ELECTRONICS
 WORLD
 Denmark DKr. 70.00
 Germany DM 15.00 Greece Dra. 760 Holland Dff. 14

ELLELE Crystal sample pack*

*First 300 replies only

TECHNOLOGY Heterojunctions: bigger than cmos?
COMPUTING Self-build teletext card for the PC APPLICATIONS Low power switch mode psu

REVIEW

Charting Smith's computer world
RF ENGINEERING Designing combiners and splitters
DIGITAL
Applying FPGA

The data path
to multimedia

"W Wat the ${ }^{\text {HECK } I_{S} \text { GOING ON?, }}$

For Installation and Maintenance of:

- Power Distribution Systems
- Variable Speed Motor Controllers
- Process Control Equipment
- Security \& Other Video SYSTEMS
- Communication Equipment

faults that DMM can nat show

Large LCD Display gives clear indication including Max, Min and Max-Min values

Dual channel operation allows relative timing of signals to be observed

Display of signal shape lets you find

Today the Digital MultiMeter (DMM) is not always enough! Modern electronics permeates our lives and the installation/maintenance professional is faced with problems where voltage and current measurements are just not enough. The shape and timing of signals is an important factor in many applications.

The New TekMeter is a rugged, fully featured, autoranging DMM and a rugged, fully featured autoranging oscilloscope all in one battery-powered 1 kg package. TekMeter is so simple to use you don't need a training course even to look at signal shapes!

Choose between 3 new morlels - the THM550 single-channel version at $£ 649.00$, the THM560 dual-channel version at $£ 775.00$ and the THM565 dual-channel version, with backlight at $£ 995.00$ Whichever one you choose, it will help you to find out what's going on and solve the problem!

CONTENTS

FEATURES

TELETEXI VIA YOUR PC

Teletext on a tv screen is handy but being able to access the broadcast data via a PC is much more useful. Laurence Cook describes a self-build PC plug-in comprising a complete tv tuner and teletext decoder

THE DATA PATH TO MULTIMEDIA.
\qquad 537
With video cd set to appear in the shops, George Cole takes a look ct the technology involved and some of the events that have led to the confus on over standards.

Cover: Nick Lloyd

APPLYING CRYSTALS
. .659
Circuitry needed to drive a quartz crystal is both application and frequency dependent. Martin Eccles looks at discrete component and logic-gate oscillators for frequencies from kiloherts to 200 MHz .

NEW WAVE MICROWAVES \qquad .666
Traditionally, the GaAs mesfet has been the choice for low noise. medium-power amplifiers to 30 GHz but emerging technologies are looking increasingly attractive. Mike Hosking reports on new semicenductors for microwave oscillators and amplifiers

THE GENETIC PICTURE

 .674Use of dna 'fingerprinting' to identify people is set to increase substantially. Tom Ivall explains how the instrumentation behind the technique is evolving.

DIGITAL FILTERS SIMPLIFIED

.684
Bob Lawlor explains how field programmable logic can simplify the design of both finite and infinite-impulse response filters.

USING RF TRANSISTORS. .694
A common way of boosting rf power is to use multiple amplifiers together with combiners and splitters - of which there are numerous types. Norm Dye and Helge Granberg discuss the options.

Normally, measuring rf power at milliwatt levels needs expensive equipment. Nich Wheeler describes a true rms solution that provides both easy calibration and good overload capability.

COMMENT

Its all in the game.

NEWS . .620
Intel and H-P in micro design pact, PowerPC outsells Pentium, World's first 64Mbit dram, Self wins $E W+W W / \mathrm{H}-\mathrm{P}$ writer's award, Rough ride for video CD.

RESEARCH NOTES

 .626DSP flattens steel precisely... and sharpens hearing Sharing the secret to scientific problem solving. Polarity proposal that is music to the ears.

APPLICATIONS

651Low-power PWM, Video selection, Integrated front end chips for DECT, Micropower op-amp for 2.7 V supplies.

DESIGN BRIEF670

Ian Hickman takes a speculative look at a new concept in instrumentation based on bridge measurement - the transformer ratio arm bridge.

NEW PRODUCTS

 .679Classified run-down of new electromic products.

CIRCUIT IDEAS

 .688Single-pot polarity and gain adjustment. Full-wave rectifier uses single amplifier, Frequency doubler, Lowlevel crossover - and more.

LETTERS.

.692
Critical response. Beach buff. Small world, Amnesty appeal, Hidden meaning, Graphic example, IC-can you? Decoding US actions. Calling cable suppliers... to prove a difference.

In nexi month's issue: In next month's issue: Circuits for rms conversion. There only two types of circuit which will measure the power content of a sigr al directly. You can either amplify it and use the resulting out out to heat a thermocouple, or you can process the signal with a root mean square algorithm. Danny Ayers tells all.

Plus a FREE pair of ZTX689B Zetex super-performance power transistors for every UK reader.

THE SEPTEMBER ISSUE IS ON SALE FROM AUGUST 25

KESTREL ELECTRONIC COMPONENTS LTD

All items guaranteed to manufacturers' spec.
is Many other items available.
'Exclusive of V.A.T. and post and package'

EPROMS	1+	$100+$	STATIC RAMS	1+	$100+$
2764A	2.50	2.20	62256LP-10	3.00	2.25
27C64-150	2.30	1.68	6264LP-10	1.85	2.28
27128A-25	2.20	2.10	6522 P	2.40	1.80
27256-25	2.20	1.85	65 CO 2 P 2	2.90	2.38
27-256-15	2.50	2.20	65 C 21 P 2	2.90	2.50
27C512-15	3.00	2.40	65C22P2	2.80	2.30
27C010-15	5.60	3.70	MC146818AP	2.20	1.65
MAX232	1.35	0.95	MM58274CN	4.90	3.98
D8748H	4.20	3.40	SN75176BP	1.60	0.80
D8749H	4.40	3.50	Z80A CPU	1.50	1.00
80C31-12	2.60	1.80	Z80A CTC	1.30	0.85
80C85A	2.60	1.80	Z80A DART	2.10	1.40
82C55-8MEG	1.95	1.58	1488P/1489P	0.32	0.25
	4LS, y pric	4HC, 74 hone for s are flu con	Series available price list ig daily, please ices		
	$\begin{aligned} & \text { Purl } \\ & 1-66 \end{aligned}$	$\begin{aligned} & 8 \text { Bri } \\ & 2 y, S i \\ & 3752 \end{aligned}$	n Road, CR8 4HA $x: 081-66$	4	

Tel: 081-668 7522. Fax: 081-6684190.

Easy to use data acquisition products that allow your PC to be used as a range of useful test and measurement instruments, or as an advanced data logger. Installed in seconds they simply plug into the parallel port (except the ADC-16 which connects to the serial port). They require no power supply and take up no expansion slots. Each comes with a comprehensive manual. Software drivers are included for users who wish to write their own software. Software supplied on $3.5^{\prime \prime}$ disk

PicoScope

\square
'Virtual instrument' software. Storage scope with trigger, timebase, rulers and offset. Real time spectrum analysis with min/max frequency and signal averaging. Multiple meters on screen (digital and bargraph). Printer and file handling support.

Single channel of analog input 8 bit resolution 22 kHz sampling (ADC-10) 12 bit resolution 18 kHz sampling (ADC-12) (sampling speed based on $33 \mathrm{MHz} / 386 \mathrm{PC}$) $0-5$ / input range
BNC input allows use of scope probes
ADC-10/12
NEW ADC 100 virtual Instrument Dual Channel 12-bit resolution The ADC 100 offers both a high sampling rate $(100 \mathrm{kHz})$ and a high resolution. It is idea as a general purpose test instrument either in the lab or in the field. A flexible input range ($\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to conr ect directly to a wide variety of signals

- Digital Storage Scope Chart Recorder
- Spectrum Analyser
- Data Logger
- Voltmeter

ADC-100 with PicoScope £199
ADC-100 with PicoScope \& PicoLog £209

EDITOR

Frank Ogden 081-6523128

DEPUTY EDITOR
Martin Eccles
081-652 8638

CONSULTANT

Derek Rowe

DESIGN \&

PRODUCTION
Alan Kerr

EDITORIAL

ADMINISTRATION
Jackie Lowe
081-652 3614
ADVERTISEMENT
MANAGER
Richard Napier
081-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-6523620
ADVERTISING
PRODUCTION
Paul Burgess
081-652 8355
PUBLISHER
Susan Downey
EDITORIAL FAX
081-652 8956
CLASSIFIED FAX
081-6528956
SUBSCRIPTION
hOTLINE
0622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
0444445566

NEWSTRADE

DISTRIBUTION
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
0816523614
ISSN 0959-8332

Its all in the game

One often gets the impression that electronics for such things as business, defence, communication and scientific research leads development of the art. This may just about be true at present, but not for much longer. The drive increasingly comes from consumer leisure.
We are about to see real changes in our everyday experience coming from consumer electronics. And they will also affect the way in which we do business. Let me give an example of consumer technology affecting our own business, magazine publishing.
British Telecorn and other PTTs are currently experimenting with video-ondemand, a service to deliver your personal viewing schedule directly to your home. At present, if you don't like the terrestrial or satellite offerings of an evening, you must rent a video from your local newsagent or wherever. Very soon, the PTT will be able to deliver your viewing choice in $1.5 \mathrm{Mb} / \mathrm{s}$ digital form directly to your home via the same exchange line which operates the telephone. The viewer dials in a viewing request and back comes the film down the telephone line.
Compare this with the existing business equivalent. While a great improvement on the 14.2 kbaud of a top quality analogue line, data at $64 \mathrm{~kb} / \mathrm{s}$ from ISDN seems primitive by comparison. Video compression and modem technology for consumer use is streets ahead of the commercial equivalent. Imporiant for its acceptance, it will be cheap because it will have been designed for a mass market. Businesses of all sorts will jump at the chance to squirt high bandwidth signals about using consumer derived equipment. For instance, all those things which we as publishers may offer our readers on cd-rom could be made available via the telephone network. The
magazine which you are now reading could soon be iransmitted in its entirety by electronics. This might include the current issue plus the complete archive going back five years.
And for those people who are sceptical about the possibility of electronics ever replacing paper, I would recommend that they take a look at Encarta, Microsoft's encyclopaedia on cd-rom. While one may hate the Americanised content of this work, the hierarchal data access is without parallel. Everything on the cd-rom is content addressable and searchable and all subject texts include highlighted keywords for cross reference. These may be examined at will by double mouse click on the highlighted word. I assure you that if you had your magazines and other pictorial/textual matter delivered and updated regularly in electronic form, you would never look at a paper magazine again... except on a train or plane, perhaps.

But who wants to be tied to a telephone line? There are currently some 250 high power satellite transponders available for rental with operators bending over backwards to find suitable traffic. Ten seconds of transponder time could squirt this entire magazine, diagrams and all, to every corner of the country. The reader would plug his PC into a decoder connected to a standard domestic satellite receiver. We could then update your magazine once a month, once a week, once a day or once an hour...

All this goes full-circle to Arthur C Clarke's seminal article Extra Terrestrial Relays. Upheavals in magazine publishing will be just a single shot in the information revolution which is about to overwhelm us.

Frank Ogden.

Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$ Orders, payments and general correspondence to L333. Electronics World + Wireless World, Quadrant House, The Electronics World + Wireless Worid, Quadrant House, The
Quadrant, Sutton, Surrey SM2 5AS. TIx:892984 REED BP G. Quadrant, Sutton, Surrey SM2 5AS. Txx:892984 RE
Cheques should be made payable to Reed Business Publishing Group.
Newstrade: IPC Marketforce, 071 261-5108.
Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Hoad, Haywards Heath, Sussex RH16 3DH. Telephone 0444 445566. Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

Overseas advertlsing agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd. 205 E. 4énd Street, NY 10117. Telephone (212) 867-2080. Tix 23827.
USA malling agents: Mercury Airfreight International Ltd Inc 10(b) Enģlehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
Typeset 'y Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DAi4 5DT
© CReed Eusiness Pubkshing Ltd 1992 ISSN 09598332

Intel and Hewlett-Packard in micro design pact

Afier two decades of sticking to the $x 86$ architecture, Intel has announced it is devising a new microprocessor architecture in association with Hewlett-Packard.
Both companies claim that the reason for the link-up is a technological breakthrough that will dramatically increase microprocessor power. First fruits of the link are not expected until 1999 and Intel will carry on with its proposed development of Pentium successors P6 and P7.
Unlike its main micro rival, the IBM/Motorola/Apple consortium making PowerPC, Intel does not intend to set up a common microprocessor development centre. Instead. Intel and HP will design chip
sets independently but with a common architecture.
It is expected that HP will concentrate on making high-end chips for mainframes, servers and workstations while Intel concentrates on chips for the lower-end, mainly PCs. Only Intel will sell the chips to other manufacturers but H-P will have the right to use them in its products.
The companies have been collaborating on the project since January and only announced it now because the teams of people had become so large that the project was becoming leaky.
It is generally thought that the reasons propelling Intel into the deal are a feeling that the $\times 86$ architecture
is running out of steam. There is also a perception among big computer systems buyers that Intel is a provider of components for desk-top computing and not one for the heavyduty end of the computer market.
The chips developed under the link will run all existing Intel and HP applications sottware. Neither company would say if applications will run under some form of hardware emulation, the emerging technique of performing the emulation function on-chip, or if they will be truly native to the architecture. Nor is it revealed whether the chips will be able to run other people's software, for instance PowerPC's. David Manners, Electronics Weekly.

PowerPC outsells Pentium

Apple Computers Power PC machines have out sold their Pentium-based rivals since their launch in March.
According to market research firm Computer Intelligence Infocorp, Apple sold 66,300 Power PC based systems in the first three months since its introduction in March 14. This compares with $40,9(1)$ systems sold in the same period based on Intel's Pentium microprocessor.
The sales figures were for the US market. Worldwide sales of the Power Macintosh were 200,900 units. The results, while encouraging for Apple, include a Iarge initial demand for Power Macintosh models with at least 45,000 units sold within the first two weeks. Apple's goal is to sell at least one million PowerPC based systems
within the first year of introduction.
The market research firm had some other good news for Apple. Profit margins on Power PC based systems are more than double compared with Pentium models. This means that Apple can reinvest more money in new product development and marketing than competitors manufacturing Intel based systems
But despite the good sales figures, Apple's attempts to win over PC users with emulation technology running on its Power Macintosh systems has not worked. Almost all buyers of Power Macintosh models are Macintosh users. The failure to win PC customers is blamed on poor emulation technology. Apple and other companies are developing better emulation technology.

More to Harwell than nuclear reactors: AEA Technology recently opened its doors at the Culham and Didcot research centres to show of its commercial $R \& D$ capability. Its expertise in semiconductor processing and battery design are just a couple of examples where its work could be of direct relevance to the electronics industry.

The picture shows a batch of 100 mm wafers about to be bombarded with protons at high energy which will deform the silicon structure to leave gaps. These gaps will later act as trapping centres or 'lifetime killers' which terminate the minority carriers in semiconductor junctions. This improves device switching time. By controlling the energy of the proton source, the gaps may be controlled in size and depth to produce an optimum substrate for bipolar switching transistors.

Other work at AEA Technology includes development of a lithium polymer battery system which allows the construction of a battery laminate just $200 \mu \mathrm{~m}$ thick. This can be shaped and sized to any requirement.

World's first 64Mbit synchronous dram

Callbox in the sky: US dominated consortium Globalstar, one of around half a dozen groups planning to offer satellite based mobile telephone services in 1998, claims that it has the simplest proposal. Forty eight low earth orbit satellites will act as radio basestations for a new breed of dual mode handsets which will work on either existing terrestrial cellular networks or the CDMA based Globalstar network. There is no complex routeing of calls in space, radio calls are quickly beamed back down to an earth station and onto the local PSTN. Globalstar's partners include cellular operator Vodafone and CDMA specialist Qualcomm.

Ahead of everyone, Fujitsu has announced a synchronous 64Mbit dram and says it will present engineering samples in August. Access time for the chip is just 6 ns The process used is $0.35 \mu \mathrm{~m}$.
The six-man Fujitsu design team led by Yukinori Kodana, divided the column access path into three pipeline stages.
To increase operating speed they developed an address incrementing pipeline scheme which can concurrently access data at two consecutive addresses. Using this scheme, the area penalty is 1.5% more than that of conventional drams but it can operate at high clock rates: at 100 MHz , the device allows data transfer rates of $100 \mathrm{Mbyte} / \mathrm{s}$.
Instead of the conventional twobank structure, the designers have gone for four data banks allowing for greater independence of operating areas and, consequently, increased throughput.
Each bank has two cell array
blocks which are separated by the word decoder. Each block has eight global bus lines which are connected to eight DQ pins.
The global bus lines are formed with the second metal layer and are laid out on the shunting area - they do not carry an area penalty. During a burst read/write operation, the separated cell array blocks are activated concurrently.

Bit data from each of the eight $D Q$ pins at two consecutive addresses is read or written simultaneously. This

2-bit prefetch increases the bandwidth of a sequential data transfer.
The Fujitsu team recommends a terminated low voltage tl interface which terminates a transfer line in the middle potential of the power supply voltage and the ground potential. The output circuit matches the impedance of the transfer line and therefore the interface responds to data transfer at 100 MHz .
The chip size is $21.06 \times 11.02 \mathrm{~mm}$ and contains 140 million transistors and capacitors.

PDAs fail to deliver the goods

The market for Personal Digital Assistant (PDA) devices has failed to develop as quickly as industry analysts predicted, creating problems for computer firms that expected it to be the next growth market.
According to market research firm Link Resources, fewer than 49,000 PDAs were sold in the first quarter of 1994, and the rate for the second
quarter is not expected to be much better.
In addition to the slow market, Motorola and IBM report manufacturing problems for their PDAs and Compaq Computer has delayed plans for its Mobile Companions PDA-like devices based on Microsoft's WinPad software interface.

Cordless videophone uses dect

K researchers have demonstrated the feasibility of a cordless videophone, by transmitting compressed video pictures over the dect, the European digital cordless telephone protocol.
Paul Stein, head of radio comms research at Roke Manor Research. said that it is technically feasible to use a dect cordless phone, fitted with a solid state camera and screen, as a
video telephone. Siemens, which owns Roke, is believed to be interested in commercialising the technology in its dect handsets. Roke's first demonstration system is a slow scan tv format which allows a cordless network of dect handsets to be used for security surveillance. The system uses a single timestot in the dect $32 \mathrm{kbit} / \mathrm{s}$ radio channel to transmit a compressed video picture

running at two frames per second. A dect transceiver fitted with a camera transmits the video data via a standard wall-mounted base station to a second handset linked to a PC, which displays the picture.
Although dect's ADPCM coding scheme limits the picture quality achievable in a single $32 \mathrm{kbit} / \mathrm{s}$ channel. Stein said that picture quality can be increased by using more than one time slot to transmit the video data.

Standard H. 261 videoconferencing codecs rely on a minimum $64 \mathrm{kbit} / \mathrm{s}$ data channel, which can be supported by the dect protocol using two $32 \mathrm{kbit} / \mathrm{s}$ slots. Because time division multiple access (TDMA) radio carrier modulation is used, the relevant time slots need not be adjacent and can be multiplexed with other traffic on the cordless network.
Video data incvitably makes heavy use of the 12 available radio channels in each dect carrier and consequently there is a trade off between picture quality and network capacity. Stein, however, is confident that video telephony, running at 30 frames per second is realistic.
Siemens is said to be very interested in the possibilities of cordless videophones.

Nynex backs video on demand

Nynex, one of the largest UK cable operators, will offer the first video-on-demand services on its broadband cable network by the end of the year, and it is investing $£ 200 \mathrm{~m}$ in the venture.

The cable company is buying a head-end system and set-top decoders from General Instruments in a contract worth at lcast $£ 120 \mathrm{~m}$ over the next six years. A Nynex spokesman said the value could be larger if the market for video-ondemand took off. "This gives us a
potential for video-on-demand and we will be offering a kind of video-on-demand service late 1994, carly 1995," said the spokesman.

Nynex is also buying $£ 80 \mathrm{~m}$ worth of switching and transmission systems from Nokia Telecom which, like the General Instrument. equipment, will be deployed in the company`s ten franchises in the north west of England. This represents Nokia`s largest contract with a UK cable company. It will supply it $D \times 200$ digital
switches which will support a total of 100,000 telephone lines.
General Instruments` MPEGbased lCFT 2000 set top box will allow users to select. order and pay for individual tv programmes.
Last year Nynex executives said there were no plans for interactive TV services. The U-turn is possibly a response to BT , which is testing a service using ADSL technology on analogue telephone lines this year. Richard Wilson, Electronics Weekly.

British police test remote control car stop

Three British police forces are testing radio technology which will enable them to remotely control and stop stolen vehicles. The police in Northumbria, Kent and London are testing an electronic device. called DemonScan, which once fitted in a car as an anti-theft device. allows remote control of the vehicle's speed. down to between 20 and 80 per cent of its full value. and eventually stopping it.

The system activates itself once a thief has bypassed the immobiliser system, causing it to send a signal which can be picked up by police vehicles fitted with a radio
transceiver up to 1 km away. The police car can then follow it and gradually reduce its speed by remotely controlling the car`s fuelling via its engine management system.
Demonsian, when perfected, will add $£ 250$ to vehicle price but will be free to the police force. The company behind DemonScan, is the Kent based Knightwatch, which developed the device under the 'Sold Secure - Partnership Against Car Theft organisation. that provides testing and endorsement services for vehicle security devices.

Microsoft loses software patent battle

Microsoft and Stac Electronics have settled their differences on data compression for computer disks. Although the two companies now talk of cooperation, the agreement is a climb down by Microsoft, following a decision handed down in June by a judge in Los Angeles.
In February, Judge Edward Rafeedie held that Microsoft's DoubleSpace infringed Stac's patents and a jury awarded Stac \$120 million damages. Microsoft took the module out of dos in the USA, and gave customers a token promising a new system when it was ready.

In granting the injunction Judge Rafeedie was at pains to reassure the 15 million people who have bought the Version 6 of dos which includes DoubleSpace, and the near 100 million others who use earlier versions of dos which have no compression. They can all continue to use their PCs.

Stac"s two US patents, USP 4701 745 and 5016009 , claim the root idea of searching data for sequences of bytes which are identical to sequences already processed, and then storing only code which identifies the location of previously stored identical sequences.
Within weeks Mictosoft and Stac Electronics settled a cross licensing agreement. Microsoft will now be

Full colour led display

ntegrated full-colour led based displays can now be built thanks to a breakthrough f-om Toshiba scientists.
They have develcoped a highbrightness blue-green led that can be constructed with conventional red leds on a single substrate to create full-colour displays. Leds have found favour in outdoor displays because o- their high brightness, but fall-colour displays

able to use Stac's compression technology.
In return, Stac will be able to use the 'pre-load' technique which Microsoft developed for scamlessly strapping a compression system to the MS-DOS operating system on which 90% of all personal computers now rely.
Microsoft will pay Stac $\$ 1$ million a month in royalties, for 43 months, and pay $\$.39 .9 \mathrm{~m}$ for shares in Stac. Barry Fox
could not be built because the blue primary colour was lacking.
The Toshiba led structure employs p and n-type layers of zinc selenide (ZnSe) grown on a gallium arsenide substrate. The tlue-green led produces a trightness of 2 Cd at a wavelength of 500 nm . Its spectra width is just 17 nm . The structure is designed to ensure current flows horizontally ccross the p ard n-type layers.

School to school: ISDN was at the centre of a technology link-up demonstration between St John's School,
Marlborough, and Bookholzberg School, Gandesrkesee in North Germany. Arranged by multimedia expert Digithurst, the demonstration is part of a European Union research programme.
The system includes video conference, translation and coworking facilities. The latter lets two people work together remotely using the same computer screen. The system is designed for use in schools as a language learning aid, and also in the publisheng industry.

Self wins $E W+W W / H-P$ writer's award

Thhe winner of this year's Author Award Scheme sponsored by Hewlett-Packard is Douglas Self for his series of articles Distortion in power amplifiers which appeared between July 93 and March 94

The judges. who were unanimous in their decision, were impressed both by the original observations presented in the series, and the rigorous investigations undertaken by Douglas Self used to support his assertions.
Douglas was presented with his prize, a Hewlett-Packard HP54600A 100 MHz digital storage scope worth $£ 2500$, by Alan Grahame, UK director of Test and Measurement at the company's Bracknell headquarters.
Calling rf designers: 94/95 Writer's Award features £4000 prize

Following the success of last year's Writers Award, Electronic's World + Wireless World and Hewlett-Packard will be launching a new scheme to run from October 1 , 1994 to September 30, 1995.
The prize for the coming year's award is truly magnificent: a $£ 4000$ Hewlett-Packard HP8647A 1GHz programmable signal generator with HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

Unlike last year's scheme, only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that his year's award will focus writer interest on rf engincering in line with the growing importance of radio frequency systems to an increasingly cordless world.

The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people. We want to commission articles on circuit design using the wealth of modern components and techniques now available but. for this year, with a focus on rf and microwaves.

Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available of ICs and modules, receiver design, PLL. frequency generation and ri

measurement, wideband circuit design, spread spectrum systems. microstrip and planar aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.
If you have a potential article to discuss, please call us on 081-652 3128, or write for further details to The Editor, Electronics World, Quadrant House, The Quadrant, Sutton SM2 5AS.

Rough ride for video $C D$

Vidco CDs are now going on sale amid total confusion and compatibility problems in the PC and video market.
Stickers on the covers of the first discs (Pararotti and Dinosaurs from Castle Communications) explain that "video cd will play back on cd-i players with fmv cartridge. Amiga CD-32. 3DO, PCs with MPEG, Apple Mac with MPEG". Inside an insert slip promises that, "This disc can be viewed on any player which is MPEG compatible". Wisely Philips plays it safer and labels its first White Book CDs (movies such as Indecent Proposal) with talk of playback on cd-i players or any system that is "compatible with the video cd standard".
In theory a video cd should play back on any PC fitted with a cd-rom drive and MPEG video decoder board (eg Sigma Designs' ReelMagic). In practice it will often display pictures which lurch and
jerk, with sound that spurts in bursts.
This may happen on fast, high spec PCs, hooked to fast, high spec rom drives. To add to the confusion, the same PC rom systems may deliver smooth motion and sound when playing MPEG game discs marketed by Sigma.
So far the manufacturers have failed to give a clear explanation for this.
There are now three types of cd-rom disc.The MPEG CDs sold for use with the ReelMagic board do not follow the White Book standard. Instead they package the MPEG video as ISO 9660 rom files which any fast rom drive can read at full speed. This is why a rom drive and RM board may play RM's MPEG discs perfectly, while failing to play White Book video cds properly.
Sony has modified its 33A rom drive to work at full speed in $2 / 2$ mode. The modification involved changing rom chips
in the player which store the firmware. Sigma now bundles the Sony drive with an RM decoder as an upgrade kit.
This will be no consolation to all those PC users who have already bought what they believe to be fast drives, and now find that they are obsolete. It will be no consolation to PC users who now buy new drives, or multimedia PCs, before the manufacturers are forced to admit that they are obsolete. Even if manufacturers provide new firmware in replacement rom chips, retrofitting will be a clumsy and expensive operation.
The situation will not resolve until the $2 / 2$ requirement is publicised and manufacturers start labelling rom drives as 'White Book' or 'video cd compatible'. No manufacturer with a warehouse full of White Book incompatible drives will start 'compatible' labelling any sooner than absolutely necessary. B. F.

TELEVISION TRANSMITTERS AND TRANSPOSERS

\star High stability crystal locked output
\star Phase lock loop and saw filter technology
\star Transposers can up or down convert in bands I, III, IV or V
\star Aerials and feeder cables also supplied
\star Up to 100 watts RF output

* Studio, satellite, VCR or RF input
\star Single channel - bands I, III, IV or V
* NTSC or PAL system B, G, H or I
\star Automatic output protection
* Output power meter
\star Integral forced air cooling
\star Integral power supply
* Dimensions 4 units high 19" panel
* Prices (ex-works and ex-VAT)

5 W	$£ 2,650$
10 W	$£ 2,950$
15 W	$£ 3,250$
30 W	$£ 3,950$
50 W	$£ 4,950$
100 W	$£ 9,950$

と2,650
£3,250
£3,950
£4,950
100W
£9,950

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG, UK Tel: (UK) 0303893631 (Overseas) 44303893631

Fax: (UK) 0303893838 (Overseas) 44303893838
CIRCLENO. 106 ON REPLY CARD

THE DEFINITIVE ‘OFF-AIR FREQUENCY STANDARD

* Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
* Use if tor calibrating equipment that relies on quariz crystals, TCXOs

VxCOs oven crystals
on quanz crystals, TCXOs.

* Phase locks to DROITWICH (rubidiumucontrolled and traceable to NPL

Ford to to

* Britishdesigned and British manufactured
* Options available include enhanced recerver, sine wave outputs and 13MHz output for GSM. Prices on appl cation \qquad
SUPERB DUAL TRACE SCOPES, TELEQUIPMENT D61A, 10 mV SENSITIVITY, $10 \mathrm{uS}-500 \mathrm{mS} / \mathrm{DIV}$ ($\& \times 5$), X-Y INPUTS, Z-MOD, INT/EXT/TV TRIGS, ETC. FROM 999 HP608F SIG GEN 10-455MHZ AM/CW

Output trequencies $0 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ hor term slability - better Typical -4×10^{-9} Long term - tends to
$2 \times 10^{-12}(1000 \mathrm{sec})$
c)

PLESSEY TCT10 SIG GEN/ANAL $50-300 \mathrm{BD}$;

MUIRHE 2 D K231A TEMP CONT P 7 ECISION 30 CELL MARCOV TF2212X-Y DISPLAY LEVELL TM12 TRANSISTOR CHARACTC NETER BACHARACH MVZ MERCURY SVIFFERS BACHA 14$) 5 \mathrm{D}$ (RS) SOUNO LEVEL METER QUAD 303 STEREO POWER AMPS ORAKE WN2700 MATCHING NWORK \& PS - PSU PHILIPE PM 3065 100MHZ DUAL TRACE \& TB SCOPE 4 4S6 GMHZ SINGLE TRXCE SCOPE < 4D10BL S 1OMHZ WITH EXTEND $三 \mathrm{D}$ LF T/B WATSU SS5 116 DUAL TRACE OMHZ TELEQUPMENT D 1011 10MHZ JUAL TRAC E TEKTRONIX 2215 60MHz DUAL TRACE DE. T/B TEKTR J VIX 453 A 50MHZ DUAL TAACE DE T/B HP 8405A VECTOR VIMETER IGHZ TELEQ J PMENT D67A 25MHZ, 2 T. DEL T/E HITACHIVC GIDINMY OERTL NG V20 SINGLE PAN B. A L $01 \mathrm{mg} / 2 \square 9$ ANALYTICAL BALANCES WITT WEIGHTS 250 g MARCOTII TF2330 WAVE ANALYSER 2OH 250 KHz LEVEL. TM6B MICRO V.METE 7 450MH | E95 TEKTRONIX 545 PLUG-INS VARIOUS | £10 TO 275 | |
| :--- | :--- | :--- |
| £25 | | |
| 195 | XT'S WITH MONITOR AVD KEYBOARDS | | £59 LEVELLTM3B MICRO V-METER $3 M H z$ £89 HP4951C PROTORO V.WETER 3MHZ £35 TIME ELECTRONICS 20040 C V STANDARD 0005% £39 TIME ELECTRONICS 2003N DC V POT 002% c95 HP6131C DIGITAL VOLTAGE SOURCE EO5 HP6140A DIGITAL CURFENIT SOURCE C750 UOL2026 SOB GEN 406 \& PA300 PWR OSC ع95 RADIOMETEA BKG ANMER SURFACE UNIT £95 RADIOMETER BKF6 DIST WETER 20 Hz -2OKHz

C149
CITOH CX6000 6 .PEN AS PLOTTER CENT/RS23 £195 GOULD 24004 -PEN CHART RECORDER £ 175 X-Y RECORDERS A3 8 A 4 FROM £3 £ 165 PHILIPS PM6456 FM STEREO GENERATOR 450 MARCON TF2300 FM/AM LIOOULATION METEA £249 MLKENZIE 7 DAY TEMPHLIMIDITY RECORDER £395 FEEDBACK SSO603 1 MHz SINE/SQ OSC £295 LCRBRIDGE WAYNE K=RP CT492
E149 LCRQ BRIDGE AVO B151

f69 LCR BRIDGE MARCON TF2700 £69 LCR BRIDGE MARCON TF2701 £149 LCR MARCONI TF13130 $\hat{2} 5$ | £95 LCR COMPONENT COMP.ARATORAVO CZ457/S | $£ 145$ |
| :--- | :--- |
| 125 | |
| 955 | |

LISTAVALLABLE BUT 10CO's OF UNUSTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF PAP ANO VAT
LST A VAILABLE BUT 10CO's OF UNLSTED BARGAINS FOR CALLERS. ALL HRICES
QUALITY ELECTRONIC EOUIPMENT ALWAYS WANTED

HALCYON ELECTRONICS
 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR
 SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340
 CIRCLENO. 108 ON REPLY CARD

RESEARCH NOTES

Jonathan Campbell

In the arduous environment of a steel rolling mill, DSP can be used to track the distance between rollers up to 60 mm apart to a resolution of $0.25 \mu \mathrm{~m}$.

DSP flattens steel precisely...

DP technology could find itself being used in the anything but quiet environment of a prototype steel rolling mill. Engineering research consultant Adrian March has developed a system that relies on dsp to process linear measurements in absolute terms rather than relative ones.
Normally coordinate measuring systems simply count the number of scale positions between one position
and another. March's optical device determines the 'actual' position under the reading head so it can not be thrown off by dirt or power cuts or steel sheet slamming into the mechanics. In the steel mill the system will need to measure roll separation of up to 60 mm with a resolution of $0.25 \mu \mathrm{~m}$.

Measurement depends on reading a transmissive scale consisting of binary pseudo-random patterns. By

Picture courtesy Adrian March

...and sharpens hearing

F ast developing dsp technology could hold out new hope for millions of partially deaf people who are unable to benefit from current hearing aid design, if work being carried out at Washington University comes to fruition.
Devices that work and people actually want to use would be the result, according to Washington's A. Maynard Engebretson who has been testing a dsp-based device with impressive results.
Professor Engebretson, who holds posts in both the Department of Otolaryngology and the department of Computer Science at Washington University, says (IEEE Engineering in Medicine and Biology, April/May 1994, pp.238-248) that today's hearing aids are simply not good
enough. "It is not uncommon for a person to buy a hearing aid and then not use it because it does not help very much", he says.
But with dsp technology: "it would appear that the stage is set for a major advance in hearing aid development".
Engebretson likens the impaired ear to a flawed instrument such as a spectrum analyser with defective channels.
Part of the difficulty with hearing aid design is that the ear behaves differently for soft sounds near the hearing threshold than it does for loud sounds. There are also physiological and psychological characteristics of an impaired ear that have to be taken into account. The situation is complicated by the
fact that hearing aid development requires a knowledge of acoustics, transducers, signal processing, auditory physiology and psychophysics as well as low power semiconductor technology. Current hearing aid design using analogue circuitry is very close to its limits in terms of size constraints and fundamental transistor scaling considerations. Dynamic range of an op amp - the building block of an electronic filter - decreases as the three-halves power of feature size. With hearing aid dynamic range only just being acceptable now, further size reduction is not practical. But the elementary amplifier (inverter) of a digital processor requires only enough dynamic range to resolve two states.

Overall dynamic range is determined by the number of digital stages used.
In a digital processing structure, complexity increases as the inverse of the square of the feature size and switching energy decreases as the cube of feature size. So as feature size is reduced, greater dynamic range and complexity is possible with less power consumed.
Modern hearing aids still reflect their 1940s origins, though growing from single-transistor amplifiers to modern multichannel designs containing thousands of transistors. Multiple channels attempt to provide different compression characteristics for different frequency ranges and tiny potentiometers are often used to adjust the compression characteristics. Newer hearing aids may be electronically programmable, with parameters down-loaded from a computerbased fitting system and stored in digital registers.
But tests on digital hearing aids carried out at the Central Institute for the Deaf at Washington University could radically alter hearing aid design. Functionality of the prototype devices includes fourchannel compression, adaptive noise reduction and feedback cancellation. For example, feedback cancellation, using an adaptive fir filter, provided an additional hearing aid gain margin of between $10-15 \mathrm{~dB}$, meaning roughly an additional 20 30 dB of patient hearing loss that can
be accommodated by the aid. Partially deaf people, using the device adjusted to a gain of their own liking for various conditions, improved their word identification scores by 7% with this facility.
Adaptive noise reduction creates an estimate of the stationary components of signal and noise then uses an inverse filter to reduce hearing-aid gain at trequencies where the estimate is large. Engebretson says noise reduction was preferred by patients for both soft and loud speech, and word intelligibility scores was much improved for soft speech in the presence of machinery noise.
FIR filters were also used to experiment with what Engebretson refers to as level-dependent-spectral shaping (LDSS). Work was based on the fact that hearing-impaired people preferred different gains and frequency responses depending on signal level. Frequency responses of two channels were set to the person's preferred frequency responses when listening to soft and loud speech and the other two channels set at in-between, interpolated, values.
Though there was little difference in loud speech in noise conditions, soft speech in noise using LDSS produced significant improvements over a wide range of signal levels.
Much work still has to be done before dsp hearing aids become a reality. One question yet to be answered is: what exactly is required from a hearing aid?

Engebretson summed up the current position as that we are technically at a point where we can create very sophisticated hearing aids. But the question is what exactly do we want to do?
"Building circuitry is just a matter of putting up the money and getting people together. The problem is that we don't have nice neat categories of hearing impairment. Research depends so much on the individual patient that it is difficult to produce general solutions".

Sharing the secret to scientific problem solving

How secret is secret? If you've got a PC, 599 computerpowered friends, access to the Internet communications network and eight months to spare you might just be able to find out. That's what it took Arjen Lenstra of Bellcore in Redbank, USA, Paul Leyland of Oxford University and colleagues at MIT to unzip one of the methods used by cryptographers to keep messages for their eyes only. But the record-breaking cooperative computing feat may have ramifications far outside the arcane world of cryptography.
What the code-breakers did was to find the two massive prime factor keys of a 129-digit code. In effect they had cracked the code used in the RSA method of encryption where two very large prime numbers are multiplied together to create a third gigantic number. The
shear physical size of the numbers involved makes it very difficult to find those original factors from the product alone. Decoding encoded messages depends on knowing both factors as well as the large number that has been used to code the message.
The degree of security given by using a 129 digit product can be judged from the massive amount of computing power and time that was needed to factor it. But as far as cryptographers are concerned, the code was cracked, and indicates that they must move to using much bigger numbers, perhaps 400 digits long.
There is, however, a much broader lesson for the scientific community in terms of problem solving.

Dividing a task between 600 volunteers running 1600 machines
varying in size between parallel supercomputers and humble PCs, is the biggest demonstration of distributed number-crunching so far attempted.
In the search for the factors, with such large numbers involved, the only way to progress was to use an algorithm to look at the relationships between pairs of numbers and see how close they come to a solution. All those relationships were then collected together and cross-referenced in a database.

Paul Leyland of Oxford University told $E W+W W$ that finding the prome factors involved a search similar in magnitude to needing to find millions of needles in a galactic-sized haystack.
"We were using an algorithm that looked for interesting relationships between numbers. When we had

Iop - multichannel hearing aid pushing current hearing aid design to its limits.
Bottom - dsp design could open up new possibilities for people
with hearing
impairments.
enough interesting relationships, we put them together"
But there are an infinite number of relationships and only one relationship in 100 million is interesting. The team had decided they needed 8.2 million interesting bits of data to solve the puzzle, meaning they had to investigate 8.2 million $\times 100$ million relationships.
Their method was to call on volunteers to link up to a central

MIT computer, using electronic mail, and down-load the necessary code to enable them to do their own chunk of processing. The MIT computer also gave them instructions on what to do and a place in the haystack to start searching for their needles.
When their program had been processed, volunteer data was c mailed back to MIT where it was batched up.

After eight months toil, two prime numbers of 64 and 65 digits, were squeezed out the other end.
"Similar techniques have been used over the past 5 years though ours was by the far the largest project to do this", says Paul Leyland.
But without doubt, the real achievement was the coordination of so much, and so diverse, computing power in the pursuit of a single scientific goal.

Polarity proposal that is music to the ears

N ould the kettledrum sound different if struck from the inside rather than outside? It might seem the sort of problem to worry only the most dedicated of percussionists. In fact it is part of the much wider issue of acoustic polarity - can we hear when polarity of reproduced music has

If compressions at the microphone were reproduced as rarefactions at the loudspeaker, the polarity of trumpet sound reaching our ear would have been inverted. But would we notice the difference?
been reversed: when loudspeakers have been incorrectly wired up for example? The answer is a qualified yes, but you have to look hard to find out cases where it matters.
The researchers who posed the kettledrum question, throwing down the gauntlet for avant garde musicians the world over, are Richard Greiner, professor of electrical and computer engineering at University of Wisconsin, and Douglas Melton, a sound and vibration specialist at Digisonix Inc They were prompted (Journal of the Audio Engineering Society, Vol 42, No 4, pp.245-253) by the fact that polarity inversion does not distort the phase and amplitude relationships between frequency components of a signal, nor does it change the temporal shape of a
transient signal. But it does present the ear with a fundamentally different signal - compressions are replaced by rarefactions and vice versa.
The eardrum at any instant is "pushed" instead of "pulled", an effect that audiophiles have long wondered if they should include on their hit list along with the need for reduced phaseshift, phase linearity and minimum phaseness in audio equipment.
Up to now, there seems to have been little attempt in recording practice to maintain original polarity - in the consumer market Greiner and Melton describe the situation as "total chaos". But with processing in the digital domain making it easier to control polarity, they decided that now was the time to determine the contribution that absolute acoustic polarity makes to the accuracy of reproduced sound.

Previous experiments have proved that when the polarity of a simple waveform is switched, listeners describe a change of pitch or timbre of the signal. So Greiner and Melton set up a listening room in such as way that this effect was apparent to almost everyone. Then with the help of 39 students at Wisconsin they set out to listen to a range of instruments played in various styles to see if the effect could still be heard.
Musical examples demonstrating large asymmetry in the time domain were selected, as this property was felt to be significant when a signal was inverted, with individual instruments highlighted in the pieces. The result was that the ability to hear the polarity inversion gave only a slight positive bias, with piano and classical guitar yielding
significantly higher correct responses.
The masking factor seems to be that music is usually so complex that there is often too much going on to allow human concentration on subtle effects, and vibrato, tremolo and instrument filigree may obscure inversion.
The fact that the guitar and piano were most often picked out when inverted, instruments showing little asymmetry, suggests that is not the property most affecting inversion. More likely, they say, is that there are other psychoacoustic effects caused by the attack and decay properties of the signal that help the ear identify the correct acoustic polarity of the signal.
The authors conclude that though polarity inversion is not easily heard. it can be picked up in certain circumstances. It makes sense to keep track of polarity during the recording process to avoid any problems later. Then, when someone actually does play their kettledrum from the inside, we'll all be able to appreciate their efforts.

