the fact that force is equally distributed in all directions over the silicon chip.

The silicon chip is p-type with diffused
boron atoms. On the chip's surface two pairs of electrodes are connected to each other in a perpendicular manner. The electrodes are there to supply the driving current (input electrodes) and to detect the voltage (output electrodes).
The input and output electrodes' lengths, positions and impedances are important for the detector as they influence its sensitivity.
By experimenting, Toyota's optimal figures for the output electrodes' length are in the range of 50 to $100 \mu \mathrm{~m}$ and the length of the input electrodes should be equal to the width of the force impressed area.
The force transmission block and the base block are made of devitrified glass, which is a material doped with impurities to gain a multi crystal structure. This makes it suitable for electrostatic bonding with a thermal expansion coefficient close to that of silicon.

The detector is driven by a dc voltage. The driving current flows throughout the silicon chip and the electric potential is distributed on its surface.

The output voltages, proportional to the applied force, are detected between the output electrodes as a differential potential.
The force is applied to the top of the detector. When no force is applied, the output voltage is nearly equal to zero. A metal diaphragm converts the combustion pressure into the force which is transmitted to the force detector by a transmission rod.

The output amplifier consists of an opamp integrated into the silicon wafer in order to minimise the effects of electrical noise picked up by the cabling between the sensor and the in-vehicle computer. This noise is of the order of several millivolts. Svetlana Josefana, Electronics Weekly

Next generation of wafers set at 12in

TThe next generation of silicon wafer size has been fixed at 12 in . at a closed door meeting between major non-Japanese chip users and equipment suppliers at the Semicon West exhibition held in San Francisco last week.
But the Japanese Ministry of Trade and Industry (MITI) has proposed that an international consortium should be formed involving German. US and Japanese chip makers to work together on the next-but-one wafer size - 16 in . To make sure that Japanese companies have a major say in it, MITI is offering to put up 70% of the $\$ 176 \mathrm{~m}$ estimated cost.
The 12 in decision, which has the support of the US government-backed semiconductor consortium Sematech, is also
supported by Europe`s Joint European Submicron Silicon Initiative, whose representatives attended the meeting
Ten-inch wafers were rejected because they would only give a 56% increase in area over today's 8 in wafers, whereas 12 in wafers give a 125% increase.
But the decision has not met with universal approval. Most Japanese companies are still trying to fully utilise their 8in wafer fabs. The world's largest supplier of wafer fab equipment. Applied Materials, would have liked to have seen the industry agree on 14 in wafers - such a move could have squeezed out smaller equipment manufacturers.
Paul Gregg, Electronics Weekly

Dummies with intelligent heads. An element of a new range of crash-test dummies from Vector Research is a new magnetohydrodynamic sensor from Endevco. It measures angular rate to help in the assessment of head injury criteria.

Pentium prices will plummet

 ntel is planning to slash the price of its Pentium microprocessors by up to 50% as it fights According to documents leaked from Intel, it will cut the price of Pentium chips by between 35 per cent and 50 per cent over the next nine months.As predicted in Electronics Weekly last month, the Pentium price cuis are much sharper than Intel's standard price cutting strategy for previous microprocessor lines such as the 386 and 486 , where prices fell only 25 per cent per year.
Intel's plans for the fourth quarter of this year call for the 60 MHz Pentium microprocessor to fall in price to below $\$ 400$ compared to its recently cut price of $\$ 575$. The price of the 90 MHz Pentium will fall to around $\$ 600$.
By the second quarter of $1995,100 \mathrm{MHz}$ Pentium prices will be reduced and the 486DX4 will replace the 486DX2. The 75 MHz Pentium will then replace the 60 MHz Pentium at the same price point.
The steeper price cuts represent a potentially dangerous strategy for Intel since Pentium microprocessors are more expensive to make than rival high end 486 or Risc microprocessors and Intel risks losing profits needed for future investment.

Play time... US chip firm LSI Logic has unveiled pictures of the central processing unit it has designed jointly with Sony for the Japanese firm's Playstation video game machine. Based around a 32 bit Mips Risc microprocessor, the CPU also has a 3D graphics engine and a full-motion video decoder based on the JPEG standard. Sony plans to launch the Playstation, which will run software delivered on CD-ROMs, in Japan later this year, followed by a US launch in 1995.

Sony MiniDisc in computer data storage challenge

Sony is launching its MiniDisc audio technology as a data storage format which it hopes will replace the 3.5 in . floppy disc.
The move, announced at last month^s PC Expo show in New York, is part of a drive to establish Sony as a major branded computer peripherals supplier, spearheaded by products based on two of its most famous technologies: MiniDisc and its Trinitron colour ty tube.
Sony"s MiniDisc re-recordable disc technology was developed as a replacement
for the compact cassette in the audio market. Each magneto-optical disc, measuring jus: 2.5 in . in diameter, can store 140 Mbytes .

Sony said several major computer makers. including IBM, are interested in integrating MD drives into their portable machines. But initial versions are too high and so will be sold as standalone peripherals.
Sony also launched Trinitron 15 in and 20 in computer monitors.
Sony already makes unbranded computer peripherals for other computer companies. It hopes to cash in on this expertise and on its
strong brand recognition in the consumer market.
At the press conference to announce the peripherals move. Sony also gave the first public glimpse of the personal digital assistant it plans to launch next year. The prototype pen-based device is based on a Motorola processor. It has an internal modem but no wireless communications capabilities. Sony said it will make further announcements about the device in September.

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM NG2 3GY TEL: (0602) 864902 \& 864041 FAX: (0602) 864667

ACCESSORIES
8443A Tracking Generator Counter (110Mhz).....£300
8445B Tracking Pre-Selector.....£450
8445B Tracking Pre Selector with Digital Readout
(opt 002-003).....£750

TEK 492P Spectrum Analyser
$50 \mathrm{Khz}-21 \mathrm{Ghz} 1 \mathrm{Khz}$ resolution IEEE (GPIB) option fitted One Only Left - Mint Condition - $£ 4750$

ONE MONTH ONLY SPECIAL OFFERS
HP5328A 8 Digit DFM with DVM \& GPIB.....£275
RACAL DANA 1991 Prog-Universal Counter (opt 04T-10-55) TXO+GPIB fitted.....£295
Racal Dana 99047 Digit Universal Counters.....£65
Marconi TF2438 8 Digit Universal Counters 520Mhz.....£145
TEK 5113 Dual Beam Storage Scopes 2Mhz.....£475
Kikusui DSS6520 Digital Storage Scopes 20Mhz.....£495
TEK 1240 Logic Analysers 100 Mhz incl 2 Pods..... $£ 499$ HP1640B Serial Data Analyser 50-9600 bd RS232.....£150

TEK 834 Prog Data Comms Tester RS232.....£150
FARNELL DSG2M Synthesised Precision Signal Generators
$0.001 \mathrm{hz}-110 \mathrm{Khz} 50 \mathrm{r} 300$ GPIB Sweep..... $£ 125$
KEMO VBF/3 Dual Variable Filters $0.1 \mathrm{~Hz}-10 \mathrm{Khz} £ 75$
KEMO DP1 Digital Phase Meters..... $£ 75$
SAYROSA 252P Automatic Modulation Meters 50Khz-2.5Ghz.....£125
HP 8015A 50Mhz Dual Pulse Gens.....£125
HP 8005B 20Mhz Dual Pulse Gens..... $£ 95$
Ormandy \& Strollery Digital Wattmeter 0-10Kw @ 0-375V
110 v operation 3.5 digit LED - ONE ONLY.....£195

NOW OPEN SEVEN DAYS A WEEK
Monday to Friday: 9.00 am to 6.00 pm Saturday: 8.00 am to 4.00 pm SUNDAY: 10.00 am to $\mathbf{4 . 0 0} \mathrm{pm}$
All prices excluding VAT \& carriage.

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED

HP141T + 8552A or BIF - 8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF $£ 600$ or B IF - $£ 700$.
HP141T + 8552A or B IF - 8554B RF - $100 \mathrm{kHz}-$ $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or BIF- $£ 900$.
HP141T + 8552A or B IF -8555A RF - $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T +8552 A or BIF - 8556A RF $-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS
 aVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200 - 8552B IF-£300-8553B RF-1kHz-110Mc/s-£200-8554B $\mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{~A}$ RF-20HZ-300KHZ-£250.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}-\mathrm{£} 300-£ 400$.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400-$ £600 or HP8445A - £250.
HP8444A Tracking Generator - $£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator - $£ 1000-1500 \mathrm{Mc} / \mathrm{s}$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553 B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $£ 700$.

Marconi TF2008-AM-FM signal generator-also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from C 250 - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
HP Frequency comb generator type 8406 - $£ 400$.
HP Vector Voltmeter type 8405A-E400 to E600- old or new colour.
HP Sweep Oscillators type 8690 A \& B +
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also 1840 GHz . P. O.R
 HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200-\mathrm{HP} 8447 \mathrm{~F}$. $1-1300 \mathrm{Mc} / \mathrm{s} £ 400$ HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} \mathrm{£} 1000$ - rear output $£ 800$
HP 8410 - A - B - C Network Analyzer 110MC/s to 12GHz or 18 GHz - plus most other units and displays used in this set-u
$8746-8650$. From f 1000 .
Racal/Dana 9301A - 9302 RF Millivoltmeter-1.5-2GHz- $\mathbf{f 2 5 0 - f 4 0 0}$
Racal/Dana Counters 9915M -9916-9917-9921- f150 to £450. Fitted FX standards
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$.
Marconi RCL Bridge type TF2700- f 150.
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A-6057A - 6056 £250-£350. $400 \mathrm{Mc} /$ s to 18 GHz .
Marconi TF1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $\mathbf{f 1 0 0 - f 3 0 0}$
Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-265$ $40 \mathrm{GHz}-£ 1000$ or Pl only $£ 600$. MF only $£ 250$
Marconi distortion meter type TF2331- £150. TF2331A - 200
ektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S
-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-0C503-DC508 -SG504 - DC503 -DC508 - DD501
Gould J3B test oscillator + manual - 2200 PG02 - DC505A - FG504-7B80 + 85-7B92A
Tektronix Mainframes -7603-7623A - 7613-7704A - 7844-7904 - TM501 - TM503 - TM506 7904-7834-7104-7623-7633.
Alltech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - $\mathbf{E 2 0 0 0}$.
Marconi 6155 A Signal Source - 1 to 2 GHz - LED readout - $£ 400$.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $\mathbf{£ 1 5 0}$
Marconi TF2163S attenuator -1 GHz f 200
Marconi TF2163S attenuator-1GHz. 2200
Farnell power unit H60/50-£400 tested. H60/25-£250
Racal/Dana 9300 RMS voltmeter - $£ 250$
Racal/Dana 9300 RMS voltmeter- $£ 250$.
Marconi TF2330 - or TF2330A wave anthly
Racal/Dana signal generator $9082-1.5-520 \mathrm{M}$ - $£ 100-\mathrm{f} 150$
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathbf{f} 600$
Tektronix - 7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
Marconi mod meters type TF2304-£250.
HP 5065A rubidrum vapour FX standard- $\mathbf{E 2 . 5 k}$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$-LED readout - $\mathbf{f} 1 \mathrm{k}$.
Racal/Dana 9083 signal source - two tone- $\mathbf{f} 250$.
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner - signal generator 1702 -synthesized to 1 GHz -AM/FM - f600
Tektronix TM515 mainframe + TM5006 mainframe - $£ 450$ - $£ 850$.
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - $\mathbf{2} 250-\mathbf{f 6 0 0}$
Farnall electronic load type RB1030-35- E350.
Racal/Dana counters - 9904 - $9905-9906-9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-\mathbf{3 G H z}-\mathbf{5 1 0 0}$ £450-all fitted with FX standards.
HP4815A RF vector impedance meter c/w probe - f500-f600.
Marconi TF2092 noise receiver. A, B or C plus filters - $\mathbf{f 1 0 0 - \mathrm { f } 3 5 0}$

Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$
HP180TR, HP $182 T$ mainframes $£ 300-\mathrm{f} 500$
Fuke 8506A thermal RMS digital multimeter. $£ 400$ Philips panoramic receiver type PM7900-1 to $20 \mathrm{GHz}-£ 400$
Marconi 6700 A sweep oscillator $+6730 \mathrm{~A}-1$ to $2 \mathrm{GHz}-£ 500$
HP8505A network ANZ + 8503A S parameter test set +8501 A normalizer - f 4 k
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter
type 527 E + rubidium standard type $9475-\mathbf{E 2 7 5 0}$
HP signal
HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP $432 \mathrm{~A}-435 \mathrm{~A}$ or $\mathrm{B}-436 \mathrm{~A}$ - power meters + powerheads $-\mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}-\mathbf{f} 200-\mathbf{f} 1000$
HP 432A-435A or B-436A - power meters + p
Bradley osciloscope calibrator type $192-\mathbf{f 6 0 0}$.
Bradley osciiloscope calibrator type $192-\mathbf{f 6 0 0}$.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathbf{s}$ + high pass + low pass - $\mathbf{E 1 5 0}$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{KC} / \mathrm{s}+$
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}-£ 900$.
Marconi TF2370 spectrum ANZ + TK2375 FX extender 1250Mc/s + 1st gen -f1.5k
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour f 400 .
HP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}-£ 1500$.
HP 3336 A or B syn level generator - $£ 500-\mathrm{f} 600$.
HP 3586B or C selective level meter - $£ 750-\mathrm{f} 1000$
HP 3575A gain phase meter 1 Hz - $13 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 400$
HP 8671A syn microwave $2-6.2 \mathrm{GHz}$ - f2k
HP 8683D S/G microwave 2.3-13GHz-opt 001 -003-£4.5k
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. $\mathrm{AM}+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} P 1-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 750-\mathrm{f} 2800$.
HP 8640B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or $003-\mathrm{fB00} \mathrm{f} 1250$
HP 8656A S/G AM-FM $0.1-990 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1500$.
HP 8622B Sweep Pl-01-2.4GHz + ATT - 11750
HP 8629A Sweep PI-2-18GHz-£1000.
HP 86290 B Sweep PI $-2-18 \mathrm{GHz}-\mathrm{f} 1250$
HP 86 Series PI's in stock-splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-\mathrm{f} 1 \mathrm{k}$.
HP 8620C Mainframe - f 250 . IEEE - $\mathbf{f 5 0 0}$.
HP 8615A Programmable signal source - 1 MHz - $50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - $£ 1 \mathrm{k}$
HP 8601A Sweep generator . $1-110 \mathrm{Mc} / \mathrm{s}$ - E 300 .
HP 4261A LCR meter +16038 A test leads $-\mathbf{f 4 0 0}$
HP 4271B LCR meter 1 MHz digital meter +16063 A test adaptor - f850.
HP 4342 A Q meter $22 \mathrm{kHz}-70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}+$ qty of 10 inductors - $\mathbf{f 8 5 0}$
HP 3488A HP-IB switch control unit - $£ 500+$ control modules various - $£ 175$ each
HP 3561A Dynamic signal ANZ - £3k.
HP 8160A 50Mc/s programmable pulse generator - $\mathbf{f 1 4 0 0}$
HP 853A MF ANZ $+8558 B-0.1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 2500$
HP 8349A Microwave Amp 2-20GHz Solid state- $\mathbf{f} 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 4 \mathrm{k}$
HP 8569B Analyser $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 3580 A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$.
HP 1980 Oscilloscope measurement system- $£ 600$.
HP 3455A Digital voltmeter - $£ 500$.
HP 3437A Systern voltmeter- $£ 300$.
HP 3581C Selective voltmeter- E 500 .
HP 5370A Universal time interval counter- $£ 450$
HP 5328A Universal counter - $200 \mathrm{Mc} / \mathrm{s}$ - E 500
HP 6034A Systern power supply-0-60V-0-10 amps - $£ 500$
HP 3960A 3964 instrumentation tape recorders - $\mathbf{f 3 0 0}$-f500.
HP 5150 A Thermal printer - $£ 250$.
HP 1645A Data error analyser - E150.
HP 4437A Attenuator- $\mathbf{E 1 5 0}$.
HP $3717 \mathrm{~A} 70 \mathrm{Ma} / \mathrm{s}$ modulator - f 400.
HP 3710A - 3715A-3716A-3702B-3703B-3705A-3711A-3791B-3712A-3793B microwave link analyser - P.O.R.
HP 3730A + B RF down converter - P.O.R
HP 3730A + B RF down converter - P. O.
HP 3552A Transmission test set - f 400 .
HP 3552A Transmission test set-£40
HP 3764A Digital transmission
HP 3770A Amp delay distortion analyser - $£ 400$.
HP 3780A Pattern generator detector - $\mathbf{£ 4 0 0}$.
HP 3781 A Pattern generator - $\mathbf{E 4 0 0}$.
HP 37818 Pattern generator (bell)- $£ 300$
HP 3782A Error detector-f400.
HP 37828 Error detector (bell)- $£ 300$.
HP 3785A Jitter generator + receiver- $£ 750-\mathrm{f} 1 \mathrm{k}$
HP 8006A Word generator -
HP 8006A Word generator - £100-E150.
HP 8016A Word generator - $\mathbf{f 2 5 0}$.
HP 8170A Logic pattern generator - f 500
HP 59401A Bus system analyser - $\mathbf{f 3 5 0}$
HP 59500A Multiprogrammer HP - IB - $£ 300$
Philips PM5390 RF syn -0.1 - $1 \mathrm{GHz}-$ AM + FM $-£ 1250$
Philips PM5519 Colour T.V. pattern generator - E 250
S.A. Spectral Dynamics SD 345 spectrascope 111 - LF ANZ - $£ 2500$

Tektronix R7912 Transient waveform digitizer - programmable - $\mathbf{f 4 0 0}$
Tektronix 496 Analyzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}-£ 3.5 \mathrm{k}$
Tektronix TR503 + TM503 tracking generator 0.1 - 1.8 GHz - £1k - or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$
Tektronix 577 Curve tracer + adaptors - $£ 900$
Tektronix 577 Curve tracer + adaptors - $\mathbf{£ 9 0 0}$
Tektronix 7 LL LF analyser - $0-5 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 800$. OPT $25-£ 1000$
Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$.
Tektronix SC501 - SC502-SC503 - SC504 oscilloscopes - $£ 75$ - 1350
Tektronix 465-465B-475-2213A -2215-2225-2235-2245-2246-E250-£ 1000
Kikusui 100Mc/s Oscilloscope COS6100M - £350
Farnell PSG520 Signal generator - $£ 400$
Nicolet 3091 LF oscilloscope- $£ 1000$.
Racal 1991-1992-1988-1300Mc/s counters - $£ 500-£ 900$
Tek 2445 150Mc/s oscilloscope- $£ 1400$.
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - BN- f 100 .
Racal Recorders-Store 4-4D-7-14 channels in stock-£250-£500.
Racal Store Horse Recorder \& control - $£ 400-£ 750$ Tested.
EIP 545 microwave 18 GHz counter - $£ 1200$.
Fluke 510 A AC ref standard - $\mathbf{4 0 0 \mathrm { Hz } - £ 2 0 0}$
Fluke 355A DC voltage standard - $£ 300$.
Schlumberger 5229 Oscilloscope- $500 \mathrm{Mc} / \mathrm{s}$ - f 500 .
Solartron 1170 FX response ANZ - LED dislay - £280.
Wittron 610 D Sweep Generator $+6124 \mathrm{CPl}-4-8 \mathrm{GHz}-£ 400$
Witron 610 D Seep Generator $+6124 \mathrm{CPI}-4-8 \mathrm{GHz}-\mathbf{f 4 0 0}$.
Wiltron 610 D Seep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 00$
Wittron 610 D Sweep Generator +61084 D
Time Electronics 9814 Voltage calibrator $-£ 750$.
Time Electronics 9814 Programmable resistance- $£ 600$
Time Electronics 2004 D. C. voltage standard - $\mathbf{f} 1000$
HP 86998 Sweep PI YIG oscillator $01-4 \mathrm{GHz}-£ 300.8690$ B MF - $\mathbf{f} 250$. Both $\mathbf{f 5 0 0}$
Schlumberger 1250 Frequency response ANZ - $£ 2500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equ
etc.
B\&K ltems in stock - ask for list.
W\&G Items in stock -ask for list.
Power Supplies Heavy duty + bench in stock - Farnell-HP - Weir - Thurlby-Racal etc. Ask for list
mems bought from hm government being surflus. pilce is ex works. sae for enauiries. phone for appointment or for demonstration of any items, avallabilty or price change. vat and carriage extra ITEMS MARKED TESTED HAVE 30 dAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS ANO SOCKETS-SYNCRDS-TransmiTTNG AND RECEVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (O274|684007. Fax: 651160

RESEARCH NOTES

Jonathan Campbell

Thunderstorms that rain gamma rays

More to lightning
than meets the eye?

Here on Earth. thunderstorms can mean spectacular light shows caused by dramatic discharges of electricity. But scientists are now coming to realise that there may be more to see above the clouds too - bursts of gamma ray radiation that originate in Earth's the upper atmosphere
Up to now, such activity has been hard to detect and 'evidence' has tended to be regarded as spurious noise. But a US team making observations with multiple detectors as part of the burst and transient source experiment (Batse) running on the Compton Gamma Ray Observatory now say they have positive proof of these gamma ray flashes (Science, Vol 264, pp.13131316).

The Compton Observatory has been monitoring gamma activity since its launch in 1991. But the researchers say that the rare gamma-ray flashes have not been reported before because it was unclear that they were real.
Two features of the burst are their extremely hard spectra and their short duration. In addition, they differ
from other known gamma-ray behaviour and originate from the Earth's almosphere around 30 km up.
Scientific speculation is that the phenomenon is the result of a rare-type of high-altitude electrical discharge above thunderstorm regions. The researchers have plotted the approximate locations over the earth of the gamma ray bursts, occurring at a less than one per two months and have obtained a clear correlation with average annual thunderstorm activity. In addition, specific concurrent weather information has showed thunderstorm conditions coincident with the events.
The possibility of strong electric fields producing ionisation at altituales high above thunderstorms was discussed over 70 years ago. The researchers say that fields intense enough, over a large enough area, could not only cause ionisation but also 'runaway' electrons and subsequent bremsstrahlung x-rays. They point to the fact that the electric field due to lightning falls off less rapidly with height above the clouds than does the atmospheric density which determines the break-down potential of air. Calculations suggest that an electric field strength at 60 km exceeding $500 \mathrm{~V} / \mathrm{m}$ could have the effect. The field would need to accelerate electrons over several km to achieve the megaelectron volt electrons necessary to produce the gamma bursts. But the scientists say that glow-like discharges observed from planes and the ground over heights of $40-80 \mathrm{~km}-$ extending well over 10 km vertically and 10 to 5 km horizontally - could be capable of producing the large field changes.
Upward-going lightening events have been recorded by the space shuttle and by pilots. But this is believed to be the first investigation of gamma radiation from atmospheric electrical discharges. That, combined with findings still in the initial stages, means that the cause can still not be explained for certain. But at least now the scientists are convinced that there is something to explain.

Do memory systems forget civil liberties?

Civil liberties groups worried about current data protection legislation could one day look back on the 1990 s as nostalgic days of untrammelled privacy. In a brave new world where we no longer have to rely on our memories to recall where we put that file, or what we said to someone, we could all simply become entries in someone else's electronic diary.
A glimpse of this forget-me-not
future is given by Mike Lamming and
his team at the Rank Xerox Cambridge EuroParc (The Computer Journal, Vol 37, No 3, 1994, pp. 153 163).

In a project to design a human memory 'prosthesis', the Xerox group has looked at how various different research projects could be linked together to create a system that records every place we go, everyone we speak to, what we say and what we do. The work springs out of the
need to improve office systems, easing the problems of finding files, papers and notes, recalling names of people and places, procedures and lists, and remembering to perform tasks.

Relevant hardware and software is already around, from Amstrad's PenPad to the more advanced Casio/Tandy Zoomer and Apple/Sharp Newton MessagePad devices. Xerox also has been
developing its bleeper-sized Parc Tah, with a touch-sensitive screen and a beacon to indicate its location. Infrared links each Tab the user's home computer.

Emarc has already been test gathering data on people's movements in its Pepys project, using Olivetti infra-red badges to log the location of people. Walking from an office to the common room to meet a visitor generates events at a whole series of sensors along the way.
Pepys location data could be augmented. say the researchers. by a
video diary and smapshots. A video network around the building would be directed by the badges to switch to the camera nearest a particular person as they move around the building. Attraction of video is that it seems to help people recall considerably more activities than the Pepys diary alone.
Pepys is also limited in that though it will recal! meetings. it does not record what happened. But two systems undergoing testing that could tackle this shortcoming are NoTime and Marcel. NoTime electronically captures the hand-written notes made during a meeting. Each writing stroke is date-stamped and the notes are linked to the appropriate part of an audio and video recording of the meeting.
The Marcel system recognises activities involving paperwork by using a video camera mounted over the user`s desk. Images of documents are digitised. and then compared with a database of known documents. The researchers report that Marcel could be a plausible way of logging document movement.
Keeping track of activities at a workstation is in some ways easier, in that all filc movements and commands can be logged. But the researchers note that the data records. though extensive, still are not casy to
interpret in terms of what someone was doing.

After gathering data, any memory system must be able to prompt the user when a particular location is entered or when a certain person is encountered. Parc Tabs are already being used to generate audio reminders in this way, with messages being set at any time and anywhere in range of a Tab sensor.
The aim of a memory prosthesis, say the researchers, is to sense aspects, of a user's environment and make records which can be later used to help recall events which a user did not even realise they needed to remember. So any system must automatically capture as much data as possible
Implications for privacy are considerable. The researchers say that users should be clear about what is being recorded, and systems should be configurable to what individuals consider as acceptable intrusion. But for non-prosthesis holding individuals there is no such choice. Their movements, conversations, handwritten notes and even facial expressions could all be electronically recorded as part of the diary of people they meet. Such a prospect makes current concern over identity cards and the proliferation of video cameras quite tame in comparison

Babbling helps make sense of cerebral palsy

Northeastern
University's baby
babble blanket could help disabled babies interact with the world around them.

Computer game technology, so often blamed for robbing young people of their social and communication skills, is being put to work at Northeastern University, to help improve communication capabilities.
A software development group led by Harriet Fell and a field testing group led by Linda Ferrier, have transformed a Ninentendo Powerpad from a games peripheral into a "baby babble blanket" that helps

severely disabled babies to experiment with non-sensical babbling. Early babbling is thought to be vital to development of later talking.
Their blanket, linked up to a Mac computer running specially developed software, enables babies to trigger sounds and an audio track of other baby babbles by rolling around on the large pressure sensitive switches. The babble software also allows the child to turn on electrical toys or household gadgets such as fans.
Fell and Ferrier hope that this interaction will help fight the 'learned helplessness' of disabled infants. Unfortunately, by the time children with physical disabilit:es reach school age, they may already be poor commuricators because they have never learnt to interact with the world around them.
So far the blanket has been tested with a wide variety of children, including non-disabled babies as young as four-and-a-half months, and children with multiple disabilities up to twelve years of age. It is currently being tested in homes and classrooms.
A spin-off project has been development of an early vocalisation analyser. The analyser takes a digitised waveform and uses a base-line noise threshold to count the number of infant vocalisations in specified time. Vocalisa-ions are then sorted by their characteristics.
Curren-ly a prototype is being use to answer the question: 'How frequent and how long are vocalisations of normal infants compared to infants with cerebral palsy?'

Hard rain

Joint approach finds new solder approach

Norries over possible health and environmental drawbacks to current soldering practice, upon which so much of the electronics

industry depends, have been forcing researchers to seek alternatives to leadbased solders and the volatile organic compounds used in fluxes. Now a collaborative project led by GEC-Marconi (GEC
Journal of Research, Vol 11, No 2, pp.76-89) suggests that solders based on Sn-(2 or 3.5) Ag or $\mathrm{Sn}-0.7 \mathrm{Cu}$ could prove workable options in both wave and reflow soldering.

One other clear conclusion of the study is that all components of the solder joint such as the metallisation on both boards and components and the fluxing system - in addition to the solder alloy - must be taken into
account.
The engineering performance of various lead-free solders was investigated as well as their economic and environmental aspects. The tin/silver and tin/copper compounds performed well and the team also ider tified the importance of an inert atmosphere as the key to developing highly reliable processes.
Cracking in through-hole joints following the formation of low melting point compositions cansed by badly matched solder alloy and component metallisation was one of the factors emphasising tie importance of looking at a system as a whole.
The authors say thet further trials will be necessary before allembracing recommendations can be made.

TThe evocative sound of rain blowing against a window brings back ‘sweet memories" according to a 1970 s classic soul number. Now J McLoughlin, DJ Saunders and RD Ford have reprised that theme for the 1990 s. interpreting the mournful sound of rain gently falling on 1 roof (Applied Acoustics, Vol 42. No 3.1994. pp.239_ 255):
"The sound intensity level radiated from a single-skin corrugated roof of trapezoidal section when excited by the impact of water has been shown to depend on the sixth power of the impact velocity. third power of the drop diameter and be directly dependent upon the water impact rate".

Need some work on the scansion there I think guys.

Bending battery technology. A prototype plastic high-energy battery that is rechargeable and can be bent into any shape, has been developed by telecorams research company Bellcore in the US. The battery looks like a solid - no
liquid leaks out if it is punctured - but acts as a lithium-ion battery. Bellcore says it will 'revolutionise' the consumer electronics and telecommunications industries. Its performance relies on a polymer matrix: the elements are permanently bonded together then covered by a moisture-proof barrier coating. At 3.8 V its e energy chensity clearly makes it competitive with normal nickelcadmium and lead-acid batteries, without the environmental worries - it contains no toxic metals.

Filters in tune with fuzzy logic

Electrical Engineers at A \& M University College in Texas have developed an expert system. exploiting fuzzy logic, that they claim is a simple way to bring out-of-spec filters back into line.
Butterworth and Chebychev approximation techniques are often used to fit a frequency response of an analogue filter into a specified window constraint. But when approximations are implemented in hardware. component variations can mean the filter may not meet its specification. Inclusion of a tuning system can adjust some of the components. But adjustable components usually produce nonlinear changes in filter frequency response: variations in one component can modify several characteristics of the filter; and the implemented circuit will contain
parasitic components and have other non-ideal effects.
The Texas approach (Electronics Letters, Vol 30, No 11, pp.846-847) takes advantage of the fact that a filter window specification can allow any curve - as long as it is in the window. Once achieved, the system can optimuse the filter to approximate the desired function.
The fuzzy logic involved was designed to approximate a Butterworth filteı with maximum attenuation in the stopband.
By measuring the output at certain frequencies, the system modifies the filter parameters accordingly, applies the test signals and repeats the same process until the frequency response is withi: the window.

Texas's system has been successfully tested on a low pass filter implemented with
transconductance op-amps and the researchers say that fuzzy logic has now been proved as a useful technique for tuning filters and should be a useable method for other electronic circuits or systems.

Correcting out-ofspec filters using fuzzy logic. Untuned output (solid line) was funed (dashed line) after 14 iterations. In the second case the untuned output (dotted line) was tuned (dot/dash line) after nine iterations.

M\&B RADIO (LEEDS)

CIRCLE NO. 109 ON REPLY CARD

HEWLETT PACKARD Spectrum Analysers

HP 141T / 8555A 10 MHz to 18 GHz System
Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 5} \mathbf{d B m}$
Resolve to $\mathbf{1 0 0 ~ H z}$
Scan up to $8 \mathbf{G H z}$ full screen
£1700.00
HP $141 \mathrm{~T} / 8554 \mathrm{~B} 100 \mathrm{KHz}$ to 1250 MHz System Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 2} \mathbf{d B m}$ Resolve to 100 Hz
With the purchase of any of the above systems we will supply FREE of charge one HP 8553B $1 \mathbf{k H z}$ to 110 MHz RF section. Normal retail price of $£ 350.00$.

All systems covered by 30 day warranty All prices plus Vat and carriage

M \& B RADIO (LEEDS)

86 Bishopgate Street, Leeds LS1 4BB
Tel: (0532) 435649 Fax: (0532) 426881

Neural nets put the squeeze on moving pictures

Neural networks, adapting online to a changing image input, could be the way forward for engincers looking to achieve that frustrating balance between picture quality and effective compression of moving images. Early work by researchers at GEC-Marconi has shown that the technique can work though much research still needs to be done.

NP Walker, SJ Eglen and BA Lawrence (GEC Journal of Research. Vol I1. No.2, 1994. pp.66-75) took as their starting point. the compression of single images using a Kohonen network.
To start, a Kohonen network - a network of 16 input nodes joined to 1024 output nodes by random

Next step was to try neural network compression of moving images. Each separate frame image could be separately compressed as before. But this would ignore interframe redundancy - where there is no change in an area of the image. So the researchers took 4×4 blocks of pixels from four consecutive images, in effect creating a $4 \times 4 \times 4$ cube of 64 pixels to be analysed. For the complete four images, the 64dimensional input vectors are presented to the network to produce a single list of appropriate codehook pointers.
Success of the approach was tested by compressing a sequence of 50 medical cat scans through a patient's hip joint.

Initially, the researchers limited themselves to training a network (64 input and 1024 output nodes) using only the first four images from the sequence. Once trained, reconstruction of the original images of the first four frames was good. with an acceptable error difference compared to the originals. But for images that the network had not seen before, the error was much larger, Plainly a new codebook was needed that was more weights - was ‘trained’ by presenting it with 4×4 pixel blocks from an image. The output node whose weight most closely resembles the input pixel intensity has its weight adjusted so that the match is even closer. As training progresses, the weights associated with different output nodes come to represent various patterns and textures from the image. Characteristics of the network also mean that neighbouring nodes will come to represent similar patterns within the image.
At the end of training, the weights associated with the output nodes form a codebook. Now when a picture is compressed, the image is broken down into numbers that point to the relevant codebook blocks that will reconstruct it.

neighbourhood concept allows one input vector to alter the weights of many nodes in the codebook - a considerable advantage of the Kohonen network over other techniques.
The team says that as well as providing good reconstructions of the image in question, an adaptive network would help produce a codebook that was better able to represent a wider range of images. To prove their point, they trained the network using four groups of fourframe images, but sill leaving frames 29-50 unseen.
This time the reconstruction of the unseen images was much better (see figures) and suggests that a more generalised codebook formed by an adaptive network would give a better performance
Currently the team is investigating how storage or timeng problems caused by the blocking process can he avoided. One path is to exploit redundancy by trarsmitting an initial image and then coding the subsequent inter-frame differences.

Original hip image. (Courtesy St Thomas's Hospital Medical Physics Dept)

Reconstructed hip image from the single image-block codebook.
representative of the unseen patterns.
The answer, say the researchers. is to develop an adtaptive network that could reflect the changes in the scene it must represent. A codebook could be updated every 10 frames or so, or when it no longer represented the image.
Whether or not a codebook is adequate can be ascertained by measuring the error for each windowed !mage block. Blocks that have errors above a given level could then be used to help update the codebook. The

Reconstructed hip image from the multiple image-block codebook, showing a less pronounced blocking effect, better contrast and an improved reconstruction of the dark area in the centre of the image.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMS, EEPROMS FLASH and Emulators as standard, quickly, reliably and at low cost
Expandable to cover virtually any programmable part including serial EEPROMs PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee

ASK FOR FREE INFORMATION PACK
IRELAND 1-2800395 GERMANY 089/4602071
NORWAY 0702-17890 $\begin{array}{ll}\text { NORWAY } & 0702-17890 \\ \text { ITALY } & 029210355\end{array}$ $\begin{array}{ll}\text { FRANCE } & 169301379 \\ \text { SWEDEN } & 0859032185\end{array}$ Asso from ELECTROSPEED UK

MOP ELECTRONICS Ltd.
Park Road Centre Malmesbury. Wiltshire. SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

Ghelmer Valve Company

Worldwide supplier with 30 years experience

- Electron tubes: Transmitting, Industrial, Microwave, Audio, Receiving, Display, etc, etc.
- For Maintenance, Spares or Production.
- Semiconductors: Transistors, Thyristors, Diodes, RF, Power I/C's, etc.
We have one of the largest stocks in the U.K.

\star TRY US! \star

FAX, PHONE, POST OR TELEX YOUR REQUIREMENTS I 30 NEW LONDON ROAD, CHELMSFORD, ESSEX CM2 ORG, ENGLAND
Telephone: (0245) 3552906265865
Telex: 995398 SEEVEEG Fax: $(0245) 490064$

Quickroute 3.0

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful Windows based PCB and schematic design packages from POWERware.

DESIGNER £99 *

PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

DESIGNER+ £149 *
For larger PCB and schematic designs, adds Gerber and NC-Drill support.

PRO £199*

Schematic capture, with integrated rats-nest generation and auto-router. Export net-lists for design checking.

PRO + $£ 299$ *

Advanced schematic capture for management of larger schematics. Gerber import facility for file exchanging.

For more details, contact POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

* Prices exclude VAT, post \& packing

Tel/Fax 0614497101
from
£99*

True rms measurement has become straightforward thanks to dedicated ICs. The information in this article has been compiled by Dan Ayers and $E W+W W$ staff.

Since the advent of digital multimeters, engineers have been able to make quick, simple and relatively accurate voltage measurements for both dc and ac. A common and unhappy side effect of this however is an over-reliance on the seemingly definitive number on the readout.
Reference to the meter's specifications often shows that the last digit displayed may be far from the real value. A more fundamental question is whether even the range is appropriate. Although a low to middle priced multimeter is adequate for de and certain ac measurements, a crucial range is usually missing - true rms.

Why rms?

Virtually all electronic systems call for some means of monitoring ac voltage. It is easy to obtain the peak, or peak-to-peak, value of a signal by pumping a capacitor with a rectifier, and subsequent op-amp buffering is straightforward. This is useful to indicate when an amplifier or similar system is approaching its clipping limits.
A strategy used in many ac voltmeters is to show the mean average deviation, or MAD, of a signal from a predetermined reference, usually the mean. This so-called ac average can be useful, but a more versatile measure is the rms voltage of a signal. This fundamental quantity provides information about the energy available or used over time.
When applied to a resistive load for a given period of time, any signal of the same rms voltage would cause the same amount of heat dissipation. Sometimes described as effective voltage, rms corresponds to the dc voltage that would produce the same heating effect.
Often, the mean average deviation is displayed on a scale calibrated in rms volts. But this setup only shows a correct reading when the waveform applied is of the same shape as the waveform used to calibrate the meter. Many digital multimeters only give a valid ac reading for fairly low frequency, sinusoidal waveforms below around 400 Hz .

As long as the waveform is known, the true rms value of a signal can be calculated from the MAD. With many real-world signals such as noise and those associated with distortion however, this can cause problems. Comparing the MAD values with the true ems values for differing waveshapes clearly demonstrates the limitations, Table 1.
It is helpful that if unrelated signals are summed, then the rms of their sum is equal to the square root of the sum of the squares of their individual rms values. The rms value is also convenient for assessing signals with random characteristics. It represents the statistical standard deviation of a stationary zero-mean random process ${ }^{1}$.

Circuit methods for true rms

For high accuracy, thermal methods of deriving the rms level of a signal are the most appropriate. This is because the heating effect of an ac voltage corresponds directly with the rms value, ie. that of the dc voltage required to produce the same heating in the same load. There are many drawbacks here, mainly due to the time taken for the temperature of different parts of the system to stabilise.
In the simplified thermal converter of Fig. 1b), two units, each comprising a heater H, thermally coupled to a temperature sensor T, are thermally insulated from each other. The first is heated by the applied signal, the second is forced by the difference amplifier to the

Table 1. Comparison
between mean absolute deviation and rms voltages for common waveforms. Mean absolute deviation is also known as ac average.

Fig. 2. Computation of rms voltage can be explicit, but implicit computation, (b lower), provides greater dynamic range.

Fig. 3 (bottom). Static errors in rms-to-dc converters. These errors are combined and expressed as a percentage of reading plus a constant.
same temperature. If both units have identical thermal paths to the environment, then the output voltage is proportional to the rms value of the input.
A practical system might have thermocouple sensors and a chopper-stabilised device for the difference amplifier. This configuration suffers from limited dynamic range. Power through the heaters is proportional to the square of the rms voltage, and heater overload is a distinct possibility.
This problem is overcome in Fig. 1b), Here, the output

Waveform		RMS	MAD	CF
$\overline{V_{p}}$	DC	V_{p}	V_{p}	1
	Sine	$\frac{V_{p}}{2}$	$\frac{2 V_{p}}{\pi}$	$\sqrt{2}$
	Triangle	$\frac{V_{p}}{\sqrt{3}}$	$\frac{V_{p}}{2}$	$\sqrt{3}$
	Pulse	$\mathrm{v}_{\mathrm{p}} \sqrt{\frac{\mathrm{t}}{\mathrm{T}}}$	$\frac{V_{p}{ }^{\text {t }}}{T}$	$\frac{1}{\sqrt{\frac{t}{T}}}$
	Gaussian (white) noise	-	ams $\times \sqrt{\frac{2}{n}}$	$\begin{gathered} \infty \\ \text { typically } \\ 1-6 \end{gathered}$

amplifier still strives to maintain the temperature difference at zero, but now the power in the second heater is fixed. An analogue divider maintains equilibrium as its control voltage Y is proportional to the rms of input voltage X. As a result, the rms function is provided without the heaters having to function over an unmanageable range ${ }^{1}$.
Convenience is much enhanced by using computational elements to obtain the rms value. Analogue-to-digital converters and digital processing are relatively expensive however. Fortunately, old-fashioned analogue techniques with modern manufacturing methods have resulted in accurate and easy to use integrated circuits.
The complete function required is:

$$
E_{r m s}=\sqrt{\left(\frac{1}{T} \int_{0}^{T} V_{i n}^{2} d t\right)}
$$

Computation is simplified by considering the integration and division by T as a running average. In practice, this is valid for most types of signal encountered, so:

$$
V_{r m s}=\sqrt{\overline{V_{i n}^{2}}}
$$

There are two basic approaches to obtaining the true rms value of a signal - explicit and implicit ${ }^{1}$. The explicit or direct approach is shown in Fig. 2 (a). Two inputs of a four-quadrant multiplier are fed with the input signal, producing a squaring function. Positivegoing voltage created is averaged over time, and the square root of this de value is taken. This can be done by inserting a squarer into the negative feedback loop of an amplifier.
Although good accuracy is possible, this approach is more complex and more expensive. In addition, dynamic range is at least an order of magnitude narrower than with a comparable implicit arrangement.
Dynamic range is particularly significant when measuring signals with a high crest factor, or cf. This is the ratio of peak to rms voltage. Obtaining a valid measure of a signal with a large crest factor needs a proportionately greater headroom.
The implicit approach follows from a little manipulation of the rms equation to:

$$
V_{r m s}=\frac{\overline{V_{i n}^{2}}}{V_{r m s}}
$$

producing the more elegant configuration Fig. 2b). Assuming an adequate $C R$ time constant, the rms voltage output is held constant over the period of the signal being averaged and division by this value can be carried out before the average is taken.

Error sources in rms conversion

An ideal rms converter provides a dc output voltage exactly equal to the rms value of its input voltage, regardless of the amplitude, frequency, or shape of the input waveform. Of course a practical rms converter has errors.
Static errors are offsets and scale factor errors that apply to dc and low-frequency sinewave to about 1 kHz . Under these conditions, the finite bandwidth of the converter - and the effective averaging time - can be made negligible compared to the input and output offset, and scale factor errors. Here, rms can be interpreted as the square root of the low pass filtered, or averaged,
square of the input voltage.
An rms to dc converter's overall 'static' error is specified in percent of reading plus a constant. As shown in Table 2, the $A D 637, J$ is specified at 1 mV $+0.5 \%$ of reading. This should be interpreted to mean that at any point within the $A D 637 J$'s 0 V to 7 V rms input dynamic range, converter output voltage will differ from the precise value of the rms input by at most 1 mV plus 0.5% of the correct rms level. Note that this is less absolute error than the AD536A.J converter.
To illustrate this point, consider a sinewave input of IV rms at 1 kHz applied to the input of an $A D 637 J$. Actual AD637 output voltage will be within: $\pm(1 \mathrm{mV}+0.5 \% \times 1 \mathrm{~V})= \pm(1 \mathrm{mV}+5 \mathrm{mV})$. This is 6 mV from the ideal output of 1.0 V , or between 0.994 and 1.006 V dc. These static errors can be classified into the standard categories of offset voltage, scale factor (gain) error, and nonlinearity errors.
Every practical rms converter has an input/output transfer characteristic that deviates from the ideal. The detailed error explanation given by Figures 3a,b) illustrate the major classes of errors commonly encountered.
At low levels, the rms converter's input offset voltages can flaten the point of the ideal absolute value transfer and take it more positive relative to the zero output voltage level with zero input voltage applied. Practical effects of these offset errors determine both the resolution and accuracy of the converter for low-level input signals.
For the ICs discussed here, the combined total of offset errors is typically less than 1 mV . At higher input levels, of the order of few hundred millivolts, scale factor and linearity errors may dominate offset errors. A scale factor error is defined as the difference between the average slope of the actual input/output transfer and the ideal l to l transfer. If a 100 mV rms input change produces a 99 mV change in output, then the scale factor error is 1%.
In addition to the single polarity example just given, there can be a different scale factor for both negative and positive input voltages. The difference in these scale factors, termed the 'dc reversal error', is shown in Fig. 3c). When testing this parameter, a dc voltage is applied to the converter`s input, say +2 V , and then the polarity of the input voltage is reversed to -2 V . Difference between the two readings will equal the dc reversal error.
Nonlinearity, as its name implies, is the curved portion of the input/output transfer characteristic. This is shown in an exaggerated form in Fig. 3c. This error is due to non-ideal behaviour in the rms computing section and cannot be reduced by trimming offset or scale factor.

