EBECTRORING AND A DEMONSTRATING AND A DEMONSTRATING AND A DEMONSTRATING AND A DEMONSTRATING A

FREE with this issue Hall effect device pack*

£1.95

*First 500 replies, UK & Eire only

JULY 1994

AUDIO New look to amplifier design?

COMPUTING Sorting signals from noise

APPLICATIONS Using Hall to good effect

DESIGN Oscillators in perspective

RF ENGINEERING Millimetre wave devices

THE WORLDS No.1 BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM.

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

- * More sold worldwide than any other of its type.
- * UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
- * High quality Textool or Yamaichi zero insertion force sockets.
- * Rugged screened cabling.
- * High speed PC interface card designed for use with all PC models from XT to 486.
- * Over 1500 different devices (including more than 100 MPU's) supported.
- Tests and or identifies a wide range of logic devices.

- * Software supplied to write own test vectors for custom ICs and ASICs etc.
- * Protection circuitry to protect against wrong insertion of devices.
- Ground control circuitry using relay switching.
- One model covers the widest range of devices, at the lowest cost.
- * No need to tie up a slow parallel port.
- * Two year free software update.
- Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over £300 if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 & 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

- * Super fast EPROM Erasers.
- * 1, 4 & 8 gang EPROM 8Mbit production programmers.
- * Battery operated portable EPROM programmers.
- * "In circuit" Emulators.
- * Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual only £395

Please add £7 carriage (by overnight courier) for UK orders, £20 for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO. Official orders are welcome from Government bodies & local authorities.

Free demo disk with device list available.

- * NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
- BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081 951 1848/9

CONTENTS

FEATURES

CMR UNDER TEST......540

Designers often need to measure small signals superimposed on large voltages but information on common-mode rejection from IC manufacturer data is rarely more than superficial. In a worldexclusive review, consultant Ben Duncan compares this vital parameter in eleven of the top instrumentation amplifiers.

COMMON-EMITTER POWER AMPLIFIERS548 Taken by the idea of linearisation using square law fets, Doug Self investigates the driving of power amplifier loads via collectors rather than emitters. Findings suggest that designers are looking from the wrong perspective.

ACQUIRING DATA FROM NOISE554 In travelling to its destination, a signal from a sensor can easily become corrupted by EMI, losses and noise sources. Dave Robinson looks various ways of removing the impurities.

GRAPH PLOTTING IN WINDOWS......559 Reviewer Allen Brown enthuses about a new software package designed specifically for plotting complex engineering data under Windows - MicroCal's Origin.

European R&D or Euro-waste?

NEWS......532 Video games set to become the driving force behind microprocessor design; 200MHz serial speed-up for VME; Intel to drop X86 architecture rumour.

RESEARCH NOTES.....

Gunn diode breaks frequency and power boundaries, The wobble that gave birth to a planet, Laser that could reshape conventional technology, Physicists find their missing link, Solar power reaps energy benefits.

APPLICATIONS......583 Battery-powered micro-ohm meter, power-fail and reset for PCs, Easy to use programmable oscillator.

DESIGN BRIEF......586 Exploring the LC oscillator in detail reveals that it is rather more sophisticated than it first appears. Ian Hickman explains.

NEW PRODUCTS......591 Scores of the industry's new products presented in a format designed to save you time.

- REGULARS -

More distortion... clearly the best, Ears and knows, Military option, Charge build up, Mixing it, Science friction, Vision thing, Virtual intercourse, Theoretical limits.

CIRCUIT IDEAS......600 Digital sinewave generator, Spare inverter converts 5V to ±15V, Square waves from a 555, Inrush current limiter, High-torque position servo, Monitor shows three-phase sequence, Electronic fuse, Two-wire switch status detection. Isolated I²C bus interface.

In next month's issue: Build a teletext card using Laurence Cook's proven design presented complete with PCB. THE AUGUST ISSUE IS ON SALE FROM JUNE 30

July 1994 ELECTRONICS WORLD + WIRELESS WORLD

COHERER-BASED RADIO563 A century ago, radio-signal detectors comprising metal particles in a glass tube were at the forefront of wireless technology. George Pickworth has been reproducing early equipment based on the 'coherer' and shares the results of his test transmissions.

NEW WAVE MICROWAVES......570 Mike Hosking looks at the variety of active millimetrewave devices now available for specific communications applications including receiving, generating and mixing.

APPLYING HALL TO GOOD EFFECT576

Integrated Hall-effect switches and linearoutput devices have hundreds of uses, ranging from motor speed control to current monitoring. Martin Eccles looks at a handful of them.

USING RF TRANSISTORS......606 Design criteria for transformers used in rf systems are very different from those of their lf counterparts. In an extract from their book RF Transistors: principles and practical applications, Norm Dye and Helge Granberg discuss the differences and provide an insight into the novel transformer solutions available to the rf designer.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

NEW LOW PRICE – NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED HP141T + 8552A or B IF - 8553B RF - 1kHz - 110Mc/s -A IF £600 or B IF – £700. HP141T + 8552A or B IF - 8554B RF - 100kHz -1250Mc/s - A IF £800 or B IF - £900. HP141T + 8552A or B IF - 8555A RF - 10Mc/s - 18GHz - A IF £1400 or B IF - £1600. The mixer in this unit costs £1000, we test every one for correct gain before despatch. HP141T + 8552A or B IF - 8556A RF - 20Hz - 300kHz -A IF £600 or B IF – £700. **HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR – TESTED** HP141T Mainframe - £350 - 8552A IF - £200 - 8552B – £300 – 8553B RF – 1kHz – 110Mc/s – £200 – 8554B RF – 100kHz – 1250Mc/s – £400. 8555A RF – 10Mc/s 18GHz – £1000. 8556A RF – 20HZ – 300KHZ – £250. HP8443A Tracking Generator Counter – 100kHz – 110Mc/s – £300 – £400. HP8445B Tracking Pre-selector DC – 18GHz – £400-£600 or HP8445A – £250. HP8444A Tracking Generator - £750 - 1300Mc/s HP8444A Opt 059 Tracking Generator - £1000 - 1500Mc/s. **SPECIAL OFFER – 14 ONLY** HP140T (NON-STORAGE) Mainframe Plus 8552A IF Plug-In Plus 8556A RF Plug-In 20Hz – 300kHz Plus 8553B RF Plug-In 1kHz – Hin 20072 - SUMARZ Frius 63335 hr Friug-Hin Hkriz - 110MC/s. Tested with instructions - £700. Marconi TF2008 - AM-FM signal generator - also sweeper - 10Kc/s - 510Mc/s - from £250 - tested to £400 as new with manual - probe kit in wooden carrying box. HP requency comb generator type 8406 - £400 to £600 - old or new colour. HP sweep Oscillators type 8407A - 8412A + 8501A - 100Kc/s - 110Mc/s - £500 - £1000. HP vetor Voltmeter type 8407A - 8412A + 8501A - 100Kc/s - 110Mc/s - £500 - £1000. HP Amplifier type 8407A - 1400Mc/s 1200 - HP24047F. 1-1300Mc/s £4400. HP Amplifier type 8407A - 8412A + 8501A - 100Kc/s - 110Mc/s - £500 - £1000. HP Amplifier type 8407A - 8412A + 8501A - 100Kc/s - 100 110Mc/s. Tested with instructions - £700.

enc. B&K Items in stock – ask for list. W&G Items in stock – ask for list. Power Supplies Heavy duty + bench in stock – Farnell – HP – Weir – Thurtby – Racal etc. Ask for list. ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR OEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (0274) 684007. Fax: 651160

CIRCLE NO. 102 ON REPLY CARD

VISA

EDITOR Frank Ogden 081-652 3128

DEPUTY EDITOR Martin Eccles 081-652 8638

CONSULTANT Derek Rowe

DESIGN & PRODUCTION Alan Kerr

EDITORIAL ADMINISTRATION Lorraine Spindler

081-652 3614 ADVERTISEMENT MANAGER

Richard Napier 081-652 3620

DISPLAY SALES EXECUTIVE Malcolm Wells 081-652 3620

ADVERTISING PRODUCTION Paul Burgess 081-652 8355

PUBLISHER Susan Downey

EDITORIAL FAX 081-652 8956

CLASSIFIED FAX 081-652 8956

SUBSCRIPTION HOTLINE 0622 721666

Quote ref INJ SUBSCRIPTION QUERIES 0444 445566

NEWSTRADE DISTRIBUTION Martin Parr 081 652 8171

BACK ISSUES Available at £2.50 081 652 3614

ISSN 0959-8332

European R&D or Euro-waste?

t looks as if the Clinton administration is prepared to go further than ever before in directly intervening to encourage manufacturing activity.

The EU, which has always been prepared to subsidise research, but has been reluctant to finance manufacturing directly, must now start to take notice: in certain critical markets, it looks as if the EU could fall hopelessly behind the rest of the world.

One of these is flat-panel displays for which the US Government has just announced a \$1bn support programme aimed directly at manufacturers.

Japan has a 95 per cent share of the world flat panel market – now approaching \$5bn and set to grow to \$20bn within the decade. Just as with semiconductors in the 80s, such an imbalance threatens trade wars, shortages and over-pricing in the 90s as Japan, quite naturally, exploits its monopoly.

Europe, for many years, backed R&D into flat panel technology. Although this resulted in a successful series of programmes, no European company except Philips, is going to mass manufacture the panels.

Without mass manufacture, Europe will glean little benefit from the money spent on R&D. European electronics equipment manufacturers will have to pay high Japan-dictated prices.

President Clinton has been smarter than the EU. He has insisted, as a precondition of getting Federal R&D funds, that the recipients put up a similar amount to build factories.

That is reminiscent of the famous chip R&D programmes which the Japanese Ministry of International Trade and Industry initiated in the 70s and 80s to give Japan a world-class semiconductor industry – manufacturing was a precondition for the R&D money.

The lesson for Europe is clear: giving money to scientific programmes is all very well but that doesn't produce future revenues from which profits can be taken to fund the next generation of R&D.

Yet though everyone in Europe is keen to spend government money on R&D, there is practically no one ready to take the commercial risk of putting high-tech components into volume manufacturing.

It is absolutely clear to everyone, except Europe's leaders, that the people who can afford to take the risk – the big companies – won't take it but those who are prepared to take the risk – small entrepreneurs – can't afford it.

The EU must therefore seek to create an environment for the entrepreneur to undertake high-tech manufacturing – fiscally, technically and socially.

For if manufacturing does not happen as the result of R&D then R&D is essentially no more than intellectual onanism – failing to produce the seed for next-generation products.

David Manners - Electronics Weekly

Newstrade: IPC Marketforce, 071 261-5108. Subscriptions: Quadrant Subscription Services, Oaktield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone C444 445566. Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.

USA: \$52.00 airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117. **Dverseas advertising agents:** France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117.Telephone (212) 867-2080. Ttx 2382⁻¹

USA malling agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Pahway NJ Postmaster. Send address changes to above.

Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DA' 4 5DT

©Reed Business Publishing Ltd 1992 ISSN 0959 8332

Electronics World + Wireless World is published monthly. By post, current issue £2.25, back issues (if available) £2.50. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. TIX:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.

Microprocessor game is the real business

M icroprocessor evolution will in future be driven by the demands of games, not PCs, says Len Perham, president and chief executive officer of Integrated Device Technology.

"The games people are looking for tremendously high performance processors – one of the top five has asked me for a 64-bit processor with a 800Mbit data rate,"

Perham added: "We're developing it, and we can see it costing only \$20." IDT is a licensee of the Mips micro architecture.

Perham also sees the manufacturers of games machines moving inexorably into the computer market. "By the year 2000, Nintendo will be a computer company," he predicted.

The advantage which the games machine makers have over the computer companies is that they have to manufacture to very low costs. "Nintendo and Sega say you can't sell in volume for more than £250," said Perham. NEC, Toshiba and Sony hold rights to the Mips processor.

It will not only be dedicated games machines that will require this power. The set-top controller driving remote terminals, the home entertainment system and home security will demand 64-bit performance because the graphics take so much processing power.

High flyers: the performance demands of video games coupled with enormous potential sales volumes are now more important to microprocessor development than business applications. James Thomas, Director of Risc micro development at IBM, concurs: "Set-tops and PDAs are going to be the explosive areas of the second half of the 90s," he told Dataquest's recent European semiconductor Industry Conference in London. "Kids," concludes IDT's Perham, "can absorb as much computer power as you can give them."

Ordinary PCs can operate as effective video game players by placing video game machines onto PC cards. This approach is being taken by game player designer 3DO which is working on custom chips that will allow it to sell its system as a PC plug-in board. Atari, with its 64-bit *Jaguar* game system recently signed a deal with Sigma Designs to produce a board combining *Jaguar* with Sigma's full motion video technology.

The US based Software Publisher's Association (SPA) estimates that about 27 percent of US households own a personal computer. About a third of those PCs were purchased within the last year. As prices continue to fall for PC hardware and software, the SPA predicts that demand for powerful home based PCs will continue to grow. **David Manners,** Electronics Weekly.

Faster technology for speeding motorists

T he automatic intelligent recognition system, named Talon, designed to recognise the most obscured, tilted or damaged vehicle number plates is latest piece of technology to persecute motorists.

The system uses neural networks for number plate pattern recognition. In its simplest form it consists of a camera, illuminator and a plate recognition unit (PRU) which contains the programmable DSP hardware. The PRU consists of an image grabber board, a general purpose PC board and a DSP board on which the neural network is implemented.

The system triggers automatically when encountering the right colour (yellow or grey) or image of a number plate.

The plate is then segmented into individual characters before being fed into the recognition process that uses proprietary neural network techniques implemented on five Texas Instruments *TM320C50 DSP* chips.

All imperfections associated with number

plates are included in the training data which makes the recognition process resilient to noise such as dirt, poorly defined or distorted characters. In this way the network is also trained to de-skew and de-rotate in order to recognise the plate.

Talon recognises number plates in approximately 0.25s. The success rate is higher than 90 per cent.

Talon works in many weather conditions and for night vision any off-the-shelf infrared camera and illuminator can be used. Plate shadowing can be eliminated with infrared filters on the camera.

The system was originally developed by

Camcorder controlled by the eye

Canon of Japan claims to have developed the first camcorder which is controlled by eye movements. To focus, the camcorder uses infrared light to determine where the user's eye is looking in the field of view. It then focuses on this point automatically. Other camera functions are operated by the user looking at icons displayed alongside the image in the viewfinder.

B CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 0203 6507702 Fax: 0203 650773 Mobile: 0860 400683	Dymar 2085 AF Power meter £200 Farnell RB 1030-38 Electronic load 1Kw. £450 Farnell AMM/B Automatic modulation meter £150 Farnell 2081 R/E Power meter POA Fedback TWG300 Test waveform generator £200 Fischer Betascope 2040/2080 Costing thickness computer & non destructive coating measurement instrument & many jigs and extras Fluke 8840A Multimeter (IEEE) £300	Merconi 2022E (10KHz-1.01GHz) sig gen £1850 Merconi 2015A (10KHz-1.04GHz) sig gen £1850 Phillips PM 2255 Multimeter WF 1EEE £650 Phillips PM 5167 10MHz functiongen £400 Phillips PM 5167 10MHz functiongen £400 Phillips PM 5190 LF synthesizer with GPIB £800 Phillips PM 5190 LF synthesizer with GPIB £800 Phillips PM 519 Colour V patteringen £400 Phillips PM 5716 Pulse generator high freq. mos £600 Phillips PM 5712 Outgen 100MHz £150 Phillips PM 6722 1GHz umer/counter WF 1EEE £650
(Premises situated close to Eastern-by-pass in Coventry with easy	Fluke 5200A Programmable AC calibrator . POA	Photodyne 800 Fibre optic attenuator
access to M1, M6, M40, M42, M45 and M69)	Fluke 8010A Digital multimeter	Projectina CH9345 Microscope
OSCILLOSCOPES	Fluke 95020 Current shunt	Racal Dana 3100 40-130MHz synthesiser
Gould 400 – 20MHz D.S.O. 100 Ms/s	Gay Milano FTMIC/FTM3C – FTM – Fast transient monitor £250 General Red 1658 LCB Digibridge	Racal Dana 5002 Wideband level meter £550 Racal Dana 5003 Digital m/meter £150
Gould 1604 - 4 channel D S.O 20MHz £1750	General Rad 1621 Precision capacitance measurement system POA	Racal Dana 9000 Microprocessing timer/count 52MHz £250
Gould 1421 – 2 channel D.S.O. 20MHz	Hewlett Packard *80TR Display unit with 8755B swept amp an £350	Racal Dan 9009 Modulation meter
Hewlett Packard 1707A, 1707B – 75MHz dual ch from £275	Hewlett Packard 3400A RMS voltmeter	Racal Dana 9084 Synth sig gen 104MHz
Hewlett Packard 1740A, 1741A, 1744A, 100MHz dualch. from £350	Hewlett Packard 3406A Broadband sampling voltmeter £175	Racal Dana 9242D Programmable PSU 25V-2A £300
Hewlett Packard 182C – 100MHz 4 ch	Hewlett Packard 3437A System voltmeter £350	Racal Dana 9246S Programmable PSU 25V-10A . £400
Nicolet 3091 – Low freq D S O	Hewlett Packard 3476A Digital multimeter 4 wire system, 1EEE 2650	Racal Dana £341 LCR databridge £250
Philips 3055 - 60MHz dual ch	Hewlett Packard 3490 Digital multimeter . POA	Racal Dana 9500 Universal timer/counter 100MHz . £200
Tektronix 2201 – 20MHz D S.O dual ch £675	Hewlett Packard 3702B/3705A/3710A/3716A Microwave link	Racal Dana 9917 UHF frequency meter 560MHz 175 Racal Dana 9919 UHF frequency meter 16Hz
Tektronix 2215 – 60MHz dual ch	Hewlett Packard 3730A Down converter (with 3738A or 3737A) £200	Rchde & Schwarz BN36711 Digital Q meter £400
Tektronix 2235 – 100MHz dual ch (portable) . £800	Hewlett Packard 3760/3761 Data gen + error detector each £300	Solartron Schlumb 1170 Freq response analyser
Tektronix 2246 – 100MHz 4 channel (as new)	Hewlett Packard 3762/3763 Data gen - error detector each £350	Textronix TM503, SG503, PG506, TG501 Scope calibrator £2200
Tektronix 465/465B – 100MHz dual ch from £350	Hewlett Packard 3779A Primary multiplex analyser £800	W&G SPM12 Level meter 200Hz–6MHz £500
Tektronix 475 – 200MHz dual ch £450	Hewlett Packard 400E/F AC voltmeter £150	W&G PS12 Level generator 200Hz–6MHz £500
Tektronix 468 – 100MHz D S O. dual ch	Hewlett Packard 4193A Vector Impedance meter £3500 Hewlett Packard 4204A Oscillator 10Hz = 1MHz \$250	W&G PS60 Level meter 6KHz=18 6MHz 2500
Tektronix 7704 – 250MHz 4 ch	Hewlett Packard 435A Power meter (less sensor) £350	W&G PS6 Level generator 6KHz-18 6Mhz £250
Tektronix 7834/7844 – 400MHz 4 ch	Hewlett Packard 456A AC current probe POA	W&G SPM6 Level meter 6KHz-18 6MHz £250
Textronix 7904 – 500MHz Trom 1850 Philing 3070 – 100MHz 2 + 1 channel + cursors as new 5900	Hewlett Packard 415E SWH meter £275 Hewlett Packard 53354 Linuxersal counter with 1EEE £1800	Watenabe W1R2113 per plotter 230 Wavetek 157 Programmable waveform synthesiser 2300
Philips 3206, 3211, 3212, 3217, 3226, 3240, 3243, from \$125 to \$350	Hewlett Packard 5342A Microwave freq count 18GHz £1400	Wayne Kerr B424/N LCR Component meter set . £200
3244, 3261, 3262 (2ch + 4 ch)	Hewlett Packard 7402 Recorder with 17401A x 2 plug-ins £300	Wayne Kerr #250 LCR meter (as new) £1000
Other scopes available top	Hewlett Packard 8005B Pulse generator 1250 Hewlett Packard 8011A Pulse gen 0 1Hz – 20MHz £500	Weller D800/D801 Desoldering station . £175
SPECTRUM ANALYSERS	Hewlett Packard 8012B Pulse generator £750	Weller D900 Desoldering station
Ailtech 727 – 20GHz	Hewlett Packard 8013B Pulse gen 1Hz – 50MHz . £750	Wiltron 352 Low freq_differential input phase meter £350
Advantest TR4131 - 10KHz - 3 5GHz £4500	Hewlett Packard 8443A Tracking gen/counter with 1EEE 2450	SPECIAL OFFERS - Phoenix 5500A Telecoms analyser, ex
Hewlett Packard 3560A - 5Hz - 50KHz	Hewlett Packard 8445B Automatic presetter _ £700	demo as new with 12 months calibration + 12 months guarantee
Hewlett Packard 182T with 8559A (10MHz – 21GHz) £3750	Hewlett Packard 8601A 110MHz Gen/sweeper 110MHz £350	Bing/Fax for details Navtel 9440 Protocol analyser, ex demo as
£4500	Hewlett Packard 8750A Storage normaliser £400	new £8000 riew - cost now £3500. Navtel 9410 PCB based protocol
Marconi 2370 – 110MHz	Hewlett Packard 938A Freq. doubler £250	analyser ex demo as new £3000 new - cost now £1500.
Tektronix 7L18 with 7603 mainframe (1 5-18GHz) £3500	Keithley 197 20M-lz with 1EEE \$400	
Tektronix 492 – 21GHz	Lyons PG73N/PG75/PG2B/PG Pulse generator from £225	MANY MORE ITEMS AVAILABLE - SEND
MISCELLANEOUS	Marconi 2019A 80KHz - 1040MHz sigi gen £1800	LARGE S.A.E. FOR LIST OF EQUIPMENT
Anritau ML93B/ML92B Optical power meter with sensor £2000	Marconi 2337 Automatic dist meter POA	ALL EQUIPMENT IS USED - WITH 30 DAYS
Anritsu ME538C Microwave system analyser (Rx + Tx) £3500	Marconi 2356 20MHz level oscillator . £300	GUARANTEE, PLEASE CHECK FOR
B&K 2511 +1621 Vibration test set	Marconi 2432A 500MHz digital freq meter £200 Marconi 2610 True BMS voltmeter £900	AVAIL ABILITY BEFORE ORDERING
B&K 2515 Vibration analyser	Marconi 2830 Multiplex tester £1250	AVAILABILITT BEFORE ORDERING -
Daymarc 1735 Transistor tester/sorter (with all jigs) £5000	Marconi 2831 Channel access switch £500	CARRIAGE & VAI TO BE ADDED
Dranetz 305 Phase meter	Marconi 5390 1GHz signal gen £1250 Marconi 6920 Power sensor £400	TO ALL GOODS

CIRCLE NO. 103 ON REPLY CARD

SEETRAX CAE - RANGER - PCB DESIGN

Ranger1 £100

- * Schematic capture linked to PCB
- * Parts and wiring list entry
- * Outline (footprint) library editor
- * Manual board layout
- * Full design rule checker
- * Back annotation (linked to schematic)
- * Power, memory and signal autorouter £50

SETTRAX/

All systems upward compatible. Trade-in deals available.

Call Seetrax CAE for further information\demo packs. Tel 0705 591037 Fax 0705 599036

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hampshire, PO8 0SG

All trademarks acknowledged.

Ranger2 £599

- All the features of Ranger1 plus
- * Gate & pin swapping (linked to schematic)
- Track highlighting
- * Auto track necking
- * Copper flood fill
- * Power planes (heat-relief & anti-pads)
- * Rip-up & retry autorouter

Ranger3 £3500

All the features of Ranger2 plus

- * UNIX or DOS versions
- * 1 Micron resolution and angles to 1/10th degree
- * Hierarchical or flat schematic
- * Unlimited design size
- * Any-shaped pad
- * Split power planes
- * Optional on-line DRC
- * 100% rip-up & retry, push & shove autorouter

Outputs to:

- * 8/9 and 24 pin dot-matrix printers
- * HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
- * HP-GL, Houston Instruments plotters
- * Gerber photoplotters
- * NC Drill Excellon, Sieb & Meyer
- * AutoCAD DXF

Big speed-up for VME

July will see the first production shipments of a *Spanceiver* chip for high speed serial data transfers across the VMEbus.

Called *Autobahn*, and developed jointly by Motorola and German real-time board maker PEP Modular Computers, the technique essentially provides a serial bypass, with transfer rates of between 200 and 400Mbyte/sec, to the 32-bit or 64-bit parallel bus transfers occurring on a standard VMEbus backplane.

Balloting to accept *Autobahn* as an ANSI standard should be completed by the end of the year, according to PEP president Josef Kreidl.

Autobahn was developed because the traditional way of boosting data throughput is to increase the word width or increase the clock frequency or both. But this cannot go on indefinitely because of the respective trade-offs of more board space and greater power dissipation.

Using a high speed serial link to transmit large amounts of data avoids many of these problems. The crucial device needed to convert the 32 – bit parallel data into a

New conversion leads the field

US firm Comlinear believes it has developed an analogue-to-digital converter (ADC) architecture capable of providing 12-bit performance at conversion rates as high as 50MHz.

The subranging architecture uses novel techniques in the second stage to minimise the comparator count, avoiding the associated power dissipation penalty while boosting conversion speed.

The firm has designed a 12-bit 25MHz ADC called the CLC950, which it claims has a better performance than any other monolithic converter of its class on the market. It is to be followed early next year by the CLC951 device with a 12-bit, 30MHz performance and a third chip with a target conversion rate of 50MHz.

In a classic subranging ADC architecture the comparator ladder is split into several smaller blocks or ranges. This scheme reduces power consumption and saves silicon area. Conversion errors caused by an input being close to a sub-range boundary

Fine vision of the future

N ikon, the world's top maker of stepper machines for lithography on chips, has started the R&D programme for the 16Gbit dram under the auspices of the Japanese government backed research organisation Sortec.

Nikon says it has already developed lithographic techniques for feature sizes down to 0.05μ m using a an X-ray with a 13nm wide beam, and a feature size of 0.015-micron using a 4.5nm X-ray beam. 200Mbyte/s serial stream is Motorola's *Spanceiver*.

Kraus points out that the high speed of ECL can be achieved without a corresponding rise in power dissipation. The net result is that the power overhead associated with using the Autobahn Spanceiver chips is about 100Mbyte/s/W when performing transfers of 200Mbyte/s. This compares with figures of 8Mbyte/s/W for a typical VMEbus system transferring 32bit parallel data at a rate of only 40Mbyte/s.

The Spanceiver is also designed to minimise the protocol overhead, the time taken to set up transmissions. The chip contains a novel phase locked loop (PLL) design combined with a start stop oscillator that allows data to be transmitted in bursts without preamble bits. This means that when transmission starts, the PLL locks on the first sync bit so that the normal settling period required for clock recovery is eliminated. The data transfer is nearly overhead free with only one sync bit needed for every byte transmitted. The bit error rate will also be reduced. **David Darcy.**

are usually detected by having a small number of extra comparators either side of the boundary. The errors are then corrected digitally.

The subranging technique is closely related to the two stage residue architecture. Both techniques need an overlap between the first and second stages, typically of two bits to correct for overall system errors. (six bits plus eight bits would be needed for a 12-bit converter).

The Comlinear architecture converts five bits in the first stage using a classic flash comparator ladder. However, according to engineer Kurt Rentel, the innovative second stage needs no overlap nor does it employ signal averaging techniques.

The CLC950 has a signal-to-noise ratio (SNR) of 65dB for a full-scale analogue input at 12.49MHz. However, the spurious free dynamic range (SFDR) is 70dB rising to 74dB for a 9.96MHz analogue input. The SNR is then 66dB.

Simon Parry, Electronics Weekly.

Nikon's schedule for the stepper is to have it available for chip companies by 1999 when it is expected that the first prototypes of 16Gbit DRAMs will be made.

The current leading technology dram in mass production is the 16Mbit made on 0.5µm processes. It is expected to be succeeded by: 64Mbit on a 0.35µm process; 256Mbit on 0.25µm; 1Gbit on 0.15µm; 4Gbit on 0.065µm, and 16Gbit on 0.035µm.

Intel to kill off ageing family?

S olid rumours out of Intel claim that the US microprocessor company's next-butone device will break with the existing x86 architecture, relying on x86 emulation to maintain compatibility with older systems. Sources say that the P7, that will appear close to the end of this decade, will be a pure risc design unlike the current Pentium and its successor, the P6, which mix risc and cisc designs.

Asked if it were true that the P7 would have to emulate some x86 instructions an Intel spokesman said: "We're really not talking about the P7 yet publicly. It's so early in the development of that product that I doubt there is much locked in concrete yet."

The company would hope that a risc design for the P7 will allow it to keep up with microprocessor rivals such as the PowerPC. The P7 will be able to separately process cisc and risc instructions with the cisc instructions being processed in a hardware emulation of an x86 microprocessor.

Intel plans to introduce its successor to the *Pentium*, code-named P6 by the end of 1995. This device is expected to be sold as a two-chip module featuring the CPU with 256kbytes of high speed cache memory.

Devereux dies

Frederick Leslie Devereux, who retired in 1965 as Editor of *Wireless World*, has died.

Born in Birmingham on May 5, 1900, "Dev" developed an interest in "wireless" very early, while at school. In 1917, he went to the Admiralty Board of Invention and Research at Harwich as a lab. mechanic working on asdic and in 1918 joined the anti-submarine division of the Royal Navy as a midshipman. Later, he joined his father's manufacturing jewellery business, but decided instead to take a degree in physics from Birmingham. Armed with that, he went into sound broadcasting, worked on receiver development, wrote on the subject for the *Birmingham Post* and naturally gravitated to WW, eventually becoming Assistant Editor under H F Smith' and Editor in 1957.

His knowledge of the industry was prodigious, particularly of the audio side. He appeared to know everyone, sometimes using this knowledge to bully nervous potential authors into writing for the journal, even though he knew the result might be in pidgin English.

His sense of humour was usually well to the fore and frequently in use to cut cocky journalists down to size.

My own experience of this was when I had written a piece about the 1963 deliberations on the choice of colour television system in and proudly submitted it for his comments. "You know, they have to chop trees down to print this stuff; it's a pity to waste them, don't you think?", he said. "Go away and rewrite it, preferably in English".

It was Dev who accepted Arthur C Clarke's 1945 piece on the possibility of communications satellites against the advice of his colleagues who thought it was nonsense. He took it home with him, did the sums and, realising it was feasible, went ahead, thereby presenting the journal with a cachet that has lasted fifty years. **Philip Darrington**

Tektronix Das 9100 Logic analysers. Complete – £700. Nicolet 800A Logic Analysers – 48 Ch–16 Bit – £450. HP7580B–7585B Drafting Plotter – £1,000. Bradley 127 DC Voltage Calibrator + £250. Bradley 125B AC Calibrator + Ration Transformer 1255 + PI 1254B 50 C/s 60–400–1KC/s – £250. Bradley 1258 AC Calibrator + Hattor Hatson Harstonne 1235 + F1 1254 50 003 60-400-1 KC/s - £250 Marconi 6460 / Power Meters + Heads RF various - £250 ea. Marconi 6460 Power Meters + Heads RF various - £150 ea. Marconi CT499 MkII RF Watt Meter Absorption 1-3-10-30-100W - 50ohm + 70ohm Convertor Adaptor - £350. Includes RF Adaptors Low Loss. Marconi C 1499 Mkil HF wath Meter Absorption H3-10-30-100W = 300 min 1700 f Convertor Adaptor - 2530. Includes RF Adaptors Low Loss. HP59500A Multiprogrammer or HP6941B – £100–£200. Datalab DL1200 Waveform Recorder – £300. Solatron 1170 FX Response ANZ-Led – £300. HP59401A Bus System ANZ. ST C Optical Fibre Reflectometer OFR6 – £300. HP3497A Data Acquisition Control Unit – £300. Redifon Synthesized Receiver R1001–CW–AM–USB–LSB–PIC–STORE–Led Readout – 15KC/s–30MC/s – £600. Racai LA1117 Piccolo Modem – £150. Redifon RFS11 Pre-Selector – Post Selector – 1MC/s–32MC/s – £200. Sayrosa 3–39MC/s Programmable Freq Syn–Type 607+607B – £200–£300 Racai TA1816 1Kw Solid State Transmitter – MA1034+3 Pare Amps – £1.000. H.C.D. Research Ltd Precision Oscillator 1519 5000/1000KHz – £250. Nimbus 400Hz Convertor Mains – 240AC–500C/s Input–Output 115V–400Hz – 500V/A Programmable 0–125V. G500 FPL – £300. G200R as above – 200V/A – £200. $\label{eq:2007} \begin{array}{l} 200V/A=2200.\\ \mbox{Hedinair} + \mbox{Montford Environmental Ovens etc. Big+Small-$200-$1,000.\\ \mbox{ICL Clean Linez Unit-$2300.\\ \mbox{HP6525A DC P:U.O-$400V-$50M/A-$350.\\ \mbox{Polaroid} + \mbox{CR-9 Cameras for Oscilloscopes-$100.\\ \mbox{HP6527A DS P:U.O-$400V-$50M/A-$350.\\ \mbox{Polaroid} + \mbox{CR-9 Cameras for Oscilloscopes-$100.\\ \mbox{HP3710A IF-BB Transmitter, HP3702B IF/BB Receiver + $3705A Phase Detector-$250.\\ \mbox{Moor & Reed Frequency Convertor 400C/s 3 Phase Type SFC 6K/3AXR-Solid State = $20Amps/Mains 240V AC-$50C's Input-$600.\\ \mbox{HP7586B Plotter Large Quantity Accessories Pens etc. - HP-IB-RS2320-$1.000.\\ \mbox{Benson 16 B280 Asynchrome Interface + Accessories & Pens etc-$600.\\ \mbox{Imtec 6000 Microfilm Reader & Printer, $A4-A2 sizes - $Plain Paper - Various Lenses - $2750.\\ \mbox{Fluke Y5020 Current Shunt-$150.\\ \mbox{B&K BFO 1022-$200.\\ \mbox{Tektronix Spectrum ANZ-1L5-50HZ-1MC/s-$150-$} \\ \end{tabular}$ Hedinair + Montford Environmental Ovens etc. Big+Small – £200–£1,000. Bak BPO 1022 - L200 Tektronix Spectrum ANZ-1L5-50HZ - 1MC/s - £150 -1L20-10MC/s - 4200MC/s - £250. ARNELL PJ. J. AP60-50-60V-50Amps - £1.000 Tracor 527E Frequency Difference Meter - £350. HP8900B Peak Power Calibrator - £250. Bak 2425 Electronic Vollmeter - £200. HP4437A 600 ohms Attenuator - £150. HP6177C DC Current Source - £250. Bak Two Channel Level Recorder - £400. Tektronix 2215 60MC/s Oscilloscope - £1.000. Tektronix 2215 60MC/s Oscilloscope - £1.000. Tektronix 2245 100MC/s Oscilloscope - £1.000. Tektronix 491 Spectrum ANZ 10ML/s -40GHC - £1.000. Farnell P.U. H30/100 - £500. Schlumberger S1 4922 Radio Code ANZ - £400. Aerial Array on metal plate 9'x9' containing 4 aerials plus Narda detector. 100-11GHZ using N type and SMA Plugs & Sockets - ex equip - £100. Marconi TF2175 Power Amplifier - 1.5MC/s-520MC/s + Book - £100. Schlumberger 2741 Programmable Universal Counter - 0-1250MC/s - £600. Textronix 576 Calibration Fixture - 067-0597-99 - £250. Texscan Rotary Attenuators BNC/SMA - 0-10-60-100DBS - £50-£150. HP309C Slotted Line Carriage - Various Frequencies to 18GHZ - £100-£300. HP332-536-537 Frequency Meters Various Frequencies - £150-£250. SE. Lab SM215 MkI Transfer Standard Volimeter - 1000 Volts. Ailtech Stoddart P7 Programmer - £200. HP539501A HP-IB Isolated D/A Power supply programmer. HP333AD bigital Multimeter - £150. HP50207B DC Power Supply - £100. HP5207B DC Power Supply - £100. HP5207B DC Power Supply - £100. HP5207B DC Power Unit - £100. HP5207B DC Power Unit - £150. HP5011T Logoc Trouble Shooting Kit - £150. HP5011T Logoc Trouble Shooting Kit - £150. HP5011T Logoc Trouble Shooting Kit - £150. HP5131 Calibrator Head - £150. HP51 Bak BPO 1022 - 2200. Tektronix Spectrum ANZ-1L5-50HZ - 1MC/s - £150 -1L20-10MC/s-4200MC/s - £250. FARNELL P.U. AP60-50-60V-50Amps - £1,000. Marconi 2830 Multiplex Tester. Marconi 2828 Digital Simulator. Marconi 2831 Channel Access Switch. Marconi ZoST Challing Access Switch. Marconi TF2337A Automatic Distortion Meter – £150. HP489A Micro-Wave Amp–1–2GHZ – £500. Fluke 893A Differential Meters – £100 ea. EG&G Parc Model 4001 Indicator 4203 Signal Averager PI.

Tecktronix Plug-In AM503-PG501-PG508-PS503A-PG502. Cole Power Line Monitor T1085 - \pounds 250. Claude Lyons LCM1P Line Condition Monitor - \pounds 250. Bell & Howell TMA3000 Tape Motion Analyser - \pounds 250. HP5345A Automatic Frequency Convertor - .015-4GHZ - \pounds 350. HP3200B VHF Oscillator - 10-500MC/s - \pounds 200. Sencore SC61 Waveform ANZ-Microprocessor 60-100MC/s - \pounds 350. HP3200B VHF Oscillator - 10-500MC/s - £200.Sencore SC61 Waveform ANZ-Microprocessor 60-100MC/s - £350.Schlumberger 3531D Date Acquisition System - £300.Marconi 6700A Sweep Oscillator with 1-2GHZ PI 6730A - £400.B&K 2218 Sound Level Meter - £600.EIP 351D 18GHZ Counter-Microwave - Led - £700.EIP 351D 18GHZ Counter-Microwave - Led - £800.EIP 451 18GHZ Counter-Microwave - Led - £900.Systeron Donner 6054D 18GHZ Counter - Microwave - Led - £800.Systeron Donner 6054D 18GHZ Counter - Microwave - Led - £800.Systeron Donner 6057 18GHZ Counter - Microwave - Led - £800.Systeron Donner 60571 8GHZ Counter - Microwave - Nixey - £600.HP5340A 18GHZ Counter Microwave - Nixey - £800.Systeron Donner 6051 18GHZ Counter Microwave - Nixey - £800.Systeron Donner 6061 18GHZ Counter Microwave - Nixey - £800.Systeron Donner 6061 18GHZ Counter Microwave - Nixey - £800.Austron 2004 Receiver Loran - £250.Austron 2010A Disciplined FX Standard - £250.Austron 2010A Disciplined FX Standard - £250.Microtel MSR-903 Microwave Receiver - .03-18GHZ - AM-FM - £2,000.Microtel MSR-903 Microwave Receiver - .03-12MC/s - £1,000.Aittech NM37/57 EMI/Field Intensity Meter - .01-.032MC/s - £1,000.Aittech NM65T EMI/Field Intensity Meter - .01-00MC/s - £1,000.Aittech NM65T EMI/Field Intensity Meter - .01-00MC/s - £1,000.Fluke 5205A Power Amp - £1,200.B&K 1634 Stord Map.B&K 2134 Sound Intensity AnalyserB&K 2007 Measuring Amp.B&K 4008 Two Channel Microphone Selector.B&K 4008 Two Channel Microphone Selector.B&K 4006 B&K 2134 Sound Intensity Analyser B&K 280 Microphone Power Supply. B&K 4408 Two Channel Microphone Selector. B&K 4410 Stroboscope. B&K 1606 Pre-Amp Vibration. B&K 4420 Distribution Analyser. B&K 1014 B F O. Oscillator. B&K 2307 Level Recorders. B&K 2307 Level Recorders. B&K 2003 Tape Recorders. B&K 2003 Tape Recorders. B&K 2615 Charge Amplifier. Fluke 9010A Micro-systems trouble shooter & many Pods – £350 + Pods or Probe. Racal/Dana 5002 Wide Band Level Meter. Racal/Dana 5002 Wide Band Level Meter. Racal/Dana 5002 Wide Band Level Meter. Racal/Dana 5005-S-4622 Digital Multimeter. AVO RM215 – U2 AC/DC Breakdown Leakage & Ionisation Tester – £400–£450. Fluke 80K – 40 High Voltage Probes – New in Case – £100. Watkins Johnson 340A–4 RX LF–1–800KC/s AM–FM–CW – Led Readout – £750. Watkins Johnson 340A–4 RX LF–1–800KC/s AM–FM–CW – Led Readout – £600. Watkins Johnson 73A–2 HF Receiver – 0.5–30MC/s – AM–FM–CW – £400–£500. Watkins Johnson Receivers from 1KC/s to 10,000MC/s also Tuning Heads – Am–FM–CW – £400–£500. Watkins Johnson Receivers from 1KC/s to 10,000MC/s also Tuning Heads – Amps–Counter Readouts – Signal Displays – £100. Watkins Johnson Receivers from 1KC/s – £1,000–£1,500. Racal MA1720 TX Drive Units 1–30MC/s – £1,000–£1,500. Racal MA1720 TX Drive Units 1–30MC/s – £1,000–£1,500. Racal RA1779 HF RX-10KC/s–30MC/s – £1,000. Racal RA1779 HF RX-10KC/s–30MC/s – £1,000. Racal RA1779 HF RX-10KC/s–30MC/s – £100. Back 2609 Measuring Amp – £250. Plessy PR2250G & H-HF RX LF to 3C MC/s–Memory–Led Readout – £650–£1,000. B&K 4219 Artificial Mouth – £250. Pressy Prezziod a TPTI TVC II tok III to Monito' Monito' Reprint 2017 1975 B&K 2609 Measuring Amp - 1250. B&K 4215 Artificial Mouth - £250. B&K 4219 Artificial Voice - £250. B&K 4219 Artificial Nouth - £250. HP3406A Sampling Voltmeter (Broadband) - New Colour - £200. HP7404A Oscillograph Recorder - 4 Track - £350. HP1710B .01-11MC/s - Down Convector for 8640B - £350. HP11710B .01-11MC/s - Down Convector for 8640B - £350. HP1170A Pulse Modulator - 2.4 GHz - £1,000. HP8403A Modulator - 0.4-12.4 GHz (8731-8735B) Modulators - £100-£250. HP8699B Sweep Plug-in - 0.1 -4 GHz - Using Yigs -Solid State - £300. HP8699B Mainframe - £250. All P1 available - .1-40GHz Sweep. Racal-SG Brown Comprehensive Headset Tester (with artificial head) Z14200/1 - £350. Marconi 893B AF Power Meter - £200. Microwave Systems MOS/3600 Microwave Frequency Stabilizer -1GHz-40GHz - £1,000. ACL SR-209-6 Field Intensity Meter Receiver - P1's - 5MC/s-4GHz - P.O.R. Ailtech 136 Precision Test RX +13505 Head - 2-4GHZ - £350. SE Lab Eight Four FM4 Channel Recorder - £200. Datron 1065 Auto Cal Digital Multimeter & Instruction Manual - £400. Datron 1065 Auto Cal Digital Multimeter & Instruction Manual - £400. Racal MA259 FX Standard - Output 100 KC/s - 1-5MC/s Internal Nicad Battery - £150. Edwards E2M8 Rotary Vacuum Pumps - Brand New & Boxed - £500 ea. Fluke 9100A Troubleshooter & Pods - New Boxed - £750-£1,000 HP1140 & 1743 0scilloscopes 100MC/s - £300-£450. Tektronix P17A19-7A29-3A-4-6-7m11-Tektronix P17A19-7A29-3A-4-6-7m11-Tektronix P17A19-7A29-3A-4-6-7m11-Tektronix P17A19-7A29-3A-4-6-7m11-Tektronix P17A19-7A29-3A-4-6-7m11-Tektronix P17A19-7A29-3A-4-6-7m11-Tektroni Tektronix 7000 Series Oscilloscopes We can supply all variations of Main Frames and Plug-ins for this range from stock up to 1GHz – £300–£3,000.

All items in this advert are in stock at time of printing, most items are held in quantity at both our warehouses which is probably the largest stock of electronic surplus in the UK. Bulk and trade buyers from UK and abroad are welcome by appointment to bring own transport for quick purchasing and loading of listed and non-listed items. Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax (0274) 651160.

CIRCLE NO. 105 ON REPLY CARD

RESEARCH NOTES

Gunn diode blasts through output and frequency limits

R esearchers at Litton Solid State in Santa Clara, California, and the US Army Research Laboratory in New Jersey and Maryland have taken Gunn diode technology to new limits of frequency and efficiency. JD Crowley and colleagues have developed a well-behaved indium-phosphide device

Exceeding the performance of any Gunn diode available to date, this indium-phosphide device achieves 65mW at 138GHz with 2.6% conversion efficiency. capable of generating 65mW of cw power at 138GHz with an efficiency of 2.6%

(*Electronics Letters*, Vol 30, No 6). For reasons of its higher efficiency, indium phosphide is generally preferred to gallium arsenide for frequencies above 35GHz.

Up until now, though, very little work has been done with Gunn diodes above 100GHz. Yet, because of their reliability, low cost and ease of use, these devices have enormous potential for use in radio astronomy receivers, short range radio links and highresolution atmospheric radars.

By normal standards the new device is exceptionally thin, though the authors say this style of construction is necessary to reduce the positive parasitic series resistance of the InP substrate and also to reduce skin effect losses.

The method of fabrication involves vapour

The wobble that gives birth to a planet

S tories of astronomers claiming to have discovered planets beyond our own Solar System are familiar in scientific circles. Now, after much scepticism, it appears that the astronomical world is taking such claims seriously following interpretation of 'wobbles' found in a pulsar.

Pulsars are rapidly rotating condensed stars that take their name from the powerful radio pulses they beam into space every few milliseconds. Three years ago British radio astronomer Andrew Lyne thought he had found minor perturbations in the otherwise highly regular radio emissions from a pulsar. He conjectured that minor irregularities in one pulsar's beat could only be due to the gravitational tug of objects in the vicinity – in other words, planets.

Lyne's calculations were subsequently proved wrong. But they inspired Alexander Wolszczan of the Pennsylvania State University and Dale Frail of the National Radio Astronomy Observatory to undertake observations of another pulsar, code-named PSR 1257+12. A year later, using new techniques to analyse signals from the 305m Arecibo radio telescope in Puerto Rico, they found perturbations in the pulsar's rhythm that could not be explained by any error in experimental procedures. The evidence this time was very much stronger. But the astronomical community was still in no rush to conclude that planets were responsible.

Now Wolszczan's latest calculations,

based on a further two years' statistical analysis (*Science*, Vol 264, p.538), have convinced, it seems, even the most sceptical.

In the same issue of *Science* Fred Rasio of the Institute for Advanced Study at Princeton says: "It would be difficult to imagine any other way the data could be fooling us".

