+ WIRELESS WORLD

FRE with this issue Hall effect device pack* *First 500 replies, UK \& Eire only

AUDIO

New look to amplifier design? COMPUTING Sorting signals from noise

APPLICATIONS Using Hall to good effect DESIGN
Oscillators in perspective
RF ENGINEERING Millimetre wave devices
PREGNOM OP-AMPOs First ever mass review

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL $74 / 54$ series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC erystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU 's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 \& 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual only $£ 395$

Please add $£ 7$ carriage (by overnight courier) for UK orders, $£ 20$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

CMR UNDER TEST......540

Designers often need to measure small signals superimposed on large voltages but information on common-mode rejection from IC manufacturer data is rarely more than superficial. In a worldexclusive review, consultanı Ben Duncan compares this vital parameter in eleven of the top instrumentation amplifiers.

COMMON-EMITTER POWER AMPLIFIERS \qquad 548
Taken by the idea of linearisation using square lau fets, Doug Self investigates the driving of power amplifier loads via collectors rather than emitters. Findings suggest that designers are looking from the wrong perspective.

ACQUIRING DATA FROM NOISE \qquad
In travelling to its destination, a signal from a sensor can easily become corrupted by EM1, losses and noise sources. Dave Robinson looks various ways of removing the impurities.

GRAPH PLOTTING IN WINDOWS .559
Reviewer Allen Brown enthuses about a new software package designed specifically for plotting complex enginecring data under Windows - MicroCal's Origin..

COHERER-BASED RADIO

563
A century ago, radio-signal detectors comprising metal particles in a glass tube were at the forefront of wireless technology. George Pickworth has been reproducing early equipment based on the 'coherer' and shares the results of his test transmissions.

NEW WAVE MICROWAVES
Mike Hosking looks at the variety of active millimetrewave devices now available for specific communications applications including receiving, generating and mixing.

APPLYING HALL TO GOOD EFFECT 576
Integrated Hall-effect switches and linearoutput devices have hundreds of uses, ranging from motor speed control to current monitoring. Martin Eccles looks at a handful of them.

USING RF TRANSISTORS.
Design criteria for transformers used in rf systems are very different from those of their If counterparts. In an extract from their book RF Transistors: principles and practical applications, Norm Dye and Helge Granberg discuss the differences and provide an insight into the novel transformer solutions available to the rf designer.

COMMENT.
European R\&D or Euro-waste?
NEWS.
Video games set to become the driving force behind microprocessor design; 200 MHz serial speed-up for VME; Intel to drop X86 architecture rumour.

RESEARCH NOTES.

Gunn diode breaks frequency and power boundaries, The wobble that gave birth to a planet, Laser that could reshape conventional technology, Physicists find their missing link, Solar power reaps energy benetits.

APPLICATIONS.
.583
Battery-powered micro-ohm meter, power-fail and reset for PCs, Easy to use programmable oscillator.

DESIGN BRIEF.

Exploring the $L C$ oscillator in detail reveals that it is rather more sophisticated than it first appears. Ian Hickman explains.

NEW PRODUCTS.
.591
Scores of the industry's new products presented in a format designed to save you time.

LETTERS.

.596
More distortion... clearly the best, Ears and knows, Military option, Charge build up, Mixing it, Science friction, Vision thing, Virtual intercourse, Theoretical limits.

CIRCUIT IDEAS.

Digital sinewave generator, Spare inverter converts 5 V to $\pm 15 \mathrm{~V}$, Square waves from a 555 , Inrush current limiter, High-torque position servo, Monitor shows three-phase sequence, Electronic fuse, Two-wire switch status detection, Isolated $I^{2} \mathrm{C}$ bus interface.

In next month's issue: Build a teletext card using Laurence Cook's proven design presented complete with PCB.
THE AUGUST ISSLIE IS ON SALE FROM JUNE 30

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS

TESTED
HP141T + 8552A or B IF - 8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF $£ 600$ or B IF - $£ 700$.
HP141T + 8552A or B IF - 8554B RF - 100kHz $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or B IF-£900.
HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF -8555 A RF $-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or B IF - 8556A RF - $20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200-8552B IF-£300-8553B RF-1kHz-110Mc/s-£200-8554B $\mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{~A} \mathrm{RF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{ARF}-20 \mathrm{HZ}-300 \mathrm{KHZ}-£ 250$.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}$ - f 300 - f 400 .
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400$ £600 or HP8445A - £250.
HP8444A Tracking Generator $-£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator-f1000-1500Mc/s.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn 20 Hz - 300 kHz Plus 8553 B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $\mathbf{f} 700$.

Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box. HP Frequency comb generator type 8406 - $£ 400$.
HP Vector Voltmeter type $8405 A-£ 400$.
HP Vector Vortmeter type 8405A - $£ 400$ to $£ 600$-old or new colour
HP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R
HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-10 \mathrm{Mcs}$ - 500 HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500-\mathrm{f} 1000$.
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} \mathrm{f} 200-\mathrm{HP} 8447 \mathrm{~F}, 1-1300 \mathrm{Mc} / \mathrm{s} 400$ HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$ - rear output $£ 800$
HP $8810-A-B-C$ Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From f1000.
Racal/Dana 9301A-9302 RF Millivoltmeter - $1.5-2 \mathrm{GHz}-\mathbf{£ 2 5 0 - £ 4 0 0}$.
Racal/Dana Counters $9915 \mathrm{M}-9916-9917-9921$
RacaI/Dana Counters $9915 \mathrm{M}-9916-9917-9921-\mathrm{f} 150 \mathrm{to} \mathrm{f} 450$. Fitted FX standards.
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-15 \mathrm{GHz}-\mathbf{f} 250$. Racal/Dana Modulation Meter type 9009 - $8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - f 250
Marconi RCL Bridge type TF2700-f 150
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A - 6057A - 6056 MarconiTF $1245 \mathrm{Mc} /$ s to 18 GHz
Marconi Tr 1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - f100-f300 $40 \mathrm{GHz}-\mathrm{crowave} 6600 \mathrm{~A}$ sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ Marconi distortion ml only $£ 600$. MF only $£ 250$.
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 - S2 - S6 - S52 - PG506 - SC504-SG502 - SG503 - SG504 - DC503-DC508-DD501-WR501-DM501A-FG501A - TG501 - PG502-DC505A - FG504-7B80 + 85-7B92A
Gould J3B test 0scila
Gould J3B test oscillator + manual - E 200
Tektanix Ma
Altech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - $£ 2000$.
Marconi 6155A Signal Source - 1 to 2 GHz - LED readout - $\mathbf{4} 400$
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $\mathbf{f 1 5 0}$
Marconi TF2163S attenuato -1 GHz 200
Marconi TF2163S attenuator - 1 GHz . $\mathbf{E 2 0 0}$
Farnell power unit H60/50-£400 tested. H60/25-£250.
Racal/Dana 9300 RMS voltmeter - $£ 250$.
Racal/Dana 9300 RMS voltmeter - f 250 .
HP 8750A storage normalizer - $\mathbf{f 4 0 0}$ with lead + S. A or N,A Interface
Marconi TF2330 - or TF2330A wave analysers
Marconi Tr2330-or TF2330A wave analysers - $£ 100-\mathrm{f} 150$
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 600$.
Tektronix - 7S 14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
Marconi mod meters type TF2304- f 250 .
HP 5065 A rubidrum vapour FX standard - $£ 2.5 \mathrm{k}$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - f 1 k.
Racal/Dana 9083 signal source -250
Racal/Dana 9083 signal source - two tone- $£ 250$.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - $\mathbf{f 6 0 0}$.
Tektronix TM515 mainframe + TM5006 mainframe - 450 - 8850 .
Tektronix TM515 mainframe + TM5006 mainframe- $£ 450-\mathbf{f 8 5 0}$.
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - $\mathbf{f 2 5 0 - f 6 0 0}$.
Ball Efratom rubidrum standard PT256B-FRKL-f1000
Farnall electronic load type RB1030-35- $£ 350$.
Racal/Dana counters - 9904 - 9905 - 9906 - $9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$ - $\mathrm{f} 100-$ f450-all fitted with FX standards.
HP4815A RF vector impedance meter
HP4815A RF vector impedance meter c/w probe - f500-f600.
Marconi TF2092 noise receiver, A, B or C plus filters - $£ 100$ - $£ 350$

Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$.
HP 180TR. HP 182 T mainframes $£ 300-\mathrm{f} 500$.
Fluke 8506A thermal RMS digital multimeter. $\mathbf{£ 4 0 0}$.
Philips panoramic receiver type PM7900-1 to 20 GHz - $\mathbf{f 4 0 0}$
Marconi 6700A sweep oscillator $+6730 A-1$ to $2 \mathrm{GHz}-£ 500$
HP8505A network ANZ $+8503 A$ s parameter
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer $-£ 4 \mathrm{k}$
Racal/Dana VLF frequency standard equipment Tracer recein Racal/Dana VLF frequency standard equipment. Tracer receiver type 900 A + difference meter
type 527 E + rubidium standard type $9475-\mathrm{f} 2750$ HP signal generators type 626-628-frequency 10G
HP 432A - 435 A or $\mathrm{B}-436 \mathrm{~A}$ -
Bradley oscilloscope calibrator type 192 - f 600 .
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{~K} / \mathrm{s} / \mathrm{s}$
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}-£ 900$.
Marconi TF2370 spectrum ANZ + TK2375 FX extender $1250 \mathrm{Mc} / \mathrm{s}+1$ st gen - $\mathbf{f 1 . 5 k}$
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour f 400 .
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour f 400 .
HP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}$ - $\mathbf{f 1 5 0 0}$.
HP 3336A or B syn leve generator - $\mathbf{~} \mathbf{5} 500-\mathrm{f} 600$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}$ - f 4000 .
HP 8671A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{f} 2 \mathrm{k}$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$-opt 001 - 003 - f 4.5 k
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ Syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
$2500 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{E} 750-\mathrm{f} 2800$.
HP 8640B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $\mathrm{E} 800-\mathrm{f} 1250$
HP 8656A S/G AM-FM $0.1-990 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1500$.
HP 8622B Sweep PI - $01-2.4 \mathrm{GHz}+\mathrm{ATT}-\mathrm{f} 1750$.

HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-\mathrm{E} 250-\mathrm{f} 1 \mathrm{k}$
HP 8620C Mainframe - $\mathbf{f 2 5 0}$. IEEE - $£ 500$
HP 8615A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 -f 1 k
HP 8601A Sweep generator. $1-110 \mathrm{Mc} / \mathrm{s}$ - f 300 .
HP 4261A LCR meter +16038 A test leads - $\mathbf{f 4 0 0}$
HP 4271B LCR meter 1 MHz digital meter + 16063A test adaptor - $\mathbf{E 8 5 0}$.
HP 4342A Q meter 22 kHz - $70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}+\mathrm{qty}$ of 10 inductors - f 850 .
HP 3488A HP-IB switch control unit - E 500 + control modules various - f 175 each.
HP 3561A Dynamic signal ANZ - E3k.
HP 8160A 50Mc/s programmable pulse generator - $\mathbf{f 1 4 0 0}$
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 2500$
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}-£ 2500$.
HP 8349A Microwave Amp 2-20GHz Solid state- $\mathbf{f 1 5 0 0}$
HP 3585A Analyser 20Hz-40Mc/s - $£ 4 \mathrm{k}$.
HP 8569 B Analyser. $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 3580 A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-\mathrm{f} 1 \mathrm{k}$
HP 1980B Oscilloscope measurement system - f 600 .
HP 3455A Digital voltmeter - f 500 .
HP 3437A Systern voltmeter - $£ 300$.
HP 3581C Selective vol tmeter - $£ 500$.
HP 5370 Universal time interval counter- $\mathbf{£ 4 5 0}$.
HP 5335A Universal counter-200Mc/s - f500.
HP 5328A Universal counter-500M c / s - f 250 .
HP 6034A System power supply - 0-60V-0-10 amps - f 500.

HP 5150A Thermal printer-£250.
HP 1645A Data error analyser - f 150.
HP 4437A Attenuator - f 150 .
HP $3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}$ modulator
HP $3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}$ modulator - f 400 .
HP 3710A-3715A - 3716A - $3702 \mathrm{~B}-3703 \mathrm{~B}-3705 \mathrm{~A}-3711 \mathrm{~A}-3791 \mathrm{~B}-3712 \mathrm{~A}-3793 \mathrm{~B}$
HP 3730A $+B$ RF down converter - P.
HP 3552 A Transmission test set - C 400
HP 3552A Transmission test set - E .
HP 3763A Error detector - E 500 .
HP 3764A Digital transmission analyser - 660
HP 3770 A Amp delay distortion analyser - f 400 .
HP 3780A Pattern generator detector- $\mathbf{f} 400$.
HP 3781A Pattern generator - f400.
HP 3781B Pattern generator (bell) - £300.
HP 3782A Error detector - £400.
HP 3782B Error detector (bell) -
HP 3782B Error detector (bell)- f 300 .
HP 3785A Jitter generator + receiver- $\mathbf{f 7 5 0 - f 1 \mathrm { k }}$
HP 8006A Word generator - f 100 - 150
HP 8006A Word generator - $\mathbf{f 1 0 0 - \mathbf { f } 1}$
HP 8016A Word generator - f250.
HP 59401A Bus system analyser - f 3500
HP 59500A Multiprogrammer HP - IB - $£ 300$
Philips PM5390 RF syn-0.1-1GHz-AM + FM $-\mathbf{f 1 2 5 0}$
Philios PM5519
Philips PM55519 Colour T.V. pattern generator-£250.
S.A. Spectral Dynamics SD345 spectrascope 111 -LF ANZ - $£ 2500$.

Tektronix R7912 Transient waveform digitizer - programmable- $\mathbf{£ 4 0 0}$.
Tektronix 496 Analyzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}$ - $£ 3.5 \mathrm{k}$.
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}$ - f 1 k - or TR502.
Tektronix 576 Curve tracer
Tektronix 577 Curve tracer + adaptors - $\mathfrak{f} 900$.
Tektronix 1502/1503 TDR cable test set - $\mathbf{f 1 0 0 0}$
Tektronix $7 \mathrm{LL5}$ LF analyser $-0-5 \mathrm{Mc} / \mathrm{s}$ - f 800 . OPT 25 - $£ 1000$.
Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$.
Tektronix SC501-SC502 - SC503 - SC504 oscilloscopes - 775 - f 350 .
Tektronix 465-465B-475-2213A-2215-2225-2235-2245-2246-f250-£1000.
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS6100M - $\mathbf{f 3 5 0}$.
Farnell PSG520 Signal generator - $£ 400$
Racal 1991-1992-1988-1300
Racal 1991-1992-1988-1300 Mc/s counters - $5500-\mathrm{f} 900$
Tek $2445150 \mathrm{Mc} / \mathrm{s}$ oscilloscope- 141400.
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - BN - $£ 100$.
Racal Stare Horse Recorder \& control - £400 f 750 stock - f 250 - f 500.
der a cot
Fluke 510 A AC ref standard $-400 \mathrm{~Hz}-\mathbf{f 2 0 0}$.
Fluke 355A DC voltage standard - $\mathbf{f} 300$.
Schlumberger 5229 Oscilloscope - $500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$.
Solartron 1170 FX response ANZ - LED dislay - $\mathbf{f 2 8 0}$
Wiltron 610D Sweep Generator $+6124 \mathrm{C} \mathrm{PI}-4-8 \mathrm{GHz}-\mathbf{f 4 0 0}$.
Wiltron 610 D Sweep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$.
Time Electronics 9814 Vohage calibrator - $\mathbf{£ 7 5 0}$.
Time Electronics 9811 Programmable resistance - $£ 600$
HP 86998 Swics 2004 D.C. voltage standard - $£ 1000$.
Schlumb
Schlumberger 1250 Frequency response ANZ - $\mathrm{E2500}$.
Dummy Loads 2 power an to 2.5 kilowats FX up to 18 GHz - microwave parts new and ex etc.
Betc.
W\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell-HP-Weir - Thurlby - Racal etc. Ask for list.
 TTEMS MARKEO TESTED HAVE 30 DAY WARRANTY. WANTEO: TEST EQUIPNENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMTTING AND RECEVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whithhal R Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (0274) 684007 . Fax: 651160

EDITOR
Frank Ogden
081-6523128
DEPUTY EDITOR
Martin Eccles
081-6528638

CONSULTANT

Derek Rowe
DESIGN \&
PRODUCTION
Alan Kerr

EDITORIAL

ADMINISTRATION
Lorraine Spindler
081-6523614

ADVERTISEMENT

MANAGER
Richard Napier
081-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-6523620
ADVERTISING
PRODUCTION
Paul Burgess
081-6528355

PUBLISHER

Susan Downey
EDITORIAL FAX
081-6528956
CLASSIFIED FAX
081-652 8956
SUBSCRIPTION
HOTLINE
0622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
0444445566

NEWSTRADE

DISTRIBUTION
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
0816523614
ISSN 0959-8332

Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$.
Orders, payments and general correspondence to L333,
Orders, payments and general correspondence to L333,
Electronics World + WIreless World, Quadrant House, The
Quadrant, Sutton, Surrey SM2 5AS. TIx:892984 REED BP G
Cheques should be made payable to Reed Business
Publishing Group.
Newstrade: IPC Marketforce, 071 261-5108.
Subscriptlons: Quadrant Subscription Services, Oaktield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone C:444 445566. Please notify change of address. Subscription rates 1 year (normal rate) $£ 30$ UK and

£43 outside UK

USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 101117
verseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 05 E. 4 énd Street, NY 10117. Telephone (212) 867-2080. T1× 2382^{-}
USA malling agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading
Estate, Carlisle. Cumbria, CA2 7NR
Typeset गy Marlin Graphics 2-4 Powerscroft Road, Sidcup. Kent DA-4 5DT
©Reed Eusiness Publishing Ltd 1992 ISSN 09598332

Microprocessor game is the real business

Microprocessor evolution will in future be driven by the demands of games, not PCs, says Len Perham, president and chief executive officer of Integrated Device Technology
"The games people are looking for tremendously high performance processors one of the top five has asked me for a 64 -bit processor with a 800 Mbit data rate,"

Perham added: "We're developing it, and we can see it costing only $\$ 20$." IDT is a licensee of the Mips micro architecture.
Perham also sees the manufacturers of games machines moving inexorably into the computer market. "By the year 2000,
Nintendo will be a computer company," he predicted.
The advantage which the games machine makers have over the computer companies is that they have to manufacture to very low costs. "Nintendo and Sega say you can't sell in volume for more than $£ 250$," said Perham.
NEC, Toshiba and Sony hold rights to the Mips processor.
It will not only be dedicated games machines that will require this power. The set-top controller driving remote terminals. the home entertainment system and home security will demand 64-bit performance because the graphics take so much processing power.

High flyers: the performance demands of video games coupled with enormous potential sales volumes are now more important to microprocessor development than business applications.

James Thomas, Director of Risc micro development at IBM, concurs: "Set-tops and PDAs are going to be the explosive areas of the second half of the 90s," he told Dataquest's recent European semiconductor Industry Conference in London. "Kids," concludes IDT"s Perham, "can absorb as much computer power as you can give them."
Ordinary PCs can operate as effective video game players by placing video game machines onto PC cards. This approach is being taken by game player designer 3DO which is working on custom chips that will allow it to sell its system as a PC plug-in board. Atari, with its 64 -bit Jaguar game system recently signed a deal with Sigma Designs to produce a board combining Jaguar with Sigma's full motion video technology.
The US based Software Publisher's Association (SPA) estimates that about 27 percent of US households own a personal computer. About a third of those PCs were purchased within the last year. As prices continue to fall for PC hardware and software, the SPA predicts that demand for powerful home based PCs will continue to grow. David Manners, Electronics Weekly.

Faster technology for speeding motorists

The automatic intelligent recognition system, named Talon, designed to recognise the most obscured, tilted or damaged vehicle number plates is latest piece of technology to persecute motorists. The systen uses neural networks for number plate pattern recognition. In its simplest form it consists of a camera, illuminator and a plate recognition unit (PRU) which contains the programmable DSP hardware. The PRU consists of an image grabber board, a general purpose PC
board and a DSP board on which the neural network is implemented.
The system triggers automatically when encountering the right colour (yellow or grey) or image of a number plate.
The plate is then segmented into individual characters before being fed into the recognition process that uses proprietary neural network techniques implemented on five Texas Instruments TM320C50 DSP chips.

All imperfections associated with number

plates are included in the training data which makes the recognition process resilient to noise such as dirt, poorly defined or distorted characters. In this way the network is also trained to de-skew and de-rotate in order to recognise the plate.
Talon recognises number plates in approximately 0.25 s . The success rate is higher than 90 per cent
Talon works in many weather conditions and for night vision any off-the-shelf infrared camera and illuminator can be used Plate shadowing can be eliminated with infrared filters on the camera.
The system was originally developed by

Camcorder controlled by the eye

Canon of Japan claims to have developed the first camcorder which is controlled by eye movements. To focus, the camcorder uses infrared light to determine where the user's eye is looking in the field of view. It then focuses on this point automatically. Other camera functions are operated by the user looking at icons displayed alongside the image in the viewfinder.

SEETRAX CAE - RANGER - PCB DESIGN

Ranger1 $£ 100$

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)
* Power, memory and signal autorouter - £5

All systems upward compatible. Trade-in deals available.
Call Seetrax CAE for further information \backslash demo packs. Tel 0705591037

Fax 0705599036
Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hampshire, PO8 0SG

All trademarks acknowledged.

Ranger 2559

All the features of Rangerl plus

* Gate \& pin swapping (linked to schematic)
* Track highlighting
* Auto track necking
* Copper flood fill
* Power planes (heat-relicf \& anti-pads)
* Rip-up \& retry autorouter

Ranger 3 £3500

All the features of Ranger2 plus
UNIX or DOS versions

* 1 Micron resolution and angles to $1 / 10$ th degree
* Hicrarchical or flat schematic
* Unlimited design size
* Ariy-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& retry, pust \& shove autorouter

Outputs to:

* $8 / 9$ and 24 pin dot-matrix priuters
* HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
* HP-GL, Houston Instruments plotters
* Gerber photoplotters
* NC Drill Excellon. Sieb \& Meyer
* AutoCAD DXF

Big speed-up for VME

|uly will see the first production shipments of a Spanceiver chip for high speed serial data transfers across the VMEbus.

Called Autobahn, and developed jointly by Motorola and German real-time board maker PEP Modular Computers, the technique essentially provides a serial bypass, with transfer rates of between 200 and $400 \mathrm{Mbyte} / \mathrm{sec}$, to the 32 -bit or 64 -bit parallel bus transfers occurring on a standard VMEbus backplane.
Balloting to accept Autobahn as an ANSI standard should be completed by the end of the year, according to PEP president Josef Kreidl.
Autobahn was developed because the traditional way of boosting data throughput is to increase the word width or increase the clock frequency or both. But this cannot go on indefinitely because of the respective trade-offs of more board space and greater power dissipation
Using a high speed serial link to transmit large amounts of data avoids many of these problems. The crucial device needed to convert the 32 - bit parallel data into a

200Mbyte/s serial stream is Motorola's Spanceiver.
Kraus points out that the high speed of ECL can be achieved without a corresponding rise in power dissipation. The net result is that the power overhead associated with using the Autobahn Spanceiver chips is about $100 \mathrm{Mbyte} / \mathrm{s} / \mathrm{W}$ when performing transfers of $200 \mathrm{Mbyte} / \mathrm{s}$. This compares with figures of 8Mbyte/s/W for a typical VMEbus system transferring 32 bit parallel data at a rate of only $40 \mathrm{Mbyte} / \mathrm{s}$.

The Spanceiver is also designed to minimise the protocol overhead, the time taken to set up transmissions. The chip contains a novel phase locked loop (PLL) design combined with a start stop oscillator that allows data to be transmitted in bursts without preamble bits. This means that when transmission starts, the PLL locks on the first sync bit so that the normal settling period required for clock recovery is eliminated. The data transfer is nearly overhead free with only one sync bit needed for every byte transmitted. The bit error rate will also be reduced. David Darcy.

New conversion leads the field

US firm Comlinear believes it has developed an analogue-to-digital converter (ADC) architecture capable of providing 12-bit performance at conversion rates as high as 50 MHz .
The subranging architecture uses novel techniques in the second stage to minimise the comparator count, avoiding the associated power dissipation penalty while boosting conversion speed.
The firm has designed a 12 -bit 25 MHz ADC called the CLC950, which it claims has a better performance than any other monolithic converter of its class on the market. It is to be followed early next year by the CLC951 device with a 12 -bit, 30 MHz performance and a third chip with a target conversion rate of 50 MHz .
In a classic subranging ADC architecture the comparator ladder is split into several smaller blocks or ranges. This scheme reduces power consumption and saves silicon area. Conversion errors caused by an input being close to a sub-range boundary
are usually detected by having a small number of extra comparators either side of the boundary. The errors are then corrected digitally.
The subranging technique is closely related to the two stage residue architecture Both techniques need an overlap between the first and second stages, typically of two bits to correct for overall system errors. (six bits plus eight bits would be needed for a 12-bit converter).

The Comlinear architecture converts five bits in the first stage using a classic flash comparator ladder. However, according to engineer Kurt Rentel, the innovative second stage needs no overlap nor does it employ signal averaging techniques.
The CLC950 has a signal-to-noise ratio (SNR) of 65 dB for a full-scale analogue input at 12.49 MHz . However, the spurious free dynamic range (SFDR) is 70 dB rising to 74 dB for a 9.96 MHz analogue input. The SNR is then 66 dB .
Simon Parry, Electronics Weekly.

Fine vision of the future

Nikon, the world's top maker of stepper machines for lithography on chips, has started the R\&D programme for the 16 Gbit dram under the auspices of the Japanese government backed research organisation Sortec.

Nikon says it has already developed lithographic techniques for feature sizes down to $0.05 \mu \mathrm{~m}$ using a an X-ray with a 13 nm wide beam, and a feature size of 0.015 -micron using a 4.5 nm X-ray beam.

Nikon's schedule for the stepper is to have it available for chip companies by 1999 when it is expected that the first prototypes of 16Gbit DRAMs will be made.
The current leading technology dram in mass production is the 16 Mbit made on $0.5 \mu \mathrm{~m}$ processes. It is expected to be succeeded by: 64 Mbit on a $0.35 \mu \mathrm{~m}$ process; 256 Mbit on $0.25 \mu \mathrm{~m}$; 1 Gbit on $0.15 \mu \mathrm{~m}$; 4 Gbit on $0.065 \mu \mathrm{~m}$, and 16 Gbit on $0.035 \mu \mathrm{~m}$.

Intel to kill off ageing family?

Colid rumours out of Intel claim that the US microprocessor company's next-butone device will break with the existing $x 86$ architecture, relying on $x 86$ emulation to maintain compatibility with older systems. Sources say that the P7, that will appear close to the end of this decade, will be a pure risc design unlike the current Pentium and its successor, the P6, which mix risc and cisc designs.
Asked if it were true that the P7 would have to emulate some $x 86$ instructions an Intel spokesman said: "We're really not talking about the P7 yet publicly. It's so early in the development of that product that I doubt there is much locked in concrete yet."
The company would hope that a risc design for the P7 will allow it to keep up with microprocessor rivals such as the PowerPC. The P7 will be able to separately process cisc and risc instructions with the cisc instructions being processed in a hardware emulation of an $x 86$ microprocessor.
Intel plans to introduce its successor to the Pentium, code-named P6 by the end of 1995. This device is expected to be sold as a two-chip module featuring the CPU with 256 kbytes of high speed cache memory.

Devereux dies

Frederick Leslie Devereux, who retired in 1965 as Editor of Wireless World, has died.

Born in Birmingham on May 5, 1900, "Dev" developed an interest in "wireless" very early, while at school. In 1917, he went to the Admiralty Board of Invention and Research at Harwich as a lab. mechanic working on asdic and in 1918 joined the anti-submarine division of the Royal Navy as a midshipman. Later, he joined his father's manufacturing jewellery business, but decided instead to take a degree in physics from Birmingham. Armed with that, he went into sound broadcasting, worked on receiver development, wrote on the subject for the Birmingham Post and naturally gravitated to WW, eventually becoming Assistant Editor under H F Smith' and Editor in 1957.
His knowledge of the industry was prodigious, particularly of the audio side. He appeared to know everyone, sometimes using this knowledge to bully nervous potential authors into writing for the journal, even though he knew the result might be in pidgin English.
His sense of humour was usually well to the fore and frequently in use to cut cocky journalists down to size.
My own experience of this was when I had written a piece about the 1963 deliberations on the choice of colour television system in and proudly submitted it for his comments. "You know, they have to chop trees down to print this stuff; it's a pity to waste them, don't you think?", he said. "Go away and rewrite it, preferably in English".
It was Dev who accepted Arthur C Clarke's 1945 piece on the possibility of communications satellites against the advice of his colleagues who thought it was nonsense. He took it home with him, did the sums and, realising it was feasible, went ahead, thereby presenting the journal with a cachet that has lasted fifty years. Philip Darrington

Tektronix Das 9100 Logic analysers. Complete - $£ 700$
Nicolet 800A Logic Analysers - $48 \mathrm{Ch}-16$ Bit - $£ 450$
HP7580日-7585B Drafting Plotter - $£ 1,000$
Bradley 127 DC Voltage Calibrator - $£ 250$
Bradley 125B AC Calibrator + Ration Transformer $1255+$ PI 1254B $50 \mathrm{C} / \mathrm{s}$
Bradiey 1 KC Ac 20.5250
$60-400-1 \mathrm{KC} / \mathrm{s}$
Marconi 6460/1 Power Meters + Heads RF various - $£ 250$ ea
Marconi 6460 Power Meters + Heads AF various - $£ 150$ ea
Marconi CT499 MkII RF Watt Meter Absorption 1-3-10-30-100W-500hm+70ohm
Convertor Adaptor - E350 Includes RF Adaptors Low Loss
Convertor Adaplor- L350-Includes RF
HP6940B Multiprogrammer or HP6941B - £100- 200
Datalab DL1200 Waveform Recorder - $£ 300$.
Datalab DL1200 WX 1170 FX Response ANZ-Led - $£ 300$
Solatron 1170 FX Response
STC Optical Fibre Reflectometer OFR6 - $£ 300$
STC Optical Fibre Reflectometer OFR6- $£ 300$
HP3497A Data Acquisition Control Unit - $£ 300$
HP3497A Data Acquisition Control Unit-L3O0-AM-USB-LSB-PIC-STORE-Led
Redifon Synthesized Receiver R1001-CW-AM-US
Redifon Synthesized Receiver R
Readout $-15 \mathrm{KC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-\Sigma 600$
Readout $-15 \mathrm{KC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 600$
Racal LA1117 Piccolo Modem $-£ 150$
Redifon RFS11 Pre-Selector - Post Selector
$1 \mathrm{MC} / \mathrm{s}-32 \mathrm{MC} / \mathrm{s}-£ 200$
Sayrosa $3-39 \mathrm{MC} / \mathrm{s}$ Programmable Freq Syn-Type
$607+607 \mathrm{~B}-£ 200-£ 300$.
Racal TA1816 1 Kw Solid State Transmitter-MA1034+3 Pare Amps- $£ 1000$
H.C.D. Research Ltd Precision Oscillator $15195000 / 1000 \mathrm{KHz}-£ 250$

Nimbus 400 Hz Convertor Mains - 240AC-500C/s Input-Output $115 \mathrm{~V}-400 \mathrm{~Hz}$ -
$500 \mathrm{~V} / \mathrm{A}$ Programmable 0-125V.G500 FPL - £300. G200R as above
200V/A - E200.
Hedinair + Montford Environmental Ovens etc. Big + Small - £200- £1,000
ICL Clean Linez Unit - $£ 300$.
HP6943A Multiprogrammer extenders - $£ 300$.
HP6525A DC P.U.O. - 4000V $50 \mathrm{M} / \mathrm{A}-£ 350$.
Polaroid + CR-9 Cameras for Oscilloscopes - £100
HP3710A IF-BB Transmitter, HP3702B IF/BB Receiver +
3705A Phase Detector - $£ 250$.
Moor \& Reed Frequency Convertor $400 \mathrm{C} / \mathrm{s} 3$ Phase Type SFC 6K/3AXR - Solid
State - $20 \mathrm{Amps} /$ Mains 240 V AC-50C/s Input - $£ 600$.
HP7586B Plotter Large Quantity Accessories Pens etc - HP-IB-RS2320- $=1.000$.
Benson 16 BZ80 Asynchrome Interface + Accessories \& Pens etc - $£ 600$
Imtec 6000 Microfilm Reader \& Printer, A4-A2 sizes
Plain Paper - Various Lenses - $£ 750$
Fluke Y5020 Current Shunt $-£ 150$
B\&K 2107 FX Analyser - 250
B\&K BFO 1022- 2200
Tektronix Spectrum ANZ-1L5-50HZ-1MC/s - £150
Tekironix Spectrum ANZ-1 $5-50$
$1 L 20-10 \mathrm{MC} / \mathrm{s}-4200 \mathrm{MC} / \mathrm{s}-£ 250$.
FARNELL P.U.AP60-50-60V-50Amps - $£ 1,000$
Fracor 527E Frequency Difference Meter - 5350
HP8900B Peak Power Calibrator - $£ 250$
HP89003 Peak Powe Valmatar - $£ 250$
B\&K 2425 Electronic Voltmeter - $\Sigma 200$
HP6177C DC Current Source - 250
B\&K Two Channel Level Recorder - $£ 400$.
B\&K Two Channel Level Recorder - £400.
Tektronix 221360 MC - Oscilloscope - £300-2213A-£350.
Tektronix $221360 \mathrm{MC} / \mathrm{s}$ Oscilloscope - 2300
Tektronix $221560 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 350$.
Tektronix $221560 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 350$
Tektronix $2445150 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 1,200$
Tektronix $2246100 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 1,000$
Tektronix $2246100 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 1,000$
Tektronix $2225150 \mathrm{MC} / \mathrm{s}$ Oscilloscope - $£ 800$
Tektronix 2245 100MC/s Oscilloscope - £700
Tektronix 491 Spectrum ANZ 10 ML - $40 \mathrm{GHC}-\Sigma$
Farnell P.U. H30/100- $£ 500$.
Schlumberger S1 4922 Radio Code ANZ - £ 400
Aerial Array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector. $100-$
11 GHZ using N type and SMA Plugs \& Sockets - ex equip - $\Sigma 100$
Marconi TF2175 Power Amplifier - $1.5 \mathrm{MC} / \mathrm{s}-520 \mathrm{MC} / \mathrm{s}+$ Book - $£ 100$
Schlumberger 2741 Programmable Microwave Counter - $10 \mathrm{HZ}-7.1 \mathrm{GHZ}-£ 750$
Schlumberger 2720 Programmable Universal Counter-0-1250MC/s - £ $\in 00$.
Tektronix 576 Calibration Fixture - 067-0597-99-£250.
Texscan Rotary Attenuators BNC/sMA - 0-10-60-100DBS - £50- £150
HP809C Slotted Line Carriage - Various trequencies to $18 \mathrm{GHZ}-£ 100-£ 300$
HP532-536-537 Frequency Meters Various Frequencies - £150- 2250
S.E. Lab SM215 MkII Transfer Standard Voltmeter - 1000 Volts

Ailtech Stoddart P7 Programmer - £200.
HP6181 DC current source - £150
HP59501A HP-IB Isolated D/A Power supply programmer
HP3438A Digital Multimeter - $£ 150$.
HP6177C DC Current Source - $£ 150$
HP6207B DC Power Supply - $£ 100$
HP741B AC/DC differential voltmeter standard (old colour) - $£ 100$.
HP6209B DC Power Unit - $£ 100$.
Fluke 431C High voltage DC supply.
Tektronix M2 Gated Delay Calibration fixture - 067-0712-00
Tektronix Precision DC Divider Calibration fixture - 067-0503-00
Tektronix Overdrive Recovery Calibration fixture - 067-0608-00
HP5011T Logoc Trouble Shooting Kit - $£ 150$.
PPM 8000 Programmable Scanner
Fluke 730A DC Transter Standard.
B\&K 4815 Calibrator Head - $£ 150$.
B\&K 4812 Calibrator Head - $£ 550$.
HP FX Doubler 938A or 940A - £300.
HP461A Amplifier $1 \mathrm{KC}-150 \mathrm{MC} / \mathrm{s}$ - Old Colour - $\varepsilon 100$
Ailtech Precision Automatic nolse figure indicator type 75 - $£ 250$.
Adret FX Synthesizer 2230A - 1 MC/s - £250.
Marconi TF2512 RF Power Meter - 10 or 30 Watts - 50 ohms - $\mathbf{5} 80$
Marconi 2830 Multiplex Tester.
Marconi 2828A Digital Simulator
Marconi 2831 Channel Access Switch
Marconi TF2337A Automatic Distortion Meter - $£ 150$.
HP489A Micro-Wave Amp-1-2GHZ - £500
Fluke 893A Differential Meters - $£ 100$ ea
EG\&G Parc Model 4001 Indicator 4203 Signal Averager PI

Tecktronix Plug-In AM503-PG501-PG508-PS503A-PG502.
Cole Power Line Monitor T1085-£250
Claude Lyons LCM1P Line Conidition Monitor - $£ 250$.
Bell \& Howell TMA3000 Tape Motion Aralyser - £250.
HP5345A Automatic Frequency Convertor -.015-4GHZ - £350.
HP3200B VHF Oscillator - $10-500 \mathrm{MC} / \mathrm{s}-£ 200$.
Sencore SC61 Wavetorm ANZ-Microprocessor $60-100 \mathrm{MC} / \mathrm{s}$ - $£ 350$.
Schlumberger 3531D Date Acquisition. System- $£ 300$.
Marconi 6700A Sweep Oscillator with 1-2GHZ PI 6730A - £400.
B\&K 2218 Sound Level Meter - £600.
EIP 331 18GHZ Counter-Microwave - Led - $£ 700$.
EIP 351D 18GHZ Counter-Microwave - Led - 8800
EIP 451 18GFZ Counter-Microwave - Led - $£ 900$.
EIP 545 18GHZ Counter-Microwave - Led - 11,200
Systron Donner 6054D 18GHZ Counter - Led - £800
Systron Donner 6057 18GHZ Counter - Microwave - Nixey - $£ 600$
HP5340A 18GHZ Counter Microwave - Led - $£ 1,200$
HP5340A 18GHZ Counter Microwave - Nixey - $£ 800$
Systron Donner 6061 18GHZ Counter Microwave - Nixey - $£ 500$.
Austron 6014 FX Multiplier - $£ 250$.
Austron 2004 Receiver Loran - $£ 250$
Austron 1201 A Linear Phase Recorder - $£ 250$.
Austron 2010A Disciplined FX Standard - £250. Microtel MSR-903 Microwave Receiver - .03-18GHZ - AM-FM - £2,000
Micren
Microtel MSR-903A 18GHZ FX Counter for Above-£1.000
Microtel MSR-903A 18GHZ I Coltech NM17/27 EMI/Field Intensity Meter -.01-32MC/s - £1,000
Ailtech NM17/27 EMl/Field Intensity Meter - $01-32 \mathrm{MC} / \mathrm{S}-\mathrm{E}, 1000$
Ailtech NM37/57 EMI/Field Intensity Meter $-30-1000 \mathrm{MC} / \mathrm{s}-£ 1,000$
Ailtech NM65T EMI/Field Inter.sity Meter - $1-10 \mathrm{GHZ}-£ 1,000$
Ailtech NM65T EMI/Field Inter.sity
Fluke 5205A Power Amp - 1,200
Fluke 5205A Power Amp-
B\&K 1623 Tracking Filter.
B\&K 1623 Tracking Filter.
B\&K 2607 Measuring Anp.
B\&K 2134 Sound Intensity Analyser
B\&K 280 Microphone Power Supply
B\&K 280 Microphone Power Suppiy. Selector
B\&K 4408 Two Channe
B\&K 1606 Pre-Amp Vibration
B\&K 4420 Distribution Analyser
B\&K 1014 B.F.O. Oscillator
B\&K J2707 Power Amplifie
B\&K 2305 Level Recorders
B\&K 2307 Level Recorders
B\&K 7003 Tape Recorders
B\&K 2615 Charge Amplifier
Fluke 9010A Micro-systems trouble shooter \& many Pods - $£ 350$ + Fods or Probe. Racal/Dana 5002 Wide Band Level Meter
Racal/Dana 5006 Digital Multimeter
Racal/Dana 5005-S-4622 Digital Multimeter
AVO RM215 - L/2 AC/DC Breakdown Leakage \& Ionisation Tester - £400-£450
Fluke 80K - 40 High Voltage Probes - New in Case - $£ 100$
Watkins Johnson 340 A-4 RX LF-1 800KC/s AM-FM-CW-Led Readout- $£ 750$
Watkins Johnson DMS - 105A Demcodulator-AM-FM-SSB - Led Readout - 1600 . Watkins Johnson RS-111-1B-40 V-F Receiver-30MC/s-1000MC s - AM-FMCW - Pan Display - £700.
Watkins Johnson 373A-2 HF Receiver-0.5-30MC/s
AM FM-CW - £400-£500
Watkins Johnson Receivers from $1 \mathrm{KC} / \mathrm{s}$ to $10,000 \mathrm{MC} / \mathrm{s}$ also Tuning Heads
Amps-Counter Readouts - Signal Displays - Distribution Amps - HFNulticouplers
IF Demodulators - Signal Monitors etc.
Racal MA1720 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 500-£ 750$
Racal MA1723 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 1,000-£ 1,500$
Racal MA1724 TX Drive Units $1.6-251 \mathrm{C} / \mathrm{s}-£ 500$
Racal RA1792 HF RX- $100 \mathrm{KC} / \mathrm{s}-30 \mathrm{ME} / \mathrm{s}-£ 1,000$ Back Lighting.
Racal RA 1772 HF RX $-15 \mathrm{KC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 600$
Racal RA17L HF RX $5 \mathrm{MC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 100-\mathrm{E} 250$.
Plessy PR2250G \& H-HF RX LF to 3C MC/s-Memory Led Readout - $£ 650-£ 1,000$
B\&K 2609 Measuring Amp - 5250
B\&K 1613 Filter - $£ 100$.
B\&K 1613 Fiter - I Mouth - £250
B\&K 4215 Artificial Mouth - $£ 20$
B\&K 4220 Piston Phone - $£ 120$.
Dynamic Sciences R-1250 Tempet Fieceiver
Dynamic Sciences R-1250 em-E2,00c
HP3406A Sampling Voltmeter (Broactoand) - New Colour - £200
HP7404A Oscillograph Recorder - 4 Track - £350
HP7404A Oscillograph Recorder
HP11710B 01-11MC/s - Down Convector for 8640B - £350
HP11720A Pulse Modulator $-2-18 \mathrm{GHz}-£ 1,000$.
HP8403A Modulator $-0.4-12.4 \mathrm{GHz}(8731-8735 \mathrm{~B})$ Modulators $-£ 10(1-£ 250$
HP Pin Modulators tor above - Various trequencies $-0.4-12.4 \mathrm{GHz}-£ 150$
HP8699B Sweep Plug-in -0.1-4GHz-Using Yigs-Solid State - $£ 300$.
HP8699B Sweep Plug-in-0. All PI available - $1-40 \mathrm{GHz}$ Sweep.
Racal-SG Brown Comprehensive Headset Tester
Raca-SG Brown Comprehensive
(with artificial head) Z1A200/1- $£ 350$
(with artiticial head) Z1A200/1- $£ 350$.
Marconi $893 B$ AF Power Meter - £200.
Microwave Systems MOS/ $\mathbf{~ M ~} 600$ Growave Frequency Stabilizer
Microwave Systems M
$1 \mathrm{GHz}-40 \mathrm{GHz}-\Sigma 1,000$.
GHz-40GHz - $£ 1,000$.
ACL SR-209-6 Field intech 136 Precision Test RX +13505 Head - 2-4GHZ - $£ 350$
Ailtech 136 Precision Test RX +13505 Head - $2-4 \mathrm{G}$
SE Lab Eight Four FM 4 Channel Recorder - 200.
SE Lab Eight Four FM 4 Channel Recorder Intruction Manual - 1065 Auto Cal Digital Multimeter \& Ins
Datron 1065 Auto Cal Digital Multmeter \& Insiruction Manual- £40.
Datron 1061 Auto Cal Digital Multimeter \& Instruction Manual - £4C0.
Datron 1061 Auto Cal Digital Multimeter a $\mathrm{KC} / \mathrm{s}-1-5 \mathrm{MC} / \mathrm{s}$
Racal MA259 FX Standard -
Internal Nicad Battery - $£ 15$).
Internal Nicad Battery - £156).
Edwards E2M8 Rotary Vacuum Pursps - Brand New \& Boxed - $£ 500$ ea
Fluke 9100 A Troubleshooter \& Pods - New Boxed - $£ 750-£ 1,000$
HP1140 \& 1743 Oscilloscopes $100 \mathrm{MC} / \mathrm{s}-£ 300-£ 450$
Tektronix P1 7A19-7A29-3A-4-6-7m11-
Tektronix 7000 Series Oscilloscopes We can supply all variations of Main Frames and Plug-ins for this range from stock up to $1 \mathrm{GHz}-£ 300-£ 3,000$.

Gunn diode blasts through output and frequency limits

R
esearchers at Litton Solid State in Santa Clara, California, and the US Army Research Laboratory in New Jersey and Maryland have taken Gunn diode technology to new limits of frequency and efficiency. JD Crowley and colleagues have developed a well-behaved indium-phosphide device

Exceeding the performance of any Gunn diode available to date, this indium-phosphide device achieves 65 mW at 138 GHz with 2.6% conversion efficiency.
capable of generating 65 mW of cw power at 138 GHz with an efficiency of 2.6%
(Electronic's Letters, Vol 30), No 6).
For reasons of its higher efficiency, indium phosphide is generally preferred to gallium arsenide for frequencies above 35 GHz .
Up until now, though, very little work has been done with Gunn diodes above 100 GHz . Yet, because of their reliability, low cost and case of use. these devices have enomous potential for use in radio astronomy receivers, short range radio links and highresolution atmospheric radars.
By normal standards the new device is exceptionally thin, though the authors say this style of construction is necessary to reduce the positive parasitic series resistance of the $\ln \mathrm{P}$ substrate and also to reduce skin eflect losses.

The method of fabrication involves vapour
phase epitaxial deposition, after which the back side of the wafer is polished chemomechanically using a bromine-methanol solution. Metallisation and the fitting of an integral heatsink are then followed by the etching of individual mesas.

When packaged and fitted in a WR-6 waveguide oscillator circuit, each diode was found to perform with adequate stability over a $0-50^{\circ} \mathrm{C}$ range.
Frequency variation with temperature was $-5 \mathrm{MHz} /{ }^{\circ} \mathrm{C}$, while output power was maintained within a few milliwatts over the entire temperature range.
Based on these experimental findings, the researchers confidently claim that low-cost, simple solid-state sources can now be constructed in the 140 GHz range for use as local oscillators, drivers for multipliers, or as low power transmitters.