John Wilson has relinquished his post as EW $+W W$ Research Notes creator - a function he has executed splendidly for the past eight years. This results from his promotion to a new and more demanding position at the BBC. Although this means the loss of one of our most valued contributors, we wish John every success in his new position.

Taking over from John is former $E W+W W$ deputy editor Johnathan Campbeil, who has a lust for scientific knowledge and a keen nose for a story. Of course we wish Johnathan every success too.

Field Electric Ltd:
 Tel: 0438-353781 Fax:0438 359397 Mobile: 0836-640328/0860-213370 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8 AB

Apple II GS and Apple colour monitor etc

1.44Mb Laptop filopgy disk drives new
72 pin Simms for PS? Compaq Deil etc
Parallel \& Serial data switches up to 8 ways - Ring for details
Compaq enhatinced at keyo
IBM 3363 optical disk drive

102 key AT entanced keyboard with PS2 type plug adpt-plug
Toshiba ex
Toshiba external $5.25^{\prime \prime}$ F D. drive PA7225E new and boxed
TEAC 5.5^{5} BBC compatible F.D drives 360 K 7720 K refurbs 16 bit haro disk/F disk controller card
SCS hard disk drive's
Yuasa maintenance-free rechargeadele pattery NP7-12 12v 7 OAh $15 \times 6.4 \times 9.2$ Rose die-cast box $17.5 \times 5.6 \times 7.8$ new Rose die-cast box $17.5 \times 5.6 \times 7.8$ new
Sony 7 "colour montor KTX - 9000 UB 240 VAC Inout with manual inbuil RGB etc
 $310 \mathrm{~mm} \times 215 \mathrm{~mm}$
$3865 \times 16 \mathrm{CPU}(\mathrm{In}$ \qquad

TEST AND MEASUREMENT EQUIPMENT

CIRCLE NO. 110 ON REPLY CARD

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated autamatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Visa, MasterCard, Amex welcome

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD	£98.00
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
EASY-PC Pro' XM: Greater Capacity, XMS Version.	£245.00
PULSAR: Entry level Digital Circuit Simulator ~ 1500 gate capacity.	£98.00
PULSAR Professional: Digital Circuit Simulator $\sim 50,000$ gate capacity.	£195.00
ANALYSER III: Entry level Linear Analogue Circuit Simulator ~ 130 nodes.	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	£195.00
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers.	£245.00
FILTECH: Active and Passive Filter design program.	£145.00
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives,
Huntingdon, Cambs. PE17 4WR, UK

> For Full Information Please Write, Phone or Fax. Tel: 0480-461778
> Fax: 0480-494042
 Today's teletext broadcasts contain a wealth of information on diverse
subjects from share prices to weather. Laurence Cook's teletext plug-
in for the PC opens up the possibility of grabbing this information and
printing it, processing it or turning it into a database.

Broadcast teletext services are a useful, regularly updated and essentially free source of information on a wide range of topics. Accessed via a tv screen however, teletext information cannot be printed or saved for future reference.
A solution to the transient nature of teletext is the subject of this article. Described here is a complete teletext adaptor that plugs into a single slot in your PC. It accepts a standard antenna input and appears to the PC as a standard serial communication port.
With suitable software, your PC becomes a teletext terminal with the ability to print or save pages to disk or ram. Built into the adaptor's tuner is an intermediatefrequency stage together with highperformance, factory pre-aligned video and audio demodulators. As a result, baseband video and audio signals can be made available via
sockets at the rear of the PC. These can feed multimedia cards or other devices which might rely on such signals in the future.
My complete teletext adaptor is a threequarter length printed circuit board laid out entirely for conventional through-hole components. As such it lends itself to small quantity and one-offs. Details of the board are presented at the end of this article.

Design overview

As is clear from Fig. 1, the adaptor divides into distinct functional blocks.
Using a ready built module with baseband outputs for the tuner section save a lot of design and commissioning work. Made by Philips, the chosen module has a digitally synthesised front-end. Using an enclosed and decoupled module also avoids problems with emi emanating from inside the PC.
Control of the tuner is carried out via an $I^{2} \mathrm{C}$ bus interface. which is common in many modern TV sets. Synchronous clock and data lines of the $I^{2} \mathrm{C}$ bus are driven by simply toggling bits on a parallel port.
Since I had already developed PC terminal software for an external adaptor that connect-
ed to a serial communication port, I developed the teletext adaptor with the same interface. This has the advantage of making software easy to write. Jumpers allow setting the interface up as COM1 to COM4, with interrupts IRQ3 or IRQ4. More on this later.
Because the Philips tuner has varicap diodes it needs a stabilised 30 V , but the PC only has 12 and 5 V rails. A simple charge pump generates about 50 V from the PC's 12 V rail. This is then shunt stabilised to 30 V . The 5 and 12 V supplies are used by the adaptor's co-processor and analogue circuits respectively. They are first filtered by small inductors and decoupled capacitively.
Off-air video from the tuner module passes to the video interface. Here, recovery of the 6.9375 MHz clock and data from up to 16 data lines per tv frame take place.
Within the video interface, data slicing is carried out by a Philips SAA5231. This device connects to a separate level shifter which converts the chip's output to ttl levels for connection to the digital block that follows. Offair sync is extracted by the chip and conditioned as line and frame syncs before also passing to the digital block.

In earlier designs, level shifting was performed by two expensive high-speed comparators to minimise skew between clock and data. This design uses a much cheaper dual comparator. Initially I discounted the dual comparator because it had poorer switching times combined with a broader tolerance. This could have caused reception errors due to skew with jittery off-air signals.

A little thought and experimentation revealed however that differential delay between channels is most important. Since the chosen IC has both comparators on the same substrate, the actual skew is no worse than with two separate, expensive chips.

At the core of the logic block is a 10 MHz Hitachi $H D 64180 S$ microprocessor. This highly integrated device has a 280 -compatible instruction set but with additional instructions and enhanced microcode.

Integrated features of the processor include a high-speed multi-protocol serial communications interface and direct memory access controller.
These were key factors in my decision to use the device. Off-air data is clocked into the serial controller and shifted by the direct-memory-access controller into memory for processing. Even with the fast serial interface feeding the dma controller, the data capture leaves only 20 ms for processing before the next packet of data arrives.

Pages requested by the host PC are processed by the 64180 , which maintains an output buffer in ram. It then offloads the buffer more slowly at 9600 baud via its on-chip uart directly into the PC communication-port uart. From there, the data passes to the ISA bus and onward to the terminal software.

Design details

Tuner module. I chose the Philips FQ844 digitally-synthesised tv tuner. It has an integral IF strip and demodulates to baseband audio and video. Designed for European channels E21 to E69, the tuner covers the entire UK uhf tv band.
Tuner input is via a standard coaxial antenna socket which is an integral part of the casing housing the electronics. Since the casting is slightly too large to pass through the PC chassis slot, it needs filing. Make sure that absolutely all filings are accounted for before attempting to plug in the board.

Remaining connections are presented as pins on the edge of the case, which is intended for vertical mounting in a tv set. There is little room between slots in the PC so the tuner is laid flat on the pcb and connected via long wire-wrap type pins. Double-sided adhesive tape may be needed for anchoring the tuner to the board.

Audio from the tuner is fed via point $T P_{25}$ and dc block C_{31} to phono socket P_{4}. This is off-air sound. When debugging the adaptor it's handy to have a monitor amplifier to hear whether the tuner has actually locked on to a given channel if the data side of things still isn’t working.
Off-air video from the tuner feeds a phono
socket for external use but its main purpose is driving the data slicer in the video interface.

PC communications. Signals of interest on the 31 way card edge connector of the PC ISA bus are shown in Fig. 2. These are the lower eight data bits. SD0 to SD7, the lower ten address bits, SA0 to SA9, address enable, i/o read and write signals and system reset. Power rails and ground are also used. Interfacing
these straightforward signals to the chosen uart, a National Semiconductor NSI6550AF. is simple.
In the original IBM PC specification only addresses for communication ports COMI and COM2 were defined. However a de-facto standard has developed defining addresses for COM3 and COM4.
My design follows the four communicationport standard, jumpers $J_{101,102}$ setting the

Fig. 1. Essentials of an off-air teletext decoder card for the PC. In addition to feeding teletext data to the PC, the adaptor also makes tv audio and video from the synthesized funer available. No external power supplies are needed, but some power conditioning is required for comparators and the tuner varicap.

Fig. 2. To make hardware convenient and software writing easy, the teletext decoder is designed as a PC-slot card with an interface to any one of the four dos COM ports. The NS16550 universal asynchronous receiver/transmitter, or uart, interfaces to the PC slot using straightforward data, addressing and control signals.

required address according to Table 1. These jumpers select the true or complement address lines A4 and A8 for decoding together with remaining addresses from A 3 to A 9 in nand gate $/ C_{102}$. This generates an active-low chipselect signal directly feeding uart $/ C_{103}$ and bidirectional buffer $/ C_{101}$.
Buffering is needed to provide sufficient drive for the uart when it has to send data or status messages via the ISA bus. Should several cards be plugged into the bus, the uart would be overloaded if connected directly.
On the arrival of data, the uart alerts the PC by generating an interrupt signal. This is fed via $/ C_{104 \mathrm{~B}}$ to ISA bus common-interrupt line IRQ3 or IRQ4, depending on the setting of jumper J_{103}. Recommended settings are shown in the table.
Serial data lines SIN and SOUT, together with handshake lines RTS and CTS, connected to the uart in the microprocessor. This provides out-of-band flow control between the microprocessor and the system, ensuring commands and data are not lost. All other uart serial port signals are ignored, being left unconnected or strapped to an appropriate level.
A separate oscillator module provides the 1.8432 MHz ttl clock needed for the uart. My attempts to find a clever way of obtaining this clock from one of the other chips failed.

Video interfacing. Shown in Fig. 3, the video interface revolves around a Philips SAA523/ bipolar data slicer. Off-air composite video appears at pin 27 . The chip strips out sync pulses and presents them at pin 25 . They are

Table 1. COM-port jumper settings used on the PC teletext board

	IRQ	J 101	J 102
COM1	4	3	3
COM2	3	1	3
COM3	4	3	1
COM4	3	1	1

inverted by $/ C_{4 A}$ and presented as active low line syncs to the 64180 uart's data-carrier detect (DCD) pin. This is configured as a gen-eral-purpose input pin.
Monostable $/ C_{10}$ produces an $8.5 \mu \mathrm{~s}$ pulse every line sync which is fed back to the sandcastle input of $/ C_{3}$, pin 22. This makes the chip respond as though it had other members of its family connected to it
Timing components R_{13} and C_{6} should be accurate for correct operation. In the data slicer, crystal X_{2} oscillates at twice the broadcast data rate, which is exactly 444 times line rate. Inductor L_{1} and C_{14} prevent the crystal from oscillating at harmonics of its fundamental.
The oscillator locks onto the data stream, and is divided by two to provide true recovered data and clock signals at pins 15 and 14 respectively. Since these signals are not at tt levels $/ C_{1}$ - a rather unusual dual comparator - is needed to convert them. It is powered from +12 V and -6 V , will accept inputs with a high dc offset, and produces complementary ttl outputs.
In this design, recovered clock from $/ C_{3}$ is buffered by $T r_{2}$ then integrated by $R_{12} / C_{27} / C_{28}$ so as to generate a reference level at pin 13 of the comparator. This reference is the midpoint of the signal.
After hf compensation provided by C_{13}, the signal is fed via R_{11} to pin 13 of the comparator. This makes dc offset on $/ C_{3}$ irrelevant. As a result, a ttl version of the data clock appears with unity mark-space ratio at pin 1 of $/ C_{1}$.

Recovered data follows a similar path through $T r_{1}$ to arrive at pin 8 of $I C_{1}$. Delays through $I C_{1}$ are closely matched between each half, so the phase relationship between important clock and data signals is preserved.
Now, the clock and data signals are applied directly to the microprocessor serial interface clock and data pins.

Logic block. Although the heart of the system, this section is essentially simple.

Fig. 3. Teletext information is separated from raw video by an SAA5231 data slicer. Off-air composite video appears at pin 27 while sync pulses are presented at pin 25.

Referring to Fig. 4, $/ C_{14}$ is a watchdog chip made by Maxim, which serves as a longstop should the software run out of control. It also provides a clean power-on reset signal for the microprocessor; its output is or-ed with a reset signal from the ISA bus so pressing the PC reset button also resets the co-processor.
Inclusion of a watchdog reset timer, in conjunction with on-board non-volatile memory, $/ C_{9}$, means that the teletext receiver can operate without supervision. It can survive power failure or static-induced interruptions and recover whatever configuration it was last loaded with.
Connected to the microprocessor are 32 K of eprom and 32 K of ram, decoded on-chip by /CSO and /CSI respectively. These occupy the full lower 64 K physical address space. The third on-chip decode line, /CS2, is used to trigger the watchdog and is selected via the onchip memory manager. No external decoding logic is involved in selecting memory devices.
Or gate $/ C_{13}$ generates memory and i/o read and write pulses. Access to the control port $I C_{12}$ and associated circuitry by the read and write pulses is possible when All is true, /LATCH is low.
The lower three bits control the status leds, the next three control eeprom $/ C_{9}$, and the top two bits produce $\mathrm{I}^{2} \mathrm{C}$ clock and data signals. These are applied to the tuner module via points T_{13} and T_{14}. Gates $/ C_{5 B, C}$ direct the $I^{2} \mathrm{C}$ and eeprom data onto the microprocessor data bus from the latch when an IN instruction is executed. Thus with very little circuitry, the firmware is able to indicate its status, save and reload its configuration, and control the Philips tuner.
Connector P_{1} is provided for future expansion, such as the control of auxiliary $I^{2} \mathrm{C}$ devices in commercial applications, or as a medium speed link to, say, text-10-speech converters. This could be a useful application of teletext for the blind.
Since the microprocessor is only available as a surface-mount plec part, the board has been tracked to take an 84-pin through-hole socket. A bonus of the socket is that it allows the relatively expensive processor to be fitted last, minimising the chances of esd damage.
The processor needs to be a 10 MHz part, specifically the IID64/80SCP/O, which can be clocked at up to 20 MHz . In this design the clock is 19.6608 MHz which divides down to allow the uart to operate at 9600 baud exactly. In addition, the maximum data rate of the communication interface under dma transfer is a function of clock speed. This clock frequency is high enough to accommodate the broadcast data rate.

simply programmed to look for the framing code as a sync byte. Having set up the dma controller to shift 43 bytes into ram, the processor simply waits while a line of data is moved into memory. Now the processor can sample both frame and line syncs, so it can detect what lines to expect data on, and when the last data line of that frame has occurred. At the appropriate time the processor begins to examine this data
There is almost 20 ms available for the processor to move those lines forming part of a requested page into an intermediate buffer area. In fact, up to six pages can be assembled simultaneously if specified by the terminal software. When the buffers are complete, they are transferred into the global output buffer. From there they are transferred via the uart link to the PC communication port.
In addition to the recognition and transfer process, all headers of the selected magazine are sent out in a sort of queue-jumping fashion, so as to maintain an accurate clock dis-

Power supply. Rails of $+5 \mathrm{~V},-12 \mathrm{~V}$ and +12 V from the PC are decoupled by inductors L_{101}, L_{102} and L_{103} respectively.
Power for the data slicer $/ C_{3}$. comparator $I C_{1}$, and tuner module is provided by the 12 V rail. Feed to the tuner is further filtered by L_{13} and C_{15} before being applied to point T_{24} as a supply to the local oscillator. Since psu designs for PCs vary, noise levels on the supply rails are uncertain so heavy decoupling is advisable.
Inverter $I C_{106}$ and associated components pump the +12 V rail up to 50 V or so, Fig. 5: Gate A of the IC is a frec-running oscillator which drives the diode-capacitor chain, culminating in C_{114}. So many stages are needed because of losses due to output impedance of the gates.
Following the voltage multiplier, resistive current limiting followed by a shunt zener diode provides a highly stable tuning voltage for the front end. Note that $I C_{106}$ must be the device specified for this circuit to work.
To power the dual comparator only, the -12 V rail is dropped to -6 V by R_{15} and $Z D_{1}$.

How it works...

Broadcast data is contained in up to 16 television lines per frame within the frame blanking period, Fig. 6. Each line comprises data at $6.9375 \mathrm{Mbit} / \mathrm{s}$ with a logic one corresponding to 66% of white, and a logic zero to black, or thereabouts, Fig. 7.
Lines start with a stream of one and zero bits for clock run-in, followed immediately by a framing code to allow byte synchronisation within the receiver Fig. 8. Normally, framing is carried out by feeding the data into a serial-in-parallel-out shift register then examining the data with a wide nand gate and inverters. This results in a pulse when the desired pattern is present.
In this system, the microprocessor is

play on-screen. Headers are the top row of the display, the line with the date in it, while a magazine is the jargon for page hundreds. Empty page buffers are thus available for assembling the next transmission of the required pages, row by row.
Control of the co-processor is achieved over the serial link, using a well-established protocol. Operator page requests are converted into a format that the firmware understands by the terminal software. This protocol is available to programmers.
Addition of a tuner required the command set to be extended to select Channels E21 to E69, which was fairly easy to implement. Less casy was modifying the terminal software which in a commereial application had been produced without regard for such extensions.

In order to lave working software well alone, I chose to use a terminate-stay-resident (tsr) program to supplement the keyboard commands. The required channel, 0 to 9 , is simply typed in as, say, Alt-C2 for BBC2, and so on.

Correspondence between E channel numbers and single-digit selection is achieved by extending the default configuration file to inelude local tv channel numbers. To invoke teletext operation, a batch file is run on the host PC which first loads the tsr then runs the
terminal software. The tsr pieks up the local channel numbers from the configuration file and uses them to send to the PC communication port as required. On quitting the program, the tsr is unloaded.

Commissioning

There is no substitute for a thorough visual inspection of all the components before pow-ering-on. Time spent here is worthwhile. Further testing depends on what test equipment you have access to.

A PC card extender for example allows easy access to a powered board for measurements. Clearly the first thing to check is the power supply and look for activity on the crystals and oscillator module. Thereafter you should set up the communication so as not to clash with existing devices. I used COM3.
Next, conneet a good quality to acrial and run the batch program supplied, having first edited the default.enf file to include local channels and the chosen PC communication port and IRQ settings. Type Alt-CI, to select BBCI, and 100 , for page 100 . You should be rewarded with page 100 on screen with headers rolling past. If not, then there is a fault.
The external audio and video outputs are a good starting point although the software will need to have selected a channel for this to

Fig. 6. Broadcast teletext data streams appear in up to 16 lines per tv frame, all within the blanking period. Data is transmitted at 6.9375Mbit/s.

Fig. 8. Signalling the start of teletext data is a clock synchronisation run in comprising ones and zeroes. Immediately following is framing information that ensures that whatever is decoding the data starts reading it at the first bit of the first byte.
work. You can look for activity on the $\mathrm{I}^{2} \mathrm{C}$ bus when a channel is selected. A command from the PC causes $L E D_{1}$ to flash. Off-air syncs cause $L E D_{2}$ to flash, and data to the PC causes $L E D_{3}$ to flash.

Reading

Figures 6, 7 and 8 are taken from the September 1976 Broadcast Teletext Specification, ISBN 0563172614.

Component availability

A double-sided circuit board, with gold plated edge connectors, together with the required eprom and terminal program, are available from Citifax, $E W+W W, 9$ Goose Cote Hill, Bolton BL7 9UQ, United Kingdom. Tel./fax +44-0 204 307293.

The package includes the teletext co-processor pcb, a full parts list, terminal program and programmed eprom for $£ 65$ inclusive. Overseas add $£ 5$ postage.

Please note that although this offer is made in good faith, $E W+W W$ has no involvement in it and therefore cannot take responsibility for any problems that may arise relating to transactions between Citifax and readers.

Quickroute 3.0

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful W ndows based PCB and schematic design packages from POWERware.

DESIGNER £99 *

PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

DESIGNER + £149 *

For larger PCB and schematic designs, adds Ger ser and NC-Drill support.

PRO £199 *

Schematiz capture, with integrated rats-nest generation and auto-router. Export net-lists for design checking.

PRO + £299 *

Advanced schematic capture for management of larger schematics. Gerber import facility for file exchanging.

For more details, contact POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

* Prices exclude post \& packing, etc.

Tel/Fax 0614497101

from
 £99*

excluding $P+P$

CIRCLENO. 112 ON REPLY CARD

SEALED LEAD ACID Battery ov 80/100 AH made for BT, ex equipment but ok E45 each rof APR47. Ideal electric vencicie etc. ASTEC SWITCHED MODE PSUGIVES +5 © 3.75A, +12 @1.5A, -1200.4A. 2301110, casec., BM4 1012. £9.99 ref APR10P3. TORRODLAL TX 30.0.30 480VA, Perfect for Mosfet amplifers etc. 120 mm dia 55 mm tilck. $£ 18.99$ ref APR19.
MOD WIRE Porfect for repaling PCB's, wire wrap etc. Thin insulated wire on 500 m reels. Our price just E 9.99 ret APR10P8. 12v MOVING LIGHT Controller. Made by Hella, 6 channels rated at 90 watts ceach. Speed control, cased. $£ 34.99$ rel APR35. ELACTRON FLASH TUBEAs used In polico car hashing \|ghts etc. full spec supplied, 60 -100 hashes a min. Eq .99 ref APR10P5. 24v 96WATT Cased power Supply. New. $£ 13.99$ ref APR14. 8TETHOSCOPE Fully funetioning stethoscope. Ideal for IIstening to hearts, plpes, motors etc. $£ 6$ ref MAR6P6.
OUTDOOR SOLAR PATH LIGHT Captures sunl|ght during the day and automatcally swlithes on a bult in lamp at dusk. Complete with seales lead add battery etc. 1919.99 reil MAR20P1. A LARM VERBION Of above untit comes with bullit in alam and pis to deter intrucers. £24.99 ref MAR2SP4.
pir to deter intruders. 244.99 reel MAR25P4.
CLOCKMAKER KT Hours of fun makng your own clock, complete instructions and everything you need. $\mathrm{E7} .99$ rel MAR8P2. CARETAKER VOLUMETRIC Alam, will cover the whole of The ground foor againstlorcred entry, Indudes mains power supply and integral battery backup. Powerful intemal sounder, will take extemal bell if req'd. Retaii $£ 150+$, ours? $£ 49.99$ ref MAR 50 P 1 . TELEPHONE CABLE White 6 core 100 m ree complete with a pack of 100 dips. Ideal 'phone extns etc. E .99 ref MAR8P3 VIEWDATA RETURNSE6 made by Tandata, indudes 1200.75 modem, Kbd, RGB and comp op, printerpo. No PSU.E6MAC6P7 IBM PC CASE AND PSU Ideal base for building your own PC. Ex equipment but OK. $£ 14.00$ each REF: MAG14P2
SOLAR POWER LAB SPECIAL You get TWO $6 \times 6^{\circ}$ 6v 130 mA solar cells, 4 LEDs , wire, buzzer, switch plus 1 relay or motor Supert value kit just $£ 5.99$ REF: MAG6P8
SOLID STATE RELAYS will switch 25A mains. Input 3526 V DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws E3. 99 REF MAG4P 10 300DPI A4 DTP MONTTOR Brand new, TTLECL inputs, 15° landscape, 1200×1664 pixel complete with dircult diag to help you interface with your projects JUST $£ 24.99$. REF MAG25P1 ULTRAMINI BUG MIC 6 mmx 35 mm made by AKG. 5.12 V RGB/CGA/EGATTL COLOUR MONTORS 12° in good condition Back anodised metal case $£ 99$ each REF MAG99P1 GX4000 GANES MACHINES returns so ok for spares or repair $£ 9$ each (no games) REF MAG9P 1
C64 COMPUTERS Retums, so ok for spares etc $£ 9$ ref MAG9P2 FUSELAGE LIGHTS 3 toot by 4° panel $1 / 8^{\circ}$ thick with 3 panels that glow green when a voltage is applied. Good for night tights. front panels, signs, disco etc. $50-100 \mathrm{v}$ per strp. $£ 25$ ref MAG25P2
ANSWER PHONES Returns with 2 fauts, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's $£ 18$ ea REF MAG18P 1 . PSU $£ 5$ ref MAGSP12.
SWTCHED MODE PSU ex equip, 60w +5v © 5 A, -5V©. 5 A,

PLUG IN PSU 9V 200mA DC E2.99 each REF MAG3P9 PLUG IN ACORN PSU 19V AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and $/ p$ leads $17 \mathrm{~V} D C$ 900 mA ouput. Bargan price $£ 5.99$ ref MAG6P9 ACORN ARCH MEDES PSU +5 V e 4.4 A on/off sw uncase selectable mains input, $145 \times 100 \times 45 \mathrm{~mm} £ 7$ REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube complete with PCB and components. £29 REF MAG29P1 SINCLAIR C5 $13{ }^{3}$ wheels complete with tube, tyre and cyde style beaning $£ 6$ ea REF MAGGP 10
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$ £ $£$ a pack. REF MAG3P11 13.8V 1.9A psu cased with leads. Just $£ 9.99$ REF MAG10P3 360 K 5.25 brand new half height floppy drives is Mcompatible industry standard. Just $£ 6.99$ REF MAG7P3
PPC MODEM CARDS These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance pnce is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginally made for hi spec satellite equipment butperfect for all sorts of remote control TOWERS INTERNATIONAL TRANSISTO
TOWERS INTERNATIONAL TRANSISTOR GUIDE. very useful book for finding equivalent transistors, leadouts, specs etc. EO REF: MAG20P
SINCLAIR C5 MOTORS We have a ew lef without geartoxes. These are $12 \mathrm{LDC} 3,300 \mathrm{pm} 6^{\circ} \times 4^{\circ}, 1 / 4^{\circ}$ OP shat. £25 REF: MAG25 UNIVERSAL SPEED CONTROLLER KTT Designed by us for the above molor but ok for any 12 V motor up to 30A. Complete with PCB etc. A heat sink may be required. $\mathbf{£ 1 7} 00$ REF: MAG 17 VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, ndeo recorder. TV or Computer etc to any standard TV setina 100 'range! (tune TVto a spare channel) 12 V OCop. Pnceis $£ 15$ REF: MAG 1512 प $\operatorname{psuis} £ 5$ extra REF: MAG5P2 - FM CORDLESS MICROPHONE Small hand held unit with a 500 range 2 transmit power levels. Reqs PP3 9v battery. Tuneable to any FM receiver. Price is $£ 15$ REF: MAG 15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200 . Ideal for garden use or as an educational oy. Pince is 28 a pair REF: MAG BP1 $2 \times$ PP3 req'
-MINATURE RADIO TRANSCENERS A pair of walke takides with a range of up to 2 kiometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete witt cases and eappleces. 2xPP3 req'd. $£ 30.00$ pair REF: MAG30
COMPOSTE VIDEO KIT. Converts composite video into separate H sync, V sync. and video $+2 V$ VC. $£ 8.00$ REF: MAGBP2. LQ3600 PRINTER ASS EMBLIES Made by Amstrad they are entire mechanical pniter assemblies including pinthead, stepper
motors etceecc In facteverything barthe case and delectronics agood motors etceetc in facteverthing bar the case and electronics, a good stripper! £5 REF: MAGSP3 or 2 for $£ 8$ REF: MAG8P3

NEW BULL ELECTRICAL STORE WOLVERHAMPTON BRANCH

NOW OPEN AT 55A WORCESTER

 ST TEL 090222039
100MHZ OSCILLOSCOPES now in

 stock, $12 \times 10 \mathrm{~cm}$ screen, delayed sweep, 1 Mohm/25pfinputs, modesch 1, ch2, add, chop, alt, dual. 460 x $305 \times 200 \mathrm{~mm}, 17 \mathrm{kgs}, £ 267+$ Vat in cludes insurance and carriage.
INFRARED LASER NIGHT SCOPES

Second generation image intensifier complete with hand grip attachment with built in laser lamp for zero light conditions. Supplied with Pentax 42 mm camera mount, 1.6 kg , uses $1 \times$ PP3,3xAA's (all supplied) $£ 245+$ Vat

NEW HIGH POWER LASERS

15 mW , Helium neon, 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND UNDER QUALIFIED GUIDANCE. £349+Vat.

'PC PAL' VGA TO TV CONVERTER

Just plug in and it coverts your colour television into a basic VGA screen, perfect for laptops, saves lugging monitors about or just as acheap upgrade. Intro price $£ 49.99$ +Vat.

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25" 360K DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

NOW ONLY £39.00
REF: MAG39

3FT X IFT IOWATT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ NOW AVAILABLE BY MAIL ORDER £33.95

IOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATTERY WHARGING,
WHERE A PORTABLE 12 V SUPPIY IS REQUIRED. REF: MAG 34

££££££WE BUY SURPLUS STOCK£££££££

TURN YOUR SURPLUS STOCK INTO CASH
IMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

1994 CATALOGUE

PLEASE SEND 45P , A4 SIZED SAE FOR YOUR FREE COPY

 NOTICE ORDERS SUMECT TO STOCK
TIES HIOHER THAN THOSE STATED.

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK
BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX BN3 50T
MAIL ORDER TERMS: CASH PO OR CMEQUE WTH ORDER PLUS E3.00 POST PLUS VAT.

PLEASEALLOW 7 - 10 DAYS FOR DELIVERY

TELEPRONE ORDERS WELCOMK TEL: 0273203500 FAX: 0273323077

SPEAKERWIRE Brown 2 core 100 100t hank £2 REF: MA LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4 UNVERSAL PC POWER SUPPLY complete with fyl Switch, fan etc. Two types avallable 150 w at $£ 15$ REF:MAG 15 p
$(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at E 20 REF: MAG20P $3(23 \times 23 \times 23 \mathrm{~mm})$ "FM TRA NSMTTER housed in a standard working 13A adaptenl the bug runs directy off the mins so lasts forever why pay $£ 700 \%$ or price is $£ 26$ REF: MAG26 Transmits to any FM radio
"FM BUG KTT New design with PCB embedded coil for extra stabillty. Works to any FM radlo, 9 v battery req'd. £5 REF: MAG5P5 - FM BUG BULLTANDTESTED superior design toklt. Supplled to detectlve agencles. $9 v$ battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER origlnally made to retall at £79 each, these unlts are designed to convert and ordinary phone Into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their onginal use or used for something else?? Prce is just $£ 3$ REF: MAG3P1 100 WATT HOSFET PAIRSame spec as 2 SK 343 and $2 S \sqrt{ } 413$ ($8 \mathrm{BA}, 140 \mathrm{~V}, 100 \mathrm{~W}$) 1 N channel, 1 P channel, £3 a paif REF: MAG3P2 TOP QUALTTY SPEAKERS Made for HI FI televisions these are 10 watt 4R Jap made 4^{\prime} round with large shielded magnets. Good quality, $£ 2$ each REF: MAG2P4 or 4 for £6 REF: MAG6P2 TWEETERS 2^{\prime} diameter good qually tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for £3 REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small mod to run on any AT, they work perfectly but you will
have to put up with 1 or 2 forelgn keycaps! Price E6REF. MAG6P3 have to put up with 1 or 2 forelgn keycaps! Price E6 REF: MAG6P3 PC CASES Again mlxed types so you take a chance next one off the pile £ 12 REF:MAG 12 or two the same for $£ 20$ REF: MAG20P4 COMMODORE MICRODRNE SYSTEM mini storage device for C64's 4 times faster than disc drives, 10 times faster than tapes. Complete unit just £12 REF:MAG12P1
SCHOOL STRIPPERS We have quite a few of the above units which are 'returns' as they are quite comprehensive units they could be used for other projects etc. Let us know how many you need at just 50p a unit (mlnimum 10)
HEADPHON ES ExVirgin Attantic. 8pairs for£2 REF: MAG2P8 PROXMITY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB. Complete with flyleads Pack of 5E3REF: MAG: 3P5 or 20 for 88 REF: MAG8P4
SNOOPERS EAR? Original made to dip over the earplece of telephone to amplify the sound-it also works quite well on the cable running along the wall! Price is $£ 5$ REF: MAG5P7
DOS PACKS Microsoft version 33 or higher complete with all manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very comprehensive manual! 525^{\prime} only.
DOS PACK Microsoft version 5 Original
CTM644 COLOURMONITOR Made to
CTM644 COLOUR MONITOR Made to work with the CPC464 home computer Standard RGB input so will work with other maChines Refurbished £59.00 REF:MAG59
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12 voperation. Slight marks on case and unboxed (although brand new) £8 REF: MAG8P5 WINDUP SOLAR POWERED RADO AM/FM radio complete with hand charger and solar pane!! £14 REF: MAG14P1
COMMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF: MAG4P9 Fully tested units are £ 12 REF: MAG12P5 MAINS CABLES These are 2 core standard black 2 metre mains ables fitted with a 13A plug on one end, cable the other. Ideal for Pack of $100 £ 20$ REF. MAG20P5
MICROWAVE TIMER EIECH
alCROWAVE o make enarger timer etc 14 REF: MAG4P4
MOBILE CAR PHONE £5.99 Well almostl complete in car phone excluding the box of electronics normally hidden under seat. Can be made to illuminate with 12 v al so has built in light sensor so display only illuminates when dark. Totally convincing! REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used for caravans etc. 12 v operation. Just connect up and it fashes regularly) £5 REF: MAG5P11
FIRE ALARM CONTROL PANEL High quality metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electronics but no information. sale price 7.99 REF: MAG8P6 REMOTE CONTROL PCB These are receiver boards for garage door opening systems. Another use? £4 ea REF: MAG4P5 6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130mA. Bargain pnce just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99 ref MAG5P 13 ideal for expenmenters! 30 m for $£ 12.99$ ref MAG 13 P 1 LOPTX Line output transformers believed to be for hi res colour monitors but useful for getting high voltages from low ones! £2 each
BOTH SHOPS OPEN $9-5.30$ SIX DAYS A WEEK

PORTABLE RADIATION DETECTOR $£ 49.99$

A Hand held personal Gamma and X Ray detec tor. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring ange of $5-9999 \mathrm{UR} / \mathrm{h}$ or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.

REF: MAG50

> One source predicts that video $C D$ sales will exceed 16 million by 1998. With films on $C D$ about to hit the shops, George Cole looks at events that led to current video-compression standards.
his autumn, Panasonic is launching a home audio system with a difference. Called $\mathrm{SC}-\mathrm{VClO}$, this system will include a new type of compact-disc machine with the ability to play conventional audio and video CDs - which store over an hour of digital full-motion video, or fmv.

Video CD is a cross-platform system whose software can be played on domestic players. such as Compact Dise Interactive equipment, computer games consoles such as Commodore's Amiga CD32, and desktop PCs. Consumer electronics companies hope video CD will boost sales of compact-disc players, while computer companies think that the ability to play full-length movies on your PC or games machine will prove appealing.

Video CD is not the first CD-based format to offer pictures or even video. The compactdise Digital Audio Red Book standard, set by Sony and Philips in the late 1970s, Fig. 1. makes provision for a CD plus graphics, CD+G, system.

Around 97% of the data stored on an audio CD is for music and error correction. Subcodes containing control information take up the remaining 3%. These sub-codes are called P, Q, R, S, T, U, V and W. The first two, P and Q, are used for features such as track indentification and track time, while $\mathrm{R}-\mathrm{W}$ are sel aside for graphics.

There is space for up to 1500 graphic ele-

VIDEO compact disc

ments, each with a display size of 288 by 192 pixels. The graphics look like a teletext picture and can display up to 16 colours from a palette of 4096 . It takes around $2.5-10$ seconds to draw each display, which can also be scrolled off the screen.
Drdinary CD decks ignore sub-codes R to W, but olayers equipped with a $C D+G$ decoder can display them on any television screen. It was thought that many record companies would make use of the graphics to display song lyrics and artist information, but few bothered.
JVC launched CD+G decoders in the US, Germany and Japan, where they were used for karaoke titles. But few CDs featured graphics.

WEA launched several CD+G discs, some of which can still be found in music shops. A few multimedia players however, among them CD-j decks, also include CD+G decoders.

Fig. 1. Video CD technology pyramid.

In 1985, Sony and Philips launched the cdrom, or Yellow Book standard, which enables a CD to store over 600 M -byte of data. This data may be in the form of sound, text or pictures. Although a cd-rom can store over 250,000 pages of text, it can only hold a small amount of uncompressed digital video.
A video frame uses around 800 K -byte of data and tv systems like PAL display 25 frames a second to create the illusion of motion. Simple mathematics shows that a $C D$ could only store less than a minute of digital video. Another problem is that CD transfer rate is only $1.5 \mathrm{M}-\mathrm{bit} / \mathrm{s}$, which is far too slow for displaying 25 frames a second.
In 1987, Philips announced Compact Disc Video, CDV, which stored analogue video and 16 -bit pcm audio on the same disc. A 12 cm CDV disc stored six minutes of video and sound, plus a further 20 minutes of audio. Philips hoped that CDV would appeal to music buyers, but the format flopped.

Practical CD video - almost

During the same year, researchers from RCA's David Sarnoff Laboratories in New Jersey astounded the world by displaying a CD which held over an hour of digital fullmotion video. Called DVI, for Digital Video Interactive, the system which made it possible used powerful algorithms to reduce a 800 K byte frame to just 5 K -byte. DVI works by comparing each frame and only coding the differences. It also analyses a frame for repetitive or redundant information. This might be large areas of the same colour, such as sea or sky.
DVI was a fine technical achievement, but the complex number crunching needed meant that it took a super computer over a day to compress an hour of video. What is more, playback DVI boards designed for desktop PCs initially cost thousands of dollars.

Moving pictures through the window

 In 1988, the CD-i Green Book standard was set. Originally, the CD-i specification included motion video, which played video running at around 15 frames per second in a small
Video CD software specifications

	Video system	
Parameter	NTSC	PAL
Coding Method	MPEG-1	MPEG-1
Resolution (pixel)	$352 \mathrm{~h} \times 240 \mathrm{v}$	$352 \mathrm{~h} \times 288 \mathrm{~V}$
Frame rate (Hz)	29.97	25
Pel aspect ratio	1.0950	0.9157
Bit rate (bit/sec)	1151.929 k	1151.929 k
	Audio	
Coding method	MPEG -1	LAYER-II
Sampling rate (Hz)	44.1 k	
Bit rate (bit/sec)	224 k	
Emphasis	ON or OFF	
Mode	Dual channel or stereo	

The other video CD

At the 1993 Midem music festival, Monmouth-based Nimbus Technology and Engineering created a stir by showing two compact discs holding over an hour of MPEG-1 video.
Playable on many conventional CD decks, the first of these discs held 79 minutes of video. The second held 135 minutes of full-motion video. Nimbus said that this too could be played on ordinary CD decks, albeit with a small adjustment to the laser system.
Both long playing CDs were made possible by a new mastering system developed by NTE and called video $C D$. The company planned to launch add-on MPEG-1 decoders priced at around $£ 100$. These would include a CL-450 MPEG- 1 chip set designed by C-Cube Microsystems and link directly into the digital output socket of a CD player.
NTE said that roughly one third of the world's 120 million CD decks had a digital output connection and that such a socket was becoming a
window on the screen. At the time Philips said that it was not practical to include full-motion video.
A development in May of 1988 forced Philips to change its mind. Jointly, the International Standards Organisation and International Electrotechnical Commission set up the Moving Picture Experts Group. MPEG, to establish a world standard for digital video. The group included representatives from computer, consumer electronics and telecomminications companies.
In 1989, Philips announced that CD-i would include digital video based on the MPEG standard and hoped to launch the first CD-i players with full-motion video capability. But the first MPEG standard, MPEG-1, was not set until November 1992 - a year after CD-i was launched in North America. As a result, the first decks had space for a plug-in full-motion video cartridge to hold the MPEG chipset.
In January 1993, Nimbus Technology and Engineering demonstrated a system capable of storing over an hour of MPEG-1 video on a CD and offered it to music, film and video companies; there is more on this in the inset panel.

Born from karaoke

On 29 June 1993 however, JVC, Philips, Sony and Matsushita - owner of Panasonic, Technics and JVC - announced the video CD format. It was covered by a new standard
standard feature on most new machines. By plugging the decoder into their tv set, users could watch video movies on their audio CD player.

Although the development caused excitement worldwide, Philips stemmed the fervour by claiming that Nimbus's long-playing discs broke the CD standard and would not play on all audio decks.

Nimbus decided to press ahead with its 79 -minute disc - which was within the Red Book standard. The company offered an MPEG-1 compression service to film and video companies, charging \$100 per minute of video material. It also sold a couple of its new mastering systems to China.

But the announcement of the 'new' video CD shocked NTE. Athough it claimed that many Hollywood film companies preferred its system, NTE's alternative became significantly less attractive. Earlier this year, NTE was still demonstrating its system to Hollywood, but there is no sign of any software company backing it.
known as the White Book. Video CD is based on another standard known as Karaoke CD. which is a sub-set of CD-i. Karaoke CD was developed by Philips and JVC.
Video CD is designed for linear video programmes, such as music videos, and stores up to 74 minutes of MPEG- 1 video and audio on a CD. There are two specifications for PAL and NTSC systems, shown in the table, although all video CDs will play on all video CD decks.

Initially, the announcement stated that video CDs would play on a variety of player formats. These included CD-i decks with an addon full-motion-video cartridge, dedicated video CD players. PCs with a MPEG card and cd-rom drive and modified audio $C D$ decks with an add-on video $C D$ decoder.

News that modified audio CD decks could be used caused confusion. It suggested that owners of existing $C D$ decks could upgrade to video CD with an add-on decoder. But this is not the case.
Video CD uses a CD-ROM-XA 'bridge disc', which includes a header telling the player that it contains computer data. If you try playing an XA disc in most music CD decks. the audio output is muted to protect the speakers from damaging white noise. Philips has since confirmed that it will not market add-on decoder boxes.
In August 1993, the basic specifications for video $C D$ were released, with news of two optional features. One of these is for display-
ing still pictures, which can be in standard resolution, at 353 by 288 pixels, or high resolution with 704 by 480 pixels.

It is also possible to put control codes on video CDs for branching interactive programmes used for educational or training programmes and the like. In January 1994, the first video CD standard, known as version 1.1, was set.