So small is the perturbation in the pulsar's tick that Wolszczan had initially expected to take five years to come up with a definitive result. He describes the perturbation as being so slight that detecting it is like transporting a snail a distance of 1500 light years, making it crawl at its usual pace, attaching a transmitter to it and then measuring its movement to within a few millimetres a second.

Two years' of data from the pulsar (located in the constellation of Virgo) reveal the existence of two orbiting bodies each with about three times the mass of the Earth. Fortuitously they have closely related orbital periods of 66.6 and 98.2 days and, at that approximately 2:3 ratio, pass each other frequently and have a short overall orbital pattern. The result has been that Wolszczan and his team have been able to dig meaningful signals out of the noise in three years, rather than the expected five.

What has finally convinced Wolszczan's colleagues is the predictive aspect of his analysis. Back in 1992, soon after he discovered the first convincing pulsar 'wobbles', he used his data to predict

phase epitaxial deposition, after which the back side of the wafer is polished chemomechanically using a bromine-methanol solution. Metallisation and the fitting of an integral heatsink are then followed by the etching of individual mesas.

When packaged and fitted in a WR-6 waveguide oscillator circuit, each diode was found to perform with adequate stability over a 0-50°C range.

Frequency variation with temperature was –5MHz/°C, while output power was maintained within a few milliwatts over the entire temperature range.

Based on these experimental findings, the researchers confidently claim that low-cost, simple solid-state sources can now be constructed in the 140GHz range for use as local oscillators, drivers for multipliers, or as low power transmitters.

precisely, months in advance, the subsequent pulse patterns. The fact that later recordings have been exactly on target eliminate most possibilities of flaws in the data analysis – and also effects of the Earth's movements, which were not fully accounted for in Andrew Lyne's study.

The story is not yet complete by any means. Wolszczan says that the timing-data point to the existence of a third moon-sized object that orbits the pulsar every 25 days. There are also hints of a fourth body in a much larger orbit. All these planets are, of course, much too far away to detect in either the visible or the infra-red parts of the spectrum. So it is extremely unlikely that they'll ever be 'seen' in the conventional sense. Though Nasa is soon to inaugurate Aseps (astronomical studies of extra-solar planetary systems) using ground-based telescopes to search for large planets around a hundred much-nearer stars.

As ever, the \$64,000 question is: do these latest planetary discoveries increase the odds of ever finding life elsewhere in the Universe?

In the statistical sense the answer must be yes, though it is unlikely that such life would exist on planets circling a pulsar.

Wolszczan comments: "If you envisage someone with lead armour to protect them against the high energy radiation from the pulsar, maybe there are such creatures. But the sort of life we're accustomed to cannot possibly exist on a planet like that".

Laser that could reshape conventional technology

A semiconductor laser designed on a fundamentally new principle may open up a whole range of applications: from novel ways to detect air pollution, to collision avoidance radars for cars. Developed by Federico Capasso and his colleagues at AT&T Bell Laboratories in Murray Hill, New Jersey, the new quantum cascade laser produces infra red radiation in parts of the spectrum that other lasers cannot easily reach.

What makes the device special is that the wavelength is determined, not by the chemistry of the semiconductor material, but by its physical structure.

Unlike an ordinary semiconductor laser, whose emission occurs when excited electrons cross the intrinsic bandgap of the material, the AT&T laser generates its radiation when electrons spill down an 'energy staircase' of sandwich-like quantum wells. These steps can be made in different sizes, so the laser can cover a wide range of the infra-red spectrum.

The only semiconductor lasers capable of operating in the far infra-red have been based on

Semiconductor quantum-cascade laser operates on an entirely new principle. When current flows, electrons pass down the structure. Each time the an electron hits an energy-level step, a photon is emitted which in turn stimulates other photons by bouncing between mirrored surfaces. Until now, the only lasers capable of producing far-infra-red have been mercury-cadmium-telluride types, which are difficult to fabricate . This new device uses aluminium indium arsenide and indium gallium arsenide

mercury cadmium telluride – a difficult material to fabricate.

The idea of using quantum wells to make a laser goes back to the early 1970s when an IBM team led by Leo Esaki suggested using such wells to constrain electrons to specific energies or wavelengths. The team predicted that when electrons tunnelled from well to well they would emit radiation of a wavelength determined by the geometry of the structure. Through the 80s, experiments at MIT and AT&T showed that it was indeed possible to create such quantum wells by delicate molecular beam epitaxy. The techniques were extremely complex however and, although sequential electron tunnelling was achieved, no radiation was emitted.

The latest results, achieved in a device with 25 active regions

is the end product of hundreds of attempts using nanometre-scale sandwiches of aluminium indium arsenide and indium gallium arsenide. Main snag, at the time of writing, is that the whole assembly needs to be cooled to 90K and can only be operated in pulsed mode. But this shouldn't be a serious limitation; it is only because the device is so inefficient. Without such operating constraints the necessarily large forward current would otherwise cause it to overheat.

On the credit side, the new 'staircase' laser has a much narrower spectrum than normal band-gap devices – a direct product of its operating principle. Electron energies are defined by the structure of the device so they can be specified extremely closely.

As yet the laser is still at the experimental stage and cannot be considered a practical device. But for a technology that is less than six months old, progress has been dramatic. And once the efficiency problems have been overcome commercial applications are expected to follow very quickly. S

Physicists find their missing link

Dhysicists at the Fermi National Accelerator Laboratory near Chicago have discovered what they believe is the last fundamental building block of matter. The top quark has come to light after decades of high energy experiments in which protons and anti-protons have been smashed into each other at speeds approaching that of light. From more than a million million such collisions, the team have isolated about a dozen events providing strong circumstantial evidence for the top quark.

Over 20 years ago Murray Gell-Mann, a Caltech physicist developed what is now known as the "standard model" of everything. His model postulates that all matter consists of various combinations of six quarks and a

matching set of six lighter particles, collectively called leptons (see table).

Its undoubted neatness and symmetry appeal immensely to physicists.

Up to now, most of the quarks - the name itself comes from James Joyce's 'Finnigan's Wake' - have obligingly turned up in the results from big atom-smashing experiments: except that is for the top quark.

The 'strange' quark was discovered in the early 1950s, while 'charm' and 'bottom' showed up two decades later. But without 'top', the standard model could hardly be regarded as complete.

In the continuing search, the main problem facing quark hunters is that such particles, because of the tightness with which they bind

Scientists believe that the 'top' quark	Generation Family	1	2	3	Electric charge
damental building block of matter.	neutrinos	V _e	V_{μ}	V _τ	0
These are the four families	charged leptons	electron e ⁻	muon μ⁻	tauon τ¯	-1
of three gen- erations of elementary	quarks	up	charm	top	$+\frac{2}{3}$
particle con- stituents.	quarks	down	strange	beauty	$-\frac{1}{3}$

Periodic table of elementary particle constituents

Solar power reaps efficiency benefits

nvironment-conscious engineers have L long dreamed of being able to generate electricity - efficiently - from sunlight. Solar cells have no moving parts and little to wear out; create no pollution, consume no scarce fossil fuels and last for 20 years or more. In many senses they would be the perfect source of power. But they have four main drawbacks: they only work during the day, they are expensive, they are inefficient and they produce unpredictable amounts of dc.

Yet as environmental considerations become more important and as prices fall, solar cells are being taken increasingly seriously, especially in situations where an intermittent supply of low-voltage electricity is acceptable.

The main factor behind the recent surge of interest in solar cells is their rapidly improving efficiency. One example of progress is a low-cost cell made in the USA by a research group called United Solar Systems. This joint venture of Canon and Energy Conversion Devices has developed a cell based on a thin film of amorphous silicon that will capture sunlight with an efficiency of 10.2%. Two years ago, the best figure for this type of low-cost cell was about 6%.

The new cell is a triple sandwich of silicon with silicon/germanium alloys deposited on a panel of stainless steel. The construction not only helps a wider spectrum of light energy to be absorbed, but can also be physically bent.

Previously, most solar cells capable of efficiencies greater than 10% were made from single crystals of silicon or polycrystalline silicon. Such cells (and those made from III-V compounds) are necessarily much more expensive than their amorphous silicon counterparts.

Even so, they too have been getting progressively better. A recent report (Physics World, April 94) describes a record-breaking solar cell from the Japanese company Mitsubishi. They claim to have achieved an efficiency of 14.2% in what they believe is a commercially viable cell made of polycrystalline silicon. The previous record for this type of cell was 10.9%.

These efficiency figures may seem very low compared with, say, a steam generator. But once a solar cell is installed, the running costs are virtually nil. And even if the cell is only 10% efficient, a 1m square of it will

together, cannot be observed directly. Free quarks do not exist in nature, and in the case of the top quark, they rarely exist in any form. To create them requires smashing protons and anti-protons together with enormous energies, the particles annihilating themselves in a blaze of energy, comparable on a small scale with that of the Big Bang that initiated the Universe.

It is from this blaze of pure energy that quarks sometimes condense.

Even then, quarks can remain irritatingly elusive. On a BBC World Service programme, Dr Bill Carrithers, one of the Fermilab team described it like this: "The top quark decays instantaneously after being produced. So what we look for are signatures of its daughters or even grand-daughters as the particles decay down to the ones we see in the detector. We then work backwards to reconstruct what the top quark must have looked like".

What is particularly fascinating about the top quark is its mass. Latest estimates suggest that is about as heavy as an atom of gold by far the most massive of all the sub-atomic particles.

Next step for particle physicists, after finding events to strengthen the evidence for the top quark, will be to track down another entity called the Higgs boson. This particle, also predicted by the standard model, may explain the mystery of why some quarks are more massive than others.

It could even explain why they have mass at all.

still generate 100W of electricity in full sunlight.

What these recent advances are now demonstrating is the closing gap between solar-generated power and that generated by the burning of fossil fuels.

According to some industry figures, the cost of solar power will not need to fall by much more than a factor of two before it becomes cost-effective for supplementing the ac grid. A coalition of US companies is already pledged to install 50MW of solar power over the next six years.

Here in the UK the climate may (literally) be less favourable: less sunlight and variable weather, especially in winter when electricity demand is high. Expensive land is also frequently cited as a major obstacle.

The way forward, according to many experts would be to fit solar panels to the walls and roofs of buildings and use the resulting power for supplementary purposes, using efficient dc-to-ac converters when necessary.

Research Notes is written by John Wilson of the BBC World Service.

THE BEST LOW COST PROGRAMMERS **DESIGNED & MANUFACTURED IN THE UK**

SPEEDMASTER 1000 SPEEDMASTER 1000E UNIVERSAL PROGRAMMER

Superfast PC based programmer Programmes; EPROMS UP TO 8M BIT, FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, MICROs (8748/51), PALS, GALS, EPLDS, PEELS, MACHS, MAPLs, MAX

- Plugs directly into parallel port
- 1000E Version has ROM/RAM emulator built in: 128k (1 Mbit) standard, optional 512K (4Mbit)

MICROMASTER 1000 MICROMASTER 1000E

UNIVERSAL PROGRAMMER Programmes: EPROMS UP TO 8M BIT. FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, PALs, GALS, EPLDS, PEELS, MACHs, MAPLs, MAX etc.

- PLUS over 80 different Micros including 8748/51, 68HC705, 68HC711, PICs, Z86, TMS320, TMS370 etc DIPs WITHOUT ADAPTORS OR PERSONALITY MODULES!
- Package adaptors available. 1000E Version has ROM/
- RAM emulator built in: 128K (1Mbit) standard, optional 512K (4 Mbit)

SPEEDMASTER 8000 GANG/SET PROGRAMMER

- 8 way, Pc or stand alone
- Super-fast programming times, manufacturer recommended algorithms
- 32 pin devices as standard
- Support for 8748,51, TMS370, PIC Micros and 40 pins.

0

0

2 I

WHY BUY AN INFERIOR IMPORTED PROGRAMMER WHEN YOU CAN HAVE A MANUFACTURER APPROVED UNIVERSAL PROGRAMMER/EMULATOR DIRECT FROM ICE TECHNOLOGY!

- □ We offer the best range of low-cost programmers available, now including our unique UNIVERSAL PROGRAMMERS WITH BUILT IN EMULATORS
- Unrivalled device support, for example the Micromaster 1000 programmes PICS, Z86, 87C705, 68HC705, TMS370, 77C82 ETC WITHOUT ADAPTORS, as well as the full range of Eproms, PLDs etc supported by all our universal programmers.
- Approved by National Semiconductor for their full range of PALs, GALs, and MAPLs other programmers claiming approval are often only approved for EPROMs - a much less exacting specification!
- All our programmers and programme/emulators work off the standard parallel port with any IBM compatible PC, even laptops
- Unbeaten programming times: Programme a 27256 in just 5 SECONDS including download and verify. GY
- Easy upgrade path between Models.

FOR MORE DETAILS, DEVICE LIST AND DEMO DISK CALL NOW ON TEL +44 (0)226 767404 FAX +44 (0)226 370434

ICE TECHNOLOGY LTD, UNIT 4, PENISTONE COURT, STATION BUILDINGS, PENISTONE, S. YORKS, S30 6HG, UK. CIRCLE NO. 106 ON REPLY CARD

CMR under test

nstrumentation amplifiers are front ends for signals arriving from hostile environments. They are available in many forms, but for the most part they have twin, differential or balanced inputs.

Unwanted common-mode signals – hum, noise, dc, etc – and dangerous voltages are generally attenuated or cancelled out. Gain is restricted to wanted, differential signals,

which are often smaller than the unwanted interference.

How good is the commonmode rejection capability of today's high performance analogue ICs in real world test circuits? How do current-feedback ICs fare? Design consultant Ben Duncan presents here a world exclusive – a comparitive study of cmr performance for eleven leading linear ICs.

Instrumentation amplifiers or in-amps - can be built from discrete components, but most applications now use integrated circuits. Integrated-circuit data sheets contain a figure for commonmode rejection, cmr, usually at a spot frequency. Most also have a graph showing how cmr degrades with increasing frequency. But how far can this information be trusted when the test levels, topology and critical passive component values are rarely specified? And how much does cmr change when surrounding component tolerances are imperfect, or the circuit topology changes?

Although common-mode rejection is a key feature allowing signals to be distinguished from interference, many applications will also need instrumentation amplifiers with good performance in other dynamic areas such as noise, slew and bandwidth.

My reason for being interested in op-amp cm rejection is taken up in the panel.

The contenders

Table 1 lists devices considered. They are chosen for their combination of the following attributes.

High gain-bandwidth product. In order to provide a bandwidth of 1MHz at +40dB or more gain, minimum gain-bandwidth product was limited to 100MHz .Current feedback helps immensely here but is not a prerequisite. Many good in-amps and op-amps from manufacturers such as AD, Burr-Brown and LTC are ineligible since they have bandwidths below 500kHz at +40dB. The *LT1028* is marginal but included for illustration.

When selecting examples of current-feedback op-amps, I noticed that Analog Devices' current feedback op-amp data hampers the designer by omitting gain/bandwidth plots. These are needed all the more because with current feedback ordinary loop-gain-proportional bandwidth relationships do not arise.

Low noise. To avoid adding significantly to inevitable noise from the input attenuator-network, in most cases only devices with a noise figure of less than $5nV/\sqrt{Hz}$ were chosen, with noise from a typical input attenuator contributing about $5nV/\sqrt{Hz}^1$.

The rather noisier *AMP05*, and only slightly over-noisy *HA2548*, have been accepted because of their wider bandwidth and much higher slew limit. With current feedback op-amps in this class of circuitry, current noise dominates. This is because certain resistor values in practical circuitry capable of withstanding high cm voltage need to be higher than the ideal for current feedback.

Slew rate. As a minimum limit for slew rate I chose $10V/\mu s$. For switch-mode power supplies, the *AMP05* is marginal, while *HA2548*, *AD829*, and the *AD811* and *818* respectively meet and exceed the maximum requirement.

Offsets. DC gain may be over 100 so offsets need to be low. Offsets that do not displace the smallest wanted signals by more than 10% are not too problematical. Servo control of dc might be attractive, but the ideal differential summation almost doubles the parts count.

Common-mode voltage. Common-mode voltage capability, or cmv, is greater than $\pm 10V$ for the devices chosen.

many modern, very high speed op-amps, with ± 5 to $\pm 7V$ maximum supplies.

Common-mode rejection. Last but not least, the highest cmrr is sought up to at least 100kHz or below. Makers' specifications are quite variable here.

High cmv topologies compared

Common-mode rejection performance will

depend on the topology used. **Figure 1** shows the simplest scheme for handling high cmv. I arranged it to allow either IC op-amps or inamps to be plugged into the front end network. Instrumentation amplifiers were connected via a short, tightly twisted pair.

Compared to a previously published version² of Fig. 1, resistor values are lower. Also, recovery gain for the op-amp version, R_6/R_1 , is set for +18dB.

Fig. 2. Two op-amps use shunt feedback and common-mode voltage is actively subtracted. With this circuit, imperfect cancellation prevented deep nulls. For cmr better than -80dBr above 100kHz, layout is critical.

Table 1. Dynamic specifications of shortlisted IC operational and instrumentation amplifiers, based on manufacturers' data.

Part	Maker	Noise @1kHz nV/√Hz	BW @40dB MHz	CMR @100kHz dB	Slew limit V/µs	+Vs max volts	CMV @±15v volts
Instrumentation amp AMP05 CFB INA103 SSM2016 CFB SSM2017 CFB	lifiers: AD BB AD AD	16 1 0.8 0.95	3 0.7 1 1	57 85 na 97	5-7.5 15 10 10-17	18 25 36 22	11.5 11-12 8.3 8
Op-amps: AD797 AD811 CFB § AD818 AD829 HA5137 HA2548 LT1028	AD AD AD AD Harris Harris Lin Tech	0.9 1.9 10 2 3.4 8.3 1.1	0.8/4.5* 50† 2.6† 0.66/7.5† 1 1.5 0.5	56 70 65 83 60 62-74 80	12.5-20 2500 400-500 230 35 120 11-15	18 18 18 18 17.5 20 22	12 13.5-14.5 12-14.3 13.5-14.5 12 7-10 11-12

CFB = current feedback. SSM2016, 2017 & AMP05 employ some cfb.

Notes: All figures typical.

* Higher with decomp C.

+ Estimated from ancillary data.

§ Noise current 20pA/vHz.

Even if there is enough gain-bandwidth product to support higher gain, this is about the maximum without adding complexity³. As shown, R_1 's value is as low as reasonably possible. With R_6 at $160k\Omega$, parasitic capacitance starts to affect bandwidth just above 1MHz.

Figure 2 shows another scheme described by Jung^{4,5}, using two op-amps. Monolithic inamps are not applicable here. Shunt feedback means that neither op-amp front-end sees appreciable cmv, provided the feedback is operative.

Output of IC_1 is adjusted via PR_1 to precisely cancel IC_2 output originating from the lower input. Any cmv is manifest at the output of IC_1 . For a given recovery gain, noise gain in IC_2 is intrinsically 10dB higher compared to Fig. 1: at 50dB, it comprises 10dB from the direct input, and 40dB to make up IC_1 output. Recovery gain is kept to just +10dB accordingly. Potentiometer PR_2 provides phase trim, forming a T-network in conjunction with C_1 , for best cancellation at hf.

Figure 3 also uses two op-amps⁶. At $R_{6,7}$ junction, the differential-mode signal sums to zero, leaving the full cmv. A cancellation signal is fed forward across the differential inputs by IC_1 , actively suppressing the cmv it reads at the junction. Unlike the previous circuit, IC in-amps are applicable for IC_2 , and preferable, as the active impedances to ground are then in principle symmetrical.

Depth of hf cmr trim with the trimmer capacitors depends on IC_1 . A high slew rate and generous bandwidth is important for IC_1 if cmvs above 10kHz are expected. Otherwise progressively disorganising cancellation at vhf shows up as a spiky, un-nullable residue.

Test environment

All the test circuits had local wideband decoupling typically comprising 100nF+10µF. In addition they were powered by a low impedance, low noise Thurlby ±16V lab supply. Trimmer potentiometers were Bourns cermet types and trimmer capacitors were miniature low-k ceramics.

All tests were performed with Holsworthy 0.5%, 50ppm/°C metal film resistors in all the critical gain/cmr determining positions – including the attenuator front end. Each test circuit was driven from the Audio Precision generator with the hot and cold inputs joined, i.e. in commonmode test or 'cmtst' mode.

In all graphs, cmr+n is plotted in dBr below a hypothetical output of +34dBV, i.e. 49V rms, to emphasise cm residue at the expense of noise. The noise floor will be much nearer with small differential-mode signals.

For **Figs 4-21**, the Audio Precision test set plots

cmr+n versus frequency in two bandwidths. Upper plots are from 10Hz up to 200kHz with a bandwidth from less than 10Hz to more than 500kHz. The lower plot is a narrower sweep with a -1dB bandwidth from 400Hz to 22kHz. Difference between the two can help indicate how much cmr in the upper plot is receiver noise (+n).

Despite the high reference level and $^{1}/_{3}$ rd octave sweep, often only noise is extant in the narrow band plots; literal cmr can only be estimated. In most cases diminishing cmr above 100kHz has been kept at bay by deft trimming.

Although the test set stops short of 1MHz, any rise can only go so far in the invisible top half decade from 200kHz-1MHz. In many cases, a little cmr decay above 200kHz is of little significance. When double checked, the cmr curves' repeatability was about ± 3 dB at 200kHz, ± 2 dB at 20kHz and ± 1 dB at 100Hz for wideband readings. Narrow-band plots were about 0.5dB closer.

Results Figs 4-14 show typical cmr+n versus frequency plots for the first eleven devices in Table 1 using test circuit Fig.1. All the devices achieve at least -90dB across the 500kHz measurement bandwidth. This is referred to a hypothetical 49V/+34dBV level however. Referred to 1V/0dBV, cmrr is a more prosaic -56dB.

In some cases, Fig. 6 for example, the 'real' cmr curve behind the noise appears to be the –6dB/octave slope that can be drawn down from 200kHz on the upper plot to intercept the narrow-band plot at about 20kHz⁷

On this basis, you can estimate that If cmr is more than -130 dBr, or better than -96 dBV.

With careful trimming, even the narrowband residue up to 5kHz in the lower plots is predominantly noise. The ranking has much in common with the noise densities shown in Table 1. but with some surprises. This is in part because uniform extrapolation from 1kHz noise density out to 200kHz may be presumptuous. As you might expect, by having 20pA/ \sqrt{Hz} noise in conjunction with resistor values as high as 160k Ω , the *AD811* current-feedback op-amp *appears* to have the poorest cm rejection, Fig. 13. Effective total-noise density, V_n + I_n , is above 10nV/ \sqrt{Hz} , emphasising the '+n' part.

Figures 15-17 show typical cmr+n versus frequency with test circuit Fig. 2. High-frequency kinks in Fig. 15 show that cmr involves non-linear phenomena. The residues looked like distortion harmonics and the nulling was only bluntly effectual. Commonmode voltage cancellation is critical. Minute changes in lead dress and component positioning had a large bearing on performance. Figure 16, with an un-compensated AD829 shows how $PR_{1,2}$ can interact, depending on trim sequence. Such interaction can possibly be overcome, and better cmr attained by using the AD829's diverse compensation facility, with the compensation on IC_1 set at 68pF. Compensation on IC_2 requires tuning below 60pF for best results. With extra attention to detail, cmr+n may go lower, but the best result attained in these tests was -88dBr or -54dBV, as shown in Fig. 15.

Figures 18-20 illustrate performance of test circuit Fig. 3. The 2017 was chosen for IC_2 , to keep the circuitry simple with little trade-off. Other in-amps and IC op-amps were tested in IC_2 position. Differences broadly corresponded with Figs. 4-14, where stable. But some had vhf oscillations, or cmr+n versus frequency anomalies. These were helped no doubt by the abnormal source impedances presented to IC_2 's inverting input in the midst of

 IC_1 's feedback loop.

Below 10kHz, cmr+n performance with an AD829 or HA5137 for IC_1 is clearly a little better than the results from the other test circuits. These devices were chosen for their good performance in test circuit Fig. 1. Inevitably, the trade-off with active cancellation is poorer high frequency performance compared with the passive method of Fig. 1.

Finally in this section, Fig. 21 shows how some of the circuits outperform the Audio Precision test equipment. Fortunately, cm rejection is not superimpositive.

The measurements appear to demonstrate that the 100kHz cmr of the op-amps and inamps is both over- and under-stated by their makers., However cmrr depends on references and conditions, which are not so clearly defined.

What is clear is that surprisingly similar and repeatably high cmrs can be attained by all the modern IC op-amps and in-amps tested. These high cmrrs can be maintained up to surprisingly high frequencies, given informed layout and careful trimming – particularly with the test circuit of Fig.1.

Simulating cm rejection with Spice

Few of the op-amps tested here were available as Spice models but I evaluated those that were and others with *MicroCAP-IV*.

Harris's models do not presently cover cmr. Models for *AD797* and *829* do, but since the devices have more than the basic five pins – i.e. inputs, output and power – they need 'hard pinning' for *MicroCAP* to run. This means that a six-pin op-amp shape has to be created or called up. Even if you do not need the compensation pin, *MicroCAP* will not accept it simply being disposed of by connecting it to ground via a resistor – a common trick with some other Spice simulators.

Other models had peculiarities, requiring tweaking to make them run. The *AD845* model has a hyphen which causes difficulty because *MicroCAP* version 4 is written in C+.

Of ten Spice models tested, only five ran first time and plotted cmr. These were Analog Devices' AD811, 818, Burr-Brown's OPA27 and 604; and Linear Technology's LT1028. Burr-Brown had the best documentation – a booklet – while Analog Devices had the most models with cmr included.

Detailed examination of the different makers' models revealed behaviour that could trick the unwary. First, cmr can be 'tuned' way beyond its specifications by use of *RC* bridge values minutely offset from perfect matching. Second, tuning in this way reveals different ultimate depths and hf decay slopes. Few match the classical model⁷ of cmr decay with frequency – any more than the Audio Precision plots of Figs 4-20 do.

Thanks to Joe Buxton and other staff at Analogue Devices in the USA for guidance on Spice and cmr.

Fig. 4. Common-mode rejection for AD797 degrades above 500kHz, but the narrow-band plot does not show a corner.

Fig. 6. Common-mode rejection of the SSM2016 audio in-amp degrades gracefully above 20kHz and is only 10dB worse at 200kHz. Its narrow-band cmr+n is one of the best but begins rising above 1kHz. Remember this device employs some current feedback.

Fig. 8. Some current feedback is used in the SSM2017 audio IC. It performs similarly to the AD797 of Fig. 4 but with slightly more rapid cmr decay by 200kHz.

All upper graph curves relate to wideband cm rejection (10Hz to 200kHz). All lower graph curves relate to narrowband cm rejectior. (400Hz to 22kHz).

Fig. 5. For the LT1028, cmr degrades quite rapidly above 20kHz, while the narrow-band plot echoes this three octaves lower.

Fig. 9. The AMP05 in-amp has current feedback, and along with Fig. 10 displays joint widest cmr bandwidth before decay.

Fig. 11. One of the best combinations of low cmr+n and wide cm rejection bandwidth is provided by Harris's HA5137. The pair of hf variations show the typical effect (upper) of imperfect trimmer capacitor setting.

July 1994 ELECTRONICS WORLD + WIRELESS WORLD

Fig. 12. The AD829 is similar to the AD797 but its cmr+n is a few decibels better.

Fig. 14. In terms of cmr bandwidth before decay, the AD818 is second only to the HA2548 and AMP05. Its cmr+n on the other hand is intermediate.

Fig. 16. Test circuit Fig. 2 with AD829s for three settings of PR_2 (a-c). Op-amp compensation is not used. Cancellation is oddly poor at both lf and hf.

Fig. 18. Results from a Harris HA5137 with an SSM2017 in Fig. 3 test circuit. Compared to Fig. 11, noise is about 3dB lower, but cmr decays earlier, as you would expect.

Fig. 13. The sole current feedback op-amp, the AD811 has a small but unusual cmr decay step at about 8kHz in the wideband plot. The poor cmr+n is degraded by noise as described in the text.

Fig. 15. Using AD797s in Fig. 2 test circuit, both narrow and wideband plots have similar cmr+n characteristics. At If they are about 3dB worse than the single AD797 in Fig. 4. Multiple plots with slightly varying trims of preset PR_1 are shown. The hf inflexion can vary widely with PR_2 setting.

Fig. 17. Using HA2548s in Fig. 2 test circuit yields a poor cmr+n of only -60dBr (-26dBV). Two plots were made of the narrow-band response, which is no better than the wideband, signifying high cm and low '+n'.

Fig. 19. With an AD797 and SSM2017 in Fig. 3, the null became very shallow. Narrow-band plot (A) is tangential to (B), the wideband. Note rapid cmr decay above 500Hz. In fact, cmr nulling was 'dulled' with the AD797, probably because of input parasitics. It remained so despite retrials.

Fig. 20. An AD829 with an SSM2017 in Fig. 3 is a better combination. Changes compared to Fig. 12 mirror the HA5137 of Figs 11 and 18, but are even better. Topological noise is 8dB lower compared to Fig. 12. While bandwidth decay sets in at around 20kHz, it is barely an octave lower. The null is crisp – a good sign. Overall, results with this circuit are highly dependent on IC_1 .

A probe for live places

My interest in cm rejection stems from a need to measure millivolt signals on the mains. **Figure 22** shows points on an off-line psu that often need measuring. It includes the traditional, expensive, isolating transformer.

Figure 23 shows an attenuator for reading highvoltage signals. This is all that is needed to read large differential signals with an existing instrumentation or differential amplifier.

For small differential signals, irrespective of the circuit's cm rejection, cm voltage must be attenuated enough to prevent the active circuitry experiencing a cmv beyond its limits. Saturation or malfunction from excessive cmv can be invisible on a oscilloscope, if dc or at some frequency distant from the differential-mode signal.

For op-amps and in-amps operating on $\pm 15V$ supplies, maximum cmv for normal, linear operation is at least $\pm 10V$ (see Table 1). Generally the rating changes pro-rata with the supply. So Analog Devices' *SSM2016*, with its exceptional maximum $\pm 36V$ supply capability, could handle cm voltages of up to $\pm 24V$.

While this is a worst case allowance, **Fig. 24** from Burr-Brown's *INA03* in-amp data shows how cm voltage below positive and negative supply rails at the op-amp inputs can reduce

headroom by subtracting from output swing. However, *INA03* output gain can be increased to alleviate the limitation; a unique feature.

For a 400V maximum cmv input, cm attenuation of about $35 \times \text{ or } -31 \text{ dB}$ is therefore the bare minimum required to interface with op-amps or in-amps having $\pm 15 \text{ V}$ supplies, **Fig. 25**. Since common and differential-mode attenuation come almost hand in hand when achieved resistively, attenuation should not be too generous. If it is, the differential-mode signal's noise and bandwidth will be needlessly degraded by the extra recovery gain required.

Figure 26 shows the complete circuit for interfacing safely with the mains (*obviously*, you *always need to observe standard safety precautions when dealing with the mains – ed*). It replaces galvanically isolative but gain and band-limited transformer-coupled probes, as shown in Fig 22's lower rh corner. It can resolve a few mV to tens of volts on top of 400V ac or dc or cm voltage, from dc to 3MHz.

How much resolution?

Current measurements may be made on typical switch-mode power equipment by reading across a current sensing resistor such as points A

Fig. 21. Audio Precision test set receiver's own, transformer-aided cmr performance. Wide (A) and narrow-band (B) modes have the same +16dBV cm test operating level, as Figs 10-20. All the test circuits are superior below 500Hz, and effectively as good or better above 10kHz – after considering their 41dB or 49dB higher noise gain. Fortunately, the test set's cmr performance does not restrict measurement results. Degraded cmr between 10-300Hz (A), is caused by the test set's dc blocking capacitors (see text).

to D in Fig. 22. To do this accurately, a commensurately low inductance shunt is needed.

Suitable components have resistances of $10m\Omega$ and below⁸. Resolving a minimum current of 1A then requires clean recovery of signals at around 10mV. A gain of 20dB provides 100mV/A – convenient for mental arithmetic. In practice, a more modest gain like 10dB, with a more challenging 31.6mV/A scaling, may have to be accepted if bandwidth is paramount.

With a conventional $\pm 15V$ supply, this at least sets full-scale deflection at around 350A – enough headroom for most jobs. At this point, the design process begins to interact heavily with the op-amp or in-amp chosen.

Defining rejection

If common-mode rejection and noise ratio are inadequate, the smaller current signals just discussed are the first to be lost in noise. Fortunately, when reading switch-mode power supply current, (points B, C, D in Fig. 22), the cm voltage is usually mainly dc. This can be visua'ly ignored, blocked and even nulled out.

Assume cm rejection is -65dB from dc to kilohertz, referred to 0dBV. Current is 1A in $10m\Omega$. With rectified 240V, cm voltage will be about

July 1994 ELECTRONICS WORLD + WIRELESS WORLD

340V and 95% dc. At the output, there is ±323×0.00056, or ±180mV of dc offset. This is not a problem, even though the current signal is only 30 to 100mV rms.

If alternating at, say 50Hz, however, this amount of cm voltage, would make oscilloscope viewing difficult, even if an analyser could discriminate. A cm rejection ratio better than --65dB to as high a frequency as possible helps keep ac cm voltage at bay when viewing currents below 1A, extending the instrument's versatility.

In practice, in a properly aligned direct coupled circuit, cm rejection ultimately degrades at hf only. This can work out favourably, as the higher frequency cm signals will often be the smaller components of the total cm voltage.

Frequency response down to dc is the norm with in-amps, even if reading dc is unnecessary. This is because input dc blocking capacitors degrade both If and rf cm rejection, unless hyper-matched and held at a constant temperature, Fig 21. Beyond this, bandwidth limitation at hf depends mostly on the active device(s). To be useful in switching supply development, a response to at least 1MHz is a good target.

Slew rate of the device must be adequate for the largest component's frequency. If not, it will not have the full use of the active circuitry's dynamic range in handling wanted and unwanted signals. For a bandwidth of 1MHz, slew rate will need to be at least 100V/ μ s. If the dominant component is no more than 100kHz, then above 10V/µs will be enough. Any devices working on rails of more than ±15V would benefit from a pro-rata higher slew limit.

Extending bandwidths

Single chip instrumentation amplifiers capable of dc to 1GHz have yet to arrive. But very wideband op-amps - both current and voltage feedback types - are increasingly prolific.

High-speed op-amps can be used instead on in-amps if the trade-offs can be justified. In exchange for a ten or hundred fold increase in slew rate and high gain-bandwidth, maximum supply is usually diminished, commonly to between ±5 to ±7V. Common-mode voltage capability is reduced pro-rata. As a result, 7dB to 10dB more cm voltage attenuation, and recovery gain, are required, using up gain bandwidth.

Testing these parameters when at their best is beyond the scope of my test equipment. But noise, while commendably low at mid to high rf,

Fig. 23. Attenuator for 400V ac/dc has balanced format for safely reading large voltages, of same order as cmv. Large resistances may be used since thermalnoise is not a problem. Commonmode rejection is uncritical and response is flat to 100kHz or more.

22

16.5

11

can certainly be embarrassingly high at audio and frequencies less than 200kHz - especially compared with the latest conventional op-amps.

If useful response above 3MHz is essential, then the best of both worlds may be had by having a parallel vhf path and 'crossing over' at about 1MHz. In Fig. 1, the high value of R_6 , and similarly R_5 in Fig. 2 and R_8 in Fig. 3, sets a more elementary limit on bandwidth.

Assume a 200k Ω metal-film resistor with 0.3pF of parasitic shunt capacitance. Carefully laid-out pcb tracks add about 0.2pF. The sum of these strays is enough to subtract 3dB at 1.6MHz.

Replacing feedback resistor R₆ with a T-network³ allows much lower ohmic values to be used, more in keeping with those recommended for best performance from current feedback amplifiers. Premature bandwidth constriction is avoided accordingly, and wideband thermal voltage noise¹ is also reduced.

1. Linear Technology, LT1028 Data sheet,

2. W. Jung and G. Erdi, Design notes, Linear

3. Mark Stitt, Amp provides 100V CM range,

Section 8, Analog Devices Inc., 1993, P.8:58-9.

6. Paul Horowitz and Winfield Hill, The art of

5. Walt Jung, IC op-amp Cookbook, 3rd ed.

electronics, 1st Ed, Cambridge University

7. Gray & Meyer, Analysis and design of analogue ICs, 2nd ed., P.422-3, Wiley.

8. Keith Billings, SMPS Handbook, Ch.13,

Technology, Newsletter No.25, Aug 1989.

4. Walt Jung, System applications guide,

Burr-Brown, EDN, 10 Dec 1987.

Max common-mode voltage

vs output voltag

 $V_S = \pm 25 V$

Fig. 25. Passive attenuation plan for interfacing with cmr active devices working from ±15V or similar supplies.

References

page 4, Fig. 4, LTC 1986.

1986, Sams, P.346-7.

Press, 1980, P.280-1.

McGraw-Hill, 1989.

Fig. 26. Practical 400Vrated high common-mode in-amp circuit example. High performance and safety demands detailed attention to component spacing, insulation, lead dress and twist. But parts count and cost is low. Resistor R6 is set-on-test for a rough cmr null with presets PR_{1,2} centred. One trimmer capacitor is used to offset. Together, TC1,2 have the same, low temperature coefficient. If AD829 is used in IC₁ position, C_{comp} to pin 5 needs switching in for vhf stability in differential small-voltage-signal –30dB mode.

Common-emitter power amplifiers: a different perception?

Low voltage audio power amplifiers invariably deliver the output signal from a collector rather than emitter circuit to allow a larger output swing from a reduced supply voltage. Does this radical change in circuit topology affect the crossover characteristics... Indeed. does this represent a topology change at all? **Douglas Self examines** the design issues.

The basic concept of the difference-ofsquares is not new, as several correspondents to EW+WW have pointed out.^{2,3} Another early reference (1949) to the quarter-squares principle can be found in the monumental MIT Radiation Lab series on radar techniques.

Mr William's basic circuit is shown in Fig. 1, and the first problem to overcome in applying it for audio power is that the wanted output is the difference of two currents whereas hard-bitten amplifier designers are more used to a low impedance voltage output. Note that with the usual enhancement-mode power fets, if V_1 , V_2 are ac sources only, and carry no dc bias, then V_b will have to establish point M some volts below ground. No doubt something could be done with industrial-sized current-mirrors, but it struck me that the circuit

could be rearranged as **Fig. 2**, by making use of complementary devices. We now need two bias voltages V_{b1} , V_{b2} , and the positioning of the two signal sources V_1 , V_2 on opposite rails looks a little awkward, but at least the current-difference will be mathematically perfect, if Kirchhoff has anything to say on the matter.

So far so good. We now have a single current output iout. But is this any use for driving loudspeakers? I am assuming that currentdrive of speakers is not the final goal; I appreciate that this can be made to work, and promises some tempting advantages in terms of reducing bass-unit distortion⁴. My immediate reaction to Fig. 2 was no, it can't work, because with a high impedance output, the output stage gain will vary wildly with load impedance making the amount of NFB applied a highly variable quantity. It would also appear that any capacitive loading of this high-impedance node would generate an immediate output pole that would make stable compensation a waking nightmare.

However... just as I was discarding the notion, it occurred to me that the structure in Fig. 2 looks very much like the bipolar common emitter (CE) stage in **Fig. 3**. This is widely used in low voltage op amps because the low saturation voltage allows a close approach to the rails⁵. The more usual emitter follower type of op amp output is usually called a CC or common-collector stage. It is highly probable that the widest application of these voltage-efficient CE configurations is in the headphone amplifiers of personal stereos.

At about the same time I encountered a paper by Cherry⁶ which pointed out that, so long as NFB is applied, the output impedance of such a stage can be as low as for the usual voltage follower type output. Cherry's paper is dauntingly mathematical, so I will summarise it thus. The vital point about using NFB to reduce the output impedance of an amplifier is that the amount of NFB applied must be calculated assuming that the open-loop case is unloaded. This condition looks unfamiliar, because the average amplifier usually has a fairly low output resistance even when openloop, due to its output follower configuration, and so the loaded/unloaded distinction makes only a negligible difference when calculating the reduction of output resistance by NFB.

Using this condition, Cherry shows that output impedance of a CE stage should be exactly equivalent to the usual CC stage, when the global NFB is applied. I appreciate that this result is counter-intuitive; it looks as though the current output version must have a higher output impedance, even with NFB, but it appears not to be so. Doubters who are unafraid of matrix algebra should consult Cherry's paper.

Topology to the test

Nonetheless, before reaching for the power fets, I felt the need for further reassurance that a CE output stage was workable. There are several low voltage op amps that use the CE output topology, so it seemed instructive to provoke one of these with some output capacitance and see what happens. A suitable candidate is the Analog Devices *AD820*, which has a BJT output stage looking like Fig. 3 and provides all you need for CE experimentation in one 8-pin package⁷.

My practical findings were that the op amp works well, and while THD may not be up to the very best standards, it was happy with varying load resistances, proved stable with capacitors hung directly on the output, and was relaxed about rail decoupling. Once again, so far, so good.

By this stage, the quarter-squares principle was slipping somewhat into the background. My attention was focusing on the possibilities of a BJT power output stage something like **Fig. 4.** which shows the addition of drivers and emitter resistors to make the circuit more practical. A good output swing is facilitated by the inward-facing driver arrangement. In a conventional emitter follower output the need to leave the drivers room to work in further reduces output swing.

Fig. 4 could be configured into something like a normal Class-B amp, except that the novel use of a CE output stage would allow greater efficiency than usual because there would be the low $V_{ce(sat)}$ drops mentioned above. Also the crossover behaviour would presumably be different from a normal CC output, and quite possibly better, or at least more easily manipulated.

In a previous article⁸ I tried to demonstrate that for an amplifier in which all the easily manipulated distortion mechanisms had been suitably dealt with, the low frequency THD was below the noise when driving an 8Ω load... this without large global feedback factors: 30dB at 20kHz is quite adequate.

At high frequencies (say above 2kHz) the distortion is easily measurable, and almost all of it results from crossover effects in the output stage. Since NFB typically falls with frequency, these high-order harmonics receive much less linearisation. This is why any technique that promises a reduction in basic crossover nonlinearity is of immediate interest to those concerned with power amplifier design.

I began to think that Mr Williams had opened up a whole new field of audio amplification; each conventional CC output stage would have its dual in CE topology, perhaps with new and exciting characteristics.

The next stage of the investigation was more sobering. There was a familiarity about CE output stages. Readers old enough to recall paying 30 shillings for their first OC72 will recognise **Fig. 5** as the configuration used

almost universally for low power audio output for many years when there was no such thing as a complementary device. Transformers provide one way to make a push-pull output. At first sight bias voltage V_b looks as if it will be far too low but bear in mind these are germanium transistors. Note the upside-down format of the circuit which is typical of the period. The circuit values are appropriate for an output of about 500mW.

While it is perhaps not obvious, this is the equivalent of Fig. 3. The need for an npn is

Fig. 3. The bipolar version of Fig. 2, as used in many low-voltage op amps and Walkman output amplifiers.

Fig. 4. A practical circuit based on Fig. 3. Drivers and emitter-resistors have been added.

Fig. 5. A rather old-fashioned CE amplifier: the transformers are expensive but avoid the need for complementary devices.

Fig. 6. BJT Collector currents in Fig. 4 driving an 8Ω load.

AUDIO

avoided by using phase inversions in the transformers. So clearly CE output stages were not as rare and specialised as I thought; however they might still have handy distortion properties that were not obvious in the long-gone days of transformer coupling.

Adding Spice to the investigation

The next step was Spice simulation of the practical BJT output circuit in Fig. 4: Fig. 6 shows how the device currents vary in a relationship that looks ominously like classic Class-B... Somehow I was expecting more

Fig. 7. Gain linearity of Fig. 4, various load resistances. (BJT)

Fig. 8. Gain linearity of Fig. 4 for various bias voltages, load is 8(2. (BJT)

overlap of conduction. The linearity results are presented in **Fig.** 7 as a plot of incremental gain versus output voltage for varying loads, as in the *Distortion In Power Amplifiers* series⁸.

The first obvious difference is that stage gain, instead of staying close to unity, varies hugely with load impedance – pretty much what we expect from a CE stage operating open-loop. Note that the X-axis is V_1 ($V_2 = -V_1$ to induce push-pull operation) and so represents the input voltage only rather than both input and output as before. Multiplying this input voltage by the gain taken from the Y-axis gives the peak output voltage swing. The vertical gain drop-offs that indicate clipping move inwards with higher load impedances because of the greater output gain rather than through any hidden limitation on output swing.

Fig. 8 shows the effect of varying the bias, and hence quiescent current, for an 8-Ohm load.

This circuit certainly works, but somehow the linearity results seem depressingly familiar. There is the same gain-wobble at crossover we have seen *ad nauseam* with CC output stages, and once again there is no bias setting that removes or significantly smooths it out. As before, the usual falling-with-frequency NFB will not deal with this sort of high-order distortion very effectively, leading to a rise in THD above the noise in the upper audio band.

In fact, the characteristics look so suspiciously similar to the standard emitter-follower CC stage, that it began to belatedly dawn on me they might actually be the same thing...

Fig. 9 shows the final stages of this conceptual hejira. 9a shows the simplified circuit of Fig. 3 with the power supplies V+, V- included; they no doubt come from a mains transformer so we can float them at will, and it seems quite in order to pluck them from their present position and put them in the collectors of the output devices instead. All the other supplies shown are equally without ties forming an independent unit with the associated transistor and emitter resistor $R_{\rm e}$. Thus they cannot effect device currents. Since there is only one ground reference in the circuit, it is also a legitimate gambit to put it wherever we like, which in this case is now the opposite end of the load R_1 . (See reference 9 for another example of this manoeuvre). This gives us the unlikely looking but functionally equivalent circuit in Fig. 9b.

A purely cosmetic rearrangement of 9b produces **9c**, which is topologically identical, and reveals that the new output stage is... a CC stage after all. Fig. **9d** shows the standard output.

The only true difference between the "CE" stage and the traditional CC stage is the arrangement of the two bias voltages V_{b1} , V_{b2} . In a conventional CC stage, the output bases or gates are held apart by a single fixed volt-

Continued over page...