The wobble that gives birth to a planet

Stories of astronomers claiming to have discovered planets beyond our own Solar System are familiar in scientific circles. Now, after much scepticism, it appears that the astronomical world is taking such claims seriously following interpretation of 'wobbles' found in a pulsar.

Pulsars are rapidly rotating condensed stars that take their name from the powerful radio pulses they beam into space every few milliseconds. Three years ago British radio astronomer Andrew Lyne thought he had found minor perturbations in the otherwise highly regular radio emissions from a pulsar. He conjectured that minor irregularities in one pulsar's beat could only be due to the gravitational tug of objects in the vicinity - in other words, planets.
Lyne's calculations were subsequently proved wrong. But they inspired Alexander Wolszczan of the Pennsylvania State University and Dale Frail of the National Radio Astronomy Observatory to undertake observations of another pulsar, code-named PSR 1257+12. A year later, using new techniques to analyse signals from the 305 m Arecibo radio telescope in Puerto Rico, they found perturbations in the pulsar's rhythm that could not be explained by any error in experimental procedures. The evidence this time was very much stronger. But the astronomical community was still in no rush to conclude that planets were responsible.
Now Wolszczan's latest calculations,
based on a further two years' statistical analysis (Science, Vol 264, p.538), have convinced, it seems, even the most sceptical.
In the same issue of Science Fred Rasio of the Institute for Advanced Study at Princeton says: "It would be difficult to imagine any other way the data could be fooling us".
So small is the perturbation in the pulsar's tick that Wolszezan had initially expected to take five years to come up with a definitive result. He describes the perturbation as being so slight that detecting it is like transporting a snail a distance of 1500 light years, making it crawl at its usual pace, attaching a transmitter to it and then measuring its movement to within a few millimetres a second.
Two years' of data from the pulsar (located in the constellation of Virgo) reveal the existence of two orbiting bodies each with about three times the mass of the Earth. Fortuitously they have closely related orbital periods of 66.6 and 98.2 days and, at that approximately $2: 3$ ratio, pass each other frequently and have a short overall orbital pattern. The result has been that Wolszczan and his team have been able to dig meaningful signals out of the noise in three years, rather than the expected five.
What has finally convinced Wolszczan's colleagues is the predictive aspect of his analysis. Back in 1992, soon after he discovered the first convincing pulsar 'wobbles', he used his data to predict
precisely, months in advance, the subsequent pulse patterns. The fact that later recordings have been exactly on target eliminate most possibilities of flaws in the data analysis - and also effects of the Earth's movements, which were not fully accounted for in Andrew Lyne's study.
The story is not yet complete by any means. Wolszczan says that the timing-data point to the existence of a third moon-sized object that orbits the pulsar every 25 days. There are also hints of a fourth body in a much larger orbit. All these planets are, of course, much too far away to detect in either the visible or the infra-red parts of the spectrum. So it is extremely unlikely that they 'll ever be 'seen' in the conventional sense. Though Nasa is soon to inaugurate Aseps (astronomical studies of extra-solar planetary systems) using ground-based telescopes to search for large planets around a hundred much-nearer stars.
As ever, the $\$ 64,000$ question is: do these latest planetary discoveries increase the odds of ever finding life elsewhere in the Universe?
In the statistical sense the answer must be yes, though it is unlikely that such life would exist on planets circling a pulsar.
Wolszczan comments: "If you envisage someone with lead armour to protect them against the high energy radiation from the pulsar, maybe there are such creatures. But the sort of life we're accustomed to cannot possibly exist on a planet like that".

Laser that could reshape conventional technology

Asemiconductor laser designed on a fundamentally new principle may open up a whole range of applications: from novel ways to detect air pollution, to collision avoidance radars for cars. Developed by Federico Capasso and his colleagues at AT\&T Bell Laboratories in Murray Hill, New Jersey, the new quantum cascade laser produces infra red radiation in parts of the spectrum that other lasers cannot easily reach.
What makes the device special is that the wavelength is determined, not by the chemistry of the semiconductor material, but by its physical structure.
Unlike an ordinary semiconductor laser, whose emission occurs when excited electrons cross the intrinsic bandgap of the material, the AT\&T laser generates its radiation when electrons spill down an 'energy staircase' of sandwich-like quantum wells. These steps can be made in different sizes, so the laser can cover a wide range of the infra-red spectrum.
The only semiconductor lasers capable of operating in the far infra-red have been based on

Until now, the only lasers capable of producing far-infra-red have been mercury-cadmium-telluride types, which are difficult to fabricate. This new device uses aluminium indium arsenide and indium gallium arsenide
mercury cadmium telluride - a difficult material to fabricate.
The idea of using quantum wells to make a laser goes back to the early 1970s when an IBM team led by Leo Esaki suggested using such wells to constrain electrons to specific energies or wavelengths. The team predicted that when electrons tunnelled from well to well they would emit radiation of a wavelength determined by the geometry of the structure. Through the 80 s, experiments at MIT and AT\&T showed that it was indeed possible to create such quantum wells by delicate molecular beam epitaxy. The techniques were extremely complex however and, although sequential electron tunnelling was achieved, no radiation was emitted.
The latest results, achieved in a device with 25 active regions is the end product of hundreds of attempts using nanometre-scale sandwiches of aluminium indium arsenide and indium gallum arsenide. Main snag, at the time of writing, is that the whole assembly needs to be cooled to 90 K and can only be operated in pulsed mode. But this shouldn't be a serious limitation; it is only because the device is so inefficient. Without such operating constraints the necessarily large forward current would otherwise cause it to overheat.
On the credit side, the new 'staircase' laser has a much narrower spectrum than normal band-gap devices - a direct product of its operating principle. Electron energies are defined by the structure of the device so they can be specified extremely closely.
As yet the laser is still at the experimental stage and cannot be considered a practical device. But for a technology that is less than six months old, progress has been dramatic. And once the efficiency problems have been overcome commercial applications are expected to follow very quickly.

Semiconductor quantum-cascade laser operates on an entirely new principle. When current flows, electrons pass down the structure. Each time the an electron hits an energy-level step, a photon is emitted which in turn stimulates other photons by bouncing beiween mirrored surfaces.

Physicists find their missing link

PAccelerator Laboratory near Chicago have discovered what they believe is the last fundamental building block of matter. The top quark has come to light after decades of high energy experiments in which protons and anti-protons have been smashed into each other at speeds approaching that of light. From more than a million million such collisions, the team have isolated about a dozen events providing strong circumstantial evidence for the top quark.
Over 20 years ago Murray Gell-Mann, a Caltech physicist developed what is now known as the "standard model" of everything. His model postulates that all matter consists of various combinations of six quarks and a
matching set of six lighter particles, collectively called leptons (see table). Its undoubted neatness and symmetry appeal immensely to physicists.
Up to now, most of the quarks - the name itself comes from James Joyce's 'Finnigan's Wake' - have obligingly turned up in the results from big atom-smashing experiments: except that is for the top quark.
The 'strange' quark was discovered in the early 1950s. while 'charm' and 'bottom' showed up two decades later. But without 'top', the standard model could hardly be regarded as complete.
In the continuing search, the main problem facing quark hunters is that such particles, because of the tightness with which they bind

Scientists believe that the 'top' quark is the last fundamental building block of matter.
These are the
four families of three generations of elementary particle constituents.

Generation	1	2	3	Electric charge
neutrinos				
charged leptons	$\overbrace{V_{e}}$	V_{μ}	V_{τ}	0
quarks	electron e^{-}	muon μ^{-}	tauon τ^{-}	-1
quarks	charm	top	$+\frac{2}{3}$	

Periodic table of elementary particle constituents
together. cannot be observed directly. Free quarks do not exist in nature, and in the case of the top quark, they rarely exist in any form. To create them requires smashing protons and anti-protons together with enormous energies, the particles annihilating themselves in a blaze of energy, comparable on a small scale with that of the Big Bang that initiated the Universe.
It is from this blaze of pure energy that quarks sometimes condense.
Even then, quarks can remain irritatingly elusive. On a BBC World Service programme, Dr Bill Carrithers, one of the Fermilab team described it like this: "The top quark decays instantaneously after being produced. So what we look for are signatures of its daughters or even grand-daughters as the particles decay down to the ones we see in the detector. We then work backwards to reconstruct what the top quark must have looked like".
What is particularly fascinating about the top quark is its mass. Latest estimates suggest that is about as heavy as an atom of gold by far the most massive of all the sub-atomic particles.
Next step for particle physicists, after finding events to strengthen the evidence for the top quark, will be to track down another entity called the Higgs boson. This particle, also predicted by the standard model, may explain the mystery of why some quarks are more massive than others.
It could even explain why they have mass at all.

Solar power reaps efficiency benefits

Environment-conscious engineers have long dreamed of being able to generate electricity - efficiently - from sunlight. Solar cells have no moving parts and little to wear out; create no pollution, consume no scarce fossil fuels and last for 20 years or more. In many senses they would be the perfect source of power. But they have four main drawbacks: they only work during the day, they are expensive, they are inefficient and they produce unpredictable amounts of dc.
Yet as environmental considerations become more important and as prices fall, solar cells are being taken increasingly seriously, especially in situations where an intermittent supply of low-voltage electricity is acceptable.
The main factor behind the recent surge of interest in solar cells is their rapidly improving efficiency. One example of progress is a low-cost cell made in the USA by a research group called United Solar Systems. This joint venture of Canon and Energy Conversion Devices has developed a cell based on a thin film of amorphous silicon that will capture sunlight with an efficiency of 10.2%. Two years ago, the best figure for this type of low-cost cell was about 6%.

The new cell is a triple sandwich of silicon with silicon/germanium alloys deposited on a panel of stainless steel. The construction not only helps a wider spectrum of light energy to be absorbed, but can also be physically bent.
Previously, most solar cells capable of efficiencies greater than 10% were made from single crystals of silicon or polycrystalline silicon. Such cells (and those made from III-V compounds) are necessarily much more expensive than their amorphous silicon counterparts.
Even so, they too have been getting progressively better. A recent report (Physics World, April 94) describes a record-breaking solar cell from the Japanese company Mitsubishi. They claim to have achieved an efficiency of 14.2% in what they belicve is a commercially viable cell made of polycrystalline silicon. The previous record for this type of cell was 10.9%.
These efficiency figures may seem very low compared with, say, a steam generator. But once a solar cell is installed, the running costs are virtually nil. And even if the cell is only 10% efficient, a 1 m square of it will
still generate 100 W of electricity in full sunlight.
What these recent advances are now demonstrating is the closing gap between solar-generated power and that generated by the burning of fossil fuels.

According to some industry figures, the cost of solar power will not nced to fall by much more than a factor of two before it becomes cost-effective for supplementing the ac grid. A coalition of US companies is already pledged to install 50 MW of solar power over the next six ycars.
Here in the UK the climate may (literally) be less favourable: less sunlight and variable weather, especially in winter when electricity demand is high. Expensive land is also frequently cited as a major obstacle.

The way forward, according to many experts would be to fit solar panels to the walls and roofs of buildings and use the resulting power for supplementary purposes, using efficient dc-to-ac converters when necessary.

Research Notes is written by John Wilson of the BBC World Service.

THE BEST LOW COST PROGRAMMERS Designed \& Manufactured in the UK

SPEEDMASTER 1000

 SPEEDMASTER 1000E UNIVERSAL PROGRAMMER\square Superfast PC based programmer - Programmes; EPROMS UP TO 8M BIT, FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, MICROs ($8748 / 51$), PALs, GALs, EPLDs, PEELS, MACHS, MAPLs, MAX

- Plugs directly into parallel port
- 1000E Version has ROM/RAM emulator built in: 128 k (1 Mbit) standard, optional 512K (4Mbit)

MICROMASTER 1000 MICROMASTER 1000E UNIVERSAL PROGRAMMER

 - Programmes: EPROMS UP TO 8M BIT. FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, PALs, GALs, EPLDs, PEELs, MACHs, MAPLs, MAX etc. - PLUS over 80 different Micros including 8748/51, $68 \mathrm{HC} 705,68 \mathrm{HC} 711$, PICs, Z86, TMS320, TMS370 etc DIPs WITHOUT ADAPTORS OR PERSONALITY MODULES!- Package adaptors available.
-1000E Version has ROM/ RAM emulator built in: 128 K (1 Mbit) standard, optional 512K (4 Mbit)

SPEEDMASTER 8000 GANG/SET PROGRAMMER

- 8 way, Pc or stand alone
- Super-fast programming times, manufacturer recommended algorithms
- 32 pin devices as standard
- Support for 8748,51,

TMS370, PIC Micros and 40 pins.

WHY BUY AN INFERIOR IMPORTED PROGRAMMER WHEN YOU CAN HAVE A MANUFACTURER APPROVED UNIVERSAL PROGRAMMER/EMULATOR DIRECT FROM ICE TECHNOLOGY!

\squareWe offer the best range of low-cost programmers available, now including our unique UNIVERSAL PROGRAMMERS WITH BUILT IN EMULATORS
\square Unrivalled device support, for example the Micromaster 1000 programmes PICS, $286,87 \mathrm{C} 705,68 \mathrm{HC} 705$, TMS370, 77C82 ETC WITHOUT ADAPTORS, as well as the full range of Eproms, PLDs etc supported by all our universal programmers.
\square Approved by National Semiconductor for their full range of PALs, GALs, and MAPLs - other programmers claiming approval are often only approved for EPROMs - a much less exacting specification!
\square All our programmers and programme/emulators work off the standard parallel port with any IBM compatible PC, even laptops
Unbeaten programming times:Easy upgrade path between Models.
FOR MORE DETAILS, DEVICE LIST AND DEMO DISK CALL NOW ON

CMR under test

Instrumentation amplifiers are front ends for signals arriving from hostile environments. They are available in many forms, but for the most part they have twin, differential or balanced inputs.
Unwanted common-mode signals - hum, noise, dc, etc and dangerous voltages are generally attenuated or cancelled out. Gain is restricted to wanted, differential signals, which are often smaller than the unwanted interference.

> How good is the commonmode rejection capability of today's high performance analogue ICs in real world test circuits? How do current-feedback ICs fare? Design consultant Ben Duncan presents here a world exclusive - a comparitive study of cmr performance for eleven leading linear ICs.

Instrumentation amplifiers - or in-amps - can be built from discrete components, but most applications now use integrated circuits. Integrated-circuit data sheets contain a figure for commonmode rejection, cmr, usually at a spot frequency. Most also have a graph showing how cmr degrades with increasing frequency. But how far can this information be trusted when the test levels, topology and critical passive component values are rarely specified? And how much does cmr change when surrounding component tolerances are imperfect, or the circuit topology changes?
Although common-mode rejection is a key feature allowing signals to be distinguished from interference, many applications will also need instrumentation amplifiers with good performance in other dynamic areas such as noise, slew and bandwidth.
My reason for being interested in op-amp cm rejection is taken up in the panel.

The contenders

Table 1 lists devices considered. They are chosen for their combination of the following attributes.

High gain-bandwidth product. In order to provide a bandwidth of 1 MHz at +40 dB or more gain, minimum gain-bandwidth product was limited to 100 MHz . Current feedback helps immensely here but is not a prerequisite Many good in-amps and op-amps from manufacturers such as AD, Burr-Brown and LTC are ineligible since they have bandwidths below 500 kHz at +40 dB . The LTIO28 is marginal but included for illustration.
When selecting examples of current-feedback op-amps, I noticed that Analog Devices' current feedback op-amp data hampers the designer by omitting gain/bandwidth plots. These are needed all the more because with current feedback ordinary loop-gain-proportional bandwidth relationships do not arise.

Low noise. To avoid adding significantly to inevitable noise from the input attenuator-network, in most cases only devices with a noise figure of less than $5 \mathrm{nV} / \mathrm{NHz}$ were chosen, with noise from a typical input attenuator contributing about $5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}^{1}$.
The rather noisier AMP05, and only slightly over-noisy HA2548, have been accepted because of their wider bandwidth and much higher slew limit. With current feedback op-amps in this class of circuitry, current noise dominates. This is because certain resistor values in practical circuitry capable of withstanding high cm voltage need to be higher than the ideal for current feedback.

Slew rate. As a minimum limit for slew rate I chose $10 \mathrm{~V} / \mu \mathrm{s}$. For switch-mode power supplies, the AMP05 is marginal, while HA2548, AD829, and the AD811 and 818 respectively meet and exceed the maximum requirement.

Offsets. DC gain may be over 100 so offsets need to be low. Offsets that do not displace the smallest wanted signals by more than 10% are not too problematical. Servo control of dc might be attractive, but the ideal differential summation almost doubles the parts count.

Common-mode voltage. Common-mode voltage capability, or cmv, is greater than $\pm 10 \mathrm{~V}$ for the devices chosen.
many modern, very high speed op-amps, with ± 5 to $\pm 7 \mathrm{~V}$ maximum supplies.

Common-mode rejection. Last but not least, the highest cmrr is sought up to at least 100 kHz or below. Makers’ specifications are quite variable here.

High cmv topologies compared

Common-mode rejection performance will
depend on the topology used. Figure 1 shows the simplest scheme for handling high cmv. I arranged it to allow either IC op-amps or inamps to be plugged into the front end network. Instrumentation amplifiers were connected via a short, tightly twisted pair.
Compared to a previously published version^{2} of Fig. 1, resistor values are lower. Also, recovery gain for the op-amp version, R_{6} / R_{1}, is set for +18 dB .

Fig. 2. Two op-amps use shunt feedback and common-mode voltage is actively subtracted. With this circuit, imperfect cancellation prevented deep nulls. For cmr better than -80 dBr above 100 kHz , layout is critical.

Even if there is enough gain-bandwidth product to support higher gain, this is about the maximum without adding complexity ${ }^{3}$. As shown, R_{1} 's value is as low as reasonably possible. With R_{6} at $160 \mathrm{k} \Omega$, parasitic capacitance starts to affect bandwidth just above 1 MHz .
Figure 2 shows another scheme described by Jun ${\underset{2}{ }}^{4.5}$, using two op-amps. Monolithic inamps are not applicable here. Shunt feedback means that neither op-amp front-end sees appreciable cmv, provided the feedback is operative.
Output of $I C_{1}$ is adjusted via $P R_{1}$ to precisely cancel $/ C_{2}$ output originating from the lower unput. Any cmv is manifest at the output of $I C_{1}$. For a given recovery gain, noise gain in $/ C_{2}$ is intrinsically 10 dB higher compared to Fig. 1: at 50 dB . it comprises 10 dB from the direct input, and 40 dB to make up $/ C_{1}$ output. Recovery gain is kept to just +10 dB accordingly. Potentiometer $P R_{2}$ provides phase trim, forming a T-network in conjunction with C_{1}, for best cancellation at hf.
Figure 3 also uses two op-amps ${ }^{6}$. At $R_{6,7}$ junction, the differential-mode signal sums to zero, leaving the full cmv. A cancellation signal is fed forward across the differential inputs by $/ C_{1}$, actively suppressing the cmv it reads at the junction. Unlike the previous circuit. IC in-amps are applicable for $/ C_{2}$, and preferable. as the active impedances to ground are then in principle symmetrical.

Depth of hf cmr trim with the trimmer capacitors depends on $/ C_{1}$. A high slew rate and generous bandwidth is important for $I C_{1}$ if cmvs above 10 kHz are expected. Otherwise progressively disorganising cancellation at vhf shows up as a spiky, un-nullable residue.

Test environment

All the test circuits had local wideband decoupling typically comprising $100 \mathrm{nF}+10 \mu \mathrm{~F}$. In addition they were powered by a low impedance, low noise Thurlby $\pm 16 \mathrm{~V}$ lab supply. Trimmer potentiometers were Bourns cermet types and trimmer capacitors were miniature low-k ceramics.
All tests were performed

Table 1. Dynamic specifications of shortlisted IC operational and instrumentation amplifiers, based on manufacturers' data.

Part	Maker	Noise @1kHz $\mathrm{nV} / \mathrm{NHz}$	BW @40dB MHz	CMR @100kHz -dB	Slew limit $\mathrm{V} / \mathrm{\mu s}$	+Vs max volts	CMV @ $\pm 15 \mathrm{v}$ volts
Instrumentation amplifiers: 510							
AMP05 CFB	AD	16	3	57	5-7.5	18	
INA103	BB	1	0.7	85	15	25	11-12
SSM2016 CFB	$A D$	0.8	1	na	10	36	
SSM2017CFB	$A D$	0.95	1	97	10-17	22	8
AD797	AD	0.9	0.8/4.5*	56	12.5-20		
AD81才 CFB §	$A D$	1.9	50 \dagger	70	2500	18	13.5-14.5
AD818	AD	10	$2.6 \dagger$	65	400-500	18	$12-14.3$ $13.5-14.5$
AD829	AD	2	0.66/7.5 \dagger	83	230	18	
HA5137	Harris	3.4	1	60	35	17.5	
HA2548	Harris	8.3	1.5	62-74	120	20	
LT1028	Lin Tech	1.1	0.5	80	11-15	22	11-12

Notes: All figures typical.

* Higher with decomp C.
\dagger Estimated from ancillary data.
§ Noise current $20 \mathrm{pA} \sqrt{ } \mathrm{Hz}$.
with Holsworthy 0.5%, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistors in all the critical gain/cmr determining positions - including the attenuator front end. Each test circuit was driven from the Audio Precision generator with the hot and cold inputs joined, i.c. in commonmode test or 'cmtst' mode.
In all graphs. $\mathrm{cmr}+\mathrm{n}$ is plotted in dBr below a hypothetical output of +34 dBV , i.e. 49 V ms , to emphasise cm residue at the expense of noise. The noise floor will be much nearer with small differential-mode signals.

For Figs 4-21, the Audio Precision test set plots
$\mathrm{cmr}+\mathrm{n}$ versus frequency in two bandwidths Upper plots are from 10 Hz up to 200 kHz with a bandwidth from less than 10 Hz to more than 500 kHz . The lower plot is a narrower sweep with a -IdB bandwidth from 400 Hz to 22 kHz . Difference between the two can help indicate how much cmr in the upper plot is receiver noise (+n).
Despite the high reference level and $1 / 3$ rd octave sweep, often only noise is extant in the narrow band plots; literal cmr can only be estimated. In most cases diminishing cmr above 100 kHz has been kept at bay by deft trimming.
Although the test set stops short of 1 MHz , any rise can only go so far in the invisible top half decade from $200 \mathrm{kHz}-\mathrm{lMHz}$. In many cases, a little cmr decay above 200 kHz is of little significance. When double checked, the cmr curves' repeatability was about $\pm 3 \mathrm{~dB}$ at $200 \mathrm{kHz}, \pm 2 \mathrm{~dB}$ at 20 kHz and $\pm 1 \mathrm{~dB}$ at 100 Hz for wideband readings. Narrow-band plots were about 0.5 dB closer.
Results Figs 4-14 show typical cmr +n versus frequency plots for the first eleven devices in Table 1 using test circuit Fig. 1. All the devices achieve at least -90 dB across the 500 kHz measurement bandwidth. This is referred to a hypothetical $49 \mathrm{~V} /+34 \mathrm{dBV}$ level however. Referred to $1 \mathrm{~V} / 0 \mathrm{dBV}$, cmrr is a more prosaic -56 dB .
In some cases, Fig. 6 for example, the 'real' cmr curve behind the noise appears to be the $-6 \mathrm{~dB} /$ octave slope that can be drawn down from 200 kHz on the upper plot to intercept the narrow-band plot at about $20 \mathrm{kHz}^{7}$

On this basis, you can estimate that lf cmr is more than -130 dBr , or better than -96 dBV .
With careful trimming, even the narrowband residue up to 5 kHz in the lower plots is predominantly noise. The ranking has much in
common with the noise densities shown in Table 1. but with some surprises. This is in part because uniform extrapolation from 1 kHz . noise density out to 200 kHz may be presumptuous. As you might expect, by having $20 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ noise in conjunction with resistor values as high as $160 \mathrm{k} \Omega$, the $A D 8 / /$ currentfeedback op-amp appears to have the poorest cm rejection, Fig. 13. Effective total-noise density, $V_{\mathrm{n}}+I_{\mathrm{n}}$, is above $10 \mathrm{nV} / \mathrm{NHz}$, emphasising the ' + n' part.
Figures $15-17$ show typical $\mathrm{cmr}+\mathrm{n}$ versus frequency with test circuit Fig. 2. High-frequency kinks in Fig. 15 show that cmr involves non-linear phenomena. The residues looked like distortion harmonics and the nulling was only bluntly effectual. Commonmode voltage cancellation is critical. Minute changes in lead dress and component positioning had a large bearing on performance. Figure 16, with an un-compensated $A D 829$ shows how $P R_{1.2}$ can interact, depending on trim sequence. Such interaction can possibly be overcome, and better cmr attained by using the $A D 829$'s diverse compensation facility, with the compensation on $I C_{1}$ set at 68 pF . Compensation on $/ C_{2}$ requires tuning below 60 pF for best results. With extra attention to detail, $\mathrm{cmr}+\mathrm{n}$ may go lower, but the best result attained in these tests was -88 dBr or -54 dBV , as shown in Fig. 15.
Figures 18-20 illustrate performance of test circuit Fig. 3. The $20 I 7$ was chosen for $I C_{2}$, to keep the circuitry simple with little trade-off. Other in-amps and IC op-amps were tested in $I C_{2}$ position. Differences broadly corresponded with Figs. 4-14, where stable. But some had vhf oscillations, or $\mathrm{cmr}+\mathrm{n}$ versus frequency anomalies. These were helped no doubt by the abnormal source impedances presented to $I C_{2}$'s inverting input in the midst of

Fig. 3. Nearly all the common-mode rejection is provided actively by $I C_{1}$ with surrounding resistor bridge. Trimmer C_{1} is set to prevent vhf oscillation. Layout is not too critical, though brevity of the upper node when $T C_{2}$ is an op-amp will enable best performance at high frequencies.

$I C_{1}$'s feedback loop.
Below $10 \mathrm{kHz}, \mathrm{cmr}+\mathrm{n}$ performance with an AD829 or HA5137 for $/ C_{1}$ is clearly a little better than the results from the other test circuits. These devices were chosen for their good performance in test circuit Fig. 1. Inevitably, the trade-off with active cancellation is poorer high frequency performance compared with the passive method of Fig. 1.
Finally in this section, Fig. 21 shows how some of the circuits outperform the Audio Precision test equipment. Fortunately, cm rejection is not superimpositive.
The measurements appear to demonstrate that the 100 kHz cmr of the op-amps and inamps is both over- and under-stated by their makers., However cmrr depends on references and conditions, which are not so clearly defined.
What is clear is that surprisingly similar and repeatably high cmrs can be attained by all the modern IC op-amps and in-amps tested. These high cmrrs can be maintained up to surprisingly high frequencies, given informed layout and careful trimming - particularly with the test circuit of Fig. l.

Simulating cm rejection with Spice

Few of the op-amps tested here were available as Spice models but I evaluated those that were and others with MicroCAP-IV.
Harris's models do not presently cover cmr. Models for $A D 797$ and 829 do, but since the devices have more than the basic five pins i.e. inputs, output and power - they need 'hard pinning' for MicroCAP to run. This means that a six-pin op-amp shape has to be created or called up. Even if you do not need the compensation pin, MicroCAP will not accept it simply being disposed of by connecting it to ground via a resistor - a common trick with some other Spice simulators.
Other models had peculiarities, requiring tweaking to make them run. The $A D 845$ model has a hyphen which causes difficulty because MicroCAP version 4 is written in C+.

Of ten Spice models tested, only five ran first time and plotted cmr. These were Analog Devices' AD8II, 8I8, Burr-Brown's OPA27 and 604; and Linear Technology's LTIO28. Burr-Brown had the best documentation - a booklet - while Analog Devices had the most models with cmr included.

Detailed examination of the different makers" models revealed behaviour that could trick the unwary. First, cmr can be 'tuned' way beyond its specifications by use of $R C$ bridge values minutely offset from perfect matching. Second, tuning in this way reveals different ultimate depths and hf decay slopes. Few match the classical model ${ }^{7}$ of cmr decay with frequency - any more than the Audio Precision plots of Figs 4-20 do.

Thanks to Joe Buxton and other staff at Analogue Devices in the USA for guidance on Spice and cmr.

Fig. 4. Common-mode rejection for AD797 degrades above 500 kHz , but the narrow-band plot does not show a corner.

Fig. 6. Common-mode rejection of the SSM2016 audio in-amp degrades gracefully above 20 kHz and is only 10 dB worse at 200 kHz . Its narrow-band $\mathrm{cmr}+\mathrm{n}$ is one of the best but begins rising above 1 kHz . Remember this device employs some current feedback.

Fig. 8. Some current feedback is used in the SSM2017 audio IC. It performs similarly to the AD797 of Fig. 4 but with slightly more rapid cmr decay by 200 kHz .

Fig. 10. Harris' HA5548 provides joint widest cmr bandwidth before decay. Compared to AMP05 in Fig. 9, its cmr+n is about 3dB better.

All upper graph curves relate to wideband cm rejection (10 Hz to 200 kHz). All lower graph curves relate to narrowband cm rejectior: (400 Hz to 22 kHz).

Fig. 5. For the $\mathbf{L T 1 0 2 8}$, cmr degrades quite rapidly above 20 kHz , while the narrow-band plot echoes this three octaves lower.

Fig. 7. Burr-Brown's INA03 ini-amp combines aspects of the ICs in Figs 4 and 6.

Fig. 9. The AMP05 in-amp has current feedback, and along with Fig. 10 displays joint widest cmr bandwidth before decay.

Fig. 11. One of the best combinations of low $\mathrm{cmr}+n$ and wide cm rejection bandwidth is provided by Harris's HA5137. The pair of hf variations show the typical effect (upper) of imperfect trimmer capacitor setting.

Fig. 12. The $A D 829$ is similar to the $A D 797$ but its $\mathrm{cmr}+\mathrm{n}$ is a few decibels better.

Fig. 14. In terms of cmr bandwidth before decay, the AD818 is second only to the HA2548 and AMP05. Its cmr+n on the other hand is intermediate.

Fig. 16. Test circuit Fig. 2 with AD829s for three settings of PR_{2} (a-c). Op-amp compensation is not used. Cancellation is oddly poor at both If and hf.

Fig. 18. Results from a Harris HA5137 with an SSM2017 in Fig. 3 test circuit. Compared to Fig. 11, noise is about 3dB lower, but cmr decays earlier, as you would expect.

Fig. 13. The sole current feedback op-amp, the AD811 has a small but unusual cmr decay step at about 8 kHz in the wideband plot. The poor $\mathrm{cmr}+\mathrm{n}$ is degraded by noise as described in the text.

Fig. 15. Using AD797s in Fig. 2 test circuit, both narrow and wideband plots have similar cmr+n characteristics. At If they are about 3 dB worse than the single AD797 in Fig. 4. Multiple plots with slightly varying trims of preset $P R_{1}$ are shown. The hf inflexion can vary widely with $P R_{2}$ setting.

Fig. 17. Using HA2548s in Fig. 2 test circuit yields a poor cmrtn of only $-60 d B r(-26 d B V)$. Two plots were made of the narrow-band response, which is no better than the wideband, signifying high cm and low ' +n '.

Fig. 19. With an AD797 and SSM2017 in Fig. 3, the null became very shallow. Narrow-band plot (A) is tangential to (B), the wideband. Note rapid cmr decay above 500 Hz . In fact, cmr nulling was 'dulled' with the AD797, probably because of input parasitics. It remained so despite retrials.

Fig. 20. An AD829 with an SSM2017 in Fig. 3 is a better combination. Changes compared to Fig. 12 mirror the HA5137 of Figs 11 and 18, but are even better. Topological noise is 8dB lower compared to Fig. 12.
While bandwidth decay sets in at around 20 kHz , it is barely an octave lower. The null is crisp - a good sign. Overall, results with this circuit are highly dependent on $I C_{1}$.

Fig. 21. Audio Precision test set receiver's own, transformer-aided cmr performance. Wide (A) and narrow-band (B) modes have the same $+16 d B V \mathrm{~cm}$ test operating level, as Figs 10-20. All the test circuits are superior below 500 Hz , and effectively as good or better above 10 kHz - after considering their 41 dB or 49 dB higher noise gain. Fortunately, the test set's cmr performance does not restrict measurement results. Degraded cmr between $10-300 \mathrm{~Hz}(\mathrm{~A})$, is caused by the test set's dc blocking capacitors (see text).

A probe for live places

My interest in cm rejection stems from a need to measure millivolt signals on the mains. Figure 22 shows points on an off-line psu that often need measuring. It includes the traditional, expensive, isolating transformer.
Figure 23 shows an attenuator for reading highvoltage signals. This is all that is needed to read large differential signals with an existing instrumentation or differential amplifier.
For small differential signals, irrespective of the circuit's cm rejection, cm voltage must be attenuated enough to prevent the active circuitry experiencing a cmv beyond its limits. Saturation or malfunction from excessive cmv can be invisible on a oscilloscope, if dc or at some frequency distant from the differential-mode signal.
For op-amps and in-amps operating on $\pm 15 \mathrm{~V}$ supplies, maximum cmv for normal, linear operation is at least $\pm 10 \mathrm{~V}$ (see Table 1). Generally the rating changes pro-rata with the supply. So Analog Devices' SSM2016, with its exceptional maximum $\pm 36 \mathrm{~V}$ supply capability, could handle cm voltages of up to $\pm 24 \mathrm{~V}$.
While this is a worst case allowance, Fig. 24 from Burr-Brown's INA03 in-amp data shows how cm voltage below positive and negative supply rails at the op-amp inputs can reduce
headroom by subtracting from output swing. However, INA03 output gain can be increased to alleviate the limitation; a unique feature.
For a 400 V maximum cmv input, cm attenuation of about $35 \times$ or -31 dB is therefore the bare minimum required to interface with op-amps or in-amps having $\pm 15 \mathrm{~V}$ supplies, Fig. 25. Since common and differential-mode attenuation come almost hand in hand when achieved resistively, attenuation should not be too generous. If it is, the differential-mode signal's noise and bandwidth will be needlessly degraded by the extra recovery gain required.
Figure 26 shows the complete circuit for interfacing sately with the mains (obviously, you always need to observe standard safety precautions when dealing with the mains - edf). It replaces galvanically isolative bu: gain and band-limited transformer-coupled probes, as shown in Fig 22's lower th comer. It can resolve a few mV to tens of volts on top of 400 V ac or dc or cm voltage, from dc to 3 MHz .

How much resolution?

Current measurements may be made on typical switch-mode power equipment by reading across a current sensing resistor such as points A
to D in Fig. 22. To do this accurately, a commenstrately low inductance shunt is needed.
Suitable components have resistances of $10 \mathrm{~ms} \Omega$ and below ${ }^{8}$. Resolving a minimum current of 1 A then requires clean recovery of signals at around 10 mV . A gain of 20 dB provides $100 \mathrm{~m}: / \mathrm{A}$ - convenient for men:al arithmetic. In practice, a more modest gain like 10 dB , with a more challenging $31.6 \mathrm{mV} / \mathrm{A}$ scaling, may have to be accepted if bandwidth is paramount.

With a conventional $\pm 15 \mathrm{~V}$ supply, this at least sets fall-scale deflection at around 350A enough headroom for most jobs. At this point, the design process begins to interact heavily with the op-amp or in-amp chosen.

Defining rejection

If common-mode rejection and noise ratio are inadequate, the smaller current signals just discussed are the first to be lost in noise. Fortunately, when reading switch-mode power supply current, (points B, C, D in Fig. 22), the cm voltage is usually mainly dc. This can be visua'ly ignored, blocked and even nulled out.

Assume cm rejection is -65 dB from dc to kilohertz, referred to 0 dBV . Current is 1 A in $10 \mathrm{~m} \Omega$. With rectified $240 \mathrm{~V}, \mathrm{~cm}$ voltage will be about

COMPONENTS

340 V and $95 \% \mathrm{dc}$. At the output, there is $\pm 323 \times 0.00056$, or $\pm 180 \mathrm{mV}$ of dc offset. This is not a problem, even though the current signal is only 30 to 100 mV rms.

If alternating at, say 50 Hz , however, this amount of cm voltage, would make oscilloscope viewing difficult, even if an analyser could discriminate. A cm rejection ratio better than -65 dB to as high a frequency as possible helps keep ac cm voltage at bay when viewing currents below 1 A , extending the instrument's versatility.
In practice, in a properly aligned direct coupled circuit, cm rejection ultimately degrades at hf only. This can work out favourably, as the higher frequency cm signals will often be the smaller components of the total cm voltage.
Frequency response down to dc is the norm with in-amps, even if reading do is unnecessary. This is because input do blocking capacitors degrade both If and if cm rejection, unless hyper-matched and held at a constant temperature, Fig 21. Beyond this, bandwidth limitation at hf depends mostly on the active device(s). To be useful in switching supply development, a response to at least 1 MHz is a good target.
Slew rate of the device must be adequate for the largest component's frequency. If not, it will not have the full use of the active circuitry's dynamic range in handling wanted and unwanted signals. For a bandwidth of 1 MHz , slew rate will need to be at least $100 \mathrm{~V} / \mu \mathrm{s}$. If the dominant component is no more than 100 kHz , then above $10 \mathrm{~V} / \mu \mathrm{s}$ will be enough. Any devices working on rails of more than $\pm 15 \mathrm{~V}$ would benefit from a pro-rata higher slew limit.

Extending bandwidths

Single chip instrumentation amplifiers capable of dc to 1 GHz have yet to arrive. But very wideband op-amps - both current and voltage feedback types - are increasingly prolific.
High-speed op-amps can be used instead on in-amps if the trade-offs can be justified. In exchange for a ten or hundred fold increase in slew rate and high gain-bandwidth, maximum supply is usually diminished, commonly to between ± 5 to $\pm 7 \mathrm{~V}$. Common-mode voltage capability is reduced pro-rata. As a result, 7 dB to 10 dB more cm voltage attenuation, and recovery gain, are required, using up gain bandwidth.
Testing these parameters when at their best is beyond the scope of my test equipment. But noise, while commendably low at mid to high rf,

Fig. 23. Attenuator for $400 \mathrm{Vac} / d \mathrm{ch}$ has balanced format for safely reading large voltages, of same order as cmv. Large resistances may be used since thermalnoise is not a problem. Commonmode rejection is uncritical and response is flat to 100 kHz or more.
 Attr $=1 / 50$
$\sim M a v o m$
can certainly be embarrassingly high at audio and frequencies less than 200 kHz - especially compared with the latest conventional op-amps.
If useful response above 3 MHz is essential, then the best of both worlds may be had by having a parallel vhf path and 'crossing over' at about 1 MHz . In Fig. 1, the high value of R_{6}, and similarly R_{5} in Fig. 2 and R_{8} in Fig. 3, sets a more elementary limit on bandwidth.

Assume a $200 \mathrm{k} \Omega$ metal-film resistor with 0.3 pF of parasitic shunt capacitance. Carefully laid-out $p c b$ tracks add about 0.2 pF . The sum of these strays is enough to subtract 3 dB at 1.6 MHz .

Replacing feedback resistor R_{6} with a T-network ${ }^{3}$ allows much lower ohmic values to be used, more in keeping with those recommended for best performance from current feedback amplifiers. Premature bandwidth constriction is avoided accordingly, and wideband therma voltage noise ${ }^{1}$ is also reduced.

References

1. Linear Technology, LT1028 Data sheet, page 4, Fig. 4, LTC 1986.
2. W. Jung and G. Erdi, Design notes, Linear

Technology, Newsletter No.25, Aug 1989.
3. Mark Stitt, Amp provides 100 V CM range, Burr-Brown, EDN, 10 Dec 1987.
4. Walt Jung, System applications guide, Section 8, Analog Devices Inc., 1993, P.8:58-9. 5. Walt Jung, IC op-amp Cookbook, 3rd ed. 1986, Sams, P. 346-7.
6. Paul Horowitz and Winfield Hill, The art of electronics, 1 st Ed, Cambridge University Press, 1980, P.280-1.
7. Gray \& Meyer, Analysis and design of analogue ICs, 2nd ed., P.422-3, Wiley.
8. Keith Billings, SMPS Handbook, Ch.13, McGraw-Hill, 1989.

Fig. 24. Common-mode voltage limitation. How cmv subtracts from allowable output voltage swing. From Burr-Brown INA03 circuit data.

Fig. 25. Passive attenuation plan for interfacing with cmr active devices working from $\pm 15 \mathrm{~V}$ or similar supplies.

Fig. 26. Practical 400 V rated high common-mode in-amp circuit example.
High performance and safety demands detailed attention to component spacing, insulation, lead dress and twist. But parts count and cost is low. Resistor R_{6} is set-on-test for a rough cmr null with presets $\mathrm{PR}_{1,2}$ centred. One trimmer capacitor is used to offset. Together, IC 1,2 have the same, low temperature coefficient. If AD829 is used in IC, position, $C_{\text {comp }}$ to pin 5 needs switching in for viff stability in differential small-voltage-signal -30dB mode.

SPECIAL BUY
AT 286
40 Mb HD + 3Mb Ram

gned tor relabablyy. T T		
integral 40 Mb hard disk drive to		
硡	ONLY Cl (169.00	
	(instead of 1.2 Mb) or twisted) network card	

5.25" from £22.95-3.5" from £24.95

Massive purchases of standard $5.25^{\prime \prime}$ and $3.5^{\prime \prime}$ drives enables us to present prime product at industry beating low prices! All units (unless	
stated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a 90 day	
guarantee and operate from standard voltages and are of standard	
ize. All are IBM-PC compatible (1f 3.5" suppor	
3.5 " Panasonic JU363/4 720K or equivalent	£24.95(B)
3.5" Mitsubishl MF355C-L. 1.4 Meg. Laptops only	£36.95(B)
3.5 Mitsubishl MF355C-D. 1.4 Meg . Non laptop	£29.95(B)
$5.25{ }^{\prime \prime}$ Teac FD-55GFR 1.2 Meg	£29.95(B)
$5.25{ }^{\prime \prime}$ BRAND NEW Mitsubishi MF501B 360K	£22.95(B)
* Data cable included in price.	
Shugart 800/801 8* SS refurbished \& tested	£195.00(E)
Shugart $8518^{\prime \prime}$ double sided refurbished \& tested	£250.00(E)
Mitsubishi M2894-63 8" sided switchable NEW	£250.00 (E)
Mitsubishi M2896-63-02U $8^{\prime \prime}$ DS slimline NE	£285.00(E)
ual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in a smart case	

HARD DISK DRIVES

of hard disk storage! Full industry standard SMD interface. Ultr speed data rransfer and access time, replaces Fujitsu equivalent FUJI FK-309-26 20 mb MFM I/F RFE
CONNER CP3024 20 mb IDE I/F (or equiv)RFE CONNER C RODIME R
MINISCRIBE
SEAGATE
FUJITSU M2322K 160Mb SMD V/F RFE tested
THE AMAZING TELEBOX

Converts your colour monitor Into a QUALITY COLOUR TVI

The TELEBOX consists of an attractive fully cased mains powered

 tors made by manufacturers such as MICROVITEC, ATARISANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly mally receivable on most television receivers" (TELEBOX MB). Push off air' UHF colour television channels. TELEBOX MB covers virtual
ly all television frequencies VHF and UHF including the HYPER BAND without sound - an integral 4 watt audio
audio output are provided as standard. TELEBOX ST for composite video input type monitors TELEBOX STL as ST b
TELEBOX MB Multiband

FANS \& BLOWERS

IC's TRANSISTORS DIODES 5,000,000 items EX STOCK

For Major saving . SAE or Call For Latest List

PC SCOOP

COLOUR SYSTEM ONLY $£ 99.00$

A massive bulk purchase enables us to bring you a COMPLETE

 Supplied in EXCELLENT little used condition with full 90 day guarantee. Order as MTS-9600 / H for ATAR1 £159.00 (E)
\&139.00 (E) All modes as above Order as MTS-9600/S
ELECTROHOME ECM-1211SBU 12" VGA multisync monitor with VGolution 640×480. Mult input selection, 9pin CGA EGA; 15 pin Atari and others. In good used condition (possible minor screen Atari and others. In good 90 day guarantee. KME 10 " high definition colour monitors. Nice tight . Only £125

CME used cond tion. 90 day guarantee.
KME $10^{\prime \prime}$ as abcve for PC EGA standard $£ 145.00$ (E)

20" 22 " and $26^{\prime \prime}$ AV SPECIALS Superbly made CK manulaciure. AL an solid slatertach monitots) case. Perrect for Schools, Shops. Disco. Clubs. Point of Sale elc $20^{\prime \prime} . . . \mathrm{E}^{2} 35 \quad 22^{\prime \prime} . . . £ 155 \quad 26^{\prime \prime} . . . £ 185$

\section*{DC POWER SUPPLIES
 10,000 Power Supplies Ex Stock
 | | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

SPECIAL INTEREST

Zeta 3220-05 404 pen HPGL RS232 fast drum plotter

 Trio $0-18$ vdc biench PSU. 30 amps . N Fujitsu M3041 600 LPM band printerDEC LSV/1102

Calcomp 1036 large drum 3 pen plotter
Thurlby LA 160 B logic analyser
GEC 1.5 kw 115 v 60 hz power source
Brush $2 \mathrm{Kw} 4 C 0 \mathrm{~Hz} 3$ phase frequency converter
Anton Pillar 75 kW 400 Hz 3 phase frequenc

Computer
 Controlled

 Laser Video Disk PlayerOne of the most amazing surplus deals

 starling visual and audio quality starling visual
When $\operatorname{zontrolled}$ by a computer, it may also be used as a a versatile
\qquad many eatures of his incredible machine are: RGB/COMPOSITE VIDEO OUTPUT BNC + SCART INTERFACE PAL/RGB DECODER IR+WIRED REMOTE CONTROL FAST RANDOM ACCESS 5PELIAL PURLHASE Only $£ 399.00_{\text {FF }}$

19" RACK CABINETS
 over sold. Racks may be stacked side by side and therefore requir rall dimensions are: $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as: Rack 1 Complete with removable side panels. £295.00 (G) 400 racks in all sizes from sto

LOW COST RAM UPGRADES

PC-FT compatible card with 2 Mbytes of memory on board.
fully selectable for Expanded or Extended (286 processor and
above) memory. Full data and driver disk conction fully tested and guaranteed. Half length 8 bit memory expansion cards for PC AT XT
usec to fill in RAM above 640 k DOS limit. Complete

No Break Uninterruptible PSU's

Brand new and boxed 230 volts 1 KVa uninterruptible power supply
from system from Densei. Modei MUD 1085-AHBH. Complete with seald lead acid batteries in matching case. Approx ime from inter Order as: MUD 1 $\quad \mathbf{5 7 5 . 0 0}$ EMERSON ACCUCARD UPS, brand new 8 Bit half length PC com patijle card for all I日M XT/AT Con in the
oal internal system components in the event of power supply fail and automatically copies all system, expanded and video memory t
the unit features full self diegnexact status when the power failed!