Better than VHS

Video CD offers 'better than VHS' picture quality and titles can also include widescreen pictures and Dolby Surround sound. A number of electronics companies have shown video CD players. including Panasonic. Sony. Goldstar, Samsung and Fisher. These machines will run video and audio CDs, but not CD-i or cd-rom titles. They will also offer video-recorder type features such as still frame and picture search.
Home multimedia formats CD-i and 3DO also support video CD and Commodore has launched a $£ 200$ add-on decoder for its Amiga CD32 system. Atari is promising the same for its Jaguar games system, while US company ReelMagic has launched a MPEG-1 video card for PCs, priced $£ 400$. Video CD software supporters include Polygram, BMG, Warner, Paramount and MGM/UA.
But video CD has not been without its problems. One of these is the confusion caused by Philips. which has launched a number of movies on CD. The films are part of a deal with Paramount, announced in autumn 1993. which involves the launch of 50 Paramount movies on CD-i over the next two years. However, the first movies to appear were not

MPEG video compression

There are several MPEG standards under development. MPEG-1, now known as ISO 11172, is optimised for storage media, such as CD. The idea was to develop a digital video system whose data rate was below the CD's 1.5M-bit/s ceiling.

The data rate of MPEC-1 video is approximately 1.2 M -bit $/ \mathrm{s}$, with 224 K $\mathrm{bit} / \mathrm{s}$ allocated for the audio. MPEC-1 video is also being used for asymmetrical digital subscriber loop, ADSL, systems used by telephone video-on-demand services. This enables full motion video to be sent down narrow-band copper telephone wires into homes. MPEC-1 picture quality is claimed to be better than VHS, and in some cases can approach Super VHS.
The MPEG-2 standard is designed for data rates of $2-15 \mathrm{M}-\mathrm{bit} / \mathrm{s}$ and aimed at digital broadcast services,
video CD discs, but dedicated CD-i titles.
Philips says the Paramount deal was struck before the video $C D$ announcement and there was no time to convert its video encoders. Philips has since switched its mastering system over to White Book encoding. This means that there are now two types of CD-i movies: those which only play on CD-i decks and those which play on CD-i and video CD machines.
Another problem has been caused by the difference between the CD-i and video CD standards. The Green Book standard defines a picture 384 pixels wide, compared with 352 pixels for the White Book. The result is that when a video CD is played in a CD-i deck. there are thin black bands at the sides of the picture.
Initial video CD titles also looked slightly distorted in CD-i players because of the difference between the 15 MHz clock speed of CD-i and video CD, which was set at 13.5 MHz . Philips has since adapted the CD-i full-motion video cartridge which now automatically changes the clock speed, depending on the type of disc being played.

Commercial constraints

Other problems have been commercial. Different frame rates, line numbers and colour encoding systems used for PAL and NTSC television formats mean that VHS tapes and laser discs bought in the US will not play in most PAL machines.
Film companies use these differences to negotiate separate deals in PAL and NTSC territories and stagger release dates. Most movies appear on video in the US months
including HTTV. A new generction of cd-roms wil also use MPEG-2 to offer even better sicture quality. MPEG-3 was origir ally designed for HDTV, but its work is now part of MPEG-2.
MPEG-4 will be aimed at low kit-rate transmissiori systems, such as video phones, where the data rate is in tens of kilobits $/ \mathrm{sec}$.

Note that MPEG is concerned with the organ sction and synchronisation of the outol digital bit stream. It does not define t רe encoding algorit 7 ms used to compress the audio and video. This leaves companies free to develop their own a gorithms and opens the way for improved compressior. It also explains why some MPEG-1 pictures look much setter than others.

Additio ally, MPEG does nol define what scrembling and encryption systems companies may wish to use, so there are likely to be many different conditior al access systems on the market.

Fig. 2. The video encoding challenge - storing a
710G-bit film on a half-gigabit CD.

fig. 3. Video encoding/decoding scheme for the MPEG-1 standard.
before they reach Europe. But video CD breaks this barrier and discs can be bought and used anywhere.

The only caveat to this is that discs designed for NTSC display a letterbox picture when played in a PAL machine. This is because PAL pictures have 288 lines, compared with 240 lines for NTSC; in PAL, these lines are repeated sequentially to produce a full display. As a result of the line difference, PAL pictures look stretched on an NTSC video CD player.

In practice, the letterbox effect is not too obtrusive and most people find it acceptable especially if it means they can watch a movie long before its UK release date.

Film companies have insisted on separate mastering for PAL and NTSC titles. They want their stars to 'always look their best'. Earlier this year, Paramount began inserting blocking codes into its titles to stop NTSC discs being played in PAL machines. A compromise has now been reached. European viewers playing an NTSC video CD see a warming at the start of the dise stating that the title is designed for NTSC.
Panasonic's first UK video CD system, the $S C-V C 10$, will cost around $£ 800$. Most movies on video CD will be on two or three discs, although carousel players, which store several or more discs are promised. Also promised are portable video CD decks with liquid-crystal video screens. Next year, Philips is expected to announce a new CD standard offering longer playing time and better picture quality.

Fig. 4. In video compression, redundancy in individual pictures is exploited.

Fig. 5. There is also redundancy in sequences of pictures that can be removed to save memory.

Fig. 7. Here, quantizing the dct components involves scaling down by a factor of 12.

Fig. 8. Variable-length coding involves scanning the pattern in a zig-zag to produce a bit stream.

Video companies find video CD attractive because it costs around $\$ 1$ to press a $C D-$ compared with $\$ 3$ for duplicating a tape. Video CDs will cost around $£ 16$ for a single disc and $£ 20$ for a double-disc set. Panasonic says consumers will like video CD because the discs are non-wearing and offer fast access.

Panasonic predicts that total worldwide sales of video CD players will reach 300,000 this year, rising to 16.4 million by 1998 . However, the company does not see video CD replacing the domestic video recorder, which offers longer playing times, masses of cheap seftware - and recordability. Indeed, Panasonic is a supporter of a new home digital ver format called dvr. However, the company says that video CD should make audio-only CD players obsolete by the end of the decade.

MPEG technology breakdown

Storing over an hour of digital video on a CD is difficult, as Fig. 2 implies.
Figure 3 shows the general encoding/decoding scheme. The process starts with a highquality analogue or video source which is preprocessed to obtain a Y/C video signal. This is fed to the encoder where it is compressed then multiplexed with the audio stream.

Also added to the data stream are graphics. such as logos and copyright messages, and control codes for chapter selection, etc. In the player, the MPEG- 1 decoder decompresses the audio and video. Post processing is used to produce a display output.

Currently, MPEG-1 encoders cost between $£ 50,000$ and $£ 100,000$, but prices are expected to fall rapidly. Encoding costs around $£ 90$ per minute, so a 90 -minute movie can be mastered for around $£ 8000$ - which is relatively cheap. The video $C D$ mastering process is shown in Fig. 15.
MPEG exploits redundancy within a frame and between each frame, Figs 4, 5. There are large areas of repetitive detail in the locomotive image. In addition, the short time interval between each frame of $1 / 25 \mathrm{~s}$ means that there
is little change between successive frames.
The process used to sort out the redundant data is known as discrete cosine transform, dct. First, an eight-by-eight segment of pixels, called a block, is analysed and each pixel is assigned a number which represents its luminance value, Fig. 6. Discrete cosine transform is used to produce a set of numbers representing the spatial frequency. This is the speed at which the luminance value changes between adjacent pixels. The new set of numbers are known as output coefficients.
Within the det matrix, the top left number, in this case 120 , is most important. It represents the average luminance value for the area being analysed. The 120 looks high for the average value because in this example the values have been scaled down by a factor of 8 rather than 16 , for simplicity's sake.
The small values of 1 and -1 indicate that there are no fast changes in brightness from pixel to pixel. Note that at this stage we have still not reduced the amount of data. It is still 128 bits, comprising 8 bits by 16 words.
During compression, the first stage involves the quantization of the det values, Fig. 7. In this example, the numbers are scaled down by a factor of 12 . This means we now need four, rather than eight, bits to code each word, halving the amount of data.
Variable length coding is used in the next stage, Fig. 8. Here, the output coefficients are scanned in a zig-zag fashion to produce a string of bits. Zig-zagging is used because the numbers furthest away from the average value are more likely to have the lowest luminance value. Visually, this makes them least important.
A long string of zeros is usually produced by this process. The next step is to use Huffman coding. The shortest length code is assigned to the most frequent data value and the longest length code for the least frequent data value?
A long string of zeros can also be represented by a small number of bits. This reduces the data by a factor of four. These processes are also applied to the colour signal data.

Fig. 9. Further compression is possible by analysing motion over successive frames.

Fig. 10. The image of a moving train need only be stored once, together with a motion vector.

1 -picture or
 1-picture or P-picture

Encoding method:
Bidirectional interpolation
Fig. 11. Encoding a bidirectional picture involves interpolating from a non-compensated I reference frame and a predictve P frame.

Fig. 12. Video $C D$ picture organisation. Since B frames take longest to encode, output frames are shuffled by the encoder.

Another compression process, namely motion detection and compensation, analyses differences between frames. Figure 9 shows a train moving across a screen. If detail of the engine has already been encoded in the previous frame the only further information needed is the number of pixels moved in the current frame. This is known as the displacement value or motion vector, and requires far less coding.

Motion vectors are produced by analysing the frames before and after the current frame. This works by storing the frames in memory and calculating the displacement values.
The current frame may also contain new information - part of the first carriage in this case - which is known as the prediction error, Fig. 10. This is coded using dct and added to the motion compensated frame.
There are three types of frame involved in the compression process, Fig. 11. The I frame is the reference frame and no motion compensation is applied to this. The P or predictive frames are produced by motion compensated process. Bi-directional or B frames are produced by an interpolation method which uses the motion vectors from an I and P frame or two P frames.
This process combines blocks of data known as macroblocks from both the I and P frames to create an average valuc. Macroblocks comprise four luminance and two colour blocks.

Figure 12 shows how the frames are organ-
ised by the encoder. The B frames produce the largest data compression, but take the longest to encode. For this reason, output frames are shuffled by the encoder to increase speed.
Video CD uses an MPEG audio format known as Layer-II. This has a bit rate of 224 k $\mathrm{bit} / \mathrm{s}$. It gives stereo or dual channel sound and represents a compression ratio of 6.3 when compared with CD audio.
MPEG uses a coding system similar to the Precision Adaptive Sub-band Coding, PASC, process used by the digital compact cassette. Audio is sampled at 44.1 kHz , split into 32 frequency sub-bands, and analysed. Frequencies which are hidden or masked are discarded to reduce the amount of data.
Elements of the the video-CD decoder are shown in Fig. 13. I frames are sent via the top route, while B and P frames follow the bottom route. A switch detects each type of frame.

Figure 14 is a block diagram of a video CD player. The switch here detects whether the machine is playing an audio or video CD.

DESIGNING FOR NOISE IMMUNITY

Under certain circumstances, it is possible to recover at least an approximation of data that has become corrupted by noise. However recovery techniques should be only used as a last resort.
Lord Rutherford once advised, "If your experiment needs statistics - think of a better one." In this instance the 'better experiment' relies on preventing the noise from corrupting the data in the first place.

Sensor buffering

In most data acquisition systems, the most vulnerable element will be the sensor itself. Sensors often need some form of excitation, or drive. Noise at this node is often transferred to the output, possibly as a multiplicative distortion.
Every inch of extra cable - shielded or not between your sensor and its processing electronics is a further reduction in signal integrity. One solution is to insert a sensor interface buffer as close to the sensor as physically possible. This interface should produce any sensor drive

Fig. 1. To ensure that a low-level signal from a remote sensor can be received at a distance with integrity, an excellent solution is to introduce a buffer subsystem as close to the sensor as possible.

In passing from its source to a data

 acquisition system, a low-level transducer signal inevitably picks up noise. There are ways of recovering signals from noise, as described in last month's issue, but here, Dave Robinson looks at a better alternative - building in noise immunity.
needed, amplify sensor output and convert the information into a robust transmittable form.
Fortunately modern electronics make the design of sensor buffers straightforward. They can be very compact, and can be designed to consume very little power. Fig 1.

Power for sensor buffers

Powering these buffers can be a problem: there are three methods that generally work well:

- battery power
- remote power and dc/de converters
- local mains with isolated communication links.

Battery power offers many advantages. Each buffer unit can be totally isolated. Noise generation mechanisms such as earth loops are much easier to handle.
Using cmos devices, a small battery with regulation electronics can provide months of trouble free running without maintenance. This is, however also the major disadvantage. Batteries do expire, and at fairly unpredictable times. Two questions need answering-does the buffer enclosure facilitate battery changes and will the system function if one sensor becomes inoperative? Rechargeable batteries, perhaps charged from solar cells, can solve many problems.
If power has to be transferred from the central controller some distance from the sensor buffer, considerable noise can be picked up on the power lines. As zero volts often acts as the signal reference point, noise picked up on this line can prove troublesome.

One excellent solution is to use the transmitted power as input to an isolated output dc-to-dc converter within the sensor buffer unit, Fig 2. In this way, the isolated zero volts of the converter output and system zero volts need not be brought together until the signal is safely back into your central control system.
An alternative, ingenious and very popular method of powering remote sensors is the so called $4-20 \mathrm{~mA}$ current loop. This forms a
complete two wire power distribution and communication system. Power is provided on the loop by the control unit. The sensor circuitry at the far end essentially modurates the current flowing in the loop, according to the parameter being measured.

Since data is communicated by switching current in the loop between 4 and 20 mA , there is always at least 4 mA available on the loop for powering the transducer circuitry. This system works extremely well; it is fairly immune to noise pickup and is supported by most of the major manufacturers in the field.
Powering the buffer and the central control node from their own local mains supplies which may be a fair distance apart - is problematical, Fig 3.
In my experience, this configuration has been the cause of a great deal of heartache mainly caused by the varying carth potentials. Connecting the signal earths of the two systems results in what can be quite large and noisy currents flowing through the earth wire.
The easiest safe method of powering the remote nodes from their local mains is to use completely isolated data transfer between the nodes and the control node. Options here include, telemetry, optical-fïbre links and opto-isolator with copper cabling.

Sensor drive signals

Where appropriate, drive signals depend on the type of sensor you are using.
A thermocouple for example, does not need any drive. Platinum resistance thermometers normally require a dc supply, as do a strain gauge bridges.
With dc-excited sensors similar to prts and strain gauges, it is worth considering the advantages to be gained from using an ac excitation signal instead. Frequency-selective amplifiers. lock in amplifiers, phase sensitive detectors and so called box-car integrators are electronic amplifiers designed to produce a de value. Amplitude of this value is directly proportional to input signal whose frequency and phase are equal to the reference clock provided to the amplifier, Fig 4.
Suitable ac-to-de converters can easily be made from switched-input amplifiers. Exciting the sensor with a known frequency modulates the sensor output signal with the same frequency. Any change in signal level anywhere else in the spectrum is entirely due to noise. and can therefore be ignored - a process that the 'lock-in' amplifier does superbly.

The lock in amplifier is driven from the same oscillator as is driving the sensor. It automatically follows any frequency drift in the excitation generator, allowing a quite crude oscillator to be used. This is better than using a straightforward filter to isolate the signal, as this would require a much more stable frequency standard. Note that the speed of your oscillator should be substantially faster than the maximum rate of change that you are expecting from your signal.

Fig. 2. Powering a sensor buffer from a host can cause grounding problems. One solution is to regenerate ciean power supplies using isolated dc-to-dc converters within the sensor buffer unit.

Fig. 3. When the host and remote signal buffer have independent mains-derived power supplies, the two are connected via their earths. If the two are also linked by a signal earth ground loops will inevitably cause problems.

Data protocols

After amplifying and decoding sensor output. the buffer unit has to convert the signal into a format suitable for transfer to the central control node - a crucial task.

Fig. 4. With certain types of transducer, noise problems can be reduced by exciting the sensor with an ac signal. At the receiving end, a fre-quency-selective amplifier driven by the exciter clock makes sure that unwanted signals are rejected.

Transducer types

Transducer is a general name for electronic components that interact with the real world. They fall into two key categories, namely input and output transducers.
Output transducers take an electrical signal and convert it to some form of non-electrical output. Examples are loudspeakers, which convert an electric signal into an acoustic one, and solenoids, which convert between electricity and movement. Output transducers are usually called actuators.
Input transducers - the main subject of this article - take some form of non electrical input and produce an electrically measurable parameter change. Input transducers are called sensors. Sensors have been designed to use changes in virtual every conceivable electrical parameter. Although far from exhaustive, the following list outlines some of the more common types.

Change in charge:

Pyroelectric infrared detectors
Microphones

Change in current:

Geiger Müller detector
Photodiode
Photomultiplier
Smoke detectors

Change in voltage:

thermocouple
photodiode

Change in resistance:

strain gauges
thermistors
platinum resistance thermometers
light dependent resistor
position measuring potentiometer
Change in inductance:
position LVDT
metal detector
Change in capacitance:
accelerometers
microphones
Sensors fall into two categories. One is direct output sensors, which produce a measurable electrical effect representing the parameter being measured. A thermocouple is a simple example of this type of sensor. It produces an output voltage which is a direct function of the temperature difference between the so called hot and cold junctions.
The other category of sensor requires some form of drive or stimulus which is modified or modulated by the parameter being measured. Resistive sensors usually fall into this category. In almost all cases, the signals provided by the sensors are very low level, and need to be preprocessed prior to being digitised for digital processing.

Fig. 5. In a purely analogue system, the ramp's detail is obscured by noise. Converting the clean ramp to frequency-modulated format reduces the effects of noise.

What are the criteria? Obviously the transmission should be more immune to interlerence and noise pickup than simply transmitting the raw sensor data. The first option is to send the amplified analogue output down a wire. Assuming that noise picked up has a fixed amplitude, then there must be a value of gain for which the signal-to-noise ratio becomes acceptable.
Screening the cable helps to diminish noise pickup. as does using a differential format. Differential encoding produces two signals. Difference between the two signals is proportional to the amplified sensor signal. Provided that the conductors follow similar pathes to the control node, then any pickup should be almost identical on both cables.
Feeding the resulting differential signals into a differential amplifier results in recovery of the original signal. Noise on the other hand. being common mode, is rejected. Again screening this double cable is a sensible precaution.

The multiplex disadvantage

Now all that remains is to interface the data into a data-acquisition board. This is true where one sensor is concerned, but consider what is needed if data is being acquired from more than one source.
In certain cases, a data-acquisition card with input multiplexer may be suitable. This is especially so if the data has been transferred using a low noise protocol such as currentloop technology.
Consider the following situation however. involving 16 remote sensors. These are interrogated at the same sample rate. This means that during any complete multiplexer cycle. each of the sensors is only being looked at for a sixteenth of the total time.
In other words. 93.75% of the data from the sensor is wasted. If some way of using this lost data could be found then the square-root law shows that signal-to-noise ratio could be increased substantially. From this argument you can see that the major drawback in the use of a simple signal multiplexer is that it succeeds in decreasing our potential signal-tonoise ratio by a factor proportional to the square root of the number of channels on the multiplexer. For the above simple example. the factor is four. So what is the solution? Until recently the only answer would have been to use frequency modulation.

Frequency modulation

There is much to commend frequency modulation. To implement it, each sensor buffer is fitted with a device known as a voltage-to-frequency converter. These are very accurate
voltage-controlled oscillators. Their output amplitude remains fixed. Frequency of the output signal on the other hand is directly proportional to input voltage - in this case the amplified sensor output. Once frequency modulated, the signal is transmitted directly to the acquisition system.
Being essentially digital, the fm signal is easily transmitted via an optical fibre, ensuring no noise pickup and complete isolation between the bufler and control node. Even if the cheaper option of screened electrical cable is opted for, isolation can still be accomplished using a standard opto-isolator.

Noise immunity provided by this technique comes from two directions: the first can be seen from Fig 5. In the top diagram, the ramp illustrates what an amplified and noise-contaminated analogue signal might look like on arriving at the control node. Although general shape of the ramp is clear, any fine detail is lost in the noise.

A fragment of a frequency-modulated waveform being transmitted down exactly the same transmission cable is shown in the second diagram. Its statistical noise corruption is identical. Removing the noise from the first waveform is not a trivial operation, relying on the techniques covered in last month's issue. Removing it from the second however is very simple.

The second advantage of fm stems from the way that the frequency encoded information is demodulated. This can be implemented via several devices, among them frequency-tovoltage converters and digital frequency integrators.

Frequency-to-voltage converters are complementary to voltage-to-frequency converters. In essence the voltage-to-converter, transmission line and frequency-to-voltage converter are transparent. Any change in voltage at the input produces a proportional change in voltage at the output. Noise corruption affects the amplitude of the signal. Because the information travelling down the transmission line is encoded as a frequency change, the signal output is virtually identical to the signal input.
Another efficient way of reconstructing the data is via a digital frequency integrator. It has the advantage that it removes the need for any analogue to digital converters at the control node end. Incoming frequency modulation is simply allowed to increment a counter for a fixed period of time. The faster the frequency, the higher the count.

At the end of the integration period, the count reached is directly proportional to the average voltage at the input of the voltage-tofrequency converter. If this integration period is made equal to the sample period, the accumulated count is a highly suitable format for applying averaging to the incoming data. Because the technique is immune from noise pickup on the transmission line. it helps to remove the noise already corrupting your sensor reading before it reaches the sensor buffer. As the resulting count is already in digital form, its interface to the control computer becomes trivial.

Fig. 6. Sloppy coding can lead to noise-induced system crashes a). Chart b) shows how a liftle forethought can avoid this problem.

Intelligent buffers

Powerful yet low power microcontrollers and microprocessors have considerably changed the nature of data acquisition. It is now possible to build in intelligence directly into the sensor buffer unit. This opens up options like applying sophisticated preprocessing to your sensor data locally. Preprocessing is application dependent but might well include removing noise from sensor input, sersor linearisation and temperature compensation.
Inserting intelligence at this position expands your options but it can also introduce pitfalls. To avoid them, make sure that any local power supplies are clean. If you have to receive the power from a remote source, then regenerate the rails via isolated dc-to-dc converters and use copious decoupling. Also use separate power planes to distribute power, as opposed to simple tracking.

On the logic-signal side, make sure that any unused interrupt lines and dma requests are strapped in their inactive states using pull up resistors. Do not leave them floating. Ensure that interrupt handling routines are included for all unused interrupt lines. These should comprise at least a return from interrupt instruction, even though you have tied the input line inactive, Fig 6. Problems caused by noise-induced interrupts to a non-existent inter-
rupt handler can be very difficult to detect.
Make sure that the reset line is filtered against transients. Include hardware so that the processor can perform a cold reset to all distributed elements of the system under software control. This is essential for restarting a multisensor system synchronously.

Include hardware and software to perform a watchdog function. When running normally, the software outputs periodic pulses that are detected by hardware. If the software runs out of control after a noise induced excursion, the watchdog pulses stop and the hardware causes a reset, bringing the system back under control.
Fill all unused program memory with nooperation instructions. This avoids the possibility of having an accidental 'dynamic halt' or similar instruction due to random bit patterns left in the prom.

When writing your serial communications software, do not rely on serial information getting through even at RS232 levels; expect your messages to become corrupted. Include some form of error checking, and handshake between the sensor buffer box and control node. Also consider using a synchronous protocol. These often automatically handle cyclic redundancy checking, etc. Both Motorola and Hitachi produce cost-effective micros with built in support for this.

87421 SHOT	
AM27C020-125L1 SURFACE MOUNT EPROM USED/	
MM16450 UART CHIP... $£ 5$	CHED MODE PSU 40 WATI UNCASED QTY.
MM16550 UART	
P8271 B8C CISCCONTROLER CHIP EX EQPT Σ^{25}	
	$220 R 2.5 W$ WIREWOUND RESISTOR 60 K AVAIUABEE E (20/100
${ }^{80 C 31 ~ M I C R O . ~} £ 2$	CMOS 555 TIMERS 2_{21}
08	
8202	OVERALL SCREENED............... £50/100m
USED 4164-15 ..60p	
BBCVIDEO	
8051 M	4 VARIBUS
8×4164 SIP MODULE NEW	
FLOPPY	WAY EXT
ALI USED	E $£ 1.30$
2716 -45 USED 2100151	DIN 41612 26-WAY AB/C SOCKET WIRE WRAP PINS ... $£ 1.30$
$2732-45$ USED	DIN 41612 64-WAY AC PLUG PCB RIGHT ANGIL
$2764-30 \mathrm{US}$	DIN 41612 64-WAY AB SOCKET WIRE WRAP (2 -ROW BODY)
56-30	
27C512 USED.. $£ 3.50$	BTPLUG+LEAD...3/81
1702 EPROM	
	LCD MODULE sim. LMO18 but needs 150 to 250 V AC for display
	TL 4312.5 to 36 V TO92 ADJ. SHUNT REG
	6 -32 UNC 5/16 POZI PAN SCREWS $£ 1 / 100$
71263 2	
	RS232 SERIAL CABLE D25 WAY Male Connectons ${ }^{\text {a }}$
TMS7C82 USEDNIPED.. $£ 5$	2-,
REGULATOR	AMERICAN $2 / 3$ PIN CHASSIS SOCKET $2 / 21$
	NEW
LM323k 5	
SANKEN STR451 USED IN AMSTRAD MONITORS $£ 5$	POWERFUL SMALLCYLINDRICAL MAGNETS 3/1
	$\begin{gathered} \text { SMi } \end{gathered}$
E1	
7812 METAL	MIN GLASS NEONS .. 10/\&1
	RELAY $5 \vee 2$-pole chan
7905/12/15/24	
CA3085 TO99 variable reg .. 2/1	
C	PCB WITH 2 N26 46 UNIJUNCTION WITH 12V 4-POLE RELAY
24M000 25M175 27MO 27M036	RAIN GAUGES 40 ohm Foil type polyester backed balco grid
$40100010400016 M 00018443200019 \mathrm{MO500} 20 \mathrm{MO}$	
38M10000 56M6092 76M1 84 MO 11.50 each	4 sim RS 304-267
CRYSTALS	
4 M	OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10$.................. $£ 12$
48 M 00055 M 500111 M 80112 M 80114 M 3181	1 pole 12-way rolary switch.................................... $4 / \mathrm{I} 1$
1 M8432 2M000 2 M45762M77 3M00 3M27683	AUDIOICSLM380 LM386 TDA 2003 11 ea
3M58564 3M93216 4M000 4M193044M43361	14
14M381818 15M000 16M000 16M5888 17M000 20 MO 00	COAX BACK TOBACK JOin
21 N	4×4 MEMBRANE KEYBOA
${ }^{36}$	1NDUCTOR 20MH 1.5A...5/E1
36 M 3125336 M 84375 38M900 49M504 54M19166 54M7416	1.25 PANEL AUSEHOLDERS.
57 M 583360 M 00069 M 54569 M 550 BN 26M995 RD27M045	CHROMED STEEL HINGES 14.5×1 OPEN.............. $£ 1$ Pach
OR27M095 YW27M1 45 GN27M195BL27M245 3M225 \&1 each	12 V 1.2 W small w/e lamps fit most modern cars 10/81
TRANSISTORS	
	-
	1
BC477, BC488.. 10/\&	TRANSISTOR MOUNTING PADS TO-5/TO-18........... £3/1000
BC107 BCY70 PREFORMED LEADS	TO-3 RANSISTOR COVERS10/51
BC557, BC238C, BC308B \qquad £1/30 £3.50/100	
	Large heat shrink sleeving pack..1/2
POWER TRANSISTORS	lec chassis plug titer
	40 K U/S TRANSDUCERS EX-EOPTNO DATA
PPOWER FET IRF9531 8A GOV 3/1/	
NPOWER FETIRF531 8A 60V 2 2/1	LM234Z CONST. CURRENTI.C... $£ 1$
	BNC TO 4MM BIINDING POST SIM RS 455-961.................. $£ 1$
SE9301 100 V S DA DARL SIM TIP121............................ $2 \sqrt{2 / 1}$	MIN PCB POWER RELAYS 10.5 V COIL 6A CONTACTS 1 pole
ASTIC 3055 OR 295	AVEL-LINDBEERG MOUULDED TRA
BUZ31 POWER FET TO-220 200 V 12.5A 2 2 1	ea
TEXTOOL ZIF SOCKETS	ZENERS
INUSED.	CI
LE IN LINE 32 WAY CAN BE GANGED FOR USE WITH	
ANYDUAL INLINE DEVICES . . . COUPLING SUPPLIED...... $2 /$	KYNAR WIRE WRAP WIRE E1/REEL
	OPIT264A 10kV OPTO ISOLATOR
QUARTZ HALOGEN LAMPS	ADEBY SANKYO.. £1
12V 50watt LAMP TYPE M312.......... E1 ea HOLD	Telephone cable clips with hardened pins 500/£2
VATSS LAMP TYPEA1/215.................. £2.50 each	DIODES AND RECTIFIERS
MISCELLANEOUS	
M	
RISED	
071 LO NOISE OP AMP 5 fo	100/

CRYSTAL OSCILLATORS

2M576 M6864 $2 \mathrm{M} 00 \mathrm{I}^{25 M 175} 17 \mathrm{M} 25616 \mathrm{M} 25718 \mathrm{MOOO} 20 \mathrm{M} 00023 \mathrm{M} 587$ 40 M 000 44M4444 44 M 90048 MO 0064 M 0001 M 0001 M 8432细 100056 M 6092 76M1 84MO

CRYSTALS

48M00 55 M 500 11M6256 18M432 25M000 28M469431M4696
 3M58564 3M93216 4M000 4 M 19304 4M433619 4M608 4M9152 10M245 10M70000 11M000 12M000 13M000 13M270 14M000 11300 1 36 M 7687536 M 78125 36M 7937536 M 8062536 M 81875 36M83125 36M84375 38M900 49M504 54M19166 54M7416

TRANSISTORS

2N2907A
10/E1

BC107 BCY70 PREFORMED LEADS
BC557, BC238C, BC308B
£4/100 £30/1000
POWER TRANSISTORS
PPOWER FET IRF9531 8A 60V .. ea NPOWER FET IRF531 8A 60V. SE9301 100 V 1DA DARL SIM TIP 121 BUZ31 POWER FET TO-220 200 V 12......
\qquad 28 PIN USED.......... £3........... 40 PIN NEW ANY DUAL INLINE DEVICES . . . COUPLING SUPPLIED...... 2

QUARTZ HALOGEN LAMPS

12 V 50 watt LAMP TYPE M312.......... £1 ea HOLDERS 60p ea
24 V 150 WATTS LAMP TYPEA1/215................. $£ 2.50$ each

MISCELLANEOUS

ALPS MOTORISED DUAL 47K LOG pots with spinde work $10 / \mathrm{E}$
TLO71 LO NOISE OP AMP ... 5 for $\varepsilon 1$

CONNECTORS

D25 IDC PLUG OR SOCKET... $£$ 34-way card edge IDCCONNECTO CENTRONICS 36 WA YIDC SKT CENTRONICS 36 WICS PRINTER LEAD $1.5 M$. USED CENTRONICS 36W PLUG + SK
14 WAYIDC BLOCK HEADER SKT PHOTO DEVICES
HI BRIGHTNESS LEDS CQX24 RED............................. 5/£ 1
SLOTTED OPTO-SWITCH OPCOA PB815 2N5777
TILB1P
TILB1 PHOTO TRANSISTOR
TIL38 INFRA RED LED................
4N25, OP 12252 OPTO ISOLATOR
4N25, OP 12252 OP
MEL 12 (PHOTODARLINGTON BASE n / c).
LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{s} 1$.
ELD's GREEN OR YELLOW 10/\&1
 HIGH SPEED MEDIUM AREA PHOTODIODE RS651.
STC NTC BEAD THERMISTORS
 FS22BW NTC BEAD INSIDE END OF $\uparrow^{\prime \prime}$ GLASS PROBE RES A 13 DIRECTLY HEATED BEAD THERMISTOR 1 k res. ide al for CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$ 10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K
100K 200K 500K 2M... 50p ea IC SOCKETS
14/16/18/20/2 4/28/40-WAY DIL SKTS £1 per TUBE
8-WAY DIL SKITS

POLYESTER/POLYCARB CAPS

$330 \mathrm{nF} 10 \%$ 250V AC X2 RATED PHILIPS TYPE $330 \ldots$.... $£ 20 / 100$

 100 n 600 V Sprague axial $10 / \mathrm{El}$ $2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad 15 mm $10 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC \times rated 15 mm .
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC $1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC............
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm}$ rad 100/E3
 SAW FILTERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY 379.5 MHZ.......................... $£ 1,50$ ea **NEW ASTEC UM 1233 UHF VIDEO MODULATORS (NO SOU UND) 10 for $£ 1$ 1250 STOCK.........................n. NEW MARCONIMICROWAVE DIODES TYPES DC2929, DC2962, DC 4229F1/F2.
ALL TRIMMERS 21 M 45 MO …... $£ 2$ ea
5-105pF
YELLOW 5-65pF RED 10-110pF GREY 5-25pF 3 ORR 50p $£ 10 / 100$ TRANSISTORS 2N4 427. 2N3866, 2N5 10
CERAMIC FILTERS 4M5/6M/9M/10M7 FEED THRU' CERAMIC CAPS 1000 pF VOLT TELEDYNE RELAYS 2 POLE CHANGEOV (BFY51 TRANSISTOR CAN SIZE) P2N2222 METAL

2N2369A

PLESSEYICS EX-STOCK

SL350G SL360G SL362C SL 403D SL 423A
SL521B SL523C SL541B SL850C SLi021A
MONOLITHIC CERAMIC CAPACITORS

10 n 50 V 2.5 mm	00/84.50
100 n 50 V 2.5 mm or 5 mm .	100/[6
100 n ax short leads.	100/E3
100 n ax long leads.	.. 100/¢5
100 n 50 V dil package 0	100/28
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$	£6/100

00 n 50 V dil pack.............
$\mu \mathrm{F} 50 \mathrm{v} 5 \mathrm{~mm}$

KEYTRONICS
TEL. 0279-505543
FAX. 0279-757656
POBOX 634
BISHOPS STORTFORD
hertrondshire cm 23 2RX

SEND \&1 STAMPS FOR CURRENTIC+SEMI STOCK LIST - ALSO AVAILABLE ON
MAIL ORDER ONLY
MIN. CASH ORDERE5.OO. OFFICIAL NRDERS WELCOME UNIVERSITIES/COLLEGES/SCHOOLS/GOVT. DEPARTMENTS P\&P AS SHOWN MIN. ACCOUNT BRACKETS (HEAVYITEMS)OTHERWISE 95p

ADD $17 \frac{1}{2} \%$ VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

New maps for Smith's world

The Smith chart is the rf engineer's best friend. Ian White reviews Z-Match for Windows, the new Smith-chart program from Number One Systems.

The Smith chart is a visual way of designing and understanding impedance transformations in networks and transmission lines. Designed for pencil and paper it remains a powerful design tool; whatever you can draw on a paper chart, you can also draw on a computer screen.
The programming challenge is to keep all the paper chart's good features and then to add facilities unique to the computerised version. Although previous versions of Number One Systems' Z-Match software for dos came close to those objectives, Z-Match for Windows has made it.

On the screen

The main display is divided into two areas, the Smith chart on the right and the control and information panel on the left (Fig. 1). You draw on the chart in the usual Windows fashion using the mouse. Buttons on the left-hand panel control the main functions, so you seldom need to pull down the menus from the top of the screen. The non-linear scales that used to be the bane of the paper chart are replaced by precise numerical displays, linked to the position of the mouse cursor on the display.
The Smith chart has always been essentially a visual design aid (see the sidebar for an explanation of how the chart works). You draw lines and curves corresponding to your design ideas, and watch what happens to the circuit impedances and other parameters. Quite frequently you need to back-track to an earlier point and reconsider what to do next or even throw away the existing chart and start again with a clean sheet. The software makes good use of the Windows environment to provide these facilities and more.
A cross-shaped flashing cursor represents the current operating point for dragging and dropping around the display using the mouse. Cursor movement can be either free or constrained to follow an arc of constant R. X or VSWR away from its starting point, something you could

Fig. 1. Z-Match for Windows displays its power with a complicated Smith chart, showing stability and gain circles. Note the cross-shaped cursor over the point marked Source: the panel at the left of the screen displays a range of information about the cursor location, including its absolute and normalized impedance. Quick-change buttons control the most used features of the chart.
not do on a paper chart without first drawing the relevant arc. Whenever you move the cursor, numerical displays of nine parameters are very rapidly updated once again, a facility unique to a computerised Smith chart.
Alternatively you can type in an explicit impedance and the cursor will go there. If you want to leave a permanent mark at any cursor position, simply double-click the mouse button.

For back-tracking and erasing mistakes, Z-Match for Window's has an undo function which successively removes objects you had drawn on the chart and restores the cursor to its previous position.
The final requirements to replace the basic paper Smith chart are somewhere to file your work for later retrieval, a waste-basket and an endless supply of clean charts. Windows' familiar File menu provides these functions using Save, Save As, Open and New and of course you can always send a chart to the Windows system printer. Together, all these features provide a good simulation of the familiar paper-and-pencil environment.
Many other functions are accessible through the menu system. For example, several of the numerical displays make use of the system reference frequency (in MHz), the reference impedance Z_{0} and the velocity factor of the transmission line, any of which can be changed using the Display - Parameters sub-menu. In addition, buttons in the left-hand panel provide shortcuts to the most useful charting functions.
The software makes two of the most difficult Smith chart operations simple. You can convert with a single click between impedance and admittance charts (see sidebar), allowing the addition of admittances in parallel just as easily as impedances in series. The whole chart flips, leaving the cursor exactly where it was on the screen while maintaining your trace of previous movements. Two clicks draws a unit conductance circle on an impedance chart, or a unit-resistance circle on an admittance chart.
To understand what it was like without these aids, imagine navigating using two road-maps, one showing
only major roads and the other showing only minor roads. You could manage it with practice, but you wouldn't ever want to! These features of the software banish one of the most confusing aspects of the paper Smith chart.
The other difficult routine operation is impedance renormalization which occurs on moving from one system impedance to another. The software offers two ways of doing this. Either you can type in a new system reference impedance Z_{0} (and optionally have the cursor position recalculated) or you can specify any cursor location as the new reference impedance; all subsequent cursor movements and displays are referenced to this location on the chart. It is easy to alternate between two different reference impedances.

Advanced functions

A regular use of the Smith chart is to design impedance matching networks, starting from some arbitrary impedance and usually ending at the reference impedance Z_{0} in the centre of the chart. The technique is to work your way in towards the centre by adding reactances in series or in parallel.
Reactance in series is added by moving along a constantresistance line on the impedance chart, while reactance in parallel is added by moving along a constant-conductance line on the admittance chart. In many practical cases the quickest route home is via a point further out towards the periphery of the chart. All this is straightforward in Z Match for Windows, but the software also has a special network synthesis function which draws the circuit diagram of the network you have designed.

Smith chart refresher

A ny impedance can be represented as $R \pm \mathrm{j} X$ where R is the resistive or "real" component and X is the reactive component, positive for inductance and negative for capacitance. Although you can plot R and X on conventional rectangular coordinates, it can be difficult to represent the very low and very high values that occur in transmission-line calculations.

The problem of very low and high impedances is solved by two techniques: normalization and logarithmic axes. When working in a system that has a defined
standard impedance Z_{0}, for example a transmission-line impedance of 50Ω, it is useful to normalize all impedances, so that R becomes R / Z_{0} and X becomes X / Z_{0}. Thus a normalized impedance of $2+\mathrm{j} 1.5$ represents $100+j 75 \Omega$ in a 50Ω system.
Logarithmic resistance and reactance scales are possible because real-life rf resistances and reactances do not truly reach either zero or infinity.
Fig. A shows a logarithmic resistancereactance plot using rectangular axes, with a single "zero-to-infinity" scale for resistance

A) One way to represent all

 practicable impedances $R \pm j X$ on two rectangular axes. All combinations of resistance and reactance that have a normalized voltage standing wave ratio of 2.0 will fall on the constant-VSWR circle. To transform this diagram into a Smith chart Figure B, bend the two reactance axes round so that all three "infinity" points meet at the right-hand end of the resistance axis.and two mirror-image scales for positive and negative reactances. The system reference impedance Z_{0} falls in the centre of the normalized plot, at $1+j 0$.
What happens if you plot all impedances corresponding to a voltage standing wave ratio vswr of say 2.0 on this diagram? The two relevant points on the normalized resistance axis are $2.0+\mathrm{j} 0$ and $0.5+\mathrm{j} 0$, and these are equidistant from the origin because the scale is logarithmic. The two corresponding points on the normalized reactance axis are $1+j 0.71$ and $1-j 0.71$. If we scale the axes appropriately, these four points can be made to lie on a circle. Moving around this constant vswr circle, one complete revolution will pass through all possible combinations of resistance and reactance that produce a vswr of 2 , equivalent to having travelled a half-wave along a transmission line.
Unfortunately the angular scale is not linear: $1+j 0.71$ represents a phase angle of 35° rather than 90° as it appears on Fig. A. The genius of Phillip Smith was to realise what happens when the straight-line reactance axes of Fig. A are bent around to form two half-circles whose "infinity" ends join together at the right of the chart. Figure A has become transformed to Fig. B, a Smith chart. Remarkably, the vswr circle remains a circle, but its phase-angle scale

The resulting netlist can be saved in a file format compatible with Number One Systems’ Analyser nodal analysis software. Similarly you can read in results files from Analyser and have Z-Match plot them in Smith chart form.
S-parameters are widely used in rf design, and the review software also handles them. Device data may be entered either manually or from files (the package contains the Motorola device library in industry-standard S2P format). It will interpolate frequency dependent file data to the desired frequency, and gives an immediate indication whether the device is stable at a selected frequency. It can then go on to calculate stability circles, source and load impedances, etc.

In Figure I the program has calculated and plotted the input and output stability circles (the stable area is towards the middle of the chart), a constant-gain circle for a user selected value of 12 dB , and a suitable source impedance. You can then go on to match this impedance using the network synthesis function described earlier.