M &	B RADIO (L	Ξ	EDS)
THE NORTH'	S LEADING USED TEST/EC	UIF	PMENT DEALER
SIGNAL GENERATORS	TEKTRONIX 7633 7A26/7A13/7B53 200MHZ 4 CHANNEL STO	RAGE	BALLANTINE 6125C PROG TIME/AMPLITUDE TESTSET
MARCONI 2018 EDKHZ TO 520MHZ SYNTHESIZED	TEKTRONIX 7603 7A16/7A29/7B53A IGHZ OSCILLOSCOPE .	£600	AVO RM21! L/2 AC/DC BREAKDOWN/IONISATION TESTER
MARCONI 2015/5 171 SYNCRONIZER IOMHZ TO 520MHZ	PHILIPS PM3217 5IMF Z 2 CHANNEL DELAYED TIMEBASE IWATSUI SS6122 ID0n HZ 4 CHANNEL CURSOR READO JT	£375	ALLTECH 5:3X-11 CALIBRATOR 1 HP355C/1HP355D ATTENUATO
MARCONI 2015 DMHZ TO S20MHZ AM/FM		£500	BIRD TENULINE 8343 100W 6DB ATTENUATORS (NEW)
HP8683D 2 3GHZ TO 13GHZ OPT001/003 SOLID STATE GENERATOR	GOULD OS400 10HHZ DIGITAL STORAGE	£195	ARDA 76%6 ISOW 6DB ATTENUATORS
HP3336A SYNTHESIZER/LEVEL GENERATOR	GOULD 05250B 199H 2 2 CHANNEL		NARDA 30C1-30 DIRECTIONAL COUPLER 460MHZ TO 950MHZ 1 NARDA 302 BI-DIRECTIONAL COUPLER IGHZ TO 4GHZ
HP8620C SWEEPER MAINFRAMES (AS NEW)	TEKTRONIX \$103*/5310N/5A20N/5A20N OSCILLOSC OPE	£250	KEMO DP1 PHASE METER INZ TO 100KHZ (NEW)
HP8620C/86220A RF PLUG-IN 10MHZ TO 1300MHZ		(750	RACAL 900 MODULATION METER 30MHZ TO 1500 MHZ
1P4204A IOKHZ TO IMHZ OSCILLATOR. (250	TEKTRONIX 141 PAL GENERATOR SPG11/TSG11	. 61750	RACAL 9901 SOMHZ TIMER COUNTER
POLRAD I 106ET 1.8GHZ TO 4.6GHZ WITH MODULATOR	SYSTEMS VIDEO 2364 COMPONENT VIDEO GENERATOR PHILIPS PM5567 PM1 *FCTOR SCOPE	. £1500	RACAL 991: 10HZ TO 520MHZ FREQUENCY COUNTER
GIGA GRIIOIA 12GHZ TO 18GHZ PULSE GENERATOR (AS NEW) (750	HP5005A SIGNATURE MULTIMETER	6495	RACAL DANA 1998 10HZ TO 1300MHZ FREQ/TIMER COUNTER
SAYROSA MASOFREQUENCY OSCILLATOR IOHZ TO OKHZ (200	BRUEL & KJAER 2:03 PRECISION SOUND LEVEL METERATION	2	RACAL DANA 9000 S20MHZ MICROPROCESSING TIMER COUNTE
ADRET 20230A I MHZ SYNTHESIZED SOURCE	FILTER	£450	RACAL DANA 6000 MICROPROCESSING DVM
HP8672A SYNTHESIZED SIGNAL GENERATOR 2GHZ TO 18GHZ	BRUEL & KAER 4 109 -REQUENCY RESPONSE ANALYSER	£250	RACAL DANA 488 IEEE-STD BUS ANALYSER
HP3586A SELECTVE LEVEL METER SOHZ TO 32 5MHZ C1850	EFRATROM FRT ATOMIC FREQUENCY STANDARD	. £2500	RACAL DANA 9302 RF MILLIVOLTMETER TOKHZ TO 1500MHZ
SPECTRUM ANALYSERS	HP3779A PRIMARY MULTIPLEX ANALYSER	£600	RACAL 906 TWO TONE GENERATOR SYNTHESIZED
HP8903A 20HZ TO 100KHZ AUDIO ANALYSER	HP3762A DATA GINE ATOR		FHILIPS PH8252A DUAL PEN RECORDER
BAK 2033 IHZ TC 20KHZ AUDIO ANALYSER	HP3466A DIGITAL MU TIMETER LED		TEKTRONX 528A VIDEO WAVEFORM MONITOR
HP3581A WAVE ANALYSER 15HZ TO 50KHZ (AS NEW)	HP8750A STORAGE N DRMAUSER		TEKTRONIX 338 LOGIC ANALYSER 32 CHANNEL 20MHZ
(3000 HP85588 10MHZ CO 1500MHZ WITH 182T MAINERAME (2000	HP3400A TRUE RMS VIOLTMETER ANALOGUE	6145	SIEMENS L 2233 PSOPHOMETER (NEW)
HP141T 8552B/8:53B I IOMHZ WITH 8443A TRACKING GENERATOR	HP3406A BROADBAND SAMPLING VOLTMETER		SIEMENS CZIDBLEVEL METER 200HZ TO 30MHZ
(2000 HP141T 8552A/8-548 100KHZ TO 1250MHZ (AS NEW)	HP11683A RANGECA IBRATOR	£300	WANDEL & GOLTERMAN SPM 19 LEVEL METER SOHZ TO 25MHZ
HP141T 8555A/8452B 10MHZ TO 18GHZ SPECTRUM ANALYSER	HP10529A LOGIC COMPARATOR		WANDEL & GOLTERMAN PSS19 LEVEL GENERATOR 25MHZ
N	HP334A DISTORTION METER OPT HIS	£250	ERUEL & COER 2425 ELECTRONIC VOLTMETER & SHZ TO 500KH
HP8444A TRACKING GENERATOR OPT058	MARCONI 2300B 10 DULATION METER 1200MHZ		DRANETZ SZAG MAINIS DISTURBANCE ANALYZEL EUTED WITH
WAYNE KERR RAZ00 FREQUENCY RESPONSE ANALYSER	MARCONI 2331A DISTORTION FACTOR METER	£200	6036 interface/6002A dc monitor/6001 line analyzer/6005 ac monitor/602
HP3581C SELECT VE VOLTMETER ISHZ TO SOKHZ	MARCONI 2432A 560 HZ FREQUENCY COUNTER		SCHLUMBERGER 7702 DIGITAL TRANSMISSION ANALYSER
TEXSCAN ALSI 4MHZ TO 1000MHZ ANALYSER	MARCONI 2604 ELECTRONIC VOLTMETER 1500MHZ		MARCONI6950/6910 POWER METER 10MHZ TO 20G-1Z
OSCILLOSCOPES	MARCONI 2910/4 TV .INEAR DISTORTION ANALYSER	£600	HP432A/478A RF POWER METER IOMHZ TO IOGHZ
TEKTRONIX 24-5A ISOMHZ 4 CHANNEL	MARCONI 2913 1:51 LINE GENERATOR + INSERTOR		HP435A/8462H RF POWER METER TO KHZ TO 4.2GHZ
TEKTRONIX 24-5 I 50MHZ 4 CHANNEL	MARCONI 2306 P COGRAMMABLE INTERFACE UNIT	£450	HP435B/8 A RF POWER METER IOMHZ TO ISGHZ
TEKTRONIX 22 5 60MHZ 2 CHANNEL	FARNELL RB103035 LECTRONIC LOAD	£ 495	HP8447D AMPLIFER 0. IMHZ TO I 300MHZ
GOULD STID TOCMHZ INTELLIGENT OSCILLOSCOPE	FARNELL LOPS DO URIPLE OUTPUT DIGITAL PSU	£95	HP432A CFYSTAL DETECTOR
GOULD OS300 20MHZ 2 CHANNEL	FARNELL B30/5 POWER SUPPLY 0-30 VOLT 5 AMP	£45	BIRD COAZIAL ATTENUATOR SOOW 30dB
TEKTRONIX SC504/TM503/DM501 PORTABLE 80MHZ SCOPE/DVM	FARNELL LAS20 #F AMPLIFIER I SMHZ TO S20MHZ		BULK PURCHASE SPECIALS
TEKTRONIX 475 200MHZ DUAL TRACE	FARMELL THE THUE RMS SAMPLING REMETER (AS NEW? I GH	£3 50	BECKMAN DHI I O DIGITAL MULTIMETERS WITH CASE/PROBES
TEKTRONIX 46- 100MHZ DUAL TRACE	FLUKE 3330B PRC G CONSTANT CURRENT/VOLTAGE CALIBR	ATOR (750	SOLARTRON 7045 HIGH SPECIFICATION BENCH DVM
TEKTRONIX 464 100MHZ STORAGE	FLUKE 103A FRECUE NCY COMPARATOR		BIRD 43 THRULINE WATTMETERS
AS NEW)	EXACT 334 PRECSION CALIBRATOR		EX GERMAN ARMY PORTABLE RADIATION METERS

HEWLETT PACKARD Spectrum Analysers

HP 141T / 8555A 10 MHz to 18 GHz System **Complete with 8552B IF Section** High Sensitivity to - 125 dBm **Resolve to 100 Hz** Scan up to 8 GHz full screen £1700.00

HP 141T / 8554B 100 KHz to 1250 MHz System **Complete with 8552B IF Section** High Sensitivity to - 122 dBm **Resolve to 100 Hz**

£1000.00

With the purchase of any of the above systems we will supply FREE of charge one HP 8553B 1 kHz to 110 MHz RF section. Normal retail price of £350.00.

> All systems covered by 30 day warranty All prices plus Vat and carriage

M & B RADIO (LEEDS)

86 Bishopgate Street, Leeds LS1 4BB Tel: (0532) 435649 Fax: (0532) 426881

CIRCLE NO. 108 ON REPLY CARD

AUDIO

age, shown here as V_{b1} and V_{b2} connected together. This rigid "unit" can be regarded as driven with respect to the output rail by the signal source V_{sig} , representing the difference between input and output of the stage. Normally, of course, it is more useful to regard the earlier circuitry as generating a signal voltage with respect to ground.

In contrast to Fig. 9d, Fig. 9c has two bias voltage generators, and the consequence of this is that voltage drops in the emitter resistors R_e are not coupled across to the opposite device by the bias voltage. This does not seem to offer immediately any magical stratagems for reducing the gain deviation around crossover, and creates the need for two drive voltages referenced about the output rail. This should be fairly easy to contrive, but is bound to be more complex than the traditional method.

Squaring the circle

Having gone through these manipulations, it is time to reconsider fets and the quarter-squares approach, knowing now that we are dealing with something very close to a standard power-amp configuration. To underline the point, **Fig. 10** shows the gain characteristics for the circuit of Fig. 2, using 2SK135/2SJ50 power fets. Note the very close resemblance to a conventional source follower⁸.

As Mr Williams points out, the V_{gs}/I_d characteristic curve for power fets may follow a square law at low currents, but it is more or less linear at high ones, and this appears to rule out any simple approach to "curvilinear class A". For the fets I used, the "square lawish" region is actually tiny, being roughly between 0 to 80mA which is of limited use for a power stage. In so far as second-harmonic cancellation occurs at all, it is in the crossover region where, without this effect, the central gain deviations would probably be greater than they are.

As I can see, the quarter-squares concept is already in use in most fet power amplifiers in heavy disguise but only operational in the crossover region. If this idea is to be pursued

Fig. 10. The gain linearity of the fet circuit in Fig. 2 for various bias voltages. This looks very similar to a conventional source-follower output stage.

further, we need a true square-law output device. Since there is no such thing, it would need to be realised by some kind of law-synthesis circuitry. If amplifier distortion needs reducing below the tiny levels possible with relatively conventional techniques, there are probably better avenues to explore.

References

 Williams, M, Making a linear difference to square-law fets EW+WW, Jan 94, p82.
 Brown, S F, Letters, EW+WW, March 94, p247.
 Owen, D, As 2.
 Mills & Hawksford, Transconductance Power Amplifier Systems, Current-Driven Loudspeakers. JAES Vol 37 #10, Oct 1989
5. Fonderie & Huijsing, Design of Low-Voltage Bipolar Operational Amplifiers Kluwer Academic Publishers 1993 Chapter 3.
6. Cherry & Cambrell, Output Resistance & Intermodulation Distortion of Feedback Amplifiers JAES Vol 30 #4, April 82
7. Jung & Wong, High-Performance ICs in Single-Supply Analog Circuits. Analog Dialogue #27-2 (1993) p16.
8. Self, D Distortion in Power Amplifiers: Part 4 EW+WW, Nov 93, p932.
9. Baxandall, P Symmetry in Class B Letter, Wireless World Sept 1969, p416.

CIRCLE NO. 110 ON REPLY CARD

CIRCLE NO. 111 ON REPLY CARD

ACQUIRING data from noise

Computerised data acquisition has never been simpler, with all manner of plugin data acquisition boards available for the PC. Now, thanks to software packages designed to make these cards easy to use, a new term has entered the vocabulary – namely virtual instrumentation. Separate digital voltmeters and oscilloscopes are no longer needed. Sensors connect directly to the data acquisition card and facsimiles of hardware instruments present the measurement results on the vdu.

Virtual instruments are especially useful in laboratory type environments, where sensors are positioned within a few metres of the data acquisition card in a relatively benign electrical environment. However they are less useful in electrically noisy environments, such as a factory floor, where the sensor may be tens if not hundreds of metres from the computer. Used correctly, screened cables help, but they are by no means a complete solution.

The major problem in getting data from a remote sensor to your data logging station or computer is noise. From a practical point of view, noise can be divided into three rather loosely defined categories. These categories are, pickup, impulse noise and random noise.

Pickup is usually a narrow band interference mechanism. It is invariably due to ac power line inductive coupling. Impulse noise consists of very short duration, often very high amplitude spikes. These sometimes occur in bursts. Often these impulses are only microseconds in duration, but of sufficient amplitude to play By the time it reaches a data-acquisition system, the signal from a remote sensor can be almost indistinguishable from the noise it picked up en route – particularly in an industrial environment. Dave Robinson looks at how such signals can be recovered.

havoc with any naively designed digital equipment. Random noise is just that, an amorphous mush that can completely swamp the signal that you are trying to observe.

Invariably all three types of noise are present to some degree. Basically, there are two ways of dealing with noise – one is to remove it, the other to avoid it. The first option includes algorithms designed to recover your signal once it has been contaminated with noise. This is obviously a not an ideal solution. However there are times when control of the noise is not in your hands.

Noise removal

All noise removal techniques are a compromise. They rely on redundant data which is used to estimate the wanted signal. These estimates are then used to reduce the noise.

With Shannon rate sampling, where data is sampled at the maximum theoretical rate, every sample represents new information. This makes noise removal techniques inappropriate and noise avoidance techniques are used instead.

It is however possible to obtain redundant information by over sampling the noisy signal. The more the signal looks like a slowly drifting dc level to your data acquisition system, the better chance you have of recovering useful information.

Basic statistics tell us that the signal-to-noise ratio can only be improved slowly. It goes up as the square root of the number of samples taken. Thus four independent samples of the same signal effectively halves the noise contamination, but 10,000 samples only reduces it by 100. From this basic rule of thumb you can roughly calculate the sample rate you will need to produce the quality of signal given a fixed degree of noise contamination.

Assume that you know that the maximum rate of signal you are looking for changes by an amount equivalent to the least-significant bit of your a-to-d converter in say *T* seconds. If your sample period is $N \times T$, the maximum theoretical improvement you can expect from any algorithm is \sqrt{N} . From this approximate analysis, and knowing the dynamic range required by your control process, you can identify the type of a-to-d converter your system requires, as described in the panel.

For demonstration purposes, the following algorithms are applied to the curve produced by a theoretical process **Fig. 1**. Before the algorithms are applied, this ideal curve is buried in noise, as in **Fig. 2**. Time would probably – but not compulsorily – be on the X axis. The Y axis could represent virtually any

signal recovery.

parameter, for example voltage, temperature or even sugar concentration.

Waveform averaging

The simplest, and perhaps the most intuitive method of signal recovery is to find the average of a number of samples and use that as the estimate of the signal. Waveforms **Fig. 3** shows this process in action. Each sample in these waveforms is simply the average of a block of fixed number of preceding samples.

It is clear that as the block length increases, so the noise level decreases. At the longest block length the data is almost as clean as the original. Be cautious however. Compare the pure original signal with the cleaned up version, **Fig. 4**. Note how it has been distorted. Although the problem looks simply like delay and attenuation, it is mathematically more complicated than this. The distortion is mathematically definable. It could be reversed, at least in theory, but such techniques are beyond the scope of this article.

Depending on the application, the distortion may be tolerable. But be careful if you are using the process within a feedback loop. Its apparent delay, or lag, could result in the control loop becoming unstable. This will result in the complete system oscillating, and in some circumstances lead to expensive damage to production machinery.

Although block averaging is fairly simple in concept, building a real-time implementation of the algorithm might not be so straight forward. Do you redo the complete average process for each new input sample? Or do you try to subtract the oldest value from the sum and add in the newest value? In either case a record has to be kept of the original block data samples. This is not so easy if you are using a small microcontroller with no external ram, particularly if you are trying to get a 100:1 improvement in signal to noise ratio.

As an alternative to block averaging, a running average can be used. Running averages are easier to compute. Exponential smoothing is perhaps the most common running average algorithm. It is an iterative algorithm which computes the following:

 $Y_{n+1} = Y_n - K(Y_{n-input})$

Here Y_{n+1} is the estimate for the latest value. Y_n is the last sample estimate, variable *input* is the current input sample and K is some constant which is less than 1. Why it is called exponential smoothing when there is no exponential function in the equation can be explained by simply considering its response to be a step function. Assume that the original input has been zero, as is Y_n , and the input instantaneously steps up to one and stays there. Output from the algorithm for various values of K is shown in **Fig. 5**.

The curves are true exponentials whose time constant is controlled directly from the K value. Reducing the K value increases the time constant. The procedure is analogous to connecting a simple *RC* filter to a noisy electronic node in order to remove the noise. This algorithm is the simplest form of recursive digital filter. **Figure 6** shows results obtained from applying simple exponential smoothing to Fig. 2.

Predictors

Averaging can be considered as a limiting case of an algorithm known as a predictor. These use a block of data in order to predict what the next value will be. The averager models the data within its block as a simple dc level. As a result, the next value will be the average of the previous data points. Predictors are classified in terms of orders. They attempt to model the data block in terms of a polynomial, and use a statistical mechanism such as least squares to find the best fit. The order of a predictor is simply the highest power of polynomial being used to model the data. Thus a linear fit y=mx+c is a first order predictor. An averager y=c is simply a zero order predictor.

Predictors do have problems. They have to be tailored for a particular task. As the predictor's order increases, so its ability to remove noise diminishes. This is illustrated by

Fig. 3. Using averaging to recover a signal from noise, apparent quality of the recovered signal improves as the number of samples increases. But the results can be misleading.

DESIGN

considering, say, a 16th order predictor running with a block of 16 previous data values. An exact polynomial fit can be made to the data, noise and all – which is useless.

The higher the predictor's order, the more independent parameters the predictor is trying to estimate from the same data. An averager is only producing one value – the average – whereas a first order predictor needs to determine the offset and slope from the same data. The result must be inherently more noisy.

Predictors offer an advantage in that the data being extracted from the noise is probably going to be moving. This means that a polyno-

mial model is likely to be a closer fit than a model that suggests that the data is a simple dc level. Consequently the apparent phase shift shown by an averager is a good deal less noticeable using a higher order predictor, and it is less susceptible to closed control loop oscillation.

More powerful statistics can be used to enhance the signal-to-noise ratio. For example the value of slope and offset computed at each new data sample can be averaged. Predictors can be made to react almost instantaneously to drastic changes in input signal. This is accomplished using statistical decision theory.

If you have calculated the optimum parameters for your model using data within the buffer, you can also calculate how far each data point is adrift from that model. In other words you have a measure of the local signalto-noise ratio. By comparing the current predicted value with the latest sample, a decision can be made as to whether the current data point belongs to the rest of the distribution within the buffer. If it is, the prediction is output, maintaining the smoothed data output. If not, the actual value is output, and the contents of the predictor buffer can be deleted since the

Demonstrations of exponential smoothing

using various values of K

Fig. 5. In an averaging signal recovery filter with exponential smoothing, quantity K control the time constant directly.

previous value is no longer valid, and a discontinuity has occurred. The signal-to-noise ratio will return to its raw state until the predictor has gained sufficient data to be able to start making sensible estimates once more.

Figure 7 shows results from a simple first order predictor, using a 64 sample buffer and both slope and offset smoothing, applied to the sample noisy waveform. Note that the resulting waveform is not as smooth as the straight forward averager of similar buffer length. However the fit to the raw data is far better.

A priori knowledge

Methods described so far are recommended if and when you have no information regarding the distribution of the incoming data stream. If certain aspects of the data's distribution are known, they can be used to produce remarkable signal recoveries. What form this knowledge is in, or how it is best used, depends on the situation. For example, suppose that the waveform being recovered is repetitive. Ideally its repetition frequency is known. It is not necessary to know the actual phase information. If you take a sample at a given time after the encoder synchronisation pulse, then you can expect to get the same value at the same point after the next pulse. Any discrepancy is due to the noise corruption on the signal.

Imagine setting up a number of averagers, or exponential smoothers evenly distributed throughout the repeat cycle. These would simply average out the noise and find the true value of the signal at that phase position. By sequentially interrogating

these averagers, you can build up a very good picture of the underlying waveform.

Figure 8 shows how effective techniques like this can be. The signal is as used previously, but this time replicated to form the repeating waveform. It is buried in far more noise than was used in the previous examples, so much so that the underlying waveform is undistinguishable.

Each cycle is split into 256 points, and each point is equipped with its own exponential smoother with weight K=1/64. After running the system for a short time its output settles down to an equilibrium position as shown. The original waveform is almost completely recovered.

In this particular example we have two pieces of information, namely that the waveform is repetitive and its repetition frequency. Even if the repetition frequency is not known, all is not lost. There are signal processing techniques, such as auto-correlation, which allow you to determine repetition frequency, enabling the previous technique to be used.

A word of warning

Invariably, corruption of data by noise is mod-

Fig. 6. Exponential smoothing is the most common running average algorithm used to recover a signal from noise. The procedure is analogous to adding an RC filter to remove the noise.

Fig. 7. Compared with an equivalent averaging filter, the simple first-order predictor produces a less smooth output but the overall fit with the original signal is much better.

DESIGN

elled as a linear process. The noise and the signal are viewed as two separate entities and are combined by arithmetical addition. Under these circumstances the processes described above work well.

However beware of multiplicative noise corruption. This is where noise and the signal are multiplied together. Under these circumstances the techniques mentioned no longer work. Multiplicative noise corruption can occur in many places. In data-acquisition systems, the most common sources are noisy illumination systems in optical sensors. Here, output from the sensor is the product of the reflectance of the object multiplied by the illumination. Similarly noisy excitation of resistive sensors can be a problem.

Output voltage from such sensors is the product of device resistance and excitation current. Removing the effect of such corruption is not easy, so make sure that these nodes are given the respect they deserve.

Next month, David discusses the

alternative to noise removal techniques, namely noise avoidance.

Fig. 8. If something is known about the original waveform, your chances of recovering it are much improved. This diagram shows a recovered signal superimposed on the noise that it was recovered from.

Analogue-to-digital conversion

Transducers monitoring real world parameters, for example temperature or strain, invariably produce an analogue output. In order to process such a signal digitally, it needs to be converted into a form that can be handled by a computer by an analogue to digital converter.

An analogue to digital converter, or ADC, is designed to produce a digital number approximating to the analogue input. Imagine taking a reading from a temperature sensor covering the 0 to 100°C. In theory, this thermometer could monitor any temperature within its range.

However the ADC splits the range into a finite number of steps. Combined, the thermometer and ADC are only capable of measuring discrete quantities, or quantization levels. It is the designer's task to ensure that the number of quantization levels provides adequate dynamic range for whatever their required task demands.

As is usual, trade offs have to be made. When designing analogue-to-digital converters, desirable parameters are high resolution, i.e. lots of quantization levels, high sampling rate and low cost.

There are several types of ADC. These include flash, half flash, successive approximation and charge integration types. The chart below shows how the important parameters are balanced for these four converter technologies.

Note how the number of quantization levels, or more conventionally the number of bits, is inversely related to digitisation rate. Commercially, ultra fast converters are normally only available with limited dynamic range. Similarly very accurate converters are only available with limited conversion speeds.

The question of conversion rate bears heavily on how the converter is connected to the input signal. Very fast converters only need a fast high quality amplifier. The speed of conversion is such that the input signal will have barely

Fig. 9. Analogue-to-digital converters used for data acquisition are a comprom:se between resolution. cost and sampling rate capability.

moved curing conversion.

For slower converters, this is no longer true. Input voltage needs to be frozen during the conversion period, otherwise the input signal may change appreciably during the conversion process. This wastes any advantage gained in the increased dynamic range of the slower converter.

A solution to this problem is to use a sample and hold circuit. The simplest form of sample and hold configuration comprises an RC circuit connected to the input signal via some form of switch. When the switch is closed, the capacitor rapidly charges up to the voltage at the input. When the switch is open, the voltage on the capabitor remains fixed while the conversion is completed, even though the input signal may change significantly.

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST £395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER+ and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place (add/mouse (delate))
- dot placement and mouse driven place/edit/move/delete.
 Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just £250 if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800x600 Super VGA.

ISIS ILLUSTRATOR

111

 Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

Schematic Drawing for Windows

02

CADPAK Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded... "At £79 I thought this was an excellent buy."

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us to 0756 7528 DOS or educations

Call us today on 0756 753440 or fax 0756 752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.

WE HAVE MOVED - NOTE NEW ADDRESS Prices exclude p&p (£5 for U.K.) and VAT. Ali manufacturers' trademarks acknowledged.

53-55 Main St, Grassington, North Yorks. BD23 5AA

Graph plotting in Windows

Graphs are essential tools for conveying engineering and scientific information but producing them is tedious and time consuming. Not so, says Allen Brown, with this new plotting package.

Plotting data has never been easier than with PCs running under Windows. It is now common in engineering environments to see PCs with high resolution colour monitors, linked to laser printers. These standard tools, together with suitable software, make plotting an almost pleasant task.

The attractive features of Windows are its universal acceptance and dynamic linking facilities. In addition, its common user interface makes all Windows software look the same.

Most engineers now use word processors from time to time. Although many word processors include graphplotting facilities, they tend to be rather limited in scope. This can result in the user wasting valuable time trying to fashion the supplied standard graphs into an acceptable format.

The alternative is to use a specialised graph plotting package that allows graphs to be imported into your favourite word processor.

A new graph plotting software package for Windows has recently been released by MicroCal Software of Massachusetts. Entitled *Origin*, it is a fully comprehensive graph plotting utility capable of producing both two and three-dimensional plots.

A remarkable feature of *Origin* is its high degree of control over the many display formats granted to the user. Also, the ease with which control can be exercised over the plotting formats is appealing.

User input is carried out via dialogue boxes that provide considerable choice of positioning, fonts, colour, scaling

Eile	Edit	Plot	Column	Data	Conv	ert	Window				He
		Line						-	Da	ita1	-
		Scat	ter						AX	B[M]	C[yEr±]
		Line	+Symbol					1	1.23	7.43	1.2
		HI-L	o-Close		_			2	2.436	\$.29	1.32
		Çolu	mn					3	3.2165	14.32	1.43
		Stac	k Column					4	4.657	18.43	2.43
		Bar						5	5.17	20.43	1.16
		Stac	k Bar					6	6.032	24.551	2.04
		Area	1					7	7.301	26.43	1.84
		0	01					8	8.391	30.53	2
_		Pie	Chart		· '			9	9.012	33.D12	2.8/
		Fota	ir Plot			Plo	it1	10	10.432	37_042	1.4.
 ,		Dou Wat Line	ble Y Lin er Fall (X Series C	e/Symb Y offse hart	iot) p t)			-1-	÷.		
erature		<u>S</u> tati Anal	istical Chi Iysis Chai	arts ts		4	-1-	1-1			
du		Tem	plate								- And
Te.		I	-1-							1.02	1996
	0		z	•	Time (Sec	s onds)		10	a	

and plotting styles. Whatever feature is selected on a plot, a click with the mouse's right-hand button evokes the dialogue box associated with that feature. Each dialogue box contains numerous options for adjustment and display.

Part of the *Origin* package is a tutorial that will particularly benefit the new user in that it provides a good understanding of the mechanics of the software. Once *Origin* has been installed – a very easy task – the new user will find the *Getting started* section in the tutorial very useful. The tutorial exercises are well thought out, taking the new user through the majority of the features which the package has to offer.

One immediate feature which is very useful is the ease with which ascii data files can be imported. Even with files only having y axis data, the user is offered the choice of defining the x axis data and prompted for both starting point and increment. This is especially useful if the raw data has been obtained from an expansion card that only provides y data streams or batches. Fig. 1. Error bars are a feature that graph-plotting programs usually find difficult. Not so Origin.

PC ENGINEERING

Fig. 2. From each worksheet, graphs can be created individually or displayed on the same graph.

Fig. 3. Origin offers a wide choice of curve fittings options. Most use the least-squares method

Fig. 4. A typical 3D trajectory generated from Origin – not overly impressive.

Dynamic linking

Data can be brought into the *Origin* window via the Windows dynamic linking facility from other concurrent software packages such as the spreadsheet *Excel*. This offers some exciting possibilities when using other data acquisition software.

An interesting feature of *Origin* is its error-bar capability. Scientists use error bars on their graphs but engineers rarely do. Including error bars has always been a problem for software displaying data graphically. With *Origin* however, error bars are very easily added to graphs. This is thanks to *Origin*'s worksheet format.

Worksheets

When *Origin* starts up, a default worksheet is generated. It looks like a spreadsheet design with an array of cells. As data is imported into *Origin* it fills up the columns in the worksheet.

Graphs can be generated directly from the worksheet data. When error bars are needed, an extra column is produced – via a drop-down menu option. This column is dedicated to error bar, which are plotted at the same time as the worksheet data, **Fig. 1**. This display also shows the plotting options offered in the PLOT drop-down menu.

Imported data can be loaded directly into a worksheet or into a graph. From each worksheet, individual graphs can be created or alternatively the data can be displayed on the same graph as illustrated in **Fig. 2**.

By accessing the DATA option from the drop-down menu it is possible to generate a column of linearly increasing values. If need be these can be used to form the x axis. You can place, with ease, as many data columns in the same worksheet and they can be plotted as required.

Even if data is not available from an outside source it can be generated within *Origin* from the function-plot option. This can be displayed in either Cartesian or polar formats. Some elementary statistical processing can also be applied to each column or row.

This can provide information such as mean deviation, standard deviation and the result of t-testing. A further interesting feature of *Origin* is its ability to put several data plots in layers on top of each other and display them alltogether. In addition, different axis limits can be attached to the top and right hand side of the graphs to show alternative scaling.

Several worksheets can be open at any one time. By using the Windows clipboard, data can be exchange between worksheets very easily. The worksheet also allows editing of the data values in each column - so-

PC FNGINEERING

a common practice for plotting surfaces.

There is however a long wait for the redraw of the surfaces each time a slight change is made. This can be quite irritating after a while. Although the value of surface plots is sometimes questionable, they are quite useful when illustrating the significance of poles and zeros in the S-domain.

Fig. 5. Everyone likes looking at surface plots but are they really useful?

LabTalk

For really enthusiastic users who want to design custom graph formats, Origin comes with its own command language. This language, LabTalk, can also be used to determine how data is read into its associated worksheet.

LabTalk is a programming language providing access to the majority of Origin functions. These include the userdesigned dynamic data links, or DLLs, for Microsoft Windows linking.

Syntax of LabTalk is not unlike that of dos batch commands, with operators, control flow and the customary structuring options. LabTalk is actually an interpreter that processes its native script or source code language. The fact that LabTalk is an interpreter is useful if you

Fig. 6. With a little imagination and lot of time some interesting displays can be designed using LabTalk.

called data massaging. This feature should instantly endear Origin to statisticians working in the Treasury or Employment Department.

Templates

Many engineering and scientific tasks that need large amounts of data logging and plotting tend to be repetitive. With this in mind, Origin allows users to construct graphical templates.

Major features of templates - for example axis limits, scaling and labelling - remain fixed. Only the data plotting and possibly the legend will change from graph to graph.

This design feature would be very useful for proprietary graphs showing for example calibration and system performance for quality checking. A system performance graph can incorporate a tolerance envelope as part of the template. The actual performance curve, i.e. the data, is then inserted into the template graph. By looking at the resulting plot, an inspector can immediately determine whether the system under test conforms to expectation by staying within the tolerance envelope.

Curve fitting

Having imported a batch of data into Origin, you can exercise a variety of curve fitting options on the resulting curve. Some of the options are shown in Fig. 3 in the dropdown menu. Also shown in this shot is an example for fitting an eighth-order polynomial to a data batch. As the curve fit is in progress another window is opened to show the results of the calculations and to display the coefficients and the correlation values. This provides a measure of how well the polynomial fits the data.

Most curve fitting techniques use the least-squares method. When this is applied to an eighth-order polynomial, an 8-by-8 matrix is generated that has to be inverted. This requires a reasonable amount of computation.

Speed of the maths calculations in Origin while performing curve fits is remarkably quick.

3D and contour plotting

Three-dimensional plotting is the second part of Origin. It appears to be an addition to the Origin package proper. Contour plotting is quite impressive, particularly the automatic labelling.

I don't have the same enthusiasm for the 3D plotting however. Although it is easier to use than many other graphics packages, its range of options is small and it doesn't behave as you would expect.

For example, consider an unstable oscillator where time is along the z axis and velocity and displacement along the y and x axes respectively. You would expect to see an expanding helix along the z axis. Figure 4 shows what you actually get even when you specify a trajectory plot - not very impressive.

However the surface plots are acceptable, as you can see from Fig. 5, and colour grading is easy. Surface plots are produced by importing matrices into Origin, which is now

PC ENGINEERING

need to design a custom product with plotting features. However it is not the sort of feature that the casual user of *Origin* would use. An example of what can be achieved is shown in **Fig. 6**.

Reference manual

There are in four manuals with *Origin* – a tutorial guide, a reference manual, *LahTalk*'s user manual and a 3D/Contour supplement.

The tutorial guide is well written and is aimed at the general user. It provides a number of good examples illustrating *Origin's* salient features. In addition it has many screen dumps and all the examples work according to the guide – a pleasant surprise.

As expected the reference manual contains all the functions of *Origin* and complements the screen help facilities provided in the software.

Round up

Origin is a package that I like very much. It is easy to use and its operation is logical. The range of 2D plotting options is most impressive. Above all, the flexibility afforded to the user makes it very attractive.

The learning curve needed is gradual. In no time, I was able to exercise a lot of control over plotting formats without having to cover all the features offered by the product. This is the sort of package that you can use a part of, quite competently, without having to worry about the rest of it.

On the down side there is only one problem - the 3D

Modelmaker a synthesis toolkit for

SpiceAge for Windows makes models accessible to all.

This new model maker includes tools for creating OpAmps, Transformers, Attenuators and Bipolar transistors. **Straight from a catalogue...**

The models are an accessible alternative to SPICE models which may also be used with SpiceAge. But because the information needed can be obtained straight out of a catalogue, you need never be kept waiting for a model again.

	-			Windam Heib	
<u>.</u>		Untitle	d)	ΟμΛιτρ	Characteriation
Pin ci	onnections "V+" , "	/**, **n+**, **1	bne , ^{rr} n	Device name UA7410	
4	bias plán- Im plán-i	p2:v- p2:in-	v=1.879 v=2.000	Open-loop gain	200.00000k
iccs	offset pldni gain -outis	p2:in- ense	v=20.00 +out:Vir	Open loop bandwidth, Hz Slew rate, Vius	6.0
i	pole2 p1:vin pole2 p1:vit slew p1:Vin	p2:v+ p2:Vint	v=2.653 v≈2.653	Input hias current, nA	80.00
icvs ig	eutput -outisi but plicut	cer toutoutv	+con:Vi v=13.33	Input offset <u>surrent</u> , nA	20.00
11 14	steer1 antste steer2 antsei	er calv- ise calsieer		input offset voltage, mV	1.00
g g	railcurrent Am1 p1:Vin	-out:v+ t p2:v+	+outv- v=1.0	Output resistance, Munins	2.00
9	ümz p1:sei	ise p2:Vint	v=1,0	Output current [limit, mA	25.00
				Quiescent current, mA	1.70

SYSTEM REQUIREMENTS

PC compatible with 386 or better Windows 3.1 Mouse Good quality printer

SUPPLIER DETAILS

Origin plus *Contour* 3D modeller: £500 excluding £25 p&p and VAT. Quantity discounts are £1600 for 5 users to £5200 for 20 users.

Available from Rapid Data Ltd, Crescent House, Crescent Road, Worthing, West Sussex BN11 5RW. Tel. 0903 202819, fax 0903 820762.

plotting. You would not be able to plot a Lorentz Attractor and make any sense of it. However if you need no 3D plotting, then you should find *Origin* a treat to use.

Unnecessary complexity removed...

The models synthesized are smaller than SPICE models yet they are adequate for most applications and calculate many times faster. This is partly achieved by exploiting special polynomial pragmas (not available to SPICE) that define the limits of validity of non-linear functions. The OpAmp models, for example, break new ground simulation technology by in representing many SPICE details yet calculating up to five times faster.

MODELMAKER is available in modules starting from £15 +VAT to £135 + VAT and links with version 3 (and later) and level 3 (and higher) of SpiceAge

for Windows through the DDE. Those Engineers operate a helpful policy of maintenance and upgrading to all their software. For further details, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 081-906 0155, FAX 081-906 0969. *circle NO. 113 ON REPLY CARD*
Coherer-based radio

Following its introduction a century ago, the coherer electromagnetic wave detector helped radio evolve from being a curiosity to a practical communication tool. George Pickworth has been studying early designs and has even experimented with working transmitter/receivers capable of communicating at up to 1km.

Fig. 1. Sensitivity of the coherer. Although sensitivity is important, it makes the coherer prone to false triggering due to natural discharges if too high.

The coherer can be seen as a very fast, self latching relay. When triggered by a pulse induced in the receiver antenna, a local dc source of typically 1.5V operates a paper-tape Morse register, via an auxiliary relay. This provides a permanent record of the received signal.

The coherer was the first practical Hertzian wave detector. During its life, from about 1895 to 1905, it turned radio from a possibility into a practicality. History of the device was comprehensively covered by Leonid Kryhanovsky in his article (*The coherer*, EW+WW March 1992), but as he said, its physical mechanism was not fully understood.

As a technical historian, I am particularly interested in the sensitivity of the coherer, but as no meaningful information could be found in the literature, I decided to make a replica of a *circa* 1900 coherer and conduct my own research.

Pulses

My research showed that the coherer is actually a voltage-pulse triggered device. The pulse causes the coherer's resistance to drop to a level determined by the peak potential of the pulse. In a practical radio system, the pulse must be large enough to lower resistance to a certain threshold. If not, there will be insufficient current flow from the dc energiser circuit to operate the auxiliary relays and Morse register, **Fig. 1**.

The coherer can be triggered by a single unidirectional pulse, as may occur with natural discharges, or by the first negative or positivegoing half cycle of current induced in the antenna by a train of exponentially declining Hertzian waves. However, multiple triggering can occur with pear-shaped wave trains during the incremental increase in the amplitude of successive half cycles.

You can see from Fig. 1 that a pulse with a peak potential in the order of volts is needed to cause the coherer's resistance to drop to a few hundred ohms. Polarity of the pulses relative to the 1.5V dc energising source was immaterial above the 3V threshold.

Working point

The threshold at which the system began operating would have depended upon the sensitiv-

Fig. 2. Current induced in an antenna by an exponentially declining wave train. Triggering of the coherer occurs on the first half cycle pulse: remaining pulses are redundant.

Fig. 3. Current induced in the antenna by a pear-shaped wave train. Successive pulses lead up to the final pulse at the peak. As with Fig. 2, subsequent pulses serve no purpose.

ity of the auxiliary relays. Reliable operation seems to start at the knee of the curve, and is best above the saturation level of 9V. While my research shows sensitivity of the replica coherer, overall receiver sensitivity would by influenced by sensitivity of the relays and this requires further research.

It appears that pulses with a peak potential in the order of volts would be needed for reliable working. At first sight, an induced pulse presenting a potential of this order seemed inconceivable. However I then realized that early spark transmitters packed an enormous amount of energy in the first wave of an expo-

HISTORY

Fig. 4. Current induced in antenna by repetitive wave trains. Coherer triggering occurs on the first half cycle of each train. The period between triggering is long enough for operation of Morse register and restorer – typically 50 to 200ms.

Fig. 5. Varley's lightning protector comprised a glass tube loosely filled with copper filings. Provided the lightning wasn't a direct hit, the protector could be restored by gentle vibration.

Fig. 6. My prototype experimental coherer had a plastic tube and could easily be triggered by esd. Replacing the tube with a glass alternative reduced this effect.

Fig. 7. In the Slaby Arco coherer, performance consistency was improved by having uniform granules.

nentially declining train. Much of this energy was present in the first half wave.

Moreover, the coherer presents a high resistance, typically $500k\Omega$. I saw no reason why the first wave should not induce a potential in the order of volts across the coherer at normal working range. Unfortunately, early spark transmitters cannot be replicated. As a result, direct measurements of currents induced in an antenna by waves propagating through space cannot be made.

However, thanks to co-operation of the DTI, experiments with a replica of Marconi's early vhf transmitter were made underground in a disused railway tunnel and substantiated measurements made on the bench and outdoors, as discussed later.

My experiments showed that once the coherer is triggered by a pulse of given amplitude, successive pulses of lesser amplitude have no further effect on resistance; this applies to exponentially declining trains, **Fig. 2**.

I found that if the magnitude of the pulses increases incrementally, as would occur with pear-shaped wave trains, the coherer is successively triggered as the wave train builds up to maximum amplitude; this of course assumes that lowering resistance of the coherer does not unduly load the pulse source. Thereafter resistance remains steady, **Fig. 3**.

Static

I demonstrated the fact that the coherer is pulse activated by rubbing a screwdriver against my pullover and touching its tip on a coherer terminal. It triggered instantly. Resistance drop was roughly proportional to charge on the screwdriver, so the coherer may well be adapted as an electrometer

This triggering mode was substantiated by experiments with a pulse/spike generator. Surprisingly, I found no reference in the literature to the coherer being triggered by a static charge, and concluded that it was caused by using plastic tube for my replica instead of the glass alternative used by the pioneers. Changing the tube material to glass dramatically reduced so the effect may not have been observed by the pioneers.

It has long been known that the coherer was susceptible to triggering by natural discharges. Both Popoff and Tesla used the coherer to study atmospheric electricity before it was applied as a detector of Hertzian waves.

For maximum range with a coherer receiver, energy should ideally be radiated as electromagnetic (em) pulses. True pulses however are untunable so syntony (oscillations progressively built up in a receiver by virtue of resonance) would be out of the question. Early spark transmitters radiated energy in trains containing very few waves, not unlike a lightning discharge. While well suited to the coherer, they precluded syntony, **Fig. 4**.

The coherer/Morse register was slow. In the quest for syntony and a higher signalling speed, the coherer was superseded by detectors better suited to the longer wave trains that were vital for syntony. These later detectors –

which include Marconi's magnetic detector, Fessenden's electrolytic detector and DeForest's audio – produced an audible sound in a telephone earpiece that corresponded to Morse code characters.

Evolution

The coherer had its roots in Varley's telegraph 'lightning protector'. This consisted of a glass tube loosely filled with copper filings, connected between an earth plate and the overhead line where it entered the building. In their loose state, the filings presented a high resistance and therefore did not significantly interfere with signalling, **Fig.5**.

A pulse induced in the line by a lightning discharge caused the filings to cohere with a dramatic drop in resistance; this was so rapid that the pulse was shunted to earth before it could damage equipment. Moreover, unless the strike was very close, in which case the filings fused together, the protector could be restored to its original high resistance state by gentle vibration.

Branley seems to have been first to apply Varley's device to detecting Hertzian waves and it is named after him. But like many radio innovations, the coherer evolved through empirical experiments by a number of pioneers. It was applied to receiving Hertzian waves by Marconi and Popoff at around 1895. The name 'coherer' was invented by Lodge and aptly describes the device.

Throughout its life, the coherer gradually improved in sensitivity and operating consistency, culminating with the Slaby-Arco coherer in 1903. However, sensitivity was not the primary concern. If too sensitive, the coherer was susceptible to triggering by natural discharges. Consistency of operation was perhaps more important factor.

Construction

My experimenter's coherer consisted of a glass tube about 30mm long and 5mm inside diameter with a brass plug inserted in each end. The plugs served as electrodes and were separated by a 3mm gap at the centre of the tube, this gap was loosely filled with metal filings, typically steel with a small proportion of nickel.

I made four versions of coherer, each having different proportions of iron and nickel filings. In all cases the filings were sifted to remove fine particles. As explained in the main article, I used the plastic case of an old ball point pen instead of a glass tube, **Fig. 6**. All were physically the same size so that they clipped into a modified fuse holder.

I found 80% steel and 20% nickel (10p coin), as recommended by some early writers, gave best results. This article is based on data obtained with this version. All coherers are unique, but I believe the characteristics of my replica are similar to those used by early experimenters.

Setting up and preliminary adjustment involved gently forcing the electrodes into the tube until resistance fell to about 10 Ω . The electrodes were then eased apart, while gently tapping the tube, until resistance increased to

HISTORY

about $500k\Omega$. To ensure maximum sensitivity, final adjustment was made with the aid of a buzzer type signal generator as described in early literature.

The Slaby-Arco coherer and other high quality coherers had silver electrodes and carefully graded metal granules. These were typically 5% silver and 95% nickel of the order 50µm in diameter. Air was removed and the electrodes sealed in the glass tube, Fig. 5.

Size of the granules determined sensitivity: the smaller the granules, the greater the sensitivity. Consistency of operation depended primarily on the uniformity of the granules, **Fig.** 7.

Regarding sensitivity, I doubt that early experimenters' coherers were inferior to the Slaby-Arco coherer. Experimenters could increase sensitivity by reducing the size of the filings. But with all coherers there is a limit to how far this can be taken and experimenters devices most probably approached this limit. However, the Slaby-Arco coherer would undoubtedly have operated more consistently.

Coherers have only two terminals so choking coils were necessary to isolate trigger pulses from the dc energising circuit. In some designs the relays served as choking coils, **Fig. 8a**. The antenna circuit must not present a dc path across the terminals.

Restoring

Once triggered, the coherer would remain in its low-resistance state indefinitely. In a practical signalling system, it had to be restored to its high resistance state in readiness for the next wave train. This was achieved by gently tapping the coherer with a device similar to the hammer of an electric bell; this operation was synchronized with the Morse register, Fig. 7a, but some systems had only one relay.

For my experiments it was more convenient to restore the coherer by gently tapping it with a pencil. Only the slightest vibration was required and some early experimenters suggested that it could be used as a seismometer.

Signalling was by transmitting short or long groups of wave trains representing a 'dot' or 'dash' of Morse code. Each train caused the Morse register to make a discrete mark on the paper tape. Successive wave trains caused the marks to merge, thus forming a continuous line. Length of the line corresponded to the duration of the group of wave trains.

Very fast

Varley's lightning protector had shown that coherence was very fast. I found that with pulses having a rise of 1ms, coherence occurred before the pulse reached maximum potential. There was no further drop in resistance as potential increased. Moreover, once triggered, the protector's resistance falls, loading on the source increases and this may inhibit a further rise in the pulse's potential.

Furthermore, pulse rise time must be so short that the choke coils are able isolate the pulse from the dc energising circuit. So, for greatest resistance drop, the pulse must approach maximum potential faster than

Fig. 8. In the 'untuned' coherer receiver, a hammer similar to the one on an electric bell provided the vibration needed to restore the coherer each time a pulse was received via the antenna. In the so-called untuned transmitter, b), length, capacity and resistance of the antenna actually set the operating wavelength.

