ELFCTRONICS
 Denmark DKr. 70.00

+ WIRELESS WORLD

UAY 1994 £1.95

AUDIO

Ultra-low distortion lest oscillator

CIRCUITRY

Working with current mode amplifiers

APPLICATIONS

 Three-chip pager systemRF ENGINEERING Microstrip design, instability and mismatch

PC ENGINEERING Schematic entry: good starting point?

COMPONENTS SOT23 transistor switches 100W

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP. PLCC, LCC, OFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series. CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, l/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16 Mbit .

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486
* Over 1500 different devices (including more than 100 MPU's) supported.
* Tests and or identifies a wide range of logis devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 \& 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8 Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual only $\mathbf{E 3 9 5}$

Please add $£ 7$ carriage (by overnight courier) for UK orders, $£ 20$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CP Cithacel

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

OPTO-ELECTRONICS 364
Opto-electronics components find wide usage in measurement, production control, scienvific and consumer applications. Nearly all uses have a common requirement for photodetection in the presence of ambient light. Tore Nielsen presents a circuit designer's guide to opto-electronics.

LOW DISTORTION AUDIO OSCILLATOR .370

You may wish to design the ultimate in distortion free audio equipment but can you be sure that you are measuring residual from the equipment under test or an artifact from the test oscillator or distortion meter ${ }^{*}$ The test oscillator design presented here by Lan Hickmata could break the dilemma.

SURFACE MOUNT POWER SWITCHING . .377

Superior bipolar chip technology and better leadframe design have been used to create an SOT device which has double the power handing performance of comparable devices. By Martin Eccles.

USING RF TRANSISTORS. 381
Instability in solid state amplifiers may well be the most difficult problem a designer must face. Norm Dye and Helge Granberg review some common causes. The authors also examine the measurement and control of excessive VSWR.

BIG BROTHER'S PROTECTION RACKET.
 388

The Government is worried that it won't be able to eavesdrop on your telephone conversations or your computer traffic. It would have you use a chip which will make personal surveillance easier. Robert Shifreen reports.

CIRCUIT CAPTURE AND PCB DESIGN.

 391The inclusion of schematic capture with PCB edit provides a powerful productivity design tool. John Anderson reviews the latest addition to Tsien's Boardnaker software which adds full schematic capture.

MATHS FUNCTIONALITY FOR

 MATHS-PHOBICSMathenatic analysis can give valuable insight at the initial circuit design stage. Lionel Snell reports on two packages - Mathematica and Nodal - which give engineers the power of maths without the pain.

NEW WAVE MICROWAVES. .410
Microstrip engineerirg more than any other technique provides the foundation to modern microwave design. Mike Hosking spells out the design rules which turn unwanted reactance into a positive asset.

PATENTLY UNCLEAR. \qquad 433
Just because it"s patented doesn"t make it good. And just because it's good doesn't mean it will be successful. Barrie Blake-Coleman explains how big companies play by the unwritten rules of the patent.

COMMENT .355
Lack of initiative
NEWS. 356
Radar for buried bodies; plastic battery: optical amplifiers; report backs digital TV: PowerPC outperforms Pentium

RESEARCH NOTES .360
Smallest piece of metal in the world: Satellites shot from a gun: Electrons show brittle behaviour: Computer disks use magneto-resistive storage.

DESIGN BRIEF .402
There are unique benefits to current conveyor ICs in applications from If to rf. Take a precision rectifier needing only two resistors and two diodes for example. lan Hickman looks at this new class of component.

BOOK REVIEWS.. 406
Works on DSP. multiplexing and radio history.
CIRCUIT IDEAS. .416
SCR based AC power inverter: OTA oscillator: Voltage independent time delay; Comparator extends alarm system: Analogue switch with memory; Variable frequeney generator has switchable duty cycle: Inductance meter.

Doug Self power amplifier PCBs are now available. Ordering details on page 358

LETTERS... 420
Self vs Duncan over hot audio: Virtual travel; Diagram as a language; Appaling editor: O frabjous days.

NEW PRODUCTS
.423
Comprehensive round-up of the industry's new products presented in the industry's most readable format.

APPLICATIONS... 428
Low drop-out regulators; Designing with dc to dc converters; Radio pager design.

IN NEXT MONTH'S ISSUE

Selective calling for mobile radio. The telephone dial or keyboard and its power to summon up a specific connection is taken for granted. Not so with radio. Individual radio services have each evolved their own calling codes; the aeronautical service uses a different set of codes from maritime networks. James Vincent presents both protocol and circuitry for selective radio calling
THE IUNE ISSUE IS ON SALE FROM MAY 26

Technologies change

Ericsson's TBT is used in aver 50 countries world-wide

Our commitment to Training does not

Commitment to taining is essential in the rapidly changing communications workl. At Ericsson the importance of training has long been recognised Since the early 1980s Ericsson has developed Technology Based Training (TBT) which allows personnel to be trained where and when the user needs it.

Ericsson's TBT presents complex and difficult training material in an interesting and exciling way, It is a self-paced, interactive, user-friendly and cost effective method of enthancing technical competence.

Ericsson's generic range of IBM PC'M compatible courseware includes the following courses:-

- Introduction to Telecommunications
- ISDN Overview and ISDN Advanced
- OSI \& Data Netmorks and OSI Advanced
- X. 25 and Related Protecols and X. 25 Advanced
- C7 Signalling System P'art 1 and Part 2
- Understanding Modems
- PCM Principles
- Cellular Mobite Radio
- X. 400 Overview

For further information please contact your local Ericsson office or

Marketing Department
Ericsson Systems Expertise Limited,
Adelphı Centre, Upper George's Street, Dun Laoghaire, Co. Dubiin, Ireland. Tel: + 35312800455 . After 5pm: +35312843030 . Fax: + 35312805914

Finatly an upgracieablo PCE CAD system to suit any budget …
 BoardMoker

Board Copture

Board=apture Scheretici Gay iure

- Fonvac innotation with part validg

* Smooti= sroiling

Boarifekerl Eritco evel

- Intellegat verres fautomatic jupctions)

- LCB and scrumatic thateto

- Grofper fighet to a and olsarance cheoking

BrerchMakkr2 - Aevaneed leved

- Al Io bixueor or soanuatrest pile
- Foil nertiat ouport - OrCect, Sxherny, Barpoi, Cadsiat

- Integreted on-the-fy library aditor

- Carnposars rencinibar wia badk annotedon

NEW : Themal pexer fand support with hit DRC

- Extersfie component-besea power control
* Back annotation from BoarlM\{ker2

Board Router

BoardRouter - Gildless autorouter - Simultansois muti-hayer routing

- SMD and analogue suppor
- Full interrupt, restime, pan and zoom while routing

Output drivers - Included as standard

- Printers - \mathbb{E} \& 4 pin Dot marrix, HPLeseriet and PostScript
- Penplotiere - HP, Graphtec. Foland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drili / Annotatad drill drawings (BM2)

Call for info or full evaluation kit
Tsien (UK) Limited
Tel (0354) 695959
Fax (0354) 695957

tsien

EDITOR

Frank Ogden
081-652 3128

DEPUTY EDITOR

Martin Eccles 081-652 8638

CONSULTANT

Derek Rowe

DESIGN \&

PRODUCTION
Alan Kerr

EDITORIAL

ADMINISTRATION
Lorraine Spindler
081-6523614

ADVERTISEMENT

MANAGER
Richard Napier
081-652 3620

DISPLAY SALES

EXECUTIVE
Malcolm Wells
081-6523620
ADVERTISING PRODUCTION
Paul Burgess 081-652 8355

PUBLISHER

Susan Downey
EDITORIAL FAX
081-652 8956
CLASSIFIED FAX
081-652 8931

SUBSCRIPTION

HOTLINE
0622721666
Quote ref INJ
NEWSTRADE DISTRIBUTION
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$ 0816523614

ISSN 0959-8332

No place for initiative

ndustry minister Tim Sainsbury has indicated that there will be no more government cash in the pot to stimulate the UK's microelectronics industry when the $£ 3 \mathrm{~m}$
Microelectronics in Business initiative has run its course. This is both right and wrong.
It is right because the description "electronics industry" covers such a wide range of activity that it would be positively wrong to single out one facet for special economic treatment.
After all, "Microelectronics in Business" strikes me as a particularly fatuous subdivision; why not "software design tools for industry" or, perhaps, "tax credits on automated test equipment"?
But why concentrate on the sharp end of the product design process? Companies and consultancies pay their staff to be well informed about design and process technology and, if these people can't hack it, they should consider a job in hair dressing or the legal profession. The Government has no place in persuading people to do what should naturally be part of their job.

It makes sense to stimulate the health of the infrastructure by ensuring a supply of well educated and motivated people who leave college with a training that fits more closely the needs of employers. Seed money should be used to forge
additional links between education and industry: personnel exchange programmes between the two. joint sponsorship of final year projects and applications oriented postgraduate research come to mind.
I appreciate that such things already happen but the electronics industry would benefit from more of them, much more so than by the simple funding of a few non-recurring engineering charges.
But if business currently fails to appreciate the importance of modern electronics in general design - which the Government seems to think is the case - then it is for reasons other than a specific lack of knowledge about asic chips. I suggest that industry generally fails to appreciate the worth of competent and qualified electronics engineers, an indifference which it matches in remuneration. This shortfall is definitely the responsibility of industry, not the Government.
It has to look to itself for a solution. It could begin by appointing engineers to control the plague of lawyers and accountants in company boardrooms.
When industry (and government) is prepared to pay engineering graduates (and maths and science teachers) more than this deeply unimaginative group of business professionals, we will begin to see a real change in our industrial fortune. Frank Ogden

[^0]Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. TIx 23 g 27.
USA nailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave Avenel NJ 07001 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading
Estate. Carlisle Cumbria. CA2 7NR
Typeset by Marlin Graphics 2.4 Powerscroft Road. Sidcup. Kent CA14 5DT

Radar helps police look for bodies

As the horror of 25 Cromwell Road unfurled, one could not help but be impressed with the apparent ease in which long decayed remains were discovered.
Thermal imaging systems can find living people under mounds of rubble and debris after plane crashes or earthquakes. But in Gloucestershire the remains were long dead

Searchers reverted to a method designed during the Falklands war for finding plastic mines. Called surface penetrating radar it has since found applications in archaeology, civil engineering and searching for victims of snow avalanches.
A major advantage of this type of radar over other nondestructive testing methods such as ultrasound is that an antenna can be used that is not in physical contact with the material being tested. It is therefore possible to scan large areas quickly.
Wideband radar pulses directed into the ground give rise to back-scattered energy from a target buried in a material.
Anomalies in density or dielectric constant produce reflections which are detected by the receiving antenna. A conventional radar is stationary and its target mobile. Surface penetrating radar moves and its targets are stationary.
A typical system consists of an antenna head, transmitter-receiver and a purpose designed real-time processor, storage and display unit.
Transmitting and receiving antennas are housed in an ABS plastic antenna head measuring about $50 \times 50 \mathrm{~cm}$. This assembly is moved in a regular pattern over the surface of interest. A pulse of energy - as narrow as

A typical colour enhanced image using surface penetrating radar. This civil engineering application shows petrol tanks buriad under reinforced concrete. By comparing the line drawing and the colour image you can see the concrete layer shown by the false colour line near the top. The dark patches denote the reinforcement. Below that deviations in the soil (coloured green) provide the outline of the tanks.

Ins - is repetitively transmitted into the subsurface material at an average power level of 5 mW .

A PC based processor provides an image of the internal composition of the structure in real time. A trained operator can see what is happening as the scan progresses. The system produces an enhanced image with different types of structure density being

Flexible battery charged to plastic

Researchers at Bellcore say they have created a revolutionary new type of battery that is as flexible and as light as a plastic credit card yet delivers high-energy and is rechargeable.
The lithium-ion battery offers equal or better performance than rechargeable nickel-cadmium and lead-acid batteries at half the weight. Bellcore says that the flexible battery can be shaped for virtually any application from small hand-held video games to large sizes capable of powering electric cars.
"This is the first plastic, rechargeable battery," says Jean-Marie Tarascon, leader of Bellcore's battery team. "It does not contain toxic metals, like lead, cadmium, mercury or cobalt. What's more, no liquid will leak out if the battery is cut or punctured, making it safe to install and use."

Jeff Dahn, a battery research expert and professor at Simon Fraser University says, Bellcore's plastic lithium-ion battery appears suited for portable electronics applications where a lightweight, high energy, thin battery is preferred."
The Bellcore battery does not have any liquid electrolytes and can be recharged hundreds of times without losing capacity at the same rate as comparable liquid lithium-ion batteries. The batteries' elements are permanently bonded together and covered in a waterproof barrier.
Bellcore, which is funded by US telephone companies, says that one of the first applications of the new battery will be to provide back-up electricity for central switching offices. Bellcore says it will license the battery technology to other firms.
shown in different colours
This was good enough to give a 100% hit rate in Cromwell Road because the structure of the foundations of the building was known as was the type of soil.

In use, each measurement consists of about 256 samples, each to 12 -bit resolution, and each averaged four times before being transferred every 6 ms to the processing unit The time interval between samples may be set to provide a range between 6.4 and l048ns, corresponding to depths of 0.3 to 53 m . In the wet soil conditions of the UK which are heavily attenuating - a depth of 2 or 3 m is achievable.

As well as presenting the data as a cross section, the radar can build up an area scan by taking a grid of correctly registered line scans. Selected depths may also be viewed

The choice of bandwidth dictates the compromise between depth and detail. The equipment covers the 50 MHz to 5 GHz range and involves several octaves of bandwidth. Low frequencies are normally used for deep probing, say 50 m , and high frequencies for shallow probing.

The wavelength of the transmission decreases as the velocity of propagation slows within the material, a process governed by the relative dielectric constant of the material. If the propagation velocity can be measured or derived, an absolute measurement of depth or thickness is possible.

Once the signal has been received, it has to be processed for display. This requires deconvolving the unprocessed waveform in time and space. With surface penetrating radar, the initial transmitted impulse becomes convolved with a series of responses due to the antema, the ground and so on. The only part of the signal of interest is the target impulse response. The processing techniques used to isolate this are similar to those used in seismic exploration. ultrasonic imaging and medical tomography.
The equipment was designed and operated by a team from ERA Technology. Speaking about the Cromwell Road events Keith Cheshire from the company said: "We knew what the subsoil was like. If you bury something in soil. the soil gets disturbed so its not uniform."
Another advantage the searchers had came from the way a buried body decays. The missing flesh is not necessarily replaced by the surrounding soil. This especially true for areas like the skull where, once the brain has rotted away, a tell-tale void remains which is casily picked up by the radar. When voids are discovered, grid pattern analysis can be used to measure the size of the void and make judgements about its likely cause.
For searches more complex than Cromwell Road, the data can be stored and postprocessed to get rid of clutter and enhance interesting parts. Up to 2Gbyte of data can be stored by the assembly. Fully processed data can be continuously displayed at a measurement rate of one point every 300 mm at a traverse speed of $25 \mathrm{~km} / \mathrm{h}$.
Post processing is uselul in archacology for detecting ancient burials and artifacts, or in civil engineering for assessing the condition of roads or tunnel linings.
Looking for pipes and cables may be done on the spot as can finding people trapped under snow avalanches. This last task is particularly easy for the system as snow is a uniform conductor which reflects well from changes in conductivity.
Ground penetrating radar has more difficulty with collapsed buildings because of excessive clutter and an irregular antenna datum.

Report backs digital TV

C
hannel 5 , the proposed new ГV channel should be put on hold while the ecomonics of launching a digital TV service are investigated, according to a report from Convergent Decisions, a specialist consultaney
The report gives a boost to those in the BBC and elsewhere lobbying behind the scenes for channels 35 and 37 to be allocated to a new digital TV service
A study produced last year by the Independent Television Commission suggested that the addition of these channels would not make much difference to the potential soverage of digital TV. But digital TV backers point out that channels 35 and .37 are un que because they are available across the whole country. This means they
could be used for a 'single frequency network', where one freguency is used to transmit the same digital TVV channel across the whole country. Existing analogue terrestrial TV stations each require 44 frequency chamels for national coverage.

IBM Microelectronics unveiled a single chip MPEG-? decoder at last month?s National Association of Broadeasters conference in Las Vegas. The firm joins a highly competitive market already involving several major semiconductor tirms including C-Cube, SGS Thomson and AT\&T.
"You will not find anyone with a better price at the end of this year." said an IBM spokesman. He expects the price to fall to $\$ 30$ or less in volume production.

Opto amplifier with bright prospects

R Thas claimed a breakthrough in the

 transmission of broadband services direct to the home with the development of an optica amplifier which will work with oplical pulses with a $1.3 \mu \mathrm{~m}$ wavelength.BT claims that the optical amplifier. developer in conjunction with HewletlPackard, will boost the optical signal by a factor of $1(0) 0(30 \mathrm{~dB})$. According to group leader Dr Colin Millar, that will make it possible fo transmit a $5 \mathrm{Gbit} / \mathrm{s}$ data stream over $10(0)$ m. "But these are very new results and it will be between two and five years before the amplifier is put into commercial service," said Millar
The significance of this development compared to erbium-doped optical amplifier; which are already in commercial service, is that because it boosts light at a wavelength of $1.3 \mu \mathrm{~m}$, it will work on the optical fibre systems commonly used in BT's national network. Erbiun doped amplifiers operate at the less commonly used $1.55 \mu \mathrm{~m}$ optical fibre window.

Operation at $1.3 \mu m$ has been achieved by using a new type of optical fibre known as fluoride libre. The amplifier incorporates a

20 m length of fluoride fibre which has been chemically doped to promote energy transfer frons one wavelength to a higher one. The dopant used is praseodymium (Pr^{3+}).
The optical energy is transferred from a local source at $1.047 \mu \mathrm{~m}$ to light at a wavelength of $1.3 \mu \mathrm{~m}$ which may be used to boost the carrier signal. The energy transfer is mediated by the praseodymium ions which are incorporated into the core of the fluoride fibre. The local source is a Nd:YLF solid state laser, pumped by a low power diode laser, which emits the light at a wavelength of $1.047 \mu \mathrm{~m}$. The energy in light of this wavelength matches the energy needed to excite the Pr^{3+} ions in the fibre.

The two optical signals. one from the local source and the signal to be amplified, travel together along the length of doped fibre. The photon energy of the 1.047 mm pump light matehes the energy difference between the low and excitation energy levels of the Pr^{3+} dopant and the light is absorbed by the ions in the fibre. The excited ions are unstable. and the presence of the signal light at 1.34 m is sufficient to force the Pr^{3+} ions to fall to a lower level and emit additional light at the

Spheres of influence: This electron microscope view shows an electrically conductive light weight elastomer comprising silver coated glass spheres in a matrix of silicone rubber. The material can be used for screening electromagnetic interference from telecommunications equipment, UHF and microwave radio systems, and computer controlled devices. It is claimed to provide 100 dB of shielding between 20 MHz and 10 GHz . James Waiker 0483-757575.

signal wavelength of $1.3 \mu \mathrm{~m}$.
The BT group's amplilier uses 500 mW pump power to amplify the information signal by 30 dB .
One problem BT found with using Pr^{3+} doping ions in conventional silica libre was that the excitation lifetime of the ions was too short for the secondary excitation to work. Hence the fluoride fibre with its longer excitation lifetime.
Although the 100μ s lifetime in the fluoride fibre is still along way short of the 10 ms lifetime of erbium dopant ions in conventional $1.55 \mu \mathrm{~m}$ optical amplifiers, it was sufficient to support amplification.
The optical amplifier, which will work on BT's three million km of $1.3 \mu \mathrm{~m}$ fibre, will enable the operator to increase capacity and reduce equipment costs on its trunk network. Using the amplifier on a single high bit rate carrier, BT' is confident that it can support $5 \mathrm{Gbi} / \mathrm{s}$ data transmission over 100 km of fibre. This would extend the reach and capacity of BT's trunk network which currently uses 140 and $565 \mathrm{Mbit} / \mathrm{s}$ data rates over 30 km spans.
In addition, the amplifier's 40 nm bandwidth will enable multiple signals, generated by wavelength division multiplexing, to be amplified by over 20 dB . Richard Wilson, Electronics Weekl.

PowerPC: "Pentium performance at half the price"

Growing support for the new PowerPC Imicroprocessor from Motorola and IBM was demonstrated al Cebit last month, with systems on display from Germany's three largest indigenous PC makers, and new motherboard reference designs from Taiwanese and American companies.

The German trio of Vobis. Escom an Peacock are the first mass-market PC makers apart from Apple, to demonstrate systems containing the new chip. Although
none is shipping now, all were running early versions of Windows NT on the new microprocessor.
Peacock showed a server machine based on the Sandalfoot reference design from IBM. Asked why Peacock had opled for PowerPC, Pcacock's markeling manager Christof Basener said: "We are not married to anyone in microprocessors. The PowerPC gives the performance of Pentium at half the price." David Darcy, Electronics Weckly

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$. Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8 8 , the amplifier features a distortion figure of 0.0015% at 50 W and is designed around a new approach to feedback.

Designed by Douglas himself, the fibreglass boards have silkscreened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.

Each board pair costs £45, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 0816528956. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW +WW, The Quadrant, Sutton, Surrey SM2 5AS.

SEETRAX CAE - RANGER - PCB DESIGN

Ranger1 £100

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)
* Power, memory and signal autorouter - 150

All systems upward compatible. Trade-in deals available.
Call Seetrax CAE for further information $\ d e m o$ packs. Tel 0705591037

Fax 0705599036
Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hampshire, PO8 0SG

All trademarks acknowledged.