Therefore, nonlinearity sets a limit on the ultimate best case accuracy of the rms converter.
For the $A D 637$, nonlinearity is typically better than $\mathrm{ImV}(0.05 \%)$ over a 2 V full-scale rms range; for the AD536A the nonlinearity equals 5 mV or less. Typically the $A D 636$ has less than 1 mV nonlinearity over its 0 to 200 mV specified input range.

As shown by Fig. 4, the errors of true rms to dc converters, although varied, are considerably lower than those errors found in precision mean-absolute deviation rectifiers when the duty cycle of the input waveform is varied.

Fig. 4. Error versus duty cycle for an MAD ac detector and AD637based rms converter.

TABLE 2: Typical rms-to-dc converter specifications.

Input dynamic range	AD536AJ 7Vrms	AD637J 7 Vrms	AD636J 1 V rms
Nominal fsd rms	2 Vrms	2 Vrms	200 mV
Peak trans. Input	$\pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 2.8 \mathrm{~V}$
Max total error			
No external trim $\mathrm{mV} / \%$ reading	$5 \mathrm{mV} \pm 0.5$	$1 \mathrm{mV} \pm 0.5$	$0.5 \mathrm{mV} \pm 1$
Bandwidth, (-3dB)			
Full Scale	2 MHz	8 MHz	1.3 MHz
0.1 V rms	300 kHz	600 kHz	800 kHz
Error at Crest Factor			
0.5\%@200mV			
Power supply			
Volts min	± 3	± 3	+2/-2.5
max	± 18	± 18	± 12
Current typ.	1 mA	2 mA	$800 \mu \mathrm{~A}$
max	2 mA	3 mA	1 mA

A

B

Fig. 5. High frequency response for the three converters - AD536A at a), AD636 at b) and AD637 at c).

Bandwidth considerations

In practice, ac inputs are of the most interest to users of rms converters. For 1 kHz sinewave inputs, there is negligible difference between readings at this frequency and performance at dc. As a result, dc measurements provide a convenient way of determining errors at around 1 kHz .
At higher input frequencies, bandwidth characteristics of the rms converter become most important. As shown

Practical circuits

Although it is possible to produce close approximations to squaring and square root functions relatively directly, log/antilog blocks can give greater accuracy and simplify initial setting up². These blocks are often based on the exponential response of transistors.
Figure 7 uses two standard chips to produce a log/antilog implicit rms converter which is adequate for many applications; the separate computing elements are

Fig. 6. Internal functions together with external offset and scale factor trimming circuits for AD536A at a), AD636 at b) and AD637 at c).

Fig. 7. Converter for rms measurement using standard chips shows logantilog calculation of square/square-root functions.
by Figs $\mathbf{5 a}, \mathbf{b}, \mathbf{c}$), ac bandwidth drops off as the input level is reduced; this is primarily due to gain-bandwidth limitations in the absolute value circuits.
Caution should always be used when designing rms measuring systems which must deal with complex waveform amplitudes above IV rms. Trimming is recommended for applications needing the lowest possible offset and scale factor errors, Figs 6a,b,c). Ground the signal input point. V, and adjust trimmer R_{4} for an output of zero volts. Alternatively, R can be adjusted to give the correct output with the lowest expected value of $V_{\text {IN }}$ applied. This second method allows the lowest possible error over the expected input range, but results in higher errors below this range.
Connect a 1 kHz calibrated full scale input to V_{IN}. Adjust trimmer R_{1} to give the same output voltage. This adjustment provides specified accuracy with a lkHz sinewave input and slightly less accuracy with other input waveforms.
With correct trimming, the remaining errors in an rms converter will be due to nonlinearity effects of the device; unfortunately, nonlinearity errors cannot be reduced by external trimming.
clear to see.
Several companies produce dedicated rms chips, and the circuit of Fig. 8 shows how straightforward such devices are to apply. The SSM2110 is a particularly versatile device. With a minimum of external components it can provide rms, absolute value and peak conversion, or alternatively the log of any of these ${ }^{3}$. Figure 9 would be suitable for a meter calibrated in decibels - very useful for audio work.

High impedance input rms dpm and dB meter

 Only two integrated circuits and a liquid crystal display are needed to produce high quality, $\mathrm{dpm} / \mathrm{dB}$ meter.Voltage input to the meter feeds through a $10 \mathrm{M} \Omega$ input attenuator to pin 7 of the $A D 636$. Buffer output, pin 6 , is ac coupled to the rms converter's input, pin 1 . Resistor R_{6} provides a 'bootstrapped' circuit to keep the input impedance high.
Output from the rms converter is selected by the linear/dB switch; selecting pin 8 for linear, pin 5 for dB . The selected output travels from the linear/dB switch through low pass filter R_{15}, C_{6} to the input of the meter chip, which is a 7106 type a-to-d converter. The $A D 589$

provides a stable 1.2 V reference voltage for supplying the calibration circuitry.
To calibrate, first adjust trimmer R_{9} for the 0 dB reference point. Next, set R_{14} for the decibel scale factor, and finally, adjust R_{13} to set the linear scale factor. Total current consumption is typically 2.9 mA from a standard 9 V transistor radio battery.
This circuit uses the $A D 636$ low power rms converter to extend battery life and provide a 200 mV full scale sensitivity. It provides better accuracy and bandwidth at 200 mV rms input than the AD536A, which would need preamplifier to achieve similar results.

Programmable-gain rms measurement

Measurement of the rms of complex waveforms of varying magnitude normally requires a high quality, compensated input attenuator. In contrast, the programmable gain rms preamplifier circuit of Figure 10 features an AD544 bifet operational amplifier as an inverting input buffer with four remotely switchable gain ranges: $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$, and 200 V full scale.
Switching gain resistors in the buffer feedback loop allows the use of a low voltage cmos multiplexer to remotely control the gain of potentially high voltage input signals. The preamplifier's input is well protected on all ranges for input voltages up to 500 V peak.
Input connects to J_{1}, with R_{1} and diodes $D_{1.2}$ forming the amplifier's input protection. Capacitor C_{1} prevents high frequency roll-off, which would occur due to the R / C time constant of the $1 \mathrm{M} \Omega$ input resistor and the stray capacitance at the AD544 summing junction. The AD7503 cmos multiplexer switches the appropriate feedback resistor for each gain connecting the resistor between the operational amplifier output, pin 6 , and its summing junction, pin 2.
Capacitors C_{4-7} are compensation capacitors which are adjusted for flat response at each gain setting. Address lines A_{0-2} select the desired input range of the

Fig. 8. Dedicated rms converter chips can reduce component count and improve accuracy.

Fig. 9. Versatile converter chip configured for \log of rms conversion. This configuration is useful for audio decibel metering.
preamplifier. Resistors $R_{4.6,10.12}$ are gain calibration controls for each selected gain. Output of the AD6/l operational amplifier is converted to its rms equivalent voltage by the $A D 536 A \mathrm{rms}-\mathrm{dc}$ converter.
Input ranges are $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$ and 200 V rms . For the respective ranges. -3 dB bandwidth points are $>4 \mathrm{kHz}, 600 \mathrm{kHz}, 1.5 \mathrm{MHz}$ and 600 kHz . For the lowest range, bandwidth will vary with the degree of stray capacitance at pin 9 of the $A D 7503$.

Testing converters

To calibrate and assess the accuracy of an rms converter, many factors need to be considered - particularly the dc response (offset), frequency response (gain) and dynamic range. Laboratory equipment is desirable, but a good overall picture can be gained by feeding a pulse waveform of known amplitude and mark/space ratio into the converter. This is because the pulse contains frequency components extending to infinity - in theory at least - and calculation of the crest factor and true rms value is straightforward.
The circuit shown generates reasonable pulses with variable amplitude and a mark/space ratio fixed at 1:10. A simple clock with a frequency around 1 kHz is built around a Schmitt trigger. This frequency may be varied over a wide range by altering the resistor and/or capacitor values. Clock output is sent to a 1 of 10 decoder to fix the mark/space ratio and the pulses are cleaned up by the remaining Schmitt triggers.
For controlling amplitude, an op-amp is configured to provide variable gain giving an output pulses from -10 V to +10 V referred to ground. The circuit can suffer from ringing on the pulse edges. This affects the rms level, especially at higher pulse rates. Should this be a problem, it is advisable to strap a variable resistance of around $47 \mathrm{k} \Omega$ between the op-amp input pins and trim for best shape.
Before testing an rms circuit, the zero should first be checked and any offset noted. A suitable dc reference voltage should then be set at, say, 5 V . It is
important that the circuit under test is connected before setting the reference to avoid loading errors. This will also confirm that the converter is responding correctly to dc.
Switching the pulse generator switch to run should produce a dc voltage at the output of the converter of around 1.6 V . Its true rms value is $0.316 \times 5=1.58 \mathrm{~V}$.

Noise referred to the amplifier input is $360 \mu \mathrm{~V}$ on the 2 V range while the signal-to-noise ratio is 75 dB . Output settling time is 397 ms to reach 1% of input.
Address lines A_{0-2} should be set for each gain. Calibration trim potentiometers $R_{4,6,10,12}$ should be individually adjusted for the correct gain on each range.

Compensation capacitors $C_{5,6,7}$ should be adjusted for flat response on each range. For this, use a variable frequency sinewave input signal and an oscilloscope to monitor the AD544 output, pin 6. Alternatively use a digital voltmeter on its dc scale connected to the converter's output.

Reading ultra-low frequencies

Reducing input frequency requires lengthening the averaging and filtering time constants to maintain the same levels of dc error. Consequently, successively larger values of C_{AV} are needed. With very large values of averaging capacitor, needed for frequencies below $10 \mathrm{~Hz}, C_{\mathrm{A}}$ can become physically too large and also prohibit the use of low-leakage devices.
Figure 10 uses two very low input bias current amplifiers, permitting large values of averaging resistance - in this case $10 \mathrm{M} \Omega$. This circuit has been optimized to exhibit less than 0.1% averaging error for input signals as low as 0.1 Hz . The $\mathrm{V}_{1 \mathrm{~N}}{ }^{2} / \mathrm{V}$ function appears at pin 9 of the $A D 637$.
As a result of transient noise spikes, the circuit may overload because the filter stage averaging capacitor has been drastically reduced. Normally, the averaging capacitor is called C_{AV} but in this case it has been renamed C_{1}. Reducing the capacitor allows output at pin 9 of the $A D 637$ to respond to the square of the input signal rather than to the average of the input square
For applications where high crest factor-low frequency signals are to be measured, C_{1} should be increased to $3.3 \mu \mathrm{~F}$. In conjunction with the internal $25 \mathrm{k} \Omega$ filtering resistor, this capacitor forms a low-pass filter with a 2 Hz corner frequency. This attenuates higher frequency signals - transients - by the ratio of the transient frequency to that of 2 Hz . This means that in the case of

60 Hz transients, they will be reduced by $60 \mathrm{~Hz} / 2 \mathrm{~Hz}$ or 30 times. Practically speaking, there will be effective transient protection.
In addition, larger or smaller values of C_{1} may be used as required by the specific application. If a low-pass filter is used ahead of the AD637, out-of-band signals are less likely to cause an overload. This allows smaller values of C_{1} to be used in these circuits.
Since raising C_{1} causes increased averaging of higher frequency signals, the $V_{1 N^{2}} / V_{\text {ms }}$ function will be linearly converted to the average of $V_{\mathrm{IN}}{ }^{2} / V_{\text {rms }}$ as the input frequency goes up. This prevents the instantaneous square of the input signal from appearing at pin 9 of the AD637.

Fig. 10. With signals as low as 0.1 Hz , this circuit exhibits less than 0.1% averaging error.

Fig. 11. Measuring rms of complex signals normally involves an expensive attenuator. This programmable-gain circuit, with $200 \mathrm{mV}, 2 \mathrm{~V}$, 20 V and 200 V ranges, does the same job.

References

1. D H Sheingold (Ed.), Nonlinear Circuits Handbook, Analog Devices Inc. ISBN 0-916550-01-X.
2. D.Ayers, The Twisted World of Non-Linear Electronics, Electronics World \& Wireless World, Feb 1993.
3. SSM Audio Products Audio Handbook, Vol. 1, Precision Monolithics Inc

ENGINEERING

Visual Design cquire?

> Although doubts remain about the capability of Windows to run real time tasks such as data acquisition and process control, its well known user interface makes it a logical choice for first time system builders. Allen Brown looks for compromise in this new data acquisition package

The growth in PC data acquisition products continues and although the theme remains basically the same, there are variations in style. Much of today's software has the instant appeal of being readily accessible to the new user. This has come about by the almost universal acceptance of Microsoft Windows with its Graphics User Interface front end. Gone are the days when a new commercial software package demanded a entirely fresh learning curve.
For those who want to perform data acquisition without a steep learning curve, Intelligent Instrumentation have recently relcased Visual Designer 2 which is a combined software and hardware product. The software is essentially an icon driven package and, as its name suggests, has a highly visual aspect to it. It forms a friendly interface between the user and the proprietary data acquisition cards in the PC.
Operational systems are created by pulling functions represented by icons or blocks - out of the libraries and positioning them on the PC screen. Once in place they are linked as required to generate what are known as FlowGrams. On issuing the RUN command, the design is compiled into usable code, referred to as FlowCode and executed. These latter compilation stages are quite transparent to the user.
As the newly designed system is operating. the appropriate output devices (panel meters and 'scope displays) are updated to provide real-time operation.

To realise the full potential of the softevare it is necessary to have appropriate i / o expansion card(s) in the PC. As yet, software library support is only offered on cards manufactured by Intelligent Instrumentation, the PCI-2000 Series for example. They also manufacture Visual Designer supported i/o cards with the EISA interface.
The software is installed with ease, provided that older versions are flushed out. During installation, Visual Designer replaced the Microsoft Windows Direct Memory Access (DMA) Manager with its own (pcivdmad. 386 is added to the Windows system.ini file). This appears to be a common practice with a number of data acquisition sof ware packages. Is this due to a lack of confidence in Microsoft's version one asks?
The software comes in two sections: the first is equivalent to an editor, where instead of using words, the user enters schematic blocks or icons from the libraries. The second section, called RUN is where the FlowGrams are compiled and executed. The two sections are quite separate in their execution. DIAGRAM basically acts as an editor where the design is constructed whereas RUN is the environment where the design is realised. Calling RUN from DIAGRAM is quite seamless but can be rather slow on a $386-\mathrm{PC}$, especially for complex tasks.

Blocks

A system design constructed in Visual Designer will consist of interconnected blocks which are accessed from the blocks options in menu bar. These blocks (for example add, subtract analogue i / o, plot and chart) will have either input or output channels (or both) depending on their on function. The actual blocks are stored as Windows dynamic link libraries (DLLs) and are accessed when the design is compiled (RUN). The concept behind this construction lies in the probable need to have the DLL librazy easily updated as new blocks become available either from the manufacture or through the user's own industry.

The design procedure for creating a system consists of three parts; selecting the required operational blocks; forming the interconnections between them and lastly, configuring the blocks to your specifications - for example, setting sample rates on an i/o card. Selection is achieved by simply accessing the drop-down menu from the blocks option and clicking the mouse or the required function. The

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits full use of an active system around the If and $m f$ broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception $4 \mathrm{kHz}-30 \mathrm{MHz}$
- 10 dB gain, field strength in volts/metre to 50 Ohms,
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
Noise - 150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version.
\star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$. \star Stabil izer and Frequency Shifters for Howl Reduction \star Stereo Variable Emphasis Limiter $3 \star 10$-Outlet Distribution Amplifier $4 \star$ PPM10 In-vision PPM and chart recorder, also as expansion board for Acorn computers. \star Twin Twin PPM Rack and Box Units. \star PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and meter movements \star Broadcast Stereo Coders. \star Stereo Disc Amplifiers \star Peak Deviation Meter.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, GU6 7BG. Telephone: 0483275997 . Fax: 276477.

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Visa, MasterCard, Amex welcome

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
EASY-PC Pro' XM: Greater Capacity, XMS Version.	£245.00
PULSAR: Entry level Digital Circuit Simulator ~ 1500 gate capacity.	£98.00
PULSAR Professional: Digital Circuit Simulator ~50,000 gate capacity.	£195.00
ANALYSER III: Entry level Linear Analogue Circuit Simulator ~ 130 nodes.	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	£195.00
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers.	£245.00
FILTECH: Active and Passive Filter design program.	£145.00
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
For Full Information Please Write, Phone or Fax.

Tel: 0480-461778 Fax: 0480-494042
Tel: 0480-461778
Fax: 0480-494042
block position defaults to the centre of the screen, then by using the mouse it can be positioned where needed. This is particularly useful especially for constructing complex structures with many tens of blocks.
Initially is it difficult to give any style consideration to the design; it must be sufficiently fluid to allows changes as the structure build up. The blocks can be cut, copied and pasted like any other Windows object - all the elements of a good text editor.
Once the blocks are in place, they can be linked together by using the wiring tool. The whole action of wiring is achieved by using the mouse's click and drag facility. Examples are shown in the figure. When moving a block the wires(s) connecting it to other blocks automatically follows the block. Each wire has a direction arrow attached to it to indicate the direction of the data flow. As the link is accepted on a target block, a block connection dialogue box appears which gives details of what's connected to the two ends of the wire - the inputs and the outputs. The dialogue box gives a brief description of the connecting blocks.
Although each block has a default set of parameters, the user has the option of configuring each block according to their specification. This is third part of the design: doubleclicking with the mouse will generate the Configuration dialogue box for the block. The user is then able to make adjustments to the operation of the block. These include the optional data types which can have various integer or floating point sizes. When the completed structure is ready to compile, the user has the option of generating a list of all the blocks (DLL list) which act as a sort of parts list.

I/O features

Since Visual Designer is specifically tailored for the i/o cards from Intelligent Instrumentation, its designers have included many blocks which exploit the full range i/o features. On selecting the i/o option from the blocks menu as expected an i/o icon is generated on the screen (Fig. 1).
The software then offers a variety of modes of configuring the i / o features. Great emphasis is placed on the DMA features found on a number of expansion cards. The data transfer can occur via a DMA channel which does not involve the PC's CPU direct operation or through software which is executed by the CPU.
When deciding on the Visual Designer product, the potential user must be able to specify their data acquisition requirements, this will determine the choice of cards. For example, for following i/o cards all have DMA features for rapid data transfer:
PCI-20501C Series: High performance EISA cards PCl-20098C Series: PCI-20091W-1: PCl20377W-1. High speed analogue input card Whatever expansion cards you use, the software will have a support library for it. At this time it's not possible to integrate the software to other manufacturers i/o cards you have to choose the cards available from Intelligent Instrumentation.
For very high speed data transfer (input or output) there is 10 MHz Input buffer block which is selected from the drop-down menu. This uses the Intelligent Instrumentation ZPB6064 Buffer Board. It has a circular fifo buffer which can be set up to a value of 65,535 (unsigned integers). To achieve the 10 MHz data rate the $Z P B 6064$ requires the external ZPD IOO2, 12 -bit analogue box.
Alternatively for 16 -bit resolution, you must sacrifice capture rate and settle for the $Z P 1003$ analogue input box which samples at 500 kHz . Other i / o features include the BurstGenerator block for generating multiple TTL pulses, RateGenerator block for generating periodic TTL pulses

Fig. 1. The blocks are accessed from the drop-down menus, here the i/o options are

Functional blocks

shown.
Once the blocks feature from the menu bar is evoked, V Visual Designer is not dissimilar to writing a pictorial computer program without the obvious flow control constructs. However it does possess functions for ferforming mathematical operations, general data processing, data display and i/o.
An example of some of the maths function blocks is shown in Fig. 2, the resulting RUN is shown in Fig. 3. In these figures the signal sources are a random noise and a sine wave generator. Note that one of the blocks performs a moving average which has the effect of cleaning up the signal. Another function from the maths menu of note is the $m X+b$ block. This has the effect of scaling the input X and adding an offset. It could be used to convert the units of X (say a voltage derived from a pressure transducer) into units of pressure (Newtons per m^{2}) - quite useful provided the transducer behaves in a linear manner.

Visual Designer also has a facility for enabling data transfer up to $115,200 \mathrm{bps}$ via a serial port on the PC (RS232 interface). All the options for settang the port are accessed through the comm block. A lot of effort has gone into the design of this feature which allows the user to

Fig. 2. An example of the mathematical operations on offer from Visual Designer.

Fig. 3. The graphical outputs of the operations from Fig 2.

Fig. 4. Illustration of the XYPlot block and display.

Fig. 5. Panel and Bar graph displays generated from
visual Designer.

exercise considerable control over fixed or dynamic data together with buffer sizing and data formats However there is no mention of the possible problems that can arise from the universal asynchronous receiver transmitter (UART) in the PC. On most models, even $486-\mathrm{PC}$, the UART is the 8 -bit 8250 which can only accommodate rates up to 19,200 when running Windows. Ideally if using the PC for high transfer rate then the 16-bit $/ 6550$ UART should be used which has a large buffer. This device can accommodate the constant interrupts from Windows without loss of data.

Dynamic Data Exchange

One of the main principles in the design of Windows, or for that matter any other multitasking operating system, is the ability to allow concurrent tasks to exchange data In Microsoft Windows this is done by means of the Dynamic Data Exchange (DDE). Visual Designer has included blocks which effect DDE, they are the DDEServer and the DDEClient. The DDEServer will accept data from any source within a Visual Designer structure (a block) and pass it onto other concurrent Windows tasks such as Excel or Word for Windows.
Three attributes are attached to a DDEServer: the server topic name which identifies the DDEServer block to use (each must have a unique name), the name of the server application and the name of the data to be transferred. The parameters of the data buffer connecting the client and the server (size, units, weighting and offset for example) can be adjusted by the user. The user also has the option of controlling the data flow, whether it is transferred as soon as it becomes available or when Visual Designer has stopped. The DDEClient block allows the software to receive data from other concurrent Windows tasks. The optional output of the DDEClient block is a data buffer (its size specified by the user) for holding double precision floating point numbers. As with DDEServer it requires a server name, a topic name and an item name.
It can also take advantage of the local area networking facilities of Windows 3.11 For example, a PC on the LAN could be at one location running a spreadsheet, whilst the PC with Visual Designer could be at another location. As the data becomes available from the acquisition card, by using the DDEServer it can be immediately transported via the LAN to the spreadsheet running on the remote PC

Screen display blocks

There are a number of screen display blocks available in Visual Designer. The XYPlot can be used to display data from two separate buffers to create Lissajous type figures (Fig. 4). The plot block produces a displays which are not too different from that of an oscilloscope. There are number of interactive control icons on the top of the plot to change the display parameters. However one of the drawbacks of the plot feature is it only allows one signal to be displayed.

The panel block allows the user to display slowly varying information such as peak or minimum values - as seen in Fig. 5. Again the user has a lot of freedom in
designing the appearance of the panel. The chart block gives the opportunity to display a continuous stream of data - as in a chart recorder proper except masses of paper is not generated. Up to eight input channels can be fed into each chart block which gives it the feel of a real chart recorder - the data streams can also be saved

Alternatively the input data may be represented using the bargraph block

A curious variant on the display is the analogue meter block. The sales brochure shows a design for an engine test system which uses analogue meters quite effectively for representing fuel flow, fuel quantity and rpm.

User's Manual

The User's Manual comes with a Reference Manual and a Guide on the expansion card(s). On the whole these are well written with good presentation. Bearing in mind that Visual Designer should appeal to the user who has no prior experience of data acquisition, I feel it would be have been appropriate to include more examples in the manuals. An enlargement of the Getting Started could go some way of addressing the needs of the new user.

And finally...

It can be argued that having a proprictary package of software and hardware eliminates many of the difficult problems that arise when trying to integrate manufacturer A's software to manufacturer B's hardware. With Vistod Designer this problem does not arise since the software is designed specifically for the hardware expansion cards. The design of the package is very appealing and instantly
accessible. The new user will gain confidence very quickly having taken the plunge. Although the block library is quite extensive there are certain areas which are sparsely serviced. The DSP sub-menu is thin with only FFT and fower spectrum options. Generally the signal conditioning operations are not as abundant as one would like (filters for example). However, the modular design will allow Inbraries to be augmented as the product grows. With these reservations, Visual Designer is well worth considering for the user who wants a data acquisition system up and running within half hour

SYSTEM REQUIREMENTS

486DX-PC
8 MB of system ram
l0MB of Hard disc space
Mouse
Graphics accelerator card for SVGA
Intelligent Instrumentation data i/o acquisition card Microsoft Windows 3.11

SUPPLIER DETAILS

Intelligent Instru-nentation Lid, Suite 5, 2 Penn Place, Northway, R.chmansworth, Hertfordshire WD3 1 RE. Phone: 0923-896989

PRICE

Visual Designer 2 Software:
$\mathrm{PCl}-20098 \mathrm{C}$ Mu tifunction Ca -d:

MEGAPROM device programmer. EPROMS, E2PROMS, and FLASH memorics from 2 k (2716) to 8 Meg (27 Cuso). Runs on IBM PC vid the centronics port using standard printer cable. Works on all PC compatibles, laptops, and nutebooks. No special port requirements.
Uses approved programming algorthns. Very fast program and verffy 27C:512
Uses approved programm
($0+\mathrm{K}$ Byles) in 45 seconds.
Full screen editor sottware supports Bin, Intel Hex, motorola S and Asc formats.
Only 59.95 Tup quality components used throughout including production $\angle 1 F$ socket.
Requires external power supply $18-25 \mathrm{v}$ AC or $\mathrm{DC} @ 250 \mathrm{ma}$. (ophonal extra ($\mathbf{~} 6.50$)
PICPROC; Programs Picl6C54-55-56-57-71-84. Centronics port interface same as Megaprum Powerful editing software to Read. write \& copy Pic devices includmg data memory in Picloc84 Unt supplied with IBM softwarc \& 12 months parts \& labour guarantec. Only 569.95 Requires external puwer $15-20 \mathrm{NAC}$ or DC (el 250 ma . (optonal extra 56.50 ()
EPROM EMLLATOR Works on ANY computer with centionics printer port. Data sent 1, the printer appedrs in the target board Eprom secket. Emulates from ih to 32k Byte (270 256) nomr, board switchable. Power supplicd from target Rom socket (less than 10ma). Very tast down'vat Software supplied for IBM PC to convert and send Intel Itex. Mutorola S. ASC and Bin files.

Only 549.95
Board supplicd with software and 12 months parts and labour guarantec
PC SCOPE Convert your IBM PC'into a Storage Oxilloscope with our A/D converter. Siraply plug into the pronter port (no power required). Sample rate 10k to 30 k per second
Software supplied for Scope and Voltmeter. A/D source to write your own programs.

Ondy 529.95
DEVELOPMENT SOFTWARF
Develop software on your IBM P'C for uther Microprocessurs, Controllers, Pic's etc. Sottware has fully integrated T ext Editur, Assembler, Disassembler and Simulatur.
The Simulator displays all registers along with disissembled code progrann counter, Condit sn code register. The user can sugle-step, go with breakpoints, watch memory cte. change any/all registers memory leations at any liane
Code can be Saved to disk and/or downloaded directly to our L-PROM IEmulator. All sofiware supplied with sample ASM files and user documentation.
Very powertul software as supplied to universtics. colleges ITECS and Industry
Avalable for the tollowing:-

MCS8051/52/552 sencs P1C16C54/5/6/7

Software $£ 19.95$

LOW COST PIC ICE (In-Cireuit Emulatur)
Plus into the printer port and runs in conjunctoon with the PIC development amulator softuare Appears to the target system as a normal Pic device including OSC2 and RTCC infout. Run. in real time from the 1BM PC changes made to File registers reflected on target

Only 889.95
All hardware carress a 12 months parts and labour Cuarantee. No VAT payable

JOHN MORRISON DEPT WW

4 Rein Gardens, Tingley
West Yorkshire
Tel (or Fax): 0532537507

CIRCLE NO. 116 ON REPLY CARD

THE DEFINITIVE ‘OFF-AIR’ FREQUENCY STANDARD

LIST AVAILABLE BUT 1000's OF UNLISTEO BARGAINS FOR CALLERS. ALL PRICES EXC. OF PAP AND VA
QUALITY ELECTRONC EQUIPMENT ALWAYS WANTED

SUPERB DUAL TRACE SCOPES, TELEQUIPMENT D61A, 10 mV SENSITIVITY, 10uS-500mS/DIV ($\% \times 5$), X-Y INPUTS, Z-MOD, INT/EXT/TV TRIGS, ETC. FROM £ 99 TIME 2004 DC VOL TAGE STANDARD 0005% LUKE 760A MULTIMETER CAL IBRATOR BRADLEY 171 B MULTIMETER CALIBRATOR BRADLEY 191 DIISTRIBUTION UNIT HONEYWELL COLOUR GRAPHIC RECORDER HTTACHI V 52550 MHZ 2 TRACE CURSOA, ETC TEKTRONIX 545 PLUG-INS VAAIOUS
PLESSEY TCT 10 SIG GENIANAL $50-300$ BDS MURHEAD KZZ1A IEMP CONT PRIECISION STDCELI MARCONITF2212 X-Y DISPLAY DAWE 1405D(R. ©.) SOUNDLEVEL METER OUAD 303 STEREO POWER AMPS DRAKE MN2700 MATCHING NWORK \& PS7 PSU SCOPEX 4566 MHz SINGLE TRACE SCOPEX 4D10BLS 10 MHz WITH EXTENDED LF T/E LEADER $\angle B O-9 C$ ALIGNMENT SCOPE WATSU SS5 116 DUAL TRACE 10 MHz TELEQUIPMENT D 10111 10MHz DUAL TRACE TEKTRONIX 4533 , 5OMHZ DUAL TRACE DEL T/B HP 8405A VECTOR VIMETER 1 GHz
TELEOUIPMENT D67A 25MHZ $2 T$ HITACHI VC 601510 MHz DIGITAL STORAGE HP1340A X-Y DISPLAYS
OERTLING VZO SINGLE PAN BAL 1 MARCONI TF233 WAVE ANALYSER 20 2009 LEVELL TM68 MICROV-METER 450 M 1 Hz
£750 ELECTRONIC VISUALS EV4020A NTSC V/SCOPE
£249 FERROGRAPH RTS2 TEST SET/AUX TESTUNIT £249 FERROGRAPH RTS2 TEST SET/AUX TESTUNI £219 PHILIPS PM5134 FUNCTI ON GEN 11Z-20MHz £295 PHHLIPS PM5716 PULSE GENERATOR 1 Hz -50MHz £450 BRADLEY 144 DC MULTIPLIER UNIT 10 E 2 £195 LEVELL TM 3 A MICROV-METER 3 MHz £195 LEVELL TM 3 B MICRO V-METER 3MHz
$£ 59$ HP4951C PROTOCOL ANAL $\& 18179 \mathrm{AR}$ C95 TIME ELECTRONICS 2O03N DC V POT O02\% 295 HP6131C DIGITAL VOLTAGE SOURCE POA HP6140A DIGITAL CURRENT SOURCE 5649 LING DYN VIB GEN 4068 PA30 PWR OSC £ 95 UDI2026 SONAR SCANNER. SURFACE UNIT
CITOH CX6000 6 -PE A A PLOTTER. CENT/RS232 E195 GOULD 2400 4-PEN CHART RECORDER £175 PHILIPS PM6456 FM STEREO GENERATOR £165 MARCONI TF2300 FM/AMMODULATION METER £249 McKENZIE TDAY TEMP/HUMIDITY RECORDER E395 FEEDBACK SSO603 1 MHz SINE SQ OSC £215 LCR BRIDGE WAYNE KERACT492〔215 LCR BRIDGE WAYNE KERA
²95 LCRO BRIDGE AVO B151
C295 LCRO BRIDGE AVO B151
ع149 LCR BRIDGE MARCONI TF2

E149
L69
LCR BRIDGE ME MARCON I TF2700

£69 LCR BRIDGE MARCONI TF270
§149 LCR MARCONI TF 1313025%
E95 LCR COMPONENT COMPARATOR AVO C7457
£149
ET5
FROM
E55
Provides 10 MHz , 5 MHz \& 1 MHz
Use it or caforating equipment that relies on quarz crystals, TCXOs
Phase locks crystals
Output frequencies Short term stability - better than $1 \times 10^{8}(1 \mathrm{sec})$ Typical- $4 \times 10^{-9}(1 \mathrm{sec})$ Long term - tends to $2 \times 10^{-12}(1000 \mathrm{sec})$

Magic numbers in electronics

The Greeks knew about the golden ratio, π and $(\sqrt{5}+1) / 2$. But although Pythagoras and Euclid never had the opportunity to apply their work to filter design, it still remains a valid proposition. Ian Hickman brings civilisation up to date.

Ever since man started to count, numbers have fascinated hirn. Starting with the positive whole numbers (up to ten, perhaps. initially) man at some point realised that there is no largest number, and eventually came realise that there were other 'numbers' in between the whole numbers he was used to.
For instance, while rulers of lengths 3, 4 and 5 cubits would let him build nice tidy right angles at the corners of a palace or house, the circumference of a barrel obstinately refused to equal a whole number times the diameter, although twenty-two sevenths seemed to be near enough for most practical purposes.
Nowadays pi crops up in technical contexts, in electronics as clse where. for instance in $\mu_{0}=4 \pi 10^{-7}$. the permeability of free space.
Most readers of this journal will be conversant not only with pi but also with e , the base of exponential or Naperian logarithms. Like pi. e is a truly magic number, popping up all over the place. It is also a number to be wary of - the exponential function has a dangerous tendency to explode.
For instance, suppose that in 1066 near Hastings, one of William the Conqueror's soldiers wantonly did $£ 1$ worth of damage to the property of a local landowner, and that the landowner's descendants today obtained a court order for the payment of this sum with interest at a modest rate of, say. 2.5% per annum compound. Then the successors in title of William the Conqueror face a bill of eight thousand nine hundred and forty eight million, four hundred

[^2]and thirty four thousand eight hundred and ninety eight pounds.
If instead. 1.25% interest had been added sixmonthly, the figure would have been slightly higher. If interest had been added not six-monthly, monthly or even daily, but one millionth of the annual rate added every 31.5 seconds (one millionth of a year), the figure would have been slightly higher still, the effective annual rate becoming 2.531%. The total, instead of increasing in yearly steps, would have mounted up following a smooth curve described virtually exactly by an exponential function, in this case:

Total=Principal $\mathrm{e} \mathrm{e}^{0.0255}$,

where t is in years. You can imagine how rapidly the exponential function explodes if t is in seconds or even microseconds, especially if ' a ' in $e^{a 1}$ were unity or larger, rather than 0.025 .
That an exponential cannot go on growing for ever is well known to engineers, but completely unknown to politicians (with their talk of continuous sustainable growth), over-optimistic business men, or the poor unfortunates taken in by cleverly

Fig. 1a) The odds of a tossed coin landing heads ten times in a row are 1 in 210 or 1023:1 against. The histogram shows the probability for 0 to 10 heads as the fraction (number of ways of getting N heads)/(total number of possible outcomes) the denominator in this case being 1024. b) The probability of r heads in n throws can be calculated either by formula i) or by Pascal's triangle ii).
disguised chain-selling schemes. Exponential decay is much more well behaved, the voltage across a parallel resistor/capacitor combination dying away, like the world, with a whimper according to the equation

$$
V^{\prime}=V_{0} \mathrm{e}^{\frac{-t}{C R}}
$$

This tells you what voltage is left across the capacitor t seconds after some arbitrary time of observation t_{0} at which the voltage across the capacitor was V_{10}. Assuming that originally the capacitor was charged up to some enormous voltage, you can find out what the voltage was at any time hefore t_{0} by letting time run backwards. Just substitute $-t$ for t in equation 1 , converting it into a positive exponent and a growing exponential.
In equation 1 , the variable is time, but e appears in other equations where the variable is squared. I can't think off hand of any equations where the variable is time squared, but other equations with e to the power (a variable squared) often occur. Naturally, to avoid explosions, the squared variable has an associated negative sign, just as time does in equation 1.
Because there is no difference between x^{2} and $(-x)^{2}$, a function defined by such an equation dies away as the variable increases in either a positive or a negative direction away from the norm or mean, as the following equation shows. It describes Gaussian noise - noise having a Gaussian or 'normal' distribution:

$$
\text { Probability density of voltage } V=K_{1} e^{-K_{2} 1^{\prime 2}}
$$

There is no maximum value to this function: in theory you could get a voltage spike of near infinite magnitude, but as the probability of this is near zero, you would have to wait for ever for the chance to observe it.

Incidentally, the same equation governs something as mundane as the tossing of a coin - at least if you do it often enough. Figure 1 shows the possible outcomes of tossing a coin ten times in a row. Interestingly, five heads and five tails is not the most likely outcome. Six of one and four of the other (not specifying which) is much more likely, though five of each is marginally more likely than six heads and four tails (or four heads and six tails). If you make a histogram of the number of possible ways of getting $0,1,2$ heads, the result closely resembles the distribution of Gaussian noise shown in Fig. 2. As the number of tosses approaches infinity, the histogram converges ever more exactly on the normal curve.

We count in tens because we have five fingers on each hand. But 5 - or rather its square root - is the basis of another magic number which seems to be not at all well known, and which I will call K. This number is

Fig. 2. The probability of the instantaneous value of random noise falling at any particular value are described by the normal curve, also known as the Gaussian distribution.

Fig. 3. Derivation of the magic number K.
$K=(\sqrt{5}+1) / 2=1.618$. Clearly if a number is greater than one, its reciprocal is less than one, and vice versa. As it happens, K is the (only) number which differs from its reciprocal by exactly unity, so $K-1=1 / K=0.618$ - a number I shall call K^{\prime}.
Like e, K crops up all over the place. As Fig. 3 shows, it describes the relative dimensions of a sheet of paper where the ratio of the short side to the long side is the same as the ratio of the long side to the sum of the long and short sides. I have a sneaking feeling this is callec' the golden ratio, but can't find it mentioned in any of my maths textbooks or encyclopaedias. It is said to be the most desthetically pleasing ratio for a sheet of paper, being in fact only slightly squarer than the long and 】anky-looking foolscap. A4 differs in the other direction, being squarer than $K: 1$. In fact it is $\sqrt{2}: 1$, so that on halving it to A 5 , the ratio is still the same.

What I hadn't realised until a few years ago is that K and K^{\prime} crop up in electronics - particularly in connection with filters. The equation defining the response of a second order low pass filter is:

$$
\begin{aligned}
& \frac{V_{n}}{V_{1}}=\frac{1}{s^{2}+D s+1} \quad \text { generally, or } \\
& =\frac{1}{(j \omega)^{2}+j \omega D+1} \text { in the steady state } \ldots 3
\end{aligned}
$$

where ω equals $2 \pi f$, and f is the frequency in Hz . For convenience, make ω ' the normalised frequency, i.e. the

K and its stablemate K^{\prime} show numerous relationships, which can be simply verified by algebra by substituting $(\sqrt{ } 5 \pm 1) / 2$ as appropriate. Note the following relationships where $K=(\sqrt{5}+1) / 2$ and $K^{\prime}=(\sqrt{ } 5-1) / 2$
$1 / K=K^{\prime} ; 1 / K^{\prime}=K ; K^{\prime}+1=K ;(K+1) / K=K ;\left(1-K^{\prime}\right) / K^{\prime}=K^{\prime}$
actual frequency divided by the filter's cut-off frequency. Thus at half the cut-off frequency, $\omega^{\circ}=0.5$ and etc, keeping the sums simple.
D represents the damping term, which determines how high the peak at the upper end of the passband is, relative to the response at 0 Hz , before the response falls away into the stop band. If $D=0$), corresponding to a Q of infinity since $Q=1 / D$, then the peak reaches infinite proportions. Fig. 4a shows the response of a second order lowpass filter for varicus values of Q up to infinity. With the response at $\omega^{\prime}=1$ being infinite, one might expect that it would still be very large, even an octave above or below this frequency.
In fact this is not the case, even at $\omega^{\prime}=K$ or K^{\prime}, distinctly less than an octave away. As Fig. 4a shows, the response at a frequency K is K^{\prime} and at K^{\prime} is K, as you may verify for yourself (or see from the accompanying text panel) by substituting the appropriate values of ω in equation 3 , with D equal to zero. In fact, you will find that the response at K^{\prime} is $+K$ and that at K is $-K^{\prime}$, indicating no phase shift in the former case and 180° in the latter. For as Fig. $\mathbf{4 b}$ shows, when $\mathrm{Q}=\infty$ there is no phase shift anywhere in the passband and the stopband phaseshift is 180° at all points

THE clock for your computer

The ADC-60 brings the accuracy of a time standard to your computer. It provides a data source which can be used by any system which has a serial port such as a PC, MAC or mainframe. The ADC-60 offers improved reliability by using both the British MSF and German DCF time standards. If one of the signals cannot be received the other source will automatically be used.

Other ADC-60 Features include:

- LCD display showing current time and date together with the lock status of the unit.
- Provides GMT or Local time outputs together with the date
- Serial output in ASCII or BCD format
- Includes 2 software packages, the first is a TSR which runs under DOS, the second runs as a minimised window in Microsoft Windows
Contact us today for further information on this superb product

JPG Electronics

beyond cutoff frequency. Amplitudes K and K^{\prime} are sort of 'point asymptotes' or pegs in the ground. As the Q rises towards infinity the response at $\omega^{\prime}=K^{\prime}$ and K approaches these points, but can never exceed them.
The response of a second order bandpass or highpass filter is the same as in equation 3 , but with s or s^{2} respectively replacing 1 in the numerator of the righthand side. You might expect K and K^{\prime} to be involved here too,

For a sectnd order lowpass filter
$\frac{V_{b}}{V_{1}}=\frac{1}{\left(j \omega^{\prime}\right)^{2}+j \omega^{\prime} D+1}$ and if $D=0$, then at $\omega^{\prime}=\frac{\sqrt{5}-1}{2}=K^{\prime}$,
$\frac{V_{0}}{V_{1}}=\frac{1}{\left(j \frac{\sqrt{5}-1}{2}\right)^{2}+1}=\frac{4}{-(5+1-2 \sqrt{5})+4}=\frac{2}{\sqrt{5}-1}=\left(\frac{\sqrt{5}-1}{2}\right)$ $=\frac{1}{K^{\prime}}=K$
For the second order bandpass case.

$$
\frac{V_{0}}{V_{t}}=\frac{j \omega^{\prime}}{\left(j \omega^{\prime}\right)^{2}+j \omega^{\prime} D+1} \text { and if } D=0 \text {. then at } \omega^{\prime}=\frac{\sqrt{5}+1}{2}=K
$$

$$
\frac{V_{0}}{V_{1}^{\prime}}=\frac{\frac{j(\sqrt{5}+1)}{2}}{-\left(\frac{\sqrt{5}+1}{2}\right)^{2}+1}=\frac{\frac{j(\sqrt{5}+1)}{2}}{\frac{-(5+1+2 \sqrt{5})}{4}+1}
$$

$$
=\frac{j(\sqrt{5}+1)}{-(1+\sqrt{5})}=\quad-j=\quad 1 \angle-90^{\circ}
$$

For the second highpass case.
$\frac{V_{0}}{V_{1}}=\frac{\left(j \omega^{\prime}\right)^{2}}{\left(j \omega^{\prime}\right)^{2}+j \omega^{\prime} D+1}$ and if $D=0$, then at $\omega^{\prime}=\frac{\sqrt{5}-1}{2}=K^{\prime}$.
$\frac{V_{0}}{V_{1}}=\frac{-\left(\frac{\sqrt{5}-1}{2}\right)^{2}}{-\left(\frac{\sqrt{5}-1}{2}\right)^{2}+1}=\frac{\frac{6-2 \sqrt{5}}{4}}{\frac{6-2 \sqrt{5}}{4}-\frac{4}{4}}=\frac{\frac{3-\sqrt{5}}{2}}{\frac{1-\sqrt{5}}{2}}=\frac{1+\frac{1-\sqrt{5}}{2}}{\frac{1-\sqrt{5}}{2}}$
$=\frac{1-K^{\prime}}{-K^{\prime}}=\frac{1-\frac{1}{K}}{-\frac{1}{K}}=\frac{K-1}{-1}=-K^{\prime}=K^{\prime} \angle+180^{\circ}$
and you wouldn't be wrong. In the case of the infinite Q bandpass filter, K^{\prime} and K are the frequencies where the response is j and -j respectively, i.e. the amplitude response is unity, the phase being 90° leading at K^{\prime} and lagging at K. In the case of the infinite Q highpass filter. the response at K^{\prime} is $-K^{\circ}\left(-4.18 \mathrm{~dB}\right.$ and leading by $\left.180^{\circ}\right)$, and at K is K. This is shown in Figure 5, along with both the lowpass and bandpass results. The curves are not exactly to scale but are the right general shape. They are displayed on logarithmic axes, which permits the display of the 6 and 12 dB /octave asymptotes as well.

Low Cost Analog Simulation

 ICAP/4Lite - Schematic Entry, SPICE and Waveform Display for $£ 400$

Tektronix Das 9100 Logic analysers. Complete - $£ 700$
Nicolet 800A Logic Analysers - $48 \mathrm{Ch}-16 \mathrm{Bit}-£ 450$.
HP7580B-7585B Drafting Plotter $-£ 1,000$.
Bradley 127 DC Voltage Calibrator - £250.
Bradley 125B AC Calibrator + Ration Transformer 1255 + PI 1254B $50 \mathrm{C} / \mathrm{s}$
60-400-1KC/s - £250
Marconi 6460/1 Power Meters + Heads RF various - $£ 250$ ea
Marconi 6460 Power Meters + Heads RF various - $£ 150$ ea.
Marconi CT499 MkII RF Watt Meter Absorption 1-3-10-30-100W-50ohm+70ohm Convertor Adaptor - £350. Includes RF Adaptors Low Loss.
HP59500 A Multiprogrammer Interface.
HP6940B Multiprogrammer or HP6941B - £100-£200
Datalab DL1200 Waveform Recorder - $£ 300$.
Solatron 1170 FX Response ANZ-Led - $£ 300$
HP59401A Bus System ANZ.
STC Optical Fibre Reflectometer OFR6 - $£ 300$.
HP3497A Data Acquisition Control Unit - £300
Redifon Synthesized Receiver R1001-CW-AM-USB-LSB-PIC-STORE-Led Readout $-15 \mathrm{KC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 600$
Racal LA1117 Piccolo Modem - £150.
Redifon RFS11 Pre-Selector - Post Selector
$1 \mathrm{MC} / \mathrm{s}-32 \mathrm{MC} / \mathrm{s}-£ 200$
Sayrosa 3-39MC/s Programmable Freq Syn-Type
$607+607 \mathrm{~B}-£ 200-£ 300$
Racal TA1816 1 Kw Solid State Transmitter - MA1034 + 3 Pare Amps - $£ 1,000$
H.C.D. Research Ltd Precision Oscillator $15195000 / 1000 \mathrm{KHz}-£ 250$.