Issue 12 of Display News now available - send Iarge SAE - PACKED with bargains!

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept WW. 32 Biggin Way

Common-emitter power amplifiers:

 a different perception?
Abstract

Low voltage audio power amplifiers invariably deliver the output signal from a collector rather than emitter circuit to allow a larger output swing from a reduced supply voltage. Does this radical change in circuit topology affect the crossover characteristics... Indeed, does this represent a topology change at all? Douglas Self examines the design issues.

when I read Michael William's intriguing article Making a Linear Difference to Square-Law fets ${ }^{1}$. I was attracted by the prospect of applying it to an audio power output stage. I found the phrase "curvilinear class A" particularly appealing.
The basic concept of the difference-cfsquares is not new, as several correspondents to $E W+W W$ have pointed out. ${ }^{2,3}$ Another early reference (1949) to the quarter-squares principle can be found in the monumental MIT Radiation Lab series on radar techniques.
Mr William's basic circuit is shown in Fig. 1. and the first problem to overcome in applying it for audio power is that the wanted output is the difference of two currents whereas hard-bitten amplifier designers are more used to a low impedance voltage output. Note that with the usual enhancement-mode power fets, if V_{1}, V_{2} are ac sources only, and carry no dc bias, then V_{b} will have to establish point M some volts below ground. No doubt something could be done with industrial-sized cur-rent-mirrors, but it struck me that the circuit

Fig. 1. The original Williams circuit; the output required is the difference between i_{1} and i_{2}.

Fig. 2. The i_{1}, i_{2} subtraction carried out by inverting the polarity of one of the fets. Two bias voltage generators are now needed.
could be rearranged as Fig. 2, by making use of complementary devices. We now need two bias voltages $V_{\mathrm{b} 1}, V_{\mathrm{b} 2}$, and the positioning of the two signal sources V_{1}, V_{2} on opposite rails looks a little awkward, but at least the currentdifference will be mathematically perfect, if Kirchhoff has anything to say on the matter.
So far so good. We now have a single current output $i_{\text {oul }}$. But is this any use for driving loudspeakers? I am assuming that currentdrive of speakers is not the final goal; I appreciate that this can be made to work, and promises some tempting advantages in terms of reducing bass-unit distortion ${ }^{4}$. My immediate reaction to Fig. 2 was no, it can't work, because with a high impedance output, the output stage gain will vary wildly with load impedance making the amount of NFB applied a highly variable quantity. It would also appear that any capacitive loading of this high-impedance node would generate an immediate output pole that would make stable compensation a waking nightmare.
However... just as I was discarding the notion, it occurred to me that the structure in Fig. 2 looks very much like the bipolar common emitter (CE) stage in Fig. 3. This is widely used in low voltage op amps because the low saturation voltage allows a close approach to the rails ${ }^{5}$. The more usual emitter follower type of op amp output is usually called a CC or common-collector stage. It is highly probable that the widest application of these volt-age-efficient CE configurations is in the headphone amplifiers of personal stereos.
At about the same time I encountered a paper by Cherry ${ }^{6}$ which pointed out that, so long as NFB is applied, the output impedance of such a stage can be as low as for the usual voltage follower type output. Cherry's paper is dauntingly mathematical, so I will summarise it thus. The vital point about using NFB to reduce the output impedance of an amplifier is
that the amount of NFB applied must be calculated assuming that the open-loop case is unloaded. This condition looks unfamiliar, because the average amplifier usually has a fairly low output resistance even when openloop, due to its output follower configuration, and so the loaded/unloaded distinction makes only a negligible difference when calculating the reduction of output resistance by NFB.
Using this condition, Cherry shows that output impedance of a CE stage should be exactly equivalent to the usual CC stage, when the global NFB is applied. I appreciate that this result is counter-intuitive; it looks as though the current output version must have a higher output impedance, even with NFB, but it appears not to be so. Doubters who are unafraid of matrix algebra should consult Cherry's paper.

Topology to the test

Nonetheless, before reaching for the power fets, I felt the need for further reassurance that a CE output stage was workable. There are several low voltage op amps that use the CE output topology, so it seemed instructive to provoke one of these with some output capacitance and see what happens. A suitable candidate is the Analog Devices AD820, which has a BJT output stage looking like Fig. 3 and provides all you need for CE experimentation in one 8-pin package ${ }^{7}$.

My practical findings were that the op amp works well, and while THD may not be up to the very best standards, it was happy with varying load resistances, proved stable with capacitors hung directly on the output, and was relaxed about rail decoupling. Once again, so far, so good.

By this stage, the quarter-squares principle was slipping somewhat into the background. My attention was focusing on the possibilities of a BJT power output stage something like

Fig. 4. which shows the addition of drivers and emitter resistors to make the circuit more practical. A good output swing is facilitated by the inward-facing driver arrangement. In a conventional emitter follower output the need to leave the drivers room to work in further reduces output swing.
Fig. 4 could be configured into something like a normal Class-B amp, except that the novel use of a CE output stage would allow greater efficiency than usual because there would be the low $V_{\text {ce(sat) }}$ drops mentioned above. Also the crossover behaviour would presumably be different from a normal CC output, and quite possibly better, or at least more easily manipulated.

In a previous article ${ }^{8}$ I tried to demonstrate that for an amplifier in which all the easily manipulated distortion mechanisms had been suitably dealt with, the low frequency THD was below the noise when driving an 8Ω load... this without large global feedback factors: 30 dB at 20 kHz is quite adequate.
At high frequencies (say above 2 kHz) the distortion is easily measurable, and almost all of it results from crossover effects in the output stage. Since NFB typically falls with frequency, these high-order harmonics receive much less lnearisation. This is why any technique that promises a reduction in basic crossover nonlinearity is of immediate interest to those concerned with power amplifier design.

I began to think that Mr Williams had opened up a whole new field of audio amplification; each conventional CC output stage would have its dual in CE topology, perhaps with new and exciting characteristics.
The next stage of the investigation was more sobering. There was a familiarity about CE output stages. Readers old enough to recall paying 30 shillings for their first OC72 will recognise Fig. 5 as the configuration used

almost universally for low power audio output for many years when there was no such thing as a complementary device. Transformers provide one way to make a push-puil output. At first sight bias voltage V_{b} looks as if it will be far too low but bear in mind these are germanium transistors. Note the upside-down format of the circuit which is typical of the period. The circuit values are appropriate for an output of about 500 mW .
While it is perhaps not obvious, this is the equivalent of Fig. 3. The need for an npn is

Fig. 3. The bipolar version of Fig. 2, as used in many low-voltage op amps and Walkman output amplifiers.

Fig. 4. A practical circuit based on Fig. 3. Drivers and emitter-resistors have been added.

Fig. 5. A rather old-fashioned CE amplifier: the transformers are expensive but avoid the need for complementary devices.

Fig. 6. B/T Collector currents in Fig. 4 driving an $8 s$ load.
avoided by using phase inversions in the transformers. So clearly CE output stages were not as rare and specialised as I thought; however they might still have handy distortion properties that were not obvious in the long-gone days of transformer coupling.

Adding Spice to the investigation

The next step was Spice simulation of the practical BJT output circuit in Fig. 4: Fig. 6 shows how the device currents vary in a relationship that looks ominously like classic Class-B... Somehow I was expecting more

Fig. 7. Gain linearity of Fig. 4, various load resistances. (BIT)

overlap of conduction. The linearity results are presented in Fig. 7 as a plot of incremental gain versus output voltage for varying loads, as in the Distortion In Power Amplifiers series ${ }^{8}$.
The first obvious difference is that stage gain, instead of staying close to unity, varies hugely with load impedance - pretty much what we expect from a CE stage operating open-loop. Note that the X -axis is $V_{1}\left(V_{2}=\right.$ $-V_{1}$ to induce push-pull operation) and so represents the input voltage only rather than both input and output as before. Multiplying this input voltage by the gain taken from the Y axis gives the peak output voltage swing. The vertical gain drop-offs that indicate clipping move inwards with higher load impedances because of the greater output gain rather than through any hidden limitation on output swing.
Fig. 8 shows the effect of varying the bias, and hence quiescent current, for an 8 -Ohm load.
This circuit certainly works, but somehow the linearity results seem depressingly familiar. There is the same gain-wobble at crossover we have seen ad nauseam with CC output stages, and once again there is no bias setting that removes or significantly smooths it out. As before, the usual falling-with-frequency NFB will not deal with this sort of high-order distortion very effectively, leading to a rise in THD above the noise in the upper audio band.
In fact, the characteristics look so suspiciously similar to the standard emitter-follower CC stage, that it began to belatedly dawn on me they might actually be the same thing...
Fig. 9 shows the final stages of this conceptual hejira. 9a shows the simplified circuit of Fig. 3 with the power supplies $\mathrm{V}+$, V - included; they no doubt come from a mains transformer so we can float them at will, and it seems quite in order to pluck them from their present position and put them in the collectors of the output devices instead. All the other supplies shown are equally without ties forming an independent unit with the associated transistor and emitter resistor R_{e}. Thus they cannot effect device currents. Since there is only one ground reference in the circuit, it is also a legitimate gambit to put it wherever we like, which in this case is now the opposite end of the load R_{1}. (See reference 9 for another example of this manoeuvre). This gives us the unlikely looking but functionally equivalent circuit in Fig. 9b.
A purely cosmetic rearrangement of 9 b produces 9 c , which is topologically identical, and reveals that the new output stage is... a CC stage after all. Fig. 9d shows the standard output
The only true difference between the "CE" stage and the traditional CC stage is the arrangement of the two bias voltages $V_{\mathrm{b} 1}, V_{\mathrm{b} 2}$. In a conventional CC stage, the output bases or gates are held apart by a single fixed volt-

Fig. 8. Gain linearity of Fig. 4 for various bias voltages, load is 8S2. (BIT)

HEWLETT PACKARD Spectrum Analysers

HP 141T / 8555A 10 MHz to 18 GHz System
Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 5} \mathbf{d B m}$
Resolve to 100 Hz
Scan up to $8 \mathbf{G H z}$ full screen $\quad £ 1700.00$
HP 141 T / 8554B 100 KHz to 1250 MHz System
Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 2} \mathbf{~ d B m}$ Resolve to 100 Hz
£1000.00 With the purchase of any of the above systems we will supply FREE of charge one HP 8553B 1 kHz to 110 MHz RF section. Normal retail price of $£ 350.00$.

All systems covered by $\mathbf{3 0}$ day warranty All prices plus Vat and carriage

M \& B RADIO (LEEDS)

age, shown here as $V_{\mathrm{b} 1}$ and $V_{\mathrm{b} 2}$ connected together. This rigid "unit" can be regarded as driven with respect to the output rail by the signal source $V_{\text {sig }}$, representing the difference between input and output of the stage. Normally, of course, it is more useful to regard the earlier circuitry as generating a signal voltage with respect to ground.
In contrast to Fig. 9d, Fig. 9c has two bias voltage generators, and the consequence of this is that voltage drops in the emitter resistors R_{e} are not coupled across to the opposite device by the bias vollage. This does not seem to offer immediately any magical stratagems for reducing the gain deviation around crossover, and creates the need for two drive voltages referenced about the output rail. This should be fairly easy to contrive, but is bound to be more complex than the traditional method.

Squaring the circle

Having gone through these manipulations, it is time to reconsider fets and the quarter-squares approach, knowing now that we are dealing with something very close to a standard power-amp configuration. To underline the point, Fig. 10 shows the gain characteristics for the circuit of Fig. 2, using 2SKI35/2SJ50 power fets. Note the very close resemblance to a conventional source follower ${ }^{8}$.
As Mr Williams points out, the $V_{\mathrm{g} \mathrm{s}} / /_{\mathrm{d}}$ characteristic curve for power fets may follow a square law at low currents, but it is more or less linear at high ones, and this appears to rule out any simple approach to "curvilinear class A". For the fets I used, the "square lawish" region is actually tiny, being roughly between 0 to 80 mA which is of limited use for a power stage. In so far as second-harmonic cancellation occurs at all, it is in the crossover region where, without this effect, the central gain deviations would probably be greater than they are.
As I can see, the quarter-squares concept is already in use in most fet power amplifiers in heavy disguise but only operational in the crossover region. If this idea is to be pursued

"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3. 1 and DOS

- Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files.
- Up to 200,000 padstrack nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output
- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

CIRCLE NO. 109 ON REPIY CARD

CIRCLE NO. 110 ON REPLY CARD

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM:
Programs 24,28,32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee. ASK FOR FREE

MQP ELECTRONICS Ltd.
Park Road Centre
Malmesbury, Wiltshire. SN16 OBX. UK
TEL. 0666825146 FAX. 0666825141

INFORMATION
PACK
IRELAND 1.2800395 GERMANY 089/460207 NORWAY 0702-17890 $\begin{array}{ll}\text { ITALY } & 0292103554 \\ \text { FRANCE } & 169301379\end{array}$ $\begin{array}{ll}\text { FRANCE } & 169301379 \\ \text { SWEDEN } & 0859032185\end{array}$ Also from ELECTROSPEED UK

ACQUIRING
 data from noise

Computerised data acquisition has never been simpler, with all manner of plugin data acquisition boards available for the PC. Now, thanks to software packages designed to make these cards casy to use, a new term has entered the vocabulary -- namely virtual instrumentation. Separate digital voltmeters and oscilloscopes are no longer needed. Sensors connect directly to the data acquisition card and facsimiles of hardware instruments present the measurement results on the vdu.
Virtual instruments are especially useful in laboratory type enviromments, where sensors are positioned within a few metres of the data acquisition card in a relatively benign electrical environment. However they are less useful in electrically noisy environments, such as a factory floor, where the sensor may be tens if not hundreds of metres from the computer. Used correctly, screened cables help, but they are by no means a complete solution.
The major problem in getting data from a remote sensor to your data logging station on computer is noise. From a practical point of view, noise can be divided into three rather loosely defined categories. These categories are, pickup, impulse noise and random noise.
Pickup is usually a narrow band interference mechanism. It is invariably due to ac power line inductive coupling. Impulse noise consists of very short duration, often very high amplitude spikes. These sometimes occur in bursts. Often these impulses are only microseconds in duration, but of sufficient amplitude to play

> By the time it reaches a data-acquisition system, the signal from a remote sensor can be almost indistinguishable from the noise it picked up en route - particularly in an industrial environment. Dave Robinson looks at how such signals can be recovered.

havoc with any naively designed digital equipment. Random noise is just that, an amorphous mush that can completely swamp the signal that you are trying to observe.
Invariably all three types of noise are present to some degree. Basically, there are two ways of dealing with noise - one is to remove it, the other to avoid it. The first option includes algorithms designed to recover your signal once it has been contaminated with noise. This is obviously a not an ideal solution. However there are times when control of the noise is not in your hands.

Fig. 1. Reference waveform - before noise is added - used to illustrate the various techniques of signal recovery.

Noise removal

All noise removal techniques are a compromise. They rely on redundant data which is used to estimate the wanted signal. These estimates are then used to reduce the noise.
With Shannon rate sampling, where data is sampled at the maximum theoretical rate. every sample represents new information. This makes noise removal techniques inappropriate and noise avoidance techniques are used instead.
It is however possible to obtain redundant information by over sampling the noisy signal. The more the signal looks like a slowly drifting de level to your data acquisition system. the better chance you have of recovering useful information.
Basic statistics tell us that the signal-to-noise ratio can only be improved slowly. It goes up as the square root of the number of samples taken. Thus four independent samples of the same signal effectively halves the noise contamination, but 10,000 samples only reduces it by 100 . From this basic rule of thumb you can roughly calculate the sample rate you will need to produce the quality of signal given a fixed degree of noise contamination.
Assume that you know that the maximum rate of signal you are looking for changes by an amount equivalent to the least-significant bit of your a-to-d converter in say T seconds. If your sample period is $N \times T$, the maximum theoretical improvement you can expect from any algorithm is $\sqrt{ } N$. From this approximate analysis, and knowing the dynamic range required by your control process, you can identify the type of a-to-d converter your system requires, as described in the panel.
For demonstration purposes, the following algorithms are applied to the curve produced by a theoretical process Fig. 1. Before the algorithms are applied, this ideal curve is buried in noise, as in Fig. 2. Time would probably - but not compulsorily - be on the X axis. The Y axis could represent virtually any
parameter, for example voltige, temperature or even sugar concentration.

Waveform averaging

The simplest, and perhaps the most intuitive method of signal recovery is to find the average of a number of samples and use that as the estimate of the signal. Waveforms Fig. 3 shows this process in action. Each sample in these waveforms is simply the average of a block of fixed number of preceding samples.
It is clear that as the block length increases, so the noise level decreases. At the longest block length the data is almost as clean as the original. Be cautious however. Compare the pure original signal with the cleaned up version, Fig. 4. Note how it has been distorted. Although the problem looks simply like delay and attenuation, it is mathematically more complicated than this. The distortion is mathematically definable. It could be reversed, at least in theory, but such techniques are beyond the scope of this article.
Depending on the application, the distortion may be tolerable. But be careful if you are using the process within a feedback loop. Its apparent delay, or lag, could result in the control loop becoming unstable. This will result in the complete system oscillating, and in some circumstances lead to expensive damage to production machinery.
Although block averaging is fairly simple in concept, building a real-time implementation of the algorithm might not be so straight forward. Do you redo the complete average process for each new input sample? Or do you try to subtract the oldest value from the sum and add in the newest value? In either case a record has to be kept of the original block data samples. This is not so easy if you are using a small microcontroller with no external ram. particularly if you are trying to get a 100 : 1 improvement in signal to noise ratio.
As an alternative to block averaging, a running average can be used. Running averages are easier to compute. Exponential smoothing is perhaps the most common running average algorithm. It is an iterative algorithm which computes the following:

$$
Y_{n+1}=Y_{n}-K\left(Y_{n-i n p u}\right)
$$

Here Y_{n+1} is the estimate for the latest value. Y_{n} is the last sample estimate, variable input is the current input sample and K is some constant which is less than 1 . Why it is called exponential smoothing when there is no exponential function in the equation can be explained by simply considering its response to be a step function. Assume that the original input has been zero, as is Y_{n}, and the input instantancously steps up to one and stays there. Output from the algorithm for various values of K is shown in Fig. 5.
The curves are true exponentials whose time constant is controlled directly from the K value. Reducing the K value increases the time constant. The procedure is analogous 10 connecting a simple $R C$ filter to a noisy electronic node in order to remove the noise. This
algorithm is the simplest form of recursive digital filter. Figure 6 shows results obtained from applying simple exponential smoothing to Fig. 2.

Predictors

Averaging can be considered as a limiting case of an algorithm known as a predictor. These use a block of data in order to predict what the next value will be. The averager models the data within its block as a simple dc level. As a result, the next value will be the average of the previous data points.

Predictors are classified in terms of orders. They attempt to model the data block in terms of a polynomial, and use a statstical mechanism such as least squares to find the best fit. The order of a predictor is simply the highest power of polynomial being used to model the data. Thus a linear fit $y=m x+c$ is a first order predictor. An averager $y=c$ is simply a zero order predictor.

Predictors do have problems. They have to be tailored for a particular task. As the predictor's order increases, so its ability to remove noise diminishes. This is illustrated by

Fig. 2. In passing from a remote sensor to a data acquisition board, the reference signal of Fig. 1 would pick up noise. Before the signal can be analysed on computer, it needs to be recovered from the noise.

Fig. 3. Using averaging to recover a signal from noise, apparent quality of the recovered signal improves as the number of samples increases. But the results can be misleading.

Fig. 4. Although the signal recovered using averaging and a high sample rate looks clean, it suffers from distortions that can cause problems, for example, if the measurements are used to determine feedback in a control loop.
considering, say, a 16 th order predictor running with a block of 16 previous data values. An exact polynomial fit can be made to the data, noise and all - which is uscless.
The higher the predictor's order, the more independent parameters the predictor is trying to estimate from the same data. An averager is only producing one value - the average - whereas a first order predictor needs to determine the offset and slope from the same data. The result must be inherently more noisy.
Predictors offer an advantage in that the data being extracted from the noise is probably going to be moving. This means that a polynomial model is likely to be a closer fit than a model that suggests that the data is a simple de level. Consequently the apparent phase shift shown by an averager is a good deal less noticeable using a higher order predictor, and it is less susceptible to closed control loop oscillation.
More powerful statistics can be used to cnhance the signal-to-noise ratio. For example the value of slope and offset computed at cach new data sample can be averaged. Predictors can be made to react almost instantaneously to drastic changes in input signal. This is accomplished using statistical decision theory.
If you have calculated the optimum parameters for your model using data within the buffer, you can also calculate how far each data point is adrift from that model. In other words you have a measure of the local signal-to-noise ratio. By comparing the current predicted value with the latest sample, a decision can be made as to whether the current data point belongs to the rest of the distribution within the buffer. If it is, the prediction is output, maintaining the smoothed data output. If not, the actual value is output, and the contents of the predictor buffer can be deleted since the

Demonstrations of exponential smoothing using various values of K

For example, suppose that the waveform being recovered is repetitive. Ideally its repetition frequency is known. It is not necessary to know the actual phase information. If you take a sample at a given time after the encoder synchronisation pulse. then you can expect to get the same value at the same point after the next pulse. Any discrepancy is due to the noise corruption on the signal.
Imagine setting up a number of averagers, or exponential smoothers evenly distributed throughout the repeat cycle. These would simply average out the noise and find the truc value of the signal at that phase position. By sequentially interrogating

Fig. 5. In an averaging signal recovery filter with exponential smoothing, quantity K control the time constant directly.
previous value is no longer valid, and a discontinuity has occurred. The signal-to-noise ratio will return to its raw state until the predictor has gained sufficient data to be able to start making sensible estimates once more.
Figure 7 shows results from a simple first order predictor, using a 64 sample buffer and both slope and offset smoothing, applied to the sample noisy waveform. Note that the resulting waveform is not as smooth as the straight forward averager of similar buffer length. However the fit to the raw data is far better.

A priori knowledge

Methods described so far are recommendec if and when you have no information regarding the distribution of the incoming data stream. If certain aspects of the data's distribution are known, they can be used to produce remarkable signal recoveries. What form this knowledge is in, or how it is best used, depends on the siluation.
these averagers, you can build up a very good picture of the underlying waveform.
Figure 8 shows how effective techniques like this can be. The signal is as used previously. but this time replicated to form the repeating waveform. It is buried in far more noise than was used in the previous examples, so much so that the underlying waveform is undistinguishable.
Each cycle is split into 256 points, and each point is equipped with its own exponential smoother with weight $\mathrm{K}=1 / 64$. After running the system for a short time its output settles down to an equilibrium position as shown. The original waveform is almost completely recovered.
In this particular example we have two pieces of information, namely that the waveform is repetitive and its repetition frequency. Even if the repetition frequency is not known, all is not lost. There are signal processing techniques, such as auto-correlation, which allow you to determine repetition frequency, enabling the previous technique to be used.

A word of warning

Invariably, corruption of data by noise is mod-

Fig. 6. Exponential smoothing is the most common running average algorithm used to recover a signal from noise. The procedure is analogous to adding an RC filter to remove the noise.

Fig. 7. Compared with an equivalent averaging filter, the simple first-order predictor produces a less smooth output but the overall fit with the original signal is much better.
elled as a linear process. The noise and the signal are viewed as two separate entities and are combined by arithmetical addition. Under these circumstances the processes described above work well.
However beware of multiplicative noise corruption. This is where noise and the signal are multiplied together. Under these circumstances the techniques mentioned no longer work. Multiplicative noise corruption can occur in many places. In data-acquisition systems, the most common sources atre noisy illumination systems in optical sensors. Here, output from the sensor is the product of the reflectance of the object multiplied by the illumination. Similarly noisy excitation of resislive sensors can be a problem.

Output voltage from such sensors is the product of device resistance and excitation current. Renoving the effect of such corruption is not easy, so make sure that these nodes are given the respect they deserve.

Next month, David discusses the alternative to noise removal techniques, namely noise avoidance.

Fig. 8. If something is known about the original waveform, vour chances of recovering it are much improved. This diagram shows a recovered signal superimpesed on the noise that it was recovered from.

Analogue-to-digital conversion

Transducers monitoring real world parameters, for example temperature or strain, invariably produce an analogue output. In order to process such a signal digitally, it needs to be converted into a form that can be handled by a computer by an analogue to digital converter.
An analogue to digital converter, or ADC, is designed to produce a digital number approximating to the analogue input. Imagine taking a reading from a temperature sensor covering the 0 to $100^{\circ} \mathrm{C}$. In theory, this thermometer could monitor any temperature within its range.
However the ADC splits the range into a finite number of steps. Combined, the thermometer and ADC are only capable of measuring discrete quantities, or quantization levels. It is the designer's task to ensure that the number of quantization levels provides adequate dynamic range for whatever their required task demands.
As is usual, trade offs have to be made. When desigr ing analogue-to-digital converters, desirable parameters are high resolution, i.e. lots of quantization levels, high sampling rate and low cost.
There are several types of ADC. These include flas 7 , half flash, successive approximation and charge integration types. The chart below shows how the important parameters are balanced for these four converter technologies.
Note how the number of quantization levels, or more conventionally the number of bits, is inversely related to digitisation rate. Commercially, ultra fast converters ane normally only available with limited dynamic range. Similarly very accurate converters are only available vith limited conversion speeds.
The question of conversion rate bears heavily on tow the converter is connected to the input signal. Very fast converters only need a fast high quality amplifier. The speed of conversion is such that the input signal will have barely

POWERFUL SCHEMATIC CAPTURF, PCB DESIGN AND AUTOROUTING ALL FOR JUST E395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER+ and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800×600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excelion NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded. "At $£ 79$ I thought this was an excellent buy."

ISIS ILLUSTRATOR Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthemore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0756753440 or fax 0756752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.
WE HAVE MOVED - NOTE NEW ADDRESS Alices manufacturers' trademarks acknowledged.

Graph plotting in Windows

> Graphs are essential tools for conveying engineering and scientific information but producing them is tedious and time consuming. Not so, says Allen Brown, with this new plotting package.

Plotting data has never been easier than with PCs running under Windows. It is now common in engineering environments to see PCs with high resolution colour monitors, linked to laser printers. These standard tools, together with suitable software, make plotting an almost pleasant task.
The attractive features of Windows are its universal acceptance and dynamic linking facilities. In addition, its common user interface makes all Windows software look the same.
Most engineers now use word processors from time to time. Although many word processors include graphplotting facilities, they tend to be rather limited in scope. This can result in the user wasting valuable time trying to fashion the supplied standard graphs into an acceptable format.
The alternative is to use a specialised graph plotting package that allows graphs to be imported into your favourite word processor.
A new graph plotting software package for Windows has recently been released by MicroCal Software of Massachusetts. Entitled Origin, it is a fully comprehensive graph plotting utility capable of producing both two and three-dimensional plots.
A remarkable feature of Origin is its high degree of control over the many display formats granted to the user. Also, the ease with which control can be exercised over the plotting formats is appealing.
User input is carried out via dialogue boxes that provide considerable choice of positioning, fonts, colour. scaling

Plot selected region as line graph
and ploting styles. Whatever feature is selected on a plot, a click with the mouse's right-hand button evokes the dialogue box associated with that feature. Each dialogue box contains numerous options for adjustinent and display.
Part of the Origin package is a tutorial that will particularly benefit the new user in that it provides a good understanding of the mechunics of the software. Once Origin has been installed - a very easy task - the new user will find the Getting started section in the tutorial very useful. The tutorial exercises are well thought out. taking the new user throught the majority of the features which the package has to offer.
One immediate feature which is very useful is the ease with which ascii data files can be imported. Even with files only having y axis data, the user is offered the choice of defining the x axis data and prompted for both starting point and increment. This is especially useful if the raw data has been obtained from an expansion card that only provides y data streams or batches.

Fig. 1. Error bars are a feature that graph-plotting programs usually find difficult. Not so Origin.

Dynamic linking

Data can be brought into the Origin window via the Windows dynamic linking facility from other concurrent software packages such as the spreadsheet Excel. This offers some exciting possibilities when using other data acquisition software.
An interesting feature of Origin is its error-bar capability. Scientists use error bars on their graphs but engineers rarely do. Including error bars has always been a problem for software displaying data graphically. With Origin however, error bars are very easily added to graphs. This is thanks to Origin's worksheet format.

Fig. 2. From each worksheet, graphs can be created individually or displayed on the same graph.

Fig. 3. Origin offers a wide choice of curve fittings options. Most use the least-squares method

Fig. 4. A typical 3D trajectory generated from Origin - not overly impressive.

Worksheets

When Origin starts up, a defaul worksheet is generated. It looks like a spreadsheet design with an array of cells. As data is imported into Origin it fills up the columns in the worksheet
Graphs can be generated directly from the worksheet data. When error bars are needed, an extra column is produced - via a drop-down menu option. This column is dedicated to error bar, which are plotted at the same time as the worksheet data, Fig. 1. This display also shows the plotting options offered in the PLOT drop-down menu.
Imported data can be loaded directly into a worksheet or into a graph. From each worksheet, individual graphs can be created or alternatively the data can be displayed on the same graph as illustrated in Fig. 2.
By accessing the DATA option from the drop-down menu it is possible to generate a column of linearly increasing values. If need be these can be used to form the x axis. You can place, with ease, as many data columns in the same worksheet and they can be plotted as required.
Even if data is not available from an outside source it can be generated within Origin from the function-plot option. This can be displayed in either Cartesian or polar formats. Some elementary statistical processing can also be applied to each column or row.
This can provide information such as mean deviation, standard deviation and the result of t-testing. A further interesting feature of Origin is its ability to put several data plots in layers on top of each other and display them alltogether. In addition, different axis limits can be attached to the top and right hand side of the graphs to show alternative scaling.
Several worksheets can be open at any one time. By using the Windows clipboard, data can be exchange between worksheets very easily. The worksheet also allows editing of the data values in each column - so-
called data massaging. This feature should instantly endear Origin to statisticians working in the Treasury or Employment Department.

Templates

Many engineering and scientific tasks that need large amounts of data logging and plotting tend to be repetitive. With this in mind, Origin allows users to construct graphical templates.
Major features of templates - for example axis limits, scaling and labelling - remain fixed. Only the data plotting and possibly the legend will change from graph to graph.
This design feature would be very useful for proprietary graphs showing for example calibration and system performance for quality checking. A system performance graph can incorporate a tolerance envelope as part of the template. The actual performance curve, i.e. the data, is then inserted into the template graph. By looking at the resulting plot, an inspector can immediately determine whether the system under test conforms to expectation by staying within the tolerance envelope.

Curve fitting

Having imported a batch of data into Origin, you can exercise a variety of curve fitting options on the resulting curve. Some of the options are shown in Fig. 3 in the dropdown menu. Also shown in this shot is am eximple for fitting an eighth-order polynomial to a data batch. As the curve fit is in progress another window is opened to show the results of the calculations and to display the coefficients and the correlation values. This provides a measure of how well the polynomial fits the data.

Most curve fitting techniques use the least-squares method. When this is applied to an eighth-order polynomial, an 8 -by- 8 matrix is generated that has to be inverted. This requires a reasonable amount of computation.
Speed of the maths calculations in Origin while performing curve fits is remarkably quick.

3D and contour plotting

Three-dimensional plotting is the second part of Origin. It appears to be an addition to the Origin pachage proper. Contour plotting is quite impressive, particularly the automatic labelling.
I don't have the same enthusiasm for the 3D plotting however. Although it is easier to use than many other graphics packages, its range of options is small and it doesn't behave as you would expect.
For example, consider an unstable oscillator where time is along the z axis and velocity and displacement along the y and x axes respectively. You would expect to see an expanding helix along the z axis. Figure 4 shows what you actually get even when you specify a trajectory plot - not very impressive.

However the surface plots are acceptable, as you can see from Fig. 5, and colour grading is easy. Surface plots are produced by importing matrices into Origin, which is now

a common practice for plotting surfaces.
There is however a long wait for the redraw of the surfaces each time a slight change is made. This can be quite irritating after a while. Although the value of surface plots is sometimes questionable, they are quite useful when illustrating the significance of poles and zeros in the S-domain.

LabTalk

For really enthusiastic users who want to design custom graph formats, Origin comes with its own command language. This language, LabTalk, can also be used to determine how data is read into its associaled worksheet.
$L a b$ Talk is a progranming language providing access to the majority of Origin functions. These include the userdesigned dynamic data links, or DLLs, for Microsoft Windows linking.

Syntax of LabTalk is not unlike that of dos batch commands. with operators, control flow and the customary structuring options. LabTalk is actually an interpreter that processes its native script or source code language.

The fact that LabTalk is an interpreter is useful if you

Fig. 5. Everyone likes looking at surface plots but are they really useful?

Fig. 6. With a little imagination and lot of time some interesting displays can be designed using LabTalk.

need to design a custom product with ploting features However it is not the sort of feature that the casual user of Origin would use. An example of what can be achieved is shown in Fig. 6.

Reference manual

There are in four manuals with Origin - a tutorial guide, a reference manual, LabTalk's user manual and a 3D/Contour supplement.
The tutorial guide is well written and is aimed at the general user. It provides a number of good examples illustrating Origin's salient features. In addition it has many screen dumps and all the examples work according to the guide - a pleasant surprise.
As expected the reference manual contains all the functions of Origin and complements the screen help facilities provided in the software.

Round up

Origin is a package that I like very much. It is easy to use and its operation is logical. The range of 2D plotting options is most impressive. Above all. the flexibility afforded to the user makes it very attractive.
The learning curve needed is gradual. In no time. I was able to exercise a lot of control over plotting formats without having to cover all the features offered by the product. This is the sort of package that you can use a part of, quite competently, without having to worry about the rest of it.
On the down side there is only one problem - the 3D

SYSTEM REQUIREMENTS

PC compatible with 386 or better
Windows 3.1
Mouse
Good quality printer

SUPPLIER DETAILS

Origin plus Contour 3D modeller: $£ 500$ excluding $£ 25$ p\&p and VAT. Quantity discounts are $£ 1600$ for 5 users to $£ 5200$ for 20 users.

Available from Rapid Data Ltd, Crescent House, Crescent Road, Worthing, West sussex BN11 5RW. Tel. 0903202819 , fax 1)903820762.

Modelmaker a synthesis toolkit for

SpiceAge for Windows makes models accessible to all.
plotting. You would not be able to plot a Lorentz Attractor and make any sense of it. However if you need no 3D ploting, then you should find Origin a treat to use.

This new model maker includes tools for creating OpAmps, Transformers, Attenuators and Bipolar transistors. Straight from a catalogue...
The models are an accessible alternative to SPICE models which may also be used with SpiceAge. But because the information needed can be obtained straight out of a catalogue, you need never be kept waiting for a model again.

Unnecessary complexity

The models synthesized are smaller than SPICE models yet they are adequate for most applications and calculate many times faster. This is partly achieved by exploiting special polynomial pragmas (not available to SPICE) that define the limits of validity of non-linear functions. The OpAmp models, for example, break new ground in simulation technology by representing many SPICE details yet calculating up to five times faster.
MODELMAKER is available in modules starting from $\mathrm{f} 15+$ VAT to $£ 135$ + VAT and links with version 3 (and later) and level 3 (and higher) of SpiceAge for Windows through the DDE. Those Engineers operate a helpful policy of maintenance and upgrading to all their software. For further details, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 081-906 0155, FAX 081-906 0969. Circleno. 113 on reply card

Coherer-based radio

Abstract

Following its introduction a century ago, the coherer electromagnetic wave detector helped radio evolve from being a curiosity to a practical communication tool. George Pickworth has been studying early designs and has even experimented with working transmitter/receivers capable of communicating at up to 1 km .

Fig. 1. Sensitivity of the coherer. Although sensitivity is important, it makes the coherer prone to false triggering due to natural discharges if too high.

The coherer can be seen as a very fast, self latching relay. When triggered by a pulse induced in the receiver antenna, a local de source of typically 1.5 V operates a paper-tape Morse register, via an auxiliary relay. This provides a permanent record of the received signal.

The coherer was the first practical Hertzian wave detector. During its life, from about 1895 to 1905, it turned radio from a possibility into a practicality. History of the device was comprehensively covered by Leonid Kryhanovsky in his article (The coherer $E W+W W$ March 1992), but as he said, its physical mechanism was not fully understood.
As a technical historian. I am particularly interested in the sensitivity of the coherer, but as no meaningful information could be found in the literature. I decided to make a replica of a circa 1900 coherer and conduct my own research.

Pulses

My research showed that the coherer is actually a vo'tage-pulse triggered device. The pulse causes the coherer`s resistance to drop to a level determined by the peak potential of the pulse. In a practical radio system, the pulse must be large enough to lower resistance to a certain threshold. If not, there will be insufficient current flow from the de energiser circuit to operate the auxiliary relays and Morse register. Fig. 1.

The coherer can be triggered by a single unidirectional pulse, as may occur with natural discharges, or by the first negative or positivegoing half cycle of current induced in the antenna by a train of exponentially declining Hertzian waves. However, multiple triggering can occur with pear-shaped wave trains during the incremental increase in the amplitude of successive half cycles.

You can see from Fig. I that a pulse with a peak potential in the order of volts is needed to cause the coherer's resistance to drop to a few hundred ohms. Polarity of the pulses relative to the 1.5 V de energising source was immaterial above the 3 V threshold.

Working point

The threstold at which the system began operating would have depended upon the sensitiv-

Fig. 2. Current induced in an antenna by an exponentially declining wave train. Triggering of the coherer occurs on the first half cycle pulse: remaining pulses are redundant.

Fig. 3. Current induced in the antenna by a pear-shaped wave train. Successive pulses lead up to the final pulse at the peak. As with Fig. 2, subsequent pulses serve no purpose.
ity of the auxiliary relays. Reliable operation seems to start at the knee of the curve, and is best above the saturation level of 9 V . While my research shows sensitivity of the replica coherer, overall receiver sensitivity would by influenced by sensitivity of the relays and this requires further research.
It appears that pulses with a peak potential in the order of volts would be needed for reliable working. At first sight, an induced pulse presenting a potential of this order seemed incenceivable. However I then realized that early spark transmitters packed an enormous amount of energy in the tirst wave of an expo-

Fig. 4. Current induced in antenna by repetitive wave trains. Coherer triggering occurs on the first half cycle of each train. The period between triggering is long enough for operation of Morse register and restorer typically 50 to 200 ms .

Fig. 5. Varley's lightning protector comprised a glass tube loosely filled with copper filings. Provided the lightning wasn't a direct hit, the protector could be restored by gentle vibration.

Fig. 6. My prototype experimental coherer had a plastic tube and could easily be triggered by esd. Replacing the tube with a glass alternative reduced this effect.

Fig. 7. In the Slaby Arco coherer, performance consistency was improved by having uniform granules.
nentially declining train. Much of this energy was present in the first half wave.
Moreover, the coherer presents a high resistance, typically $500 \mathrm{k} \Omega$. I saw no reason why the first wave should not induce a potential in the order of volts across the coherer at normal working range. Unfortunately, carly spark transmitters cannot be replicated. As a resilt, direct measurements of currents induced in an antenna by waves propagating through space cannot be made.
However, thanks to co-operation of the DTI, experiments with a replica of Marconi's carly vhif transmitter were made underground in a disused railway tunnel and substantiated measurements made on the bench and outdoors, as discussed later.
My experiments showed that once the coherer is triggered by a pulse of given amplitude, successive pulses of lesser amplitude have no further effect on resistance; this applies to exponentially declining trains. Fig. 2.

I found that if the magnitude of the pulses increases incrementally, as would occur with pear-shaped wave trains, the coherer is successively triggered as the wave train builds up to maximum amplitude; this of course assumes that lowering resistance of the coherer does not unduly load the pulse source. Thereafter resistance remains steady, Fig. 3.

Static

I demonstrated the fact that the coherer is pulse activated by rubbing a screwdriver against my pullover and touching its tip on a coherer terminal. It triggered instantly. Resistance drop was roughly proportional to charge on the screwdriver, so the coherer may well be adapted as an electrometer
This triggering mode was substantiated by experiments with a pulse/spike gencrator. Surprisingly, I found no reference in the literature to the coherer being triggered by a static charge, and concluded that it was caused by using plastic tube for my replica instead of the glass alternative used by the pioneers. Changing the tube material to glass dramatically reduced so the effect may not have been observed by the pioneers.
It has long been known that the coherer was susceptible to triggering by natural discharges. Both Popoff and Tesla used the coherer to study atmospheric electricity before it was applied as a detector of Hertzian waves.
For maximum range with a coherer receiver, energy should ideally be radiated as electromagnetic (em) pulses. True pulses however are untunable so syntony (oscillations progressively built up in a receiver by virtue of resonance) would be out of the question. Early spark transmitters radiated energy in trains containing very few waves, not unlike a lightning discharge. While well suited to the coherer, they precluded syntony, Fig. 4.
The coherer/Morse register was slow. In the quest for syntony and a higher signalling speed, the coherer was superseded by detectors better suited to the longer wave trains that were vital for syntony. These later detectors -
which include Marconi`s magnetic detector, Fessenden's electrolytic detector and DeForest's audio - produced an audible sound in a telephone earpiece that corresponded to Morse code characters.

Evolution

The coherer had its roots in Varley's telegraph 'lightning protector". This consisted of a glass tube loosely filled with copper filings, connected between an earth plate and the overhead line where it entered the building. In their loose state, the filings presented a high resistance and therefore did not significantly interfere with signalling, Fig. 5 .
A pulse induced in the line by a lightning discharge caused the filings to cohere with a dramatic drop in resistance; this was so rapid that the pulse was shunted to earth before it could damage equipment. Moreover, unless the strike was very close, in which case the filings fused together, the protector could be restored to its original high resistance state by gentle vibration.

Branley seems to have been first to apply Varley`s device to detecting Hertzian waves and it is named after him. But like many radio innovations, the coherer evolved through empirical experiments by a number of pioneers. It was applied to receiving Hertzian waves by Marconi and Popoff at around 1895. The name 'coherer' was invented by Lodge and aptly describes the device.

Throughout its life, the coherer gradually improved in sensitivity and operating consistency, culminating with the Slaby-Arco coherer in 1903. However, sensitivity was not the primary concern. If too sensitive, the coherer was susceptible to triggering by natural discharges. Consistency of operation was perhaps more important factor.

Construction

My experimenter's coherer consisted of a glass tube about 30 mm long and 5 mm inside diameter with a brass plug inserted in each end. The plugs served as electrodes and were separated by a 3 mm gap at the centre of the tube. this gap was loosely filled with metal filings, lypically steel with a small proportion of nickel.

I made four versions of coherer, each having different proportions of iron and nickel filings. In all cases the filings were sifted to remove fine particles. As explained in the main article, I used the plastic case of an old ball point pen instead of a glass tube, Fig. 6. All were physically the same size so that they clipped into a modified fuse holder.
I found 80% steel and 20% nickel (10 p coin), as recommended by some carly writers. gave best results. This article is based on data obtained with this version. All coherers are unique, but I believe the characteristics of my replica are similar to those used by early experimenters.
Setting up and preliminary adjustment involved gently forcing the electrodes into the tube until resistance fell to about 10Ω. The electrodes were then eased apart. while gently tapping the tube, until resistance increased to
about $500 \mathrm{k} \Omega$. To ensure maximum sensitivity, final adjustment was made with the aid of a buzzer type signal generator as described in early literature.
The Slaby-Arco coherer and other high quality coherers had silver electrodes and carefully graded metal granules. These were typically 5% silver and 95% nickel of the order $50 \mu \mathrm{~m}$ in diameter. Air was removed and the electrodes sealed in the glass tube. Fig. 5.

Size of the granules determined sensitivity: the smaller the gramules, the greater the sensitivity. Consistency of operation depended primarily on the uniformity of the granules. Fig. 7.

Regarding sensitivity, I doubt that carly experimenters" coherers were inferior to the Slaby-Arco coherer. Experimenters could increase sensitivity by reducing the size of the filings. But with all coherers there is a limit to how far this can be taken and experimenters devices most probably approached this limit. However, the Slaby-Arco coherer would undoubtedly have operated more consistently.

Coherers have only two terminals so choking coils were necessary to isolate trigger pulses from the do energising circuit. In some designs the relays served as choking coils, Fig. 8a. The antenna circuit must not present a de path across the terminals.

Restoring

Once triggered, the coherer would remain in its low-resistance state indefinitely. In a practical signalling system, it had to be restored to its high resistance state in readiness for the next wave train. This was achieved by gently tapping the coherer with a device similar to the hammer of an electric bell; this operation was synchronized with the Morse register, Fig. 7a, but some systems had only one relay.

For my experiments it was more convenient to restore the coherer by gently tapping it with a pencil. Only the slightest vibration was required and some early experimenters suggested that it could be used as a seismometer.
Signalling was by transmitting short or long groups of wave trains representing a 'dot' or 'dash' of Morse code. Each train caused the Morse register to make a discrete mark on the paper tape. Successive wave trains caused the marks to merge, thus forming a continuous line. Length of the line corresponded to the duration of the group of wave trains.

Very fast

Varley's lightning protector had shown that coherence was very fast. I found that with pulses having a rise of lms. coherence occurred before the pulse reached maximum potential. There was no further drop in resistance as potential increased. Moreover. once triggered. the protector's resistance falls, loading on the source increases and this may inhibit a further rise in the pulse's potential.
Furthermore, pulse rise time must be so short that the choke coils are able isolate the pulse from the de energising circuit. So, for greatest resistance drop, the pulse must approach maximum potential faster than

Fig. 8. In the 'untuned' coherer receiver, a hammer similar to the one on an electric bell provided the vibration needed to restore the coherer each time a pukse was received via the antenna. In the so-called untuned transmitter, b), length, capacity and resistance of the antenna actually set the operating wavelength.

Fig. 9. Early tuned transmitter, a) and Marconi experimental jigger with dc blocking capacitor b).
coherence. For this reason, the coherer was well adapted to Marconi's carly vhf system.
Coherence is generally accepted as being a physical effect. As a result, less energy would be required to overcome the inertia of small filings/granules. The effect is therefore faster than with larger filings/granules.

Untuned systems

With early vhf systems, it was logical to insert the colocrer at the centre of a dipole antenna where it avoided shorting the coherer. This was adopted by Marconi. With later longwave systems, employing Marconi type antennas, the coherer was inserted between the carth plate and the base of the antenna, Fig. 8 a .
Similarly, the transmitter had its spark gap between earth and the antenna base: this became known as an untuned system, Fig. 8b. The term 'untuned' was in fact a misnomer. The length, capacity and resistance of the
transmitter antenna set the operating wavelength. Because the antenna was a very efficient radiator, the amplitude of the waves in each train declined steeply.