Ranger $2 £ 599$

All the features of Ranger 1 plus

* Gate \& pin swapping (linked to schematic)
* Track highlighting
* Auto track necking
* Copper flood fill
* Power planes (heat-relief \& anti-pads)
* Rip-up \& retry autorouter

Ranger 3 £3500

All the features of Ranger2 plus

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
* Hierarchical or flat schematic
* Unlimited design size
* Any-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& retry, push \& shove autorouter

Outputs to:

[^1]VIEWDATA RETURNS f 6 madeby Tandata, indudes 1200.75 modem, KDA, RGB anc Comp Op, printer port. No PSU $\varepsilon 6$ MAGob7
IBMM PC CASE AND PSU Ideal base for building your ow PC . Ex equipment but OK. $£ 1400$ each REF: MAG 14P2
SOLAR POWER LAB SPECIAL You get TWO $6 \times 6^{\circ}$ ov 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 retay or motor Supert value kit just $£ 5.99$ REF: MAG6P8
SOLID STATE RELAYS Will switch 25A mains. Input 3.5-26 DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAGAP 10 300DPI A4 DTP MONITOR Brand new, TTLECL inputs, 15 landscape, 1200× 1664 pixet complete with dircuit diag to heip you interface with your proiects. JUST $£ 24.99$. REF MAG25P1 ULTRANINI BUG MIC 6 mmx 3.5 mm made by AKG. $5-12 \mathrm{~V}$ electret condenser. Cosi $£ 12$ ea, Ourf tourfor $£ 9.99$ REF MAG10P2 RGB/CGA/EGAITL COLOUR MONTTORS 12° in good condition. Back anodised metal case. £99 each REF MAG99P1 GX4000 GAMES MACHINES returns so ok for spares or repair $£ 9$ each (no games). REF MAG9P1
C64 COMPUTERS Retums, so ok for spares etc $£ 9$ ref MAG9P2 FUSELAGE LIGHTS 3 foot by 4^{4} panel $1 / 8^{\circ}$ thick with 3 panels that glow green when a valtage Is applied. Good for night tights, fron panels, signs, disco etc. $50-100 \mathrm{v}$ per stinp. $£ 25$ ref MAG25P2 ANSWER PHONES Returns with 2 faults, we give you the blts for 1 fault, you have to find the other yourself. BT Response 200 's £ 18 ea REF MAG18P1, BT Response 400 's $£ 25$ ea REF MAG25P3 Suitable power supply £5 REF MAG5P 12
SWITCHED MODE PSU ex equip, 60w +5V ©5A, -5v@. 5A $+12 v{ }^{2} 2 \mathrm{~A},-12 \mathrm{VQ} .5 \mathrm{~A} \quad 120 / 220 \mathrm{v}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinp sockel £6.99 REF MAG7P
PLUG IN PSU 9V 200mA DC $£ 2.99$ each REF MAG3P9 PLUG IN ACORN PSU 19V AC 14w . £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and α p leads 17V DC 900 mA output Bargal n price $£ 5.99$ ret MAG6P9
ACORN ARCH MEDES PSU +5 V © 4.4 A on/off sw uncased selectable mains Input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2
GEIGER COUNTER KIT Low cost professional twin tube complete with PCB and components. $£ 29$ REF MAG29P1 SIN CLAIR C5 $13^{13^{*}}$ wheels complete with tube, tyre and cyde style bearing £6 ea REF MAGGP 10
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. $£ 3$ a pack. REF MAG3P 11 13.8 V 1.9A psu cased with leads. Just $£ 9.99$ REF MAG10P3 360K 6.26 brand new haff height floppy dives IBMcompatble industry standard. Just $£ 6.99$ REF MAG7P3
PPC MODEM CARDS These are high spec plug in cardsmade for the Anstrad laptop computers. 2400 baud dial up unt complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equlpment but perfect for all sorts of remote control projects. Our ciearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A vey useful book for finding
SINCLAIR C5 MOTORS We have a few lef without geanoxes ThNCLAIR C6 MOTORS We have a tew left without geamoxes. These are $12 \mathrm{VVC} 3,300 \mathrm{rpm} 6^{\prime \prime} \mathrm{x}^{\prime \prime}, 1 / 4^{\circ} \mathrm{O}^{\circ}$ Shaft. $£ 25$ REF: MAG25
UNIVERSAL SPEED CONTROLLER KTT Designed by us for the above motor but suitable for any 12 motor up to 30A Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
VIDEO SENDER UNIT. Transmits Doth avdio and video signals from either a video camera, ndeo recorder, TV or Computer etc to any standard TV setina 100^{\prime} range! (tune TV to a spare channe)) 12 V DCop. Priceis $£ 15$ REF: MAG $1512 V$ PSU IS $£ 5$ extra REF: MAGSP2 -FM CORDLESS MICROPHONE Small hand held unit with a 500 'range! 2 transmit power levels. Reqs PP39v battery. Tuneable to any FM receiver. Price is $£ 15$ REF: MAG $15 P 1$
LOW COST WALKIE TALKIES Par o b battery operated units with a range of about $200{ }^{\circ}$. Ideal for garden use or as an educational

"MINATURE RADIO TRANSCENERS A pair of walke talkes with a range of up to 2 bliometres in open country. Units measure $22 \times 52 \times 15 \times m m$. Complete with cases and earpieces. 2xPP3 req'd E30.00 pair REF: MAG30
COMPOSTTE VIDEO KIT. Converts composite video into separate H sync, V sync, and video. $12 V D C$. $£ 8.00$ REF: MAGBP2. LQ3600 PRINTER ASS EMBLIES Made by Amstrad they are entire mechanical pniter assemblies including printhead, stepper motors etceetc infacteverytning bar the case and electronics, agood
stioper $£ 5$ REF MAG5P3 or 2 for $£ 8$ REF: MAG $8 P 3$ stripper! £5 REF: MAG5P3 or 2 for £8 REF: MAG8P3
SPEAKERWIRE Brown 2 core 100 foot hank £2 REF: MAG2P1 LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4 JUG KETTLE ELEMENT good general pupose heating eie ment (about 2 Kw) ideal for heating proyects 2 for $£ 3$ REF: MAG3 UNNERSAL PC POWER SUPPLY complete with fyleads, switch, fan etc. Two types avaiable 150 w at $£ 15$ REF:MAG15P2 ($23 \times 23 \times 23 \mathrm{~mm}$) and 200w at $£ 20$ REF: MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$) -FMTRANSMITTER housedin a standard working 13A adapter!! the bug runs directly off themains solasts forevert why pay $£ 700$ or price is $£ 26$ REF: MAG26 Transmits to amy FM radio.
"FM BUG KIT New design with PCB embedded coil for extra stabillty. Works to any FM radio. 9v battery req'd. £5 REF:MAG5P5 -FM BUG BUILT AND TESTED supenor design to kit. Supplied to detective agencies. $9 v$ battery req'd. $£ 14$ REF: MAG 14 TALKING COINBOX STRIPPER onginally made to retail at $\varepsilon 79$ each, these units are designed to convert and ordllary phone into a payphone. The units have the locks missing and sometimes
broken hinges. However they can be adapted for their orignal use broken ning . However they can be adapted for their ongnal use
or used for something else? Price is just $E 3$ REF: MAG3P1 100 WATT MOSFET PAIR same specas 2SK343 and $22 / 413$ ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel, 1 P channel. £3 a pair REF: MAG3P2 ($8 \mathrm{AA}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel, 1 P channel. $£ 3$ a Par REF: MAG3P2
VELCRO 1 metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) $£ 2$ REF: MAG2P3
MAGNETIC AGTTATORS Consisting of a cased mains motor whh lead. The motor has two magnets fixed to a rotor that spin round inside. There are al so 2 plastic coverec magnets supplied. Made for femotely stinng liquidst you may have a use? $£ 3$ eachREF:MAG3P3

BUCL'S
 BULCETOK BOARD
 100MHZ DUAL TRACE OSCILLOSCOPES JUST £259 RING FOR DETALS

MASSIVE

WAREHOUSE CLEARANCE
fantastic £20.00 reduction
REFURBISHED PC BASE UNTIS COMPLETE WITH KEYBOARD
from only $£ 29.00$
AMSTRAD 1512 BASE UNITS guaranteed
PERFECT WORKING ORDER.

AMSTRAD 1512SD

1512 BASE UNIT, $5.25^{\prime \prime}$ FLOPPY DRIVE AND keyboard. All you need is a montor and POWER SUPPLV. WAS $£ 49.00$

NOW ONLY $£ 29.00$
REF: MAG29

AMSTRAD 1512DD

1512 BASE JNIT AND KEYBOARD AND TWO 5.25 " 360K DRIVES. ALL YOU NEED IS A MONITOR AND POWER SUPPLY WAS 559.00

$$
\text { NOW ONLY } £ 39.00
$$

SOLAR POWER PANELS

3FT X IFT IOWAT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ NOW AVAILABLE BY MAIL ORDER £33.95

(TLUS 5200 SPECIAL PACKAGNG CHARGE)
IOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOST A TIMELESS LIFESFAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICATICNS, SOME OF WHICH MAY $E E$ CAR BATIERY CHARGING, FOR USE ON BOAIS OR CARAVANS, OR ANY WHERE A PORTABLE $12 V$ SUPPLY IS REQUIREO. REF: MAG 34

FREE SOFTWARE!

Brand new. UNUSED top qually fomous brand licensed saftware discs. A vailable in 5.25° DSDD or $5.25^{\prime \prime}$ HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFTWARE. We are actualy selling youthe floppy disc for your own "MEGA CHEAP" storage taclitites, if you happen to get software that you want/need/like as well....... you get a "MEGA BARGAIN" tool
Well....... you get a "MEGA BARGAIN" tool
DSDD PKIG $\$ 2.99$ REF: MAGSP7 PKTIOO $\$ 15.00$ REF: MAG 16
£££ffexWE BUY SURPLUS STOCK££££££
TURN YOUR SURPLUS STOCK INTO CASH
IMMEDIATE SETTLEMENT. WE WLLL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE.

1994 CATALOGUE

PLEASE SEND 45P, A4 SLZED SAE FOR YGUR FREE COPY

 NOTTCE ORDERS SEQVECT TO GTOCK
TTES HOHER THMA THOSE STATED

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT

MAIL ORDER TERMS: CASH PO OR CHEQUE WTTH ORDER PLUS £3.00 POST PLUS VAT.
pLEASEALLOW 7 - 10 DAYS FOR DELIVERY
trlaphone ordrrs whlcomi
TEL: 0273203500
EAX: 0273323077

TOP QUALTTY SPEAKERS Made for HI FI tel
these are 10 watt 4 R Jap made 4^{4} round with large shielded magnets. Good quality general purpose speak £2 each REF: wAG2P4 or 4 for $£ 6$ REF: $\mathbf{M A G 6 P 2}$ TWEETERS 2^{2} diameter good quality tw eeter 140 above speaker) 2 for E2 REF: MAG2P5 or 4 for $£ 3$ REF: with the AT KEYBOARDS Made by Apricot these quality keyboards need just a small modification to run on any AT, they work perfecty but you will have to put up with 1 or 2 foregn keycaps! Price $£ 6$ REF: MAGAP3
XT KEFYBOARDS Mixed types, some returns, some good, some foreign etc but all good for spares! Price is $£ 2$ each REF:MAG2P6 or 4 for £6 REF: MAG8P4
PC CASES Again mixed types so you take a chance next one off the ple £12REF:MAG12 or two the same for £20 REF: MAG20P4 COM MODORE MICRODRNE SYSTEM mini storage device for C64's 4 tmes faster than disc dives, 10 times faster than tapes. Complete unit just £12 REF:MAG12P1
SCHOOL STRPPERS We have quite a few of the above
SCHOOL STRPPERS We have quite a few of the above units: which are 'returns' as they are quite comprehensive units
they could be used for other projects etc. Let us know how manyyou they could be used for other projects et
need at just 50p a unit (mintmum 10).
need at just 50p a unit (mintmum 10).
HEADPHONES 16P These are ex Virgin Atlantic. You can have

8 pairs for $£ 2$ REF: MAG2P8

PRCX MTTY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB. Complete wlth fly leads. Pack of $5 £ 3$ REF: MAG: 3P5 or 20 for 28 REF: MAG8P4
SNOOPERS EAR? Original made to dip over the earpiece of telep none to amplify the sound-it also works quite well on the cable telep none to ampify the sound-lt also works quite
running along the wall Price is $£ 5$ REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just ES REF: MAG5P8 Worth it just for the very comprehensive manuall 5.25^{\prime} only
DOS PACK Microsoft version 5 Ongunal sotware but no manuals hence only E3 REF: MAG3P6 5.25° only
FOREIGN DOS 3.3-German, French, italian etc 52 a pack with manial 525" only. REF:MAG2P9
CTM 644 COLOUR MONITOR. Made to work with the CPCA64 home computer. Standard RGB input so will work with other machines. Refurbished $£ 5900$ REF: MAG59
PIR DETECTOR Made by famous UK alarm manufacturer these are his spec, long range internal units. 12 v operation. Stight marks case and unboxed (although brand new) £8 REF: MAG8P5
WINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar pane!! $£ 14$ REF MAG14P1
COHMODORE 64 TAPE DRNES Customer returns at $£ 4$ REF MAG4P9 Fully tested and working units are£12REF: MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and RS232 input/output. Ex equipment. Price is $£ 27$ REF: MAG27 MA肘S CABLES These are 2 core standard black 2 metre mains cables fitted with a 13A plug on one end, cable the other. Ideal for profects, low cost manufacturing etc. Pack of 10 for £3REF: MAG3P8 Pack of $100 £ 20$ REF: MAG20P5
SURFACE MOUNT STRIPPER Originally made as some form of high frequency amplifier (main chip is a TSA5511T 13 GHz syntinasiser) but good stripper value, an excellent way to play with surface mount components $£ 1.00$ REF: MAG1P
MICROWAVE TIMER Electronic timer with relay output suitable to make enlarger timer etc $£ 4$ REF: MAG4P4
MOBILE CAR PHONE $£ 5.99$ Well almost! complete in car phole excluding the box of electronics nomaly hidden under seat. Can be made to illuminate with 12 v also has bulth in light sensor so display only illuminates whendark. Totally convnangi REF:MAG6P6 ALARM BEACONS Zenon strobe made tomount on an extemal bell $50 x$ but could be used for caravans etc. 12v operation Just connect up and it flashes regulary) £5 REF: MAG5P 11
FIRE ALARM CONTROL PANEL High quality metal cased ala m panel $350 \times 160 \times 80 \mathrm{~mm}$. With key Comes
SUPER SRE HEATSINK Superb quality aluminium heatsink SUPER SZE HEATSINK Supert quality aluminium heatsink
$365 \times 183 \times 61 \mathrm{~mm}, 15$ fins enable high heat dissipation. No holes! $365 \times 183 \times 61 \mathrm{~mm}, 15$ ins enable
sale pnce $£ 5.99$ REF: MAG6P11
RE: garage door opening systems. You may have another use? £4 ea REF: MAG4P5
$6^{\prime \prime} \times 1 \mathbf{2 N O}^{\prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain proce just $£ 5.99$ ea REF MAG6P 12.
FIERE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P13 ideal for experimenters! 30 m for $£ 1299$ ref MAG 13P1 LOPTX Line output transformers belleved to be for hi res colour monitors but useful for getting high voltages from low ones! $£ 2$ each REF MAG2P12 bumper pack of 10 for $£ 12$ REF. MAG12P3

SHOP OPEN 9-5.30 SIX DAYS A WEEK

PDRTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and XRay detec tor. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Plezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of $5-9999 \mathrm{UR} / \mathrm{h}$ or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.

REF: MAG50

Smallest piece of metal in the world

A
single atom of a metallic element behaves very differently from the bulk metal. But at what size does that transformation start to happen? Workers at the Universities of Leiden in Holland and Essen in Germany have been searching for an answer which could have importan ramifications for electronic devices.
Most of us are familiar with some of the strange quantum effects that occur as structures get smaller and smaller. Many electronic and opto-electronic devices depend for their function on such counterintuitive phenomena as electron tunnelling.
But it is not just that ultra-small structures behave in a different way: in many respects they are different.

Any school child knows that one atom is the smallest unit of a chemical element. But if scientists were able to isolate a single atom of, say platinum (which is virtually possible thanks to scanning tumelling microscopy), it would certainly not look or behave like a metal.
Bulk metallic properties depend essentially on the highest energy bands of electrons - the conduction and valence bands - from which electrons are shared freely between all the atoms in the lump. It is these relatively free electrons that are responsible for such features as metallic
appearance and electrical conductivity. But if a lump of metal were progressively chopped up into smaller pieces, there would come a point when the electrons would lose their mobility and the metal would stop being a metal.
The team from Leiden and Essen performed experiments (Nature. Vol 367, No 6465) to try to discover the number of atoms below which this metal to non-metal transition occurs. Reducing the number of atoms in a lump of platinum was achieved, not with a knife. but by clever chemical synthesis of platinum cluster compounds.
Under professor Leenert de Jongh, the researchers created a whole range of compounds built round a central polyhedral cluster of platinum atoms. The atoms exist only in complete onion-like shells with well defined numbers. The Pt_{309} cluster is a fourshell member of an n-shell magic number series that goes $1,13,55,147,309,561 \ldots$
Using Mössbauer spectroscopy to examine each shell of the platinum onion. de Jongh and his team were able to discover something of the electronic environment of the atoms in each shell - this being a sensitive test of "metallicity". What they found was that the electrons associated with the 147 atom cluster behaved with the same freedom as they do in a piece of bulk

Shooting at the stars

ules Verne’s idea of shooting a satellite into space from the muzzle of a gun, looks like becoming science fact, thanks to the efforts of a group working at the Lawrence Livermore National Laboratory in California.
The continuing attractiveness of Verne`s idea, dreamed up more than a century ago, stems from the extraordinary inefficiency of today's rockets, 95% of whose take-off weight consists of fuel. To put a kilogram of human into orbit costs about $\$ 20,000$ - or about half that for an unmanned launch.

As John Hunter of LLNL put it rather graphically on a BBC World Service programme: "Right now, the cost of putting any object into low Earth orbit is the object's weight in gold."

Using a huge gun to shoot an object into space has a wonderful simplicity about it. at least from the theoretical point of view. It would have far fewer moving parts than the now-standard three-stage rocket.

Verne clearly had in mind something like the ill-fated Iraqi supergun, powered by conventional gunpowder. All very simple until you try the calculations. Even back-ofenvelope sums show that to reach escape
velocity with a conventional type of gun would require impossibly-oversized engineering.
So Hunter and his team at LLNL have adopted a different approach, albeit with slightly more modest immediate objectives They have developed what amounts to the biggest air-pistol in the world, extending the principles used in current high-velocity laboratory gas guns.

The basic idea behind such guns - many of which can accelerate a rifle bullet-sized object to $25,000 \mathrm{mile} / \mathrm{h}$ - is to compress hydrogen gas behind a rupture valve which suddenly releases the gas, propelling the projectile down a barrel.

Gun that could cut down satellite launch costs to $\$ 500 / \mathrm{kg}$

At somewhere below 147 atoms, platinum clusters stop behaving like a metal.
platinum: a 147-atom chunk of platinum behaves as a metal.

But in an earlier experiment, with gold clusters, de Jongh found that a 1.3 -atom cluster did not exhibit metallic properties. So he concludes that, somewhere between 147 and 13 atoms, there is a transition between metal and non-metal
It all may look extremely esoteric and theoretical. Until we remember that the properties of very small quantities of materials are becoming increasingly important, not just for electronic devices, but also for environmentally important chemical devices such as catalysts.

The LLNL team, realising that a scaled up version of such a gas gun would be too heavy to point skywards, have developed a two-stage version called Sharp (super high altitude research project). Sharp has an 82 m pump tube along which a one tonne steel

Supersonic launch from a light-gas gun, right and a projectile - a scramjet - in flight at Mach 8 just before entering a retaining bunker, above. In-flight glow is caused by the engine's hydrogen fuel and air friction. Flames on the right are hydrogen used to accelerate the jet along the 4in launch tube.
piston is propelled by a methane/air charge. This rapidly heats the hydrogen in the tube, compressing it to $7000 \mathrm{lb} / \mathrm{in}^{2}$ and rupturing a tensile restraint. The hydrogen then rushes into the launch tube, driving the projectile up the tube at $9000 \mathrm{mile} / \mathrm{h}(10$ and 100 t sleds are designed to absorb the recoil forces).

So far projectiles up to 10 kg have been flung into the hillside with the launch tube horizontal, though the team are hoping to conduct vertical launch tests at sites such as the Vandenberg Air Force Base in California. In the course of these tests they want to discover, for example, how their projectiles fare during their high velocity transit through the atmosphere. There would be little point in shooting satellites into space if they burnt out on the way up!

Parallel research is aimed at scaling up even this monster gun to something that would enable the team to launch a missile into orbit. Success will demand a yet-newer and more advanced approach, such as the development of a piston-less pump tube. Calculations show that while the necessary 3 km -long launch tube could be made, the

Electrons exhibit brittle behaviour

M_{i}
etals are soft and malleable: nonmetals on the other hand - whether elements or composites - are comparatively hard and brittle. Now scientists in California think they can use electronic behaviour to explain why.
At a superficial level, hardness is explained by the mobility of electrons associated with atoms. In metals these move relatively freely, whereas in covalent solids the electrons are tightly paired up.
At a structural level, the hardness of a material such as silicon is a feature of the slowness with which natural dislocations propagate through the material. Dislocations are lines in a crystal where the atoms are not perfectly arranged - a bit like a wrinkle in a
carpet. For a material to deform plastically without breaking, dislocations must propagate relatively quickly, as they do in most pure metals. But, until recently, no-one has been able to understand (at the electronic level) why the propagation of dislocations is so slow in hard materials like silicon.
John Gilman of the Lawrence Berkeley Laboratory in California has now analysed how the electronic structure of silicon changes as a dislocation slowly moves its way through the crystal.
Gilman says (Science, Vol 261, 1436) that dislocation lines do not move in a concerted fashion; instead they move through kinks that lie along their length. The overall rate at which a dislocation moves is determined by

The acceleration would be destructively great. But as Hunter points out, much of the material that would be needed to construct a space station would not be at all delicate. He also estimates that, at a rate of one launch per day, the cost of shooting material into orbit with a gun would be a mere $\$ 500 / \mathrm{kg}$ vastly less than with today's rocketry - with less than 10 s needed to get into orbit.
Simple satellites, says Hunter, will be shot into space by the year 2001 .
existing style of pump-tube exceeds current engineering limits. One idea being explored is a laurch tube in which hot compressed hydrogen is injected at various intervals along the tube, just behind the passing projectile. This would provide progressive acceleration to around $25,000 \mathrm{mile} / \mathrm{h}$ without exceeding engineering limits.

Obviously such a system, if it ever comes to fruition, would not be able to launch people (or even fragile satellites) into orbit.
the mobility of the kinks. For a kink to move, says Gilman, it has to separate a pair of electrons that lie in its way.
In the case of a hard solid like silicon, the relative slowness with which dislocations propagate is now seen to be a feature of the strength with which pairs of electrons are bound together. The greater the bonding energy, the harder the material.

By calculating the relationship between kink mobility and the electronic structure of a material Gilman has now been able to determine in detail why other important materials such as germanium and silicon carbide have the physical properties they do, and how these properties vary with temperature.

Disk technology's resistance to change

Scientists at Argonne National Laboratory in Illinois have established what they claim is a record for 'giant magnetoresistance' The effect - an unprecedented change in bulk resistance as a magnetic field is applied - has been produced by
manufacturing a superlattice of iron and chromium consisting of alternate layers of each material. The layers are about a million times thinner than a sheet of paper and are produced by magnetron sputtering - a process already employed industrially.

> Using a cone-shaped electromagnet to apply a strong magnetic field to Argonne's record breaking giant magnetoresistant material. A 250% decrease in resistance is the result.

When a magnetic field is applied to the structure, cooled with liquid helium, its resistance drops by a factor of 2.5 , beating the previous record of a two-fold reduction. Argonne's figure can also be compared with the $1-2 \%$ change typical of most magnetorestrictive materials.
The potential value of material exhibiting such a large change of resistance is in the measurement of tiny magnetic fields. Any given change in magnetic field produces a proportionately bigger electrical signal.
'Read' heads for extracting data from magnetic disks is one of the applications envisaged by the Argonne team. For this purpose, the new material is said to be about 75 times more sensitive than the nickel-iron alloys currently in use. The benefit would be that disks could be spun faster and memory access time reduced. Other possible applications include position sensors in robotics and industrial automation.
The Argonne researchers are now concentrating on creating materials that will exhibit the same giant magnetoresistive effect with lower magnetic fields.

Research Notes is written by John Wilson of the BBC World Service.

KENWOOD
 TEST \& MEASURINGINSTRUMENTS A SUPERB RANGE OF OVER 100 QUALITY INSTRUMENTS.
 Available from
 B.K. ELECTRONICS

FM-AM Signal Generators * Colour Pattern Generators \star Video Signal Analyser *Video Timing Analyser * Video Noise Meter
\star Distortion Meter \star Waveform Monitors

* Vectorscopes *Audio Generators * Wow and Flutter Meters \star Electronic Voltmeters
\star Digital Multimeters \star Function Generators * Frequency Counters *Bus Analyser
* Resistance Attenuator * Dscilloscopes * Fully Programmable Digital Storage Oscilloscopes *RegulatedD.C. Power Supplies
A free, 50 page colour brochure, including price ist, is available on request. Please make your request on company headed notepaper, by post or by fax, to
B.K. ELECTRONICS Unit 1 Comet Way, SOUTHEND-ON-SEA, ssex, 5S2 6TR Tel.: $0702-527572$ Fax:0702-420243

6A 100 V SIMILAR MR751
1A GOOV BRIDGE RECTIFIER
1A GOOV BRILGE RECTIFIER
4A MOCV BRIDGE
6A 10CVV BRIDGE
10A 2000 BRIDGE
25A 4GIOV BRIDGE $£ 2.50$
2KBPC.2 IN LINE 2A ZOOV BRIDGE REC

SCFS
PULSETRANSFORMERS $1.1+1$ 2P4MEQUIVC106D TICV1960 2006 D … MEVVZ1PROG ${ }^{\text {21. }} 3.25$ MEUZ1 PROG. UNIJUNCTION

TRIACS

\qquad DIACS 4/£1
NEC TRIAC ACOBF 8 A 600 V TO220 5/K2 100/E30
TXAL:2258A 500V 5 mA GATE BTA $00-4001$ SO TAB 400 V 5 mA GATE TRIAC 1 A 800 V TLC 381 T 16 k AVAILABLE 2/81 100/\&35

CONNECTORS

PHOTO DEVICES
HI BRAGHTNESS LEDSCOX24 RED
SLOTTED OPTO.SWITCHOPCOAOPB8 15
2N5777
TIL81 PHOTO TRANSISTOR
TIL 38 INFRA RED LED
4N25, OP 12252 OPTO ISOLATOR
MELIZ(PHOTO DARLINGTON BASE NC)
LED'S RED 3 Or 5 mm $12 / 21$ 1. 10 I
FLASHING RED OR GREEN LED $5 \mathrm{~mm} 5^{\circ}$
HIGHSPEED MEDIUM AREA PHOTODIODE RS651 995.