Nimbus 400 Hz Convertor Mains - $240 \mathrm{AC}-500 \mathrm{C} / \mathrm{s}$ Input-Output $115 \mathrm{~V}-400 \mathrm{~Hz}$
$500 \mathrm{~V} / \mathrm{A}$ Programmable 0-125V. G500 FPL - $£ 300$. G200R as above -
200V/A - £200.
Hedinair + Montford Environmental Ovens etc. Big+Small - $£ 200-£ 1,000$.
CL Clean Linez Unit - $£ 300$.
HP6943A Multiprogrammer extenders - $£ 300$
HP6525A DC P.U.O. $-4000 \mathrm{~V}-50 \mathrm{M} / \mathrm{A}-£ 350$.
Polaroid + CR-9 Cameras for Oscilloscopes - $£ 100$
HP3710A IF-BB Transmitter, HP3702B IF/BB Receiver +
3705A Phase Detector - $£ 250$
Moor \& Reed Frequency Convertor 400C/s 3 Phase Type SFC 6K/3AXR - Solid State - $20 \mathrm{Amps} /$ Mains 240 V AC-50C/s Input - $£ 600$
HP7586B Plotter Large Quantity Accessories Pens etc - HP-IB-RS2320- $£ 1,000$
Benson 16 BZ80 Asynchrome Interface + Accessories \& Pens etc- $£ 600$
Imtec 6000 Microfilm Reader \& Printer, A4-A2 sizes
Plain Paper - Various Lenses - $£ 750$
Fluke Y5020 Current Shunt - $\mathbf{\Sigma 1 5 0}$
B\&K 2107 FX Analyser - £250.
B\&K BFO 1022 - £200.
Tektronix Spectrum ANZ-1L5-50HZ-1MC/s - £150-
1L20-10MC/s-4200MC/s - $£ 250$
FARNELL P.U. AP60-50-60V-50Amps - $£ 1,000$.
Tracor 527E Frequency Difference Meter - $£ 350$.
HP8900B Peak Power Calibrator - $£ 250$.
8\&K 2425 Electronic Voltmeter - $£ 200$
HP4437A 600 ohms Attenuator - $£ 150$
HP6177C DC Current Source - £250
B\&K Two Channel Level Recorder - $£ 400$
Tektronix 2213 60MC/s Oscilloscope - £300-2213A - $£ 350$.
Tektronix 2215 60MC/s Oscilloscope - $£ 350$.
Tektronix 2445 150MC/s Oscilloscope - $£ 1,200$
Tektronix $2246100 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 1,000$
Tektronix 2225 150MC/s Oscilloscope - $£ 800$.
Tektronix $2245100 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 700$.
Tektronix 491 Spectrum ANZ $10 \mathrm{ML} / \mathrm{s}-40 \mathrm{GHC}-£ 1,000$.
Farnell P.U. H30/100- 500
Farnell P.U. H30/100- $£ 500$.
Schlumberger S1 4922 Radio Code ANZ - £400.
Aerial Array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector. 10011 GHZ using N type and SMA Plugs \& Sockets-ex equip- £100
Marconi TF2175 Power Amplifier - $1.5 \mathrm{MC} / \mathrm{s}-520 \mathrm{MC} / \mathrm{s}+$ Book - $£ 100$.
Schlumberger 2741 Programmable Microwave Counter - $10 \mathrm{HZ}-7.1 \mathrm{GHZ}-£ 750$. Schlumberger 2720 Programmable Universal Counter-0-1250MC/s - $£ 600$. Tektronix 576 Calibration Fixture - 067-0597-99- £250.
Texscan Rotary Attenuators BNC/sMA - 0-10-60-100DBS - £50-£150. HP809C Slotted Line Carriage - Various frequencies to $18 \mathrm{GHZ}-£ 100-£ 300$. HP532-536-537 Frequency Meters Various Frequencies - £150-£250. S.E. Lab SM215 Mkll Transfer Standard Voltmeter - 1000 Volts.

Ailtech Stoddart P7 Programmer - £200
HP6181 DC current source - $£ 150$
HP59501A HP-IB Isolated D/A Power supply programmer
HP3438A Digital Multimeter - $£ 150$.
HP6177C DC Current Source - $£ 150$
HP6207B DC Power Supply - £100.
HP741B AC/DC differential voltmeter standard (old colour) - $£ 100$.
HP6209B DC Power Unit - £100.
Fluke 431C High voltage DC supply.
Tektronix M2 Gated Delay Calibration fixture - 067-0712-00.
Tektronix Precision DC Divider Calibration fixture - 067-0503-00
Tektronix Precision DC Divider Calibration fixture - 067-0503-00
Tektronix Overdrive Recovery Calibration fixture - 067-0608-00.
Tektronix Overdrive Recovery Calibration fixt
HP5011T Logoc Trouble Shooting
PPM 8000 Programmable Scanner
Fluke 730A DC Transfer Standard
F\&k 7815 A DC Transter Standard
B\&K 4815 Calibrator Head - $£ 150$
HP FX Doubler 938A or 940 A - $£ 300$
HP FX Doubler 938A or 940A - £300
HP461A Amplifier $1 \mathrm{KC}-150 \mathrm{MC} / \mathrm{s}$ -
HP461A Amplifier $1 \mathrm{KC}-150 \mathrm{MC} / \mathrm{s}$ - Old Colour - $£ 100$
Ailtech Precision Automatic noise figure indicator type 75 - £250
Adret FX Synthesizer 2230A-1MC/s - £250.
Marconi TF2512 RF Power Meter - 10 or 30 Watts - 50 ohms - $£ 80$
Marconi 2830 Multiplex Tester.
Marconi 2828A Digital Simulator.
Marconi 2831 Channel Access Switch.
Marconi TF2337A Automatic Distortion Meter - £150
HP489A Micro-Wave Amp-1-2GHZ- $£ 500$
Fluke 893A Differential Meters $-£ 100$ ea.
EG\&G Parc Model 4001 Indicator 4203 Signal Averager PI.

Tecktronix Plug-In AM503-PG501-PG508-PS503A-PG502.
Cole Power Line Monitor T1085-£250
Claude Lyons LCM1P Line Condition Monitor - $£ 250$
Bell \& Howell TMA3000 Tape Motion Analyser - $£ 250$.
HP5345A Automatic Frequency Convertor -. $015-4 \mathrm{GHZ}$ - $£ 350$
HP3200B VHF Oscillator $-10-500 \mathrm{MC} / \mathrm{s}-£ 200$.
Sencore SC61 Waveform ANZ-Microprocessor $60-100 \mathrm{MC} / \mathrm{s}-£ 350$.
Schlumberger 3531D Date Acquisition Systern - $£ 300$
Marconi 6700A Sweep Oscillator with 1-2GHZ PI 6730A - $£ 400$
Marconi $6700 A$ Sweep Oscillator with
B\&K 2218 Sound Level Meter - $£ 600$.
EIP 331 18GHZ Counter-Microwave - Led - $\mathbb{\Sigma} 700$
EIP 351D 18GHZ Counter-Microwave - Led- 8800
EIP 351 D 18GHZ Counter-Microwave - Led - $£ 800$
EIP 451 18GHZ Counter-Microwave - Led - 59500 .
Systron Donner 6054D 18GHZ Counter - Led - $£ 800$
Systron Donner 6054D 18GHZ Counter-Led- $£ 800$
Systron Donner 6057 18GHZ Counter - Microwave - Nixey - $£ 600$
HP5340A 18GHZ Counter Microwave - Led - $£ 1,200$.
HP5340A 18GHZ Counter Microwave - Nixey - $\mathbf{\Sigma 8 0 0}$.
Systron Donner 6061 18GHZ Counter Microwave - Nixey - $£ 500$
Austron 6014 FX Multiplier - $£ 250$.
Austron 2004 Receiver Loran - $£ 250$
Austron 1201A Linear Phase Recorder- 2250 .
Austron 2010A Disciplined FX Standard - $£ 250$.
Microtel MSR-903 Microwave Receiver - .03-18GHZ - AM-FM - £2,000
Microtel MSR-903 Microwave Receiver - .1-18GHZ - AM -FM - £2,000
Microtel MSR-903A 18GHZ FX Counter for Above - $£ 1,000$.
Ailtech NM17/27 EMI/Field Intensity Meter - 0 1-32MC/s - £1,000
Ailtech NM37/57 EM//Field Intensity Meter $-30-1000 \mathrm{MC} / \mathrm{s}-\Sigma 1,000$.
Ailtech NM65T EMI/Field Intensity Meter $-1-10 \mathrm{GHZ}-\mathbf{\Sigma 1 , 0 0 0}$.
Fluke 5205A Power Amp - $£ 1,200$
B\&K 1623 Tracking Filter.
B\&K 2607 Measuring Amp
B\&K 2134 Sound Intensity Analyser
B\&K 280 Microphone Power Supply.
B\&K 4408 Two Channel Microphone Selector.
B\&K 4910 Stroboscope.
B\&K 1606 Pre-Amp Vibration.
B\&K 4420 Distribution Analyser
B\&K 1014 B.F.O. Oscillator
B\&K J2707 Power Amplifier
B\&K 2305 Level Recorders
B\&K 2307 Level Recorders
B\&K 7003 Tape Recorders.
B\&K 2615 Charge Amplifier
Fluke 9010A Micro-systems trouble shooter \& many Pods - £350 + Pods or Probe
Racal/Dana 5002 Wide Band Level Meter.
Racal/Dana 5006 Digital Multimeter
Racal/Dana
AVO RM215-L/2 AC/DC Breakdown Leakage \& Ionisation Tester - £400- $\mathbb{L} 450$
Fluke 80K - 40 High Voltage Probes - New in Case - $£ 100$
Watkins Johnson $340 A-4$ RX LF-1-800KC/s AM-FM-CW - Led Readout- $£ 750$.
Watkins Johnson DMS - 105A Demodulator-AM-FM-SSB - Led Readout - $£ 600$.
Watkins Johnson RS-111-1B-40 VHF Receiver-30MC/s-1000MC/s - AM-FM -
CW - Pan Display - $£ 700$.
Watkins Johnson 373A-2 HF Receiver - $0.5-30 \mathrm{MC} / \mathrm{s}$ -
AM-FM-CW - £400-£500.
Watkins Johnson Receivers from $1 \mathrm{KC} / \mathrm{s}$ to $10,000 \mathrm{MC} / \mathrm{s}$ also Tuning Heads -
Amps-Counter Readouts - Signal Displays - Distribution Amps - HF Multicouplers IF Demodulators - Signal Monitors etc.
Racal MA1720 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 500-£ 750$.
Racal MA1723 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 1,000-£ 1,500$
Racal MA1724 TX Drive Units $1.6-25 \mathrm{MC} / \mathrm{s}-£ 500$.
Racal RA1792 HF RX- $100 \mathrm{KC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 1,000$ Back Lighting
Racal RA1772 HF RX- $15 \mathrm{KC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 600$
Racal RA17L HF RX . $5 \mathrm{MC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 100-£ 250$
Plessy PR2250G \& H-HF RX LF to $30 \mathrm{MC} / \mathrm{s}-$ Memory-Led Readout - $£ 650-£ 1,000$
B\&K 2609 Measuring Amp - £250.
B\&K 1613 Filter - £100
B\&K 4215 Artificial Mouth - $£ 250$
B\&K 4219 Artificial Voice - $£ 250$
B\&K 4220 Piston Phone - $£ 120$
Dynamic Sciences R-1250 Tempet Receiver -
$100 \mathrm{HZ}-1000 \mathrm{MC} / \mathrm{s}-\mathrm{AM}-\mathrm{FM}-£ 2.000$
HP3406A Sampling Voltmeter (Broadband) - New Colour - £200
HP7404A Oscillograph Recorder-4 Track- £350.
HP9872B Plotter -4 pen $-\Sigma 300$.
HP11710B .01-11 MC/s - Down Convector for 8640 B - £350
HP11720A Pulse Modulator $-2-18 \mathrm{GHz}-£ 1,000$.
HP8403A Modulator $-0.4-12.4 \mathrm{GHz}(8731-8735 \mathrm{~B})$ Modulators - $£ 100-£ 250$
HP8403A Modulator $-0.4-12.4 \mathrm{GHz}(8731-8735 \mathrm{~B})$ Modulators $-£ 100-£ 250$.
HP Pin Modulators for above - Various frequencies $-0.4-12.4 \mathrm{GHz}-£ 150$.
HP Pin Modulators tor above - Various frequencies - 0.4-12.4GHz-£150
HP8699B Sweep Plug-in-0.1-4GHz - Using Yigs-Solid State - $£ 300$
HP8690B Mainframe - $£ 250$. All PI available $-.1-40 \mathrm{GHz}$ Sweep.
Raca-SG Brown Comprehensive Headset Tester
(with artificial head) Z1A200/1-£350.
Marconi 893B AF Power Meter - $£ 200$.
Microwave Systems MOS/3600 Microwave Frequency Stabilizer -
$1 \mathrm{GHz}-40 \mathrm{GHz}-£ 1,000$
$1 \mathrm{GHz}-40 \mathrm{GHz}-\mathrm{E} 1,000$.
ACL SR-209-6 Field Intensity Meter Receiver - Pl's - $5 \mathrm{MC} / \mathrm{s}-4 \mathrm{GHz}$ - P.O.R.
Ailtech 136 Precision Test RX +13505 Head $-2-4 \mathrm{GHZ}$ - $£ 350$.
SE Lab Eight Four FM 4 Channel Recorder - $£ 200$.
Datron 1065 Auto Cal Digital Multimeter \& Instruction Manual - $£ 400$
Datron 1061 Auto Cal Digital Multimeter \& Instruction Manual - $£ 400$
Racal MA259 FX Standard-Output $100 \mathrm{KC} / \mathrm{s}-1-5 \mathrm{MC} / \mathrm{s}$
Internal Nicad Battery - £150.
Edwards E2M8 Rotary Vacuum Pumps - Brand New \& Boxed - £500 ea
Fluke 9100A Troubleshooter \& Pods - New Boxed - $£ 750-£ 1,000$.
HP1140 \& 1743 Oscilloscopes $100 \mathrm{MC} / \mathrm{s}-£ 300-£ 450$.
Tektronix Pl 7A 19-7A29-3A-4-6-7m11-
Tektronix 7000 Series Oscilloscopes We can supply all variations of Main Frames and Plug-ins for this range from stock up to $1 \mathrm{GHz}-£ 300-£ 3,000$.

All items in this advert are in stock at time of printing, most items are held in quantity at both our warehouses which is probably the largest stock of electronic surplus in the UK. Bulk and trade buyers from UK and abroad are weicome by appointment to bring own transport for quick purchasing and loading of listed and non-listed items. Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007 . Fax (0274) 651160.

Optical storage is now at the stage where a single $5^{1} / 4^{\text {in }}$ disk can hold up to 1.5 Gbyte - whether write-once or rewritable. Martin Eccles outlines three technologies currently in widespread use.

the optical TECHNOLOGY DRVE

Development work on optical storage started in the early sixties. But due to continual advances in hard disk drives, light-technology drives were slow to appear on the market.
Over the past few years, write-once optical disks - worms - have become well established for mass-storage archiving. More recently, rewritable optical disk drives have evolved into serious alternatives to hard drives, mainly due to advances in their data throughput. In burst mode, some rewritable drives can achieve figures of 5 M -byte/s.

Write-once essentials*

Worm drives involve a disk containing an active layer embedded between two transparent substrates - typically made of polycarbonate or glass. This active layer can have its optical characteristics permanently changed by applying a high powered laser beam.
As its active layer, a typical disk has a material which is amorphous in its unrecorded state, i.e. automatically unstructured. By locally heating this material with a high-powered laser beam, it undergoes rapid crystallisation, forming a crystalline, automatically ordered, spot in the amorphous material - a phenomenon known as phase change.
When reading the disk, because the crystalline spots have a higher reflectivity than the

Unrecorded, the active layer in worm media is amorphous and absorbs light. Recording involves changing the phase of a data area by crystallising it using heat from a laser. This results in light absorbing and reflecting areas: each represents a logic level.
amorphous areas of the active layer, data is easily detected by the variation in intensity of a reflected low-power laser beam.

Phase-change technology

Phase change erasable media are similar to phase change worm types. The major difference is in the active layer material. It has the property of reversible phase change, and is originally formed with a crystalline structure, resulting in high reflectivity.
During writing to the disk, a very high powered laser beam is used to locally heat the active layer wherever a data bit is to be recorded. This momentarily melts the crystalline structure, which rapidly cools to form an amorphous. lower reflectivity, spot.
As with worm technology, reading is accomplished by detecting the difference in reflectivity between the crystalline and amorphous spots on the disk. For this job, a low powered laser beam is used.
With phase-change technology, rewriting the disk in olves directly overwriting data. By reheating an amorphous spot on the disk with a high powered laser beam, below the melting point of the active layer, recrystallisation occurs. The spot reverts back to its original crystalline structure with high reflectivity. This means that laser beam temperature alone can be used to change the active layer to either crystalline or amorphous state, according to the data to be recorded, in a single pass.

Magneto-optical disks

As the name suggests, magneto-optical technology is hased on a combination of magnetic and optical effects. This technology has the benefit that there are standards based on it, but it also has the drawback that erasing is inherently slower than for phase-change systems.

Construction of the disk is similar to other optical disks, but the active layer is formed of a magnetic material. In its initial state this material is uniformly magnetised. Each magnetic domain is aligned perpendicular to the plane of the disk and with the same polarity.
Unlike conventional magnetic materials, the magnetisation of this material is not easily altered at room temperature. Beyond the Curic

In a magneto-optical rewritable disk, polarity of the magnetic bit region can only be changed while the area is heated by a laser.

temperature however, polarity of a magnetic domam can be easily changed by an external magnetic field. Wherever a data bit is to be recorded, a high powered laser beam is used to heat the material above this temperature, allowing this reversal to take place.
To read the disk, the drive needs to determine which domains have been 'flipped' using a plane polarised low-power laser beam. The reflected beam has its plane of polarisation rotated clockwise or anticlockwise, depending on the domain polarity - a phenomenon known as the Kerr effect. This rotation is detected and interpreted by the drive.
Before data can be overwritten, the relevant area of the active layer must be returned to its initial state of magnetisation, i.e. erased. This needs a separate rotation of the disk, during which all magnetic domains are heated and the magnetic field is applied in the reverse direction.
After erasing the old data, new data can be written in the normal way. This means that overwriting data is a two pass process, which results in a slower write throughput than with the phase change drive.

Simitar to worm disks, phase-change rewritable types have amorphous and crystalline areas but the crystalline areas formed by melting can be reversed by heating to just below their melting point.

NEW WAVE MICROWAVES

6: oscillator frequency control

Tuning systems for microwaves frequently rely on ferrites and ceramics for frequency control, techniques not available on lower frequencies. Mike Hosking examines the fascinating world of solid state microwave tuning.

Any device capable of amplifying at the frequency of interest may be used as a fundamental oscillator. It will requ re control of frequency and spectral output.
There are, of course, other solid state methods of generating microwave signals, but these tend to be indirect methods and are only mentioned in passing. For instance, direct digital synthesis with subsequent frequency multiplication. This technique integrates digitally generated increments of phase, each of which are given an amplitude weighting corresponding to a sine (or cosine) function. After

D to A conversion and low pass filtering, the final output is an analogue sine wave. Integration is approximated by an accumulator and frequencies of 100 's of MHz are possible with ECL or GaAs logic elements. An advantage of this technique is the small frequency resolution obtainable $\left(<10^{-3} \mathrm{~Hz}\right)$ together with fast frequency switching. However, spurious outputs generated by sampling errors can be high. Phase noise mirrors the sampling clock.
A second, indirect technique is that of frequency synthesis using high-speed dividers and a phase-lock loop. Fig. 1 shows a typical

Fig. 1. A practical form of microwave frequency synthesiser uses a
fundamental VCO in a phase locked loop. The loop incorporates high
frequency dividers, one having a programmable modulus.

synthesizer circuit. A VCO of several GHz output frequency is possible and is controlled by the error voltage generated from the phase comparator. Noise output is dependent upon the VCO design and the PLL noise, with the output frequency being quantised by the divided reference oscillator, i.e. 8 kHz steps for a 2^{10} divider and 8.192 MHz reference.

Dielectric resonator

A dielectric resonator is a high- Q circuit element. The resonator itself consists of a small disc of ceramic material, having a high dielectric constant, typically lying between 30 and 40 GHz although operation to 100 GHz is possible. By bringing this element physically close to the electromagnetic fields surrounding a microwave oscillator circuit, coupling of the fields to the resonator will occur; resulting in frequency locking of the oscillator. A range of such discs is shown in Fig. 2. Barium titanate and zirconium titanate are most commonly used as the basic materials with various additives to control the frequency/temperature coefficient.
A dielectric resonator system works like this. A length of microwave transmission line, short circuited or open circuited at both ends, appears as a resonant circuit having a fundamental and well-defined resonant frequency. Furthermore, the resonant circuit also supports higher-order modes, providing they conform to the particular boundary conditions of the circuit. In this respect, the disc (cylinder) of the dielectric resonator behaves in similar fashion to a short-circuited length of air-filled, circular, metal waveguide. In such a resonator, the fields are internally reflected by the metal-

Fig. 3. Electric and magnetic fields external to the disc allow coupling to the microwave circuit.

However, an accurate analysis, leading to prediction of the resonant frequency, is more complex because the dielectric boundaries are not perfect conductors. The E and H fields radiate beyond the boundaries of the disc and must be accounted for, but it is this characteristic which allows coupling of the resonator to an external circuit. Figure 3 shows the electromagnetic field configuration for the transverse electric fundamental mode, normally used in circuit design.
Due to the low dielectric loss tangent of the modern ceramics, the Q -factor of the disc resonator can be exceptionally high; Q's of 10,000 at 25 GHz and 24.000 at 10 GHz are routinely available. In terms of frequency coverage, disc resonators become too large below about 1 GHz and, above about 40 GHz , are prone to the generation of unwanted modes. In addition, the resonator Q -factor decreases with frequency. Thus, with present materials, the general range of application is from about 1.5 GHz to 40 GHz for a simple disc. Higher frequency performance can be achieved with changes to the simple geometry, which generate a circumferential "whispering gallery" mode and is currently pushing performance through the millimetre wavelengths.
The dielectric resonator is particularly well suited to the microstrip type of circuit where
lic walls and the physically realisable modes must conform to the boundary conditions where there are no tangential component of E fields and no normal component of H -fields at the conductor surfaces. In an analogous fashion, the dielectric resonator can be modelled as a length of cylindrical waveguide having magnetic walls which behave as magnetic conductors, i.e. magnetic short circuits.

Fig. 2. Assorted sizes and shapes of ceramic discs suitable for high Q dielectric resonators. Diameter ranges from a few millimetres to several centimetres. An optimum diameter to height ratio would be 2:1.

Fig. 4. A disc resonator coupled to a microstrip line within an enclosed box. The walls of the box, together with the proximity of the circuit affect the resonator field pattern and must be allowed for. However, this very effect is used to vary the frequency by moving the tuning cap.

Chips! Wrapped or unwrapped?

With the application of reverse bias, the depletion region widens and the junction capacitance of the varactor will decrease from its maximum value at zero bias $C_{i(0)}$ to a value set by the tuning voltage $C_{j(V)}$. The maximum value of V is determined by the diode breakdown voltage. If C_{i} were to constitute the capacitive element of a tuned circuit, then the corresponding change in resonant frequency would be given by
$\frac{f_{\max }}{f_{\min }}=\left(\frac{C_{j(0)}}{C_{\mu(6)}}\right)^{\frac{1}{2}}$
Hence, the ratio
$\frac{C_{j(0)}}{C_{j(V)}}$
becomes a specification parameter of the varactor as it indicates the available tuning range. Other factors, such as the actual frequency of operation and required Q-factor, determine the absolute value of C_{jM} to be selected. The actual way in which C_{j} itself changes with bias voltage is given by

$$
C_{j\left(V^{\prime}\right)}=\frac{C_{j(0)}}{\left(1+\frac{1}{\phi}\right)^{\gamma}}
$$

where ϕ is the "built-in", or contact potential, of the diode typically lying between 0.8 and 1.3 volts depending upon construction and material. The exponent γ depends upon the doping profile of the $p-n$ junction. Linear tuning occurs when $\gamma=2$. In practice, C_{j} is not the only capacitance present: circuit strays also add to the total, so that the circuit itself contributes to the value of γ.
Packages add significant parasitic reactances which affect and sometimes limit device performance. This is particularly true for the varactor and can be illustrated by the following example.
A diode suitable for, say, 10 GHz operation might have $C_{j(0)}$ of 0.6 pF for the chip alone and 0.1 pF at a reverse bias of -30 V . The capacitance ratio is thus 6:1 producing a theoretical maximum frequency change is about 2.4:1. A chip package would normally add 0.18 pF . In addition, the packaged varactor must still be embedded within the microwave circuit and thus there will be fringing capacitances to the mounting structure, perhaps 0.05 pF . The total capacitance values now becomes 0.83 pF max and 0.33 pF min , a ratio of 2.5:1. This results in a tuning range of 1.6:1. So, even though these parasitic elements are small, their effect at microwave frequencies can be drastic.
tight coupling can readily be achieved and the disc may be bonded or bolted directly to the substrate. As shown in Fig. 4, though, the more practical design situation must include the effects of the microstrip substrate and surrounding packaging on the resonant frequency.
In fact, these effects may be used to advantage to allow mechanical frequency tuning over a small range. Adjusting the metal plate closer to the disc will increase its resonant frequency and raising the disc above the substrate surface with a plastic spacer will lower the frequency.

When designing, say, a fet oscillator in microstrip, various configurations are possible and involve positioning the dielectric resonator so that it acts as a feedback element. Essentially, at resonance, the disc appears as a band-stop filter having a high reflection coefficient. A typical series feedback circuit is shown in Fig. 5a. With the resonator coupled to the matched transmission line (say 50Ω) of the gate, a maximum amount of the oscillator output power will be reflected back at the resonant frequency of the disc. The phase of the reflected power with respect to the output can be optimised by adjusting the distance between resonator and fet (approximately a half-wavelength) in order to achieve injection locking at the disc frequency.
A push-pull oscillator circuit using two fets and a single dise is shown in Fig. 5b. This arrangement has the advantage that the fet noise sources can be added in anti-phase, thereby improving the FM noise performance.
Frequency stability with temperature proved an early problem for DROs. Not only do the physical dimensions of the disc change with temperature but so, too, does the actual dielectric constant. However, these problems have

been overcome by the use of various additives to the disc material. It is now possible to select material with a specified temperature coefficient, typically lying between -4 and $+10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and to use this to compensate for temperature effects elsewhere in the circuit for near-perfect overall stability.

Fig. 5. Schematics of two possible microwave fet oscillator circuits.
a) the dielectric resonator in a series feedback configuration b) push-pull arrangement which reduces fet noise.

Frequency tuning

Microwave VCOs lie at the heart of receiver systems and RF instrumentation, often over a wide frequency range. Two devices typically perform this function: the variable capacitance diode (usually referred to as the varicap at low frequencies and the varactor at microwave) and the Y1G sphere which is made from ferrite material.

The varactor diode is a $p-n$ junction, made from either GaAs or Si , of the form shown in Fig. 6a. The doping profile of the junction results in an equivalent circuit 6b, which also includes the parasitic elements of a typical package. The varactor operates under conditions of reverse bias to appear as a small series resistance (about 0.5Ω) and a variable junction capacitance C_{j}. This capacitance is,

GUIDED MISSILE

 CONTROL CABLE
4,200 mtrs

SUITA BLE FOR UP TO THE MINUTE ELECTRONICS ENTHUSIASTS

this top quality, government standard exceptionally thin 4 core cable.
This cable is almost impossible to detect with the naked eye when used for domestic applications.

A mega 4,200 meters on each reel, very thin four core cable, originally manufactured for the SWINGFIRE and other missile systems. 4 insulated wires 0.12 mm dia of copper plated high tensile steel overall dia approximately 0.5 mm . Each core is insulated with Lewmex T Enamel and overall the four cores are lapped with count cotton and wax impregnated. Supplied on a plastic reel $6.25^{\prime \prime} \times 5.5^{\prime \prime}$ and weighs only 2.75 kg .

Almost too many suggested uses, security wiring, communications, remote control, binding, garden, farm, invisable security wiring, plant support, bird scarring, wire rope for models and school mechanics, site layouts, fabric and plastic reinforcement, alarm wiring for whole walls, and of course for fishing with its substantial 281b breaking strain.I!!

NEWS FLASH
 NEWS FLASH
 NEWS FLASH
 MIDLANDS STORE NOW OPEN IN
 WOLVERHAMPTON

NEWS FLASH
NEWS FLASH
NEWS FLASH

MODELS
Wired remotes for boats and planes

COMMUNICATIONS
Field phones/Buzzers and telephones

GARDEN
Bird scarring, trip wires and plant support

FARM

Fence binding. Crop support, alarms

ALARMS

Connect up systems and conceal under wallpaper carpet, etc

SCHOOL

Physics and Science Lab
Art Department
REINFORCEMENT
For fabric, plastic and window displays

FISHING

Illuminate floats with multi colour LED's

WIRING

Give Models a realistic look with working mini bulbs. Cars with flashing lights, aeroplanes, dolls houses with room lights, etc.

BULL ELECTRICAL T/AS "WALTONS" 55a Worcester Street Wolverhampton Tel: 090222039

Monday - Saturday 9.00am-5.30pm (SORRY NO MAIL ORDER SERVICE available from this outlet)

PRIORITY ORDER FORM

PLEASE RUSH ME AN ORDER OF MISSLE CABLE BARGAIN BY RETURN POST:
NAME:
ADDRESS:
.POSTCODE
QTY: \qquad REEL(S)@ $£ 14.99$ PER REEL:

TOTAL: £.........................
PLEASE SEND ME YOUR FREE
64 PAGE BUMPER CATALOGUE

BULL ELECTRICAL
250 PORTLAND ROAD HOVE
SUSSEX BN3 50T
CIRCLE NO. 122 ON REPLY CARD

in fact, shunted by the junction resistance but. as this is very large ($10 \mathrm{M} \Omega$) under reverse bias, it has little effect. When designing an oscillator, if C_{j} is made to be all or part of the tuned circuit, then changing the reverse bias voltage will change the resonant frequency of operation.
Most oscillator circuits may be frequency tuned by varactor, although the physical realisation of the resonant circuits will vary considerably. In waveguide Gunn or impatt oscillators, the varactor would be port mounted in similar fashion to the active device. Figure 7 shows a schematic of a microstrip mesfet oscillator which uses capacitive feedback from the source to the gate, with the varactor included in series with the gate. If the oscillator was centred at, say. 10 GHz , then it would be possible to tune over the full X-band frequency range ($8-12 \mathrm{GHz}$).
By changing the doping profile of the p-n junction, it is possible to vary the value of the exponent, γ, in the tuning equation to create two categories of microwave varactor. When $\gamma=0.5$ it results in the abrupt junction device and a value of $\gamma=1.2$ to 1.5 produces the hyperabrupt varactor. The latter device offers a wider tuning capability and, with a combination of circuit design, can give a highly linear characteristic between tuning voltage and frequency.
Varactor tuned oscillators allow fast frequency tuning; slew rates of 10 GHz per $\mu \mathrm{s}$ are possible. This allows high data rate FM modulation or for fast, signal intercept receivers for frequency lock loops. Voltage breakdown limits the amount of change possible in C_{j}, reducing maximum frequency change to one octave. Figure 8 shows typical tuning curves for both abrupt and hyperabrupt diodes.
Other important considerations include settling time and post-tuning drift of an oscillator. Drift is usuadly of more concern in free-running CW oscillators where thermal effects at the varactor p-n junction may cause problems.

YIG tuning

Ferrite materials are used to make a number of non-reciprocal microwave components such as isolators, circulators, gyrators. In addition, it is also possible to design very small resonators having a high Q-factor with this material and these have widespread applications as
the tuning element in wideband oscillators and filters.
The material itself is a polycrystalline ceramic made from sintered oxides and having ferrimagnetic properties. Most commonly, ytrium and iron oxides are used to form a garnet material (hence YIG), sometimes with a doping of GaAs.
In a ferrite, not all of the electrons are paired with opposite spins (as in a non-magnetic material) but instead, there is a surplus of un-paired electrons, resulting in a net magnetic moment and a small magnetisation. The properties of a ferrite (particularly its permeability) can be influenced by the strength and direction of an appiied de magnetic field. Simultaneous interaction with an alternating microwave field allows a variety of components possessing non-reciprocal properties to be designed. The application here uses interaction between the microwave field. a de field and the spinning elecirons.

fig. 8. Tuning curves of theoretical frequency ratio for a hyperabrupt and abrupt junction varactor

Fig. 9. The spinning YIG electrons create a magnetic moment which, under the influence of a steady external magnetic field, precess about the field axis.

Figure 9 shows the effect of applying a steady, external magnetic field to the YIG material. Initially, the un-paired and spinning electrons are lined up to produce an overall magnetic moment.
If a dc magnetic field, H_{0} is applied to the ferrite, the magnetic moment and will start to precess around this axis at a precession angle proportional to H_{0}. The effect is analogous to the precession of a spinning gyroscope when the spin axis is not aligned with the gravitational force.
Two important physical relationships arise from this situation: firstly, the ratio of the magnetic moment of the ferrite electron to its angular momentum is called the gyromagnetic ratio, γ, and has the value $0.035 \mathrm{MHz} \mathrm{A}^{-1} \mathrm{~m}$ (or. more colloquially, 2.8 MHz per Oersted).
Secondly, the precession frequency (also called the Larmor frequency) is related to the magnetic field by $f=\gamma \mathrm{H}$.
To produce a resonator, the YIG material is formed into a small, highly polished and accurately dimensioned sphere; diameters range typically from 0.2 to 2 mm . Such a sphere is naturally resonant at the precession frequency and, most importantly, possesses a very high unloaded Q-factor (2000 or more). If a microwave field is coupled into the YIG sphere, then there will be a strong interaction when resonant frequency and microwave frequency are equal. Such coupling normally takes the form of an inductive loop in close proximity to the sphere, as shown in Fig. 10a and has the overall equivalent circuit of Fig. 10b. If a YIG plus coupling loop is made part of a microwave oscillator circuit, the frequency may be tuned by varying the magnetic field applied to the sphere. An electromagnet, with the sphere accurately located between pole pieces, is used to produce the field. Thus frequency becomes proportional to coil current.
YIG tuned oscillators (YTO's) can provide tuning ranges of several octaves; $2-18 \mathrm{GHz}$ is possible. The technology finds use in electronic warfare, as well as sweep generators and spectrum analysers. Coil inductance limits speed of tuning or slew rate. It typically takes Ims for full band coverage. However, some oscillators incorporate a small, subsidiary coil for faster (but limited) tuning in FM or FLL circuits.
The oscillator itself may use any of the devices previously discussed, although the physical realisation and capabilities of the circuit will obviously vary. Bipolar or fet devices are common arranged to provide a negative resistance applied to the YIG coupling loop. This produces oscillation at the natural frequency of the system. A complete microwave YTO circuit in microstrip form is shown in Fig. 11.
The YIG sphere, about 0.5 mm diameter, can be seen, partially hidden by the coupling loop and is mounted at the end of a beryllium oxide rod. The rod is heated to a temperature above the normally-expected ambient level and accurately stabilised. This reduces the frequency drift with temperature, as well as allowing ini-

Fig. 10. Coupling to the YIG sphere resonator is effected by a wire loop resulting in the simplified equivalent circuit.

tial alignment of the sphere for optimum coupling. Beryllium oxide is used for the rod as it possesses excellent thermal conductivity while being an electrical insulator. The white substrate is alumina. about $23 \times 17 \mathrm{~mm}$ and contains a then-film bipolar oscillator in the top right-hand corner and an output buffer amplifier in the lower RH corner. Output power is 10 mW and the oscillator tunes over $2-8 \mathrm{GHz}$. A sealed lid, incorporating the tuning coil completes the circuit.
Historically, the YIG oscillator has been used for widetand applications but, recently. much effort has been put into miniaturising the circuit by us.ng permanent magnets and limited tuning The incentive has come from the mobile communications market. which make use of the high Q-factor available from YTOs (instead of the wide frequency coverage) to produce low, phase-noise sources.
Finally, an example of the oscillator devices in use is provided by the Hewlett Packard sweep generatior. The HP83592C plug-in for the generator covers the $10 \mathrm{MH} /$ to $2(0) \mathrm{GH}$ z band in one unit. a span of nearly 11 octaves. Figure 12 shows the main microwave components.
The basic signal is generated by a low phase noise, bipolar transistor oscillator YIG tuned over 2.3 to 7.0 GHz . To produce the lower frequencies, the output of this YTO covers the range 3.81 to 6.2 GHz and is routed to a mixer daven from a stabilised 3.8 GHz local oscillator. Thus, when the YTO is at 3.81 GHz , an IF of 10 MHz is generated. increasing to 2.4 GHz when the input is 6.2 GHz . This band is switched to the output via amplification and filtering. Higher frequencies are generated from the output of the YTO via a slep recovery diode multiplier. from which either the fundamental. 2nd harmonic or 3 nal harmonic can be selected Selection is tome by a tunable filter. again using a YIG element as the high-Q circuit.

Dielectric Disc Resonator

Because there is a very large difference between the dielectric constant of the ceramic disc $\left(\varepsilon_{\mathrm{rd}}\right)$ and that of the surrounding medium ($\varepsilon_{\mathrm{ra}}$), the internal fields are reflected at the dielectric interfaces. For example: the ratio of reflected electric field E_{r} to incident field E_{i} at normal incidence to the interface is the voltage reflection coefficient, given by
$\frac{E_{1}}{E_{l}}=\frac{\sqrt{\varepsilon_{, d}}-\sqrt{\varepsilon_{w}}}{\sqrt{\varepsilon_{, d}}+\sqrt{\varepsilon_{r u}}}$
For the case of a zirconium titanate disc having $\varepsilon_{\mathrm{rd}}=38$ and $\varepsilon_{\mathrm{ra}}=1$ for air, the reflection coefficient is 0.72 . Thus, a resonator can be formed without electronically conducting boundaries; the interface appearing as an approximate open circuit to the E-field and a short circuit to the H -field.
The reason for using a dielectric disc rather than an equivalent waveguide structure is that of size. As the fields are propagating largely within the dielectric medium, their velocity and, hence, wavelength will decrease by a factor of approximately $\sqrt{ } \varepsilon_{\mathrm{rd}}$, which ≈ 6 in the above example. The resonant frequency of the disc itself can be calculated to within an . $f=\frac{6.8 \times 10^{2}}{D \sqrt{\varepsilon_{r d}}}\left(\frac{D}{2 H}+3.45\right) H=$
with D in metres. A typical ratio of D / H is about $2: 1$. This, however, must be substartially modified in practice, due to the fact that: (a) the disc itself must be positioned on and coupled to the microwave circuit; (b) the total circuit is almost always packaged within a metal enclosure. Both affect the radiated fields from the disc.

Fig. 11. An actual YIG circuit with the resonator ball, a sort of spinning electron gyroscope, mounted on a berylia arm underneath a coupling loop connected to an oscillator circuit.

Fig. 12. This plug-in for a H-P signal generator provides an excellent example of using several technologies to produce signals over an 11-octave range.

SPECIAL BUY

AT 286
40 Mb HD + 3Mb Ram

FLOPPY DISK DRIVES $3.5^{\text {" }}-8^{\prime \prime}$
5.25" from £22.95-3.5" from £24.95
stated) are BRAND NEW or removed from often brand new equip- guarantee and operate from standard voltages and are of standard size. All are IBM-PC compatible

3.5" Panasonic JU363/4 720K or equivalent	£24.95(B)
3.5 Mitsubishl MF355C-L. 14 Meg . Laptops only*	E36.95(B)
$3.5{ }^{\text {n }}$ Mitsubishl MF355C-D. 1.4 Meg . Non laptop	E29.95 (B)
5.25" Teac FD-55GFR 1.2 Meg	£29.95 ${ }^{\text {B }}$
5.25" BRAND NEW Mitsubishi MF501B 360K	£22.95 ${ }^{\text {(B }}$
* Data cable included in price.	
Shugart 800/801 8" SS refurbished \& tested	E195.00(E)
Shugart $8518^{\prime \prime}$ double sided refurbished \& tested	£250.00(E)
Mitsubishi M2894-63 8" sided switchable NEW	£250.00(E
Mitsubishi M2896-63-02U 8" DS slimline NEW	£285.00(E)
Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in a sm built in power supply. Ideal as exterior drives!	ase with $£ 499.00(F)$

HARD DISK DRIVES	
End of line purchase scoopl Brand new NEC D2246488 85 Mbyte of hard disk storagee: Full incustry standard SMD interacee Ultraspeed data transfer and acesss time, replaces Fujitsu equivalent	
(e)	
THE AMAZING TELEBOX	
	$\begin{gathered} \text { TV SOUND } \\ \text { \& VIDEO } \\ \text { TUNER! } \end{gathered}$

\qquad tors made by manufacturers such as MICROVITEC, ATARI
SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD
and many more The composite video orp into most video recorders, allowing reception of TV channels not nor
mally receivable on most television receivers" (TELEBOX MB). Push
button controls on the front panel allow reception of 8 fully tuneable
'off air' UHF colour television channels. TELEBOX MB covers vitual ly all television frequencies VHF and UHF including the HYPER
BAND as used by most cable TV operators. A composite video
\qquad

TELEBOX ST for composite video input type monitors	$£ 32.95$
TELEBOX STL as ST but with integral speaker	$£ 36.50$
TELEBOX M8 Multiband VHF-UHF-Cable. Hyperband tuner	玉69.95

TELEBOX M8 Multiband VHF-UHF-Cable. Hyperband tuner $£ 69.95$

FANS \& BLOWERS

| MITSUBUSHI MMF-09B12DH $92 \times 25 \mathrm{~mm} 12 \mathrm{~V}$ DC | $£ 5.9510 / £ 53$ |
| :--- | :--- | ---: |
| PANCAKE $12-3.592 \times 18 \mathrm{~mm} 12 \mathrm{vDC}$ | $£ 7.9510 / £ 69$ |
| EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or $240 \mathrm{v} £ 6.95$ | |
| EX-EQUIP $80 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or 240 V | $£ 5.95$ |

IC'S TRANSISTORS DIODES
5,000,000 items EX STOCK

PC SCOOP
COLOUR SYSTEM
ONLY $£ 99.00$

enables	
A ${ }^{\text {ady to run colour PC system at an unheard of price! }}$	
tible and expandable XT PC with 256k of RAM, 51/4"360k	
DOS and all connecting cables - just plug in and go I! Ideal	
cents, schools or anybody wishing to learn the world of PC's	
on an ultra low budget. Don't mlss this opportunity. Fully guaranteed for 90 Days.Order as PC99COL$\mathbf{E 9 9 . 0 0}$(E)	
2nd floppy drive, specify 51/4	

VIDEO MONITOR SPECIALS

 MODORE (including Amiga 1200), ARCHIMEDES
etc. The H version will also tunction with the ATARI all modes inc HI RES monochrome. Complete with
 Good used condition. 90 day guarantee.
$K M E 10 "$ as above for $P C E G A$ Etandar
NEC CGA - colour BM-PC Compatib quality ex-equipment fully tested with a 90 day guarantee
\qquad
Only £49.00 (E)

$20 " 22$ " and $26^{\prime \prime}$ AV SPECIALS

Superbly made

 leak styl e case, Perfect tor Schools, Shops, Disco, Clubs, etc 20".....£135 22"....£155 26"....£185 (F)
CW DC POWER SUPPLIES

 10,000 Power Supplies Ex Stock

 10,000 Power Supplies Ex Stock} Call for info $1 / 1 i s t$$200-5200 \mathrm{P} 200$ watt (250 w

 Conver AC130. 130 watl hi-grade VDE spec. Switch mode. $+5 \mathrm{v} @$
$15 \mathrm{a},-5 \mathrm{v}$ @ $1 \mathrm{a},+12 \mathrm{v}$ © $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New. $£ 49.95$
Boshert 13090 . Switch modeld

SPECIAL INTEREST

2eta 3220-05 A0 4 pen HPGL RS232 fast drum plotte

 Trio $0-18$ vdc bench PSU. 30 amps. NewFujitsu M3041 600 LPM band printer
Andrews LARGE 6 m Satellite Dish + mount (For Voyager)
RED TOP IR Heat seeking missile (not armed !!)
Rhode \& Schwarz SBUF TV test transmitter $25-1000 \mathrm{mhz}$
Tektronix 1 L30 Spectrum analyer
Thurlby LA 160 B
gic analyser
GEC 1.5 kw 115 v 60 hz power source
Brush 2 Kw 400 Hz 3 phase frequency converter
Anton Pillar Derby \qquad
\qquad
Nikon PL-2 Projection lens meter/scope
Sekonic SD 150 H 18 channel digital Hybrid chatt recorder
HP 7580A A1 8 pen HPGL high speed drum plotter
Kenwood DA-3501 CD tester, laser pickup simutator

Computer Controlled Laser Video Disk Player
Onoot the most amazing surpusus deals The Philips VP410 Laservision playe wirling visual and audio quality in two channel stereo or mono. high quality Laservision sav (active play) red ers most types of commercially available video discs) (which covmany features of this incredible machine are:
RS-232 INTERFACE
RGB/ COMPOSITE VIDEO OUTPUT BNC+SCART INTERFAC IR+WIRED REMOTE CONTROL PAL / RG8 DECODER 5PEEIRL PUREHASE

Only $£ 399.00_{\text {(F) }}$
BBC Model B APM Board
WIN G100
C100 CASH FOR THE MOST
NOVEL DEMONSTRABLE
APPLICATION
\qquad parts only price. Used as a front end graphics system on large networked systems the architecture of the BBC board has so many sim-
ilarities to the regular BBC model B that we are sure that with a bit experimentation and ingenuity many useful applications witl be found for this board!! It is supplied complete with a connector panel whic brings all the I/O's to 'D' and BNC type connectors - all you have to with most major ic's socketed. The ic's are too numerous to list bu Three 27128 EPROMS contain the custom operating system on boots and provides diagnostic information to
the video output. On board DIP switches Only $\mathbf{2} 29.95$
and jumpers select the ECONET address and enable the four extra EPROM sockets 2 for $\mathbf{f} 53$ (B)

ed with circuit diagram, draph

19" RACK CABINETS

Superb quality 6 foot $40 u$ Virtually New, Ultra Smart Less than Half Pricel Top quality 19 rack cabinets made in UK by Optima Enclosures Ltd. Units feature designheight lockable half louvered back door an nal fixing struts, ready punched for any config-
mounted integral 12 way 13 amp socket
switched mains distribution strip make these ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in bays
Overall dimensions are: $77-1 / 2^{n} \mathrm{H} \times 32-1 / 2^{\prime \prime} \mathrm{D} \times 22^{-1} \mathrm{~W}$. Order as Rack 1 Complete with removable side panels. £295.00 (G) Over 400 racks in all sizes from stock Call with your requirements.