Fig. 9. Early tuned transmitter, a) and Marconi experimental jigger with dc blocking capacitor b).

coherence. For this reason, the coherer was well adapted to Marconi's early vhf system.

Coherence is generally accepted as being a physical effect. As a result, less energy would be required to overcome the inertia of small filings/granules. The effect is therefore faster than with larger filings/granules.

Untuned systems

With early vhf systems, it was logical to insert the coherer at the centre of a dipole antenna where it avoided shorting the coherer. This was adopted by Marconi. With later longwave systems, employing Marconi type antennas, the coherer was inserted between the earth plate and the base of the antenna, Fig. 8a.

Similarly, the transmitter had its spark gap between earth and the antenna base: this became known as an untuned system, Fig. **8b**. The term 'untuned' was in fact a misnomer. The length, capacity and resistance of the transmitter antenna set the operating wavelength. Because the antenna was a very efficient radiator, the amplitude of the waves in each train declined steeply.

With large spark coils, ship-to-ship and shipto-shore signalling over of 50km or more was achieved. Experimenters' manuals from around 1895 suggest that a transmitter using an induction coil comparable with a modern automotive spark coil and a 10m elevated antenna should have a range of about 1km.

Tuned transmitters

Second generation transmitters had inductors and capacitors and became known as tuned transmitters. Energy was still radiated as wave trains but each contained a greater number of significant waves than with the 'untuned' system.

Generally, transmitters employing one tuned stage, **Fig. 9a**, radiated exponentially declining wave trains while those having an inductively-

HISTORY

coupled, tuned-antenna system, Fig. 10a, radiated pear-shaped wave trains.

Inductance/capacity tuners were not well suited to exponentially declining waves. The pulse induced by the first half-wave simply shocked the tuner into generating a train of oscillations with a magnitude much less than the original pulse. So, it was logical to con-

tinue to connect the coherer directly to the antenna in the 'untuned' mode.

On the other hand, the gradual increase in amplitude of pear-shaped wave trains reduced the incidence of shocking the tuner into oscillation. But there were still too few trains, containing too few waves for a significant build up of voltage in an *LC* tuner by virtue of resonance. Syntony was minimal, but some voltage gain seems to have been achieved through standing waves.

Standing waves

Notwithstanding syntony, trains radiated by even the earliest 'untuned' transmitters contained more than one significant wave. Theoretically, a transient standing wave could develop in an antenna cut to an appropriate length.

There is of course, some voltage gain at a voltage antinode, but this was likely to have been insignificant with early Marconi untuned systems. What is more, diagrams from the time show the coherer inserted at a point where a voltage node could be expected to occur.

During experiments with my replica of Marconi's vhf system, which radiated very short trains, it made very little difference where the coherer was inserted. More remarkably, the actual length of the antenna made little difference either.

Standing waves were apparently very sig-

Coherer experiments

My first attempts to measure pulse potential against drop in resistance were carried out by incrementally charging a low-inductance capacitor of 1nF. It was then discharged it through the coherer via a high speed electronic switch.

For the experiments, the relays were substituted by an analogue ohmmeter. In all experiments, restoring was carried out by gently tapping the coherer with a pencil.

For the next measurement, a square wave generator was connected via a capacitorin parallel with a $500k\Omega$ resistor. This component substituted for the coherer in its high resistance state, producing spikes.

Peak potential of the spikes was measured via an oscilloscope with the signal generator calibrated to produce spikes with increments of 1V. Next, the resistor was replaced by the coherer. Finally, resistance was plotted against the peak potential of the spikes. In the tunnel. Experiments with the replica of Marconi's vhf transmitter were made without the reflectors. The antenna received only a few mJ, so energy in each wave train was minimal.

The experiment began with the transmitter operated manually so as to radiate single wave trains. Resistance was measured and plotted against distance as the receiver was moved away from the transmitter in 1m steps.

The coherer was then substituted by a resistor and the above exercise repeated with the transmitter set to automatically radiate wave trains with a repetition rate of 1kHz. Peak voltage across the resistor was measured by my 'magic eye' voltmeter. This related to resistance drcp at a given distance from the transmitter

Open country. Following the experiments conducted in the tunnel, I conducted open-country trials with the Hertz type transmitter radiating individual wave trains, **Fig. 11**. Pressing and quickly releasing the key generally caused a single discharge and a single wave train. Although a crude arrangement, it proved to be adequate for experimentation. I estimate that energy stored in the antenna was only in the order of a few mJ.

The receiver is shown in **Fig. 12**. You can see that instead of connecting the coherer to the centre of the dipole, it was offset to where a voltage antinode should theoretically exist. In practice it made little difference where the coherer was inserted. As with the tunnel experiments, the resistor was used in conjunction with my 'magic eye' voltmeter. Range for the above transmitter/receiver is shown in **Fig. 13**.

Having conducted the above experiments, the DTI kindly allowed me to radiate a few more wave trains to replicate Marconi's 'untuned' system and to compare the sensitivity of my

Fig. 11. In Marconi designs, the

best place to insert the coherer

was also the most impractical -

i.e. in the voltage antinode at

the top. Slaby Arco antennas

overcame this problem.

nificant with later transmitters radiating pearshaped wave trains. A voltage antinode was the logical place to insert the coherer. With Marconi type antennas however, the voltage antinode was at the top of the antenna where it was impractical to insert the coherer. The Slaby-Arco system overcame this problem by using a quarter-wave matching section raised 3m above the ground, **Fig. 11**.

Marconi developed transformers to step up the voltage, which he called 'jiggers'. These were inserted at a voltage node occurring at the base of a Marconi type antenna. Coupling the jigger to the coherer however presented a problem. Direct-current resistance of its secondary winding was far less than that of the coherer.

If the jigger was connected directly across the coherer terminals it would simply have shunted both the coherer and the dc energising eircuit. So a de blocking capacitor was inserted between the secondary winding and the coherer. But as the coherer had a high impedance, this proved unsatisfactory because it series-tuned the secondary winding, Fig. **9b**.

Marconi later developed a jigger with a pair of isolated secondary windings, which apparently was successful.

Ultimately, each secondary winding was parallel tuned by a fixed capacitor which converted it into a pre-set tuned transformer, Fig. **10b**. This arrangement seems to have been successful, probably because of the successive triggering. Furthermore, it partially reconciled the conflicting requirements of syntony and the coherer. It was used by Marconi until 1906, when the coherer was ultimately superseded

In conclusion, my research has shown the coherer to be something of an enigma and much remains to be learnt. Nevertheless, I hope that this discussion has filled a few gaps in our knowledge of the device.

I owe thanks to the DTI, Northamptonshire County Council, and to farm owner Mr Thomas for their co-operation in my experiments

coherer with data from the archives. Transmitter details are shown in **Fig. 14**. The hand cranked magneto charged the capacitor to 100V, which was then was discharged through the primary winding of the induction coil via a thryristor. The sloping antenna was attached to the apex of a farm building.

The receiver arrangement as shown in Fig. 15, but in this case the antenna was attached to a convenient tree.

Trials were made at distances of apprex 500m and lkm. At 500m the cohener's resistance dropped to 50Ω and to about 500Ω at 1km. The curve obtained with the Hertz type transmitter indicates 1km approaches the maximum work ng range for equipment of this power. This agrees with data from experimenters working around the turn of the century.

Rar ge would undoubtedly have been increased by experimenting with different spark gaps and using a longer more efficient antenna system, i.e. one with greater capacity to earth. Remarkably, the coherer receiver seem ed imune to triggering by powerful radic SEALED LEAD ACID Battery, 6v 80/100 AH made for BT, ex equipment but ok £45 each ref APR47. Ideal electric vehicle etc. ASTEC SWITCHED MODE PSU Gives +5 @ 3.75A, +12@1.5A, -12@ 4A. 230/110, cased, BM41012, £9.99 ref APR10P3.

TORRODIAL TX 30-0-30 480VA, Perfect for Mosfet amplifiers etc. 120mm dia 55mm thick. £18.99 ref APR19 MOD WIRE Perfect for repairing PCB's, wire wrap etc. Thin

Insulated wire on 500m reels. Our price just £9 99 ref APR 10P8. 12v MOVING LIGHT Controller. Made by Hella, 6 channels rated at 90watts each. Speed control, cased. £34.99 ref APR35. ELACTRON FLASH TUBEAs used in police car flashing lights etc, full spec supplied, 60-100 flashes a min. £9.99 ref APR10P5. 24v 96WATT Cased power supply. New £13.99 ref APR14. STETHOSCOPE Fully functioning stethoscope, ideal for listening to hearts, pipes, motors etc. £6 ref MAR6P6.

OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a built in lamp at dusk. Complete with seales lead acid battery etc. £19.99 ref MAR20P1. ALARM VERSION Of above unit comes with built In alarm and pir to deter intruders. £24.99 ref MAR25P4.

CLOCKMAKER KIT Hours of fun making your own clock, complete instructions and everything you need. £7.99 ref MAR8P2 CARETAKER VOLUMETRIC Alarm, will cover the whole of the ground floor against forced entry. Includes mains power supply and integral battery backup. Powerful internal sounder, will take external bell if req'd. Retail £150+, ours? £49.99 ref MAR50P1. TELEPHONE CABLE White 6 core 100m reel complete with a

pack of 100 clips. Ideal 'phone extns etc. £7.99 ref MAR8P3. VIEWDATA RETURNS£6 made by Tandata, includes 1200.75 modem, k/bd, RGB and comp o/p, printer po... No PSU.£6MAG6P7 IBM PC CASE AN D PSU ideal base for building your own PC. Ex equipment but OK. £14.00 each REF: MAG14P2

SOLAR POWER LAB SPECIAL You get TWO 5'x6' 6v 130mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor Superb value kit just 55.99 REF: MAG6P8 SOLID STATE RELAYS Will switch 25A mains. Input 3.5-26v

DC 57x43x21mm with terminal screws £3.99 REF MAG4P10 300DPI A4 DTP MONITOR Brand new, TTL/ECL inputs, 15° landscape, 1200x1664 pixel complete with circuit diag to help you interface with your projects. JUST £24.99. REF MAG25P1

ULTRAMINI BUG MC 6mmx3.5mm made by AKG.5-12v electret condenser. Cost£12ea, Our?fourfor£9.99REFMAG10P2 RGB/CGA/EGA/TTL COLOUR MONITORS 12* in good condition. Back anodised metal case. £99 each REF MAG9P1 GX4000 GAMES MACHINES returns so ok for spares or repair £9 each (no games). REF MAG9P1

C64 COMPUTERS Returns, so ok for spares etc £9 ref MAG9P2 FUSELAGE LIGHTS 3 foot by 4" panel 1/8" thick with 3 panels that glow green when a voltage is applied. Good for nightlights, front panels, signs, disco etc. 50-100v per strip. £25 ref MAG25P2

ANSWER PHONES Returns with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's £18 ea REF MAG18P1. PSU £5 ref MAG5P12.

SWITCHED MODE PSU ex equip, 60w +5v @5A, -5v@ 5A, +12v@2A,-12v@ 5A 120/220v cased 245x88x55mm IECinput socket £6.99 REF MAG7P1

PLUG IN PSU 9V 200mA DC £2.99 each REF MAG3P9 PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P10

POWER SUPPLY fully cased with mains and o/p leads 17v DC 900mA output. Bargain price £5 99 ref MAG6P9 ACORN ARCH MEDES PSU +5v @ 4.4A on/off sw uncased.

selectable mains input, 145x100x45mm £7 REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube

complete with PCB and components. £29 REF MAG29P1 SINCLAIR C5 13" wheels complete with tube, tyre and cycle style bearing £6 ea REF MAG6P 10

AA NICAD PACK encapsulated pack of 8 AA nicad battenes (tagged) ex equip. 55x32x32mm.£3 a pack. REF MAG3P11 13.8V 1.9A psu cased with leads. Just £9.99 REF MAG10P3

360K 6.26 brand new half height floppy drives IBMcompatible industry standard. Just £6.99 REF MAG7P3

PPCMODEM CARDS These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is £5 REF: MAG5P1

INFRA RED REMOTE CONTROLLERS Originally made for his spec satellite equipment but perfect for all sorts of remote control projects. Our clearance pnce is just £2 REF: MAG2

TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs etc. £20 REF: MAG20P1

SINCLAIR C5 MOTORS We have a few left without gearboxes. These are 12v DC 3,300 rpm 6'x4', 1/4' OP shaft, £25 REF: MAG25 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the above motor but ok for any 12v motor up to 30A. Complete with PCB etc. A heat sink may be required. £17.00 REF: MAG17 VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV setin a 100' rangel (fune TV to a spare channe) 12v DC op. Priceis £15 REF: MAG15 12v psuis£5 extra REF: MAG5P2 "FM CORDLESS MIC ROP HONE Small hand held unit with a 500' rangel 2 transmit power levels Reqs PP3 9v battery Tuneable to any K receiver. Price is £15 REF: MAG15P1

LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200°. Ideal for garden use or as an educational toy. Price Is £8 a pair REF: MAG 8P1 2 x PP3 reg'd.

Indersize a pair REP: Indel BP1 2 x PP3 reg d. "MINATURE RADIO TRANSCEIVERS A pair of walkie takies with a range of up to 2 kilometres in open country. Units measure 22x52x155mm. Complete with cases and earpieces. 2xPP3 reg d. £30.00 pair REF: MAG30.

COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V sync, and video. 12v DC. £8.00 REF: MAG8P2. LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, stepper motors etc etc in fact everything barthe case and electronics, a good shipper £5 REF: MAG5P3 or 2 for £8 REF: MAG8P3

NEW BULL ELECTRICAL STORE WOLVERHAMPTON BRANCH

NOW OPEN AT 55A WORCESTER ST TEL 0902 22039

100MHZ OSCILLOSCOPES now in stock, 12x10cm screen, delayed sweep, 1Mohm/25pfinputs, modesch1, ch2, add, chop, alt, dual. 460 x 305 x 200mm, 17kgs, £267+Vat includes insurance and carriage.

INFRARED LASER NIGHT SCOPES Second generation image intensifier complete with hand grip attachment with built in laser lamp for zero light conditions. Supplied with Pentax 42mm camera mount, 1.6kg, uses 1xPP3,3xAA's (all supplied) £245+Vat

NEW HIGH POWER LASERS

15mW, Helium neon, 3 switchable wave lengths .63um, 1.15um, 3.39um (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply.790x65mm. Use with EXTREME CAUTION AND UNDER QUALIFIED GUIDANCE. £349+Vat.

'PC PAL' VGA TO TV CONVERTER

Just plug in and it coverts your colour television into a basic VGA screen, perfect for laptops, saves lugging monitors about or just as acheap upgrade. Intro price £49.99 +Vat.

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25" 360K DRIVES . ALL YOU NEED IS A MONITOR AND POWER SUPPLY WAS \$59,00 NOW ONLY \$39,00

REF: MAG39

3FT X 1FT 10WATT SOLAR PANELS 14.5v/700mA NOW AVAILABLE BY MAIL ORDER £33.95

(PLUS \$2.00 SPECIAL PACKAGING CHARGE)

TOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATTERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR ANY WHERE A PORTABLE 12V SUPPLY IS REQUIRED. REF: MAG 34

1994 CATALOGUE

PLEASE SEND 45P. A4 SIZED SAE FOR YOUR FREE COPY. MINIMUM GOODS ORDER 15 00 TRADE ORDERS FROM GOVERNMENT, SCHOOLS UNTERSITIES, ALOCAL ANTHORITIES WELCOME ALL GOODS UNPLED SUBJECT TO OUR CONDITIONS OF SALE AND UNLESS OTHERWISE. STATED GUARANTEED FOR ADATS MUNITYS RESERVED TO CHANGE PRICE & SECCIENCINGS WITHOUT PRICE MOTICE ORDERS SUBJECT TO STOCK QUITATIONS WILLINGLY GIVEN FOR QUANTI-TIES HOUSE THAN THOSE STATED

*SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS £3.00 POST PLUS VAT. PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY TELEPHONE ORDERS WELCOME TELE: 0273 203500 FAX: 0273 323077 SPEAKER WIRE Brown 2 core 100 foot hank £2 REF MAGSP4 LED PACK of 100 standard red 5m leds £5 REF MAGSP4 UNIVERSAL PC POWER SUPPLY complete with flyics witch, fan etc. Two types available 150w at £15 REF:MAG15F (23x23x23mm) and 200w at £20 REF. MAG20P3 (23x23x23mm) "FM TRANSMITTER housed in a standard working 13A adapter! the bug runs directly off the mains so lasts forever! why pay £7007 or price is £26 REF. MAG26 Transmits to any FM radio.

•FM BUG KIT New design with PCB embedded coil for extra stability. Works to any FM radio. 9v battery red d. £5 REF. MAGSP5 •FM BUG BUILT ANDTESTED superior design to kit. Supplied to detective agencies. 9v battery red d. £14 REF: MAG14

TALKING COINBOX STRIPPER originally made to retail at £79 each, these units are designed to convert and ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their original use or used for something else?? Price is just £3 REF: MAG3P1

100 WATT MOSFET PAIR Same spec as 25K343 and 2SJ413 (8A, 140v, 100w) 1 N channel, 1 P channel, £3 a pair REF: MAG3P2 TOP QUALITY SPEAKERS Made for HI FI televisions these are 10 watt 4R Jap made 4' round with large shielded magnets Good quality. £2 each REF: MAG2P4 or 4 for £6 REF: MAG6P2 TWEETERS 2' diameter good quality tweeter 140R (ok with the above speaker) 2 for £2 REF: MAG2P5 or 4 for £3 REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small mod to run on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Price £6 REF: MAG8P3

PC CASES Again mixed types so you take a chance next one off the pile £12 REF:IMAG12 or two the same for £20 REF: MAG20P4 COMMODORE MICRODRIVE SYSTEM mini storage device for C64's 4 times faster than disc drives, 10 times faster

device for C64's 4 times faster than disc drives, 10 times faster than tapes. Complete unit just £12 REF:MAG12P1 SCHOOL STRIPPERS We have quite a few of the above

units which are 'returns' as they are quite a tew of the above units which are 'returns' as they are quite comprehensive units they could be used for other projects etc. Let us know how many you need at just 50p a unit (minimum 10).

HEADPHONES Ex Virgin Atlantic. 8 pairs for £2 REF: MAG2P8 PROXMITY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB. Complete with fly leads. Pack of 5£3 REF: MAG: 3P5 or 20 for £8 REF: MAG8P4

SNOOPERS EAR? Original made to dip over the earpiece of telephone to amplify the sound-it also works quite well on the cable running along the wall! Price is £5 REF: MAG5P7

DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just £5 REF: MAG5P8 Worth it just for the very comprehensive manual 5.25° only.

DOS PACK Microsoft version 5 Original software but no manuals hence only £3 REF: MAG3P6 5.25" only.

CTM644 COLOUR MONITOR Made to work with the CPC464 home computer. Standard RGB input so will work with other machines. Refurbished £59.00 REF:MAG59

PIR DETECTOR Made by famous UK alarm manufacturer these are hispec, long range internal units. 12v operation. Slight marks on case and unboxed (although brand new) £8 REF: MAG8P5 WINDUP SOLAR POWERED RADD AM/FM radio complete

with hand charger and solar panel! £14 REF: MAG14P1 **COMMODORE 64 TAPE DRIVES** Customer returns at £4 REF: MAG4P9 Fully tested units are £12 REF: MAG12P5.

MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13A plug on one end, cable the other. Ideal for projects, low costmanufacturing etc. Pack of 10 for £3 REF. MAG3P8 Pack of 100 £20 REF. MAG20P5

MICROWAVE TIMER Electronic timer with relay output suitable to make enlarger timer etc £4 REF: MAG4P4

MOBILE CAR PHONE £6.99 Well almost! complete in car phone excluding the box of electronics normally hidden under seat Can be made to illuminate with 12% also has built in light sensor so display only illuminates when dark. Totally convincing! REF: MAGGP6 ALARM BEACONS Zenon strobe made to mount on an external bell box but could be used for caravans etc. 12% operation. Just connect up and it flashes regularly) £5 REF. MAGSP11

FIRE ALARM CONTROL PANEL High quality metal cased alarm panel 350x165x80mm With key. Comes with electronics but no information, sale price 7.99 REF: MAG8P6

REMOTE CONTROL PCB These are receiver boards for garage door opening systems. Another use? E4 ea REF. MAC4P5 6"X12" AMORPHOUS SOLAR PANEL 12v 155x310mm 130mA. Bargain price just £5.99 ea REF MAC6P12.

FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99 ref MAG5P13 ideal for experimenters! 30 m for £12.99 ref MAG13P1 LOPTX Line output transformers believed to be for hir res colour monitors but useful for getting high voltages from low ones! £2 each REF: MAG2P12 bumper pack of 10 for £12 REF: MAG12P3.

BOTH SHOPS OPEN 9-5.30 SIX DAYS A WEEK

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30K eV to over 1.2M eV and a measuring range of 5-9999 UR/h or 10-99990 Nr/h. Supplied complete with handbook.

REF: MAG50

CIRCLE NO. 114 ON REPLY CARD

INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for £14.95 (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614. A disk containing all the example listings used in this book is available at £29.96. Please specify size required.

C HERE!

series on the use of the C programming language, then you will recognise its value to the practising engineer.

But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?

The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.

This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Source code listings for the programs described in the book are available on disk.

A ctive devices fall into three groups: signal generation such as oscillators and amplifiers; signal reception using diode detection and mixing; signal control for attenuating, phase shifting, switching, modulating, limiting.

The silicon bipolar junction transistor (BJT) works well at the lower end of the microwave bands and is the preferred device for mobile phone transmitters, for reasons of its high output power and efficiency. Power levels of 100W or more are available from a single transistor operating around IGHz and efficiencies in excess of 35% can be obtained. It also exhibits very low phase noise,

However, the BJT is a transit time device, in that its frequency of operation is ultimately limited by the time taken for electrons to travel from the base-emitter junction to the collector. In practice, this means that the BJT is restricted (with a few exceptions) to frequencies below about 4GHz. Above this frequency and through into the millimetre wave bands above 30GHz, the majority of amplifier and certain oscillator applications have become dominated by the n-type GaAs mesfet.

The metal-semiconductor junction is preferred for this and, as we shall see later, for other devices because of the virtual elimination of minority carrier 00% or more.

charge storage effects. N-type material is used because of the higher mobility of the electron as a majority carrier. A derivative of the mesfet, the high electronmobility transistor (hemt), has revolutionised lownoise receiver design in the last few years and can give noise figures previously only attainable by cryogenic receivers. For example, noise figures of less than 0.4dB at 10GHz and 2.5dB at 60GHz are available at room temperature from hemt chips. Further improvements in noise figure and operating frequency are available in the pseudomorphic hemt (Phemt).

However, as often happens, a dominating progress in one technology stimulates older processes and this has been the case with the bipolar transistor. Fet technology is a surface-orientated process, with performance limitations being set by pattern definition capability – 0.1μ m lithography is now called for in millimetric devices which affects suitability for power generation. The response has been the GaAs heterojunction bipolar transistor (HBT). This device is likely to replace the fet in power applications, initially up to about 10GHz, and possibly up to millimetric frequencies. Advantages include non-critical lithography due to the 'vertical' bipolar process, leading to medium levels of output power (\approx 1W) and power-added efficiency of 50% or more.

4: active devices for millimetre waves

MICROWAVES

Most millimetre wave active devices are either unique to, or specially adapted for, this region of the spectrum. Mike Hosking describes the specialities and their applications.

*Mike Hosking is a lecturer in telecommunications and microwaves at the University of Portsmouth.

In addition, the circuit designer can easily implement class B or C operation, together with common base or cascode configurations. In effect, the GaAs HBT possesses the power, efficiency and spectral noise advantages of the lower frequency Si BJT, but translated to the higher frequency bands.

Substantial development work is also taking place in using indium phosphide as a replacement for GaAs in certain areas to improve power and frequency performance. However the final outcome is unclear and investment costs are high.

Two terminal semiconductors

There are classes of device not applicable to lower frequencies. Gunn-effect (or transferred electron) device and the Impatt (impact avalanche and transit time) diode have been the mainstay of solid state microwave power generation and, although becoming superseded by the transistor below about 30GHz, have wide application through the millimetre wave bands. Both are used as fundamental oscillators, as their inherent principles of operation give them a negative resistance characteristic, but they can also be designed into reflection amplifier circuits.

The Gunn device has traditionally been used in low-cost, high volume applications such as speed or intruder motion detectors and as the local oscillator in radar receivers. CW output powers of 0.5W or more are possible and operating frequencies up to about 140GHz; pulsed devices can deliver 40W or more of peak power.

Impatt diodes are the highest power solid state devices at millimetre wavelengths; output power is measured in 100's of mW, with several watts being possible at 10GHz. Operating frequency can be throughout the millimetre bands (to 300GHz). New applications are opening up for these devices in the 38 and 50GHz PCS bands, as well as the 60 and 77GHz bands for vehicle communication applications.

There are, of course, other solid state means of generating microwave signals, i.e. up-conversion, frequency multiplication, harmonic generation, and there are specialised, but littleused derivatives of some of the above devices. All systems raise questions about maintenance of frequency stability and tuning. These are best answered by examining practical circuits.

Gunn-effect device

Named after its inventor, J B Gunn of IBM, this represents a class of semiconductors known as transferred electron devices (TED). They are transit time devices, in that their frequency of operation is dependent upon the time taken for charge carriers to traverse the active region. The Gunn effect relies for its operation on a particular energy band structure found in certain III-V compounds: especially GaAs and lnP, with GaAs being by far the most common material; Si and Ge cannot be used.

Basically, the device consists of an n-type active region sandwiched between two epiFig. 1. Doping profile of a low power GaAs Gunn device (not . to scale) showing a typical variation of carrier density. The product n.L is used characterise modes of operation.

Fig. 2. Detail of the energy band structure of GaAs. Electrons transfer from the valence band to the high mobility lower band and thence to the higher energy, but lower mobility upper band.

line and the Gunn effect

threshold field has been

exceeded.

Metal

Electric field, E (Vm⁻¹).

taxially grown n⁺ ohmic contacts, as shown in Fig. 1.

Important parameters are the doping density (charge carriers per cm³), the active layer length, L, and the cross-sectional area. Figure 2 shows schematically a detail of the GaAs energy band structure as a function of the electron momentum as it drifts through the semiconductor.

The main features of this structure are the two regions of the conduction band close in energy to the valence band and separated from each other by an energy gap of 0.36eV. (An electron at room temperature has a thermal energy of about 0.026eV). In each of these bands, the electrons have an effective mass m_e and a mobility µ (same symbol as, but not to be confused with, permeability). Mobility has the units of $m^2v^{-1}s^{-1}$ (colloquially $cm^2v^{-1}s^{-1}$) and is a measure of electron speed in an applied electric field, i.e. µ=velocity/E-field. The unusual situation in GaAs is that electrons in the lower energy band have a low mass and high mobility $(8000 \text{ cm}^2 \text{v}^{-1} \text{s}^{-1})$, whereas those in the higher energy band have a high mass but a low mobility (150cm²v⁻¹s⁻¹). Thus, higher energy electrons actually travel more slowly in the material.

If a small voltage is now applied across the

Gunn device and steadily increased, the resultant electric field and the electron velocity (i.e. current) will also increase; linearly at first, in accordance with Ohm's law. However, as shown in Fig. 3, as the voltage (E-field) increases, there is a departure from linearity, corresponding to electron transfer to the upper band.

Eventually, a threshold value, $E_{\rm T}$, of about 3.2kVcm⁻¹ is reached, at which point the great majority of electrons transfer to the upper band. However, in this band, the physical laws must be obeyed: the mobility is low and thus electrons slow down, even though they have more energy. The result is an electron 'traffic jam' at the cathode ohmic contact, a rapid build-up of charge called a domain. Thus, as the applied voltage is increasing, the electron current (proportional to velocity) is actually decreasing, giving rise to a region of negative resistance.

The domain continues to grow rapidly, creating its own E-field at the expense of the field across the rest of the device. The applied voltage, though, is still present and causes the domain to drift across the active region at a constant velocity (called the saturation velocity). On arrival at the anode contact, the domain will disappear as a current pulse, the

E-field will rise again and the whole process will repeat itself.

The frequency of these current pulses depends upon the transit time of the domain across the active region which, for a constant velocity, depends upon the length L only and can be made to occur at microwave frequencies. Bias requirements for the Gunn device are simple and require a constant voltage source supplying, for example, typically 4.5V at 1.5 A for a 200mW output at 60GHz. A low power motion sensing device giving 10mW at 10.7GHz would require about 7V at 100 mA. It can be seen that the dc to rf conversion efficiency is low, typically 1.5% to 4.5% for standard commercially available devices, although values up to 12% are possible.

As described so far, the Gunn device has been treated as an unpackaged chip and can be simply represented by a series combination of negative resistance $-R_D$ and a capacitance C_D . These parameters are functions of operating frequency, power output and temperature and are more complicated to determine than normal static values, as they are formed by the dynamic situation of growing and collapsing domains. However, a typical range of values is -4Ω to -15Ω for R_D and 0.5pF to 2pF for C_D For this and other microwave power devices, it is usual to encapsulate the chip on an integral heat sink and there are a wide variety of package styles available for 2-terminal devices. Fig. 4a shows two such packages, the smaller being used more at millimetre wavelengths and Fig. 4b indicates an approximate equivalent circuit of the package alone, with typical element values.

The disadvantage is that the package intro-

Fixed transit time but variable frequency?

If Gunn frequency is determined by the fixed width of the active region, then how may this frequency be changed?

The answer is that the external resonant circuit into which the Gunn device is mounted has its own loaded Q-factor and its own resonant frequency (which may be different from the transit frequency) and can be tuned independently.

When the Q-factor is sufficiently high, then the rf voltage swing across the Gunn device can affect the time at which the domain forms and may even suppress its formation for a time. This leads to modes of operation called the *delayed mode* and *quenched mode*, the frequencies of which are dictated by the external circuit and thus may be varied.

Within each of these three modes, a relatively small frequency control is possible by varying the bias voltage (called frequency pushing) as the electron transit time is a function of electric field. However, output power and mode stability are also affected and the technique is not often used. duces small parasitic inductance and capacitance, the reactances of which are extremely significant at microwave frequencies and must be accounted for. Finally, in order to efficiently extract microwave power and to obtain a single frequency spectral output, the Gunn device must be embedded into a suitable resonant circuit.

At microwave frequencies, a resonant circuit may be simply produced from a length of transmission line, which appears as a distributed *RLC* circuit. For example, a length of transmission line, short-circuited at both ends, becomes resonant and can be represented by a parallel *RLC* network when its length in the direction of propagation is $\frac{1}{2}$ wavelength.

For 2-terminal Gunn and Impatt devices, the most popular resonant structure is a length of rectangular waveguide, short-circuited at one end and with the active device mounted across the guide on a metallic post. Waveguide is preferred to coaxial line and to planar circuits of microstrip or coplanar waveguide due to its higher Q-factor, leading to a better frequency stability and lower fm noise. Heat sinking and dc bias connections are also readily implemented. Furthermore, as one enters the millimetre wave region, the physical size and weight of such resonators is not great. Kaband waveguide, for example, which supports the frequency range 26.5-40GHz has internal dimensions of only 7.1x 3.6mm. A $\frac{1}{2}\lambda$ in the guide at 30GHz is 7mm.

There must, of course, also be a means of coupling the microwave signal out of the resonator and three different techniques are shown in **Fig. 5**.

In version (a), the resonator is formed

Fig. 5. Various forms of waveguide mounting for Gunn oscillators. a. Resonator formed by a short-circuited length of guide; b. Resonator formed by post and iris;

c. Coaxial probe coupling to the guide.

Fig. 6. Overall equivalent circuit of a waveguide mounted oscillator including the post, active device, packaging, resonator and load impedances.

avalanche breakdown occurs at this abrupt junction.

Fig. 7. Classical doping profile for the Si impatt diode. In practice, a double drift region is used in which domains of both electron and holes contribute to the output current.

between the short circuit and the device-post combination, with the output load impedance being that of the waveguide itself. In version (b), a thin metal diaphragm with a small coupling hole or slot cut in it (called an iris) forms the output. The short length of line between post and short circuit forms part of the impedance tuning. Version (c) uses the same principle as (a), but with a coaxial output. The E-field in the waveguide is parallel to the probe formed by the centre conductor of the coaxial line and will, therefore, couple to it. The adjacent short circuit position adds a length of line for impedance matching.

Figure 6 gives an overall equivalent circuit of this type of oscillator where the active device elements, $-R_{\rm D}$ and $C_{\rm D}$ are modified by the package parasities L_p and C_p . The post itself appears largely inductive to the field in the waveguide and is represented by the reactance $X_{\rm L}$. Additional capacitive reactances $X_{\rm c}$ account for the finite diameter of the post. Capacitance C_g accounts for the gap in the post and fringing fields. The impedance Z_R is that of the short circuited length, ℓ , of waveguide of characteristic impedance Z_o which, as we saw in Part 2 is given by $Z_1 = {}_jZ_0 \tan \beta \ell$; $\beta = 2\pi/\lambda_{g}$. Impedance Z_L is the output transmission line impedance as transformed to or seen at the device terminals by the output coupling structure. ZL itself may thus be quite complicated and the total oscillator design serves to illustrate the varied electrical effects which changes in physical structure cause at these frequencies.

Impatt diode

This specialised microwave device also behaves as a negative resistance and, like the Gunn device, can be used as a directly oscillating source without the need for feedback circuits. The mechanism for generating the negative resistance is completely different, although the Impatt is still a transit time device. Choice of semiconductor is not restricted to the III-V compounds although, in practice, only Si and GaAs are used, with developmental devices available in InP.

Impatt operation is based on a controlled avalanche breakdown process in a reverse biased semiconductor and depends upon the doping profile.

Figure 7 shows the simplified structure in which an intrinsic region is sandwiched between heavily doped n⁺ and p⁺ regions with

Gunn characteristics

In a semiconductor, the average electron drift velocity in the direction of an applied field does not continue to increase with increasing field strength, as in a conductor. Instead, even though the electrons become more energetic, they are scattered by the semiconductor lattice and gradually approach a limiting average velocity in the direction of the external field. In GaAs at normal Gunn operating voltages, this saturation velocity, v_s , is approximately 10⁵ms⁻¹. If we take the type of Gunn device used in intruder detectors, radar speed indicators and automatic door openers, then an operating frequency in the region of 10GHz is required. Thus, the active length, L, in Fig. 1 would be given by $L=10^5 \times 10^{-10} m$ or 10 µm for a transit mode cycle time at 10GHz. The 10⁻¹⁰ quantity represents the period in seconds of one

signal cyc e at the operating frequency.

The threshold field in GaAs is 3 $2kVcm^{-1}$ and so, for a 10µm device, the threshold voltage would be 3.2V.

Typically, the bias voltage would be about 7V for a 20mW device at a supply current of 125mA, giving a dc to if efficiency of 2.3%.

The current density, *J*, in the device can be estimated from the relationship $J=nev_s$, where *n* is the carrier density and e is the electron charge. In our example, $n\approx 1.2 \times 10^{15}$ cm⁻³, e=1.6 \times 10^{-19} C and $v_s=10^7$ cm⁻⁵. Hence, *J*=2000A/cm².

With the actual size of the GaAs chip typically being less than 100µm square and, at 2.3% efficient, with nearly 1W being dissipated, beat sinking is vital, especially as devices delivering more than ten times this power are readily available.

Fig. 8. The voltage and current relationships as the avalanche domain forms and then drifts across the active region of the impatt diode, creating an effective negative resistance.

the key profile being the abrupt n⁺p interface and the narrow p-region.

As the reverse bias voltage is increased, the resulting electric field is sufficient to sweep the region between n+ and p+ clear of carriers to form a depletion layer. Thus at the abrupt n⁺p interface a high electric field is formed. When this field reaches about 350kV/cm⁻¹, avalanche breakdown occurs and electron-hole pairs are generated; once above this field value, the rate of charge build-up becomes exponential.

The electrons enter the n^+ region in this particular structure and can be neglected, while the charge of holes enters the depletion region. Electric field in this layer is very much less than the avalanche field: several thousand volts per cm and the charge carrier saturation velocity, due to scattering effects, occurring at about 5 kV/cm⁻¹ in silicon, is about 10⁷ cm/s⁻¹. This means that the time taken for the charge carriers to cross the depletion region can be made independent of bias voltage and depends only upon the length of this region.

To explain the Impatt mechanism, assume that the bias voltage is increased until the electric field intensity is just below that required for avalanche breakdown. At this point there will be sufficient energy in one of the everpresent, random noise carriers to trigger off the avalanche process. For clarity, **Fig. 8** assumes the steady-state condition where oscillations have already built up.

During the first half of the ac cycle, the field is increased, avalanche multiplication commences and charge carriers build up at an exponential rate. When the alternating voltage falls below zero, the total field is less than the avalanche value and the process decays exponentially.

Gunning for intruders

As an application example of the Gunn device, the Philips *CL8960* series doppler radar module, **Fig. 9**, has been around for many years for motion sensing equipment such as intruder alarms and automatic door openers. This component works as a homodyne radar transceiver and antenna module along the lines shown in Fig. **9b**.

A microwave CW signal is transmitted and the reflected signal is detected by a single diode mixer which uses a sample of the transmit power as the local oscillator. Just as with the acoustic doppler effect caused by a moving sound source, the microwave signal reflected from a moving object will be shifted in frequency. This `doppler shift' f_D depends upon the relative velocity between moving object and detector and is given by:

$$f_{\rm D} = 2 \left(\frac{\text{relative velocity}}{\text{wavelength}} \right)$$

With low-pass filtering at the mixer output, just the intermediate frequency is selected; which will be zero for stationary object. With movement present, the IF will be:

(transmit frequency $\pm f_D$)-LO frequency

which, as transmit and LO frequencies are the same, results in a mixer IF of f_D . In the alarm applications, it is not necessary to measure f_D ; the very existence of a non-zero IF implies movement.

The actual module shown in the picture uses a 10mW Gunn device, post-mounted across the left-hand section of rectangular waveguide, short-circuited at approximately a half wavelength from the post.

Operating frequency, for an indoor application, is 10.687GHz ± 12MHz, hence the advantage of the higher-Q waveguide form of resonator. The mixer is a single diode in a relatively large package that fits conveniently across the right hand guide and is impedance matched by positioning about a quarter wavelength away from another terminating short circuit. Both transmitter and detector couple to free space via the small tapered section of guide, which behaves as an antenna having approximately 5dBi of gain. There is, however, a deliberate slight mis-match associated with this coupling which causes spill over of the transmit signal into the mixer, thereby providing the LO input. A dielectric cover over the end (i.e. the wall of a plastic box) can be used to adjust this spill-over as well. Power supply requirements are 7V at about 140mA.

With these parameters, the doppler frequency generated is about 71.2Hz per ms⁻¹ or 32Hz per miles per hour.

A variation on this type of radar is used in temporary traffic light systems where it is necessary to sense the actual direction of motion. This can be done by adding a second detector diode, suitably positioned and comparing the phase of the two outputs. Finally, of course, we must not forget the police radar speed indicator application!

Although mainly used as oscillators, both devices may also be designed as reflection amplifiers. With a load resistance greater than the negative resistance, the device will not oscillate and a low power incident signal can be reflected back out, but with amplification.

The result is shown in Fig. 8 where the charge density is seen to be a sharply defined spike and, in particular, the peak charge now lags the peak alternating voltage by 90°. Under the influence of the dc bias, this bunch of charge now drifts across the depletion region at constant velocity and therefore induces a constant current in the external circuit. If the diode depletion length is such that the carrier transit time corresponds to one halfcycle of the alternating voltage, then the induced current will be 180° out of phase with the voltage. Hence, negative resistance is produced and the diode will generate microwave power when incorporated into a resonant circuit with output coupling.

In fact, the maximum value of negative resistance occurs when the transit time of the domain τ is such that $\omega\tau=0.74\pi$ (called the transit angle) where ω is the angular frequency of operation.

Thus, the frequency of oscillation is approximately $\nu_s/2L$, where ν_s is the saturated carrier velocity of about 10^5ms^{-1} and L is the depletion length. For a frequency of 10GHz,

Dimension $L=5\times10^{-3}$ cm, i.e. half that of the Gunn effect device. Also, at this frequency, the junction area is about 5×10^{-4} cm² giving rise to bias current densities of about 10.000 A/cm². Thus, as with the Gunn device, good heat sinking is also essential and diamond heat sinks, within the package, are commonly used for millimetric operation. The overall equivalent circuit is the same as that of the Gunn device, but with $R_{\rm D}$ typically -0.9Ω and $C_{\rm D} 0.25$ pF for a millimetric power device.

The simple doping profile of Fig. 7 was the original structure proposed by W.T. Read of Bell Systems but, in practice, has been largely superseded by a double-drift profile. The principle of operation remains the same, but both hole and electron domains form and add to the output current. Efficiency is increased: values greater than 20% are possible, together with an increase in output power.

For example, 10W to 20W of peak power at around 10GHz and 1W at 100GHz would be typical, with slightly lower CW power available. One particular application has been in portable, outside broadcast communication links; much effort has been put into combining the outputs of many diodes to produce output wattage in the hundreds.

The Impatt requires a higher bias voltage than the Gunn device, but a proportionally lower current, from a current–stabilised source. For example, a 3W pulsed device at around 30GHz would require peak supply values of some 35V at 0.5A.

Next month: devices such as the hemt, HBT and step-recovery diode, together with methods of oscillator tuning such as YIG and varactor and stabilising using the dielectric resonator.

CIRCLE NO. 117 ON REPLY CARD

Applying Hall to good effect

Integrated Hall-effect sensors have a vast range of uses, from limit switches to current monitors. Martin Eccles looks at some of the applications for both digital and analogue-output devices.

Free Hall-effect samples

A device pack comprising a choice of either a 3503 ratiometric linear sensor or a 3121 Hall-effect switch and data pack will be sent free of charge to the first 500 readers returning the special reply card located between pages 584 and 585 of this issue. Please note that this offer only applies to readers in the UK and Eire and that all enquiries relating to the offer should be directed to Ambar Cascom, whose details appear at the end of this article.

Hall element is simply a small sheet of semiconductor material. A constant bias current flows through it and the output - a voltage measured across the width of the sheet - reads near zero provided that there is no magnetic field present. If the biased Hall sensor is placed in a magnetic field at right angles to the Hall current, the voltage output is directly proportional to the strength of the magnetic field. This is the Hall effect, discovered by E. H. Hall in 1879.

Integrated devices incorporating the Hall element together with amplifiers, regulators, drivers and schmitt comparators are now used widely: ignition distributors, motor speed controls, security systems, alignment mechanisms, micrometers, mechanical limit switches, computer peripherals, machine tools, key-switches and push buttons.

Linear senor applications

Rotation detection. Normally, a linear Hall sensor's output is capacitively coupled to an amplifier that boosts the output above the millivolt level, as in Fig 1.

In two applications shown in Fig 2, a permanent bias magnet is attached with epoxy glue to the back of the epoxy package.

Fig. 2. By attaching a magnet to the packaging, linear Hall sensors can be used to sense rotational speed. When a ferrous material passes the face of the Hall device opposite the magnet, flux is concentrated and the device output voltage changes proportionally.

Presence of ferrous material at the face of the package acts as a flux concentrator.

The south pole of a magnet is attached to the back of the package if the Hall effect IC is to sense the presence of ferrous material. If the device is to sense the absence of ferrous material the north pole of a magnet is attached to the back surface.

Calibrated linear Hall devices - useful for

ę

measuring heads and determining flux densities during the design stage – are available.

Since a Hall-effect sensor is triggered by magnetism, the obvious way to sense rotation is to fix magnets to the rotor. In many applications however, there are significant benefits to from having a fixed magnet and fixed sensor, as shown in **Fig. 3**.

With this arrangement, the magnet needs to be powerful enough to turn the sensor opposite on while unobstructed. When a blade of the ferromagnetic vane passes between the magnet and sensor, flux is shunted and the sensor turns off.

Movable vanes are a practical way to switch Hall devices. The sensor and magnet can be moulded together to eliminate alignment problems and produce a rugged switching assembly. The ferrous vane or vanes that interrupt the flux can move linearly, or rotate as in an automotive distributor. Ferrous vane assemblies, due to the steep flux density/distance curves that can be achieved, are often used where precision switching over a large temperature range is required.

Linear motion. Most magnet/sensor combinations produce a non-linear flux-distance relationship. The push-push configuration in Fig. 4 however produces an almost linear curve. as Fig. 5 illustrates.

Suitable for use with either linear or switching sensors, this arrangement produces a bipolar field with a fairly steep slope. While the sensor is in the centre of the space between the two magnets, flux is cancelled. With a ratio-

Switching Hall sensors

Integrated Hall-effect switches are easy to use, bounce-free, economical and reliable since they have no moving parts. Unaffected by dirt and light, they can also be used in harsh environments and they are fast – capable of cycling at up to 100kHz.

A Hall sensor is activated by a magnetic field created by either electro or permanent magnets. Magnetic fields have two important characteristics: magnitude and orientation. In the absence of any magnetic field, most common Hall-effect digital switches are designed to be off, i.e. open circuit at their output. They will turn on only if subjected to a magnetic field that is strong enough and of the correct polarity.

If an approaching magnetic south pole causes switching action of a digital sensor, the approach of the north pole should have no effect. In practice, a close approach by the south pole of a magnet will cause the output transistor to turn on.

The plot below shows transfer characteristics of input versus output. Hall effect switches have hysteresis, typically 20G. This hysteresis ensures that even if mechanical vibration or electrical noise is present, the switch output is fast, clean, and occurs only once per threshold crossing.

Detecting a threshold

Output from a Hall-effect element is linear. But in many applications a switching output representing whether magnetic field strength is above or below a given threshold is more appropriate. Examples of these applications are angular velocity detectors and end-of-travel indicators on slides.

Due to the Hall element's inherently small output, the best place for the comparator circuitry needed to turn the linear output into a reliable on-off signal is as close as possible to the sensor and its linear amplifier. Integrating a comparator into the Hall sensor also reduces interfacing costs.

Integrated Hall-effect switches like the 31xx series from Allegro are temperature

stable and stress-resistant. Three new parts with enhanced temperature stability have recently been added to the range, namely the *3121*, *3122* and *3123*. These have typical switch-on points of 350, 340 and 345G respectively but are otherwise identical.

In addition to a Hall element, linear amplifier and schmitt trigger, the devices include open-collector output buffering with 25mA capability. There is also builtin temperature compensation and a regulator capable of operating from any supply between 4.5 and 24V.

Standard parts are capable of operating in temperatures between -40 and 85°C but there are also L-suffix parts capable of operating at up to 150°C. Since the devices have unipolar switching characteristics they can be sued with simple bar or rod magnets. The devices are best used in applications that provide steep magnetic slopes and low residual levels of magnetic flux density.

Output of the devices switches low when magnetic field at the Hall sensor exceeds the operate point threshold. At this point, the output voltage is the saturation voltage of the output transistor, which is typically 140mV.