STC NTC BEAD THERMISTORS

G22 $220 \mathrm{R}, \mathrm{G} 131 \mathrm{~K}, \mathrm{G} 232 \mathrm{~K}, \mathrm{G} 2420 \mathrm{~K}, \mathrm{G} 5450 \mathrm{~K}, \mathrm{G} 25200 \mathrm{~K}$,
RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE
RES $2^{\circ} 0^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE
FS $22 B W$ NTC BEAD INSIDE END OF 1 GLASS PROBE RES
$20^{\circ} \mathrm{C}$ 200R
A13 DIIRECTLYHEATED BEAD THERMISTOR ik res ideal for audia Wien Brage Oscillator
CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$
10R 20R 100R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K 100 K 200 K 500 K 2 M 50 p e IC SOCKETS
$\begin{array}{ll}\text { 14/1G } 18 / 20 / 24 / 28 / 40-\text { WAY DIL SKTS } & \S 1 \text { per TUBE } \\ \text { B-WAYDIL SKITS } & \text { §2 per TUBE }\end{array}$ 8-WAY DIL SKITS
32-W.AYTURNED PIN SKTS
£2 per TUBE SIMA SOCKET FOR 2×30-way SIMMS

PQLYESTER/POLYCARB CAPS \qquad

PLESSEY ICS EX-STOCK

SL 350 G SL 360 G SL362C SL403D SL423A
SL.5"1B SL523C SL541B SL850C SL1021A
MONOLITHIC CERAMIC CAPACITORS
10 n 50 V 2.5 mm or 5 mm
100 m 50 V 25 mm
00m 50 V 25 mm or 5 mm
1000 ax long leads

TEL. 0279-505543
FAX. 0279-757656
POBOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM232RX

SEND 1 STAMPS FOR CURRENT IC + SEMI STOCK LIST - AL.̇O AVAILABLE ON

MAIL ORDER ONLY

IV CASH ORDER £5.00 OFFICIAL ORLERS WELCOME MIN ACEOUNT ORDER \&1C.OO
P\&P AS SHOWN IN BRACKETS (HEAVY ITEMS) OTHERWISE 95D

ADD $17 \frac{1}{2} \%$ VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

Opto-electronic components find wide usage in measurement, production control, scientific and consumer applications. Nearly all uses have a common requirement for photodetection in the presence of ambient lighting while others must preserve system bandwidth. Tore Nielsen presents a circuit designer's guide to opto-electronics.

OPTO-ELECTRONICS BY DESIGN

Light sensitivity is common to all semiconductors but the effect is optimised in the photodiode. It may be thought of as a current generator controlled by light. The current generator aspect is almost ideall: the main limitation is the parallel capacitor intrinsic to the relatively large semiconductor junction, and the diode characteristic if the diode is forward biased. The latter may even be considered a feature in some applications.
Silicon photodiodes are sensitive to wavelengths from 400 nm to 1100 nm which takes in the visible spectrum from 400 nm to 700 nm , but the sensitivity peaks at 900 nm in the near infrared spectrum. Germanium photo devices operate from 400 nm to 1800 nm with a peak around 1500 nm . They exhibit a lower sensitivity in the visible range than the silicon diode.
The photo current is proportional to the illumination for eight or more decades, and is downward limited only by the dark current (leakage current) which may be as low as 5 pA for some diodes. Fig. 1 shows the equivalent circuit for a photodiode

Photodiode interface

The pholodiode is easily interfaced to an inverting amplifier (Fig. 2). The low input resistance at the inverting input effectively shorts the diode thus reducing the
inlluence of the parallel capacitor. The output voltage the product of $R_{1} \times I_{\mathrm{p}}$, is proportional to light and positive with respect to ground.
Typical device sensitivity would be about $80 \mathrm{nA} / \mathrm{l} \times$ (see box for an explanation of the lux unit). With feedback resistor R_{1} set at $120 \mathrm{k} \Omega$ the output voltage equals $10 \mathrm{mV} / \mathrm{x}$, saturating the amplifier at 1000 x . The output could leed a comparator to initiate some action when the input exceeds a certain level, or the circuit could be used in a feedback loop to control illumination.
The classic use for an infrared receiver is to detect an optical pulse stream from a remote control handset or whatever. The absolute level of the illumination is unimportant and is rejected with a differentiating network. This is the idea behind Fig. 3 where the photodiode is reverse biased and capacitively coupled to the amplifier. High pass filter time constant $C R_{2}$ could also be used to suppress low frequency interterence Reverse biasing may increase the sensitivity slightly for some photodiodes, but the main purpose is to accept the photo current emerging from the absolute level of illumination without affecting the function. It R_{2} is $10 \mathrm{k} \Omega$, the circuit would accept some 150001 x before forward biasing the diode.
The bias resistor may inject noise from the power sup-
ply into the amplifier input with a gain of R_{1} / R_{2}. The photodiode power supply should be decoupled to reduce this effect.
The transient response of the circuit tends to be limited by amplifier performance rather than the response of the photodiode; risetime of the photodiode is typically 20 ns when feeding a $50 \Omega 2$ load.
If the photodiode is connected to the high impedance input of the amplifier (Fig. 4), the photo current develops a voltage across the diode, creating a forward voltage across the junction. This varies logarithmically with current - some 60 to $100 \mathrm{mV} /$ decade - and would typically be about 450 mV at 10001 x effectively compressing the useful luminance range to a convenient scale. A microprocessor fitted with a suitable a to d converter can convert this directly to light measurement units.
The following design originated from this basic circuit.

Light meter

The light meter in Fig. 5 uses two photodiodes with different optical filters, to create an instrument for measurement in the visible light or near infrared spectrum. The sensitivity characteristics of the two photodiodes are shown in Fig. 6. The optical bandpass filters are centred at 550 nm (green) and 950 nm (infrared) and are approximately 200 nm wide.
The instrument features a peak hold rectifier for pulse measurement and an output for an oscilloscope. The logarithmic conversion could have used the photodiodes. but the pulse response was too slow to be of practical use. Logarithmic conversion diodes were used instead. If the instrument is intended for operation below 11x then the IN4148 diode should be subssituted with a low leakage type. The instrument is calibrated by the injection of a known (negative) current at the virtual ground node of the input amplifiers.

The Siemens $B P W 2 /$ has a sensitivity of $10 \mathrm{nA} / \mathrm{lx}$, so 1 mA should read 1000001 x on the instrument scale. The current is reduced in decade steps for the other readings down to 11 x . The $B P W 2 /$ is specified to 0.011 x .
The Siemens BP 104 has a sensitivity of $17 \mu \mathrm{~A}$ at $0.5 \mathrm{~mW} / \mathrm{cm}^{2}$ and 950 nm . This corresponds to $3.4 \mu \mathrm{~A}$ at an irradiance of $\mathrm{IW} / \mathrm{m}^{2}$. For $1 \mathrm{~kW} / \mathrm{m}^{2}$ the current is 3.4 mA , and read-
ings are ob:ained in decade steps down to $1 \mathrm{~mW} / \mathrm{m}^{2}$.
Bright surlight has the equivalent radiance of $1 \mathrm{~kW} / \mathrm{m}^{2}$.

Fig. 1. Equivalent circuit for the photodiode. The capacitance is 10 to 500 pF , and the resistance represents the leakage current.

Fig. 2. Photo detector for high speed operation. Output is proportional to illumination level.

Fig. 3. Photo diode capacitively coupled to increase the amount of extraneous light accepted and to suppress low frequency interference.

Fig. 4. Photo detector with output voltage proportional to the logarithm of the photo current for eight or more decades.

The circuit exhibits a temperature coefficient of approximately $-0.5 \% /{ }^{\circ} \mathrm{C}$. primarily caused by the IN4148 diode forward voltage change with temperature. It thus requires some form of temperature compensation for serious use. The basic instrument read correctly over the range 1 to 50001 x compared to a Gossen luxmeter using a tungsten filament lamp source. Fluorescent lamps illuminating 20001x read some 50% low.
This is because the BPW2 I is specified for use with a tungsten filament lamp. The photodiade sensitivity above 700 nm adds extra energy from the filament lamp infrared radiation. This radiation is missing in the fluorescent lamp, leading to under reading.
No comparison against a reference has been performed in the infrared spectrum.

The infrared emitter diode

Popolar infrared emitting diodes come in two sorts: 880 nm GaAlAs diode and the 950 nm GaAs diode. The emitted spectrum (Fig. 7) indicates a good match between a GaAlAs emiter and the unfiltered photodiode, and between a GaAs emitter and the IR filtered photodiode.
Visible leds may of course be used as light sources, but the photodiode efficiency is reduced significantly below 900 nm and the current rating of the visible light emitting diode is lower. In addition the interference from visible light sources, such as fluorescent lamps, are hard to eliminate without filtration.
Detection of objects on a conveyer belt represents a typical application. Fig. 8 shows a minemalist interrupter circuit. The Telefunken CQS47 IR led develops a radiant intensity of $0.023 \mathrm{~W} / \mathrm{sr}$ at 950 nm at 100 mA , giving an irradiance of $0.033 \mathrm{~W} / \mathrm{m}^{2}$ at 1 m distance.
The receiving diode photocurrent develops a voltage across the $33 \mathrm{k} \Omega$ series resistor. To reach the 3.3 V needed to switch the 74 HC 14 Schmitt gate, the photocurrent should reach $100 \mu \mathrm{~A}$. The Telefunken $B P V 23 F$ photodiode sensitivity is $6 \mu \mathrm{~A}$ at $1 \mathrm{~W} / \mathrm{m}^{2}$. This equates to an irradiation of $16 \mathrm{~W} / \mathrm{m}^{2}$ to produce $100 \mu \mathrm{~A}$ photocurrent.
The required distance between emitter and photodiode is easily found by iteration. Reducing the distance to a tenth of the previous distance increases the irradiation one hun-

Fig. 5. Battery powered light meter with selectable visible light or near infrared light filters. Optional peak hold rectifier (minimum 50 5 s pulse width) and output to oscilloscope.

OPTO-ELETRONICS

Fig. 8. Optical reader with 45 mm detection range. See text for a discussion of the power dissipation.
dred times to $3.3 \mathrm{~W} / \mathrm{m}^{2}$ at 100 mm . Reducing the distance by a half increases the irradiation four times to $13.2 \mathrm{~W} / \mathrm{m}^{2}$ at 50 mm . Reducing the distance 10% increases it by 21% to the required $16 \mathrm{~W} / \mathrm{m}^{2}$ at 45 mm distance.

Calculated distance is based on typical val-
ues of emitter diode efficiency and photodiode sensitivity. The tolerance is approximately $+50 .-30 \%$ for both the led and photodiode.
Increasing separation distance between led and photodiode requires a square law power increase. Two series connected diodes would double the radiated power, increasing maximum separation by 1.4 times the distance available with one diode. Doubling the separation requires four diodes, etc.

The speed of the reader is set by the diode capacitance (20 pF), the $74 \mathrm{HC} / 4$ input capacitance (7 pF) and the load resistor ($33 \mathrm{k} \Omega$), a time constant of $1 \mu \mathrm{~s}$, so the reader should catch up with almost any moving object.
With 100 mA forward current and a terminal voltage of 2.8 V the power dissipation in the led is 0.28 W , and with a themal resistance of
$270^{\circ} \mathrm{C} / \mathrm{W}$, the resulting temperature rise is $76^{\circ} \mathrm{C}$. The led exhibits a power output temperature coefficient of $-0.8 \% /{ }^{\circ} \mathrm{C}$ resulting in a loss of some 60% of the emission. The diode should not normally be used in continuous mode at 100 mA forward current.
At higher output intensity the led must be pulsed. This opens possibilities for modulated carrier systems.

Pulsed transmitter

The transmitter circuit shown in Fig. 9 produces high intensity pulses. The radiant intensity of the Siemens LD274-2 IR led is between 50 and $100 \mathrm{~mW} /$ sr at 100 mA , producing a typical $0.33 \mathrm{~W} / \mathrm{sr}$ at the peak current level of 450 mA . The pulse width of 5μ s is a practical lower limit for pulsed operation since the

Power, radiation and calibration

The earth receives approximately $1 \mathrm{~kW} / \mathrm{m}^{2}$ from the sun at the surface of the earth. Photodiode conversion efficiency is approximately 0.6 AW at wavelengths approaching the maximum sensitivity. If the photodiode has an active area of $1 \mathrm{~mm}^{2}$, the received power would equal 1 mW , generating 0.6 mA of current.
A BPX43 photo transistor with a glass lens generated 2 mA in the collector-base diode (and 1 mA in the emitter-base diode) when subjected to direct sunshine. With an active area of $0.675 \mathrm{~mm}^{2}$ this indicated an effective magnification of about five times due to the lens action.
A tungsten lamp filament is heated with the intention of creating visible light. Most of the radiation is infrared, invisible to the human eye. Just one tenth falls inside the visible range. A third is radiation below 1100 nm , useful to the photodiode, while the remaining two thirds are wasted as heat.
The radiated power from a domestic 40 W bulb can be considered equally distributed in any direction. If this light source is placed at the centre of a sphere of radius R (Fig. a), the power P is distributed across the sphere surface of $4 \pi R^{2}$, creating an irradiation of,

$$
\mathrm{Ee}=P / 4 \pi R^{2}=3.2 \mathrm{~W} / \mathrm{m}^{2}
$$

at a radius of 1 m . At wavelengths visible to the photodiode the useful irradiation is approximately one third of the total or $1 \mathrm{~W} / \mathrm{m}^{2}$.

The illumination from the 40 W bulb was measured to 4001 x at

0.3 m , indicating a correlation between illumination and irradiation of 401 x to $1 \mathrm{~W} / \mathrm{m}^{2}$. This correlation is valid only for filament lamps operating at the same filament temperature, approximately 2500 K .
A higher filament temperature will produce more visible light. At 3000 K the correlation is 601 x to $1 \mathrm{~W} / \mathrm{m}^{2}$, at 4000 K 1001 x to $1 \mathrm{~W} / \mathrm{m}^{2}$. Photo components are usually specified at a filament temperature (colour temperature) of 2856 K (standard light A) and the above correlation enables one to perform an approximate conversion between lx and $\mathrm{W} / \mathrm{m}^{2}$. These figures should not be used for sources other than incandescent lamps.
Mains ac modulates lamp output to a depth of approximately 30% with a ripple frequency of 100 Hz . This should be borne in mind when designing opto-e.ectronics.

The fluorescent lamp produces mainly visible light although some infrared radiation will te present, probably below 10% of the total. The light may be ampli:ude modulated by a frequency of 5 to 40 kHz from electronic ballasts. Interference from fluorescent lamps may be reduced by optical filte־s.
device switching time is $1 \mu \mathrm{~s}$.
The led has a half power angle of $\pm 10^{\circ}$ but the main intensity is concentrated in a narrow beam within $\pm 4^{\circ}$. This often causes alignment problems at extreme range.
Input gating switches the transmitter on or off. The $4.7 \mu \mathrm{~F}$ filter capacitor may be omitted for decreased switching time. However, this results in a slightly distorted pulse waveform.
With the receiver shown in Fig. 8, the pulsed transmitter switches the 7 HHCl 4 buffer at 140 mm (170 mm actually measured) as compared to the calculated 45 mm distance attainable with the linear system. The pulsed operation will of course introduce some circuit complications notably some sort of sample/hold which increases the system response time to $500 \mathrm{\mu}$ s.

Fig. 9. Pulsed transmitter for 10 to 30 V operation with 6 mA current consumption. The 555 cmos timer is oscilating at 2 kHz with Gus pulse width and 450 mA peak led current producing some $0.33 \mathrm{~W} / \mathrm{sr}$ radiant intensity at 950 nm . The gate input is connected to the return path to operate the transmitter.

Active loads

Asimple resistive load's maximum value is restricted by bandwidth limitations and overload problems from background light sources. Background light can cause enough photocurren: to forward bias the diode leading to severe losses in sensitivity.

Since most background light sources are either steady-s ate or have outputs which flicker at low frequencies, a load which is ow impedance at these frequencies but high impedance at the desired signal frequency would be ideal. Such characteristics can be achieved with an inductor.
The inductive load shown in (1) can provide a signal frequency impedance of $100 k \Omega$ while giving a very low resistance patt for background lighting photocurrent. Consequently it will operate over a wide range of light levels.

The circuit's output waveform (2) consists of a damped sine-wave whose frequency is dependent on the inductance used ard the sum of the photodiode capacitance, the inductor's stray capacitance as well as the indicated capacitor. This ringing can cause mult ple pulse detection if delays are not included in the receiver logic.

Inductors have been used in remote controls where gocd sensitivity and high background light tolerance has been required but the problems highlighted have limited the popularity of this ar roach.
The optimum characteristics provided by tee inductive load can be obtained without the disadvantages mentioned by using a n active circuit. Two configurations of the same basic active load zitcuit but with differing output polarities are given in (3) and (4).
In the first, photocurrent from the BPW41 aises the base joltage of the low noise ZTX384 via the $330 \mathrm{k} \Omega$ resistor until the tra 7 sistor's base-emitter voltage reaches about 0.7 V anc it starts to conduct. An equilibrium point is quickly reached where the transistor holds its collector voltage at around 0.8 V by acting as a current generator ; that matches the photodiode current. This equilibrium is naintained for DC or slowly varying photocurrents thus providing the photodiode with a low impedance load at these frequencie;. For the component values shown in (3), the load impedance preserited to the photodiode changes from around $1 \mathrm{k} \Omega$ at $D C$ to approact $250 \mathrm{k} \Omega$ at 50 kHz .

Load impedance of this circuit falls a little at high light levels but its main disadvantages are noise and interference rejecticn. Although at first sight it appears that high-frequency ir puts to the trarsistor are shorted by the capacitor, this does not apply to the small noise voltage generator within the device. These low level signals are amplified by the transistor. Voltage gain is g ven approximately by:

Voltage gain $=\frac{R_{c}}{r_{e}}=\frac{\text { collector load impedance }}{\text { intrinsic emitter resistance }}$
where $\quad r_{e}=\frac{26}{I_{c}} \quad\left(I_{e}\right.$ in mA$)$
with Ion background I ght levels. For instance, in a dimly lit room yielding $5 \mu \mathrm{~A}$ of photocurrent, the voltage gain given to these signals will be around 50 , leaving their level too low to be of co sequence.
Unfortunately, at light levels approaching direct sunlight, the resulting background photocurrent of ImA will raise the circuit's voltage gain up as higt as 10,300 making the noise and interference significant.

Howerer, the problen is easily dealt with. The extra emitter resistor included in the second active load circuit chan.jes this behavio .Ir dramatically. The woltage gain of the circuit now approximates to:

$$
\text { Voltage gain }=\frac{R_{c}}{r_{e}+R_{e}}
$$

At ImA the voltage gain of the circuit has been reduced to less than 160, leaving the noise contritutions from other sources larger than those generated by the load c rcuit. The added resistor does increase the low frequency impedance of the circuit a little but t will still operate in direct sunlight. David Bradbury, Zetex plc

(3)

(4)

The photo transistor

In principle the photo transistor corresponds to a photodiode (collector-base diode) with a series connected transistor as amplifier. Gain is normally between 100 and 1000 . Rise time is significantly slower than the photodiode due to reverse transfer capacitance which is multiplied by the gain of the device (Miller effect).
A typical photo transistor circuit for direct microcontroller interface is shown in Fig. 10, a photo-interrupter. The IR emitter is gated from the microcontroller and the current is limited by a series resistor. The microcontroller repeatedly activates the led and, after a short delay. the photo transistor status is read back, and the transmitter is deactivated to reduce the power dissipation. A delay of $100 \mu \mathrm{~s}$ is necessary to switch the Siemens SFH303F-3 photo transistor.
The transistor develops a collector current of 0.5 mA at $1 \mathrm{~W} / \mathrm{m}^{2}$ and 870 nm and is reduced to 0.35 mA at 950 nm . To switch the transistor requires an irradiation of $3 \mathrm{~W} / \mathrm{m}^{2}$. Since the led is the same as that used in Fig. 8, the maximum separation between transmitter and receiver readily calculates out as 100 mm .
The photo transistor is a slow switch, because the photodiode capacitor C_{cb} is amplified by the transistor current amplification factor B. The resulting time constant equals $B \times C_{\mathrm{cb}} \times R_{\mathrm{c}}$, where R_{c} is the collector load. For the Fig. 10 circuit the time constant is approximately $30 \mu \mathrm{~s}$.

The only accessible factor in the equation for the photo transistor time constant is the collector load, R_{c}. Sensitivity too is proportional to R_{C}, so a trade off between distance and speed is necessary.

Fibre transmission

Data transmission with fibre optics is useful because of the freedom from electrical connection, crosstalk between channels and electro magnetic interference. The Fig. 10 circuit provides a useful basis for experiments with fibre technology if the serics resistor is changed to 100Ω to reduce the transmitter diode current to a safe level. The Siemens 660 nm transmitter diode $S F H 750 \mathrm{~V}$ and photo transistor receiver $S F H 350 \mathrm{~V}$ were used. connected to a 3.5 m cable of 2.2 mm diameter (1 mm core diameter).

The system operated with a minimum pulse width of $50 \mu \mathrm{~s}$, indicating suitability for data transmission to $9600 \mathrm{bit} / \mathrm{s}$. The speed limita-

Fig. 10. Optical reader with 100 mm detection range. The circuit could be used for data transmission with fibre optics.

Units and meanings

Iluminance $\left(E_{\mathrm{v}}\right)$ is expressed in lux (Ix). The illuminance is related to the spectral sensitivity of the human eye, and is zero by definition outside the visible range. An illuminance of $11 x$ is sufficient to read a paper and 1001 x is a common indoor illumination level. Starlight is some 0.001 lx and sunshine is approximately 100000 lx . At 0.25 m distance from a 60 W tungsten filament lamp (with reflector) the illumination is approximately 1000 lx .
For components intended to operate outside the visible spectrum, or at specific wavelengths, the irradiation $\left(E_{\mathrm{e}}\right)$ is expressed in $\mathrm{W} / \mathrm{m}^{2}$.
Photo current $\left(l_{p}\right)$ from the photodiode or photo transistor, when exposed to an illumination E_{V} or irradiation E_{e}, is:

$$
\begin{equation*}
I_{\mathrm{p}}=S \times E_{\mathrm{v} \text { ore }} \tag{1}
\end{equation*}
$$

where S is the sensitivity of the photo component. A typical photodiode sensitivity is $80 \mathrm{nA} / 1 \times$ or $5 \mu \mathrm{Axm}^{2} \mathrm{~W}$ (both Siemens SFH206).
Radiant intensity (l_{e}) is the radiant power from an infrared emitting diode solid angle and is expressed in watt/steradian (W / sr).

The solid angle is A / R^{2} where A is area and R radius of the sphere (see Fig. a). The full sphere is $A=4 \pi R^{2}$ and 1 sr corresponds to a cone angle of approximately 60°.

The radiant intensity I_{e} is power P per solid angle A / d^{2} (Fig. b), the power is thus the intensity multiplied by the solid angle: P $=l_{\mathrm{e}} \times A / \mathrm{d}^{2}$. The irradiation E_{e} is power P per area A, thus the power is: $P=E_{\mathrm{e}} \times A$. The relation between radiant intensity and irradiation is thus:

$$
\begin{equation*}
E_{\mathrm{e}}=I_{\mathrm{e}} / \mathrm{d}^{2} \tag{2}
\end{equation*}
$$

The irradiation is inversely proportional to distance squared, and at a distance of 1 m the radiant intensity in W/sr equals the irradiance in $\mathrm{W} / \mathrm{m}^{2}$. The distance d should be at least 10 times the diameter of the diodes to minimize errors.

The radiant intensity for an IR led is approximately proportional to the forward current and is usually specified at 100 mA . The diodes can typically accept pulse currents at 1A, but light emitting diodes exist with ratings above 10A.

The led does not distribute the emitted power evenly within the 1 sr solid angle. The half power angle is typically $\pm 15^{\circ}$.
The radiant power declines with increasing length of operation. The life of the component is defined as the time after which the radiant power has fallen to half the initial value. The average life, dependent on the operation current and ambient temperature, is approximately 10 years.