LOW COST RAM UPGRADES

 PC-A compatible card with 2 Mbytes of memory on board. Card is above) memory. Full data and driver disk supplied. In good used Windows compatible. Order as: ABOVE CARD $\mathbf{£ 5 9 . 9 5}$ (A1 Hall length 8 bit memory upgrade cards for PC AT XT expands
in RAM above 640k DOS limit. Complete with data

Order as: XT RAM UG. $\begin{aligned} & 256 \mathrm{k} \\ & 512 \mathrm{k}\end{aligned}$

No Break Uninterruptible PSU's

\qquad sealed lead acid batteries in matching case. Approx time from interOMERSON ACCUCARD UPS, brand Mew i Bith as: MUD $1 \quad £ 575.00$ (G) patible card for all IBM XT/AT compatibles. Card provides DC power to all internal system components in the event of power supply fail
ure. The Accusaver software provided uses only 6 k of base RAM and automatically copies all system, expanded and video memory to the machine is returned to the exact status when the power failed!
\qquad
Only $£ 99.00_{\text {(B) }}$ or 2 for $£ 195$

Issue 12 of Display News now available - send large SAE - PACKED with bargains!

LONDON SHOP Open Mon-Sat 9:00-5:30 215 Whitehorse Lane South Norwood LONDON SE25

DISTEL © The Origina FREE On line Database Info on 1000's of items
0816791888

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept WW. 32 Biggin Way Dept WW. 32 Biggin W Upper Nonwood
LONDON SE19 3XF

Direct conversion ssb receiver

Direct conversion for rf reception is now widely used in integrated form because it delivers good performance without the use of mechanical filters and other expensive, bulky items. Frank Dorey has put together a development breadboard for direct conversion SSB use, the principles of which can be adopted for many other applications.

using only analogue techniques so as to ensure freedom from spurious responses. As this is a design study, most of the circuitry is divided between five separate modules: rf amplifier and dual first mixers; 2-phase rf oscillator; dual 7-pole low-pass filters; dual second mixers, audio amplifier and age circuit; two-phase second oscillator and power supply regulator.

Circuit operation

Referring to the block diagram, suppose that a transmission on a nominal carrier frequency of 3600 kHz is in fact lower sideband with an audio range which would just fit this particular receiver. Then it would contain frequencies from 3599.8 kHz down to 3596.4 kHz . The first oscillator in the receiver should be tuned to 3598.1 kHz to receive this transmission.

Sidebands of the local oscillation are produced extending for 1.7 kHz on each side of $i t$, a range of frequencies 3.4 kHz wide. But what comes out of the balanced modulator consists of two sets of audio frequencies as superim-

The prototype unit was built up as a series of modules wired together. This achieves a high level of screening, important even to basic direct conversion equipment.
posed signals. each in the range zero to $1.7 \mathrm{kH} z$ being the two halves of the original audio spectrum fed into the transmitter modulator. The ac coupling at the output of the first balanced molulator deliberately curtails the zero end of each band of frequencies. removing a de component but putting a gap in

Receiver block diagram. Most of the circuitry is divided between five separate modules: rf amplifier and dual first mixers; 2-phase rf oscillator; dual 7-pole low-pass filters; dual second mixers, audio amplifier and agc circuit; two-phase second oscillator.

the middle of any subsequent reconstitution of the original modulation frequency range. Also. one of the signals has a reversed frequency spectrum compared to the original modulation.
What has just been described is happening, of course. in two channels, the I (in-phase) and the Q (quadrature) channels. This permits signal processing by using another pair of balanced modulators fed from a 2 -phase second oscillator. This is followed by a summing opamp to re-invert one half of the audio spectrum and put together again the full range of modulation frequencies (except for a small gap in the middle).
The sideband range of the second oscillator, running at 1.9 kHz , contains frequencies from 0.2 kHz (ic. $1.9-1.7$) to 3.6 kHz (ie. $1.9+1.7$). Correct phasing of the second oscillator inputs to the second balanced modulator channels will ensure that the output summation will reinforce wanted signal components and cancel the unwanted ones.
Note that incorrect phase choice will result in USB instead of LSB reception; also that success of the process depends on matched gains in the two channels up to the summing op-amp. For the maths to bear this all out, see the appendix to ref. I).

Prototype details

The signal interconnections between modules were made with phono connectors, colourcoded to identify channels. Each module was built on a printed circuit board contained in a snall aluminium box. The five modules were housed in a case with panel mounted controls. No display of frequency is included. Since the channel to which the receiver is tuned is always (fol +1.9) kHz , it is convenient to connect a monitoring frequency meter to an auxiliary output from the first oscillator.
No attempt was made to include a power supply inside the case, the regulator input coming from an external unstabilised supply of at least 14.5 volts de placed some way from the receiver. The current taken from this supply was found to be 190 mA .
The cascoded junction fet rf stage uses Toko coils for 3.5 to 3.8 MHz coverage, and incorporates diode tuning. Source follower buffers couple it to the following balanced mixers. The mixers use the well-known MC1496. Substitution for the later NE602 should reduce the component count and simplify the layout.
The fet Vackar first oscillator circuit is built around a coil wound on a $5 / 16$ inch glass former with 100 turns of 0.15 mm enamelled wire. The gate drive is adjusted so that oscillation is just stable over the complete frequency band, with a good clean waveform.
The rf phase-shift network was suggested by Ref 3. Operation was checked using an oscilloscope, having first ensured that no phase difference was indicated when the same signal was applied to both Y-channels. This frequency is too high for the bandwidth of the average X-channel so that a Lissajous figure method cannot be used unless the scope X input can match the phase response of the Y channel.

First RF and second AF oscillators.

The low pass filter design is detailed in Ref.4. Values were calculated for a seventhorder elliptic filter with a cut-off frequency of 1700 Hz , pass band ripple width 0.3 dB , and minimum stop band loss 80 dB . This last value puts it in a category where little or no trimming should be required if capacitors with a 5% tolerance are used and resistors are within 1% of the calculated value.
Using $\mathrm{K}=3$ in each stage, including the firstorder stage, gives each filter a pass band voltage gain of about 80. Adjustable gain in each first-order stage permits balancing the overall gains of the I and Q channels.
The second oscillator uses a twin-T circuit followed by a simple phasing network. The circuits were laid out so as to allow the late addition of series or parallel trimming additions to get the frequency exact and the phase
difference exactly 90°, with equal amplitudes of the I and Q outputs. With a frequency in the audio range it was possible to switch the oscilloscope to its X / Y mode and trim for a nearperfectly circular Lissajous figure.
The audio amplifier is a simple unity-gain output stage following the summing amplifier and the agc circuit is fed from a gain-of-5 stage, using spare amplifiers in the LM324 which already contained the summing amplifier at the end of the I and Q channels. The volume control and the audio output stage are fed direct from the summer.
The age circuit was suggested in Ref.5, and as stated there, it is necessary to choose carefully, how much control to use. Excessive values lead to a particularly annoying "pinging" sound as each word is spoken in this type of receiver.

Levels of carrier injection are 300 mV rms for each of the rf carrier components and 50 mV rms for each AF carrier component.

Alignment

Check or adjust the drive levels of both the rf and af oscillators to ensure good sinewaves. Tune the first oscillator to the correct range of 3500 to 3800 kHz by adjusting (alternately) the capacitive trimmer and the value of resistor in series with the main tuning control.
Set a phase difference of 90° between the rf carrier I and Q outputs by adjustment of the variable resistor in the phase shift network. The amplitudes should be reasonably equal. Trim the second oscillator frequency to 1900 Hz by adjustment of the value of the auxiliary capacitor in the centre leg of the T-network with a resistive top.

Trim the phase of the af carrier outputs, by adjustment of the values in the four arms of the phase shift network for a good Lissajous circle. Balance the first and second balanced modulators, observing their waveforms at the respective output pins. Apply an input CW signal, at a level of say $50 \mu \mathrm{~V}$, and observe that LSB reception is being achieved, ie. that the output tone increases in frequency as the signal generator frequency is decreased. If the opposite occurs the second oscillator carrier components should be swapped over at the balanced modulator inputs in the I and Q channels. Tune the rf amplifier circuits in the usual way, ie. coil cores at the low frequency end of the band and capacitive trimmers at the high end.
Observe levels due to a received cw signal at the outputs of the I and Q channel low-pass filters and adjust the gains of the first order stages until the channel amplitudes are equal. Then tune through the sideband range slowly. Probably, as the correct tone increases, a spurious output tone will be heard to correspondingly decrease. A careful attempt should be made to adjust the gain of one channel to maximise the loudness of the correct, ie. wanted, tone as compared to the spurious one. The only adjustment which remains is to choose the optimum value for the resistor in series with the agc diode to give satisfactory action on a strong received speech signal.

Low pass filter response curves for I and Q channels.

Performance

In use the receiver needs to be carefully earthed to minimise hum and feedback. Feeding inputs from a signal generator via a standard dummy aerial showed usable outputs from signals down to a few microvolts. On a short outdoor aerial the receiver compares well with a conventional superhet incorporating a mechanical filter, while it is pleasantly free from spurious whistles.

References

1. Direct Conversion ssb receivers, Dr.S.R.AlAraji and Professor W. Gosling, The Radio and Electronic Engineer, Vol.43,

No. 3, March 1973, p. 209
2. ICs simplify design of single-sideband receivers, l.Hickman, $E W+W W$, November 1991, р. 939.
3. PAOKSB's 2-phase receiver, a summary of the work of K. Spaargaren included by Pat Hawker, G3VA, in Technical Topics, Radio Communication, November 1970, p. 761. 4. Active Elliptic Audio Filter Design using OpAmps, D.H.G.Fritsch, G0CKZ, Radio Communication, February, p. 98 and March, p. 1791986.
5. ARRI Handbook 1988, Chapter 28, Audio and Video Equipment page 28-11, Fig. 14 and associated text.

Finally an upgradeable PCB CAD
system to suit any budget ... Board Copture

BoardCapture - Schematic Capture

- Direct nethst link to BoardMakere

Formard annotation with part values

- Full undo redo facilty (50 operations)
- Single-sheet mult paged and hierarchical designs Smooth scrolling
intelhgent wres (automatic junctions)
Oynamic conmectivity informathon
Automatic on line annotation
Integratod on-the tly library edtor
Cortext sensitive editimg
Extensive compenent-based power control Baxt annotution from BoardMaker?

BoardMaker
BoardMaker1 - Entry level
PCS and schematio drating

- Easg and intultive to use

Sunace mount support

- 90,45 and curved track somers
- Grownd ptane miti
- Copper hightight and clesfance checking

BoardMaker2 - Advanced level

All the features of Boardthakery plus

- Full netist support - OrCad, Schema. Tango. CadStar
- Full Design Rule Cneckiry mechanical \& electrical
- Top down modificition frem the schematic

Component remumjer wity back annotation
Report generator - Database ASCII, BOM
fisW: Themal power piate support with full DRC

Board Router

BoardRouter - Gridless autorouter
Sirruhaneous multi-layer routing
SMD and anatogte supfort
Full internupt, resume, pan and zoom while routing
Output drivers - Inc/ Jded as standard Printers - 9 \& 24 pin Dit matrix, HPLaserjet and PostScript
Penplotters - HP. Graphec, Holand \& Houston

- Pholoplotters. At Gerber 3X00 and 4X00

Excellon NC Dnll / Annctated drll drawings (BM2)

Sall for info or full evaluation kit Tsien (UK) Limited
Tel ((354) 695959
Fax (J354) 695957

APPLICATIONS

Please mention Electronics World + Wireless World when seeking further information.

Versatile switching regulator IC

Two high performance power switching regulators containing the primary functions required for dc-to-dc converters are described in Motorola note MC34167/D.
These fixed frequency devices were specifically designed to be incorporated in stepdown and voltage-inverting configurations with a minimum number of external components. They can also be used cost effectively in step-up applications
Called the MC34167 and MC33167, the ICs comprise an internal temperature compensated reference, fixed frequency oscillator with on-chip timing components, latching pulse width modulator for single pulse metering, high gain error amplifier, and a high current output switch.
Prolective features consist of cycle-by-cycle

Test	Condition	Results
Line Regulation $\begin{array}{r}5.0 \mathrm{~V} \\ \\ \\ \\ \hline 12 \mathrm{~V} \\ -12 \mathrm{~V} \\ \hline\end{array}$	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{IO}_{1}=3.0 \mathrm{~A}, \mathrm{I}_{22}=250 \mathrm{~mA}, \mathrm{I}_{3}=200 \mathrm{~mA}$	$\begin{aligned} & 3.0 \mathrm{mV}= \pm 0.029 \% \\ & 572 \mathrm{mV}= \pm 2.4 \% \\ & 714 \mathrm{mV}= \pm 2.9 \% \end{aligned}$
Load Regulation 5.0 V 12 V -12 V	$\begin{aligned} & V_{\text {in }}=24 \mathrm{~V}, I_{01}=30 \mathrm{~mA} \text { to } 3.0 \mathrm{~A}, I_{O 2}=250 \mathrm{~mA}, I_{O 3}=200 \mathrm{~mA} \\ & V_{\text {in }}=24 \mathrm{~V}, I_{O 1}=3.0 \mathrm{~A}, I_{O 2}=100 \mathrm{~mA} \text { to } 250 \mathrm{~mA}, I_{03}=200 \mathrm{~mA} \\ & V_{\text {in }}=24 \mathrm{~V}, I_{O 1}=3.0 \mathrm{~A}, I_{O 2}=250 \mathrm{~mA}, I_{O 3}=75 \mathrm{~mA} \text { to } 200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{mV}= \pm 0.009 \% \\ & 409 \mathrm{mV}= \pm 1.5 \% \\ & 528 \mathrm{mV}= \pm 2.0 \% \\ & \hline \end{aligned}$
Output Ripple 	$V_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{01}=3.0 \mathrm{~A}, \mathrm{I}_{02}=250 \mathrm{~mA}, \mathrm{IO}_{3}=200 \mathrm{~mA}$	$\begin{aligned} & 75 \mathrm{~m} V_{p-p} \\ & 20 \mathrm{mV} V_{p-p} \\ & 20 \mathrm{mV} \mathrm{p}_{\mathrm{p}-\mathrm{p}} \end{aligned}$
5.0 V Short Circuit Current 12 V -12 V	$V_{\text {in }}=24 \mathrm{~V}, \mathrm{R}_{L}=0.1 \Omega$	$\begin{aligned} & 6.5 \mathrm{~A} \\ & 2.7 \mathrm{~A} \\ & 2.2 \mathrm{~A} \end{aligned}$
Efficiency TOTAL	$\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{I}_{01}=3.0 \mathrm{~A}, 1_{02}=250 \mathrm{~mA}, \mathrm{l}_{03}=200 \mathrm{~mA}$	84.2\%
$\begin{array}{r} \Gamma=\text { Primary }- \text { Coilcratt M1496-A or } \\ \text { Secondary }-V_{02}-69 \text { turns } \\ V_{03}-104 \text { furns } \\ \text { Heatsink }=\text { AAVID Engineering Inc. } 58 \end{array}$	LIMACO CHK1050, 42 turns of \#16 AWG on Magrietics Inc. 58350-A2 core. \# 26 AWG \#28 AWG 38 , or 5930 B .	

Triple-output converter. Multiple auxiliary outputs are easily derived by winding secondaries on the main output inductor.These must be connected so that the energy is delivered to the auxiliary outputs when the switch output turns off. During the off time, voltage across the primary is regulated by the feedback loop, yielding a constant volts/turn ratio. The number of turns for any given secondary voltage can be calculated by:
Secondary turns $=\frac{V_{O(\text { sec })}+V_{F(\text { sec })}}{\left(\frac{V_{O(p r n)}+V_{F(p r)}}{\# \text { turns }}{ }_{(p r n)}\right)}$

Note that the 12 V winding is stacked on top of the 5 V output. This reduces the number of secondary turns and improves load regulation. For best auxiliary regulation, the auxiliary outputs should represent less than 33% of the total output power.

current limiting, undervoltage lockout, and thermal shutdown. Also included is a low power standby mode that reduces power supply current to $36 \mu \mathrm{~A}$.
Output switch current exceeds 5 A , under control of a 72 kHz fixed-frequency oscillator
with on-chip timing. For an output of 5.05 V , no external resistor divider is needed. The operating rarge is 7.5 V to 40 V .
The note incorporates seven design examples, including those shown, plus full design notes.

This variable motor speed controller incorporates emf feedback sensing. For any supply from 12 to 24 V , line regulation is 1% measured at $1760 \mathrm{rev} / \mathrm{min}$, and 6% at $3260 \mathrm{rev} / \mathrm{min}$.

The output transistor is designed to switch a maximum of 40 V with a corresponding peak collector current of 5.5A. This sets the power rating for both motor control and power conversion applications. Internal thermal shutdown circuitry is provided to protect the chip when junction temperature exceeds $170^{\circ} \mathrm{C}$.

Motorola European Literature Centre

 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Tel. 0908 614614, fax 0908618650.
Low-cost evaluation for PowerPC

Amodule designed to aid evaluation of the first implementation of the PowerPC chip is described in application note AN486 from Motorola. Broken down into four modules - cpu, ram, rom and i/o the evaluation board is designed to combine ease of implementation and straightforward manufacture.
The risc-technology PowerPC chip is the only master on the board, but there are facilities for an external arbiter/master. A single bank of dynamic ram is accommodated. At 55 MHz with 60 ns rams, the board reads memory with 5-3-3-3 clock cycles per burst and writes with a 4-2-2-2 pattern.
For ease of programming, dual 256 K -byte eprom space is eight-bit wide. Maximum ram capacity is 8Mbyte.Two standard chips from the 68000 family are used for the i / o, namely the 68681 and 68230 . Running at the system bus speed, these provide two RS232 channels, a lobit event counter and Centronics printer interface.
Within the comprehensive note are details of $P C B$ design, signal timings and software drivers.

Motorola European Literature

Centre, 88 Tanners Drive,
Blakelands, Milton Keynes
MK14 5BP. Tel. 0908 614614,
fax 0908618650.

Elements of an evaluation system for Motorola's new PowerPC chip. Within the note describing this system are full details including software drivers and pch layouts.

Using Doppler movement detection in car-alarm applications

Amicrowave Doppler radar module designed specifically for car alarm applications is the subject of GEC Plessey application note AN3818-1.2. Called the DA5813, the module is designed for compatibility with most existing alarm systems currently used, provided they have a volumetric sensor input. Such an input is generally used for an ultrasonic sensor. Installing and setting up the device is said to be simple.
Part of the alarm sensor is a very stable transistor oscillator for generating the law power microwave signal. Operating frequency is 2.45 GHz . This signal is transmitted via a simple printed dipole antenna to give an approximately omnidirectional beam pattern.

Stationary objects, i.e. the vehicle interior, reflect the microwave signal with no Doppler frequency shift, hence there is no output. However, if any object within the range of the unit is moving, then a Doppler frequency shift is generated. This frequency shift is proportional to the velocity of the target.
The Doppler shifted frequency is received via the same antenna and the non-linear action of the oscillator transistor mixes the transmitted and received signals together. Output from the oscillator is a small amplitude low frequency difference signal.
Amplitude of the difference frequency is proportional to the distance and size of the target. This low frequency signal is amplified and actively filtered to reject frequencies outside the known area of interest. Window comparators decide if the signal is large enough - i.e. a real target - to trigger the output. A simple $R C$ charge pump on the output comparators smoothes out spurious alarm events.
A reasonably omni-directional beam pattern is provided by the dipole antenna. If the unit is placed above a large metal surface, for example the car floor pan, the polar diagram, or area of coverage, is

similar to that shown.
The sensor uses the floor pan as a reflector. Ideally the unit should be mounted approximately 20 mm above the floor pan, central in the vehicle, for example behind the hand brake. Distance of the sensor above the floor pan determines the efficiency of the unit. If this distance is significantly reduced, the sensor's detection range will be affected.
It is possible to mount the sensor under or behind plastic but not in a metal enclosure. As indicated in the polar diagram, the system exhibits a slight asymmetry. This is due to the antenna being close to one side of the box. In some applications, this effect may be useful.

Adequate gain is available by adjusting a sensitivity control potentiometer to give a minimum of two metres coverage range when the sensor is mounted as described. Metal objects in close proximity to the sensor may distort the beam pattern and lead to areas of poor coverage. Moving the sensor slightly can overcome this.
Further information in the note discussed how the alarm is mounted and adjusted.

GEC Plessey Semiconductors, Cheney
Manor, Swindon, Wiltshire SN2 2QW.
Tel. 0793 518000, fax 518411.
$\%$

Because it is unlikely that the Doppler radar module will be mounted exactly in the middle of the car, its effective area is asymmetrical. Although proportions of the area covered are fixed, the size of the area is adjustable by simply turning a screw.

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST E395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER + and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Autcmatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800×600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded.. "At £79 I thought this was an excellent buy."

ISIS ILLUSTRATOR

 Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Switches for lighting

Modern high-performance chip designs make it possible to drive a fluorescent lamp using a transistor with a footprint of just 2 by 4 mm . Martin Eccles looks at a number of efficient switching designs for applications ranging from emergency beacons to Icd backlighting.

Since backlit lcd appeared, designers have striven to produce ever more efficient fluorescent lamp drivers to maximise battery life. This article provides an insight into some of the key loss mechanisms in driver circuits and looks at some efficient and costeffective designs.

Efficient fluorescent lamp drive

Figure 1's circuit meets fluorescent lamp drive requirements. Efficiency is 88% with an input voltage range of 4.5 V to 20 V . This efficiency figure can be degraded by about 3% if the $L T 1172 \mathrm{~V}_{\text {IN }}$ pin is powered from the same supply as the main circuit $V_{\text {IN }}$ terminal.

Fig. 1. Supply for a cold-cathode fluorescent lamp reaches an efficiency of 88%, provided efficient transistors are used.

Lamp intensity is continuously and smoothly variable from zero to full intensity. When power is applied, the LT/I72 switching regulator's feedback pin is below the device's internal 1.2 V reference. This causes full duty cycle modulation at the $V_{\text {SW }}$ pin, Fig. 2, trace A.. Inductor L_{2} conducts current. trace B, which flows from L_{1} 's centre tap, through the transistors, into L_{2}. This inductor's current is deposited in switched fashion to ground by the regulator's action.
Inductor L_{1} and the transistors comprise a current driven Royer class converter which oscillates at a frequency primarily set by L_{1} 's characteristics - including its load - and the $0.033 \mu \mathrm{~F}$ capacitor. Driven by the $L T / 172$, inductor L_{2} sets the magnitude of the Q_{1-2} tail current, hence L_{1} 's drive level.
The IN5818 diode maintains L_{2} 's current flow when the LTll 72 is off. The chip's 100 kHz clock rate is asynchronous relative to the push-pull converter's $(60 \mathrm{kHz})$ rate, accounting for trace B's waveform thickening.
The $0.033 \mu \mathrm{~F}$ capacitor combines with L_{1} to produce sinewave voltage drive at $Q_{1,2}$ collectors, traces C and D respectively. Inductor L_{1} furnishes voltage step-up, and about 1400 V pk-pk appears at its secondary, trace E.
Current flows through the 15 pF capacitor into the lamp. On negative cycles lamp current is steered to ground via D_{1}. Positive waveform cycles are directed, via D_{2}, to the ground referred $562 \Omega-50 \mathrm{k} \Omega$ potentiometer chain.
The positive half-sine appearing across the resistors, trace F , represents $1 / 2$ the lamp current. This signal is filtered by the $10 \mathrm{k} \Omega / 1 \mu \mathrm{~F}$ pair and presented to the $L T / / 72$'s feedback pin. A control loop, which regulates the lamp. is closed by this connection.
At the IC's VC pin, a $2 \mu \mathrm{~F}$ capacitor provides stable loop compensation. The loop forces the LTII 72 to switch-mode modulate L_{2} 's average current to whatever value is required to maintain a constant current in the lamp.
Value of the constant-current, and hence

Fig. 2. Waveforms for the cold-cathode fluorescent lamp supply. Triggering is independent on traces A and B, and C through F.
lamp intensity, is varied via the potentiometer. Constant-current drive allows full 0 to 100% intensity control with no lamp dead zones or 'pop-on' at low levels. Lamp life is enhanced because current cannot rise as the lamp ages. The circuit's 0.1% line regulation is notably better than some other approaches. This tight regulation prevents lamp intensity variation when abrupt line changes occur. This typically happens when battery powered apparatus is connected to an ac powered charger.
High line regulation performance derives

Fig. 3. Inexpensive 8 W fluorescent lamp inverter operates efficiently from supplies between 10 and 16.5 V .

Transformer coil details.
Core type FX3439 with 0.125 mm (0.005in) spacer. Former DT2523 with enamelled copper wire, $W_{1}=4 \mathrm{t}$ by $34 \mathrm{SWG}, W_{2}=17 \mathrm{t}$ by $26 \mathrm{SWG}, W_{3}=7 \mathrm{t}$ by 28SWG, $W_{4}=7 t$ by 28 SWG, $W_{5}=130 \mathrm{t}$ by 36SWG.

Fig. 4. Winding format the for $8 W$ fluorescent lamp inverter.
from the fact that L_{1} 's drive waveform never changes shape as the input voltage varies. This characteristic permits the simple $10 \mathrm{k} \Omega 2-1 \mu \mathrm{~F}$ combination to produce a consistent response. Compared to true rms conversion, $R C$ averaging produces a serious error, but the error is constant and 'disappears' in the 562Ω shunt.

Efficiency of the circuit is 88%. Value of the base drive resistor - nominally $1 \mathrm{k} \Omega$ - should be chosen to provide full saturation without inducing base overdrive or beta starvation.

Driving an 8W lamp

The circuit shown in Fig. 3 is designed to drive an 8 W fluorescent lamp from a 12 V source using an inexpensive inverter based on the ZTX 653 bipolar transistor.
The inverter will operate from supplies in the range of 10 to 16.5 V , thus making it suitable for use in on-charge systems such as caravanettes as well as periodically charged systems such as camping lights or outhouse lights etc. Other features of the inverter are that it oscillates at an inaudible 20 kHz and that it includes reverse polarity protection.

The 270Ω and 22Ω resistors bias a $2 T X 653$ transistor into conduction, where the positive feedback given to the transistor by W_{1} drives it

Two free ZTX689B 3A transistors

Produced bv UK semiconductor manufacturer Zetex, the two ZTX689B's medium-power transistors given free with UK issues of this month's $E W^{\prime}+W W$ are 20 V n-p-n devices capable of up to 3 A continuously -8 A peak.
Featuring high gain, combined with low saturation voltage, this medium-power device has a minimum $h_{\text {FE }}$ of 400 and a $V_{C E(\text { sat })}$ of 0.5 V maximum at 1 A collector current. High Bottom view
 gain at high current makes the $Z T X 689 B$ useful for driving lamps or relays directly from logic outputs. With turn-on and turn-off times of 50 and 1000 ns respectively, the device is also ideal for high-efficiency power converters such as fluorescent lamp drivers - in some cases increasing efficiency by up to 20%.
Designed using Zetex matrix chip technology, the ZTX689B is TO-92 style,
dissipates up to 1.5 W , and operates over a wide temperature range of -55 to $200^{\circ} \mathrm{C}$.
into saturation, thus applying the supply voltage across W_{2}, Fig. 4. This causes a magnetising current to build up in W_{2} until the transformer's ferrite core saturates. When this happens, the base drive given to the transistor by W_{1} decays, causing rapid turn off.

Until the fluorescent tube strikes, the transformer is only loaded by the tube heater filaments which present only a minimal load. When the transistor turns off the transformer ‘rings’ for half a cycle at a frequency governed by the windings inductance and the $0.068 \mu \mathrm{~F}$ capacitor, reversing the magnetising current and turning the transistor on again. This "ring' induces a high voltage pulse across the fluorescent tube which will cause it to strike once the heaters have warmed up.

Once the tube has struck, it loads the transformer heavily, swamping this ringing action and so greatly reducing the peak voltage induced across W_{2} and the transistor. This extends the non-conducting period of the inverter cycle and during this period, energy stored in the transformer in the form of magnetising current is dumped into the fluorescent tube. When all this energy has been dumped, the voltage on the transistor collector falls and it switches on once more.

TABLE 1. Emergency fluorescent lamp - components for 2.4 and 4 V operation.		
+V	$2.4 V$	4 V
$\mathrm{R}_{1,2}$	120S2, 0.5W	120s2, 0.5 W
Tr ${ }_{1}$	ZTX869	ZTX6898 or 2TX869
Tr_{2}	ZTX869	ZTX689B or ZTX869
C_{1}	$2.2 n \mathrm{~F}, 1000 \mathrm{~V}$ polypropylene	2.2 nF 1000 V polypropylene
C_{2}	$0.47 \mu \mathrm{~F} 100 \mathrm{~V}$ polyester	$0.15 \mu \mathrm{~F} 100 \mathrm{~V}$ polyester
C_{3}	$100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ electrolytic	$100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ electrolytic
L	$25 \mu \mathrm{H}$ (25t, 1 mm copper wire on 9 mm dia 25 mm long ferrite rod.)	$60 \mu \mathrm{H} 35 t, 0.71 \mathrm{~mm}$ copper wire on 9 mm dia 25 mm long ferite rod.)
T_{1}	FX3440 cores with 0.55 spacer or FX3670 cores with 0.65 mm spacer. DT 2484 coil former	FX3440 cores with 0.34 spacer or FX3670 cores with 0.45 mm spacer or LAt630 (3C85 ferrite) pre-gapped core. DT2484 coil former
W_{1}	500 T 0.18 mm neatly wound (first winding)	$400 t 0.18 \mathrm{~mm}$ neatly wound (first winding)
$W_{2,3}$	3 each, 0.5 mm bifilar wound second and third windings)	$4 t$ each, 0.5 mm bifilar wound second and third windings)
W_{4}	$3 T 031 \mathrm{~mm}$ (fourth winding)	3 t 0.31 mm (fourth winding)

Note: Use insulating tape between W_{1} and other windings. Core spacer must be made from non-conducting

Emergency fluorescent lighting

Battery powered tluorescent lighting is an important application area that significantly benefits from the very low saturation voltage ZTX689 and ZTX869 transistors. Housed in the E-line (TO92 style) package, these transistors replace the TO126 and TO220 types commonly used in this application, giving savings in cost and size while providing

Fig. 5. Emergency fluorescent lamp controller runs from 2.4 or 4 V . Low operating voltage results in fewer power cells, reduced volume and lower cost.
improvements in efficiency.
The circuit shown in Fig. 5 can be used with either 2.4 V or 4 V supplies by selecting the appropriate component values from Table 1. Both designs operate from just two series connected $\mathrm{NiCd} / \mathrm{NiMH}$ or lead-acid cells. The fewer cells used in a battery pack, the cheaper and more volume efficient the system will be. In addition, replacing the TO220 type transistors normally used with E-line ZTX689 or ZTX $8 \Varangle 9$ types further reduces component costs and board size.

These transistors give by far the lowest saturation voltage of devices in their class. This translates directly into improved circuit efficiency and extended battery life. With most of the remaining losses occurring in the wound components. efficiency of the 4 V design is around 87% and the 2.4 V design a creditable 82%.

The 4 V design works for battery voltages in the range of 1.5 V up to 8 V while the 2.4 V design operates from 0.95 V to 6 V . These wide operating ranges mean that the circuits will withstand the high supply voltage that can occur with rapid charging, yet they are capable of ringing the last ounce of charge from failing battery packs.

These designs give enhanced reliability in several areas. The low power losses of the ZTX689B and ZTX869 transistors minimise
temperature rises in the converter - important in reliability terms. Eliminating the bulk of TO126 or TO220 type transistors removes potential susceptibility to vibration. Also the circuits will withstand reverse battery connection and indefinite operation without a fluorescent tube, which is important in an unattended application.

The designs operate at a frequency of around 100 kHz during striking, falling to 25 kHz once struck. The circuits give an
instant-start characteristic as no heater warm up time is required.
If necessary, the circuit can be adapted to operate from a single 2 V cell. Other possible variants will drive higher wattage tubes at reduced power levels, giving emergency backup for normally mains powered tubes.

This information is based on information provided by Zetex Semiconductors and Linear Technology.

Cold-cathode fluorescent lamps as circuit loads

Fluorescent lamps are complex transducers, with many variables affecting their ability to convert electrical current to light. Factors influencing conversion efficiency include the lamp's current, temperature, drive waveform characteristics, length, width, gas constituents and the proximity to nearby conductors.
These and other factors are interdependent, resulting in a complex overall response. Figures $\mathbf{6 - 9}$ shows some typical characteristics. A review of these curves hints at the difficulty in predicting lamp behaviour as operating conditions vary. Lamp current and temperature are clearly critical to emission, although electrical efficiency may not necessarily correspond to the best optical efficiency point. Because of this, both electrical and photometric evaluation of a circuit is often required.

It is possible, for example, to construct a ccf lamp circuit with 94% electrical efficiency which produces less light output than an approach with 80% electrical efficiency.
Similarly, the performance of a very well matched lamp-circuit combination can be severely degraded by a lossy display enclosure or excessive high voltage wire lengths. Display enclosures with too much conducting material near the lamp have huge losses due to capacitive coupling. A poorly designed display enclosure can easily degrade efficiency by 20%. High voltage wire runs typically cause 1% loss per inch of wire.

Fig. 6. Emissivity for a typical 6 mA fluorescent lamp. Curve clearly flattens badly above about 6 mA .

Fig. 7. Ambient temperature effects on emissivity of a typical 5 mA lamp. Lamp and lamp enclosure must come to thermal steady state before measurements are made.

Load characteristics of ccf lamps

Fluorescent lamps are a difficult load to drive, particularly for a switching regulator. They have a 'negative resistance' characteristic; the starting voltage is significantly higher than the operating voltage.
Typically, the start voltage is about IkV , although higher and lower voltage lamps are common. Operating voltage is usually 300 V to 400 V , although other lamps may require different potentials.
Fluorescent lamps will operate from dc, but migration effects within the lamp will quickly damage it. As a result, the drive
waveform should be ac only
Figure 10a shows an ac driven lamp's characteristics on a curve tracer. Negative resistance induced 'snap-back' is apparent. In Fig. 10b, another lamp, acting against the curve tracer's drive, produces oscillation.

These tendencies, combined with the frequency compensation problems associated with switching regulators, can cause severe loop instabilities, particularly on start-up. Once the lamp is in its operating region it assumes a linear load characteristic, easing stability criteria.
Lamp operating frequencies are typically 20 to 100 kHz , and a sine-like waveform is preferred. The sine drive's low harmonic content minimises rf emissions, which could cause interference and efficiency degradation*.
A further benefit to the continuous sine drive is its low crest factor and controlled rise times. These are easily handled by the cof lamp. Efficiency of the rms current-to-light output of a fluorescent lamp is degraded by fast rise high crest factor drive waveforms.

* Many of the characteristics of cold-cathode fluorescent lamps are shared by hot-cathode fluorescent types.

Fig. 8. Current versus voltage for a lamp in its operating region.

Fig. 9. Running voltage against lamp length at two temperatures. Start-up voltages are usually $\mathbf{5 0}$ to $\mathbf{2 0 0} \%$ higher over temperature.

Fig. 10. Negative resistance characteristic for dual cold-cathode fluorescent lamps. The 'snap-back' effects show clearly as oscillation in b). These characteristics complicate power supply design.

Real-world
 ENGINEERING control via LPT

> For simple, bytewide or analogue i/o, PC expansion slots offer a far from cost-effective solution. But there is a very low-cost and easy-to-implement alternative path to simple i/o in the guise of the standard Centronics printer port, as John Davies explains.

Rapid growth of PCs - originally designed as a stopgap to compete with carly Apple computers - has resulted in some strange developments. The 640 K -byte memory limit is one. Much effort has gone into designing memory drivers to overcome this limitation.
Another quirk is the PC's rather strange i/o extension capability. A limited extension bus is usually available, but it relies on rather oddly shaped and expensive pebs. Some portable computers have no expansion capability at all. However there is a way of interfacing cheaply to any PC, portable or not, and that is via the parallel printer port. As a bonus. this method removes the need for expensive pcbs.

Printer port structure

On PC compatibles, the printer port is complies with the Centronics standard, which involves Iransfer of eight parallel bits of data at a time. To control data flow, a number of additional handshaking bits are needed, bringing the total number of lines to 17. These comprise 12 outputs and 5 inputs. All the lines
are at til compatible, simplifying interfacing.
Cormection is via a standard 25-way D-type at the PC, and via a standard 36 -way Centronics connector at the printer. Table 1 summarises connections at the PC end.
For controlling printer data flow, there are three bytes in the PC i/o map. Addresses of these bytes depend on which of the four LPT printer ports is being accessed. Generally. LPT1 is address 378_{16} and LPT2 is at 278_{16} but these addresses may vary, Table 2.
Following sections describe two simple applications - one involving reading from the printer port and the other writing. Both examples use the interrupt capability of the port. In each case LPT1 at address 378_{16} and interrupt line? are assumed.

Using PC interrupts

Installing and using interrupt drivers on the PC is rather cumbersome but nevertheless relatively straightforward. There are two interrupt sources, namely software or hardware.
Software interrupt sources are generated either by an 'INT xx' instruction or when a particular type of error occurs in the software.

Table 1. Pin-out of the almost universal Centronics printer port. These control signals can be adapted via simple interfacing to produce both digital and analogue i / o.

Pin	I/O	Centronics signal	Pin	I/O	Centronics signal
1	0	Data strobe	14	0	Auto line feed
2	0	Data bit 0	15	I	Error status
3	0	Data bit 1	16	0	Initialise
4	0	Data bit 2	17	0	Select
5	0	Data bit 3	18	-	OV line
6	0	Data bit 4	19	-	OV line
7	0	Data bit 5	20	-	OV line
8	0	Data bit 6	21	-	OV line
9	0	Data bit 7	22	-	OV line
10	I^{*}	Data acknowledge	23	-	OV line
11	I	Busy	24	-	OV line
12	I	Out of paper	25	-	OV line
13	I	Selected			

[^3]Table 2. Within the PC i/o map, these three bytes are available for contrtolling the printer port. Their positions in the map depend on whether they relate to LPT1, 2, 3 or 4.

Bit	Base
0	Data bit 0
1	Data bit 1
2	Data bit 2
3	Data bit 3
4	Data bit 4
5	Data bit 5
6	Data bit 6
7	Data bit 7

Base+1
Unused
Unused
Unused
Error status
Selected
Out of paper
Cata acknowledge
Busy

Base+2
Data strobe Auto linefeed Initialise
Select Interrupt enable Not used Not used Not used

Notes: Bi: 0 is the least significant bit. Base is 378_{16} for LPT1, 278_{16} for LPT2. Base and base +2 are write only, Base +1 is read only. Bit 4 of base +2 is not available on the port tut is an internal line used to enable printer port interrupts.

An attempt to divide by zero for example will cause a software interrupt.
On a PC, the most common use for software interrupts is as an entry point for the bios and dos calls. Dos calls execute primarily via interrupt number 20_{16}. Hardware interrupts on the other hand are generated by hardware, examples of which are disk drives and system timers.
Within the PC microprocessor, interrupts are handled via a jump table comprising interrupt vectors. Each vector is four bytes and points to the interrupt routine for its associated interrupt. These four bytes comprise two segment bytes and two offset bytes for the address of the interrupt routine. When an interrupt occurs, the processor calls the routine pointed to by the relevant vector. There are 256 individual vectors stored in memory starting at location 0000:0000.
Whereas software interrupts are easily handled, hardware interrupts are not so straightforward. Interrupting hardware must have some way of informing the processor of which interrupt vector it wants to trigger. This is achieved by a separate chip called a programmable interrupt controller, or pic.
In most PCs, the pic used is an Intel 8259A, or equivalent. This device has eight separate interrupt inputs. It is programmed by the processor to gencrate a specific interrupt vector when each of the interrupt inputs is triggered.
Initial setting up of the vectors and other information such as whether the inputs are edge or level triggered is done by the PC bios but there is one register in the pic that has to be modified by the programmer. This is the eight-bit wide interrupt mask register, which individually enables or disables the interrupt inputs. If a bit is set to logical one, then the associated input is disabled, and vice versa if set to zero.
When modifying a particular bit, take care

Fig. 1. Controlling i/o via the PC parallel port is faster than using the serial port. This eight-bit resolution analogue i/o interface uses interrupts instead of polling for more efficient processing.
not to affect any of the other bits. This is achieved by first reading the interrupt mask, modifying the required bit and writing it back the interrupt mask. Code in Listing 1 illustrates how bit 4 is enabled.
One further noteworthy point is that after an pic-generated interrupt has been processed, it is necessary to write an 'end of interrupt' instruction to the pic. This indicates that further interrupts may now be generated. Signalling an end-ofinterrupt is achieved by writing 20_{16} to pic register address 20_{15}.
Before interrupt processing can begin. the relevant processor interrupt vector needs to be pointed at the by the interrupt sofiware routine. The correct way of doing this to use dos call 35_{16} to read the current interrupt vector and call 2516 to write the new interrupt vector. It is good practice to save the current vector and to restore it after you have finished with the interrupt. Code fragment Listing 2 illustrates the process.

Analogue i/o via LPT

Via the printer port, analogue i / o with eight-bit resolution and 1 kHz sampling rate is straightforward. This bandwidth is obviously not sufficient for audio processing, but is more than enough for measuring room temperature, light level, battery voltage, etc. Cost of the interface hardware is also low, with a total chip cost of under $£ 10$.