With large spark coils, ship-to-ship and ship-to-shore signalling over of 50 km or more was achieved. Experimenters" manuals from around 1895 suggest that a transmitter using an induction coil comparable with a modern automotive spark coil and a 10 m elevated anterna should have a range of about 1 km .

Tuned transmitters

Second generation transmitters had inductors and capacitors and became known as tuned transmitters. Energy was still radiated as wave trains but each contained a greater number of significant waves than with the 'untuned' system.

Generally, transmitters employing one tuned stage. Fig. 9a, radiated exponentially declining wave trains while those having an inductively-

Fig. 10. Transmitter in a) had two tuned
stages, and the
complementary
jigger in b) had two
secondary windings.
coupled, tuned-antenna system, Fig. 10a, radiated pear-shaped wave trains.
Inductance/capacity tuners were not well suited to exponentially declining waves. The pulse induced by the first half-wave simply shocked the tuner into generating a train of oscillations with a magnitude much less than the original pulse. So, it was logical to con-

tinue to connect the coherer directly to the antenna in the 'untuned' mode.
On the other hand, the gradual increase in amplitude of pear-shaped wave trains reduced the incidence of shocking the tuner in:o oscil lation. But there were still too few trains. centaining too few waves for a significant build up of voltage in an $L C$ tuner by virtue of res-
onance. Syntony was minimal, but some voltage gain seems to have been achieved through standing waves.

Standing waves

Notwithstanding syntony, trains radiated by even the carliest ‘untuned` transmitters conlained more than one significant wave. Theoretically, a transient standing wave could develop in an antenna cut to an appropriate length.
There is of course, some voltage gain at a voltage antinode, but this was likely to have been insignificant with early Marconi untuned systems. What is more, diagrams from the time show the coherer inserted at a point where a voltage node could be expected to occur
During experiments with my replica of Marconi's vhf system, which radiated very short trains, it made very little difference where the coherer was inserted. More remarkably, the actual length of the antenna made litte difference either
Standing waves were apparently very sig-

Coherer experiments

My first attempts to measure pulse potential against drop in resistance were carried out by incrementally charging a low-inductance capacitor of 1 nF . It was then discharged it through the coherer via a high speed electronic switch.
For the experiments, the relays were substituted by an analogue ohmmeter. In all experiments, restoring was carried out by gently tapping the coherer with a pencil.
For the next measurement, a square wave generator was connected via a capacitorin parallel with a $500 \mathrm{k} \Omega$ resistor. This component substituted for the coherer in its high resistance state, producing spikes.
Peak potential of the spikes was measured via an oscilloscope with the signal generator calibrated to produce spikes with increments of 1 V . Next, the resistor was replaced by the coherer. Finally, resistance was plotted against the peak potential of the spikes.

In the tunnel. Experiments with the replica of Marconi's vhf transmitter were made without the reflectors. The antenna received only a few mJ, so energy in each wave train was minimal
The experiment began with the transmitter operated manually so as to radiate single wave trains. Resistance was measured and plotted against distance as the receiver was moved away from the transmitter in 1 m steps.
The coherer was then substituted by a resistor and the above exercise repeated with the transmitter set to automatically radiate wave trains with a repetition rate of 1 kHz . Peak voltage across the resistor was measured by my 'magic eye' voltmeter. This related to resistance drcp at a given distance from the transmitter

Open country. Following the experiments conducted in the tunnel, I conducted open-country trials with the Hertz type transmitter radiating
individual wave trains, Fig. 11. Pressing and quickly releasing the key generally caused a single discharge and a single wave train. Although a crude arrangement, it proved to be adequate for experimentation. I estimate that energy stored in the antenna was only in the order of a few mJ .
The receiver is shown in Fig. 12. You can see that instead of connecting the coherer to the centre of the dipole, it was offset to where a voltage antinode should theoretically exist. In practice it made little difference where the coherer was inserted. As with the tunnel experiments, the resistor was used in conjunction with my 'magic eye voltmeter. Range for the above transmitter/receiver is shown in Fig. 13.
Having conducted the above experiments, the DTI kindly allowed me to radiate a few more wave trains to replicate Marconi's 'untuned' system and to compare the sensitivity of my

nificant with later transmitters radiating pearshaped wave trains. A voltage antinode was the logical place to insert the coherer. With Marconi type antemas however. the voltage antinode was at the top of the antenna where it was impractical to insert the coherer. The Slaby-Arco system overcame this problem by using a quarter-wave matching section raised 3 m above the ground. Fig. 11.
Marconi developed transformers to step up the voltage, which he called 'jiggers'. These were inserted at a voltage node occurring at the base of a Marconi type antenna. Coupling the jigger to the colierer however presented a problem. Direct-current resistance of its secondary winding was far less than that of the coherer.
If the jigger was connected directly across the coherer terminals it would simply have shunted both the coherer and the de energising eircuit. So a de blocking capacitor was inserted between the secondary winding and the coherer. But as the coherer had a high impedance, this proved unsatisfactory because it series-tuned the secondary winding. Fig. 9b.

Fig. 11. In Marconi designs, the best place to insert the coherer was also the most impractical i.e. in the voltage antinode at the top. Slaby Arco antennas overcame this problem.

Marconi later developed a jigger with a pair of isolated secondary windings, which apparently was succes.sful.

Ultimately. each secondary winding wats parallel tuned by a fixed capacitor which converted it into a pre-set tuned transformer. Fig. 10b. This arrangement seems 10 have been successful, probably because of the succensive triggering. Furthermore, it partially reconciled the conflicting requirements of syntony and the coherer. It was used by Marconi until
1906. when the coherer was ultimately superseded
In conclusion. my research has shown the coherer to be something of an enigma and much remains to be learnt. Nevertheless. I hope that this discussion has filled a lew gaps in our knowledge of the device.
I owe thanks to the DTI. Northamptonshire Couny Council, and to farm owner Mr Thomas for their co-operation in my experiments
coherer with data from the archives.
Transmitter details are shown in Fig. 14. The hand cranked magneto charged the capacitor to 100 V , which was then
was discharged through the prir ary winding o^{-}the induction coil viョ a thryristor. Tre sloping antenna was attached to the apex of a farm cuilding.

Fig. : 6. Receiver arrangement used with the untu ed transmitter in open-country experiments.

The receiver arrangement as shown in
Fig. 15, but in this case the antenna was attact ed to a convenient tree.
Trials were made at distances of approx 500 m and Ikm . At 500 m the coherer's resistance dropped to 50Ω and to about 500Ω at 1 km . The curve obtai ed with the Hertz type transmitter indic ates 1 km approaches the maximum work ng range for equipment of this power. This agrees with data from experimenters working around the turn of the century.
Rarge would undoubtedly nave been increased by experimenting with diffenent spark gaps and using a longer more efficient antenna system, i.e. one with greater capacity to eart. Remarkably, the coherer receiver seer ed imune to triggering by powerful radic

SEALED LEAD ACID Eattery, ©V $80 / 100$ AH made for BT ex equipment but ok $£ 45$ each ref APR47. Ideal electric vehicle etc. ASTEC SWITCHED MODE PSU Gives +5 e $3.75 \mathrm{~A},+12$ e 1.5 A , -12@. 4A. 2301110, cased. BM41012. £9.99 ref APR10P3 TORRODLAL TX $30-0-30480 \mathrm{VA}$. Perfect for Mosfet amplifiers etc. 120 mm dia 55 mm thick. $£ 18.99$ ref APR19
MOD WIRE Perfect for repairing PCB's, wire wrap etc. Thin insulated wire on 500 m reels. Our pnce just $£ 999$ ref APR10P8. 12v MOVING LIGHT Controller. Made by Hella, 6 channels rated at 90 watts each. Speed control, cased $£ 34.99$ ref APR35. ELACTRON FLASH TUBEAs used in police car flashing lights etc, full spec supplied, 60-100 flashes a min. $£ 9.99$ ref APR10P5. 24v 96WATT Cased power supply. New. £13.99 ref APR 14. STETHOSCOPE Fully functioning stethoscope, ideal for listening to hearts. pipes, motors etc. 66 ref MAR6P6.
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a bullt in lamp at dusk. Complete with seales lead acid battery etc $£ 19.99$ ref MAR20P1. ALARM VERSION of above unit comes with built In alarm and pir to deter intruders E 24.99 ref MAR25P4
CLOCKMAKER KIT Hours of fun making your own clock, complete instructions and everything you need. $£ 7.99$ ref MAR8P2 CARETAKER VOLUMETRIC Alarm, will cover the whate of the ground floor against forcred entry Inctudes mains power supply and integral battery backup. Powerful intemal sounder, will take extemal bell if req'd. Retaill $£ 150+$, ours? $£ 49.99$ ref MAR50P1. TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips . Ideal 'phone extns etc $£ 7.99$ ref MAR8P3. VIENDATA RETURNS $£ 6$ madeby Tandata, includes 1200.75 modem, k/bd, RGB and comp op, printer po. No PSU E6 MAG6P7 IBM PC CASE AND PSU ideal base for bullding your own PC. Ex equipment but OK $£ 14.00$ each REF: MAG14P2
SOLAR POWER LAB SPECIAL You get TWO $6 \times 6^{\circ} 6 \mathrm{v}$ 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor Superb value kit just $£ 5.99$ REF: MAG6P8
SOLID STATE RELAYS will switch 25A mains. Input 3.5-26v DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10 300DPI A4 DTP MONTTOR Brand new. TTLECL inputs, 15° landscape, 1200×1664 pixel complete with arcuit diag to help you interface with your projects. JUST E24.99. REF MAG25P1 ULTRAMINI BUG MIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made by AKG. $5-12 \mathrm{v}$ electret condenser Cost£12 ea, Our? four for $£ 9$ 99 REF MAG10P2 RGB/CGAEGATTLL COLOUR MONTTORS 12^{*} in good condition. Back anodised metal case. £ 99 each REF MAG99P 1 GX 4000 GAMES MACHINES returns so ok for spares or repar $£ 9$ each (no games). REF MAG9P1
C64 COMPUTERS Retums, so ok for spares etc 59 ref MAG9P2 FUSELAGE LIGHTS 3 foot by $4^{\prime \prime}$ panel $1 / 8^{\prime \prime}$ thick with 3 panels that glow green when a voltage is applied Good for nightlights, front
 ANSWER PHONES Returns with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's £18 ea REF MAG18P1. PSU £5 ref MAG5P12
SWITCHED MODE PSU ex equip. 60w +5 v @5A. $-5 v$ © 5A. +12v@2A. 12v@ 5A 120/220v cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinpu1 socket £6.99 REF MAG7P1
PLUG IN PSU 9V 200mA DC $£ 2.99$ each REF MAG3P9 PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17V DC 900 mA output Bargan price $£ 599$ ref MAG6P9
ACORN ARCH MEDES PSU +5 V (1) 4.4A on/off sw uncase selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2
selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2
GEIGER COUNTER KTT Low cost professional win tube, complete with PCB and components. £29 REF MAG29P1 SINCLAIR C6 13^{3} wheels complete with tube, tyre and cyde style bearing $£ 6$ ea REF MAG6P 10
AA NICAD PACK encapsulated pack of 8 AA nicad battenes (tagged) ex equip. $55 \times 32 \times 32 \mathrm{~mm}$. £3 a pack. REF MAG3P 11 13.8 V 1.9A psu cased with leads. Just £9.99 REF MAG10P3 $360 \mathrm{~K} \mathbf{6 . 2 5}$ brand new half height floppy drives IBMcompatble industry standard. Just $£ 6.99$ REF MAG7P3
PPCMODEM CARDS These are high spec plug in cards made for the Anstrad laptop computers. 2400 baud dial up unit complete with leads Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Originaliy made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our clearance pnce is just $£ 2$ REF: MAG2 TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very usefulbook for finding equivalent transistors, leadouts, specs etc. E20 REF: MAG20P1
SINCLAIR C6 MOTORS We have a few len without geartoxes These are $12 \mathrm{VDC} 3.300 \mathrm{pmm} 6^{\prime \prime} \times 4^{\prime \prime} .1 / 4^{\prime}$ OP shan f 25 REF: MAG25 UNIVERSAL SPEED CONTROLLER KTT Designed by us for the above motorbut ok for any $12 v$ motor up to 30 A . Complete for the above motor but ok for any 12 v motor up to 30A. Complete
with PCB etc A heat sink may be required. E17.00 REF: MAG17 VIDEO SENDER UNIT. Transmits both audio and video signals VIDEO SENDER UNIT. Transmits both audio and video signals
from either a video camera, udeo recorder, TV or Computer etc to from either a video camera, video recorder, TV or Computer etc to
anystandard TV setina 100' range! (tune TV to spare channel) 12 v anystandard TV set in a 100' range' (tune TV to a spare channel) 12V
DC op. Price is $£ 15$ REF: MAG15 12 V psu is $£ 5$ extra REF: MAG5P2 DCop. Price is $£ 15$ REF: MAG 15 12V PSU is $£ 5$ extra REF: MAG5P2
*FM CORDLESS MICROPHONE Small hand held unit with a 500 ' range! 2 transmit power tevels Reqs PP3 9v battery Tuneable to any FM receiver. Price is $£ 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pal r of battery operated units with a range of about 200'. Ideal for garden use or as an educational toy. Price Is $£ 8$ a par REF: MAG BP1 $2 \times$ PP3 req'd
*MINATURE RADIO TRANSCEIVERS A pair of walke takies with a range of up to 2 kiometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases and earpieces. $2 \times \mathrm{PP} 3$ req'd. £30.00 pair REF: MAG30.
COMPOSTTE VIDEO KIT. Converts composite video into separate H sync. V sync, and video 12VDC. £8.00 REF: MAGBP2. LQ3600 PRINTER ASS EMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, stepper motors etcetcin fact everything bar the case and electronics, a good
stnpper £5 REF: MAG5P3 or 2 for £8 REF: MAGBP3 stnppen $£ 5$ REF: MAGSP3 or 2 for $£ 8$ REF: MAGBP3

NEW BULL ELECTRICAL STORE WOLVERHAMPTON BRANCH

NOW OPEN AT 55A WORCESTER ST TEL 090222039

100MHZ OSCILLOSCOPES now in stock, $12 \times 10 \mathrm{~cm}$ screen, delayed sweep, 1 Mohm / 25 pf inputs, modesch 1, ch2, add, chop, alt, dual. 460 x $305 \times 200 \mathrm{~mm}, 17 \mathrm{kgs}, £ 267+$ Vat includes insurance and carriage.

INFRARED LASER NIGHT SCOPES

Second generation image intensifier complete with hand grip attachment with built in laser lamp for zero light conditions. Supplied with Pentax 42 mm camera mount, 1.6 kg , uses 1xPP3,3xAA's (all supplied) $£ 245+$ Vat

NEW HIGH POWER LASERS

15 mW , Helium neon, 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND UNDER gUALIFIED GUIDANCE. \&349+Vat.

'PC PAL' VGA TO TV CONVERTER

Just plug in and it coverts your colour television into a basic VGA screen, perfect for laptops, saves lugging monitors about or just as acheap upgrade. Intro price $£ 49.99+$ Vat.

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25" 360K DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

NOW ONLY $£ 39.00$
REF: MAG39

3FT X IFT IOWAT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ NOW AVAILABLE BY MAIL ORDER £33.95

IOP QUALITY AMORPHOUS SLLICON CELLS HAVE ALMOST A timeless lifespan with an infinite number of possible APPLICATIONS, SOME OF WHICH MAY BE CAR BATIERY CHARGING. FOR USE ON BOATS OR CAREVANS, OR ANY
WHERE A PORTABLE 12 V SUPPLYIS REQUIRED. REF: MAGSA
£££f££WE BUY SURPLUS STOCK££££££
TURN YOUR SURPLUS STOCK INTO CASH
immediate settlement. we wil also quote for
COMPLETE FACTORY CLEARANCE
1994 CATALOGUE
PLEASE SEND 45P . A4 SIZED SAE FOR Your free Copy INNMMM GOODS ORDER $\angle S O$ TRNDE ORDER FROM OOVFRMMRNT, SCHOOLS

 SOME OF OUR PRODUCTS MAY BE UNLICE NSABLE NN THE UK
BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT
MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS £3.00 POST PLUS VAT.

PLEASEALLOW 7 - 10 DAYS FOR DELIVERY

thlephone orders welcomb
TEL: 0273203500
FAX: 0273323077

SPEAKER WIRE Brown 2 core 100 foot hank $£ 2$ REF MAG LED PACK of 100 standard red 5 m leos $£ 5$ REF MAG5P4 UNNERSAL PC POWER SUPPLY complete with fiy switch, tan etc. Two types available 150 w at $£ 15$ REF:MAG
$(23 \times 23 \times 23 \mathrm{~mm})$ and 200 wat at $£ 20$ REF MAG20P3 $(23 \times 23 \times 23 \mathrm{~m}$ FM TRAN SM ITTER housed in standard working 13 A adapter he bug runs directy oft the mains so lasts forever! why pay 8700 ? or price is $£ 26$ REF: MAG26 Transmits to any FM radio
*FM BUG KIT New design with PCB embedded coil for extra stability. Works to any FM radio. gv battery req'd. $£ 5$ REF: MAG5P5 *FM BUG BUILTANDTESTED supenordesign to kit. Supplied oo detective agences. $9 v$ battery req'd $£ 14$ REF MAG14
TALKING COIMBOX STRIPPER onginally made to retail at £79 each, these units are designed to convert and ordiliary phone into a payphone. The units have the locks missing and sometimes broken ninges. However they can be adapted for their onginal use or used for something else? P Price is just $£ 3$ REF: MAG3P1 100 WATT MOSFET PAIR Same spec as $2 S K 343$ and 2 SJ 413 ($8 \mathrm{~A} .140 \mathrm{v}, 100 \mathrm{w}$) 1 N channel, 1 P channel, £3 a pair REF: MAG3P2 TOP QUALITY SPEAKERS Made for HI FI televisions these are 10 watt $4 R$ Jap made 4 " mund with large shielded magnets. Good quality. £2 each REF: MAG2P4 of 4 for £6 REF: MAGBP2 TWEETERS 2 diameter good quality weeter 140R (ok with the above speaker) 2 for E 2 REF: MAG2PS or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot thesequalitykeyboards need just a small mod to run on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Price $£ 6$ REF: MAG6P3 PC CASES Again mixed types so you take a chance next one off the pile $£ 12$ REF:MAG 12 or two the same for $£ 20$ REF: MAG20P4 COMMODORE MICRODRIVE SYSTEM mini storage
devce for C64's 4 times faster than disc dives, 10 times faster than tapes. Complete unit just $£ 12$ REF:MAG12P1
SCHOOL STRIPPERS we have quite a few of the above units which are 'returns' as they are quite comprehensive units they could be used for other projects etc Let us know how manyyou need at just 50 a a unit (minimum 10)
HEADPHONES ExVirginAtlantic. 8 pairs for£2 REF: MAG2P8 PROXMITY SENSORS These are small PCB's with what look like a source and sensor $L E D$ on one end and lots of components on the rest of the PCB. Completewlth fly leads. Pack of $5 £ 3$ REF: MAG 3P5 or 20 for E8 REF: MAGBP4
SNOOPERS EAR? Original made to ctip over the earplece of telephone to amplify the sound-it also works quite weil on the cable running along the wall! Price is E5 REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just E5 REF: MAG5PB Worth it just for the very comprehensive manual! 5.25° only
DOS PACK Microsoft version 5 Original software but no manuals hence only $£ 3$ REF: MAG3P6 5.25° only
CTM644 COLOUR MONTTOR Made to work with the CPC464 home computer. Standard RGB input so will work with other machines. Refurbished $£ 59.00$ REF:MAG59
PIR DET ECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operation. Slight marks on case and unboxed (although brand new) £8 REF: MAGBP5 WINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar pane!! £14 REF: MAG14P
COMMODORE 64 TAPE DRIVES Customer returns at $£$ REF: MAG4P9 Fully tested units are E12 REF MAG12P5. MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13A plug on one end, cable the other. Ideal fo projects, low cost manufacturing etc. Pack of 10 for £3REF MAG3P8 Pack of $100 £ 20$ REF MAG20P5
MICROWAVE TIMER Electronic timer with relay output suitable to make enlarger timer etc $£ 4$ REF: MAG4P4
MOBILE CAR PHONE $\mathbf{E} 6.99$ Well almost! complete in cap phone excluding the box of electronics normally hidden under seat. Can be made to illuminate with 12 v also has built in light sensor so ALARM BEACONS Zenon strotaly bell box but could be used for caravans etc. 12y operation. Just connect up and it flashes regularly) 55 REF: MAG5P 11
FIRE ALARM CONTROL PANEL High quality metal cased alarm pane $350 \times 165 \times 80 \mathrm{~mm}$ With key. Comes with electronics but no information. sale price 7.99 REF: MAG8P6
REMOTE CONTROL PCB These are receiver boards fo garage door opening systems. Another use? £4 ea REF: MAG4P5 $6^{\prime \prime}$ X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130mA. Bargan price just $£ 599$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ rel MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG 13 P 1 LOPTX Line output transformers believed to be for hi res colour monitors but useful for getting high voltages from low ones! $£ 2$ each

REF: MAG2P12 bumper pack of 10 for £12 REF: MAG12P3

BOTH SHOPS OPEN 9-5.30 SIX DAYS A WEEK

PORTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and XRay detec tor. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of $5-9999$ UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.

REF: MAG50

INTERFACING WITH C

by

HOWARD HUTCHINGS

[^0]
C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scatiered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

Active devices fall into three groups: signal generation such as oscillators and amplifiers; signal reception using diode detection and mixing; signal control for attenuating, phase shifting, switching, modulating, limiting
The silicon bipolar junction transistor (BJT) works well at the lower end of the microwave bands and is the preferred device for mobile phone transmitters, for reasons of its high output power and efficiency. Power levels of 100 W or more are available from a single transistor operating around IGHz and efficiencies in excess of 35% can be obtained. It also exhibils very low phase noise.
However, the B.JT is a transit time device, in that its frequency of operation is ultimately limited by the time taken for electrons io travel from the base-emitter function to the collector. In practice, this means that the BJT is restricted (with a lew exceptions) to frequencies below about 4 GH z. Ahove this frequency and through into the millimetre wave bands above 30 GHz , the majority of amplifier and certain oscillator applications have become dominated by the n-type GaAs mestel.
The metal-semiconductor junction is preferred for Whis and, as we slath sec later. for other devices
charge storage effects. N-type material is used because of the higher mobility of the electron as a majority carrier. A derivative of the mesfet, the high electronmobility transistor (hemt), has revolutionised lownoise receiver design in the last few years and can give noise ligures previously only attainable by cryogenic receivers. For example, noise figures of less than 0.4 dB at 10 GHz and 2.5 dB at 60 GHz are available at room temperature from hemt chips. Further improvements in noise figure and operating frequency are available in the pseudomorphic hemt (Phemt).
However, as often happens. a dominating progress in one technology stimulates older processes and this has been the case with the bipolar transistor. Fet technology is a surface-orientated process, with performance limitations being set by pattern detinition capability 0. $1 \mu \mathrm{~m}$ lithography is now called for in millimetric devices which affects suitability for power generation. The response hass been the GaAs heterojunction bipolar transistor (HBT). This device is likely to replace the fer in power applications, initially up to about 10 GHz , and possibly up to millimetric frequencies. Adrantages include non-critical lithography due to the ‘vertical’ bipolar process, leading to medium levels of output power $(\approx 1 \mathrm{~W})$ and power-added efficiency of 50 \% or more.

ew wave MICROWAVES

4: active devices for millimetre waves

Most millimetre

 wave active devices are either unique to, or specially adapted for, this region of the spectrum.Mike Hosking describes the specialities and their applications.
*Mike Hosking is a lecturer in telecommunications and microwaves at the University of Portsmouth.

In addition, the circuit designer can easily implement class B or C operation, together with common base or cascode configurations. In effect, the GaAs HBT possesses the power, efficiency and spectral noise advantages of the lower frequency Si BJT, but translated to the higher frequency bands.
Substantial development work is also taking place in using indium phosphide as a replacement for GaAs in certain areas to improve power and frequency performance. However the final outcome is unclear and investment costs are high.

Two terminal semiconductors

There are classes of device not applicable to lower frequencies. Gunn-effect (or transferred electron) device and the Impatt (impact ávalanche and transit time) diode have been the mainstay of solid state microwave power generation and, although becoming superseded by the transistor below about 30 GHz , have wide application through the millimetre wave bands. Both are used as fundamental oscillators, as their inherent principles of operation give them a negative resistance characteristic. but they can also be designed into reflection amplifier circuits.
The Gunn device has traditionally been used in low-cost, high volume applications such as speed or intruder motion detectors and as the local oscillator in radar receivers. CW output powers of 0.5 W or more are possible and operating frequencies up to about 140 GHz : pulsed devices can deliver 40 W or more of peak power.

Impatt diodes are the highest power solid state devices at millimetre wavelengths: output power is measured in 100 's of mW . with several watts being possible at 10 GHz . Operating frequency can be throughout the millimetre bands (to 300 GHz). New applications are opening up for these devices in the 38 and 50 GHz PCS bands, as well as the 60 and 77 GHz bands for vehicle communication applications.

There are, of course, other solid state means of generating microwave signals, i.e. up-conversion, frequency multiplication, harmonic generation, and there are specialised, but littleused derivatives of some of the above devices. All systems raise questions about maintenance of frequency stability and tuning. These are best answered by examining practical circuits.

Gunn-effect device

Named after its inventor. J B Gunn of IBM, this represents a class of semiconductors known as transferred electron devices (TED). They are transit time devices, in that their frequency of operation is dependent upon the time taken for charge carriers to traverse the active region. The Gunn effect relies for its operation on a particular energy band structure found in certain III-V compounds: especially GaAs and $\ln P$, with GaAs being by far the most common material; Si and Ge cannot be used.

Basically, the device consists of an n-type active region sandwiched between two epi-

Fig. 2. Detail of the energy band structure of GaAs. Electrons transfer from the valence band to the high mobility lower band and thence to the higher energy, but lower mobility upper band.

Fig. 3. DC bias curve for GaAs showing the gradual departure from the Ohm's law straight line and the Gunn effect negative resistance after the threshold field has been exceeded.

taxially grown n^{+}ohmic contacts, as shown in Fig. 1.

Important parameters are the doping density (charge carriers per cm^{3}), the active layer length, L, and the cross-sectional area. Figure 2 shows schematically a detail of the GaAs energy band structure as a function of the electron momentum as it drifts through the semiconducter.

The main features of this structure are the two regions of the conduction band close in energy to the valence band and separated from each other by an energy gap of 0.36 eV . (An electron at room temperature has a thermal energy of about 0.026 eV). In each of these bands, the electrons have an effective mass m_{e} and a mobility μ (same symbol as, but not to be confused with, permeability). Mobility has the units of $\mathrm{m}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1}$ (colloquially $\mathrm{cm}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1}$) and is a measure of electron speed in an applied electric field, i.e. $\mu=$ velocity/E-field. The unusual situation in GaAs is that electrons in the lower energy band have a low mass and high mobility ($8000 \mathrm{~cm}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1}$), whereas those in the higher energy band have a high mass but a low mobility ($150 \mathrm{~cm}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1}$). Thus, higher energy electrons actualty travel more slowly in the material.

If a small voltage is now applied across the

Gunn device and steadily increased, the resultant electric field and the electron velocity (i.e. current) will also increase: linearly at first, in accordance with Ohm's law. However, as shown in Fig. 3, as the voltage (E-field) increases, there is a departure from linearity, corresponding to electron transfer to the upper band.
Eventually, a threshold value, E_{T}, of about $3.2 \mathrm{k} \mathrm{Cm}^{-1}$ is reached, at which point the great majority of electrons transfer to the upper band. However, in this band, the physical laws must be obeyed: the mobility is low and thus electrons slow down, even though they have more energy. The result is an electron 'traffic jam' at the cathode ohmic contact, a rapid build-up of charge called a domain. Thus, as the applied voltage is increasing, the electron current (proportional to velocity) is actually decreasing, giving rise to a region of negative resistance.

The domain continues to grow rapidly, creating its own E-field at the expense of the field across the rest of the device. The applied voltage, though, is still present and causes the domain to drift across the active region at a constant velocity (called the saturation velocity). On arrival at the anode contact, the domain will disappear as a current pulse, the

RF ENGINEERING

E-field will rise again and the whole process will repeat itself.

The frequency of these current pulses depends upon the transit time of the domain across the active region which, for a constant velocity, depends upon the length L only and can be made to occur at microwave frequencies. Bias requirements for the Gunn device are simple and require a constant voltage source supplying. for example, typically 4.5 V at 1.5 A for a 200 mW output at 60 GHz . A low power motion sensing device giving 10 mW at 10.7 GHz , would require about 7 V at 100 mA . It can be seen that the de to rl conversion efficiency is low, typically 1.5% to 4.5% for standard commercially available devices, athough values up to 12% are possible.

As described so far, the Gunn device has been treated as an unpackaged chip and can be simply represented by a series combination of negative resistance $-R_{\mathrm{D}}$ and a capacitance C_{D}. These parameters are functions of operating frequency. power output and temperature and are more complicated to determine than normal static values, as they are formed by the dynamic situation of growing and collapsing domains. However, a typical range of values is $-4 \Omega 10-15 \Omega$ for R_{D} and 0.5 pF to 2 pF for C_{D}, For this and other microwave power devices. it is usual to encapsulate the chip on an integral heat sink and there are a wide variety of package styles available for 2-terminal devices. Fig. 4a shows two such packages, the smaller being used more at millimetre wavelengths and Fig. 4b indicates an approximate equivalent circuit of the package alone. with typical clement values.

The disadvantage is that the package intro-

Fixed transit time but
 variable frequency?

If Gunn frequency is determined by the fixed width of the active region, then how may this frequency be changed?
The answer is that the external resonant circuit into which the Gunn device is mounted has its own loaded Q -factor and its own resonant frequency (which may be different from the transit frequency) and can be tuned independently.
When the Q-factor is sufficiently high, then the if voltage swing across the Gunn device can affect the time at which the domain forms and may even suppress its formation for a time. This leads to modes of operation called the delayed mode and quenched mode, the frequencies of which are dictated by the external circuit and thus may be varied.
Within each of these three modes, a relatively small frequency control is possible by varying the bias voltage (called frequency pushing) as the electron transit time is a function of electric field. However, output power and mode stability are also affected and the technique is not often used.
duces small parasitic inductance and capacitance, the reactances of which are extremely significant at microwave frequencies and must be accounted for. Finally, in order to efficiently extract microwave power and to obtain a single frequency spectral output, the Gunn device must be embedded into a suitable resonant circuit.
At microwave frequencies, a resonant circuit may be simply produced from a length of transmission line, which appears as a distributed $R L C$ circuit. For example, a length of transmission line. short-circuited at both ends, becomes resonant and can be represented by a parallel $R L C$ network when its length in the direction of propagation is $1 / 2$ wavelength.
For 2-terminal Gunn and Impatt devices, the most popular resonant structure is a length of rectangular waveguide, short-circuited at one
end and with the active device mounted across the guide on a metallic post. Waveguide is preferred to coaxial line and to planar circuits of microstrip or coplanar waveguide due to its higher Q-factor, leading to a better frequency stability and lower fm noise. Heat sinking and de bias connections are also readily implemented. Furthermore, as one enters the millimetre wave region, the physical size and weight of such resonators is not great. Kaband waveguide, for example, which supports the frequency range $26.5-40 \mathrm{GHz}$ has internal dimensions of only $7.1 \times 3.6 \mathrm{~mm}$. A $1 / 2 \lambda$ in the guide at 30 GHz is 7 mm .
There must, of course, also be a means of coupling the microwave signal out of the resonator and three different techniques are shown in Fig. 5.
In version (a), the resonator is formed

Fig. 5. Various forms of waveguide mounting for Gunn oscillators.
a. Resonator formed by a short-circuited length of guide;
b. Resonator formed by post and iris;
c. Coaxial probe coupling to the guide.

Fig. 6. Overall equivalent circuit of a waveguide mounted oscillator including the post, active device, packaging, resonator and load impedances.

Fig. 7. Classical doping profile for the Si impatt diode. In practice, a double drift region is used in which domains of both electron and holes contribute to the output current.
between the short circuit and the device-post combination. with the output load impedance being that of the waveguide itself. In version (b), a thin metal diaphragm with a small coupling hole or slot cut in it (called an iris) forms the output. The short length of line between post and short circuit forms part of the impedance tuning. Version (c) uses the same principle as (a). but with a coaxial output. The E-field in the waveguide is parallel to the probe formed by the centre conductor of the
coaxial line and will, therefore, couple to it. The adjacent short circuit position adds a length of line for impedance matching.
Figure 6 gives an overall equivalent circuit of this type of oscillator where the active device elements, $-R_{\mathrm{D}}$ and C_{D} are modified by the package parasitics L_{p} and C_{p}. The post itself appears largely inductive to the field in the waveguide and is represented by the reactance X_{L}. Additional capacitive reactances X_{c} account for the finite diameter of the post. Capacitance ε_{g} accounts for the gap in the post and fringing fields. The impedance Z_{R} is that of the short circuited length, ℓ. of waveguide of characteristic impedance Z_{0} which, as we saw in Part 2 is given by $Z_{1}=Z_{0}$ tan $B \ell$: $B=2 \pi / \lambda_{\mathrm{g}}$. Impedance Z_{L} is the output transmission line impedance as transformed to or seen at the device terminals by the output coupling structure. Z_{L} itself may thas be quite complicated and the total oscillator design serves to illustrate the varied electrical effects which changes in physical structure cause at these frequencies.

Impatt diode

This specialised microwave device also behaves as a negative resistance and. like the Gum device, can be used as a directly oscillating source without the need for feedback circuits. The mechanism for generating the negative resistance is completely different. although the Impatt is still a transit time device. Choice of semiconductor is not restricted to the III-V compounds although, in practice, only Si and GaAs are used, with developmental devices available in InP.

Inpatt operation is based on a controlled avalanche breakdown process in a reverse biased serniconductor and depends upon the doping profile.

Figure 7 shows the simplified structure in which an intrinsic region is sandwiched between heavily doped n^{+}and p^{+}regions with

Gunn characteristics

In a semiconductor, the average electron drift velocity in the direction of an applied field does not continue to increase with increasing field strength, as in a conductor. Instead, even though the electrons become more energetic, they are scattered by the semiconductor lattice and gradually approach a limiting average velocity in the direction of the external field. In GaAs at normal Gunn operating voltages, this saturation velocity, v_{s}, is approximately $10^{5} \mathrm{~ms}^{-1}$. If we take the type of Gunn device used in intruder detectors, radar speed indicators and automatic door openers, then an operating frequency in the region of 10 GHz is required. Thus, the active length, L, in Fig. 1 would be given by $L=10^{5} \times 10^{-10} \mathrm{~m}$ or $10 \mu \mathrm{~m}$ for a transit mode cycle time at 10 GHz . The 10^{-10} quantity represents the period in seconds of one
signal cyc e at the operating frequency.
The threshold field in GaAs is $32 \mathrm{kVcm}^{-1}$ and so, fo a $10 \mu \mathrm{~m}$ device, the threshold voltage would be 3.2 V .

Typically, the bias voltage would be about 7 V fo- a 20 mW device at a supply current of 125 mA , giving a dc to off efficiency ot 2.3%.

The curent density, l, in the de sice can be estimaced from the relationship $=n e v_{s}$, where $n i$ in e carrier density and e is the electron charge. In our example, $n \approx 1.2 \times 10^{15}=\mathrm{m}^{-3}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ and $v_{\mathrm{s}}=10^{7} \mathrm{~cm} \mathrm{~s}^{-1}$. Hence, $\approx=2000 \mathrm{~A} / \mathrm{cm}^{2}$.

With the actual size of the GaAs chip typically seing less than $100 \mu \mathrm{~m}$ square and, at 2.3% effizient, with nearly 1 W being dissipated, эeat sinking is vital, especially as devices delivering more than ten times this power are readily available.

Fig. 8. The voltage and current rehationships as the avalanche domain forms and then drifts across the active region of the impatt diode, creating an effective negative resistance.
the key profile being the abrupi $\mathrm{n}^{+} \mathrm{p}$ interface and the narrow p -region.

As the reverse bias voltage is increased, the resulting electric field is sufficient to sweep the region between $n+$ and $p+$ ctear of carriers to form a depletion layer. Thus at the abrupt $\mathrm{n}^{+} \mathrm{p}$ interface a high electric field is formed. When this field reaches about $350 \mathrm{kV} / \mathrm{cm}^{-1}$, avalanche breakdown occurs and electron-hole pairs are generated: once above this field value, the rate of charge build-up becomes exponential.

The electrons enter the n^{+}region in this particular structure and can be neglected, while the charge of holes enters the depletion region. Electric field in this layer is very much less than the avalanche field: several thousand volts per cm and the charge carrier saturation velocity, due to scattering effects, occurring at about $5 \mathrm{kV} / \mathrm{cm}^{-1}$ in silicon, is about $10^{7} \mathrm{~cm} / \mathrm{s}^{-1}$. This means that the time taken for the charge carriers to cross the depletion region can be made independent of bias voltage and depends only upon the length of this region.
To explain the Impatt mecranism, assume that the bias voltage is increased until the electric field intensity is just below that required for avalanche breakdown. At this point there will be sufficient energy in one of the everpresent, random noise carriers to trigger off the avalanche process. For clarity, Fig. 8 assumes the steady-state condition where oscillations have already built up.

During the first half of the at cycle, the field is increased, avalanche multiplication commences and charge carriers build up at an exponential rate. When the alternating voltage falls below zero, the total field is less than the avalanche value and the process decays exponentially.

Gunning for intruders

As an application example of the Gunn device, the Philips CL8960 series doppler radar module, Fig. 9, has been around for many years for motion sensing equipment such as intruder alarms and automatic door openers. This component works as a homodyne radar transceiver and antenna module along the lines shown in Fig. 9b.
A microwave CW signal is transmitted and the reflected signal is detected by a single diode mixer which uses a sample of the transmit power as the local oscillator. Just as with the acoustic doppler effect caused by a moving sound source, the microwave signal reflected from a moving object will be shifted in frequency. This 'doppler shift' f_{D} depends upon the relative velocity between moving object and detector and is given by:

$$
f_{\mathrm{D}}=2\left(\frac{\text { relative velocity }}{\text { wavelength }}\right)
$$

With low-pass filtering at the mixer output, just the intermediate frequency is selected; which will be zero for stationary object. With movement present, the IF will be:

(transmit frequency $\pm f_{\mathrm{D}}$)-LO frequency

which, as transmit and LO frequencies are the same, results in a mixer IF of f_{D}. In the alarm applications, it is not necessary to measure f_{D}; the very existence of a non-zero If implies movement.
The actual module shown in the picture uses a 10 mW Gunn device, post-mounted across the left-hand section of rectangular waveguide, short-circuited at approximately a
half wavelength from the post
Operating frequency, for an indoor application, is $10.687 \mathrm{GHz} \pm 12 \mathrm{MHz}$, hence the advantage of the higher- Q waveguide form of resonator. The mixer is a single diode in a relatively large package that fits conveniently across the right hand guide and is impedance matched by positioning about a quarter wavelength away from another terminating short circuit. Both transmitter and detector couple to free space via the small tapered section of guide, which behaves as an antenna having approximately 5 dBi of gain. There is, however, a deliberate slight mis-match associated with this coupling which causes spill over of the transmit signal into the mixer, thereby providing the LO input. A dielectric cover over the end (i.e. the wall of a plastic box) can be used to adjust this spill-over as well. Power supply requirements are 7 V at about 140 mA .
With these parameters, the doppler frequency generated is about 71.2 Hz per ms^{-1} or 32 Hz per miles per hour.
A variation on this type of radar is used in temporary traffic light systems where it is necessary to sense the actual direction of motion. This can be done by adding a second detector diode, suitably positioned and comparing the phase of the two outputs Finally, of course, we must not forget the police radar speed indicator application!
Although mainly used as oscillators, both devices may also be designed as reflection amplifiers. With a load resistance greater than the negative resistance, the device will not oscillate and a low power incident signal can be reflected back out, but with amplification.

Fig. 9. A microwave signal reflected from a moving object will undergo a doppler shift in frequency and a simple motion sensing radar (a) comprising a transmitter/detector/antenna can be made using the Gunn device. Signal path processing is shown below.

doppler amplifer and filter.

The result is shown in Fig. 8 where the charge density is seen to be a sharply delined spike and, in particular, the peak charge now lags the peak alternating voltage by 90°. Under the influence of the de bias, this bunch of charge now drifts across the depletion region at constant velocity and therefore induces a constant current in the external circuit. If the diode depletion length is such that the carrier transit time corresponds to one halfcycle of the alternating voltage. then the induced current will be 180° out of phase with the voltage. Hence, negative resistance is produced and the diode will generate mierowave power when incorporated into a resonant circuit with output coupling.
In fact, the maximum value of negative resistance occurs when the transit time of the domain τ is such that $0 \tau=(0.74 \pi$ (called the transit angle) where ω is the angular frequency of operation.

Thus. the frequency of oscillation is approximately $י \delta 2 L$. where v, is the saturated carrier velocity of about $10^{5} \mathrm{~ms}^{-1}$ and L is the depletion length. For a frequency of 10 GHz .
Dimension $L=5 \times 10^{-3} \mathrm{~cm}$, i.e. half that of the Gunn effect device. Also, at this frequency. the junction area is about $5 \times 100^{-1} \mathrm{~cm}^{2}$ giving rise to bias current densities of about $10.000\left(\mathrm{~A} / \mathrm{cm}^{2}\right.$. Thus, as with the Gumn device. good heat sinking is also essential and diamond heat sinks, within the package, are commonly used for millimetric operation. The overall equivalent circuit is the same as that of the Gunn device. but with R_{D} typically $-0.9 \Omega \Omega$ and $C_{\mathrm{D}} 0.25 \mathrm{pF}$ for a millimetric power device.
The simple doping profile of Fig. 7 was the original structure proposed by W.T. Read of Bell Systems but, in practice, has been largely superseded by a double-drift profile. The principle of operation remains the same. but both hole and electron domains form and add to the output current. Efticiency is increased: values greater than 20% are possible, together with an increase in output power.
For example, 10 W to 20 W of peak power at around 10 GHz and 1 W at $100 \mathrm{GH} \%$ would be typical, with slightly lower CW power available. One particular application has been in portable, outside broadcast communication links: much effort has been put into combining the outputs of many diodes to produce output wattage in the hundreds.
The Inıpatt requires a higher bias voltage than the Gunn device. but a proportionally lower current, from a current-stabilised source. For example. a 3 W pulsed device at around 30 GHz would require peak supply values of some 35 V at 0.5 A .

[^1]

UNIVERSAL

/ Supports over 2000 ICs:-
EPROMs, E ${ }^{2}$ PROMs, Bipolars, Flash, Serial PROMs over 150 microcontrollers - including PIC17C42 pLDs, EPLDs, PEELs, PALs, GALs, FPGAs Including MACH, MAX and MAPL parts
\& Very few adapters
Universal Adapter PACs for
40 pin DIL and $44,68,84$ PLCC parts
Also 4 and 8 gang PACs
, 256 pin drive capability for future expansion

* Uses standard pc printer port
, Powerful full colour menu driven software
- Regular updates

Contact SMART Communications for our full range of Programmers Emulators, Cross-Assemblers, Compilers and Simulators

Tel: $081-4413890$
Fax: 081=4411843

CIRCLE NO. 116 ON REPLY CARD

Finally an upgradeable PCB CAD system to suit any budget ...

Board Capture

BoardCapture - Schematic Capture

- Direct netist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Automatic on-ine annotation
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker

BoardMaker1 - Entry level

- PCB and schematic drafing
- Easy and intuitive to use
- Surace mount sujport
- 90, 45 and curved track comers
- Ground plane fili
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of Boarc Maker1 plus
- Ful: netlist support - OrGad, Schema, Tango, CadStar
- Ful Design Rule Checking - mechanical \& electrical
- Tof down modification fom the schematic
- Component renuraber wich back annotation
- Repor generator - Database ASCII, BOM

NEW - Thermal power plane susport with full DRC

Board Router
 BoardRouter - Gridless autorouter

- Simultaneous muti-layer routing
- SND and analogie supjort
- Ful interrupt, resume, pan and zoom while routing

Output drivers - Incuded as standard

- Printers - 9 \& $2 \angle$ pin Lot matrix, HPLaserjet and PostScript
- Perplotters - HP Graphec, Roland \& Houston
- Phatoplotters - All Gerbar 3X00 and 4X00
- Exceltion NC Drill / Annvtated drill drawings (BM2)

Call 5 info or full evaluation kit Tsien (UK) Limited Tel (0354) 695959
Fax (0354) 695957

Thien (UK) Lid, Ayksby Houre Wenny Road, Chational, Cambiridgo pere but

Applying Hall to good effect

Integrated Hall-effect sensors have a vast range of uses, from limit switches to current monitors. Martin Eccles looks at some of the applications for both digital and analogue-output devices.

Free Hall-effect samples

A device pack comprising a choice of either a 3503 ratiometric linear sensor or a 3121 Hall-effect switch and data pack will be sent free of charge to the first 500 readers returning the special reply card located between pages 584 and 585 of this issue. Please note that this offer only applies to readers in the UK and Eire and that all enquiries relating to the offer should be directed to Ambar Cascom, whose details appear at the end of this article.

AHall element is simply a small sheet of semiconductor material. A constant bias current flows through it and the output - a voltage measured across the width of the sheet - reads near zero provided that there is no magnetic field present. If the biased Hall sensor is placed in a magnetic field at right angles to the Hall current, the voltage output is directly proportional to the strength of the magnetic field. This is the Hall effect, discovered by E. H. Hall in 1879.
Integrated devices incorporating the Hall element together with amplifiers, regulators, drivers and schmitt comparators are now used widely: ignition distributors, motor speed controls, security systems, alignment mechanisms, micrometers, mechanical limit switches, computer peripherals, machine tools, key-switches and push buttons.

Linear senor applications

Rotation detection. Normally, a linear Hall sensor's output is capacitively coupled to an amplifier that boosts the output above the millivolt level, as in Fig 1.
In two applications shown in Fig 2, a permanent bias magnet is attached with epoxy glue to the back of the epoxy package.

Fig. 2. By attaching a magnet to the packaging, linear Hall sensors can be used to sense rotational speed. When a ferrous material passes the face of the Hall device opposite the magnet, flux is concentrated and the device output voltage changes proportionally.

Presence of ferrous material at the face of the package acts as a flux concentrator.
The south pole of a magnet is attached to the back of the package if the Hall effect IC is to sense the presence of ferrous material. If the device is to sense the absence of ferrous material the north pole of a magnet is attached to the back surface.
Calibrated linear Hall devices - useful for

measuring heads and determining flux densities during the design stage - are available.