Off the map

The information panel beside the Smith chart can display its data in several alternative forms, avoiding the need for routine interconversions. In addition there is an RF Tools menu offering interconversions between power and voltage ratios, dB and dBm ; and between VSWR. reflection coefficient and return loss. The same menu also offers reactance and resonance calculations, and a designer for simple transmission-line transformers to match any arbitrary impedance to Z_{0}.

fig. 2. The receiver noise figure and intermodulation calculator from the rf Tools menu. The top three rows of data refer to the individual modules in the block diagram drawn above. The bottom four rows show how the cascaded stages interact to produce the overall system performance. Double-click on any module box to alter its data, and the whole display is automatically recalculated.
has now become linear. What is more, the entire Smith chart can be constructed from one horizontal straight line and a series of simple arcs and circles.
The horizontal diameter still represents pure resistance, ranging from zero to infinity with $R=1$ at the centre of the chart. Lines of constant resistance are circles, crossing the horizontal diameter at normalized values of $R=0.5,1,2$ and so on. R is zero all around the periphery of the chart, except at the "infinity" point where all the constant $-R$ circles meet tangentially. Positive reactances lie above the horizontal diameter, negative reactances below. Lines of constant reactance are arcs of circles, mirror-imaged above and below the diameter and all converging on the "infinity" point. Figure B shows all these characteristics.
Thus you can plot any practicable impedance on a Smith chart, and watch how it changes as you travel on a constant-vswr circle along the transmission line.
Anticlockwise is forwards towards the load, clockwise is backwards towards the generator, and a full revolution of the chart represents 180° along the line, in other words a half wavelength.
What happens if you add an inductance in series with an impedance already plotted?
You move along a constant-resistance circle
B) A basic Smith chart, showing the same constant-VSWR circle as Figure A. The horizontal resistance axis is still the same, and all other components consist of simple arcs and circles. To convert this impedance chart into an admittance chart, mirrorimage it from right to left. The Smith chart is the rf design engineer's best friend. Once you know your way around, it provides a convenient and simple way of solving all manner of problems of impedance transformation, amplifier design and stability analysis. Here's how it works.

in to the region of higher inductive reactance. How much has the phase angle changed as a result? Draw straight lines out from the centre of the circle through your origin and destination points, and measure the angle between them not forgetting that every 1° on the chart represents 0.5° along the transmission line.
Once you know how to read the map, there are yet more wonders in Smith's World. Thanks to its logarithmic scaling, the Smith chart works equally well as an admittance $1 / Z$ chart, which opens the way
to dealing with impedances added in parallel. Changes of characteristic impedance are handled very easily: you can either renormalize all the plotted impedances; or else take advantage of the fact that a constant-vswr circle can be centred anywhere on the chart and will still remain a true circle. This latter property opens yet further paths to the analysis of amplifier stability and noise figure, both of which can be represented using constantvalue circles.

Abstract

Although receiver noise and intermodulation calculations are not directly related to Smith charts, it is useful to have these facilitics to hand. Fig. 2 shows how the concept is implemented in Z-Match for Windows. Double-click on the box representing a module in the block diagram and a window opens, into which you can enter data relevant to that module. On closing the window. the software recomputes the noise and intermodulation performance of the whole system. Noise performance can be displayed as either noise figure (dB) or noise temperature (K). This Windows "applet" has its own File menu with facilities to save and retrieve designs, and to print out the block diagrams and results.

\section*{The package}

The software comes with a thorough and well-written 125page manual. and installation from the single program disk is quick and straightforward. The Motorola device library comes on a second disk, and need not be permanently installed. Even if you start out knowing very little about Smith charts, the manual gives an extensive explanation of the concepts followed by worked examples to introduce you to the software implementation. Lack of experience may even be an advantage, because experienced Smith chart users may need to unlearn some cherished techniques that were actually geared to the inadequacies of the paper chart. In spite of a price which may deter amateurs, Z-Match for Windows could casily make itself indispensable to any professional rf design engineer.

SYSTEM REQUIREMENTS

286, 386 or 486 -based PC (at least 16 MHz $386 S X$ preferred)
Coprocessor is used if available
Graphics display and monitor (at least colour VGA preferred)
Mouse
Windows 3.0 or later, under DOS 3.0 or later 3.5 in 1.44 MB floppy disk drive

1 MB hard disk space (program will run from floppy disk)

PRICE

Price $£ 245.00+$ VAT (upgrade from Z-Match for dos $£ 50.00+V A T$)

SUPPLIER DETAILS
Number One Systems Ltd, Harding Way, Somersham Road, St Ives, Cambridgeshire Pミ17 4WR. Telephone 0480 461778, fax 0480494042.

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements.
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion:THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $20 \mathrm{~dB}, 10 \%$).
Advanced Active Aerial $\mathbf{4 k H z}-30 \mathrm{MHz}{ }^{}$ PPM10 In-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier 4 *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and movements *Broadcast Stereo Coders

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
Telephone: 0483 275997. Fax: 276477

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact Malcolm Wells on: Tel: 081-652 3620 Fax: 081-652 8956

APPLICATIONS

Please mention Electronics World + Wireless World when seeking further information.

Low power PWM with programmable shutdown

Combined features of the UCC 1570 family of pulse width modulators are low power and high-speed operation. Typical start-up current is $85 \mu \mathrm{~A}$. running current is !mA and the device can drive a power mosfet at up to 500 kHz . Peak gate drive current is 1 A .
As this circuit diagram from the 1570 family preliminary data sheet shows, the device is intended for use in switching supplies. It is optimised for isolated designs with primary side control and a voltage mode feed-back loop.
Made in bicmos technology, the three versions in the range have a low start up current requirement. This allows efficient off-line starting with a bootstrapped lowvoltage supply. Voltage feedforward provides tast and accurate response to wide line voltage variation without the noise sensitivity associated with current-mode control.
Fast current limiting is included with the ability to latch off atter a programmable

The UCC1570 is designed for isolated psus with primary-side control and voltagemode feedback
Although it needs only 1mA of running current, it can drive a power mosfet at up to 500 kHz .

Current versus frequency for the UCC1570 pwn cont roller while in operating mode shows that little current is needed to operate the device - even at high switching speeds and with high mosfet gate capacitance.
number of repetitive faults has occurred. This enables the power supply to withstand a temporary overload, while still shutting down in the event of a permanent fault.
A built-in maximum duty-cycle clamp is programmable between 20% to 80%. Line voltage sensing is enhanced by the provision of a programmable window of allowable operation. Further facilities offered by the devices are an optocoupler interface and fault latch-off or automatic-restart options.
Notes on how to calculate the components shown are included in the data sheet.

Unitrode UK Ltd, 6 Creswell Park, Blackheath, London SE3 9RD. Tel. 081 3181431, fax 0813182549.

Video selection for broadcast industry

S
ignal routeing and buffering circuits for video fcature in Maxim's Analog Design Guide 3/8.
In the oscillograph, input versus output is shown for a 180 MH . video buffer with guaranteed $0.99 \mathrm{~V} / \mathrm{V}$ gain over its temperature range of -40 to $85^{\circ} \mathrm{C}$. This buffer, the MAX405, has a differential phase and gain errors of 0.01° and 0.03%. In addition, it holds its gain with loads as low as 50 . Suitable for driving NTSC, PAL or SECAM, the device operates from $\pm 5 \mathrm{~V}$ supplies and has a slew rate of $650 \mathrm{~V} / \mu \mathrm{s}$.
For the eight-by-four crosspoint switch shown, Maxim claims the highest integration and precision in the industry.

Operating at 100 MHz and handling 'broadcast-quality' video, the MAX458 and 459 switches incorporate a digital control interface and output buffers. In the 458 , these four buffers are unity gain while in the 459 they have a gain of 2 . This extra gain is for driving 150Ω back-terminated cable directly, without needing feedback resistors. Phase error is 0.06° while differential gain error is 0.03%.
One of eight video channels is selectable via the MAX 440 . It has a 160 MHz response, $250 \mathrm{~V} / \mu$ s slew rate and can switch a pixel in 15ns. Differential gain and phase errors are 0.03° and 0.04% respectively. There are also four and two-channel versions of this switch.

The final circuit is a four-pole, two-way switch for selecting rgb video and sync from two sources. Output swing, provided by buffers with a gain of 2 , is $\pm 2 \mathrm{~V}$ with a 50Ω load and the device operates up to 100 MHz .
Other video circuits in the note cover triple and quad 100 MHz buffers with no external feedback and a 250 MHz no-fcedback video amplifier with a slew rate of $850 \mathrm{~V} / \mathrm{us}$.

Maxim Integrated Products, 21C Horseshoe Park, Pangbourne, Reading RG8 7IW. Tel. 0734845255 , fax 0734 843863.

Integrated frontend devices for DECT

Three ICs designed to simplify and miniaturise DECT-compatible equipment have been introduced by Motorola.
These application diagrams are from device data sheets for the new devices. namely the MRFIC1801, 1803 and 1804. The $I 801$ is a 1.8 GHz antenna switch, the 1803 an up-converter, and the 1804 a combined INA and down-mixer.
Also suitable for the Japan Personal Handy Phone standard, JPHP, and other personal communication systems, all three devices are produced in surface-mount packaging. They operate from 85° down to $-30^{\circ} \mathrm{C}$, rendering them suitatle for all-weather use.
With the exception of the antenna switch. which can run from a rail up 105.5 V , operation is from a single 2.7-3.3V supply. Combined consumption of both converters is typically just over 100 mW , while current needed for the antenna switch is 30()$\mu \mathrm{A}$ in transmit mode, or $50 \mu \mathrm{~A}$ when receiving.
Transmission insertion loss of the 1801 antenna switch is typically 0.75 dB . while the 1 dB compression point is quoled as 29 dBm . Capable of operating at frequencies from 1.5 to $2.5 \mathrm{GH} /$ the switch is activated via a simple on/off logic input and exhibits 22 dB transmit to receive isolation.
Incorporated in the 1803 up-converter are an active up-mixer, exciter amplifier and

Local oscillator versus rf feedthrough for the 18031.8 GHz up-converter.
local-oscillator buffer amplifier. The device provides 10 dB intermediate-to-radiofrequency conversion gain and has a usable frequency range of 1.7 to 2.5 GHz .
Within the 1804 is an rf amplifier with a 2.3 dB noise figure and providing 14 dB gain. The mixer section provides 4 dB of gain, with

Gain and noise of the 1804 DECT low-noise amplifier versus frequency.
typically 13 dB noise. Usable frequency range of the device is 1.8 to 1.925 GHz .

Motorola European Literature Centre, 88
Tanners Drive, Blakelands, Milton
Keynes MK14 5BP. Tel. 0908614614 ,
fax 0908618650

C1	$12 \mathrm{pF}(110 \mathrm{MHz})$ or $7.5 \mathrm{pF}(240 \mathrm{MHz})$
C 2	0.8 pF
$\mathrm{C} 3, \mathrm{G} 4$	100 pF
C 5	1000 pF
L1	$82 \mathrm{nH}(110 \mathrm{MHz})$ or $15 \mathrm{nH}(240 \mathrm{MHz})$
L2	8.2 nH
L3, L4	0.3 nH (Microstrip)

Complementary to the 1803
up-converter, the 8104
integrated DECT Ina and
down-mixer has a 0.9 dB mixer input intercept point and needs only $-5 d B m$ of local-oscillator power. Components are for 110 and 240 MHz IFs.

Micropower op-amp for 2.7V supplies

These circuits are designs based on a new op-amp from National Semiconductor. Called the LMC6572, this IC is optimised for low-voltage and battery-powered applications involving supplies down to 2.7 V .
To obtain a rail-to-rail output swing at low supply voltages and relatively high loads, the unity-gain output buffer traditionally found in ICs has been abandoned. Instead, output is taken directly from an integrator. This is said to provide low output impedance combined with high gain.
Feed-forward techniques are used to maintain stability over a wider range or operating conditions than is usual for micropower op-amps. Ultra-low-power op-

Air improves op-amp guarding Most op-amp application information prescribes making guard rings for highimpedance op-amp inputs from a ring of pcb copper. According to the LM6572 data sheet, guarding is improved using air insulation.
To implement air insulation, the IC input pin concerned is bent away from the pcb. Components are then soldered directly to the pin. NS admits that some of the advantages of using a pcb are lost, but says that these
amps are normally very slow. This device has a 0.22 MHz gain-bandwidth product together with a typical slew rate of $90 \mathrm{~V} / \mathrm{ms}$ given a 2.7 V supply

There is a quad version of the $L M 6572$ dual op-amp called the LM6574. In the joint $6572 / 6574$ data sheet, there is further information on how the devices are compensated for input capacitance and capacitive loading. There is also further text on peb layout for high-impedance circuitry.

National Semiconductor, The Maple,
Kembrey Park, Swindon, Wiltshire SN2 6UT, Tel. 0793614141 , fax 0793697522

can often be outweighed by the improvement in guarding performance

8 CAVANS WAY,
BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 0203650702
Fax:0203 650773
Mobile: 0860400683

(Premises situated close to Eastern-by-pass In Coventry wlth eas
access to M1, M6, M40, M42, M45 and M69)
OSCILLOSCOPES
Gouid $400-20 \mathrm{MHz} \mathrm{D.SO} 100 \mathrm{Ms} /$.s
Gould OS40............................ E 1000
Gould OS $3000-40 \mathrm{MHz}$ OS4020, OS245
trom $£ 125$
Gould $4035-20 \mathrm{MHz}$ digital storage
Gould $4050-35 \mathrm{MHz}$ digital storage

 $\begin{array}{r} \\ \hline\end{array} 950$ Hewlett Packard 1740A, 1741A, 1744A, dual ch.trom $£ 275$ Howlett Packard 182C-100MHz 4 ch . Hitachl V-422-40MHz dual ch. Nicolet 3091 - Low freq D.S. O
Neoler 4094-4 channel low frequency D.S.O.
Tektronix 2201 - 20 MHz .
Tektronix $2213-60 \mathrm{MHz}$ dual ch
Tektronix $2215-60 \mathrm{MHz}$ dual ch. .. E £350

Teltronix $2230-100 \mathrm{MHz}$ digital storage Tektronlx $2235-100 \mathrm{MHz}$ dual ch. (portable)
Tektron $2246-100 \mathrm{MHz} 4$ channel (as new) Tektronix $2335-100 \mathrm{MHz}$ dual ch. (portable) Tektronix $\mathbf{4 6 5 / 4 6 5 8 - 1 0 0 \mathrm { MHz } \text { dual ch. }}$ Tektronlx $475-200 \mathrm{MHz}$ dual ch.

$£ 250$
$£ 175$

 Fischer Betascope 2040/2060 Coating thickness computer \& non destrucive coaling measurement instrument \& many igs and extras...
Fluke 5200A Programmable AC calibrator
all for E 2000
Fluke 8010A Digital multimeter
Fluke 8922A True RMS voltr
Fluke 95020 Current shunt
Gay Milano FTMIC/FTM3C -FTM General Rad 1658 LCR Digibridge
General Rad 1621 Precision capactance measu............. ..
Hewlett Packard 180TR Display unit with 8755 B swent system lowlet Packard 4364 Pol. Hewlett Packard 3200B VHF osciliator, $10-500 \mathrm{MHz}$ Hewlett Packard 3400A RMS voltmeter
Hewlett Packard 3403C True RMS voltmete
Howlett Packard 3406A Broadband sampling voltmeter
Hewlett Packard 3437A System voltmeter
Hew lett Peckard 3476A Digital multimeter
Hewlett Packard 3478A Digital voltmeter,
Hewlett Packard 3490 Digital multimeter 4 wire system, 1EEE
Hewlett Packard $3702 \mathrm{~B} / 3705 \mathrm{~A} / 3710 \mathrm{~A} 3716 \mathrm{~A}$ Microwave link
analyser
 Hewlt Packard 3760/3761 Data gen + eror detector Hewlett Packard 3762/3763 Data gen + error detector
Hewlett Packard 3777A Channel selector
Hewlett Packard 3779A Primary multiplex analyser
Hewlett Packard 400E/F AC voltmeter
Howlett Packard 4193A Vector impecance me........
Hewlet Packard 4204 A Oscillator $10 \mathrm{~Hz}-1 \mathrm{MHz}$
Hewlett Packard 435A Power meter (less s
Hewlett Packard 456A AC current probe
Hewlett Packard 456A AC current p
Howlett Packard 415E SWA meter
Howlett Packard 5335A Universal coun...................................... Hewleth Packard 5342A Microwave treq. count 18GHz rogrammer 59501 B HP IB isolated D / A power supply
Howlett Packard 6181C D. C. Current source

Hewlett Packard 8011A Pulse gen. 0.1 Hz
owlett Packard 8012 2 Pulse generator
Hewlett Packard 80138 Pulse gen. $1 \mathrm{~Hz}-50 \mathrm{MHz}$
Howlett Packard 8406 A Frequency comb. generator
Howlett Packard 84458 Automatic presetter with 1EEE
Hewlett Packard 8601 A 110 MHz Ger/sweeper 110 MHz
Hewlett Packard 8620 C Sweep oscillator maniframe
Howlett Packard $8654810-520 \mathrm{MHz}$ Sig. Gen.
Howlett Packard 8750A Storage normaliser
Hewlett Packard 938 A Freq. doubler
Kelthley 197 2OMHz was 1 EEE
yons PG73N/PG75/PG28/PG Pulse generator. $£ 2000$
$£ 1500$
Anriteu MES3BC Microwave system meter with sens Bak $2511+1621$ Vibratoon test set
Bak 2511 Vibration meter. £4500

Next Month September issue On Sale August 25

Free to all UK readers: The latest Zetex power transistor technology in their world famous E-Line package. We are giving away two top quality ZTX689B devices. Each $20 \mathrm{~V} n \mathrm{nn}$ transistor is capable of passing 3A continuous current, 8 A peak, with a low saturation voltage - just 0.5 V at 1 A . The current gain of these small devices is outstanding: a guaranteed minimum of 400 at 2A collector current.

In the same issue: Circuits for rms conversion. There are only two types of circuit which will measure the power content of a signal directly. You can either amplify it and use the resulting output to heat a thermocouple, or you can process the signal with a root mean square algorithm. Danny Ayers tells all.

free with October issue

On Sale September 29

The Radio \& Electronic Engineer's Pocket Book. This is a specia edition edited to include the most frequently needed and up to date information for electronics engineers. If you work with applied electronics, then you will need this book.

In the same issue: Work with International Rectifier's latest power control chip using a sample cevice supplied through the macazine and enter our free design competition.

To My Newsagent

Please reserve the September 1994 issue of Electronics World and every issue until further notice.
I wil, collect/please deliver to..
Name
Adoress
\qquad

> Imagine a semiconductor technology which delivers VLSI density from transistors with a transition frequency greater than 100 GHz , yet costs virtually no more to process than standard cmos. The new silicon-germanium IC manufacturing process suggests that it might just deserve the hyperbole "the most significant development in electronics since cmos". Jon Mosely investigates.

Silicon-germanium: the integrated future?

In essence, silicon-germanium (or SiGe) is a slightly tweaked silicon process, that improves both the gain and the speed of transistors. In fact, it is fast enough to replace gallium arsenide in most commercial applications, including digital cellular telephones and wireless lans (frequencies up to 3 GHz). Finally, as a silicon process, it can be made inexpensively on existing process lines and may easily be integrated with conventional circuits such as sub-micron visi cmos.
This means that a single chip cellphone, integrating DSP, mixed-signal and rf stage into one chip, is quite conceivable. Better still, it could be quite affordable.
More specifically, the first results published have included heterojunction bipolar transistors with f_{T} as high as 110 GHz , almost twice those reported for any conventional silicon process and comparable to GaAs. Perhaps as importantly, the beta-early voltage product ($\beta \mathrm{V}_{\mathrm{a}}$) of these transistors is an impressive 48,000 . This measures the quality of a current source, a key property of an analogue circuit; to be useful for precision tasks the product must reach at least into the thousands). In other words, the speed has not been achieved at the expense of having worthwhile devices.
To give an idea of just how radical this leap in performance is Fig. 1 is a graph of the fastest Si transistors reported anywhere; and shows how much faster SiGe is.
The technology has been discussed for a few years, but became real when joint process
developers Analog Devices and IBM announced that not only was SiGe a viable lechnology, but that a complex IC had been fabricated which delivered extraordinary results. The part was 12-bit digital to analogue converter which could be clocked at 1 GHz , and drew less than IW. This is about two and at half times faster than the fastest commercially available silicon DAC.

The fact that a IC of such density (3000 devices) had been made, and reportedly with high yields, obviously made SiGe a lot more than a vague possibility or laboratory curiosity, and the further results that have emerged since seem to confirm its potential.
The commercialisation of SiGe technology results from a collaboration between 1BM's Thomas J Watson research laboratory, which developed the process and will be doing the manufacture, and Analog Devices which designs and will market the ICs.
Conventional circuits are made with pure silicon/silicon junctions (homojunctions): adding a second material (in this case a silicon/germanium alloy) forms a heterojunction, with a natural electric field generated where the two different materials meet. By controtling the concentration of germanium, a graded junction can be built (Fig. 2) with a profile that affects the properties of the transistor, increasing both gain and speed. This bandgap engineering improves device performance. Germanium has a smaller bandgap than silicon; introducing a small amount of it reduces

- $75 \mathrm{GHz} \mathrm{f}_{\mathrm{T}}$ in non-self-aligned SiGe HBT (1990) $-2 x$ better than Si BJT!

Fig. 1. Trends in cut off frequency. SiGe is a huge leap in speed over the fastest Si transistors reported.
the transistor's base bandgap and increases electron injection, increasing gain, B. The increased gain allows a more heavily doped base, lowering the base resistance. Finally, the bandgap can be controlled to generate an electric field as great as $30,000 \mathrm{~V} / \mathrm{cm}$ across the base, accelerating the electrons and reducing their transit time through the transistor.

In effect, the heterojunction "tilts' the circuit, forming a slope down which electrons can slide more quickly than before. This reduces the energy and time required to move from one side of the junction to the other. Some engineers have referred to the addition of germanium as 'electron grease' since it eases the movement of the particles.

The concept has been known since the 50 s but the difficult part has been in successfully fabricating a heterojunction. Although silicon and germanium share the same crystal structure, their lattice spacings differ: Ge's is 4% greater than that of Si . If the pure materials were simply deposited together, this mismatch would cause strain, forming defects and preventing circuits from operating. By analogy, if a nut and bolt are of different screw pitches it may be possible to force a match, but the threads will be stripped. This mismatch frustrated engineers trying to build SiGe heterojunction devices.
The answer was developed by Dr Bernard

Fig. 2. SiGe HBT Band Diagram. The germanium is implanted across the base of the transistor with concentration rising toward the collector. This graded junction causes a drift field which accelerates electrons through the transistor.

Fig. 3. The structure of an SiGe HBT

Myerson, IBM Research Fellow who leads the IBM SiGe team.
The approach uses a silicon-germanium alloy, which has a lattice spacing part-way between the two substances, reducing the mismatch and strain. As a result, the heterojunction can be made between the pure silicon and the alloy without defects. although the lattice is still under some stress.
The junction is built up with low temperature ultra high vacuum chemical vapour deposition (UHV/CVD), which uses a mixture of gases to leave a thin, highly controlled, layer of atoms on top of a silicon substrate. Conventionally CVD requires high tempera-

Table 1. Test results for competing rf technologies

	$\begin{aligned} & \text { SiGe } \\ & \text { HBT } \\ & \text { ADI/IBM } \end{aligned}$	Si BJT IBM	AGaAs/ Gafs HBT ritechi	GaAs mesfet M/A-COM	Si BJT bicmos
Device minimum size ($\mu \mathrm{m}$)	0.5×1	0.5×1	2×5	0.5×5	1.2×1.5
$B V_{\text {CEO }} / B V_{\text {dS }}(\mathrm{V})$	4	4	15	8	5
$\mathrm{f}_{\mathrm{T}}(\mathrm{GHz})$	50	32	50	30	13
$\mathrm{F}_{\text {max }}(\mathrm{GHz})$	55	35	70	60	11
	28	24	19	20	17
@10GHz	16	11	13	13	1
	0.5	-	${ }^{+} .5$	0.3	-
@10GHz	0.9	-	-	0.9	-
-1dB $p_{\text {out }}(\mathrm{dB})$	9	9	-6	12	9
Added efficiency (\%) @3V	70	-	60 @ 5 V	70	40
$1 / /_{\text {corner }}(\mathrm{kHz}$)	0.1-1	0.1-1	- 10	10,000	0.1-1

Source: Kerrmarec et al, IEEE MTT-S, San Diego May 23-25 1904

Fig. 4 and 5 show the transition frequency (FT) and maximum oscillation frequency (Fmax) of the SiGe HBTs and compares this to alternative processes.

Fig. 6 and 7 show the gain and efficiency of the SiGe HBTs and compares this to alternative processes.

Fig. 9. 12-bit 1 GHz digital to analogue converter: output waveform.
> "The key fact of SiGe is not merely its speed, but that such speed can be achieved from a standard silicon process using existing equipment"
tures, but this will not work for SiGe, as the strained material will fail. By developing their own innovative CVD process machinery. Dr Myerson and his team were able to perform the deposition at temperatures low enough for the circuit to endure.
Figure 3 shows the structure of a complete SiGc HBT. While researchers outside IBM (including Motorola. M/A-COM. NEC and Daimler Benz) are also working on SiGe, they are achieving fewer devices and lower yields. In addition. most are working on classic mesa structures. which are incompatible with conventional processing techniques.
The first devices were fabricated in 1989. and even those trial parts achieved speeds more than twice of the fastest comparable siticon device (f_{T} of 75 GHz). More recent results have achieved even higher speeds - f_{T} up 10 117 GHz .
Figures 4 and 5 show the transition frequency and maximum oscillation frequency ($f_{\text {max }}$) of SiGe HBTs and compares this to alternative processes.
Not only are these fast transistors, they are also exceptional analogue transistors. Their $\beta \mathrm{Va}$ is at least an order of magnitude better than the fast silicon processes used today. The $\beta \mathrm{Va}$ of a low voltage, high speed silicon device would typically be under 1000 compared to the 48,000 achieved by SiGe.

The gain and noise performance are also good: 25 dB gain at 2 GHz with a corresponding noise figure of 0.5 dB at 2 GHz and low I / I noise. Finally, the process seems to achicve good efficiency (critically important for portable and battery powered equipment, with
a 70% power added efficiency at 900 MHz and operation from either 3 V or 1.5 V supplies. (Figs 6 and 7)
SiGe transistors are comparable in speed to gallium arsenide mesfets or HBTs. However. unlike GaAs, the SiGe deviees lave a very tow I/f corner frequency - between 1000 Hz and I hHz - allowing them to be used for de coupled amplifiers or zero IF down converters.
There are some aspects which are difficult to determine about a technology which has hardly moved out of the conference circuit. One concern is reliability. Due to the strain in the lattice, it is possible that devices will not cope well with radiation or high temperatures. However, this is only speculation - the experimental results have not been revealed.
Breakdown voltage - just 4 V between collector/hase - may be more problematic. This allows a maximum swing of just 8 V . While adequate for low power signal processing or receiver circuits, it looks very low when discussing a power amplifier. Even for battery powered systems, the power amplifier still nceds a good voltage swing and 8 V is marginal. When you consider battery overvoltage or antenna mismatch. it is probable that an rf PA design would not be practical in SiGe .
Commercially, the key fact of SiGe is not merely its speed, but that such speed can be achieved from a standard silicon process using existing equipment and compatible conventional cmos. IBM will be manufacturing the new devices on a full-size 8 in water line. As a result the volumes and economies of scale are immense.
Because the process is based upon a silicon substrate, it is easy to combine it with conventional circuits: for example sub-micron cmos. This would allow single chip cellular radios using SiGe for the front end radio stage. and cmos for the complex digital and mixedsignal stages.
The first SiGe product will be a version of the dac, and this will be available at the end of the year. Apparently, it is now being sampled for use in a tibre to the kerb application in Eastern Europe: a number of channels are combined and digitised before being sent down a fibre-optic linh at rates of $9 \mathrm{Gbits} / \mathrm{s}$. At the kerbside they are received and fed into the 12-bit dac, to produce a 750 MHz bandwidth analogue signal. Figure 8 shows the block diagram while Fig. 9 gives the output waveform for toggling between 0 and full scale at a rate of 1 GH z. Incidentally, the dac may be faster than 1 GHz but, at the time these results were released, that was the maximum speed of the available test equipment!
Subsequent commercial products are likely to be highly integrated blocks for use in wireless systems. perhaps even complete rf transceivers in a chip. This would combine upand down-converters. Irequency synthesisers. mixers and amplifiers into a single block.
Silicon germanium has the potential to redefine high speed semiconductors. The only question is when it will be solid enough for an appearance in catalogues?

Free quartz-crystal

In an exclusive offer to Electronics World \& Wireless World readers, specialist quartz crystal manufacturer IQD is giving away designer's packs comprising four popular crystals and data.
By simply filling in and returning the reply card located between pages 672 and 673
of this issue, the first 300 readers respondinc will receive this designer's pack - completely free of charge.

Please note that all correspondence relating o the offer should be directed to IQD. The company's address is given at the end of this article.

designer's pack
 Sample pack parts

Part	Description	Package	Cut	Use end typical circuit
A160K	15 MHz	HC49/4H	AT	Microvrocessor clocking, Fig 6
A123A	4194.304 kHz	HC49	AT	Times and RTCs, Fig. 14 lower
A103A	32.7680 kHz	3×8	Tuning fork	Clocks/watches, Figs 13 \& 1. lower
A166A	32 MHz	HC49	AT 3rd o/t	Microprocessor clocking, Fig 7

Quartz crystals used for time keeping and frequency references combine three key features - extremely high Q. small physical size relative to alternative timing devices with the same performance. and excellent temperature stability.

Frequency stability of a crystal is limited in the short term by its temperature coefficient and in the long term by ageing. Quartz crystals with an $A T$ cut generally provide the best temperature coefficient and usually have stability tolerances of $\pm 0.0025 \%$ or $\pm 0.005 \%$ from -55 to $105^{\circ} \mathrm{C}$.
Between 1 and 200 MHz , AT-cut crystals are normally chosen. They represent the best compromise between temperature stability and frequency accuracy and frequency pulling capability. Above around $27 \mathrm{MH} \angle$ however, AT crystals are normally only available for use in overtone mode. This is restrictive since overtone oscillators are more difficult to design and are prone to spurious responses. Fig. 1.
Recently. BT-cut crystals have been developed to overcome the overtone problem
where C_{1} is motional capacitance, C_{L} is load capacitance and C_{0} is shunt capacitance. Typical values for motional and inherent shunt capacitances are shown in Table 1.
All crystals operate at series resonance. The term parallel resonant is often used to describe a crystal designed to handle a high load

Fig. 2. Lowering capacitive loading on a crystal increases its output frequency.

Fig. 3. When estimating how far a crystal's frequency can be pulled by changing its load capacitance, C_{L}, both package shunt capacitance, C_{0} and motional capacitance C_{1} need to be taken into account.

Fig. 4. At frequencies below 150 kHz , equivalent series resistance of a crystal is high so oscillator circuits need to have a high gain.
impedance across its terminals. Series resonance exists within the crystal, whereas parallel resonance exists only as a crystal measurement phenomenon.

Using quartz crystals

For a circuit to oscillate, it has to have both positive feedback and a loop gain greater than unity. Without any other frequency-sensitive elements in its oscillator circuit. a crystal will oscillate in its fundamental mode. Frequency dependent components need to be added to the circuit to force the crystal to oscillate at an overtone.
Closing an oscillator's feedback loop causes sine wave oscillations which gradually build up, clip, and approach a square wave as the circuit overloads. Crystal oscillators can usually provide either a sine or square wave. The driving signal is usually a square wave while the crystal output is always a sine wave. Either of these waveforms can form the output.

Below 150 kHz . Because equivalent series resistance of a crystal is high at low frequencies, high amplifier gain is needed. In Fig. 4 which is optimised for 50 kHz , the gain problem is solved using dual cascaded commonemitter stages.
Two diodes limit crystal drive level to avoid damage, while tuning in the middle transistor's collector adds selectivity. For parallel resonance, the adjustable capacitor provides calibration. For series calibration, replace the trimmer with 1 nF and trim via the inductor.

150 to 550 kHz . For this frequency range, DC and CT-cut crystals are normally used with a selective amplifier to suppress unwanted modes, Fig. 5. Initially, the crystal is shorted and frequency is adjusted to near the crystal frequency via the inductor. Afterwards, the inductor can be used for trimming.
Series-resonance is preferable but a parallelresonant device can be used if the first capacitor is replaced by one with a value equal to the crystal load capacitance.
0.95 to 21 MHz . Circuitry in Fig. 6 is designed for high-stability AT-cut crystals calibrated at parallel resonance and operating in fundamental mode.

15 to 105 MHz . At higher frequencies, crystals specially designed to oscillate at their overtones are mainly used. Examples of third and fifth overtone oscillators are shown in Figs 7

Fig. 5. Relative to circuitry needed for oscillators working at under 150 kHz , this circuit for 150 to 550 kHz is much simpler.

Fig. 6. Designed for use with high-stability ATcut crystals, this oscillator operates between 0.95 and 21 MHz .

TR1: BC 108 type

Fig. 7. Third-overtone crystal oscillator configuration for frequencies from 15 to 63 MHz .
\& 8 respectively. The first example handles crystals from 15 to 63 MHz while the second is suitable for 50 to 105 MHz . As with Fig. 5, the crystal is initially shorted and the oscillator set to run as near as possible to the crystal frequency via the inductor. After removing the short, the inductor can be used for trimming.
By adding a tuned circuit at twice or three times the crystal frequency in the transistor's

Table 1. Using motional and inherent shunt cepacitances of a crystal, it is possible to work out how far the device's frequency can be pulled.

Frequency (MHz)	Vibration mode	$C_{1}(\mathrm{fF})$	$C_{\mathrm{o}}(\mathrm{pF})$
1 to 2	fundamental	$5-8$	3
$2-4$	fundamental	$6-12$	3
$4-6.5$	fundamental	$8-20$	5
$6.5-30$	fundamental	$16-25$	6
$21-150$	3rd o/tone	$1-2.5$	6
$60-150$	5th o/tone	<0.7	6
$85-210$	7th o/tone	<0.4	6

Fig. 8. By driving a crystal into its fifth overtone mode, this oscillator circuit extends useful frequency range to cover 50 to 105 MHz .

Fig. 9. Above 105 MHz , stray capacitances make designing a reliable oscillator difficult. To help prevent oscillation not controlled by the crystal, this circuit uses a small inductor in parallel with the crystal to tune out its static capacitance.

Crystal characteristics

A crystal's equivalent circuit is shown below. Series combination R_{1}, C_{1} and \boldsymbol{L}_{1} represent the quartz whie C_{o} is shunt capacitance of the electrodes n parallel with caracitance of the can.
Reactance versus frequency is also shown. Resonant frequency F_{s} is given by;

$$
F_{s}=\frac{1}{2 . \pi_{1} \sqrt{L_{1} C_{1}}}
$$

where F_{s} is series resonant frequency in hertz, L_{1} is motional arm inductance in henries and C_{1} is mo-icnal arm capacitance in farads.

Typical crystal parameters

	$\mathbf{2 0 0 k H z}$	$\mathbf{2 M H z}$	$\mathbf{3 0 M H z}$	90 MHz
Parameter	Fundamental		3 Mdo /tone	5 th o/tone
R_{1}	$2 \mathrm{k} \Omega$	100Ω	20Ω	40Ω
$\mathrm{~L}_{1}$	27 H	520 mH	11 mH	6 mH
C_{1}	0.024 pF	0.012 pF	0.0026 pF	0.0005 pF
C_{0}	9 pF	4 pF	6 pF	4 pF
Q	18×10^{3}	18×10^{3}	$18 \times \cdot 0^{3}$	18×10^{3}

collector, it is possible to extract harmonics of the crystal frequency. This is a simple and economical way of making a vhf oscillator.

Above 105 MHz . Reactance from stray circuit capacitances can make high-frequency oscillators difficult to design. In the solution shown in Fig. 9, a small inductor is added over the crysta! to compensate for its inherent capacitance, which may cause undesirable effects. Tuning is carried out via the other inductor or by inserting a variable reactance in series with the crystal.
$\mathbf{2 0 - 2 0 0} \mathbf{M H z}$. Parasitics can be eliminated by using an oscillator relying on the crystal's harmonics. Figure 10 a) is such an example for operation at around 20 MHz . In it, the crystal is tapped into the capacitive side of the $L C$ tank.
Four signal diodes provide base biasing. Emitter output driving the crystal is 25Ω while the crystal load is around 35Ω. Figures $10 \mathbf{b}, \mathbf{c}$) show values needed to make the same circuit operate at 50 and 100 MHz respectively.

Oscillators from logic gates

Designs for oscillators using standard ttl logic gates as their active components are shown in Fig. 11. With nand gates, unused inputs should be tied to the positive rail while with nor gates spare inputs should be grounded.
In Figs $11 \mathbf{a}, \mathbf{b}$), for frequencies of less than 1 MHz and $1-4 \mathrm{MHz}$ respectively, the fixed capacitors are best determined experimentally; the dotted component may not be needed at all. Figure $11 \mathbf{c}$) is for frequencies from 4 to 14 MHz .
Jitter can be a problem in ttl-based oscillators due to random phase shift within the IC. In addition, the relatively high crystal drive

Fig. 11. Three crystal oscillators based on ttl logic gates, covering $<\mathbf{1 M H z}$, $1-4 \mathrm{MHz}$ and $4-15 \mathrm{MHz}$ respectively. Many similar circuits have been produced in the past but not all work reliably and at the intended frequency.

Fig. 13. Using cmos logic, a crystal oscillator can be made from only two gates. This design works up to about $\mathbf{3 M H z}$.
level can affect long-term stability. A discrete component oscillator followed by a buffer such as those in Fig. 12 provides better stability.
In the first buffer, the resistor in the supply rail decouples the oscillator stage. The complementary buffer has more active components but offers faster switching and improved capacitive load driving. Note that drive level from some of the preceding discrete component oscillators may need reducing to interface to these buffers.

Cmos oscillators

A typical cmos gate oscillator with the crystal forming part of a pi network is shown in Fig. 13. This design will work up to 3 MHz but values found via the formulas on the diagram may need adjusting to take account of stray capacitance due to component layout. Resistor R is expressed in terms of crystal load capacitance C_{L} and its equivalent series resistance at parallel resonance R_{e}.
For operation above 3 MHz , resistor R is omitted and the crystal connected directly between the inverter input and output. Low values of crystal load capacitance, of say 12 pF , and/or a high supply voltage may be needed for reliable operation.

Reducing power

Timing, clock and calendar circuits often rely on battery-powered frequency references. As a result, power consumption of the frequency reference is important.

Two commonly used timing crystals, both implemented in oscillators designed around a single logic gate, are shown in Fig. 14. Given a 5 V supply, the 4000 series cmos gate with a 32 kHz watch crystal consumes only $30 \mu \mathrm{~A}$. For the same supply, the $H C$ gate alternative increases current to $1300 \mu \mathrm{~A}$, mainly due to its higher switching frequency.

Even though the HC circuit appears much worse in terms of power consumption, it can still provide significant advantages in batterypowered applications - in addition to the benefits of its higher operating frequency.
Firstly, during tests based on a National Semiconductor 74HC4060 device, oscillation started at 1.1 V . The traditional cmos 406 ? needs 3 V . And at 1.5 V , the HC -based oscilla-

Fig. 12. A more elegant alternative to the logic-gate based oscillator is to use a discrete component circuit then buffer the output to produce logic level. This eliminates the jitter associated with logic-gate designs.

Table 2. Power consumption of cmos versus high-speed cmos crystal oscillators shows that the high-speed alternative is suitable for low-voltage battery applications. Test circuits for both sets of results incorporated a 32 kHz watch crystal. Over the supply ranges measured, frequency change was 0.1 Hz .

Supply (V)	Consumption ($\mu \mathrm{A})$	
	CD4060	$74 \mathrm{HC4060}$
1.1	-	2.3
1.5	-	4.8
2	-	34.9
2.5	-	117
3	7	256
3.5	7	449
4	9	687.3
4.5	20	979
5	31	1325
5.5	46	1712
6	65	2148
8	180	-
10	362	-
12	603	-
14	895	-
16	1252	-

tor consumed less than $5 \mu \mathrm{~A}$, Table 2. As a bonus, the HC produced much faster edges than the 4000 -series IC.
Frequency of a tuning fork watch crystal has a significant negative temperature coefficient. In a watch, this is of little consequence since human body temperature remains constant, but there are many applications where temperature coefficient does matter.
Using a more stable higher frequency crystal and dividing it down circumvents this

Inside the can

Crystal resonators rely on the piezoelectric effect of quartz. Applying stress to a quartz crystal produces an electric charge perpendicular to the stress. Conversely, applying an electric field causes the crystal to deflect mechanically.
In a quartz crystal resonator, a sliver of quartz is placed between two electrodes that apply the field. An ac signal applied to the electrodes causes the resonator to vibrate. When the frequency of the signal is near a mechanical resonance point of the quartz, amplitude of the vibrations becomes very large.
Resonant vibration of the quartz produces a sinusoidal electric field controlling the effective impedance between the electrodes. This impedance is strongly dependent on the excitation frequency and possesses an extremely high Q .

Fig. 14. Two timing circuits - one using a watch crystal and one a crystal with a frequency often used for real-time clocks. Although the highspeed cmos circuit consumes more power with a 5 V supply, it can have benefits in battery circuits since it operates down to 1.5 V . It is also significantly more stable.
problem. With a faster crystal, it is quite easy to achieve stability of $\pm 10 \mathrm{ppm}$ over between 0 $1050^{\circ} \mathrm{C}$.
To reduce current flowing around the circuit, low-power osciltators are designed with a relatively small crystal load of typically 12 pF . Using a $74 / / \mathrm{C} 4060$. the circuit shown consumes about 2.4 mA at 5 V . It will start reliably with a 1.5 V supply, at which point the circuit draws about $360 \mu \mathrm{~A}$.
In both circuits. NP() or COG dielectric capacitors should be used in the network around the crystal because of their low temperature coefficient.

Crystal source

Crystals suitable for all the applications described in this article - and most other quartz crystal applications - can be obtained from IQD at Station Road, Crewkerne, Somerset TA18 7AR. Tel. 046074433 , fax 046072578 . IQD also supplied the information upon which this article is based.

in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages.
Price £14.95 0750609249

CIRCUIT MANUALS

Ray Marston
A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual Paperback 224 pages
Price £13.95 0434912077
Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0434912107
CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circuits
Manual
Paperback 144 pages
Price £13.95 0750600640

Timer/Generator Circuits
Manual
Paperback 224 pages
Price £13.95 0434912913
Diode, Transistor and FET Circuits Manual
Paperback 240 pages
Price £13.95 0750602287

Instrumentation and Test Gear

Circuits Manual

Ray Marston

Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price £16.95 0750607580

Logic Designers Handbook

 Andrew ParrEasy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0750605359
Digital Audio and Compact
Disc Technology
Luc Baert, Luc Theunissen \& Guido Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A / D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video
8, R-DAT and S-DAT. Paperback 240 pages.
Price £16.95
0750606142

NEWNES POCKET BOOKS

A series of handy, inexpensive, pocket sized books to be kept by your side and used every day.
Their size makes them an ideal 'travelling' companion as well.