When the magnetic field is reduced to below the release point threshold, the device output goes high. The difference in the magnetic operate and release points is hysteresis, of typically 105G. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

Features

- Good temperature stability
- 4.5 V to 24 V unregulated supply Open-collector 25 mA output,
- compatible with digital logic - Reverse Battery Protection
- Activate with small, commercially available permanent magnets
- No moving parts
- Small size
- Resistant to physical stress

Operate and release points of 3120-series integrated Hall-effect switches remain constant over a wide temperature range.

Transfer characteristic of a typical Hall-effect switch. Hysteresis is built into the device – in this case about 90G. This ensures clean switching even in the presence of mechanical vibration or electrical noise.

Within an integrated Hall-effect switch such as the 3121 are a Hall voltage generator, temperature compensation, a small-signal amplifier and schmitt trigger. In addition, an emitter follower provides 25mA output capability while a regulator extends supplyvoltage capability to a range 4.5 to 24V.

COMPONENTS

metric sensor such as the 3503, moving the sensor towards one magnet reduces output voltage while moving it towards the other increases output. Polarity depends on which way the sensor is facing.

Current monitoring. Hall effect devices

make excellent current limiting or measuring sensors. Their response bandwidth ranges from dc to kilohertz. For very high-current applications, detection can simply be a matter of placing the sensor in the gap of a slotted toroidal ferrite material wrapped around the conductor, as illustrated in Fig. 6.

0.06

Linear output Hall device

Linear Hall-effect linear sensors are used primarily to sense relatively small changes in magnetic fields - changes too small to operate a Hall-effect digital switch. They can detect the motion, position, or change in field strength of an electromagnet, a permanent magnet, or a ferromagnetic material with an applied magnetic bias.

Hall effect sensors like Allegro's UGN3503 not only cheaper but also more efficient and effective than inductive or optoelectronic sensors in many applications. Their power consumption is low and their output is temperature stable.

Linear sensors are useful as front-ends in flux measuring equipment and for detection motion. In addition, they can be used to measure current with negligible system loading while providing isolation from contaminated and electrically noisy environments.

Between 0 and 900G, the 3503's sensitivity is typically 1.3mV/G. Linear Hall effect integrated circuits include a Hall sensing element, linear amplifier, and emitter-follower output stages. Problems

associated with handling very low level analogue signals are minimised by having the Hall cell and amplifier on the same chip.

Rated for operation over the range of -20 to +85°C, the 3503U is a ratiometric detector, i.e. output voltage depends not only on field strength detected but also by power supply fluctuations. For applications where ratiometric output is not appropriate, there is also a linear sensor with full internal supply regulation 3501.

Response of the 3503 is flat to 23kHz, making the it useful for ac as well as dc measurement. When no magnetic field is sensed, output null voltage is nominally one-half the supply voltage. A south magnetic pole at the part-marked face of the sensor drives the output higher than the null voltage level. A north magnetic pole will drive the output below the null.

Greatest sensitivity is obtained with a supply voltage of 6V, but at the cost of increased supply current and a slight loss of output symmetry. Minimum supply voltage is 4.5V.

In finding the flux reaching the sensor, radius r in inches from the centre of the conductor to the centre of the sensor is important. With r at 0.5in, a current of 1000A produces 159G at the Hall device in the toroid's gap. This is because B in gauss is approximately equal to current in amps divided by 4pr, where r is in inches. Minimising the air gap between the ferrite and sensor generally improves performance.

Current sensing capability is increased by wrapping the conductor around the toroidal ferrite, as shown in Fig. 7. Each additional turn multiplies the gauss-per-ampere intensity seen at the sensor, i.e. ten turns increase the intensity tenfold. Main concerns are that the core retains minimal field when the current is reduced to zero and that the flux density in the air gap is a linear function of current. Consideration also needs to be given to the fact that the air gap changes with temperature.

Designing with Hall switches

Electrical interfacing. Hall-effect switches like those in the 312x series have an open-collector output transistor that can drive up to 25mA. As a result, many loads such as small lamps and relays can be driven without any additional components.

Since the output driver transistor has a saturation rating of typically 140mV - combined with nanovolt-level leakage - interfacing to nearly all common logic technologies rarely requires more than a pull-up resistor.

Driving low-voltage, high-current DC loads via a Hall effect switch requires few additional components. In many applications, an emitter follower will provide the necessary boost with

Features

- High sensitivity
- Flat response to 23kHz
- Low output noise
- 4.5 to 6V supply

Integrated linear Hall-effect devices like the 3503 from Allegro incorporate a Hall cell, linear amplifier and emitter follower. Supply to the dc amplifier is regulated but the hall feed is not. As a result, this ratiometric device tracks supply voltage.

COMPONENTS

a slight loss in efficiency. As **Fig. 8** shows, switching efficiency can be increased by using an inverter amplifier – the 2N5812 – together with a low-cost 2N3055 driver.

Using the 2*N*5812 intermediate stage provides inversion as well as amplification. It ensures that the load is switched on when the sensor sees magnetic field and off when the field is removed.

Figure 9 demonstrates how easy it is to

Magnetic materials

Materials most commonly used to provide flux in Hall-effect systems are various Alnicos, Ceramic 1 and barium ferrite in a rubber or plastic matrix materials. Manufacturers often have stock sizes, including cylindrical types with various numbers of pole pairs.

Alnico is the name given to number of aluminum nickel-cobalt alloys that have a fairly wide range of magnetic properties. In general, Alnico ring magnets have the highest flux densities, the smallest changes in field strength with changes in temperature, and the highest cost.

They are generally too hard to shape except by grinding and are fairly brittle which complicates the mounting of bearings or arbor. Ceramic 1 ring magnets, with trade names like Indox, Lodex, have somewhat lower flux densities (field strength) than Alnicos, and their field strength changes more with temperature. They are however considerably cheaper and are highly resistant to demagnetisation by external magnetic fields.

Ceramic materials are resistant to most chemicals and have high electrical resistivity. Like Alnico, they can withstand temperatures well above that of Hall switches and other semiconductors and must be ground if reshaping or trimming is needed.

Rubber and plastic barium ferrite ring magnets are roughly comparable to Ceramic 1 in cost, flux density, and adapt the digital Hall-effect device to mains switching applications. The triac needs 80mA of drive but the Hall IC provides up to 25mA. Adding the n-p-n emitter follower solves the problem.

Limit detection. Even with a simple bar or rod magnet, there are several possible paths for motion detection. The magnetic pole can move perpendicularly straight at the active face of the Hall device. Known as head-on mode, this method is simple, works well, and is relatively insensitive to lateral motion. A drawback is that if the slide carrying the magnet travels too far, the sensor could be damaged.

Flux density plots for a typical head-on systems show that the magnetic slope is quite shallow for low values of flux density – a disadvantage that generally requires extreme

Material	Maximum energy product (gauss-oersted)	Resiciual induction (gauss)	Coercive librce (oerstecis)	Temperature :oefficient	Cost	Comments
R E Cobait	16 × 10 ⁶	8 1 × 10 ³	7 9 × 10 ³	-0.05%/ [×] C	Highest	Strongest, smallest, resists demagnetizing best
Alnico 1, 2, 3, 4	1 3 - 1.7 × 10 ⁶	5 5 – 7 5 × 10 ³	$0.42 - 0.72 \times 10^3$	-●.02%/°C to -0.03%/ C	Medium	Non-orientec
Alnico 5, 6, £-7	4.0 - 7.5 × 10 ⁶	105 – 105 × 10 ³	$0.64 - 0.78 \times 10^3$	-= 02%/°C to -0 03%/°C	Medium- high	Oriented
Alnico 8	50-60×10 ⁶	$7 - 9.2 \times 10^{3}$	1 5 – 1 9 × 10 ³	- € 01%/°C to -0.01%/°C	Medium- high	Oriented, high coercive force, best temperature coefficient
Alnico 9	10 × 10 ⁶	10.5 × 10 ³	1 6 × 10 ³	-0 02%/ C	High	Oriented, highest energy product
Ceramic 1	1 0 × 10 ⁶	2 2 × 10 [.]	1 8 × 10 ³	–0.2%/ C	Low	Non-oriented high coercive force hard, brittle non conductor
Ceramic 2 C 4 6	1 8 - 2 6 × 10 ⁶	29-33×10 ³	23-28×10 ³	-0 2%/ C	Low medium	Partially oriented, very high coercive force, hard, brittle, non-conductor
Ceramic 5, 7, 8	28-35×10 ⁶	$3.5 - 3.8 \neq 10^3$	$25 - 3.3 \times 10^3$	0 2%/ C	Medium	Fully oriented very high coercive force hard prittle, non conductor
Cunife	1 4 × 10 ⁶	55×10-	0.53×10^3	-	Medium	Ductile, can cold form and machine
Fe-Cr	5 25 × 10 ⁶	13.5 × 1) ³	0 60 × 10 ³	_	Medium high	Can machine prior to final aging tleatment
Plastic	0.2 - 1 2 × 10 ⁶	1 4 ~ 3 > 10 ³	$0.45 - 1.4 \times 10^3$	0 2%/°C	Lowest	Can be molded, stamped, machined
Rubber	0.35 - 1.11 × 10 ⁶	1 3 - 2 C < 10 ³	$1 - 1.8 \times 10^{3}$	-0.2%/ C	Lowest	Flexible
Neodymium	7 - 15 × 10 ⁶	64-1175×10 ³	5 3 - 6 5 > 10 ³	€ 157%/°C to - 192/°C	Medium- high	Non-oriented

There is a wide variety of magnetic materials to choose from when applying Hall-effect devices, ranging from hard, brittle ceramics to rubber.

temperature coefficient. Unlike ceramics however, they are soft enough to shape using conventional methods. It is also possible to mould or press them onto a shaft for some applications. Rubber and plastic magnets do have temperature limitations ranging from 70°C to 150°C depending on the particular material, and their field strength changes more with temperature than Alnico or Ceramic 1.

Regardless of material, ring magnets

have limitations on the accuracy of pole placement and uniformity of pole strength. In turn, this limits the precision of the output waveform. Evaluations have shown that pole placement in rubber, plastic and ceramic magnets usually falls within 2 or 3° of target, but 5° errors have been measured. Variations in flux density from pole to pole will commonly be $\pm 5\%$ although variations of up to $\pm 30\%$ can occur.

COMPONENTS

mechanism travel and extreme sensitivity to flux changes in operate and release points of the Hall switch. This problem can be overcome by selecting Hall switches with higher operate and release properties.

A safer option is to move the magnet in from the side of the Hall device, past its face – slide-by mode. Strong magnets and/or ferrous flux concentrators in well-designed slide-by magnetic circuits allow better sensing precision with smaller magnet travel than for headon mode. This method is, however, however, very sensitive to lateral play, as the flux density varies dramatically with changes in the air gap.

Because the active area of a Hall switch is close to the branded face of the package, it is usually operated by approaching this face with magnetic south pole. It is also possible to operate a Hall switch by applying a magnetic north pole to the back side of the package. While a north pole alone is seldom used, the push-pull configuration – simultaneous application of a south pole to the branded side and a north pole to the back side – can give much greater field strengths than are possible with any single magnet. Perhaps more important, push-pull arrangements are relatively insensitive to lateral motion and are worth considering if a loosely fitting mechanism is involved.

Another possibility is the push-push arrangement described earlier, Fig. 4. A natural extension of this is to use two oppositely polarised magnets in slide-by mode, moving across the face of a sensor

Hall sensor source

Integrated Hall sensors mentioned in this article – plus others – are available in the UK via Ambar Cascom Ltd, Rabans Close, Aylesbury, Buckinghamshire HP19 3RS. Tel. 0296 434141, fax 0296 29670. Applications literature, upon which this article was based, is also available.

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise **ABSOLUTELY FREE OF CHARGE!**

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this **free** offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call **Pat Bunce on 081-652 8339**

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:

Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

COMPUTER ICS	
8742 1 SHOT £8 8742 WIPED	£5 **NEW
TMS320 £5 TMS320 1 SHOT	£3 **NEW
AM27C020-125L1 SURFACE MOUNT EPROM USEE)/
WIPED £1	.50 **NEW
MM16450 UART CHIP £5	ea **NEW
MM16550 UART CHIP few only £12	ea **NEW
P8271 BBC DISC CONTROLLER CHIP EX EQPT	£20
SAA5050 TELETEXT CHIP EX EQPT	£5
2817A-20 (2K×8) EEPROMex eqpt	£2
D41256C-15 256Kx1 PULLS	9 FOR 25
BOC31 MICHO	£2
	£5
	110
MR48202-20 ZERO POWER RAM EQUIV 6116LP	14
ISED 4104-15	LI
USED 41230-15	600
BBC VIDEO LILA	60p
8051 MICBO	£1 25
KS82C55-250 SAMSUNG 89/90 1100 AVAILABLE	63
9 × 41256-15 SIMM	£10
8 × 4164 SIP MODULE NEW	83
FLOPPY DISC CONTROLLER CHIPS 1771	£16
FLOPPY DISC CONTROLLER CHIPS 1772	£17.50
68000-8 PROCESSOR NEW	£6
HD6384-8	£5
ALL USED EPROMS ERASED AND BLANK CHECKE	D
2716-45 USED	£2 100/£1
2732-45 USED	£2 100/£1
2764-30 USED £2	100/£1.60
27C256-30 USED	£2
27C512 USED	£3.50
1/02 EPROM EX EQPT	
2114 EX EQPT 500 4116 EX EQPT	
2804 SIO O	
2008 310-0	£1.23
7126 316 DIGIT LCD DRIVER CHIP	62.00
28164-30 HOUSE MARKED	
BM PART NO. 68X6271 PANASONIC PART NO	
MN4B40512S85512K X 40	
TMS9000NL PROCESSOR	£20
TMS9901NL	£10
TMS9902/3NL, TIM9904NL	£5 ea
HM6167LP-8	65p
M27C4001-15	£8
58000-10 PROCESSOR	£6

REGULATORS

LM338K	. £6
LM323K 5V 3A PLASTIC	£2
LM323K 5VA METAL	£3
SANKEN STR451 USED IN AMSTRAD MONITORS	£5
78H12ASC 12V 5A	£5
78M05 5V 0.5A	7/£1
LM317H T05 CAN	£1
LM317T PLASTIC T 0220 variable	£1
LM317 METAL 9	2.20
7812 METAL 12V 1A	£1
7805/12/15/24	25p
7905/12/15/24	25p
CA3085 TO99 variable reg	2/£1

CRYSTAL OSCILLATORS 2M4576 3M6864 5MO 5M76 6M144 7M000 7M3728 BM000 12 M000 14M3181 17 M6256 16M257 18M000 20M000 33M587 24M000 25M175 27M0 27M036 28M322 32M000 35M4816 40M000 44M4444 44M900 48M000 64M000 1M000 1M8432 4M000 10M000 16M000 18M432000 19M0500 20M0500 38M10000 56M6902 76M1 84M0 38M10000 56M6092 76M1 84M0 £1.50 each

CRYSTALS

CRYSTALS 4M0256 10M368 17M6256 18M432 25M000 28M4694 31M4696 48M000 55M500 111M80 112M80 114M318 114M80 1M0 1M8432 2M000 2M4576 2M77 3M00 3M2768 3M579545 5M000 5M0686 6M0000 6 M4000 4M13306 4M433619 4M608 4M9152 5M000 5M0686 6M0000 6 M4000 8M000 8M488 9M8304 10M240 10M245 10872000 11M000 12M000 13M000 13M020 14M000 14M381818 15M000 16M000 12M000 13M000 13M0200 14M000 14M3081818 15M000 16M000 12M000 34M368 36M75625 36M76875 36M778125 36M79375 36M80625 36M81875 36M83125 36M4735 36M79375 36M80625 36M81875 36M83125 36M47415 GN27M195 BL27M245 **£1 each**

TRANSISTORS

BC107 BCY70 PREFORMED LEADS full spec	0/100	0
D0007 1 D00000	10/100	í

POWER TRANSISTORS

PUWER IRANSISTURS	
OC29	£1.35 ea
P POWER FET IRF9531 8A 60V	3/£1
N POWER FET IRF531 8A 60V	2/£1
2SC1520 sim BF259 3/£1	100/£22
TIP 141/2 £1 ea TIP 112/42B	2/£1
SE9301 100V 1DA DARL SIM TIP121	2/£1
PLASTIC 3055 OR 2955 equiv 50p	100/£35
BUZ31 POWER FET TO-220 200V 12 54	2/£1

 TEXTOOL ZIF SOCKETS

 28 PIN USED
 \$3
 40 PIN NEW
 \$10

 SINGLE IN LINE 32 WAY CAN BE GANGED FOR USE WITH

 ANY DUAL IN LINE DEVICES
 COUPLING SUPPLIED
 2/

£1.50
QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPE M312 £1 ea HOLDERS 60p ea 24V 150 WATTS LAMP TYPE A1/215 £2.50 each
MISCELLANEOUS MINIATURE FERRITE MAGNETS 4x4x3mm 10/£1

 ALPS MOTORISED DUAL 47K LOG pots with spindle, works on

 61-12v
 £1.50 ea

 TL071 LO NOISE OP AMP
 5 for £1 **NEW

 47000u 25v SPRAGUE 36D
 £3 50 (£2) **NEW

 12 way dilsw
 £3 for £1 **NEW

 100nF 63V X7R PHILIPS SURFACE MOUNT 30K available
 £42/4000 box

 available
 £30/4000 box

 SWITCHED MODE PSU 40 WATT UNCASED 0TY.
 AVAILABLE + 5v 5A, +12V 2A, 12V 500mA FLOATING

 AVAILABLE + 5v 5A, +12V 2A, 12V 500mA FLOATING
 £9.95 (£2)

 200R 2.5W WIREWOUND RESISTOR 60K AVAILABLE
 250/1000

 CMOS 555 TIMERS
 £21

 2/3 AA LITHIUM cells as used in compact cameras
 £21

 2/21 DURITEL CMODE LAW 100 DIRUER CHIP
 £261

 CMOS 555 TIMERS
 2/£1

 2/3 AA LITHIUM cells as used in compact cameras.
 2/£1.50

 ICM7126CPL CMOS 31/2 DIGIT LCD DRIVER CHIP
 £263

 36 CORE 7/0.2mm OVERALL SCREENED
 £500100m

 LITHIUM Cells as ZE
 2 FOR 61

 PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT
 2 FOR 61
 PASSIVE INFINATION OF THE OCTOBER OF THE OFFICE OF THE OFFICE OFF
 £10 ea
 £10 ea

 "PROTONIC 24" c/w 2 SUPPORT ARMS/E.JECTORS
 DIN 41612 96-WAY A/B/C SOCKET PCB RIGHT ANGLE £1.30

 DIN 41612 96-WAY A/B/C SOCKET WIRE WRAP PINS
 £1.30

 DIN 41612 96-WAY A/B/C SOCKET WIRE WRAP PINS
 £1.30

 DIN 41612 96-WAY A/B/C SOCKET WIRE WRAP PINS
 £1.30

 DIN 41612 64-WAY A/C SOCKET WIRE WRAP PINS
 £1.30

 DIN 41612 64-WAY A/C SOCKET WIRE WRAP PINS
 £1

 DIN 41612 64-WAY A/C SOCKET WIRE WRAP PINS
 £1

 DIN 41612 64-WAY A/B SOCKET WIRE WRAP (2-ROW BODY)
 £1

 DIN 41612 64-WAY AB SOCKET WIRE WRAP (2-ROW BODY)
 £1

 BT PLUG + LEAD
 3/£1

 I3A MOULDED PLUG - 2m lead
 £1

 MIN TOGGLE SWITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SWITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 5/£1

 LCD MODULE SIMITCH 1 POLE do PCB type
 £10

 TL4312.5 to 36V TO32 ADJ. SHUNT REG
 2/£1

 R5232 SERIAL CABLE D25 WAY MALE CONNECTORS
 £1100

 NUTS
 £16 2010 SPL4S SIM HIGCH LM016L
 \$5.90 ear (£1.30)

 LCD DISPLAY SIM HIGCH LM016L
 £5.90 ear (£1.30)
 \$10 KHAC LIST PRICE \$30

 LCD DISPLAY SIM HIGCH LM016L
 £5.51
 AMERICAN 20 PIN CHASSIS SOCKET
 \$2.51

 MIRE ENDED FUSES 0.25A
 30£1
 NEW UL TRAS ONIC TRANSDUCERS 328Hz
 \$2.61

 VIRE ENDED FUSES 0.25A
 30£1
 NEW ULTRAS CONIC TRANSDUCERS 328Hz
 \$2.61</td
 CKE I WIHE WHAP (2-HOW BODY)
 £1

 3/£1
 3/£1

 lead
 £1

 'OLE c/o PCB type
 5/£1
 NEW 3/£1 2/£1 2/£180p 20/£110/£1
 180VOLT 1WATT ZENERS also 12V & 75V
 20/£1

 MIN GLASS NEONS
 10/£1

 RELAY 5V 2-pole changeover looks like RS 3t 5-741 marked
 572 47 WB 3t

 STC 47WB 3st
 £1 ea

 MINIATURE CO-AX FREE PLUG RS 456-091
 2/£1

 PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY
 2/£1

 MINIATURE CO-AX FREE PLUG RS 456-071
 271

 MINIATURE CO-AX FREE STORS
 421

 MOMEGAOHM THICK FILM RESISTORS
 421

 STRAIN GAUGES 40 ohm Foil type polyester backed balco grid
 100

 Linear Hall effectIC Micro Switch no 613 SS4 sim RS 304-267
 21.50 ea 10+ £1

 Linear Hall effectIC Micro Switch no 613 SS4 sim RS 304-267
 421

 Jobi COS COPE PROBE SWITCHED ×1 × 0
 £12

 GSCILLOS COPE PROBE SWITCHED ×1 × 0
 £12

 Jobi COS LM390LM386 TDA 2003
 £1 ea

 SS5 TIMERS £1 741 OP AMP
 6761

 ZN414 AM RADIO CHIP
 6761

 COAX BACK JOBACK JOINERS
 321

 LOAX PLLIGS nice ones
 4421

 INDUCTOR 20H 1 5A
 552

 LOCAS BACK JOBACK JOINERS
 321

 LOCAS BACK JOBACK JOINERS
 321

 LOND CASS HEAD \$1 ERASE HEAD
 \$22

 MONO CASS HEAD \$1 ERASE HEAD
 \$20

 MONO CASS HEAD \$1 ERASE HEAD
 \$20

 THERMAL FUSES 220°C/121°C 240V 15A
 \$210

 THERMAL
 DIODES AND RECTIFIERS
 3012

 A115M 3A 600V FAST RECOVERY DIODE
 4/21

 IN5407 3A 1000V
 8/21

 IN4148
 100/£1.50

 IN4004 SD4 1A 300V
 100/£3

 1N5401 3A 100V

 BA158 1A 400V last recovery

 BY127 1200V 1.2A

 BY254 800V 3A

 BY255 1300V 3A

 GA 100V SIMILAR MR751

 1A 600V BRIDGE RECTIFIER

 4A 100V BRIDGE

 6A 100V BRIDGE

 25A 200V BRIDGE

 25A 200V BRIDGE £2

 25A 400V BRIDGE £2

 SC BS
 10/£1 100/£3 10/£1 8/91 6/£1 4/51 10/£22 . 8/£1
 SCRS
 PULSE TRANSFORMERS 1:1+1
 £1.25

 PULSE TRANSFORMERS 1:1+1
 £1.25

 ICV106D
 3/£1

 TICV106D 800ma 400C SCR 3/£1
 100/£15

 MEU21 PROG. UNJUNCTION
 3/£1

 DIACS 4/£1
 100/£15

 DIACS
 DIACS 4/£1

 NEC TRIAC ACOBF BA 600V TO220
 5/£2 100/£30

 TXAL225 BA 500V 5mA GATE
 2/£1 100/£35

 BTA 08-400 ISO TAB 400V 5mA GATE
 90

 TRAL2230D 30A 400V ISOLATED STUD
 55 ea

 TRIAC TA B00V TLC381T 16k AVAILABLE
 5 EOB 51 £15/100
 5 FOR £1 £15/100 CONNECTORS £1.25 £2.50 £4.00 ...£3 5/£1

 14 WAY IDC BLOCK HEADER SKT.
 5/£1

 PHOTO DEVICES
 5/£1

 SLOTT ED OPTO-SWITCH OPCOA OPB815
 £1,30

 2N5777
 50p

 TIL81 F-HOTO TRANSISTOR
 £1

 HUSE, CHARARED LED
 5/£1

 AV25, CP 12252 OPTO ISOLATOR
 50p

 PHOTC DIODE SOP
 6,62

 LED's F ED 3 or 5mm 12/£1
 100/£6

 ED's CAREN OR YELLOW 10/£1
 100/£6

 FLASH NG RED OR GREEN LED Smm 50p
 100/£40

 HIGH SPEED MEDIUM AREA PHOTODIODE RS651 \$10 e8

 \$10 ea

 STC NTC BEAD THERMISTORS

 G22 22/R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K,

 RES 2C*C DIRECTLY HEATED TYPE

 \$1 ea

 \$20*C 200R

 \$1 ea

 A13 DI RECTLY HEATED BEAD THERMISTOR 1k res. ideal for

 audio Wien Brdge Osciliator

 \$2 ea

 £10 ea CERMET MULTI TURN PRESETS 3/4" 108 2C7 100R 200R 2508 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 220K 500K 2M 00 CD0C/5720 IC SOCKETS
 SIMM SOCKET FOR 2×30-way SIMMS
 £1

 POLYESTER/POLYCARB CAPS
 330nF 10% 250V AC X2 RATED PHILIPS TYPE 330
 £20/100

 100n, :20n 63V 5mm
 20/£1 100/£3
 100/£5

 10n/15/25n6/8n2/10n 1% 63V 10mm
 100/£5
 100/£5

 10n/15/22n/33n/47n/66n 10mm rad
 100/£5
 100/£5

 100n EOV radial 10mm
 100/£1
 100/£5

 100n EOV radial 10mm
 100/£1
 100/£6 (£1)

 10n/35n/47n 250V AC xrated 15mm
 100/£1
 100/£1

 10n/35n/47n 250V AC xrated 15mm
 100/£1
 100/£1

 1µ 60CV MIXED DIELECTRIC
 50p ea
 100/£1

 1µ 010V rad 15mm, 1µ0 22mm rad
 100/£1
 100/£6

ID0100V rad 15mm, 1µ0 22mm rad ID0120 RF BITS SAW FILTERS SW662/SW661 PLESSEY SIGNAL TECH 40L0GY 379.5 MHZ £1,50 ea **NEW FX285 FERRITE RING (ON CX25) ID 5mm OD 10mm 10 for £1**NEW STOCK AST 20 M1233 UHF VIDEO MODULATORS (NO S OUND) 1250 5T OCK £1.50 **NEW MARCONI MICROWAVE DIODES TYPES DC2929, DC2962, DC42429F 1/F2 £1 ES VIOLET 51 05P YOLLERS 21M4 55M0 £2 ea ALT 71MMERS 3 for 50p YOLLARD 2 to 22PF S105P YAL, WILLARD 2 to 22PF \$3 FOR 50p £10/100 TRANSISTORS 2N4427, 2N3866, 2N5109 80p 60p ea 60p ea

FEED THHO CERAMIC CARS 1000Pr 1002 SL610 1002 6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER 1002 (BFYS1 TRANSISTOR CAN SIZE) 1002 2N2222 METAL 5/1 2N2369A 5/21 VN10KM 4/21 PLESSEY ICS EX-STOCK SL350G SL360G SL362C SL403D SL423A SL521B SL523C SL541B SL850C SL1021A SP8655 SP8719DG MONOLITHIC CERAMIC CAPACITORS 100/£4.50

100n 50V 2.5mm or 5mm	100/£6
100n ax short leads	100/£3
100n ax long leads	100/£5
100n 50V dil package 0.3" rad	100/£8
1μF 50v 5mm	£6/100

SEND £1 STAMPS FOR CURRENT IC + SEMI STOCK LIST - ALSO AVAILABLE ON 31/2" FLOPPY DISK MALL ORDER ON OFFICIAL ORDERS WELCOME UNIVERSITIES/COLLEGES/SCHOOLS/GOVT. DEPARTMENTS MIN. ACCOUNT ORDER \$10.00 P&P AS SHOWN IN BRACKETS (HEAVY ITEMS) OTHEF.WISE 95p ADD 171/2% VAT TO TOTAL

ELECTRONIC COMPONENTS BOUGHT FOR CASH

KESTREL ELECTRONIC COMPONENTS LTD

☆ All items guaranteed to manufacturers' spec. ☆ Many other items available.

'Exclusive of V.A.T. and post and package'

	1+	100+		1+	100+
EPROMS			STATIC RAMS		
2764A	2.50	2.20	62256ALP-10	3.00	2.30
27C64-150	2.30	1.90	6264ALP-10	1.85	1.40
27128A-250	2.40	2.10	6116ALP-10	1.10	0.70
27256-250	2.40	1.90	6522P	2.40	1.80
27C256-150	2.90	2.30	65C02P2	2.90	2.50
27C512-150	3.30	2.50	65C21P2	2.90	2.50
27C010-150	5.80	4.00	65C22P2	2.80	2.40
MAX232	1.35	0.95	146818AP	2.20	1.65
D8748H	4.20	3.20	75176BP	1.60	0.80
D8749H	4.40	3.40	Z80A CPU	1.33	0.99
80C31-12	2.60	2.10	Z80A CTC	1.20	0.75
80C39P	2.80	2.20	Z80A DAR7	2.10	1.40
82C55-2	1.95	1.58	ULN2803A	0.70	0.46

74LS, 74HC, 74HCT Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey CR8 4HA Tel: 081-668 7522. Fax: 081-668 4190.

CIRCLE NO. 119 ON REPLY CARD

CIRCLE NO. 121 ON REPLY CARD

JPG Electronics

JPG Electronics, 276-278 Chatsw
All products advertised are new ar Wide range of CMOS TTL 74HC 74F Linear Transis always in stock. Please add £1.95 town
100+(6p. 1000+)
CD4007UB
mounting package with data sheet
Microcontroller
741.505 hex insertor £10.00 per 100 Used 8748
transision
(£9.95.10+, £7.95.100+) BS250 P. channel mosfet £0.45 BC 559
GaAs FE F low leakage current \$8873 £12.95 each
1.M337k 103 case variable regulator £1.95 (£1-44
package£0.85 7812 and 7912 12s 1A regulators£26 00 per 100
2 segment common anode led display 12mm2045 1.M2931AT5.0 low drop out 5v regulator T0220
60v£195
87000uf 10v. £1.95 68000uf 15v£2.95 10000ut 16v£1.50 58000uf
38000ut 20v £2.50
4.8v
42 x 16mm dta 1.2v£1.45 Stick of 4 171mmx16mm dta with red & black leads
Special offers, please check for availability.
Nickel Metal Hydryde AA cells high capacity with no
Ds in 5 hours. AAs, Cs and Ds must be charged in 2s or 4s£10.95
High power charger as above but charges the Cs and
4Cs or Ds in 12-14 hours+1xPP3 (1, 2, 3 or 4 cells may be charged at a type) f5 95
Standard charger charges 4 AA cells in 5 hours or
A A A (H P 1 6) CTV)£1.95
1/2 A A with solder tags£2.50 rags fl 55 1/3 AA with tags (Philips
tags £4.95 Sub C with solder
tags
AA 700mAH £1.75 C(HP11) 1.8AH£2.20 C 2AH with solder D(HP2) 1.2AH£2.60
500mAH£0.99 tags£1.55
Rechargeable batteries
12x12 inches £12.25
4x8 inches £2.75 £2.99
Single sided double sided 3x4 inches £1.09 £1.23
boards
TIGH QUARTY PROTO ICAIS COPPET CLAU CHONY KIASS

Sinclair light gun terminated with a jack plug and PP3 clip gives a signal when pointed at 50hz flickering light with output wave form cliat 200m aou 500s input to output bolation with 200m aou 500s input 200s aou 500 sec. 200s aou 50

WERTY keyboard 58 key good quality switches new approximation of the second se

i,

nd unused unless otherwise stated. tors kits. Rechargeable batteries, capacitors, tools etc ards p&cp. VAT included in all prices. orth Road, Chesterfield S40 2BH 211202 Callers welcome

CIRCLE NO. 120 ON REPLY CARD

CIRCLE NO. 122 ON REPLY CARD

Please mention Electronics World + Wireless World when seeking further information.

Battery-powered circuit measures down to $\mu\Omega$

T his simple battery-powered adapter converts an ordinary digital voltmeter into a four-wire milliohm meter. It is said to accurately measure the resistance of wiring, motor coils, solenoids, high-current inductors and meter shunts. It can also be used for locating short circuits in a power supply or a printed circuit board.

With components shown, the circuit shown is about $\pm 2\%$ accurate. For higher accuracy, you can make component adjustments described later.

The circuit applies 1A, 100mA, or 10mA to the unknown resistance via two test leads, depending on the range-switch setting. Next, the DVM is set to its 2V range and connected via two more test leads. This forms a four-wire connection to the resistance being measured.

Indications on the DVM are presented directly in ohms on pressing the momentaryon power switch. A 1.000Ω resistance, for example, reads 1.000V on the circuit's 1A range, so one millivolt corresponds to one milliohm. Four and five-digit DVMs frequently have 1mV sensitivity, providing resolutions of 1m Ω .

Because the output is a current source, the unknown resistance of the connections and test leads does not cause measurement errors. Accuracy depends on the DVM, the op amp's input-offset voltage – which is ± 70 mV maximum for the device shown – and the tolerance of resistors R_{1-6} .

To set up the circuit, first trim the 1A range by selecting R_4 or by adding a trimming potentiometer between R_1 and R_2 . Next, trim the 100mA range and then the 10mA range by adjusting the highest-valued resistors in the R_5 and R_6 networks.

Power-fail and reset for PCs

A number of power management functions have been integrated into one chip by Dallas Semiconductor. This chip – the DS1632 – produces the real-time clock reference, a controlled reset signal, power-source switching and power-fail indication.

Many PC chip sets already provide a realtime clock. For those that do not, or for applications where the existing RTC is not accurate enough, the *DS1632* provides a stable 32.763kHz reference. Tuning is provided on chip so no additional oscillator components are needed. Using a 6pF-load crystal such as the Daiwa *DT26S* or Seiko *DS-VT-200*, timing

Added on to a digital multimeter, this circuit accurately measures resistances down to micro-ohms and can be used to detect shorts on PCBs.

Pressing the push-button turns on the micropower reference, which produces 2.500V. Resistors R_1 and R_2 divide that output to 0.1V, and the op-amp forces 0.1V at the source of the mosfet. This action creates a current source that develops 0.1V across R_4 , R_5 , and R_6 .

The range switch selects a current of 1A, 100mA, or 10mA in the loop formed by the resistors, the unknown resistance, the 1.5V battery, and the mosfet

Note that releasing S_1 , or disconnecting the adapter, eliminates all current drain from the 1.5V battery. As a result, an alkaline 'D' cell can produce thousands of measurements – even on the 1A range, if the push button is used sparingly. The 9V battery can last for years because its load is less than 30μ A. To search for a shorted component or a short between tracks on a pcb, first connect the two adapter leads, one to each of the tracks in question. Connect a DVM lead to the same point as one adaptor lead, and use the other DVM lead to probe along the tracks.

Location of the short is revealed by the highest reading on one track and the lowest reading on the other. Constant readings indicate no adapter current flowing in that section of the track, so that section can be eliminated from the search.

The design is taken from Maxim's *Engineering Journal* number 14.

Maxim Integrated Products,

21C Horseshoe Park, Pangbourne, Reading RG8 7JW. Tel. 0734 845 255, fax 843863.

APPLICATIONS

accuracy is two minutes per month.

A reset signal for a microprocessor must be triggerable form a number of sources. Most important of these sources are power fail, power-up, and user demanded system resets. To provide these in discrete logic needs a fair number of chips, as shown. This logic however is built into the *DS1632*.

In addition to power-fail outputs signalling an out-of-tolerance supply voltage, the device can be used to switch between a main power source and a backup. Uninterrupted operation is ensured by window comparator circuitry. It switches the power fail line without causing reset when supply voltage falls enough to warn of impending failure but not enough to cause incorrect operation of the circuits fed by the power supply.

Further circuitry provides a signal giving warning when battery voltage becomes low so that the system can be shut down in an orderly fashion.

According to Dallas *Application Note 64* which includes further details on the circuitry described here, the *DS1632* one-chip solution costs \$2.45 as opposed to \$5.75 for an equivalent discrete solution. There is also specific information on

interfacing the device to Intel's *386SL* and the Chips Technologies/Siemens *82C206*.

Dallas Semiconductor, Unit 26, Freeport, Birmingham B26 3QD. Tel. 021 782 2959, fax 021 782 2156.

Programmable oscillator is easy to use

Normally, oscillator ICs designed to work with crystals need additional passive components selected for the specific crystal frequency. The *HA7210* from Harris can be externally programmed for any crystal between 10kHz and 10MHz by simply connecting two programming pins to logic one or zero. Apart from the crystal, it needs no additional components.

Operating from a single supply rail

between 2 and 7V, the 7210 is a low power device needing 130μ A at 1MHz and only 5μ A at 32kHz. As the device data sheet describes, it will drive two cmos loads.

Applications of the oscillator include battery powered circuits, remote metering systems and palm-top notebook PCs. The 7210 also has a disable mode that switches the output to a high impedance state. This feature is useful for minimising power dissipation during standby and when multiple oscillator circuits are used. The high impedance output provides a high resistance path to ground to avoid floating cmos inputs.

Harris Semiconductor, Riverside Way, Camberley, Surrey GU15 3YQ. Tel. 0276 686886, fax 0276 682 323.

R.S.T. LANGREX R.S.T SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country

Over 5 million items in stock covering more than 6,000 different types, including CRT's camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.

All from major UK & USA manufacturers.

Where still available.

Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP Tel: 081-684 1166 Telex: 946708 Fax: 081-684 3056

CIRCLE NO. 124 ON REPLY CARD

Comprising two PPM9 boards, featuring inherent stability with law under micro-processor control, the unit gives simultaneous monitoring of A/B on red/green and M/S on white/yellow pointers. Together these provide complete information about stereo signals. Manufactured under licence from the BBC.

PPM10 In Vision PPM and Chart Recorder generates a high quality colour video display emulating the well known coaxial twin movements, long regarded as a most satisfactory way of monitoring stereo audio levels and mono compatibility. The eye can judge the level displayed, at a glance, from the angle of pointers, without needing to refer to scale markings. Also as expansion board for Acorn computers.

Advanced Active Aeral 4kHz-30MHz Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter *PPM5 hybrid and PPM8 IEC/ DIN -50/+6dB drives and movements *Broadcast Stereo Coders. *Broadcast Monitor Receiver 150kHz-30mHz