The photo receiver output voltage $\left(U_{r}\right)$ (Fig. c) is the voltage amplitude of the pulsed signal at the output of the amplifier. The photo current I_{p} is converted to voltage, and amplified to an output voltage of $I_{\mathrm{p}} . R . G$. With equations (1) and (2) the receiver output voltage becomes;

$$
\begin{equation*}
U_{\mathrm{r}}=S . R . G . I_{\mathrm{e}} / d^{2} \tag{3}
\end{equation*}
$$

With a receiver sensitivity of $5 \mu \mathrm{~A}$ at $1 \mathrm{~W} / \mathrm{m}^{2}$, a photodiode load resistance of $100 \mathrm{k} \Omega$, an amplifier gain of 100 , the receiver delivers 1.5 V at an led radiant intensity of $0.03 \mathrm{~W} / \mathrm{sr}$ and a distance of 1 m (Fig. d).

(c)

(d)

tion is the photo transistor collector-base capacitor. For high speed operation a photodiode must be used at the receiver.

Photo transistor receiver

Photo transistors may be used in fast circuits if the impedance level at the basis is relatively low, as shown in the typical input stage of Fig. 11. The base network has a dual purpose. Besides biasing, the network resistance provides the collector-base photodiode load ($150 \mathrm{k} \Omega$). The transistor acts as an impedance transformer reducing the output impedance below $1 \mathrm{k} \Omega$.

Using the $B P X 43$ photo transistor the value of C_{cb} is 20 pF at 2 V leading to a bandwidth of 35 kHz if the stray capacitance is assumed to be 10 pF . The bandwidth could be increased if the network resistance is reduced. A similar design operated at 100 kHz with $20 \mathrm{k} \Omega$ network resistance and a Honeywell SD5443 photo transistor.
The circuit exhibits a sensitivity of $5 \mathrm{mV} / \mathrm{lx}$ or 330 mV at $1 \mathrm{~W} / \mathrm{m}^{2}$ with the resistors shown. The photo transistor will accept 5001 x before saturation (the base is driven above the positive supply forward biasing the collector-base diode).

The output voltage at the emitter replicates the intensity of the incident light and should be amplified further before detection. The pulsed transmitter of Fig. 9 produces an output voltage of 110 mV at 1 m distance.

The collector of a metal can photo transistor is electrically connected to the case. This provides a potential pickup point for interference in collector output circuits and this should be taken account of at the design stage. Grounding the can to rf with the transistor configured as an emitter follower overcomes this potential problem.

Fig. 11. Photo transistor input stage for high speed operation. The photo transistor enclosure is grounded to reduce sensitivity to electro magnetic interference.

Photo diode receiver

A photodiode receiver intended for analogue signal precessing or microprocessor interface is shown in Fig. 12. The design operates at 5 V and conrects to the system with a sereened coaxial cable.
The first transistor acts as a common emitter amplifiet with a boot strapped collector load, providing a voltage amplification of 200 . The amplifier presents an input impedance of 600Ω providing a fast diode interface. The amplifier limits bandwidth to approximately 80 kHz .
The collector of the first transistor is tixed at 0.6 V providing a bias for the two-transistor output slage, the open loop gain of which is 650. This is reduced to 100 by feedback. The emitter of the pnp transistor is fixed at 1.2 V providing a bias for the photodiode without interference from the power supply. The relatively high value of the biasing resistor limits the extraneous light to some 1001 x and thus the application area to dim enviromments. The resistor value could be lowered at the expense of sensitivily or replaced by a suitable inductor. An inductor of suitable impedance at the prf allows the full ac signal voltage to be developed across it while providing a sink for the static photocurrent due to ambient light.
A suitable detector for a simple microprocessor intertace could be a comparator adjusted to accept pulses IV above the amplifier de level. The irradiation needed for 1 V output is $0.014 \mathrm{~W} / \mathrm{m}^{2}$ and with the Fig. 9 transmitter radiant intensity of typically $0.33 \mathrm{~W} / \mathrm{sr}$. the system should work comfortably at 5 m distance.
The output noise voltage is 0.1 V peak, mainly due to the illumination level. It could be reduced by increasing the cut off frequency of the high pass filters (hum suppression) and by reducing the amplifier bandwidth. Semiconductor noise is not usually a limiting
factor in opto-electronics. Detection at a 0.1 V threshold voltage (which corresponds to a range of 15 m) would be possible using a synchronous detector to integrate several received pulses.

Proximity sensors

Sensitive receivers are used in proximity sensors (the optical equivalent to radar). The sensor detects reflections from objects within the sensor proximity.A combination of the Fig. 9 transmitter and the Fig. 12 receiver provides a useful proximity detector. Using reflection from the roof the pair produced an output voltage of 0.2 V at 1.8 m distance.
The circuit of Fig. 13 is a complete proximity sensor with 0.35 m detection range and low power consumption. The $4069 U B$ hexinverter is used as six inverting amplitiers selfbiasing at half supply voltage.
The transmitter is a free running oscillator with 1% duty cycle and a pulse amplitude of 100 mA .
Tine photo transistor is used as a photodiode with internal lens, and with the metal enclosure connected to ground for shielding purpose. The collector and emitter leads are shorted to use the photo current from the emitter diotle as well, increasing the sensitivity some 50 的 to approximately $3 \mu \mathrm{~A}$ at $\mathrm{lW} / \mathrm{m}^{2}$.
Tire first amplifier stage performs the conversion from current to voltage whic the second stage provides a gain of 30 . The amplified pulse is rectified and smoothed, a pulse amplitude of approximately IV turning off the output transistor.
This pulse amplitude was reached at 0.35 m distance with a large object. As shown in the parnel the receiver voltage should reach the required pulse amplitude at approximately 0.25 m . The transmitter half power angle should be 15°.

reflected pulse is amplified and rectified. The output is active in absence from light and
has a reaction time of 30 ms .

LOW DISTORTION AUDIO OSCILLATOR

Abstract

It is a chicken and egg situation. You may wish to design the ultimate in distortion free audio equipment but can you be sure that you are measuring a residual from the equipment under test or an artifact from the test oscillator (or distortion meter) itself? This test oscillator design presented here by lan Hickman could break the dilemma.

This magazine has a long tradition of interest in audio design and measurement. Central to this are low distortion oscillators and distortion meters. and examples of both of these have appeared from time to time ${ }^{1.2}$.
The oscillator in the first reference has a claimed performance of $<0.005 \%$ THD from $20 \mathrm{~Hz}-20 \mathrm{kHz}$ and as low as 0.0005% typical (or even 0.0002% at 1 kHz , actually lower than the commonly accepted typical distortion figures for the NE5532 op-amps used), would be very suitable for evaluating the performance of a THD measuring system as described in Ref. 2. In fact, low distortion oscillators and matching THD meters form a chicken-andegg pair, with cach being (ideally) tested with a sample of the other having a level of internal distortion much lower than its own.
This aspect has prompted me to experiment
with various AF oscillators and THD meters. A trawl through my files unearthed a circuit from 1966, shown in Fig. 1; even the required layout, using turret tagstrip, is there. This circuit was designed for use with a separate external AF millivoltmeter, which would have been average responding, scaled to rms on a sinewave. Thus the indicated distortion would only approximate the true figure. See Box.
A new THD meter was designed around a state variable filter some ten years ago. This offered ranges in a $30-10-3-1$ sequence down to 0.01% fsd permitting measurements down to 0.001% or less. Its residual noise level corresponds to 0.0009% in a $20 \mathrm{kH} L$

Fig. 1. Circuit of a THD monitor designed by the author and dating from the mid sixties. Like that in Ref. 2 it was designed to be used with a separate external AF millivoltmeter
bandwidth, 0.003% in 80 kHz , far too high) and it had a built-in true rms responding indicating section using the $A D 536$ rms to dc converter. This instrument worked well and is still in use although, when making measurements at the 0.001% level, it requires suppression of the fundamental in excess of 100 dB . This is a tall order for a single notch.
This is especially the case in a THD meter where the notch must not depress signal level at twice the notch frequency where the second harmonic is encountered. The result is that any slight frequency instability in the test source, appearing as noise sidebands, will cause energy to appear either side of the notch and raise the level of the measured residual. Negative feedback, necessary to ensure a virtually flat response at second and higher harmonics of the rejected fundamental, actually causes a bit of a design problem. The flattening of the fre-

quency response is bought at the price of an increase in gain at the fundamental at an internal circuit node, as shown in Fig. 2. This is based around a Wien bridge, though a very similar argument applies whatever circuit is used to implement the sharpened-up notch.
The level of the enhanced fundamental component must of course be kept well below clipping level, limiting the permissible input level to the notch stage. This in turn reduces the dynamic range due to the reduced clearance of the signal above the wideband noise floor, providing another factor, in addition to the instrument's own residual internal distortion, lirriting the lowest level of distortion that can be observed. Despite this, a high performance THD meter should be easier to design than an oscillator, since all circuitry within the former can be linear, whereas the latter requires an amplitude control mechanism which involves some non-linearity.
The SVF-based instrument mentioned above actually, like many THD meters, responds to harmonics of the input, hum and the wideband noise floor, as well as significant spectral noise sidebands surrounding the fundamental which fall outside the notch. Useful as this instrument proved, initially there was no way
of knowing what was the level of residual distortion in the instrument itself. Thus a very low distortion oscillator was designed to provide a test source.
Some nonlinearity is needed to constrain an oscillator`s output amplitude at a suitable constant level. This non-linearity can operate on a cycle-by-cycle basis or over many cycles as with themistor control. Having a thermal time constant of nearer to a second than a millisecond, the thermistor's resistance remains sensibly constant over each cycle of the output, except at frequencies below 100 Hz . Here, it leads to 20 Hz distortion figures in the range 1% or worse for a typical design, down to 0.1% in the case of Ref. 1 (reduced at the output to $<0.005 \%$ by a distortion cancelling technique described in the article).

Fig. 2a Circuit providing a notch at one

 frequencw f. The response at $2 f$ is still $4.77 d B$ down, eventually returning to the dc value at a much higher frequency. b. By enclosing the notch circuit within an NFB loop, the response can be sharpened up to be no more than a fraction of a $d B$ down at second harmonic. However, internal to the loop, the response at the fundamental is actually peaked up significantly.
Chicken and egg measurement

It is very difficult to design a really low distortion oscillator using this approach. It was therefore decided to use an SL'F-based system incorporating nonlinearity operating over many cycles, effectively adjusting the loop gain. In fact, it is actually the loop phaseshift which is adjusted since, with the two integrator loop of the SVF, there is always a frequency at which the loop gain is unity. This contrasts with the approach in Ref. 2 which uses an all-pass filter based oscillator: here there is always a frequency at which the loop phase shift is 360°, so it is the loop gain which has to be adjusted to obtain a stable output. The circuit adopted is shown in block diagram form in Fig. 3a, with the operating principle explained in $\mathbf{3 b}$.
Initial breadboard results were promising, which immediately reintroduced the chicken and egg problem of measurements. This required a further piece of equipment to resolve it. As Fig. 4 shows, this comprises a passive twin-T notch filter followed by a second order Chebychev active highpass filter, forming a fourth order elliptic highpass filter. The peaking of the Chebychev highpass filter is set to compensate for the attenuation of the

AUDIO

passive notch filter at twice the notch frequency, amounting to some 8 dB relative to the 0 Hz and far-out high frequency response. In the case of channel $2(600 \mathrm{~Hz})$ shown, the LF roll-off of this elliptic highpass filter also discriminates against 50 Hz and its harmonics. The Chebychev highpass filter section is followed by a lowpass filter designed. in the case of the 600 Hz notch channel, to cut off beyond 3 kHz . With this in circuit, THD up to and including the fifth harmonic is measured, very low levels being easily seen due to the reduction in wideband noise afforded by the lowpass section. In the case of a low distortion oscillator circuit, the design will be such that often only the lower orders of harmonics are significant. But in other cases, such as a high power amplifier using a puslı-pull output stage. higher order distortion components due to, say, crossover effects may be present. In this case, the lowpass section would be inappropriate, so provision is made to switch it out.
The adjustments shown provide a sensibly flat response from the second harmonic of 600 Hz upwards (or from the second to fifth harmonics, inclusive). The through gain in the flat position is approximately unity (actually somewhat higher), while it is arranged that with a notch channel in circuit, the gain over the specified range of harmonics is increased by exactly 40 dB . Thus when used in conjunction with an existing THD meter, the 10% distortion range becomes 0.1% fsd, the 1% range becomes 0.01% etc.
Clearly, when making measurements using a notch channel, the effect of any internal noise or distortion in an associated THD meter is reduced by a factor of 100 , while due to the protection afforded by the passive twin T notch there should be a negligible contribution to distortion from the notch channel itself, though it will of course contribute its own noise.
The 20 Hz channel uses exactly the same circuit arrangement as the 600 Hz channel, with again the option of switching the lowpass section in or out as desired. However, the 10 kHz

Fig. 3a. Block diagram of the SVF-filter based low distortion oscillator described in this article. The filter selectively amplifies the fundamental component of the output of the variable gain amplifier, discriminating against any harmonic distortion present.
b. Showing how the BP output, lagging the HP by a fraction less than 90° (much exaggerated for clarity), looks as though it is leading by just over 90°, as $A 2$ is an inverting integrator. Similarly $L P$ with respect to $B P$, so LP lags HP by slightly less than 180° and cannot by itself provide the necessary input to the filter $V_{\text {in }}$ to produce the output shown. Addition of a fraction $1 / Q$ of the BP output increases the phaseshift to 180° and gives a voltage equal to the required $V_{i r}$ causing oscillation.
channel is somewhat different. The twin T section is followed by a buffer/ 10 dB gain stage like the others, but this drives two state variable filters, one tuned to 20 kHz and the other to 30 kHz . The outpuss of these are combined in the output buffer amplifier.
With this notch box in use ahead of a conventional THD meter, the measurement is no longer an "everything else" measurement, especially with the lowpass section in circuit. The great disadvantage is that measurements are confined to the three test frequencies catered for. Of course, additional channels could be provided, but the added complexity rapidly becomes cumbersome.

The low distortion oscillator

With means to hand to examine distortion levels below -115 dB relative to the fundamental ($<0.00018 \%$) work on the development of the low distortion oscillator became possible. When working at low levels of distortion, layout becomes just as important as it is in an RF circuit, so breadboarding was abandoned in favour of discrete wiring on a commercial prototyping PCB.
The intention was to use the state variable filter running at the highest practicable value of Q , to filter a low level, low distortion sinewave drive. The SVF circuit was therefore tested running without any intentional quadra-
ture feedback, either negative or positive, providing in theory a filter with an infinite Q . At low and middle frequencies, the inevitable fractional shortfall of phaseshift in each integrator meant that the loop phaseshift fell fractionally short of 360° and the circuit was stable. But on switching to the $2-20 \mathrm{kHz}$ range, at the higher frequency settings the three opamps in the loop were beginning to contribute a mite of phaseshift each, leading to oscillation when the frequency was set to 17 kHz or higher. This was compensated out by providing a touch of phase advance. which turned out to be not quite so simple.
A single capacitor between the lowpass (LP) output and the virtual earth of the highpass (HP) stage will certainly stabilise the circuit, suppressing any tendency to oscillate at 17 kHz or above, but the damping it provides becomes quite excessive at 20 kHz , leading to a low Q at this frequency. The phase advance was therefore distributed between all three stages within the basic loop, each capacitor being provided with a series resistor to limit the phase advance as shown in the full circuit diagram, Fig. 5. The required value of capacitance at the HP stage virtual earth, 5 a was so small that it was provided by two 20 mm lengths of wire-wrap wire, twisted more, or less, as required.
Now, a small quadrature (negative damping) term was taken from the BP output via an operational transconductance amplifier (OTA) and added in at the HP stage virtual earth. When this is just sufficient to bring the loop phaseshift up to 360°, the circuit will oscillate (Fig. 3b). A current source provides the I_{abc} bias current required by the OTA, but it is arranged that as the amplitude of the oscillation increases beyond a certain threshold, the peak detected voltage causes a reduction of $I_{\text {abc }}$, reducing the loop phaseshift back to exactly 360° and stabilizing the amplitude at that level.
OTAs are not renowned as the lowest of low distortion devices, so the voltage applied to its non-inverting input is kept to a very low level by the $100 \mathrm{k} \Omega / 27 \mathrm{R}$ potential divider R_{17}, R_{18}.

The OTA's output current is divided between two $100 \mathrm{k} \Omega$ resistors, one grounded to ensure that its output voltage remains centred within its voltage compliance range, and one providing dc-blocked "negative damping" to the HP stage virtual earth. The voltage set by the $10 \mathrm{k} \Omega / 4.7 \mathrm{k} \Omega$ resistors R_{15} and R_{16} at the base of the pnp long-tailed pair provides a +5 V reference voltage. If the detected peak voltage is more or less than this value, I_{abc} will be reduced/increased respectively, adjusting the negative damping term as required to maintain a constant amplitude of oscillation.
The peak detector time constant of 1 s ($10 \mathrm{M} \Omega \times 1 \mu \mathrm{~F}$) is long enough to do duty on all three frequency ranges, covering $20 \mathrm{~Hz}-$ 20 kHz , though it is responsible for some rise in distortion at 20 Hz . However, increasing this time constant is not without its problems, so the values shown have been retained.

Estimating the \mathbf{Q}

To see just what Q the filter runs at, I_{abc} was reduced to zero and the value of resistance required between BP output and HP virtual earth input to just cause oscillation was determined: this value divided by the value of the resistance from LP output to HP virtual earth ($R_{3}, 100 \mathrm{k} \Omega$) gives the filter Q . The circuit oscillated over the whole $20 \mathrm{~Hz}-20 \mathrm{kHz}$ range with quadrature feedback via $10 \mathrm{M} \Omega$; over most of the range with $20 \mathrm{M} \Omega$ and some of the range with $30 \mathrm{M} \Omega$. Thus the operating Q of the loop, considered as an SVF, is generally between 200 and 300 .
In an active filter operating at such a high Q , the output amplitude would normally be very sensitive to temperature and other external factors. Here, however, the narrow range of level needed to change I_{abc} from zero to maximum results in very tight amplitude control. With a gain at the fundamental of, say, 250 times and an attenuation of three at third harmonic in each of the integrator stages, any third harmonic in the signal from the OTA should be reduced by a factor 2250 or 67 dB (a factor of -60 dB at second harmonic). So if the distortion introduced by the OTA can be held below 0.1%, the output distortion should be $<0.0001 \%$ at second harmonic, and the third even smaller... provided the op-amps in the loop have zero distortion themselves. The op$\operatorname{amp} A_{6 a}$ with its gain of 11 was included to provide a buffered amplified version of the OTA output as an aid during circuit development and testing. The voltage measured here confirms the estimate of operating Q, being $0.5 \mathrm{Vpk} / \mathrm{pk}$ at 10 kHz . This corresponds to $45 \mathrm{mVpk} / \mathrm{pk}$ at the OTA output as against $10 \mathrm{Vpk} / \mathrm{pk}$ at the LP output, indicating a Q of 220.

The oscillator lowpass output labelled $L P$ in Fig. 5a was used to drive an output section as shown in $\mathbf{5 b}$, being fed to the virtual earth of op-amp $A_{2 b}$. It can be seen that there is also a contribution from the HP oscillator output, via

Fig. 4. Circuit of the "Notch Box" used to extend the measurement range of a THD Meter, providing three spot measurement frequencies of (approx) $20 \mathrm{~Hz}, 600 \mathrm{~Hz}$ and 10 kHz .

Assuming E_{1} stands for the rms value of the fundamental of a distorted sinewave, E_{2} for that of the second harmonic component, etc., then the total harmonic distortion is given by:

$$
\text { Total THD }=\frac{\sum E_{2}^{2}+E_{3}^{2}+E_{4}{ }^{2} \cdots}{\sum E_{1}{ }^{2}+E_{2}{ }^{2}+E_{3}{ }^{2}+E_{4}{ }^{2} \cdots}
$$

By setting a reference level with a flat frequency response, corresponding to the denorrinator of (1), and then measuring the relative level of the signal with the fundamental component E_{1} notched out, this is exactly what a THD Meter measures except that in the measurements, any noise, hum or other signal present is also inevitably included.

Ideally, we might prefer to measure:

$$
\frac{\sum E_{2}{ }^{2}+E_{3}{ }^{2}+E_{4}{ }^{2} \ldots}{E_{1}}
$$

but if all components E_{2}, E_{3}, E_{4} etc. are less than 10% of the amplitude of E_{1}, then the difference due to each is less than 1%. In low distortion measurements, where the harmonics are all much less than 1%, then in pracrical terms (1) and (2) are identical.
$R_{31}+R_{35}$. This was included so that R_{31} could be adjusted to suppress any third harmonic component in the output, as described in Ref. 3. The output of $A_{2 b}$ drives $A_{3 b}$, whose feedback resistor is variable, providing tine output level adjustment. Coarse adjustment in 10 dB steps is provided by the 600Ω bridged T attenuator associated with S_{4}, and by the 0 or 50 dB pad, S_{5}. The odd value resistors R_{44-48} and R_{53-57} were made up by paralleling standard values to get within 1%.
S_{3} provides a choice of a 600Ω output impedance or (with the step attenuators set to 0 dB) a low impedance. This provides twice the maximum available peak to peak output voltage into 600Ω, but if the step attenuators are used, the first 10 dB step will no longer be accurate. Note that great care is
required in the earth routing, as indicated in Fig. 5 b, if the distortion is to go down pro rata with the output. screened lead should be used betueen the main output socket, S_{5}, S_{4} and the main circuit board.

Performance

When set up, the oscillator provided the following performance, all measurements being taken with S_{3} set to low output impedance, S_{4} and S_{5} to 0 dB , and using the notch box.

Fig. 5a. Part circuit of the SVF-filter based low distortion oscillator: oscillator section.
(a)

(b)

At $600 \mathrm{H} z$, the residual distortion can be clearly seen when directly viewing the THD meter's residual output on an oscilloscope, but with the 20 s exposure required by the scope camera, it was totally obscured by the broadband noise when photographed. In fact, the distortion is visibly virtually pure second harmonic, the figure of 0.00034% being higher due solely to the extra noise admitted in the absence of the notch box`s 3 kHz lowpass filter.
I will not pretend that the above performance will automatically result from the circuit shown: a number of stages of setting up are required. Firstly, the Burr Brown OPA2604 op-amps were not specially selected - only three samples were to hand - but they were swapped around for best results, (With a manufacturer"s quoted typical THD + noise of 0.0003% at lhHz the OPA2604 fet input dual op-amp is not the lowest distortion device available. Analog Devices $A D 797$ is supposed to deliver 0.0001 ck THD $(-120 \mathrm{~dB})$ at 20 kHz . But this is a bipolar input type. optimized for source impedances less than $1 k \Omega$. which is not convenient in the present application.
Next (with the wipers of R_{24} and R_{25} set to ground). R_{20} was adjusted for minimum distortion at 20 HI ., this control proving the most critical at low frequencies. It compensates for the input offset in the OTA, centring the signal in the latter and thus minimizing second harmonic distortion. It should not be left too far off centre. as there is then the possibility of control signal breakthrough appearing at the OTA output, leading to instability of the control loop in the $2-20 \mathrm{kHz}$ range.
The next adjustment was of R_{31}, which as already stated was included as a way of outphasing any third harmonic at the output. However, as noted in an earlier design brief ${ }^{4}$ the main distortion mechanism in the op-amps used is second order, and there was no visible
third harmonic to cancel R_{31} wats therefore set to minimise the second harmonje content at 10hHz. This just leaves the circuitry associated with R_{2+} and R_{25}. which has not been mentioned up til! now.
Op-amp A_{3} provides a means of deliberately producing an element of second harmonic distortion of any amplitude and at any relative phase angle over the full 360° of the fundamental to cancel residuals. This is added in via R_{33} to the virtual earth at the input of $A_{2 b}$. With suitable settings of R_{24} and R_{25}, the distortion at the main output at 600 Hz can be driven dow: to the point where the residual reads the same as circuit noise but this is an academic exercise. A better overall result was obtained by a compromise setting which resulted in somewhat more distortion at 600 Hz but a substantial improvement (down from 0.0016% at 10 kHz .