The main difficulties lie in matching the connection requirements of analogue i/o devices with the pins available on the parallel port. In summary the pins available are:

Address	Port	Lines
Base	0	8 outputs
Base +1	1	5 inputs $(1$ interrupt $)$
Base +2	2	5 outputs

Analogue output is achieved using an eight-bit GEC-Plessey d-to-a converter called the ZN4258. There are three main reasons for choosing this chip. Firstly it is cheap, at around $£ 3$. Secondly it has a voltage output whereas most alternatives have a current output ind require additional components for cur-rent-to-voltage conversion. Finally, the device has a built in voltage reference brought out on a pin. This can be used not only for the d-to-a converter but also for an a-to-d device.
To drive it, the 4258 needs only the eight data bits. Since no associated control bits are required, the device fits neatly on port zero. An output settling time of $1 \mu \mathrm{~s}$ is ample for a 1 kHz sample rate.
Analogue input is generally a more difficult to implement than analogue output. In addi-
tion to the data bits for reading the converted input value，two control lines are usually need－ ed，one to start the analogue－to－digital con－ version and one to indicate the end of the con－ version．
Since the PC parallel port has few input pins，analogue input can be difficult．There is however an 8 －bit converter－the TLC549－ designed to circumvent this type of interfacing problem．
Rather than presenting its digital output in parallel form，the device produces serial words．These are controlled by a clock line from the reading device，in this case the PC．In this way，only device select and data clock outputs together with a data input line are needed．This requirement is met by an input pin from port 1 and two outputs from port 2.
An application note on the TLC549，avail－ able from TI，details operation of the device． The chip needs a voltage reference，which is
supplied from the d－to－a converter as described above．Time for an analogue－to－dig－ ital conversion is $17 \mu \mathrm{~s}$ ，which easily meets the 1 kHz sampling requirement．
Both of the above devices also operate con－ veniently from a 5 V supply．

Circuit details

Figure 1 shows the complete i／o interface． Port zero＇s eight output bits are taken directly to the digital inputs of the d－to－a converter． Output of the d－to－a converter＇s built－in volt－ age reference，filtered by a capacitor to ground，is taken to its voltage reference input． This voltage reference is also taken to the pos－ itive reference input of the a－to－d converter．
Output of the d－to－a converter is buffered via $U_{4 a}$ to provide rudimentary protection against accidenal short circuits，etc．Analogue input voltage is also buffered，via $U_{4 b}$ ，for pro－ tection of the a－to－d converter．Zener diode D_{1}

LISTING 3．Routine for outputting and inputting analogue signals via the PC printer port using the circuit of Fig．1．Elements of this routine are also useful for controlling parallel i / o ．

```
NAME PARALLEL_PORT ASSUME CS:_TEXT,DS:_TEXT,SS:STACK
_TEXT
segment \overline{byte publíc 'CODE'}
; Equates
    base_address
    data_out_o
    data_in -
    data_out_l
    par_int-
    pic
    pic stat
    pic-eoi
    plc_eol
    clk-bit clr
    clk_bit_clr
    clkbit_set
    cs_bit_\overline{clr}
    cs-bit-set
    int_bit_set
    int_bit_clr
\begin{tabular}{ll} 
EQU & 378 H \\
EQU & base＿address \\
EQU & base＿address \\
EQU & base＿address \\
EQU & \(0 F H\) \\
EQU & 20 H \\
EQU & pic +1 \\
EQU & 20 H \\
EQU & 01111111 B \\
EQU & 00000001 B \\
EQU & 11111110 B \\
EQU & 00000010 B \\
EQU & 11111101 B \\
EQU & 00010000 B \\
EQU & 11101111 B
\end{tabular}
；LPTl base address
； 8 bit output port
； 4 bit inout port
； 4 bit ourput port
；Printer inzerrupt no．
；Base addzess of PIC
；PIC stat 1 s reqister
：End of interrupt command
Mask to znable ints in pt
Mask to ミnヨble ints in PIC
Clear ADJ clock bit
Set \(\mathrm{ADC}=10 \mathrm{ck}\) bit
；Clear \(A D=z S\) bit
；Set \(A D C=25\) bit
i Set interrupt bit
；Clear inzerrupt bit
```

；Terminate Frogram
AND p2 status，int＿bit＿clr
MoV AL，p2＿status
MOV DX，data＿out＿l
OUT DX，AL Cद्टL stop＿ints
保
MOV AX，4CHOH
；and terminate normally
INT 21H
Frite to ana＿ogue output
port（8－bit data in AL）
rite port ？ROC NEAR
ovoda＿a＿out＿o
UT DX，AL
RET
write－port and
analogue input port
$(8$ bit data returned in AL
read＿port PROE NEAR
OR P2 status cs bit clr
MOV AL，p2＿status
OUT DX，AL
；Read 8 data bits
MOV CX， 8
MOV BL， 0
read＿bit：
Read bit
MOV DX，data＿n 1 n
NA，DX
CMC
RCL BL， 1
t bit
AND p2＿status，clk＿bit＿set

```
LISTING 3. (contd)
```

LISTING 3. (contd)
;Start of program
;Start of program
; Load DS with the relevant value
; Load DS with the relevant value
PUSH CS
PUSH CS
POP DS
POP DS
; Set up default values for ports
; Set up default values for ports
MOV AL,O
MOV AL,O
MOV DX,data out_0
MOV DX,data out_0
OUT DX,AL
OUT DX,AL
MOV AL,00000001B
MOV AL,00000001B
MOV DX,data_out_1
MOV DX,data_out_1
OUT DX,AL
OUT DX,AL
MOV p2 status,AL
MOV p2 status,AL
MOV data_avall,0
MOV data_avall,0
MOV analogue_out,0
MOV analogue_out,0
MOV analogue_in,0
MOV analogue_in,0
;Start interrupts
;Start interrupts
CALL vectors
CALL vectors
CALL intson OR p2_status,int_bit_set
CALL intson OR p2_status,int_bit_set
MOV AL,p2_status
MOV AL,p2_status
MOV DX,data_out_1
MOV DX,data_out_1
OUT DX,AL
OUT DX,AL
; Loop reading input until
; Loop reading input until
;a key is pressed read_input:
;a key is pressed read_input:
CMP data_avail, OFFH
CMP data_avail, OFFH
JNE read_input
JNE read_input
; Read/write data
; Read/write data
MOV data_avall,0
MOV data_avall,0
;Data processing
;Data processing
MOV AL,analogue_in
MOV AL,analogue_in
MOV analogue_out,AL
MOV analogue_out,AL
;Check for key pressed
;Check for key pressed
MOV AH,1
MOV AH,1
INT 16H
INT 16H
JZ read_input
JZ read_input
;Terminate Frcgram
;Terminate Frcgram
AND p2_status,int_bit_clr
AND p2_status,int_bit_clr
MOV AL,p2 status
MOV AL,p2 status
MOV DX,data_out_l
MOV DX,data_out_l
OUT DX,AL C\overline{FLL Stop_ints}
OUT DX,AL C\overline{FLL Stop_ints}
; Remove the interrupt routine
; Remove the interrupt routine
MOV AX, 4CHOH!
MOV AX, 4CHOH!
; and terminate normally
; and terminate normally
INT 21H
INT 21H
;Write to ana-ogue output
;Write to ana-ogue output
;port (8-d⿲t data in AL)
;port (8-d⿲t data in AL)
write port ?ROC NEAR
write port ?ROC NEAR
MOV DX,da=a out O
MOV DX,da=a out O
a_out_o
a_out_o
OUT DX,AL
OUT DX,AL
RET
RET
write_port ENDP
write_port ENDP
;Read from analogue input port
;Read from analogue input port
;(8 bit data returned in AL)
;(8 bit data returned in AL)
read_port PROE NEAR
read_port PROE NEAR
;Put CS low to select chip
;Put CS low to select chip
OR p2_status,cs_bit_clr
OR p2_status,cs_bit_clr
MOV AL, p2_status
MOV AL, p2_status
MOV DX,data_out_1
MOV DX,data_out_1
OUT DX,AL
OUT DX,AL
;Read 8 data Dits
;Read 8 data Dits
MOV CX,8
MOV CX,8
MOV BL,O
MOV BL,O
read_bit:
read_bit:
;Rea\overline{d}bit
;Rea\overline{d}bit
MOV DX, data_1n
MOV DX, data_1n
IN AL,DX
IN AL,DX
RCL AL,I
RCL AL,I
CMC
CMC
RCL BL,l
RCL BL,l
;Clock in next bit
;Clock in next bit
MOV DX,data_out l
MOV DX,data_out l
AND p2_status, clk_bit_set

```
    AND p2_status, clk_bit_set
```

MOV AL，${ }^{2}$＿status
OUT DX，AL
OR p2＿status，clk＿bit＿clr MOV AL，p2＿sta－
tus
OU＇DK，AL
；Next bit
LOOP read＿bit
；Put CS high
AND $\mathrm{p} \tilde{t}$＿status，cs＿bit＿set
MOV AL， p_{2}＿status
MOV DK，data＿out＿1
OUT DK，AL
；Copy value
MOV AI，BL
RET
read＿port ENDP
；Setting new interrupts vectors PROC NEAR
MOV AF， 35 H ；Get old irq vecter
MOV Al，par＿int
INT 21H
MOV o－dint，BX
MOV oldint＋2，ES
MOV DA，OFFSET service ；Get new irq vec－
tor
MOV AB， 25 H ；Set vector
MOV al，par＿int
INT 2 H
RET
vectors ENDP
；Activa＝ing interrupts
intson DROC NEAR
IN AL，pic＿stat ；Read PIC mask
AND A＿，int＿mask
OUT p：c＿stāt，AL
STI ；Enable interrupts
RET
intson 玉NDP
；Stopping interrupts
stop＿ints PROC NEAR
MOV DX，oldint
MOV DS，oldint＋2
MOV A： $1,25 \mathrm{H}$
MOV AL，par int
INT 21 H ；Restore old vector
RET
stop＿ints ENDP
；Interrupt service routine
service PROC NEAR
PUSH DS
PUSH AX
PUSH BX
PUSH DX
PUSH CS
POP LS ；Data is in code space
CALL read port
MOV analogue＿in，AL
MOV EL，analogue out
CALL write＿port
MOV data＿avail，0FEH
MOV RL，pic eoi
senc end of interrupt
OUT $\mathrm{EOH}, \mathrm{AL}$
POP［． X
POP $\boldsymbol{k X}$
POP AX
POP ITS
IRET
service ENDP
；Data area
oldint dw 2 dup（？）
；old interrupt vector
p2＿sjatus db 1 dup（？）
；Copy of clock／CS output
data＿avail db 1 dup（？）
；data available flag
analogue＿in db 1 dup（？）
；current analogue data in
analogue＿out db 1 dup（？）
；current analogue data out
＿TEXT ENDS
STACK SEGMENT STACK＇STACK＇
DB 256 DUP（？）STACK ENDS END
and resistor R_{3} may be fitted depending on the danger of an overvoltage on the input.
The data sheet for the TLC549 recommends that its analogue input voltage does not exceed 5 V . As a result. D_{1} should be no more than 4.7 V and R_{3} selected depending on what the largest overvoltage is likely to be.
Negative reference voltage for the a-to-d converter is connected to signal ground. Two digital output lines connect from port 2, bit 0 for the clock and bit 1 for chip select. One input line is taken to bit 7 of port 1 .
Clocking at 1 kHz is provided by the 555 timer, which is wired for a 50% mark-space ratio square wave output. This signal feeds the parallel port interrupt line on port 1. Resistors $R_{1.2}$ may need to be trimmed if an exact 1 kHz signal is needed or, for greater accuracy, a crystal oscillator with an appropriate divider chain could be used.
As with all mixed analogue/digital systems, careful circuit layout is needed to avoid interference. Analogue and digital sections should be kept as separate as possible. Individual ground and power busses should be connected at a single point as near as possible to the supply. Any additional digital devices should be adequately decoupled - preferably via a 100 nF capacitor per chip - and any spare digital input lines should be tied directly to digital signal ground.

Software details

Soltware demonstrating how to drive the analogue i/o port comprises three main parts. One part writes data to the analogue output port. one reads from the analogue input port and one, an interrupt routine, coordinates the reading and writing, Listing 3.
Software for writing to the analogue output port is trivial. Eight-bit data to be written is stored in the AL register and the routine called which simply writes the data to port 0 .
The procedure for reading the analogue input is more involved. To further complicate matters the two outputs and one input used, for chip-select, clock and data, are inverted in the printer port hardware. As a result. a logic one written to the port appears as a logic zero on the output.
Initially, the analogue-to-digital converter is selected by setting the chip-select line low. Converted analogue data is then read in bit by bit by toggling the clock line.
Assembly of the input byte is carried out by reading one data bit at a time into bit 7 of AL. Each bit is rotated it into the carry bit, and the carry bit is inverted to reverse the inversion caused by the hardware. Finally, each bit is rotated back from the carry bit into the BL register.
The LOOP instruction uses the CX register as a count to repeat the reading and rotaing

Integrated a-to-d converter with serial output

Within the TLC549 are a timing clock, a sample and hold circuit, an eight-bit a-to-d converter and control logic. There are two control inputs, a clock and a chip select line, and one output for the data string. The internal system clock and i/o clock are used independently and need no special speed or phase synchronisation. This means that the controlling processor needs only to be concerned with the reading of the data. Relationship between the various data lines is shown below.
To start a normal control sequence, chip-select is lowered to select the device. The most significant bit of the previous conversion appears on the data pin. Falling edges of the first four i/o clock cycles shift out the second, third, fourth and fifth bits of the previous conversion result. The on-chip sample-and-hold begins to sample the analogue input after the fourth high to low transition of the i/o clock.
Three more i/o clock cycles are then applied which shift out the sixth, seventh and eighth conversion bits. The eighth i/o clock cycle is applied, setting the sample and hold circuit into the hold state. This hold state continues for the next four system clock cycles, after which the conversion cycle starts for 32 system clock cycles.
After the eighth i/o clock cycle the chip-select line must go high for at least 36 system clock cycles, i.e. $17 \mu \mathrm{~s}$ for the conversion to complete correctly. If the analogue input is multiplexed then the multiplexer should be switched at this point, but note that the next value read will be the previous conversion. The control sequence can then be started again.

procedure eight times. Finally the chip-select line is brought high and the converted data returned in the AL register.
Distribution of processing between the interrupt routine and the normal background processing is as follows. The interrupt routine reads the analogue input and copies it to the byte variable "analoguc in". Flag byte 'data_avail' is then set to FF_{16} to indicate that a new value is available. In addition the byte variable "analogue_out' is copied to the analogue output.

Linking of the input and output is done in the background routine, which loops round. reading the flag byte until data is available. Analogue input data is then copied to the analogue output data and the flag byte cleared. Any digital filtering or processing should be put in the background routine rather than in the interrupt routine.
My code was developed on a PC XT running at 12 MHz . Based on measurements of how much time the TLC549 chip-select is set low, the analogue i/o processing took around 20% of the available processing time.

Enhancements

The circuit and software in this article are fairly basic and the minimum needed for a useful system. Several straightforward enhancements are possible.
On faster PCs it should be possible to run at a higher conversion rate than 1 kHz . It is not possible to saty exactly how much faster as the software uses many i/o instructions. These may not run much faster than on a basic XT. The best way to chech is by using an oscilloscope to look at how much time the chipselect line spends at logic zero.
This interface has only one input and one output. Expanding the inputs should be possible by adding a multiplexer on the input and controlling it using some of the spare port 2 lines. Note that switching of the multiplexer must be synchronised with reading the data because of the sampling method used by the TLC549 as explained in the panel.

Expanding the outputs is rather more trichy as there are no spare output ports available. Output of the d-to-a converter must therefore be switched through an output multiplexer with some form of sample and hold circuit. This expansion is not likely to be as useful as input expansion.

As mentioned carlier any serious digital processing will need a more stable frequency reference than the 555 timer. A crystal oscillator and divider circuit is probably the easiest way to achieve this.

Further reading

Data sheets on the GEC-Plessey ZN425E8 and Texas Instruments TLC549 should prove useful. There is also an application note explaining how the TLC 549 is accessed.

LANGREX SUPPLIES LTD

PHONE
081684
1166
TUBES OF SEMICONDUCTORS ANDICS 1 MAYO ROAD - CROYDON - SURREY CRO 2QP 24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

FAX 081684

OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY. OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETE ITEMS A SPECIALITY. QUOTATIONS FOR ANY TYPES NOT LISTED. TERMS: CWONISAACCESS. POST \& PACKING: $1-3$ VALVES £1.00, 4-6 VALVES $£ 2.00$. ADD 17.5% VAT TO TOTAL INC. P\&P.

Field Electric Ltd. Tel: 0438-353781 Fax: 0438 359397 Mobile: 0835-640328/0860-213370 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8 AB.

1.44Mb Laptoo floppy disk drives $360720 \mathrm{~K} 5255^{\text {T TEAC }}$ BBC comp,at. disk drives

144 MO Sony 18 MM compat disk d dives (relurts)
Toshiba external 525° disk drive new boxed PA7225E
SCSI hard disk dives, Micropolis 382 Mb new boxed
SCSI hard disk dnves, Micropolis 382 Mb nev boxed
SCSI hard disk drves, Seagate 426 Mb new boxed SCSI hard disk dnves, Maxtor 76 CMb new bcxed
Wangtek 525 MD tape streamer S SSisi new boxed
IBM 3363 optical disk strive new bosied
102 key AT
Compaq AT ennanced keyboard with PS2 tyre plug
Compaq AT ennancee keyboard no cable
386 SX 16 CPU (intel) motherboard with Phoenix Bios
486 DX $20 / 25 / 33$ CPU's from
72 way Simms tor PS2 Compaq Dell Elonex ptc from
16 bit ram cards takes Simms ton
286/386 complete computers in slock from
Intel flash memory cards iMb to 4 MD from
MCA buss SCSI interface cards for PS2 etc from
MCA buss ram cards takes Simins for PS2 eifc from
Test equipment: please ring tor C'P details
HP 3490 A multimeter
HP X532B frequency
HP 331 A distortion analyzer
HP 1740 A 100 MHz oscilloscope dual chn with 3 racd chn
HP 1332 X - Y display with options $215 / 300 / 315 / 570 / 631$
HP 1332 X -Y disp
HP 721 ploter
HP 9872 C plotter
HP 1900A pulse gen owith 1915A. 1908A. 1905A
HP 6930 sweep oscill ator 4.8 GHz
$\mathrm{HP} 62605 \mathrm{PSU} 5 v 100 \mathrm{~A}$
TEK 067.502 standa
TEK swepl trequency converter $015-0107-00$
TEK 7012 AO converter plug in
TEK 2213 o'scope 60 MHz dual
EK 4550° 'scope 50 MHz dual beam etc
Fluke 8010A digital multimeter
AEI Gauss meter FBe standard differential voltmeter null delector
AEl Gauss meter FB22 form with probe \qquad

Astec SA30/1306 new \& boxed PSU 240 VAC input $+52 \mathrm{~A}+151.8 \mathrm{~A}-150.3 \mathrm{~A}$
Sorensen SRL $40-120-4$ VDC $0-12$ metered 115 VAC input Sorensen SRL 40 - $120-4$ VDC $0-12$ meterec
KSM SCT. 20015 bench PSU $0-200 \mathrm{~V} 0-15 \mathrm{~A}$
Systron Donner pulse gen. 1000
EH microwave swe
EfI mictowave swept oscillator $574-17-124 \mathrm{GHz}$
Hydrostatic stability IND. HSM 400 PI Hughes Model 639 scan conversion
Complot series 7000 digitizer tablet with Complot series 7000 digitizer
Wyse 60A terminals new \& boxed with keytwards
Philips PM 8940 isolation amp etc
Wayne Kgrr VHF adrnittance bridge B801
Advance inst tow distontion LF oscillator SG68A
Panametncs ultrasonic analyzer 5052 UA
DLI delay gen DG100
please add vat. fing for carriage unless stated
CIRCIE NO. 127 ON REPIY CARD

8 CAVANS WAY,
BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 0203650702
Fax: 0203650773
Mobile: 0860400683
Promisess attuated clote to Eastern-by-pass In Coventry with eas
access to M1, M6, M40, M42, M45 and M69)

OSCILLOSCOPES	
Gould OS4000, OS4200, OS4020, OS245	
Gould OS3000-40M Hz, duat ch	225
Gould $4035-20 \mathrm{MHz}$ digital storage	£60
Gould $4050-35 \mathrm{MHz}$ digital storage	¢750
Gould $5110-100 \mathrm{MHz}$ intelligent oscilloscope	$\underline{950}$
Hewlett Packard 1707A, 1707B-75MHz dual ch	from £275
Howlott Packard 1740A, 17414, $1744 \mathrm{~A}, 100 \mathrm{MHz}$	from £ 350
Hewlett Packard 182C-100MHz 4 ch .	£350
Mitachi V-422-40MHz dual ch.	00
Nicolat 3091 - Low treq D.S.O.	
Nicolet 4094-4 channel low freque	£500
Tektronix 2201 - $20 \mathrm{MHz} \mathrm{D.S.O}$.	
Tektronix $2213-60 \mathrm{MHz}$ dua	£425
Tektronix 2215-60MHz dual ch	£450
Tektronlx $2230-100 \mathrm{MHz}$ digital storage	£1650
Tektronix 2235-100MHz duat ch	
Tektronix 2246-100MHz 4 channei (as new)	E995
ktronlx $2335-100 \mathrm{MHz}$ dual ch. (portable)	¢750
Tektronix $\mathbf{4 6 5 / 4 6 5 8}-100 \mathrm{MHz}$ dual ch .	from $£ 350$
Toktronix 7313, 7603, 7613, 7623, 7633, 100 MHz 4 ch .	from $£ 300$
Toktronix $7704-250 \mathrm{MHz} 4 \mathrm{ch}$.	m E 650
Tektronlx $783478844-400 \mathrm{MHz} 4$ ch	¢ $¢ 750$
Tektronix $7904-500 \mathrm{MHz}$	

Phillps 3206, 3211,3212, 3217, 3226, 3240, 3243, from £125 to £350

Altech $727-20 \mathrm{GHz}$
Howitt packard $3580 \mathrm{~A}-5 \mathrm{~Hz}-50 \mathrm{KHz}$ $\Sigma 1500$ Howlett Packard 3582A - 25 KHz analyser, dual channel $£ 2500$ Hewlott Packard $8590 \mathrm{~B}-9 \mathrm{KHz}-1.8 \mathrm{GHz}$ (as new). Hewlett Packard 8754A - Network Analy ser 4-1300MHz Howlett Packard 182T with 8559A ($10 \mathrm{MHz}-21 \mathrm{GHz}$) ... £3750 \& Marconl $2370-110 \mathrm{MHz}$ Rohde \& Schwarz - SWOB 5 Polyskop 0.1-1300MHz $£ 275$ Tektronlx 7 LL 18 with 7603 mainframe ($1.5-18 \mathrm{GHz}$).. Textrandx A $4.51 \mathrm{~A}-1 \mathrm{GHz}$

Phillps PM 5519 Colour TV pattern gen.
Phillps PM 5716 Pulse generator high fre

Phillps PM 66721 GHz timer/counter WF IEEE | Phillps PM $8272 \times$ XT chatt recorder |
| :--- |
| Photod | Photodyne 800 Fibre optic attenuat

Prolect|na CH9345 Microscope.... Project|na CH9345 Microscope
Racal 9501 True RMS R/F mill Racal Dans 2021 aic analyser +68000 Racal Dana $310040-130 \mathrm{MHz}$ synthesiser
Racal Dana 5002 Wideband level mete
Racal Dana 5003 Digital m/meter
rocessing timer/count. 52MHz
Racall Dana 9001 Synth, stg. gen. 520 NH
Racal Dana 9084 Synth. sig. gen. 104 MHz
Racal Dana 9242 D Programmable PSU $25 \mathrm{~V}-2 \mathrm{~A}$
Racal Dana 9246 S Programmable PSU $25 \mathrm{~V}-10 \mathrm{~A}$
Racal Dana 9246 Programmable PSU 25 V -
Racal Diana 9303 True RMS/RF level meter.
Racal Dana 9341 LCR databrdge
Racal Cana 9500 Universal timer/oounter 100 MHz
Racal Cana 9917 UHF frequency meter 560 MHz
Aacal Cinna 99213 GHz trequency counter
Rohde \& Schwarz LFM2 Sweep generator $0.02-60 \mathrm{MHz}$............ £ $£ 1500$
Rohde \& Schwar SCUD Radro code test set.
Rohdo \& Schwarz SMFP2 Moble tester
Rohde : Schwarz ZPV Vector a nalyser
Solartron Schlumb 1170 Freq. response analyser Systemis Vldeo 1258 Waveform analyser +1255 vector mo 15250
.
Tektronix TM503, SG503, PG506, TG501 Scope calibrator 2200
Tektronil 1411 PALNTSC.PAL-M signal gen. with SPG12, TSG11,
Tektroulx 1480 Wavetorm 11 Pi
TIme 9trin Programmable resistance
Time 9814 Vottage cal brator
W\&G mu
Test point scanner
W\& G PCM 3 Auto measuring set tor telephone channels
WaG SPM 12 Level meter $200 \mathrm{~Hz}-6 \mathrm{MHz}$
Watanabe WTR211 3 pen plotter
Weller 200 Programmable wavelorm synthesiser
Weeller D900 Despl Desoldenng station
Weller D990 Desoldenng station
Wiltror, 352 Low fren difterential
SPEGAL OFFERS - Phoenlx 5500A Telecoms analyser, ox demo. as new with 12 months calibration +12 moniths guarantee
fitted with V 24 interface. A vanety of interlace options avalable Ring/Fax for details. Navtel 9440 Protocol analyser, ex. demo. as analyser ex. demo. as new £3000 new - cost now $£ 1500$.

> MANY MORE ITEMS AVAILABLE - SEND
> LARGE S.A.E. FOR LIST OF EQUIPMENT
> ALL EQUIPMENT IS USED - WITH 30 DAYS GUARANTEE. PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING-

> CARRIAGE \& VAT TO BE ADDED
> TO ALL GOODS

It seems self-evident that a fast amplifier is a better than a slow one. But what is a fast amplifier? Closed-loop bandwidth is not a promising yardstick. Almost certainly, any power amplifier with negative feedback will have a basic closed-loop frequency response well in excess of any aural requirements even if the overall system bandwidth is defined at a lower value by earlier filtering.
There is constant debate about the importance of an amplifier's open-loop bandwidth, much of it depressingly ill-informed. Frequency of dominant pole P_{1} defines openloop bandwidth. I have demonstrated that this pole is variable and a rather shifty quantity that depends on transistor beta and other undependable parameters'. 1 also showed how it can be subily increased by reducing open-loop gain below P_{1}.
While P_{1} may vary, the actual gain at hf, say 20 kHz , is thankfully a much more reliable quantity that is set only by frequency, input stage transconductance, and the value of the $C_{\text {dom }}$ capacitor ${ }^{2}$. This is probably the only meaningful way to describe the amount of ntb that an amplifier enjoys.
Maximum slew rate is the most meaningful definition of amplifier 'speed'. The minimum slew rate for a $100 \mathrm{~W} / 8 \Omega$ amplifier to cleanly reproduce a 20 kHz sinewave is easily calcu-
lated as $5 \mathrm{~V} / \mu \mathrm{s}$. Consequently, $10 \mathrm{~V} / \mu \mathrm{s}$ is adequate for $400 \mathrm{~W} / 8 \Omega$ - a power level outside the realm of normal domestic audio.
A safety margin is desirable. If a factor of two is chosen, then it can be argued that $20 \mathrm{~V} / \mu \mathrm{s}$ is enough for any hifi application. There is a less obvious but substantial safety margin already built in. Maximum-level signals at 20 kHz are mercifully rare in music; the amplitude distribution falls off rapidly at higher frequencies.

Wants and needs

Firm recommendations on slew rate are hard to find. Peter Baxandall made measurements of the slew rate of vinyl disc signals, concluding that they could be reproduced by an amplifier with a slew limit corresponding to maximum output at 2.2 kHz . For the 100 W amplifier this corresponds to $0.55 \mathrm{~V} / \mu \mathrm{s}$ slew ${ }^{3}$.
Nelson Pass made similar tests. With a mov-ing-magnet cartridge, he quoted a not dissimilar maximum of $\mathrm{V} / \mu \mathrm{s}$ at 100 W . A movingcoil cartridge doubled this to $2 \mathrm{~V} / \mu \mathrm{s}$. and Pass reported ${ }^{4}$ that the absolute maximum possible with a combination of direct-cut discs and moving-coil cartridges was $5 \mathrm{~V} / \mu \mathrm{s}$ at 100 W . This is comfortably below the $20 \mathrm{~V} / \mu \mathrm{s}$ figure arrived at above theoretically: Pass concluded that even with generous $10: 1$ safety factor,
$50 \mathrm{~V} / \mu \mathrm{s}$ would be the highest speed ever required from a 100 W amplifier.
In the real world, the "numbers game" also has to be considered. Everything else equal, the faster an amplifier is the better it sells. For example, it has been recently reported in the hifi press that a particular $50 \mathrm{~W} / 8 \Omega$ amplifier has been upgraded from $20 \mathrm{~V} / \mu \mathrm{s}$ so $40 \mathrm{~V} / \mu \mathrm{s}$ slew rate ${ }^{5}$. This is clearly expected to elicit a positive response from intending purchasers.
Such reports are the exception since equipment revicus in the hifi press do not usually include slew rate figures. This makes it difficult to determine the state-of-the-art. My archives reveal that top-end equipment is usually specified at around $50 \mathrm{~V} / \mu \mathrm{s}$: slew rates are always quoted in suspiciously round numbers. There was an isolated claim of $200 \mathrm{~V} / \mu \mathrm{s}$, but I doubt this figure.
The Class-B amplifier of Fig. 1 has been published previously ${ }^{6}$: original component numbers have been preserved. This generic circuit has many advantages, though an inherently good slew performance is not necessarily one of them. However, since the topology remains the basis for the overwhelming majority of amplifiers, it seems the obvious place to start.
In a $1993 E W+W W$ article ${ }^{6}$. I glibly stated that the amplifier's slew rate calculated at

Fig. 1. The Class-B amplifier from Part 7 of Distortion in Power Amplifiers. At the simplest level the maximum slew rate is defined by current source Tr1 and the value of $C_{d o m}$.
$40 \mathrm{~V} / \mu \mathrm{s}$. which by the above arguments is more than adequate. However, consider how improvements might be made in this figure to make the amplifier sell better.

Gaining slew

At the simplest level, slew rate in a conventional amplifier configuration like Fig. I depends on getting current in and out of $C_{\text {dom }}$. In this case $C_{\text {dom }}$ is C_{3}, and slew rate is given by the convenient relationship $/ / C_{\text {dom }}$, in $V / \mu \mathrm{s}$, where $/$ is in microamps, and $C_{d o m}$ in picofarads. For Fig. 1, the relationship yields $4000 / 100$, or about $40 \mathrm{~V} / \mu \mathrm{s}$. This is as quoted above, if we assume - as all textbooks do that the only current limitation is the tail source of the input pair.
If the differential pair has a current-mirror collector load - and there are good reasons why it should - then almost all tail current is available to service $C_{\text {dom }}$. Increasing slew rate by raising tail current seems very simple. But tail current is not the only limit on the slew current in $C_{\text {dom }}$. This point is touched on in an carlier article of mine ${ }^{7}$.

Figure 2 shows the current paths for positive and negative slew limit. It is immediately clear that positive current can only be supplied by the current-source load in the voltage amplifier stage. This reduces the maximum
positive rate, causing slew asymmetry if the voltage amplifier current source cannot supply as much current as the tail source. In contrast. for negative slewing $T r_{+}$can turn on as much as required to sink the $C_{\text {dom }}$ current, and voltage amplifier collector load is not involved.
In most designs the voltage amplilier stage current-source value does not appear to be an issue. This is because the voltage amplifier is run at a higher current than the input stage to ensure enough pull-up current for the top half of the output stage. However it will transpire that the voltage amplifier source can still cause problems.

Measurement

Directly measuring the edge slopes of fast square waves from an oscilloscope screen is not casy. Without a delayed timebase it is virtually impossible.

A much easier, and far more accurate. method is to pass the amplifier output through a suitably scaled differentiator circuit: slew rate then becomes simple amplitude, which is much easier to determine from a graticule ${ }^{2}$. Figure 3 provides a handy 100 mV output for each V / μ s of slew; note that the $R C$ time constant must be short for reasonable accuracy.

Drive for the differentiator was provided directly by the amplifier, and not via an output
inductor. Be aware that this circuit needs to be coupled to the oscilloscope by a proper $\times 10$ probe, using the local grounding clip. Capacitance of plain screened cable produces serious under readings. Sub-microsecond pulse techniques are involved, so bear in mind that waveform artefacts such as ringing are as likely to be due to test cabling as to the amplifier, and care is essential.
Applying a fast-edged square-wave to an amplifier does not guarantee that it will show its slew-rate limits. If the error voltage so gencrated is not enough to saturate the input stage then the output will be an exponential response, void of non-linear effects.
For most tests described here, the amplifier had to be driven almost to clip to ensure that the true slew limits were revealed; this is due to the heavy degeneration that reduces the transconductance of the input pair. Degeneration increases the error voltage required for saturation, but does not directly alter slew limits.
Running a slew test on the circuit of Fig. 1. with an 8Ω load, sharply highlights the inadequacies of simple theory. The differentiator revealed asymmetrical slew rates of $+21 \mathrm{~V} / \mu \mathrm{s}$ up and $-48 \mathrm{~V} / \mu \mathrm{s}$ down, which is both a letdown and a puzzle considering that the simple theory promises $40 \mathrm{~V} / \mu \mathrm{s}$. To obtain results
worse than theory predicts is merely the common lot of the engineer; to simultaneously get results that are better is grounds for the gravest suspicions.

Faster, faster

Looking again at Fig. I, the value of the voltage amplifier current-source is apparently already bigger than required to source the current $C_{\text {dom }}$ requires when the input stage is sinking hard. As a result, R_{4} can confidently be decreased to 100Ω, to match R_{13}, in an attempt to accelerate slewing.

Disappointingly, it appears that the slew rate only changes to $+21 \mathrm{~V} / \mu \mathrm{s}$, $-62 \mathrm{~V} / \mu \mathrm{s}$; the negative rate still exceeds the new theoretical value of $60 \mathrm{~V} / \mu \mathrm{s}$. So what is wrong?
At first it seems unlikely that the voltage amplifier stage current source is the culprit. With equal values for R_{4} and R_{13}, the source should be able to supply all the input stage can sink. This belief can be tested by increasing the voltage amplifier source current while leaving tail current at its original value, revealing that $R_{4}=150 \Omega, R_{13}=68 \Omega$ gives $+23 \mathrm{~V} / \mu \mathrm{s},-48 \mathrm{~V} / \mu \mathrm{s}$. The small but definite increase in positive rate shows clearly there is something non obvious going on in the voltage amplifier source.

This straightforward method of slew acceleration by increasing standing currents means a significant increase in dissipation for voltage amplifier and its current source. There is a danger of exceeding the capabilities of the TO92 package, leading to a cost increase. At the input stage, the problem is less acute since dissipation is split between at least three devices.

Simulating slew

Replacing the Class-B output stage with a small-signal Class-A emitter follower, the circuit was reduced to a 'model'. This model was then subjected to various Pspice simulations.

Figure 4 shows the positive-going slew of this model amplitier. Both actual output voltage and its differential are evident, the latter scaled by dividing by 10^{6} so it can be read directly in $V / \mu \mathrm{s}$ from the same plot. Figure 5 shows the same for negative-going slew. Plotting is repeated for a series of changes to resistors $R_{4,23}$ that set the standing currents.
Several points need to be made about these plots. Firstly slew rates shown for the lower $R_{4,23}$ values are not obtainable in the real amplifier with output stage - for reasons that will emerge. Note that almost imperceptible wobbles in the output voltage put large spikes on the plot of the slew rate. It is unlikely that these are being simulated accurately, if only because circuit strays are neglected. To obtain valid slew rates, read the flat portions of the differential plots.

Fig. 2.a) Current path for positive slewing. At the limit, all the slewing current has to pass through the current mirror, Tr_{2} being cut off. 2b) Current path at negative slew limit. Transistor Tr_{1} is saturated and the current mirror cut off.

Using this method, I obtained the first insight into slew-rate asymmetry. At audio frequencies, a constant-current source provides a fairly constant current, making it the usual choice for the voltage amplifier stage collector load. As a result the collector is exposed to the full output swing and full slew rate.
When an amplifier slews rapidly, there is a transient feedthrough from the collector to the base, Fig. 6, via col-lector-base capacitance. If the base voltage is not tightly fixed, then fast positive slewing drives the base voltage upwards. This reduces voltage at the emitter and hence the output current. Conversely, for negative slew the current-source output briefly increases ${ }^{\gamma}$. In other words, fast positive slew-
ing itself reduces the current available to implement it.
Having discovered this hidden constraint, the role of isolation resistor R_{23} immediately looks suspect. Simulation confirms that its presence worsens the feedthrough effect by increasing the impedance of the reference voltage fed to the base of $T r_{5}$. As is usual, input-stage tail-source T_{i}, is biased from the same voltage as $T r_{5}$; this minor economy complicates things significantly, as the tail current also varies during fast transients, reducing for positive slew, and increasing for negative.

Real life

Bias isolation resistors as used in Fig. I are very common. My own purpose in adding R_{23} was not to isolate the two current sources from each other at ac - something it fails to do entirely - but to aid fault finding.

Without this resistor, if the current in either source drops to zero, for example if T_{1}, fails open circuit, then the reference voltage collapses. In turn, this switches off both sources, and determining which device has failed can be a nuisance.

Accepting this, we return to the original Fig. 1 values and replace R_{23} with a link; the measured slew rates at once improve from +21 , -48 to $+24,-48 \mathrm{~V} / \mathrm{\mu s}$. This is already slightly faster than our first attempt at acceleration, without the thermal penalties of increasing the voltage amplifier standing current.
The original amplifier used an active tail source, with feedback control by Tr_{14}; this was a mere whim, and a pair of diodes gave identical thd figures. It seems likely that reconfiguring the two current sources so that the voltage amplifier source is the active one would make it more resistant to feedthrough. In this case, the current-control loop is now around $T r_{5}$ rather than $T r_{1}$, with feedback applied directly to the quantity showing unwanted variations, Fig. 7. There is indeed some improvement, from $+24,-48$ to +28 , $-48 \mathrm{~V} / \mu \mathrm{s}$.
This change seems to work best when the voltage amplifier stage current is increased, and $R_{4}=100 \Omega, R_{13}=68 \Omega$ now produces +37 , $-52 \mathrm{~V} / \mu \mathrm{s}-\mathrm{a}$ definite improvement in positive slewing. Note that the negative rate has also slightly increased, indicating that the tail current is still being increased by the feedthrough effect.

Fig. 3. A simple - but useful - differentiator. A local probe ground is essential for accuracy to exceed $\pm 10 \%$.

Fig. 4. Positive slewing of simulated model amplifier. The lower traces show the amplifier output slewing from -30 to +30 V while the upper traces are the scaled differentiation.

Fig, 5. Negative slewing of simulated model amplifier. Increasing the slew rate limit causes a larger part of the output transient to become exponential, as the input pair spends less time saturated. Thus the differential trace has a shorter flat period.

Minimising this transient feedthrough seems desirable, as it works against us just at the wrong time. One possibility would be a cascode transistor to shield T_{5} collector from rapid voltage changes; this would require more biasing components and would reduce positive output swing, albeit only slightly.
Since it is feedthrough capacitance of the voltage amplifier current-source that causes the main problem, can it be turned against itself? Can the circuit be altered so that an abrupt voltage transition increases the current available to sustain it, rather than reducing it? Yes it can.
A small capacitance C_{s} added between ${T r_{5}}$ collector carries the full voltage swing, sensing the feedback point of the active tail source. As the voltage amplifier collector swings upward, the base of $T r_{14}$ is also driven positive. This tends to turn it off and hence increases bias applied to voltage amplifier source $T_{r_{5}}$ via R_{21}.
This technique is highly effective, but it smacks of positive feedback and should be used with caution; C_{s} must be kept small. I found 7.5 pF to be the highest value usable without degrading the amplifier's rf stability.
With $R_{4}=100 \Omega$ and $R_{13}=68 \Omega$, adding $C_{\mathrm{s}}=6 \mathrm{pF}$ takes us from $+37,-52$ to +42 , $-43 \mathrm{~V} / \mu \mathrm{s}$. The slew asymmetry that has dogged this circuit from the start has been corrected. Fine adjustment of this capacitance is needed if good slew symmetry is important.

Further complications

Other unexpected effects were uncovered in the pursuit of speed. It is not widely known that slew rate is affected both by output loading and the output stage operating class. For example, above I have stated that $R_{4}=100 \Omega 2$ and $R_{13}=68 \Omega$ yields $+37,-52 \mathrm{~V} / \mu \mathrm{s}$ for Class-B and an 8Ω load. With 4Ω loading this changes to $+34,-58 \mathrm{~V} / \mu \mathrm{s}$, and again the loss in positive speed is the most significant.

If the output stage is biased into Class-A and loaded with 8Ω load then $+35,-50 \mathrm{~V} / \mu \mathrm{s}$ is measured. This is explained by the fact that the output stage draws significant current from the voltage amplifier stage, despite the cascading of drivers and output devices. In the 4Ω case, the drivers draw enough base current to divert extra current from $C_{\text {dom }}$, and current is in shortest supply during positive slew.

With Class-A, the effect is more severe because the output device currents are always high. Even when quiescent, the drivers require more base current, and again this will be drained off from the voltage amplifier stage collector.

Speeding up this amplifier would be easier if the Miller capacitor $C_{\text {dom }}$ was smaller. Does it really need to be so big? Well yes, because if the nfb factor is to be kept reasonably low, for dependable hf stability, the hf loop gain must be limited. Open-loop gain above the dominant pole frequency P_{1} is the product of input stage g_{m} with the value of $C_{\text {dom }}$, and the g_{m} is already as low as it can reasonably be made

Fig. 6. One reason why simple theory fails. Fast positive edges on the collector of the voltage amplifier source I_{6} couple through the internal $C_{b c}$ to momentarily reduce standing current.
by emitter degeneration.
At 10$)(0)$, emitter resistors $R_{2.3}$ are large enough to mildly compromise the input offset voltage. This is because the tail current splits in two through a pair of resistors that are unlikely to be matched to better than 1%. Noise performance is also impaired by this extra resistance in the input pair emitters. Thus for a given nfb factor at $20 \mathrm{kHz}, C_{\text {dom }}$ is fixed.
Despite these objections, the approach was tested by changing the distribution of openloop gain between the input and the voltage amplifier stages. Resistors $R_{2.3}$ were increased from 100Ω to 220Ω, and $C_{\text {dom }}$ reduced to 66 pF . This does not give exactly the same nfb factor, but in essence the transconductance of the input stage is halved, while gain of the voltage amplifier is doubled. This gain doubling allows $C_{\text {dom }}$ to be reduced to 66 pF without affecting stability margins.
With $R_{4}=100$ and $R_{13}=68$ as before, slew rate is increased to $+50,-50 \mathrm{~V} / \mu \mathrm{s}$ with $C_{\mathrm{s}}=6 \mathrm{pF}$ to maintain slewing symmetry. This is a 25% increase in speed rather than the 50% that might be expected from simple theory, and indicates that other restrictions on speed still exist - in fact Pspice showed there are several.
One of these restrictions is as follows; when slewing positively, $T r_{4}$ and T_{12} must be turned off as fast as possible, by pulling current out of C_{dom}. The input pair therefore causes $T r_{10}$ to be turned on by an increasing voltage across $T_{r_{1}}$ and R_{7}. As $T r_{10}$ turns on, its emitter voltage rises due to R_{6}. At the same time the collector voltage must be pulled down to near the -ve rail to turn off Q_{4}.
At the limit, $T r_{10}$ runs out of $V_{c e}$, and is unable to pull current out of $C_{\text {dom }}$ fast enough. The simplest way to reduce this problem is to reduce the resistors $R_{6,7}$ that degenerate the
current mirror. This risks hf distortion varriations due to input pair I_{c} imbalance, but values down to 1282 have given acceptable results. Once more it is the positive rate that suffers.
Another way to reduce the value needed for $C_{\text {dom }}$ is to lower the loop gain by increasing the feedback network attenuation. In other words, run the amplifier at a higher closed-lop gain. This might be no bad thing. The current 'standard' of IV for full output is, I suspect. due to a desire for lower closed-loop gain in order to maximise the nfb factor, in turn, reducing distortion. I recall JL Hood advocating this strategy back in 1974.
I have, however, left closed-loop gain alone. Of course the input signal could be attenuated, allowing more amplification, but I have an uneasy feeling about this sort of thing; amplitying in a preamp then attenuation in the power amplifier implies a headroom bottleneck - if such a metaphor is permissible. It might be worth exploring this approach; this amplifier has very good openloop linearity and I do not think excessive thd would be a problem
Having spent some effort on minimising dis-

Fig. 7. A modified biasing system that makes Tr_{6} current the controlled variable, and reduces the feedthrough effect.
tortion, I do not want to compromise the thd of a Blameless amplifier. Mercifully, none of the modifications set out here have any significant effect on the overall thd, although there my be minor variations, around 10 20 kHz .