Since a Hall-effect sensor is triggered by magnetism, the obvious way to sense rotation is to fix magnets to the rotor. In many applications however, there are significant benefits to from having a fixed magnet and fixed sensor, as shown in Fig. 3

With this arrangement, the magnet needs to be powerful enough to turn the sensor opposite on while unobstructed. When a blade of the ferromagnetic vane passes between the
magnet and sensor, flux is shunted and the sensor turns off.
Movable vanes are a practical way to switch Hall devices. The sensor and magnet can be moulded together to eliminate alignment problems and produce a rugged switching assembly. The ferrous vane or vanes that interrupt the flux can move linearly, or rotate as in an automotive distributor. Ferrous vane assemblies, due to the steep flux density/distance curves that can be achieved, are often used where precision switching over a large
temperature range is required.
Linear motion. Most magnet/sensor combinations produce a non-linear flux-distance relationship. The push-push configuration in Fig. 4 however produces an almost linear curve. as Fig. 5 illustrates.
Suitable for use with either linear or switching sensors, this arrangement produces a bipolar field with a fairly steep slope. While the sensor is in the centre of the space between the two magnets, flux is cancelled. With a ratio-

Switching Hall sensors

Integrated Hall-effect switches are easy to use, bounce-free, economical and reliable since they have no moving parts. Unaffected by dirt and light, they can also be used in harsh environments and they are fast - capable of cycling at up to 100 kHz .
A Hall sensor is activated by a magnetic field created by either electro or permanent magnets. Magnetic fields have two important characteristics: magnitude and orientation. In the absence of any magnetic field, most common Hall-effect digital switches are designed to be off, i.e. open circuit at their output. They will turn on only if subjected to a magnetic field that is strong enough and of the correct polarity.

If an approaching magnetic south pole causes switching action of a digital sensor, the approach of the north pole should have no effect. In practice, a close approach by the south pole of a magnet will cause the output transistor to turn on.

The plot below shows transfer characteristics of input versus output. Hall effect switches have hysteresis, typically 20G. This hysteresis ensures that even if mechanical vibration or electrical noise is present, the switch output is fast, clean, and occurs only once per threshold crossing.

Detecting a threshold

Output from a Hall-effect element is linear. But in many applications a switching output representing whether magnetic field strength is above or below a given threshold is more appropriate. Examples of these applications are angular velocity detectors and end-of-travel indicators on slides.

Due to the Hall element's inherently small output, the best place for the comparator circuitry needed to turn the linear output into a reliable on-off signal is as close as possible to the sensor and its linear amplifier. Integrating a comparator into the Hall sensor also reduces interfacing costs.

Integrated Hall-effect switches like the $31 x x$ series from Allegro are temperature
stable and stress-resistant. Three new parts with enhanced temperature stability have recently been added to the range, namely the 3121, 3122 and 3123. These have typical switch-on points of 350,340 and 345G respectively but are otherwise identical.
In addition to a Hall element, linear amplifier and schmitt trigger, the devices include open-collector output buffering with 25 m A capability. There is also builtin temperature compensation and a regulator capable of operating from any supply between 4.5 and 24 V .
Standard parts are capable of operating in temperatures between -40 and $85^{\circ} \mathrm{C}$ but there are also L-suffix parts capable of operating at up to $150^{\circ} \mathrm{C}$. Since the devices have unipolar switching characteristics they can be sued with simple bar or rod magnets. The devices are best used in applications that provide steep magnetic slopes and low residual levels of magnetic flux density.
Output of the devices switches low when magnetic field at the Hall sensor exceeds the operate point threshold. At this point, the output voltage is the saturation voltage of the output transistor, which is tvpically 140 mV .
When the magnetic field is reduced to below the release point threshold, the device output goes high. The difference in the magnetic operate and release points is hysteresis, of typically 105G. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

Features

- Good temperature stability
- 4.5V to 24 V unregulated supply
- Open-collector 25 mA output, compatible with digital logic
- Reverse Battery Protection
- Activate with small, commercially available permanent magnets
- No moving parts
- Small size
- Resistant to physical stress

Operate and release points of 3120-series integrated Hall-effect switches remain constant over a wide temperature range.

Transfer characteristic of a typical Hall-effect switch. Hysteresis is built into the device - in this case about 90G. This ensures clean switching even in the presence of mechanical vibration or electrical noise.

Within an integrated Hall-effect switch such as the 3121 are a Hall voltage generator, temperature compensation, a small-signal amplifier and schmitt trigger. In addition, an emitter follower provides 25 mA output capability while a regulator extends supplyvoltage capability to a range 4.5 to 24 V .

Fig. 4. Linear Hall-effect devices can be used to detect small displacements with high resolution using dual magnets in a push-push configuration.

Fig. 5. In a push-push configuration, flux seen by the sensor is linearly proportional with displacement. In the middle of the travel, flux is zero since fields from the two magnets cancel each other.

Fig. 6. When 25A or more is involved, a linear Hall-effect sensor in the gap of a toroidal ferrite can be to measure current in a conductor simply passed through the toroid.
metric sensor such as the 3503 , moving the sensor towards one magnet reduces output voltage while moving it towards the other increases output. Polarity depends on which way the sensor is facing.

Current monitoring. Hall effect devices
make excellent current limiting or measuring sensors. Their response bandwidth ranges from de to kilohertz. For very high-current applications, detection can simply be a matter of placing the sensor in the gap of a slotted toroidal ferrite material wrapped around the conductor, as illustrated in Fig. 6.

Linear output Hall device

Linear Hall-effect linear sensors are used primarily to sense relatively small changes in magnetic fields - changes too small to operate a Hall-effect digital switch. They can detect the motion, position, or change in field strength of an electromagnet, a permanent magnet, or a ferromagnetic material with an applied magnetic bias.
Hall effect sensors like Allegro's UCN3503 not only cheaper but also more efficient and effective than inductive or optoelectronic sensors in many applications. Their power consumption is low and their output is temperature stable.

Linear sensors are useful as front-ends in flux measuring equipment and for detection motion. In addition, they can be used to measure current with negligible system loading while providing isolation from contaminated and electrically noisy environments.
Between 0 and 900G, the 3503's sensitivity is typically $1.3 \mathrm{mV} / \mathrm{G}$. Linear Hall effect integrated circuits include a Hall sensing element, linear amplifier, and emitter-follower output stages. Problems
associated with handling very low level analogue signals are minimised by having the Hall cell and amplifier on the same chip.
Rated for operation over the range of -20 to $+85^{\circ} \mathrm{C}$, the 3503 U is a ratiometric detector, i.e. output voltage depends not only on field strength detected but also by power supply fluctuations. For applications where ratiometric output is not appropriate, there is also a linear sensor with full internal supply regulation 3501.

Response of the 3503 is flat to 23 kHz , making the it useful for ac as well as dc measurement. When no magnetic field is sensed, output null voltage is nominally one-half the supply voltage. A south magnetic pole at the part-marked face of the sensor drives the output higher than the null voltage level. A north magnetic pole will drive the output below the null.

Greatest sensitivity is obtained with a supply voltage of 6 V , but at the cost of increased supply current and a slight loss of output symmetry. Minimum supply voltage is 4.5 V .

In finding the flux reaching the sensor, radius r in inches from the centre of the conductor to the centre of the sensor is important. With r at 0.5 in, a current of 1000 A produces 159G at the Hall device in the toroid's gap. This is because B in gauss is approximately equal to current in amps divided by 4 pr , where r is in inches. Minimising the air gap between the ferrite and sensor generally improves performance.
Current sensing capability is increased by wrapping the conductor around the toroidal ferrite, as shown in Fig. 7. Each additional turn multiplies the gauss-per-ampere intensity seen at the sensor, i.e. ten turns increase the intensity tenfold. Main concerns are that the core retains minimal field when the current is reduced to zero and that the flux density in the air gap is a linear function of current. Consideration also needs to be given to the fact that the air gap changes with temperature.

Designing with Hall switches

Electrical interfacing. Hall-effect switches like those in the $312 x$ series have an open-collector output transistor that can drive up to 25 mA . As a result, many loads such as small lamps and relays can be driven without any additional components.
Since the output driver transistor has a saturation rating of typically 140 mV - combined with nanovolt-level leakage - interfacing to nearly all common logic technologies rarely requires more than a pull-up resistor.
Driving low-voltage, high-current DC loads via a Hall effect switch requires few additional components. In many applications, an emitter follower will provide the necessary boost with

Features

- High sensitivity
- Flat response to 23 kHz
- Low output noise
-4.5 to 6 V supply

Fig. 7. Combined with slotted toroidal ferrites, Hall-effect devices make ideal nocontact current detectors.
Winding the conductor around a slotted toroidal ferrite allows lower currents to be measured.

Fig. 8. For loads over $20 \mathrm{~mA}, 3120 \mathrm{Ha} l \mathrm{l}$-effect switches need buffering. With this configuration, loads of up to 4A can be switched. The first transistor is zecessary not only for amplification but also for inversion to ensure that the load switch turns on rather than off when magnetic flux rises above the Hall-device threshold.
a slight loss in efficiency. As Fig. 8 shows. switching efficiency can be increased by using an inverter amplifier - the $2 N 58 / 2$ - together with a low-cost 2 N 3055 driver.
Using the $2 N 58 / 2$ intermediate stage provides inversion as well as amplification. It ensures that the load is switched on when the sensor sees magnetic field and off when the field is removed.
Figure 9 demonstrates how easy it is to

Magnetic materials

Materials most commonly used to provide flux in Hall-effect systems are various Alnicos, Ceramic 1 and barium ferrite in a rubber or plastic matrix materials. Manufacturers often have stock sizes, including cylindrical types with various numbers of pole pairs.

Alnico is the name given to number of aluminum nickel-cobalt alloys that have a fairly wide range of magnetic properties. In general, Alnico ring magnets have the highest flux densities, the smallest changes in field strength with changes in temperature, and the highest cost.

They are generally too hard to shape except by grinding and are fairly brittle which complicates the mounting of bearings or arbor. Ceramic 1 ring magnets, with trade names like Indox, Lodex, have somewhat lower flux densities (field strength) than Alnicos, and their field strength changes more with temperature. They are however considerably cheaper and are highly resistant to demagnetisation by external magnetic fields.

Ceramic materials are resistant to most chemicals and have high electrical resistivity. Like Alnico, they can withstand temperatures well above that of Hall switches and other semiconductors and must be ground if reshaping or trimming is needed.

Rubber and plastic barium ferrite ring magnets are roughly comparable to Ceramic 1 in cost, flux density, and
adapt the digital Hall-effect device to mains switching applications. The triac reeds 80 mA of drive but the Hall IC provides up to 25 mA . Adding the n-p-n emitter follower solves the problem.

Limit detection. Even with a simple bar or rod magnet. there are several possible paths for motion detection. The magnetic pole can move perpendicularly straight at the active
face of the Hall device. Known as head-on mode this method is simple. works well. and is relatively insensitive to lateral motion. A drawhack is that if the slide carrying the magnet travels too far, the sensor could he damaged.

Flux density plots for a typical head-on systems show that the magnetic slope is quite shallow for low values of flux density - a disadvantage that generally requires extreme

Material	Maximum energy product (gauss-oersted)	Resiclal inducion (gaves)	Coercive worce (oersters)	Temperature =oefficient	Cost	こomments
RE Cobalt	16×10^{6}	81×10^{3}	79×10^{3}	-0.05\% ${ }^{\prime} \mathrm{C}$	Highest	Strongest, smallest, resists demagnetizing best
Alnico 9, 2, ¢. 4	$13-1.7 \times 10^{6}$	$55-75 \times 10^{3}$	$042-0.72 \times 10^{3}$	$\begin{aligned} & -.02 \% \neq \mathrm{C} \text { to } \\ & -0.03 \% / \mathrm{C} \end{aligned}$	Medium	Non-orientec
Alnico 5, 6. £-7	$4.0-7.5 \times 10^{6}$	$105-15.5 \times 10^{3}$	064-078 $\times 10^{3}$	$\begin{aligned} & =02 \% / \%^{\circ} \mathrm{C} \text { to } \\ & -003 \%{ }^{\circ} \mathrm{C} \end{aligned}$	Mediumhigh	Oriented
Alnico 8	$50-60 \times 10^{6}$	$7-92 \times 10^{3}$	15-19×10 ${ }^{3}$	$\begin{gathered} -+01 \%{ }^{\circ} \mathrm{C} \text { to } \\ -0.01 \% /{ }^{\circ} \mathrm{C} \end{gathered}$	Mediumhigh	Oriented, hiç h coercive force, best temperature coefficient
Alnico 9	10×10^{6}	105×11^{2}	16×10^{3}	-0 02\%/ C	High	Oriented, hichest energy product
Ceramic 1	10×10^{6}	22×10	18×10^{3}	-0.2\%/ C	Low	Non-oriented high coercive torce hard, brittle non conductor
Ceramuc 2: 46	$18-26 \times 10^{6}$	29-32 $\times 10^{3}$	23-28×10 ${ }^{3}$	-02\% C	$\begin{aligned} & \text { Low } \\ & \text { medium } \end{aligned}$	Partially oriented. very high coercive force, hard brittle, non-conductor
Ceramic 5, - 8	28-35 $\times 10^{6}$	$35-3 . \varepsilon=10^{3}$	$25-3.3 \times 10^{3}$	-0 \% / C	Medum	Fully oriented very high coercive force hard rittle, non conductor
Cunite	14×10^{6}	$55 \times 10^{-}$	053×10^{3}	-	Medium	Ductile, can cold form and machine
$\mathrm{Fe} \cdot \mathrm{Cr}$	525×10^{6}	13.5×13^{3}	060×10^{3}	-	Medum high	Can machine pror to final aging teeatment
Plastic	$0.2-12 \times 10^{6}$	$14-3>10^{3}$	045-14×103	-0. $2 \% /{ }^{\circ} \mathrm{C}$	Lowest	Can be molded, stamped. machuned
Rubber	$0.35-1.11 \times 10^{6}$	13-2: < 10^{3}	1-18× 10^{3}	-0.2\% C	Lowest	Flexible
Neodymiur	$7-15 \times 10^{6}$	$64-1175 \times 10^{3}$	$53-65 \times 10^{3}$	$\begin{gathered} -157 \%{ }^{\circ} \mathrm{C} \text { to } \\ -192 / \mathrm{C} \end{gathered}$	Medium. high	Non-oriented

There is a wide variety of magnetic materials to choose from when applying Hall-effect devices, ranging from hard, brittle ceramics tc rubber.
temperature coefficient. Unlike ceramics however, they are soft enough to shape using conventional methods. It is also possi 刀le to mould or press them onto a sheft for some applica:-ions. Rubber arid plastic magnets do have temperature limitations ranging from $70^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ depending on the particular material, and their fiekd strength changes more with temperature than Alnico or Ceramic 1.
Regar.tloss of material, ring magnets
have limitations on the accuracy of pole slacement and uniformity of pole strength. In turn, this limits the precision of the output waveform. Evaluations have shown that pole placement in rubber, plastic and ceraric magnets usually falls within 2 or 3° of target, but 5° errors have been measured. Variations in flux density from pole to pole will commonly be $\pm 5 \%$ although variations or up to $\pm 30 \%$ can occur.

4
Fig. 9. Since Hall-effect switches in the 3120 range have a 25 mA output capability, very few components are needed to control heavy loads. In this circuit, an intermediate n-p-n transistor boosts current to the 80 mA or so needed to switch mains loads via a triac.
mechanism travel and extreme sensitivity to flux changes in operate and release points of the Hall switch. This problem can be overcome by selecting Hall switches with higher operate and release properties.
A safer option is to move the magnet in from the side of the Hall device, past its face -slide-by mode. Strong magnets and/or ferrous flux concentrators in well-designed slide-by magnetic circuits allow better sensing preci-
sion with smaller magnet travel than for headon mode. This method is, however, however, very sensitive to lateral play, as the flux density varies dramatically with changes in the air gap.
Because the active area of a Hall switch is close to the branded face of the package, it is usually operated by approaching this face with magnetic south pole. It is also possible to operate a Hall switch by applying a magnetic
north pole to the back side of the package. While a north pole alone is seldom used, the push-pull configuration - simultancous application of a south pole to the branded side and a north pole to the back side - can give much greater field strengths than are possible with any single magnet. Perhaps more important, push-pull arrangements are relatively insensitive to lateral motion and are worth considering if a loosely fitting mechanism is involved.
Another possibility is the push-push arrangement described earlier, Fig. 4. A natural extension of this is to use two oppositely polarised magnets in slide-by mode, moving across the face of a sensor

Hall sensor source

Integrated Hall sensors mentioned in this article - plus others - are available in the UK via Ambar Cascom Ltd, Rabans Close, Aylesbury, Buckinghamshire HP19 3RS. Tel. 0296 434141, fax 0296 29670. Applications literature, upon which this article was based, is also available.

FREF TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only.
Trade advertisers should call Paf Bunce on 081-652 8339
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer

Please send your completed forms to:
Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

COMPUTER ICS
87421 SHOT．．．．．．．．．．．．．．．．．．．¢8 8742 WIPED．．．．．．．．．¢5＊＊NEW
TMS320 ．．．．．．．．．．．．．．．．．．．．．．．．\＆5 TMS3201SHOT £3＊＊NEW
AM27C020－125L1 SURFACE MOUNT EPROM USED／
WIPED ．．．1．50＊NEW
MM16450 UART CHIP ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£5 ea ${ }^{\text {＊}}$ NEW
MM16550 UART CHIP few only ．．．．．．．．．．．．．．．．．．．．．．．．£12 ea＊NEW
P8271 BBC DISC CONTROLLER CHIP EX EQPT ．．．．．．．．．．．．．．£20
SAA5050 TELETEXT CHIP EX EQPT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£5
$28174-20$（ $2 \mathrm{~K} \times 8$ ）EEPROM ex eqpt ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£2
D41256C－15 256Kx1 PULLS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 9 FOR
80С31 MICRO ．．．
P8749H MICRO ．．£5
D8751－8 NEW ．．£10
MK 48Z02－20 ZERO POWER RAM EQUIV 6116LP ．．．．．．．．．．．．£4
NEW 4164－15 ．．．£1
SED 41256－15 ．．．£1
SED 4164－15 ．．．60p
BBC VIDEO ULA ．．． 10
51 MICRO ．．．£1．25
KS82C55－250 SAMSUNG 89／90 1100 AVAILABLE ．．．．．．．．．．．£3
9×41256－15 SIMM ．．．£10
8×4164 SIP MODULE NEW ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£8
FLOPPY DISC CONTROLLER CHIPS 1771 ．．．．．．．．．．．．．£16
FLOPPY DISC CONTROLLER CHIPS 1772 ．．．．．．．．．．．．．．．．£17．50
D6384－8 ．．．£5
ALL USED EPROMS ERASED AND BLANK CHECKED
2716－45 USED ．．．¢2 100／£1
2732－45 USED ．．£2 100／£1
2764－30 USED ．．．£2 100／£1．60
27C256－30 USED ．．£2
27C512 USED ．．．£3．50
1702 EPROM EX EQPT ．．．£5
2114 EXEQPT 50p 4116 EX EQPT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 70 p
6264－15 8k STATIC RAM ．．．£2
GR281 NON VOLATILE RAM EQUIV 6116 ．．．．．．．．．．．．．．．．．．．．．£5
Z80A SIO－O ．．．£1．25
$30387-16$ CO PROCESSOR（OK WITH 25 MHz 386 ）．．．．$£ 35$
7126 31／2 DIGIT LCD DRIVER CHIP ．．．．．．．．．．．．．．．．．．．．．．．．．£2 ea
2816A－30 HO
BM PART NO． 68×6271 PANASONIC PART NO
MN4840512S85 512K $\times 40$
TMS9000NL PROCESSOR ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£20
TMS9901NL ．．．£10
TMS99023NL，TIM9904NL ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£5 ea
HM6167LP－8 ．．65p
M27C4001－15
68000－10 PROCESSOR £6
REGULATORS
LM338K ．．£6
LM323K 5V 3A PLASTIC ．．．£2
LM323K 5VA METAL ．．£3
SANKEN STR451 USED IN AMSTRAD MONITORS ．．．．．．．．．£5
7日H12ASC 12V 5A ．．．£5
78M05 5V 0．5A ．．．7／£ 1
LM317H T05 CAN ．．．£1
LM317T PLASTIC T＠20 varable ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£1
LM317 METAL ．．£2．20
7812 METAL 12V 1A ．．．£1
125／12／15／24 ．．．25p
7905／12／15／24 ．．25p

CRYSTAL OSCILLATORS

2M4576 3M6864 SMO 5M76 6M1447MO00 7M3728 8MOOO 24 M 00025 M 17527 MO 27 M 03628 M 322 32M000 35M4816 40MOOO 44M4444 44M900 48MOOO 64MOOO 1 MOOO 1 MB432 4M000 10M000 16MO00 18M432000 19M0500 20M0500
38M10000 56M6092 76M1 84M0 ．．．．．．．．．．．．．．．．．．．．．£1．50 eac 38M10000 56M6092 76M1 84M0

CRYSTALS

4M0256 10M368 17M6256 18M432 25M000 28M4694 31M4696 48MOOO 55M500 111M80 112M80 114M318 114M8O 1MO 1M8432 2M000 2M4576 2M77 3M00 3M2768 3M579545
ЗM58564 3M93216 4M000 4M19304 4M433619 4M608 4M9152 5M000 5M0688 6M0000 6M400 8M000 8M488 9M8304 10M24O 10M245 10 M 7000011 MOOO 12 M 000 13M000 13M270 14MOOO
14 M 38181815 M 000 16MOOO 16M5888 17M000 20 M 000 21 M 30021 M 85522 M 118424 M 00034 M 36836 M 75625 36M76875 36M78125 36M79375 36M80625 36M8 1875 36 M 83125 36M84375 38M900 49M504 54M1916654M7416 OR27M095 YW27M145 GN27M195 BL27M245 ．．．．．．．．．\＆1 each

TRANSISTORS
MPSA92
BC477，BC488 BC107BCY7O PREFORMED LEADS full spec …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 1$ £ $£ / 100 £ 30 / 1000$ 2N3819 FETS short leads
£ $1 / 30$ £3．50／100
POWER TRANSISTORS
OC29 ．．．．．．．．．．．．．．．．．．．．$£ 1.35$ e NPOWERFET IRF531 8A 60V 2SC1520 sim BF 259 TIP $141 / 2$ £1 Ea TIP $112 / 42 \mathrm{~B}$.
 3／E1 100／乏2

TEXTOOL ZIF SOCKETS

28 PIN USED．．．．．．．．．．．．£3．．．．．．．．．．．．．． 40 PIN NEW ．．．．．．．．．．．．£10 SINGLE IN LINE 22 WAY CAN BE GANGED FOR USE WITH ANYDUAL IN LINE DEVICES ．．．COUPLING SUPPLIED ．．．． 2
QUARTZ HALOGEN LAMPS
$12 V 50$ watt LAMP TYPE M312 ．．．．．．．．．£1 ea HOLDERS 60p ea
$24 \vee+50$ WATTS LAMP TYPE $1 / 215 . . .$. ．．．．．．．．．．．．£2．50 each
mISCELLANEOUS
MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$

ALPS MOTORISED DUAL 47K LOG pots with spindle，works on
 47000 u 25 v SPRAGUE 360 ．．． 50 （£2）＊＊NEW 12 way dil SW．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 1$＊＊NEW
$100 \mathrm{nF} 6.3 \mathrm{~V} \times 7$ R PHLIPS SURFACE MOUNT 30 K avalla ONF 63 V X7R PHILIPS SURFACE MOUNT 160 K avallable ．．．．M．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£30／4000 box SWITCHED MODE PSU 40 WATT UNCASED QTY．
AVAILABLE $+5 \vee 5 A_{1}+12 V 2 A, 12 V 500 \mathrm{~mA}$ FLOATING
330 F $10 \% \quad 250 \mathrm{~V} \times 2$ AC RATED PHILIPS．．．．．．．．．．．．．．．．．．．．．．．$£ 20 / 100$ 220R 2．5W WIREWOUND RESISTOR 60K AVAILABLE CMOS 555 TIMERS 2／3 AA LITHIUM cells as used in compact came－as．．．．． $2 / \varepsilon 1.50$ 36 CORE $7 / 102 \mathrm{~mm}$ OVERALL SCREENED $\quad 550 / 100 \mathrm{~m}$ ITHIUM CELL $1 / 2$ AA SIZE ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 FOR \＆1 EUROCARD 21－SLOT BACK PLANE 96／96－WAY．．．．．£2 each PROTON
MULTILAYER PRH PCE
…．．． 96 －WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$ ．．．$£ 10 \mathrm{ea}$
PROTONIC 24 ＂CW 2 SUPPORT ARMS／EJECTORS
£10ea OIN 41612 96－WAY A／B／C SOCKET PCB RIGHT ANGLE $£ 1.30$ DIN 41612 64－WAY AC SOCKET WIRE WRAP PINS DIN 41612 64－WAY AC SOCKET WIRE WRAP PINS DIN 41612 64－WAY A／B SOCKET WIRE WRAP（2－ROW BOD

$$
\begin{aligned}
& 00 Y \\
& \text { EO }
\end{aligned}
$$

BTPLUG +LEAD

3A MOULDED PLÜG＋2m lead
CD MODULE SIM．CHO 1 POLE CO PCB type
．．． $3 / \varepsilon 1$
Co characters $182 \times 35 \times 13 \mathrm{~mm} 150$ to 250 V AC for display
L4312．5 to 36 V TO $92 \times 3 \mathrm{ADJ} \mathrm{J}$ SHU．

6－32 UNC 5：16 POZI PAN SCREWS ．．．．．．．．．．．．．．．．．．．．．．．$£ 1 / 100$

PUSH SWITCH CHANGEOVER $1.25 / 100$ RS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEET LONG， 15 PINS WIREO BRAID＋FCIIL SCREENS CO DISPL AY sim Hitachi LMO16L INMAC LIST PRICE £30 AMERICAN $2 / 3$ PIN CHASSIS SOCKET WIRE ENDED FUSES $0.25 A$ NEW ULTRAS ONIC TRANSDUCERS 32 kHz $2 / 81$
$30 /{ }^{2} 1$
Also available 28 slot vari－bus backplane same size +
POWERFUL SMALL CYLINDRICAL MAGNE－S
MAL MICROWAVE DIODES AE OC1026

180VOLT 1 WATT ZENERS also 12 V \＆ 75 V
MINGLASS NEONS

STC NTC BEAD THERMISTORS
G22 22RR，G131K，G23 2K，G24 20K，G54 50K，G25 200K， FS22B VNTC BEAD INSIDE END OF $i^{\prime \prime} G L A S S P R O B E$ RES

CER VET MULTI TURN PRESETS $3 / 4^{\prime \prime}$

10R 2C7 100R 200R 250R 500R 2K $2 K 2$ 2K：5 5K 10K 47K 50K
t00K 20 K 500 K 2 M IC SOCKETS
14／16／• 8／20／24／28／40－WAY DIL SKTS ．．．．．．．．．．．．．．．．£1 per TUBE

POLYESTER／POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHILIPS TYPE $330 \ldots \ldots 20 / 100$ $100 \mathrm{n},: 22 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$ … ．．．．．．．．．．．．．．．．．．．．．．．．．．．．20／\＆1 100／E3 n／3n 2 nbi8n2／10n $\% 63 V 10 \mathrm{~mm}$
$10 \mathrm{n} / 1 \mathrm{Ev} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 6$
$100 n$＠ $0 \vee$ Sprague axial $10 / \mathrm{E} 1$
$2 \mu 21 e 2 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad $15 \mathrm{~mm}100 / \mathrm{C6}(\mathrm{E} 10$
$10 \mathrm{n} / 3 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC \times rated 15 mm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．10／玉
$\dagger \mu 60 \mathrm{CV}$ MIXED DIELECTRIC ．．．50p ea

RF BITS

SAW FILTERS SW662／SW661 PLESSEY SIGNAL
TECH JOLOGY 379．5 MHZ ．．．．．．．．．．．．．．．．．．．£1，50 ea＊NEW
FX 32 EGFERRITE RING（ON CX25） 5 mm OD 10 mm 10 for FX32E6FERRITE RING（ON CX25） 105 mm OD 10 mm 10 \％o ASTE：UM1233 UHF VIDEO MODULATORS（NOSOUND） 1250 ST OCK MARCONOWAVE DIODES TYPES OC 2929，DC2962，
OC42＊9F 1／F2
Al TJMMERS MS

YELLDW 5－65pF RED 10－110pF GREY 5－25pF
SMAL MULLARD 2 to 22pF
TRANSISTORS 2N4427，2N 3866 ，2N5 109 ．．．．．．．．．．．．．．．．．．． 80 p
CERAMIC FILTERS 4M5／6M9M／10M7
SLG1GI TELEDYNE RELAYS 2 POLE CHANGEOVER．．． （BFYE． 1 TRANSISTOR CAN SIZE）
PN2N2222A PLASTIC
2N2369A．
$.5 / 81$
$10 / \varepsilon 1$
$5 / E 1$
$4 / \Sigma 1$

PLESSEY ICS EX－STOCK

SL353G SL360G SL362C SL403D SL423A SL521B SL523C SL5
SP8655 SP8719DG

MONOLITHIC CERAMIC CAPACITORS

10 n 50 V 2.5 mm ．．．．．．$. ~ . ~ 100 / £ 4.50 ~$
100 n 50 V 2.5 mm or $5 \mathrm{~mm} . ~ 100 / £ 6 ~$

100 n ax short leads
100 n ax long leads
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$
$100 / 56$ ．．．．．．100／E5
－．．．100／\＆
E6／100

3
1
 ${ }_{2 \times 2}$ ／18 8／21 25
（ 5 541 mand
O․․ 근．．．．．．£ MINIATURE CO－AX PCB SKI RS 456－093 ．．．．．．．．．．．．．．．．．．．． 00 MEGAOHM THICK FL M RESISTORS ．．．．．．．．．．．．．．．．．． TRAIN GAUGES 40 ohm Foll type polyester tacked balco grid ELECTRETMICROPHONE INSERT．．．． ．i HALL EFFECT IC UGS3040＋magne pole 12 －way rotary switch
AUDIO ICS LM380 LM386 TDA 2003
555 TIMERS $£ 1741$ OP AMP
ZN414 AM RADIO CHIP
COAX BACK TOBACK JOINERS
－ 4 MEMBRANE KEYBOARD
．25＂PANEL FUSEHOLDERS
HROMED STEEL HINGES 14.5×1＂ÖPEN－．．．．．．．．．．．．．．．3／£
12V 1．2W small w／e lamps fit most modern cars ．．．．．．．．．．10／£1
MONOCASS HEAD \＆1 ERASE HEAD
HERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 A$
TRANSIS OR MOUNTING PADS TO－5／TO
－5／181
TO－3 TRA VSISTOR COVERS
－220 micas + bushes
－micas＋bushes
EC chassis plug filter 10 d pack
OTS SHIDRT SPINDLES $2 K 510 K 25 K$ iM $こ M 5$
M335Z 1 OMV／degreR
M234Z CONST ZURRENTI．C
BNC TO 4MM BINDING POST SIM RS 455－961
VEL－LINDBERG MOULDED TRANSFORNER TYPE OB10
15＋ 15 V 10VA QTY．AVALLABLE \ldots ．．．．．．．．．．．．．．．．．．．£2 ea
BANDOLIERED COMPONENTS ASSORTED RS，Cs，ZENERS
LCD MODULE 16 CHAR X 1 LINE（SIMILAR TO HITACH）
KYNAR WIRE WRAP WIRE ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1／REEL
OPI 1264 A 10 kV OPTOISOLATOR
LOVE STORY CLOCKWORK MUSICAL BOX MECHAN．${ }^{\text {I }} 1$ ea
Telephone cable clips with hardened pins

181．50

KEYTRONICS
TEL．0279－505543
FAX．0279－757656
P о \quad OX 634
BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX

SEND £1 STAMPS FOR CURRENT IC＋SEMI STOCK LIST－ALSO AVAILABLE ON

MAIL ORDER ONLY

MIN．CASH ORDER 25 OO．OFFHCIAL OROERS WELCOME UNIVERSITIES／COLLEGES／SCHOOLS／GGOT．DEPARTMENTS P\＆PAS SHOWN IN BRACXETS（HEAVY ITEMS）OTHEF．WISE 95p ADD $171 / 2 \%$ VAT TO TOTAL ELECTRONIC COMPONENTS BOUGHT FOR CASH

KESTREL ELECTRONIC COMPONENTS LTD

ξ All items guaranteed to manufacturers' spec.
\hbar Many other items available.
'Exclusive of V.A.T. and post and package'

EPROMS	$1+$	$100+$		$1+$	$100+$
			STATIC RAMS		
2764A	2.50	2.20	62256ALP-10	3.00	2.30
27C64-150	2.30	1.90	6264ALP-10	1.85	1.40
27128A-250	2.40	2.10	6116ALP-10	1.10	0.70
27256-250	2.40	1.90	6522P	2.40	1.80
27C256-150	2.90	2.30	65C02P2	2.90	2.50
27C512-150	3.30	2.50	65 C 21 P 2	2.90	2.50
27C010-150	5.80	4.00	65C22P2	2.80	2.40
MAX232	1.35	0.95	146818AP	2.20	1.65
D8748H	4.20	3.20	75176BP	1.60	0.80
D8749H	4.40	3.40	Z80A CPU	1.33	0.99
80C31-12	2.60	2.10	Z80A CTC	1.20	0.75
80C39P	2.80	2.20	Z80A DAR7	2.10	1.40
82C55-2	1.95	1.58	ULN2803A	0.70	0.46
74LS, $74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices					
	17	Bri	noad, CR8 4HA		
Tel: 081-6687522. Fax: 081-6684190.					

CIRCLE NO. 119 ON REPLY CARD

Ghelmer Valve Gompany

Worldwide supplier with 30 year's experience

- Electron tubes: Transmitting, Industrial, Microwave, Audio, Receiving, Display, etc, etc.
For Maintenance, Spares or Production.
- Semiconductors: Transistors, Thyristors, Diodes, RF, Power I/C's, etc.
- We have one of the largest stocks in the U.K.
\star TRY US! \star

FAX, PHONE, POST OR TELEX YOUR REQUIREMENTS
130 NEW LONDON ROAD, CHELMSFORD, ESSEX CM2 ORG, ENGLAND
Telephone: (0245) 355296/205865
Telex: 995398 SEEVEE G Fax: (0245) 490064

JPG Electronics

CIRCLE NO. 120 ON REPLY CARD

MEGAPROM device programmer. EPROMS, E2PROMS, and FLASH memorics from 2 k (2716) to MEGAPROM device programmer. EPROMS, E2PROMS, and
8 Meg (27C080). Runs on IBM PC via the centronics port using standard printer cable. Works on all PC compatibles, laptops, and notebooks. No spectal port requirements.
Uses approved programming algorithms. Very last program and verify 27 C 512
(64 K Bytes) in 45 scionds.
Full screen editor sotware supports Bin, Intel Hex, notorola S and Asc formats. Only $\mathbf{~} 99.95$ Top quality components used throughout including production $Z 1 F$ socket.
Requires external power supply $18-25 \mathrm{v}$ AC or DC © 250 ma . (optional extra (16.50)
PICPROG Programs Pic 16C54-55-56-57-71-84. Centronics port interface same as Megaprom. Powerful editing suftware to Read, write \& copy Pic devices including data memory in PicI6C84 Unit suippled with IBM software \& 12 months parts \& labour guarantee. Only $\mathbf{6 6 9 . 9 5}$ Requires external power 15 -20v AC or DC @ 250 ma. (optional extra 56.50).
EPROM EMULATOR Wurks en ANY computer with centronics pranter port. Data scnt to the printer appears in the target board Eprom socket. Emulates from 1 k to 32 k Byte (27C256) roms, ouard swithable. Power supplied from target Rom sockel (less than lema). Very fast Jownluad Software supplied for IBM PC to convert and send Intel Hex, Mutorola S, ASC
and Bin files.
Board supplied with seftware and 12 months parts and labour guarantee
PC SCOPE Convert your IBM PC into a Storage Oscilloscope with our A/D converter. Simply plag into the printer port (no power required). Sample rate 10 h to 30 k per second.
Softwarc supplied for Scope and Voltmeter. A/D source to write your uwn
programs.
Only $£ 29.95$
DEVELOPMENT SOFTWARE
Develop software on your IBM PC for other Microprocessors, Controllers, Pic's etc. Suftware has fully integrated Texi Editur, Assembler, Disassembler and Simulator
The Simulator displays all registers along with disassembled code program counter, Condition code register. The user can single-step, go with breahpoints, watch memory etc, change any/all registers memory locations at any time (on the fy)
Code can be Saved to disk andfor downloaded directly to our EPROM Emulator. All software supplied with sample ASM files and user documentation
Very powerful software as supplied to universities, colleges ITLCS and Industry.
Available tor the tollowing:
MCS8051/52/552 serics Software $£ 19.95 \quad$ MCS8048/49 sertes \quad Suftware $£ 19.95$ $\begin{array}{llll}\text { PIC16C54/5/67 } & \text { Software } £ 29.95 & \text { PIC16C71/84 } & \\ \text { H16 } 3 / 6869 & \text { Software } £ 29.95\end{array}$

LOW COST PIC ICE
Plus into the printer purt and runs in confunction with the PIC Jevelopment simulator software Appears to the target system as a normal Pic device including OSCZ and RTCC in'out. Runs in real ime from the BMPC shanges made to File registers refected on target

Only $£ 89.95$
All hardware carrics a 12 months parts and labour Guarantec. No VAT payable
Please add $£ 1.50$ for Carriage. SAE or TEL for further details.
JOHN MORRISON DEPT WW
4 Rein Gardens, Tingley
West Yorkshire
Tel (or Fax): 0532537507

Battery-powered circuit measures down to $\mu \Omega$

This simple battery-powered adapter converts an ordinary digital voltmeter into a four-wire milliohm meter. It is said to accurately measure the resistance of wiring, motor coils, solenoids, high-current inductors and meter shunts. It can also be used for locating short circuits in a power supply or a printed circuit board.
With components shown, the circuit shown is about $\pm 2 \%$ accurate. For higher accuracy, you can make component adjustments described later.
The circuit applies $1 \mathrm{~A}, 100 \mathrm{~mA}$, or 10 mA to the unknown resistance via two test leads, depending on the range-switch setting. Next, the DVM is set to its 2 V range and connected via two more test leads. This forms a four-wire connection to the resistance being measured.
Indications on the DVM are presented directly in ohms on pressing the momentaryon power switch. A 1.000Ω resistance, for example, reads 1.000 V on the circuit's 1 A range, so one millivolt corresponds to one milliohm. Four and five-digit DVMs frequently have 1 mV sensitivity, providing resolutions of $1 \mathrm{~m} \Omega$.
Because the output is a current source, the unknown resistance of the connections and test leads does not cause measurement errors. Accuracy depends on the DVM, the op amp's input-offset voltage - which is $\pm 70 \mathrm{mV}$ maximum for the device shown and the tolerance of resistors R_{1-6}.
To set up the circuit, first trim the 1A range by selecting R_{4} or by adding a trimming potentiometer between R_{1} and R_{2}. Next, trim the 100 mA range and then the 10 mA range by adjusting the highest-valued resistors in the R_{5} and R_{6} networks.

Power-fail and reset for PCs

Anumber of power management functions have been integrated into one chip by Dallas Semiconductor. This chip - the DS 1632 - produces the real-time clock reference, a controlled reset signal, power-source switching and power-fail indication.
Many PC chip sets already provide a realtime clock. For those that do not, or for applications where the existing RTC is not accurate enough, the DS/632 provides a stable 32.763 kHz reference. Tuning is provided on chip so no additional oscillator components are needed. Using a 6 pF -load crystal such as the Daiwa DT26S or Seiko DS-VT-200, timing

Added on to a digital multimeter, this circuit accurately measures resistances down to micro-ohms and can be used to detect shorts on PCBs.

Pressing the push-button turns on the micropower reference, which produces 2.500 V . Resistors R_{1} and R_{2} divide that output to 0.1 V , and the op-amp forces 0.1 V at the source of the mosfet. This action creates a current source that develops 0.IV across R_{4}, R_{5}, and R_{6}.
The range switch selects a current of 1 A . 100 mA , or 10 mA in the loop formed by the resistors, the unknown resistance, the 1.5 V battery, and the mosfet
Note that releasing S_{1}, or disconnecting the adapter, eliminates all current drain from the 1.5 V battery. As a result, an alkaline ' D ' cell can produce thousands of measurements - even on the 1 A range, if the push button is used sparingly. The 9 V battery can last for years because its load is less than $30 \mu \mathrm{~A}$.

To search for a shorted component or a
short between tracks on a pcb. first connect the two adapter leads, one to each of the tracks in question. Connect a DVM lead to the same point as one adaptor lead, and use the other DVM lead to probe akong the tracks.
Location of the short is revealed by the highest reading on one track and the lowest reading on the other. Constant readings indicate no adapter current flowing in that section of the track, so that section can be eliminated from the search.
The design is taken from Maxim's Engineering lournal number It.

Maxim Integrated Products,

21C Horseshoe Park, Pangbourne,
Reading RG8 7IW. Tel. 0734845 255,
fax 843863.
 down altogether if the battery fails. This IC provides those features together with properly timed resets and a stable 32.768 kHz crystal oscillator for a real-time clock.

APPIICATIONS

accuracy is two minutes per month. A reset signal for a microprocessor must be triggerable form a number of sources. Most important of these sources are power fail, power-up, and user demanded system resets. To provide these in discrete logic needs a fair number of chips, as shown. This logic however is built into the DS 1632.

In addition to power-fail outputs signalling an out-of-tolerance supply voltage, the device can be used to switch between a main power source and a backup. Uninterrupted operation is ensured by window comparator circuitry. It switches the power fail line without causing reset when supply voltage falls enough to warn of impending failure but not enough to cause incorrect operation of the circuits fed by the power supply.
Further circuitry provides a signal giving warning when battery voltage becomes low so that the system can be shut down in an orderly fashion.

According to Dallas Application Note 64 which includes further details on the circuitry described here, the DSI632 onechip solution costs $\$ 2.45$ as opposed to $\$ 5.75$ for an equivalent discrete solution. There is also specific information on
interfacing the device to Intel's $386 S L$ and the Chips Technologies/Siemens 82C206.

Dallas Semiconductor, Unit 26, Freeport, Birmingham B26 3QD. Tel. 021782 2959, fax 0217822156.

Programmable oscillator is easy to use

N
ormally, oscillator ICs designed to work with crystals need additional passive components selected for the specific crystal frequency. The HA7210 from Harris can be externally programmed for any crystal between 10 kHz and 10 MHz by simply connecting two programming pins to logic one or zero. Apart from the crystal, it needs no additional components.
Operating from a single supply rail
between 2 and 7 V , the 7210 is a low power device needing $130 \mu \mathrm{~A}$ at 1 MHz and only $5 \mu \mathrm{~A}$ at 32 kHz . As the device data sheet describes, it will drive two cmos loads. Applications of the oscillator include battery powered circuits, remote metering systems and palm-top notebook PCs. The 7210 also has a disable mode that switches the output to a high impedance state. This feature is useful for minimising power
dissipation during standby and when multiple oscillator circuits are used. The high impedance output provides a high resistance path to ground to avoid floating cmos inputs.

Harris Semiconductor, Riverside Way, Camberley, Surrey GU15 3YQ. Tel. 0276 686886, fax 0276682323.

THE INTERNATIONAL GROUP FOR APT, HRPT, ETC. INNOVATIONS, CONSTRUCTION, HARDWARE, SOFTWARE,

For all WEATHER SATELLITE

Enthusiasts
Membership: $£ 10.00$ UK, $£ 12.00$ Europe £14.00 All Others

All Enquiries to:
Membership Secretary, Ray Godden RIG-SUB, P.O. Box 142, RICKMANSWORTH, HERTS, WD3 4RQ. ENGLAND

CIRCLE NO. 123 ON REPLY CARD

n.s. LANGREX SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country

Over 5 million items in stock covering more than 6,000 different types, including CRT's camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes,
rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.

All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD 1 Mayo Road, Croydon, Surrey CRO 2QP Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

CIRCLE NO. 124 ON REPLY CARD

 Comprising two PPM9 boards, featuring inherent stability with law under micro-processor control, the unit gives simultaneous monitoring of A / B on red/green and M / S on white/yellow pointers. Together these provide complete information about stereo signals. Manufactured under licence from the BBC.
 PPM10 In Vision PPM and Chart Recorder generates a high quality colour video display emulating the well known coaxial twin movements, long regarded as a most satisfactory way of monitoring stereo audio levels and mono compatibility. The eye can judge the level displayed, at a glance, from the angle of pointers, without needing to refer to scale markings. Also as expansion board for Acorn computers.
 *Advanced Active Aer al $4 \mathrm{kHz} \cdot 30 \mathrm{MHz}$ * Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter *PPM5 hybrid and PPM8 IEC/ DIN $-50 /+6 \mathrm{~dB}$ drives and movements *Broadcast Stereo Coders. *Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{mHz}$
 SURREY ELECTRONICS LTD
 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
 Telephone: 0483 275997. Fax: 276477.

The ins and outs of oscillator action

Certain electronic circuits are taken for granted. Ian Hickman has explored the detailed functioning of the LC oscillator to reveal unsuspected sophistication to its operation.

Fig. 1a. Basic bipolar transistor Hartley oscillator circuit. b) Loop gain (Y axis) versus amplitude (X axis) of an oscillator which may fail to start i), and of a reliable rf oscillator circuit ii).

(b)
perform very badly in the inverted mode. In that mode, they present an impedance which might perhaps be described as a soggy mess, inflicting (in an oscillator) heavy resultant damping on the collector tuned circuit. There is no reason why a diode in series with the collector could not be fabricated on the die. But it never is, at least not in small signal or rf transistors.

The basic circuit

Now a typical transistor oscillator circuit, such as the Hartley oscillator of Fig. 1a, is designed with a smallsignal loop-gain well in excess of unity, Fig. 1b. This guarantees that, when switched on, it will start to oscillate: nothing is more infuriating - and less useful - than an RF oscillator which works very well when running, but sometimes fails to get started at switchon. But the excess loop gain at start-up has to be reduced somehow to a loop gain of just unity when running. In this type of single transistor circuit (as distinct from some other types of rf oscillator, Ref. 1), this is usually brought about by the collector voltage falling below that of the base. As a result, the collector/base junction thus becomes a forward biased diode connected directly across the tuned circuit, imposing heavy damping upon it and reducing the loop gain by lowering the tuned circuit's effective dynamic resistance R_{d}. At the same time, the transistor, operating in the inverted mode, clamps the collector to ground, adding to the harmonic distortion in the output.
By contrast, a valve oscillator limits its amplitude in an entirely different way. Fig. 2a shows a valve Hartley oscillator and the anode voltage and cathode current waveforms, Fig. 2b, from so lightly coupled that the circuit barely oscillates, to heavily coupled with lots of excess loop gain. The valve works in class C and generates its own negative grid bias. As the loop gain is increased, the peak cathode current increases and the peak to peak anode voltage swing rises until the valve bottoms on negative-going peaks. At this point, the cathode current cannot rise any

Fig. 2a. Valve Hartley oscillator circuit, above.
b) Anode voltage and cathode current waveforms for varying degrees of loop gain, right.

further, however positive the grid becomes, but the current just either side of the negative peak can still increase somewhat.