It might be thought that the presence of D_{2} would make the performance unduly temperature sensitive, so a test was undertaken with the osciltator's top cover removed. The 600 Hz distortion residual was monitored and hot air blown into the case, monitoring the temperature adjacens to D_{2}. At $50^{\circ} \mathrm{C}$ the distortion was unchanged from the room temperature value. The particular settings of R_{24} and R_{25} used resulted in 1.5 V pk-pk at the output of $\vec{A}_{3 \mathrm{a}}$, the waveform exhibiting a percent or so of second harmonic distortion. This is diluted by a factor of about 300 by the ratio of R_{33} to R_{34} and a

Fig. 6a. Residual distortion plus noise at 20 Hz is 0.00062%.
b. Residual noise and 2 nd +3 rd harmonic distortion with THD Meter bandwidth set to 80 kHz measured 0.00092%. Note: no significant 3rd harmonic observable.
c. As b, but THD meter bandwidth set to 20 kHz ; reading 0.00062%.

further factor set by the ratio of 1.5 V pk-pk at $A_{3 \mathrm{a}}$ output to the $10 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ at LP, to around 0.0003%.

Other matters

A number of practical details which arose may be of interest. An attempt to include a power supply within the case of the oscillator was a resounding failure, due to hum from the mains transformer's stray magnetic field.
Having produced a basic oscillator, it seemed sensible to include other facilities. The first of these enables the unit to be used as a quadrature oscillator - very conveniently done with an SVF based circuit. The HP output forms the 0° phase output, taken via a 560Ω resistor to a front panel BNC socket. The inverted BP output, obtained from BP by inverting stage $A_{6 b}$. provides an output lagging by 90° - note that although $A_{1 \mathrm{~b}}$ and $A_{2 \mathrm{a}}$. the two integrators within the loop. each provide 90° lag. the BP waveform actually leads that at HP. as they are inverting integrators.
Another $560 \Omega 2$ resistor driven from LP provides the 180° output at a third front panel BNC socket. The instrument is also provided with an input, via a front panel socket and R_{1} This may be used in two different ways. Firstly, with the oscillator running, its fre-
quency can be locked to a low level signal injected via R_{1}, simply by tuning it to the frequency of the injected signal.
Secondly, the oscillator can be disabled by setting S_{2} to the "filter" position. This has the effect of spilling I_{abc} to the negative rail, disabling the positive feedback via the OTA and stopping the oscillation. At the same time, damping is applied from inverted BP via R_{37} and R_{38}, defining the Q of the filter as $\left(R_{37}+R_{38}\right) / R_{3}=30$. Since $R_{1}=R_{3}$, the bandpass gain from IN to the 90° OUT socket (inverted BP) should simply equal Q , the measured value at 600 Hz . actually being 27 .
R_{8} is a 2 K wirewound two gang potentiometer fitted with a ten turn counting dial. As 10 on the dial corresponds to $200 \mathrm{~Hz}, 2 \mathrm{kHz}$ or 20 kHz it can act as a frequency readout if the dial reading is simply doubled. A dial reading of 10 can be arranged to correspond exactly to 2 kHz by fitting a select on test resis.tor between the top end of $R_{8 \mathrm{a}}$ (and $R_{8 \mathrm{~b}}$) and the op-amp output driving it. By selecting different a resistor for each frequency range (using additional poles on S_{1}), the top frequency on each range can be correct, without requiring exact close tolerance values for $C_{5}-C_{12}$. Frequency readout will be almost linear, with a maximum error of -3% at five
turns, due to the loading of $R_{11}\left(R_{21}\right)$ on the wiper.
This parabolic error can be reduced to a much smaller cubic error by connecting a 15 K resistor from the top of $R_{8 a}$ to its wiper (and likewise $R_{8 b}$). Some further development of the design is planned, notably affecting the fine output level control. Even using a high quality conductive plastic or cermet type, R_{41} is a possible source of excess noise in the output. A better arrangement would be a switch providing 1 dB steps, with a $0-1 \mathrm{~dB}$ continuously variable control provided by a potentiometer varying the reference voltage at the junction of R_{15}, R_{16}.

References.

1. Phase-shifting oscillator Roger Rosens Wireless World Feb. 1982 pp. 38-41
2. Portable Distortion Monitor J L Linsley Hood Wireless World July 1972 pp. 306-308 3. Design Brief: Low distortion audio frequency oscillators Ian Hickman $E W+W W$ April 1992 pp. 345. 346.
3. Design Brief: Audio op amp with its head in the clouds." Ian Hickman EW + WW July 1992 pp. 579,580 .

8 CAVANS WAY,
BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 0203650702
Fax: 0203650773
Mobile: 0860400683
(Premises shluated close to Eastern-by-pass in Coventry with easy

 Gould OS4000, OS4200, OS4020, OS245 $\begin{aligned} & \text { Irom } £ 125 \\ & \text { Hewlett Packard 1707A, } 1707 \mathrm{~B}-75 \mathrm{MHz} \text { dual ch. from } £ 275\end{aligned}$
 Hewlett Packard 1740A, $1741 \mathrm{~A}, 1744 \mathrm{~A}, 100 \mathrm{MHz}$ dual ch. from $£ 350$
Hewlett Packard 1745A-100MHz dual ch. (DMM)
 Tektronlx $2201-20 \mathrm{MHz}$ D.S.O. dual ch Tektronlx $2215-60 \mathrm{MHz}$ dual ch Tektronix $2235-100 \mathrm{MHz}$ dual ch. (portabio) rektronlx $2246-100 \mathrm{MHz} 4$ channel (as new) oktronix $2335-100 \mathrm{MHz}$ dual ch. (portable) Toktronix 465/465B - 100 MHz dual ch. $£ 750$ Tektronix $475-200 \mathrm{MHz}$ dual ch. .. $£ 450$

 Tektronlx $7904-500 \mathrm{MHz}$.. from $£ 850$ Phillips $3206,3211,3212,3217,3226,3240,3243$, 3 , from $£ 125$ to $£ 350$
$\mathbf{3 2 4 4}, 3261,3262(2 \mathrm{ch}+4 \mathrm{ch})$ 324, $3261,3262(2 \mathrm{ch}+4 \mathrm{ch})$
Solartron Schlumberger CD1740-20MHz 4 ch £250 Other scopes avaliable too
SPECTRUM ANALYSERS

Ch 727 -20GHz .. £	
Advantest TR $4131-10 \mathrm{KHz}-3.5 \mathrm{GHz}$ $£ 4500$
Hewlett Packard 3580A - 5Hz - 50KHz	¢1250
Hewlett Packard 3585A - 20Hz - 40MHz (GPIB)	£4250
Hewlott Packard 8590A - 10MHz-1.5GHz (as new)	£4500
Hewlett Packard 182T with 8559A ($10 \mathrm{MHz}-21 \mathrm{GHz}$)	£3750
¢4500	
Hewlett Packard 141 T with 8554B/8552B - (1250MHz) £1500	
Marconl 2370-110MHz	£1250
Hewlett Packard 4953 Protocol	£2500
Texscan AL51A - 1GHz	-
MISCELLANEOUS	
Anrltsu ML93B/ML92B Optical power meter with sensor	£2000
Anritau ME538C Microwave system analyser ($\mathrm{Rx}+\mathrm{Tx}$)	£3500
B\&K $2511+1621$ Vibration test set	¢2000
Bak 2511 Vibration meter.	£1500
B\&K 2515 Vibration analyser	$\underline{4500}$
Datron 1061A Autocal digital mutimeter ($61 / 2$ digits)	¢850
Datron 1071 Autocal digital multimeter ($71 / 2 \mathrm{dights}$)	¢1150
Daymare 1735 Transistor tester/sorter (with all jigs)	$¢ 5000$
Dranetz 305 Phase meter	£250
Dymar 1585 AF Power meter	£175
Dymar 2085 AF Power meter	£200
arnell RB 1030-35 Electronic load 1 Kw	$£ 450$

Farnell AMM/B Automatic modulation meter $£ 150$

 destructive coatine 2040/2060 Coating thickness computer $\&$ non Fiuka4......... ail for $£ 2000$ Fluke 8840A Multimeter (IEEE)
Fluke 515A Portabie callbrator Fluke 5200A Programmable AC catbrator Fluke 8010A Digtal multmeter
Fluke 8922A True AMS voltmeter
Fluke 95020 Current shunt Gay Milano FTMAC/FTM3C - FTM
Generai Rad 1658 LCR Digbridg Genneral Rad 1621 Precision capacitance measure................ $£ 250$ Howlett Peck 2 100cT Din Hewlett Packard 3200 VHF oscillar 10.500 mHz . amp. an Hewiett Packard 3325A Synthesizer/Function generat Hewiett Packard 3400A AMS votmeter Hewlett Packard 3406A Broadband sam Hewlett Packard 3437A System voltmeter
Hewlett Packard $3476 A$ Dital Hewlett Packard 3476A Digital multimeter Hewlett Packard 3478A Digtal voltmeter, 4 wre system, 1EEE Howlet Packard 3702B/3705A/3710A/37 16A Microwave link
 Hewlett Packard 3730A Down converter (with 3738A or 3737A) $£ 200$ Hewlett Packard 3760/3761 Data gen + error detector. Hewlett Packard 3762/3763 Data gen + error detector Howlett Packard 3777A Channel selector Hewlett Packard 3779A Primary multip
Howlett Packard $400 \mathrm{E} / \mathrm{F}$ AC voltmeter Hewlett Pack 400 E/F AC voltmeter Hewlett Packard 4204A Vector impedance meter Hewlett Packard 4204 A Oscillator $10 \mathrm{~Hz}-1 \mathrm{MHz}$ Hewlett Packard 435A Power meter (less sensor)
Hewlett Packard 456A AC curent Hewlett Packard 456A AC current prob
Hewlett Packard 415E SWR meter Hewlett Packard 5335A Universal Howlett Packard 5342A Microwave freq. count. 18 GHz Howlett Packard 7402 Recorder with $17401 \mathrm{~A} \times 2$ plug-ins Howlett Packard 8005B Pulse generator Hewlett Packard 80123 Pulse generator Howlett Packard 80138 Pulse gen. $1 \mathrm{~Hz}-50 \mathrm{MHz}^{\circ}$ Hewlett Packard 8406A Frequency comb. generator Hewlett Packard 8443 A Tracking gen/counter with 1EEE
Hewlett Packerd 8445 A Automaic Howlett Packerd 8445B Automatic presetter Hewlett Packard 8620 C Sweep oscillator mantram 110 MH Hewlett Packard B750A Storage normaliser Hewlett Packard 938A Freq. doubler Hewlett Packard 8640 B with opt 001 Kelthley 19720 MHz with 1 EEE Marconl $2019 \mathrm{~A}(10 \mathrm{KHz}-1.04 \mathrm{GHz})$ sig gen Phillips PM 2525 Multmeter WF 1 EEt
Philips PM 516710 MHz functiongen Phillps PM 5190 LF synthesizer w/th GPIE Phillps PM 5519 Colour TV pattern gen. hilips PM 5716 Pulse generator high irea. mos hillps PM 6672 1GHz mercounter WF 1EEE Phillps PM 8272 XYT chart recorder Photodyne 800 Fibre optic attenuat Projectina CH9345 Microscope Recal Dana 202 Logic analyser + 68000 disassembler acal Dana 31002 Wideband leval mesise Racal Dana 5003 Digital m/meter Racal Dana 9000 Microprocessing Racal Dan 9009 Modulation meter.......
Racal Dana 9081 Synth. sig. gen. 520MH
Racal Dana 9084 Synth. sig. gen. 104MH
Racal Dana 92420 Programmable PSU $25 \mathrm{~V}-2 A$
Racal Dana 9246 S Programmable PSU 25 V - 10 A
Racal Dana 9303 True RMS/RF level meter Racal Dana 934 TLCR databridge
acal Dana 9500 Universal limer/counter 100 MHz
Racal Dana 9919 UHF frequency meter meter 1 GHz
Rohde \& Schwarz BN36711 DigitalQ meter
Solariron Schlumb 1170 Freq. response analyser
Tektronix TM503, SG503, PG506, TG501 Scope calibrator
Tektronix 834 Data comms analyser.
W\&G SPM 12 Level meter $200 \mathrm{~Hz}-6 \mathrm{MH}$
W\&GPS 12 Level generator $200 \mathrm{~Hz}-6 \mathrm{MHz}$
W\&G SPM60 Level meter $6 \mathrm{KHz}-18.6 \mathrm{MHz}$.
W\&G PS60 Level generator $6 \mathrm{KHz}-18.6 \mathrm{MHz}$
W\&G PS6 Level generator $6 \mathrm{KHz}-18.6 \mathrm{Mhz}$
W\&G SPM6 Level meter $6 \mathrm{KHz}-18.6 \mathrm{M}$
Wavetek 157 Programmable waveform synthesise
Wayne Kerr B424/N LCR Component meter set
Wayne Kerr 4250 LCR meter (as new)
Wayne Kerr 642 Autobalance universal bridge
Weyne Kerr B905 Automatic precision bid
Weller D800/D801 Desoldering station.
Weller D900 Desoldering station
wiltron 352 Low freq. differential input phase mete
$\Sigma 1850$
C 850

SPECLAL OFFERS PLOAI demo. as new with 12 months calibration +12 months analyser, ex, demo. as new with 12 months calibration + 12 months guarantee
fitted with V24 interface. A variety of interface options avalable Ring/Fax for details. Navtel 9440 Protocol analyser, ex. demo. as new £8000 new - cost now £3500. Navtel 9410 PCB based proto
Marcont $2019480 \mathrm{KHz}-1040 \mathrm{MHz}$ gener
Marconl 2306 Programmable interiace.
Marconl 2337 Automatic dist. meter
Marconl 235620 MHz level oscillator
Marcond 2432A 500 MHz digital freq. meter
Marconi 2610 True RMS voltmeter
Marconl 2
Marcon 2831 Channel access switc.
Marconi 5390 1 GHz signal gen

Marconi 6920 Power sensor
Marconl 20....................

MANY MORE ITEMS AVAILABLE - SEND
LARGE S.A.E. FOR LIST OF EQUIPMENT ALL EQUIPMENT IS USED - WITH 30 DAYS GUARANTEE. PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING CARRIAGE \& VAT TO BE ADDED

Working towards maximum reliability, designers try to minimise the number of moving parts in their products. Nevertheless there is boom in tiny mechanisms. Hard and floppy disk drives, laptop printers. CD drives, cassette players and fax machines are just a few examples where miniature motors and solenoids are found in abundance.
Proportional to the boom in miniature moving electrical parts is the rise in demand for transistors to switch them. Even small motors, solenoids and lamps can demand significant power, particularly at switch on. High power dissipation and surface-mount PCBs however are incompatible. In SM applications, adding heat sinking or moving the power switching transistor to a cooler location is expensive. As a result, demand is highest for SM transistors that can switch more power without dissipating more heat.
A perfect transistor switches gigawatt loads without heating up. In practice, a number of parameters influence heat dissipation in switching transistors, saturation voltage being the primary factor. Mounted in traditional SOT23 surface-mount packaging, a transistor with a typical 0.5 V saturation voltage is limited to a continuous current capability of less than an amp. Any further current causes the device's dissipation capability of less than half a watt to be exceeded.
By reducing saturation voltage and increasing power dissipation, Zetex has produced surface-mount transistors capable of switching resistive loads up to 100 W with almost double the efficiency of conventional SOT23 devices.
Gain hold-up can also affect dissipation. As current through a transistor increases, its gain falls. This means that base current needed to achieve full saturation rises disproportionally with increasing collector current. If base current falls below the level needed to turn the transistor hard on at high currents, dissipation increases rapidly. The table and Fig. 1 show that gain of the FMMT transistors is significantly higher than other popular devices which also have much larger packages.

Power switching in SM packaging

Superior bipolar chip technology and enhanced lead-frame design have contributed to Super SOT

- a new surface-mount transistor family with almost double the performance of its contemporaries. Martin Eccles reports.

	FMMT618	FMMT619	BCX54	BCP54
Package	SOT23	SOT23	SOT89	SOT223
$\mathrm{BV}_{\text {CEO }}$	20 V	50 V	45 V	45 V
${ }^{\text {I }}$ C	2.5 A	2A	1A	1A
$\mathrm{I}_{\text {(Imax) }}$	6 A	6A	1.5A	1.5A
hfE(min)	200@2A	200@1A	25@0.5A	25@0.5A
$\mathrm{V}_{\text {CEf(sat) }}$	50 nV	200 mV	500 mV	500 mV
max (3) I_{C}	(1)A	(1)1A	(30.5A	©0.5A
$\mathrm{P}_{\text {tot }}$	625 mW	625 mW	iW	1.5 W

Advanced lead-frame design

By optimising thermal conductivity of the SOT23 package lead frame, Zetex has arrived at a SOT23 package with performance. To achieve this, the standard silver or gold patch plating of the lead form has been replaced by highly conductive plating. This reduces junc-tion-to-case thermal resistance from $280^{\circ} \mathrm{C} / \mathrm{W}$ to only $100^{\circ} \mathrm{C} / \mathrm{W}$.
This improvement in thermal resistance allows the package to dissipate 625 mW when mounted on a ceramic substrate measuring only 15 by 15 by 0.6 mm , or 1.25 W on an infinite heatsink. The industry norm for SOT23 packaged devices is 300 mW . For a given power dissipation, the devices run cooler than comparable products due to their low saturation voltage. Cooler operation allows increased packing densities, and in turn higher reliability and lower costs.

Matrix design

Pioneered by Zetex, the matrix chip design has had an important influence on performance, achieving even better results than large-emitter designs but without the inherent disadvantages.
In the matrix design, current distribution is uniform across the chip but there is no loss of emitter area. The ideal matrix chip is composed of an infinite matrix of vanishingly small current sinks distributed evenly throughout the emitter region, Fig. 2.
Base current is extracted through the current sinks. It is possible to fill over 90% of the base region with active emitter, achieving at the same time uniform current distribution. This reduces the saturation resistance of the transistor to such an extent that previously insignificant components of resistance become dominant. Detailed analysis of these components has led to reduction in saturation resistance.

Applications

Haring a low saturation voltage and high current capability, the 20V FMMT6 18 is useful in battery-powered applications. It can carry up

Fig. 1. Large-chip SM transistors like the BCP54 can handle the current but at a little over an amp their gain is no longer useful. The curve for the BCX54 is similar to that of the BCP device shown.

Fig. 2. In the matrix design, tiny current sinks are distributed evenly throughout the emitter region to ensure uniform current distribution without loss of emitter area. Saturation resistance is significantly reduced.

Fig. 3. Typical H-bridge driver allows full singlerail supply voltage to be applied to the motor in either polarity. Diodes may be needed to protect the transistors from transients.

Fig. 4. Base resistors in this H -bridge motor controller are selected to suit maximum output current expected. Protection diodes are not needed since the transistors can absorb inductive transients.

Fig. 5. A transistor's gain falls as its $V_{C E}$ rises so current needed to drive the H -bridge pairs can increase above that available from logic ICs. With this arrangement, only two extra transistors are needed to buffer all four bridge devices.

Fig. 6. Real input capacitance of a power mosfet gate can rise to nanofarad levels, causing significant problems if fast switching is needed. A driver pair combining high gain and high current capability can overcome this problem with a minimum of components.

Fig. 7. In some cases, 5 V logic levels cannot provide enough gate voltage swing for efficient switching. The pre-driver transistor has to have a very low storage time, resulting in a total-circuit turn-on time of only $20 n s$ when driving a $2 n F$ input mosfet.
to 2.5 A continuously and has a typical saturation rating of 130 mV . Minimum gain at 2 A is 200. Even at the device's peak current rating of 6A, gain is still more than 100 .
Further devices in the current SuperSOT range are the 50 V FMMT6 19 and four pnp types with $20,40.70$ and 100 V ratings and current handling capabilities between 1 and 1.5A.

H-bridge motor drive. Motor drivers in Hbridge format are used in a wide range of products such as disk drives, toys, coin-control mechanisms and servo systems. They provide bidirectional outputs from single-polarity supplies, usually under digital logic control.
Two npn/pnp pairs are normally used, all operating in grounded-emitter mode. By turning on one npn device and its diametricallyopposed opposite pnp device, virtually all the supply voltage can be applied across the motor. Switching the second pair reverses the supply to the motor, Fig. 3. Often, H-bridge transistors need collector-emitter diodes to protect them from regenerative currents and transients stemming from the motor.
In battery-powered applications, it is vital that as much of the supply voltage as possible is applied across the load. This maximises battery life through greater efficiency and minimises the effects of falling battery voltage.
With an FMMT618/718 pair, the circuit of Fig. 4 will handle load or stall currents to
1.5A. Adapting the circuit for lower current motors is simply a matter of increasing the base resistor values. Base current at maximum load should be 2% of collector current for the pnp types and 1% for the npns.
Saturation losses at 1.5 A total only 0.3 V and can easily be halved for lower load currents. If the circuit is used to deliver high current, logic drivers need to be able to deliver 30 mA . The diodes are unnecessary since the transistor reverse voltage rating is high enough to handle transients.
Figure 5 is for higher supply voltages or applications where logic output drive is insufficient to drive the previous circuit. Low-cost buffer/level-translators have been added. These compensate for the fall-off in gain with increasing supply voltage, which is inherent in all transistors.

Mosfet gate drive. Input capacitances of power mosfets and igbts can rise as high as tens of nanofarads. When Miller effects - i.e. amplification of feedback capacitance - are taken into account, by using the more valid method of evaluating gate charge as opposed to $C_{\text {iss }}$ for calculating effective input capacitance, values around three times higher are obtained.

To minimise switching losses, particularly in high frequency converters, it is vital that the gate capacitances are charged and discharged as rapidly as possible. Consequently driver cir-
cuits must act as low impedance voltage sources, capable of supplying large transient charge currents.
Since standard switching power supply control ICs are rarely able to drive larger capacitance mosfets adequately, a high speed buffer is often used.

Complementary emitter followers as shown in Fig. 6 can act as an ideal buffer provided that transistors of high current capability combined with high f_{T} are used. Combined, the FMMT618 and FMMT718 have these characteristics. The 10 nF effective capacitance of two IRF840 mosfets in parallel can be charged to 12 V in under $30 \mathrm{~ns}-$ a feat requiring a peak current of around 4A. Included in the the circuit is a resistor for introducing a turn-on delay without affecting turn-off performance. This component is sometimes needed to avoid cross conduction problems in push-pull output stages.

Where 5 V logic provides a pulse-width modulation, a buffer can be necessary to translate level, giving 10 V or greater gate drive for the power switches. By using an FMMT2369 switching transistor, the circuit shown in Fig. 7 converts 5 V logic drive to a 12 V gate drive signal. Driving the emitter of the 2369 from the logic output avoids signal inversion.

Storage time of the switching transistor is very short. This combines with the high gain FMMT618 to give the circuit a turn-on time of only 20 ns when driving a mosfet with an

Fig. 8. Burglar-alarm siren drive for an $8 \Omega 2$ loudspeaker is normally provided by large TO126 or TO220-packaged transistors. Using FMMT transistors not only reduces cost and size but also eliminates the need for protection diodes.

Fig. 9. In batterypowered DC converters, the key to maximising efficiency is to minimise voltage drops over all high-current paths. Next to the inductor, saturation voltage in the switching transistor is usually the biggest loss contributor.

Fig. 10. Driving a cold-cathode fluorescent lamp used in, say, computer backlighting, needs an effricient, compact converter. This design originally had SOT223 BCP65 transistors. Replacing them with smaller FMMT types reduced saturation voltage by half.
effective input capacitance of 2 nF . The FMMT7I 8 helps make turn-off times even shorter, leading to reduced cross-conduction problems in bridge or push-pull converters.
By providing excellent high-current performance in a SOT23 package. the FMMT618 and $F M M T 718$ replace SOT223 and SOT89 transistors in these gate drive circuits leading to cost and PCB area savings - particularly in very high frequency converters.

H-Bridge Siren Driver. Many modern burglar and automotive alarm sirens employ an 8Ω moving coil loudspeaker driven by a bipolar H-bridge. Handling peak output currents of 2A. traditional TO 126 or TO220 packaged output transistors require parallel collectoremitter diodes. These are needed to divert destructive reverse transients generated by the inductive load.

In Fig. 8. FMMT6 19 and FMMT720 transistors in SOT23 packaging replace these bulky and expensive leaded transistors. giving other savings too. High reverse $h_{\text {FE }}$, inherent in matrix technology. eliminates the need for parallel collector-emitter protection diodes Both FMMT619 and FMMT720 transistors conduct reverse collector current sufficiently weil to clamp any inductive transients generated by the load.
A specially designed Zetex asic provides a variable frequency drive to the SOT 23 H bridge ensuring a very loud and irritating
noise. The combination of an ASIC signal generator and SOT23 H-bridge produces a compact and inexpensive module.