Newnes Electronics
Engineer's Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0750609370
Newnes Electronics Assembly Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0750602228

Newnes Television and Video
Engineer's Pocket Book
Eugene Trundle
Hardback 384 pages
Price £12.95 0750606770

Newnes Circuit Calculations
Pocket Book
T Davies
Hardback 300 pages
Price £10.95 0750601957

Understand Electrical and
Electronic Maths

en Bishop

People who find maths difficult often have, as a result, difficulty

Newnes Data Communications Pocket Book
Michael Tooley
Hardback 192 pages
Price £12.95 0750604271
Newnes Telecommunications
Pocket Book
JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070

Newnes $Z 80$ Pocket Book
Chris Roberts
Hardback 185 pages
Price 11295
0750603089
Newnes 68000 Pocket Book Mike Tooley
Hardback 257 pages
Price £12.95 0750603097

Newnes Electrical Pocket
Book
21st edition
E A Parr
Paperback 526 pages
£12.95
0750605138
Newnes Electric Circuits
Pocket Book Linear IC
Ray Marston
Hardback 336 pages
Price £12.95 0750601329
Newnes Guide to Satellite TV D J Stephenson
A practical guide, without
excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price £17.95 0750602155
Newnes Practical RF
Handbook
lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skilis of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages.
Price £16.95 0750608714

Troubleshooting Analog Circuits

R A Pease

Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price $£ 14.95$
0750616326

PC-Based Instrumentation and

 ControlM Tooley
Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95 0750616318

Electronic Circuits Handbook M Tooley

Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages.
Price £24.95 0750607505

Communication Services via Satellite

GELewis
DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379

Digital Logic Design

 Brian HoldsworthAs one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays. Paperback 448 pages.
Price £19. $50 \quad 0750605014$

The Circuit Designers Companion
 T Wiliams

This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike Hardback 320 pages
Price £2500 0750611421

Gredif card orders acsepted by phone 0816523614

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please supply the following titles:

Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleable condition for a full refund.

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd. Please debit my credit card as follows:
Access/Master
BarclayVisa
Amex
Diners

Credit Card No.
Exp date \qquad
NAME (Please print) \square
ORGANISATION
STREET
TOWN
COUNTY POST CODE \qquad COUNTRY
DATE \qquad TELEPHONE NUMBER
SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Gemany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about books, journals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5AS

Registered in England 151537

RF ENGINEERING

New wave MICROWAVES

5: oscillator and amplifier devices

Gunn and impatt devices. once the main active components for microwave power generation, are now being relegated to millimetre wave and high power operation. The competition has come from mesfet technology, particularly high electron mobility transistor (hemt) and the pseudomorphic hemt or phemt.
These devices take over from the silicon BJT in the overlapping technology band between 2 GHz and 4 GHz and offer low noise, good efficiency and medium power levels up to the millimetre wave region and beyond $(>30 \mathrm{GHz})$. In recent years, a further contender has appeared on the technology stage: the GaAs heterojunction bipolar transistor (HBT). This possesses many of the advantages of the Si BJT: notably low phase noise, high poweradded efficiency and a medium power output; but translated in frequency through the microwave and into the millimetre bands.
Frequency multiplication, as a means of signal generation, is not now widely used except when very low phase noise is needed. One particular technique of interest uses a device called a step recovery diode as a harmonic
generator and is used in certain local oscillator and instrumentation applications.

Microwave transistors

Starting at the lower end of the microwave region, the silicon BJT dominates amplifier and oscillator technology. Low phase noise and optimal power-added efficiency are essential to PCS mobile phone equipment. The BJT can easily and reliably provide several watts of output power at greater than 30% efficiency in the 960 MHz to 1400 MHz bands. Bicmos, relevant to the signal processing stages of these systems. combines bipolar speed with cmos complexity.
Si BJT technology can also generate several hundred watts from a single transistor amplifier at around lGHz . Solid state radars using hundreds of such high power modules. have been successfully integrated into antenna arrays for L-band operation (between 1 GHz and 2 GHz).
Construction of the microwave Si BJT. Fig. 1a. is not so different from its lower lrequency counterpart and consists of a very highly doped n-type emitter. a p-type base region of

Abstract

The GaAs mesfet and its derivatives provide the active element of choice in low noise and medium power amplifier designs to 30 GHz . However, new technologies look increasingly attractive. Most exploit the features of the heterostructure. Mike Hosking reports on the new wave of semiconductor devices.

*Mike Hosking is a lecturer in
telecommunications and microwaves at the University of Portsmouth.

small width $(\approx 1 \mu \mathrm{~m})$ and a low resistance $n-$ type collector contact. Although operation is possible at frequencies above 10 GHz . for most practical purposes the BJT is technology limited to below about 4 GHz . Electron transit time from the emitter-base junction to the collector sets the upper frequency limit, but the length of this region canno be made arbitrarily narrow because of voltage breakdown and power handling.
As the mobility of electrons in silicon is greater than that of holes, microwave transistors are always n-p-n types with electrons as the majority carriers. The maximum frequency of oscillation is a function of the time constant created between collector-base capacitance and base resistance. Interdigital geometry for the base-emitter junction, Fig. 1b. allows an increase in current by the increase in emitter periphery, without increasing the capacitance.
The BIT exhibits low phase noise, generally many times better than that which can be achieved with let technology. The phones used in PCS. typically have an rf subsystem as shown in Fig. 2. Where the same voltage con-
trolled oscillator is used to generate the datamodulated, up-converted carrier as well as the LO for the receiver. With the emphasis on spectrum conservation and a likely change from FM and FSK to high order (16 to 64 state) QAM modulation, phase noise performance is vital. This assures the Si BJT a place in the design of power amplifiers for these systems.

Mesfet devices

The GaAs mesfet dominates low noise amplifier and medium power amplifier applications from microwave to millimetric frequencies. It has revolutionised the performance of DBS receivers and is replacing the travelling wave tube in satellite transponders.
At microwave frequencies, the rectifying junction of the fet is a metal-semiconductor interface of Schottky barrier type, Fig 3a.
Electrons in the n-type GaAs diffuse into the metal to form a barrier potential and leave behind a region of high resistance containing few free carriers: the depletion region. Minority carriers play little part in the operation of the junction and, thus, there are virtually no charge storage effects. This allows the junction to switch from conducting to nonconducting states at microwave and millimetre wave frequencies.
Like conventional fets, a reverse bias applied between the gate and source will increase the height of the depletion region until it equals that of the channel, thus pinch-ing-off the current between drain and source. Hence, this is a means of controlling output current and of applying modulation. The mesfet is a transit time device in that the cut-off frequency is determined by the saturation velocity of the electrons and by the time taken to traverse the gate length. L. Thus GaAs, with its higher mobility is preferred to silicon for microwave fets.
A $1 \mu \mathrm{~m}$ gate length allows operation up to 10 GHz and present lithography can achieve $0.1 \mu \mathrm{~m}$ resolution, resulting in achievable operating frequencies of 60 GHz and higher. At around 10 GHz , a chip-only noise figure of less than 1 dB could be expected, with a gain

Fig. 1. Basic structure of the silicon bipolar transistor (a) with (b) the general type of interdigitated emitter which allows the current to be increased without a corresponding increase in capacitance.

Fig. 2. Typical rf section of a PCS communicator. Different technologies are being used to produce highly optimised devices for each of the major components.
of about 12 dB . As a power device, several hundred milliwatts with power-added efficiency greater than 25% could be provided at the same frequency.

Heterojunctions

Two variants of the classic mesfet device, the hemt and phemt, extend the mesfet operating envelope. Fig. 3b shows the construction profile of the hemt for comparison with the standard mesfet. The device is still a FET with

(b)
(c)

RF ENGINEERING

which contains virtually no donor atoms in this thin electron gas layer. They experience no impurity scattering, with the result that mobility is increased three-fold over that of the GaAs mesfet with a corresponding improvement in performance. About 0.5 dB noise figure at 10 dB gain could be obtained at around 10 GHz and cut-off frequencies well above 100 GHz have been achieved. The hemt is also well suited to power applications: Texas Instruments, for example, offers a device delivering over 5 W at about 40% efficiency around 10 GHz using $0.5 \mu \mathrm{~m}$ geometry.
Further improvements to performance can be obtained by modification to the device structure, Fig. 3c. For a sub-micron gate length, the current gain-bandwidth product ($f_{\text {max }}$) of the hemt is approximately given by:

$$
f_{\max }=\frac{V_{\mathrm{t}}}{2 \pi l} \mathrm{~Hz}
$$

where V_{t} is the transit velocity of electrons under the gate and $/$ is the gate length. Thus, a material having a higher electron velocity will contribute directly to a higher frequency of operation.
InGaAs has a peak electron velocity over 30% greater than GaAs and, in the phemt, a thin $(\approx 200 \AA$) layer is introduced on top of the GaAs buffer layer. The two dimensional gas penetrates this higher velocity region and, in fact, is additionally confined by the 0.17 eV energy band gap of this material. The structure
is called 'pseudomorphic' because there is a slight mismatch between the lattice structure of InGaAs and the GaAs buffer layer. With careful control of the layer thickness, the strain of this mismatch can be accommodated by the InGaAs lattice which distorts to 'mirror' the GaAs structure. Hence, 'pseudomorphic'.
The result of these device modifications are incentives for a higher frequency of operation $\left(f_{\max }>200 \mathrm{GHz}\right)$ and lower noise figure ($<1 \mathrm{~dB}$ at 20 GHz) with efficiencies around 30%. Phemts have been commercially available for several years, but development is continuous and performance increases steadily.
There is also development effort being spent on the manufacture of hemt devices using InP instead of GaAs to deliver higher frequencies and lower noise. Operation to 300 GHz is predicted and Hughes in the USA has already space qualified a 1.2 dB noise figure InP hemt at 60 GHz . Cooling of fet devices to liquid nitrogen temperatures of 77 K results in general noise figure improvement. However, the hemt and phemt structures perform exceptionally well and noise figures similar to those only obtainable at present with cooled masers are predicted from $\ln \mathrm{P}$.

Bipolar heterojunctions

The latest in microwave transistors is the GaAs heterojunction bipolar device which offers hundreds of milliwatts at 40 to 50% efficiency at millimetric frequencies. The ver-

Fig. 4. Structure of the heteojunction bipolar transistor. The key to its high frequency and low noise performance lies in the AlGaAs layer and the high doping possible of the base region.

Fig. 5. Basic structure and equivalent circuit of the step recovery diode under different bias conditions. Unlike the normal p-i-n diode, there is no
intermediate
impedance state.
tical topology of the HBT means that the emphasis on lithography can be relaxed: $2 \mu \mathrm{~m}$ geometry is typical, c.f. fet structure.
Transit time is determined by layer thickness and doping: a simpler and higher-yield process. Fig. 4 shows one structure of the HBT. with the epitaxial layer hierarchy grown upon the collector substrate. The base-collector junction is GaAs, but the main difference from the BJT lies in the base material, typically of n-type AIGaAs. The electron mobility in this material is greater than that of GaAs (and much greater than silicon) thereby increasing the frequency of operation.
Perhaps more importantly the base region of the HBT may be much more heavily doped than the emitter, thereby reducing base resistance and reducing the base-emitter capacitance. The wide bandgap of the emitter prevents hole injection from the base. Also, high current capability is possible as the whole of the emitter area conducts uniformly. Thus, all the desirable features of the Si BJT are translated to higher frequencies (4 to 40 GHz at present).
The vertical process technology also circumvents the surface defect limitations of the fet resulting in superior phase noise performance. As an example. Class AB operation at 10 GHz has produced in excess of 55% power added efficiency with greater than 10 dB gain and a power output of greater than 300 mW .
Both mesfet and HBT devices are themselves compatible with monolithic technology. leading to integrated low noise or high power amplifiers with optimised performance.

Step recovery multiplication

Although largely replaced by fundamental oscillators, one method, used in instrumentation to generate marker frequencies and local oscillator signals, uses the step recovery diode (SRD or snap varactor). It requires simple circuit design and only a single frequency input: the output comprises pure harmonics of the input.
The efficiency of this process is proportional to $1 / n$, where n is the harmonic number, whereas the normal varactor multiplier using its non-linear capacitance as the multiplying mechanism has an efficiency proportional to $1 / n^{2}$. Thus, the comb generator is suited to high-order multiplication and can give outputs of 10 s of milliwatts, or more, into the millimetre band at about 30 GHz .
At frequencies below 10 GHz , several watts of output are possible. Multiplication factors up to 10 are typical and efficiency, depending upon n and frequency, can exceed 65%.
The SRD itself is made from silicon and its doping profile is of the p-i-n form shown in Fig. 5, where the intrinsic layer is relatively thin and the exact grading of the p-i junction is crucial to performance.
Successful operation depends upon the charge storage properties of the diode and silicon is preferred because of its minority carrier lifetime. This is the time for which the carrier will remain in its free state before recombination: in Si this can be made to be similar to the
period of the input of cycle.
The diode of Fig. 5 has two extreme states under conditions of bias: forward bias will inject charge into the i-region and the SRD will appear as a low-value resistance. Reverse bias will remove charge leaving. essentially, a parallel-plate capacitance. However, for the duration of the carrier lifetime, there will be a transitory state of charge storage which is the basis of the SRD mechanism. Fig. 6 shows the condition where the SRD is forward biased to just below its conduction threshold $(0.6 \mathrm{~V}>1.0 \mathrm{~V})$ and an input RF waveform is superimposed.
During the positive half cycle, the SRD is driven into conduction and the output current will essentially follow the rf input. The iregion fills with electrons and holes. As the input waveform goes negative, charge injection will cease: however, conduction will continue as the i-region charge can still be removed because it has been 'stored' due to the long carrier lifetime. There will come a point, though, in the negative cycle when all charge has been removed and the diode will change state to its high impedance (capacitive) state. The essence of the SRD principle is that this change of state occurs very rapidly: typically in tens of picoseconds and thus appears as a fast, transient spike.
Figure 7 shows a typical comb generator circuit using the SRD. The diode is inductively driven by the input waveform. In some high frequency designs the impulse inductor

Fig. 7. Main components of the SRD comb generator showing a typical spectral output comb. The bandpass filter could be fixed or variable in order to select a particular harmonic.
can be the actual package inductance. During the charge-extraction portion of the rf cycle. energy builds up in this inductance and then. when the diode snaps into its rapid impedance change, the energy in this transient shoch excites the output circuit (usually a length of transmission line) into resonance. This produces a comb of harmonics of the input frequency eact input cycle. The final output stage is often a bandpass filter, selecting a par-
ticular harmonic. The output frequency spectrum and stability matches that of the input source. If this is a low-noise, high quality oscillator, then so too will be the output. Input frequencies cannot be too low in frequency and typically range from 250 MHz to 10 GHz . depending upon the required output range.

Next month: circuits and methods for tuning and stabilising microwave sources.

SEETRAX $\dot{C} A E-R A N G E R-P C B D E S I G N$

Ranger1 $: \leq 100$

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic) *
* Power, memory and signal autorouter - £50

Ranger2 $£ 599$

All the features of Ranger plus

* Gate \& pin swapping (linked to schematic)
* Track highlighting
* Auto track necking
* Copper flood fill *
* Powễr planes (heat-relief \& anti-pads) . ** * Rip-up \& retry autorouter

Rainger3 £3500
*All the features of Ranger2 plus

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
* Hierarchical or flat schematic
* Unlimited design size *.
* Any-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& trtry, ${ }^{\text {TH }}$, push \& shove autorouter

$=$ Outputs to:.

CIRCLENO. 119 ON REPLYCARD

The transformer ratio arm bridge he bridge principle in electrical measurements
 down to zero by means of the non-inductive calibrated

Every so often, it becomes worthwhile to reinvent the wheel. Ian Hickman speculates on a new type of instrumentation based on the age-old bridge measurement technique.

Fig. 1a) General two port pi network expressed in parallel components. b) s-parameter measurement of two port pinetwork

Thas been extended far beyond Wheatstone's original application for the measurement of resistance at dc. It has been adapted for measuring inductance, capacitance and even frequency (e.g. Wien bridge).
Bridge methods have largely fallen into disuse. especially for of measurements. The reason is that each measurement is taken at a spot frequency and involves adjusting two standards for balance. Investigating the variation of impedance or admittance of an unknown with frequency is tedious, involving a large number of spot measurements. It is so much easier to connect the unknown to a network analyser and take an s_{11} measurement covering the frequency range of interest. The answer can be viewed instantly as an angular vector plot versus frequency, or I and Q components, or as a Smith chart display. with the value corresponding to a marker at any desired spot frequency indicated on the screen as a numerical readout.
Often the unknown is not a simple two terminal impedance, but a two port pi network, as in Fig. 1a. Given three independent equations relating the three unknowns to three measured values, the various impedances or admittances can be calculated. So any three of the four s-parameter measurements in Fig. 1b should in theory suffice, permitting the evaluation of the three impedances.

In practice, if Z_{1} and Z_{3} are low and Z_{2} high, the computation will involve the difference of two large quantities, magnifying any measurement errors and may lead to a large margin of error for the calculated value of Z_{2}. This is precisely where a particular type of rf bridge, the transformer-ratio-arm-bridge, scores over other methods. The trab was developed during WWII by Mr Gilbert Mayo of the BBC Research Department, and subsequently further developed and marketed by at least two companies in the U.K.

The transformer bridge

Figure 2a shows an rf trab in its simplest form. An if test signal from a bridge source or signal generator is applied, via a stepdown transformer T_{1}, to a calibrated variable standard capacitor C_{s} and a conductance standard G_{s} which is effectively variable from $1 / R_{1}$

(a)
variable resistor R_{v}. The other ends of these two components are connected to one end of a centretapped symmetrical winding on T_{2}. The unknown is connected between the output of T_{1} and the other end of the centre tapped winding on T_{2}. An output winding on T_{2} is connected to a bridge detector, which can be any radio receiver covering the band of interest.

In use, C_{\checkmark} and G_{\square} are adjusted until there is no detectable ouiput at the receiver. Balance occurs when the parallel components C_{x} and G_{x} of the unknown are equal to the capacitance setting of C_{s} (narked on its dial) and the effective value of G_{s} (which is marked on the dial of R_{v}). Balance occurs as a result of the current flowing via the standards through one half of the balanced symmetrical winding of T_{2} equalling the current flowing via the unknown through the other half of the winding. As the number of turns on each half winding are the same, there is no net magnetising force, and consequently no resultant flux on the core. There is thus no voltage induced in the output winding, but equally, there is no voltage appearing across either half of the centre-tapped winding either. Thus T_{2} acts as a virtual earth, the significance of which will appear in a moment.

Note that a trab inherently measures Z_{2} in terms of an admittance Y_{2}, i.e. equivalent components G_{\star} in parallel with B_{x}. Given the known test frequency. these can be converted to the equivalent series components R_{x} and $X_{,}$using the formulae in Fig. 2b. or using a Smith Chart ${ }^{1}$.

As shown in Fig. 2a, the range of the unknown that the bridge can handle is limited to C_{x} not exceeding the maximum value of C_{s}, and G_{x} not higher than $1 / R_{1}$, with no capability at all for measuring cither inductance, or negative conductance. This capability can be provided by the modified arrangement of Fig. 2b. Here, the terminals to which the unknown are connected are mounted upon two substantial blocks of metal. firmly bolted together with an insulating film between, to form a capacitance equal to $C_{s \text { max }} / 2$. The dial of C_{5} is now calibrated in positive and negative values of capacitance, with zero occurring where C_{S} is set at C_{s} max 2 ; this arrangement was employed in the Wayne Kerr trabs.

Similarly, a resistor of value $2 R_{1}$ can be added in parallel with the unknown terminals, allowing for negative values of conductance and permitting measurements on active devices. The shunt components of resistance (or conductance) and capacitance of the unknown could be read directly from the dials. at any test frequency. Inductance, on the other hand, was read as a negative capacitance. Knowing the test frequency enables the susceptance of the negative capacitance, and hence of the unknown inductive component, to be calculated, from
which the value of inductance itself was readily derived.

Although shown with the source connected to T_{1} and the detector to T_{2}, a trab can be used with the source and detector interchanged, where convenient.

Extended possibilities

Fig. 3 shows how the trab is inherently adapted for three terminal measurements, permitting the accurate measurement of Y_{2} whatever the values of Y_{1} and Y_{3}. by virtue of the bridge's neutral connection. It can be seen that admittance Y_{1} shunts the source whilst Y_{3} shunts the detector (T_{2} is a virtual earth). Thus while Y_{I} in particular may reduce bridge sensitivity slightly, neither Y_{1} nor Y_{3} affects the accuracy of the measurement of Y_{2}.

The operation of adaptors which extend the range of a bridge is of interest not only from the electrical point of view, but also because they illustrate the usefulness of the Binomial Theorem, which should really be called "The Engineer's Friend". The LE305, a well specified but low frequency bridge from Hatfield Instruments consisted of two non-inductive 100Ω resistors in a massive metal housing which are interconnected with the common and neutral terminals of the bridge and, by means of a substantial plug, with one of the multiplier terminals associated with T_{2}. The unknown to be measured was connected between the junction of the two resistors and the bridge neutral terminal, see Fig. 4. If Z_{Y} is a resistance of $1 \Omega 2$ or less. the current i_{1} will be determined virtually solely by R_{2} (and the bridge drive voltage at the common terminal). The volt drop e will thus be directly proportional to Z_{x}, and hence so will the current i_{2} delivered to T_{2}. If Z_{x} is zero, i_{2} will be zero and bridge balance will be achieved.

As Z_{x} increases, so R_{2} must be advanced, so its dial in fact now reads resistance directly instead of conductance. Similarly. if Z_{x} is an inductive reactance, the voltage across it and hence i_{2} will both be leading and must be balanced by a capacitive current via C_{s} fed to the opposite side of T_{2}.
For an inductive Z_{x}, as the frequency increases, so will e in Fig. 4, and hence also i_{2}. Thus there will be no change in the setting of C_{s} for balance, so that with the low impedance adaptor in use, it is now indirctive unknowns that become independent of frequency, even though they are measured by comparison with a capacitive standard. Furthermore, the unknown is now measured as series components $\mathrm{r}+\mathrm{jx}$, rather than shunt components $\mathrm{G}+\mathrm{j} B$. If Z_{x} is resistive, then the error due to the finite voltage e subtracting from the available bridge drive voltage reaches 2% for $Z_{x}=1 \Omega$. (The 1% increase in mesh resistance $100 \Omega+1 \Omega$ results in a 1% decrease in i_{1} : furthermore, the 1Ω unknown is shunted by the second 100Ω resistor, so e is reduced overall by 2%, per the binomial expansion, ignoring second order terms.)

The reactive component of Z_{λ} may be up to 3Ω, since the component of e due to it subtracts from the bridge drive voltage rms-wise, rather than directly.

Automated trab?

A bit of speculation. A self-balancing trab - if such a thing existed - could directly measure the parallel components of susceptance of the series element of a pi network. The drive signal could then be swept, to give an impedance versus frequency display, not unlike a network analyser. For instance, the variable conductance standard formed by R_{1} and R_{v} in Fig. 2 could be replaced by a four quadrant multiplier, with the rf applied to the X port and the control signal to the Y port. The output would thus be adjustable in both amplitude and sign, avoiding the need for selecting one

Fig. 2a) In its simplest form, a trab measures only capacitance and conductance (resistance).
b) With modifications, it can also measure negative capacitances (inductance) and megative conductances. Additional circuitry (not shown) is required to permit balancing of the bridge with C_{s} and R_{v} set to zero, before connecting the unknowr.

side of T_{2} or the other. The bridge output from T_{2} would be synchronously detected and the resultant fed back to the Y port of the multiplier to automatically achieve a balance with the conductance of the unknown.

The degree of balance achieved would depend upon the loop gain. The variable susceptance could be obtained from another multiplier instead of C_{s}, by feeding its X port from a quadrature version of the drive

Fig. 3. Circuit showing how a trab is inherently perfectly adapted for three terminal measurements.
Admittance Y_{1} shunts the source whilst Y_{3} shunts the detector (T_{2} is a virtual earth). Thus while they may reduce bridge sensitivity slightly, neither affects the accuracy of the
measurement of Y_{2}.

Fig. 4. Showing how a low impedance adaptor not only extends the measurement range of a trab, but also turns conductance into resistance, and capacitive susceptance into inductive reactance and vice versa.

Fig. 5a) Trab with autobalance facilities b) As the multipliers can implement rf outputs of both polarity, i.e. can act as both negative and positive conductance and susceptance standards, T_{2} is redundant, and can be replaced by an op-amp virtual earth. c) As a), with sweep facility and Smith Chart display.
signal. This requirement is easily met since sine and cosine outputs are available as standard from many direct digital synthesizer chips.

The arrangement might look something like Fig. 5a. where the synchronous detectors could be multipliers identical to those used as the G and B standards, fed through lengths of line to compensate the path-length through the bridge. As the multipliers can implement rf outputs of both polarity, i.e. can act as both negative and positive conductance and susceptance standards, T_{2} is in fact redundant. It can be replaced by an current feedback op-amp virtual earth as in Fig. 5b: conveniently the multipliers provide current outputs. Fig. 5c shows how a swept measurement, with Smith Chart display of the unknown as a function of frequency, might be organised.

The only disadvantage of this 'active trab' arrangement is that a very low output impedance buffer is needed to drive the unknown. Any reduction of the I drive voltage due to loading by Z_{1} (or indeed Z_{2}) will affect the conductance standard equally and thus cause no error with this arrangement, it will not correspondingly affect the susceptance standard arm.■

Reference

1. Ian Hickman, Design Brief, EW +WW Oct 93, p972.

Low Cost Analog Simulation

ICAP/4Lite - Schematic Entry, SPICE and Waveform Display for $£ 400$

CIRCLE NO. 120 ON REPLY CARD

INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

C HERE!

If you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

Electronics help police to see the genetic picture

Abstract

Britain's police are shortly set to make substantially more use of DNA fingerprinting in human identification. Tom Ivall explains how instrumentation is developing to make the process more practical.

Automated scanner made by Bio-Rad Laboratories. The GS Gene Reader scans autoradiograph films for DNA sequence analysis. Digitised images and a corresponding list of base letters are displayed on the workstation screen.

Under the latest Criminal Justice Bill, soon to become law, police will be able to take DNA samples, without consent, from anyone arrested for a recordable offence. The resulting molecular 'fingerprints' will be stored in a national database.
DNA testing for forensic and other identification purposes has already become well established since professor Alec Jeffreys of Leicester University invented the technique in 1985. Now public and commercial laboratories provide it as a service - though in the UK, Cellmark Diagnostics, part of Zeneca, is the only commercial lab.
The US government meanwhile, takes and holds samples from all its military personnel Legal challenges have been made to the technique. But its validity is now accepted. because every individual hals certain inherited patterns within the DNA molecule which are. for practical purposes, unique - better than 1 in 10^{12} - except for identical twins.
Only the methodology is being refined, with electronics and computers automating some of the processes

Obtaining a DNA fingerprint

The technology for DNA fingerprinting is based on electrophoresis. In addition, optical scanning, digitisation and data analysis are used to map and list both the numbers and

sequences of the highly significant nitrogenous bases in the DNA molecule (see box).
DNA fingerprints are images derived from a molecular pattern in the body's cells. The patterns are composed of short sequences of base molecules, typically 20 bases long, which keep on repeating consecutively along a DNA strand at particular locations.
Two factors make the pattern specific to an individual: the number of repeats at a given location and hence the overall length of the repeating section, normally in the range 4000 to 20,000 base pairs: and the particular locations on the DNA molecule at which these repetitions occur.
Both features vary enormously from person to person and are inherited - so are useful for paternity investigations - but are not part of the functional genes.

DNA fingerprint, resembling a bar code, is an autoradiograph taken from an electrophoresis separation. Each dark band represents probeselected DNA fragments of a particular length, measured in number of base molecules. The pattern is specific to an individual.

Key to detection

Detecting the molecular pattern is a little like probing an unknown lock with a known key to see if it fits. The probe is a shor length of sin-gle-strand DNA with a known sequence of bases. derived by cloning from a human source. It will fil any complementary sequence on a single strand of the DNA being tested, so ‘rccognising' it in a process called hybridisation. The repeating sections detected are subsequently translated into an image by sorting the repeating sections into their different lengths. Then a purified solution of the DNA sample - commonly obtained from blood, saliva, hair roots or semen - is treated with one or more enzymes to cut the double-helix molecules at points on each side of the repeating section. The enzymes recognise particular,
short, base-pair sequences of the DNA and bind to them, slicing the duplex DNA at or near these positions.
The resulting assortment of fragments is placed in an electrophoresis cell and separated according to length (see box). A continuous distribution of fragment lengths is the outcome, from about 200 base pairs (bp) to 20kbp or more, along a 'lane' in the electrophoresis gel. Only those fragments containing the wanted repeat sections have to be identified

Sodium hydroxide is used to split the DNA into single strands, then the gel is dried and its distribution of fragments is transferred to a solid support - normally a nylon membrane by a process called Southern blotting.
The membrane is exposed for several hours
o a solution containing the probe, which is radioactively labelled. Binding occurs between the probe and only those length of separated-DNA-fragments which include the repeating sections.
X-ray film exposed to the membrane produces an autoradiograph (arg), and detected fragment lengths with their radioactive labelling stand out as a pattern of dark bands on the developed film. This is the fingerprint.
The process does not identify the actual locations of the repeating sections on the molecule. A different method detects repeat lengths at single, chosen molecule locations and produces only two bands on the arg. The first, multi-locus form is used mainly for paternity tests while the second, single-locus type, is used mainly for forensic work.

Structure of human DNA

DNA, or deoxyribonucleic acid, exists in most cells of living organisms - from single-celled bacteria to multicellular animals. In the nuclei of human cells, with proteins, it forms the substance of our 46 chromosomes, and carries the genes for the copying process when cells divide and proliferate to grow and repair the body.
Its form is polymeric, consisting of a long chain of smaller molecules of four distinct types called nucleotides. In a single human cell the total length is about 2 m . Each nucleotide comprises three yet smalber molecules: a sugar ring, a phosphate group and a nitrogenous base formed from carbon, hydrogen, oxygen, nitrogen and phosphorus.

The four nucleotides have different nitrogenous bases - adenine (A), thymine (T), cytosine (C) and guanine (G) - and it is these that form the 'symbols' of the genetic and DNA fingerprinting information through their changing sequence along the structure.

The DNA molecule, the famous double helix can tee likened to a twisted rope ladder. The two sides of the ladder are made up of alternating, covalently-bonded sugar and phosphate molecules from the nucleotides: the rungs are pairs of bases.
There are about 6×10^{9} of these base-pairs in the DV, of a human cell. A complete 360° turn of the double helix is about ten base-pairs and 3.4 nm long.

Base A always pairs with base T, and C with G, so the two halves of the ladder - single strands of the molecule - are complementary. The complementar; bases are held together by relatively weak hydrogen bonds, allowing easy chemical separation of the two strands.
A single existing strand of DNA forms a template for a new, complementary strand to be synthesised onto it. This template also allows short segments of singlestrand DNA from other sources to chemically bind to parts of it (hybridisation).

Called probes, such external segments with known base sequences are used in DNA fingerprinting to detect patterns of base sequences at different location; on the human molecule.

Electronic interpretation

Electronic scaming of the electrophoresis bands speeds up the interpretation process. reduces subjective errors in reading and produces data suitable for computer processing and analysis.
Scanning can be used directly on the fingerprints themselves but also, with a different electrophoresis separation, in sequence analysis. to find the A-G-C-T base sequences (see
box) in DNA samples and probes.
For fingerprint args the scanning system is essentially a digital densitometer. A video camera or linear cod array scans the image and the resulting signals are digitised. One FBI system uses a quantisation of 512 by 480 pixels and 256 grey levels.
ARG bands are fuzzy and of varying density (not sharp as in the figure) so the information obtained is a profile of density against distance along the arg. From the peaks in this

Electrophoresis

Electrophoresis separates colloidal particles by size. Here the particles are different length fragments of DNA and are made to migrate through an electrolyte solution by applying an electric field.
Each fragment carries a net charge, resulting from its own molecular composition and the ions in the electrolyte. The moving force on each fragment is proportional to the product of the net charge and the electric field strength.
Rate of migration, the electrophoretic mobility, is measured as velocity per unit field strength. It depends partly on a potential difference, determined by theelectrolyte, between the outside of the ion layer bonded to the fragment and parts of the electrolyte some distance away.
Other variables affecting it are viscosity and dielectric strength of the solution.
Mobility is directly proportional to the net charge on the fragment and inversely proportional to its size - smaller fragments travel faster.
But free liquid does not allow stable separation of fragments. So the electrolyte is supported in a porous medium, a slab of gel impregnated with the liquid. Fragments migrate through the gel pores when a voltage is applied across the slab through electrolyte reservoirs. Resolution of size separation is increased, because the gel acts like a mechanical sieve, allowing the shorter fragments through easily but retarding the longer ones.
When the electric field is switched off the DNA fragments end up distributed according to length at various distances along the gel.
In commercial systems the gel, made from agarose or polyacrylamide, is about 1 mm thick and mounted either horizontally or vertically. At one end is a well, into which the purified DNA solution is placed. The electrolyte is chosen for its hydrogen ion concentration (pH) and acts as a buffer solution, to keep the pH relatively constant. DNA fragments have a net negative charge and are therefore attracted towards the anode electrode.
Voltages range from 30 V to 100 V for DNA fingerprinting, or up to about 3000 V for DNA sequence analysis. Time required for separation is normally several hours. Using a number of wells in the gel enables different DNA samples to be electrophoresed simultaneously for comparison, forming parallel electrophoresis lanes in the gel.
Resolution of larger DNA fragments (above 100kb) can be improved by periodically reversing the electric field and hence direction of migration. Typically the cyclic forward:reverse time ratio is $3: 1$ and times can be anything from seconds to hours. Programmable pulse generators are used for this purpose.

Principle of electrophoresis cell. The electrolyte solution just covers the gel slab to maintain a conductive path through it.
profile an associated pe derives the positions of the bands and calculates the corresponding DNA fragment lengths.
Software can also locate the lane boundaries, correct image distortion, control the digitisation, perform statistical analysis, display data and graphics on the pe screen and finally control disk storage and/or transfer of data to a database.

Sequence analysis

DNA sequence analysis sometimes requires scanning systems to work on arg films and sometimes directly on electrophoresis gels. The biochemical reactions for determining base sequence involve four sets of copies of the DNA, each a gradually lengthening fragment ending on one of A-G-C-T. A four-well electrophoresis cell separates the fragments on the same gel, producing a succession of bands in each lane, A bands in one, G in another. C and T. From the relative distances of these bands along their four lanes. a continuing sequence of bases can be read off such as GTATGCCAT...
Electrophoresis bands are then scanned, translated into letters and then data transferred into a computer for processing and storage. The reader uses a 1728 -clement cod linear array to scan arg films with a resolution of $50 \mu \mathrm{~m}$. Variable speed scanning improves resolution where the bands are closely spaced. economising on computer memory when high resolution is not needed.
CCD signals are digitised and transferred to a Sun Sparc workstation where pattern recognition software identifies lanes, corrects errors and translates into base letters. The workstation screen displays a four-lane band pattern and alongside it a list of the corresponding sequence of base letters. Reading and processing at a rate of about 50 bases $/ \mathrm{min}$ are possible.
Sequence-analysis instruments aim at high accuracy as well as speed, eliminating the arg stage and possible reading errors by sensing the electrophoresis gel directly. They also work in real time by detecting fragment lengths and translating them into base letters while electrophoresis is proceeding.
Reaction products are combined and electrophoresed in a single gel lane, sandwiched between glass plates, and each is labelled with a fluorescent material of distinct emission wavelength.
As the DNA fragments thus identified approach the end of the 25 cm lane they are illuminated by an argon ion laser beam, exciting the fluorophores so they emit light of different colours, a wavelength for each DNA base. A lens collects the light and focuses it through an optical bandpass filter, one for each colour, onto a photomultiplier tube. As electrophoresis proceeds, the pmt signal, a succession of peaks, is a-to-d converted and the resulting data is processed and translated into a sequence of DNA base letters. The complete optical system mechanically traverses up to 24 such single lanes, scanning them in succession.

£1 BARGAIN PACKS

In fact...cheaper than $£ 1$ because if you buy 10 you can choose one other and receive it free $1 \times 12 v$ Stepper Motor. 7.5 degree. Order Ret: 910, 1×10 pack Screwdrivers. Order Ref: 909 2×5 amp Pull Cord Ceiling Switches. Brown. Order Ref. 92
$5 \times$ reels Insulation Tape. Order Ref: 9
$4 \times 14 \mathrm{~mm}$ Ball-races. Order Ref: 91
$2 \times$ Cord Grip Switch lamp Holders. Order Ref: 913 $1 \times$ DC Voltage Reducer. 12v-6v. Order Ref: 916 1×10 amp 40v Bridge Rectifier. Order Ref. 889 Lightweight Stereo Headph
superior sound. Order Ref: 896 .
$\mathbf{2 \times 2 5 W}$ Crossovers. For 40 hm loudspeakers. Order Ref: 22
$2 \times$ Nicad Constant Current Chargers. Easily adapt able to charge almost any nicad battery. Order Ref: 30 18v-0-18v 10va Mains Transformer. Order Ref: 813 $2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref: 148.
12v-0-12v 6va Mains Transformer. PCB mounting Order Ref: 938
$1 \times$ Big Pull Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ pull. Order Ref: 871
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push Order Ret: 872
$1 \times$ Mini Mono Amp. 3W into 4 ohm speaker or 1 W into 8 ohm. Order Ref: 495
$1 \times$ Mini Stereo 1W Amp. Order Ref: 870
15v DC 150 ma PSU. Nicely cased. Order Ref: 942. $1 \times \ln$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square Scaled 0-100. Order Ref: 756
$2 \times$ Lithium Batteries. 2.5 V penlight size. Order Ref 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for 'phone extensions, fax, etc. Order Ref: 552.
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232.
$4 \times \operatorname{In}$-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 \mathrm{~V}$ 1A Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9
$2 \times$ Humidity Switches. As the air becomes dampe the membrane stretches and operates a micro switch Order Ref: 32.
$5 \times 13 A$ Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it x x Suck or Blow-Operated Pressure Swith. Or it can be operated by any low pressur
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead Order Ref: 103A
$2 \times$ Stripper Boards. Each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128.
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ret: 134
$6 \times$ Microphone inserts. Magnetic 400 hm , also act as speakers. Order Ref: 139
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Rel. 180
$1 \times \ln$-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196
$1 \times$ Mains Solenoid. Very powertul as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ret: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref: 243.
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252 .
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch if fitted in pattress. Order Ref: 263.
$50 \times$ Mixed Silicon Diodes. Order Ref: 293
1×6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 2
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, othe normally closed. Order Ref: 48
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55
$6^{1 / 22^{\prime \prime}} 8$ ohm 5 watt Speaker. Order Ref: 824
$1 \times$ Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack, so quite powerful. Order Ref: 85.
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86 .
$1 \times$ Case. $3^{1 / 2} \times 2^{1 / 4} \times 1^{3 / 4}$ with $13 A$ socket pins. Orde Ref: 845.
$2 \times$ Cases. $21 / 2 \times 2^{1 / 4} \times 1^{3 / 4}$ with 13 A pins. Order Ref: 565 . $4 \times$ Luminous Rocker Switches. 10A mains. Order erent Standard V3 Micro Switches. Order Ret 4×0
340
$4 \times$ Different Sub Min Micro Switches. Order Ref:

BARGAINS GALORE
Speed Controller for 12v DC Motors. Suitable for motors Speed Controller for 12 V DC Motors. Suitable for motors to 30A. Gives very good control and speed. Uises mostets and is based on a well tried circuit which appeared in the Model Engineer some time ago. The complete lit with case and on/off switch is available, price £18. Order Zef: 18 P8. Ex-British Telecom Insulation Tester Offer. We have a quantity of these that are slightly faulty. There ras been no attempt at reparing them. They are not missing any parts so should be resairable. The moving coil movement is in perfect working order son cannot repair the nstrument to perform all its original functions, you would be supply a crrcuit diagram of the instrument and chances are that you will find the fault and be able to repai it. Price of the instrument with circuit diagram is £3. Order Ref: 3P176. Fig 8 Flex. Fig. 8 flat white pvc, flexible with .4 sq . mm cores. Ideal for speaker extensions and bell cricuts. Also adequately insulated for mains lighting. 50 m ccil $£ 2$. Orde Ref: 2P345. 12m coil £1. Order Ref: 1014.
Friedland Underdome Bell. Their ref: 792. A loud ringer but very neat, $3^{\prime \prime}$ diameter, complete with wall fo ing screws
2v 10 amp Switch
2v 10amp Switch Mode Power Supply. FoI only $£ 9.50$ 135 W PSU. Modifications are relatively simple. We supply instructions Simply order PSU Ret: 9.5P2 and reques modification details. Price still $£ 9.50$.
Are you making Minl Bugs? We can offer the ideal box White plastic without any decoration or printing. This has an on/off switch in the top lefthand corner and a hole jus above to take a telescopic or wire aenial. The case is large enough to take a PP3 battery and a PCB and wen finished it will have a really protessional look. Box with switch $£ 1$ Order Ref: 1006. Size approximately $4^{\prime \prime} \times 3^{\prime \prime} \times 1^{1} 2^{\prime \prime}$ thick and its cover is held by lour screws.
Siren/Horn/Hooter/Klaxon. It isn't any of these - it does the same job but is quite nice to look at and co ild even be plastic case, could be free standing or screwed down indoors or out. t is mains driven and when switched on it makes a shock ng noise (its loudness is adjustable). You could switch it on to scare an intruder or arra ige for you burglar alarm to do the same. Price E5. Order Ref: 5P226. Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unt makes the bell ring. Completely built and reatly cased equires only a battery, £3. Order Ret: 3P155.
Don't Let It Overtlow! Be it bath, sınk, cellar, sump or any other thing that could flood. This device will tell you when a useful range. Neatty cased for wall mounting, ready to work when battery fitted. £3. Order Ref: 3P15f.
Very Powertul Mains Motor. With extra long ($21 / 22^{\prime \prime}$) shatts extending out each side. Makes it ideal for a reversing arrangement fo : as you know, shaded pole m otors are no eversible. £3. Order Ref: 3P15
Solar Panel Bargain. Gives $3 v$ at 200 mA . Order Ref P324
> £1 Super Bargain
12 V axial fan for only $£ 1$, ideal for equipment cooling, brand new, made by Wesi German company. Brushless so virtually everlasting. Needs simple tran istor drive circuit, we include diagram. Only £1, Orde Ref: 919. When we supply this we will include a list of approx:-

$$
\text { mately } 800 \text { of our other } £ 1 \text { bargain }
$$

40W-250W Light Dimmers On standard plate o put directly place or hush switch. Available in cold . Order 3 . 45A Double Pole Mains Switch. Mounted on a $6 \times 3^{1 / 2}$ luminium plate, beautifully finished in gold, with pilot light Top quality, made by MEM, £2, Order Ref: 2F316.
Amstrad $3^{\prime \prime}$ Disk Drive. Brand new and standard replacement for many Amstrad and other machines, £20, Order Ref. 20P28.
Touch Dimmers 40W-250W, no knob to turn, just finger on ront plate, will glve more, or less light. or off. Silver plate on white background, right size to replace normal switch $\boldsymbol{\Sigma}$.
Order Ref. 5P 230 .