With heavy coupling, the anode voltage can swing below ground but the points of the cycle where the valve feeds energy to the tuned circuit to maintain the increased swing are confined to the two regions either side of the negative peak, where the grid voltage is still near its positive peak but the anode is not bottomed. The anode current breaks up into two completely separated pulses, being zero in between.

With further increase in amplitude, the anode swings further and further below ground and the two current pulses move further apart. They thus occur at a part of the cycle where the rate of change of anode voltage is greater; hence the time from grid voltage rising above cutoff to anode voltage falling below ground becomes shorter, strangling off the current pulses to a narrower width. This reduces the component at the fundamental available to make up the tank circuit losses, leading to an equilibrium at a particular amplitude.
Some years ago I made up a test circuit, to see if it were possible to simulate some of the features of a valve in a transistor oscillator circuit. Having only the most rudimentary equipment at the time, a low operating frequency, 20 kHz , was chosen, enabling circuit operation to be easily viewed.

Twin peaks

Starting with the circuit of Fig. la, a resistor was added to the base circuit, to raise the device's input impedance to something nearer that of a valve's grid when forward biased. Then, a diode was connected in series with the transistor's collector to prevent it conducting when its potential fell below that of the base. The completed circuit, Fig. 3, drew 30 mA from the supply and produced what appeared on an oscilloscope to be a perfect sinewave, swinging many volts below ground at the collector, despite the undoubtedly low Q of the coil (the R_{d} of the tank circuit was probably only of the order of 500Ω). Some small distortion was however observable on the smaller waveform at the base end of the tank circuit.

Being now better equipped. I decided to repeat the experiment at a higher frequency, but not so high that it would be impossible to observe the narrow current pulses expected. Also, to use a tunable oscillator to see how much the output amplitude varied across the tuning range. A tank circuit of $10 \mu \mathrm{H}$ (nominal) tuned by a 365 pF (maximum) variable capacitor was chosen, giving a lowest frequency of 2.5 MHz . Note that over an octave tuning range, the R_{d} of the tank circuit will vary

Fig. 3. Circuit of a low distortion 20 kHz LC valve oscillator look alike, using a transistor (see text).

Fig. 4. Circuit of the $2.5-5 \mathrm{MHz}$ 'halve style' oscillator. The 47ks connection to the spectrum analyser was removed when not in use.
by about $2: 1$, and so therefore, to a first approximation. will the loop gain. If the collector current were constant, then a $2: 1$ variation in output amplitude could be expected.

The intention was to use a jfet in place of a bipolar transistor, since the gate characteristic of this device resembles a valve, in that it normally draws no current, only conducting when driven above the source potential. A $J 3 / 0$ n-channel depletion vhf/uhf amplifier let was used. Incidentally, this device has a typical equivalent short-circuit input noise voltage of just 10 nV at 100 Hz . While this may be not too relevant in an rf amplifier, it is a definite plus point for an oscillator transistor, where the device's $1 / f$ noise produces modulation sidebands about the output frequency, determining the level of the oscillator's very-close-in noise.

Testing problems

All attempts to use this device at the planned frequency were complicated by the $J 3 / 0^{\circ}$ s implacable resolve to oscillate at several frequencies simultaneously in the
fig. 5a, left. Tank circuit waveform with tuning capacitor set to max, 2.5 MHz (upper trace, $5 \mathrm{~V} /$ div) and emitter current waveform (lower trace, $50 \mathrm{mV} /$ div). Ground level 2 divisions below centreline, $100 \mathrm{~ms} /$ div horizontal.
b) As a) but tuning
capacitor set for 5 MHz output.

Fig. 6a. Spectrum of the output of the circuit of Fig. 4 at 2.5 MHz . Vertical $10 \mathrm{~dB} / \mathrm{div}$, ref. level -10 dBm , span 0 20 MHz , IF bandwidth 100 kHz , video filter switched on. b) Waveform at the collector (cathode of the diode) at 2.5 MHz (upper rh trace, $5 \mathrm{~V} / \mathrm{div}$) and the base (lower trace, $1 \mathrm{~V} / \mathrm{div}$), ov level two divisions below centreline, $100 \mathrm{~ns} / \mathrm{div}$.

range $50-500 \mathrm{MHz}$, as well as performing (at first sight) as expected over a $2.5-5 \mathrm{MHz}$ tuning range. Parasitic stoppers only proved a partial answer.

A bipolar device was pressed into service. This was the $B C / 82$, with a minimum f_{T} of 150 MHz , the particular sample used having an h_{FE} of 240 . As with the $J 310$, the circuit was constructed over a ground plane consisting of a sheet of copper-clad laminate, to which the frame of the tuning capacitor was firmly fixed. To permit grounding of the frame of the tuning capacitor, the Hartley circuit was modified to a tuned collector circuit with base feedback winding. A 4.7Ω resistor was placed in series with the transistor"s emitter, to permit current monitoring.
Initially, the inductor was grounded and the $4.7 \Omega 2$ emitter resistor was connected to a locally decoupled negative rail. However, it proved impossible to measure the small drop across this resistor due to imperfect negative rail decoupling and other causes, so the circuit was modified to use a positive supply as in Fig. 4. From this it will be seen that in view of the higher operating frequency, the series resistor in the base circuit has been omitted as it would not well simulate the higher impedance of a valve grid circuit.
Fig. 5a with its $100 \mathrm{~ns} /$ div timebase shows the voltage at the anode of the diode at maximum tuning capacitance, a shade over 2.5 MHz . With the 10 V collector supply voltage, the 25 V peak-to-peak voltage across the tank circuit results in the anode of the diode swinging well below the base voltage and indeed well below ground - 0 V ground is two divisions below the centreline, the upper trace at $5 \mathrm{~V} /$ division. Both traces are dc coupled.
The other trace, at $50 \mathrm{mV} / \mathrm{div}$, is the voltage across the 4.75 emitter current sensing resistor, and it proved quite difficult to measure. The magnetic field

from the coil coupled into the probe's ground lead. wherever it was placed. In the end, the probe ground lead was removed entirely and the probe's tip and earth ring strapped across the resistor body as indicated in Fig. 4.
As in a valve oscillator, the collector current has split, in this case due to the presence of the diode, into two separate pulses, each flowing only while the base is forward biased and collector voltage above the transistor's bottoming voltage. The ringing on these two pulses is possibly due to the inductance of the 4R7 resistor, and doubtless other circuit parasitics also suggesting the wisdom of not attempting the experiment at too high a frequency.

A case of conduction angle

Figure 5b shows the same picture, but with the circuit tuned to oscillate at 5 MHz . Bearing in mind that the reactance of the inductor at 5 MHz will have doubled relative to 2.5 MHz and constant Q unchanged (only approximately true), the tank circuit's dynamic resistance would have doubled. Yet the amplitude of oscillation has increased by only a few percent. The reason is that the collector current pulses are now very much narrower, not only in absolute terms but as a fraction of a cycle. Thus the total conduction angle is reduced, and with it both the mean collector current and the component at the 5 MHz fundamental. While the peak amplitude of the pulses is little changed, they are now only a few nanoseconds wide. With the $15 \mu \mathrm{~A}$ base current supplied and the device's h_{FE} of 240 . the collector current drawn when the base feedback was removed, stopping the oscillation, was 3.6 mA . At 2.5 MHz it fell to 1.6 mA reducing to 1.3 mA at 5 MHz . The mean basc current was of course unchanged, the excess being spilled through the base circuit during

the period when the collector current was zero due to the diode being reversed biased.
Figure 6a shows the output spectrum at 2.5 MHz (span $0-20 \mathrm{MHz}$), that at 5 MHz being the same, except that the second harmonic rose to -32 dBc . Harmonics higher than the fifth were negligible in both cases. The spectrum analyser`s reference level (top of screen) is -10 dBm , but due to the 1000 : 1 attentation introduced by the $47 \mathrm{k} \Omega$ resistor, it correspondis to +50 dBm - at least in terms of volts, though not in terms of power of course, as the tank circuit impedance is much higher than 50Ω.
Figure 6b shows the base voltage waveform at 2.5 MHz , (lower trace, IV/div) and a waveform (upper trace, $5 \mathrm{~V} / \mathrm{div}$) which could not be seen in the corresponding valve oscillator. This is the waveform at the cathode of the diode. The collector can be seen to be firmly clamped to ground at the negative peak (when the diode is reverse biased). subsecpuently rising to the positive peak of the tank circuit voltage. It remains there until the transistor turns on again. at the first of the two current pulses surrounding the following negative peak.
Figure 7a shows the tank circuit/collector voltage when the diode is short circuited. to give conventional transistor $L C$ oscillator operation. Here. the negative peak is brutally clamped to ground: compare this with Fig. 5b, where the tank circuit voltage is frec to swing 5 V below ground. The extra damping has reduced the swing from 28 V to 25 V -p. The neat snipping off of the negative tip of the waveform does not affect the low order distortion greatly, but as Fig. 7b (span ()100 MHz) shows, the significant harmonies now extend to a much higher order. Incidentally, the emitter current also breaks up into two pulses in this circuit, but for an entirely different reason from the

case where the diode is present.
Nothing shows the difference between a conventional transistor $L C$ oscillator and the "pseudo valve" circuit better than Fig. 8. The base voltage waveform of the pseude valve circuit at 2.5 MHz (at $0.5 \mathrm{~V} / \mathrm{div}$) and the emitter current pulses monitored across the 4.7Ω resistor (at $50 \mathrm{mV} / \mathrm{div}$). Note that the base voltage stays positive during the period between current pulses, when the tank circuit voltage is negative. This is in complete contrast to the conventional circuit without the diode. (Fig. 8b). Here, when the collector tries to swing below ground, the base-collector diode turns on, dragging the base voltage down with it. This reverse biases the basecmitter junction, interrupting the emitter current and sphtting it into two separate pulses. In this circuit, the excess base bias current is shunted into the collector circuit while the emitter current is off. In the pseudo valve circuit, it goes into the emitter circuit, while the collector current is cut off.

The differences between a conventional transistor $L C$ oscillator and the 'pseudo valve' circuit shown here, can be expected to apply to the two circuits when operating at much higher frequencies. Some of the effects, such as the ringing on the emitter current pulses would not be present in a practical application. Given its advantages, the "pseudo valve" oscillator could be seriously considered for applications at substantially higher frequencies.

References

1 Design Brief, Oscillator tails off tamely? Ian Hickman EW+WW Feb 1992.

Fig. 7a, left. Waveform at the collector (tank circuit) with the diode short circuited, at 2.5 MHz (10V/div), ov level two divisions below centreline, 100ns/div, left-hand photo. Tank circuit voltage cannot swing below ground. b) Spectrum of a). Vertical $10 \mathrm{~dB} /$ div, ref. level $-10 \mathrm{dBm}, \operatorname{span} 0-100 \mathrm{MHz}$, If bandwidth 1 MHz , video filter on.

Fig. 8a. Pseudo valve circuit. Base circuit waveform with tuning capacitor set to max, 2.5 MHz (larger trace, $0.5 \mathrm{~V} / \mathrm{div}$) and emitter current waveform (smaller trace, $50 \mathrm{mV} / d i v)$. Ground level 2 divisions below centreline, $100 \mathrm{~ns} /$ div horizontal. b) Conventional circuit. 2.5 MHz . Traces and scope settings as a).

£1 BARGAIN PACKS

In fact...cheaper than $£ 1$ because if you buy 10 you can choose one other and recelve it free!
$1 \times 12 v$ Stepper Motor. 7.5 degree. Order Ref: 910 1×10 pack Screwdrivers. Order Ref: 909. $2 \times 5 \mathrm{amp}$ Pull Cord Celling Switches. Brown. Order Ref: 921
$5 \times$ reels Insulation Tape. Order Ref: 911
$4 \times 14 \mathrm{~mm}$ Ball-races. Order Ref: 912
$2 \times$ Cord Grip Switch lamp Holders. Order Ref: 913 $1 \times$ DC Voltage Reducer. 12v-6v. Order Ref: 916. 1×10 amp 40 v Bridge Rectifler. Order Ref. 889. Lightweight Stereo Headphones. Moving coil so superior sound. Order Ref: 896
$2 \times 25 W$ Crossovers. For 40 hm loudspeakers. Order Ref: 22
$2 \times$ Nicad Constant Current Chargers. Easily adaptable to charge almost any nicad battery. Order Ref: 30 18v-0-18v 10va Mains Transformer. Order Ref: 813 $2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132.
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref: 148.
12v-0-12v 6va Mains Transformer. PCB mounting. Order Ref: 938.
$1 \times$ Blg Pull Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ pull. Order Ref: 871
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Mini Mono Amp. 3W into 4 ohm speaker or $1 W$ into 8 ohm. Order Ref: 495
$1 \times$ Mini Stereo 1W Amp. Order Ref: 870
15v DC 150 ma PSU. Nicely cased. Order Ref: 942
$1 \times \ln$-Filght Stereo UnIt is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square Scaled 0-100. Order Ref: 756 .
$2 \times$ Lithlum Batteries. 2.5 V penlight size. Order Ref 2×1
874.
2×3
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for 'phone extensions, fax, etc. Order Ref: 552 .
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232 .
$4 \times \ln$-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7 .
$2 \times 6 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with $2 \times 6 V 1 A$ mains Transform
fixing clamps. Order Ref: 9
$2 \times$ Humidity Switches. As the air becomes damper $2 \times$ Humidity Switches. As the air becomes damper Order Ref: 32
$5 \times 13 \mathrm{~A}$ Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42.
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains nput and 6V output lead. Order Ref: 103A
$2 \times$ Stripper Boards. Each contains a 400 V 2A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120.
12 Very Fine Drills. For PCB boards etc. Normal cos about 80p each. Order Ref: 128.
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
$6 \times$ Microphone Inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139.
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180
$1 \times$ In-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196
$1 \times$ Mains Solenold. Very powerful as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199.
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref 243.
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch i fitted in pattress. Order Ref: 263.
$50 \times$ Mixed Silicon Diodes. Order Ref: 293.
1×6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28.
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other $2 \times 6 \mathrm{~V}$ Operated Reed Relays.
normally closed. Order Ref: 48 .
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55.
$61 / 2^{\prime \prime} 8 \mathrm{ohm} 5$ watt Speaker. Order Ref: 824.
$1 \times$ Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack, so quite powerful. Order Ret: 85 .
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86
$1 \times$ Case. $31 / 2 \times 21 / 4 \times 13 / 4$ with 13 A socket pins. Order
Ref: 845 Ref: 845.
$2 \times$ Cases. $2^{1 / 2} \times 2^{1 / 4} \times 13 / 4$ with $13 A$ pins. Order Ref: 565. $4 \times$ Luminous Rocker Switches. 10A mains. Order Ref: 793.
$4 \times$ Different Standard V3 Micro Switches. Order Ref:
${ }_{340}^{4 \times}$
$4 \times$ Different Sub Min Micro Switches. Order Ref

BARGAINS GALORE

Speed Controller for 12v DC Motors. Suitable for motors with horse powers up to one third and drawing currents up
to $30 A$. Gives very good control and speed. Uses mosfets and is based on a well tried circuit which appeared in the Model Engineer some time ago. The complete kit with zase and on/off switch is available, price $£ 18$. Order Ref: $1 £ P 8$. Ex-British Telecom Insulation Tester Offer. We have a quantity of these that are slightly faulty. There has been no ttempt at repairing them. They are not missing any parts so should be repairable. The moving coil movement is in perfect working order so even if you cannot repair the instrument to perform all its original functions, you wouly be able to use it for another insitrument that you need. We supply a circuit diagram of the instrument and chances are hat you will find the fault and be able to repair it. Price of Fig 8 Flex. Fig. 8 flat white pvc, flexible with 4 sc mm Fig 8 Flex. Fig. 8 flat white pvc, flexible with . 4 sq . mm
cores. Ideal for speaker extensions and bell circuits. Also adequately insulated for mains lighting. 50 m coil $£ 2$. Crder Ref: 2 P345. 12m coil £1. Order Ret: 1014
Frledland Underdome Bell. Their ref: 792. A loud ringer but very neat, $3^{\prime \prime}$ diameter, complete with wall fixing screws, 4. Order Ref: 4P75.

12v 10amp Switch Mode Power Supply. For only $£ 9.50$ and a little bit of work because you have to convert our 135W PSU. Modifications are relatively simple - we sujply
instructions. Simply order PSU Ref: 9.5 P 2 and req ıest instructions. Simply order PSU Ref: 9.5P2 and req eest modification detals. Price still £9.50.
Are you making Mini Bugs? We can offer the ideal box. White plastic without any decoration or printing. This has an above to take a telescopic or wire aerial. The case is large enough to take a PP3 battery and a PCB and when finished it will have a really professional look. Box with switch $£ 1$,
Order Ref: 1006 . Size approximately $4^{\prime \prime} \times 3^{\prime \prime} \times 1^{1 / 2^{\prime \prime}}$ thick and Order Ref: 1006 . Size approximately $4^{\prime \prime} \times 3^{\prime \prime} \times 1^{1 / 2^{\prime \prime}}$ thick and is cover is held by four screws.
Siren/Horn/Hooter/Klaxon. It isn't any of these - it does the same job but is quite nice to look at and could even be described as omamental. It is Swiss made and in a crey plastic case, could be free standing or screwed down makes a shocking noise (its loudness is adjustable) makes a shocking noise (its loudness is adjustable). You burglar alarm to do the same. Price £5. Order Ref: 5 P 26 . Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery. £3. Order Ref: 3P155.
Don't Let it Overflow! Be it bath, sink, cellar, sump or any other thing that could fiood. This device will tell you when the water has risen to the pre-set level. Adjustable over a site a useful range. Neatly cased for wall mounting,
work when battery fitted. $£ 3$. Order Ref: 3P156.
Very Powerful Mains Motor. With extra long ($2^{1} / 2^{\prime \prime}$) shafts Very Powerful Mains Motor. With extra long ($2^{1} / 2^{\prime \prime}$) shafts exrending out each side. Makes ideal arrangement
reversible. $£ 3$. Order Ref: $3 P 157$. Solar Panel Bargain. Gives $3 v$ at 200 mA . Order Ref:
2P324.

12V axial fan for only E1 ideal for
brand new, made by West Geal for equipment cooling so virtually made by West German company. Brushless so virtually everlasting. Needs simple transistor drive
circuit, we include diagram. Only E1, Order Ret: 919. circuit, we include diagram. Only $£ 1$, Order Ref: 919 .
When we supply this we will include a list of approximate-

40W-250W Light Dimmers On standard plate to put directly in place of flush switch. Available in colours, green, red, bilue
and yellow. $£ 2.50$. Order Ref. 2.5 Pg Or on standard 3×3 and yellow. £2.50, Order Ref. 2.5P9. Or on standard 3×3 cream metal switch plate, £3. Order Ref. 3P174.
45A Double Pole Mains Switch. Mounted on a $6 \times 31 / 2$ aluminium plate, beautifully finished in gold, with pilot light. Amstrad $\mathbf{3}^{\prime \prime}$ Disk Drive Brand n w
Amstrad 3" Disk Drive. Brand new and standard replaceRef: 20P28.
Touch Dimmers 40W-250W, no knob to turn, just tinger on front plate, will give more, or less light, or off. Silver plate on white background, right size to replace normal switch \&5,
Order Ref. 5P230.

> Motorise that Troliey! You could with Sinclair C5 $1 / 3 \mathrm{rd}$ hp 12 v battery motor Still available, price £18. Order Ref: 18P7
$12 / 24 \mathrm{DC}$ Solenoid. The construction of this is such tha* it will push or pull. With 24 V this is terrifically powerful but is still quite good at 12 V . $£ 1$. Order Ret: 877
Don't Stand Out in The Cold Our 12 m telephone extension £2, Order Ref: 2P338.
20W 5"4 Ohm Speaker mounted on baffle with front grille, £3. Order Ref: 3P145. Matching 4 ohm 20 W tweeter on
LCD $31 / 2$ Digit Panel Meter
This is a multi range voltmeter/ammeter using the A D converter chip 7106 to provide 5 ranges each of volts and amps. Supplied with full data sheet. Speciat
snip price of $£ 12$ Order Ref: 12 P 19 . snip price of $\mathbf{£ 1 2 \text { , Order Ref: 12P19 }}$

Telephone Extension Wire 4 core correctly colour coded, 2P339.
High P.
High Power Switch Mode PSU. Normal mains input. 3
outputs: +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A and Completely enclosed in plated steel case. Brand new. Our special offer price of $£ 9.50$. Order Ref: 9.5 P1
Philips $9^{\prime \prime}$ High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, stlll in maker's packing, offered at less than price of tube alone, only $£ 15$ High Current AC
High Current AC Mains Relay This has a 230 v coil and clear plastic cover. £1, Order Ref. 965 .

BARGAINS GALORE

Ultra Thin Drills, actually 0.3 mm . To buy these regular costs a fortune. However, these are packed in half dozens and the price to you is $£ 1$ per pack, Order Ref: 7978 You Can Stand On It! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools in, internal size approx.
$10^{1} / 2^{\prime \prime} \times 4^{1} / 2^{\prime \prime} \times 6^{\prime \prime} h i g h$. Complete with carrying strap, price $£ 2$. $101 / 2^{\prime \prime} \times 4^{1 / 2 "} \times 6^{\prime \prime}$ high.
Order Ref: 2P283B.
Ultra Sonic Transducers. Two metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref: 1.5P/4.
Power Supply with Extras. Mains input is fused and filtered and the 12 V DC output is voltage regulated. Intended for high class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are
relays and Piezo sounder, $£ 3$, Order Ref: 3 P80B
Insulation Tester with Multimeter. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, $\mathrm{AC} / \mathrm{DC}$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good Condition, tested and guaranteed OK, probably cost at least £50, yours for only $\mathbf{£ 7 . 5 0}$ with leads, carrying case $\mathbf{\Sigma 2}$ extra,
Order Ref $75 \mathrm{P} / 4$ Mains Isolation
Mains Isolation Transformer. Stops you getting "to earth"
shocks. 230 V in and 230 V out 150 . shocks. 230 V in and 230 V out. 150 watt, $£ 7.50$, Order R 7.5P/5 and a 250 W version is $£ 10$, Order Ref: $10 \mathrm{P9} 9$ blades, £8, Order Ret: 8P8.
2MW Laser. Helum neon by Philips, full spec. £30, Order Ref: 30P1. Power supply for this in kit form with case is $£ 15$, £18, Order Ref: 18P2 The larger cane to house tube as well ready to use, complete with laser tube £69, Order Ref: 69P1 12v 80 hm speaker, only $£ 1.50$ and waterproof.
Solar Charger. Holds 4AA nicads and recharges these in 8 hours, in very neat plastic case £6, Order Ref: 6P3.
Ferrite Aerial Rod. $8^{\prime \prime}$ long $\times 3 / 8^{\prime \prime}$ diameter, made by Mullard. Complete with two coils, 2 for £1, Order Ref: 832P.
Air Spaced Trimmer Caps. 2-20pf, ideal for precision tuning UHF circuits, 4 for $£ 1$, Order Ref: 818 B
Modem Amstrad FM240 As new condition but customer return, so you may need to fault find, £6, Order Ref. 6P34. Anstrad Power Unit. 13.5 V at 1.9 A or 12 V at 2 A encased
and with leads and output plug, normal mains input $£ 6$. Ond with leads
80W Mains Transformer. Two available, good quality, both with normal primaries and upright mounting, one is 20 V 4 A , with normal primaries and upright mounting, one is 20V 4A,
Order Ref: 3P106, the other 40 V 2 A , Order Ret: 3 P 107 , only Erder Reach.
Project Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1} / 2^{\prime \prime}$ metal, sprayed grey, GPO so best quality only $£ 3$ each. Order Ref: 3P74 Sentinel Component Board Amongst hundred of other parts, this has 15 ICs, all plug in so do not need soldering. Cost well over £100, yours for £4, Order Ref. 4P67.
Sinclair 9V 2.1A Power Supply Made to operate the 138 K Spectrum Plus 2, cased with input and output leads. Originally listed at around $£ 15$, are brand new, our price is Experimenting with Val
Experimenting with Valves. Don't spend a fortune on a mains transformer, we can supply one with standard mains
input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at $3 \mathrm{~A}, £ 5$,
Order Ret 5 P 167 Order Ret: 5P167
15W 8 Ohm $8^{\prime \prime}$
discontinued high quality music centre geer. Made for a discontinued high quality music centre, gives real hi-fi and
only $£ 4$ per pair. Order Ret: 4P57. Water Pump. Very powerful, mains operated, $£ 10$. Order Ref: 10P74.
0-1mA Full Vision Panel Meter. $23 / 4^{\prime \prime}$ square, scaled $0-100$ 756 scale easily removed for re-writing, $\mathbf{\Sigma 1}$ each, Order Ref: 756.

VU Meter. llluminate this from behind becomes on/off indicator as well, $11 / /^{\prime \prime}$ square, 75 each, Order Ref: 366 . Amstrad Keyboard Model KB5 This is a most comprehen-
sive keyboard, having over 100 keys including, of course sive keyboard, having over 100 keys including, of course,
full numerical and qwerty. Brand new, still in maker's full numerical and qwerty. Br
t RPM Motor. This is only 2 W so will not cost much to run Speed is ideal for revolving mirrors or lights. £2, Order Ref 2 P328
Unusual Solenoid. Solenoids normally have to be energised to pull in and hold the core, this is a disadvantage where magnetic solenoids which hold the core until a voltage is applied to release it. £2, Order Ref. 2P327
Mains Filter. Resin impregnated, nicely cased, pcb mounting. £2, Order Ref. 2P315.
So you could translormer. Secondary votages $8 v-8-8$ for car could have 16 v at 12 A or 8 v at 25 A . Could be ideal welding or driving high powered amplifiers etc. £15, Order Ref. 15P51
Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

143 MHz PLD. The Cypress CY7C371 is a complex programmable logic device with a 143 MHz performance and better than 8.5 ns propagation delay, the device offering both electrical erasure and reprogramming It has a programmable interconnect matrix and product term matrix, which allows product terms to be routed to macrocells individually without stranding' adjacent macrocells or introducing extra delay. Pin assignments are selectable so that logic changes do not affect the pinout. Ambar Components Ltd. Tel., 0844 261144; fax, 0844261789.

10,000 -gate FPGA. Already available from Actel are the 1500 -gate A1415A and the 4000-gate A1440A fieldprogrammable gate arrays; the 10,000-gate A14100A to be released in June. These devices extend the ACT 3 range which includes 2500 gate and 6000 -gate types. New features are 167 MHz counters and data paths and 7.5 ns clock-to-out delays. Actel Europe Litd. Tel., 0256 29209; fax, 025655420.

A-to-D and D-to-A converters

Lowest-power A-to-D. Harris's HI5813 is a $3-6 \mathrm{~V}$ single-supply, 12 -bit converter that uses only 9 mW maximum at full speed over the industrial temperature range. It includes an on-chip track-and-hold amplifier and the input bandwidth is 1 MHz ; conversion time is $25 \mu \mathrm{~s}$, giving $40 \mathrm{ksample} / \mathrm{s}$. Total error, due to nonlinearity, offsets and full-scale error before calibration, is 9LSB. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276682323.

Discrete active devices $9 \mathbf{G H z}$ transistor. With a typical f_{T} of 9 GHz at 25 mA , Zetex's $Z \mathrm{GF} 300 \mathrm{~F}$ is intended for use in cellular telephones, CATV and radio networking at frequencies over 2.5 GHz . Noise figure at 10 mA and 1 GHz is 1.9 dB and gain at 2 GHz is 7 dB and 12 dB at 1 GHz ; unilateral power gain at 1 GHz is 13 dB . Collector/base capacitance is less than 0.5pF. Zetex plc. Tel., 061-627 5105; fax, 061-627 5467.

Low-noise hemt. Low-noise InGaAs high electron-mobility transistors from Mitsubishi, the MGF4710A are meant for C -band first and second stage

LNB use in the $3.7-4.2 \mathrm{GHz}$ band and in K band amplifiers. They are intended for microstrip circuitry, providing a 1 dB noise figure and 9dB gain at 12 GHz . Gate/drain and gate/source voltage is -4 V with a drain current of 60 mA . Mitsubishi Electric UK Ltd. Tel., 0707 278100; fax, 0707278692

Schottky barrier diode. The BAS85 silicon Schottky barrier diode by ITT has a reverse breakdown voltage of 30 V and forward voltages of 0.24 V at 0.1 mA to 0.8 V at 100 mA . Leakage is $2 \mu \mathrm{~A}$ at 25 V reverse voltage and reverse recovery time is 5 ns . Power dissipation at $65^{\circ} \mathrm{C}$ is 250 mW . ITT Semiconductors. Tel., 0932336116 fax, 093233148.

High-voltage mosfet. Zetex's ZVN4424 is a 240 V , medium - power mosfet with a typical on resistance of 4Ω and a threshold voltage of 1.8 V maximum, so that it interfaces directly with low-power logic. The device switches up to 260 mA continuous or 1 A in pulses, rise and fall times being 5 ns and 16 ns at 250 mA drain current. Input capacitance is around 110 pF Zetex plc. Tel., 061-627 5105; fax, 061-6275467.

Bipolar switches. Temic Telefunken has a new series of high blockingcapability bipolar switching transistors, BUD $87 / 620$ and TD 13003/13005, in Dpaks. Typisal application is in the contactless switching of electronic flucrescent lamp ballasts. All types switch 30W loads and block up to 1 kV at 4 A collector currents. Operating

Stereo/dual sound processors Philips is offering three new sound processors for television receivers and video recorders which have or-chip
digital plls, synchroncus detectors and digital integrators to give rellable identification of the sterco/dual sound pilot modulation.
TDA9840 provides level
adjustment, stereo ba ance control and signal-source switching for $1^{2} \mathrm{C}$-buscontrolled tvs and vcrs, TDA9845 gives simple logic control of signal switching in low-cost VCRs and TDA3847 complex main/auxiliary input switching for equipment with Scart connectors. Philips Semiconductors (Eindhoven). Tel., 0103140 722091; fax, 0103140724825.
frequency is up to 100 kHz . TD13005 is also made with a free-wheeling diode. Temic Telefunken GmbH . Tel., 010497131 672747; fax, 010497131 993342.

Linear integrated

 circuitsMultiplexed-i/p video amplifiers. Two or four input multiplexed video amplifiers in the EL4400 series by Elantec provide 8 ns switching and 70 dB channel isolation. Bandwidth at gains of 1 or 2 is 80 MHz with gain error of 0.2% even with lowimpedance loads. Two of the devices are two-input types with common inverting inputs, two have four inputs with all four taken to a common feedback line and a further two are four-input versions with positive and negative inputs separate.
Microelectronics Technology Lid. Tel., 9844 278781; fax, 0844278746.

Precision dual op-amp. Micro Call has a dual op-amp which draws a maximum supply current of $20 \mu \mathrm{~A}$ per amplifier al 5 V . Features include an input offsel voltage of $180 \mu \mathrm{~V}$ maximum with $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift and input offset current 350 pA maximum Peak-to-peak current noise is 1.5 pA and voltage noise $0.9 \mu \mathrm{Vpk}-\mathrm{pk}$ from 0.1 Hz to 10 Hz . Input range goes 300 mV below ground and the npn output swings to within a few mV of ground, sinking current without puldown resistors. Micro Call Lid. Tel., 0844 261939; fax, 0844261678.

500 MHz mixer. AD comes to the RF area with a mixer giving low distortion (third-order intercept +23 dBm) anc. only -10 dBm local oscillator power over the 500 MHz bandwid:h. Localoscillator criver and low-noise output amplifier are integrated with the mixer core in one 20-pin PLCC. RF, IF and LO ports can all be dc-coupled when the voltage rail is $\pm 5 \mathrm{~V}$ or ac-coupled when 9 V is used. IF output is either single-ended or differential and can come directly from the mixer. Analog Devices Ltd. Tel, 0932 253320; fax, $0932247 \angle 01$.

Low-voltage mosfets. Siliconix announces three more Little Foot surface-mounted mosfets: Si9925DY, Si9434DY and Si9928DY with on resistances of $40-80 \mathrm{~m} \Omega$ and 12 V breakdown, being designed for 3.3 V or 5 V logic. The 9925 is fcr use in lithium-ior battery psus, in which the 2.5 V end-of-charge voltage is matched with the mosfet's $80 \mathrm{~m} \Omega$ resistance at 2.5 V gate voltage. Complementary 9928s in the output stage of a voltage converter provide

Crystal oscillator. Using an SC-cut crystal with a heater directly depositec on the crystal, the Sematron DXCO provides the performance of an oven oscillator with small size, low weight less than 1 W of power. Frequency coverage is $7-20 \mathrm{MHz}$ at a frequency stability of 2×10^{-7} over $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Ageing is 1×10^{-7} per year. The direct heating gives rapid warm-up, low phase noise and relative invulnerability to vibration compared with some oven oscillators that are larger in size. Sematron UK L.td. Tel., 0734 819970; fax, 0734819786.
$60 \mathrm{~m} \Omega$ and $130 \mathrm{~m} \Omega$ (p-channel); and for load switching, the 9434 gives $40 \mathrm{~m} \Omega$ on resistance at 4.5 V and $1 \mu \mathrm{~A}$ drain/source leakage. Siliconix/Temic Marketing. Tel., 0344 485757; fax, 0344427371.

Analogue switches. Maxim's MAX391/2/3 are quad single-throw, single-pole analogue switches, those in the 391 being normally closed, in the 393 normally open and in the 393 two of each. All are for 5 V or $\pm 5 \mathrm{~V}$ working and offer 25Ω on resistance, $<2 \Omega$ matching between channels and within 3Ω flatness over the signal range. Since the switches are of the break-before-make characteristic, they are suitable for multiplexers and multiple outputs can be connected with no risk of interchannel shorting. Maxim Integrated Products UK Ltd. Tel., 0734845255 ; fax, 0734845240.

GaAs fet bias generator.

MAX850/1/2/3 from Maxim supply a fixed -4.1 V or variable output at 5 mA and under 2 mV pk -pk ripple to bias GaAs fet RF power amplifiers in cellular telephones and other communications equipment. They take up less than $0.1 \mathrm{in}^{2}$ of board space and need only three $1 \mu \mathrm{~F}$
capacitors and one $10 \mu \mathrm{~F}$ one. Supply range is $4.5-10 \mathrm{~V}$ at 3 mA or $1 \mu \mathrm{~A}$ quiescent. MAX852 takes an
oscillator signal to allow
synchronisation in noise-sensitive systems. Maxim Integrated Products UK Ltd. Tel., 0734845255 ; fax, 0734 845240

RF video drivers. Motorola's

 CR2428 and CR3428 are hybrid RF amplifiers for use in high and very high resolution CRT monitors. Bandwidth of the $2428 / 3428$ is $130 / 115 \mathrm{MHz}$ and rise and fall times $2.5 / 2.7 \mathrm{~ns}$. Motorola Inc. Tel., 0908 614614; fax, 0908618650.Voltage regulators. As a second source to Linear Technology, Semtech offers a series of low dropout regulators with output currents of 1.5A (L1086), 3A (L1085), 5A (L1084) and 7.5A (L1083) at fixed voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V , one version having adjustable output down to 1.2 V . Regulation and stabilisation are 0.01% and 0.015% Current limiting and thermal shutdown are provided. Semtech Ltd. Tel., 0592 773520; fax, 0592774781.

Logic building blocks

24-bit video mixer. Raytheon's
TMC22080 video mixer is designed to mix graphics and live video, for lapping between two video sources and for fading and wiping. It mixes at speeds of up to 26 million pixels/second and is controlled by a 9-bit alpha-channel input. The device supports 24 -bit RGB, YCbCr444, 16bit YCbCr422 component video sources and the A channel also accepts 8 -bit colour-indexed pixel data which addresses the three bypassable 256 by 8 -bit colour lookup tables with a 15 -colour overlay palette. Interpolation filters and the colour space conversion matrices are used when different pixel formats are in use. TMC22080 is microprocessor-
controlied. Microelectronics
Technology Ltd. Tel., 9844 278781 fax, 0844278746.
3.3 V programmable logic. AMD has its first 3.3 V PLD family. PALLV16V8 10 is a low-voltage cmos device that interfaces with 3.3 V and 5 V logic, having a maximum 10 ns delay and taking an 83 MHz clock.
PALLV22V10Z-25 takes $15 \mu \mathrm{~A}$ standby current and has 10 macrocells programmable as registered or combinatorial and active high or low. MACHLV210-15/20 is the first 3.3 V MACH device, with 1800 gates and 64 macrocells, and handles a 50 MHz clock. All are supported by the Palasm design software.
Advanced Micro Devices (UK) Ltd.
Tel., 0483740440 ; fax, 0483756196
Active SCSI terminator. Claimed to be the industry's lowest-capacitance, 9 -line SCSI active terminator, Unitrode's UC5613 has only 3pF channel capacitance, provides improved impedance matching and eliminates transmission problems found in some other passive and active terminators. A special feature disconnects all lines and disables the 400 mA sink/source regulator, the device drawing less than $10 n \mathrm{~A}$ in this sleep mode and all channels being in a high-impedance state. Unitrode (UK) Ltd. Tel., 081318 1431; fax, 081 3182549.

Microprocessors and controllers

Bigger-rom micros. Hitachi's H8/3837 and $H^{*} / 38368$-bit microcontrollers are 2.7 V devices taking 0.5 mA in an intermediate speed mode and having 40Kbyte (3837) or 48 Kbyte of program rom. Both have an Icd controller/driver for 160 segments and other on-chip features include 2 K byte of ram, five timers, a 12 -channel 8 -bit a-to-d converter and three serial interface

600 V mosfet driver. IR's IR2155 600V chip has everything needed to control and drive power mosfets in electronic lighting ballast, with a clean waveform that virtually eliminates mosfet losses. Parts count is reduced by virtue of the high-side driver dispensing with transformer gate drives; by the on-chip oscillator; and by generating the IC supply voltage internally. Internal 1.2μ s dead time is compatible with dvidt snubbed circuits to 100 kHz . Polar Electronics. Tel., 0525 377093; fax, 0525378367.

channels. Minimum instruction time is $4 \mu \mathrm{~s}$. Hitachi Europe Ltd. Tel., 0628 585000; fax, 0628585200.

133 MHz Orion 64-bit R4600. The
133 MHz version of IDT's Orion R4600 risc processor is claimed to be the first offering the required
performance, dynamic power management and low price for Windows $N T$ and high-end embedded applications. IDT says it performs better than the Pentium at 486DX prices. It is a full 64-bit
implementation of the MIPS III instruction set architecture in the earlier R4000PC and R4400PC devices but with a five-stage pipeline to reduce stalls and therefore improve performance. There is also the cache: 1616Kbyte for instructions and 1616Kbyte for data. Integrated Device Technology. Tel., 0372 363734; fax, 0372378851.

Comms processor. Ruby is an advanced communications processor chip from VLSI, which uses an ARM 32-bit risc processor core with a comprehensive set of comms peripherals, power management and $2.7 \mathrm{~V}-5.5 \mathrm{~V}$ operation. It contains a PCMCIA/ISA interface supporting direct memory, attribute space and comms port modes, a uart, serial comms controller, PIO and a serial port controiler. The ASRM FSB core gives up to 20Mips. Sleep and stopped modes are provided, in which power dissipation is 3 mW and 200μ W. VLSI Technology Ltd. Tel., 0908667595 ; fax, 0908670027

Mixed-signal ICs

Lan chipset. Regatta 100 local area network chipset by AT\&T allows the addition of multimedia services such as video and sound to Ethernet or Token-Ring wiring at $100 \mathrm{Mb} / \mathrm{s}$. The set conforms to IEEE 802.12 100VGAnyLAN, the first silicon implementation to do so. Its high bandwidth is achieved by means of a new quartet signalling scheme using four pairs of UTP wiring. AT\&T Microelectronics. Tel., 0732 742999; ax, 0732741221

RDS frequency synthesiser. Philips TSA6060 low-power PLL frequency synthesiser IC for AM and fm is intended for use in rds car radios, providing on-chip loop amplifiers and 2 ms frequency locking, although the olls can be switched between high gain for fast lock and lower gain for frequency stability. The only externals needed are two passive feedback networks for the loop time constant. Philips Semiconductors (Eindhoven). Tel., 0103140 722091; fax, 0103140 724825.

Optical devices

Single-chip camera. A cmos singlechip camera by VVL, the 1070, is claimed to be the first commercially available image sensor with a built-in a-to-d converter. It integrates a 160 by 120 pixel array with all the electronics needed for an autoexposure camera in a windowed 44 -
pin PQFP. Current consumption is 30 mA and there is to be a range of lenses with differing fields of view. VLSI Vision Ltd. Tel., 031-539 7111 fax, 031-539 7140.

Photo-IC coupler. Toshiba's TLP251 photocoupler drives low-power IGBTs directly, maintaining gate isolation. A GaAIAs led is the light source, a p-n photodiode, a high-speed, high-gain amplifier and output circuitry. comprising the photo-IC which is used as the detector. Operating voltage is 35 V and an 8 mA input produces a peak output of 100 mA with a $1 \mu \mathrm{~s}$ propagation delay. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276691583.

Oscillators

LF crystal oscillators. Crystal oscillators from GPS work at frequencies down to 1.5 kHz . The QC6109 oscillator will drive loads of up to 50 pF (HCMOS) and the QC6110 up to 10 TTL gates, both having rise and fall times of 10 ns for $6-30 \mathrm{MHz}$ versions or 15 ns for the If types. Start-up time is 4 ms . Two temperature ranges are available: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ with a frequency tolerance of $\pm 50 \mathrm{ppm}$; and $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ with a tolerance of $\pm 100 \mathrm{ppm}$. GEC Plessey Semiconductors Ltd. Tel., 0793 518510; fax, 0793518582.

Power semiconductors

Horizontal crt deflection. Power dissipation in horizontal deflection circuitry is reduced by short switching times and low power loss of Philips BU2522AF and BU2527AF n-p-n power transistors. These are intended for 14-17in high-resolution monitors scanning at up to 64 kHz . Both are 500V devices operating at 5-7A (DC peak ratings 10 A and 25 A for the 2522 and 12A/30 for the 2527). When switching 6 A in a 64 kHz circuit, maximum charge storage time is $2 \mu s$, collector turn-off times being $0.25 \mu \mathrm{~s}$ and $0.2 \mu \mathrm{~s}$. Philips Semiconductors (Eindhoven). Tel., 0103140722091 ; fax, 0103140724825

PASSIVE

Passive components

Feed-through capacitors. Reengineering of Cambion's 560-3265 series of feed-through capacitors has trebled the range of values to 220 pF 1500 pF in $\pm 20 \%$ tolerance. They are screw-mounted and plated in $0.55 \mu \mathrm{~m}$ gold, although other styles and platings can be made. Insulation resistance is over $10^{5} \mathrm{M} \Omega$ and dissipation factor less than 2\% at 1 kHz . Interconnection Products Ltd. Tel., 0433621555 ; fax, 0433621290.

Wirewound resistors. Neohm CWP, CWU and CWL ranges of high-power wirewounds, in moulded chip packaging, use temperature sensing to achieve standard temperature coefficients down to $1-3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Type CWP are down to 2.4 by 3.2 mm in
size and offer resistance ranges of $0.1 \Omega-1.4 \mathrm{k} \Omega, 0.1 \Omega-5 \mathrm{k} \Omega, 0.1 \Omega 2-18 \mathrm{k} \Omega$ and $0.1 \Omega-45 \mathrm{k} \Omega$ in tolerances of $\pm 0.1 \%$ to $\pm 5 \%$ and 0.75 W to 4.5 W power ratings. CWU resistors have standard tolerance down to 0.005% at 0.5 W , while CWLs offer low values of $0.005 \Omega-0.5 \Omega$ at less than 7 nH inductance. Surtech Interconnection Ltd. Tel., 0256 51221; fax, 0256 471180.

Transient suppressor. Giving board level ESD protection in a $1.3 \mathrm{~mm}^{2}$ package, the AVX Transguard 0603 version transient voltage suppressor clamps at $10 \mathrm{~V}, 15.5 \mathrm{~V}, 30 \mathrm{~V}$ or 40 V . Energy rating is 0.1 j and peak currents up to 30A in eight $20 \mu \mathrm{~s}$ pulses can be accepted, response time meeting the European EMC Directive. AVX Lid. Tel., 0252 336868; fax, 0252346643.

Transformers. Electrospeed has added new isolating transformers by Roxburgh and pulse types from Newport to its catalogue. Roxburgh's TT81 range are of split-bobbin construction with a metal-shrouded coil in ratings of $25-1000 \mathrm{VA}$ with inputs from 0 to 415 V . Newport's 766 series are ferrite-cored and meant for digital and data processing use, while the 1600 series are data isolators with $5 \mu s$ pulse width capability at high rep rates. Electrospeed. Tel., 0703 644555; fax, 0703610282

Ceramic resonators. Fuji's new ceramic resonators now operate up to 12 MHz , with an initial tolerance of $\pm 0.3 \%$ or $\pm 0.5 \%$, depending on frequency, anti-resonant resistance being over $50 \mathrm{k} \Omega$. Stability is $\pm 0.3 \%$ from $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ and the resonators age at $\pm 0.5 \%$ over 10 years. They come in plastic cases or epoxy-encapsulated versions from 190 kHz to 830 kHz , while higherfrequency types are in an epoxy dipped finish. Advanced Crystal Technology. Tel., 0635 528520; fax, 0635528443

Chip inductors. Three chip inductors by Murata are meant for EMI filtering in surface-mounted power supplies and DC converters at currents up to 6 A. At 100 MHz , the 1A BLM41P01 has a typical impedance of 80Ω, the 3A BLM41P02 70 2 and the 6A BLM41P03602. At 1 GHz , all three retain an impedance above 70Ω Murata Electronics (UK) Ltd. Tel., 0252811666 ; fax, 0252811777

Sealed rotary switch. Wasp's new $D R 12$-position rotary switches are sealed at both ends and can be flowsoldered. The 12.5 mm switches have standard contact arrangements of 1 , 2, 3 and 4-pole bcd and bcd complement, gold-flashed silver contacts being rated at 5 V dc and 10 V ac and 2 A . The spindle is sealed to a maximum leakage of $1 \mathrm{ml} / \mathrm{h}$. Wessex Advanced Switching Products Ltd. Tel., 0705 453711; fax 0705473918.