DC-DC Converter. Using standard PWM controllers. it is easy to construct buck-type step-down converters with low component counts. Harder to achieve are designs that are both simple and efficient - as required for modern battery-operated equipment. The key to maximising efficiency is eliminating voltage drops in all high current areas.

In the buck converter shown in Fig. 9. the high current paths are via the $50 \mathrm{~m} \Omega$ sense resistor, the series switching transistor output inductor L_{1} and the schottky diode. Once resistance of the output inductor has been minimised the most critical aspect is the saturation voltage drop of the switching transistor. Saturation is particularly important when V_{IN} approaches $V_{\text {OUT. }}$

By using an FMMT7/8, which drops only 200 mV @ 1.5 A , this converter can operate at an efficiency of over 90% at minimum input voltage and an $l_{\text {OUT }}$ of 1.5 A . Even when output current has fallen to 200 mA . efficiency is still around 80%.

As input voltage increases, the operating gain of the switching transistor becomes more important. The high gain of this transistor minimises base drive losses, leading to high efficiencies over a wide supply range.

Fast rise and fall times of the FMMT718
allow the converter to operate at 50 kHz with minimal switching losses. At this frequency it is essential to use low ESR input and output capacitors and keep any wires carrying switched high currents very short so as to minimise rfi and output ripple.
The converter will operate from a supply of $V_{\text {OLT }}+0.5 \mathrm{~V}$ up to 16 V . Its output voltage can be set 105 V or 3.3 V by altering the value of R_{1}. The circuit will supply loads from () to 1.5 A . current limiting to around 2 A with a shorted output.

LCD backlighting converter. Cold-cathode fluorescent lamps used for portable computer Icd backlighting and similar applications require a converter generating between 1 and 2 kV to strike and run.
Standard circuits provide control of tube brightness against input supply variations and other factors such as temperatare, tube ageing etc. These circuits commonly use SOT223 transistors in the high voltage converter. This is because high currents musi be passed with minimal saturation losses if good efficiency is to be achieved.
In Fig. 10. SOT223 BCP56 transistors have been replaced with smaller FMMT619 SOT23 types. Exhibiting a saturation voltage of only 125 mV at 1 A - less than half that of the BCP56 - the FMMT6/9 not only reduces cost and PCB area, but also raises efficiency of the converter.

MARCONI TF2018 Signal Generators $80 \mathrm{KHz}-520 \mathrm{MHz}$ Synthesised $£ 650.00$
MARCONI TF2019 Signal Generators $80 \mathrm{KHz}-1040 \mathrm{MHz}$ Synthesised $£ 1250.00$
HEWLETT PACKARD 8616A MicroWave Generators $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$.......... £175.00
GIGA GRII01A MicroWave Synthesised Generators 12.0 GHz - 18 GHz £450.00
BIRD 4381 Digital RF Analyser $£ 175.00$
HEWLETT PACKARD 5256A Frequency Converters 8 GHz - 18 GHz for HP Counters £75.00

COUNTER TIMERS
FLUKE 1952B Universal counter timers 7 digit LED tested to 80 MHz $£ 65.00$
FLUKE 1953A Universal counter timers 8 digit LED tested to 175 MHz £75.00
RACAL DANA 9904 50MHz Universal Counter Timers
LED Readout with TXO Reference Oscillators now only $£ 75.00$
RACAL DANA 9915M 600MHz UHF Frequency Counters
8 Digit LED Readout with TXO £125.00
SYSTRON DONNER 6053 UHF Digital Frequency Counters 20 Hz to 3000 MHz Tube Readout £275.00

ALL EQUIPMENT IS FULLY TESTED WITH VERIFIED CALIBRATION AND COMES WITH OUR 30 DAY UNCONDITIONAL WARRANTY.

USING RF TRANSISTORS

Getting a grip on instability and load mismatch

Instability in solid state amplifiers may well be the most difficult problem a designer must face. Norm Dye and Helge Granberg review some common causes. The authors also explain the practical implications of using the vswr bridge to handle load mismatching. From the book RF Transistors: principles and practical applications.

Engineers sometimes talk ahout unconditional tability, where no matter what the load is, the amplifier does not exhibit spurious oscillations even with drive levels and supply voltages outside nominal values. But such conditions rarely exist with of amplifiers - except possibly in low power class A designs.
Instabilities can be observed in several ways. Some types may be too low in amplitude to be detected with anything but a spectrum analyser. or may appear only outside the nominal level of drive power and supply voltage. But others may become apparent through erratic tuning (if tuning elements are provided) or if current is being drawn when the drive power is removed.
At least three variables affect amplifier stability: the load (R and X): drive level and supply voltage. In mobite communications the nominal supply voltage is 12.5 V , but can vary down to as 10.5 V or as high as 16 V .
With lou level amplitude modulation and ssb. effective drive power varies with modulation. High level AM collector/drain voltage varies between zero and the maximum.
Taking into account the two latter variables. plus the R and phase angle (X) of the load, we can see how difficult it is to design a stable rf amplifier operating under these conditions. Many designers have spent hundreds of hours trying to get an amplifier to meet a stability specification even at 3:1 load mismatch.
Putting aside the drive level and supply voltage variables for a moment, it is relatively easy 10 reach stability in an amplifier operating into a resistive (usually 50S2) load.
But in real life. there is always some load mismaten. In communications, for example, the load is an antenna connected to the amplifier output through a harmonic filter. In industrial and medical applications the load can
consist of various types of matching networks presenting, at least momentarly, an undefinable load to the amplifier.
Amplifiers designed for frequency modulated communications have one fewer variable because the power input remains constant. This should make design of stable amplifiers for FM somewhat easier than for AM. Several types of instability can be identified in rf amplifiers, some are circuit or layout oriented; some are device oriented or may be a combination of both
Many oscillation modes depend strongly on non-linear effects. So they can be very difficult to analyse compared with the small-signal feedback type oscillations that are adaptable to linear circuit analysis.
Ratio of feedback capacitance to input impedance (feedback capacitance to input capacitance in a mosfet) in a power transistor determines much of its stability criteria. The higher the ratio, the greater the possibility for device stability. Normally feedback capacitance introduces negative feedback. reducing pouer gain. But at certain frequencies the feedback will turn positive due to phase delays. Clearly, devices with higher ratios of feedback capacitance to input impedance will exhibit the most stability
Transistors processed for low voltage operation generally have lower ratos, making stability in 12.5 V systems more clusive than in. say. a 50 V design. For bipolar transistors. feedback capacitance is not given in data sheets because it is not easy to measure. It is a function of many parameters such as device geometry, types and values of emitter ballast resistors and the silicon material resistivity. The ratio of input impedance/capacitance to feedback capacitance is somewhat higher with mosfets rather than bjts, and so mosfets are more stable in this respect

Fig. 2. Typical rf amplifier showing the appropriate dc feed structures and a negative feedback network.

Fig. 3. Display of half fo instability, caused by varactor effects primarily in the base-emitter junction.

Low frequency factors

One of the most common instabilities occurs at low frequencies ($1-10 \mathrm{MHz}$), where device power gain - assuming use of vhf or higher frequency transistors - can be as high as 30 40 dB .

Oscillation can be strong, but noticeable only by its mixing products with fundamental f_{0} (Fig. 1). In professional circles this display is referred to as a Christmas tree, the width of its skirts depending on amplifier bandwidth.
Frequency of oscillation, f_{1}, (Fig. 1) can be high in amplitude, but may not be detected on a spectrum analyser because of bandwidth limitations of the circuit. In some instances this low frequency oscillation can be strong enough to cause a transistor to exceed its dissipation limits and destroy itself.

It is a mode of instability that is almost completely circuit-oriented and is mostly preventable by controlling the low frequency power gain of the amplifier.
Selecting a transistor with low $h_{\text {FE }}$, controls low frequency gain, but has a minimal effect at high frequencies. Conversely, the emitter/source inductance and resistance have a larger effect in the device's high frequency gain and a lesser effect at low frequencies. Keep these values at their minimum for best amplifier high frequency performance.
Low frequency gain of the amplifier can be lowered by certain simple design practices though the available gain of the device itself remains unchanged. In a typical rf amplifier. values of the most critical de feed elements (L_{1} and L_{3}, Fig. 2) should be selected to block the low frequencies, where device gain is considerably higher than it is at the frequency to be amplified. Values should be as low as possible without resulting in any loss in power gain or efficiency.

To be on the safe side, reactances should not exceed 5-10 times the impedances at the base and collector.
Q values of L_{1} and L_{3} must also be controllable. If this cannot be done with lossy ferrite beads (L_{2} for example), parallel resistances can be used.

Common practice is to wind the chokes (L_{1} and L_{3}) over low valued ($10-50 \Omega$) non-inductive resistors. This is particularly so for the collector feed choke $\left(L_{3}\right)$ where a lossy ferrite
bead may face excessive heating at the high power level.
C_{1} (Fig. 2) must have a large enough value to bypass these low frequencies to ground. To avoid possible resonances, multiple capacitors of different values $(0.01$ and $0.1 \mu \mathrm{~F}$ for example) are sometimes paralleled.
Reactance of L_{4} is high enough to pass a minimum of the low frequencies. In fact, it should be as large as possible up to the point where ir losses start producing excessive dc voltage drop.

Capacitors C_{2} and C_{3} again are two different values and paralleled to avoid resonances. Their values should be large enough to bypass all low frequencies to ground.
The $L_{4} / C_{2} / C_{3}$ network should prevent any rf from feeding back to the de power source.
Another more effective means of reducing low frequency gain of an rf amplifier is to introduce negative feedback - the purpose of $C_{4} / R_{1} / L_{5}$ network in Fig. 2. C_{4} is merely a dc blocking capacitor. Its value is not critical. except it must be large enough to provide a low reactance at low frequencies.
Feedback slope is controlled by L_{5}, whose function is based on its increasing reactance with frequency. L_{5} is determined to produce minimum feedback at the operating frequency and maximum feedback at low frequencies, where its reactance is low.
Resistor R_{1} controls the overall level of the feedback, and its value is normally very low, except where it is used in conjunction with L_{5} to control the gain slope.
Another cause for low frequency instabilities can be the physical layout of the circuit.

Benefits of good layout

The most important point in rf amplifier layout is to provide a solid ground plane. A good ground plane will minimise generation of rf ground loops that can feed rf energy back to the input in a phase that would make an oscillator out of the amplifier.
In most cases this problem can be fixed only by making a new circuit layout - which generally proves costly.
Excessively high matching network $Q s$, and high $Q s$ of the de feed networks (if the input and output networks happen to resonate) can also result in self-oscillations at some inter-
mediate frequency. But these high $Q s$ can be prevented by following proper design guidelines.
Proper design can also prevent inductively induced feedback. Such instability is more common in hf and vht amplifiers, with lumped constant matching elements than in, for example, microstrip designs. Enough rf energy can be coupled to the inductor(s) of the input matching network, from the output, to trigger an oscillation.
Oscillation occurs at a frequency where the input-output phases approach 360° - though it may not be enough to destroy the transistor. It usually disappears and snaps to the driven frequency when input drive is applied.

A way to prevent oscillations, is to locate the input and output matching networks physically as far apart as possible, while orienting the inductors of the input and output networks in 90° angles. Electrostatic shielding may also be useful, though it has only proven effective in small-signal designs.

Varactor effect instability

In addition to multiplication, a varactor multiplier can also generate sub-frequencies if a selective circuit is provided for those frequencies. The effect is known as varactor instability, and implies that there are $2 . f_{0}$ and 3: f_{0} products present, though they would fall on the harmonics and would be hard to distinguish. Their amplitudes are probably much lower than that of the $0.5 \times f_{0}$, since system power gain is much lower at these higher frequencies.
Instead, a stronger $0.5 \times f_{0}$ spur is generated since in most cases the bandwidth extends to those frequencies and sufficient power gain is available (Fig. 3). The $0.5 \times f_{0}$ oscillation is usually of a fairly low amplitude and does not noticeably affect amplifier performance. There is no real cure for it, and it is most likely to occur in low gain amplifiers of classes B and C. One possibility may be to add a half frequency band reject filter to the amplifier output. But this only works in relatively narrow band designs.
In classes $A B$ and A, the diode junctions do not go ort of forward-conduction and the 0.5 x f_{0} phenomenon does not usually occur.

The ideal approach is to use a diplexer to
provide a proper resistive load for the amplifier at its harmonic frequencies even if there is a load mismatch at f_{0}.
Another common practice in rf amplifier stabilisation is to insert a resistive attenuator between amplifier output and load. The attenuation need only be $1-2 \mathrm{~dB}$. But there is always a power loss and so the technique is practical only where stability is more important than system efficiency.
Advantage of resistive loading is that in addition 10 isolation, the resistive load (although not 5082) is provided for the amplifier at all frequencies.
For 1 dB attenuation, the resistor would have a value of 440Ω, while for 2 dB the value would become 220Ω.

Testing stability

Testing an amplifier for instabilities can be accomplished by using a spectrum analyser to see the spurious responses (if any). An $L C$ network can simulate a load mismatch having a reflection coefficient of near unity in magnitude and all possible phase angles. Any value of load mismatch can be realised by inserting an attenuator between the amplitier output and the complete mismatch simulator (Fig. 4).
Generally, at uhf and microwave frequencies, the desired magnitude of reflection coefficient is achieved by a transmission line attenuator terminated in a short circuit. Variation in phase angle of the load reflection coefficient is accomplished with a line stretcher.

Class C amplifiers operating at low voltages are the least stable and high voltage units of classes A and $A B$ exhibit the best stability. Complete stability (no spurious oscillations) of a low voltage class C amplifier into a $3: 1$ load mismatch would be acceptable, and into 5:1 would be excellent.

Stability of an amplifier can be analysed using large-scale S-parameters. But this will not help in design. Many variatles affect stability and since it is largely circuit-layout and component dependent, computer aided design gives no guarantee of a stable amplifier. If stability measurements are unacceptable, there is little to be done except go back to the drawing board. Circuit design must be re-examined, including board layout, following the proven guidelines.

VSWR protection in load mismatching

Most transistors fail in solid state amplifiers at load mismatch phase angles that present a high current mode of operation to the output
transistor(s). The result is an increase in power dissipated by the transistor(s).
Since the temperature time constant of a typical rf power transistor dic is $0.5-1.0 \mathrm{~ms}$. any protection system (including all delays in the agefalc loop) must react faster than this.
Several methods can be used for protecting solid state rf power ampliliers against load mismatches, but reflectometer vswr sensing is most common.
The reflectometer is usuatly located in series between amplifier-output and load, and produces a voltage proportional to the amount of output mismatch. This voltage is processed and then fed back to either the power amplifier input, or one of the preceding stages, gradually reducing the power gain or completely shutting down the amplifier.
The standard rellectometer principle used here to detect rf power amplifier output mismatch is commonly known as a vswr bridge. With proper mechanical design, its use can be extended to microwave frequencies (greater

Matching networks in practice

Design calculations for matching networks can become completely meaningless unless the network components are measured at the operating frequency. For example, a 100 pF silver mica capacitor that meets all specifications at 1 MHz can have an effective capacitance of 300 pF at 100 MHz , due to its series inductance. At some frequency, this inductance will tune out the capacitance alogether leaving the capacitor with a net inductive reactance.
Values of inductance in the low nanohenry range are also difficult to achieve, since the inductance of a 25 mm straight piece of AWG \#20 solid copper wire is approximately 20 nH . Component tolerances have no meaning at vhf frequencies and above, unless they are specified at the operating frequency.
Unencapsulated mica capacitors - Unelco, Underwood, Standec, Imenco, Semco - are widely used in rf designs, from low band to uhf. They are more rugged than ceramic chip capacitors but have higher series inductances.
Unelco is a common name for these capacitors, coming in two basic physical sizes. At vhf or uhf, their real values must be adjusted according to the frequency of operation. Parasitic inductances for Unelco and Miniunelco are $1.5-2 \mathrm{nH}$ and $1-1.2 \mathrm{nH}$ respectively.

The following equation has sufficient accuracy for determining the required low frequency value when the effective value and frequency are known:

$$
C_{\text {nom }}=C /\left(1+\left((2 f \pi)^{2} L O 10^{-9}\right)\right.
$$

where C is the effective capacitance in pF, L is the parasitic series inductance in $n \mathrm{H}$ and f is frequency in MHz . Assuming a capacitance of 100 pF is required at 400 MHz , and we wish to use a Miniunelco:

$$
C_{\text {actual }}=100 /\left(1+(25) 2^{2} 1.0^{*} * 100 * 10^{-9}\right)=61.3 \mathrm{pF} .
$$

So the actual low frequency value of the capacitor required for a 100 pF effective value is almost 40% lower. The nominal value at 150 MHz would be 91.8 pF (as a comparison), which is well within the standard 10% tolerance limits for these components.
Any type of capacitor's nominal value can be calculated with this equation, as long as its parasitic inductance is known.

Various types of capacitors used in rf power circuits. From left to right (upper): a mult-layer ceramic chip, Miniunelco, standard Unelco, and two types of compression mica variables. Lower centre is a dipped mica or silver mica suitable for use up to vhf with very short leads.

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

AILTECH $533 X$ - II CALIBRATOR I HP35SC.I HP 35SD ATTENUATORS

 RACAL DANA 6000 MICROPROCESSINGDVM.
RACALOANA SOO2 WIEBAND LEVEL METR

 WANDEL \& GOLTERMAN PSSI9LEVEL GENERATOR 2SMHZ 6650 SAYROSA AMMAUTOMATIC MODULATION METER $2 G H Z$...... 1200 DRANETZ 626 A MAINS DISTURBANCE ANALYZER FITTED WITH. 6195 6036 interface $/ 6002 \mathrm{~A} d \mathrm{c}$ monitor $/ 600 \mathrm{l}$ line amalyzer/ 6006 ac monitor/ 6020

 HP435A

 GIRD COAXIAL ATTENUATOR SOOW 30CB 1000 BULK PURCHASE SPECIALS
BECKMAN DMIII DIGITAL MULTIMETERS WITHCASEPROBES ...
SOLARTRON TO4S HIGH SPECIFICATION BENCHDVM
 ALL PRICES PLUS VAT AND CARRIAGE ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopgate Street, Leeds LSI 4BB Tel: (0532) 435649 Fax: (0532) 42688 I

HEWLETT PACKARD Spectrum Analysers

HP 141T / 8555A 10 MHz to 18 GHz System Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 5} \mathbf{d B m}$
Resolve to $\mathbf{1 0 0} \mathbf{~ H z}$
Scan up to $8 \mathbf{G H z}$ full screen
HP 141T / 8554B 100 KHz to 1250 MHz System Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 2} \mathbf{~ d B m}$
Resolve to 100 Hz
$£ 1250.00$
With the purchase of any of the above systems we will supply FREE of charge one HP 8553B
1 kHz to 110 MHz RF section. Normal retail price of $\mathfrak{£ 3 5 0 . 0 0}$.
All systems covered by $\mathbf{3 0}$ day warranty All prices plus Vat and carriage

M \& B RADIO (LEEDS)
86 Bishopgate Street, Leeds LS1 4BB
Tel: (0532) 435649 Fax: (0532) 426881

than 1 GHz). UHF and microwave designs usually employ microstrip transmission line techniques, whereas lower frequency circuits favour lumped constant implementations.
In fact, up to uhf, the lumped constant concept is probably the most practical way to approach the coupling coefficient required between current line (amplifier output) and sample line to produce an output voltage of moderate amplitude. Passing the current line through a multi-turn pick-up coil achieves a tight coupling in a lumped constant system. The effect is of a transformer, with the current line as the primary and the multi-turn coil the secondary. The multi-turn winding is usually toroidal allowing magnetic material to be used as the core. increasing low frequency response.
Inductive reactance of the multi-turn winding must be greater than the load impedance of the current line at the lowest frequency of operation. But the ports are usually terminated into low reactance dummy loads equal to the characteristic impedance of the system - in most cases 50 .
High frequency limits of the vswr bridge are determined by leakage inductances and physical length of the multi-turn winding. Whenever the length of the secondary winding (sample line) equals a wavelength divided by 2^{n}, where n is an integer $1.2,3$. etc.. there will be resonances. But their amplitudes diminish as n increases. Keeping sample line length shorter than $\lambda / 16$ ensures amplitudes of any resonances are negligible.

Bridge operating principle

Voltage across the multi-turn secondary of the transformer is proportional to the current passing through the current line and number of turns in the sample line. When the amplitier has a perfect load (at $I 2$. Fig. 5) the rms ri voltage measured across the forward port (terminated with 50Ω) would be $1 /{ }_{\mathrm{mm}} / R_{\mathrm{L}}$ decreased by the amount of coupling (C_{p}) between the current line and sample line.
Similarly, the rf voltage at the reflected port relates to the rf power reflected at the output poit ($/ 2$).
If the load at the output port is totally mismatched - open or shorted - voltage at the reflected port will equal the voltage at the forward port.

To produce a useable voltage in either the forward or reflected port. coupling coefficient C_{p} should not be higher than $30-40 \mathrm{~dB}$ for power levels in the main line of $100-1000 \mathrm{~W}$. For example, if $C_{\mathrm{p}}=30 \mathrm{~dB}$ and we have a 100 W amplifier. the power appearing at the forward port of the sample line will be 100 mW and the voltage will be $(P R L)^{0,5}=$ $(0.1 \times 50)^{0.5}=2.24 \mathrm{~V}$.
Coupling coefficient C_{p} can be figured as C_{p} $=20 \log \left[\left(1+\left[1 /\left(2 N^{2}\right)\right]\right) /(1 / N)\right] \cdot N$ is the number of turns in the sample line.
Reversing the equation gives $N=10^{\mathrm{Cp/2a}}$ where C_{p} is the required port coupling coefficient in dB .
Then if $C_{\mathrm{p}}=30 \mathrm{~dB}: N=10^{30 / 20}=32$ turns (for one-turn primary).
Input-output insertion loss =
$20 \log \left[1+\left(1 / 2 N^{2}\right) \mid=0.0042 \mathrm{~dB}\right.$, and input return loss $=20 \log \left[2 N^{2}+1\right]=66 \mathrm{~dB}$.
In addition to the voltage derived from the secondary of the toroidal transformer, a voltage sample is taken from the current line using a capacitive divider ($C_{1}-C_{2}$. Fig. 5). Half wave rectified voltages are created at the junction of C_{1} and C_{2} by the transformer secondary, 180° out of phase in the case of a non-mismatched load.
Amplitudes are made equal with C_{2}. reducing the voltage to near zero at the junction of C_{1} and C_{2} until a mismatch in the load causes the phase shift to deviate from 180°.
Mechanical restrictions clearly place a limit on the circuit bandwidth. Design of extremely wide-banc and high power systems is difficult since. for high frequencies, the toroidal pickup coil should be as small as possible. while low frequencies require it to be large enough for the minimum reactance reouired.
High permeability ($\mu=100$ and higher) ferrites in the toroid are usually teo lossy at high frequencies and will heat up even at moderate power levels. For example, at 150 MHz . materials with $\mu=15$ or less have been found acceptable.
A Faraday shield employed between the current line and toroidal winding, preventing capacitive coupling between the two, can best be accomplished with a length of coaxial cable of proper characteristic impedance. The inner conductor forms the current line and the outer conductor the Faraday shield.
Normally, only one end of the Faraday
shield is grounded to prevent formation of a shorted rf loop. But if the length of the Faraday shield is considerably smaller than the ground loop, it can be grounded at both ends for nechanical reasons, for instance.
Good high frequency performance calls for a solid ground plane in the 'current line' and 'sample line` area. Otherwise the resulting ground loops may reduce the circuit frequency response or produce uneven response characteristics as a function of frequency.

Practical circuits

The circuit shown has been tested simulating a load mismatch of $5: 1$ at a power level of 1 kW at 30 MHz , and up to 200 W at 220 MHz (Figs. 6 and 7).