Motorise that Trolleyl
 12v battery motor
 Still available, price £21. Order Ref: 21p1

2/24 DC Solenoid. The construction of this is such hat it will push or pull. With $24 v$ this is terrifically p.owertul but is still quile good at 12V. E1. Order Ref. 877
Don't Stand Out in The Cold Our 12m telephone extension ead has a flat BT socket one end and flat B' plug other end 20W s" Ref: 2P338
20W 5" 4 Ohm Speaker mounted on baffle with front grille, $£ 3$. Order Ref: 3 P 145 . Matching 4 ohm 20 W tweeter on
separate baffle, $£ 1.50$. Order Ref: $1.5 \mathrm{P9}$.

This is a multi range voltmeter/ammeter using the A. D converter chip 7106 to provide 5 ranges each of volts and amps. Supplied with full data sheet. Special snip price of $\mathbf{£ 1 2 \text { . Order Ref: } 1 2 \text { P19. }}$
Telephone Extension Wire 4 core correctly colour coded intended for permanent extensions, 25m coil, $£ 2$, Order Ret ligh
High Power Switch Mode PSU. Normal mains mput, 3 outputs: +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A and -12 V at $1 / 2 \mathrm{~A}$ special offer price of $£ 9.50$, Order Ret: 9.5 P
Philips 9" High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing, offered
Order Ref: 15P1.
High Current AC Mains Relay This has a 230 v coil and ohangeover switch rated at 15 A with PCB mounting with

BARGAINS GALORE

Ultra Thin Drills, actually 0.3 mm . To buy these regula and the pripe. However, You Can Etand On It! Made to house GPO telephon equipment, :his box is extremely tough and would be ideal for keepinc your small tools in, internal size approx. $\left.10^{1 / 2 " \times 4} 1 / 2^{\prime \prime}\right) \Xi^{\prime \prime}$ high. Complete with carrying strap, price $£ 2$, Order Ref: $=$ P283B.
Ultra Sonic Transducers. Two metal cased units, one ransmits, cne receives. Bult to operate around 40 kHz Price $£ 1.50$ the pair, Order Ref: 1.5P/4.
Power Sup ly with Extras. Mains input is fused and filtered and the $12 \% \mathrm{DC}$ output is voltage regulated. Intended for high class ε quipment, this is mounted on a PCB and, also relays and ilezo sounder $£ 3$. Order Ret: 3 P80B.
Insulation Tester with Multimeter. Internally generates megohms. The multimeter has four ranges, ACIDC volts, 3 ranges DC nilliamps, 3 ranges resistance and 5 amp range These instr J ments are ex-British Telecom a ther condition, tested and guaranteed OK, probably cost at least $£ 50$, yours or only $£ 7.50$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P/4
Mains Isolation Transformer. Stops you getting "to earth shocks. 23 V in and 230 V out. 150 watt, $£ 7.50$, Order Ref7.5P/5 and a 250 W version is $£ 10$, Order Ref: 10 P 97 . Mains 230° Fan. Best make "PAPST", $41 / 2^{\prime \prime}$ square, metal blades, £8, Order Ref: 8P8.
2MW Lase-. Helium neon by Philips, full spec. £30. Order Ref: 30 P 1 . Jower supply for this in kit form with case is $£ 15$ Order Ref: 15P16, or in larger case to house tube as well £18. Order Ref: 18P2. The larger unit, made up, tested and $12 v 80 \mathrm{hm}$ speaker, only $£ 1.50$ and waterproof.
Solar Chamer. Holds 4AA nicads and recharges th
Solar Changer. Holds 4AA nicads and recharges the
houfs, in very neat plastic case £6, Order Ref: 6P3.
Ferrite Aelial Rod. $8^{\prime \prime}$ long $x^{3 / 8^{\prime \prime}}$ diameter, made by Mullard. Complete with two coils, 2 for $£ 1$. Order Ref: 832 P .
Air Space Trimmer Caps. 2-20pf, ideal for precision tuning UHF circuits, 4 for $£ 1$. Order Ret: 8188.
Modem Amstrad FM240 As new condition but customer return, so bou may need to fault find, £6. Order Ref. 6P34. Amstrad Fower Unit. 13.5 V at 1.9 A or 12 V at 2 A encased and with leads and output plug, normal mains input E6, Order Rel: 6P23.
80W Mains Transformer. Two available, good quality, both with norma primaries and upright mounting, one is 20 V 4 A , Order Ref: 3P106, the other 40V 2A. Order Ref: 3P107, only

£3 each

Project Bcx. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1 / 2 / 2^{\prime \prime}}$ metal, sprayed grey, louvred er Js for ventilation otherwise undrilled. Made
GPO so best quality, only $£ 3$ each, Order Ref: $3 P 74$. Sentinel Component Board Amongst hundred of oth parts, this 15 ICs, all pug in 50 do not need soldering parts, this as 15 CS , all plug in so do not need sol
Sinclair 9-2.1A Power Supply Made to operate the 138 K Spectrum Plus 2 cased with input and output leads. Origunally I sted at around £15, are brand new, our price is only £3, Order Ref. 3P151.
Experimenting with Valves. Don't spend a fortune on a mains transformer, we can supply one with standard mans input and !ecs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at $3 \mathrm{~A}, \mathrm{\Sigma} 5$, Order Ref 5P167
15W 8 Otm $8^{\prime \prime}$ Speaker \& $3^{\prime \prime}$ Tweeter Made for a discontinu \rightarrow d high quality music centre, gives real hi-fi and only $£ 4$ pe pair, Order Ref: 4P57.
Water Punp. Very powerful, mains operated, £10, Order Rer: 10P7.
0-1mA Fu I Vision Panel Meter. 23/4" square, scaled 0-100 but scale ε asily removed for re-writing, $£ 1$ each, Order Ret: 756.

VU Metel Illuminate this from behind becomes on/off indicator ${ }^{\boldsymbol{s}}$ well, $11 / 2^{\prime \prime}$ square, 75 each. Order Ref: 366 . Amstrad Keyboard Model KB5 This is a most comprehensive keybeard, having over 100 keys including, of course, packing, E5, Order Ref. 5P202.
1 RPM Mator. This is only 2 W so will not cost much to run Speed is ideal for revolving mirrors or lights. £2. Order Ref. 2 P328.
Unusual Solenoid. Solenoids normally have to be energised to pull in and hold the core. this is a disadvantage where the applia ce is left on for most of the time. We now have applied to release it. £2, Order Ref. 2P327
applied to release it. $£ 2$, Order Ref. 2 P 327 . ing. £2, O-der Ref. 2P315.
200VA Mains Transformer. Secondary voltages $8 \mathrm{v}-0-8 \mathrm{~V}$ So you could have 16 v at 12A or $8 v$ at 25 A . Could be ideal for car stater charger, soil heating, spot welding, carbon rod welding o driving high powered amplifiers etc. $£ 15$. Order weld.15Ps
Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing.

M\&B ELECTRICAL scor
 Pilgrim Works (Dept. WW),
 Stairbridge Lane, Bolney, Sussex RH17 5PA
 Telephone (0444) 881965phone for Fax
 Callers to 12 Boundary Road, Hove, Sussex

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS
 TESTED

HP141T + 8552A or BIF - 8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ AIF $£ 600$ or B IF - $£ 700$
HP141T + 8552A or B IF - 8554B RF - 100kHz $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or BIF- $£ 900$
HP141T + 8552A or B IF - 8555A RF - $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or B IF -8556 A RF $-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200 - 8552B IF - £ $300-8553$ B RF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554 \mathrm{~B}$ RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{ARF}-20 \mathrm{HZ}-300 \mathrm{KHZ}-£ 250$.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}-£ 300-£ 400$.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400$ £600 or HP8445A - £250.
HP8444A Tracking Generator - $£ 750-1300 \mathrm{Mc} / \mathrm{s}$
HP8444A Opt 059 Tracking Generator - $£ 1000-1500 \mathrm{Mc} / \mathrm{s}$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553 B RF Plug-In 1 kHz $\mathbf{1 1 0 M c} / \mathrm{s}$. Tested with instructions $-\mathbf{£ 7 0 0}$.

Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kg} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
PP Frequency comb generator type 8406 - $\mathbf{F} 400$.
HP Vector Voltmeter type 8405 A - E 400 to f 600 - old or new colour.
 HP Network Analyzer type 8407A $+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Md} / \mathrm{s}-\mathrm{f} 500-\mathrm{f} 1000$ HP Amplifier type 8447A - $1-400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP P8477. $1-1300 \mathrm{MC} / \mathrm{s}$ E40
HP Frequency Counter type 5340A - 18 GHz f 1000 - rear output $£ 800$
displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743 8746-8650. From f1000.
Racal/Dana $9301 \mathrm{~A}-9302$ RF Millivoltmeter $-1.5-2 \mathrm{GHz}$ - E 250 - 400
Racal/Dana Counters 9915 M - 9916 - 9917 - 9921 - E 150 to E 450 . Fitted FX standards.
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-\mathrm{f} 250$
Marconi RCL Bridge type TF2700- E 150 .
Marconi/Saunders Signal Sources type -6058B-6070A-6055A-6059A - 6057A - 6056
Manitri245 Cicui Masntic
Marconi f1245 Circuit Magnification meter +1246 \& 1247 Oscillators - E 100 - 3300
Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{Pl}-18-26.5 \mathrm{GHz}$ or 6651 PI- -26.5
Marconi distortion meter type TF2 23 In 1250
Tektronix Plug-Ins 7A13-7A14-7A18-7A. TF2331A - 200.
S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501 WR501-DM501A-FG501A - TG501-PG502-DC505A-FG504-7B80 + 85-7B92A Gould $J 3$ B test oscillator + manual - E 200 .
Tektronix Mainframes - 7603 - 7623 A-7613-7704A - 7844-7904 - TM501 - TM503 - TM506 7904-7834-7104-7623-7633
Altech 757 Spectrum Analyser -001 22GHz - Digital storage - readout - $£ 2000$
Marconi 6155 S Signal Source - 1 to 2 GH - LED readout - $£ 400$
Marconi TF2163S attenuator - 1 GHz E200 $\mathrm{kd} / \mathrm{s}+$ high pass + low pass - $\mathbf{f} 150$
Farnell power unit $\mathrm{H} 60 / 50-\mathrm{f} 400$ tested.
Racal/Dana 9300 RMS voltmeter - f250
HP 8750A storage normalizer - -4000 with lead + S. A or N.A Interface
Marconi TF2330-or TF2330A wave analysers- $\mathbf{E 1 0 0 - E 1 5 0}$.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 600$
Rucal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 600$
ekronix-7S14-7r11-7S11-7S2-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304- 2250 .
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout- 11 k
Racal/Dana 9083 signal source - two tone - $\mathbf{£ 2 5 0}$.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - E 600
Tektronix TM515 mainframe + TM5006 mainframe - E450- 8850
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s- $\mathrm{E} 250-\mathrm{E} 600$
Ball Efratom rubidrum standard PT256B-FRKL-
Ball Efratom rubidrum standard PT256B-FRKL- 1000
Farnall electronic load type R8 1030-35- E350.
RacallDana counters-9904-9905-9906-9915-9916-9917-9921-50Mc/s-3GHz-¢100 P4815ARF vector impedance mat
Marconi TF2092 noise receiver. A. B Cr C probe - f 500 - f 600
Marconi TF2092 noise receiver. A, B or C plus filters-f100-f350

Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$
HP180TR, HP $182 T$ mainframes $£ 300-£ 500$
Fuke 8506A thermal RMS digital multımeter, $\mathbf{4 0 0}$
Philips panoramic recelver type PM7900-1 to $20 \mathrm{GHz}-\mathbf{6 4 0 0}$
Marconi6700A sweep oscillator $+6730 \mathrm{~A}-1$ to $2 \mathrm{GHz}-£ 500$
Racal/Dana VLF frequ +8503 A S parameter test set +8501 A normalizer - E 4 k
type $527 \mathrm{E}+$ rubidium standard type $9475-\mathrm{f} 2750$.
HP signal generators type $626-628-\mathrm{Gr} \mathrm{H}^{2}$
HP 432A - 435 A or B - 436A - power meters + powerheads - Mc/s - 40 GHz - $£ 200$ - 1000
Bradley oscilloscope calibrator type $192-\mathrm{f} 600$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc}$
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}$ - E 900 .
Marconi TF2370 spectrum ANZ + TK2375 FX extender $1250 \mathrm{Mc} / \mathrm{s}+1$ st gen - $\mathbf{f 1 . 5 k}$
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$, new colour $£ 400$
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$
HP 3325A syn function gen 20Mc/s - $\mathbf{f 1 5 0 0}$.
HP 3336A or B syn level generator - $£ 500-\mathrm{E} 600$.
HP 3575 A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-100$
HP 8671 A syn microwave 2-6.2GHz
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$-opt $001-003-\mathrm{E} 4.5 \mathrm{k}$
$\mathrm{HP} 8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S / G. AM $+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
$2500 \mathrm{Mc} / \mathrm{s}-£ 750-\mathrm{C} 2800$.
HP 8640B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $\mathbf{6 8 0 0 - f 1 2 5 0}$
P656A S/G AM-FM $0.1-990 \mathrm{Mc} / \mathrm{s}$ - £ 1500 .
P6228 Sweep PI-01-2.4GHz + ATT- $\mathbf{f} 1750$

HP 86 Series PI's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-\mathrm{C} 250-\mathrm{E} 1 \mathrm{k}$
4P 8615A Proinrame - C250. EEE-C50
HP 8615A Programmable signal source- $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 -f1k
HP 4261A LCR meter +16038 A tesi leads - E 400
HP 4271B LCR meter $\mathbf{1 M H z}$ digital meter +16063 A test adaptor - $\mathbf{f 8 5 0}$
HP 4342A O meter 22 kHz - $70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}$ - qty of 10 inductors - f 850
HP 3488A HP-IB switch control unit-f500 + control modules various- $\mathbf{C 1} 75$ each
HP 3561 A Dynamic signal ANZ-モ3k
HP $8160 \mathrm{~A} 50 \mathrm{Mc} / \mathrm{s}$ programmable pulse generator - $£ 1400$
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}-\mathbf{£ 2 5 0 0}$.
HP 8349A Microwave Amp 2-20GHz Solid state-f1500
HP 3585A Analyser 20Hz-40Mc/s-£4k

HP 1980B Oscilloscope measurement system- 6600
HP 3455A Digital voltmeter - 5500 .
HP 3437A System voltmeter - f300
HP 3581C Selective voltmeter - $£ 500$
HP 5370 A Universal time interval counter - $\mathbf{£ 4 5 0}$
HP 5335A Universal counter-200Mc/s - $\mathbf{\text { L500}}$
HP 5328A Universal counter - $500 \mathrm{Mc} /$ - $-\mathbf{£ 2 5}$
HP 6034 A System power supply - 0 - 60 V - 0 - 10 amps - $\mathbf{f 5 0 0}$
HP 5150A Thermal printer - $£ 250$
HP 1645A Data error analyser -f150
HP 4437A Attenuator - E 150.
HP $3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}$ modulator - E 400.
HP 3710A - 3715A - 3716A - 3702B-3703B-3705A-3711A-3791B-3712A-3793B
HP 3730A + B RF down con-P.O.R.
HP 3730A+B RF down converter - P.O.R
HP 3763A Error detector - f500
HP 3764 A Digital transm 6500
HP 3770 A A mp delay distortion analyser - E 600 .
HP 37780 A Pattern generator detector - E 400 .
HP 3781A Pattern generator - $\mathbf{C 4 0 0}$.
HP 37818 Pattern generator (bellt - $\mathbf{f} 300$
HP 3782A Error detector- E 400 .
HP 3782 B Error detector (bell) - $\mathbf{6} 300$
HP 3785A Jitter generator + receiver- $\mathrm{E750-E} 1$
HP 8006A Word generator - $\mathrm{C} 100-\mathrm{E} 150$.
HP 8016A Word generator - $\mathbf{E 2 5 0}$.
HP 8170 A Logic pattern generator-f500
HP 59500A Multiprogrammer HP - IB - $\mathbf{E 3 0 0}$
Philips PM5390 RF syn-0.1-1GHz-AM + FM-E1250
Philips PM5519 Colour T.V. pattern generator - E250
S.A. Spectral Dynamics SD345 spectrascope 111 -LF ANZ - $£ 2500$.

Tektronix R7912 Transient waveform digitizer - programmabie - $£ 400$
Tektronix 496 Ana yzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}-£ 3.5 \mathrm{k}$
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}$ - E 1 k - or TR502.
Tektronix 576 Curve tracer $\$$ adaptors - $£ 900$.
Tektronix 577 Curve tracer + adaptors - $\mathbf{f} 900$
Tektronix $1502 / 1503$ TDR cable test set - f1000
Tektronix 7 L 5 LF analyser $-0-5 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 800$. OPT $25-\mathrm{f} 1000$
Tektronix AM503 Current probe + TM501 m/frame - f 1000
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - E75-E350
Tektronix 465-465B-475-2213A-2215-2225-2235-2245-2246-£250-£ 1000
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS6100M - $£ 350$.
Farnell PSG520 Signal generator - E 400
Nicolet 3091 LF oscilloscope-f 1000
Racal 1991-1992-1988-1300Mc/s counters - C500-c900
Tek $2445150 \mathrm{Mc} /$ s oscilloscope - f 1400.
luke $80 \mathrm{~K}-40 \mathrm{High}$ voltage probe in case - BN - $£ 100$
acal Recordis
Racal Store Horse Recorder \& control - $4400-\mathrm{f} 750$ Tested
Fluke 510A AC ref standard - 400 Hz - $\mathrm{C200}$
Fluke 355A DC voltage standard - $\mathbf{£ 3 0 0}$
Schlumberger 5229 Oscilloscope- $500 \mathrm{Mc} / \mathrm{s}-£ 500$.
Solartron 1170 FX response ANZ - LED dislay - C 280
Wiltron 610D Sweep Generator + 6124C PI-4-8GHz-f400
Wiltron 610D SweepGenerator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{C} 500$
Time Electronics 9814 Voltage calibrator-E750
Time Electronics 9811 Programmable resistance - $\mathbf{6} 600$
Time Electronics 2004 D.C. voltage standard - £ 1000
HP 8699B Sweep PI YIG oscillator . $01-4 \mathrm{GHz}-\mathrm{f} 300$. 8690B MF - E250. Both f 500
Schlumberger 1250 Frequency response ANZ - 22500.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex
switches - waveguides - Yigs - SMA -APC7 plugs - adaptors
B\&K Items in stock - ask for list
W\&G ltems in stock - ask for lis
Power Supplies Heavy duty + bench in stock - Farnell - HP - Weir - Thurlby - Racal etc. Ask for list

TTEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORIS. SAE FOR enQuilies. phone for appointment or for demonstration of any items, availability or pilce change. vat ano carriage extra tTEMS MARKED tested have 30 day warrantr. wanted: TEST EQUIPMENT-Valves-plugs and SOCXets-SYncros-transmiting and recelving equipment etc.

NEW PRODUCTS CLASSIFED

Please quote "Electronics World + Wireless World" when seeking further information

Asics
Cost-effective asics. Although small asics are out of fashion, they can be much cheaper to develop.
Accordingly, Sharp has a special deal on asics with up to 2000 gates, which will handle glue logic, pals and eplds in one chip. Minimum quantity is 5000 pieces and the typical once-only cost is around $£ 10000$, design time being 1-4 weeks. Hero Electronics Ltd. Tel. 05254055015 ; fax, 0525402383.

A-to-d and d-to-a converters

Eighth-order 100 kHz Ip filter

LTC1066- 1 by Linear Technology is an eighth-order, pin-selectable, elliptic or linear-phase low-pass filter that offers up to 100 kHz cut-off and 14 -bit dc gain linearity. It has a 94 dB signal:noise ratio and is suitable for use as an anti-aliasing or smoothing filter in 12 or 14 -bit data acquisition. The device is clock-tunable from 10 Hz to 100 kHz ; clock:cut-off frequency ratio is 50 and the input is sampled twice to reduce the risk of aliasing. Ripple in the pass band is $\pm 0.15 \mathrm{~dB}$ and there is 80 dB of stop band attenuation at 2.3 times cut-off. Linear Technology (UK) Ltd. Tel., 0276 677676; fax, 027664851.

Delta-sigma modulator. Crystal Semiconductor offers the CS5321 24bit, fourth-order, 256 -times oversampled delta-sigma modulator for seismic and general scientific measurement. Its dynamic range is 123 dB with a -118 dB distortion level at $256 \times$, and the device dissipates 70 mW per channel - modulator and filter. A switched-capacitor architecture minimises the effects of clock jitter without the use of vcos and plis. Crystal Semiconductor Corporation. Tel., 0101512442 7555; fax, 010155124457581.
Discrete active devices
SM power mosfets. Motorola's MiniMOS surface-mounted, high density, n - and p-channel and complementary power mosfets feature 200 ms or less on-resistance, achieved by laying down six million cells per square inch. The body diode has a shorter and sotter recovery time and less stored charge, generating less noise during switching when compared with previous mosfets. They are rated at $50,30,20$ and 12 V breakdown and have a gate/source voltage of 2.7 V , at which voltage on-
resistance is constant. Motorola Ltd. Tel., 0908614614 ; fax, 0908618650.

Linear integrated

circuits
100 MHz video switches. A series of two-channel, 100 MHz video buffers from Maxim, the MAX463/4/5/6, are single-chip devices containing video switches that switch between two rgb sources or rgb+sync. in less than 20 ns, directly driving $\pm 2.5 \mathrm{~V}$ irto 75Ω back-terminated cables. MAX463/464 buffers have fixed unity gain, the others a fixed gain of 2 for 7582 backterminated use. A shutdown mode reduces current and also tri-states the output to allow multiple switches to be in parallel. Cross-talk is better than 60 dB . Maxim Integrated Products UK Ltd. Tel., 0734 845255; fax, 0734 843863.

First phemt amplifier. H-P says its MGA-86576 is the first commercial low-noise amplifier to use a GaAs phemt which is to say pseudomorphic high electror. mobility transistor. Although similar in concept to silicon microwave ICs, the new device extends frequency to over 8GHz and reduces a front-end component count from two resfets and 20 components to on」 MGA 86576 and three components. Noise figure is $1.6 \mathrm{~dB}, 4 \mathrm{GHz}$ gain 23 dB Hewlett-Packard Ltd. Tel. 0344 362277; fax, 0344362264

Subscriber loop circuits. Mew ICs from AT\&T for subscriber loop use include the $T 7256$, which offers all the functions of a Basic Rate ISJN termination, and a family sf subscriber loop interface circuits
(ATTL7554/7561/7564) fcrr a versatile solution for shor -Icop analogue use. The four slics provide independent adjustment of apen-loop voltage, feed resistance enc current limit and the ISDN interface performs
all network termination functions without a microprocessor. AT\&T Microelectronics. Tel., 0732742999 ; fax, 0732741221.
V.32bis chipset. The CL-M1D1414BA three-chip set from Cirrus Logic is claimed to be the first to offer a hign performance data, fax and voice modem and a sound card, needing only an external 32kbyte sram. All popular standards are supported, including V.32bis, CCITT v 32 , V.22bis, Bell 212A and 103 for data and CCITT V.17, V.29, V.27ter and V .21 ch 2 for fax. Users may dial from a keyboard and use a headset for voice. Cirrus Logic Inc. TeI ,(USA) 0101510623 8300; fax, 0101510 2262240.
'Fastest' op-amp. Analog claims the industry speed record for its AD8001 800 MHz op-amp, which achieves this performance on 5 mA from $\pm 5 \mathrm{~V}$. It is meant mainly for video application providing 0.1 dB gain flatness to $100 \mathrm{MHz}, 0.01 \%$ differential gain error at a gain of 2 into 150 s . $1200 \mathrm{~V} / \mathrm{Hs}$ slewing and a 10 ns settling time for a 2 V step to with in 0.1%. Worst harmonic component at 2 C MHz is at -60 dB and voltage noise et 10 kHz is $1.8 \mathrm{nV} / \mathrm{VHz}$. The device wil drive us to six 75Ω cebles. Analog $D \in$ vices Lid. Tel, $0932 \geq 53320$; fax, 09322474)1

Zero-drift op-amp. The LTC1152 low-power गp-amp by Linear takes rail-to-rail nput and produces rail-o rail output swings, even into heav: loads. It is \lrcorner nity-gain stable into 2000pF w th no extra components and one extra C enables i: to drive unlimited zapacitive loads Offset voltage is $\uparrow \mu \mathrm{V}$, offset drift $10 \mathrm{nV} / /^{\circ} \mathrm{C}$, cmrr and Dower supply rejection are 130 dB and 120 dB and opan-loop gain 130 dB . Law frequency no se is kept to $2 \mu \mathrm{Vpk}$-pt. and GB product is 1 MHz . Linear Te=hnology (UK) LId. Tel., 0276 677う76; fax, 027664851.

Gilbert-cell array. Harris's HFA310 is a low-cost, silicon Gilbert-cell array intended in the main for if mixing and amplification use up to 2.5 GHz . Power gain-bandwidth product is 5 GHz and the transistor f_{T} is 10 GHz . Harris claims for it low cost, easier design and lower power consumption than discrete components and GaAs chips. Transistor noise figure is 2.5 dB into 50Ω. Spice models and if-specific scattering parameters are available Harris Semiconducter UK. Tel., 0276 686886; fax, 0276682323.

Logic building blocks

Fast bus switch. Cypress's CYBUS3384 bus switch is a Fast Cmos Technology (FCT) bus switch for bidirectional data transfer between multiple buses or between 5 V and 3.3 V devices. Propagation delay is less than 250 ns . FCT devices are also available as FCT-T types with tt output, or as FCT2-T with 25 s s terminating resistors to further reduce ground bounce. Ambar Components Ltd. Tel., 0844 261144; tax, 0844 261789

Fast changeover camera

Pearpoint's P328 dual-sensor ccd-
based camera can switch between colour and intensified image modes in less than 1.5 s also switching rapidly between zones with greatly differing illumination levels. The changeover block has the two sensors back-to-back on the same axis, a gain limiter ensuring that the intensified-image sensor is not exposed to high light levels to prolong its life. The image intensifier has a gain of 90 , so that real-time video is produced in devels down to 10^{-3} lux, the eht unit being built in. PAL, NTSC and S-Video signals are available. Pearpoint Ltd. TeL, 0420 489901; fax, 0420477597

Clock recovery chip. $A D 802-155 B R$ from Analog is a clock recovery and data retiming device at rates of up to $155.52 \mathrm{Mbit} / \mathrm{s}$. It uses frequency lock for acquisition and tracking and phase lock for close, low-jitter tracking, needing only a single external capacitor. Lock is maintained through a 240 -bit transitionless data run. The device tracks the SONET OC-3 standard jitter-tolerance mask and its jitter bandwidth is 130 kHz . Analog Devices Ltd. Tel, 0932 253320; fax 0932247401.

Memory chips

Flash/eeprom. SST's Superflash is a 128 K by 8 cmos memory chip combining the reliability of an eeprom with the small size of the Superflash memory cell. The new technique uses thick oxide tunnelling to increase endurance and eliminate the overerasing associated with the thin tunnel oxide process. Erasing is by sector, taking less than 10 ms to erase and rewrite a page sector and there is software and hardware write protection. No 12 V supply is needed. Ambar Components Ltd. Tel., 0844 261144 ; fax, 0844261789.

Microprocessors and controllers

mproved PIC16C54. An improved version of Microchip's PIC 16C54 8-bit microcontroller uses a $0.9 \mu \mathrm{~m}$ doublelayer metal wafer process and is powered by a single lithium battery. It is a risc-like device operating at up to 20 MHz and with a fuse configurator to select $R C$ timing circuits and crystal/resonator clock options. Memory is 512 words of eprom for program and 25 byte of static ram for data. Peripherals include an 8 -bit clock/counter with a programmable prescaler, watchdog timer and 12i/o lines with individual directional control. Current drain in sleep mode is $4 \mu \mathrm{~A}$. Arizona Microchip Technology Ltd. Tel., 0628 850303; fax, 0628 850178.

Risc i486 replacement. The Rab2it chipset from NEC enables the i486 processor to be replaced by a risc chip, providing a link between the NEC VR4X00 processors and the PC bus and between processor and conventional or synchronous dram Currently available are the i/o controller and a memory controller; the third device - to provide a direct connection to Rambus dram - will be made available later this year. The 3.3 V or 5 V i/o controller handles dma and interrupt requests from PC AT systems and can be used with VR 4200/4400PC/4400SC processors. NEC Electronics (UK) Ltd. Tel., 0908 691133; fax, 0908670290.

Mixed-signal ICs

Forward-thinking teletext chip MV1817 is a GEC Plessey teletext decoder that captures and stores in dram up to 256 pages for rapid viewing. It stores all linked pages in the same magazine, ten pages either side of the current one and all page
numbers ending in zero. In the German TOP system, it captures all pages on an index page and will work with the Advanced Header
transmissions in Austria and Belgium. Automatic television tuning and video recorder control are also carried out GEC Plessey Semiconductors Ltd. Tel., 0793518510 ; fax, 0793518582.

100Mbyte/s Fibre Channel. AT\&T is to sample two ICs that meet the Fibre Channel physical interface for
100Mbyte/s data transfer in networked computer groups and for connecting peripherals. DA204/5 chips use less than 5 W from 5 V and provide the retiming, transmit and receive functions for tGbit/s products now under development by Ancor and Finisar in America. AT\&T
Microelectronics. Tel., 0732 742999; fax, 0732741221

Overvoltage protector. Harris's SP721 is a low-cost discharge/overvoltage protector capable of handling six inputs, including microprocessor i/o and buses, from voltages up to 15 kV . It switches in 6ns and takes up to 2A of peak current, triggering when the voltage on positive or negative lines increases by more than one diode drop and returning to normal operation after the transient disappears. Normally, the device appears as 3 pF input capacitance and draws 1 nA leakage. Voltage range is $4.5-30 \mathrm{~V}$ dc. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276682323.

Game sound generator. For the games market, Yamaha offers the YMZ280 eight-channel sound generator, which takes a 4-bit adpom input or $8 / 16$-bit linear pcm to produce the eight channels. It samples at up to 44.1 kHz maximum or 172 Hz
minimum, an external address space 16Mbyte being available for waveform data in rom or sram. Also on offer is the YAC513 d-to-a converter and the YSS225 effects processor, which samples up to 48 kHz and has a delay
time of 1.5 s . Polar Electronics. Tel. 0525377093 ; fax, 0525378367.

Optical devices

Laser diode modulation head. The AVX-SRB module by Avtech is a biasT modulation head, which combines the dc output of a laser diode driver with an rf modulation input in the $10 \mathrm{MHz}-1.5 \mathrm{GHz}$ range to drive $3-\mathrm{pin}$ and 4-pin laser diodes, which fit into a socket in the head. A current of 0 500 mA is applied to the laser diode. maximum rf input power being 100 mW for $125 \mathrm{~mA} \mathrm{pk}-\mathrm{pk}$ current swing about the dc bias current. The module mates with heat sinks and coolers and takes laser diode drivers by Seastar. Lyons Instruments Ltd. Tel., 0992768888 ; fax, 0992788000

Multi-chip leds. Multi-chip leds in the $E B T$ range can be used as dirent replacements for panel-mounting incandescent lamps. The devices consist of several led chips bonded directly onto a substrate, conferring better resistance to shock, no surge, longer life and lower heat when compared to filament lamps. Devices with 4,6 or 8 chips are produced in red, yellow or green with a choice of series or parallel connections. EAOHighland Electronics Ltd. Tel., 0444 236000; fax, 0444236641

Oscillators

Surface-mounted oscillators.
Contained in a plastic package measuring 13 by 9.8 by 1.7 mm , IQD's IQXO-50 series of surface-mount oscillators work in the $1-70 \mathrm{MHz}$ range, with frequency stabilities of $\pm 100 \mathrm{ppm}$ or $\pm 50 \mathrm{ppm}$, including load, supply and temperature $\left(0.70^{\circ} \mathrm{C}\right)$ variations. All are described in a new Data Book, now available. IQD Ltd. Tel., 046077155 ; fax, 046072578.

Power semiconductors

Isolated Hexfets. Low gate-charge
Hexfets from IR are now in a fully isolated TO-220 Full Pak, which

Function generator.

With a frequency range of $0.1 \mathrm{mHz}-10 \mathrm{MHz}$, Fluke's PM5138A synthesised function generator provides up to 40 V pk-pk protected output into either 50Ω or 600Ω. Seven standard waveforms are produced and an arbitrary one that can be created on a PC. using Fluke's AnyWave software, and down-loaded on the optional IESE488 or RS222 intertace. Waveforms can also be captured on a digital oscilloscope and directly transferred to the PM5138A. Modulation includes am, $\mathrm{fm}, \mathrm{psk}$, burst, gating and linear o- log . sweep. Fluke UK Ltd. Tel., 0923240511 ; fax, 0923225067.

guarantees 2.5 kV rms isolation, its thermal resistance comparing well with other methods of isolation. First FullPak parts are $400-600 \mathrm{~V}$ types with the same current and resistance characteristics as Hexfets, but having a gate charge reduced from 63nC to $39 n C$, Miller capacitance from 120 pF to 18 pF and input C down to 1100 pF International Rectifier. Tel., 0883 713215; fax, 0883714234.

Pulse transformer/mosfet interface HV400MJ/883 takes its input directly from a pulse transformer and drives a power mostet at switching rates up to 300 kHz , or about three times the usual frequency obtained without the use of fairly complicated discrete circuitry. Harris's IC is a 6A device for use as a power switch building block for high and low-side switches, secondary-side regulators and synchronous rectifiers, driving capacitive loads in the $5-100 \mathrm{nF}$ range. Two pins allow independent control of rise and fall times. Harris Semiconductor UK. Tel., 0276686886 ; fax, 0276682323.

High-current IGBT. The
MG600Q1US41 from Toshiba is a $1200 \mathrm{~V}, 600 \mathrm{~A}$ insulated-gate bipolar transistor with only 20 nH inductance between positive and negative terminals, its gates being protected by integrated back-to-back zeners. Saturation voltage with a resistive load is 3 V and current fall time 200 ns . A signal-collector terminal allows simple desaturation detection Toshiba Electronics (UK) Ltd. Tel. 0276 694600; fax, 0276691583.

Micropower regulator. Cherry's CS 8101 linear voltage regulator takes only $70 \mu \mathrm{~A}$ of quiescent power ($50 \mu \mathrm{~V}$ in sleep mode), drops out at 5.2 V to give a 5 V output and provides a microprocessor reset pin, keyed from the output, valid down to 1 V output voltage. The device is protected against esd, overvoltage, shorts, thermal runaway and reversed battery. and is pin-compatible with the National Semiconductor LP2950/51. Clere Electronics Ltd. Tel., 0635 298574; fax, 0635297717

PASSIVE

Passive components

Ceramic resonators. Ceramic resonators provided with built-in capacitors, ZTS components from Integrity Technology Corp. cover the -12MHz frequency range. Capacitors are either 30 pF connected for ttl use or 100 pF for cmos. Frequency tolerance is $\pm 0.3 \%$ per year. Integrity Technology Corporation. Tel., (USA) 0101408 262-8640; fax, 0101408 262-1680.

Improved electrolytics. Nichicon's
WT range of surface-mounted electrolytic capacitors now handle up to 60 mA ripple current at $100 \mu \mathrm{~F}$ and $10-16 \mathrm{~V}$ operating voltage. Load life is 32000 h at $55^{\circ} \mathrm{C}$, range is $0.1-100 \mu \mathrm{~F}$ and working voltages $1-50 \mathrm{~V}$. The
range measures 5.5 mm high and diameters are $3-6.3 \mathrm{~mm}$. Nichicon (Europe) Ltd. Tel., 0276 685393; fax. 0276686531.

Ceramic resonators. In five package styles, ceramic resonators by Panasonic cover the $3.58-35 \mathrm{MHz}$ frequency range. There are two ranges of leaded components, all with a height off-board of 5 mm and three of chips, two of which stand 2.5 mm high and the third 1.8 mm . All are based on PCM ceramics and can be supplied as general-purpose types or with integral capacitors. Tolerance is down to $\pm 0.3 \%$ and ten-year drift to -0.1%. Panasonic Industrial (Europe) Ltd. Tel., 0344863444 ; fax, 0344 861656

SM ceramic C sample kits. Eight surface-mounting sample kits for Philips's 0603, 0805 and 1206 standard and microwave capacitors are now available, containing representative samples with rated voltages of 63 V for the microwave types and $63 / 20 \mathrm{~V}$ for the standards. A variety of terminations and capacitor characteristics is presented. Gothic Crellon Lid. Tel., 0734 788878; fax, 0734776095

Dielectric filter. AVX announces the PDFC series of dielectric filters meant for use in telecomms, particularly in the DECT sector. Frequency range is $1.8-2 \mathrm{GHz}$, insertion loss 3 dB and, for compatibility with the newest equipment, size is 6.5 by 5.5 by 3 mm . Filters to provide lower insertion loss and improved stop-band attenuation are available to order. AVX Ltd. Tel., 0252336868 ; fax, 0252346643.

Connectors and cabling
Sealed BNC. From Bulgin, a range of sealed connectors that incorporate 50Ω or $75 \Omega 2$ bnc inserts and that can be assembled into any of the five Mini Buccaneer bodies to provide sealing to IP66, BS5490:1977. Dust caps preserve the connectors
invulnerability to dust and moisture when the connectors are separated. A brochure of Buccaneer sealed products is available. Gothic Crellon Ltd. Tel., 0734788878 ; fax, 0734 776095.

PCMCIA memory. Fujitsu's FCN 560 H PCMCIA memory cards connectors are single and double types for mounting 68-pole memory boards on PCs, conforming to JEIDAPCMCIA I and II standards, They come with straight or rightangled pins, with or without an ejector and with polarisation. Resistance of the gold-plated pins is $40 \mathrm{~m} \Omega$ maximum. Electrospeed. Tel., 0703 644555; fax, 0703610282.

Eurocard connectors. The range of Siemens DIN41612 connectors is now available from Quiller. They are in two parts and come with contact ratings up to 5A and if types. meeting all major standards. Also available is a range of press-fit connectors with a highly compliant press-fit zone to give good connection with low insertion

Custom capacitors. SLflex Capacitors has a new custom design and manufacture service for prototype and short runs as well as production quantities. Plastic-film components can be protured in polypropylene, polycarbonate, polyester and polystyrene in values from picofarads to microfarads and with working voltages u) 30 kV . Customers speciy size, shape, encapsulation a fd fixing method. Suflex Capacitors Ltd. Tel., 0633615511 ; fax, 0 © 33 613583.
and extraction forces. Through-hole and wire-wrap versions are made and the connectors meet IEC 352-S. Quiller Switches Ltd. Tel., 0202 417744; fax, 0202421255.

Shielded ribbon connectors. Highdensity mini delta ribbon (mor) boardmounted plug connectors from 3 M in the 101 series are for internal and external i/o use where small size, emi/ti shielding and electrostatic discharge before mating are needed. The 101 is a right-angled through-hole-mounted plug in staggered fourrow form on a 0.05 in by 0075 in matrix and is a miniature version of the standard D ribbon or Centronics connectors, being rated at 500 insertions/ withdrawals. It is available in 20, 26, 36 and 50 -way versions 3 M United Kingdom plc. Tel., 0344 858000; fax, 034485875 B.

Filters

Coaxial filters. Three diameters of coaxial filter by Atlantic Microwave cover the $30-5000 \mathrm{MHz}$ frequency range in band-pass or low-pass form. Depending on the number of sections, they offer a 70 dB rejecticn with low insertion loss and 1.5:1 vswr. Bandpass units with $2-12$ sections can be specified at $50 \Omega 2,75 \Omega$ or $1 \cos \Omega$ and with pass bands of $1-10 \mathrm{C} \%$ of centre frequency. Unit size is $9.5-19 \mathrm{~mm}$ diameter and $50-450 \mathrm{~mm}$ in length. Atlantic Microwave Ltd. Tel , 0376 550220; fax, 0376552145.

Hardware

Instrument cases. Serfac generalpurpose cases are intended for almost anything from test instrument enclosured to computer interfaces, having a precision fit, a textured finish
and prices down to $£ 1.50$. These ABS boxes are in two types: the iseries with a recessed top for membrane keypads and the standard series with a flat top. OKW Enclosures Ltd. Tel, 0489538858 ; fax, 0489583836.

Pocket boxes. These boxes by OKW feature IP65 sealing, a recessed top to take membrane keypads and a battery compartment to avoid the use of the less reliable battery clips often found in this type of case. They are in flame-retardant ABS and ccme in three sizes from 85 by 46 by 16 mm to 120 by 65 ty 22 mm . Internal pcb mountings are provided and belt clips, emc protection and silk-screening are offered. OKW Enclosures Lid. Tel., 0489 538858; fax, 0489583836.

Compact keyboard. Providing the full recommended 3 mm travel, Cherry's G34-4100 low-profile, compact keyboard is said by the company to be the smailes: standard keyboard available, its enclosure measuring 23.5 mm by 281 mm by 131.5 mm . There is an enclosed version with tilt feet and a model supplied without the housing. Mechanical keyswitches do not deteriorate with time and temperature and keycaps are available for mosi languages Cherry Electrical Products Ltd. Tel., 0582763100 ; tax, 0582 768883.

Instrumentation

High-current probe. A cuirent probe for use with multimeters and oscilloscopes, the PR1000-1 from Lem Heme, uses Hall effect to measure currents up to 1000A peak at frequencies up to 10 MHz to an accuracy of $\pm 1 \%$ of reading $\pm 0.5 \mathrm{~A}$ Output is $1 \mathrm{mV} / \mathrm{A}$. Lem Heme Ltd. Tel. 0695 20535; fax, 069550279.

Disturbance analysers. Avo's PDA2 power disturbance analyser will now show pulse direction as well as amplitude and duration, using a current sensor kit. By placing the analyser at several points, the user can determine whether, fcr example, noise pulses come from the equipmerit or from the mains. The two-channel instrument evaluates disturbances on single and threephase, 400 Hz and dc supplies, results being shown on an Icd or built-in plotter. An RS232 port enables remote control and data downloasing. Avo International Ltd. Tel., 0304 202620; fax, 0304207342.

Panel meters. The 30 -model Select range of כanel meters from Sifant is in five groups containing voltage and current, meters, process meters, rate and frequency monitors, batch counters and temperature indicators. Display is by red or green leds and the user can set the instrument up and protect the setting by a password or two concealed buttons. Sifam Lid. Tel., 0803613822 ; fax, 0803613926.