SURREY ELECTRONICS LTD The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. Telephone: 0483 275997. Fax: 276477.

~~~~~~~~~~~~~

# The ins and outs of oscillator action

Certain electronic circuits are taken for granted. Ian Hickman has explored the detailed functioning of the LC oscillator to reveal unsuspected sophistication to its operation.

often wondered why it was that, in many respects, valve oscillators were so much better than the transistorised versions that replaced them. Clearly it had to do with the differences between a valve and a transistor. Comparing the grounded emitter circuit with the grounded cathode, the latter has a very high input impedance when, as is usual, the grid is negative with respect to the cathode, while the base input impedance of a transistor is by comparison, distinctly middling.

Comparing the collector and anode circuits, at dc and low frequencies the transistor presents a high output slope resistance rather like a pentode, although considering internal feedback via inter-electrode capacitances, the transistor is more like a triode.

And there is one other major difference between collector and anode circuits. When the voltage at the anode of a valve swings below the cathode voltage, the anode simply ceases to draw current. By contrast, when the voltage at the collector of an npn transistor swings below that of the base, the collector/base junction becomes forward biased and when it swings below even the emitter voltage, the transistor works in the inverted mode where the collector acts as an emitter and vice versa.

At one time, symmetrical transistors were manufactured, for use as crosspoint switches. Having identical emitter and collector structures, these devices worked equally well in either direction, although perhaps "equally badly" would have been a better description. But modern transistors have very asymmetric emitter and collector structures and, being optimised for operation in the normal mode, they



perform very badly in the inverted mode. In that mode, they present an impedance which might perhaps be described as a soggy mess, inflicting (in an oscillator) heavy resultant damping on the collector tuned circuit. There is no reason why a diode in series with the collector could not be fabricated on the die. But it never is, at least not in small signal or rf transistors.

#### The basic circuit

Now a typical transistor oscillator circuit, such as the Hartley oscillator of Fig. 1a, is designed with a smallsignal loop-gain well in excess of unity, Fig. 1b. This guarantees that, when switched on, it will start to oscillate: nothing is more infuriating - and less useful - than an RF oscillator which works very well when running, but sometimes fails to get started at switchon. But the excess loop gain at start-up has to be reduced somehow to a loop gain of just unity when running. In this type of single transistor circuit (as distinct from some other types of rf oscillator, Ref. 1), this is usually brought about by the collector voltage falling below that of the base. As a result, the collector/base junction thus becomes a forward biased diode connected directly across the tuned circuit, imposing heavy damping upon it and reducing the loop gain by lowering the tuned circuit's effective dynamic resistance  $R_d$ . At the same time, the transistor, operating in the inverted mode, clamps the collector to ground, adding to the harmonic distortion in the output.

By contrast, a valve oscillator limits its amplitude in an entirely different way. **Fig. 2a** shows a valve Hartley oscillator and the anode voltage and cathode current waveforms, **Fig. 2b**, from so lightly coupled that the circuit barely oscillates, to heavily coupled with lots of excess loop gain. The valve works in class C and generates its own negative grid bias. As the loop gain is increased, the peak cathode current increases and the peak to peak anode voltage swing rises until the valve bottoms on negative-going peaks. At this point, the cathode current cannot rise any



DECICN

Fig. 1a. Basic bipolar transistor Hartley oscillator circuit. b) Loop gain (Y axis) versus amplitude (X axis) of an oscillator which may fail to start i), and of a reliable rf oscillator circuit ii).

#### **DESIGN BRIEF**

. .







further, however positive the grid becomes, but the current just either side of the negative peak can still increase somewhat.

With heavy coupling, the anode voltage can swing below ground but the points of the cycle where the valve feeds energy to the tuned circuit to maintain the increased swing are confined to the two regions either side of the negative peak, where the grid voltage is still near its positive peak but the anode is not bottomed. The anode current breaks up into two completely separated pulses, being zero in between.

With further increase in amplitude, the anode swings further and further below ground and the two current pulses move further apart. They thus occur at a part of the cycle where the rate of change of anode voltage is greater; hence the time from grid voltage rising above cutoff to anode voltage falling below ground becomes shorter, strangling off the current pulses to a narrower width. This reduces the component at the fundamental available to make up the tank circuit losses, leading to an equilibrium at a particular amplitude.

Some years ago I made up a test circuit, to see if it were possible to simulate some of the features of a valve in a transistor oscillator circuit. Having only the most rudimentary equipment at the time, a low operating frequency, 20kHz, was chosen, enabling circuit operation to be easily viewed.

#### **Twin peaks**

Starting with the circuit of Fig. 1a, a resistor was added to the base circuit, to raise the device's input impedance to something nearer that of a valve's grid when forward biased. Then, a diode was connected in series with the transistor's collector to prevent it conducting when its potential fell below that of the base. The completed circuit, **Fig. 3**, drew 30mA from the supply and produced what appeared on an oscilloscope to be a perfect sinewave, swinging many volts below ground at the collector, despite the undoubtedly low Q of the coil (the  $R_d$  of the tank circuit was probably only of the order of 500 $\Omega$ ). Some small distortion was however observable on the smaller waveform at the base end of the tank circuit.

Being now better equipped, I decided to repeat the experiment at a higher frequency, but not so high that it would be impossible to observe the narrow current pulses expected. Also, to use a tunable oscillator to see how much the output amplitude varied across the tuning range. A tank circuit of  $10\mu$  H (nominal) tuned by a 365pF (maximum) variable capacitor was chosen, giving a lowest frequency of 2.5MHz. Note that over an octave tuning range, the  $R_d$  of the tank circuit will vary



centre of coil)

Fig. 3. Circuit of a low distortion 20kHz LC valve oscillator look alike, using a transistor (see text).

Fig. 4 . Circuit of the 2.5-5MHz 'valve style' oscillator. The 47K2 connection to the spectrum analyser was removed when not in use.

by about 2:1, and so therefore, to a first approximation, will the loop gain. If the collector current were constant, then a 2:1 variation in output amplitude could be expected.

T

**4R7** 

x = Probe points

The intention was to use a jfet in place of a bipolar transistor, since the gate characteristic of this device resembles a valve, in that it normally draws no current, only conducting when driven above the source potential. A J310 n-channel depletion vhf/uhf amplifier fet was used. Incidentally, this device has a typical equivalent short-circuit input noise voltage of just 10nV at 100Hz. While this may be not too relevant in an rf amplifier, it is a definite plus point for an oscillator transistor, where the device's 1/f noise produces modulation sidebands about the output frequency, determining the level of the oscillator's very-close-in noise.

#### **Testing problems**

Scope

probe

All attempts to use this device at the planned frequency were complicated by the J310's implacable resolve to oscillate at several frequencies simultaneously in the

#### **DESIGN BRIEF**

Fig. 5a, left. Tank circuit waveform with tuning capacitor set to max, 2.5MHz (upper trace, 5V/div) and emitter current waveform (lower trace, 50mV/div). Ground level 2 divisions below centreline, 100ns/div horizontal. b) As a) but tuning capacitor set for 5MHz output.

> Fig. 6a. Spectrum of the output of the circuit of Fig. 4 at 2.5MHz. Vertical 10dB/div, ref. level -- 10dBm, span 0-20MHz. IF bandwidth 100kHz, video filter switched on. b) Waveform at the collector (cathode of the diode) at 2.5MHz (upper rh trace, 5V/div) and the base (lower trace, 1V/div), 0V level two divisions below centreline, 100ns/div.







range 50-500 MHz, as well as performing (at first sight) as expected over a 2.5-5MHz tuning range. Parasitic stoppers only proved a partial answer.

A bipolar device was pressed into service. This was the *BC182*, with a minimum  $f_T$  of 150MHz, the particular sample used having an  $h_{FE}$  of 240. As with the *J310*, the circuit was constructed over a ground plane consisting of a sheet of copper-clad laminate, to which the frame of the tuning capacitor was firmly fixed. To permit grounding of the frame of the tuning capacitor, the Hartley circuit was modified to a tuned collector circuit with base feedback winding. A 4.7 $\Omega$ resistor was placed in series with the transistor's emitter, to permit current monitoring.

Initially, the inductor was grounded and the  $4.7\Omega$  emitter resistor was connected to a locally decoupled negative rail. However, it proved impossible to measure the small drop across this resistor due to imperfect negative rail decoupling and other causes, so the circuit was modified to use a positive supply as in **Fig. 4**. From this it will be seen that in view of the higher operating frequency, the series resistor in the base circuit has been omitted as it would not well simulate the higher impedance of a valve grid circuit.

**Fig. 5a** with its 100ns/div timebase shows the voltage at the anode of the diode at maximum tuning capacitance, a shade over 2.5MHz. With the 10V collector supply voltage, the 25V peak-to-peak voltage across the tank circuit results in the anode of the diode swinging well below the base voltage and indeed well below ground – 0V ground is two divisions below the centreline, the upper trace at 5V/division. Both traces are dc coupled.

The other trace, at 50mV/div, is the voltage across the  $4.7\Omega$  emitter current sensing resistor, and it proved quite difficult to measure. The magnetic field

from the coil coupled into the probe's ground lead, wherever it was placed. In the end, the probe ground lead was removed entirely and the probe's tip and earth ring strapped across the resistor body as indicated in Fig. 4.

As in a valve oscillator, the collector current has split, in this case due to the presence of the diode, into two separate pulses, each flowing only while the base is forward biased and collector voltage above the transistor's bottoming voltage. The ringing on these two pulses is possibly due to the inductance of the 4R7 resistor, and doubtless other circuit parasities also suggesting the wisdom of not attempting the experiment at too high a frequency.

#### A case of conduction angle

Figure 5b shows the same picture, but with the circuit tuned to oscillate at 5MHz. Bearing in mind that the reactance of the inductor at 5MHz will have doubled relative to 2.5MHz and constant Q unchanged (only approximately true), the tank circuit's dynamic resistance would have doubled. Yet the amplitude of oscillation has increased by only a few percent. The reason is that the collector current pulses are now very much narrower, not only in absolute terms but as a fraction of a cycle. Thus the total conduction angle is reduced, and with it both the mean collector current and the component at the 5MHz fundamental. While the peak amplitude of the pulses is little changed, they are now only a few nanoseconds wide. With the 15µA base current supplied and the device's  $h_{\rm FE}$  of 240, the collector current drawn when the base feedback was removed, stopping the oscillation, was 3.6mA. At 2.5MHz it fell to 1.6mA reducing to 1.3mA at 5MHz. The mean base current was of course unchanged, the excess being spilled through the base circuit during

#### **DESIGN BRIEF**

Fig. 7a, left. Waveform at the collector (tank circuit) with the diode short circuited, at 2.5MHz (10V/div), 0V level two divisions below centreline, 100ns/div, left-hand photo. Tank circuit voltage cannot



the period when the collector current was zero due to the diode being reversed biased.

Figure 6a shows the output spectrum at 2.5MHz (span 0-20MHz), that at 5MHz being the same, except that the second harmonic rose to -32dBc. Harmonics higher than the fifth were negligible in both cases. The spectrum analyser's reference level (top of screen) is -10dBm, but due to the 1000:1 attenuation introduced by the  $47k\Omega$  resistor, it corresponds to +50dBm - at least in terms of volts, though not in terms of power of course, as the tank circuit impedance is much higher than  $50\Omega$ .

Figure 6b shows the base voltage waveform at 2.5MHz, (lower trace, 1V/div ) and a waveform (upper trace, 5V/div) which could not be seen in the corresponding valve oscillator. This is the waveform at the cathode of the diode. The collector can be seen to be firmly clamped to ground at the negative peak (when the diode is reverse biased), subsequently rising to the positive peak of the tank circuit voltage. It remains there until the transistor turns on again, at the first of the two current pulses surrounding the following negative peak.

Figure 7a shows the tank circuit/collector voltage when the diode is short circuited, to give conventional transistor LC oscillator operation. Here, the negative peak is brutally clamped to ground: compare this with Fig. 5b, where the tank circuit voltage is free to swing 5V below ground. The extra damping has reduced the swing from 28V to 25Vp-p. The neat snipping off of the negative tip of the waveform does not affect the low order distortion greatly, but as Fig. 7b (span 0-100MHz) shows, the significant harmonics now extend to a much higher order. Incidentally, the emitter current also breaks up into two pulses in this circuit, but for an entirely different reason from the

case where the diode is present.

Nothing shows the difference between a conventional transistor LC oscillator and the 'pseudo valve' circuit better than Fig. 8. The base voltage waveform of the pseudo valve circuit at 2.5MHz (at 0.5V/div) and the emitter current pulses monitored across the  $4.7\Omega$  resistor (at 50mV/div). Note that the base voltage stays positive during the period between current pulses, when the tank circuit voltage is negative. This is in complete contrast to the conventional circuit without the diode. (Fig.  $\mathbf{8b}$ ). Here, when the collector tries to swing below ground, the base-collector diode turns on, dragging the base voltage down with it. This reverse biases the baseemitter junction, interrupting the emitter current and splitting it into two separate pulses. In this circuit, the excess base bias current is shunted into the collector circuit while the emitter current is off. In the pseudo valve circuit, it goes into the emitter circuit, while the collector current is cut off.

The differences between a conventional transistor LC oscillator and the 'pseudo valve' circuit shown here, can be expected to apply to the two circuits when operating at much higher frequencies. Some of the effects, such as the ringing on the emitter current pulses would not be present in a practical application. Given its advantages, the 'pseudo valve' oscillator could be seriously considered for applications at substantially higher frequencies.

#### References

1 Design Brief, Oscillator tails off lamely? lan Hickman EW+WW Feb 1992.

swing below ground. b) Spectrum of a). Vertical 10dB/div, ref. level -10dBm, span 0-100MHz, IF bandwidth 1MHz, video filter on. Fig. 8a. Pseudo valve circuit. Base circuit waveform with tuning capacitor set to max,

2.5MHz (larger trace, 0.5V/div) and emitter current waveform (smaller trace, 50mV/div). Ground level 2 divisions below centreline, 100ns/div horizontal. b) Conventional circuit. 2.5MHz. Traces and scope settings as a).

#### **£1 BARGAIN PACKS**

In fact...cheaper than £1 because if you buy 10 you

can choose one other and receive it free!

1 x 12v Stepper Motor. 7.5 degree. Order Ref: 910 1 x 10 pack Screwdrivers. Order Ref: 909.

2 x 5 amp Pull Cord Celling Switches. Brown. Order Ref: 921

Net. 921.
S x reels Insulation Tape. Order Ref: 911.
4 x 14mm Ball-races. Order Ref: 912.
2 x Cord Grip Switch lamp Holders. Order Ref: 913.
1 x DC Voltage Reducer. 12v-6v. Order Ref: 916.
1 x 10 amp 40v Bridge Rectifier. Order Ref. 889.

Lightweight Stereo Headphones. Moving coil so superior sound. Order Ref: 896. 2 x 25W Crossovers. For 40hm loudspeakers. Order Ref 22

2 x Nicad Constant Current Chargers Easily adaptable to charge almost any nicad battery. Order Ref: 30. 18v-0-18v 10va Mains Transformer. Order Ref: 813. 2 x White Plastic Boxes. With lids, approx. 3" cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132.

2 x Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref; 148. 12v-0-12v 6va Mains Transformer. PCB mounting.

Order Ref: 938 1 x Blg Pull Solenoid. Mains operated. Has 1/2" pull. Order Ref: 871.

x Big Push Solenoid. Mains operated. Has 1/2" push.

Order Ref: 872 1 x Mini Mono Amp. 3W into 4 ohm speaker or 1W into 8 ohm. Order Ref: 495.

1 x Mini Stereo 1W Amp. Order Ref: 870. 15v DC 150ma PSU. Nicely cased. Order Ref: 942.

1 x In-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29.

1 x 0-1mA Panel Meter. Full vision fact 70mm square. Scaled 0-100. Order Ref; 756.

2 x Lithium Batteries. 2.5V penlight size. Order Ref: 874

2 x 3m Telephone Leads. With BT flat plug. Ideal for phone extensions, fax, etc. Order Ref: 552. 1 x 12V Solenoid. Has good ½" pull or could push if

modified. Order Ref: 232

modified. Order Ref: 232. **4 x In-Flex Switches.** With neon on/off lights, saves leaving things switched on. Order Ref: 7. **2 x 6V 1A Mains Transformers.** Upright mounting with fixing clamps. Order Ref: 9. **2 x Humidity Switches.** As the air becomes damper, the membrane stretches and operates a micro switch. Order Ref: 32. **5 x 134** Pootor Switch. The

5 x 13A Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42. Mini Cassette Motor. 9v. Order Ref: 944.

Mini Cassette Motor. 9v. Order Ref: 944.
1 x Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67.
1 x 6V 750mA Power Supply. Nicely cased with mains input and 6V output lead. Order Ref: 103A.
2 x Stripper Boards. Each contains a 400V 2A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120.

rectilier and 14 other diodes and rectiliers as well as dozens of condensers, etc. Order Ref: 120. 12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128. 5 x Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134. 6 x Microphone Inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139. 6 x Neon Indicators. In panel mounting holders with lens. Order Ref: 180.

lens, Order Ref: 180

1 x In-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196.
1 x Mains Solenoid. Very powerful as ½" pull, or could push if modified. Order Ref: 199.

1 x Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211. 4 x 12V Alarms. Makes a noise about as loud as a car

horn. All brand new. Order Ref: 221. 2 x (6"x4") Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref:

243.
1 x Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252.
2 x Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch if fitted in pattress. Order Ref: 263.
50 x Mixed Silicon Diodes. Order Ref: 293.

1 x 6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28.

2x 6V Operated Reed Relays. One normally on, other normally closed. Order Ref: 48. 1 x Cabinet Lock. With two keys. Order Ref: 55. 61/2" 8 ohm 5 watt Speaker. Order Ref: 824. 1 x Shaded Pole Mains Motor. 3/4" stack, so quite powerful. Order Ref: 85.

2 x 5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86.

1 x Case. 31/2x21/4x13/4 with 13A socket pins. Order Ref: 845.

2 x Cases. 21/2x21/4x13/4 with 13A pins. Order Ref: 565. 4 x Luminous Rocker Switches. 10A mains. Order Ref: 793

4 x Different Standard V3 Micro Switches, Order Ref 340

4 x Different Sub Min Micro Switches. Order Ref. 313

590

#### **BARGAINS GALORE**

Speed Controller for 12v DC Motors. Suitable for motors with horse powers up to one third and drawing currents up to 30A. Gives very good control and speed. Uses mostes and is based on a well tried circuit which appeared in the Model Engineer some time ago. The complete kit with case and on/off switch is available, price £18. Order Ref: 1£P8. Ex-British Telecom Insulation Tester Offer. We have a quantity of these that are slightly faulty. There has been no attempt at repairing them. They are not missing any parts so should be repairable. The moving coil movement is in perfect working order so even if you cannot repair the able to use it for another instrument that you need. We supply a circuit diagram of the instrument and chances are that you will find the fault and be able to repair th. Price of the instrument with circuit diagram is £3. Order Ref: 3P176. Fig 8 Flex, Fig. 8 flat white pvc, flexible with .4 sq. mm Fig 8 Fiex. Fig. 8 flat white pick flexible with .4 sq. mm cores. Ideal for speaker extensions and bell circuits. Also adequately insulated for mains flighting. 50m coil £2. Order Ref: 2P345. 12m coil £1. Order Ref: 1014. Friedland Underdome Bell. Their ref: 792. A loud ringer but very neat, 3" diameter, complete with wall fixing screws, £4. Order Ref: 4P75.

124. Order Hel: 4P/5, 124. 10amp Switch Mode Power Supply. For only £9.50 and a little bit of work because you have to convert our 135W PSU. Modifications are relatively simple - we supply instructions. Simply order PSU Ref: 9.5P2 and request modification details. Price still £9.50.

instructions. Simply order PSU Ref: 9.5P<sup>2</sup> and request modification details. Price still £9.50. Are you making Mini Bugs? We can offer the ideal box. White plastic without any decoration or printing. This has an on/off switch in the top left-hand corner and a hole just above to take a telescopic or wire aerial. The case is large enough to take a PPS battery and a PCB and when finished it will have a really professional look. Box with switch £1, Order Ref: 1006. Size approximately 4%3\*X1½\* thick and its cover is held by four screws. Siren/Horn/Hooter/Klaxon. It isn't any of these - it does the described as ornamental. It is Swiss made and in a crey plastic case, could be free standing or screwed down indoors or out. It is mains driven and when switched cn it makes a shocking noise (its loudness is adjustable). You burglar alarm to do the same. Price 5S. Order Ref: 5P226. Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery. 53. Order Ref: 3P155. Don't Let It Overflow! Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when a sideur has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready, to work when battery fitted. 53. Order Ref: 3P156.

Very Powerful Mains Motor. With extra long (2½") shafts extending out each side. Makes it ideal for a reversing arrangement for, as you know, shaded pole motors are not reversible. S3. Order Ref: 3P157. Solar Panel Bargain. Gives 3v at 200mA. Order Ref: 20204

£1 Super Bargain 12V axial fan for only £1, ideal for equipment cooling, brand new, made by West German company. Brushless so virtually everlasting. Needs simple transistor drive circuit, we include diagram. Only £1, Order Ref: 919. When we supply this we will include a list of approximate-ly 800 of our other £1 bargains.

40W-250W Light Dimmers On standard plate to put directly in place of flush switch. Available in colours, green, red, blue and yellow. £2.50, Order Ref. 2.5P9. Or on standard 3x3 cream metal switch plate, £3, Order Ref. 3P174.
 45A Double Pole Mains Switch. Mounted on a 6x3½ aluminium plate, beautifully finished in gold, with pliot light. Top quality, made by MEM, £2, Order Ref: 2P316.
 Amstrad 3" Disk Drive. Brand new and standard replace-ment for many Amstrad and other machines, £20, Order Ref: 20P28.

Ref: 20P28

Touch Dimmers 40W-250W, no knob to turn, just finger on front plate, will give more, or less light, or off. Silver plate on white background, right size to replace normal switch £5, Order Ref. 5P230.

#### Motorise that Trolley! You could with Sinclair C5 ½rd hp 12v battery motor Still available, price £18. Order Ref: 18P7

12/24 DC Solenoid. The construction of this is such that it will push or pull. With 24V this is terrifically powerful but is still quite good at 12V. £1, Order Ref: 877.

Don't Stand Out In The Cold Our 12m telephone extension lead has a flat BT socket one end and flat BT plug other end, £2, Order Ref: 2P338.

Order Ref: 321556.
 Order Ref: 3P145. Matching 4 ohm 20W tweeter on separate baffle, £1.50, Order Ref: 1.5P9.

#### LCD 31/2 Digit Panel Meter

This is a multi range voltmeter/ammeter using the A-D converter chip 7106 to provide 5 ranges each of volts and amps. Supplied with full data sheet. Special snip price of £12, Order Ref: 12P19.

Telephone Extension Wire 4 core correctly colour coded intended for permanent extensions, 25m coil, £2, Order Ref 2P339

2P339. High Power Switch Mode PSU. Normal mains input, 3 outputs: +12V at 4A, +5V at 16A and -12V at ½A. Completely enclosed in plated steel case. Brand new. Our special offer price of §9.50, Order Ref: 9.5P1. Philips 9" High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing, offered at less than price of tube alone, only £15, Order Ref: 15P1.

High Current AC Mains Relay This has a 230v coil and changeover switch rated at 15A with PCB mounting with clear plastic cover. £1, Order Ref. 965.

CIRCLE NO. 126 ON REPLY CARD

#### **BARGAINS GALORE**

Ultra Thin Drills, actually 0.3mm. To buy these regular costs a fortune. However, these are packed in half dozens and the price to you is £1 per pack, Order Ref: 7978. You Can Stand On It! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools in, internal size approx. 10/2'×41'x6' high. Complete with carrying strap, price £2, Order Ref: 2P2838.

Ultra Sonic Transducers. Two metal cased units, one transmits, one receives. Built to operate around 40kHz. Price £1.50 the pair, Order Ref: 1.5P/4.

Price **21.50** the pair, Order Ref: 1,5<sup>17,4</sup>. **Power Supply with Extras.** Mains input is fused and filtered and the 12V DC output is voltage regulated. Intended for high class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are two 12V relays and Piezo sounder, **53**, Order Ref: 3P80B. **Insulation Tester with Multimeter**. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least 50, yours for only **27**. 50 with leads, carrying case **22** extra, Order Ref: 7.5P/4. **Mains Isolation Transformer**. Stops you detting "to earth"

Mains Isolation Transformer. Stops you getting "to earth" shocks. 230V in and 230V out. 150 watt, £7.50, Order Ref. 7.5P/5 and a 250W version is £10, Order Ref: 10P97. Mains 230V Fan. Best make "PAPST", 41/2" square, metal

Mains 230V Fan. Best make "PAPST", 4½" square, metal blades, £8, Order Ref: 8P8. 2MW Laser. Helkum neon by Philips, full spec. £30, Order Ref: 30P1. Power supply for this in kit form with case is £15, Order Ref: 15P16, or in larger case to house tube as well £18, Order Ref: 15P17. The larger unit, made up, tested and ready to use, complete with laser tube £69, Order Ref: 69P1. 12v 8ohm speaker, only £1.50 and waterproot. Solar Charger. Holds 4AA nicads and recharges these in 8 hours, in very neat plastic case £6, Order Ref: 692. Ferrite Aerial Rod. 8" long x 3%" diameter, made by Mullard. Complete with two coils, 2 for £1, Order Ref: 832P. Air Spaced Trimmer Caps. 2-20pt, ideal for precision tuning UHF cricuits, 16 pt 1, Order Ref: 818B. Modem Amstrad FM240 As new condition but customer return, so you may need to fault find, £6, Order Ref. 6P34. Amstrad FOwer Unit. 13.5V at 1.9A or 12V at 2A encased and with leads and output plug, normal mains input £6, Order Ref: 6P3.

80W Mains Transformer. Two available, good quality, both with normal primaries and upright mounting, one is 20V 4A, Order Ref: 3P106, the other 40V 2A, Order Ref: 3P107, only £3 each

F3 each. Project Box. Size approx. 8"x4"x4"/z" metal, sprayed grey,

Project Box. Size approx. 8"x4"x41/z" metal, sprayed grey, louvred ends for ventilation otherwise undrilled. Made for GPO so best quality, only £3 each, Order Ref: 3P74. Sentinel Component Board Amongst hundred of other parts, this has 151Cs, all plug in so do not need soldering. Cost well over £100, yours for £4, Order Ref. 4P67. Sinclair 9V 2.1A Power Supply Made to operate the 138K Spectrum Plus 2, cased with input and output leads. Originally listed at around £15, are brand new, our price is only £3, Order Ref. 3P151. Experimenting with Valves. Don't spend a fortune on a

only £3, Order Ref. 3P151. Experimenting with Valves. Don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs. of 250-0-250V at 75mA and 6.3V at 3A, £5, Order Ref: 5P167. 15W 8 Ohm 8" Speaker & 3" Tweeter. Made for a discontinued high quality music centre, gives real hi-fi and only £4 per pair, Order Ref: 4P57. Water Pump. Very powerful, mains operated, £10, Order Ref: 10P74.

0-1mA Full Vision Panel Meter. 23/4" square, scaled 0-100

but scale easily removed for re-writing, £1 each, Order Ref: 756

VU Meter. Illuminate this from behind becomes on/off indicator as well, 11/2" square, 75 each, Order Ref: 366. Amstrad Keyboard Model KB5 This is a most comprehen-

sive keyboard, having over 100 keys including, of course, full numerical and gwerty. Brand new, still in maker's packing, ES, Order Ref. 5P202. t RPM Motor. This is only 2W so will not cost much to run.

Speed is ideal for revolving mirrors or lights. £2, Order Ref. 2P328

Unusual Solenoid. Solenoids normally have to be energi-sed to pull in and hold the core, this is a disadvantage where

sed to pull in and hold the core, this is a disadvantage where the appliance is left on for most of the time. We now have magnetic solenoids which hold the core until a voltage is applied to release it. £2, Order Ref. 2P327. **Mains Filter**. Resin impregnated, nicely cased, pcb mount-ing. £2, Order Ref. 2P315. **200VA Mains Transformer**. Secondary voltages 8v-0-8v. So you could have 16v at 12A or 8v at 25A. Could be ideal for car starter charger, soil heating, spot welding, carbon rod welding or driving high powered amplifiers etc. £15, Order Ref. 15P51.

Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add £3 post and packir over £25 post free.

**M&B ELECTRICAL** SUPPLIES LTD

Pilgrim Works (Dept. WW),

Stairbridge Lane, Bolney, Sussex RH17 5PA

Telephone (0444) 881965 –

phone for Fax

Callers to 12 Boundary Road,

Hove, Sussex

July 1994 ELECTRONICS WORLD+WIRELESS WORLD

# NEW PRODUCTS CLASSIFIED



#### Asics

143MHz PLD. The Cypress CY7C371 is a complex programmable logic device with a 143MHz performance and better than 8.5ns propagation delay, the device offering both electrical erasure and reprogramming. It has a programmable interconnect matrix and product term matrix, which allows product terms to be routed to macrocells individually without 'stranding' adjacent macrocells or introducing extra delay. Pin assignments are selectable so that logic changes do not affect the pinout. Ambar Components Ltd. Tel., 0844 261144; fax, 0844 261789.

**10,000-gate FPGA**. Already available from Actel are the 1500-gate *A1415A* and the 4000-gate *A1440A* field-programmable gate arrays; the 10,000-gate *A14400A* to be released in June. These devices extend the *ACT 3* range which includes 2500-gate and 6000-gate types. New features are 167MHz counters and data paths and 7.5ns clock-to-out delays. Actel Europe Ltd. Tel., 0256 29209; fax, 0256 55420.

## A-to-D and D-to-A converters

Lowest-power A-to-D. Harris's HI5813 is a 3-6V single-supply, 12-bit converter that uses only 9mW maximum at full speed over the industrial temperature range. It includes an on-chip track-and-hold amplifier and the input bandwidth is 1MHz; conversion time is 25µs, giving 40ksample/s. Total error, due to nonlinearity, offsets and full-scale error before calibration, is 9LSB. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276 682323.

#### **Discrete active devices**

**9GHz transistor**. With a typical  $f_T$  of 9GHz at 25mA, Zetex's *ZGF300F* is intended for use in cellular telephones, CATV and radio networking at frequencies over 2.5GHz. Noise figure at 10mA and 1GHz is 1.9dB and gain at 2GHz is 7dB and 12dB at 1GHz; unilateral power gain at 1GHz is 13dB. Collector/base capacitance is less than 0.5pF. Zetex plc. Tel., 061-627 5105; fax, 061-627 5467.

**Low-noise hemt.** Low-noise InGaAs high electron-mobility transistors from Mitsubishi, the *MGF4710A* are meant for C-band first and second stage

LNB use in the 3.7-4.2GHz band and in K band amplifiers. They are intended for microstrip circuitry, providing a 1dB noise figure and 9dB gain at 12GHz. Gate/drain and gate/source voltage is -4V with a drain current of 60mA. Mitsubishi Electric UK Ltd. Tel., 0707 276100; fax, 0707 278692.

Schottky barrier diode. The *BAS85* silicon Schottky barrier diode by ITT has a reverse breakdown voltage of 30V and forward voltages of 0.24V at 0.1mA to 0.8V at 100mA. Leakage is 2µA at 25V reverse voltage and reverse recovery time is 5ns. Power dissipation at 65°C is 250mW. ITT Semiconductors. Tel., 0932 336116; fax, 0932 33148.

High-voltage mosfet. Zetex's ZVN4424 is a 240V, medium-power mosfet with a typical on resistance of  $4\Omega$  and a threshold voltage of 1.8V maximum, so that it interfaces directly with low-power logic. The device switches up to 260mA continuous or 1A in pulses, rise and fall times being 5ns and 16ns at 250mA drain current. Input capacitance is around 110pF. Zetex plc. Tel., 061-627 5105; fax, 061-627 5467.

Bipolar switches. Temic Telefunken has a new series of high blockingcapability bipolar switching transistors, *BUD 87/620* and *TD 13003/13005*, in Dpaks. Typical application is in the contactless switching of electronic fluorescent lamp ballasts. All types switch 30W loads and block up to 1kV at 4A collector currents. Operating

Stereo/dual sound processors Philips is offering three new sound processors for television receivers and video recorders which have or-chip digital plls, synchroncus detectors and digital integrators to give reliable identification of the stareo/dual sound pilot modulation. TDA9840 provides level adjustment, stereo ba ance control and signal-source switching for l<sup>2</sup>C-buscontrolled tvs and vcrs, TDA9845 gives simple logic control of signal switching in low-cost VCRs and TDA3847 complex main/auxiliary input switching for equipment with Scart connectors. Philips Semiconductors (Eindhoven). Tel., 01031 40 722091; fax, 01031 40 724825. frequency is up to 100kHz. *TD13005* is also made with a free-wheeling diode. Tem c Telefunken GmbH. Tel., 01049 7131 672747; fax, 01049 7131 993342.

# Linear integrated circuits

Multiplexed-i/p video amplifiers. Two or four input multiplexed video amplifiers in the EL4400 series by Elantec provide 8ns switching and 70dB channel isolation. Bandwidth at gains of 1 or 2 is 80MHz with gain error of 0.2% even with lowimpedance loads. Two of the devices are two-input types with common inverting inputs, two have four inputs with all four taken to a common feedback line and a further two are four-input versions with positive and negative inputs separate. Microelectronics Technology Ltd. Tel., 9844 278781; fax, 0844 278746.

Precision dual op-amp. Micro Call has a dual op-amp which draws a maximum supply current of  $20\mu$ A per amplifier at 5V. Features include an input offset voltage of  $180\mu$ V maximum with  $0.6\mu$ V/°C drift and input offset current 350pA maximum. Peak-to-peak current noise is 1.5pAand voltage noise  $0.9\mu$ Vpk-pk from 0.1Hz to 10Hz. Input range goes 300mV below ground and the npn output swings to within a few mV of ground, sinking current without puldown resistors. Micro Call Ltd. Tel., 0844 261939; fax, 0844 261678.

**500MHz mixer**. AD comes to the RF area with a mixer giving low distortion (third-order intercept +23dBm) anc only –10dBm local oscillator power over the 500MHz bandwidth. Local-oscillator driver and low-noise output amplifier are integrated with the mixer core in one 20-pin PLCC. RF, IF and LO ports can all be dc-coupled when the voltage rail is ±5V or ac-coupled when 9V is used. IF output is either single-ended or differential and can come directly from the mixer. Analog Devices Ltd. Tel, 0932 253320; fax, 0932 247401.

Low-voltage mosfets. Siliconix announces three more *Little Foot* surface-mounted mosfets: *Si9925DY*, *Si9434DY* and *Si9928DY* with on resistances of 40-80m $\Omega$  and 12V breakdown, being designed for 3.3V or 5V logic. The *9925* is for use in lithium-ior battery psus, in which the 2.5V end-of-charge voltage is matched with the mosfet's 80m $\Omega$ resistance at 2.5V gate voltage. Complementary *9928*s in the output stage of a voltage converter provide



**Crystal oscillator**. Using an SC-cut crystal with a heater directly deposited on the crystal, the Sematron *DXCO* provides the performance of an oven oscillator with small size, low weight less than 1W of power. Frequency coverage is 7-20MHz at a frequency stability of  $2\times10^{-7}$  over  $-20^{\circ}$ C to  $70^{\circ}$ C. Ageing is  $1\times10^{-7}$  per year. The direct heating gives rapid warm-up, low phase noise and relative invulnerability to vibration compared with some oven oscillators that are larger in size. Sematron UK Ltd. Tel., 0734 819970; fax, 0734 819786.

 $60m\Omega$  and  $130m\Omega$  (p-channel); and for load switching, the 9434 gives  $40m\Omega$  on resistance at 4.5V and 1µA drain/source leakage. Siliconix/Temic Marketing. Tel., 0344 485757; fax, 0344 427371.

Analogue switches. Maxim's MAX391/2/3 are quad single-throw, single-pole analogue switches, those in the 391 being normally closed, in the 393 normally open and in the 393 two of each. All are for 5V or  $\pm$ 5V working and offer  $25\Omega$  on resistance,  $<2\Omega$  matching between channels and within  $3\Omega$  flatness over the signal range. Since the switches are of the break-before-make characteristic, they are suitable for multiplexers and multiple outputs can be connected with no risk of interchannel shorting. Maxim Integrated Products UK Ltd. Tel., 0734 845251; fax, 0734 845240.

GaAs fet bias generator.

MAX850/1/2/3 from Maxim supply a fixed -4.1V or variable output at 5mA and under 2mVpk-pk ripple to bias GaAs fet RF power amplifiers in cellular telephones and other communications equipment. They take up less than 0.1in<sup>2</sup> of board space and need only three 1µF

#### **NEW PRODUCTS CLASSIFIED**

Please quote "Electronics World + Wireless World" when seeking further information

capacitors and one  $10\mu$ F one. Supply range is 4.5-10V at 3mA or  $1\mu$ A quiescent. *MAX852* takes an oscillator signal to allow synchronisation in noise-sensitive systems. Maxim Integrated Products UK Ltd. Tel., 0734 845255; fax, 0734 845240.

**RF video drivers.** Motorola's *CR2428* and *CR3428* are hybrid RF amplifiers for use in high and very high resolution CRT monitors. Bandwidth of the *2428/3428* is 130/115MHz and rise and fall times 2.5/2.7ns. Motorola Inc. Tel., 0908 614614; fax, 0908 618650.

Voltage regulators. As a second source to Linear Technology, Semtech offers a series of low dropout regulators with output currents of 1.5A (*L1086*), 3A (*L1085*), 5A (*L1084*) and 7.5A (*L1083*) at fixed voltages of 3.3V, 5V and 12V, one version having adjustable output down to 1.2V. Regulation and stabilisation are 0.01% and 0.015%. Current limiting and thermal shutdown are provided. Semtech Ltd. Tel., 0592 773520; fax, 0592 774781.

#### Logic building blocks

24-bit video mixer. Raytheon's TMC22080 video mixer is designed to mix graphics and live video, for lapping between two video sources and for fading and wiping. It mixes at speeds of up to 26 million pixels/second and is controlled by a 9-bit alpha-channel input. The device supports 24-bit RGB, YCbCr444, 16bit YCbCr422 component video sources and the A channel also accepts 8-bit colour-indexed pixel data which addresses the three bypassable 256 by 8-bit colour lookup tables with a 15-colour overlay palette. Interpolation filters and the colour space conversion matrices are used when different pixel formats are in use. TMC22080 is microprocessorcontrolled. Microelectronics Technology Ltd. Tel., 9844 278781; fax, 0844 278746.

3.3V programmable logic. AMD has its first 3.3V PLD family. PALLV16V8-10 is a low-voltage cmos device that interfaces with 3.3V and 5V logic, having a maximum 10ns delay and taking an 83MHz clock. PALLV22V10Z-25 takes 15µA standby current and has 10 macrocells programmable as registered or combinatorial and active high or low. MACHLV210-15/20 is the first 3.3V MACH device, with 1800 gates and 64 macrocells, and handles a 50MHz clock. All are supported by the Palasm design software. Advanced Micro Devices (UK) Ltd. Tel., 0483 740440; fax, 0483 756196.

Active SCSI terminator. Claimed to be the industry's lowest-capacitance, 9-line SCSI active terminator Unitrode's UC5613 has only 3pF channel capacitance, provides improved impedance matching and eliminates transmission problems found in some other passive and active terminators. A special feature disconnects all lines and disables the 400mA sink/source regulator, the device drawing less than 10nA in this sleep mode and all channels being in a high-impedance state. Unitrode (UK) Ltd. Tel., 081 318 1431; fax, 081 318 2549.

# Microprocessors and controllers

Bigger-rom micros. Hitachi's H8/3837 and H\*/3836 8-bit microcontrollers are 2.7V devices taking 0.5mA in an intermediate speed mode and having 40Kbyte (3837) or 48Kbyte of program rom. Both have an lcd controller/driver for 160 segments and other on-chip features include 2Kbyte of ram, five timers, a 12-channel 8-bit a-to-d converter and three serial interface

600V mosfet driver. IR's IR2155 600V chip has everything needed to control and drive power mosfets in electronic lighting ballast, with a clean waveform that virtually eliminates mosfet losses. Parts count is reduced by virtue of the high-side driver dispensing with transformer gate drives; by the on-chip oscillator; and by generating the IC supply voltage internally. Internal 1.2µs dead time is compatible with dv/dt snubbed circuits to 100kHz. Polar Electronics. Tel., 0525 377093; fax, 0525 378367.



channels. Minimum instruction time is 4µs. Hitachi Europe Ltd. Tel., 0628 585000; fax, 0628 585200.

133MHz Orion 64-bit R4600. The 133MHz version of IDT's Orion R4600 risc processor is claimed to be the first offering the required performance, dynamic power management and low price for Windows NT and high-end embedded applications. IDT says it performs better than the Pentium at 486DX prices. It is a full 64-bit implementation of the MIPS III instruction set architecture in the earlier R4000PC and R4400PC devices but with a five-stage pipeline to reduce stalls and therefore improve performance. There is also the cache: 1616Kbyte for instructions and 1616Kbyte for data. Integrated Device Technology. Tel., 0372 363734; fax, 0372 378851.

Comms processor. Ruby is an advanced communications processor chip from VLSI, which uses an ARM 32-bit risc processor core with a comprehensive set of comms peripherals, power management and 2.7V-5.5V operation. It contains a PCMCIA/ISA interface supporting direct memory, attribute space and comms port modes, a uart, serial comms controller. PIO and a serial port controller. The ASRM FSB core gives up to 20Mips. Sleep and stopped modes are provided, in which power dissipation is 3mW and 200µW. VLSI Technology Ltd. Tel., 0908 667595; fax, 0908 670027.

#### Mixed-signal ICs

Lan chipset. Regatta 100 local area network chipset by AT&T allows the addition of multimedia services such as video and sound to Ethernet or Token-Ring wiring at 100Mb/s. The set conforms to IEEE 802.12 100VG-AnyLAN, the first silicon implementation to do so. Its high bandwidth is achieved by means of a new quartet signalling scheme using four pairs of UTP wiring. AT&T Microelectronics. Tel., 0732 742999; fax, 0732 741221.

**RDS frequency synthesiser**. Philips' *TSA6060* low-power PLL frequency synthesiser IC for AM and fm is intended for use in rds car radios, providing on-chip loop amplifiers and 2ms frequency locking, although the plls can be switched between high gain for fast lock and lower gain for frequency stability. The only externals needed are two passive feedback networks for the loop time constant. Philips Semiconductors (Eindhoven). Tel., 01031 40 722091; fax, 01031 40 724825.

#### **Optical devices**

**Single-chip camera**. A cmos singlechip camera by VVL, the *1070*, is claimed to be the first commercially available image sensor with a built-in a-to-d converter. It integrates a 160 by 120 pixel array with all the electronics needed for an autoexposure camera in a windowed 44pin PQFP. Current consumption is 30mA and there is to be a range of lenses with differing fields of view. VLSI Vision Ltd. Tel., 031-539 7111; fax, 031-539 7140.

Photo-IC coupler. Toshiba's *TLP251* photocoupler drives low-power IGBTs directly, maintaining gate isolation. A GaAIAs led is the light source, a p-n photodiode, a high-speed, high-gain amplifier and output circuitry, comprising the photo-IC which is used as the detector. Operating voltage is 35V and an 8mA input produces a peak output of 100mA with a 1µs propagation delay. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276 691583.

#### Oscillators

LF crystal oscillators. Crystal oscillators from GPS work at frequencies down to 1.5kHz. The *QC6109* oscillator will drive loads of up to 50pF (HCMOS) and the *QC6110* up to 10 TTL gates, both having rise and fall times of 10ns for 6-30MHz versions or 15ns for the If types. Start-up time is 4ms. Two temperature ranges are available: -40°C to 85°C with a frequency tolerance of ±50ppm; and -55°C to 125°C with a tolerance of ±100ppm. GEC Plessey Semiconductors Ltd. Tel., 0793 518510; fax, 0793 518582.

#### **Power semiconductors**

Horizontal crt deflection. Power dissipation in horizontal deflection circuitry is reduced by short switching times and low power loss of Philips BU2522AF and BU2527AF n-p-n power transistors. These are intended for 14-17in high-resolution monitors scanning at up to 64kHz. Both are 1500V devices operating at 5-7A (DC peak ratings 10A and 25A for the 2522 and 12A/30 for the 2527). When switching 6A in a 64kHz circuit, maximum charge storage time is 2µs, collector turn-off times being 0.25µs and 0.2µs. Philips Semiconductors (Eindhoven). Tel., 01031 40 722091; fax 01031 40 724825



#### **Passive components**

Feed-through capacitors. Reengineering of Cambion's 560-3265 series of feed-through capacitors has trebled the range of values to 220pF-1500pF in ±20% tolerance. They are screw-mounted and plated in 0.55μm gold, although other styles and platings can be made. Insulation resistance is over 10<sup>5</sup>MΩ and dissipation factor less than 2% at 1kHz. Interconnection Products Ltd. Tel., 0433 621555; fax, 0433 621290.

Wirewound resistors. Neohm *CWP*, *CWU* and *CWL* ranges of high-power wirewounds, in moulded chip packaging, use temperature sensing to achieve standard temperature coefficients down to 1-3ppm/°C. Type *CWP* are down to 2.4 by 3.2mm in

#### NEW PRODUCTS (LASSIFIED Please quote "Electronics World + Wireless World" when seeking further information

size and offer resistance ranges of  $0.1\Omega$ - $1.4k\Omega$ ,  $0.1\Omega$ - $5k\Omega$ ,  $0.1\Omega$ - $18k\Omega$  and  $0.1\Omega$ - $45k\Omega$  in tolerances of  $\pm 0.1\%$  to  $\pm 5\%$  and 0.75W to 4.5W power ratings. *CWU* resistors have standard tolerance down to 0.005% at 0.5W, while *CWL*s offer low values of  $0.005\Omega$ - $0.5\Omega$  at less than 7nH inductance. Surtech Interconnection Ltd. Tel., 0256 51221; fax, 0256 471180.

Transient suppressor. Giving boardlevel ESD protection in a 1.3mm<sup>2</sup> package, the AVX *Transguard 0603* version transient voltage suppressor clamps at 10V, 15.5V, 30V or 40V. Energy rating is 0.1j and peak currents up to 30A in eight 20µs pulses can be accepted, response time meeting the European EMC Directive. AVX Ltd. Tel., 0252 336868; fax, 0252 346643.

Transformers. Electrospeed has added new isolating transformers by Roxburgh and pulse types from Newport to its catalogue. Roxburgh's *TT81* range are of split-bobbin construction with a metal-shrouded coil in ratings of 25-1000VA with inputs from 0 to 415V. Newport's 766 series are ferrite-cored and meant for digital and data processing use, while the 1600 series are data isolators with 5µs pulse width capability at high rep. rates. Electrospeed. Tel., 0703 644555; fax, 0703 610282.

Ceramic resonators. Fuji's new ceramic resonators now operate up to 12MHz, with an initial tolerance of  $\pm 0.3\%$  or  $\pm 0.5\%$ , depending on frequency, anti-resonant resistance being over  $50k\Omega$ . Stability is  $\pm 0.3\%$  from  $-20^{\circ}$ C to  $80^{\circ}$ C and the resonators age at  $\pm 0.5\%$  over 10 years. They come in plastic cases or epoxy-encapsulated versions from 190kHz to 830kHz, while higher-frequency types are in an epoxy dipped finish. Advanced Crystal Technology. Tel., 0635 5285403.

Chip inductors. Three chip inductors by Murata are meant for EMI filtering in surface-mounted power supplies and DC converters at currents up to 6A. At 100MHz, the 1A *BLM41P01* has a typical impedance of  $80\Omega$ , the 3A *BLM41P03*  $60\Omega$ . At 1GHz, all three retain an impedance above  $70\Omega$ . Murata Electronics (UK) Ltd. Tel., 0252 811666; fax, 0252 811777.

Sealed rotary switch. Wasp's new *DR* 12-position rotary switches are sealed at both ends and can be flowsoldered. The 12.5mm switches have standard contact arrangements of 1, 2, 3 and 4-pole bcd and bcd complement, gold-flashed silver contacts being rated at 5V dc and 10V ac and 2A. The spindle is sealed to a maximum leakage of 1ml/h. Wessex Advanced Switching Products Ltd. Tel., 0705 453711; fax, 0705 473918.

**Dielectric filter**. AVX announces the *PDFC* series of dielectric filters meant for use in telecomms, particularly in



Toroidal transformers. A new series of toroidal mains transformers now being made by Willasden covers the 30VA-2000VA power range. Primaries are 11(/120V in parallel or 220/240V in series, secondaries being connected in series or parallel to obtain the required voltage. Flexib e leads or tags are provided and insulation is Class B; finish is Melinex. Willesden Transformer Co. Ltd. Tel., 0920 821385; fax, 0920 £22795.

the DECT sector. Frequency range is 1.8-2GHz, insertion loss 3dB and, for compatibility with the newest equipment, size is 6.5 by 5 5 by 3mm. Filters to provide lower insertion loss and improved stop-band attenuation are available to order. AVX Ltd. Tel., 0252 336868; fax, 0252 346643.

#### **Displays**

Multicolour leds. Dialight 552-3511 is a three-leaded led circuit-board indicator, offering true multicolour operation with less drive circuitry than is needed for the two-lead type. It uses two GaP led chips in a 5mm package, producing red, green, amber and a range of colours in between red and green. The red led provides 5mcd at 10mA at 2.1V and the green one 8mcd at 10mA and 2.3V, the drive coming from standard ICs with current-limiting resistors. Dialight. Tel., 0638 665161; fax, 0638 660718.

#### Filters

Switched-capacitor filter. Linear Technology's LTC1066 14-bit dc accurate, clock-tunable low-pass filter is meant particularly for data acquisition at up to 14-bit accuracy and rates up to 200kHz. To form an 8th-order elliptic or linear low-pass filter, an external RC circuit is needed for dc accurate working, but no active components. Input/output impedance is  $500M\Omega/0.1\Omega$  and the output handles 40mA. For frequencies up to 0.7f<sub>co</sub>, pass-band ripple is ±0.15dB, gain at fco is -1dB and stop-band attenuation is 80dB at 2.3fco. Micro Call Ltd. Tel., 0844 261939; fax, 0844 261678

#### Instrumentation

**Programmable functions**. TTI's *TG1304* programmable function generator is digitally controlled, generating complex waveshapes at frequencies up to 13MHz and using

digital measure-and-correct techniques to achieve frequency stability to within 0.01%. The instrument produces, as well as the usual sine, square and triangular shapes, unipolar pulses and dc levels; variable-symmetry start/stop phase allows more exotic shapes. fm and sweep control come from an auxiliary 5mHz-50kHz generator, as do AM, linear vca and log VCA. Thurlby Thandar Instruments Ltd. Tel., 0480 412451; fax, 0480 450409.

Level measurement. *LM311*, which is a level measuring test set from Seaward for voice band telecomms, is available in an improved version. There is now a multi-frequency, precise-output oscillator with variable frequency and level and a level meter measuring frequency and level in dBm. *LM311* also measures resistance and voltage and has an audio output and smoothing filter. Seaward Electronic Ltd. Tel., 091 586 3511; fax, 091 586 0227.

#### Literature

Amplicon. Amplicon Liveline's 1994 catalogue is now available. Additions to the range of products include automatic data switches, optical-fibre links/repeaters, optical RS232 modems, Combios for Windows, 3.3V dc-to-dc converters, more DAP data acquisition boards and multifunction dpms. There is a glossary of technical terms. Amplicon Liveline Ltd. Tel., 0800 525 335 (free); fax, 0273 570215.

Data access arrangements. AT&T Microelectronics has a free 12-page booklet showing a variety of data access arrangements. These are used to connect voice or data signalling circuits to the telephone line in modems, answering machines, etc. It is illustrated with circuit and block diagrams. with information on using solid-state relays to implement or/off hook control, ring detection and loopcurrent sensing. AT&T Microelectronics. Tel., 0732 742999; fax, 0732 741221.

Power supplies. Astec Standard Power's short catalogue describes a range of products from 4.5W dc-to-dc converters to switching supplies up to the kW range. It also details a furtherinformation service, by means of which engineers receive data sheets on their fax, anywhere in the world, simply by dialling a number and product code. Astec Standard Power Europe. Tel., 0384 440044; fax, 0384 440777.

**Ceramic EMI filters**. Miniature ceramic filters in the form of *C*, *LL*, *LC*, pi and T circuits are described by MPE in a new brochure. The publication contains application information and there is an EMC Helpline on 051 548 6525. MPE Ltd. Tel., 098 122481; fax. 098 122223.

RF semiconductors. Toshiba's new range of semiconductors for rf work is described in a new catalogue and comprises single and dual gate mosfets, jfets, bipolar transistors, pin diodes, Schottky diodes and tuning Varicaps. Other devices integrate hf devices and passive components on a single chip. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276 691583.

Lithium batteries. A brochure from Battery Engineering Inc. describes high-energy lithium/thionyl chloride batteries; electrochemical systems, cell construction and characteristics. Battery Engineering Inc. Tel., (USA) 0101 617 361-7555; fax, 0101 617 361-1835.

SMD selection guide. A complete range of surface-mounted devices for power control is described in the International Rectifier short guide, including Hexfets, diodes, igbts and mos-gate driver ICs. International Rectifier. Tel., 0883 713215; fax, 0883 714234.

Digital radio testing, 2050 series signal generators by Marconi Instruments test many of the world's emerging digital radio systems with complex modulation. Digital and vector modulation allows receiver testing on systems including the new systems from North America and the Far East, as well as the Terrestrial Flight Telephone System (TFTS). This requires the generation of quaternary amplitude modulation, phaseshift keying, broadband AM and spread-spectrum signals; with extra equipment, the instrument can also generate Personal Handiphone (Japanese) and DECT signals. Marconi Instruments Ltd. Tel., 0727 859292; fax, 0727 857481.

#### **NEW PRODUCTS CLASSIFIED**

Please quote "Electronics World + Wireless World" when seeking further information

#### **Power supplies**

20W dc-to-dc converter. Semtech MP9600 series 20W voltage converters produce pwm-regulated single or dual outputs of 5, 12, 15, 24, ±5, ±12, ±15 and ±24V to within ±5% and at a typical efficiency of 70%. The modules measure 0.83in high for board mounting. Inputs of 12, 15, 24 and 48V dc can be accepted and output currents of 800mA to 4A are available. Regulation and stabilisation are ±5% and ripple 200mVpk-pk. Semtech Ltd. Tel., 0592 773520; fax, 0592 774781.