A fast operational amplifier such as the MC3407I - $13 \mathrm{~V} / \mathrm{Hs}$ slew rate - will allow output switching at 2 ms , rapid enough to protect the majority of of power amplifiers.
Most operational amplifiers can sink currents up to 20 mA , sufficient to turn off directly the bias voltage of an enhancement mode mosfet for example; or an emitter follower can be added for higher current requirements. In fact the op-amp output can be made the main bias source to provide the mosfet gate bias voltage.
Controlling the gate voltage of a mosfet for a gradual gain reduction would not be possible in linear operation since a steady idle current has to be used. Such cases require use of some type of voltage or current controlled if atten-

Fig. 6. RF envelope and amplifier output of vswr sensor. Horizontal scale is $2 \mu \mathrm{~s} / \mathrm{div}$. Vertical scale is $5 \mathrm{~V} / \mathrm{div}$.

Fig. 7. Sensitivity vs frequency response of the VSWR sensor at 5:1 load mismatch.

Fig. 8. A pin diode switch is used here and is adaptable with either mosfet or bjt amplifiers. A current boost for the diodes may be necessary to drive them into full conduction, depending on the type of diodes used and the signal level.

Fig. 9. Typical application for the VSWR sensor (shown in Fig. 5), where its output directly controls a mosfet gate bias voltage at a low level stage.

Fig. 10. Similar to Fig. 9, except that the VSWR sensor acts as the gate bias voltage source for the fet in addition to providing a shut-off function.
uator, preferably in the low level pre-stages (usually operating in class A), which are insensitive to variations in output load.
Attenuators, such as a pin diode (Fig. 8), are the only way to control the power gain of bipolar transistor amplifiers since the mosfet agc function is not available.
Depending on attenuator characteristics and power level, the power output can be adjusted, for a given output mismatch, using a combination of R_{2} and R_{5} (Fig. 5). For this, and the circuit given in Fig. 10, D_{2} must be shorted to use the output of $I C_{1}$ for a voltage pull-up function.
Fast shut down of the amplifier, without linearity requirements, can be achieved simply and adequately with the circuits given in Figs. 9 and 10. For best results, an early stage in the amplifier chain should be controlled, since low power mostets have low gate input capacitances, speeding up shut off.

Circuit testing

Specific amounts of load mismatch must be developed for testing a system. For example, in some applications a fold-back may be
desired at 3:1 or 5:1 output vswr, whereas in others a load vswr of $10: 1$ may be tolerable.
Component losses make an infinite mismatch impossible, so a value of 30 : 1 has been adapted as a standard for "infinite mismatch" by the industry. The scale is logarithmic so there is not much practical difference between 30: 1 (or even 20:1) and infinite.
A 30:1 mismatch covering all phase angles and R from nearly zero to open circuit can be simulated with an $L C$ network (Fig. 11). In the diagram, C consists of two similar variable (air) capacitors whose voltage ratings depend on rf power level. C can also be a butterfly dual capacitor, where the wiper can be used for the ground contact.
Minimum-maximum capacitance ratio should be at least 5-6 to obtain a coverage for all phase angles and values of R. The initial maximum capacitance values are not critical and will only slightly affect the circuit Q and the values of L. Typical values for 30 MHz are $300-400 \mathrm{pF}$; for $100 \mathrm{MHz} 40-50 \mathrm{pF}$; and for $200 \mathrm{MHz} 10-15 \mathrm{pF}$. Ls are usually air-wound inductors, physically large enough to handle if currents at the power level in question. L values can be calculated as:

$$
\begin{aligned}
& L_{1}=1 /\left[(2 \pi f)^{2} C_{(\text {min })}\right] \\
& L_{2}=1 /\left[(2 \pi f)^{2} C_{(\max)}\right]
\end{aligned}
$$

For example, if f is $100 \mathrm{MHz} . C_{(\text {min })}$ is 7 pF and $C_{(\text {max })}$ is 40 pF , then: $L_{1}=1 /\left[628^{2} \times 7\right]=$ 362 nH : and $L_{2}=1 /\left[628^{2} \times 40\right]=63 \mathrm{nH}$. The same function can be accomplished with a single inductor and a differential capacitor, where one section is at its minimum capacitance while the other is at its maximum. Their capacitance ratios are roughly the same as the inductance ratios in the network previously described.

The circuit is in the familiar pi network configuration and is widely used for testing amplifier stability. 30:1 mismatch can be reduced by inserting a power attenuator between the circuit and the amplifier output through the vswr sensor.

The attenuator must, of course, be able to handle the power level in question. But remember that an attenuator only dissipates part of the power fed into it. A IdB attenuator, for example, dissipates only 10% of the power. So one with a lo0W rating could be used at a power level of 1 kW , providing its resistor elements can handle the current.
Attenuation in dB to produce a specific vswr between a signal source and a $30: 1$ load mismatch can be calculated. First obtain a value for the magnitude of the voltage reflection coefficient (Γ) as $I \Pi=(V S W R-1) /(V S W R+1)$. Then. $R L=10 \log _{10}\left(1 / I \Pi^{2}\right)$, where $R L$ is the return loss.
For the condition of a load return loss of OdB (load is open or shorted), the value of attenuation in front of the open/shorted load needed to achieve a particular vswr is equal to one-half the return loss created by the desired vswr. For example, if we wish to create a $5: 1$ 'load' vswr when the actual load is a short circuit, $I \Pi=4 / 6=0.67$, and $R L=10 \log _{10}\left[1 /(0.67)^{2}\right.$ I

Fig. 1. LC circuit designed to simulate 30:1 load mismatch. L_{1} and L_{2} should not have mutual coupling for proper operation. The attenuator (atn) has been added to provide mismatches at various levels of swr.
$=3.5 \mathrm{~dB}$. Then the value of the attenuation is $3.5 \mathrm{~dB} / 2=1.75 \mathrm{~dB}$.
The vswr simulator can be made to function over about 30% bandwidth, and with such a broad band design. L_{1} should be calculated for the high frequency limit and L_{2} for the low frequency limit. Several networks would be needed to test multi-octave bandwidth amplifiers.
An advantage of this type of set-up to create load mismatches is that it can be adjusted to any phase angle: different phase angles are needed to simulate loads in laser drivers, plasma generators, communications equipment. and certain medical instrumentation.

> Radio Frequency Transistors
> Principles and Practical Applications

Norm Dye and Helge Granberg

Norm Dye is Motorola's product planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Motorola. Their rf transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the uhi frequencies.

RF Transistors: Principles and practical applications is available by postal applic ation to room $\mathbf{L 3 3 3}$ $E W+W W$, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Cheques made payable to Reed Books Services. Credit card orders accepted by phone $(081652$ 3614).
288pp HARDBACK 0750690593 Cost $£ 19.95$ + Postage £2.50

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS

TESTED

HP141T +8552 A or $\mathrm{B} \mid \mathrm{F}-8553 \mathrm{BRF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF £600 or B IF - £700
HP141T +8552 A or B IF -8554 B RF $-100 \mathrm{kHz}-$ $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or B IF - $£ 900$
HP141T +8552 A or B IF $-8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF £1400 or B IF - £1600. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T +8552 A or B IF $-8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS
 AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200-8552B IF - £ $300-8553 \mathrm{BRF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554 \mathrm{~B}$ $\mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 400.8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{ARF}-20 \mathrm{HZ}-300 \mathrm{KHZ}-£ 250$.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 300-\mathrm{£} 400$.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GH} z-£ 400-$ £600.
HP8444A Tracking Generator - £750-1300 Mc/s
HP8444A Opt 059 Tracking Generator - £1000-1500 Mc/s.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn 20 Hz - 300 kHz Plus 8553 B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $\mathbf{f} 700$

```
Marconi TF2008-AM-FM signal generator-also sweeper-10K/s-510MCS - from L250-lested
to £400 as new with manual - probe kit in wooden carrying box
MP Frequency comb generator type 8406-£400.
HP Vector Voltmeter type 8405A-£400 to £600-old or new colour
HP Sweep Oscillators type 8690 A & B + plug-ins from 10Mc/s to 18G Hz aiso 18-40GHz. P.O.R
HP Network Analyzer type 8407A +8412A +8501A -100K/S/ - 110MC/s - £550-£1000
HP Amplifier type 8447A -1-400Mc/s £200-HP8447F, 1-1300Md/s £400.
HP Frequency Counter type 5340A - 18GHz &1000 - rear output f800.
disolays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743
8746-8650. From £1000.
Racal/Dana 9301A -9302 RF Millivoltmeter - 1.5-2GHz - £250-£400
Racal/Dava Counters 9915M - 9916-9917-9921-£150 to £450. Fitted FX standards
Racal/Dana Modulation Meter type 9009-8Mc/s - 1.5GHz- £250
```



```
Marconi/Saunders Signat Sources type - 6058B-6070A - 6055A - 6059A - 6057A
Marconi TF1245 Circu604 weep osc,maintrame with 6650 PI-18-265GHz or 6651 PI-265
40GHz-f1000 or Pl only f600 MF only f250
Marconi distortion meter type TF2331-E150. TF2331A - 200
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S1T-7D10-7S12-S
-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501
WR501-DM501A-FG501A-TG501-PG502-DC505A-FG504-7B80+857B92A
Gould J3B test oscillator + manual - {200 
Tektronix Mainframes -7603-7623
Alltech 757 Soectrum Analyser-001 22GHz - Digital storage + readout - f2000
Alltech 757 Spectrum Analyser -001 22GHz - Digital storage +
Marr & Stroud Variable filter EF3 0.1 Hz - 100kc's + high pass + low pass-£150
Barcosiroud \ar abte wator - 1GHz. E200.
Farnell power unit H60/50-£400 tested. H60/25-£250
Racal/Dana 9300 RMS volimeter - £250.
HP 8750A storage normalizer - &400 with lead +S.A or N.A Interlace
Marconi TF2330- or TF2330A wave anatysers-E100-£150
Racal/Dana signal generator 9082-1.5-520MC/s - E500.
```



```
Tektronix-7514-711-7S11-7512-5.
Marconi mod meters type TF2304-£250.
Systron Donner counter type 6054B-20Mc/s -24GHz - LED readout - E1k
Racal/Dana 9083 signal source - two tone - £250.
Systron Donner- signal generator 1702-synthesized to 1GHz - AM/FM - ¢600
Tektronix TM515 mainframe + TM5006 mainframe-£450-£850
Rhodes & Schwartz power signal generator SLRO-280-2750MC/s - £250-£E00
Ball Efratom rubidrum slandard PT256B-FRKL - £1000.
Farnall electronic load type RB1030-35 - E350. 5-9915 9917 - 9921 50Md/s 3GHz-E100
```



```
MP4815A RF vector impedarice meter c/w probe-t.E.
Marconi TF2092 noise receiver. A, B or C plus fiters.
```

Aarconi TF2091 noise generator A. B or C
HP180TR, HP182T mainframes $£ 300$ f 500
Fluke 8506A thermal RMS digital multimeter. $£ 400$
Philips panoramic receiver type PM79C0-1 to 20GHz - $£ 400$
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ to $2 \mathrm{GHz}-£ 500$
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - $£ 4$.
Racal/Dana VLF frequency standard equipment. Tracer feceiver type 90CA + difference meter
type 527 E + rubidium standard type $9475-\mathrm{E} 2750$.
HP signal generators type $626-628$ - irequency $10 \mathrm{GHz}-21 \mathrm{GHz}$
HP 432A - 435A or B-436A - power meters + powerheads - Mcs -40GHz-£200-£ 1000
Bradley oscilloscope calibrator type $1 \pm 2-£ 600$.
Barr \& Stroud variable filter EF 0.1 Hz z- $100 \mathrm{Kc} / \mathrm{s}+$ high pass + low pass - E 150
Marconi TF2370 spectrum ANZ - 110 MC s - $£ 900$
HP86 14 A signal generator $800 \mathrm{Mc} / \mathrm{s}-4 \mathrm{GHz}$, new colour $£ 400$
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $\mathbf{E} 400$
HP 3325A syn function gen $20 \mathrm{MC} / \mathrm{s}-\mathrm{£} 1500$.
HP 3336A or B syn level generator - $£ 500$ - C 600 .
HP 3586B or C selective level meter - $£ 750-£ 1000$
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Nic} / \mathrm{s}-\mathrm{f} 400$.
HP 8671 A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{E} 2 \mathrm{k}$.
HP 8683D S/G microwave 2.3-13GHz-opt 001 - 003 - $£ 4.5 \mathrm{k}$.
AP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM $+\mathrm{FM}+10 \mathrm{~K} / \mathrm{s}$ to $110 \mathrm{Mcss} \mathrm{PI}-1 \mathrm{Mc}$ s to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
P 8640 B S AM FM 512
HP 8640 B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $£ 800$-f 1250
HP 8656A S/G AM-FM $01-990 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 1500$.
HP 8629A Sweep PI - $2-18 \mathrm{GHz}$ - C1000.
HP 86290 B Sweep PI $-2-18 \mathrm{GHz}$ - 11250 .
HP 86 Series PI's in stock-splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-\mathrm{E} 250-\mathrm{E} 1 \mathrm{k}$
HP 8620C Mainframe - E250. IEEE - f 500
HP 8615 A Programmable signal source- $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - E 1 k
HP 8601 A Sweep generator $.1-110 \mathrm{M}$ /s - E 300
MP 4271B LCR meter 1 MHz digital meter + 16063 A test adaptor - $£ 850$
HP $4342 \mathrm{~A} Q$ meter $22 \mathrm{kHz}-70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}+\mathrm{qty}$ of 10 inductors - $\mathbf{8 8 5 0}$
HP 3488A HP - 1 B switch control unit - $£ 500$ + control modules various - $£ 175$ each
HP 3561A Dynamic signal ANZ - $\mathbf{\text { E } 3 \mathrm { k }}$
HP $8160 \mathrm{~A} 5 \mathrm{Mc} / \mathrm{s}$ programmable pulse generator - $£ 1400$.
HP $853 A$ MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 2500$
HP 8349A Microwave Amp 2-20GHz Solid state - $£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{C} 7 \mathrm{l}$
HP 8569B Analyser. $01-22 \mathrm{GHz}$ - E 5 k
HP 3580A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-\mathrm{f} 1 \mathrm{k}$
HP 1980 B Oscilloscope measurement system - $\mathbf{6} 600$
HP 3455 A Digital voltmeter - $£ 500$.
HP 3581C Selective voltmeter - $£ 500$
HP 5370A Universal time interval counter- $\mathbf{4 4 5 0}$
HP 5335A Universal counter - $200 \mathrm{Mc} / \mathrm{s}$ - f 500 .
HP 5328A Universal counter - 500Mcis - £250
HP 6034 A System power supply - $0-60 \mathrm{~V}-0-10$ amps - 5500
HP 3960A 3964A instrumentation tape recorders - £300-£500
MP 5150A Thermal printer - $£ 250$.
HP 1645 A Data error analyser - $\mathbf{f} 150$
HP 4437 A Attenuator - $£ 150$.
HP 3717A 70MC/s modulator - £400.
HP 3710A $-3715 A-3716 A-3702 B-3703 B-3705 A-3711 A-3791 B-3712 A-3793 B$
microwave link analyser - P.O.R.
$H P 3730 A+B$ RF down converter - POR
HP 3552A Transmission test set- $\mathrm{E400}$.
HP 3763 A Error detector - 5500
HP 3764 A Digital transmission analyser - $\mathbf{E 6 0 0}$.
HP 3770 A Amp delay distortion analyser - £400
HP 3780A Pattern generator detector- © 400
HP 3781 A Pattern generator - $£ 400$
HP 37818 Pattern generator (bell)- $£ 300$
HP 3782 A Error detector - £400.
HP 3782B Error detector (bell)- $£ 300$
HP 8006A Word generator - $£ 100$
HP 8016 A Word generator - $£ 250$
HP 8170 A Logic pattern generator- 5500
HP 59401A Bus system analyser - E350.
HP 59500 A Multiprogrammer HP - IB - E300
Phillips PM5390 RF syn - $0.1-1 \mathrm{GHz}-\mathrm{AM}+\mathrm{FM}-£ 1250$
Phillips PM5519 Colour T.V. pattern generator - £250.
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - $£ 2500$

Tektronix R7912 Transient waveforrt digitizer - programmable - $£ 400$
Tektronix TR503 + TM503 tracking gznerator $0.1-1.8 \mathrm{GHz}$ - £1k-or TR502
Tektronix 576 Curve tracer + adaptors - -9900
Tektronix 577 Curve tracer + adapto-s - $£ 900$
Tektronix 1502/1503 TDR cable test ::et - $£ 1000$
Tektronix 7 L 5 LF analyser - $0-5 \mathrm{MC}$ - - 5800 . OPT $25-£ 1000$
Tektronix AM503 Current probe + TH501 m/frame - $£ 1000$.
Tektronix SC501-SC502-SC503-SC504 oscilloscopes - 775 - E 350
Tektronix 465-4658-475-2213A-2215-2225-2235-2245-2246-₹250_£ 1000
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope Cos
Farnell PSG520 Signal generator - £400
Racal 1991-1992-1988- $1300 \mathrm{Mc} / \mathrm{sco}$
Tek 24 25 $150 \mathrm{Mc} / \mathrm{s}$ oscilloscope- $\mathbf{€} 1500$.
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - $\mathrm{BN}-\mathbf{£ 1 0 0}$.
Racal Recorders-Store 4-4D-7-14 channels in stock - $\mathbf{f 2 5 0 - £ 5 0 0}$
Racal Store Horse Recorder \& contral - $\mathbf{£ 4 0 0}$
EIP 545 microwave 18GHz counter - E1200.
Fluke 510A AC ref standard $-400 \mathrm{~Hz}-£ 200$.
Fluke 355A DC voltage standard - $£ 300$.
Schlumberger 5229 Oscilloscope - 500 Mc s - $£ 500$.
Solartron 1170 FX response ANZ - LED dislay - $£ 280$
Wiltron 610D Sweep Generator $+6124 \mathrm{C} \mathrm{PI}-4-8 \mathrm{GHz}-\mathbf{f 4 0 0}$
Wiltron 610D Sweep Generator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500$
Time Electronics 9814 Voltage calibrator - $£ 750$.
Time Electronics 9811 Programmabre resistance- E 600
HP 8699P Sweep PI YIG oscillator 07-4GHz- $\mathbf{f 3 0 0} 8$
HP 8699P Sweep PI YIG oscillator $07-4 \mathrm{GHz}-\mathrm{£} 300.86$
Schlumberger 1250 Frequency response ANZ - E 2500 .
Schlumberger 1250 Frequency respanse ANZ equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors, etc

88 K It

W\&G Items in tock - ask for list.
Power Supplies H - ask for list

TTEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS, SAE FOI EMOUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY TEEMS, AVAILABILTTY OR PRICE CHANGE VAT ANO CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 30 DAV WARRANTY. WANTLD: TEST EQUIPMENT-YAIVES-PLUGS AND SOCXETS-SYNCROS-TRANSMITIING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehal Road Easts, Birkenshaw, Bradtord BD112 2ER. Tee. No: (0274) 688007 . Fax: 651 160

Big Brother's protection racket

Protecting computer data from lackers and tappers is a difficult task. But there's one method of protection that is just about unhackable and the major tinancial companies have been using it for sears: DES encryption.
Any hacker who would tap a phone line or hach into a computer knows that it's not worth trying to unscramble information so encrypted. Algorithms like DES (the Data Encryption Standard, developed by IBM and much-used in government and financial circles) and RSA (also known as public-key encryption) are still as near to 100% secure as it is possible to get.

The beauty of DES and RSA lies in the fact that everyone knows how they work, but no one can crack them - not even government agencics. For a simple explanation of how RSA works. think of two prime numbers. Mahe them big ones, with at least 500 digits. Now multiply them together and you get a very large number. Now try reversing the process. Take the very large number and try to find out which two 500 -digit prime numbers were used. There 's only one solution (that's a feature of prime numbers) and it would take literally hundreds of years of computing power to do. Double-encryption (encrypting alreadyencrypted data a second time, with a different password) adds io the security.
With DES-like encryption available casily and cheaply to anyone who wants it, it was only a matter of time before criminals came to appreciate its advantages. Any drug dealer worth his salt now keeps his customer list on a PC and protects it with an encryption program. And any gang thals plaming a bank job via electronic mail makes sure that all its messages are so encrypted.

Not surprisingly, governments all over the world are worried. It used to be possible for organisations like GCHQ or the NSA 10 tap almost any voice or clata conversation and decipher the contents. Nowadays, even the most sophisticated systems can't cope with DES encrypted information.

So, in the US, the Clinton administration has come up with a plan. If the President can get the necessary legislation through Congress, further use of DES. RSA and any other encryption system within the US will be outlawed. There's even talk of Europe going down the same route.
Under the proposed new laws. if a user wants to encrypt data or voice traffic. they will have to do so with a system based on a new device called the Clipper chip. As the name suggests. Clipper is a hardware device which, according to the US government. provides totally unbreakable encryption... unbreakable that is by anyone other than the Government. It will be made available to any manufacturer wishing to incorporate encryption in their products.
So far so good. But the computing and electronics community is objecting to two aspects of Clipper. First, it's a proprietary algorithm designed by the intelligence agencies in the US. No one know's the algorithm, or anything about its functioning. Potential users are simply being asked by the National Security Agency to trust them when they say it's safe. So is it really secure? Will
someone be able to crack it? No one is telling-
The second objection is more serious, and it is all to do with Clinton`s desire to stop criminals encrypting their data. Basically. there is al special password which carn crack all Clipper-encrypted data. Any data whatsoever - without access to the original password used for encryption.

This "back door" key will. say Clinton's team. be held securely by the US Government and used only when a judge grants a warrant. But the mere fact that such a key exists is worrying a lot of people. What if the key should fall into the wrong hands"? What if someone else manages to make their own version of the key.? Can any encryption algorithm be considered secure if it's possible to crack it with a back-door key?
Even now. those who will potentially be forced to use the system are investigating possible methods of beefing up the protection. There are ways of doing this, of course, such as encrypting the data with DES before passing it through the Clipper chip. Then, even if the Clipper encryption is removed. the resulting information will still be sate. But as intentions currently stand, this process

...governments all over the world are

 will become illegal in the US. worried...Many US citizens and companies are surprised that, in a country which espouses human rights, the Clinton administration is now attempting to deny the basic right of privacy.

There's much legal argument currently taking place. As yet. it's unclear whether the legislation will make it through without amendment. Most observers suspect that, if Clipper becomes mandatory. it will be in a watered-down form. Its opponents. which include many of Americil's largest and richest companies as well as its drug dealers. have not yet given up the fight for totally secure data. Robert Schifreen

Security not guaranteed

There are, of course, encryption algorithms other than DES or RSA which are less secure. Vendors of PC application so tware packages have been using these for a long time... For instance the encryption system which password-protects wordprocessor files. These are anything but secure. There are at least two commercial cracker products available which will break files saved with the password feature on the industry's leading wordprocessor package. One costs $\$ 15$ and takes around half a second to do its job while the other costs $\$ 185$ and takes half a minute. The delay in the second program is probably deliberate, as no one would pay $\$ 185$ for a job which
takes half a second.
There is a third class of encryption algorithm: proprietary systems. They are typified by the adverts in the computer press for a certain software protection dongle. "What makes our system so secure?", asks the headline. "We'll never tell", it goes on to say. Maybe they won't, but as soon as someone finds out, or a disgruntled employee leaks the secret, the product, and everything protected with it, becomes open to the world.
Contrast this with DES and RSA, whose algorithms are public and which can thus be proved to be secure.

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST $\mathbf{3 3} 25 .$.

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER+ and then netlist into ARES AUTOROUTE for placemert, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the scinematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete
- Netist generation for most popular CAD software
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router
- Full connectivity and design rule checking
- Power plane generator with thermal relief necking
- Graphics support to 800×600 Super VGA
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more

Alan Chadwick writing in ETI (January 94) concluded. "At $£ 79$ I thought this was an excellent buy.

ISIS ILLUSTRATOR Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

 Call us today on 0756753440 or fax 0756752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.

WE HAVE MOVED - NOTE NEW ADDRESS Prices exdude p $\$ p$ ($£ 5$ for U.K) and VAT
Al manufacturers' trademarks acknowledged.
53-55 Main St, Grassington, North Yorks. BD23 5AA

DESIGN AND BUILD YOUR OWN OPAMP WITH OPAMP CREATOR FOR JUST £30 + VAT.