Conclusion

Results I have obtained do not seem stunning at first sight. They do however have the merit
of being as realistic as I can make the.m. I set out in the belief that enhancing the slew rate would be fairly simple, but the reverse has proved to be the case. It may well be that other voltage amplifier configurations, such as the push-pull slage examined in reference 1, will prove more amenable to design for rapid slew rates; however, such topologies have other disadvantages to overcome

References

I. Self. D. Distorion in Power Amplifiers, Part 3. $E W+$ IIW. Oct 1993. p. 824.
2. Self. D, ihid Pat 1. EW+WW, August 1993, p. 631
3. Baxandall, P. Audio Power Amplifier Design Wiveless World, Jan 1978, p. 56.
4. Pass, N. Linearity, Slew Rates, Damping, Stasis \& ... Hi-Fi News \& RR, Sept. 1983, p. 36.
5. Hughes, J, Arcam A/pha5/Alpha6 Amplifier

Review. Audiophile, Jan. 1994. p. 37
6. Self. D, Distortion in Poner Amplifiers. Part 7. $E W+W W$, Feh 1993.
7. Self. D, ihid, Part 2 EW + WW. Sept. 1993. p. 736
8. Erdi. GA, 300V/us Monolithic Voltage Follower, IEEE J of Solid-State Circuits, Dec. 1979.p. 1062

FREFTO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Malcolm Wells on 081-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fultil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

CRYSTAL OSCILLATORS

M4576 ЗМ6864 5MO 5M76 6M1447M000 7М3728 8М000 12M000 14M3181 17M625616M257 18M00020M000 23 M 587
 4 M 00010 M 00016 M 000 18M432000 19M0500 20 MO 0500 38M 1000056 M 609276 M 184 MO $£ 1.50$ each

CRYSTALS

4M0256 10 M 368 17M6256 18M432 25M000 28M4694 31 M4696 48M000 55M500 1111880 112M80 114M318 14M80 1M0 1 M8432 2M000 2M4576 2M77 3M00 3M2768 3M579545 5 M 0005 M 06886 M 00006 M 400 BM 0008 M 4889 M 830410 M 240 10M245 $10 \mathrm{M} 7000011 \mathrm{MOOO} 12 \mathrm{MO} 00{ }^{13 \mathrm{MO} 000} 13 \mathrm{M} 27014 \mathrm{MO} 00$ 14 M 38181815 MOOOO 16 MOOOO 16 M 588817 M 00020 M 000
 36M76875 36M78125 36M 7937536 3 8062536 3 181875 36M83125 36M84353 OR27M095 YW27M145 GN27M 195 BL27M245 3M225 £1 each

TRANSISTORS

MPSA92 .. 10/£
2N2907A ... 10/E BC477, BC488 .. 10/8 full spec $£ 1 £ 4 / 100 £ 30 / 1000$
2N3819 FETS short leads
. $£ 1 / 30 £ 3.50 / 100$
POWER TRANSISTORS

BUZ31 POWER FET TO-220 200 V

 5A$100 / 235$

TEXTOOL ZIF SOCKETS

28 PIN USED.................... 40 PIN NEW
SINGLE IN LINE 32 WAY CAN BE GANGED FOR ÜSE WITH. 10 ANYDUAL IN LINE DEVICES . . . COUPLING SUPPLIED 2 £1.50
QUARTZ HALOGEN LAMPS

MISCELLANEOUS

ALPS MOTORISED DUAL 47 K LOG pots with spindi........ $10 / \mathrm{I}$

TLO7 1 LO NOISE OP AMP
5 for $£ 1$
47000u 25v SPRAGUE 36D .. 4 for $£ 1$

available .
AVAILABLE $+5 \mathrm{~V} 5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING
 220R 2.5W WIREWOUND RESISTOR 60K AVAILAELE $£ 50 / 1000$ CMMOS 555 TIMERS
2/3 AA LITHIUM cells as used in compact cameras................................ 36 CORE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREENED................. $550 / 100 \mathrm{~m}$
LITHIUM CELL $1 / 2$ AA SIZE ... PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT
EUROCARD 21-SLOT BACK PLANE 96/96-WAY......... £25 ea "PROTONIC 24 VARIBUS" $16.7^{\prime \prime \times 5 " F I B R E G L A S S}$
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
"PROTONIC $24 " \mathrm{C}$ w 2 SUPPORT ARMS/EJECTORS.
DIN 41612 96-WAY A/B/C SOCKET PCB RIGHT ANGLE DIN 4161296 -WAY A/B/C SOCKET WIRE WRAP PINS ... $£ 1.30$ DIN 41612 64-WA AMC SOCKET WIRE WRAP PINS.
DIN 41612 64-WAY AKC PLUG PCB RIGHT ANGLE.... DIN 41612 64-WAY A/B SOCKET WIRE WRAP (2 -FOW BOD BT PLUG +LEAD.
13A MOULDED PLUG + 2 m lead
(... £1

LCD TL431 2.5 to 36 V TO92 ADJ. SHUNT REG...
6-32 UNC $5 / 16$ POZI PAN SCREWS
NUTS................................
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS
25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS
...
AMERICAN $2 / 3$ PIN CHASSIS SOCKET
NEW ULTRASONIC TRANSDUCEERS 32 kHz .
Also available 28 slot vari-bus backplane same size +
Price.. SNG 50OHM SCREENED CHASSIS SOCKET
MALLMICROWAVE DIODES AE1 OG1026A
180VOLT 1 WATT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V}$..................... $20 / 81$
RELAY 5V 2-pole changeover looks like RS $355-741$ marked
STC 47WBOSt.
MINIATURE CO-AX FREE PLUG RS 456-071
PCB WITH 2N2646 UNIJUNCTION WITH 12 V 4 -POLE RE
400 MEGOHM THICK FILM RESISTORS
STRAIN GAUGES 40 ohm Foil type polyester backed balco grid ELECTRET MICROPHONE INSERT.. Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-26.. $\mathbf{~} 100+£ 1.50$
HALL EFFECTIC UGS $3040+$ magnet........................... $£ 12$
OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10 \ldots ~$
1 pole 12-way rotary Switch...............
A UDIO ICS LM 380 LM 386 TDA 2003
555 TIMERS E1 741 OP AMP
NA AX AM RADIOCHIP
COAX BACK TO BACK JOINERS
4×4 MEMBRANE KEYBOARD
4×4 MEMBRANE KEYBOARD
NDUCTOR $20 \mu H 15 A$
INDUCTOR $20 \mu H 1.5 A$..............
CHROMED STEEL HINGES $14.5 \times 1^{\prime \prime}$ OPEN.................................... $5 / 1 / 1$
2V 12 W small w/e lamps fit most modern cars

THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$

TO-3 TRANSISTOR COVERS ...20/E1 $200 / 1$

ro-3 micas + bushes..

EC chassis plug filteer $10 A$ pack
POTS SHORT SPINDLES $2 K 5$ 10K $25 K 1 \mathrm{M} 2 \mathrm{MS}$
M $335 Z$ TOMVSDUCERS
M234Z CONST. CURRENTI.C
BNC TO 4MM BINDING POST SIM RS 455-961.................. $£$
MIN PCB POWER RELAYS 10.5 V COIL 6A CONTACTS 1 p ole
15+15V 10VA QTY. AVAILABLE ARE.................. £2 ea
BANDOLIERED COMPONENTS ASSORTED RS, ZENERS
LCDMODULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHI KYNAR WIRE WRAP WIRE

E1/REEL OPII264A 10 KV OPTOISOLATOR LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM
MADE BY SANKYO.............. $£ 1$ ea MADE BY SANKYO..
Telephone cable clips with hardened pins.................................
$10,000 \mathrm{uF} 16 \mathrm{~V}$ PCB TYPE 30 mm DIAX 31 mm
2A CERAMIC FUSE $1.25^{\prime \prime}$ OB B
40 WAY IDC RIBEON CABLE 100 FOOT REEL.................................... $\mathbf{1 0 / 1} 1$
CARR 20mmPCB FUSEHOLDER ... $3 / 1$
DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE ... 81

CONNECTORS
D25 IDC PLUG OR SOCKET ... \&1 34-way card edge IDCCONNECTOR (disk drive type) $1 . .1 .25$
$£ 2.50$ CENTRONCS 36 WAY IDC PLUG BBC TO CENTRONICS PRINTER LLEAD 1.5M.... CENTRONICS 36 WAY PLUG SOLDER
USED CENTRONICS 36W PLUG + SKT...

14 WAYIDC BLOCK HEADER SKT. £4.00 | $£ 4$ |
| :--- |
| |
| 1 |

PHOTO DEVICES
 995.

STC NTC BEAD THERMISTORS
G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K,
RES $20^{\circ}{ }^{\circ}$ DIRECTL HEATED TYPE..................... I1 ea FS22BW NTC BEAD INSIDE END OF $1^{\prime \prime}$ GLASS PROBE RES

CERMET MULTI TURN PRESETS $3 / 4$
10R 20 R 100R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K IC SOCKETS

14/16/18/20;24/28/40-WAY DIL SKTS	£1 per TUBE
8 -WAY DIL SKITS	£2 per TUBE
32-WAY TUANED PIN SKTS. 7 k a	3 for £1
SIMM SOCKET FOR $2 \times$	

POLYESTER/POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHILIPS TYPE $330 \ldots$.... 220100
 $10 \mathrm{~N} / \mathrm{S}_{\mathrm{n}} / 22 \mathrm{R} / 33 \mathrm{~N} / 47 \mathrm{~N} / 66 \mathrm{n} 10 \mathrm{~mm}$ rad 100 n 250 V radial 10 mm . 100 n 600 V Sprague axial $10 / \mathrm{r}$ $2 \mu 2160 \mathrm{~V}$ red $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad 15 mm . $10 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC \times rated 15 mm

 RF BITS
SAW FILTERS SW662/SW661 PLESSEY SIGNA TECHNOL@GY 379.5 MHZ..................... £1,50 ea **NEW ASTEC UM 1233 UHF VIDEO MODULATORS (NO SOUND) 1250 STOCKNEW MARCONI MICROWAVE DIODES TYPES DC2929, DC2962, DC4229F1/F2
ALAL FILTERS 21 M4 55M0 .. 5 ea YELLOW 5-65DF RED 10-100pF GREY 5-25pF
SMALL MULLARD 2 to 22pF.................... 3-105p
FOR 50p $£ 10 / 100$

SL610 6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER..................................
(BFY5I TRANSISTOR CAN SIZE)
2N2222 METAL........
P2N2222A PLASTIC
2N2369A
5/81
10/E1
$5 / 51$

PLESSEY ICS EX-STOCK

SL350G SL360G SL362C SL403D SL423A
SL521B SL523C SL541B SL850C SL1021A
MONOLITHIC CERAMIC CAPACITORS

$10 \mathrm{n} 50 \mathrm{~V} 2.5 \mathrm{~mm} \ldots \ldots \ldots \ldots ~$ 100 m 50 V 2.5 mm or 5 mm

100 n ax short teads...
100 n ax long leads....
00n 50V dil pack................
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$..

SEND £I STAMPS FOR CURRENT IC + SEMI STOCK LIST - ALSO AVAILABLE ON AIL ORDER ONLY
MIN. CASHORDER 55.00 . OFFICIAL ORDERS WELCONE P\&P AS SHOWN MIN. ACCOUNTORDER $£ 10.00$ OKETS (HEAVY ITEMS) OTHERWISE 95p ADD $17 \frac{1}{2} \%$ VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

£1 BARGAIN PACKS

In fact...cheaper than $£ 1$ because if you buy 10 you can choose one other and recelve it free $1 \times 12 \mathrm{v}$ Stepper Motor. 7.5 degree. Order Ref: 910 1×10 pack Screwdrivers. Order Ref: 909 $2 \times 5 \mathrm{amp}$ Pull Cord Ceiling Switches. Brown. Order Ret: 921
$5 \times$ reels insulatlon Tape. Order Ref: 911
$4 \times 14 \mathrm{~mm}$ Ball-races. Order Ref: 91
$2 \times$ Cord Grip Switch lamp Holders. Order Ref: 913. $1 \times$ DC Voltage Reducer. $12 v-6 v$. Order Ref: 916. $1 \times 10 \mathrm{amp} 40 \mathrm{v}$ BrIdge Rectlfier. Order Ref. 889. Lightwelght Stereo Headphones. Moving coil so superior sound. Order Ref- 896
$2 \times 25 \mathrm{~W}$ Crossovers. For 40 hm loudspeakers. Order $2 \times 25 W$
Ref: 22.
$2 \times$ Nlcad Constant Current Chargers. Easily adaptable to charge almost any nicad battery. Order Ref: 30. 18v-0-18v 10va Malns Transformer. Order Ref: 813. 2 x White Piastic Boxes. With lids, approx. $3^{\prime \prime}$ cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132.
$2 \times$ Reed Relay Klts. You get 8 reed switches and 2 coil sets. Order Ret 148
12v-0-12v 6va Mains Transformer. PCB mounting. Order Ref: 938
$1 \times$ Big Pull Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ pull. Order Ref: 871
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Mini Mono Amp. 3W into 4 ohm speaker or 1 W into 8 ohm. Order Ret: 495.
$1 \times$ Mini Stereo 1 W Amp. Order Ref: 870.
15v DC 150ma PSU. Nicely cased. Order Ref: 942.
$1 \times \mathrm{in}$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29.
$1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square, Scaled 0-100. Order Ref: 756 .
$2 \times$ Lithium Batteries. 2.5 V penlight size. Order Ref:
874 .
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for 'phone extensions, fax, etc. Order Ref: 552
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232 .
$4 \times$ In-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9.
$2 \times$ Humidity Switches. As the air becomes damper, the membrane stretches and operates a micro switch. Order Ref: 32
5×13 A Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42
Mini Cassette Motor. 9v. Order Ret: 944. $1 \times$ Suck or Blow-Operated Pressure Switch. Or it
can be operated by any low pressure variation such as water level in tanks. Order Ref: 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A.
$2 \times$ Stripper Boards. Each contains a 400V 2A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120.
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
6 x Microphone Inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139.
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180.
$1 \times$ in-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196
$1 \times$ mains Solenoid. Very powertul as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199.
$1 \times$ Electric Clock. Mains operated. Put this in a box $1 \times$ Electric Clock. Mains operated. Put
and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221.
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 hm 5 watts, so can be joined in parallel to make a high wattage column. Order Ret 243.
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch i fitted in pattress. Order Ref: 263
$50 \times$ Mixed Silicon Diodes. Order Ref: 293
1×6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other normally closed. Order Ref: 48.
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55
$61 / 2^{\prime \prime} 8$ ohm 5 watt Speaker. Order Ref: 824.
$1 \times$ Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack, so quite powerful. Order Ref: 85
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86
$1 \times$ Case. $31 / 2 \times 21 / 4 \times 13 / 4$ with $13 A$ socket pins. Orde Ref: 845.
$2 \times$ Cases. $2^{1 / 2} \times 2^{1 / 4} \times 1^{3 / 4}$ with 13A pins. Order Ref: 565
$4 \times$ Luminous Rocker Switches. 10A mains. Order Ref: 793
$4 \times$ Different Standard V3 Micro Switches. Order Ref 340.
$4 \times$ Different Sub Min Micro Switches. Order Ref 313.

BARGAINS GALORE

BARGAINS GALORE

Ultra Thin Drills, actually 0.3 mm . To buy these regula costs a fortune. However, these are packed in half doz and the price to you is $£ 1$ per pack, Order Ref: 797 B You Can Stand On It! Made to house GPO telephone equipment, this box is extremely tough and would be ideal $10^{1 / 2^{\prime \prime} \times 4^{1 / 2} 2^{\prime \prime} \times 6^{\prime \prime}}$ high. Complete with carrying strap, price $£ 2$, $10^{1 / 2 " x} \times 4^{1 / 2^{\prime \prime}} \times 6^{\prime \prime}$ high.
Order Ref: 2P283B.
Ultra Sonic Transducers. Two metal cased units, one
transmits, one receives. Built to operate around 40 kHz . transmits, one receives. Built to opera
Price $£ 1.50$ the pair, Order Ref: $1.5 \mathrm{P} / 4$.
Power Supply with Extras. Mains input is fused and filtered and the 12 V DC output is voltage regulated. Intended for high class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are two 12 V relays and Piezo sounder, £3, Order Ref: 3P80B.
Insulation Tester with Multimeter. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, $\mathrm{AC/DC}$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at leas $£ 50$, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P/4.
Mains Isolation Transformer. Stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt, $\mathbf{~} 7.50$, Order Ref 7.5P/5 and a 250 W version is $£ 10$, Order Ref: 10 Pg 7. Mains 230 V Fan. Best make "PAPST", $41 / 2^{\prime \prime}$ square, metal blades, £8, Order Ref: 8P8
2MW Laser. Helium neon by Philips, full spec. £30, Order Ref: 30P1. Power supply for this in kit form with case is $£ 15$ Order Ref: 15P16, or in larger case to house tube as wel £18, Order Ref: 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$, Order
12 v 8ohm speaker, only $£ 1.50$ and waterproof.
Solar Charger. Holds 4AA nicads and recharges th
Solar Charger. Holds 4AA nicads and recharges the
hours, in very neat plastic case £6, Order Ref: 6P3.
Ferrite Aerlai Rod. $8^{\prime \prime}$ long $x^{3 / 8^{\prime \prime}}$ diameter, made by Mullard. Ferrite Aeriai Rod. 8 long x $^{3 / 8}$ diameter, made by
Complete with two coils, 2 for $£ 1$ Order Ref: 832 P .
Alr Spaced Trimmer Caps. 2-20pf, ideal for precision tuning UHF circuits, 4 for £1, Order Ref: 818B.
Modem Amstrad FM240 As new condition but customer return, so you may need to fault find, £6, Order Ref. 6P34. Amstrad Power Unit. 13.5V at 1.9A or 12V at 2A encased and with leads and output plug, normal mains input $£ 6$, Order Ref: 6P23.
80W Mains Transformer. Two available, good quality, both with normal primaries and upright mounting, one is 20 V 4 A Order Ref: 3P106, the other 40V 2A, Order Ref: 3P107, only £3 each.
Project Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey louvred ends for ventilation otherwise undrilled. Made fo GPO so best quality, only £3 each, Order Ref: 3P74. Sentinel Component Board Amongst hundred of othe parts, this has 15 ICs, all plug in so do not need soldering Cost well over 2100 , your
Sinclair 9V 2.1A Power Supply Made to operate the 138 K Spectrum Plus 2, cased with input and output leads Originally listed at around $£ 15$, are brand new, our price is only £3, Order Ref. 3P151
Experimenting with Valves. Don't spend a fortune on a mains transformer, we can supply one with standard mains Order Ref: 5P 167
15W 8 Ohm $8^{\prime \prime}$ Speaker \& $3^{\prime \prime}$ Tweeter. Made for a discontinued high quality music centre, gives real hi-fi and only £4 per pair, Order Ref: 4P57.
Water Pump. Very powerful, mains operated, $£ 10$, Orde Ref: 10P74.
0-1mA Full Vision Panel Meter. $2^{3 / 4^{\prime \prime}}$ square, scaled 0-100 but scale easily removed for re-writing, $£ 1$ each, Order Ref: 756.

VU Meter. Illuminate this from behind becomes on/off indicator as well, $11 / 2^{\prime \prime}$ square, 75 each, Order Ref: 366. Amstrad Keyboard Model KB5 This is a most comprehen sive keyboard, having over 100 keys including, of course, full numerical and qwerty. Brand new, still in maker's packing, £5, Order Ref. 5P202.
1 RPM Motor. This is only 2 W so will not cost much to run Speed is ideal for revolving mirrors or lights. £2, Order Ref 2P328.
Unusual Solenoid. Solenoids normally have to be energised to pull in and hold the core, this is a disadvantage where the appliance is left on for most of the time. We now have applied to release it 2 , Order Ref 2P327.
Mains Filter. Resin impregnated, nicely cased, pcb mount ing. £2, Order Ref. 2P315.
200VA Mains Transformer. Secondary voltages $8 v-0-8 v$ So you could have 16 v at 12 A or 8 v at 25 A . Could be ideal for car starter charger, soil heating, spot welding, carbon rod welding or d
Ref. 15P51.
Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing Orders over £25 post free.

> M\&B EIECTRICAL scornsen
> Pilgrim Works (Dept. WW), Stairbridge Lane, Bolney, Sussex RH17 5PA
> Telephone (0444) 881965 phone for Fax
> Callers to 12 Boundary Road, Hove, Sussex

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information

Asics

Large, fast FPGA. Claimed by AT\&T to be the largest and fastest fieldprogrammable gate array on the market at 15,000 gates and 48 MHz , the ORCA ATT2C 15 is now in production. Software on offer is ORCA"x"press+ and Verilog logic synthesis tool from Exemplar Logic and the ORCA Development System (ODS 2.0), which provide a complete design system for all ORCA FPGAs.
AT\&T Microelectronics. Tel., 0732
742999 ; fax, 0732741221.

A-to-d and d-to-a converters

Colour imaging. The 10 -bit MP8830 colour imaging subsystem by Micro Power reduces analogue front-end costs and dsp requirements and improves resolution by correcting the image pixel-by-pixel, a method that allows users to scale data from the a-to-d converter to improve accuracy and speed up image capture. It contains three a-to-ds, each having simultaneous sampling and independent, digitally controlled gain and offset adjustment. Micro Power Systems UK Ltd. Tel., 0932 857315; fax, 0932858761
'Fastest' d-to-a. Rockwell has the R161008, a new 1.2Gsample/s 10-bit digital-to-analogue converter, which it claims to be the world's fastest, operating at clock and data speeds of over 1.2 GHz , while using less than 800 mW . It is intended in the main for optical-fibre communication, in particular for domestic digital communications - television, voice, data and multimedia, converting fibre digital data to analogue information for domestic television receivers. A suggested alternative is to use it in conjunction with a sine-rom accumulator to perform direct digital synthesis, replacing plis in spreadspectrum transceivers such as wireless telephones. The device operates on a single -5.2 V supply, interfaces to ecl and, being based on heterojunction bipolar technology, has a settling time of less than 1 ns to 0.5 Isb , with a glitch impulse of under 1 ps . Rockwell international Corp. Tel., 081 5772800 ; fax, 0815772257.

Discrete active devices

Dual sm mosfet. The SO-8 package is an 8 -lead soic type with a 1.8 mm height off the board and IR use it to
house two Hexfet mosfet dice, which benefit in cooler operation and higher efficiency. There are three dual n channel devices, one dual p channel type and one dual $n / p-c h a n r i e l$ module, varying from 20 V and $100 \mathrm{~m} \Omega$ to 50 V and 300 ms . Internatiomal Rectifier. Tel., 0883 713215, fax, 0883714234.
$1100 \mathrm{~V}, 1 \Omega$ fet. Tersely named IXTH13N110, IXYS's new mosfet supports the claim to be the highest voltage ($1100 \mathrm{~V} \mathrm{BV}_{\mathrm{DSS}}$) mosfet in the TO-247 package, also offering an $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of 0.92Ω and being rated at 13A continuous. Its companion IXTH14N100 is a $1000 \mathrm{~V}, 1$: A device with an on resistance of 0.82 s. IXYS Corporation. Tel., 0101408982 0700; fax, 01014084960670.

Linear integrated circuits

Triple 125 MHz op-amp. Harris has the HA5013, a 14 -pin package of three op-amps with rgb/composite video specification and a -3 dB bandwidth of $125 \mathrm{MHz}, 0.07 \mathrm{~dB}$ gain flatness to 20 MHz for rgb and 0.03°, 0.03% differential phase and gain for composite video - said to be the best available in a $\pm 5 \mathrm{~V} / \pm 15 \mathrm{~V}$ triple device. Output into 150Ω is 20 mA . Harris Semiconductor UK. Tel., 0276 686886; fax, 0276682323.

Memory chips

100 MHz drams. 100 MHz synchronous drams in Fuijitsu's MB81116420/6820 series are available in 16 M capacity and have kept, as far as possible, the architecture used in earlier oram design, so that only minor modification to equipment is needed. The devices are in a two-bank form, the pair acting alternately to allow continuous data transfer. The two organisations currently available are 2 M by 4 by 2 banks and 1 M by 8 by 2 banks. Hawke Components Ltd. Tel., 0256880800 ; fax, 0256880325.

Microprocessors and controllers

2.5V PIC. PIC16C54 from Microchip is a $0.9 \mu \mathrm{~m} 8$-bit processor operating at up to 4 MHz on a 2.5 V supply, such as a single lithium-iron battery. On 6 V , the PIC processor runs at 20 MHz and provides faster instruction execution than any other 8 . bit microcontroller in the price range, says the company. Features include an on-chip eprom fuse contigurator to select on-chip $R C$ timing and clock options. There are 512 word of eprom
and 25byte static ram. Polar Electronics. Tel., 0525 377093; fax 0525378367.
"Green" microprocessors. 486 microprocessors from AMD are now more environment-friendly, in that they now use much less power. Power-managed Am486 processors. include a 66 MHz and 50 MHz clockdoubled Am4860XL devices and a 40 MHz Am486DXL. Power reduction is to 30 W from 100 W for a typical clock-doubled 66 MHz system; reducing clock frequency and turning off inactive peripherals takes it to less than 30W which, it appears, is the FC industry's definition of a green PC. Advanced Micro Devices (UK) Ltd. Tel., 0483740440 ; fax, 0483756196.

Mixed-signal ICs

Video/audio decoders for multimedia. Hitachi and GC
Technologies have a pair of decoders for MPEG1 systems that need only a 4Mb dram tor a complete system. HD814103 is a video decoder which, with the dram, supports all video functions including image magnification and reduction, while HD814102 is an audio decoder needing no external memory. HD 184103 decodes 352 by 240 pixel images at 30 frames/s or 352 by 288 pixels at 25 frames/s, allowing display size and position, window size, position and border colour to be selected. Interfaces are continuous serial, CPU command and DMA.

Hitachi Europe Ltd. Tel., 0628 585000; tax, 0628585200

Optical devices

Red laser diode. HL6312G is an upgraded version of Hitachi's earlier HL6411G true red (633 nm) visible index-guided laser diode, in that output power is now 5 mW and temperature $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Luminosity is six times greater than 670 nm diodes and the device operates at 2.7 V maximum. Hitachi Europe Ltd. Tel., 0628 585000; tax 0628585200.

Digital light sensor. TI's TSL230 is a

Record/playback chip.
Toshiba's TC88401F-08 is a cmos voice record and playback device for message systems and answering machines, using adaptive predictive coding with maximum likelihood quantisation (APC-MLQ) to provide high sampling rates and compact storage. A complete system requires the Toshiba device, a codec, memory, an audio circuit and a microcontroller, speech being recorded and played back directly or as addressable phrases in response to command or voice trigger. Up to one hour of speech in up to 256 messages are possible. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276691583.

programmable light sensor producing a digital output directly. Working in the $300-1100 \mathrm{~nm}$ part of the spectrum, the device consists of a photodiode and converter which provides a pulse train whose frequency corresponds to light intensity, sensitivity being pin programmable to give a 160 dB range of intensities. Output can go directly to a microcontroller, DSP or logic circuitry, the pulse-counting technique giving 16 -bit accuracy and $1 \mu \mathrm{~s}$ response to intensity changes. The output-enable pin allows the use of multiple sensors on one line. Nonlinearity is 0.02% from zero to 100 kHz . Texas Instruments. Tel. 0234 270111; fax, 0234223459.

Oscillators

MC68040LV clock driver.
ACT22040LV is a clock driver developed for Motorola's 32 -bit MC68040 3.3V microprocessor and is available in standard frequencies of 25 MHz and 33 MHz , with alternatives between 20 MHz and 70 MHz as options. Rise and fall times are 2ns maximum. A 5 V version is also offered for the MC68030 and $68040(5 \mathrm{~V})$. Frequency tolerance is $\pm 1000 \mathrm{ppm}$ at $25^{\circ} \mathrm{C}$. Advanced Crystal Technology. Tel., 0635 528520; fax, 0635528443.

Power semiconductors

3W UHF power mosfet. Motorola's MRF 5003520 MHz sm power mosfet puts out up to 3 W at 7.5 V and has a minimum gain of 9.5 dB at 512 MHz Feedback capacitance is typically 4.4 pF and the device will withstand 20:1 load vswr at any phase angle. Motorola Inc. Tel., 0908 614614; fax, 0908618650.

Power mosfets. At a cell density of $6 \times 10^{6} /$ in 2, Motorola's HDTMOS p channel power mosfets exhibit on resistances of $30-150 \mathrm{~ms}$ with logiclevel inputs. This means that they are a viable alternative to n-channel devices in load management and high-side switching, in which they need no charge pump or power supply to boost the input. Blocking voltage is 30 or 60 V and drain currents 15-50A. Motorola Inc. Tel. 0908614614 ; fax, 0908618650.
$10 \mathrm{~V} / 5 \mathrm{~V}$ low dropout regulator. Two outputs from the Cherry CS-8147 Iow dropout regulator are the $10 \mathrm{~V} \pm 2.5 \%$. supplying 500 mA and a secondary at $5 \mathrm{~V} \pm 5 \%$ giving 70 mA , the latter being inherently stable without an external capacitor. Both outputs are controlled by an enable pin, sleep mode needing only $70 \mu \mathrm{~A}$. Both outputs are protected against overvoltage, short and thermal runaway conditions. Clere Electronics Ltd. Tel., 0635 298574; fax, 0635297717.

3V regulators. Allegro Microsystems has a new family of low dropout 3 V regulator chips delivering 3 V at up to 75 mA or 150 mA transient. The 8182/83/84 devices have a pmos pass element giving a 100 mV dropout voltage at 60 mA . Quiescent current is constant at $50 \mu \mathrm{~A}$ as dropout is
reached, so that data is no compromised. The 8184 is the basic version; 8183 has an enable input for control of power-up, standby and power-down; while the 8182 has the enable and a reset input. Allegro MicroSystems Inc. Tel., 0932 253355; fax, 0932246622.

Passive components

NTC thermistors. Intended to protect nickel-cadmium and nickel-metalhydride batteries while recharging, Philips's 6405 and 6406 negative temperature-coefficient thermistors have R_{25} values within a 1% tolerance. They are used in chargers designed to switch off if temperature increases above a prescribed limit around $40^{\circ} \mathrm{C}$, switching on again when cooled down. Philips Components. Tel., 0103140 722790; fax, 0103140724547

Stable metal film. Resistors in Neohm's high-stability R/ resistors hold their characteristics in a range of loads and hostile conditions. Four temperature coefficients are the CRI, $4.02 \Omega-1 \mathrm{M} \Omega$ at $50 \mathrm{ppm} ; E R I, 29.4 \Omega$ $301 \mathrm{k} \Omega$ at 25 ppm ; YRI, $49.9 \Omega-240 \mathrm{k} \Omega$ at 15 ppm ; and $Z R I, 100 \Omega-100 \mathrm{k} \Omega$ at 10 ppm . All are offered in $\pm 0.4 \%$ tolerance, with $\pm 0.05 \%$ as an option. Voltage coefficient is $5 \mathrm{ppm} / \mathrm{N}$ maximum. Surtech Interconnection Ltd. Tel., 0256 51221; fax, 0256 471180

Chip capacitor/resistors. Murata's CR Chip range combines a multilaye ceramic capacitor and a resistor in one surface-mounted package. It is meant for high-speed bus termination and eliminates inductive connecting pcb traces. Values range from 10 pF to 220 pF and 10Ω to $1 \mathrm{k} \Omega$. Murata

RF smt interconnection. MMS
 from 3M under agreement with Radiall is a dual-sourced microminiature rf coaxial interconnection system including coaxial assemblies, surface-mounting receptacles and adaptors and a range of assembly and test
 accessories. System vswr is
 1.07 at 2 CHz and losses are
 low up to 6 GHz . Straight or right-angled plugs are used

Electronics (UK) Ltd. Tel., 0252 811666; fax, 0252811777

Chip capacitors. Cai-Chip has a new series of high-voltage, multilayer, ceramic chips, the CHV series, in three dielectrics including the very stable Class 1 COG type with a C change over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ of $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Voltage ratings are 500 V dc or 1000 V dc, capacitance values from 3.9 pF to 1 nF and a best tolerance of $\pm 1 \%$. Terminal styles are silver palladium, nickel barrier or high leach resistant silver palladium. CalChip Electronics Inc. Tel., 0101215 672 5500; fax, 01012156725501.

Dielectric filter. AVX announces the PDFC series of dielectric filters meant for use in telecomms, particularly in the DECT sector. Frequency range is $1.8-2 \mathrm{GHz}$, insertion loss 3 dB and, for compatibility with the newest equipment, size is 6.5 by 5.5 by 3 mm . Filters to provide lower insertion loss and improved stop-band attenuation are available to order. AVX Ltd. Tel., 0252 336868; fax, 0252346643.

Displays

Electroluminescent display. Planar has a 130 mm by 110 mm EL display using the company's Integral Contrast Enhancement technique, which has 100% greater contrast than conventional displays, in many applications being able to replace a 5 in crt. It uses less than $3 W$ and gives a luminance better than $25 \mathrm{~cd} / \mathrm{m}^{2}$ Planar International Ltd. Tel., (Finland) 0103580420 01; fax, 010 3580422143.

Packaged leds. Two new series of led packages by Dialight for use as circuit board indicators have been developed for high-density pcbs. Series 547 and 555 use 2 mm leds and are available in single or quad packs in either right-angle or topviewing mounts. Colours are red, green or yellow or combinations thereof in luminous intensities of 0.53 mcd at 1.6 -2.4V. Dialight. Tel., 0638 665161; fax, 0638660718.

Compact Icd. Displays in Hitachi's LMG74XX series are liquid-crystal modules giving a black-and-white display of 240 by 128 pixels or 40 characters by 16 lines. The display controller and sram are built in, as is the fluorescent back light. The devices use the supertwist nematic technique for contrast of 20:1 and response time of 270 ms . Controller may be the Hitachi 618308 for characters or bitmapped systems or the Toshiba T6963 for graphics and text. Hitachi Europe Ltd. Tel., 0628 585000; fax, 0628585200.

Filters

Cable-clamp EMI filters. The ZCAT series of emi filters by TDK eliminate common-mode radiation from power and interface cables without insertion, being clamped onto the cable. They come in five versions for cable diameters from 2.5 mm to 13 mm . Impedance at $10-100 \mathrm{MHz}$ is $25-80 \Omega$
and 50-150 5 from 100 MHz to 500 MHz . The 13 mm type handles large surges without saturating. TDK UK Ltd. Tel., 0737772323 ; fax, 0737 773810.

Saw resonators. RO2101 and RO2103 low-loss surface-acoustic wave resonators from if Monolithics are meant for low-power if paging and telemetry at 418 MHz and 433.92 MHz respectively. Insertion loss is a typical 1.6 dB and the devices are frequency stable to within $\pm 70 \mathrm{kHz}$. RO2101 complies with the European ETS-300220 standard and the 2103 with the DTI MPT1340 standard. Quantelec Ltd. Tel., 0993 776488; fax, 0993 705415.

Hardware

LCD membrane. Enco Industries has overcome the problems associated with combining a membrane control panel with an lcd and its control circuitry; previously, the need for accurate positioning of the Icd and emi/rfi protection were drawbacks. Using the Enco system, the Icd can be mounted anywhere and joined by a 'flexible tail' using a heat seal connection - a recent technique, so that the lcd is positioned exactly in the aperture in the membrane graphics panel, a screen layer being included as part of the membrane also protecting the Icd. Its control and drive circuitry can also be included within the membrane panel, so that the pcb design is simplified. A single flexible lead controls afl lcd functions. Enco Industries Ltd. Tel., 05057 5151; fax, 050575165.

Fuse holder covers. Transparent plastic covers for 5 mm by 20 mm base-mounted and pcb-mounted open fuse holders by AF Bulgin shroud the live parts of the FX0321/0267/0267/PC models,but there are two holes in the covers to allow entry to a test probe. The cover retains the fuse when removed. Gothic Crellon Ltd. Tel., 0734788878 ; fax, 0734776095.

Touch screens. Elmwood touch screens use resistive overlay techniques for rapid response and good resolution. They come in flat or curved form with either matrix or analogue action. and can be integrated with crts, gas plasma, electroluminescent and liquid crystal. Radiatron Components Ltd. Tel., 081 891 1221; fax, 0818916839

Dual-height headers. A F Bulgin has a new set of dual-height headers in the range of rising-cage pluggable terminal blocks. The headers allow double the density of circuit connections in the same board space as single-height types. 90° headers are open-ended (stackable) or closedended types, which mate with standard scalloped-edge units. Open types come in four and six-circuit modules, while the closed version are in standard lengths of $4-24$ circuits A F Bulgin \& Co. Ltd. Tel., 081594 5588; fax, 0815072691.

Instrumentation

Digital panel meters. More

 'intelligent' than is normally the case, DPMXX/4000XX digital panel meters by Amplicon Liveline carry out data logging, non-linear scaling and linearisation of ten types of thermocouple and filtering, as well as the usual voltage and current measurement. All three in the range are controllable from the front panel or by RS-232 from a computer or comms network one having opencollector output to allow in-built alarms to operate externals, another having two alarm relays and the third four relays and the alarm signals. Quantities measured are $V \mathrm{dc}, / \mathrm{dc}$, $V \mathrm{ac}, 1 \mathrm{ac}$, and outputs from PT 100 sensors, in addition to temperature and 0 or 4 -20mA output. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273570215.CATV test system. Using the cable itself to transmit data on head-end carrier levels to test receivers, Wavetek's Stealth System Sweep performs real-time, non-intrusive, fullspectrum testing of cable networks, carrier-level drift thereby being eliminated from the equation. Handheld receivers provide a display of frequency response to 1 GHz and signal analysis including video and audio carrier level and frequency and hum and carrier-to-noise levels. It is compatible with normal,scrambled and digitally encoded transmission and is frequency-agile to avoid contention with occupied channels. Wavetek Ltd. Tel., 0603 404824; fax, 0603483670.

Cost-effective dsos. Cost of the three digital storage oscilloscopes in the Gould 600 Series has been kept down by eliminating those features often used by a minority of engineers, and there is a move away from extensive screen menus in favour of front-panel controls and leds. All instruments have at least a $100 \mathrm{Msample/s}$ rate, automated measurement and RS-423 and IEEE488. 610 is a general-purpose type; 620 samples at $400 \mathrm{Msample} / \mathrm{s}$ and 630 has a 50 Kword store. All three have 100 MHz bandwidth in all circumstances and there is glitch detection. Gould Instrument Systems Ltd. Tel., 081500 1000; fax, 081501 0116.

Audio oscillator. Kenwood offers the A G203A low-distortion oscillator covering the $10 \mathrm{~Hz}-1 \mathrm{MHz}$ frequency range in five bands to an accuracy of $\pm 3 \%+1 \mathrm{~Hz}$, with the facility of synchronisation to an external signal. Sine distortion is less than 0.1% from 400 Hz to 20 kHz at 7 V rms , with an output-voltage flatness from 10 Hz to 1 MHz of $\pm 5 \mathrm{~dB}$. There is a squarewave output of 10 V into an open circuit with a 200 ns rise time and duty cycle of $45: 55$ or better at 1 kHz . A $0-50 \mathrm{~dB}$ attenuator operates in 10 dB steps and there is a fine adjustment control. Thurlby Thandar Instruments Ltd. Tel., 0480412451 ; fax, 0480 450409.

Pressure sensor. Pressure sensors in Control
Transducers's XPRO range are moisture-proof, water-resistant, in a stainless-steel body with invulnerability to shock and vibration. Built-in amplifiers give a conditioned output of 5 V or 4 20 mA , driving controls or indicators without extra amplification. Accuracy is better than 1% due to all causes and the range includes 1bar13.8bar in absolute scaling and in sealed gauge up to 490bar. Control Transducers. Tel., 0234 217704; fax, 0234217083.

RF/microwave hazard

measurement. Holaday's batterypowered HI-4000 consists of a number of electric and magnetic field probes to cover the $10 \mathrm{kHz}-40 \mathrm{GHz}$ frequency range, an Icd readout module and accessories, all in a fitted case. The probes are optically coupled to the display by low-loss cables up to 300 m long to avoid perturbing the field, measurements being possible between $0.1 \mathrm{~V} / \mathrm{m}$ and $3000 \mathrm{~V} / \mathrm{m}$. A data logger in the display provides analogue output for a plotter. Holaday Industries. Tel., 0628
478155; fax, 0628476871.

Literature

Rack and cabling catalogue. Vero Electronics's 96 -page catalogue describes IMRAK 400 enclosures and IMRAK 1400, 2400 and 3400 tloorstanding racks and cabinets. There are also details of patch panels for different connector formats, cable management products and enclosures for both copper and fibre cabling. Vero Electronics Ltd. Tel., 0703266300 ; fax, 0703265126.

PSU guide. XPS 1994 power supply guide covers linear and switching types, dc-to-dc converters from 250 mW 200W, Eurocassettes, 19-in rack and DIN-rail units and lump-in-acord' devices. XP plc. Tel., 0734 845515 ; fax, 0734843423.

Amplicon catalogue. Sixteen new product series in the 1994 Amplicon Liveline catalogue include automatic data switches, optical-fibre links/repeaters, optical modems, intelligent data acquisition boards and multifunction panel meters. There is also a glossary of terms. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273570215.

Power supplies

Mains converter. Accepting any voltage and frequency input and converting them to any other standard, the Behiman Power Passport is controlied by either a front-panel keyboard, with a V. I, f display, or by the RS-232 interface, which also provides communication. It has full circuit protection and the output voltage is adjustable by $\pm 20 \%$. Kingshill Electronic Products Ltd. Tel. 0474 327833; fax, 0474564796.

DC power. Two more supplies in Farnell's P range are available. Mode PDS1101A puts out 0-110V dc at up to 1 A in constant current or constant voltage mode and has an Icd to show I, V and power simultaneously. PSA3505A provides 0-35V dc at 5A and uses two analogue meters. Farnell Instruments Lid. Tel., 0937 581961 ; fax, 0937586907.
$24 \mathrm{~V}-12 \mathrm{~V}$ regulator. From an unstable input varying by up to $\pm 25 \%$, AvelLindberg's XR 1000C switching regulator provides an output regulated to better than $\pm 1 \%$. Rated at 100 W , the 24 V -12V device meets BS6527, VDE 0879, FCC Class B and other current European standards. It is input and output protected and measures 140 mm by 76 mm by 36 mm high. Avel Lindberg Ltd. Tel., 0708 853444; fax, 0708851040.

External equipment psu. Having a universal $90-264 \mathrm{~V} / 47-440 \mathrm{~Hz}$ input and a range of single and dual outputs, the CL2525W external power supply by Computer Products is intended to ease the size and shape constraints on the design of desktop and portable equipment. Single outputs are $5.1 \mathrm{~V}, 9.5 \mathrm{~V}$ or 12 V , with others as options, and the dual versions have a fixed 5.1V output with floating 12 V . 15 V or 24 V rails. All outputs are protected against shortcircuits and have automatic restart. An internal battery charger is an option. The units meet major safety standards. Computer Products, Power Conversion Ltd. Tel., 0494 883113 ; fax 0494883419.

Radio communications products

DECT bandpass filters. Murata's $D P$ series of Gigafil bandpass filters represent a 60% volume reduction over the conventional type at 0.2 cubic centimetre. DFC21R is mean: for DECT cordless telephone application in the $1880-1900 \mathrm{MHz}$ band. Insertion loss is 1.8 dB and attenuation is 36 dB at 1690 MHz , 24 dB at 1790 MHz and 30 dB at $2 f_{0}$. Murata Electronics (UK) Ltd. Tel., 0252811666 ; fax, 0252811777.

Integrated telemetry transmitter

RFM HX AM transmitters are in surface-mounting packages measuring 8.6 by 10.2 mm , 3 mm high and need only the antenna for use in low-power telemetry. HX1003 is for the UK 418 MHz band, meeting the DTI MPT1340 standard and HX1000 for 433.92 MHz in Europe to ETS-300-

220 test spec. Power is from a 3 V lithium supply at 7.7 .5 mA . Quantelec Ltd. Tel., 0993 776488; fax, 0993 705415.

Switches and relays

SM push-button. Fujisoku smt pushbutton switches are made in high temperature thermoplastic and withstand reflow soldering and temperatures up to $270^{\circ} \mathrm{C}$ for five seconds or $350^{\circ} \mathrm{C}$ for three seconds. Actuators are detachable to allow soldering, immersion washing in fluorine, alcohol or water-based fluids, and assembly. Devlin Electronics Ltd. Tel., 0256467367 ; fax, 0256840048.

Transducers and

sensors

Linear displacement. Gemco Series 951 are magnetostrictive linear displacement transducers from MagneTek. They contain all necessary signal conditioning, are field-programmable and produce outputs of 10 V analogue voltage or 4 20 mA current, ttl digital level, RS422 start/stop pulse or RS422 pulse-width modulation. Eurosensor. Tel., 071 405 6060; fax, 0714052040.

Capacitive accelerometer

Endevco's Model 729A is a low-g, variable-capacitance accelerometer with its own internal electronics. Nearcritical gas damping produces stable frequency response with temperature and the unit is able to withstand shocks of $10,000 \mathrm{~g}$ and still measure

Narrowband radio modules. A matched transmitter/recelver pair by Circuit Design for the pan-European ETS $300-220$ frequency of 434 MHz is a now available. CDP-TX-01 is a narrowband transmitter using a crystal oscillator with a $\pm 4 \mathrm{ppm}$ stability and direet tsk modulation to allow 12.5 kHz channel spacing.The CDP-RX-01 receiver is a crystal-controlled double superhet with 120 dBm sensitivity and $\pm 5 \mathrm{kHz}$ selectivity. Low Power Radio Solutions Ltd. Tel., 0993 709418; fax 0993 708575.
mg accelerations immediately afterwards. Features include dc response, $\pm 2 \mathrm{~V}$ output and temperature $-54^{\circ} \mathrm{C}$ to $121^{\circ} \mathrm{C}$. Fullscale ranges are $2-100 \mathrm{~g}$ and power regulation, amplification and filtering are built in. Endevco UK Ltd. Tel., 0763 261311; fax, 0763261120.

Two-wire absolute encoder. Control Transducers's AD series of absolute digital encoders are single-turn, noncontacting, optical sensors that report shaft position within a 360° range without reset or a homing cycle, since the output codes are unique to a given position. The units include an RS232/485 interface, 2-65535 codes/rev, 38.4, 57.6 or 115.2 kbaud at 9 or 12-bit accuracy and up to 15 encoders on one SEI bus. Maximum shaft speed is $10,000 \mathrm{rev} / \mathrm{min}$. Control Transducers. Tel., 0234 217704; fax, 0234217083.

COMPUIER

Computer board-level products

100 MHz 486 board computer. New to Ampro's Little Board family of 486 single-board computers is the Little Board/486 DX4 100MHz embedded controller, which has a 1.5 Mbyte onboard bootable solid-state disk, allowing eprom, flash eprom or static ram to substitute for magnetic disks The unit is effectively a PC AT and several expansion cards in the space of a half-height 5.25 in disk drive. A

Computer systems

CRT workstation. A crt version of the Blue Chip led workstation is announced. An 8 U high enclosure contains motherboard and passive processor options from 386SX to P24 and bus options are PCI, VL and ISA with up to eight available slots. Sealing is to IP65 and rack, panel and desk versions are made. crt resolution is 1024 by 768 and there is a 57 -key pad. PCMCIA devices or floppies are in a lockable bay and the minimum hard disk is 170 Mbyte . Blue Chip Technology. Tel., 0244 520222; fax, 0244531043.
single PC/104 module fits within the board volume. Diamond Point International Ltd. Tel., 0634 722390; fax, 0634722398.

VME-PCI adaptor. Bit 3's Model 617 Adaptor connects a PCI Local Bus computer to a VMEbus system, sharing memory and special-purpose boards and providing data transfer between systems at up to a sustained $26 \mathrm{Mbyte} / \mathrm{s}$. Either system can be a bus master on the other. It consists of two cards; a short form factor PCl bus card and a 60 VMEbus card interconnected by up to 25 ft of cable or optical-fibre using a Bit 3 interface. Bit 3 Computer Corporation. Tel. 01016128816955 ; fax, 0101612 8819674.