Dielectric filter. AVX announces the PDFC series of dielectric filters meant for use in telecomms, particularly in

Toroidal transformers. A new series of toroidal mains transformers now being made by Willesden covers the 30VA-2000VA power range. Primaries are " $1 / 1120 \mathrm{~V}$ in parallel or $220 / 240 \mathrm{~V}$ in series, secondaries being connected in series or parallel to obtain the required voltage. Flesib e leads or tags are provided and insulation is Class B; finish is Melinex. Willesden Transformer Co. Ltd. Tel., 0920821385 ; fax, 0920 ع.22795.
the DECT sector. Frequency range is $1.8-2 \mathrm{GHz}$, insertion loss 3 CB and, for compatibility with the newest equipment, size is 6.5 by 55 by 3 mm . Filters to provide lower insertion loss and improved stop-band attenuation are available to order. AVX Ltd. Tel., 0252 336868; fax, 0252346643.

Displays

Multicolour leds. Dialight 552-3511 is a three-leaded led circuit-board indicator, offering true multicolour operation with less drive circuitry than is needed for the two-lead typre. It uses two GaP led chips in a 5 mm package, producing red, green, amber and a range of colours in between red and green. The red led provides 5 mcd at 10 mA at 2.1 V and the green one 8 mcd at 10 mA and 2.3 V , the drive coming from standard ICs with current-limiting resistors. Dialight. Tel., 0638665161 ; fax, 0638 660718.

Filters

Switched-capacitor filter. Linear Technology's LTC1066 14-b.t dc accurate, clock-tunable low-pass filter is meant particularly for data acquisition at up to 14-bit accuracy and rates up to 200 kHz . To form an 8th-order elliptic or linear low-pass filter an external $R C$ circuit is needed for dc accurate working, but no active components. Input/output impedance is $500 \mathrm{M} \Omega / 0.1 \Omega$ and the output handles 40 mA . For frequencies up to $0.7 f_{\text {co }}$, pass-band ripple is $\pm 0.15 \mathrm{~dB}$, gain at f_{co} is -1 dB and stop-band attenuation is 80 dB at $2.3 f_{c o}$. Micro Call Ltd. Tel., 0844 261939; fax, 0844 261678

Instrumentation

Programmable functions. TTI's TG1304 programmable function generator is digitally controlied, generating complex waveshapes at frequencies up to 13 MHz and using
digital measure-and-correct techniques to achieve frequency stability to within 0.01%. The instrument produces, as well as the usual sine, square and triangular shapes, unipolar pulses and dc levels; variable-symmetry start/stop phase allows more exotic shapes. fm and sweep control come from an auxiliary $5 \mathrm{mHz}-50 \mathrm{kHz}$ generator, as do AM . linear vca and log VCA. Thurlby Thandar Instruments Ltd. Tel., 0480 412451 ; fax, 0480450409.

Level measurement. LM311, which is a level measuring test set from Seaward for voice band telecomms; is available in an improved version There is now a multi-frequency, precise-output oscillator with variable frequency and level and a level meter measuring frequency and level in dBm. LM311 also measures resistance and voltage and has anaudio output and smoothing filter Seaward Electronic Ltd. Tel., 091586 3511; fax, 0915860227.

Literature

Amplicon. Amplicon Liveline's 1994 catalogue is now available. Additions to the range of products include automatic data switches, optical-fibre links/repeaters, optical RS232 modems, Combios for Windows, 3.3V dc-to-dc converters, more DAP data acquisition boards and multifunction dpms. There is a glossary of technica terms. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273 570215.

Data access arrangements. AT\&T Microelectronics has a free 12-page booklet showing a variety of data access arrangements. These are used to connect voice or data signalling circuits to the telephone line in moderns, answering machines, etc It is illustrated with circuit and bloesk diagrams, with information on using solid-state relays to implement on/off hook control, ring detection and loop-
current sensing. AT\&T
Microelectronics. Tel., 0732742999 fax, 0732741221

Power supplies. Astec Standard Power's short catalogue describes a range of products from 4.5 W dc-to-dc converters to switching supplies up to the kW range. It also details a furtherinformation service, by means of which engineers receive data sheets on their fax, anywhere in the world, simply by dialling a number and product code. Astec Standard Power Europe. Tel., 0384 440044; fax, 0384 440777.

Ceramic EMI filters. Miniature
ceramic filters in the form of $C, L L$ LC, pi and T circuits are described by MPE in a new brochure. The publication contains application information and there is an EMC Helpline on 051548 6525. MPE Ltd. Tel., 098 122481; fax. 098122223.

RF semiconductors. Toshiba's new range of semiconductors for rf work is described in a new catalogue and comprises single and dual gate mosfets, jfets, bipolar transistors, pin diodes, Schottky diodes and tuning Varicaps. Other devices integrate hf devices and passive components on a single chip. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276691583

Lithium batteries. A brochure from Battery Engineering Inc. describes high-energy lithium/thionyl chloride batteries; electrochemical systems, cell construction and characteristics Battery Engineering Inc. Tel., (USA) 0101617 361-7555; fax, 0101617 361-1835.

SMD selection guide. A complete range of surface-mounted devices for power control is described in the International Rectifier short guide including Hexfets, diodes, igbts and mos-gate driver ICs. International Rectifier. Tel., 0883 713215; fax, 0883714234.

Digital radio testing. 2050
series signal generators by Marconi Instruments test many of the world's emerging digital radio systems with complex modulation. Digital and vector modulation allows receiver testing on systems including the new systems from North America and the Far East, as well as the Terrestrial Flight Telephone System (TFTS). This requires the generation of quaternary amplitude modulation, phaseshift keying, broadband AM and spread-spectrum signals; with extra equipment, the instrument can also generate Personal Handiphone (Japanese) and DECT signals. Marconi Instruments Ltd. Tel., 0727859292 ; fax, 0727857481.

Power supplies

20W dc-to-dc converter. Semtech MP9600 series 20 W voltage converters produce pwm-regulated single or dual outputs of $5,12,15,24$, $\pm 5, \pm 12, \pm 15$ and $\pm 24 \mathrm{~V}$ to within $\pm 5 \%$ and at a typical efficiency of 70%. The modules measure 0.83 in high for board mounting. Inputs of $12,15,24$ and 48 V dc can be accepted and output currents of 800 mA to 4 A are available. Regulation and stabilisation are $\pm 5 \%$ and ripple 200 mV pk -pk. Semtech Ltd. Tel., 0592 773520; fax, 0592774781.

200W dc-to-dc converters.

Veropower 200 series voltage converters by BICC-Vero are 200W types with input ranges of $40-60 \mathrm{~V}, 36$ 75 V and $200-400 \mathrm{~V}$ DC, giving at the outputs $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V , depending on the version. The $200-400 \mathrm{~V}$ type is powered by rectified and filtered mains and can be configured to accommodate complex supply needs. A 700 kHz switching frequency gives conversion efficiencies of over 80% and regulation and stabilisation of better than 0.1%. BICC-Vero Electronics Ltd. Tel., 0489780078 ; fax, 0703 264159.

Wide-range dc-to-dc converter.

 Operating from a variety of input voltages, the Calex LV dc-to-dc converters provide a 6 W output at fixed voltages of $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V from 4.8-12V input. Ground loops are eliminated by 700 V dc isolation and noise levels are less than 50 mVpk - pk over 20 MHz - less with a specified external circuit. Regulation and stabilisation are both 0.1%. Calex Electronics Ltd. Tel., 0525 373178; fax, 0525851319.3.3V dc-to-dc converters. To cater for the increasing numbers of lowvoltage ICs, Amplicon has introduced a series of dc-to-dc converters, the Z
series, providing a regulated 3.3 V output from $9-18 \mathrm{~V}, 18-36 \mathrm{~V}$ or $36-72 \mathrm{~V}$ inputs at 16 W . Features include 500 V DC input/output isolation, 78\% efficiency, continuous shor-circuit protection and $1 \% \mathrm{pk}$-pk ripple and noise. All the devices have remote on/off and an input pi filter. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273570215.

Radio communications products

Miniature mixer. ZP-11A is a mixer by Mini-Circuits Europe, accepting $1400-1900 \mathrm{MHz}$ rf and local oscillator input and producing a $40-500 \mathrm{MHz}$ IF. Conversion loss of 4.5 dB is flat to within 0.6 dB and compression 1 dB , 1dBm typical. Mini-Circuits Europe. Tel., 0252835094 ; fax, 0252837010.

Power splitter. Mini-Circuits Europe offers the SCP-4-4 surface-mounted, four-way power splitter for telecomms radio and remote-control application. Bandwidth is $800-1000 \mathrm{MHz}$ and features include 24 dB isolation, 0.9 dB insertion loss, input VSWR 1.3:1 and 1.15:1 at the output. Power ratings are 0.5 W input and 0.125 W internal dissipation. Mini-Circuits Europe. Tel., 0252835094 ; fax, 0252837010.

Microwave resonator materials.

 New electroceramic materials by Morgan Matroc are intended to replace metals used in the manufacture of cavity resonators. Dielectric constants from 19 to 90 allow selection of the ideal size of resonator to balance ease of construction against miniaturisation. Barium-zinc-tantalate has a Q of 11000 and is meant for puck resonators from 5 GHz to 26 GHz . A 10 GHz puck using material with a dielectric constant of 29.5 , for example, measures 6 mm in diameter and 3 mm thick. Barium-neodymium has a constant of 87 for pucks in the $400 \mathrm{MHz}-8 \mathrm{GHz}$ range and

Bespoke power supplies. Gresham XG and XF series power supplies have one 5 V output at 60 A or 70 A and up to three other regulated, adjustable and isolated outputs as additional modules, in any combination. These provide $\mathbf{2 - 6 V}$ at 15A, $\mathbf{5 - 1 5 \mathrm { V }}$ at 12A or $\mathbf{1 5 - 3 6 \mathrm { V }}$ at 7A. Stabilisation is $\pm 0.2 \%$ over the input range and regulation 0.2%, zero to full load. Outputs are filtered to VDE and FCC Class A and optionally to Class B. Remote inhibit and sense are provided and the units are fully thermally, voltage and current protected. Gresham Power Electronics Ltd. Tel., 0722 413060; fax, 0722413034.

Programmeriem, Jlator. Stag announces its new Orbit 32 batterypowered, hand-held programmer, which it claims is the smallest stand-alone portable programmer available. It will program eproms to 8 Mbit , eeproms and flash devices. Some cmos proms and serial eeproms in 0.3 in and 0.6 in dips also fit the 32 -pin wide-blade zif socket. Orbit 32 has a high-speed emulator to allow connection to the target, so that there is no need to program devices until code is optimised. All device libraries are resident in non-volatile memory. Stag Programmers Ltd. Tel., 0707 332148; fax, 0707371503.
magnesium-calcium-titanate at 19.5 is for coaxial resonators from 2 GHz to 5 GHz . Morgan Matroc Ltd. Tel., 0978 810456; fax, 0978824303.

Transducers and

 sensorsInductive sensors. Colvern's Type 94 range of non-contact sensors are inductive types intended for rotation
speed measurement and position sensing for engine management, automatic braking, motor speed and ignition timing. In 13 standard and several specially designed forms, the devices consist of a magnet and toothed wheel varying the path reluctance and therefore producing a signal in the coil. Zero-crossing detection is incorporated. Colvern Ltd. Tel., 0708762222 ; fax, 0708762981.

COMPUTER

Computer board-level

 productsPC-based waveforms generator. $A W G 7223 P C$ is a 50 MHz arbitrary waveform generator by TTI that plugs into most ISA and EISA extension bus slots. Two output channels generate separate waveforms of up to 32 K length, but the memory can be arranged to to produce waveforms up to 100 gigapoints in length. Resolution of the nine different standard waveforms (sine, triangle, sawtooth, square, pulse, sine x/x, Gaussian pulse, exponential rise/decay pulse, pseudo-random noise and DC) is 12 bits from 100 mV to $12 \mathrm{Vpk}-\mathrm{pk}$ into 50Ω, each channel having five filters cutting off at frequencies between 50 Hz and 10 MHz . Software includes a dos driver and Borland C++ library and optional WaveCAD. Thurlby Thandar Instruments Lid. Tel., 0480 412451; fax, 0480450409.

EISA 488.2 controller. An IEEE 488.2 interface board by National for EISA computers, the EISA-GPIB uses the TNT4882C controller chip and HS488 protocol for transfer rates up to $8 \mathrm{Mbyte} / \mathrm{s}$ for both read and write. It includes NI-488.2 dos and Windows software that is compatible with

LanView, LabWindows and LabWindows/CVI. Hardware base address, interrupt and dma settings are all software-configured; no jumpers or switches are needed. National Instruments UK. Tel., 0635 523545; fax, 0635523154.

50 MHz C40 products. LSI is the first supplier to use the Texas Instruments 50 MHz C40 digital signal processor in production equipment. Modules using the C40 include memory, processor and i/o units, with sram and dramequipped modules and applicationspecific TIM-40s. As an example, LSI's MDC4OT is the first to use two C40s and allows PC or VME boards offering eight processors giving 400 Mflops and 2.2 Gflops ; this is claimed to be the fastest DSP board in the world. Loughborough Sound Images Ltd. Tel., 0509 231843; fax, 0509262433.

Computer systems

intelDX4 motherboard. The SV2/GX4 PC motherboard from SPD uses the new 100 MHz InteIDX4 processor and power-management features. On the Norton SI V6 index, the InteIDX4 shows a 50% gain in performance over its 66 MHz
predecessor, the 4860×2. There are seven VL and ISA bus slots on the board, which has 256 Kbyte of cache as standard, expandable to 1 Mbyte , eight 72 -pin simm slots allowing 1 Mbyte to 64Mbyte main system memory expansion. As well as the DX4, the zif processor socket accepts 486DX2, DX and SX devices and 487SX, Inte/ 486 and Pentium Overdrive chips. Special Products Distribution Ltd. Tel., 0420 563588; fax, 0420562206.

Blue Lightning motherboards. Blue Micro has available PC motherboards based on Blue Lightning processors. First to appear are Cobalt Baby AT boards, which use the 75 MHz clocktripled version, 100 MHz types soon being available. There is a 16 K cpu cache and up to 512 K external write back cache can be fitted, four 72-pin simms allowing the installation of up to 64 Mb of dram. The board has a maths co-processor and a local-bus IDE driver handles two hard disks; i/o includes two serial ports, a bidirectional parallel port and support for two floppy drives. Blue Micro Electronics. Tel., 0604603310 ; fax, 0604603320.

Tough PC. For the type of workplace where even a rack-mounted $p c$ is not well enough protected and in which emc/fi needs to be avoided, the Blue Chip /CON PC range meets EN55022 for interference radiation and mains terminal voltage, and IEC 801-3 for immunity to EM interference. The lockable PC is made from nickelplated steel and is thereby protected against liquids, dust and, the company says, collisions. A 14 -slot PC AT backplane is used that leaves at least 13 slots free, and processors up to P24 Pentium overdrive with local bus video and VESA expansion are available. Four drive bays are included. Blue Chip Technology. Tel. 0244 520222; fax, 0244531043.

Data communications

Modem kit. A modem designers' kit, the MDK from RCS, assists engineers to develop new modems and applications quickly and easily. It enables a single board layout to become the foundation for a family of modems, from 2400 -baud data-only types to a 28 -Kbaud V. Fast Class modem with data, fax and voice. MDK is a serially configured modem complete with power supply, UK BABT-certified line interface, external microphone and speaker, demo software, firmware and documentation. RCS Microsystems Ltd. Tel., 081979 2204; fax, 0819796910.

Development and evaluation

Background debugger. Flash Designs' Universal MDS for developers of embedded programs has what the company claim is the world's smallest background debugger at 100-150byte, which allows on-thefly viewing and editing of all microprocessor registers, stack, memory and i/o ports. It is nonintrusive and lets the code run in real time. Debuggers are available for

8031/51, 68HC11, H8, Z-80 and other 4/8-bit devices. Flash Designs Ltd. Tel. and fax, 0293551229.

Computer peripherals

PCMCIA hard drive. Seagate's ST7050P is a 42.7 Mb hard drive on a PCMCIA card for use in notebooks and desktops, as well as data collection and instrumentation systems. The drive incorporates the most popular operating systems, including dos and Windows and is compatible with all systems complying with PCMCIA release 2.1 or higher. A software driver on disk is provided to ensure drive/PCMCIA compatibility, but if the drive is integrated under the 68-pin ATA standard, the drive uses s:andard AT Bios support without the software driver support. There is a kit to ease the development of new equipmen: using the drive. Ambar Components Litd. Tel. 0844 261144; fax, 0844261789.

Software

Transient data capture. Adept Scientific announces the Flash/SP which combines the Strawberfy Tree Flash-12 Model 1 data-acquistion board with Dadisp, the data-analysis software package. A software driver developed by Adept allows collected data to be taken directly to a Dadisp worksheet for reduction and analysis at sampling rates up to $1 \mathrm{Msample} / \mathrm{s}$. The Flash/SP hardware driver module allows the Flash-12 board to be controlled from Dadisp, the system accepting inputs between $\pm 50 \mathrm{mV}$ and $\pm 10 \mathrm{~V}$ and storing up to 64 K data points (1 million points with an optional daughter board). Adept Scientific Micro Systems Ltd. Tel., 046^280055; fax, 0462480213.

Windows psu characterisation. Powerstar Characterisation Module is now part of the intepro (Schaffner) Windows-based system for the repetitive test of power supplies in characterisation - a process normally necessitating thousands of measurements in a variety of conditions and needing a number of test instruments. The system's library contains over 100 standard tests and the characterisation procedure is able to measure many more test points than in the manual case. Results can be saved to disk and analysed by the Powerstar data analysis package. Scahffner EMC Ltd. Tel., 07气4 770070; fax, 0734792969.

Windows pcb design. Pentica's TangoPRO Schematic Lite and PCB Lite form an entry-level version of its Tango circuit design and board layout software, giving an upgrade path from its already workstation-class EDA software to the highest specification version. These tolls run under Windows and offer features suitable for most modern pcb designs. Schematic Lite has powerful placement and editing tools, keyboard shortcuts and instantaneous netlist generation, with over 20,000 library components. There intelligent wires and buses and automatic junction and bus entry placing. PCB Lite includes Cut/Copy/Paste and design error indication. Pentica Systems Ltd. Tel. 0734792101 ; fax, 0734774081.

Field Electric Ltd.
Tel: 0438-353781 Fax: 0438359397 Mabile: 0836-640328/0860-213370 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8AB.

JJ Inst XY Chat Recorder PL 4
Appele IGS and Apple colour monitor etc
 Apple ll GS and Apple colour monitor etc
1.44 Mb Laptop fioppy disk drives new
72 pin Sinms for PS2 Compaq Dell etc
Parallel \& Senal data switches up to 8 ways
Compaq entianced at keyboards (ne cablel)
Ring for detals BM 3363 optical disk drive
102 key AT enhanced keyboarcl with PS2 type piug
adpt-pluy
Toshiba external $5.25^{\prime \prime} \mathrm{FD}$ drive PA7225E new and boxed
TEAC $525^{\prime \prime}$ BBC compatible F.D. dnves $350 \mathrm{~K} / 720 \mathrm{~K}$ refurbs
16 bit hard disk'F disk controller card
E11C/PE5 SCSI ha-d disk dnve's new CDC 344Mb
New anc boxed $286 / 16$ Motherboards, on $\begin{array}{r}\varepsilon 100 \mathrm{C} / \mathrm{P} £ 60 \\ \hline 100\end{array}$
 takes Simms

Rose dif-cast tox $175 \times 5.6 \times 78$ new

 $330 \mathrm{~mm} \times 215 \mathrm{~mm}$
$\sum 25 \operatorname{lnc} \mathrm{C} / \mathrm{P}$
$\sum \uparrow 4 \mathrm{inc} \mathrm{C} / \mathrm{P}$

TEST AND MEASUREMENT EQUIPMENT

HP portable plus computer whth LCD screern, 1 mb	HML 411 lugh voltage 0-20KV cap charger new
MEM drawer, sotware drawer etc ¢75	$¢ 200$
Tektronux standard amplitude callorator Ow;	AVO RM 215F3 AC Brazkdown Tester £95
502 [100.00	Schiumberger 4000 Precasion Sig' Gen $£ 150$
Fluke 8010A digital multmeter ¢105	Schiumberger 4900 RF-AF Measunng Unit $£ 150$
EH merowave swept oscillator model 57-1.	Wyse 60A Terminals new \& boxed with keytoards
124 GHz	£195
Systron donner puise gen, 100] $\mathrm{c}_{\text {cos }}$	Fluke 335A DC voliage standard differerital
Complot senes 7000 digitizer tablet with Complot	voltreier null detector ¢350
senes 7000 aigitzer $£ 600$	Famell B30/200-30VDC @ 20A
	AEI Gauss meter FB22 form with probe $\$ 117$
Astec SA 30/1306, new and troxed PSU 240 V ac	HP 331A distorton analyzer $£ 150$
input. +5 V at $2 \mathrm{a}+15 \mathrm{vat} 18 \mathrm{az}-15 \mathrm{v}$ at) $3 \mathrm{a} £ 12.50$	FMI Rotary attenuator $27 / 11$ POA
HP 7221A plotter §150	HP Frequency meter X5328 POA
HP $1332 \times$-Y display mith optons $215 / 300315 / 570$ /	HP 1740 A 100 MHZ osciloscope. Duat CHN with
631 £150	3rd CHN, thgger vew etc ¢325
Hughtes model 639 scan conversion memory $\mathbb{E 3 0 0}$	AS Enek switon mode vanable PSU $250 \times \mathrm{AC}$ input.
Wlinst PL4 recorder 575	0 -60vDC 25 A max metered $17 \times 12.5 \times 5$ "wh
Sorensen SRL 40-12.0-40 VDC 0-12A metered	manual [325
115 VAC nput ¢125	inmac 300VA Batt: Back up \& line condtoner
KSM SCT-200 15 power supply 0-200V 0 -15A	model HO 300VA C95
5200	HP 9872C plother £175
All above equipment + 17.5% VAT - Please ning for c/p pnces	

We would like the opportunity to tender for surpius equipment Officiel orders, credih card telephone orders accepted with Access, Amex, Diners, Visa cards. Overseas enquiries welcome
c/p rates UK mainland only. Please ring for c/p rates not shown All prices inc VAT unless stated. Stock list available

CIRCLE NO. 127 ON REPLY CARD

THE DEFINITIVE ‘OFF-AIR’ FREQUENCY STANDARD

- Provides 10 MHz . 5 MHz \& 1 MHZ
- Use it for callibrating equipment that relles on quartz crystals, TCXOs

VXCOs. oven crystals

- Pha:se locks to DROITWICri (rubidium controlled and traceable to NPL)
- For ADDED VALUE also pmase locks io ALLOUlS (cesium controlled
and traceabie to OP - French eq to NPL)
- British designed and British manufactured

13 NHz output for GSM. Pitces on apFtcation
IDEAL BEGINNERS SCOPE, SCOPEX 4S6 AQUJLASCOPE 6MHz SINGLE TRACE, INT/EXT TRIG,
TRACE LOCATE, BRIGHT LINE AUTO, 10 mV SENSITIVITY, $1 \mu \mathrm{~S}-100 \mathrm{mS} / \mathrm{cm}$, etc. $£ 95$ MUIRHEAD K231A TEMP CONT FFECISION STD CELL $\$ 195$ LEVELL TM 38 MICRO V-METER $3 M H z$

MARCONI TF2212 X-YDISPLAY METER
B8K 4420 STATISTIGAL DIST ANALYSER BACHARACH MV2 MERCURY SNIFFERS OUAD 303 STEREO POWER ANPS ORAKE MN2700 MATCHING NWOORK \& PS: PSU PHILIPS PM 3065100 MHz DUAL TRACE \& TB LESSE Y TCTIO SIG GEN/ANAL $50-300$ BOS EADER LBO-9C ALIGNMENT SCOPE WATSUSMENT D61A 10MHz DUAL TRACE
WALI6 DUAL TRACE IOMHz TELEQUIPMENT D 10111 OMHZ DUAL TRACE WATSU SS-5802 DIGITAL STORAGE EKTRONIX 221560 MH 2 DUAL TRACE DEI. T/E EKTRONIX 453 A 50M M Z DUAL TRACE DEL TA TELEOUIPMENT D67A 25MHZ, 2T. DEL T HITACHIVC 6015 10MHZ DIGITAL STORAGE HP1340A X-YDISPLAYS OERTLING V2O SINGLE PAN BALL $0.1 \mathrm{mg} / 20 \mathrm{DSg}$ ANAL YTICAL BALANCES WITH WEIGHTS 250 g LEVELL TM68 MICROV-METEA 450 MHz

Output frequencies -
10 MHz 5 MHz 1 MHz Short term stability - better than $1 \times 10^{-8}(1 \mathrm{sec})$ Typical- $4 \times 10^{9}(1 \mathrm{se}$ Long term - tends to $2 \times 10^{-12}(1000 \mathrm{sec})$ QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED

HALCYON ELECTRONICS
 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHDP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

More distortion...

I would like to thank $E W+W W$ and Douglas Self for an educationat and interesting series on distortion in power amplifiers. articles which I thoroughly enjoyed. I do not wish to detract from the series but would like to propose an extra distortion mechanism to add to Mr Self's list: output (voltage) clipping through insufficient output current capability when driving loudspeakers instead of resistors.
I know of only one set of published measurements of loudspeaker current, cited by Ben Duncan in an $E W+W W$ article some time ago. and peaks of sixty amps were recorded, using real loudspeakers and a music signal.

This may be an extreme case, but it makes the point. Five minutes with a calculator is enough to conclude that the load impedance (as opposed to resistance) must have been far from 8Ω and highly reactive. The output current capability of Mr Self"s designs. class A and B. indicates that he (in common with many other esteemed designers) may not have addressed this problem.
All of his published data on output stage performance used a resistive load - normally 8Ω, sometimes 4Ω - unless I am mistaken.

Resistive-load measurements and simulations may be useful during development. but I suggest that they are all but irrelevant to the final product, expected to drive

Military option

The UK once had a strong electronics industry. It became involved in arms equipment manufacture and is now virtually dead. How strange then that you should conclude: "It is... certain that we would not have an indigenous electronics industry if it were not for military spending" (Comment, April).
I believe such involvement has been a bad thing, and would go so far as to say it is the single most significant factor contributing to the demise of the industry.
In the early 60 s , when I started in electronics, the industry was strong, innovative and fiercely competitive. Domestic consumer choice was vast, and dozens of manufacturers produced radios, tape recorders, Ivs and audio. The industry was not without its faults but it was certainly well placed to take on any foreign competition. Ferranti, GEC, Marconi, Ultra, Decca, Pye, Cossor, Bush Murphy, Ekco, and many more I could mention were all supplied by an equally vigorous and diverse component supply industry: names such as Mullard, Mazda, Ferranti, Brimar being active in the new and rapidly changing semiconductor field.
It is popular to blame the Japanese for the decline. But the early Japanese imports were plain rubbish (I well remember fixing batches of Sony radios and tape recorders before they could be offered for sale, a good 50% being u / s some beyond economic repair).
No don't blame the Japanese, they just moved in on a market that was being vacated by its home industry, and vacated with unseemly haste at times.
The reason for the decline was the MoD with its highly irresponsible cost-plus contracting. A seemingly inexhaustible supply of taxpayers' money could be used to divert the industry into military equipment supply.
Now the industry is being ditched with the same cynicism with which it was acquired. Unfortunately the companies that remain are no longer capable of operating in the domestic market. The management structures encouraged by the military market actively works against the efficient reorganisation such a move would require.
Was it not General Eisenhower who warned "...beware the militaryindustrial complex"? That a once proud UK electronics company should now be reduced to using timed-out government ministers to set up sordid little deals with dubious foreign governments is wholly consistent with such an alliance. That the once proud Wireless World should endorse those activities is just sad. Very very sad.

RM Burfoot

Avon
I agree totally that military contracts have been disastrous for the competitiveness and diversity of the UK electronics industry. However they now' represent our only legacy - diminished and sad though they may be. Rebuild from them by all means. But don't ignore them.
Frank Ogden
loudspeakers with a music signal.
Many highly regarded amplifiers can deliver more output current than might be expected if a resistive load is assumed. I'm not just referring to American monster amps here - the NAD 3 (O2) is a perfect example.
Many thousands of consumers were sufficiently impressed to vote with their wallets.
Of course. I cannot prove that its high outpul current was responsible for its sound quality, but it's a thought...
Finally, the gibes against the subjective community which appear here and there do not sit well with an ollorwise professional presentation. They are unworthy of Mr Self, and highly subjective in nature - and I would hate to have to describe Mr Self as a subjectivist.
There is high-end equipment that does not measure well (ref. part I). But if - and only if - it reproduces music better than competing equipment, then this is sufficient. The only purpose for audio power amplifiers is reproduction of music. Thus music reproduction must be the primary criterion for judging the success of a design. Measurements are, at best, an indirect estimate of musical performance.
There are those who advise caution when applying techniques to reduce distortion. lest the cure be worse than the disease. Mr Self pointed out several examples of this, helping designers to avoid problems. To interpret such warnings to mean that low distortion is immoral (part 8) is a cheap debating trick, presumably intended to discredit those who do not share Mr Self's views.

Stephen / Merrick

Cheshire

...clearly the best

The difference of opinion berween Douglas Self and Ben Duncan (Letlers. May) would have more significance for practical audio fans if we had an amplifier construction project of Ben's that we could compare with Douglas" amplifier (Distortion in power amplifiers: pt 7, February. 1994. pp.1.37-142).
All electronies ends up at the end of a soldering iron and in audio what counts is the sound from the speakers - regardess of the semantics involved.
Offer of an excellent peb for the class B amp is greatly appreciated as is the down-to-carth concepts using standard components from established LK source.s. This contrasts with many offerings during the past decade from other UK and
foreign journals specifying parts that can only be obtained from loreign suppliers.
Ben will be well aware that existing UK construction kits have degenerated, in some instances, into value-added enterprises with component applications that are now stratospheric in price.
Douglas has brought us back to earth (sic). And about time too.

Hugh Haines

Sunderland

Ears and knows

Little did I think that my simple description of my use of listening in the development of audio-related products (Lecters, $\mathrm{EW}+\mathrm{HW}$, November 1993) would cmbroil me in "subjectivist wars" with Douglas Self alld elicit accusations of voodoo practices from Alan Dyke (both Letters. June 1994).
The fact is that audio electronics circuits are built and sold to be listened to. This basic and intractable truth should be justification enough for designers to use their own ears somewhere along the waty. Yet it is one that I have yet 10 see Douglas Self address or even achnowledge.
The rescarch I cited in my last letter - which shows that customers in the professional andio industry listen to competing products before making purchasing decisions - is my own. It is culled from a career spanning 25 years of talking and listening to customers in the broadcasting, sound recording, live sound and music markets around the world. They are all professional listeners in the sense that they make their living from the creative use of audio electronics.
Experienced sales and marketing people from any other audio equipment manufacturer or distributor would tell Douglas Self the same thing and indeed. in the case of the company for which he works. probably already have.
Whether or not he wishes to hear it, believe it or act upon it, the data exists.
Alan Dyke doubts that I would take part in the sort of independent listening tesis suggested by Alan Thomas. Why should he doubt it? I will quite happily accept that ehallonge - as might a number of my colleagues - if in doing so we could help to move the study of the correlation of hearing and measurement beyond the limitation and self-defeatism of entrenched prejudice and selective study. As to technique, and assuming that

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM

NG2 3GY
TEL: (0602) 864902 \& 864041
FAX: (0602) 864667

OSCILLOSCOPE SPECIAL

Philips PM3217 oscilloscope Special Offer for 1 month only tested + Cal verified £295.00

Hewlett Packard 8554B RF Plug in's for HPl $\leqslant 1$ Series Spectrum Analysers, 1250 Mhz
Special offer price: $£ 395.00$

Hewlett Packard 8660C RF Signal Generators lMhz-1300Mhz, AM, FM, CW, Synthesised Special offer price: $£ 1,200.00$

Marconi TF2018 Synthesised Signal Generators 80Khz-520Mhz, AM, FM, CW, 3xLCD Displays Special offer price: $£ 650.00$

NOW OPEN SEVEN DAYS A WEEK
Monday to Friday: 9.00 am to 6.00 pm Saturday: 8.00 am to 4.00 pm SUNDAY: 10.00 am to 4.00 pm

I would be required to hear differences between two unseen power amplifiers I would want to nominate the other components in the listening chain and choose my own source material and listening levels. I would then want to spend as long as I felt necessary listening to each amplifier. Once I was happy and relaxed (on the assumption that Self would not count these requirements as "fatal flaws" in my methodology), the two amplifiers could then be A / Bd until the cows came home and I would hear the difference every single time.

lerry Mead

Herts

Charge build up

Having worked for the past 30 years as a capacitor engineer, both in design and applications, I eagerly read the article by Tony Wong on Choosing Capacitors ($E W+W W$, April, pp.327-329).
Unfortunately the article has a number of typographical errors which could confuse a user, and also makes fundamental mistakes especially concerning electrolytic capacitors.
The most serious - "... If connected incorrectly [reversed], the insulating oxide film is not formed and there is no capacitance" - is incorrect
Manufacture of non-solid aluminium electrolytic capacitors starts with rolls of pure aluminium foil etched to increase surface area. They are then electrolytically formed to produce the dielectric oxide by applying a positive voltage, typically 20% greater than rated voltage, in a bath of weak acid
After slitting to width and winding into a capacitor, the cut edges are reformed by applying voltage at elevated temperature and using oxygen available from the capacitor electrolyte. This, oxide film, used with chemically suitable electrolytes, is inert. Indeed were this not so, the capacitor would fail in storage.
Consequently, every aluminium electrolytic capacitor contains this dielectric oxide film from day one.
Application of reverse voltage does not, in the short term, remove this oxide and the capacitance value is essentially unchanged. Indeed CECC- $30-300$ clause 4.15 requires change of capacitance to be less than 10% of initial value when subjected to IV reverse, then rated voltage. each for 125 h at upper category temperature.
A capacitor requires two foils each covered with dielectric oxide formed to the same (non-polarised) or different (polarised) voltages.
Given a polarised construction, the second foil (cathode) will have atmospheric oxide equivalent to 2 3 V electrical. Both foils' capacitances are dependent on
formation voltage and surface area
Assuming the cathode foil is $2000 \mu \mathrm{~F}$ and the anode foil is $615 \mu \mathrm{~F}$ and has been formed to 8 V , the resulting $470 \mu \mathrm{~F}$ capacitor could be modelled as two capacitors of the above values in series, each having a parallel zener diode of $2-3 \mathrm{~V}$ and 8 V respectively.

C Bateman

Norfolk

Mixing it

Many readers may have seen a television programme in the series 'From A to B' (BBC2) which explored the obsessive relationship between travelling sales reps and their motor cars. What was most worrying was that the obsession seemed to have spread from the reps to their customers. It appears that when you take delivery of your pretty new mixing desk, the slider pots are unlikely to have been selected on a careful calculation of price versus performance and reliability - they were very probably bought from the supplier whose sales reps arrived in the car with the fanciest logo on its rear end.
Is it any wonder that British manufacturing industry is vanishing before our eyes?

MT Hawkins

Hants

Science friction

All strength to $E W+W W$ for allowing open debate in its letters column on many 'heretical' subjects. something which few other technical journals have the courage to do.
There exists an academic and media mafiosi which attempt to discourage individuals who even start to show an interest in
'heterodox ideas'.
Michael Williams’ attack on me (Letters, May, 1994) employed name calling, ridicule and humour just a few of the 28 deceptive stratagems used by those who have a weak scientific case: (see appendix 4 of Science versus Evolution, Malcolm Bowden, 1991).
Organised pressure groups, chicanery, sharp practice, and zealous histrionics abound in the scientific establishment, all geared to prevent and discredit any research and experimentation that threatens the establishment status quo or is against 'informed opinion'. This is especially so in the areas of today's three sacred cows of evolution, relativity and heliocentricity. See Researchers like Immanuel Velikovsky (catastrophist), Halton Arp (anti-Big Bang), Stefan Marinov (anti-relativist). Pons and Fleischmann (cold fusion), Robert Gentry (pleochroic halos), Richard Milton (anti-evolution), Barry Setterfield (decrease in speed of light), Walter van der Ramp
(geocentrist)
They have all been shown to have strong cases, or even to be substantially correct. Yet they were all initially grected as stupid or even harmless fruitcake. Conspiratorial attempts could then be made to silence them at the hughest levels, in blatant disrespect of the pursuit of novel human knowledge.

Amnon Goldberg

 London
Vision thing

The trouble with John de Rivas' virtual travel idea (Letters, May) is that, unlike VisionRing, it cannot easily be adapted as a mass broadcast medium.
VisionRing allows unlimited numbers of viewers to jump between one or more fixed VR pods, each supplying up to 360° of independent horizontal picture control with stereo vision.
Every VisionRing pod is essentially a weatherproof cylindrical caddy with a magazine of (typically nine or ten) cheap replaceable semi-pro video cameras at one end, trained on an outwardpointing ring of wide-angle lenses at the other via mirrors.
The multi-core feed from the pod is patched straight into the cable network (via a switcher box for commercial breaks) using one channel per camera. The home viewer uses head position to select which pair of consecutive channels is to be fed into the VR headset from a two-channel decoder.
A normal tv set could be fed by the decoder at the same time. For an outlay of a few thousand pounds per pod, a cable tv company can add a low-maintenance VR supplement to its live broadcasts, with no extra camera crew or production personnel: if a particular view becomes boring, the viewer can simply 'look away’, jump to another pod's channels (if available), or switch back to the standard (monovisual) broadcast.
Viewers without special equipment can still 'channel hop’ between individual views, and hotels or pubs could run multiple channels on separate tv sets to produce an impressive multi-view backdrop during sporting events
Between major sporting features and the like, a VR pod could be left on-line for all live studio output, and when suitable programming is not available, the network could patch in live VR 'test cards’ from permanently installed pods at, say, the Grand Canyon, a nice stretch of beach, or the top of the Empire State Building (live panoramic 3D sunsets over New York from any angle. anyone?).
The final commercial attraction of VisionRing is a little more painful.

While you can watch the Superbowl or the World Cup live in VR, you won't be able to videotape the experience on a domestic machine. So you will not be able to avoid the VR Coca Cola adverts. Sorry,

everyone.

Eric Baird Middlesex

Virtual intercourse

I was interested to read John de
Rivas’ letter (Letters, May)
concerning virtual travel and the paying of virtual visits.
The system he envisages would certainly be possible, although I doubt if the data streams could ever be compressed enough to be sent down an ordinary twisted pair. I think the scheme would have to wait until we all have optical fibre laid to our houses.
Also, until the technology exists to sequence DNA in real time and to re-synthesise it at the other end of the link there will remain some interactions that cannot take place in virtual reality.

JS Linfoot

Oxford

Theoretical limits

I agree with Mr Goldberg's view (Letters, April 1994) that the foundations of theoretical physics are in just as poor shape as ever. I am quite familiar with the argument that physicists' perception of the speed of light is monotonically decreasing since first measured by Galileo (who found it to be ∞). When I was studying engineering physics fifteen years ago, my teachers told me that the effect was due to technological advancement and the fact that early measurement depended on astronomical constants - such as the length of the solar year - which are now recognised to indeed vary.
Mr Goldberg points out that the fundamental constants are interrelated so that a new electron mass gives a different Planck's constant and so forth. But it is ludicrous to say that: "the change is not due to limitations of equipment".
Dane Ole Romer, a contemporary of Hamlet, deduced from watching the stars that it takes a certain time before the light reaches Earth and to say that his vintage calculations are on an equal footing with those newfangled atomic clocks is too damned conservative.
Extrapolations of laboratory reality such as determination of the age of the Universe are entirely the scraping of horns of the big rams concerning correct application of observed laws and need not be taken seriously.
Michael Williams
Beth Shemesh

记政METER ${ }^{\text {TM }}$

For Installation and Maintenance of:

- Power Distribution Systems
- Variable Speed Motor Controllers
- Process Control Equipment
- Security \& Other Video Systems
- Communication Equipment

Large LCD Display gives clear indication including Max, Min and Max-Min values.

Dual channel operation allows relative timing of signals to be observed

Display of signal shape lets you find faults that DMM can not show.

Today the Digital MultiMeter (DMM) is not always enough! Modern electronics permeates our lives and the installation/maintenance professional is faced with problems where voltage and current measurements are just not enough. The shape and timing of signals is an important factor in many applications.

The New TekMeter is a rugged, fullyfeatured, autoranging DMM and a rugged, fully featured autoranging oscilloscope all in one battery-powered 1 kg package. TekMeter is so simple to use you don't need a training course even to look at signal shapes!

Choose between 3 new models - the THM550 single-channel version at $£ 649.00$, the THM560 dual-channel version at $£ 775.00$ and the THM565 dual-channel version, with backlight at $£ 995.00$. Whichever one you choose, it will help you to find out what's going on and solve the problem!

TekTools ${ }^{\text {Tw }}$ - Smart Tools Work Better Tel: 0800412200
 TekDIRECT, FREEPOST, Fourth Avenue, Globe Park, Marlow, Bucks, SL7 1YZ. Fax: 0628474799

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Digital sinewave generator

As an alternative to using a look-up table, an analogue-to-digital converter and a fixed filter, this circuit possesses the advantage that the frequency of the programmable output filter varies automatically.

The clock input drives the MAX29.x filter and, via a divide-by- 10 counter, a second divide by 10 counter that develops a voltage across R proportional to the count. Output frequency is $\mathrm{f}_{\text {in }} / 100$.
Lee Szymanski
Stamford
Lincolnshire

Spare inverter converts 5 V to $\pm \mathbf{1 5 V}$

f you have only a 5 V rail and need a dual 15 V supply, use this circuit to generate it cheaply.
A spare Schmitt inverter from, say, a 7414 operates as a freerunning multivibrator at a frequency of about 100 kHz using a resistor and capacitor with the values shown. As the transistor is driven on and off by the square wave from the oscillator, spikes of about four times the supply voltage develop across the 1 mH primary of the $1: 1$ pulse transformer. Diode D_{2} rectifies the spikes, which are filtered and regulated to give +15 V , the current supplied being determined by the capabilities of the 5 V supply and the wire gauge of the transformer. Diode D_{1} rectifies the transformer output to form a -15 V rail.
\checkmark Lahkshminarayanan
Centre for Development of Telematics
Bangalore India

Instead of using a DC-to-DC converter or a 555 oscillator, use a spare Schmitt gate as an oscillator in this 5 V to $\pm 15 \mathrm{~V}$ converter.

YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

Square waves from a 555

In the usual 555 astable oscillator, the timing capacitor charges througl two resistors and discharges through one of them, the two time constants therefore being unequal. In this circuit the charge/discharge paths are similar, giving a $50: 50$ mark:space ratio.
The capacitor C_{1} charges and discharges via $V^{\prime} R_{1}$ and R_{2} and it is necessary to ensure that D_{1} and $T_{r_{1}}$ base/emitter diodes are similar to avoid timing errors. Charging takes place when pin 7 is high, turning $T_{r_{1}}$ on: when it is low, the capacitor discharges through the diode. To obtain accurate square waves, the 5 -turn potentiometer $V R_{2}$ varies the comparator control voltage. Either mos or bipolar 555 s work in the circuit shown, but the bipolar version gives a lower maximum frequency: the 555 CN works up to 2 MHz .
To set the waveshape at very low frequencies, temporarily replace a large C_{1} with a small one, set $V R_{2}$ to obtain unity M / S ratio and replace the larger C_{1}.

IC Rohsler

Harborne
Birmingham

Inrush current limiter

Most of the methods of dealing with the inrush current into large smoothing capacitors have their disadvantages, whether they are to do with inconvenience, performance, reliability, size or cost. This circuit uses the high-impedance control and large switching safe-operating area of mosfets to do the job, with none of the above drawbacks.
It does not suffer from $\mathrm{dv} / \mathrm{dt}$ limitations and works from zero current up to designed limits, it needs a small hold current and is proof against shorts if R_{12} is a positive temperature-coefficient type or has one in series. Under test without a PTC resistor, $T r_{4}$ survived a short but R_{12} blew.
Resistor R_{12} determines the inrush current and R_{10} sets the maximum peak current allowed in steady-state conditions - about 4.5A with these values. A smaller maximum current would allow the use of a smaller mosfet, but would call for a higher-value resistor and more heat, so a small R_{10} is preferable.
In a switching supply, the four RGP30M diodes could be part of the diode bridge, the whole circuit preceding the smoothing capacitors.

Kristen Ellegård

Oslo
Norway

Inrush current limiter has none of the drawbacks of conventional solutions, such as relays, thermistors or thyristors, and can be made part of the diode bridge in a switching supply.

High-torque position servo

Parallel-connected power mosfets in an H bridge, driven by an SG373IN pulsewidth modulator, form a simple, high-torque servo driver for a $12 \mathrm{~V}, 380 \mathrm{~W}$ DC motor. Pairs of BUZ11A and RFP30P05 complementary mosfets are common drain connected to simplify gate driving and in parallel to obtain the necessary current. All the circuitry is supplied by two $6 \mathrm{~V}, 100 \mathrm{Ah}$ lead-acid batteries.

As the motor turns, it drives the $5 \mathbf{k} \Omega$ servo potentiometer, from which a voltage is taken to one input of the PWM, where it is compared with the reference input. For clockwise rotation, the $S G 3731 \mathrm{~N}$ maintains mosfets 3 in conduction, while switching mosfets 1 and 2 on and off. For the other direction, mosfets 2 are on and mosfets 3 and 4 go on and off. The gain of the PWM's difference amplifier can be altered by
selecting new values for $R_{1.2}$ to suit different geared motors.
Capacitors $C_{2,3}$ reduce the effects of lead inductances and should be kept close to the mosfets, as should the back-to-back zeners across the motor, which absorb high-voltage spikes.