#### 200W dc-to-dc converters.

Veropower 200 series voltage converters by BICC-Vero are 200W types with input ranges of 40-60V, 36-75V and 200-400V DC, giving at the outputs 3.3V, 5V, 12V, 15V, 24V and 48V, depending on the version. The 200-400V type is powered by rectified and filtered mains and can be configured to accommodate complex supply needs. A 700kHz switching frequency gives conversion efficiencies of over 80% and regulation and stabilisation of better than 0.1%. BICC-Vero Electronics Ltd. Tel., 0489 780078; fax, 0703 264159.

#### Wide-range dc-to-dc converter. Operating from a variety of input

Operating from a variety of input voltages, the Ca/ex LV dc-to-dc converters provide a 6W output at fixed voltages of 5V, 12V and 15V from 4.8-12V input. Ground loops are eliminated by 700V dc isolation and noise levels are less than 50mVpk-pk over 20MHz – less with a specified external circuit. Regulation and stabilisation are both 0.1%. Calex Electronics Ltd. Tel., 0525 373178; fax, 0525 851319.

**3.3V dc-to-dc converters**. To cater for the increasing numbers of lowvoltage ICs, Amplicon has introduced a series of dc-to-dc converters, the Z series, providing a regulated 3.3V output from 9-18V, 18-36V or 36-72V inputs at 16W. Features include 500V DC input/output isolation, 78% efficiency, continuous short-circuit protection and 1%pk-pk ripple and noise. All the devices have remote on/off and an input pi filter. Amplicon Liveline Ltd. Tel., 0800 525 335 (free); fax, 0273 570215.

## Radio communications products

Miniature mixer. ZP-11A is a mixer by Mini-Circuits Europe, accepting 1400-1900MHz rf and local oscillator input and producing a 40-500MHz IF. Conversion loss of 4.5dB is flat to within 0.6dB and compression 1dB, 1dBm typical. Mini-Circuits Europe. Tel., 0252 835094; fax, 0252 837010.

Power splitter. Mini-Circuits Europe offers the *SCP-4-4* surface-mounted, four-way power splitter for telecomms, radio and remote-control application. Bandwidth is 800-1000MHz and features include 24dB isolation, 0.9dB insertion loss, input VSWR 1.3:1 and 1.15:1 at the output. Power ratings are 0.5W input and 0.125W internal dissipation. Mini-Circuits Europe. Tel., 0252 835094; fax, 0252 837010.

#### Microwave resonator materials.

New electroceramic materials by Morgan Matroc are intended to replace metals used in the manufacture of cavity resonators. Dielectric constants from 19 to 90 allow selection of the ideal size of resonator to balance ease of construction against miniaturisation Barium-zinc-tantalate has a Q of 11000 and is meant for puck resonators from 5GHz to 26GHz. A 10GHz puck using material with a dielectric constant of 29.5, for example, measures 6mm in diameter and 3mm thick. Barium-neodymium has a constant of 87 for pucks in the 400MHz-8GHz range and



Bespoke power supplies. Gresham XG and XF series power supplies have one 5V output at 60A or 70A and up to three other regulated, adjustable and isolated outputs as additional modules, in any combination. These provide 2-6V at 15A, 5-15V at 12A or 15-36V at 7A. Stabilisation is ±0.2% over the input range and regulation 0.2%, zero to full load. Outputs are filtered to VDE and FCC Class A and optionally to Class B. Remote inhibit and sense are provided and the units are fully thermally, voltage and current protected. Gresham Power Electronics Ltd. Tel., 0722 413060; fax, 0722 413034.



Programmer/emulator. Stag announces its new Orbit 32 batterypowered, hand-held programmer, which it claims is the smallest stand-alone portable programmer available. It will program eproms to 8Mbit, eeproms and flash devices. Some cmos proms and serial eeproms in 0.3in and 0.6in dips also fit the 32-pin wide-blade zif socket. Orbit 32 has a high-speed emulator to allow connection to the target, so that there is no need to program devices until code is optimised. All device libraries are resident in non-volatile memory. Stag Programmers Ltd. Tel., 0707 332148; fax, 0707 371503.

magnesium-calcium-titanate at 19.5 is for coaxial resonators from 2GHz to 5GHz. Morgan Matroc Ltd. Tel., 0978 810456; fax, 0978 824303.

# Transducers and sensors

Inductive sensors. Colvern's Type 94 range of non-contact sensors are inductive types intended for rotation

# COMPUTER

# Computer board-level products

PC-based waveforms generator. AWG7223PC is a 50MHz arbitrary waveform generator by TTI that plugs into most ISA and EISA extension bus slots. Two output channels generate separate waveforms of up to 32K length, but the memory can be arranged to to produce waveforms up to 100 gigapoints in length. Resolution of the nine different standard waveforms (sine, triangle, sawtooth, square, pulse, sine x/x, Gaussian pulse, exponential rise/decay pulse pseudo-random noise and DC) is 12 bits from 100mV to 12Vpk-pk into  $50\Omega$ , each channel having five filters cutting off at frequencies between 50Hz and 10MHz. Software includes a dos driver and Borland C++ library and optional WaveCAD. Thurlby Thandar Instruments Ltd. Tel., 0480 412451; fax, 0480 450409

EISA 488.2 controller. An IEEE 488.2 interface board by National for EISA computers, the *EISA-GPIB* uses the *TNT4882C* controller chip and HS488 protocol for transfer rates up to 8Mbyte/s for both read and write. It includes *NI-488.2* dos and Windows software that is compatible with speed measurement and position sensing for engine management, automatic braking, motor speed and ignition timing. In 13 standard and several specially designed forms, the devices consist of a magnet and toothed wheel varying the path reluctance and therefore producing a signal in the coil. Zero-crossing detection is incorporated. Colvern Ltd. Tel., 0708 762222; fax, 0708 762981.

LanView, LabWindows and LabWindows/CVI. Hardware base address, interrupt and dma settings are all software-configured; no jumpers or switches are needed. National Instruments UK. Tel., 0635 523545; fax, 0635 523154.

**50MHz C40 products.** LSI is the first supplier to use the Texas Instruments 50MHz *C40* digital signal processor in production equipment. Modules using the *C40* include memory, processor and i/o units, with sram and dramequipped modules and applicationspecific *TIM-40s*. As an example, LSI's *MDC40T* is the first to use two *C40s* and allows PC or VME boards offering eight processors giving 400Mflops and 2.2Gflops; this is claimed to be the fastest DSP board in the world. Loughborough Sound Images Ltd. Tel., 0509 231843; fax, 0509 262433.

#### Computer systems

IntelDX4 motherboard. The SV2/GX4 PC motherboard from SPD uses the new 100MHz *IntelDX4* processor and power-management features. On the Norton SI V6 index, the *IntelDX4* shows a 50% gain in performance over its 66MHz

#### NEW PRODUCTS CLASSIFIED

predecessor, the *486DX2*. There are seven VL and ISA bus slots on the board, which has 256Kbyte of cache as standard, expandable to 1Mbyte, eight 72-pin simm slots allowing 1Mbyte to 64Mbyte main system memory expansion. As well as the *DX4*, the zif processor socket accepts *486DX2*, *DX* and *SX* devices and *487SX*, *Intel 486* and *Pentium Overdrive* chips. Special Products Distribution Ltd. Tel., 0420 563588; fax, 0420 562206.

Blue Lightning motherboards. Blue Micro has available PC motherboards based on Blue Lightning processors. First to appear are Cobalt Baby AT boards, which use the 75MHz clocktripled version, 100MHz types soon being available. There is a 16K cpu cache and up to 512K external writeback cache can be fitted, four 72-pin simms allowing the installation of up to 64Mb of dram. The board has a maths co-processor and a local-bus IDE driver handles two hard disks; i/o includes two serial ports, a bidirectional parallel port and support for two floppy drives. Blue Micro Electronics. Tel., 0604 603310; fax, 0604 603320.

Tough PC. For the type of workplace where even a rack-mounted pc is not well enough protected and in which emc/rfi needs to be avoided, the Blue Chip ICON PC range meets EN55022 for interference radiation and mains terminal voltage, and IEC 801-3 for immunity to EM interference. The lockable PC is made from nickelplated steel and is thereby protected against liquids, dust and, the company says, collisions. A 14-slot PC AT backplane is used that leaves at least 13 slots free, and processors up to P24 Pentium overdrive with local bus video and VESA expansion are available. Four drive bays are included. Blue Chip Technology. Tel., 0244 520222; fax, 0244 531043.

#### Data communications

Modem kit. A modem designers' kit, the MDK from RCS, assists engineers to develop new modems and applications quickly and easily. It enables a single board layout to become the foundation for a family of modems, from 2400-baud data-only types to a 28-Kbaud V.Fast Class modem with data, fax and voice. MDK is a serially configured modem complete with power supply, UK BABT-certified line interface, external microphone and speaker, demo software, firmware and documentation. RCS Microsystems Ltd. Tel., 081 979 2204; fax. 081 979 6910.

# Development and evaluation

Background debugger. Flash Designs' Universal MDS for developers of embedded programs has what the company claim is the world's smallest background debugger at 100-150byte, which allows on-thefly viewing and editing of all microprocessor registers, stack, memory and i/o ports. It is nonintrusive and lets the code run in real time. Debuggers are available for 8031/51, 68HC11, H8, Z-80 and other 4/8-bit devices. Flash Designs Ltd. Tel. and fax, 0293 551229.

#### Computer peripherals

PCMCIA hard drive. Seagate's ST7050P is a 42.7Mb hard drive on a PCMCIA card for use in notebooks and desktops, as well as data collection and instrumentation systems. The drive incorporates the most popular operating systems, including dos and Windows and is compatible with all systems complying with PCMCIA release 2.1 or higher. A software driver on disk is provided to ensure drive/PCMCIA compatibility, but if the drive is integrated under the 68-pin ATA standard, the drive uses standard AT Bios support without the software driver support. There is a kit to ease the development of new equipment using the drive. Ambar Components Ltd. Tel., 0844 261144; fax, 0844 261789.

#### Software

Transient data capture. Adept Scientific announces the Flash/SP which combines the Strawberry Tree Flash-12 Model 1 data-acquisition board with Dadisp, the data-analysis software package. A software driver developed by Adept allows collected data to be taken directly to a Dadisp worksheet for reduction and analysis at sampling rates up to 1Msample/s The Flash/SP hardware driver module allows the Flash-12 board to be controlled from Dadisp, the system accepting inputs between ±50mV and ±10V and storing up to 64K data points (1 million points with an optional daughter board). Adept Scientific Micro Systems Ltd. Tel., 0462 480055; fax. 0462 480213.

Windows psu characterisation. Powerstar Characterisation Module is now part of the Intepro (Schaffner) Windows-based system for the repetitive test of power supplies in characterisation – a process normally necessitating thousands of measurements in a variety of conditions and needing a number of test instruments. The system's library contains over 100 standard tests and the characterisation procedure is able to measure many more test points than in the manual case. Results can be saved to disk and analysed by the Powerstar data analysis package. Scahffner EMC Ltd. Tel., 0734 770070; fax, 0734 792969.

Windows pcb design. Pentica's TangoPRO Schematic Lite and PCB Lite form an entry-level version of its Tango circuit design and board layout software, giving an upgrade path from its already workstation-class EDA software to the highest specification version. These tolls run under Windows and offer features suitable for most modern pcb designs. Schematic Lite has powerful placement and editing tools, keyboard shortcuts and instantaneous netlist generation, with over 20,000 library components. There intelligent wires and buses and automatic junction and bus entry placing. PCB Lite includes Cut/Copy/Paste and design error indication. Pentica Systems Ltd. Tel. 0734 792101; fax, 0734 774081.



| IP portable plus computer with LCD screen.    | 1mb      | HML 411 high voltage 0-20KV cap charger ne   | W      |
|-----------------------------------------------|----------|----------------------------------------------|--------|
| AEM drawer, software drawer etc               | £75      |                                              | £200   |
| ektronix standard amplitude calibrator 047-   |          | AVO RM 215F3 AC Breakdown Tester             | £95    |
| i02                                           | 100.00   | Schlumberger 4000 Precision Sig: Gen         | £150   |
| luke 8010A digital multimeter                 | £105     | Schlumberger 4900 RF-AF Measuring Unit       | £150   |
| H microwave swept oscillator model 574-1.     | 7.       | Wyse 60A Terminals new & boxed with keybo    | bards  |
| 24 GHz                                        | £450     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,      | £195   |
| System donner pulse gen. 100c                 | £95      | Fluke 335A DC voltage standard differential  |        |
| Complot series 7000 digitizer tablet with Com | plot     | voltmeter: null detector                     | £350   |
| enes 7000 diantzer                            | 2600     | Famell B30/20 0-30VDC @ 20A                  | £250   |
| Ivdrostatic stability indicator HSM-400 PT    | 2800     | AEI Gauss meter FB22 form with probe         | £117   |
| Astec SA 30/1306, new and boxed PSU 2401      | / ac     | HP 331 A distortion analyzer                 | £150   |
| nout +5V at 2a + 15v at 1 8a - 15v at @ 3a    | £12.50   | FMI Rotary attenuator 27/11                  | POA    |
| P 7221A plotter                               | £150     | HP Frequency meter X532B                     | POA    |
| IP 1332 x-Y display with optons 215/300 31    | 5/570/   | HP 1740A 100MHZ oscilloscope. Dual CHN y     | with   |
| 31                                            | £150     | 3rd CHN, trigger view etc.                   | £325   |
| lucihes model 639 scan conversion memory      | £300     | AS Eltek switch mode variable PSU 250vAC     | input. |
| LI Inst. PL4 recorder                         | £75      | 0-60vDC 25A max metered 17x12.5x5" with      |        |
| Sorensen SRL 40-12, 0-40 VDC 0-12A mete       | red      | manual                                       | £325   |
| 15 VAC input                                  | £125     | Inmac 300VA Batt: Back up & line conditioner |        |
| (SM SCT-200 15 power supply 0-200V 0-15       | A        | model HO 300VA                               | £95    |
| ······                                        | £200     | HP 9872c plotter                             | £175   |
|                                               |          |                                              |        |
| All above equipment                           | + 17.5%  | VAI – Please ring for c/p prices             |        |
|                                               |          |                                              |        |
| We would                                      | like the | concertuality to tender for sumplus environ  | ent    |



We would like the opportunity to tender for surplus equipment Official orders, credit card telephone orders accepted with Access, Arnex, Diners, Visa cards. Overseas enquiries welcome c/p rates UK mainland only. Please ring for c/p rates not shown All prices inc VAT unless stated. Stock list available

CIRCLE NO. 127 ON REPLY CARD



423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 M@N-SAT. TEL 081-542 6383. FAX 081-542 0340

CIRCLE NO. 128 ON REPLY CARD

# LETTERS

#### More distortion...

I would like to thank *EW+WW* and Douglas Self for an educational and interesting series on distortion in power amplifiers, articles which I thoroughly enjoyed. I do not wish to detract from the series but would like to propose an extra distortion mechanism to add to Mr Self's list: output (voltage) clipping through insufficient output current capability when driving loudspeakers instead of resistors.

I know of only one set of published measurements of loudspeaker current, cited by Ben Duncan in an *EW+WW* article some time ago, and peaks of sixty amps were recorded, using real loudspeakers and a music signal. This may be an extreme case, but it makes the point. Five minutes with a calculator is enough to conclude that the load impedance (as opposed to resistance) must have been far from  $8\Omega$  and highly reactive. The output current capability of Mr Self's designs, class A and B, indicates that he (in common with many other esteemed designers) may not have addressed this problem.

All of his published data on output stage performance used a resistive load – normally  $8\Omega$ , sometimes  $4\Omega$ – unless I an mistaken.

Resistive-load measurements and simulations may be useful during development, but I suggest that they are all but irrelevant to the final product, expected to drive

#### Military option

The UK once had a strong electronics industry. It became involved in arms equipment manufacture and is now virtually dead. How strange then that you should conclude: "It is... certain that we would not have an indigenous electronics industry if it were not for military spending" (*Comment*, April).

I believe such involvement has been a bad thing, and would go so far as to say it is the single most significant factor contributing to the demise of the industry.

In the early 60s, when I started in electronics, the industry was strong, innovative and fiercely competitive. Domestic consumer choice was vast, and dozens of manufacturers produced radios, tape recorders, tvs and audio. The industry was not without its faults but it was certainly well placed to take on any foreign competition. Ferranti, GEC, Marconi, Ultra, Decca, Pye, Cossor, Bush Murphy, Ekco, and many more I could mention were all supplied by an equally vigorous and diverse component supply industry: names such as Mullard, Mazda, Ferranti, Brimar being active in the new and rapidly changing semiconductor field.

It is popular to blame the Japanese for the decline. But the early Japanese imports were plain rubbish (I well remember fixing batches of Sony radios and tape recorders before they could be offered for sale, a good 50% being u/s some beyond economic repair).

No don't blame the Japanese, they just moved in on a market that was being vacated by its home industry, and vacated with unseemly haste at times.

The reason for the decline was the MoD with its highly irresponsible cost-plus contracting. A seemingly inexhaustible supply of taxpayers'

money could be used to divert the industry into military equipment supply. Now the industry is being ditched with the same cynicism with which it was acquired. Unfortunately the companies that remain are no longer capable of operating in the domestic market. The management structures encouraged by the military market actively works against the efficient reorganisation such a move would require.

Was it not General Eisenhower who warned "...beware the militaryindustrial complex"? That a once proud UK electronics company should now be reduced to using timed-out government ministers to set up sordid little deals with dubious foreign governments is wholly consistent with such an alliance. That the once proud *Wireless World* should endorse those activities is just sad. Very very sad. *RM Burfoot* 

#### Avon

Avor

I agree totally that military contracts have been disastrous for the competitiveness and diversity of the UK electronics industry. However they now represent our only legacy – diminished and sad though they may be. Rebuild from them by all means. But don't ignore them. Frank Ogden

loudspeakers with a music signal.

Many highly regarded amplifiers can deliver more output current than might be expected if a resistive load is assumed. I'm not just referring to American monster amps here – the NAD3020 is a perfect example. Many thousands of consumers were sufficiently impressed to vote with their wallets.

Of course, I cannot prove that its high output current was responsible for its sound quality, but it's a thought...

Finally, the gibes against the subjective community which appear here and there do not sit well with an otherwise professional presentation. They are unworthy of Mr Self, and highly subjective in nature – and I would hate to have to describe Mr Self as a subjectivist.

There is high-end equipment that does not measure well (ref. part 1). But if – and only if – it reproduces music better than competing equipment, then this is sufficient. The only purpose for audio power amplifiers is reproduction of music. Thus music reproduction of music the primary criterion for judging the success of a design. Measurements are, at best, an indirect estimate of musical performance.

There are those who advise caution when applying techniques to reduce distortion, lest the cure be worse than the disease. Mr Self pointed out several examples of this, helping designers to avoid problems. To interpret such warnings to mean that low distortion is immoral (part 8) is a cheap debating trick, presumably intended to discredit those who do not share Mr Self's views. **Stephen J Merrick** *Cheshire* 

#### ... clearly the best

The difference of opinion between Douglas Self and Ben Duncan (*Letters*, May) would have more significance for practical audio fans if we had an amplifier construction project of Ben's that we could compare with Douglas' amplifier (*Distortion in power amplifiers*: pt 7, February, 1994, pp.137-142).

All electronics ends up at the end of a soldering iron and in audio what counts is the sound from the speakers – regardless of the semantics involved.

Offer of an excellent pcb for the class B amp is greatly appreciated as is the down-to-earth concepts using standard components from established UK sources. This contrasts with many offerings during the past decade from other UK and foreign journals specifying parts that can only be obtained from foreign suppliers.

Ben will be well aware that existing UK construction kits have degenerated, in some instances, into value-added enterprises with component applications that are now stratospheric in price.

Douglas has brought us back to earth (sic). And about time too. *Hugh Haines Sunderland* 

#### Ears and knows

Little did I think that my simple description of my use of listening in the development of audio-related products (*Letters*, *EW*+*WW*, November 1993) would embroil me in "subjectivist wars" with Douglas Self and elicit accusations of voodoo practices from Alan Dyke (both *Letters*, June 1994).

The fact is that audio electronics circuits are built and sold to be listened to. This basic and intractable truth should be justification enough for designers to use their own cars somewhere along the way. Yet it is one that I have yet to see Douglas Self address or even acknowledge.

The research I cited in my last letter – which shows that customers in the professional audio industry listen to competing products before making purchasing decisions – is my own. It is culled from a career spanning 25 years of talking and listening to customers in the broadcasting, sound recording, live sound and music markets around the world. They are all professional listeners in the sense that they make their living from the creative use of audio electronics.

Experienced sales and marketing people from any other audio equipment manufacturer or distributor would tell Douglas Self the same thing and indeed, in the case of the company for which he works, probably already have.

Whether or not he wishes to hear it, believe it or act upon it, the data exists.

Alan Dyke doubts that I would take part in the sort of independent listening tests suggested by Alan Thomas. Why should he doubt it? I will quite happily accept that ehallenge – as might a number of my colleagues – if in doing so we could help to move the study of the correlation of hearing and measurement beyond the limitation and self-defeatism of entrenched prejudice and selective study.

As to technique, and assuming that



I would be required to hear differences between two unseen power amplifiers I would want to nominate the other components in the listening chain and choose my own source material and listening levels. I would then want to spend as long as I felt necessary listening to each amplifier. Once I was happy and relaxed (on the assumption that Self would not count these requirements as "fatal flaws" in my methodology), the two amplifiers could then be A/Bd until the cows came home and I would hear the difference every single time. Jerry Mead Herts

#### Charge build up

Having worked for the past 30 years as a capacitor engineer, both in design and applications, I eagerly read the article by Tony Wong on Choosing Capacitors (*EW+WW*, April, pp.327-329).

Unfortunately the article has a number of typographical errors which could confuse a user, and also makes fundamental mistakes – especially concerning electrolytic capacitors.

The most serious – "... If connected incorrectly [reversed], the insulating oxide film is not formed and there is no capacitance" – is incorrect.

Manufacture of non-solid aluminium electrolytic capacitors starts with rolls of pure aluminium foil etched to increase surface area. They are then electrolytically formed to produce the dielectric oxide by applying a positive voltage, typically 20% greater than rated voltage, in a bath of weak acid.

After slitting to width and winding into a capacitor, the cut edges are reformed by applying voltage at elevated temperature and using oxygen available from the capacitor electrolyte. This, oxide film, used with chemically suitable electrolytes, is inert. Indeed were this not so, the capacitor would fail in storage.

Consequently, every aluminium electrolytic capacitor contains this dielectric oxide film from day one.

Application of reverse voltage does not, in the short term, remove this oxide and the capacitance value is essentially unchanged. Indeed CECC-30-300 clause 4.15 requires change of capacitance to be less than 10% of initial value when subjected to 1V reverse, then rated voltage, each for 125h at upper category temperature.

A capacitor requires two foils each covered with dielectric oxide formed to the same (non-polarised) or different (polarised) voltages.

Given a polarised construction, the second foil (cathode) will have atmospheric oxide equivalent to 2-3V electrical. Both foils' capacitances are dependent on formation voltage and surface area. Assuming the cathode foil is  $2000\mu$  F and the anode foil is  $615\mu$  F and has been formed to 8V, the resulting  $470\mu$  F capacitor could be modelled as two capacitors of the above values in series, each having a parallel zener diode of 2-3V and 8V respectively.

C Bateman Norfolk

Mixing it

Many readers may have seen a television programme in the series 'From A to B' (BBC2) which explored the obsessive relationship between travelling sales reps and their motor cars. What was most worrying was that the obsession seemed to have spread from the reps to their customers. It appears that when you take delivery of your pretty new mixing desk, the slider pots are unlikely to have been selected on a careful calculation of price versus performance and reliability - they were very probably bought from the supplier whose sales reps arrived in the car with the fanciest logo on its rear end. Is it any wonder that British manufacturing industry is vanishing before our eyes? MT Hawkins Hants

#### Science friction

All strength to EW+WW for allowing open debate in its letters column on many 'heretical' subjects, something which few other technical journals have the courage to do.

There exists an academic and media mafiosi which attempt to discourage individuals who even start to show an interest in 'heterodox ideas'.

Michael Williams' attack on me (Letters, May, 1994) employed name calling, ridicule and humour – just a few of the 28 deceptive stratagems used by those who have a weak scientific case: (see appendix 4 of Science versus Evolution,

Malcolm Bowden, 1991). Organised pressure groups, chicanery, sharp practice, and zealous histrionics abound in the scientific establishment, all geared to prevent and discredit any research and experimentation that threatens the establishment status quo or is against 'informed opinion'. This is especially so in the areas of today's three sacred cows of evolution,

relativity and heliocentricity. See Researchers like Immanuel Velikovsky (catastrophist), Halton Arp (anti-Big Bang), Stefan Marinov (anti-relativist), Pons and Fleischmann (cold fusion), Robert Gentry (pleochroic halos), Richard Milton (anti-evolution), Barry Setterfield (decrease in speed of light), Walter van der Ramp (geocentrist).

They have all been shown to have strong cases, or even to be substantially correct. Yet they were all initially greeted as stupid or even harmless fruitcake. Conspiratorial attempts could then be made to silence them at the highest levels, in blatant disrespect of the pursuit of novel human knowledge. **Amnon Goldberg** London

#### Vision thing

The trouble with John de Rivas' virtual travel idea (*Letters*, May) is that, unlike VisionRing, it cannot easily be adapted as a mass broadcast medium.

VisionRing allows unlimited numbers of viewers to jump between one or more fixed VR pods, each supplying up to 360° of independent horizontal picture control with stereo vision.

Every VisionRing pod is essentially a weatherproof cylindrical caddy with a magazine of (typically nine or ten) cheap replaceable semi-pro video cameras at one end, trained on an outwardpointing ring of wide-angle lenses at the other via mirrors.

The multi-core feed from the pod is patched straight into the cable network (via a switcher box for commercial breaks) using one channel per camera. The home viewer uses head position to select which pair of consecutive channels is to be fed into the VR headset from a two-channel decoder.

A normal tv set could be fed by the decoder at the same time. For an outlay of a few thousand pounds per pod, a cable tv company can add a low-maintenance VR supplement to its live broadcasts, with no extra camera crew or production personnel: if a particular view becomes boring, the viewer can simply 'look away', jump to another pod's channels (if available), or switch back to the standard (monovisual) broadcast.

Viewers without special equipment can still 'channel hop' between individual views, and hotels or pubs could run multiple channels on separate tv sets to produce an impressive multi-view backdrop during sporting events.

Between major sporting features and the like, a VR pod could be left on-line for all live studio output, and when suitable programming is not available, the network could patch in live VR 'test cards' from permanently installed pods at, say, the Grand Canyon, a nice stretch of beach, or the top of the Empire State Building (live panoramic 3D sunsets over New York from any angle, anyone?).

The final commercial attraction of VisionRing is a little more painful.

While you can watch the Superbowl or the World Cup live in VR, you won't be able to videotape the experience on a domestic machine. So you will not be able to avoid the VR Coca Cola adverts . Sorry, everyone. *Eric Baird Middlesex* 

#### Virtual intercourse

I was interested to read John de Rivas' letter (*Letters*, May) concerning virtual travel and the paying of virtual visits.

The system he envisages would certainly be possible, although I doubt if the data streams could ever be compressed enough to be sent down an ordinary twisted pair. I think the scheme would have to wait until we all have optical fibre laid to our houses.

Also, until the technology exists to sequence DNA in real time and to re-synthesise it at the other end of the link there will remain some interactions that cannot take place in virtual reality. *JS Linfoot* 

#### Oxford

#### Theoretical limits

I agree with Mr Goldberg's view (Letters, April 1994) that the foundations of theoretical physics are in just as poor shape as ever. I am quite familiar with the argument that physicists' perception of the speed of light is monotonically decreasing since first measured by Galileo (who found it to be  $\infty$ ). When I was studying engineering physics fifteen years ago, my teachers told me that the effect was due to technological advancement and the fact that early measurement depended on astronomical constants - such as the length of the solar year - which are now recognised to indeed vary.

Mr Goldberg points out that the fundamental constants are interrelated so that a new electron mass gives a different Planck's constant and so forth. But it is ludicrous to say that: "the change is not due to limitations of equipment".

Dane Ole Romer, a contemporary of Hamlet, deduced from watching the stars that it takes a certain time before the light reaches Earth and to say that his vintage calculations are on an equal footing with those newfangled atomic clocks is too damned conservative.

Extrapolations of laboratory reality such as determination of the age of the Universe are entirely the scraping of horns of the big rams concerning correct application of observed laws and need not be taken seriously.

Michael Williams Beth Shemesh


# TEK**METER**"

For Installation and Maintenance of:

- POWER DISTRIBUTION SYSTEMS
- VARIABLE SPEED MOTOR CONTROLLERS
- PROCESS CONTROL EQUIPMENT
- SECURITY & OTHER VIDEO SYSTEMS
- COMMUNICATION EQUIPMENT







| ALT SMP  | SELECT     | CHI FOR        | HE SIM         |
|----------|------------|----------------|----------------|
| m        | ΠI         | 17             |                |
| ind himm | man hard   | amount have    | and the second |
|          |            |                | - the          |
| 1        | <b>П</b> + |                |                |
|          |            | and the second | 2              |
| AUTORA   | NGE        | POS            | ST. LIG        |

Dual channel operation allows relative timing of signals to be observed.



Display of signal shape lets you find faults that DMM can not show. Today the Digital MultiMeter (DMM) is not always enough! Modern electronics permeates our lives and the installation/maintenance professional is faced with problems where voltage and current measurements are just not enough. The shape and timing of signals is an important factor in many applications.

The New TekMeter is a rugged, fullyfeatured, autoranging DMM and a rugged, fully featured autoranging oscilloscope all in one battery-powered 1kg package. TekMeter is so simple to use you don't need a training course – even to look at signal shapes!

Choose between 3 new models – the THM550 single-channel version at £649.00, the THM560 dual-channel version at £775.00 and the THM565 dual-channel version, with backlight at £995.00. Whichever one you choose, it will help you to find out what's going on and solve the problem!

# Tel: 0800 412200 Tektronix

TekDIRECT, FREEPOST, Fourth Avenue, Globe Park, Marlow, Bucks, SL7 1YZ. Fax: 0628 474799

CIRCLE NO. 129 ON REPLY CARD

# CIRCUIT IDEAS

### SEND YOUR CIRCUIT IDEAS TO THE EDITOR, ELECTRONICS WORLD, QUADRANT HOUSE, THE QUADRANT, SUTTON, SURREY SM2 5AS

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. Other authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

# **Digital sinewave generator**

# £100 WINNER

As an alternative to using a look-up table, an analogue-to-digital converter and a fixed filter, this circuit possesses the advantage that the frequency of the programmable output filter varies automatically.

The clock input drives the *MAX29x* filter and, via a divide-by-10 counter, a second divide by 10 counter that develops a voltage across R proportional to the count. Output frequency is  $f_{in}/100$ . *Lee Szymanski* 



Lee Szymansk Stamford Lincolnshire

# Spare inverter converts 5V to ±15V

f you have only a 5V rail and need a dual 15V supply, use this circuit to generate it cheaply.

A spare Schmitt inverter from, say, a 7414 operates as a freerunning multivibrator at a frequency of about 100kHz using a resistor and capacitor with the values shown. As the transistor is driven on and off by the square wave from the oscillator, spikes of about four times the supply voltage develop across the 1mH primary of the 1:1 pulse transformer. Diode  $D_2$  rectifies the spikes, which are filtered and regulated to give +15V, the current supplied being determined by the capabilities of the 5V supply and the wire gauge of the transformer. Diode  $D_1$  rectifies the transformer output to form a -15V rail.

### V Lahkshminarayanan

Centre for Development of Telematics Bangalore India





# YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours. Covering the frequency range 400kHz to over 1GHz with a logarithmic display range of 70dB ±1.5dB, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.

Recognising the importance of good design, **TTI will be giving** away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our £100 monthly star author's fee together with £25 for all other ideas published.

Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

# Square waves from a 555

n the usual 555 astable oscillator, the timing capacitor charges through two resistors and discharges through one of them, the two time constants therefore being unequal. In this circuit the charge/discharge paths are similar, giving a 50:50 mark:space ratio.

The capacitor  $C_1$  charges and discharges via  $VR_1$  and  $R_2$  and it is necessary to ensure that  $D_1$  and  $Tr_1$  base/emitter diodes are similar to avoid timing errors. Charging takes place when pin 7 is high, turning  $Tr_1$  on; when it is low, the capacitor discharges through the diode. To obtain accurate square waves, the 5-turn potentiometer  $VR_2$ varies the comparator control voltage. Either mos or bipolar 555s work in the circuit shown, but the bipolar version gives a lower maximum frequency; the 555CN works up to 2MHz.

To set the waveshape at very low frequencies, temporarily replace a large  $C_1$  with a small one, set  $VR_2$  to obtain unity M/S ratio and replace the larger  $C_1$ .

I C Rohsler Harborne Birmingham

Birmingham

# Inrush current limiter

Most of the methods of dealing with the inrush current into large smoothing capacitors have their disadvantages, whether they are to do with inconvenience, performance, reliability, size or cost. This circuit uses the high-impedance control and large switching safe-operating area of mosfets to do the job, with none of the above drawbacks.

It does not suffer from dv/dt limitations and works from zero current up to designed limits, it needs a small hold current and is proof against shorts if  $R_{12}$  is a positive temperature-coefficient type or has one in series. Under test without a PTC resistor,  $Tr_4$  survived a short but  $R_{12}$  blew.

Resistor  $R_{12}$  determines the inrush current and  $R_{10}$  sets the maximum peak current allowed in steady-state conditions — about 4.5A with these values. A smaller maximum current would allow the use of a smaller mosfet, but would call for a higher-value resistor and more heat, so a small  $R_{10}$  is preferable.

In a switching supply, the four *RGP30M* diodes could be part of the diode bridge, the whole circuit preceding the smoothing capacitors.

Kristen Ellegård Oslo Norway

Inrush current limiter has none of the drawbacks of conventional solutions, such as relays, thermistors or thyristors, and can be made part of the diode bridge in a switching supply.





# High-torque position servo

Parallel-connected power mosfets in an H bridge, driven by an *SG3731N* pulsewidth modulator, form a simple, high-torque servo driver for a 12V, 380W DC motor.

Pairs of *BUZ11A* and *RFP30P05* complementary mosfets are common drain connected to simplify gate driving and in parallel to obtain the necessary current. All the circuitry is supplied by two 6V, 100Ah lead-acid batteries. As the motor turns, it drives the  $5k\Omega$  servo potentiometer, from which a voltage is taken to one input of the PWM, where it is compared with the reference input. For clockwise rotation, the *SG3731N* maintains mosfets 3 in conduction, while switching mosfets 1 and 2 on and off. For the other direction, mosfets 2 are on and mosfets 3 and 4 go on and off. The gain of the PWM's difference amplifier can be altered by

selecting new values for  $R_{1,2}$  to suit different geared motors.

Capacitors  $C_{2,3}$  reduce the effects of lead inductances and should be kept close to the mosfets, as should the back-to-back zeners across the motor, which absorb high-voltage spikes.

#### M T Iqbal

Rutherford Appleton Laboratories Didcot



# Monitor shows three-phase\_sequence

T wo of the phases in a three-phase supply have a 60° phase difference with respect to the third, but in an unknown order. The monitor shown indicates this phase sequence, needing no neutral point and few components.

If V1 goes high, V2 being low, Tr1 remains cut off and Tr2 draws base current through R4. After 60°, phase 3 goes high and Tr2, already conducting, holds Tr1 off and led 2 lights during the 120° overlap to show the L1-L2-L3 sequence. In the reverse condition, V2 goes high while V1 is low and led 1 lights to show L1-L3-L2.

**Cyril W W Palihawadana** Sana`a

Republic of Yemen



## **CIRCUIT IDEAS**

# **Electronic fuse**

Aving a voltage range of 10-36V and handling currents up to 1A, this circuit disconnects a load in a time variable up to 100ms by changing a capacitor. Much greater currents and voltages can be handled by the same design with changed component values. It simply goes in series with load.

Most of the voltage drop across the circuit,  $V_{AB}$ , which is proportional to the DC load current and less than 2V, is across  $R_{11,12}$ . At switch on, all the supply voltage is across the fuse and  $Tr_3$  conducts, its base current being supplied by  $R_4$  and its collector current set by  $D_3$  and  $R_8$  according to  $lc_3 = (V_{D3}-V_{be3})/R_8$ . Base current of  $Tr_4$  is therefore stabilised,  $Tr_4$  conducting and turning on  $Tr_5$ . Delay determined by  $C_1$ prevents premature interruption of  $Tr_3$  base current.

If load current increases excessively, the voltage dropped across  $R_{12}$  begins to turn  $Tr_2$  on, reducing the collector current of  $Tr_{3,4,5}$  and increasing the terminal voltage to more than 2V. When it exceeds 4.5V,  $D_1$  avalanches,  $Tr_1$  conducts and the cut-off of the three output transistors is cumulative, current through the fuse now being a few milliamps. Capacitor  $C_1$  determines the time delay to cope with motor inrush currents or filament lamps and  $C_2$  handles voltage



spikes. Diode  $D_2$  prevents  $C_1$  discharging through the load when  $V_{AB}$  is almost zero.

With component changes, the circuit should be able to operate with currents from 10mA to 40A and on voltages from 6V to 500V. It can also be used as an AC fuse, as seen in Fig. 2.

To re-establish the circuit after an interruption, switch off for a short time.

### N I Lavrentiev

Kaliningrad Moscow Region Russia







# PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via *EW+WW*.

Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100W into  $8\Omega$ , the amplifier features a distortion figure of 0.0015% at 50W and is designed around a new approach to feedback.

Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.

Each board pair costs £45, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 8956. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, The Quadrant, Sutton, Surrey SM2 5AS.



# Two-wire switch status detection

O ne central control determines the state of up to eight remote switches, using only two wires.

Figure 1 is the control unit, in which  $IC_1$  is a 4094 latched shift register, driven by  $IC_2$ , a 4060 14-stage binary counter/oscillator. Signals from  $IC_1$  also drive the base of the power transistor  $Tr_1$ , which applies 12V to the signal bus at each positive excursion of the base drive.

Remote units derive power from the bus, as shown in Fig. 2, and send pulses to the bus when the associated switch is off. When power is on the bus,  $C_3$  charges to 5V through  $D_{10}$  and  $D_{12}$  and supplies power to the 4093  $IC_3$  when the bus is off. Capacitor  $C_2$  also charges from the bus.

After eight clock periods,  $Tr_1$  turns the bus off and  $C_2$  discharges through  $R_{16,17}$ .  $IC_{3a}$ output goes high, this change being differentiated and passed to the bus as a square pulse whose width is set by the values of  $C_4R_{18}$ and after a delay determined by  $R_{16,17}$ . If the switch is on, no pulse passes  $IC_{3b}$ .

When pulses arrive on the bus at  $Tr_2$ , the



Fig. 2. One of the remote switches (S1) and its associated pulse-forming circuitry. A return pulse passes to the signal bus when the switch is off.

4094 D input goes low and the clock shifts the 4094 state. Delay time after bus power loss is set to a different period in each remote unit, so that the return pulse is detected at different clock times and the state of each remote switch is shifted in the

4094. On the eigth pulse, the combined states are latched in the 4094 and illuminated leds indicate off switches. **Yongping Xia** Torrance California USA



# CIRCUIT IDEAS





Fig.2. Simpler circuit for unidirectional clock signal transmission.

# Isolated I2C bus interface

While the I<sup>2</sup>C bus, which consists of a bidirectional data bus and a unidirectional clock, has many attractions, it is not easy to use it across an isolation barrier. This circuit performs that function at 400kHz.

In **Fig.1**, the data transmission circuit is seen to be symmetrical to allow true bidirectional working. When data from the master is high, cutting  $Tr_5$  off,  $Tr_4$ 's base draws current through  $R_8$ , Opto 2 conducts,

 $Tr_3$  cuts off and the slave data bus is pulled high by R<sub>1</sub>. A low from the master causes the opposite state, D<sub>1</sub> conducts and the slave data bus is low.

Since  $Tr_1$  base is reverse biased,  $Tr_2$ conducts. Opto 1 conducts and  $Tr_6$  is off, so that it does not affect operation;  $Tr_{1.5}$  are needed to prevent the circuit locking up when the master data line goes low, pulling the slave low, which would keep the master data line low and stop anything more happening. When the slave transmits, the opposite to all the above takes place.

Since clock transmission is unidirectional, the simpler circuit of **Fig.2** is sufficient.

As the couplers are in base circuits of buffer transistors, the coupler transistors see constant-current loads and, since the base signal is only 0.6V, even slow 4N25 couplers work well.

Brownhills, West Midlands

# **Electronic Designs Right First Time?**

# **Schematic Design and Capture**



Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

# **Digital and Analogue Simulation**



Modify the configuration and change component values until the required performance is achieved.







Visa, MasterCard, Amex welcome

|                                                                                            | Parta and |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| Affordable Electronics CAD                                                                 |           |  |  |  |  |
| EASY- PC: Entry level PCB and Schematic CAD                                                | £98.00    |  |  |  |  |
| EASY- PC Professional: Schematic Capture and<br>PCB CAD. Links to ANALYSER III and PULSAR. | £195.00   |  |  |  |  |
| PULSAR: Entry level Digital Circuit Simulator<br>~ 1500 gate capacity.                     | £98.00    |  |  |  |  |
| PULSAR Professional: Digital Circuit Simulator<br>~ 50,000 gate capacity.                  | £195.00   |  |  |  |  |
| ANALYSER III: Entry level Linear Analogue Circuit<br>Simulator ~ 130 nodes                 | £98.00    |  |  |  |  |
| ANALYSER III Professional: Linear Analogue<br>Circuit Simulator ~ 750 nodes                | £195.00   |  |  |  |  |
| Z-MATCH for Windows: Smith Chart based problem<br>solving program for R.F. Engineers       | £245.00   |  |  |  |  |
| FILTECH: Active and Passive Filter design program                                          | £145.00   |  |  |  |  |
| No penalty upgrade policy. Prices exclude P&P and                                          | d VAT.    |  |  |  |  |
| Number One Systems                                                                         | s Ltd.    |  |  |  |  |

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

| For Full Inform | nation Pleas | e Write, Phone of | or Fax. |
|-----------------|--------------|-------------------|---------|
| Tel             | : 0480       | 461778            |         |
| Fax             | c: 0480      | 494042            |         |

CIRCLE NO. 130 ON REPLY CARD

# USING RF TRANSISTORS Transforming wideband circuits

Multi-octave impedance matching is almost exclusively carried out using transformers. Norm Dye and Helge Granberg explain how different transformers work and indicate how to choose the most appropriate type. From the book RF Transistors: principles and practical applications.

Norm Dye is Motorola's product planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Motorola. Their rf transistors book includes practical examples from the frequency spectrum from 2MHz to microwaves, with special emphasis on the uhf frequencies.

RF Transistors: Principles and practical applications is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614).

288pp HARDBACK 07506 9059 3 Cost £19.95 + Postage £2.50 The dependence of device impedances on frequency means that any type of wideband impedance matching naturally compromises amplifier performance. Also, low impedance rf transformer-impedance ratios can only be realised with integers such as 1:1, 1:4, 1:9 etc. Other ratios are possible, but the structures usually become complex and bandwidth is lost through the increased leakage inductance coming from the numerous interconnections.

The effect of compromises in the input is to reduce power gain and increase return-loss and vswr. In the output the results are reduced efficiency, lowered stability against load mismatches and poorer linearity.

But *RLC* networks inserted between the device input and the matching transformer can compensate for the impedance versus frequency slope, as well as for the gain vs frequency slope. Corrective networks, with negative feedback and associated additional networks, can allow amplifiers to be designed that cover up to five or six octaves, from low band to vhf – or even uhf.

In the output, very little can be done to compensate for the output impedance/frequency slope, due to excessive power loss.

Fortunately, output-impedance variation with frequency, using both mosfets and bjts, is usually much smaller than that of the input. Sometimes a low value inductance or a microstrip between the device output and matching transformer considerably improves efficiency at the high end of the frequency range, by providing compensation for the device's output capacitance. Normally only 'over-compensation' of the output transformer will do an adequate job, calling for added capacitance across the transformer primary and in some cases also across the secondary.

#### Wideband operation

A wideband rf transformer performs one or a

combination of the following functions:

- impedance transformation;
- balanced-to-unbalanced transformation
- phase inversion.

Rather than using their primary-to-secondary turns ratios, transformers are most often referred to by their impedance ratios (turnsratio, squared). In these applications, we are mostly interested in manipulating impedance rather than voltage or current.

RF transformers can, in basic terms, be compared to low frequency transformers – except that with increasing frequency a parameter called leakage inductance becomes an important factor.

To extend coverage to the low end of the frequency band, some type of magnetic core is required. Either powdered iron or ferrite cores are acceptable depending on the frequency range, with ferrites being the most common.

A general formula for calculating the maximum flux density of a ferrite core is:

#### $B_{\text{max}} = [V_{\text{max}}/(2\pi f An)] 10^2$

where  $B_{\text{max}}$  is the maximum flux density (gauss),  $V_{\text{max}}$  is peak voltage across the winding, *f* is frequency in MHz, *A* is core cross-sectional area in cm<sup>2</sup> and *n* is number of turns.

Either the primary or secondary can be used for the  $B_{\text{max}}$  calculations, although the 50 $\Omega$ side – if applicable – is commonly used for convenience and standardisation. Then  $V_{\text{max}}=\sqrt{(2PR)}$  where P is rf power level and R is resistance (50 $\Omega$ ).

For example, if:

 $V_{\text{max}} = 50V, f=2.0MHz, A=1.0\text{cm}^2 \text{ and } n=4$ .

then

 $B_{\rm max}(50/50.2)(10^2) = 99.6 {\rm gauss}.$ 

In certain types of transmission line transformers the rf voltage ( $V_{max}$ ) used in the  $B_{max}$ calculations is lower than the value obtained from the  $V_{max}$  formula given above. This is because the maximum voltage across the winding(s) must be divided by the number of line segments connected in series in the transformer configuration in question.

The same result can also be reached using the formula if the full voltage across the  $50\Omega$ terminals is used for  $V_{max}$  as the numerator, and *n* is multiplied by the number of line segments in series.

Since high permeability ferrites tend to saturate sooner than low permeability ones, good practice is to limit their maximum flux densities as follows:

 $B_{\text{max}}$  of 40-60 gauss/cm<sup>2</sup> of cross-sectional area for ferrites with  $\mu$  at 40000.

 $B_{\text{max}}$  of 60-90 gauss/cm<sup>2</sup> of cross-sectional area for ferrites with  $\mu$  at 100-400.

 $B_{\text{max}}$  of 90-120 gauss/cm<sup>2</sup> of cross-sectional area for ferrites with  $\mu$  at < 100.

In the  $B_{\text{max}}$  versus  $\mu$  figures, the magnetic path is assumed to be solid: eg without air gaps such as in toroids and balun cores.

### Importance of leakage inductance

At low frequencies, leakage inductance is virtually unknown and most designers are unaware of such a term. But in rf transformers it is the parameter that limits high frequency response.

Performance becomes more critical at low impedance levels, where tight coupling between the windings is of utmost importance. Leakage inductance is a product of the coupling between the primary and secondary and any exposed area in either winding. It is also affected by interconnection lead lengths and mutual coupling.

Leakage inductance (or reactance) is difficult to calculate. But it can be measured for each individual case with a vector impedance meter, vector voltmeter, or network analyser. Ideally, when one winding is shorted with a low inductance path, measurement in the other winding should show essentially zero R and phase angle. In practice this is never the case.

Deviation from zero in the value of the resistive component and phase angle can be used to calculate the leakage inductance (or rather the high frequency performance of the transformer).

Relating leakage inductance directly to rf performance of a transformer is difficult because it is impedance-level dependent.

At vlf (50-500kHz), where high  $\mu$  cores are required, a problem may appear which looks inexplicable. It is called magnetostriction, and is a magnetic resonance of the ferrite core which can cause chattering, leading to disintegration of the core.

There are many resonant modes such as longitudinal and torsional, etc and the only cure is to select a physical core size and shape which



Fig. 1. Equivalent circuit for a conventional discrete-winding rf transformer.  $I_{lp}$  is leakage l primary,  $L_{PP}$  is parallel L primary,  $L_{LS}$  is leakage L secondary and  $L_{PS}$  is parallel L secondary.

has resonances outside the critical frequency spectrum.

#### **Conventional transformers**

The simplest design of rf transformer is a conventional type – spanning several different kinds – some of which are more suitable for certain applications than others.

But in all, the basic principle is roughly the same (**Fig. 1**): that low frequency coupling between the primary and the secondary is provided through the flux of magnetic media (core): as in audio transformers.

At high frequencies tight capacitive coupling between the windings is essential and the magnetic core has little effect except in the form of dielectric losses. So the quality of magnetic media employed is a very important factor in design. There is also the question of whether to use higher permeability core material and suffer high frequency losses; or design around the losses from the increased stray capacitances caused by additional turns in the windings required when using low permeability cores. A few tenths of a dB of unnecessary power loss in an output transformer can mean a significant increase in power consumption and device dissipation.