IR monitor. New from the Rayter
range of non-contact infrared temperature measuring instrumentation, the Thermalert 30 is
a universal monitor to work with the Raytel T series of sensing heads in the -50 to $3000^{\circ} \mathrm{C}$ range. Features include variable emissivity and peak/valley hold for sampling temperature of objects on a conveyor belt while ignoring the belt temperature. Objects down to 1 mm can be measured as well as those at long distance and laser sighting heads are on offer. Calex Electronics Ltd. Tel., 0525 373178; fax, 0525 851319.

True-rms oscilloscope. TTi's
Scopemaster range of Icd oscilloscopes now includes the SM630, which offers five measurement functions, including the indication of true-rms quantities. It functions as digital storage oscilloscope, digital multimeter, data logger, counter/timer and serial data analyser. Bandwidth of the dso is 20 MHz , with a maximum sampling rate of $20 \mathrm{Msample} / \mathrm{s}$, roll mode down to $200 \mathrm{~s} / \mathrm{div}$. and repetitive sampling to $2.5 n$ resolution. The 3000 -count dmm provides ac and dc current and voltage scales, R, continuity and diode test and the logger stores up to 1000 readings. Thurlby Thandar instruments Ltd. Tel., 0480 412451; fax, 0480450409.

Literature

Pressure sensors. Motorola has
revised its data book on
microprocessor-compatible pressure sensor devices, which contains data sheets and application notes describing interfaces to users' circuitry, together with information on evaluation boards. Motorola Inc. Tel., 0908614614 ; fax, 0908618650.

Production equipment
Laser PCB machining. Tracks
CAD Systems has a lab oratory pcb machining tool, the LPKF, which can cut seven conductor paths between two IC pads, leaving $40 \mu \mathrm{~m}$ isolation channels, cutting with a resolution of 1 pm to an accuracy of 2 um . It cuts standard FR4 or coppercoated standard FiR4 or co p percoleated
ceramic material, producing clean, square edges. Services needed are power, compressed air and water - no clean room necessary Trecks CADSystems Licd. Tel., 0844 55046; fax, 0844 860547.

Materials

UV coating. A new type of ultraviolet conformal coating has been introduced by Intertronics which cures as well in shadows as it does in direct uv light. Dymax Darc Cure cures in a few seconds throughout the entire coating by means of a post-cure reaction with air, without the use of aqueous or chemical accelerators The coatings are free of solvent and ozone-depleting chemicals and can be inspected under black light. Intertronics Ltd. Tel., 0865842842 ; fax, 0865842172.

Power supplies

Low-profile transformers. Clairtronic's new low-profile encapsulated power transformers cover the 3-50VA range from the now harmonised mains input of 230 V . All produce two outputs, which may be connected in serial or parallel and there is one-time thermal fusing. Materials used are flame-retardant to UL 94VO. Clairtronic Ltd. Tel., 0753 692022 ; fах, 0753535096.

600 mA dc-to-dc converter. From a two-cell input, Linear's LT1302 converter supplies 5 V at up to 600 mA at 87% efficiency. Quiescent current is $200 \mu \mathrm{~A}$, reduced to $15 \mu \mathrm{~A}$ at logiccontrolled shutdown. The internal n-pn power switch can handle over 2 A and switch at 400 kHz , so that small components can be used. Micro Call Ltd. Tel., 0844 261939; fax, 0844 261678.

Efficient step-up converters.

 MAX856/7/8/9 are current-limited, step-up dc-to-dc converters claimed by Maxim to offer the world's best combination of efficiency (85% at 100 mA), low quiescent current $(25 \mu \mathrm{~A})$ and low shutdown current $(1 \mu \mathrm{~A})$. MAX856/8 accept a $0.8-6 \mathrm{~V}$ input and produce a pin-selected 3.3 V or 5 V output, while MAX857/9 give adjustable output between 2.7 V and 6 V . Maxim Integrated Products UK Ltd. Tel., 0734845255 ; fax, 0734 843863.120W UPS. BI-UPS, which is short for built-in uninterruptible power supplies, is a range of 120 W ac supplies from Magnum that are able to supply 17 in colour monitors in battery backup mode. The units protect themselves and other equipment against a whole range of supply line disturbances in compliance with UL1449, and give backup for 30 min during blackouts. If the ac supply drops below 82% of nominal, the ups switches to battery backup. Magnum Power Solutions Lid. Tel., 0236 433325; fax, 0236 427366.

Dc-to-dc converters. A new range of converters from Schroff includes an extended pluggable type for use with SELV circuits. There four in/out ranges from $8.5-18 \mathrm{~V}$ to $80-160 \mathrm{~V}$, with $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ and 24 V outputs, single, dual or triple at $25 \mathrm{~W}, 60 \mathrm{~W}$ or 120 W . Overvoltage and short-circuit protection is provided on inputs and outputs. Schroff UK Ltd. Tel., 0442 240471; fax, 0442213508.

Wide-range dc-to-dc converters Single-output UWR and dual-output BWR 10W and 20W converters take an input range of $4.6-13.2 \mathrm{~V}$ in an operating temperature range of $-25^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. Outputs are $3.3,5,12,15$ and $\pm 15 \mathrm{~V}$ and sizes are 2 by 1 by 0.375 in in the 10 W type and 2 by 2 by 0.45 in for the 20 W version. The pwm techniques adopted conter 84\% efficiency and 200μ s transient response. There is overvoltage shutdown and i/a isolation of 500 V dc. Datel (UK) Ltd. Tel., 0256 880444; fax, 0256880706

Radio communications products

RF cable. SMC's range of cables includes the UR67, which gives a loss at 150 MHz of $9.3 \mathrm{~dB} / 100 \mathrm{~m}$ and at 2000 MHz 53 dB . 1 OF-SFB exhibits 3.8 dB loss at 150 MHz and 16.8 dB at 2000 MHz . South Midlands Communications Litd. Tel., 0703 255111; fax, 0703263507.

Switches and relays

Automotive relays. SAM relays from Selectronic are compact and offer 15 V dc $20 \mathrm{~A}, 24 \mathrm{~V}$ dc 15 A switching current for use in vehicle control systems. The standard SAM singlepole device measures 17 by 12 by 16.1 mm , the two-pole type comprising two of those in one package. Ambient temperature range is $-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. Selectronic Ltd. Tel., 0993 778000; fax, 0993772512.

Transducers and sensors

Load washer. Control Tranducers has the Model LW-M load washer, temperature-compensated and
hermetically sealed to measure bolt stresses, axial thrust, static, dynamic and clamping forces. Ranges are $300-150,000 \mathrm{~kg}$ and comes in sizes from 34 mm diameter, 26 mm thick. Creep is $\pm 0.2 \%$ Isd over four hours, repeatability $\pm 0.1 \%$, non-linearity and hysteresis better than $\pm 0.2 \%$. With a bridge impedance of 350Ω, sensitivity is $2 \mathrm{mV} / \mathrm{V}$. Control Transducers. Tel., 0234217704 ; fax, 0234217083.

COMPUTER

Computer board-level products

Single-board computer. The Octagon $P C-425$ is a single-board computer for embedding in systems needing only limited i/o. It uses a 386/25 cpu and 387 co-processor (486 at the moment on special offer). Features include dos 5.0 in rom, four silicon disks giving 2.2Mbyte, keyboard connector and speaker, COM1 and COM2 ports with jumpered RS232, RS422 and optoisolated RS485 interfaces and a rack for opto-isolated i/o modules accepting digital and analogue modules. Gothic Crellon Ltd. Tel., 0734 788878; fax, 0734776095.

Data acquisition boards. Two more in the 200 series of data acquisition boards are introduced by Amplicon Liveline. PC234 has four channels of bipolar analogue voltage output at 16bit resolution, a four-wire voltage sensing circuit on each channel eliminating load and cable resistance errors. It provides four-quadrant d/a multiplication. PC224 gives 16 bipolar channels with an independent ground line taken to source. Both give

Software

Interactive Spice. ICAP/4 Virtual Circuit Design Lab from Intusoft is a circuit simulation system that is completely interactive, integrating schematic entry, the new /SSPICE4 simulator, libraries and graphical waveform analysis. It runs under Windows 3.1X, NT and 4.0. When IsSPICE4 is started, the user may examine the design by running different analyses, changing circuit values and measuring the results without having to close and restart the simulator and alter the Soice input netlist. A cross-probing tool allows the display of waveforms on the circuit diagram and the interactive stimulus mode enables the user to sweep any number of component or parameter values to compare circuit performance. Technology Services Ltd, Tel. 0638 561460, fax C638 561721.
sequential or simultaneous update on all channels and features included are internal clock, external clock source, three programmable counters and an external trigger. Programs can be written in Quick Basic, Turbo Pascal and C/C++. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273 570215.

Data communications

Single-cable video, audio and data Stand-alone or rack-mounted opticalfibre transmitters and receivers by Fiber Options are intended for cctv carrying two-way video, audio and data by fm on one 50 m or 62.5 m cable. A typical application would be in remote camera control, where pan/tilt-zoom, windscreen wiper and heater are controllable by RS232, RS422 or TTL levels and the audio and video go to the control centre on the same link. Auriga (Europe) plc Tel., 0908 274200; fax, 0908378998

Development and evaluation

83 CL782 development. Ashling Microsystems has a new development system for the Philips $83 C L 782$ lowpower microcontroller family, based on an 8051 core and used in cordless telephones, DECT, pagers and portable GPS. The Ashling system provides real-time, non-intrusive emulation of all devices and package styles in the family and source-level debugging under Windows 3.1 is available for all the 8051 languages Ashling Microsystems Lid. Tel., 010353-61-334466; fax, 010353-61334477.

Embedded bios v2.0. The General Software Inc. Embedded bios is a rom bios development kit with full feature support for the Intel 386EX processor in embedded designs. The new kit has support for PCMCIA, Intel Flash, Intel System Management Mode (SMM), synchronous serial i/o, watchdog timer, power management and the on chip 386EX processor devices. There is a disassembler and debugger for hardware drivers and v2.0 also includes standard desktop PC AT bios functions such as Post, cmos support, setup screen, protected mode, PC AT keyboard support, serial and parallel i/o, floppy and IDE drives, clock and video functions. Great Western Instruments Ltd. Tel., 0272 860400; fax, 0272860401.

PowerPC compilers for Power Mac. Motorola's PowerPC C, C++ and Fortran microprocessor compilers are to be ported to Apple's Power Macintosh range of computers, where they will be compatible with the Macintosh Programmers' Workshop development environment. There are also plans to do the same for the Metrowerks CodeWarrior environment, so that users will be able to use Motorola's compilers without having to adopt a new development environment. Both projects are to be completed this year. Motorola Inc. Tel., 0908614614 fax, 0908618650.

Issue 12 of Display News now available - send large SAE - PACKED with bargains!

LONDON SHOP Open Mon-Sat 9:00-5:30 215 Whitehorse Lane South Norwood
LONDON SE25

DISTEL © The Original FREE On line Database Info on 1000's of items 21,V22, V22 BIS 0816791888

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Dep: WW. 32 Biggin Way
uper Norwood

0816794414 FAX 0816791927

Digital filters

 simplified

 simplified}

Abstract

With DSP replacing analogue equivalents in almost all areas of electronics, digital filters are becoming increasingly important. Bob Lawlor* looks at how a fieldprogrammable gate array can simplify the design of both infinite and finite-impulse response filters.

*Bob Lawlor was the winner of our December 1992 compatition, sponsored by Xilinix. He was a senior $R \mathbb{D}$ engineer w ith Sonv, and has recently established his own DSP consultancy.

Ihere are two types of digitalfilter, one with finite-impulse response, FIR, the other with infinite-impulse response. IIR. A digital FIR filter is a discrete-time fillter. Any sample of its output sequence is equal to a weighted sum of a finite number of past and present samples of the input sequence.
Mathematically an n-tap FIR filter is expressed as.

$$
y(k)=\sum_{j=0}^{n-1} c_{j} x(k-j)
$$

where $x(k)$ and $y(k)$ represent the input and output sequences respectively and represents the filter coefficients.
Figure 1 shows an FIR filter block diagram. The τ-boxes represent unit sample delays. Sampling frequency depends on the application. For example an audio system might warrant up to 40 k samples per second while the standard sampling frequency for video is 13.5 M samples per second. How many bits there are in each sample also depends on the application, hi-fi audio being typically sixteen bits and video eight bits.
Fither coefficients, c_{0}, c_{1}, etc. multiply or weight the delay outputs. Resulting product terms are summed together to form the filtered output data sequence, $\mathrm{y}(\mathrm{k})$. The name finiteimpulse response is derived from the fact that an impulse injected into the input will cause the output to become active, i.c. non-zero, for
only a finite duration.
A key advantage of FIR filters is that they can be designed to have a lincar phase characteristic, Fig. 2(a). This means that if the input signal to the FIR filter has more than one frequency component - and most real signals have a wide spread of frequencies - then in passing through the filter, all frequency components undergo the same delay.
For example, if the two frequency components of Fig. 2(b) each undergo delay T. the phase change of the higher frequency component is proportionally greater than that of the lower frequency component. If on the other hand the phase characteristic is non-linear, then different frequencies undergo different delays, causing so-called phase distortion.
The car is extremely sensitive to phase distortion which would occur if the audio signal was processed by a filter having a non-linear phase characteristic. In a composite video signal, the colour information is coded in the phase of the subcarrier, so phase distortion appears as colour distortion.

IIR digital filters

A digital infinite-impulse response filter is a discrete-time filter. Any sample of its output sequence is equal to a weighted sum of a finite number of past and present samples of the imput sequence, and also of the past output samples.

Mathernatically this can be expressed as,

$$
y(k)=\sum_{i=0}^{m} a_{j} x(k-j)-\sum_{j=0}^{n} b_{j} v(k-j)
$$

where again $x(\mathrm{k})$ and $y(\mathrm{k})$ represent the input and output sequences respectively. There are now two sets of filter coefficients, namely the feed forward coefficients, a_{j}, and the feedback coefficients, b_{j}.

The name infinite-impulse response comes from the fact that an impulse injected into the input can cause the output to remain active for
an intinite duration. Inclusion of previous output samples in the present output sample computation is called feedback. For this reason IIR filters are often referred to as recursive filters and FIR filters as non-recursive.
An advantage of IIR filters is that they generally require less hardware than their FIR counterparts. For most applications however, this advantage is outweighed by their non-linear phase characteristic.

Video application

In decoding composite video to component

RGB, an FIR bandpass filter centred on the subcarricr frequency, and a video field rate FIR comb filter combine to produce very high quality separation of the luminance and chrominance data. Subcarrier frequency is 4.43 MHz for PAL, digital video is sampled at 13.5 MHHz and the video field rate is 50 Hz .

This results in a much clearer picture than is possible with conventional TV sets. Fig 6. This type of video decoding is used in the professional video industry, for example in the Sony BVXIOO digital decoder.

Each of the FIR filters and the subtracter can be implemented readily using a single Xilinx FPGA. The 50 Hz FIR comb filter would need two external field stores. but so also would other implementations.

Since the Xilinx FPGAs are so easily reprogrammable the FIR filter transfer functions can be changed on a field by field basis. This is very useful in adaptive signal processing applications.

Implementing the FIR filter

In Fig 1, values of cocfficients $c_{0}, c_{1} \ldots c_{n-1}$, determine the filter characteristics. Being readily reprogrammed, the Xilinx FPGAs makes changing the resolution to suit the application easy. A prototype filter for example could be implemented with relatively low resolution. At the pre-production stage, resolution could then be increased to enhance overall system quality. Existing asic generalpurpose FIR filters are mosily fixed in terms of resolution.
In order to control round-off error, the multiplier outputs must be kept at full resolution. If for example the coefficients are n-bit numbers. then the multiplier outputs should be $2 \mathrm{n}-$ bit numbers. The final rounding to n bits will be done at the summer output.
In most cases the filter response needed is symmetrical so that $c_{0}=c_{n-1}, c_{1}=c_{n}$, etc. This means that by adding the relevant delay out-

EXAMPLE 1: AUDIO FIR FILTER APPLICATION

A popular technique used for both audio and video data compression is sub-band coding. This involves splinting the a dio spectrum into bands, Figs 4,5 using a number of FIR bendpass filters. Next the different filter outputs are quantized
with different resolutions, ie. bits per sample. Lower frequericy bands are genera ly given a higher number of bits per sample than higher frequency bands.

Fig. 5. finite-impulse response bandpass filters used at audio sub-band coder front end. These filters can be implemented in Xilins FPGAs.
puts before the coefficient multiplication stage, the number of multipliers required is reduced from $2 n+1$ to $n+1$.
Also, using general purpose multipliers to realise the required filter response as indicated in Fig. 1 can introduce redundancy. By using a shift-and-add technique, a Xilinx FPGA can remove this redundancy allowing a much more efficient implementation of the required FIR filter.

Shifting-and-adding

Consider an 8 -bit two's complement number:

$$
s b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1}
$$

This consists of a sign-bit, s, and seven other bits b_{7-1}. To multiply this number by a half, it is necessary only to shift it one place to the right, duplicating the sign-bit:

$$
s s \mathrm{~b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1}
$$

If the original number is thought of as having a range of $-128\left(10000000_{2}\right)$ to +127 $\left(01111111_{2}\right)$ in integer steps, then the shifted number has a possible range of - 64 $\left(110000000_{2}\right)$ to $+63.5\left(001111111_{2}\right)$ in half integer steps.
By shifting the original number two places to the right, you effectively multiply it by a quarter. The sum of these two shifted numbers is therefore equal to the original number multiplied by three quarters. This process of shifting and adding can be continued to implement the product of any two digital numbers.
There is no requirement for CLBs in the shifting process because it is inherent in the routing. As a result, each multiplication can be implemented with adders alone. Extra delays in the form of D-type flip-flops may be needed between the addition stages. depending on the coefficient value and the sampling frequency.
Clearly, the coefficient value determines the number of addition stages necessary to implement the product. Each logic one in the cocfficient binary representation represents an adder input in hardware terms. The fewer the number of ones, the lower the hardware requirement. This is why $\left.1 / 2(01000000)_{2}\right)$ and $1 / 4\left(00100000_{2}\right)$, assuming a range of -1 to $+127 / 128$, are convenient coefficients.
A coefficient like 01111111_{2} is not as difficult as it may appear because it can be implemented as its two's complement inverse $\left(10000001_{2}\right)$. The resulting product is then inverted before being fed to the final summer.
One way to guarantee convenient coefficients is as follows. Firstly design the filter using a standard filter design technique such as the Remez Exchange Algorithm'. This will produce 'not-necessarily-convenient' coefficients in terms of ease of implementation by a shift-and-add technique. It does however minimise the deviation from the desired ideal filter specification. Secondly, carrying out a discrete space search around these coefficients to produce a convenient set of coefficients. These keep deviation from the desired ideal filter
specification within a specified tolerance.
The greater the number of coefficients, the more difficult it becomes to find a set of convenient coefficients. An easy way around this using a Xilinx FPGA is to implement the desired filter as a cascade connection of smaller filters, i.e. with fewer taps. When two or more FIR filters are cascaded, the resulting transfer function is equal to the product of the individual transfer functions.
For example, the bandpass filter transfer function of Fig 7(c) could be implemented as a cascade connection of a lowpass filter, Fig 7 (a) and a highpass filter. Fig 7(b). The relatively undemanding transfer functions of the low- and highpass filters make it easy to find convenient coefficients for their shift-and-add implementation in the FPGA.
If a sharper bandpass transfer function were required, the above filter could simply be cascaded with an identical version of itself. Fig 7 (d). As the individual filters in the cascade chain are relatively simple, a large number of them can be incorporated into a single Xilinx FPGA device, yielding a complex overall transfer function.

Glossary	
ASIC	application specific IC.
BPF	bandpass filter
CLB	configurable logic block, a
	functional element from
	which the user's logic is
DAT	constructed.
digital audio tape	
DCC	digital compact cassette
DSP	digital signal processing
FIR	finite-impulse response
FPGA	field programmable gate
	array
HPF	highpass filter
IIR	infite impulse filter
LPF	lowpass filter
PAL	phase alternate line
RGB	red green blue

Reference

1. Rabiner, L. R. and Gold, B., Theory and Application of Digital Signal Processing, Prentice-Hall.

ELECTRONIC ENGINEERS REFERENCE BOOK

This reference book is divided into fve parts: techniques, physical phenomena, mate-ials and components; electronic design and appications. The sixth edition was updated throughout to take intc account changes in standards and materials as wel as advances in techniques, and was expanded to include new chapters on surface mount technology, harcware and software design techniques, semi-custom electronics and data communications.

Fraidoon Alazda tras worked in the electroniss and te ecommunications industry for cser twenty years, and is currently Product ard Operations PJanager, Generic Network Management, with Northern Telecom. He is the author of six rechnica books translated into our lancuages) and the editor of the Communisations Engineers Referense Book published by ButterworthHeinemann.

CONTENTS:

 Techniques Trigonorretric functions and general formulae Calculus; Series and transforms; Matrices and determinants; Electric circuit theory; Statistics. Physical Phenomena Quantities and units; Electricity; Light; Radiation; The iכnosphere and troposphere. Materials and components Resistive materials and components; Dielectric materials and components; Magnetic materials; Inductors and transformers; Relays: Piezoelectric materials and components; Ponnzctors; Printed circuits; Power sources; Discrete semicorduc:ors; Microwave semiconductor devices; Optical digital integrazed circuits; Linear integrated circuits; Semiconductor memories; Microprocessors; Application-specific integrated circuits; Elactron microscopy; Digital design; Software engineering; Digital systems analysis; Control systems; Antennas and arrays; Noise management in electronic hardware; Noise and communisation; Comptter aided design; Television and sound broadcastirg. Applications Communication satellites; Point-to-point comr unication; Fibreoptic communication; The integrated sen icee digital retwork (ISDN); Local area networks; Radar systems Somputers and their application; Videotape recording; Olice communications; Medical electronics.1006 pages PAPERBACK ISBN 0750608099 £42.50 (inc post \& packaging)

Please return to: Lorraine Spindler, Foom L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

* Now available to Electronics World \& Wireless World readers in paperback.
* Expert coverage of all aspects of electronics
* Over 50 contributors
* For electronic engineers, technicians and students

Please supply me__copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE TOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd.

> Please debit my credit card as follows: Access/Master Amex

Credit Card No. \qquad Exp date \qquad
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY \qquad POST CODE
COUNTRY
DATE TELEPHONE NUMBER
SIGNATURE \qquad
T3000
VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders
accepted by phone.
Call 0816523614.

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive $\mathbf{£ 2 5}$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Single-pot polarity and gain adjustment

USinge the $2: 1$ gaid dificterence between inverting and non-inverting operational amplifiers, one control varies the output between a replica of the input and an inverted version, both being at unity gain.

Its uses include audio processing in which, used with a bucket-brigade delay element, it will allow the positions and amplitudes of the peaks and nulls of a comb filter to be adjusted.
Ben Sullivan
Waterlooville
Hampshire

Potentiometer R_{v} varies output from inverted to non-inverted version of the input at unity gain.

Full-wave rectifier uses single amplifier

neorporating an op-amp, one diode and a fet, this rectifier is linear down to less than 1 mV , assuming that the op-amp’s input voltage of fset is compensated. Performance depends on input anplitude, being around 20% down at 1 kHz and 50 mV input. On a negative half-cycle, the p-channel fet is open-circuit and the result is a unity-gain inverter. With a positive half-cycle, the fet
conducts in reverse mode due to the presence of the large open-loop signal on its gate and the signal appears at the output. Giuseppe Faini
stilan
Haly
Simple, but accurate full-wave rectifier, linear down to less than 1 mV .

YOU COULD BE USING A 1GHz

 SPECTRUM ANALYSER ADAPTOR!Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

Frequency doubler

TTL square waves at the input to the 74LS123 dual monostable multivibrator produce output pulses at double the input frequency. IN4148 switching diodes Or together the outputs on pins 5 and 13 , the two square-wave inputs having triggered the two monostables on opposite edges. Output pulse width is $3.3 \mu \mathrm{~s}$ with $10 \mathrm{k} \Omega$ and 470 pF timing components according to the timing equation, pulse width $=0.7 C R$. Since the package introduces 50 pF residual capacitance and since R must lie between $5 \mathrm{k} \Omega$ and $260 \mathrm{k} \Omega$, the practical minimum pulse width is around 350 ns .

The process can be continued by driving a similar circuit with this output.

Mike McGlinchy

Mount View
California
USA

TTL pulse-frequency doubler for operation up to about 2.5 MHz with a pulse width of 350 ns minimum.

Low-level crossover is maximally flat

High and low frequency outputs from this low-level crossover network. Fig. 1, are in maximally flat, two-pole Butterworth form with 12 dB /octave final slopes.
Output curves shown indicate that the amplifier is active mainly around the crossover frequency - in this case. 1 kHz . Values shown are in ohms and farads, the crossover being at $\omega=1$. Since input and output of the amplifier are de-blocked, the practical circuit can use a single supply with the non-inverting input biased to half the supply voltage. A snag is the lowish inpul and high output impedances, but a practical circuit would include means of correcting them.

Analysing the circuit of Fig. 2 shows the basic section, which gives 12 dB /octave, but which cannot be maximally llat. Figure 3 is more or less the same circuit with gain; resistors and capacitors are of equal value.

Since the desired transmission is
$T=\frac{1}{p^{2}+p \sqrt{2}+1}$
where $p=j \omega$, assume a IV output and work backwards to make the input
$e_{\mathrm{m}}=p^{2}+p \sqrt{2}+1$.
From Fig. 3
$e_{\mathrm{m}}=1+p A+A[p+p(1+p A+p B)]$
$c_{\text {in }}=1+3 p A+p^{2}\left(A^{2}+A B\right)$
so
$3 A=\sqrt{2}$ and $A^{2}+A B=1$
$A=\frac{\sqrt{2}}{3}$ and $B^{2}=\frac{7}{3 \sqrt{2}}$

Amplifier output is in bandpass form with its centre frequency $\omega=1$. The high-pass circuit using that voltage is added to the low-pass section to form the complete crossover.

Actual component values for the circuit are calculated as follows, and given $f=1 \mathrm{kHz}$ and $C=4 n^{7}$

$$
\begin{aligned}
& R_{1}=\frac{3}{\sqrt{2}} \times \frac{1}{2 \pi f C}=71.83 \mathrm{k} \Omega \\
& R_{2}=\frac{7}{3 \sqrt{2}} \times \frac{1}{2 \pi f C}=55.87 \mathrm{k} \Omega \\
& R_{3}=\frac{\sqrt{2}}{3} \times \frac{1}{2 \pi f C}=15.96 \mathrm{k} \Omega
\end{aligned}
$$

Fig. 1. Low-level crossover circuit with values normalised to $\omega=1$, components in ohms and farads.

Fig. 2. Basic lowpass circuit, which needs gain for maximal flatness.

The circuit was built using an $L F 3.96$ op amp although a better device should be used for serious applications. The response departs from the theoretical only by the component tolerances used in the actual circuit.

McKenny W Egerton jr

Owing Mills
Maryland
USA

Fig. 3. Resulting lowpass section.

Fig. 4. Output characteristic of final circuit. Amplifier takes part mainly around crossover frequency.

Grounded-load current pump

| mprovements on the Howland current source proposed by Stcele and Green ${ }^{\prime}$ demand close resistor matching to avoid gross error${ }^{2}$. This circuit needs no matching.

The source uses two zener diodes as voltage regulators, the control voltage V_{c} thereby generated riding over the feedbach voltage. Output voltage is the sum of load voltage and V°, which gives a constant V_{c} across the sense resistor R_{s}, load current therefore being $V_{\mathrm{c}} / R_{\mathrm{s}}$. Lower-voltage zeners are preferable in this circuit.
Ashwani Karnal
Bhaba Atomic Research Centre
Jammu
India

Current source poses no resistor-matching problems.

References

1. Steele, I \& Cireen, T. Tame, Those Versatile Current-Source Circuits. Electronic Design, Oct. 15, 1992.
2. Baker C B. Current Source Saves Resistors.

Electronic Design, June 25, 1992.

Linear optocoupler cancels errors

U
\int sing a dual optocoupler and an instrumentation amplifier, this isolation amplifier is linear and operates well above the cut-off frequency of much more expensive commercial devices.

To achieve a linear transfer function, the leds in the optocoupler are run in series at 1 mA , the resulting differential signal appearing at the collectors of the transistors $\operatorname{Tr}_{1,2}$ with virtually all errors cancelled out. Variable R_{7} corrects for any offset. A useful feature of the 6 N 136 is that it has a screen between
input and output.
The required circuit gain is obtained by setting R_{g}, gain being $1+50 / R_{\mathrm{g}}$. As shown, the total circuit gain is unity, but optocouplers do vary.
A triangular waveform at 500 Hz showed no measurable distortion at up to 2.5 V and 2% at $\pm 8 \mathrm{~V}$. As regards frequency, $a \pm 1 \mathrm{~V}$ input gave $\mathrm{a}-3 \mathrm{~dB}$ point of 150 kHz . Input impedance is around $8 \mathrm{k} \Omega$, but a buffer could easily be used.
CID Catto
Cambridge

Low-cost, but linear and wide-band, optically isolated amplifier. Running leds differentially cancels out errors.

Disabled person's television remote controller

Adapting a remote control unit for use by someone with limited hand movement, this circuit steps through the four channets and standby in response to pressure on an elbow-operated microswitch. Output fets are in parallel with the controller buttons, so that the controller is still operable in its normal mode.

Half the dual monostable $/ C_{/ a}$ debounces the microswitch, clocks the 4017 decoded decade counter and triggers the second monostable to produce a 0.5 s pulse, simulating a button press. Decoded outputs from the 4017 are buffered in the tri-state 450.3 hex. buffer and used to drive the button fets.
Since power for the adaptor comes from the controller. decoupling must prevent current spikes from the transmitter led clocking the counter.

C Drinkwater

Wotton-under-Edge
Gloucestershire

Disabled person's tv controller adaptor, operated by microswitch to step through channels and standby.

Current-biased

Class-B output stage

Cince, unlike the old germanium types. silicon power transistors So not need low-impedance sources to take account of thermal leakage effects. it seems strange that modern designs still appear to provide the low impedance. Indeed, the use of voltage sources can give rise to trouble due to amplification of thermal effects. This design uses current sources.
No bias adjustment is needed and $R_{\mathrm{x}} / R_{\mathrm{y}}$ are chosen 10 suit the supply rails. in this case $\pm 20 \mathrm{~V}$ to give 20 W into 8Ω. It is interesting that quiescent current increases as the power supply falls, reaching a maximum of 120 mA at $\pm 12 \mathrm{~V}$, which is small enough to avoid latch-up. This effect may eliminate crossover effects as output current peaks. Short-circuit protection is applied to the $B C 2 / 3 / 183$ current mirrors by means of the diodes.
The circuil possesses some voltage gain. so that an op-amp or even the output of a personal stereo will drive it to full power.

The type of Darlington output device with built-in bias resistance is unsuitable for this application.

Anon

Rotherham
South Yorkshire
Would this contributor please send his full name and address to our editorial offices? Ed.

Silicon audio power output stage, using current drive to the output transistors and needing no bias adjustment.

\backslash PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$. Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion figure of 0.0015% at 50 W and is designed around a new approach to feedback.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes
Each board pair costs $£ 45$, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 8956. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, The Quadrant, Sutton, Surrey SM2 5AS

Critical response

I cannot agree with Graham
Maynard's rather vague analysis of class A and B amplifiers (Letters. June). Apart from anything else, I don's care for the way he, at a critical point in the argument, tums
"conceivably" into allegedly solid fact in the next sentence. Back emfs from reactive loads do not cause detectable intermodulation ${ }^{1}$ and even if they did, a higher feedback factor would surely reduce rather than increase the effect. As far as I know, no-one has ever argued that nfb does not effectively reduce amplifier outpul impedance. To go on and state as a another fact that higher levels of nfb cause "iaudible confusion" (whatever that is. presumably some sort of distortion) is simply wrong.
Using nfb to correct an amplifier with second-harmonic distortion creates third and higher-order products that did not exist before. Baxandall ${ }^{2}$ brilliantly demonstrated this, showing that these higher products have a maximum value for very low amounts of ntb (say 2 $1(\mathrm{~dB})$ and that as ntb is increased to more practical levels (like 30 dB) the level of all the higher products decreases. The result is surely a powerful argument against the use of low nfb factors.
As for the sliding-bias scheme. I can hardly comment as Maynard's diagram seems to have been misdrawn: $T_{r} g$, the driver for T_{9}, has disappeared, so the drive to T_{4} is now in the wrong phase. Worse still,
T_{9} is turned hard on via the two diodes and the only result of building the circuit as shown will be a loud bang as two power transistors lay down their lives to protect the ht fuses. Turning to Marcel van de Gevel's comments (Letters, May) concerning control of quiescent currents, I agree completely. But I would mildly point out that I specifically mentioned "harmonic $A B$ ", which gives the long, smooth device-to-device transition he describes, in Part 5 of the series. I also gave a reference to the intriguing work of F A Thus, and I do have well-thumbed copies of all the other references he quotes. The trouble with these schemes as they currently exist is that they depend on IC techniques such as matched and collector-area-scaled bjts. A discrete component version would no doubt be possible, but it would need to be designed from the ground up and would represent a serious piece of research work - not something that can be dealt with as an adjunct to a larger article. Anyone care to have a go? (An approximation to harmonic $A B$ can be achieved by eliminating the usual output emitter-resistors: crossover gain variations are less, but still exist, and there is a clear and present danger of thermal runaway.)
I am sorry that Chris Bulman (Letters, May) finds my class-A quiescent regulator inelegantly intrusive; surely it can't be too bad, having only three transistors, and not even being in the direct signal path? At least it is effective.
As far as I can determine from re-

PSpice plots of output device currents for the complete closed-loop amplifier. The plots in Part 8 of Self's Distortion in Power Amplifiers series were all done open-loop.

reading the 1969 article, John Linsley Hood's psu is essentially constant-voltage, though with that voltage rather uncertainly determined by transistor B, as indeed is the amplifier quiescent current $\left(I_{4}\right)$. If this psu really does play an important role in protecting against thermal runaway in the amplifier then I would suggest that the amplifier design could possibly be improved. It hardly counts as an effective method of I_{q} control.
Since the matter has been aired, I may as well report my own experiences with this design. With an I_{4} of 1.25 A , the thd at $10 \mathrm{~W} / 8 \Omega$ and IkHz was 0.25%, which I found rather discouraging. The output transistors are not driven so as to give pure push-pull action. and the sum of output-device currents (which in true push-pull is virtually constant over a cycle) varies by more than 40% (see PSpice plot).
The logic behind dc-coupled amplifiers is not obscure. Reservoir capacitors are simply storage elements, and have no direct effect on the amplifier output. That is (or should be) in the iron grip of a hefty negative feedback factor, and immune to ht rail influence. In contrast. an output capacitor handles the signal after the ntb has controlled it, and so any capacitor-distortion it may generate at lf is passed on untouched to the loudspeakers.
Any dc-coupled amp must have a dependable offset-protection system.
I can only admire the breath-taking audacity of Mr Bulman's scheme for cooling output transistors by making them boil water. One might object on the pedestrian grounds that the junction-case themal resistance of even the heftiest TO3 transistors is a $0.7^{\circ} \mathrm{C} / \mathrm{W}$ and so observing a $200^{\circ} \mathrm{C}$ junction temp maximum reduces the permissible power dissipation from 250 to 70 W . I might also point out that elevated temperatures degrade reliability - however this is to detract from the grand sweep of the concept.
Since the transistor cases appear to be in actual contact with the water, there are presumably four electrically-isolated bolling tanks, two for each channel, each with their own condensers and circulating pumps. The arrangement will make for an impressive-looking piece of equipment, reminiscent of the engine-room of a medium-sized steam-tug. Deionised water could be used to minimise conduction - but this is not the ideal basis for a good cup of tea. I cannot resist speculating on the software used to test the system. Handel's Water Music is an
obvious choice: tapes of stean radio might be even more appropriate.

Douglas Self

Forest Gate
London

References

1. Cordell, R. Interface Intermodulation in Amplifiers, Wireless World, Feb 1983, p. 30.
2. Baxandall, P. Audio Powel Amplifier Design: Part 5, Wireless World, Dec 1978, p. 56.

Beach buff

Alan Dyke`s criticism of audio mysticism makes sense - except for his reference to sand-filled speaker stands, of which I have just bought a pair.
Producing stands with hollow vertical supports is presumably cheaper than using solid stock which would be better and heavier. So filling them with something to facilitate coupling the base of the cabinet to floor, in view of the powerful magnet and coil action of the main drivers, makes sense. Liquid, especially water, would actually transmit sound vibrations faster than in air. Sand is freely available at low cost - especially if you are near a beach as 1 am.
Spikes through the carpet pile to floor complete the sci-up, and are necessary when using the new D Self amp. of which mine musi be one of the first examples.

Hugh Haines

Sunderland

Small world

H G Groenevelt seems not to appreciate the difference between a theory and a theorem. There is all the difference in the world. Maybe that accounts for his confusion.

R H Pearson

Lincs

Amnesty appeal

Mu ${ }^{\circ}$ aız Qulabi is an electrical engineer with Aleppo Electricily Company. He is 38 , married with one child. and this July sees his I2th year of imprisonment as a Syrian Prisoner of Conscience.
Mu taz, detained in Damascus, is just one of thousands of political prisoners held in Syria without charge or trial. for their peacefully held beliefs. Many are detained under emergency legislation in force since 1963, suspending all constitutional protection against abuse by the state. Others have been held for more than 20 years, face torture - routine in Syria - and are denied the chance to challenge the
legality of their detention.
Mu'taz is being held at Fir'Amn al-Dawla prison, and Amnesty International is calling upon the Syrian authorities to release him immediately. Every letter of support helps. Please write saying you have read about his case. Courteous letters in English should be sent to: His Excellency. President Hatez al Assad, Presidential Palace, Abu Rummaneh, Al-rashid Street. Damascus. Syrian Arab Republic. Paul Horvath
Rochdale Amnesty
Lancs

Hidden meaning

Unfortunately a short paragraph is missing in my article Optoelectronics by design (EW U'4, May 1994, pp. 364-369). The box titled 'Units and meanings' should conclude with two equations relating to the presented drawings (Fig. d. middle and bottom).
The equations regarding proximity sensors should read:

$$
\begin{equation*}
U_{\mathrm{r}}=S . R . G . I_{\mathrm{e}}[\tan (\omega) / d]^{2} \tag{4}
\end{equation*}
$$

where ω is the transmitter diode half power angle and d is the distance to a large object, and.

$$
\begin{equation*}
U_{\mathrm{r}}=S . R .\left(\overline{L_{1}} I_{\mathrm{c}} \mid \cdot / d^{2}\right)^{2} \tag{5}
\end{equation*}
$$

where r is the radius of a small object at distance d.
The final part of the article reters to a calculation based on equation (4).

Tore Arne Nielsen
Denmark

Graphic example

In my article on Amold Sugden ($E=W^{\prime}+W$ W. pp. 486-487) a small error appeared in the published version of the matrix. Please would you publish a correction so my colleagues at Keele will continue to talk to me?

Incidentally, as one who is still climbing the steep learning curve of Window's after no problems
whatsoever with the delightfully simple gui of the Atari, why on earth didn't Bill Gates produce a fully integrated dos with gui? Now, of course, he cannot; it would kill Window's stone dead.

Reg Williamson

Staffs
Gates didn't, but another company did. It's called the Amiga... Ea.

IC - can you?

Can any $E W+W W$ reader help me find a superseded integrated circuit? I have a Rohde \& Schwarz test unit called an smpu, manufactured about 17-18 years ago. It is a radioset test assembly for testing mobile radio transceivers up to 500 MHz . I use it for testing radios provided by my club for communications at motor sport events.
No payment is received for the work which is really part of my hobby. So 1 can not justifiv spending large amounts of money on repair. The unit is a fine piece of test equipment and most conroonents are bog-standard garden-variety. Unfortunately, the microprocessor has died. It is an Intel 4004 , a very early four-bit micro whicn does not appear to be available at ura ditional Ausiralian component suppliers.
Rohde \& Schwar/ can supply the device - for A\$450! While I can understand the need to charge this amount to cover the cost of storing this chip for 20 years, I sill can not afford it.
What I am hoping for is that somewhere out there is a hoarder like me, who has a hox full of Intel 4004 s just gathering duss.
If any one can help I would be most appreciative.
David Ireland,
77 Vahland Avenue
Riverton
Western Australia, 6148.
Tel: 619457273.3
Fax: 6193266669

Decoding US actions

1 found Robert Schifreen's article on the DES data encryption standard (Big Brother's protectiom lacket, $E H+$ UW. May, p. 388) very interesting. Back in October 1998 I recall an IEEF Review claiming that the US National Security Agency was withdraw ing its support for the NBS Data Encryption Standard introduced in 1977 bectuse: "The tools of attack are that much stronger now". It makes the proposed US legislation to oullaw DES quite puzzling.
T/ Wynn
Newport

Calling cable suppliers...

I cannot help but think that there is rather more involved than logic and mere engineering principles when discussing sound reproduction.
My hearing is bad, cutting off at around 8 kHz , and I am by no means musical so I will leave the esoterics of subjective testing to those who believe themselves so qualified. But I would suggest that those really interested should perform proper double-blind tests on a reasonably large number of people, as psychologists do. Whether imperfect electrolytics and other components cause audile distortion or not seems a moot point.
Over the last 25 years I have designed something like 3000 separate items: from a 25 kA rectifier to a vhf synthesised transceiver, and including a few audio systems. When involved with the audio projects, I remember looking at response curves of the loudspeakers, as published by manufacturers. All those that I saw resembled a cross-section of the Himalayas.
While I well appreciate the difference between amplitude variations and (harmonic) distortion and non-linearity, I cannot really see the point in aiming for an amplifier chain THD of 0.0001% with existing transducers. Perhaps someone could comment on the linearity, or lack thereof, of a coil moving in the magnetic freld of a loudspeaker?