MTIqbal

Rutherford Appleton Laboratories Didcot

Monitor shows three-phase sequence

* wo of the phases in a three-phase supply have a 60° phase
difference with respect to the third, but in an unknown order. The monitor shown indicates this phase sequence, needing no neutral point and few components.
If V 1 goes high, V 2 being low, Tr 1 remains cut off and Tr 2 draws base current through R4. After 60°, phase 3 goes high and Tr 2 , already conducting, holds Tr 1 off and led 2 lights during the 120° overlap to show the L1-L2-L3 sequence. In the reverse condition, V 2 goes high while V1 is low and led 1 lights to show
L1-L3-L2.
Cyril W W Palihawadana
Sana`a
Republic of Yemen

Electronic fuse

aving a voltage range of $10-36 \mathrm{~V}$ and handling currents up to 1 A , this circuit disconnects a load in a time variable up to 100 ms by changing a capacitor. Much greater currents and voltages can he handled by the same design with changed component values. It simply goes in series with load. Most of the voltage drop across the circuit, V_{AB}, which is proportional to the DC load current and less than 2 V . is across $R_{11,12}$. At switch on, all the supply voltage is across the fuse and T_{3} conducts, its base current being supplied by R_{4} and its collector current sel by D_{3} and R_{8} according to $/ c_{3}=$ $\left(V_{\mathrm{D} 3}-V_{\mathrm{be} 3}\right) / R_{8}$. Base current of $T_{r_{4}}$ is therefore stabilised. $T_{r_{+}}$conducting and turning on T_{5}. Delay determined by C_{1} prevents premature interruption of T_{3} base current.
If load current increases excessively, the voltage dropped across R_{12} begins to turn $T r_{2}$ on, reducing the collector current of $T r_{3.45}$ and increasing the terminal voltage to more than 2 V . When it exceeds $4.5 \mathrm{~V} . D_{1}$ avalanches, T_{1} conducts and the cut-off of the three output transistors is cumulative, current through the fuse now heing a few milliamps. Capacitor C_{1} determines the time delay to cope with motor inrush currents or filament lamps and C_{2} handles voltage

spikes. Diode D_{2} prevents C_{1} discharging through the load when $V_{A B}$ is alnosi zero. With component changes, the circuit should be able to operate with currents from 10 mA to 40 A and on voltages from 6 V to 500 V . It can also be used as an $\lambda \mathrm{C}$ fuse, as seen in Fig. 2 .
To re-establish the circuit after an interruption, switch off for a short time.

NILavrentiev

Kaliningrad
Moscow Region
Russia

Fig. 1. Circuit acting as a fuse for voltages from $10 \vee$ to 36 V and currents up to 1 A , with values shown.

Fig.2. Same circuit operating in AC circuit.

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$. Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion figure of 0.0015% at 50 W and is designed around a new approach to feedback.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.

Each board pair costs £45, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 8956. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW +WW, The Quadrant, Sutton, Surrey SM2 5AS.

Two-wire switch status detection

One central control determines the state of up to cight remote switches, using only two wires.
Figure 1 is the control unit, in which $/ C_{1}$ is a 4094 latched shift register, driven by $/ C_{2}$. a 4060 14-stage binary counter/oscillator. Signals from $/ C_{1}$ also drive the base of the power transistor T_{1}. which applies 12 V to the signal bus at each positive excursion of the base drive.
Remote units derive power from the bus. as shown in Fig. 2, and send pulses to the bus when the associated switch is olf. When power is on the bus, C_{3} charges to 5 V through D_{10} and D_{12} and supplies power to the 4093 IC C_{3} when the bus is olf. Capacitor C_{2} also charges from the bus.
After eight clock periods, $T r_{1}$ turns the bus off and C_{2} discharges through $R_{16.17} . I C_{3 a}$ output goes high, this change being differentiated and passed to the bus as a square pulse whose width is set by the values of $C_{4} R_{18}$ and after a delay determined by $R_{16,17}$. If the switch is on, no pulse passes $\mathrm{IC}_{3 \mathrm{~h}}$.
When pulses arrive on the bus at T_{2}, the

Fig. 2. One of the remote switches (S1) and its associated pulse-forming circuitry. A return pulse passes to the signal bus when the switch is off.
$4(194 \mathrm{D}$ input goes low and the clock shifts the $409+$ state. Delay time after bus power loss is set to a different period in each remote unit, so that the return pulse is detected at different clock times and the state of each remote switch is shifted in the
4094. On the eigth pulse, the combined states are latched in the 4094 and illuminated leds indicate off switches.
Yongping Xia
Torrance
California USA

Fig.2. Simpler circuit for unidirectional clock signal transmission.

Isolated I2C bus interface

While the $\mathrm{I}^{2} \mathrm{C}$ bus, which consists of a bidirectional data bus and a
unidirectional clock, has many attractions, it is not easy to use it across an isolation barrier. This circuit performs that function at 400 kHz .
In Fig. 1. the data transmission cireuit is seen to be symmetrical to allow true bidirectional working. When data from the master is high. cutting Tis off. T_{4};s base draws current through R_{8}. Opto 2 conducts
T_{3} cuts off and the slave data bus is pulled high by R_{1}. A low from the master causes the opposite state. D_{1} conducts and the slave data bus is low.
Since $T_{r_{1}}$ base is reverse biased. $T_{r_{2}}$ conducts. Opto 1 conducts and T_{6} is off, so that it does not affect operation: $\operatorname{Tr}_{1.5}$ are needed to prevent the circuit locking up when the master data line goes low, pulling the slave kow. which would keep the master data line low and stop anything more
happening. When the slave transmits, the opposite to all the above takes place. Since clock transmission is unidirectional, the simpler circuit of Fig. 2 is sufficient. As the couplers are in base circuits of buffer transistors, the coupler transistors see constant-current loads and, since the base signal is only 0.6 V , even slow $4 N 25$ couplers work well.

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design

The design, complete with comnectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Affordable Electronics CAD	
EASY-PC: Entry level PCB and Schematic CAD	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£196.00
PULSAR: Entry level Digital Circuit Simulator ~ 1500 gate capacity.	$£ 98.00$
PULSAR Professional: Digital Circuit Simulator - 50,000 gate capacity.	£186.00
ANALYSER III: Entry level Linear Analogue Circuit Simulator ~ 130 nodes	$¢ 98.00$
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes	$£ 195.00$
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers	£245.00
FILTECH: Active and Passive Filter design program	£145.00

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

[^2]
USING RF TRANSISTORS

Transforming wideband circuits

Abstract

Multi-octave impedance matching is almost exclusively carried out using transformers. Norm Dye and Helge Granberg explain how different transformers work and indicate how to choose the most appropriate type. From the book RF Transistors: principles and practical applications.

[^3]The dependence of device impedances on frequency means that any type of wideband impedance matching naturally compromises amplifier performance. Also. low impedance rf transformer-impedance ratios can only be realised with integers such as $1: 1,1: 4,1: 9 \mathrm{etc}$. Other ratios are possible. but the structures usually become complex and bandwidth is lost through the increased leakage inductance coming from the numerous interconnections.
The effect of compromises in the input is to reduce power gain and increase return-loss and vswr. In the output the results are reduced efficiency, lowered stability against load mismatches and poorer linearity.
But RLC networks inserted between the device input and the matching transformer can compensate for the impedance versus frequency slope, as well as for the gain vs frequency slope. Corrective networks, with negative feedback and associated additional networks, can allow amplifiers to be designed that cover up to five or six octaves, from low band to vhf - or even uhf.
In the output, very little can be done to compensate for the output impedance/frequency slope, due to excessive power loss.
Fortunately, output-impedance variation with frequency, using both mosfets and bjts, is usually much smaller than that of the input. Sometimes a low value inductance or a microstrip between the device output and matching transformer considerably improves efficiency at the high end of the frequency range, by providing compensation for the device's output capacitance. Normally only 'over-compensation' of the output transformer will do an adequate job, calling for added capacitance across the transformer primary and in some cases also across the secondary.

[^4]combination of the following functions:

- impedance transformation:
- balanced-to-unbalanced transformation
- phase inversion.

Rather than using their primary-to-secondary turns ratios. transformers are most often referred to by their impedance ratios (turnsratio, squared). In these applications, we are mostly interested in manipulating impedance rather than voltage or current.
RF transformers can, in basic terms, be compared to low frequency transformers - except that with increasing frequency a parameter called leakage inductance becomes an important factor.
To extend coverage to the low end of the frequency band, some type of magnetic core is required. Either powdered iron or ferrite cores are acceptable depending on the frequency range, with ferrites being the most common.
A general formula for calculating the maximum flux density of a ferrite core is:
$B_{\text {tiax }}=\left[V_{\text {max }} /(2 \pi f A n) \mid 10^{2}\right.$
where $B_{\max }$ is the maximum flux density (gauss), $V_{\text {max }}$ is peak voltage across the winding, f is frequency in MHz, A is core crosssectional area in cm^{2} and n is number of turns.
Either the primary or secondary can be used for the $B_{\text {max }}$ calculations, although the 50Ω side - if applicable - is commonly used for convenience and standardisation. Then $V_{\max }=\sqrt{ }(2 P R)$ where P is rf power level and R is resistance (50)2).
For example, if:
$V_{\text {max }}=50 \mathrm{~V}, f=2.0 \mathrm{MHz}, A=1.0 \mathrm{~cm}^{2}$ and $n=4$.
then
$B_{\max }(50 / 50.2)\left(10^{2}\right)=99.6$ gauss.

In certain types of transmission line transformers the rf voltage ($V_{\text {max }}$) used in the $B_{\text {max }}$ calculations is lower than the value obtained from the $V_{\max }$ formula given above. This is because the maximum voltage across the winding(s) must be divided by the number of line segments connected in series in the transformer configuration in question.
The same result can also be reached using the formula if the full voltage across the 50Ω terminals is used for $V_{\text {max }}$ as the numerator, and n is multiplied by the number of line segments in series.
Since high permeability ferrites tend to saturate sooner than low permeability ones, good practice is to limit their maximum flux densities as follows:
$B_{\text {max }}$ of $40-60$ gauss $/ \mathrm{cm}^{2}$ of cross-sectional area for ferrites with μ at 40000 .
$B_{\text {max }}$ of $60-90$ gauss $/ \mathrm{cm}^{2}$ of cross-sectional area for ferrites with μ at 100-400.
$B_{\text {max }}$ of 90-120 gauss $/ \mathrm{cm}^{2}$ of cross-sectional area for ferrites with μ at <100.

In the $B_{\text {max }}$ versus μ figures, the magnetic path is assumed to be solid: eg without air gaps such as in toroids and balun cores.

Importance of leakage inductance

At low frequencies, leakage inductance is virtually unknown and most designers are unaware of such a term. But in rf transformers it is the parameter that limits high frequency response.
Performance becomes more critical at low impedance levels, where tight coupling between the windings is of utmost importance. Leakage inductance is a product of the coupling between the primary and secondary and any exposed area in either winding. It is also affected by interconnection lead lengths and mutual coupling.
Leakage inductance (or reactance) is difficult to calculate. But it can be measured for each individual case with a vector impedance meter, vector voltmeter, or network analyser. Ideally, when one winding is shorted with a low inductance path, measurement in the other winding should show essentially zero R and phase angle. In practice this is never the case.
Deviation from zero in the value of the resistive component and phase angle can be used to calculate the leakage inductance (or rather the high frequency performance of the transformer).
Relating leakage inductance directly to rf performance of a transformer is difficult because it is impedance-level dependent.
At vlf ($50-500 \mathrm{kHz}$), where high μ cores are required, a problem may appear which looks inexplicable. It is called magnetostriction, and is a magnetic resonance of the ferrite core which can cause chattering, leading to disintegration of the core.

There are many resonant modes such as longitudinal and torsional, etc and the only cure is to select a physical core size and shape which

Fig. 1. Equivalent circuit for a conventional discrete-winding of transformer. Ip is leakage I primary, $L_{P p}$ is parallel L primary, $L_{L S}$ is leakage L secondary and $L_{P S}$ is parallel L secondary.
has resonances outside the critical frequency spectrum.

Conventional transformers

The simplest design of rf transformer is a conventional type - spanning several different kinds - some of which are more suitable for certain applications than others.
But in all, the basic principle is roughly the same (Fig. 1): that low frequency coupling between the primary and the secondary is provided through the flux of magnetic media (core): as in audio transformers.
At high frequencies tight capacitive coupling between the windings is essential and the magnetic core has little effect except in the form of dielectric losses. So the quality of magnetic media employed is a very important factor in design. There is also the question of whether to use higher permeability core material and suifer high frequency losses; or design around the losses from the increased stray capacitances caused by additional turns in the windings required when using low permeability cores. A few tenths of a dB of unnecessary power loss in an output transformer can mean a significant increase in power consumption and device dissipation.
Conventional transformers are inferior in performance to transmission line transformers, with the differences mainly in power handling capability, loss factor and bandwidth. But conventional rf transformers can be constructed for a wider range of impedance ratios than transmission line types. Some ratios will have wider bandwidths than others due to the number of turns required to achieve the desired turns ratio. There are no fractional turns - as in all transformers - and if the wire passes through the core, one full turn is completed.
In Fig. 1, stray capacitances have been omitted since a relatively low impedance case is assumed and the capacitive reactance arising from applicable construction techniques rarely becomes appreciable in comparison to the low values of resistances involved.
Figure 2 shows a conventional rf trans-

Fig. 2. Simplest form of conventional transformer. The windings are usually randomly wound one on top of the other. It finds use at high impedance levels, $200 \Omega 2$ and up, which dictates the frequency response of the unit.
former that finds wide usage at high impedance levels (200Ω and higher) in low power designs. One winding is simply wound on top of the other, usually providing good enough coupling at these impedance levels up to uhf The most convenient core shape is a two-hole balun, although toroids can be seen in some designs if a sufficient number of turns is provided on the periphery for the coupling required.

As in all rf transformers, wire size also has an effect on the coupling between the primary and secondary. The heavier the wire size, the tighter the coupling will be. This increases the mutual winding capacitance, again resulting in compromise.

The capacitance can be lowered by using a high μ magnetic core, but core losses would be higher. Since the mutual winding capacitance has a larger effect at higher impedance levels, designers must determine which approach is most beneficial for a specific application.

One-turn advantages

The most popular conventional type of rf transformer is probably that (Fig. 3) with the one turn winding consisting of metal tubes going through sleeves or stacks of toroids of suitable magnetic material. The tubes are electrically connected together at one end of the structure and separated at the opposite end, where connections to the one turn winding are made.

Fig. 3. The most common conventional type of rf transformer. One winding consists of metal tubes shorted at one end, thus forming only one turn. This limits the impedance ratios to integers 1:1, 4:1 9:1 etc. It is fairly efficient at impedance levels down to 2-38 if properly constructed and may have a bandwidth up to 50 MHz .

In practice, connections are usually made with pieces of single-sided metal-clad Iaminate with proper patterns etched in the metal.

The construction also produces a physicallysturdy structure with all its components intact. To make up a transformer, the required number of turns of wire is threaded through the two tubes to form a continuous multi-turn wincing. The resulting tight coupling between the two windings has relatively low mutual winding capacitance, and so permits use at very low impedance levels.

The wire ends of the multi-turn winding can be taken out from either end of the transformer, whichever is physically most convenient. The usual arrangement is to have the prinıary and secondary terminals at opposite ends (Fig. 3).

The disadvantage of this type is that its oneturn winding allows only integer-squared impedance ratios such as $4: 1,9: 1,16: 1$, etc...
Fractional integers look to be possible by

Fig. 4. Another form of conventional type transformer. a and b are segments of coaxial cable which, in practice, are bent to get the terminals of the low impedance winding close together (see Fig. 5).
threading the winding wire through one tube one more time than the other. But this offsets the balance and the transformer will not function properly. Bandwidth is actually determined by the impedance ratio, and a 9:1 impedance ratio transformer will be usable up to $50-60 \mathrm{MHz}$. But higher impedance ratios reduce the bandwidth rapidly, because of the increasing leakage inductance. A 25:1 transformer will perform poorly at 30 MHz , and a $36: 1$ unit is usable only to $15-20 \mathrm{MHz}$.
The form factor - the length-to-width ratio is important. If the transformer structure is short, the coupling between the windings is lowered and the leakage inductance is increased. At the other extreme, if the unit is long, the mutual winding capacitance is increased and the physical length of the multiturn winding may produce resonances within the desired spectrum.
Another disadvantage with these transformers is that when used in an amplifier output, the one-turn winding makes the magnetic core saturate at a low flux density. But despite all these draw backs, one-turn transformers are widely used in both input and output matching in the $2-30 \mathrm{MHz}$ frequency range and at power levels up to $100-150 \mathrm{~W}$, and as input matching transformers up to even higher frequencies.

A clear advantage is the transformer's sim-

Fig. 6. Transformer shown in Figs. 4 and 5 provided with a magnetic core (E and I) to broaden its low frequency response. The arrows indicated points where epoxy can be applied to make the unit a solid structure.

Fig. 5. One possible physical realisation of the transformer described. Note the height of the segment stacks with increasing impedance ratios. This produces a delay from the connection points of the low impedance winding to the uppermost segment.
ple construction, making it inexpensive and easily mass-producible.

Parallel winding connections

In other variations of the conventional transformer (Figs. 4-6), impedance transformation is obtained by connecting in parallel a number of windings on one side, and in series on the other.

For the most common type (Fig. 3), one turn in the low impedance winding, limits possible impedance ratios to full integers. Windings are made of segments of coaxial cable and the structure is formed into a shape of a ' U ' or a circle (Figs. 5 and 6). Leakage inductance is lower than with most other conventional transformers making it usable up to $200-300 \mathrm{MHz}$.
The high frequency end is limited by physical size of the structure because, to avoid major resonances, the length of the highimpedance winding should usually be kept below $1 / 8$ wave-length at the highest frequency of operation.

So physical length of a U-shaped $4: 1$ unit is limited to about 3.5 cm and a $9: 1$ unit to 2.5 cm for operation up to 200 MHz .

The characteristic impedance of the coaxial cable determines the coupling coefficient between the windings, and the optimum closely follows the line impedances calculated for transmission line transformers. If cable impedance is too high, bandwidth is reduced: if too low, the maximum bandwidth can be realised, but at a cost of capacitive reactance and reduced efficiency of output matching.
Transformer segments can be made from semi-rigid coaxial cable with all outer conductors tied together to form the low impedance side. The inner conductor will automatically make up the high impedance winding (Fig. 5).
With a U-shaped design, the bending radius
should be as small as possible, though limited by the recommended minimum for the specific cable used.
Spot welding would be the best way to connect the inner conductor segments together, but soldering (preferably with high temperature solder) is adequate. Some commercially available units use tiny pc boards at the front end of the cores to make the connections.
A typical 3 cm -long coaxial cable transformer has a low frequency response of around 100 MHz without a magnetic core.
With an E and $/$ core of material (Fig. 6) having μ equal to 125 , for example, the response will be lowered to $3-10 \mathrm{MHz}$ depending on impedance ratio.
Only a physical constraint limits the highest practical impedance ratio. If too many line segments are stacked, the structure becomes high and it is difficult to make the electrical connections to all segments without introducing excessive phase delay to the uppermost ones. The effect depends on the cable diameter, but for a power level of $200-300 \mathrm{~W}$ a cable diameter of 2.3 mm (standard with most manufacturers) can be considered a minimum and the highest practical impedance ratio would be $9: 1$. If $16: 1$ or higher is needed, a smaller diameter cable must be used, and the power handling capability lowered.

Twisted wire transformers

A unique and versatile of transformer can be realised with twisted wires. Enamelled magnet wire is commonly used since it has a thin, but good, temperature-resistant insulation. It is also available with Teflon insulation for very high temperature applications.
Characteristic impedance of a twisted wire transmission line is determined by wire size, dielectric constant of the insulation and the number of twists per unit length. Twists/length
has the least effect on the line impedance (assuming the wires do not separate from each other in the winding process). A simple method of approximating line impedance is by measuring its capacitance per unit length and comparing it against a line of known impedance.
The most common twisted-wire transmission line is a single pair of wires. For a wire size of \#28 AWG, the characteristic impedance will be approximately 50Ω. Lower line impedances are possible by using heavier gauge wire or by replacing each single wire with a multiple of smaller gauge wires.
In those cases where multiple numbers of smaller gauge wires are used to form a twist-ed-wire transmission line, location of the wires with respect to each other should maintain a symmetry (Figs. 11 a and 11 b discussed later).

Versatile solutions

The twisted wire transformers discussed here do not have a defined line impedance - except for Fig. 7d. They are versatile (Figs. 7a and 7b) and many more odd impedance ratios are possible.
Figure 7a is a normal 1:1 balun with a magnetising winding added (centre). If the balun's load is balanced - feeding fet gates in a pushpull amplifier for example - the magnetisation current flows through only one winding and only one half of the load. The effect causes undesirable phase and amplitude unbalance in the balun, restricting bandwidth. But balance can be restored with a third or tertiary winding to shunt the magnetisation current around the load.
Figure 7 d is a standard 4:1 transmission line transformer where the required line impedance is $R_{\mathrm{L}} \times 2$ or 25Ω for $R_{\mathrm{L}}=12.5 \Omega$. Two twisted pairs of \#28 AWG magnet wire are the best way to achieve the result, with each pair connected in parallel by shorting at both ends. Both pairs are twisted together to form the low impedance transmission line. (It is customary to locate the pairs with respect to each other as shown in Fig. 11).
In the twisted wire transformers we are considering (Figs. 7a, 7c and 8a-d) as stated earlier, there are no defined line impedances. Without data, a designer should experiment and make measurements with various interconnection combinations of the twisted wires. Although not shown in the figure, all terminals are referenced to ground.
Another example of the versatility of twisted wire transformers is that they can also be connected in balanced-to-balanced, and even in isolated primary and secondary configurations, providing several impedance ratios (Figs. 8a-c). Many other fractional integer impedance ratios are also possible with more wires.
The units make compact interstage matching elements in push-pull circuits and are especially suitable when dc isolation between the stages is required.
Figure 8 c can be considered to represent a transmission line transformer if the line impedance is correct (25Ω in this case), which

is also the case with the ones shown in Figs 7a and 7 d .
Twisted wire transformers have bandwidths higher than most other conventional transformers, and up to seven octaves have been measured at 50Ω and lower impedance levels; and at least one octave higher when the impedance levels are higher and the transform ratios low.
Advantages of these transformers are their versatility for odd impedance ratios.

Disadvantages are their limited power-handling capability and, in some cases, difficulty of construction due to all the multiple interconnections.
Although the single wire transformer (Fig. 8d) is obviously not a twisted wire type, its description fits better here than with other conventional transformers since it uses capacitive coupling to a larger degree than magnetic coupling. The design represents a unique concept, where several 2-3 turn low impedance wind-

The attraction of ferrites

Ferrites $a^{\text {e }}$ e the most common magne-ic materials used for - transfo mers.
The two basic types are nickelmanga eese with high permeabilities ($\mu_{\mathrm{r}}=$ relative permeability) used in low frequencr applications; and nickelzinc fe-ries. These have lower highfrequenc, losses, but with Curie points as low as 130°, they only can be manufactured with $\mu \mathrm{s}$ of less than approximately 1000 . (Curie point is the temperat are where magnetic material loses its magnetic properties.)
Low u_{T} ferrites usually have higher volume resistivity than high μ_{r} ones, meaning lower eddy current losses. Detailed information on the behaviour of ferries at if is rarely available from ferrite nanufacturers.
Core eddy current losses and windirg dielectric losses heat up the core and its temperature must be held well below the Curie point or the magnetic properties of the material will be per nanently altered.
To aroid saturating the core, operat onal flux densities mıst be kept
well within the linear portion of the mate-ial's B-H curve. Saturation mainly occurs at low frequencies, whene most of the coupling is through the core, producing non-linear operation, heat and harmonics. The area inside the B - H curve normally represents the relative loss and so narrow curves are preferred for low loss designs. But the situation is confused since the curves are usually created under dc conditions and they do n ot really give the data needed for an If designer.
High μ ferrites, though having higher saturation flux densities than low ones, saturate easier under if conditions. One reason is that high μ cores require a smaller number of turns to satisfy the mininum magnetising inductance requirement. So use a ferrite core with relat vely low μ and added turns in the winc ings - at least to the extent that the zdded inter-winding capacitance can se tolerated at higher f-equencies.
As a rule, the winding reactance should be at least twice the impedance across it.

Fig. 8. Conventional transformers, providing balanced-fo-balanced function and isolated primaries and secondaries. a) to c) are (wisted wire types, while d is a unique single wire transformer with its parallel low impedance windings interlaced between the turns of the high impedance winding. Number of turns in winding d of the single wire transformer should equal $a+b+c-1$ not to have extra uncoupled turns to windings a, b and c . The schematic for the 2.25:1 balanced transformer as left in the photo c) is not shown.

ings are connected in parallel and interlaced between the turns of the high impedance winding. Heavy gauge enamelled wire (\#1816 AWG) increases the capacitive coupling between the windings and makes the unit a self supporting structure.
The windings are wound on a cylindrical core such as a length of ferrite rod (Fig 7d, photo) and all the winding connections are made when the transformer is mounted to a PC board.
Multiple impedance ratios are possible depending on the number of turns in the lowimpedance windings.
These transformers have been in commercial use in equipment operating up to 175 MHz and at power levels of $100-120 \mathrm{~W}$. Variations such as flat ribbon wound units have been experimented with, but their fabrication is more difficult and no significant improvement in performance has been found. Obvious advantages of the single wire transformer are its extremely compact size versus power handling capability and the dc isolation between the primary and secondary.

Transmission line transformers

Transmission line transformers are quite different from conventional ones in many ways:

- to take advantage of optimum performance, line impedance must be correct for the type of transformer in question;
- at high frequencies, the series reactance combines with the inter-winding capacitance and the circuit behaves as a transmission line, greatly extending the high frequency response;
- power transferred from input to output is not coupled through the magnetic core, except at very low frequencies, but through the dielectric medium separating the line conductors. This is an important point regarding the transmission line transformer principle;
- from the above point it follows that a relatively small cross-sectional magnetic core can operate unsaturated at very high power levels.

In practice, transmission line transformers can be realised with twisted enamelled wires, coaxial cables, paralleled flat ribbons (separated by a dielectric medium), or a microstrip on a two-sided substrate. Practicality and convenience in each case depends on the exact application and frequency spectrum.
The simplest transmission line transformer is a quarter wavelength line whose characteristic impedance $\left(Z_{0}\right)$ is chosen to give the correct impedance transformation. It is a relatively narrow-band device and valid only at frequencies for which the line is an odd multiple of a quarter wavelength.
In a 1:I balun (Fig. 9a), with line impedance $\left(Z_{0}\right)=R_{\mathrm{L}}$, low frequency performance is limited by the amount of impedance offered to common mode currents. It should be at least twice the load impedance and can be increased with a core of suitable magnetic material.
Inductance of a conductor is in direct proportion to its relative permeability. As line length limits the high frequency response, these two factors seem to be in direct conflict - we should remember the $1 / 8$ wavelength rule discussed earlier.

The most commonly used material for transmission lines in these transformers is coaxial cable with Teflon dielectric. Cable can be either semi-rigid or flexible, of which both have equal velocity propagations, at least in theory.
For calculating the maximum line length allowable, the velocity factor must be known. Multiplier for the velocity factor is obtained as: $v_{\mathrm{r}}=1 / \sqrt{ } \varepsilon$ where ε_{ρ} is the relative dielectric constant of the insulating medium. For Teflon cable, with its $\varepsilon_{\mathrm{p}}=2.5$, the velocity factor multiplier is 0.633 .
Unlike a microstrip line, where two dielectric materials (air and the main substrate) form the medium and the width-height ratio is a variable, coaxial cable has a constant velocity factor as a function of characteristic impedance.
Connecting points a and b in the $1: 1$ balun (Fig. 9a) as in Fig. 9b, produces an unbalanced $4: 1$ design. For minimal leakage inductance, connection must be kept short by bending the line to get the connection points close together. In this case the line Z_{0} should be the geometric mean of the input and output impedances or $\sqrt{ }(50 \times 12.5)$ or 25Ω.
The same is true of other impedance ratio transformers. Derivations are shown in Figs. 9c and 9e, of a balanced-to-balanced configuration, using two or four lines. A common magnetic core can be used for both if the coupling between the two can be kept minimal. But separate cores are usually recommended. Since this transformer has a 4:1 impedance ratio, the optimum line impedance is again 25Ω. If the 'centre tap' is left floating, dc can be fed through it - eg not by-passed to ground - and a balun normally seen to provide a bal-

(f)
anced-to-unbalanced function can be omitted. Otherwise, another dc feed method must be chosen.

This also applies to the $16: 1$ ratio transformer (Fig. 9e), which employs two $4: 1$ transformers in series, where the same rules are in effect.
Line impedance of the high-impedance $4: 1$ segment is 25Ω, which was previously determined to be the required value. The line impedance of the second section would be $\sqrt{ }(25 \times 3.12)=6.25 \Omega$, making its design somewhat impracticable as line impedances of such a low value are difficult to achieve. But it would be possible to parallel two 12.5Ω coaxial cables, for example, which is standard practice.
Coaxial cables with impedances of 12.5 . 16.7, and 25Ω are becoming standard items for cable manufacturers today. For many applications however, the line impedance is not critical provided that some bandwidth degradation is acceptable.
Figure 9d shows a $9: 1$ balanced-to-balanced transformer. Performance can be good if the interconnections can be kept short - but this is more difficult than with the $4: 1$ transformer since there are more interconnections and the impedance levels are lower. Here the optimum line impedance is $\sqrt{ }(50 \times 5.55)$ or 16.6Ω Unlike the $4: 1$ unit, the balanced $9: 1$ transformer always requires a balun in the end that is to be terminated with an unbalanced source or load. It also does not have a balanced point to allow de feeding through the lines.

Overcoming limitations

As mentioned earlier, a limitation of squared integer transformation ratios is the biggest disadvantage of the transmission line transformer. There are ways to get around this, but the designs are complex and bulky, and call for additional lines and connections between them, greatly reducing bandwidths in some cases.

One such design for three different configurations is shown in Fig. 9f (in simplified form in Fig. 9f3 to make analysing its operation easier than using configuration Fig. 9f2 for example). An analysis of the current distribution between each winding reveals a ratio of $1.5: 1$ between the primary and the secondary, equalling the turns ratio and resulting in an impedance ratio of 1.5^{2} or 2.25:1.

Assumung $R_{\mathrm{L}}=50 \Omega$ (in which case the source would be 112.5S), optimum line impedance is $50 / 1.5$ or 33Ω. This transformer has a balanced-to-balanced circuit configuration, requiring a balun if interfaced with an unbalanced source or load in either a step-up or step-down mode.

Equal delay transmission line transformers

In normal 4:1 transmission line transformers, the high frequency response is limited by phase errors introduced between the interconnection points (such as a-b in Figs. 9, 10a and 10b
If the connection from a to b were made with a transmission line of equal impedance

and length as the main line, the phase difference between the input and output would be eliminated. The transformer topology would remain the same. except that the a-b connection would have the same phase delay as the main transformer line.
Such a transformer can be viewed as two coaxial lines with their input terminals in series and output terminals connected in parallel. Where one line is always used only to provide a delay of a controlled amount, it is also the case with equal delay transformers of any other impedance ratio.
For this reason, the sub-class is called equal delay transmission line transformers, serving applications from 1 MHz to at least 500 MHz depending on the impedance levels involved.
Transformer input and output connections can be physically separated - an advantage in many cases.
Figure 10 b is a pictorial and schematic representation of a $4: 1$ equal delay transformer. If a third line is added to the $4: 1$ design (Fig.

(d)

10c), a 9:1 impedance transformer results. Similarly, four lines will produce a 16:1 transformer (Fig. 10d) and so on.

Wideband requirements

Wideband operation demands that most of the transmission lines must be surrounded by magnetic material, generally in the form of toroids or sleeves. The amount of magnetic material required in each line depends on the level of the impedance transformation. The line impedances are equal, but the highest impedance transform line requires one unit of magnetic material, the next one two, the following one three and so on. By unit we mean a measure of cross-sectional area of similar magnetic material.
All these designs are unbalanced-to-unbalanced transformers - though baluns (Figs. $10 f 2$ and 10f3) can be added to obtain a balanced interface.
Suppose we add a magnetic core to the bottom line of a $4: 1$ transformer. Now we can disconnect the grounds of the parallel connected lines (still keeping the shields connected) and add a balanced, floating load between the centre conductors and the shields to form a $4: 1$ balun.
Stray capacitances to ground can be balanced by connecting the centre conductor of one coax to the shield of the other and a transformer as in Fig. 9c) would be formed. In equal delay transformers of any impedance ratio, the last line only provides delay and has no external fields. It requires no magnetic core, but the presence of magnetic material will not affect its performance. The line characteristic impedance $\left(Z_{0}\right)$ requirements are the
same as for standard transmission line transformers - eg Z_{0} equals the ratio of voltage to current along the line. Or simply: $Z_{\text {IN }} / \mathbb{N}$, where $N=\sqrt{ }\left(Z_{\text {II }} / Z_{\text {OUT }}\right)$.
Equal delay transformers have the full integer limitations of the standard transmission line networks. But their physical configurations make it is easier to create fractional integer impedance ratios with equal delay transformers by using subgroups of additional lines (Fig. 10e).
If we describe group A (Fig. 10a) as the main transformer, providing the full integers of impedance transformation, adding group B (Fig. 10b) lines with their low impedance sides connected to the high impedance side of group A results in fractional impedance transform ratios. The resulting impedance ratios can be calculated as $N=\left(n_{\mathrm{A}}+1 / n_{\mathrm{B}}\right)$, where n_{A} is the impedance ratio of group A , i.e. the main transformer, and n_{B} is the impedance ratio of group B.
For example, if group A has one line and group B has two, the transform ratio is 2.25:1. Further, if $A=2, B=4, N=5.0625: 1$; and $A=2$, $B=2, N=6.25: 1$.
Line impedances are dictated by the transform ratio and the impedances required for the main transformer (group A).
How much improvement in bandwidth the equal delay transformer gives compared with the standard transmission line transformer depends largely on mechanical factors. Also even if both are correctly compensated, the insertion loss of the equal delay transformer can be at least 0.1 dB less than the standard transmission line transformer in the frequency region up to 500 MHz .

Fig. 11. Cross section of a correctly arranged twisted wire with two pairs of wires a) and four pairs of wires b). O represents one conductor of the line and X the other.

CLASSIFIED

ARIICIES WANIIED

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

ARTICLES FOR SAIE

0

Coole International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNTFOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognar Regis, West Sussex, PO22 0EB
Tel: $(+44) 0243545111 / 2$
Fax: (+44) 0243542457
HIGH END TEST \& COMMUNICATIONS EQUIFMENT PURCHASED

CIRCLF NO. 133 ON REPLY CARD

ARTICLES FOR SALE

VALVES AND CRTS

ONE MILLION ITEMS IN STOCK INCLUDING MAGNETRONS, KYLSTRONS, VALVE SOCKETS FOR AUDIO RECEIVING TRANSMITTING, OBSOLETE BRANDS SUCH AS MULLARD, GEC A SPECIALITY. ALSO HUGE STOCKS OF RUSSIAN AND SOVTEK ITEMS ASK FOR OUR 40-PAGE VALVE CATALOGUE OR CRT CATALOGUE.

VALVES WANTED FOR CASH

ESPECIALLY KT66, KT77, KT88, PX4, PX25, VALVE HI-FIs e.g. QUAD, LEAK, GARRARD 301. IF POSSIBLE SEND WRITTEN LIST. BILLINGTON EXPORT LTD 1E GILLMANS IND EST, BILLINGSHURST, SUSSEX RH14 9EZ CALLERS STRICTLY BY APPOINTMENT ONLY

TEL: 0403784961 FAX: 0403783519 MINIMUM ORDER £50.00 PLUS VAT

[^5]
TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Ltd,
1, Mayo Road, Croydon, Surrey, CRO 2OP TEL: 0816841166 FAX 0816843056

ARTICLES WANTED

STEWART OF READING 110 WYKEHAM ROAD. READING, RG6 1PL. TEL. 0734268041 FAX: 0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT,
COMPONENTS, etc. ANY QUANITYT

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity.

Prompt service and cash M \& B RADIO
86 Bishopgate Street, Leeds LS1 4BB Leeds LS $148 B$ Tel: 0532435649 9956

WRNTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marcon etc. Top prices paid.
Please send or fax your offer to: HTB ELEKTRONIK Alter Apeler Weg 5, 2858 Schiffdorf, West Germany
TEL: 0104947067044
FAX: 0104947067049

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes PCB's. Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387 Telephone: 0763246939

> TO ADVERTISE HERE TEL 0813523620

PHIIIPS SENIOR ACOUSTICS ENGINEERS

The ASSET team of Philips Electronics is currently seeking to recruit two Senior Acoustics Engineers. ASSET' (Acoustics Support and Service Team) is a design centre for sound reproduction systems and is located in Dendermonde, Belgium. Projects are executed for other Philips' business units and for non-Philips companies.
The team is active in very different markets: hifi, audio systems, portable audio, TV, car radio, multimedia, sound reinforcement. Recently ASSET was involved in the design of Philips' DSS 930 digital loudspeaker, a teal breakthrough in speaker technology.

PROFILE

Because of the highly professional environment, candidates require indepth knowledge and experience in the design of acoustics systems. An understanding of analogue and digital audio processing is a distinct advantage. Fluent communicative skills are vital for day-to-day customer contact, target specifications, planning and costs.
If you are intrested in this challenging position, you can address your application (letter and C.V.) to: PHILIPS N.V.
Flor Boeckx - Hoogveld, 50-9200 Dendermonde - Belgium,
For more information on this position, please contact:
Luc Auwaerts, Manager Asset Team - rel.: 32.52. 261405

WITH YOU - WE'LL MAKE IT. PHILIPS

RECEIVER DEVELOPMENT ENGINEER

A British Company are about to start an exciting new project to develop a state of the art HF communications receiver to compete in the World market. A vacancy exists for a top grade engineer to take charge of this project. The successful candidate will probably have several years previous experience of receiver design, be aware of the best of current technology in the field, and be conversant with digital signal processing techniques.
The salary and benefits package offered will be commensurate with the importance of the project, and maximum freedom will be given to the individual to exercise their own creativity.

Please reply in confidence
CIRCLE NO. 134 ON REPLY CARD

FREE CLASSIFIED

WIREIESS WORLD 1976-1992 tor price DRANETZ 305C. Phusemeter for sale, 2 list S.A.E. Telequipment DS4-10Mhz Hz to $7(\mathrm{MOH} \mathrm{KH}, 0.01$ degrees resolution, Dual Trace $\mathrm{f}^{\prime}(4)$ or exchange with Fre- fully working with plug-ins $£ 360$ ono. Ash quency Counter. S. Jazovides, 20, Che- for Mike after 7 pm . 0483487189. verton Road, London N19 3AY. Tel: SPEEDWIRE TERMINALS, recls of 10MO, Vero part number 244-262193 $£ 50$ each. 0234219756.

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.10$ per word.

Special rates:

6 insertions 22.10 per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED AD. VERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow
Extras:
Spot Colour 20%
Box number service £22.00

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT:
All major credit cards accepted
Please debit my \qquad card a total of $£$

Expiry Date:
Please ensure that address given is where your credit card statement goes to.
NAME..
ADDRESS
TEL NO. \qquad
EL NO....
All advertisements must be received five weeks prior to publication date.
All cancellations must be received by eight weeks prior to publication date. After that no advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, 3rd Floor Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Malcolm Wells on 081-652-3620.

ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

 readers to obtain more information on companies' products or services.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff
MQP ELECTRONICS LTD.
Tel: 0666825146
Fax: 0666825141
circie no. 142 on repircard

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance,
Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884
Fax: 0818852496
CIRCIE NO. 143 ON REPIY CARD

ENGINEERING \& SCIENTIFIC PC

The new 230 page 1994 PC-LAB catalogue covers an extensive range of PC-based data acquisition, measurement, control, and interface plug-in cards plus supporting software packages for engineering \& scientific applications. Also includes $19^{\prime \prime}$ rack mounting industrial PCS, custom OEM PC chassis and associated sub-systems.
Please contact integrated measurement systems for a free catalogue copy.

Tel: (0703) 771143
Fax: (0703) 704301

INDUSTRIAL PCs

PCbus
Catalogue

Arcom's PCbus range is expressly developed for embedded control and data acquisition, providing high integrity industrial solutions with:

* full range of CPU and $1 / O$ functions * industrial EMC cnclosures * mezzanine bus expansion * industry standard signal conditioning * Windows I/t O drivers with predictable performance.
Arcom Control Systems makes plugtogether PC solutions for industry a reality!
Please forward all enquiries to Alan Timmins at: Arcom Control Systems Ltd, Units 8-10 Clifton Road, Cambridge CBI 4WH, UK. Tel: +44 (0)233 4112(9) Fax: $41(0457$

LabWindows/CVI Brochure

The LabWindows/CVI Brochure, from National Instruments, explains how users can build instrumentation applications on Windows PCs and Sun SPARCstations using the ANSI C programming language and LabWindows/ CVI data acquisition, analysis, and presentation libraries.

NATIONAL INSTRUMENTS
For further information
FREEPHONE 0800289877
CIRCIE NO. 146 ON REPLY CARD

SPICE A/D Simulation

- Mixed Analogue and Digital
- All SPICE 2G6 analyses
- Behavioural Modelling
- Graphical post-processor
- FREE 10 transistor version
- 640K version £395
- 32 bit extd. mem. ver. $£ 695$
- Schematic front-end $£ 149$

To receive your FREE working evaluation version just send a 1.44 MB HD 3.5 in disk to: EW+WW Offer, CRaG Systems, 8 Shakespeare Rd, Thatcham, Newbury, Berks
RG13 4DG, Tel (0635) 873670
CIRCIE NO. 147 ON REPLY CARD

2nd EDITION TOKO RF

 CATALOGUECirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.
The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN107NQ Tel: (0992) 441306
Fax: (0992) 441306 CIRCIE NO. 148 ON REPLY CARD

High Spoed EPROM \& FLASH
 Programming from your PC

\square Programs EPROMs to 4 Mbits/ 32-pins
\square Superfast 8, 16 \& 32-bit programming
\square Approved algorithms
\square Menu driven software included
\square Sophisticated editor functions
\square Easy file management
\square FREE demo disk available
Stag Programmers Limited Martinfield Welwyn Garden City, Herfordshire, AL7 1 J UK
Tel: (0707) 332148
Fax: (0707) 371503

CIRCIE NO. 149 ON REPLY CARD

CIRCLE NO. 131 ON REPLY CARD

	PAGE	PAGE	
Anchor Surplus Ltd	599	Langrex	585
BK Electronics	575	M\& B Electrical	590
Bull Electrical	568	M B Radio (Leeds)	551
Chelmar Valve	MQP Electronics	553	
Citadel Products Ltd	IFC	Number One Systems	605
Dataman Designs	OBC	Powerware	553
Display Electronics Ltd	547	Ralfe Electronics	616
Field Electric Ltd	595	Remote Imaging Group	585
Halcyon Electronics Ltd	595	Seetrax Ltd	533
Ice Technology Ltd	Smart Communications	553	
John Morrison	Smart Communications	575	
John's Radio	Stewart of Reading	585	
John's Radio	Surrey Electronics	585	
JPG Electronics	589	Tektronix	597
Kestral Electronics	530	Telnet	533
Keytronics	535	Those Engineers Ltd	562
Lab Center	582	Tsien Ltd	575
	582	Ultimate Technology	IBC

FROM CONCEPT TO ARTWORK IN I DAY

Your design ideas are quickly caftured using the ULTlcap schematic design Tool. ULTIcap uses REAL-TIME checks to prevent lagic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automaticalliy wires them for you. ULTICap's auto snap to pin and auto junction features ensure your netist is ccmolete, thereby relieving you of tedious netlist checking.

ULTIshell, ihe integrated user interiace. makes sure all
your desion information is transferred correctly from your design information is transferred correctly from ULTIcap to ULTIboard. Good manual placement tools are vita to the progress of your design. therefore ULTIboard gives you a powerful suite of REAL-TIME functions such as, FDRCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CHECK wil not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE and REROUTE-WHILE-MOVE algorithms guarantee that any manual track eciting is flawless. Blind and buried vias and sufface mount designs are fully supported.

If you need partial ground planes, then with th Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component. or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

NEW

ULTHoard/ULTIcap evaluation system - all features of the bigger versions

- full set of manuals
- design capacity 350 pins
Price incl. S \& H, excl. VAT:

Purchase price is 100% credited when upgrading to a bigger version. Also suitable for study \& haboy

ULTlboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrix/laser or postscript prints and custom drill files.
CIRCIE NO. 100 ON REPLY CARD

ULTIboard PCB Design/ULTIcap

Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.

The Eusopean quality alternative [LTCUP

I want it. What does it do?

- 8-BIT EPROM - 16-BIT EPROM* \checkmark EEPROM
\checkmark SERIAL EEPROM*
\checkmark FLASH f PIC*
- 8751*
\checkmark EMULATION - FREE UPGRADES \square TOTALLY HANDHELD $\checkmark 3$ YEAR GUARANTEE \checkmark AVAILABLE TODAY!

Requires optional modules

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8 Mbit . And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24 hr download from our high speed bulletin boards.

Emulation

See your code running before committing yourself to an EPROM. With S4's powertul and easy-touse internal emulation system, downioad your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen immediately - just one reason why $S 4$ is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or external power sources; earth loop problems are a thing of the past. S 4 even emulates RAM.

Remote Control

As well as being totally stand alone and self contained, $S 4$ can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal software and a pop-up TSR communications utility.

The Company

Dataman has been designing and selling innovative programmers world-wide for over 15
years. As well as having sales and support offices in both the UK and the USA, we supply the world demand for our products via a network of approvec dealers stretching from Norway to Australia.

The Package

S4 comes complete with mains charger, emulation leads, comprehensive manual, PC software and a spare library ROM: there are no hidden extras to buy. Upgrading S4's device library is free, does not involve costly internal ROM upgrades and technical support is free for life. Only S4 comes with a three year guarantee.

Availability

S4 is always in stock and we ship world wide on a daly basis. Call now for delivery TOMORROW Bona-fide UK customers can try S4 for thity days without risk. 16,000 users can't be wrong!

Credit card hotline: 0300320719
for same-day dispatch

[^0]: Interfacing with C can be oblained from Lorraine Spindler, Room L333, Quadramt House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Altermatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
 A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

[^1]: Next month: devices such as the hemt, HBT and step-recovery diode, together with methods of oscillator tuning such as YIG and varactor and stabilising using the dielectric resonator.

[^2]: For Full Information Please Write, Phone or Fax.
 Tel: 0480461778 Fax: 0480494042

[^3]: Norm Dye is Motorola's produc planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Moterola. Their if transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the uhf frequencies.

 RF Transistors: Principles and practical applications is available by postal application to room $L 333$ EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

 Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614).

 288pp HARDBACK 0750690593 Cost £19.95 + Postage $£ 2.50$

[^4]: Wideband operation
 A wideband rf transformer performs one or a

[^5]: TURN YOUR SURPLUS
 TRANSISTORS, ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance Contact:
 COLES-HARDING \& CO. 103 South Brink Wisbech, Cambs PE14 ORJ.
 ESTABLISHED OVER 15 YEARS
 Buyers of Surplus inventory
 Tel: 0945584188 Fax: 0945475216