Data communications

Parallel-port data acquisition. Computer Instrumentation's mini-POD series of data acquisition modules are connected to a PC or notebook parallel port, taking power from the port and needing no other connection than the signal. The range includes an 8 -channel, 12 -bit programmable a-to-d converter, a 4 -channel 18 -bit a-to-d, 2-channel thermocouple converters for types K, T and R and a PT100 resistance thermometer with a resolution of $0.01^{\circ} \mathrm{C}$. Cost includes software drivers for Basic, Pascal, C and Visual Basic, and Cl's SoftScope and data logging software. Computer Instrumentation Ltd. Tel., 0903 700755; fax, 0903700788.

Transducer interrogation. Katon Ingram offers the TDP2511

ST62xx gang programming. Two new modules for the Lloyd Research L900C modular programmer handle 20-pin and 28-pin devices such as the ST62E20/25 and ST62T20/25. Unusually, the L9000 will take a second module, so that capacity can be increased as a new model's production volume expands. The PL620 module has four dil sockets and the PL621 four SoIC sockets and, since the L9000 is a general-purpose programmer, a second module can be fitted to program devices such as eproms in dil, PLCC or LCC packages, or other microcontrollers. Lloyd Research Ltd. Tel., 0489 574040 ; fax, 0483885853.

Windows NT PCB design. Two new pcb design tools from Intergraph Electronics are the Veribest PCB Designer and VeriBest Sigral Integrity, both running under Windows NT. New features in the former include shape-based auto routeing and editing, improved database access automatic test-point generation and user-configured reports. Signal Integrity is an analysis tool providing crosstalk estimation, etch delay figures, resistance, capacitance and characteristic impedance from the routeing and editing environment. Waveforms resulting from transmission-line simulations are displayed on screen, where 'what if?' analysis can be performed. Dynamic "push-and-shove" allows interactive routeing in which features blocking a route can be moved manually. Routeing can be selected to allow for timing or length constraints. Intergraph (UK) Ltd. Tel., 0793 492733; fax, 0793492940.

Transducer Data Pod, which interrogates up to 128 strain gauges or pressure transducers. It links the transducers to a host computer using an RS-232 interface, each transducer having an address in a sequence. Three modes are used: multidrop, in which data is requested from any address from the computer; each address sending information at a predetermined, adjustable rate; or one address in use, data being continuous. The interface consists of a strain-gauge amplifier with a continuously adjustable sensitivity from $\pm 0.68 \mathrm{mV} / \mathrm{N}$ to $\pm 8 \mathrm{mV} / \mathrm{N}$, the $\pm 10,000$ count output being calibrated in the relevant engineering units Having been set, the instrument retains all digital tare load and calibration information in non-volatile memory. TDP2511 is for use with bridge transducers with full or half bridge resistances of $120 \Omega-10 \mathrm{k} \Omega$. Calibration is by on-board analogue adjustment or digitally by the computer. Katon Ingram Lid. Tel 0983 822180; fax, 0983822181

Development and evaluation

8051 emulator. Metalink's iceMasterPE 8351FX supports the 8351FX range of microcontrollers - a second source 8051. The device connects to the host computer via RS-232 and directly to the target system cpu
socket with no probe or host card necessary. There is transparent trace memory to allow viewing during emulation, a performance analyser and symbolic and source-level debugging. Reflex Technology Ltd. Tel., 0494465907 ; fax, 0494465418.

Universal gang programmer. Using universal pin drivers, Concentrated Programming's Sprint Multisyte is a gang device programmer that copes with virtually anything in sight arrays, memory and microcontrollers. Three versions exist: dual, quad and octal provide two, four or eight programming sites, each being configured with a variety of TOP modules to take almost any type of package and each being programmable separately for running test vectors. Concentrated Programming Ltd. Tel., 0279600313 fax, 0279600322

PIC processor programmer. Lloyd Research's $L 9000$ programmer will now handle PIC processors from Arizona Microchip, such as $16 C 5 x$, 16C71/84 and 17C42 with the PL650 socket module. 49000 operates alone or may be operated from a PC or a PC batch file. Most devices are programmed in around three seconds, those normally programmed
serially on development programmers being handled in parallel. The device has positions for two modules from different families. Lloyd Research Ltd. Tel., 0489 574040; fax, 0489885853

PLD training. PAL Trainer from Flight Electronics is a PC-based learning aid, specifically for third-year students but also useful for engineers, to help people learn about programmable logic devices and Palasm, and to function as an array programmer. The training course progresses through initial logic design, through PC simulation, programming and test, using examples provided. Students then program devices themselves using Palasm V.4. Hardware inctudes a cased PCB combining a GAL (Lattice Semiconductor's gate-array logic) programmer and the test unit an interface card, cable, a disk, sample chips, Palasm and a manual Flight Electronics International Lid. Tel., 0703227721 ; fax, 0703330039

Socket modem kit. SocketModem

 Designers' Kit from Rockwell is an evaluation platform for single-board voice/data/fax modems, the kit containing a dip modem and a BABTapproved line interface. The mother board has 128 K of rom, serial DTE connector, led indicators, telecomconnectors and a power connection for the supplied 5 V supply. All the user needs is a PC XT or higher with a text editor and a prom programmer, all the other software being supplied. The unit copes with a large range of modem standards, depending on the version used. RCS Microsystems Ltd. Tel., 081979 2204; fax, 081979 6910.

Computer peripherals

486DX upgrade. The Aries Upgrade Socket and Upgrade Adapter contain the necessary modifications to allow a DX4 to be used in 486DX/DX2 computers. For pin-grid arrays, the DX4 goes into the Socket, while the Adapter takes the DX4 in SQFP form in which case soldering is needed, Aries supplying the solder package if needed. Aries Electronics (Europe). Tel., 0908260007 ; fax 0908260008.
advanced Spice models, 40 of them new, including video amplifiers, voltage references and the BUF04 high-speed buffer. The simulation techniques used allow emulation of ac and dc performance and thermal, noise and other characteristics. The free Spice library comes on a 3.5 in PC-compatible disk. Analog Devices Ltd. Tel, 0932 253320; fax, 0932 247401.
now feeds Abel2C. Applications include hardware emulation, failure analysis and test vector simulation. A simulation procedure library, created automatically when a file is converted allows inputs to be set, results to be compared, errors isolated and state machine flow to be analysed. ARS Microsystems Ltd. Tel., 0256 381400; fax, 0256381685.

Spice library. Analog Devices's ADSpice Revision 1 disk contains 392

Software

State-diagrams-to-ANSI C. Using
Abel2C from Visual Software, graphical state diagrams can be converted to ANSI C, the compiled C code being executable. It works in conjunction with StateCAD, which allows state diagrams to be drawn and compiled into Abel HDL, which

USING RF TRANSISTORS

Compensation terms and networks

> Norm Dye and Helge Granberg show how frequency affects design of impedance compensation networks and explain why negative feedback is so simple - and effective.

From the book RF Transistors: principles and practical applications.

Amplifier frequency compensation equalises the input impedance of a transistor so that the matching element can look into a relatively constant R and Z over a given bandwidth. Narrow band designs. using $L-C$ matching elements, do not usually requare it since bandwidth is limited to 5% or 10% by the matching element.

Wide-band designs with bandwidths greater than I 0% are generally combinations of $L-C$ or microstrip, and wide-band transformers: or wide-band transformers alone. With complex $L-C$ or microstrip designs, transistor impedance matching over bandwidths of half an octave or more is possible. But it is not really good practice. Input impedance of a transistor (bjt or fet) varies with frequency much more than does the output impedance. so only the input usually needs to be compensated.

At power levels higher than a few watts. where output impedance is low, losses in the compensation networks make output compensation impracticable. But it is sometimes carried out using just a series inductance, for example, with a capacitive output, or with shunt capacitance and an inductive output. I s and C s can not both be used with wide-band transformers because shunt capacitance is used to compensate for leakage inductance.

Fig. 1. Push-pull amplifier showing networks for input impedance compensation as well as for levelling of the power gain in wide-band applications.

Network effects

In certain inter-stage matching arrangements, losses must be tolerated. If a power amplifier operates at a power level of $150-200 \mathrm{~W}$ and has a power gain of $6-7 \mathrm{~dB}$, then the driver power output would be $30-50 \mathrm{~W}$ and would have (for a 12 V design) an output impedance of around 1.5S. Assuming the power amp input has a frequency compensation network, part of the drive power will be dissipated in it as well as in the matching network itself. In the above case, the result would be considerable power loss, lowering overall efficiency of the system and possibly making necessary an additional amplifying stage.
Wide-band amplifiers tend to use push-pull designs because they make it easy to achieve low emitter-emitter or source-source induclances - much easier than low emitter/source-to-ground inductances (important in a singleended design).
The input/output impedances are also higher, simplifying design of wide-band impedance matching networks.
Transistor input impedance is high at low frequencies, and low - and more reactive - at high frequencies. The change is around 40 80% per octave depending on frequency spectrum and device type.
Such behaviour is true for both bjts and fets, although input impedance of a fet for a given electrical size is higher, particularly at lower frequencies. If the device input crosses over from capacitive to inductive within the desired frequency band, compensation-network design

Table 1. Typical component values for the networks of Fig. 1 applied to a $2-30 \mathrm{MHz}$ 200W amplifier design.

L_{1}, L_{2}	$27-33 n \mathrm{H}$
L_{3}, L_{4}	$35-40 n \mathrm{H}$
C_{1}, C_{2}	$2000-2800 \mathrm{pF}$
R_{1}, R_{2}	$10-15 \Omega$
R_{3}, R_{4}	$8.2-12 \Omega$.

becomes even more difficult.
For a capacitive input, a shunt $L R$ combination (Fig. 1) 12-1) R_{3} / L_{3} and R_{4} / L_{4} will serve as an initial compensating network.

Reactance, inductance and frequency

Ideally, reactances of inductances L_{3} and L_{4} will be very large at the high-frequency end of the band, and the shunt circuit will have negligible effect.
At the low-frequency end, the reactances of L_{3} and L_{4} become low, effectively leaving only R_{3} and R_{4}. Since the reactances of the series inductors L_{1} and L_{2} are also at their minimum values, the series combination of R_{3} / R_{4} will, in fact, be in parallel with the output of T_{1}, presenting an artificial load to it. At high frequencies the reactances of L_{1} and L_{2} are adjusted to a value, which in series with C_{1} / R_{1}, and C_{2} / R_{2}, results in a load to T_{1} comparable with the low input impedances of Tr_{1} and Tr_{2}.
C_{1} / R_{1} and C_{2} / R_{2} are actually used for gainlevelling rather than for frequency-compensation. The idea is that the reactances of C_{1} and C_{2} are low at high frequencies, where power gain is lowest. At low frequencies, the higher device power gain is lowered by the increased reactances of C_{1} and C_{2} to produce a more even response, leaving R_{1} and R_{2} as the main power carriers to the bases. Thus R_{1} / R_{3} and R_{2} / R_{4} form π attenuators, with the input impedances of $T r_{1}$ and $T r_{2}$ serving as the second shunt leg. The values of all $R \mathrm{~s}$ can then be calculated when the transistor input impedance and the desired power gain slope are known.
Typical component values for the networks of Fig. I applicd to a $2-30 \mathrm{MHz} 200 \mathrm{~W}$ amplifier design are shown in Table 1.

Designing a network to match a "load" that changes from capacitive to inductive as a function of frequency is a difficult task. But with internally matched transistors, the situation is different. Power gains and input impedances for their specified frequency ranges are much more constant than those of non-internally matched transistors. So frequency compensation is often not required at all since the maximum bandwidths that can generally be obtained with internal matching are less than three octaves.
Very low Q, broad-band circuits used to "match" the input or output of a transistor can be realised at low frequencies (below 100200 MHz) using low Q matching networks for example. broad band transformers. When designing such circuits, the input/output impedance of the transistor can normally be expressed as the magnitude of $Z_{\text {in }} / Z_{\text {out }}$ without worrying about phase angle. The larger the value of $R_{\text {in }} / R_{\text {out }}$ relative to $X_{\text {in }} / X_{\text {out }}$, the more accurate will be this approximation. But for narrow-band circuits - all circuits above 200 MHz - matching networks using both the real and imaginary parts of the load impedance should be used (in this instance, the input/output of the amplifying transistor). In if device data sheets, input/output impedances are usually given in complex form

Fig. 2. In circuit a), negative feedback is derived directly from the collector. Adjustment of the feedback voltage source with respect to the base is achieved in T_{1} by providing a high impedance input point. In circuit b), a lower impedance point than the collector is created by adding a third winding in T_{2}. This allows the feedback voltage to be fed directly to the input of $\left.T_{1} . \operatorname{In} \mathrm{c}\right)$, the feedback voltage is fed to a low impedance point (the base), necessitating a low impedance voltage source. This is also achieved by adding a third winding in T_{2}.

Fig. 3. Simplified model of a negative feedback network which can be used to determine the loop parameters with sufficient accuracy. Design of this model is based on a series RLC loop.
sheets. In many cases computer software can generate and optimise the elements of the matching network.

Negative feedback

One other impedance-compensation and gainlevelling method, with advantages and disadvantages compared to $L C R$ networks, is negative feedback.

The technique involves feeding part of the output power, out-of-phase, back to the input. Part of the input voltage and the fed-back voltage then cancel. Advantages include simplicity and a stabilising effect on the amplifier. and the only disadvantage is that power is dissipated in the feedback network, lowering overall efficiency of the system.

Power lost depends on the amount of gain reduction desired at low frequencies, ie, the amount of feedback.
The out-of-phase feedback voltage is set to a certain amplitude, with respect to the input voltage, which holds at any power level - providing the input impedance remains constant. To produce power, the input voltage must exceed in amplitude the voltage fed back. As well as gain reduction, negative feedback also lowers the effective input impedance of the device(s). The device input impedance itself remains unchanged, but the out-of-phase voltage fed back to the input lowers the load impedance to the input matching element.
In a wide band amplifier, feedback voltage should be inversely proportional to the frequency and big enough so that the gain is reduced to the correct amount at all frequencies below the high-end of the band. With simple networks consisting only of R and L, where the feedback voltage source is the collector (or drain) of the output transistor and the voltage is fed back to the base (or gate) directly, this is not possible. An exception is lowpower design, where impedance levels are relatively high.

A collector-to-base feedback circuit is illustrated in Fig. 2a. Note that the input impedance for the feedback voltage is set by T_{1}. The same kind of feedback with a lower impedance source results from adding a third winding in T_{2} (Fig. 2b). Again feedback voltage is fed to the input through the primary of T_{1}, having a higher impedance level than the base. In Fig. 2c, a third winding is again added in T_{2}. It has a very low impedance since the feedback voltage goes directly to the base, itself having a low impedance.

Negative feedback to the base is the most commonly used arrangement with bjts since the base impedance is well defined, leaving only one variable - the third winding in T_{2}. Instead of T_{2}, the third winding for deriving the feedback voltage can be located in the collector/drain dc feed choke, sometimes giving a more convenient option because of its proximity to the input.
The voltage swing across the choke is equal to that across the output transformer. But its use as the source for feedback voltage increases flexibility of circuit design since its impedance ratio to the feedback winding is
easily adjustable without affecting output matching of the transistor.

BJT or fet

Negative feedback loops for fets are easier to determine because the fet is a voltage-controlled device. With bjts, voltages must be converted to currents since base voltage variations are small and it would be difficult to achieve sufficient accuracy with calculations.
But models for negative feedback loops (Fig. 3) meant primarily for fet amplifiers, can also be used with bjts in modified form.
Figure 3 refers to the push-pull amplifier design given in Fig. 4. At 10 MHz , the lowfrequency end of this example, magnetic cores needed in the input and output transformers are not shown in the schematic for simplicity. In the model, the feedback voltage is derived directly from the fet drains, limiting optimisation of the system. A peak in power gain of about 2.5 dB will remain around the middle of the $10-175 \mathrm{MHz}$ spectrum.
(If flatter gain response is required, methods shown in Figs. 2a and 2c are recommended).
There is considerable phase deviation from 180° at 175 MHz , resulting from the series L. So there will also be about IdB gain reduction at this frequency due to the finite reactances of the inductances.
At low frequencies. where feedback is at its maxinum, the phase error is negligible and the model shown in Fig. 3 produces fairly accurate values. In the model, the series inductance used to shape the gain slope, has been omitted. This L can be treated as an additional variable - its value for the spectrum in question would probably be lower than the minimum achievable with the physical size of the circuitry.
Ideally reactance of the series L should be infinite at the high end of the spectrum and zero at the low end.
C_{1} and C_{2} in Fig. 4 are dc blocking capacitors. Their values are not critical, but they must be large enough to present a low reactance at the lowest frequency of operation.
$T r_{1}$ and $T r_{2}$ are assumed to be MRFISI devices. But at $10-175 \mathrm{MHz}$, these could be replaced with a single push-pull MRF15/G. (The MRFIS/G is equivalent to two MRFI5Is in a single package, but tested to 175 MHz specifications. The MRF 151 is tested at 30 MHz . although is usable up to at least 175 MHz).

Calculating feedback resistors

From the data sheet and by simple calcula tions, the nearest full integer impedance ratios of $9: 1$ (input transformer) and $1: 4$ (output) can be found to be the closest practical at 175 MHz , with a 50Ω interface. For Fig. 3. from the data sheet, we can also deduct the following parameters:
G_{PS} at 10 MHz is approx 26 dB ;
$G_{\text {PS }}$ at 175 MHz is approx 16 dB (lowered to 15 dB with feedback);
$P_{\text {in }} \mathrm{I}\left(f=10 \mathrm{MHz}, P_{\text {out }}=300 \mathrm{~W}\right)=0.75 \mathrm{~W}$,
$V_{\text {in }}$ rms $=2.03 \mathrm{~V}\left(V_{2}\right) ;$
$P_{\text {in }} 2\left(f=175 \mathrm{MHz}, P_{\text {out }}=300 \mathrm{~W}\right)=9.5 \mathrm{~W}$.
$V_{\text {in }}$ rms $=7.23 \mathrm{~V}\left(V_{1}\right) ;$
$V_{3}=V_{\text {ourms }}$ (drain to drain $)=61.25 \mathrm{~V}$:
R_{1}, R_{2} (transformer source and gate-to-gate impedances) $=5.5 \Omega ; R_{3}=$ feedback resistor; $R_{4}=($ output load $)=12.5 \Omega$.

The value of the feedback resistor is given by:

$$
R_{3}=\frac{V_{2}+V_{3}}{\left(\frac{V_{1}-V_{2}}{R_{1}}\right)-\frac{V_{2}}{R_{2}}}-R_{4}
$$

Substituting
$\frac{2.03+61.25}{\left(\frac{7.23-2.03}{5.5}\right)-\frac{2.03}{5.5}}-12.5$
$=\frac{96.6}{2}$ or 48.3Ω each resistor.
$=96.6 \Omega 2 / 2$ or 48.3Ω each resistor
Total power dissipated in the feedback resistors at the low-frequency end of the spectrum of operation, the worst case, is
$\left(V_{2}+V_{3}\right) \times\left\lfloor\left(\frac{V_{1}-V_{2}}{R_{1}}\right)-\frac{V_{2}}{R_{2}}\right\rfloor$
or $63.28 \times 0.58=36.7 \mathrm{~W}, 18.35 \mathrm{~W}$ per resistor, though this assumes that the series L has zero reactance. (No simple formulas are available to calculate the values of R and series L versus frequency response, though some computer prograns can plot the amplifier's response characteristics for given values of these elements.)
Any series reactance would be treated as added series R at a given frequency, and deducted from its original value. Since there

Fig. 4. A fet rf push-pull amplifier with negative feedback. The component values for RIC feedback networks can be established with the model of Fig. 3.
will be a voltage drop across the reactance, the voltage across R will be lower, resulting in reduced dissipation.
At the low-frequency end. the series L is customarily selected with its reactance approximately equal to the input impedance of the device. In this case that value is $80 \mathrm{nH}(5 \Omega)$ at 10 MHz and phase delay is negligible. At 175 MHz , the same inductance represents a reactance of 90 W resulting in a phase delay of about 15°. This is normal and only becomes dangerous if 180° is approached, causing the feedback to turn positive in phase and create instabilities. Such a phase shift could occur only if the initial value of L is unnecessarily high or if the amplifier bandwidth is 7-8 octaves or more - possible in certain low power designs. The Q value of the series L, already reduced by the series $R, X / R$, can be further controlled with a parallel $R(R / X)$.
In practice typical Q values for the series L are less than ten in most cases.

Power loss

These examples show that power loss at low frequencies is considerable, in this case amounting to $6-7 \%$ of overall efficiency. The feedback resistor values can be rounded to 50Ω, and the reactance of the series L is 5Ω. but the dissipation factor of R is reduced only by 10%.
Recalculating. using the formula above, gives dissipation figures of: (63.28-6.33) x $0.58=32.5 \mathrm{~W}$ or 16.75 W for R_{1} and R_{2} of the push-pull amplifier in Fig. 4.
Notice that at the low-frequency end of the amplifier's frequency band, adding the series L causes minimal change in efficiency. But at the high end $(175 \mathrm{MHz})$, the effective value of the feedback resistor is increased from 50 W to I40W. Including the phase delay, this results only in an approximate 1 dB gain loss. If the loss of efficiency with negative feedback is not acceptable in an application. a combination of $R L C$ compensation and negative feedback (Figs. 1 and 2) usually yields excellent results.

Norm Dye is Motorola's product planning manproctuct pla
ager in one
Semiconductor Product Sector, and helge Granberg is Member of Technical Staff, Radio frequency Power Group (Semiconductor Products) at Motorola. Their of transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the uhi frequencies.

RF Transistors: Principles and practical applications is available by postal application to room $L 333$ EW+WW, Quadrant House, Ihe Quadrant, Sutton, EWr
Surrey, SM2 5AS.

Cheques made payable to Reed Books Services Credit card orders accepted by phone (081 6523614)
288pp HARDBACK 0750690593 Cost $£ 19.95+$ Postage $£ 2.50$

KESTREL ELECTRONIC COMPONENTS LTD

ش All items guaranteed to manufacturers' spec.
it Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
EPROMS				STATIC RAMS	
2764A	2.50	2.20		62256LP-10	3.00
27C64-150	2.30	1.68		2.25	
27128A-25	2.20	2.10	6522PP-10	1.85	2.28
27256-25	2.20	1.85		2.40	1.80
27C256-15	2.50	2.20	65C02P2	2.90	2.38
27C512-15	3.00	2.40	65C22P2	2.90	2.50
27C010-15	5.60	3.70	MC146818AP	2.80	2.30
MAX232	1.35	0.95	MM58274CN	4.90	1.65
D8748H	4.20	3.40	SN75176BP	1.60	0.80
D8749H	4.40	3.50	Z80A CPU	1.50	1.00
80C31-12	2.60	1.80	Z80A CTC	1.30	0.85
80C85A	2.60	1.80	Z80A DART	2.10	1.40
82C55-8MEG	1.95	1.58	1488P/1489P	0.32	0.25

74LS, 74HC, 74HCT Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey CR8 4HA Tel: 081-668 7522. Fax: 081-668 4190.

 This is a VFRY SMALI SAMPLE OF STOCK. SAE or Telephone for lists. Please check avalability before ordering.

SMALL SAMPLE OF STOCK. SAF or Telephone tor lists. Please check avalabilits
CARRIAGE all units S16. VAT to be added to Total of Goods and Carriage.
STEWART Of READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (0734) 268041. Fax: (0734) 351696 Callers Welcome 9am-5.30pm Monday to Friday (until 8 pm Thursday)

Modelmaker a synthesis toolkit for

SpiceAge for Windows makes models accessible to all.
This new model maker includes tools for creating OpAmps, Transformers, Attenuators and Bipolar transistors.
Straight from a catalogue...
The models are an accessible alternative to SPICE models which may also be used with SpiceAge. But because the information needed can be obtained straight out of a catalogue, you need never be kept waiting for a model again.

Unnecessary complexity
 removed...
The models synthesized are smaller than SPICE models yet they are adequate for most applications and calculate many times faster. This is partly achieved by exploiting special polynomial pragmas (not available to SPICE) that define the limits of validity of non-linear functions. The OpAmp models, for example, break new ground in simulation technology by representing many SPICE details yet calculating up to five times faster.
MODELMAKER is available in modules starting from $£ 15+$ VAT to $£ 135+$ VAT and links with version 3 (and later) and level 3 (and higher) of SpiceAge for Windows through the DDE. Those Engineers operate a helpful policy of maintenance and upgrading to all their software. For further details, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 081-906 0155, FAX 081-906 0969. Circleno. 133 on reply card

in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0750609249

CIRCUIT MANUALS

Ray Marston

A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual
Paperback 224 pages
Price £13.95 O 434912077

Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0434912107

CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circuits Manual
Paperback 144 pages
Price £13.95 0750600640
Timer/Generator Circuits Manual
Paperback 224 pages
Price £13.95 0434912913

Programmable Logic Handbook

Geoff Bostock

Logic circuit designers are increasingly turning to programmable logic devices as a means of solving problems. This book, for the established electronics engineer, student and technician, is a thorough introduction to programmable logic. Geoff Bostock will take you to a level where you, as a designer, can take full advantage of the growing product range of ASICs and other selfprogrammable arrays used in computer and control systems. Paperback 256 pages.
Price £19.95 0750608080
Understand Electrical and Electronic Maths
Owen Bishop
People who find maths difficult often have, as a result, difficulty

Logic Designers Handbook Andrew Parr
Easy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0 750605359
Digital Audio and Compact Disc Technology
Luc Baert, Luc Theunissen \& Guido Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A / D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Paperback 240 pages.
Price £16.95
0750606142

NEWNES POCKET BOOKS

A series of handy, inexpensive, pocket sized books to be kept by your side and used every day.
Their size makes them an ideal 'travelling' companion as well

Newnes Electronics

Engineer's Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0750609370

Newnes Electronics Assembly
Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0750602228

Newnes Television and Video
Engineer's Pocket Book
Eugene Trundle
Hardback 384 pages
Price £12.95 0750606770

Newnes Circuit Calculations
Pocket Book
T Davies
Hardback 300 pages
Price £10.95 0750601957

Newnes Data Communications
Pocket Book
Michael Tooley
Hardback 192 pages
Price £12.95 0750604271

Newnes Telecommunications
 Pocket Book

JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070
Newnes 280 Pocket Book Chris Roberts
Hardback 185 pages
Price £12.95 0750603089

Newnes 68000 Pocket Book
 Mike Tooley

Hardback 257 pages
Price £12.95 0750603097

Newnes Electrical Pocket
Book
21st edition
E A Parr
Paperback 526 pages
$£ 12.95$
0750605138

Newnes Electric Circuits
 Pocket Book Linear IC

Ray Marston
Hardback 336 pages
Price £12.95 0750601329
Newnes Guide to Satellite TV
D J Stephenson
A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price £17.95 0750602155
Newnes Practical RF Handbook

lan Hickman

Pressure on the RF spectrum has never been greater and it's people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF
knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages. Price £16.95 0750608714

Troubleshooting Analog

Circuits

R A Pease

Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to troubleshoot. Paperback 217 pages.
Price £14.95 0750616326

PC-Based Instrumentation and

Control

M Tooley

Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95 0750616318

Electronic Circuits Handbook

 M TooleyProvides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages.
Price £24.95 0750607505

Communication Services via

Satellite

G E Lewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician. Paperback 400 pages.

Price £25.00
 0750604379

Digital Logic Design Brian Holdsworth

As one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays Paperback 448 pages.
Price £19. $50 \quad 0750605014$

The Circuit Designers

Companion

T Wiliams

This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike. Hardback 320 pages.
Price £2500 0750611421

Credif card orders accepted by phone 0816523614

I Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
I Please supply the following titles:

I Add VAT at local rate
I NB ZERO RATE FOR UK \& EIRETOTAL -_
Business purchase: Please send me the books listed with an invoice. I will
arrange for my company to pay the accompanying invoice within 30 days. 1 will attach my business card'letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleable condition for a full refund.

Remittance enclosed $£$
Cheques should be made paryable to Reed Book Services Ltd.
Please debit my credit card as follows:
Access/Master Barclay Nisa Amex Diners

Credit Card No. \qquad Exp date
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY \qquad POST CODE \qquad COUNTRY

DATE TELEPHONE NUMBER

SIGNiATURE

T3000

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7% Gemany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about books, journals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5 AS

Registered in England 151537

the MAN

Signal Hill, St Johns, Newfoundland, with apparatus used in the first transatlantic wireless tests. Marconi knew he was playing for big stakes, both commercially and in terms of his scientific reputation. (Courtesy GEC-Marconi Ltd).

who started ripples in the ether

In 1894 Marconi began the research that enabled the world to take the first steps towards modern communications. 100 years on, John Powell Riley pinpoints the key moments in a genius's life and looks at exactly what Marconi risked in his greatest experiment.

No single person invented the radio. But the pioneer towering above all those brilliant people who made essential contributions is, without question, Guglielmo Marconi.
Marconi began his experiments at a time when no one knew how radio waves propagated. Range was generally thought to be limited to about the distance a man could throw al stone. Today we understand that the theoretical basis of wave propagation is vastly complicated. But in those early days what was needed was an experimenter with a unique intuitive and inventive gift. Marconi was that man.
He was born on the 25th of April, 1874 in Bologna, Italy. His Irish morher, Annie Jameson, was a member of the Jameson whiskey family and his father, Giuseppe Marconi, was a comfort ably well-off. land-owning Italian.
At the age of five, Marconi came to England for his first two
years of schooling, going back to Italy 10 complete his education in Livorno, where he later studied physics. One of his carliest influences was the eminent Professor Rigi whose work on electromagnetic radiation first began to capture his imagination. At that time, his aim was to become an officer in the Italian navy. But his ambition changed when he failed the entrance examination.

Marconis awakening came when, vacationing in the Italian Alps in the summer of 1894. he read a paper describing Heinrich Rudolph Hertz`s laboratory experiments with "Hertzian waves". Immediately he returned home, and set up a lab in the attic of Villa Grifone, the family home in Pontecchio near Bologna.

From that moment. single-minded fascination with the subject shut out all else and wave propagation became his lifelong obsession.
Encouraged by his mother - and strongly opposed by his father who thought he should devote his energies to improving the grape harvest - Marconi nevertheless steadily increased the distance over which messages could be sent "through the ether".

Within a year he was able to transmit morse signals over distances of about a kilometre, to positions hidden beyond the crest of a mountain.

England beckons

Starting with nothing more than a laboratory experiment, Marconi had proved that practical wireless communication was feasible, an achievement that marked the advent of radio and profoundly changed our lives.
But with astounding lack of vision the Italian government, like Marconi's father, showed no interest in his accomplishments. England, then the greatest maritime nation in the world. appeared to be a better place to further his ambition and at the urging, both of his mother and the Irish branch of the family. the reserved, self-confident young man of 21 moved there with his mother.
Helped by his cousin Jameson Davis, a man of intluence who lived in London, he applied for his first patent on June 2. 1896 at the age of 22. On March 2. 1897 he filed an improved specification and on July 2. 1897 the London Patent Office granted the young man his patent. It was the first in any country for a "system of telegraphy without wires by means of electromagnetic waves"

By July 1897, again with the help of his cousim. Marconi had fommed the Marconi Company (originally the Wireless Telegraph and Signal Company, Limited; later Marconi's Wireless Telegraph Company: now GECMarconi Limited). He had atso increased reception range to $7-9$ miles over water.

Competitive tension

The young Marconi decply impressed William Precce, chief engineer of the Post Office, the licensing authority for communications. Preece had been experimenting with electromagnetic waves but had failed where Marconi succeeded. In a moment of candour he praised

Marconi and reterred to him as "the boy wonder." Though intended as a sincere compliment, the remark was promptly seized upon by mature physicists and engineers who were cmbarrassed at being unable to explain Marconi's accomplishments in terms of known science.
Over the years Preece alternately praised Marconi and joined the ranks of his critics. He strongly supported the cable companies that were operating under license agreements granting them exclusive rights to certain important point-to-point links. Cable companies quickly recognised the threat posed by "wireless" and emerged as bitter and often unprincipled rivals. Cable couldn't compete in maritime applications and that afforded Marconi a foot-hold in a slowly growing but conservative captive market - together with another arch rival, Telefunken, in Germany. Professor Adolphus Slaby, of the Technical High School at Charlottenburg. Berlin (also associated with Siemens \& Halske and Telefunken) saw himself as a colleague but Marconi regarded him as his hete noire. The Marconi Company continued to make technical strides at an almost unbelievable pace. German rivals, under Slaby`s technical guidance. struggled to keep up. but whenever Marconi got too far ahead, the German govemment would contact the British govemment through diplomatic channels and request that Professor Slaby be permitted to attend a Marconi demonstration as an interested observer. In this way the obsequious Slaby conducted what Marconi considered to be commercial espionage and on return to Germany promptly upgraded the Telefunken equipment. In taimess to Slaby, one of his technical tips to Marconi, concerning matching the impedance of the coherer to that of the antenna. proved invaluable.

The British government was also slow to see the significance of radio in Naval communication. The application of wireless to the satety of life at sea seemed to Marconi 10 be obvious and it strongly motivated him from the start.

Today we take radio for granted. When Nasa put men on the moon. few stopped to retlect on the other scientilic miracle that allowed us to talk to them.

Calling Newfoundland

Marconi's work inevitably brought criticism from the establishment (see box). To tackle this - and for at much more rational commercial reason - Marconi knew he must attempt a transatlantic test as soon as possible. This was the best way, ultimately, to break the monopoly on international communications.
${ }_{6} f_{I}$ was about to test the truth of my theories, to prove that the patents that the Marconi Companies and myself had taken, and the tens of thousands of pounds which had been spent in experimenting and in the construction of the great station at Poldhu, had not been in vain. 59

G Marconi

Apparatus at Poldhu in Cornwall that transmitted the "s" received by Marconi in Newfoundland. The spark gap can be seen, right, in the background. (Courtesy GEC-Marconi Ltd).

held by the cable companies.
To attempt it. Marconi needed a much more powerful transmitter, a more elaborate antenna. and a better station site. But at that time. the Marconi Company was hard pressed to pay the ever-mounting cost of research and development. Business was not good and a transatlantic test called for elaborate preparations which would be an almost unacceptable financial burden.

Marconi met with his board of directors and. using all his powers of persuasion, eventually obtained their less than enthusiastic support for a risky attempt to bridge the Atlantic.
Moving fast, he selected an ideal new station site called Poldhu, in Cornwall near Mullion - about six miles north of Lizard Point. The inventor described it with poetic imagery, as "hard and bleak" and said it "possessed an inexpressible charm because of the soft airs, pungent with salt, that blew over it ${ }^{\prime \prime}$.
Building construction started in October of 1900. Marconi was determined that Poldhu would have the most powerful transmitter yet constructed and its antenna would be equally formidable. Critics now began to refer to his new more powerful transmitting station as "the thunder of Poldhu." They predicted it was going to drown out the smaller local stations.
Certainly, a major problem had to be overcome. Spark-gap transmitters emitted a tremendously broad power spectrum so that a receiver placed near one would pick up signals no matter to what it was tuned. The crude but remarkably sensitive "coherer" detectors used as receivers also lacked selectivity.
In December 1990, Marconi moved a station from Dovercourt, near Harwich, to Poldhu to start transmission tests. On January 23. 1901 the station at Poldhu easily established communication with one at St Catherine's Point. Isle of Wight, 196 miles distant. This was well beyond line of sight and Marconi saw it as proof that earth curvature would not be an obstacle on the longer transatlantic path.

Media scepticism

Some elements of the technical press in England, especially at the start of his career, were devastatingly cruel to Marconi. It nettled him all his life.
When transmission range was only a few miles, they said "the usefulness of radio was obviously very limited." Later, when greater distances were spanned, they said that the five word per minute speed of transmission was too slow. It was in fact 22 words per minute.
When Marconi again extended the range so that ships at sea could receive messages and lives were saved by radio, the critics still hounded him. One, writing for a technical trade paper, claimed that to transmit at a speed of 50 words per minute. twenty gigantic stations - ten at each end of the path - would need to be constructed.
feasible in Marconi's opinion. Furthermore it was attractive as a commercial proposition. and tests proved that nearby stations now had nothing to fear from the "thunder" of Poldinu.

Line of vision

As preparations raced ahead. there was no let up from those in the scientific community who lacked Marconi's vision. A favourite

Dr J A Fleming. a consultant to Marconi and a pioneer in his own right, made many improvements at the transmitter site, greatly increasing power during the next four months. while Marconi turned his attention primarily to his newly-developed tuned circuits (sce box), adding them both to the transmitter and to the receiver to avoid interference with other services. The result, according to his notes, "was a transmitter more powerful than anything of the kind, until then, constructed". (10 10 12 kW).
Transatlantic wireless telegraphy was at last
theme now was that very long range communication was not possible because of the cur. vature of the earth. There was, they pointed out, a "hump of water more than 100 miles high" that radio waves could neither bend around nor penetrate to reach a distant point below the horizon on the other side of the Atlantic. One facetious argument was that transatlantic wireless transmission would only be possible if antennas at both ends of the path were supported on masts two hundred miles high.
Marconi had convinced himself they were
wrong by successfully communicating over lesser distances that were nevertheless well beyond line of sight. In doing this he had become aware of what now is called the ground wave, following the surface of the earth and propagating particularly well over salt water.

By trial and error Marconi had found that vertically polarised antennas working against ground, what we today call Marconi antennas, accentuated this propagation mode. As wavelength increases, ground wave attenuation decreases.
In fact this preoccupation with ground wave propagation misled experimenters. Marconi included, into believing that long distance transmission required long wavelengths of the order of 360 to 2000 m - and consequently gigantic antennas.

Eventually they would learn that there are also sky wave modes of propagation (see box) even better suited to long distance communication.

Disaster

By the end of August, 1901. an antenna at Poldhu consisting of twenty poles. 220 feet tall. was erected on a circle of 200 feet diameter, with their tops connected by triatic stays to which the many semi-vertical elements were fastened. Work was nearly completed when, on September 17th, the worst storm in memory swept the English coast. A triatic slay snapped and the poles fell to the ground.

Directors of the Marconi Company were appalled at the disaster and at the funds

Balloons failed, but Marconi was able to use a kite to raise his aerial high enough in Newfoundland for him to receive the transmission from England. (Courtesy GECMarconi Ltd).

Genius in the Edison mould

Marconi was a wizard in the sense that Thomas Edison was. Both were single-minded men whose intense determination and intuitiveness set them apart, and fitted them ideally for their empirical approaches to science. Both lived, most of the time, in the intensely fascinating dream worlds known only to those whose immense creativity requires total concentration. As a result they were often oblivious to all else.

Edison left his bride on their honeymoon, got off the train and went back to his lab. Similarly Marconi, conducting radio experiments on his yacht, the Elettra, took his youngest daughter Gioia to the nearest beach, left her alone to play - and forgot her She tried to dog-paddle back to the yacht, and it was only a miracle that allowed her to be found before she drowned.
expended with nothing to show for it. but Marconi only redoubled his efforts. He did wonder though if the site was a mistake - the coast at Mullion was highly vulnerable to violent storms.
At firs the delay looked like months, but Marconi was at his best when challenged by adversity and he had erected a simpler but nevertheless effective antenna within eight days. This one used two 160 ft poles 200 it apart to support a triatic stay. stretched between them, from which he suspended sixty copper wires. At the top they were spaced at 3 ft intervals and at the bottom they came together for comnection to the transmitter.
was to send the letter " s " (three dots) at regular intervals daily between 3 pm and 6 pm Greenwich tine until told to stop. The corresponding time at St John`s, Newfoundland. would be $11: 30$ am to $2: 30 \mathrm{pm}$.
We now realise that the schedule he chose, based merely on convenience, was almost disastrous. During daylight hours solar absorption, then moknown, greatly diminishes the strength of long wave sky waves. Transmissions on the wavelength cised should actually have been scheduled during hours of darkness when sky waves, unattenuated by solar absorption would have been far stronger than grourd wave. But having made these arrangements. Marconi sailed on November 26th from Liverpool on the Allan liner SS Sardinian with assistants, George Stevens Kemp and P W Paget.

Not mistaken

After an uneventful crossing, the ship docked at St John's. Newfoundland on Friday, December 6. 1901. The nexi day, Marconi visited the Governor. Sir Cavendish Boyle, the Premier. Sir Robert Bond and other members of the Ministry. Everyone promised wholehearted cooperation and went all-out to help him find radio station sites at Cape Race. Mistaken Point, and other likely places. All sites were rejected by Marconi - perhaps he worried how a site near "Mistaken Point" would be exploited by a hostile and sceptical home technical press.

Using this "acrial" in mid-November the Poldhu station sent such strong signals to Marconi`s most distant station at Crookhaven in South Ireland that he felt confident they could be detected at a ten times greater distance. The experiment again reinfored his conviction that the curvature of the carth was not going to be a problem.

Covert activity

At last Marconi felt ready to attempt the transatlantic test. He decided to site the receiving station in Newfoundland - that being the nearest point of land in North America, As the test was such a dramatic extension of range he thought it best to avoid publicising his plans: if he succeeded, the effect would be all the more dramatic.

The reason he gave for visiting Newfoundland was that he wanted to investigate the possibility of signalling to Cunard liners on Atlantic passage to beyond the Grand Banks, 400 miles off the Newfoundland coast. Before departing England. Marconi told the chief operator at Poldhu to expect a cable. On the day following receipt of that cable. Poldhu

Critics claimed Marconi could have staged his transatlantic triumph, and questioned whether he could be believed. To confound them Marconi repeated the feat using a wireless installation aboard the SS Philadelphia, inviting in many witnesses to observe reception. (Courtesy GEC-Marconi Lfd).

He eventually settled on Signal Hill near the city of St John's, in his notes described as: "A lofty eminence overlooking the port and forming the natural bulwark which protects it from the fury of the Atlantic gales".

Because of inclement winter weather and time considerations. Marconi decided not 10 erect hight poles to support the aerial. Instead he tried to use a captive balloon. He had brought two for that purpose as well as six kites as back-ups.
The top of Signal Hill has a small plateau of about two acres which he thought suitable for handling either the balloons or the kites. From a crag on this plateau rose the new Cabot Memorial Tower, designed as a signal station commerorating the diseovery of Newfoundland. Close to it there was an old military barracks which was then used as a hospital. He set up his equipment in this building and prepared for the great experiment.
After wrestling with the balloon then turning to the kites to elevate the aerial to 400 ft he at last heard the "three sharp little clicks corresponding to three dots" that indicated the passage of the s transmission. across the Atlantic

Marconi's "sternest test"

Marconi describes preparations - and what was at stake - for his test transmission from Comwall to Newfoundland:
"On Monday, December 9th, barely three days after my arrival, I began work on Signal Hill together with my assistants. I had decided to try one of the balloons first as a means of elevating the aerial and by Wednesday we had inflated it, and it made its first ascent during the morning. Its diameter was about fourteen feet and it contained some 1000 cubic feet of hydrogen gas, quite sufficient to hold the aerial which consisted of $[500$ feet of 7 wire weighing about ten pounds. Owing, however, to the heavy wind that was blowing at the time, after a short while the balloon broke away and disappeared to parts unknown. I came to the conclusion that perhaps the kites would answer better and on Thirsday morning, in spite of the furious gale that was blowing, we managed to elevate one ... to a height of about four hundred feet ${ }^{\prime \prime}$.

Marconi went on to describe why it was so vital that his experiment was a success:
"I was about to test the truth of my theories, to prove that the patents that the Marconi Companies and myself had taken, and the tens of thousands of pounds which had been spent in experimenting and in the construction of the great station at Poldhu, had not been in vain.
"In view of the importance of all that was at stake, I had decided not to trust to the usual arrangement of having the coherer signais recorded automatically through a relay and a morse instrument on paper tape, but to use instead a telephone connected to a selfacting coherer, the human ear being more sensitive than the above-mentioned recorder. Suddenly, about half past twelve there sounded the sharp click of the "tapper" as it struck the coherer, showing me that something was coming and I listened intently.
"Unmistakably, the three sharp little clicks corresponding to three dots, sounded several times in my ear but I would not be satisfied without corroboration.
"Can you hear anything, Mr. Kemp? I said, handing the telephone to my assistant. Kemp heard the same thing as I and I knew then that I had been absolutely right in my calculations. The electric waves which were being sent out from Poldhu had traversed the Atlantic, serenely ignoring the curvature of the earth which so many doubters considered would be a fatal obstacle, and they were now affecting my receiver in Newfoundland. I knew that the day on which I should be able to send full messages without wires or cables across the Atlantic was not very far distant. The distance had been overcome and further development of the sending and receiving apparatus was all that was required."

George Stevens Kemp (left) and P W Paget (right) sailed with Marconi (centre) to Newfoundland to help Marconi set up his most ambitious experiment.
(Courtesy GEC-Marconi Ltd)
from Podhu (see box: Marconi`s own words). Marconi wireless had conquered the Atlantic and silenced, for the moment, some of his critics.

With a mixture of exultation, and trepidation Marconi sent a cable after three days of testing, having barely managed to hear the letters: twenty eight times. The news created a sensattion around the world with some elements of the media jubilant and others outraged.

Messages of congratulation poured in from many nations, but the response from England was mixed. The consensus of the technical press there was one total scepticism. Almost immediately though, Marconi received a cable from a lawyer representing the Anglo American Telegraph Company. It accused him of violating the exclusive right - that the cable company had under its contract - 10 send communications from England to Newfoundland. The company threatened a lawsuit if Marconi did not desist immediately. The move, Marconi noted, was a tacit admittance that they believed the signals had been received.
In marked contrast, the reaction in America was warmly congratulatory. The prestigious American IEE (Institute of Electrical Engineers, now the IEEE) gave a dimer at the Astoria Hotel in New York in his honour attended by 300 members including many of our most distinguished men of science. Its President was the famous Steinmetz, mathematician and electrical genius of General Electric who held 200 patents. Alexander Graham Bell. inventor of the telephone was there. He conceivably might have seen wireless as a competitor, but instead he lavishly praised Marconi, and offered him the use of his estate at Cape Breton, Nova Scotia for the erection of a wireless station (Marconi
declined). Thomas Edison and Nicola Tesla who could not be there both sent messages of sincere congratulations.
It was a heady experience for a young man of 27.