My guess is that the flux density is not totally uniform across the entire gap: so the deflection of the coil will not be a perfect reflection of the drive current. This of course will lead to distortion, most likely a reduction in amplitude of the peak of the wave (assuming the flux decreases towards the edge of the gap).
I have no idea what happens to the cone of the speaker when driven by complex waveforms, but would imagine that it would make an interesting study. What I would like to know is the figure for transducer linearity, both at the microphone and loudspeaker ends of the chain.
With these figures, one could then determine what level of amplifier distortion was acceptably small, and what was ridiculous.
As electronic design is a creative art, there is always the drive to achieve the ultimate, the perfect, or in the case of audio circuits, zero distortion. But, as all of those involved in design know, one must maintain a sense of reality, and know when it is time to shoot the engincer.
Perhaps an $E W+W W$ reader familiar with loudspeaker and microphone performance could respond with some hard facts conceming transducer linearity?
Until such time, I don think I'll be buying any silver loudspeaker cables.
Charles Frizell
Harare

...to prove a difference

Gold-plated speaker cables, silver-plated, platinum-plated etc... isn't it apparent that we professional engineers are starting to behave like amateurs. Neither the Yes nor No fraternity can produce irrefutable evidence that their beliefs are correct. I say 'beliefs' because without proof that is what they must remain.
The continuing dialogue echoes the heated discussions that took place, many years ago, when the particular attributes of moving-iron and balanced-armature loudspeakers were compared. But that was resolved with the introduction of the moving-coil loudspeaker which quickly killed off the two warring factions.
There might be individuals who honestly believe they can detect a difference when special cables are used. But there are also far more audiophiles who declare that claim to be a load of rubbish.
I accept that 'might' does not necessarily mean 'right' any more than it did for the flat earth proponents of years ago. But until we have proof one way or the other, we are all just flogging a dead horse.
Logic tells us there should be no difference. Perhaps our logic is wrong, although I thought we were involved in a science more exact than most. Ramblings on the subject suggest we are actually a bunch of dabblers.
We should drop the perhapses and maybes and shut-up until someone produces proof either way. Could a supplier help by publishing details of test procedures? Come-on atl you special cable manufacturers out there. Tell us the secret of your product. Or did I hear you say you do not have patent cover, or a registered design, or have not been granted a Kitemark?

RL Tufft

Thirsk

USING RF TRANSISTORS

Combined efforts bring power pay-offs

Splitting a signal to provide multiple inputs for several amplifier modules then recombining the result is an obvious way of boosting power output. Norm Dye and Helge Granberg describe different possible combiner/splitter configurations and show why they all have a place in the designer's portfolio.
From the book RF Transistors: principles and practical applications.

When the required power output exceeds the capabilities of a single power amplifier, multiple stages or "modules" can be combined to produce the required result.
A splitter - simply a lower-powered version of a combiner used in reverse - divides the input signal into multiple equal anplitude outputs. These are applied to the inputs of each
module. The power combiner then recombines the module outputs ready for feeding into a single load.
Combiners are closely related to wide-band transformers in design and construction - the main difference is how the lines or windings are connected (power splitters have the same configuration, so need not be treated separately).

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 1. a), b) and c) represent straight in-phase combiners. Even and odd numbers of input ports are possible with them. d) and e) are staggered or "totem pole" structures, which are adaptable only to even numbers of ports. f is a 180° combiner that requires no step-up transforner into 50Ω. Note that step-up transformers are not shown for a), b), c) and d).

Wideband power combiners need to have low insertion loss over the required bandwidth: provide isolation (minimum coupling) between the input ports, and show low return loss at the input ports over the required bandwidth.

Their operating bandwidth should be wide 100 - or wider than the amplifier modules or they will restrict the overall bandwidth of the combined amplifiers.
Several different types of power combiners are available, each having advantages regarding frequency spectrum. bandwidth and other preferred features.

Four main combiner types

Zero degree device: ideally there will be no phase shift between the input ports and the combined output. The device can be designed for even or odd number inputs up to a practical limit. Practical frequency range is up to about $500 \mathrm{MH} / \mathrm{L}$. These combiners are most common at lower frequencies because of their versatility and straight forward design.
180° device: the two input ports or sets of input ports are 180° out of phase. The device is only applicable to even numbers of inputs: eg 2. 4. etc. Out-of-phase characteristic must be taken into account when designing the input power splitter. Practical frequency range is up to about 100 MHz .
90° hybrid: two port unit having, by nature. a narrower bandwidth than the above configurations. The device is applicable from low frequencies to microwaves in proper design configurations.
"Wilkinson combiner": relatively narrow bandwidth characteristics, but simple and inexpensive. The practical frequency range can be up to microwaves ($1-2 \mathrm{GHz}$).

The input power-splitter must be of the same type as the output combiner. An in-phase splitter used with a 180° combiner for example would produce zero combined output power, since the outputs from each amplifier module would cancel.

In-phase and 180° combiners

Transmission line techniques are commonly used in in-phase and 180° power conbiners to produce lowest losses and widest bandwidths.
One primary function of an rf power combiner is to provide port-to-port isolation 30 dB is typical and acceptable. By this, the output of one amplifier module will be sufficiently isolated from the others. If a failure in one occurs, the remaining amplifiers will not be affected and will still be operating into the original load impedance. Amplitude unbalance is usually created by a completely disabled module (the "source" for the combiner) or sometimes. more than one disabled source. Power output with various numbers of disabled sources can be calculated as:

$$
P_{\mathrm{oul}}=(P / N) N_{1}
$$

where P is the total power of operative sources. N is the total number of initial sources and N_{1} is the number of operative sources.

Fig. 2. Commercial four-port splitter-combiner for use at $1.6-20 \mathrm{MHz}$ and power levels up to 1 kW . The device is of the type shown in Fig. 1 c but the combiner lacks the power pick-up coils. The 5052 lines are realised by metal tubes with a proper size of insulated conductor threaded through the tube, reducing construction costs. Note the compactness of the units, where the step-up transformer is right next to the combiner structure.

For example, in a four-port system designed to deliver 1 kW with 250 W modules, with one module disabled power output would be $(750 / 4)^{3}=562 \mathrm{~W}$. The difference power of 188 W would be dissipated in the balancing resistors. dividing according to the type of combiner. In a straight zero-degree combiner (Figs. 1a. 1b, and 1c) all resistors are of equal value and the power dissipated in each would be $(188 / 3)=62.5 \mathrm{~W}$ in a four port system.
In a two-port combiner system having a maximum output power $P_{\max }$ if one amplifier fails the output power will decrease to a value 6 dB below $P_{\text {max }}$. Half the power loss is due to lack of power from the disabled module and an additional 3 dB is lost because the power from the remaining module now divides cqually between the balancing resistor and the output load.
In this case the balancing resistor must dissipate $1 / 4$ of the original $P_{\text {max }}$.
Values of the balancing resistors depend on the number of combiner ports and how many ports are assumed disabled at one time (as can be seen in the expression for $P_{\text {out }}$ given above). Sometimes these resistors, which must be of the non-inductive type, are referred as dump loads since power due to phase- or amplitude-unbalance is directed to them. In most cases even if one module fails. the system is forced into a shut-down mode. So the balancing resistors do not have to dissipate significant power.
In the failure detection method using pickup coils (Fig. 1c) the signal pick-up coils (pc) can be small toroids wound with multiple turns of wire. These can form the secondaries for rf voltage step-up transformers whose primaries are the leads of the balancing resistors

(a)

(c)

Fig. 3. The line hybrid, a) and b), is widely used at vhf and uhf since it can be made compact by folding the lines. Its lumped constant equivalent is shown in 3c. The complete uhf coupler has dimensions of approximately 38 mm square and 3.5 mm thick.
(eg, two-way carbon type) threaded through the toroids.
RF voltages in the secondaries - generated by the unbalance due to a module failure - can then be rectified and processed to operate the shut-down circuitry. If the a, b and c outputs (Fig. 1c) are kept separated, each one can be made to operate an indicator, showing which module has failed. Resistor (R) values are not critical, since the power will be shut-off within a millisecond or so making the load mismatch unimportant.

But, for operation under reduced power conditions, the balancing resistors must handle continuous power levels. Here high-power resistors must be used that can be heat sunk, and that are "floating". with the resistor ele-

Fig. 4. Ring hybrid (a) and its lumped equivalent (b). In b), C1 and C2 can be paralleled into single units twice the value.

Fig. 5. The branch line hybrid (a) and its lumped equivalent (b). As in the ring hybrid equivalent, the paralleled capacitors (C1 and C2) can be combined into single units.
ment electrically isolated from its mounting structure.
In the event of a failure of one module (which is the most common case), the balancing resistor values can be determined from the formula:

$$
R=Z_{\mathrm{in}} / N
$$

where N is the number of input ports.

Values of $25,16.6$, and 12.5Ω result for two, three and four-port combiners (Figs. 1a, 1b and 1c).
Examples of 180° power combiners include a "totem pole" structure (Fig. 1e) and a system consisting of a pair of two port hybrids and a balun (Fig. 1f).

Comparing the 180° and in-phase combiners shows that the 180° type can be superior in input vswr, but that the latter has better port-to-port isolation characteristics.
In cascaded or totem pole structures, the balancing resistor values follow the values of the two-port hybrids and transmission line transformers.
It is possible to design a system that does not require a step-up transformer (Fig. 1f). Its simplicity is attractive compared to other fourport combiners. The number of transmission lines can be halved and the lack of the $4: 1$ step-up transformer means bandwidth characteristics are enhanced - though this combiner is covered by a US patent.
Impedance ratios such as $2: 1$ and $3: 1$ can be implemented with a $4: 1$ transformer wound with coaxial cable where the corresponding taps are made to the coax braid. Improved performance over wider bandwidths is possible with fractional-integer equal-delay transformers.
In a commercially available four-port split-ter-combiner (Fig. 2) intended for use at 1.6 30 MHz and up to power levels of 1 kW , port-to-port isolation figures of $27-40 \mathrm{~dB}$ have been measured on both the in-phase and 180° combiners over a bandwidth of several octaves.
Several manufacturers make high power combiners for use at frequencies up to uhf, but most units are housed in enclosures with connectors and do not suit many designers because of physical outlines or cost.

90° hybrids

One class of hybrid that is a variation of the two-port is the quadrature, and quadraturecouplers can be realised in several different forms.

A quadrature combiner usually refers to a passive device with one input port, two output ports (or vice versa) separated by 90° phase, and an isolated port.
Some networks that can be considered as quadrature couplers are:

- Line hybrid (Fig. 3);
- $3 \lambda / 2$ ring coupler (commonly known as ratrace, Fig. 4);
- branch coupler, widely used in small signal mixer circuitry but also applicable to use as a power combiner (Fig. 5);
- Wilkinson combiner, consisting of a series of $\lambda / 4$ transmission lines (Fig. 6). Though not a quadrature coupler like those mentioned above, it is included because all four types are based on the principle of a delay generated by a quarter wavelength transmission line.

Line hybrids

The line hybrid (Fig. 3a), one of the most common combiners used in the vhf and uhf
frequency ranges, consists of two transmission lines (microstrip) of $\lambda / 4$ in length separated by a dielectric. In addition the structure is sandwiched between two ground planes, again separated by a dielectric.
The mutual impedance between the two lines is designated as $Z_{\text {even }}$, whereas the impedance from the lines to ground is designated as $Z_{\text {odd }} . Z_{\text {even }}$ is the impedance controlling the coupling coefficient between the lines and is typically $Z_{\text {in }} / 2$. Then $Z_{\text {odd }}$ must be calculated for a value that gives:
$\sqrt{ }\left(Z_{\text {even }} \times Z_{\text {odd }}\right)=Z_{\text {in }}(50 \Omega)$.
If $Z_{\text {even }}=25 \Omega$ as in this case, then $Z_{\text {odd }}$ must be 100Ω for $Z_{\text {in }}=\sqrt{ }\left(2.5 \times 10^{3}\right)=50 \Omega$. The $Z_{\text {even }}$ and $Z_{\text {odd }}$ values can be modified for greater isolation or extended bandwidth, but the $V\left(Z_{\text {even }} \times Z_{\text {odd }}\right)$ relationship is always valid.

Typical bandwidths of these couplers are about 15% with $1: 1.5 \mathrm{vswr}$ and port-to-port isolation ranging from 20 to 30 dB .
In the past, dielectric materials were Teflonfibreglass (dielectric constant around 2.5) or epoxy-fibreglass (5). Low values of dielectric constants limited the couplers to a lowest practical frequency of approximately 175 MHz , though even at these frequencies the couplers were bulky.

Today, advances in dielectrics have brought materials with dielectric constants of 10 or higher, making lower frequency couplers more practical.
To realise any kind of a practical size or shape factor, the lines are usually folded several times (Fig. 3b) and the total electrical length calculated for $1 / 4$ according to the dielectric constant of the medium.
A variation of the line combiner, designed with lumped constant elements for use at low frequencies, would behave much like its counterpart, the stripline quadrature hybrid. In a true representation of the stripline design, capacitors (C in Fig. 3c) should be split and their centre taps grounded to simulate $Z_{\text {odd }}$. $Z_{\text {even }}$ would be determined by the mutual line impedance and the electrical length of the line, which should also be $\lambda / 4$.
In practice, the transmission line can be made of twisted enamelled wires or two lengths of low impedance coaxial cable with their braids connected together and floating. The centre conductors are left to form two symmetrical lines.

Another adaptation, especially suited to low frequency use, is Fisher's hybrid (resembling more closely the hybrid shown in Fig. 3c). Very tight coupling between the lines is required, and line physical lengths need not be $\lambda / 4$ since they are electrically lengthened by the presence of the magnetic medium. C depends on the line coupling coefficient and may not be necessary at all in some cases.
The phase relationship is the same as in the stripline hybrid and port isolations are comparable too. Bandwidth achievable depends on line inductance - and so properties of the magnetic core - as well as the line mutual capacitance (coupling). But using the tech-

Fig. 6. Wilkinson combiner (a) and its lumped equivalent (b). In practice b) may not be feasible for more than two input ports.
niques described, it may be possible to develop quadrature hybrids for wider bandwidths than the $10-15 \%$ normally attributed to this type of coupler.

Ring hybrids

The hybrid ring. ($3 / 2$) λ hybrid or "rat race" (Fig. 4) as it is commonly called is a directional coupler that can be used to sample rf power travelling in different directions. As a result, it is also adaptable for mixer, power splitter, and combiner applications.
Construction is usually with microstrip transmission lines. a technique that limits use to about 10000 MHz and above. Coaxial cable designs can extend the frequency range down to $200-300 \mathrm{MH} 7$, but such structures become bulky.
A simple hybrid ring consists of a transmission line in which input, output and isolation ports are connected in four places. If the $Z_{\text {in }}$ impedances of these ports are 50Ω, characteristic impedance of the transmission-line ring is:

$$
Z_{0}=\sqrt{ }\left(Z_{\text {in }}^{2} N\right)
$$

where N is the number of active ports is 2 , then,

$$
Z_{0}=\sqrt{ }\left(5 \times 10^{3}\right)=70.7 \Omega
$$

Each of the four ports is separated by quar-ter-wavelengtl sections making the remaining part of the ring three-quarter wavelengths - so the total cireumference is 1.5 wavelengths.
The hybrid ring is commonly used as a power splitter or combiner. If a signal is applied to port 1 (Fig. 4a), power will be equally divided between ports 2 and 4 and their phase relationship will be 180°.
On the other hand, power incident at port 2 will also be equally divided between ports 1 and 3. But the two output signals will be of similar phase.
When port 2 is used as the input in a combiner, any poucr reflected at output port 3 , due to a mismatch, arrives at the other output port I by two paths.
One signal travels a half-wavelength in a counter clockwise rotation from port 3. and the clockwise signal appears at port 1 delayed by a full wavelength. The half wave difference in arrival, and equal path loss results in cancellation of the two signals at port 4 , with total cancellation resulting in highest port-to-port isolation. The reflected signal from any mismatch at port 3 arrives at port 4 . in phase from both circular paths, where it is dissipated. This port is designated as the isolation port, where a termination absorbs any power due to the unbalance between output ports.

Testing splitters and combiners

Multiple port configurations make the performance of splitters and combiners difficult to test. But a possible method is to terminate all outputs except one and make the measurements between the one unterminated output and the single input port. Each output port would be sequentially tested, revealing the amount of insertion loss, return loss, and the phase angle over the desired frequency spectrum.

To test isolation characteristics between the output ports, the input and all output ports but two should be terminated. Isolation can then be measured between all output ports by sequentially switching terminations and active ports.

One quick test would be to connect all the multiple output ports together (back-to- oack), leaving two open ports compatitle with a standard 50Ω system - though tris would not provide information on sort-to-port isolation characteristics of the output.

These tes: methods are applizable to most types of splitter or combiner. Testing car be carried out with a network anclyser or an rf test stat on consisting of a signal source, load. and appropriate means for measur ng forward and reflected power. The rf test station is probably the more arcurate of the two methods, since the subject devices cal be driven with a more realistic level of rf. In either case, the

The input signal from port 2 cancels at port 4 because the two-way paths differ by a half wavelength. Advantages of a ring hybrid include simplicity of construction and a reasonable tolerance for variations in line impedance. In addition, the power at the output ports can be adjusted by varying the impedances of the interconnecting lines.
A simple hybrid ring can provide a good match and excellent isolation over a $8-10 \%$ bandwidth.
Ring hybrids can also be designed with lumped constant clements - extending low frequency response to audio frequencies.
Deriving a lumped-circuit equivalent is simple and entails replacing each length of transmission line by its pi equivalent (Fig. 4b). Three pi networks represent the $\lambda / 4$ sections, namely $C_{3}-L-C_{1}, C_{1}-L-C_{2}$ and $C_{2}-L-C_{3}$. The lowest branch $-L-C_{4}-L-$ forms the $3 / 2 \lambda$ section.
Since all capacitors will be of equal value, C_{1} and C_{2} can be paralleled into a single unit, $2 \times C_{1}$ and $2 \times C_{2}$ respectively. All branches must have a Z_{0} of $Z_{\text {in }} \sqrt{2}$ or 70.7Ω as the line sectiors in the microstrip design. All inductors in the circuit are also of equal value, calculated as:

$$
L=\left(Z_{\text {in }} \sqrt{ } 2\right) / 2 \pi f_{0} \text { and } C=1 /\left(2 \pi f_{0} Z_{\text {in }} \sqrt{ } 2\right)
$$

For example, designing a lumped constant ring combiner for a frequency of 100 MHz . Then:

$$
L=70.7 / 628=0.11 \mu \mathrm{H} \text { and }
$$

$$
C=1 /(628 \times 70.7)=22.5 \mathrm{pF}
$$

Capacitors C_{1} s and C_{2} s combined would then be 45 pF each. The isolation and insertion loss characteristics are greatly dependent on componend tolerances, loss factors (Q), and symmetry of the total structure. Typical numbers for 100 MHz are $20-25 \mathrm{~dB}$ and $0.4-0.45 \mathrm{~dB}$ respectively.
amount of return loss, insertion loss and also, $i 7$ the case of the network analyser, the phase relationship can be found
Phase error can be as much as 25°, but th s would still create only a 0.22 dB loss. Fhase errors of around 10° - typical maximums - have negligible effect. Influence of source amplitudes are also e<aggerated. In a two port system, a 50% difference in source power outputs produces only an approximate 0.2 dB loss in the combined output.

Figures may vary depending on the type of combiner, but we can conclude that, in practice, the effect of amplitude unbalance between the input ports of a comb ner (especially with a failed source) is far more dominant than the phase relationship.

Branch line couplers

Branch line couplers are the easiest types to construct - most often as two-branch, 3dB units (Fig. 5a). The main transmission line is coupled to a branch line by two quarter-wave lines, each spaced a quarter-wave apart. Simple microstrip configurations can produce coupling values from 3 to 9 dB . Used as a power combiner, the device acts as a quadrature coupler with output signals 90° out of phase.
Overall bandwidth of branch-line couplers is rather narrow compared to the hybrid rings. Bandwidth can be increased by adding more branches, though this is not popular because additional branches have higher impedances, and as well as increased losses, the microstrip tolerances become critical.

The use of transformer sections in the main lines results in characteristic impedances of the branch lines equal to those of the input and output arms. The impedance of these transformer sections (a in Fig. 5a), also called main lines, can be figured as:

$$
Z_{0}=\sqrt{ }\left(Z_{\text {in }} \times Z_{\text {out }} / 2\right)
$$

For a 50Ω system:

$$
Z_{0}=\sqrt{ }(50 \times 50 / 2)=35.4 \Omega
$$

Impedance of the branch lines (b in Fig. 5a) will be 50Ω too.
Both the hybrid ring and the branch line coupler are very versatile devices. With the ring coupler, impedance transformation is possible by varying the characteristic impedances of the $\lambda / 4$ line sections.
Similarly the transformer or the main line impedance can be varied in a branch-line coupler, producing impedance transformation between the input and output ports. Though this function may only be necessary when devices are used for non-power-splitting combining applications such as mixers.
The branch-line coupler is physically smaller than the hybrid ring since its loop periphery measures only one full wavelength. But its practical low-frequency limit is in the low microwave region. Construction using coiled coaxial lines would bring the lowest practical frequency into the $150-200 \mathrm{MHz}$ region. Lower frequency versions can be realised with lumped clement designs (Fig. 5b) where the principle is the same as with the hybrid ring: each $\lambda / 4$ transmission line section is replaced by a $\pi L C$ network. In the hybrid ring equivalent, there are three such networks. The branch-line equivalent requires four, two for 35.4Ω impedance and two for 50Ω. Using the formula to calculate component values for 100 MHz , the 35.4Ω branches (a) will be:

$$
L=35.4 / 628=56 \mathrm{nH}
$$

and:

$$
C=1 /(628 \times 35.4)=45 \mathrm{pF}
$$

Similarly the 50Ω branches (b) are $L=80 \mathrm{nH}$ and $C=32 \mathrm{pF}$. The combined capacitances (C_{1}
$+C_{2}$) will be $45+32 \mathrm{pF}=78 \mathrm{pF}$. Component tolerances are critical.

Wilkinson couplers

One other power combiner that uses quarter wave transmission lines is the Wilkinson hybrid, though it should not really be called a hybrid since that describes a device with two input or output ports.
The Wilkinson coupler is a reciprocal network and sums N coherent sources to a common port, all in one step. Any number of ports can be designed for (Fig. 6a) and so it is commonly called an N-way coupler.

In a similar way to other types of combiners, the device can be used for power splitting as well as combining. But unlike quadrature hybrids. all inputs are in equal phase relative to the output, but create a delay of 90°. Since the line length between any two ports is $\lambda / 2$. the power arriving at each port is 180° out of phase with the power from any other port and so cancels, providing isolation between inputs.
The port-to-port isolation and vswr are theoretically perfect at mid-band (where the lines provide a 90° phase shift) and degrade at frequencies away from band centre. In practice the amount of isolation and the vswr are primarily dependent on the phase relationship (line impedance and length) of the transmission lines.
Typical numbers for the isolation are 2025 dB and for the vswr, 1.2:1. The balancing resistors (R) have an important role in that they serve to help isolate and match the input ports. Normally they would not dissipate power, but any unbalance between input ports would result in power dissipation by them.
With two-port combiners, if the power to one input port is completely lost due to a failure of an amplifier module, then half of the power output from the remaining module will be dissipated in the balancing resistor. This is the case with all two-port combiners described. (Refer to straight in-phase combiners and Fig. 10 where a system shut-off under the condition of an amplifier failure is described).
Perfect output-port amplitude-balance (due to its symmetry) is a benefit of the Wilkinson coupler, with equal phases at all of its input ports.

Chief advantage for high power applications stems from the series of combined balancing resistors. Perfect isolation requires completely non-inductive resistors, which must be heatsunk.
Overall, the Wilkinson N-way combiner constructed with coaxial, stripline, or microstrip transmission lines - offers a relatively low cost method of combining several signals with a fair amount of isolation and low vswr.

Bandwith of operation is relatively narrow, compared with 90° hybrids. For bandwidths wider than 15-20\%, multiple lines of appropriate lengths can be cascaded, with stepped characteristic impedances for an optinum design with Chebyshev response. But the method will add to line $I R$ losses, and may
only be practical up to three-four sections. For N number of input ports. the line impedances are calculated as: $Z_{0}=\sqrt{ }\left(Z_{\text {in }}{ }^{2} N\right)$. So the Z_{0} for a two-port system is 70.7Ω; for a three port system. 86.6Ω; for a four port system 100Ω, and so on. The balancing resistor values (which are equal) can be obtained as: $R=$ $Z_{0}^{2} / N Z_{\text {in }}$.

Operation of a lumped equivalent of a twoport Wilkinson power combiner (Fig. 6b) is based on the same principle as the ring and branch-line coupler equivalents - that the $\lambda / 4$ sections are simulated with π networks. The two 50Ω balancing resistors have been combined into a single 100Ω unit because the centre tap is "floating."

Similarly, the C s between the input ports have been combined to a $-j 100 \Omega$ reactance. since it is not necessary for their centre tap to be grounded. The reactances shown can be converted to required values of capacitance and inductance for the centre of the operating frequency band.
The lumped constant version of the Wilkinson combiner works well, with comparable isolation and vswr characteristics to its transmission line counterpart. But component tolerances must be kept within $1-2 \%$.

Radio Frequency Transistors
 Principles and Practical Applications

Norm Dye is Motorola's product planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Motorola. Their if transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the uhf frequencies

RF Transistors: Principles and practical applications is available by postal application to room 1333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Cheques made payable to Reed Books Services Credit card orders accepted by phone (081 652 3614).

288pp HARDBACK 0750690593 Cost £19.95 + Postage $£ 2.50$

Finally an upgradeable PCB CAD system to suit any budget ...

BoardCapture - Schematic Capiure

- Direct notist tink to BoarclMaker2
- Fonward annotayion with part values
- Eual undo tedo tacilty (50 operations)

Singte-sheet, multi-paged and hierarchical designs
Smooth scrolting
interigent wires iautomatic functions)

- Dynamic connectivity information

35

- Automatic on-line amotatian
\rightarrow
Aviomatic on-ine amolatian
Integrated on-ithe-ny dinta
Coniext sensitive ediling Back annolation fram Bolid dlaker2

BoarleMicinit
BoariMakert. Entry level
PC8 and schematic drating

- Easy and intilive to ust
- Suriace moumísuppont
: 90,45 and euver track comers
- Ground prane ma
- Cofper highinght and clepasme checking

BoariMaker2 - Advanced level

- All tie features o BoarcMakert pius
- Full netisis suppor, - OrCad, Schema. Tango. CadSiar
- Full Design Rule Checkigg. mechanical \& electncal.
- Top down moditication tom the schematic
- Conponam remurber wit thack amnotation
- Repon generator - Databsse ASCH, BOM

MEY - Themal power plane support with luh DRC

BoatdRouter - Gridless autorouter

- Simbthaneous mult-1ayer routing
- SMa and analogue support

Ful internupt, resume. pan and zoom whise routhy
Output drivers - Inctuded as standard
Primters - 9 \& 24 pin Dit mawic, HPlaseriat and PostScript

- Penplofters. HP. Graphisc, Roland \& Houston
- Pho:oplotters. Al Gerber 3×00 ano 4×00

Excetton NC Drill / Annctated drill drawings (BMa)
Call for info or full evaluation kit Tsien (UK) Limited Tel (C354) 695959 Fax (0354) 695957

tsien

FRFE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only.
Trade advertisers should call Malcolm Wells on 081-652 8355
All advents will be placed as soon as possible. However, we are unable to guarantee insention dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fultil the terms of this affer.

Please send your completed forms to:
Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Measurement of rf power at the milliwatt level

> It is sometimes necessary to measure rf power at the milliwatt level. This usually requires the use of expensive equipment and the achieved accuracy depends on the standard of calibration. In this note, Nick Wheeler describes an inexpensive thermal device which can be calibrated with dc and has good overload capability.

The Analog Devices AD590 is a two-terminal current regulator with the property of passing a current which increases linearly at the rate of $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$, independent of supply voltage, over range of 4 to 30 V .
The device is in a TO- 52 case similar in size to a TO-18 miniature metal can. This case has a gold-plated base through which the two active leads pass, together with a third lead connected to the case.
The AD590 is specified for storage up to $155^{\circ} \mathrm{C}$ and for 10 s lead soldering temperature at $300^{\circ} \mathrm{C}$. Typical low melting-point solder melts at $179^{\circ} \mathrm{C}$.
It proved easy, and apparently non-destructive, to solder two 100Ω chip resistors to the gold-plated base. The gold plating facilitates this. These form a relatively non-inductive 50Ω load when connected in parallel, which is fed by length of RG-402 semi-rigid microwave coaxial cable.
The outer conductor of the coax is soldered to the case pin of the AD590. The two leads of the AD590 need to be decoupled by chip capacitors as close in as possible, to prevent rf pickup.
At typical laboratory temperature, the device will draw about $295 \mu \mathrm{~A}$; the specification is $298.2 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$. On test, a sample drew $291.2 \mu \mathrm{~A}$ at an ambient level of $20^{\circ} \mathrm{C}$. This corresponds to a nominal $18.7^{\circ} \mathrm{C}$. As the maximum calibration error is $\pm 1^{\circ} \mathrm{C}$ and the measurement was at the 1% accuracy level, this was satisfactory. On applying one volt to the
50Ω load, the current increased by $4 \mu \mathrm{~A}$. A volt across 50Ω dissipates 20 mW .
This simple form of the instrument measures small difference between two large quantities. This is bad practice.
By using two sensors in a differential circuit derived from the Analog Devices databook. and applying the signal to one of them, measurements may be made to the milliwatt level. The devices should be made as similar as possible and mounted in a draught-proof enclosure, thermally insulated from each other but otherwise identical in relation to the environment. I used foam polystyrene to achieve this.
On transferring the signal input from one sensor to the other, a large output of reversed polarity should result. It is most unlikely to be identical. Both devices should be calibrated with dc at inputs up to 200 mW . The resulting calibration curves are non-linear, falling off at higher inputs. This is because the heat loss from a heated object is proportional to the square of its temperature above ambient.
This is not a quick-response system. About 90% of the final reading is reached in a minute. Also note that a series of readings should start with the lowest input. Otherwise time must be allowed for cooling off between measurements.
Also note that when measuring rf, this is a true rms measurement. Measurements made at 50 MHz using a good 100 MHz oscilloscope to determine the applied voltage corresponded to the dc calibration within a few percent.

Apart from ensuring that the two sensors are mounted in a similar thermal environment, attention should be paid to decoupling of the leadouts with chip capacitors to avoid measurement rf rectifying in the junctions.

RMS rf power meter - typical calibration curve for differential circuit.

CLASSIFIED

ARTIILS WANIED
WE WANT TO BUY !!
IN VIEW OF THE EXREMELY
RAPID CHANGE TAKING PLACE
IN THE ELECTRONICS
INDUSTRY, LARGE QUANTITIES
OF COMPONENTS BECOME
REDUNDANT. WE ARE CASH
PURCHASERS OF SUCH
MATERIALS AND WOULD
APPRECIATE A TELEPHONE
CALL OR A LIST IF AVAILABLE.
WE PAY TOP PRICES AND
COLLECT.
R.HENSON LTD.
21 Lodge Lane, N.Finchley,
London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE
O81-445-2713/0749
FAX 081-445-5702.

ARTICLES FOR SALE

VALVES AND CRTS

ONE MILLION ITEMS IN STOCK INCLUDING MAGNETRONS KYLSTRONS, VALVE SOCKETS FOR AUDIO RECEIVING TRANSMITTING, OBSOLETE BRANDS SUCH AS MULLARD, GEC A SPECIALITY. ALSO HUGE STOCKS OF RUSSIAN AND SOVTEK ITEMS ASK FOR OUR 40-PAGE VALVE CATALOGUE OR CRT CATALOGUE.

VALVES WANTED FOR CASH

ESPECIAL.LY KT66, KT77, KT88, PX4, PX25, VALVE HI-FIs e.g. QUAD, LEAK, GARRARD 301. IF POSSIBLE SEND WRITTEN LIST

BILLINGTON EXPORT LTD
1E GILLMANS IND EST, BILLINGSHURST, SUSSEX RH14 9EZ
CALLERS STRICTLY BY APPOINTMENT ONLY
TEL: 0403784961 FAX: 0403783519
MINIMUM ORDER $£ 50.00$ PLUS VAT

TURN YOUR SURPLUS TRANSISTORS,
ICS ETC, INTO CASH
mmediate settemen
We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO, Unit 58, Queens Road, Wisbech, Cambs. PE 13 2PO ESTABLISHED OVER 15 YEARS Buyers of Surplus inventory Tel: 0945584188 Fax: 0945475216

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Ltd,
1, Mayo Road, Croydon Surrey, CRO 20P TEL: 0816841166 FAX 0816843056

STEWART OF READING 110 WYKEHAM ROAD, RéADING, RG61PL TEL. 0734268041 FAX: 0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANITYT

WANTED

Test equipment, receivers, values, transmitters, components, cable and electronic scrap and quandity. Prompt service and cash. M \& B RADIO
86 Bishopgate Street Leeds LS1 4BB Tal: 0532435649 Fax: 0532426881 9956

WANTED

High-end Test, Communication \& Computer Equipment. Top prices paid. Please send or fax your offer to: Steigerwald 6mbH Neusserstrasse 9, 80807 Munich South Germany
Tel. 01049893615833
Fax: 01049893615899

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes PCB's, Plugs and Sockets, Computers, Edge Connectors TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT A.R. Sinclair, Elactronics, Stockholders, 2 Normans Lane, Rabley Heath, Weiwyn, Herts AL6 9TO. Telephone: 0438812193. Moblle: 0860 214302. Fax: 0438812387 Telephone: 0763246939

TO ADVERTISE HERE: TEL: 081-652 3620

RECRUTMENT

RECEIVER DEVELOPMENT ENGINEER

A British Company are about to start an exciting new project to develop a state of the art HF communications receiver to compete in the World market. A vacancy exists for a top grade engineer to take charge of this project. The successful candidate will probably have several years previous experience of receiver design, be aware of the best of current technology in the field, and be conversant with digital signal processing techniques.
The salary and benefits package offered will be commensurate with the importance of the project, and maximum freedom will be given to the individual to exercise their own creativity.

Please reply in confidence
Box No. EWWO 100, Room L329,
Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS

FREE CLASSFIED

WANTED for HP-85 HP-87 ROM's Interfaces, ram extension manuals plus assembler systems monitor hP82 929A and software HP929000A CP/M. Mail Phone/Fax Fr Sagnard 47 Rue de la Procession 75015 Paris, France. Tel/Fax cession 75015
$33(1) 40563024$

WANTED very old television, Jac Jans sen, Hoge Ham 117D, NL-5104 JD Dongen, Netherlands. Tel: +311623 18158 , Fax (office): +3113624664 .

OSCILLOSCOPE TEKTRONIX D466, 100 MHz tube storage $£ 295.0708748836$.

ADVERTISERS PLEASE NOTE

For all your future

enquiries on

advertising rates,
please contact

Malcolm Wells on:

Tel: 081-652-3620

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.10$ per word.

Special rates:

6 insertions $£ 2.10$ per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow
Extras:
Spot Colour 20%
Box number service £22.00

EXAMPLE SIZE

$3 \mathrm{~cm} \times 1$ column For 1 insertion cost is: $£ 45.00$

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT: All major credit cards accepted
Please debit my \qquad card a total off \qquad

Expiry Date:
Please ensure that address given is where your credit card statement goes to.
NAME .
ADDRESS
TEL NO
\qquad
.......................... SIGNATURE
All advertisements must be received five weeks prior to publication date.
All canceliations must be received by eight weeks prior to publication date. After that no advertisement can be cancelled.
Please send to Electranics World \& Wireless World, Classified, 3rd Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Malcolm Wells on 081-652-3620.

ELECTRONIC UPDATE

Contact Malcolm Wells on 081-652 3620

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff

MQP ELECTRONICS LTD.

Tel: 0666825146
Fax: 0666825141
CIRCIENO. 142 ON REPYY CARD

A regular advertising feature enabling readers to cbtain more information on companias' products or services.

LabWindows/CVI

 BrochureThe LabWindows/CVI Brochure, from National Instruments, explains how users can build instrumentation applications on Windows PCs and Sun SPARCstations using the ANSI C programming language and LabWindows/ CVI data acquisition, analysis, and presentation libraries.
NATIONAL INSTRUMENTS
For further information FREEPHONE 0800289877 CIRCLE NO. 146 ON REPLY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcas'ing, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.

All panels are available ex-stock and can be bought direct from OLSON.
Olson Electronics Limited Tel: 0818852884
Fax: 0818852496
CIRCIE NO. 143 ON REPIY CARD

ENGINEERING \& SCIENTIFIC PC

The new 230 page 1994 PC-LAB cataloguc covers an extensive range of PC-based data acquisition, measurement, control, and interface plug-in cards plus supporting software packages for engineering \& scientific applications. Also includes $19^{\prime \prime}$ rack mounting industrial PCS, custom OEM PC chassis and associated sub-systems.
Please contact integrated measurement systems for a free catalogue copy.

Tel: (0703) 771143
Fax: (0703) 704301

2nd EDITION TOKO RF catalogue

Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.
The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
CIrkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN10 7NQ Tel: (0992) 441306 Fax: (0992) 441306 CIRCIENO. 148 ON REPIY CARD

INDUSTRIAL PCs

Arcom's PChus range is expressly developed for embedded control and data acquisition, providing high integrity industrial solutions with:

* full range of CPU and $1 / O$ functions * industrial EMC enclosures * mezzaninc bus expansion * industry standard signal conditioning * Winciows I/ O drivers with predictable performance.
Arcom Control Systems makes plugtogether PC solutions for industry a reality!
Please forward all enquiries to Alan Timmins at: Arcom Control Systems Ltd, Units 8-10 Clifton Road, Cambridge CB1 4WII, UK. Tel: +44 (0)233 $4112($ (n) Fax: 4110457

- Mixed Analogue and Digital
- All SPICE 2G6 analyses
- Behavioural Modelling
- Graphical post-processor
- FREE 10 transistor version
- 640K version £395
- 32 bit extd. mem. ver. £695
- Schematic front-end £149

To receive your FREE working evaluation version just send a 1.44 MB HD 3.5in disk to: EW+WW OHfer, CRaG Systems, 8 Shakespeare Rd, Thatcham, Newbury, Berks
RG13 4DG, Tel (0635) 873670
CIRCLE NO, 147 ON REPLYCARD

High Speed EPROM \& FLASH Programming from your PC
\square Programs EPROMs to 4 Mbits/ 32-pins
\square Supertast $8,16 \& 32$-bit programming
\square Approved algorithms
\square Menu driven software included \square Sophisticated editor functions \square Easy file management \square FREE demo disk available
Slag Programmers Limited Martinfield Welwyn Garden City, Herfordshire, AL7 1 JT UK
Tel: (0707) 332148
Fax: (0707) 371503

CIRCIE NO. 149 ON REPIY CARD

INDEX TO ADVERTISERS

PAGE

PAGE 621 621 621 621 621 621 621 621 621 621 621 621 621 621 621

Anchor Surplus Ltd

Anchor Surplus Ltd 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629

BK Electronics

BK Electronics 636 636 636 636 636 636 636 636 636 636 636 636 636 636 636

Bull Electrical

Bull Electrical BC BC BC BC BC BC BC BC BC BC BC BC BC BC BC

Dataman Designs

Dataman Designs 683 683 683 683 683 683 683 683 683 683 683 683 683 683 683

Display Electronics Ltd

Field Electric Ltd 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629

Halcyon Electronics Ltd

Halcyon Electronics Ltd 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625

John Morrison

John Morrison 635 635 635 635 635 635 635 635 635 635 635 635 635 635 635

John's Radio

John's Radio 678 678 678 678 678 678 678 678 678 678 678 678 678 678 678

JPG Electronics

JPG Electronics 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625

Kestral Electronics

Kestral Electronics 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618

Keytronics

Keytronics 646 646 646 646 646 646 646 646 646 646 646 646 646 646 646
M \& B Electrical
M \& B Electrical 677 677 677 677 677 677 677 677 677 677 677 677 677 677 677
M B Radio (Leeds)
M B Radio (Leeds) 663 663 663 663 663 663 663 663 663 663 663 663 663 663 663
MQP Electronics
MQP Electronics PAGE 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618
Number One Systems
Number One Systems 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629
Pico Technology
Pico Technology 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618
Powerware
Powerware 635 635 635 635 635 635 635 635 635 635 635 635 635 635 635 635
Ralfe Electronics
Ralfe Electronics 704 704 704 704 704 704 704 704 704 704 704 704 704 704 704 704
Research Communications
Research Communications 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625
Seetrax Ltd
Seetrax Ltd 669 669 669 669 669 669 669 669 669 669 669 669 669 669 669 669
Stewart of Reading
Stewart of Reading 635 635 635 635 635 635 635 635 635 635 635 635 635 635 635 635
Surrey Electronics
Surrey Electronics 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650
Technology Sources Ltd
Technology Sources Ltd 672 672 672 672 672 672 672 672 672 672 672 672 672 672 672 672
Tektronix
Tektronix IFC IFC
Telnet
Telnet 654 654 654 654 654 654 654 654 654 654 654 654 654 654 654 654
Tsien Ltd
Tsien Ltd 699 699 699 699 699 699 699 699 699 699 699 699 699 699 699 699
Ultimate Technology
Ultimate Technology IBC IBC

FROM CONCEPT TO ARTWORK IN 1 DAY

Your design ideas are quickly cappured using the ULTIcap schematic design Tool. ULTIcap uses REAL- TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically nires thém for you. ULT cap's auto snap to pin and.auto junction features ensure your netlist is complete, thereby relieving rou of tedious netist checking.

ULTIshell. the integrated user interface, makes sure all your design information is transferred correctly from UUTICap to ULTIboard. Good manual placement tools are vial to the progress of your deslgn, therefore ULTIboard gives you a powerful suite of REAL-TMME functions such as, FORCE VECTORS. RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTlboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

II you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTlboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ElTiboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Firially, your design is post processed to generate pen / photo plots, dot matrixlaser or postscript prints and custom drill files.
CIRCLENO. IOO ON REPLYCARD

I want it. What does it do?

- 8-BIT EPROM - 16-BIT EPROM* - EEPROM

G SERIAL EEPROM* - FLASH - PIC* -8751*
\checkmark EMULATION FREE UPGRADES TOTALLY HANDHELD - 3 YEAR GUARANTEE \checkmark AVAILABLE TODAY!
*Requires optional modules.

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8 Mbit . And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24 hr download from our high speed bulletin boards.

Emulation

See your code running before committing yourself to an EPROM. With S4's powerful and easy-to use internal emulation system, download your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen immediately - just one reason why S4 is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or external power sources; earth loop problems are a thing of the past. S 4 even emulates RAM

Remote Control

As well as being totally stand alone and self contained, S 4 can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal sotware and a pop-up TSR communications utility.

The Company

Dataman has been designing and selling innovative programmers world-wide for over 15
years. As well as having sales and support offices in both the UK and the USA, we supply the world demand for our products via a network of approvec dealers stretching from Noway to Australia.

The Package

S4 comes complete with mains charger, emulation leads, comprehensive manual, PC sottware and a spare library ROM; there are no hidden extras to buy. Upgrading S4's device library is free, does not involve costly internal ROM upgrades and technical support is free for life. Only S4 comes with a three year guarantee.

Availability

S4 is always in stock and we ship worldwide on a daily basis. Call now for delivery TOMORROW. Bona-fide UK customers can try S4 for thirty days without risk. 16,000 users can't be wrong!

Dataman Programmers Ltd
Credit card hotline: 0300320719 for same-day dispatch