Conventional transformers are inferior in performance to transmission line transformers, with the differences mainly in power handling capability, loss factor and bandwidth. But conventional rf transformers can be constructed for a wider range of impedance ratios than transmission line types. Some ratios will have wider bandwidths than others due to the number of turns required to achieve the desired turns ratio. There are no fractional turns – as in all transformers – and if the wire passes through the core, one full turn is completed.

In Fig. 1, stray capacitances have been omitted since a relatively low impedance case is assumed and the capacitive reactance arising from applicable construction techniques rarely becomes appreciable in comparison to the low values of resistances involved.

Figure 2 shows a conventional rf trans-



Fig. 2. Simplest form of conventional transformer. The windings are usually randomly wound one on top of the other. It finds use at high impedance levels,  $200\Omega$  and up, which dictates the frequency response of the unit.

former that finds wide usage at high impedance levels ( $200\Omega$  and higher) in low power designs. One winding is simply wound on top of the other, usually providing good enough coupling at these impedance levels up to uhf The most convenient core shape is a two-hole balun, although toroids can be seen in some designs if a sufficient number of turns is provided on the periphery for the coupling required.

As in all rf transformers, wire size also has an effect on the coupling between the primary and secondary. The heavier the wire size, the tighter the coupling will be. This increases the mutual winding capacitance, again resulting in compromise.

The capacitance can be lowered by using a high  $\mu$  magnetic core, but core losses would be higher. Since the mutual winding capacitance has a larger effect at higher impedance levels, designers must determine which approach is most beneficial for a specific application.

#### One-turn advantages

The most popular conventional type of rf transformer is probably that (**Fig. 3**) with the one turn winding consisting of metal tubes going through sleeves or stacks of toroids of suitable magnetic material. The tubes are electrically connected together at one end of the structure and separated at the opposite end, where connections to the one turn winding are made.



Fig. 3. The most common conventional type of rf transformer. One winding consists of metal tubes shorted at one end, thus forming only one turn. This limits the impedance ratios to integers 1:1, 4:1 9:1 etc. It is fairly efficient at impedance levels down to  $2-3\Omega$  if properly constructed and may have a bandwidth up to 50MHz.

In practice, connections are usually made with pieces of single-sided metal-clad laminate with proper patterns etched in the metal.

The construction also produces a physicallysturdy structure with all its components intact. To make up a transformer, the required number of turns of wire is threaded through the two tubes to form a continuous multi-turn winding. The resulting tight coupling between the two windings has relatively low mutual winding capacitance, and so permits use at very low impedance levels.

The wire ends of the multi-turn winding can be taken out from either end of the transformer, whichever is physically most convenient. The usual arrangement is to have the prinary and secondary terminals at opposite ends (Fig. 3).

The disadvantage of this type is that its oneturn winding allows only integer-squared impedance ratios such as 4:1, 9:1, 16:1, etc...

Fractional integers look to be possible by



Fig. 4. Another form of conventional type transformer. a and b are segments of coaxial cable which, in practice, are bent to get the terminals of the low impedance winding close together (see Fig. 5).

threading the winding wire through one tube one more time than the other. But this offsets the balance and the transformer will not function properly. Bandwidth is actually determined by the impedance ratio, and a 9:1 impedance ratio transformer will be usable up to 50-60MHz. But higher impedance ratios reduce the bandwidth rapidly, because of the increasing leakage inductance. A 25:1 transformer will perform poorly at 30MHz, and a 36:1 unit is usable only to 15-20MHz.

The form factor – the length-to-width ratio – is important. If the transformer structure is short, the coupling between the windings is lowered and the leakage inductance is increased. At the other extreme, if the unit is long, the mutual winding capacitance is increased and the physical length of the multiturn winding may produce resonances within the desired spectrum.

Another disadvantage with these transformers is that when used in an amplifier output, the one-turn winding makes the magnetic core saturate at a low flux density. But despite all these drawbacks, one-turn transformers are widely used in both input and output matching in the 2-30MHz frequency range and at power levels up to 100-150W, and as input matching transformers up to even higher frequencies.

A clear advantage is the transformer's sim-



Fig. 6. Transformer shown in Figs. 4 and 5 provided with a magnetic core (E and I) to broaden its low frequency response. The arrows indicated points where epoxy can be applied to make the unit a solid structure.



Fig. 5. One possible physical realisation of the transformer described. Note the height of the segment stacks with increasing impedance ratios. This produces a delay from the connection points of the low impedance winding to the uppermost segment.

ple construction, making it inexpensive and easily mass-producible.

### Parallel winding connections

In other variations of the conventional transformer (**Figs. 4-6**), impedance transformation is obtained by connecting in parallel a number of windings on one side, and in series on the other.

For the most common type (Fig. 3), one turn in the low impedance winding, limits possible impedance ratios to full integers. Windings are made of segments of coaxial cable and the structure is formed into a shape of a 'U' or a circle (**Figs. 5** and 6). Leakage inductance is lower than with most other conventional transformers making it usable up to 200-300MHz.

The high frequency end is limited by physical size of the structure because, to avoid major resonances, the length of the high-impedance winding should usually be kept below 1/8 wave-length at the highest frequency of operation.

So physical length of a U-shaped 4:1 unit is limited to about 3.5cm and a 9:1 unit to 2.5cm for operation up to 200MHz.

The characteristic impedance of the coaxial cable determines the coupling coefficient between the windings, and the optimum closely follows the line impedances calculated for transmission line transformers. If cable impedance is too high, bandwidth is reduced: if too low, the maximum bandwidth can be realised, but at a cost of capacitive reactance and reduced efficiency of output matching.

Transformer segments can be made from semi-rigid coaxial cable with all outer conductors tied together to form the low impedance side. The inner conductor will automatically make up the high impedance winding (Fig. 5).

With a U-shaped design, the bending radius

should be as small as possible, though limited by the recommended minimum for the specific cable used.

Spot welding would be the best way to connect the inner conductor segments together, but soldering (preferably with high temperature solder) is adequate. Some commercially available units use tiny pc boards at the front end of the cores to make the connections.

A typical 3cm-long coaxial cable transformer has a low frequency response of around 100MHz without a magnetic core.

With an *E* and *I* core of material (Fig. 6) having  $\mu$  equal to 125, for example, the response will be lowered to 3-10MHz depending on impedance ratio.

Only a physical constraint limits the highest practical impedance ratio. If too many line segments are stacked, the structure becomes high and it is difficult to make the electrical connections to all segments without introducing excessive phase delay to the uppermost ones. The effect depends on the cable diameter, but for a power level of 200-300W a cable diameter of 2.3mm (standard with most manufacturers) can be considered a minimum and the highest practical impedance ratio would be 9:1. If 16:1 or higher is needed, a smaller diameter cable must be used, and the power handling capability lowered.

### Twisted wire transformers

A unique and versatile rf transformer can be realised with twisted wires. Enamelled magnet wire is commonly used since it has a thin, but good, temperature-resistant insulation. It is also available with Teflon insulation for very high temperature applications.

Characteristic impedance of a twisted wire transmission line is determined by wire size, dielectric constant of the insulation and the number of twists per unit length. Twists/length

0

 $R_L$ 

С

O

RL

(b)

R<sub>L</sub> (d)

(f)

000

 $\sim$ 

000

000

 $\mathcal{M}$ 

 $\mathcal{M}$ 

4:1

 $\overline{\mathfrak{m}}$ 

000

000

 $\sim$ 

16:1 🔟

1.78:1

has the least effect on the line impedance (assuming the wires do not separate from each other in the winding process). A simple method of approximating line impedance is by measuring its capacitance per unit length and comparing it against a line of known impedance.

The most common twisted-wire transmission line is a single pair of wires. For a wire size of #28 AWG, the characteristic impedance will be approximately  $50\Omega$ . Lower line impedances are possible by using heavier gauge wire or by replacing each single wire with a multiple of smaller gauge wires.

In those cases where multiple numbers of smaller gauge wires are used to form a twisted-wire transmission line, location of the wires with respect to each other should maintain a symmetry (Figs. 11a and 11b discussed later).

#### Versatile solutions

The twisted wire transformers discussed here do not have a defined line impedance – except for **Fig. 7d**. They are versatile (**Figs. 7a** and **7b**) and many more odd impedance ratios are possible.

Figure 7a is a normal 1:1 balun with a magnetising winding added (centre). If the balun's load is balanced – feeding fet gates in a pushpull amplifier for example – the magnetisation current flows through only one winding and only one half of the load. The effect causes undesirable phase and amplitude unbalance in the balun, restricting bandwidth. But balance can be restored with a third or tertiary winding to shunt the magnetisation current around the load.

Figure 7d is a standard 4:1 transmission line transformer where the required line impedance is  $R_L \times 2$  or 25 $\Omega$  for  $R_L = 12.5\Omega$ . Two twisted pairs of #28 AWG magnet wire are the best way to achieve the result, with each pair connected in parallel by shorting at both ends. Both pairs are twisted together to form the low impedance transmission line. (It is customary to locate the pairs with respect to each other as shown in Fig. 11).

In the twisted wire transformers we are considering (Figs. 7a, 7c and **8a-d**) as stated earlier, there are no defined line impedances. Without data, a designer should experiment and make measurements with various interconnection combinations of the twisted wires. Although not shown in the figure, all terminals are referenced to ground.

Another example of the versatility of twisted wire transformers is that they can also be connected in balanced-to-balanced, and even in isolated primary and secondary configurations, providing several impedance ratios (Figs. 8a-c). Many other fractional integer impedance ratios are also possible with more wires.

The units make compact interstage matching elements in push-pull circuits and are especially suitable when dc isolation between the stages is required.

Figure 8c can be considered to represent a transmission line transformer if the line impedance is correct ( $25\Omega$  in this case), which

Fig. 7. Conventional rf transformers using multiple twisted wires. A wide variety of impedance ratios are possible depending on the number of wires used and connection configurations. Although not shown, terminals are referenced to ground.

000

 $\sim$ 

 $\mathcal{M}$ 

1:1

 $\overline{\mathbf{w}}$ 

000

 $\overline{\mathbf{w}}$ 

000

000

000

9:1

2.25:1

 $\mathsf{R}_\mathsf{L}$ 

-

C

 $\mathsf{R}_\mathsf{L}$ 

0

R

(a)

(C)

(e)

is also the case with the ones shown in Figs 7a and 7d.

Twisted wire transformers have bandwidths higher than most other conventional transformers, and up to seven octaves have been measured at  $50\Omega$  and lower impedance levels; and at least one octave higher when the impedance levels are higher and the transform ratios low.

Advantages of these transformers are their versatility for odd impedance ratios.

### The attraction of ferrites

Ferrites are the most common magnetic materials used for the transformers.

The two basic types are nickelmanganese with high permeabilities ( $\mu_i$ =relative permeability) used in low frequency applications; and nickelzinc ferrices. These have lower highfrequency losses, but with Curie points as low as 130°, they only can be manufactured with  $\mu$ s of less than approximately 1000. (Curie point is the temperature where magnetic material loses its magnetic properties.)

Low  $u_r$  ferrites usually have higher volume resistivity than high  $\mu_r$  ones, meaning lower eddy current losses. Detailed information on the behaviour of ferrites at rf is rarely available from ferrite manufacturers.

Core eddy current losses and windir g dielectric losses heat up the core and its temperature must be held well below the Curie point or the magnetic properties of the material will be permanently altered.

To avoid saturating the core, operat onal flux densities must be kept

Disadvantages are their limited power-handling capability and, in some cases, difficulty of construction due to all the multiple interconnections.

Although the single wire transformer (Fig. 8d) is obviously not a twisted wire type, its description fits better here than with other conventional transformers since it uses capacitive coupling to a larger degree than magnetic coupling. The design represents a unique concept, where several 2-3 turn low impedance wind-

well within the linear portion of the material's *B*-*H* curve. Saturation mainly occurs at low frequencies, where most of the coupling is through the core, producing non-linear operation, heat and harmonics. The area inside the *B*-*H* curve normally represents the relative loss and so narrow curves are preferred for low loss designs. But the situation is confused since the curves are usually created under dc conditions and they do not really give the data needed for an rf designer.

High  $\mu$  ferrites, though having higher saturation flux densities than low ones, saturate easier under rf conditions. One reason is that high  $\mu$  cores require a smaller number of turns to satisfy the minimum magnetising inductance requirement. So use a ferrite core with relat vely low  $\mu$  and added turns in the wincings – at least to the extent that the added inter-winding capacitance can be tolerated at higher frequencies.

As a rule, the winding reactance should be at least twice the impedance across it.



Fig. 8. Conventional transformers, providing balanced-to-balanced function and isolated primaries and secondaries, a) to c) are twisted wire types, while d is a unique single wire transformer with its parallel low impedance windings interlaced between the turns of the high impedance winding. Number of turns in winding d of the single wire transformer should equal a+b+c-1 not to have extra uncoupled turns to windings a, b and c. The schematic for the 2.25:1 balanced transformer as left in the photo c) is not shown.

ings are connected in parallel and interlaced between the turns of the high impedance winding. Heavy gauge enamelled wire (#18-16 AWG) increases the capacitive coupling between the windings and makes the unit a self supporting structure.

The windings are wound on a cylindrical core such as a length of ferrite rod (Fig 7d, photo) and all the winding connections are made when the transformer is mounted to a PC board.

Multiple impedance ratios are possible depending on the number of turns in the low-impedance windings.

These transformers have been in commercial use in equipment operating up to 175MHz and at power levels of 100-120W. Variations such as flat ribbon wound units have been experimented with, but their fabrication is more difficult and no significant improvement in performance has been found. Obvious advantages of the single wire transformer are its extremely compact size versus power handling capability and the dc isolation between the primary and secondary.

#### **Transmission line transformers**

Transmission line transformers are quite different from conventional ones in many ways:

- to take advantage of optimum performance, line impedance must be correct for the type of transformer in question;
- at high frequencies, the series reactance combines with the inter-winding capacitance and the circuit behaves as a transmission line, greatly extending the high frequency response;

- power transferred from input to output is not coupled through the magnetic core, except at very low frequencies, but through the dielectric medium separating the line conductors. This is an important point regarding the transmission line transformer principle;
- from the above point it follows that a relatively small cross-sectional magnetic core can operate unsaturated at very high power levels.

In practice, transmission line transformers can be realised with twisted enamelled wires, coaxial cables, paralleled flat ribbons (separated by a dielectric medium), or a microstrip on a two-sided substrate. Practicality and convenience in each case depends on the exact application and frequency spectrum.

The simplest transmission line transformer is a quarter wavelength line whose characteristic impedance ( $Z_0$ ) is chosen to give the correct impedance transformation. It is a relatively narrow-band device and valid only at frequencies for which the line is an odd multiple of a quarter wavelength.

In a 1:1 balun (**Fig. 9a**), with line impedance  $(Z_0)=R_L$ , low frequency performance is limited by the amount of impedance offered to common mode currents. It should be at least twice the load impedance and can be increased with a core of suitable magnetic material.

Inductance of a conductor is in direct proportion to its relative permeability. As line length limits the high frequency response, these two factors seem to be in direct conflict – we should remember the 1/8 wavelength rule discussed earlier.

The most commonly used material for transmission lines in these transformers is coaxial cable with Teflon dielectric. Cable can be either semi-rigid or flexible, of which both have equal velocity propagations, at least in theory.

For calculating the maximum line length allowable, the velocity factor must be known. Multiplier for the velocity factor is obtained as:  $v_r=1/\sqrt{\varepsilon}$  where  $\varepsilon_p$  is the relative dielectric constant of the insulating medium. For Teflon cable, with its  $\varepsilon_p=2.5$ , the velocity factor multiplier is 0.633.

Unlike a microstrip line, where two dielectric materials (air and the main substrate) form the medium and the width-height ratio is a variable, coaxial cable has a constant velocity factor as a function of characteristic impedance.

Connecting points a and b in the 1:1 balun (Fig. 9a) as in Fig. **9b**, produces an unbalanced 4:1 design. For minimal leakage inductance, connection must be kept short by bending the line to get the connection points close together. In this case the line  $Z_0$  should be the geometric mean of the input and output impedances or  $\sqrt{(50 \times 12.5)}$  or  $25\Omega$ .

The same is true of other impedance ratio transformers. Derivations are shown in Figs. **9c** and **9e**, of a balanced-to-balanced configuration, using two or four lines. A common magnetic core can be used for both if the coupling between the two can be kept minimal. But separate cores are usually recommended. Since this transformer has a 4:1 impedance ratio, the optimum line impedance is again  $25\Omega$ . If the 'centre tap' is left floating, dc can be fed through it – eg not by-passed to ground – and a balun normally seen to provide a bal-





Fig. 9. Some examples of transmission line transformers. For simplicity, most are shown without magnetic cores and can be used as such in many vhf and uhf applications. All the lines must be formed into a physical shape which minimises the lengths of the interconnection for reduced leakage inductance. The photo at g) shows a uhf push-pull amplifier using transmission line transformers in its input and output matching. The input at the left uses a 4:1 as shown in c) and the output at the right uses a 1:9 transformer as shown as d).

anced-to-unbalanced function can be omitted. Otherwise, another dc feed method must be chosen.

This also applies to the 16:1 ratio transformer (Fig. 9e), which employs two 4:1 transformers in series, where the same rules are in effect.

Line impedance of the high-impedance 4:1 segment is  $25\Omega$ , which was previously determined to be the required value. The line impedance of the second section would be  $\sqrt{(25\times3.12)}=6.25\Omega$ , making its design somewhat impracticable as line impedances of such a low value are difficult to achieve. But it would be possible to parallel two 12.5 $\Omega$  coaxial cables, for example, which is standard practice.

Coaxial cables with impedances of 12.5, 16.7, and  $25\Omega$  are becoming standard items for cable manufacturers today. For many applications however, the line impedance is not critical provided that some bandwidth degradation is acceptable.

Figure **9d** shows a 9:1 balanced-to-balanced transformer. Performance can be good if the interconnections can be kept short – but this is more difficult than with the 4:1 transformer since there are more interconnections and the impedance levels are lower. Here the optimum line impedance is  $\sqrt{(50\times5.55)}$  or  $16.6\Omega$ . Unlike the 4:1 unit, the balanced 9:1 transformer always requires a balun in the end that is to be terminated with an unbalanced source or load. It also does not have a balanced point to allow dc feeding through the lines.

#### **Overcoming limitations**

(f)

As mentioned earlier, a limitation of squared integer transformation ratios is the biggest disadvantage of the transmission line transformer. There are ways to get around this, but the designs are complex and bulky, and call for additional lines and connections between them, greatly reducing bandwidths in some cases.

One such design for three different configurations is shown in Fig. **9f** (in simplified form in Fig. **9f3** to make analysing its operation easier than using configuration Fig. **9f2** for example). An analysis of the current distribution between each winding reveals a ratio of 1.5:1 between the primary and the secondary, equalling the turns ratio and resulting in an impedance ratio of  $1.5^2$  or 2.25:1.

Assuming  $R_L$ =50 $\Omega$  (in which case the source would be 112.5 $\Omega$ ), optimum line impedance is 50/1.5 or 33 $\Omega$ . This transformer has a balanced-to-balanced circuit configuration, requiring a balun if interfaced with an unbalanced source or load in either a step-up or step-down mode.

# Equal delay transmission line transformers

In normal 4:1 transmission line transformers, the high frequency response is limited by phase errors introduced between the interconnection points (such as a-b in **Figs. 9, 10a** and **10b** 

If the connection from a to b were made with a transmission line of equal impedance



and length as the main line, the phase difference between the input and output would be eliminated. The transformer topology would remain the same, except that the a-b connection would have the same phase delay as the main transformer line.

Such a transformer can be viewed as two coaxial lines with their input terminals in series and output terminals connected in parallel. Where one line is always used only to provide a delay of a controlled amount, it is also the case with equal delay transformers of any other impedance ratio.

For this reason, the sub-class is called equal delay transmission line transformers, serving applications from 1MHz to at least 500MHz depending on the impedance levels involved.

Transformer input and output connections can be physically separated – an advantage in many cases.

Figure 10b is a pictorial and schematic representation of a 4:1 equal delay transformer. If a third line is added to the 4:1 design (Fig.





Fig. 10. Equal delay transformers. a) is a basic standard transmission line type shown as a comparison against b). b), c) and d) are basic configurations, whereas e) uses a sub-group of lines to provide a fractional integer impedance ratio. f) is a 4:1 unit with baluns (c and d) added for balanced interface.

**10c**), a 9:1 impedance transformer results. Similarly, four lines will produce a 16:1 transformer (Fig. **10d**) and so on.

#### Wideband requirements

Wideband operation demands that most of the transmission lines must be surrounded by magnetic material, generally in the form of toroids or sleeves. The amount of magnetic material required in each line depends on the level of the impedance transformation. The line impedances are equal, but the highest impedance transform line requires one unit of magnetic material, the next one two, the following one three and so on. By unit we mean a measure of cross-sectional area of similar magnetic material.

All these designs are unbalanced-to-unbalanced transformers – though baluns (Figs. **10f2** and **10f3**) can be added to obtain a balanced interface.

Suppose we add a magnetic core to the bottom line of a 4:1 transformer. Now we can disconnect the grounds of the parallel connected lines (still keeping the shields connected) and add a balanced, floating load between the centre conductors and the shields to form a 4:1 balun.

Stray capacitances to ground can be balanced by connecting the centre conductor of one coax to the shield of the other and a transformer as in Fig. 9c) would be formed. In equal delay transformers of any impedance ratio, the last line only provides delay and has no external fields. It requires no magnetic core, but the presence of magnetic material will not affect its performance. The line characteristic impedance ( $Z_0$ ) requirements are the same as for standard transmission line transformers – eg  $Z_0$  equals the ratio of voltage to current along the line. Or simply:  $Z_{IN}/N$ , where  $N=\sqrt{(Z_{IN}/Z_{OUT})}$ .

Equal delay transformers have the full integer limitations of the standard transmission line networks. But their physical configurations make it is easier to create fractional integer impedance ratios with equal delay transformers by using subgroups of additional lines (Fig. **10e**).

If we describe group A (Fig. 10a) as the main transformer, providing the full integers of impedance transformation, adding group B (Fig. 10b) lines with their low impedance sides connected to the high impedance side of group A results in fractional impedance transform ratios. The resulting impedance ratios can be calculated as  $N=(n_A+1/n_B)$ , where  $n_A$  is the impedance ratio of group A, i.e. the main transformer, and  $n_B$  is the impedance ratio of group B.

For example, if group A has one line and group B has two, the transform ratio is 2.25:1. Further, if A=2, B=4, N=5.0625:1; and A=2, B=2, N=6.25:1.

Line impedances are dictated by the transform ratio and the impedances required for the main transformer (group A).

How much improvement in bandwidth the equal delay transformer gives compared with the standard transmission line transformer depends largely on mechanical factors. Also even if both are correctly compensated, the insertion loss of the equal delay transformer can be at least 0.1dB less than the standard transmission line transformer in the frequency region up to 500MHz.



Fig. 11. Cross section of a correctly arranged twisted wire with two pairs of wires a) and four pairs of wires b). O represents one conductor of the line and X the other.

# CLASSIFIED

TEL 081 652 3620

FAX 081 652 8931

# ARTICLES WANTED

# WE WANT TO BUY !!

IN VIEW OF THE EXREMELY **RAPID CHANGE TAKING PLACE** IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES **OF COMPONENTS BECOME REDUNDANT. WE ARE CASH** PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. **TELEPHONE** 081-445-2713/0749 FAX 081-445-5702.

# ARTICLES FOR SALE







# **Cooke International**

## SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. *ALWAYS AVAILABLE* 

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

### **Cooke International**

ELECTRONIC TEST & MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: (+44) 0243 545111/2

Fax: (+44) 0243 542457

HIGH END TEST & COMMUNICATIONS EQUIFMENT PURCHASED

CIRCLE NO. 133 ON REPLY CARD

# ARTICLES FOR SALE

# **VALVES AND CRTs**

ONE MILLION ITEMS IN STOCK INCLUDING MAGNETRONS, KYLSTRONS, VALVE SOCKETS FOR AUDIO RECEIVING TRANSMITTING, OBSOLETE BRANDS SUCH AS MULLARD, GEC A SPECIALITY. ALSO HUGE STOCKS OF RUSSIAN AND SOVTEK ITEMS. ASK FOR OUR 40-PAGE VALVE CATALOGUE OR CRT CATALOGUE.

## VALVES WANTED FOR CASH

ESPECIALLY KT66, KT77, KT88, PX4, PX25, VALVE HI-FIs e.g. QUAD, LEAK, GARRARD 301. IF POSSIBLE SEND WRITTEN LIST.

BILLINGTON EXPORT LTD 1E GILLMANS IND EST, BILLINGSHURST, SUSSEX RH14 9EZ CALLERS STRICTLY BY APPOINTMENT ONLY TEL: 0403 784961 FAX: 0403 783519 MINIMUM ORDER £50.00 PLUS VAT

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH

Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. *Contact:* 

COLES-HARDING & CO. 103 South Brink Wisbech, Cambs PE14 0RJ. ESTABLISHED OVER 15 YEARS Buyers of Surplus Inventory Tel: 0945 584188 Fax: 0945 475216

## TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's. Langrex Supplies Ltd, 1, Mayo Road, Croydon,

Mayo Road, Croydon, Surrey, CRO 2QP TEL; 081 684 1166 FAX 081 684 3056

# ARTICLES WANTED

STEWART OF READING

110 WYKEHAM ROAD, READING, RG5 1PL. TEL. 0734 268041 FAX: 0734 351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT,

COMPONENTS, etc. ANY QUANITYT

## WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash M & B RADIO 86 Bishopgate Street, Leeds LS1 4BB

Tel: 0532 435649 Fax: 0532 426881

### WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode & Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to:

Hease send of fax your one to: HTB ELEKTRONIK Alter Apeler Weg 5, 2858 Schiffdorf, West Germany TEL: 01049 4706 7044 FAX: 01049 4706 7049

## WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors.

TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT

A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 970. Telephone: 0438 812 193. Mobile: 0660 214302. Fax: 0438 812 387 Telephone: 0763 246939

# TO ADVERTISE HERE TEL 081 352 3620

9956

103

# RECRUITMENT



The ASSET team of Philips Electronics is currently seeking to recruit two Senior Acoustics Engineers. ASSET (Acoustics Support and Service Team) is a design centre for sound reproduction systems and is located in Dendermonde, Belgium. Projects are executed for other Philips' business units and for non-Philips companies.

The team is active in very different markets: hifi, audio systems, portable audio, TV, car radio, multimedia, sound reinforcement. Recently ASSET was involved in the design of Philips' DSS 930 digital loudspeaker, a real breakthrough in speaker technology.

#### PROFILE

Because of the highly professional environment, candidates require indepth knowledge and experience in the design of acoustics systems. An understanding of analogue and digital audio processing is a distinct advantage. Fluent communicative skills are vital for day-to-day customer contact, target specifications, planning and costs.

If you are intrested in this challenging position, you can address your application (letter and C.V.) to: PHILIPS N.V.

Flor Boeckx - Hoogveld, 50 - 9200 Dendermonde - Belgium

For more information on this position, please contact: Luc Auwaerts, Manager Asset Team - tel.: 32.52. 261 405

WITH YOU - WE'LL MAKE IT.

# **RECRUITING** ENGINEERS, SENIOR TECHNICIANS

DATA, TRANSMISSION, MICROWAVE, FIBER, SWITCHING, DACS, SDH, AND OTHERS – MINIMUM TEN YEARS EXPERIENCE – EXCELLENT BENEFITS, MID-EAST, 1 OR 2 YEAR CONTRACT, NO FEES. FAX DETAILED CV/RESUME TO

> KEN BEAM TEL: 966-3-894-6909

## **RECEIVER DEVELOPMENT ENGINEER**

A British Company are about to start an exciting new project to develop a state of the art HF communications receiver to compete in the World market. A vacancy exists for a top grade engineer to take charge of this project. The successful candidate will probably have several years previous experience of receiver design, be aware of the best of current technology in the field, and be conversant with digital signal processing techniques.

The salary and benefits package offered will be commensurate with the importance of the project, and maximum freedom will be given to the individual to exercise their own creativity.

> Please reply in confidence CIRCLE NO. 134 ON REPLY CARD

WIRELESS WORLD 1976-1992 for price list S.A.E. Telequipment D54-10Mhz Dual Trace £100 or exchange with Frequency Counter. S. Jacovides, 20, Cheverton Road, London N19 3AY, Tel: 071-272 7139.

DRANETZ 305C. Phasemeter for sale, 2 Hz to 700 KHz, 0.01 degrees resolution, fully working with plug-ins £360 ono. Ask for Mike after 7pm. 0483 487189.

SPEEDWIRE TERMINALS, recls of 1000, Vero part number 244-262193 £50 each. 0234 219756.

# **CLASSIFIED ADVERTISEMENT ORDER FORM**

| - 6 |    |    |    |    |    |    |
|-----|----|----|----|----|----|----|
|     | 1  | 2  | 3  | 4  | 5  | 6  |
|     | 7  | 8  | 9  | 10 | 11 | 12 |
|     | 13 | 14 | 15 | 16 | 17 | 18 |
|     | 19 | 20 | 21 | 22 | 23 | 24 |
| ſ   | 25 | 26 | 27 | 28 | 29 | 30 |

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only £2.10 per word.

Lineage advertisements under  $\pounds 50$  have to be pre-paid by credit card or cheque.

### ALL RATES QUOTED ARE EXCLUSIVE OF VAT: All major credit cards accepted

| Please debit my                                                | card                              | a total of £.  |            |            |      |
|----------------------------------------------------------------|-----------------------------------|----------------|------------|------------|------|
| ,                                                              |                                   |                |            |            |      |
|                                                                |                                   |                |            |            |      |
| Expiry<br>Please ensure that address                           | Date:<br>given is where yo        | our credit car | d stateme  | ent goes t | :0.  |
| NAME                                                           |                                   |                |            |            |      |
| ADDRESS                                                        |                                   |                |            |            |      |
| TEL NO                                                         | SIGNATURE                         |                |            |            |      |
| All advertisements must be re                                  | eceived five weel                 | ks prior to pu | ublication | date.      |      |
| All cancellations must be rece<br>that no advertisement can be | eived by eight we<br>e cancelled. | eeks prior to  | publicati  | on date.   | Afte |

Please send to Electronics World & Wireless World, Classified, 3rd Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Malcolm Wells on 081-652-3620.

### Special rates:

6 insertions £2.10 per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED AD-

VERTISEMENT TO GIVE MAXIMUM IMPACT? ->

| Extras:                   |
|---------------------------|
| Spot Colour 20%           |
| Box number service £22.00 |



ELECTRONIC UPDA

### Contact Pat Bunce on 081-652 8339

A regular advertising feature enabling readers to obtain more information on companies' products or services.



All panels are available ex-stock and can be bought direct from OLSON.

**Olson Electronics Limited** Tel: 081 885 2884 Fax: 081 885 2496 CIRCLE NO. 143 ON REPLY CARD



### **ENGINEERING & SCIENTIFIC PC**

The new 230 page 1994 PC-LAB catalogue covers an extensive range of PC-based data acquisition, measurement, control, and interface plug-in cards plus supporting software packages for engineering & scientific applications. Also includes 19" rack mounting industrial PCS, custom OEM PC chassis and associated sub-systems.

Please contact integrated measurement systems for a free catalogue CODV.

> Tel: (0703) 771143 Fax: (0703) 704301

# **PCbus** Catalogue Ircom

### **INDUSTRIAL PCs**

Arcom's PCbus range is expressly developed for embedded control and data acquisition, providing high integrity industrial solutions with:

\* full range of CPU and I/O functions \* industrial EMC enclosures \* mezza-nine bus expansion \* industry standard signal conditioning \* Windows I/ O drivers with predictable performance

Arcom Control Systems makes plugtogether PC solutions for industry a reality!

Please forward all enquiries to Alan Timmins at: Arcom Control Systems Ltd, Units 8-10 Clifton Road, Cambridge CB1 4WH, UK. Tel: + 44 (0)233 411200 Fax: 410457

### To receive your FREE working evaluation version just send a 1.44MB HD 3.5in disk to: EW+WW Offer, CRaG Systems, 8 Shakespeare Rd, Thatcham, Newbury, Berks RG13 4DG, Tel (0635) 873670 CIRCLE NO. 147 ON REPLY CARD



#### 2nd EDITION TOKO RF CATALOGUE

Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.

• 32 bit extd. mem. ver. £695

Schematic front-end £149

The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5GHz and a new section of push button and tact switches.

Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN10 7NQ Tel: (0992) 441306 Fax: (0992) 441306 CIRCLE NO. 148 ON REPLY CARD

# High Speed EPROM & FLASH Programming from your PC

- □ Programs EPROMs to 4 Mbits/ 32-pins
- Superfast 8, 16 & 32-bit programming
- Approved algorithms
- Menu driven software included
- Sophisticated editor functions
- Easy file management FREE demo disk available

Stag Programmers Limited Martinfield Welwyn Garden City, Herfordshire, AL7 1 JT UK Tel: (0707) 332148 Fax: (0707) 371503

CIRCLE NO. 149 ON REPLY CARD



# The LabWindows/CVI Brochure,

from National Instruments, explains how users can build instrumentation applications on Windows PCs and Sun SPARCstations using the ANSI C programming language and LabWindows/ CVI data acquisition, analysis, and

NATIONAL INSTRUMENTS For further information FREEPHONE 0800 289877

CIRCLE NO. 146 ON REPLY CARD

|                                                                          |                   |       |                                                                                               |               | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|--------------------------------------------------------------------------|-------------------|-------|-----------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| SPECTRUM ANALYSE                                                         | RS                |       | $ALFE \cdot ELECTRO$                                                                          | NIC           | S HEWLETT PACKARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|                                                                          |                   | 36    | EASTCOTELANE S HARBOW MIDDLES                                                                 | EX HA2 8D     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|                                                                          |                   |       | TEL: 081-422 3593, FAX: 081-423 40                                                            | 009           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                          |                   |       |                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                          | .al               |       |                                                                                               | ¥ = • • • •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                          | UN.               | NOW   |                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                          |                   | IN    |                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                          |                   | 40th  |                                                                                               |               | 331A distortion meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6200       |
| IFR A7550 1GHz portable analyser w tracking of                           | en on £4500       | YEAF  |                                                                                               |               | 339A distortion meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £1500      |
| IER 48000 2 46Hz version of above                                        | CE360             |       | DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, F                                               | ROMA. (06)871 | 90254 3457A dinital multimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £1300      |
| UD05004 EUx 5000 a sudia anatum analusa                                  | 10200             |       |                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £1200      |
| HP3580A 5H2-50KHZ audio spectrum analyser                                | £1500             |       | TEST EQUIPMENT                                                                                |               | 3336A level neperator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62000      |
| HP3582A dual-channel 25kHz analyser                                      |                   | £3500 | ANDITS! IME518A PCM portable error rate test set                                              | 62500         | 3552A transmission test set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £1250      |
| HP3585A 20Hz-40MHz GPIB analyser                                         |                   | £4500 | BRUEL & KJAER 2511 vibration meter set/1621 filter                                            | £2250         | 3586A selective level meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £2500      |
| MARCONITF2370 110MHz                                                     |                   | £1250 | BRUEL & KJAER 2307 level recorder                                                             | £1000         | 415E swr meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6350       |
| ADVANTEST TRA133A 100kHz-200GHz                                          |                   |       | BRUEL & KJAER 2317 portable level recorder                                                    | £1850         | 4274A multi-frequency (100Hz-100kHz) LCR component meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £4000      |
| analyser                                                                 | ni-spec specifium | 68500 | BRUEL & KJAER 1618 band bass filter<br>BRUEL & KIAER 3513 portable vibration analyser         | £750          | 4275A multi-frequency LCR component meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £5000      |
| anaysei                                                                  |                   | 10000 | BRUEL & KJAER 2515 vibration analyser                                                         | £5000         | 432A/478A microwave power meter 10MHz-10GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £400       |
| MARCONIINST                                                              | RUMENTS           |       | AVO RM215L-2 insulation & breakdown tester                                                    | £650          | 432A/R486A uwave power meter 26.5-40GHz (wavequide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2600       |
| 2010 AM/EM synthesized signal generati                                   | or 90kHz.1GHz     | 61750 | DATRON 1065 digital multimeter                                                                | £750          | 5005B signature multi-meter, programmable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £500       |
| 2019 hitri in synure azed signal yonerau<br>20104 as shove improved spec |                   | c1050 | DRANETZ 626 mains disturbance analyser/2 x PA-6001<br>DRANETZ 606-3 line disturbance analyser | £750<br>£275  | 54501A digitising oscilloscope 100MHz 10MS/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £1500      |
| 2019A as above, improved spot                                            |                   | 11330 | KEITHLEY 192 programmable dmm                                                                 | £400          | 6253A dual power supply 0-20V 0-3A twice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £225       |
|                                                                          |                   | 8     | MAURY MICROWAVE 8650E TNC-calibration kit                                                     | £1500         | 6825A bipolar power supply/amp - 20 to + 20vdc 0-1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £350       |
|                                                                          |                   | 1     | NAGRA IV – SJ tape recorder                                                                   | £2000         | 70300A tracking generator plug-in unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £2000      |
| Training / The State Street                                              |                   |       | TEKTRONIC CSA803A COMMUNICATIONS SIGNAL AN                                                    | ALYSER        | 70907A external mixer for 70000-ser spectrum analyser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £1750      |
|                                                                          | 3. 1              |       | As new, supplied with IxSD22 head                                                             | £22000 each   | 7035B X-Y single pen analogue chart recorder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £350       |
|                                                                          |                   |       | TEKTRONIX 1503C/3/4/5/6 tdr cable tester                                                      | £3,250        | 8011A pulse generator 0.1Hz-20MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £500       |
| ALCONT OF                                                                |                   | MUCH  | MORE, FULLY RE-FURBISHED, FULLY GUARANTEEL                                                    | DITEST        | 816A slotted line 1.8-18GHz with carriage 809C & 447B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £500       |
|                                                                          |                   | EQUIF | MENT AVAILABLE FROM STOCK. PLEASE REQUES                                                      | TOUR          | 8350B sweep generator main-frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £2250      |
| 2828A/2829 digital simulator/analyser                                    | £1000             | CURRE | NT LISTINGS. WE CAN FAX LISTS & SHIP GOODS W                                                  | ORLD-         | 8405A vector voltmeter, voltage & phase to 1000MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £950       |
| 2830 multiplex tester                                                    | £1500             | WIDE  | HIGH-END EQUIPMENT ALWAYS WANTED FOR ST                                                       | OCK.          | 8620C sweep generator, many plug-in units available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £call      |
| 6059A signal source 12–18GHz                                             | £750              |       |                                                                                               |               | 8671 A synthesized signal generator 2 – 6.2 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £2500      |
| 6460/6420 power meter 10MHz - 12.4GHz 0.3                                | luW–10mW          | £350  | RACAL 9008 automatic modulation meter £325, 9009                                              | £300          | 87520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| 6460/6423 power meter 10MHz - 12.4GHz 0.3                                | lmW-3W            | £400  | RACAL 9082 synthesized AM/FM sig' gen' 5-520MHz                                               | £500          | 5/335 WITH SDU4DA HELWUKK ANALTSEKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 6700B sweep oscillator 8 - 12.4GHz & 12.4 -                              | 18GHz             | £1000 | RACAL 9300 RMS voltmeter - 80dB to + 50db                                                     | £325          | MICH 3-LAKAMETEK 1531 35 LAM CANDLAGAN PTTAAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 6912 power sensor 30kHz - 4.2GHz for above series                        |                   | £150  | RACAL 9341 LCR databridge component tester                                                    | £350          | PLEASE NOTE: ALL OUR EQUIPMENT IS NOW OPERATION-VERIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CATION     |
| 893B audio power meter                                                   |                   | F350  | RACAL-DANA 9302 RF milli-voltmeter 1 5GHz                                                     | £450          | TESTED BEFORE DESPATCH BY INDEPENDENT LABORATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ay 🔤       |
| 0428054 PCN recenerator test eat                                         |                   | 6750  | RACAL-DANA 9303 level meter, digital                                                          | £1000         | Note the first strange data for all of the states of the strange of the states of the |            |
| TE2010/4 non linear distantion (video) annuar                            |                   | C1000 | ROBERTS & ARMSTRONG f/o-cable end-cut measure unit                                            | £500          | We would be pleased to handle all grades of calibration or NAMAS cert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tification |
| TP2910/4100-intear distortion (video) analyser                           |                   | 1000  | TEKTRONIX J16 digital photometer                                                              | £250          | by same laboratory at cost price. All items covered by our 90-day parts a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| TE2010 THE INSERTION SIGNAL ANALYSE                                      |                   | 1250  | TEKTRONIX 1503C/03/04/05/06 TDR cable tester                                                  | £3250         | guaranee and 7-day Rightio Refuse (money back) warranty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 1 P2910 FV Interval timer                                                |                   | £500  | WAVETEX 2000 0 – 1400MHz sweep generator                                                      | £750          | ALL PRICES SUBJECT TO ADDITIONAL VAT AND CARRIAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E          |
|                                                                          |                   |       | WAYNE KERR 8905 automatic precision bridge                                                    | £950          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |

CIRCLE NO. 131 ON REPLY CARD

# **INDEX TO ADVERTISERS**

|                         | PAGE |                      | PAGE |
|-------------------------|------|----------------------|------|
| Anchor Surplus Ltd      | 599  | Langrex              | 585  |
| <b>BK</b> Electronics   | 575  | M & B Electrical     | 590  |
| Bull Electrical         | 568  | M B Radio (Leeds)    | 551  |
| Chelmar Valve           | 582  | MQP Electronics      | 553  |
| Citadel Products Ltd    | IFC  | Number One Systems   | 605  |
| Dataman Designs         | OBC  | Powerware            | 553  |
| Display Electronics Ltd | 547  | Ralfe Electronics    | 616  |
| Field Electric Ltd      | 595  | Remote Imaging Group | 585  |
| Halcyon Electronics Ltd | 595  | Seetrax Ltd          | 533  |
| Ice Technology Ltd      | 539  | Smart Communications | 553  |
| John Maurinen           | 500  | Smart Communications | 575  |
| John Morrison           | 582  | Stewart of Reading   | 585  |
| John's Radio            | 530  | Surrey Electronics   | 585  |
| John's Radio            | 535  | Tektroniy            | 507  |
| JPG Electronics         | 582  | Tektronix            | 597  |
|                         | 500  | Telnet               | 533  |
| Kestral Electronics     | 582  | Those Engineers Ltd  | 562  |
| Keytronics              | 581  | Tsien Ltd            | 575  |
| Lab Center              | 558  | Ultimate Technology  | IBC  |

# FROM CONCEPT TO ARTWORK IN 1



Your design ideas are quickly captured using the ULTIcap schematic design Tool, ULTIcap uses REAL-TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end REAL-T points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.



ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTIboard. Good manual placement tools are vital to the progress of your design, therefore ULTIboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

> Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

> > If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component. or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

**ULTIboard's backannotation automatically** updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrix/laser or postscript prints and custom drill files. CIRCLE NO. 100 ON REPLY CARD

ULTIboard PCB Design/ULTIcap Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.



· all features of the bigger versions

· full set of manuals design capacity 350 pins

Price incl. S & H, excl. VAT:

Purchase price is 100% credited when upgrading to

er version. • Also suitable for study & hobb



ICIS

ICL6 C 2

1015

8

1017 (C18



ង 🗓

8

ICI2

Speck.

ULTImate Technology UK Ltd. • 2 Bacchus House, Calleva Park, Aldermaston Berkshire RG7 4QW • Fax: 0734 - 815323 • Phone: 0734 - 812030

14

# I want it. What does it do?

✓ 8-BIT EPROM
✓ 16-BIT EPROM\*
✓ EEPROM

- SERIAL EEPROM\*
- 🗹 FLASH
- 🗹 PIC\*
- **1**8751\*
- SEMULATION
- **FREE UPGRADES**
- J TOTALLY HANDHELD
- **3 YEAR GUARANTEE**
- AVAILABLE TODAY!

\*Requires optional modules.

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8Mbit. And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24hr download from our high speed bulletin boards.

### Emulation

See your code running before committing yourself to an EPROM. With S4's powerful and easy-touse internal emulation system, download your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen *immediately* - just one reason why S4 is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or external power sources; earth loop problems are a thing of the past. S4 even emulates RAM.

### **Remote Control**

As well as being totally stand alone and self contained, S4 can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal software and a pop-up TSR communications utility.

### **The Company**

Dataman has been designing and selling innovative programmers world-wide for over 15

years. As well as having sales and support offices in both the UK and the USA, we supply the world demand for our products via a network of approvec. dealers stretching from Norway to Australia.

### The Package

S4 comes complete with mains charger, emulation leads, comprehensive manual, PC software and a spare library ROM; there are no hidden extras to buy. Upgrading S4's device library is free, does not involve costly internal ROM upgrades and technical support is free for life. Only S4 comes with a three year guarantee.

### Availability

S4 is always in stock and we ship worldwide on a daily basis. Call now for delivery TOMORROW. Bona-fide UK customers can try S4 for thirty days without risk. 16,000 users can't be wrong!



Station Road, Maiden Newton, Dorset DT2 0AE, UK. Telephone: 0300 320719; Fax: 0300 321012; Telex: 418442: BBS: 0300 321095 24hr; Modem: V32bis/16.8K HST 22 Lake Beauty Drive, Suite 101, Orlando, FL 32806, U.S.A. Telephone: (407) 649-3335; Fax: (407) 649-3310; BBS: (407) 649-3159 24hr; Modem V32bis/16.8K HST CIRCLE NO. 101 ON REPLY CARD

Size: 186 x 111 x +6mm Weight: 515g