Some critics in England. however, were still unconvinced. They claimed Marconi was either perpetrating a hoax or was confusing normal atmospherics with test signals, citing the "immutable and well understood laws of physics" as their authority. Some were quick to point out that the world had only Marconi's word for what really happened. There were no ink recordings to document his claims.

Results confirmed

Stung by insimuations. Marconi sailed for New York aboard the SS Philadelphia. with C. S Franklin as his wireless operator. (Franklin later distinguished himself as a prolific inventor. One of his many designs, the Franklin array, a directional antenna, came into wide use by point-to-point services.) The ship departed Cherbourg on February 22, 1902 and was fitted with equipment of the same type Marconi used in Newfoundland.
During this voyage he received complete messages to a range of $155 /$ miles and they were automatically recorded by a morse inker in the presence of the ship's master. Captain Mills, other officers, and many interested passsengers.
Each ink recording was signed and dated by one of these witnesses, usually by the captain. When range would no longer permit the reception of complete texts. Marconi continued to record parts of messages or the letter s until 2099 miles distant from Poldhu.
During his passage on the SS Philadelphia, Marconi made another discovery of fundamental importance. It was that long wave radio signals traverse greater distances over areas of the earth that are in darkness (due to the solar absorption phenomenon mentioned carlier). Without understanding it at the time. he observed the differences between ground wave transmission giving a steady signal day and night but attenuating rapidly with distance: and sky wave transmission, traversing vast distances with less attenuation if the time of day is right. Most critics were confounded and silenced by the shipboard demonstrations. but a few diehards thought that Marconi's latest feat was accomplished by relaying signals from ship to ship in a chain spanning the Atlantic ocean. Even today some radio engineers question the authenticity of the first transattlantic transmission, Poldhu to St Johns, (because of high ground wave attenuation at

In tune with coherer technology

The coherer was invented by the Frenchman E Branly, based on the discoveries of the Anglo-American D E Hughes, then further updated by the Englishman Sir Oliver Lodge as well as the Russian A S Popoff. The device consisted of a tube filled with fine metal filings - Marconi used 95% nickel and 5% silver. When rf energy passed through them, the particles cohered and resistance dropped. To respond to changes of state (signal or no signal), some form of "de-
coherer" such as a solenoid tapper or a mechanical shaker was necessary.

The clumsy approach limited the speed of morse transmission until the advent of the vacuum tube. More importantly, their lack of selectivity and the fact that spark gap transmitters were "broad as a barn door" had begun to turn the spectrum into a bedlam.

The further development of radio would not have been possible without a solution to the problem. Marconi found it by using tuned circuits to add selectivity both to transmitters and to receivers.

Sir Oliver Lodge had experimented earlier with tuned circuits but failed to reduce his ideas to practice as required by patent law. The improvement permitted more than one pair of stations to operate in the same area at the same time. The innovation became famous as "the Marconi four sevens patent" (No 7777).
that range and also because of high solar absorption of sky waves at the 366 m wavelength used).
But no one can deny his triumphant demonstrations conducted on the SS Philadelphia in February, 1902, at a time when his competitors were able to span only about one tenth that range. He had finally documented long range wireless transmission and silenced most shortsighted critics.
Of course. successful transmission of sentence fragments and the letter s across the Atlantic fell far short of what was required for a marketable service. But after many setbacks. and five years of further development. regular commercial service finally began between a Marconi station in Clifden. Ireland and one in Glace Bay, Newfoundland, on 1.5 October, $19(1) 7$.
The monopoly of the submarine cable services was broken and the genie was out of the bottle.

Acknowledgment

Thanks to Roy Rodwell of GEC-Marconi Ltal for kind assistance in werifying certain details.

CIRCUIT DEAS

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Capacitive fluid-level detector

An output voltage proportional to a capacitance indicates the level of a fluid - in the original. oil.
The three buffers form a squarewave generator and driver. When the square wave goes high, $C_{r o f}$ charges positively with respect to $V_{c c}$ via D_{2} and C_{1}. When it is low, $C_{\text {probe }}$ charges negatively via C_{2} and D_{4}.

Transistors $T_{1,2}$ conduct alternately, so that the voltage on C_{4} and therefore the output depends on the values of $C_{\text {ref }}$ and $C_{\text {probe, }}$, which is simply two parallel or concentric conductors with a small air gap. Each of the capacitors charges or discharges C_{f}.

Oscillator frequency may be adjusted to give the reguired output excursion for a given change in $C_{p r o b e}$ and the trimmer in $C_{\text {probe }}$ sets the output voltage. The two capacitors may be transposed to reverse the output voltage.
Glyn Roberts

Walsall
West Midlands

YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

Micropower logic coupler

|t is common to electrically isolate peripherals from logic circuitry by means of optical couplers. They work well, but suffer from the drawback that one coupler needs about 50 mW of power. This inductive coupler avoids the problem.

The cmos square-wave generator in Fig. 1 drives tank circuit $L_{2} C_{l}$ and loss resistance R_{p}. In the absence of an input, $T r_{1}$ is open and the square wave developed across the tank is rectified by the diode to produce a logic 0 at the Schmitt buffer output. A logic 1 at the input turns $T r_{l}$ on, shorting the tank, and the output is logic 1.
For a frequency of $500 \mathrm{kHz}, C_{1}$ 330 pF and $Q 120, R_{p}$ is given by
$R_{p}=\frac{Q}{2 \pi f C_{1}}=116 \mathrm{k} \Omega$.
Resistor R_{l} in parallel with R_{p} gives about $100 \mathrm{k} \Omega$, which

Fig. 1. While providing effective logic isolation, this inductive circuit consumes about $2000 \times$ less power than an opto-isolator.
results in a required power of $22.5 \mu \mathrm{~W}$. Increasing the frequency calls for several hundred microwatts and the use of 10.7 MHz filter coils.

Even simpler, in the circuit of Fig. 2, a diode replaces the fet, passing or blocking the input from the cmos gate. A logic 0 at the input to the diode produces 1 at the output of the buffer.
Franz Braunschmid Vienna Austria

Fig. 2. An alternative to the mosfet switch in Fig. 1.

Switched-mode, constant-current charger

Acommon method of fast charging NiCd batteries is to inject a constant current equal to the battery capacity one hour at 500 mA for a 500 mAh battery. Monitoring tests for a reduction in terminal voltage to indicate overcharging and an increase in the rate of temperature rise. This type of charger is often built into portable equipment, in which it is a simple matter to measure temperature and where the battery consists of a fixed pack. When used to charge batteries from other equipment, results can be erratic. Additionally, there is the power dissipation in the series-pass element usually used, which has to cater for the nearly $2: 1$ rise in terminal voltage as charging approaches completion.

This circuit uses a switched-mode series element to increase efficiency; in this case it is a National Semiconductor 1A LM2575 voltage regulator with current-derived feedback. Constant current flowing through $R_{/}$produces a 0.12 V drop, which is amplified by a factor of 10 and applied as feedback to the regulator, so that a varying output from the regulator appears across C_{2} to maintain the current through R_{l} and the battery. The integrating capacitor C_{3} slows down the regulator`s internal control loop.

With values shown the circuit generates a constant current of 520 mA , which can be altered by adjusting the value of R_{3}, perhaps by switching various resistors to obtain a programmed charger. For higher charge rates, a 3 A version of the regulator, the LM2576-ADJ, can be used, with up-rated D_{l} and L_{l}.
No heatsink is needed for charge currents in excess of 1 A and AA cells charge within
an hour. The 4541 timer disables the regulator after one hour, this interval being set by C_{4}, R_{4} and R_{5} and $S_{w^{\prime} / \text { providing a }}$ reset and another hour's charging for NiMH or larger NiCd cells. The led indicates

charging taking place.

Huw Jones
Gyrus Medical Ltd.
St Mellons
Cardiff

VFO uses a single current-mode IC

Using only one IC, two capacitors and four resistors. this variable-frequency oscillator uses one element to provide independent control of frequency and amplitude. The IC in question is a Phototronics PA630 current-mode amplifier consisting of a secondgeneration current conveyor and two buffers.
Figure 1 shows the arrangement, in which the frequency is:

$$
\omega_{0}=\omega_{a} \sqrt{1-v} \quad(0 \leq v \leq 1)
$$

and the condition for oscillation is:

$$
k_{0}=1+\frac{C_{2}}{C_{1}}\left(1+\frac{R_{2}}{R_{1}}\right)
$$

where.

$$
\omega_{x}=\left(R_{1} R_{2} C_{1} C_{2}\right)^{-1 / 2}
$$

and,

$$
k_{0}=1+R_{F} / R_{G}
$$

Therefore, frequency control is totally independent of the condition for oscillation, which may also be set by R_{F} or R_{G}. Since the current conveyor and output buffer form a current-feedback amplifier, amplitude stability is good.
Taking into account amplifier characteristics, the non-inverting amplifier's transfer characteristic is

$$
k_{(s)}=\frac{k_{0}}{1+s R_{F} C_{T}}
$$

where $R_{F} C_{T}$ is τ, the amplifier time constant and C_{T} is the internal transcapacitance. There is no gain/bandwidth trade-off.
The earlier equations now become

$$
\omega=\omega_{0}\left(1+\tau \omega_{3} k_{11}\right)^{-1 / 2}
$$

and
$k=k_{0}+\tau \omega_{1}\left(1-\frac{\omega^{2}}{\omega_{x}^{2}}\right)$
The theoretical absence of slew-rate limiting in the current-feedback amplifier makes for higher operating frequencies, larger amplitudes and less distortion; frequency being only limited by parasitic capacitance. In an op-amp circuit, the same configuration would be limited to an upper frequency of about 16% of the gain/bandwidth of the op-amp. Again, large component values are unnecessary for LF ascillators.

Figure 2 shows the result of performance measurements, using a PA630 with $\pm 10 \mathrm{~V}$ a symmetrical passive network and R_{F} of 470Ω. The amplifier time constant was found to be 14.5 ns . Distortion is less than -35 dB . The saturation of the output buffer affords amplitude limiting, but a temperature-sensitive R_{G} would be desirable.

Santiago Celma

Pedro Martinez

University of Zaragoza Spain

Fig. 1. Current-feedback amplifier circuit allows independent control af amplitude and frequency.

Fig. 2. Results of testing agree closely with predicted characteristics. Output frequency is shown plotted against

Power isolator

n the event of a power supply attempting to impose overvoltage on the load, or the load trying to draw too much current, this circuit arrangement isolates the load and indicates the fault condition by led.

In normal operation, $T r_{l}$ and $T r_{2}$ are off, the 555 is reset and the 555 discharge transistor is on and draws base current to saturate T_{3}, passing current to the load.

If the load demands excess current, the voltage drop across $R_{s c}$ turns $T r_{1}$ on and triggers the monostable formed by the 555 , turning off its discharge transistor and therefore Tr_{3}, which isolates the load. The monostable times out and
retriggers continually so long as the fault remains.
To protect the load against overvoltage, D_{1}, R_{4} and R_{5} present a fraction of the load voltage, determined by R_{5}, to $T r_{2}$. If this voltage exceeds the set limit $V_{T}, T r_{2}$ conducts,
triggers the monostable and again switches off Tr_{3} - In either case, the led lights.
The series pass transistor Tr_{3} is either on or off and therefore need only be a medium-power type. Voltage of the zener D_{1} should be $\left(V_{z}+0.7\right) \approx 0.8 V_{T}, V_{T}$
being in the $5.5 \mathrm{~V}-15 \mathrm{~V}$ range. The sense resistor $R_{s c}$ is $0.7 / I_{T}$, I_{T} being the trip current.
MS Nagaraj
ISRO Satellite Centre
Bangalore
India

Mosfet stabilises Wien amplitude

Acommon method of stabilising a Wien-bridge oscillator is to use a thermistor, which is expensive. This 1 kHz spot-frequency oscillator uses a mosfet to do the same job, with low distortion
Positive feedback via the frequency-determining network of the bridge is attenuated by $R_{9,10}$, negative feedback through $R_{6,8}$ being reduced slightly more. Diode ${ }_{m!}$ rectifies the output and charges C_{l} to bias the fet partially on which, since the fet is in series with R_{7} across R_{10}, reduces positive feedback until it equals negative feedback and the output amplitude stabilises at about $3 \mathrm{Vpk}-\mathrm{pk}$. Signal voltage across the fet is small, keeping distortion to a reasonable level, being almost all second harmonic at 0.4% without the further network
around in the fet source circuit.
Output signal through C_{2} and $R_{4,3}$ modulate the fet source voltage in the correct phase to reduce the residual distortion, $C_{3} R_{5}$ adjusting the phase for minimum distortion, which now consists of third and higher harmonics.
Tests show THD at 0.02% 0.025%, for a number of fets. Output amplitude is completely stable for supply voltages from $\pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, with minimum distortion at $\pm 9 \mathrm{~V}$; varying R_{f} sets minimum distortion in the whole supply voltage range.
Output frequency of the circuit shown is 1009 Hz . Resistors should be 1% or 2% types and capacitors 5% or better.

Ian March

Waterlooville Hampshire

Simple servo

Avery simple servo loop controls two relays that switch a reversible DC motor having a slider potentiometer to measure its position.

To prevent the servo loop hunting, the amplifier is provided with hysteresis; when the feedback is within the hysteresis band, both relays open and brake the motor. Unusually, an opto-isolator generates a "floating" voltage to define the hysteresis, with another to compensate for temperature variations.

Resistor R should be the correct value for equal opto-isolator voltages. Adjust the "set hysteresis" input until the servo does not hunt; in the original, the potentiometer

Servo, originally used to control steering on a small vehicle, uses opto-isolators to provide a floating hysteresis voltage to dєfine dead zone.
provided 600 mV from full right to full left and 40 mV of hysteresis was needed, whici is equivalent to 3% worst-case error. Solidstate switching would improve this
performance.
W Gray
Farnborough
Hampshire

Gate-voltage generator

The advantages of mosfets when used to control small power devices are unquestioned, but do not include the problem of gate voltage provision, which can be troublesome since it must be up to 9 V greater than the source voltage - not ideal for batterypowered circuitry.

The 555 oscillator drives a
voltage multiplier supplying about twice its own supply voltage. Current output is small, but mosfets take negligible gate current; this circuit has driven ten mosfets with no voltage drop.
George Smith
Fencehouses
Tyne \& Wear

Letters to"Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Objective assessment

The sole purpose of audio equipment is reproduction of music. From this, it follows that there is only one standard against which an audio design may be assessed: its effect on music reproduction - the quality criterion.

If the objective methodology used for evaluation relies on standards other than the quality criterion, for example objective measurements of some kind, then objective evidence must be provided that proves those standards accurately reflect the quality criterion. Without such proof. the results of the evaluation have no validity.
Similarly, if evaluation test conditions differ from designed-for conditions, such as amplifier load not a loudspeaker. or the test signal not music. then evidence must be provided that proves the changed conditions do not affect the results.
As the quality criterion is essentially subjective in nature. I would be surprised if the evidence to support an objective approach actually exists. In that case, this -objective" method is just another form of subjectivity.
I would welcome alternative views adding to our collective understanding of this fascinating subject. But, to paraphrase Douglas Self, if you don't have anything worthwhile to add, please don' 1 add anything!
Stephen / Merrick
Stockport

Quantified listening pleasure

 Jerry Mead 's confidence (Letters. $E W+W W$, July) provokes a wry grin. If. as he asserts, he is a trained listener and able to choose the listening conditions, then I wouldn't be in the least surprised he is able to detect an audible change when one element - say, the amplifier - is simply substituted in a reproduction chain. But he and many others are missing the whole essence of the objectivist argument.First of all, if a change is genuinely audible, then a change such as a difference of 0.5 dB in mid-band gain is measurable, quantifiable and correctable - something the ear/brain interface can never do. Moreover, if the change is a perceptible deterioration in fidelity, then it can be identified by well-understood procedures.
There is no magic, whatever anyone likes to think - the well-known Quad tests in which I took part. taught me that, if nothing else.
To compound the growing impression
that I am a dreadful old reactionary. I also happen to be quite contident that a very good engineer would have to try hard to design a bad amplifier these days - such is the state of the science as now fully understood. The essential topenlogy of a competent design, so lucidly cutlined by Doug Self, adds a great deal to what we knew already. However. even Doug will agree that if Ben Duncan favours us with an amplifier of his own, that it will probably sound no different fromi his. But if it costs more. Ben, then the exercise is a failure.
What I and many other experienced design engineers take vigorous exception to is any assertion that ears alone can deternine whether any item of audio hardware sounds 'good' or 'bad'. This is what the self-proclaimed experts in the audio comics continuously try to persuade their largely technically-ignorant readers. There are far too many variable: involved: psychological, physiological, emotional - you name it. It ako perpetuates the myth that domestic sound equipment is getting better. It is not to any significant degree.
For example, the only tangtble
difference with each successive model of a compact dise player is an increase in the amount of air inside.
A decade ago, when rather more affluent, 1 would have happilly put up a four figure sum as Peter Walker did, fully confident that given mutually agreed test procedures, the Moir/Quad lest could be repeated with identical resulrs.
Incidentally, the magazine guru who provoled it chickened out of participation at the eleventh hour and lasan't been heard of since.
Reg Williamson
Staffs

Simpler circuit

The objective of IC Rohslet's circuit (Circuit Ideas, Square waves from a 555.

July) can be more simply realised by reversing the roles of pins three and seven. Pin three is nomally the output and has active pull-down and active pullup. Pin seven is normally the discharge route. and has only active pull-down (being open-zollector).
The timing resistor is now connected to pin three and the output taken from pin seven. which may or may not require a pull-up resistor to the supply depending on the application. An automatic 50\% duty cycle results and there is no need to mess around with pin five. See also Circuit Ideas. December 1990.

D M Bridgen

Surrey

Amp designers top ten

The Self/Duncan controversy is fascinating! But, there's one glaring flaw: Where do they get their sources of distortionless music. And what sor is it nighbrow, niddle, pop. Motown or jazz?

I have a good collection of several hundreds of recordings on assorted media including cassette tape, reel-to-reel, vinyl. CDs plus a digital four-band radio. Bur how much of it is true hifif? With my hand on heart 1 have to admit a much smaller percentage than I'd like.
Could Mr Self and Mr Duncan be induced to tell us their top ten, with full catalogue numbers:' After all, if it turns out that one liken brass bands and the other South American, much would be explained.
Ronald G Young
Sussex

No military/civil distinction

I was most interested to read R M Burfort's view that military spending in the electronics industry letter has been a bad thing. Looking back over my career in electronics I recall an early Pye television receiver that incorporated the if strip out of an airbome radar, type $H_{2}^{2} S$.
As a keen radio ham listener in those days I had an RII55 bomber receiver. I also built a superegenerative set for 10 m using a Cl 2 valve, a double horned triode, and heard the New York taxison it.
When I joined the Ministry of Tramsport \& Civil Aviation in 1951 most of our equipment was ex-Air Force. The vhf receivers were $R / 132$ manual tuning and R1392 crystal tuning, the transmitter, were $T / 1,3 /$ for vhf and $T / 190$ for hf; the hf receivers being CRIOO.
Marconi Instruments when I went there in 1958 had one third military business.
one third civil and one third export. At MEL, in 1969. I experienced mostly military contracts but did work on Madge which was a helicopter landing aid. We also did some tests for North Sea oil rigs.
My last company. Rediffusion Flight Simulation had both military and civil contracts.
My point is that, unfortunately. a balance of military and civil is required though it would be better for mankind if so much effort were not put into weapons. of mass destruction.

$P D$ Somerville

Sussex

Where is non-magnetic power?

Two years ago. in July the 1992 issue, you printed an article entitled Electricity without magnetism. pp. 540-542.
Unless I missed any follow-up or letters from readers there has since been a conspicuou absence of comment. This surprises me because in a power hungry world, the hypothesis put forward would seem to be of monumental importance.
The inventors. Aspen and Strachen. would surely not still be endeavouring to overcome the non-availability of the essential PFDV (?) material referred to. Could it be perhaps that the inventors fooled the US Patent Office into granting them a patent. Or perhaps one of the many powerful indusirial bodies has successfully persuaded the inventors to forget it.
On p542 Editor Frank Ogden and consultant Derek Rowe seemed suitably impressed. But I suspect that neither of them really understood just how the device worked. The interpretational drawing and editorial comments included does not satisfy all the claims made by the inventors: where does that leave us?
Either the claim is a complete sham and US Patent Office has been conned, or perhaps the article was a rather late April fool.
R L Tufft
Thirsk

Neither Derek nor / would claim total understanding of the phenomenon reported in the article and I don't think the authors would either. Every so often an experimental observation is made which defies explanation by either you, me or the US Patent Office. It must be right to report that observation in the hope that a proper understanding follows in the fullness of time. Ed.

Hall's well that ends well

It was indeed with misty eyes that I read the article about Hall effect devices (Applying Hall to good effect, EW+WW. July, pp.576-580). I first had to work with these devices some years ago, when employed as a maintenance engineer at a local semiconductor production factory.
Night shift technicians kept leaving notes for the day shift engineering group to investigate a malfunction in a simple machine used to crop component leads. It appeared that the machine was not indexing accurately. Stopping and starting positions were set by Hall effect switch mounted on the fixed frame of the machine, and little cylindrical permanent magnets on a rotating wheel, close to the Hall switch.
Investigation with a sophisticated field strength tester - the end of my screwdriver - revealed a noticeable difference in the 'pull' from each magnet, causing the switch to trigger at the wrong place at each station on the index wheel.
Being a battle-hardened maintenance man, I took the only sensible option available: rip the magnets out of the wheel and fit a roller action micro switch on a bracket beneath the Hall switch. The holes in the wheel provided excellent detents for the switch, and indexing was perfect.
If any purists want to discuss this inelegant solution, I can only refer to the shift technicians who thought it a doddle to set up, and the production people, who wanted to know why it hadn't been done correctly in the first place - a simple answer that clearly demonstrates that we should all take in to account the secondary effects (and beyond) of our designs.

Peter Thornton

Oldham

Old radio club

1 am researching the history of the Southend and District Radio Society. I have proof of its existence in November 1923 as I have committee meeting minutes back to that time. I also have some evidence, in the form of leaflets and handwritten notes, that indicates the Society was formed in 1920. But there is no confirmation of this because these documents are not dated or signed.
If the Society was founded in 1920. this will be quite important to us because it means next year will be our 75 th anniversary, and of course we shall stage a specials event to mark the occasion.
I would be very grateful for any information anyone may have on the Society as it will be important to future members to have a complete history of one of the oldest amateur radio clubs in the UK. In the early days it was known as the Wireless Society of Southend.
Can any $E W+W W$ reader help m out with any more background?
LJ Burchell

Southend and District Radio Society
PO Box 88
Rayleigh
Essex SS6 8NZ

c change?

May I firmly rebut Michael Williams' contention (Letters, $E W+W W$. July) that the decrease in speed of light is due only to the inaccuracy of early equipment. Surely he could give Nobel prize-winners such as Michelson credit for knowing the difference between results that vary around a true value and those that show a consistent decrease. This is what Michelson found with equipment whose accuracy and sensitivity was more than adequate to detect changes.
If Mr Williams. or any of your readers (UK only for the moment), cares to send ine a loose $£ 1$ stamp and an A4
addressed-envelope. I will gladly loan them the 90 -page 1987 Stanford Research Invited Report with, 377 references, written by Trevor Norman and Barry Setterfield.
I think recipients will find it blows away Mr Williams' belief that the decrease in c need not be taken seriously.
As the author of Science vs Evolution, referred to by Mr Goldberg (Letters, July) I can assure readers that a scientific and media mafia' most certainly does exist.
They operate to ensure that what reaches the public are only orthodox views on the many controversial subjects that include evolution, relativity and heliocentricity.
For that reason, your publication is to be congratulated as being one of the very few to have the courage and freedom to publish altemative evidence on sensitive subjects where open debate is discouraged.
Malcolm Bowden
Kent

Dying light

Statistical analysis of over 600 observations of 12 different atomic quantities measured by 25 disparate methods over 300 years has confirmed the decrease in the speed of light. For example, R, G and e are truly fixed constants, whereas $h, e / m c, h / e$, and $2 e / h$ are non-constant. and have varied exactly as would be expected with a falling c (c decay or $c D K$ as it is called by Ausiralian researchers).
Yet Michael Williams (Letters. July 1994) attributes the relentlessly diminishing values of c to observational errors or instrument limitations in the past. But if this were the case, there would be a spread of results on either side of a true constant value, not a steady. monotonous decrease.
Since the 1960s. we have been basing our standard of time not on the astronomical clock, but on the atomic clock, which uses the frequency of vibrations of electrons in caesium. The frequency is bound up with c, so that if c is not constant. our time standards will be
faulty
In 1984, van Flandern of the US National Bureau of Standards showed that the atomic cloch is slowing down relative to astronomical time. All c measurements, since the 1960s have been calibrated using atomic clocks. The clocks are themselves moving lock-step with any change in c, so no variation can be noted with that method.
$c D K$ is subtler, better developed, and having wider ramifications than Michael Williams can imagine. It has radically reduced the age of the universe. recalibrated radiometric dating downwards. forced a reinterpretation of the Red Shift. eradicated the Big Bang Theory, sunk the Nebular Hypothesis. undermined uniformitarian geology, and destroyed Darwinism - all at the same time.
Amnon Goldberg
London

Bad references

This Letters column is becoming increasingly disturbing. It should be insisted that people who quote experiments purporting to show that all modern science is erroneous must at least give their sources.
Your correspondent Amnon Goldberg is particularly bad at this as he quotes all kinds of experiments wilhout ever giving usable references. On the very few occasions when I have found his sources. they have either not said what he thought they did or were highly contentious and difficult to accept.
But the nadir came with Michael Williams` letter attacking Mr Goldberg (May). This was in execrable bad taste and gratuitously offensive. He accused Mr Goldberg of being related to a modern mass murderer. Even if this were a joke it is not the type that should appear in a respectable joumal. Ile called Mr Goldberg a ‘loony chabadnik'. The first term is highly offensive. The second can only be known to a very small number of your readers and I can assure you is not an accurate description whatsoever of Mr Goldberg.
To cap it all, even Mr Williams' science is wrong. The point about the hollow space in the centre of a sphere of uniform mass is that for an inverse-square law field. the interactions due to the outer layer all cancel out. As a result, the measurement of G at the Earth's surface is correct. This is first year undergraduate problem given in many text books.
Perhaps in future you will exercise your editorial prerogative to edit out offensive remarks.
Michael Slifkin
Address unreadable or witheld.

I don't necessarily endorse the

 opinions expressed in the Letters column. Occasionally they make me wince, they frequently make melaugh. Every so often, I encounter something which makes me rethink accepted truths. I hope that other readers react in a similar fashion. It would be a very thin Letters column if we restricted ourselves to the eminently worthy. And boring too. -Ed

Private progress - public property?

I believe there is no such thing as 'intellectual property" (Patently unclear. May, pp.433-436) - except in the sense of memory of private experiences. Otherwise why should we oblige every citizen to share at least nine years of compulsory education, assering that knowledge is as universal as it is everyone's property?
The path to modern technology commenced with Newton's physics, was refined by the French mathematicians who shared their discoveries freely, and every new law is exploited as a newly discovered aspect of nature.

Michael Williams

Beth Shemesh
Israel
Two wrongs...?
We recently saw , as part of the Heretics series on $B B C l$. the molecular imprint of a heart drug supposedly transferred via a magnetic circuit to a container of distilled water. I am prepared to believe that water may have some memory feature. though to transfer if by electromagnetic means using simple components is rubbish.
We have also seen. mostly within the pages of $E W+W W$. much debate on how ac transmission lines could concentrate gamma rays, and so lead to cancer.
Though both theories seem unlikely, I have an observation to make based on these two apparently unrelated effects.
Given that EM fields can affect the 'memory' of water (supposition); that the human body is more than 90% water (true); that ac magnetic fields erase magnetic tape by randomising the magnetic domain element (true); and that the human immune system is helped by the transfer of 'templates' by water (big supposition), then prolonged exposure to overhead ac power lines could erase the information carried by the body's water.
If that were so, the immune system inay not be as good as it could be and people with a tendency towards a terminal illness would be more likely to acquire it while living under a power line than those who do not.
It could be a case of two rubbishy theories being used to create a third one. 1 neither believe them nor disbelieve them but I am prepared to be convinced.

Peter Barnes

Bristol

CLASSIFIED

0

 Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILAELE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EOUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE dISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB

Tel: (+44) 0243 545111/2
Fax: (+44) 0243542457
HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED

CIRCIE NO. 150 ON REPIY CARD

VALVES AND CRTS

ONE MILLION ITEMS IN STOCK INCLUDING MAGNETRCNS, KYLSTRONS, VALVE SOCKETS FOR AUDIO RECEIVING TRANSMITTING, OBSOLETE BRANDS SUCH AS MULLARD, GEC A SPECIALITY. ALSO HUGE STOCKS OF RUSSIAN AND SOVTEKITEMS ASK FOR OUR 40-PAGE VALVE CATALOGUE OR CRT CATALOGUE.

VALVES WANTED FOR CASH

ESPECIALLY KT66, KT77, KT88, PX4, PX25, VALVE HI-Fls e.g. QUAD, LEAK, GARRARD 301. IF POSSIBLE SEND WRITTEN LIST

BILLINGTON EXPORT LTD
1E GILLMANS IND EST, BILLINGSHURST, SUSSEX RH14 9EZ
CALLERS STRICTLY BY APPOINTMENT ONLY
TEL: 0403784961 FAX: 0403783519
MINIMUM ORDER £50.00 PLUS VAT

FREE CLASSIFIED

FOR SALE. Tecktronix 7000 plug-in digital delay module. Mechanically OK. No knobs. Electrical condition un-known. Offers? Kitching 0642722812 after 6 pm . WANTED W.W. 2 radio equipment fex WS62. WS18, suitcase set, German SSTR-1. For muscum. 028 R0 Rag Otter stad, Hosterkobvej 10. DK346(0) Bir stad, Hosterkobvej, Denmark. Tel: 0104542815205 . FOR SALE. Patent GB2192064B. Tel: Mike Nicholas (0202) 432506

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO. Unit 58, Queens Road, Wisbech, Cambs. PE13 2PO ESTABLISHED OVER 15 YEARS Buyers of Surplus inventory Tel: 0945584188 Fax: 0945475216

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT
Telephone 0621-893204. Facsimile 0621.893180.

TEKTRONIX 1241 LOGIC

 ANALYSER FOR SALE With 2 off 1240D1 and 2 off 1240D2 aquisition boards together with 6 off p 6460 aquisition probes . . 54 channels of aquisition altogether! 1 off 12R502 RAM pack, 1 off RS232 comm pack, 1 dff printer ROM pack, 1 off $Z 80$ mnemorics ROM pack and a large quantity of diagnostic lead sets, both standard and modified. All in excellent condition with manuals, etc.offers toclive kavan on 081-9988127

[^4]
WANTED

High-end Test, Communication \& Computer Equipment. Top prices paid Please send or fax your offer to: Steigerwald GmbH Neusserstrasse 9, 80807 Munich South Germany Tel: 01049893615833 Fax: 01049893615899

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387 Telephone: 0763246939

RANK BRIMAR LTD MIDDLETON

Part of the Rank Organisation, Hank Brimar is a market leader in manufacturing ligh technology display products with a major investment programne to maintain our scientific leading edge and world market position.

We now have the following vacancy

ANALOGUE DESIGN ENGINEER

An opportunity exists for a design engineer to work in the power electronics field. Rank Brimar manufactures a range of precision, high power magnetic deflection amplifiers for use in flight simulator CRT based projection display systems.

We are looking for an enthusiastic engineer who can contribute new ideas to extend the performance of these products. You will require an in-depth knowledge of power mosfet and bipolar transistor behaviour in both linear and switching eircuits when driving inductive loads. Some magnetic component design will be required.
If you have a degree in Electronics with 5 years relevant exprerience and are interested in joining our team. please submit your full CV and salary expectations to:
Miss Carol Hallworth, Senior Personnel Assistam,
Rank Brimar Lid., Greenside Way, Middleton, Manchester M24 1SN. Tel: 0616817072

Closing date: 9th September 1994
RANK BRIMAR OPERATES A NON-SMOKING POLICY

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact

Malcolm Wells on:

Tel: 081-652-3620

Radio Sites Manager

based Reading

c. $£ 22,000$ + benefits

Thames Water Utilities is one of the largest water services companies in the UK. In addition to our own radio requirements. we can offer a unique opportunity to many local companies and organisations with radio transmission needs by offering transmission site facilities based at numerous sites throughout the Thames Water region.
As Radio Sites Manager you will co-ordinate all activities undertaken within the implementation and management of these radio site slaring projects. Prometion of this service locally to organisations will be a major part of your role and you will be set targets to ensure maximum commercial success is achieved. In addition, your responsibility encompasses the negotiation and supervision of maintenance contracts and the arrangement of regular inspections to ensure user equipment is of the correct standard. This will include direct supervision of all work on these sites. You will be expected to assess radiation hazards on radio sites, ensure health and safety standards are maintained and provide advice on both rechnical and financial implications of proposed installations.
Strong negotiation skills and commercial awareness must be accompanied by an understanding of the needs of external organisations. You should be HNC qualified with at least 5 years` relevant experience. 2 years of which must have been in a supervisory role, and possess indepth knowledge of radio antenna system design. installation and maintenance. You must also be physically fit and able to climb tall structures. Extensive travel is reguired for which you will need a clean driving licence and you may work irregular hours on occasions.
We offer a competitive salary and henefits pachage including generous holidays and contributory pension scheme.
If you have the relevant experience we need, please send your full ca reer details to Tracy Handover. Personnel Department. Thames Water Utilities Limited. Napier Court 4. c/o Nugent House. Vastern Road, Reading. Berks RGI 8DB. Closing date: 16th September 1994.

CLIVEDEN
 Technical Recruitment

Cliveden Consultancy Services plc

TEST ENGINEERS

1) RF TEST
2) RF TEST
3) RF TEST
4) RF TEST
5) RF TEST
6) RF TEST
7) RF TEST
8) RF/MICROWAVE TEST
9) INSTALLATION
10) INSPECTION
11) SYSTEMS TEST
12) INSPECTION

MOBILE RADЮ
MOBILE COMMS
TELECOMMS EQUIPMENT
MOBILE HANDSETS
MOBILE COMMS
MILITARY COMMS
MOBILE COMMS
SAT COMMS/HYBRIDS
TELECOMMS \& RF
MIC SUBSTRATES
ASSEMBLIES
NETWORKS/TELECOMS/ AVIONICS
SUB ASSEMBLIES/HYBRIDS

DESIGN ENGINEERS

1) RF DESIGN
2) ANALOGUE DESIGN
3) $68000 /$ ASSEMBLER
4) DSP ENG
5) TEST EQUIPMENT
6) ASIC DESIGN
7) HARDWARE DESIGN
8) ASIC DESIGN
9) ANALOGUE/DIGITAL.
10) MICROWAVE DESIGN
11) IC DESIGN
12) HARDWARE DESIGN
POWER AMPS $1-2 \mathrm{GHz}$
AUDIO/ACOUSTIC
SERIAL INTERFACE CARD
RADIO SYSTEMS/
PROPAGATION/MODULES
HARDWARE/SOFTWARE
HP BASIC IEEE
VDHL/TELECOMS OR VIDEO
68360 SERIESISDN
MENTOR GRAPHICS V.8.2
ADC/DAC INTERFACE
TO MPROC
ASAR TRANSMIT/RECEIVE
MODULES
IC'S FOR TV TEXT
MPEG/JPEG $/ V I D E O ~$
COMPRESSION

6	MTHS + HANTS	$£ 20-£ 23$	P/HR
6 MTHS + HANTS	$£ 20-£ 23$	P/HR	
3 MTHS + BUCKS	$£ 20-£ 23$	P/HR	
6 MTHS + HANTS	$£ 23-£ 25$	P/HR	

6 MTHS + CAMBS £25-£28 P/HR
3-6 MTHS + HANTS £23-£25 P/HR
3 MTHS + HANTS £NEGOTIABLE
6 MTHS + HANTS £ NEGOTIABLE

SYSTEMS ENGINEERS

1) RADIO ENGINEER

SYSTEMS TO $3.5 \mathrm{GHz} /$	6 MTHS	MIDDX	$£ 25+$	P/HR
PMR/GSM	6 MTHS	MIDDX	$£ 25+$	P/HR
CCS/DASS 2/ISDN	6 MTHS	HANTS	$£ 25$	P/HR
HARDWARE/SOFTWARE/	6 MTHS	HANTS	$£$ NEGOTIABLE	
OSI LAYER 3				

4) PROCUREMENT ENG

PAYLOAD/SATCOMMS
6 MTHS HANTS
£ NEGOTIABLE

OTHER CONTRACTS REGISTERED DAILY - MANY PERMANENT VACANCIES AVAILABLE Cliveden Consultancy Services Plc

92 The Broadway
Bracknell
Berks RG12 1AR
Tel: 0344489489
Fax: 0344489505

161 Bitterne Road
Southampton
Hants SO18 4BH
Tel: 0703229094
Fax:0703 220326

ANRITSU TR4133A 100kHz-20GHz synthesized spectrum analyser IFRA 7550 1 GHz portable analyser w tracking gen opt IFRAB0002.6GHz version of above HP3580A 5 Hz -50k Kz audio spectrum analyser HP3582A dual-channel 25 kHz analyser HP8568B 1.5GHz High-performance

£6250 $£ 1500$
$£ 3500$

331A distortion meter
339 A distortion meter
3400 A voltmeter $10 \mathrm{~Hz}-10 \mathrm{MHz}$
3336 A evel cenerato
3552A transmission test set
3586A selective level meter
415E Swr meter
4274A multi-frequency (100 Hz -100kHz) LCR componentmeter
4275A multi-kequency LCR component meter
432A478A microwave power meter $10 \mathrm{MHz} \cdot 10 \mathrm{GHz}$
432AR 486 A uwave power meter $265-40 \mathrm{GHz}$ (waveguide)
5370 B universal time-interval counter
6253 A dual power supply 0-20V0-3A twice
6825 A bpolar power supply/amp -20 to $+20 \mathrm{vdc} 0-1 \mathrm{~A}$ 70300A tracking generator plug-in unit
70907A external mixer for 70000-ser spectrum analyser 7035BX-Y single pen analogue chartrecorder 8011A pulse generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$ 8112Apulse generator
816A stofted line $1.8-18 \mathrm{GHz}$ with carnage 809C\& 447 8350B sweep generator main-trame
8405 A vector voltmeter, voliage \& phase to 1000 MHz
8620 C sweep generator, many plug-in units available 8671A synthesized signal generator $2-6.2 \mathrm{GHz}$
$€ 200$
$£ 1500$
£250
$؟ 2500$
$\$ 2000$
$£ 1000$
$؟ 350$
£4000
£5000
5000
£600
2500
£225
£225
2019 AMFM synthesized signal generator $80 \mathrm{kHz}-1 \mathrm{GHz}$

2022 D synthesized signal generator 2438520 MHz universal counterttimer 2828 A2829 digital simulator/analyse 2955 mobier radiotest set 2955 A +2960 celluara adapters. . . various configurations 6059A signal source $12 \cdot 18 \mathrm{GHz}$ 6460,6420 power meter $10 \mathrm{MHz}-12.4 \mathrm{GHz} 0.3 \mathrm{UW}$ - 10 mW 8938 audio power meter
OA2B05A PCM regeneralor test set
TF2910/4 non-linear distortion (video) analyser TF2914A TV insertion signal analyser TF2910 TV interval timer
$£ 1750$ £1950

RUEL K KIAER 1618 band Fass Fiter BRUEL \& KJAER 3513 portable vibration analyse RRUEL \& KJAER 2515 vibration analyser DATRON 1065 digital multimeter DRAN.ETZ 626 mains disturbance analyser/2x PA-6001 DRAAETZ 606 -3 line distufbance analyser GOULD OS 30020 MHz dual-trace gen'-purposeo' scopes MAURYMICROWAVE 8650 E TNC-cal bration kit
TEKTRONIX CSA803A COMMUNICATIONSSIGNAL ANALYSER Asnew, suppl ed with $1 \times$ SD22 head TEKTRONIX $1503 \mathrm{C} / 3456$
MORE, FULLY REF FRRISHED, FULLY GUARANTEEO TEST
EQUIPMENT A VAILABLE FROM STOCK. PLEASE REQUEST OUR CURRENT LISTINGS. WECAN FAX LISTS \& SHIP GOODS WORLD. WIDE. HIGHEND EQUIPMENT ALWAYS WANTED FOR STOCK
$£ 1000$

§3000

£3000
Call
£750
$£ 750$
§350
£350
$£ 750$

£1000

1000
£500

RACAL 9008 automatic modulation meter $£ 325.9009$ RACAL 9082 synthesized AM/FM sig' gen' $5-520 \mathrm{MHz}$ $€ 30$ RACAL 9300 RMS voltmeter - 80 dB to +50 db RACAL V-STORE 16,16 -chan instrumentation recorder RACAL-DANA 9302 RF milli-voltmeter 1.5 GHz RACAL-DANA 9303 level meter, digital ROBERTS\& ARMSTRONG fo-cable end-cut measure unit EKTRON IX 16 digital photometer TEKTRONIX $1503 \mathrm{C} / 03 / 04 / 05 / 06$ TOR cable tester WAYNE KERR3245 precision inductance analyse WAYNE KERR B905 automatic precision bridge
 analysers. $9590 / 1 / 2 / 3$ portable analysers. Please call usif you have high- end capital equiprient being under-utilised.
PLEASENOTE:ALL OUR EQUIPMENTISNOW OPERATION-VERIFICATION TESTED BEFORE DESPATCH BY INDEPENDENT LABORATORY
We would be pleased to handle all grades of calibration or NAMAS certification by same laboratory at cost price. All items covered by our 90 -day parts and labour guarantee and 7-day 'Right to Retuse' (money back) warranty.

ALL PRICES SUBJECT TO ADDITIONAL VAT AND CARRIAGE

INDEX TO ADVERTISERS

	$P A G E$		$P A G E$
Amdat	732	Lab Center	751
Anchor Surplus Ltd	711	Langrex Supplies Ltd	759
BK Electronics	718	M\&B Electrical	766
Bull Electrical	739	M\&B Radio (Leeds)	716
Chelmer Valve Company	718	MQP Electronics	726
Dataman Designs	BC	Number One Systems	726
Display Electronics Ltd	742	Powerware	718
Field Electric Ltd	759	Ralfe Electronics	792
Halcyon Electronics Ltd	729	Seetrax Ltd	771
ICE Technology Ltd	706	Smart Communications	IFC
John Morrison	729	Surrey Electronics	775
John's Radio	$712 / 734$	Technology Sources Ltd	726
JPG Electronics	732	Telnet	733
Kestral Electronics	775	Tsiene Engineers Ltd	759
Keytronics	765	Ultimate Technology	775
			747
			IBC

FROM CONCEPT TO ARTWORK IN I DAY

Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses
REAL-TME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTlboard. Good manual placement tools are vital to the progress of your design, therefore ULTlboard gives ycu a powerful suite of REAL-TIME functions such as, FOFCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULT 1 board's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTiboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vies and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vies to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

JLTiboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrixlaser or postscript prints and custom drill files.
CIRCLE NO. 100 ON REPIY CARD

NE M

ULTIboard/ULTIcap evaluation system: - all features of the bigger versions - full set of manuals - design capacity 350 pins
Price incl. S \& H, excl. VAT: Purchase price is 100% credited when upgrading to a bigger version. Also suitable for study \& hobby

ULTiboard PCB Design/ULTIcap
Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions,
featuring unlimited design capacity.
The European quality alternative Utionp whemodno maximum roduciviny

I want it. What does it do?

- 8-BIT EPROM - 16-BIT EPROM* \checkmark EEPROM
G SERIAL EEPROM*
\checkmark FLASH
- PIC*
- 8751*
\checkmark EMULATION - FREE UPGRADES \square TOTALLY HANDHELD $\checkmark 3$ YEAR GUARANTEE AVAILABLE TODAY!
*Requires optional modules.

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8Mbit. And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24 hr download from our high speed bulletin boards

Emulation

See your code running before committing yourself to an EPROM. With S4's powerful and easy-touse internal emulation system, download your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen immediately - just one reason why 54 is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or external power sources; earth loop problems are a thing of the past. S4 even emulates RAM

Remote Gontrol

As well as being totally stand alone and self contained, S 4 can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal sotware and a pop-up TSR communications utility.

The Company

Dataman has been designing and seling innovative programmers world-wide for over 15
 S4 comes with a three year guarantee.

Availability

S4 is always in stock and we ship worldwide on a daly basis. Call now for delivery TOMORRWW. Bona-fide UK customers can try S 4 for thirty days without risk. 16,000 users can't be wrong!

D. $\cdot \pi \cdot \pi$
 Dataman Programmers Ltd

Credit card hotline: 0300320719 for same-day dispatch

[^0]: APPLICATIONS .748
 Versatile switching regulator IC, Low-cost evaluation for PowerPC, Using Doppler in car alarm applications.

[^1]: ICE Technology Ltd. Penistone Court, Station Buildings, Penistone,

 All major credit cards accepted

[^2]: heads in 10 tosses

[^3]: Note: The asterisk indicates that the input is inverted.

[^4]: WANTED
 Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity Prorpt service and cash. M\&BRADIO
 86 Bishopgate Street, Leeds LS 1 4BB Tel: 0532435649 Fax: 0532426881