You have heard about SpiceAge for Windows being able to simulate all manner of useful conditions in a circuit. Now with OPAMP CREATOR, you can invent or model opamps, some ideal, others with maybe large offsets and nonlinerarities to check how your circuit behaves. OPAMP CREATOR works via DDE with Level 3 (or higher) of SpiceAge for Windows to create a library circuit that conforms to your defining parameters. The model synthesized is usually as
 accurate as SPICE models (which may be used in level 7 or higher) but because it exploits SpiceAge's special polynomial pragmas to give account of non-linear behaviour, it calculates typically 5 times faster.

Do you really need such an expensive opamp or were you just lucky when it worked that once?
These are just some of the questions SpiceAge users are now finding out for themselves. For more information, contact Those Engineers, specialists in circuit simulation since 1982.
Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 081-906 0155, FAX 081-906 0969

CIRCLE NO. 116 ON REPIY CARD

KESTREL ELECTRONIC COMPONENTS LTD

\forall All items guaranteed to manufacturers' spec. is Many other items available.
'Exclusive of V.A.T. and post and package'

	$\mathbf{1 +}$	$\mathbf{1 0 0 +}$		$1+$	$100+$
EPROMS				STATIC RAMS	
2764A	2.50	2.20	62256ALP-10	3.00	2.30
27C64-150	2.30	1.90	6264ALP-10	1.85	1.40
27128A-250	2.40	2.10	6116ALP-10	1.10	0.70
27256-250	2.40	1.90	6522P	2.40	1.80
27C256-150	2.90	2.30	65C02P2	2.90	2.50
27C512-150	3.30	2.50	65C21P2	2.90	2.50
27C010-150	5.80	4.00	65C22P2	2.80	2.40
MAX232	1.35	0.95	146818AP	2.20	1.65
D8748H	4.20	3.20	75176BP	1.60	0.80
D8749H	4.40	3.40	Z80A CPU	1.33	0.99
80C31-12	2.60	2.10	Z80A CTC	1.20	6.75
80C39P	2.80	2.20	Z80A DAR7	2.10	1.40
82C55-2	1.95	1.58	ULN2803A	0.70	0.46

74LS, $74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road, Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-668 4190.
CIRCLENO. 117 ON REPLY CARD

Circuit capture and pcb design: a winning combination?

The inclusion of schematic capture with PCB edit provides a powerful productivity design tool. John Anderson reviews the latest addition to Tsien's Boardmaker software which adds full schematic capture.

Board Capture is the new schematic capture progran from UK company Tsien. It is designed to work wi h Boardmaker 2.51 the latest version of the peb design product. Last reviewed for Electronics Worll in 1991, the conclusions were that Boardmaker was slow at d compromised by embedding the functionality of libra-y cditing, schematic capture and pob edit all in notionally the same operating environment.
The requirements of the three functions are rather different and the package did not take good account of this, particularly in respect of the schematic capture. Now it hats its own schematic capture program. have things improved?

What you get
The software is provided on both 5.25 and 3.5 in media logether with two professionally printed manuals and a parallel port dongle. Product support for Boardmaker and Board Capture is free for three months. Additional support is available for a further year at a cost of $£ 60$ plus VAT per product.
The installation process is straightforward with an install program moving the files onto hard disk and exhuming

Line drawing - the left mouse button starts drawing from
the nearest grid position.

Loaded file and user interface with pull down menus.

Schematic close-up. Note how unconnected nodes and wires
are clearly marked with a small square.
(ugh!) the compressed files. The files, which include the libratries take about 1.5 M bytes of disk space for each product. Board Capture may be configured for either standard VGA or super VGA 800×600. Many other aspects may be configured from the regularity of automatic backups to the way in which the mouse is used to pan the screen.
The Boardmaker manual is really the manual for the original Boardmaker 2 product with a few additional leaves describing the updates for versions 2.4 and 2.5 . Even the discs are supplied as version 2.4 with a second disk which overwrites the data with that for version 2.51 .
Bearing in mind that neither product has on line help, it was particularly annoying that the Board Capture manual hasn't got an index - so learning how to do something depends on remembering what you have read.

Starting up

On starting Boardmaker, you are presented with an initial menu offering schematic, PCB or library editors. Selection of any one of these leads to an almost identical working environment of a standard banner and pull down windows, and a data line across the bottom of the screen. Access to the functions at the banner is either by clicking with the mouse or by typing control with the key letter of that menu. The schematic capture referred to in this menu is the original "pcb" version and Board Capture has to be executed separately. This software has the same simple banner and menu format.

Board Capture

This is the new product, and although it initially looks like the old pcb version, this soltware offers much of what a schematic should. The zoom, pan and redraw are fast with panning occurring if the mouse is moved to the edge of the screen. The system supports a multi-page hierarchical design with a very effective simple page-up or page-down to jump between pages. There is a further level of abstraction with a tree of multiple nodes, each node may have multiple pages. It is not clear whether this system is memory or disk size limited. Thus the software could potentially handle very large designs.
The file load command menu provides a conventional file selector, but with the addition of a useful preview window which gives a (somewhat unclear) representation of the schematic.
Editing follows the normal scheme for any CAD system, with items being selected and added as required. Symbols are loaded by selecting this feature and then selecting either from the existing symbol list or a symbol from one of the libraries.
One particularly useful feature of the editor is that components are initially loaded with a small square on each unconnected node. As the connections are made, the square disappears making any misalignment of line and node obvious. Deletion is fast using the delete key, but as this is a single key press without a query delete, users must take care.

Annotation

Annotation is rather different to any other schematic capture system. When symbols are placed on the drawing they are not annotated (i.e. $R_{/}$or U_{9}, etc.). Annotation can be added individually as the component is added. There are annotation commands which can annotate and de-annotate all the symbols on the drawing.

Boardmaker provides a component renumber function based on layout position, to aid fast component location. During this process, it creates a changes file for each component whose designator has been changed. This tile may be read by Board Capture and used to back-annotate the schematic(s).

SYSTEM REQUIREMENTS

Requires: A PC, XT or AT compatible computer 640 KB RAM, running DOS 3.0 or later.
A parallel printer port (for the dongle)
Graphics screen supported are: CGA, EGA, VGA and
Hercules
Options: Epson compatible printer
Mouse
HP Laserlet II or compatible
HPGL plotter
Gerber photoplotter and Excellon NC drilling supported

PRICE

Prices (ex VAT)
Boardmaker $2.51 £ 295$
Board Router $1.08 £ 200$
Board Capture $1.10 £ 395$
Extended support $£ 60$ for Boardmaker
and $£ 60$ for Board Capture
Carr. $£ 5.00$

SUPPLIER DETAILS

Product: Board Capture 1.10 and BoardMaker 2.51 Supplier: Tsien (UK) Ltd.
Aylesby House, Wenny Road, Chatteris, Cambs.
PE16 6UT
Phone 0354-695959

Library editor

A wide range of standard components are provided in a series of function divided libraries. New components may be added and new libraries created using the library editor. Symbols are created within the Board Capture program by accessing the Library Editor accessed from the file menu. The format of this editor is vcry similar to the Board Capture editor itself. In the same way as before, when loading a symbol, a miniature version of the component is shown in the preview window. During the symbol editing process, there is access to a separate pin editor. This allows editing of separate

records describing the pins. The pin attributes include the pin number, an alias, the gate to which it belongs, its function, global use (e.g. power supplies) and others.

Conclusions

So have things improved for the Tsien products with the advent of the new board Capture program? I must give this a definite yes, because the system now offers a properly integrated solution from circuit to hardware. However the product still shows some problems. The Boardmaker pcb product still has vestiges of the old design methodology, which for newcomers at least will cause confusion. The annotation method is both powerful and confusing and rather different in approach to any other pcb cad systems. The speed of routing remains very slow, but in these days of 486 and beyond perhaps this is not so important.

Users these days expect on-line help and for newcomers the omission of this will slow the learning process. The Board Capture program is rich in features and has an excellent user interface. This will eventually result in the programme providing a high level of productivity.

At $£ 395$ Board Capture is not cheap, but it does represent one of the best dos based schematic capture programs. Its companion PCB editor, Boardmaker, remains in need of updating. It is however competitively priced so the combination of the two products does represent excellent value for money.

PROMulators

\checkmark Emulate up to 4 by 8 Mbit EPROMs via one standard printer port
\checkmark Download 4 Mbit in 10 seconds
\checkmark Accepts Intel Hex, Motorola S-Records and Binary files
\checkmark Emulates 24, 28, 32, 40 and 42 pin devices
\checkmark Full screen editor
\checkmark Bi-directional communications between your target board and the PC

CALL FOR FULL DATA SHEETS
Tel: 081-441 3890
Fax: 081-441 1843
SMARI
CIRCLENO. 118 ON REPLY CARD

We would like the opportunity to tender for surptus equipment Official orders, credit card telephone orders accepted with Access, Amex, Diners, Visa cards. Overseas enquiries welcome p rates UK mainland only. Please ring for c/p rates not shown All prices inc VAT unless stated. Stock list available

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM:
Programs 24,28,32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.
 Park Road Centre Malmesbury, Wiltshire. SN 16 OBX. UK TEL. 0666825146 FAX 0666825141 ASK FOR FREE INFORMATION PACK
IRELAND 1-2800395 GERMANY 089/4602071 NORWAY 0702-17890 $\begin{array}{ll}\text { ITALY } & 0292103554 \\ \text { FRANCE } \\ 169301379\end{array}$ FRANCE 169301379
SWEDEN
0859032185 ASO TTOMELECTROSPEED UK

CIRCLE NO. 119 ON REPLY CARD

LIST AVAILABLE BUT 1000 's OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF P\&P AND VAT QUALITY ELECTRONIC EQUIPMENT AL WAYS WANTED

Marths functionality for maths-phobics

Mathematical analysis can give valuable insight at the initial circuit design stage. Lionel Snell reports on how Mathematica and Nodal can give engineers the power of maths without the pain.

Mathematica from Wolfram Research and Macallan Consulting *s Nodal could be just what is needed to put mathenatical analysis at the fingertips of every engineer.

Wolfram describes Mathematica as "a system for doing mathematics". That makes it very much more than a system for doing calculations. because it can manipulate equations and formulas containing variables like x and y even before specific values have been assigned to those variables.
As with most computer applications. the package does require a special language to be learnt for input and output But every effort has been made to ensure the language follows familiar mathematical notation. It has simply been designed to get round the problems of inputting mathematical symbols via a standard computer keyboard which does not allow for superseripts. subseripts and other maths symbols.
For example, $\int x^{2} \sin x^{2} d x$ would be input as:
Integrate $\left[x^{\wedge} 2 \sin [x]^{\wedge} 2, x\right]$
and would result in the output:

```
4x}\mp@subsup{}{}{3}-6x\operatorname{cos}[2x]+3\operatorname{sin}[2x]-6\mp@subsup{x}{}{2}\operatorname{Sin}[2x
```


24

The straightforward language soon becomes second nature and can be used to find roots, solve simultaneous equations, manipulate polynomials and matrices, invert functions and perform many other operations - as well as process numerical values. What is more, new rules or notations can be defined by the user and consistently applied - a flexibility that has allowed third parties to provide specialist packages, such as Nodal, to extend the power of Mathematica into practical applications.
Graphical output can be particularly useful for engineering applications. Compare, for example, the transfer function in Fig. 1 with its 3 -d graph which shows how the function (tf) blows up for certain values of s and ω. The graph gives an immediate visual inage of performance and offers far greater insight

Extensive plotting functions, in two or three dimensions. also include specific engineering forms such as the Smith chart for relating reflection to impedance.

Nodal electronic Interface
Mathematica is a mathematics tool: input equations and

Do engineers need maths?

A senior engineer I knew in the early, 70s used to throw scorn on academic qualification;, insisting that no amount of mathematical train ng could replace years of experience. He had a reputation for being able to "read" a complex circuit diagram the way experienced musicians can read a score: he could predict its performance and see weak points in design thet would be confirmed when it was built and tested

Yet anyone with a couple of vears 0^{-}A-level maths and physiss could have written down the relevant equations a nd would eventually have reached many of the same conclusions. They would have demonstrated at least half as much insight as all the engineer's years of experience, but would also tave actual figures to quantity their conclusions.
His attitude was not untypical in the years when computers were first appearing in R\& J departments, and aכprenticeship schemes were giving way to more academ c training.

But even now, people who opt for engineering as a career are attracted by practical work with tangible erd prodacts. Such engineers often have far less interest in the atstract processes of mathematics.

Fig 1. 3-D plot of the s-domain transfer finction $\mathrm{ff}=(1+$ $(s / w 0) 2+s / q w 0)-1$ for values of s from -5 to +5 and w from 0 to 15. Just one of many different ways that Mathematica can create immediate visual images of system performance - in this case showing the poles where the function 'blows up'.

Fig 2. Simple circuit containing a current controlled voltage source. This can be used to model current differencing (Norton) and charge-sensitive amplifiers using Mathematica.

Let us say we want to know the output voltage, that is voltage at node 2 (V2 in Nodal-speak). The basic command is:

```
NodalAnalyze [chAmp, Result->V2]
```

Remembering that Americans write analyse with a z is the only demanding part. The actual response to this command would be a somewhat untidy first draft formula. But it can be cleaned up with Mathematica's simplify command. In practice the two stages are casily combined as:

```
Simplify[NodalAnalyze[chAmp, Result->V2]]
```

resulting in:
iIN trz
revealing that output is independent of capacitance.

Practical application

If you need to connect a current source - an avalanche diode detector maybe - to an amplifier, how critical is the connecting cable capacitance?

The last example modelled the situation for a cable of negligible resistance but total capacitance cIN. It showed that output voltage was unaffected by the capacitance.

Replacing the current controlled amplifier by a voltage controlled one delines a new circuit we will call vAmp. The input simply replaces the CCVS with a VVCS as follows

```
vAmp=NodalNetwork[CurrentSource[{1,0},iIN],
        Capacitor[{1,0},cIN],
        VCVS[{1,0,0,2}],gamn]]
Simplify[NodalAnalyze[vAmp,Result->V2]]
```

giving
-I
--- gain
2
Pi cIN E

Mathematical insight

Circuit modelling software such as Spice plays an important role in electronics development, because it allows circuit prototypes to be simulated on a computer. So the performance of various designs can be evaluated quickly and accurately before a single wire has been connected.

The drawback is that this easy trial and error development is at the expense of "insightful" development which takes a more direct route to an optimal solution.

Cad software based on Mathematica allows symbolic manipulation of models, leading directly to better design by reinforcing the engineer's intuitive understanding of circuit behaviour.
Mathematica can help engineers at several levels.
Firstly, it performs mathematical manipulation.
What is the point in writing down equations based on Kirchhoff's Laws if you don't trust yourself to solve them or draw a graph of performance without making mistakes? This basic lack of confidence in one's own maths undermines any amount of engineering education. Given simple commands Mathematica solves equations, plots graphs, simplifies complex formulas and provides a host of features such as Fourier and Laplace domain analysis. Even the most accomplished
mathematician would be glad to hand over such spade-work to a computer not prone to human error. For the engineer it frees the mind to concentrate on actual design principles.

Secondly, Mathematica can analyse a real life situation mathematically.
Writing down the ini-ial equations may be just a process of following simple rules, but it becomes a challenge in more complex or unfamiliar cases. Altho Igh the software was originally designed purely as a mathematical tool, it has earned such a following that packages are now being created :o apply this engine to a host of practical applications. In the case of electronic engineering, Nodal allows the engineer to type in a simple circuit description and the relevant equations are instantly zenerated in Mathematica form.
Thirdly, working with. Mathematica is an education in itself. The creativity required for pure maths research is a rare ability not directly relevant to engineering. All the same, practical experience with Mathematica does enccurage latent mathematical skills and understanding that can lead in the longer term towards more confident research and development.
where I is the square root of -1 . Pi is π and f is frequency.
Here cable capacitance does affect the result. Whether this is serious or not can be readily understood by graphing for appropriate values. Options include a simple plot of output voltage against capacitance at a given frequency: or a 3 -d plot of output voltage against frequeney and cable capacitance; or a contour plot. For example, the commands:

Plot 30 [output /. \{gain->100, iIN-> pA, f$\left.>10^{\wedge} \because, \quad c I N->y ~ p E\right\}$
$\{x, 0,9\},\{y, 1,1000\}$ AxesLabel-->\{"log(f)","
$c(p F) ", " \log$ (output)"\}, PlotRange->All]
define a 3 -d graph between chosen values (Fig. 3) giving an immediate visual grasp of the situation.
The example is very simple, and a more complex problem would take longer to input. But the saving in manual calculation and mathematics skills would be all the greater - without the risk of human error in calculation.
Graph the result. and the engineer immediately gets the full picture for informed design decisions.

Scope of Mathematica and Nodal

Mathematica itself is a well established mathematical toolkit, and at the time of writing the $N o d a l$ electronic application package costs around $£ 310+V A T$. Version 2 contains about thirty component descriptions for analogue circuits handling anything from audio to microwave frequencies.
Updates are promised which will include allowance for thermal effects as the temperature of the circuit alters. There is also talk of "mechanical" additions to take into account the mechanical properties of. say, a gramophone pick-up (it is already possible to define certain components in geometric terms. eg capacitance by gap width and plate overlap).

What cannot be handled is non-linear effects or digital circuits. Of course, these are included in the full version of Spice, but there is little competition between these two.
Spice is designed to model the most complex circuits at

Supplier details

Mathematica

Mac: Student version $£ 149$; standard version (no coprocessor) $£ 375$; Enhanced version (needs 68020 or higher and uses coprocessor) $£ 575$.
Windows: Student $£ 149$; Standard (386 or higher, no coprocessor) $£ 375$; Enhanced (coprocessor) $£ 545$. dos: Student $£ 149$; Standard $£ 375$; Enhanced $£ 575$.

Available from Wolfram Research Europe Ltd, Long Hanborough, Oxon OX8 2LA. Tel: 0993883400 Tel: 0993883800

Nodal

$£ 310+£ 6 \mathrm{p} \& p+£ 55.30$ VAT available from Goth, Goth \& Chandleri Ltd, 36 Victoria Park, Cambridge CB4 3EL. Tel 0223321748 Fax: 0223 323804. Mare information from Macallan Consulting, Tel: 0101408 2623575.

Fig 3. 3-d plot showing effect of replacing the charge sensitive amplifier in Fig. 2 with a voltage amplifier. The output is now seen to be dependent upon the cabie capacitance and the frequency.
the prototype stage when all the numerical values are known. It can provide accurate performance figures and even quantify the eircuit sensitivity around those values.

What Spice does not do is provide the symbolic description of overall performance provided by Mathematica at a fraction of the cost of the full Spice package.

One limitation, is that the output equations are rather clumsy. The input language for Mathematica is restricted by the need to enter mathematical symbols on a standard keyboard. For outpat their is a little nore choice of formats. But there is nothing like the clear mathematical output available from a dtp system. As a working tool for design engineering, this is no problem. though it could become tiresome when being used in the preparation of design reports. Proper mathematical typesetting would be welcome

Unique flexibility

Symbolic analysis of circuits balances the "try it and see" approach by developing insight at the early design stage. Until now this has required mathematical confidence, if not actual skill. But Mathematica undoubtedly provides an easy and attractive alternative.
No other system to my knowledge offers anything like the same flexibility for electronic design support - even the Mathcad electronics support package is little more than a collection of useful formulas or example circuits.

If there is any other software offering this sort of support to the electronic designer. I would like so find it

System requirements

Dos 3.0 or later
Can use coprocessor
4Mbyte extended ram
386 or higher
CGA/EGANGA display
Most printers s jpported

"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

- Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files
- Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output.
- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

CIRCIE NO. 122 ON REPIY CARD

PCB \& SC	DIGITAL SIMULATION	ANALOGUE SIMULATION	SMITH CHART CAD
EASY-PC	PULSAR	ANALYSER III	Z-MATCHII £195
- Design Single sided, Double sided and Multilayer boards. - One software package for Schematics and PCB's. - Standard output includes Dot Matrix / Laser / Inkjet printers, Pen Plotters, Photo-plotters and NC Drill. - Award Winning EASY-PC is in use in over 18,000 installations in 80 Countries World-Wide. - Runs on PC/XT/AT/286/386 with Herc, CGA, EGA, VGA. - Optional libraries S.M. Components etc. From $£ 38.00$	- At last! A full featured Digital Circuit Simulator for less than £1000! - Pulsar allows you to test your logic designs without the need for expensive test equipment. - Catch glitches down to a pico-second per week! - Includes 4000 Series CMOS and 74LS Libraries. - Runs on PC/XT/AT/286/386/ 486 with EGA or VGA. Hard disk recommended. - 74HC / HCT Libraries optional at $£ 48.00$ each.	- NEW powerful ANALYSER III has full graphical output. - Handles R's,L'sC's, Bipolar Transistors, FET's, Op-Amp's, Tapped and Untapped Transformers, and Microstrip and Co-axial Transmission Lines. - Plots Input and Output Impedances, Gain, Phase and Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PC/XT/AT/286/386/486 with EGA or VGA displays. - Very fast computation.	- Z-MATCH II takes the drudgery out of RF matching problems and includes many more features than the standard Smith Chart. - Provides quick accurate solutions to many matching problems using transmission line transformers, stubs, discrete components etc.etc.. - Supplied with comprehensive user instructions including many worked examples. - Runs on PC/XT/AT/386/486, CGA,EGA,VGA. - Ideal for both education and industry.
For full info' Phone, Fax or use Enquiry card!	Number One Systems Ltd. The Electronics CAD Specialists		nical support free for life! rams not copy protected. ial prices for Education. 80-494042
Prices Exclude P\&P and VAT			

INTERFACING WITH C

by
HOWARD HUTCHINGS
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0750609249

CIRCUIT MANUALS

Ray Marston

A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual
Paperback 224 pages
Price £13.95 0434912077

Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0434912107

CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123

Electronic Alarm Circuits
Manual
Paperback 144 pages
Price £13.95 0750600640
Timer/Generator Circuits Manual
Paperback 224 pages
Price £13.95 0434912913

Diode, Transistor and FET Circuits Manual
Paperback 240 pages
Price £13.95 0750602287

Instrumentation and Test Gear

Circuits Manual

Ray Marston

Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price £16.95 0750607580

Logic Designers Handbook

 Andrew ParrEasy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0750605359
Digital Audio and Compact Disc Technology
Luc Baert, Luc Theunissen \& Guido Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A / D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Paperback 240 pages.
Price £16.95
0750606142

NEWNES POCKET BOOKS

A series of handy, inexpensive, pocket sized books to be kept by your side and used every day. Their size makes them an ideal 'travelling' companion as well.

Newnes Electronics

Engineer's Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0750609370
Newnes Electronics Assembly
Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0750602228
Newnes Television and Video
Engineer's Pocket Book
Eugene Trundle
Hardback 384 pages
Price £12.95 0750606770
Newnes Circuit Calculations Pocket Book
T Davies
Hardback 300 pages
Price £10.95 0750601957

Newnes Data Communications Pocket Book
Michael Tooley
Hardback 192 pages
Price £12.95 0750604271

Newnes Telecommunications
Pocket Book
JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070

Newnes Z80 Pocket Book
Chris Roberts
Hardback 185 pages
Price £12.95 0750603089

Newnes 68000 Pocket Book
Mike Tooley
Hardback 257 pages
Price £12.95 0750603097
Newnes Electrical Pocket Book
21st edition
E A Parr
Paperback 526 pages
£12.95 0750605138

Newnes Electric Circuits
Pocket Book Linear IC
Ray Marston
Hardback 336 pages
Price £12.95 0750601329

Newnes Guide to Satellite TV

D J Stephenson

A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price £17.95 0750602155

Newnes Practical RF
Handbook
lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages.
Price £16.95 0750608714

Troubleshooting Analog
 Circuits
 R A Pease

Bob Pease is one of the legends of analog design. Over the years he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price $£ 14.95$
0750616326
PC-Based instrumentation and

Control

M Tooley
Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95 0750616318

Electronic Circuits Handbook

M Tooley

Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages.
Price £24.95 0750607505

Communication Services via

 Satellite
G E Lewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the syste n functions; describing several actual systems and giviny several analyses and design rules. You can't afford to be without this invaluable technology update if you re a systems design engineer, service engineer or technician. Paperback 400 pages. Price £25.00 0750504379

Digital Logic Design Brian Holdsworth

As one of the most successful and well established e ectronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers nen functional logic symbos and logic design using MSI and programmable logic arra:/s. Paperback 448 pages. Price £19. $50 \quad 0750005014$

The Circuit Designers Companion T Wiliams
This compendium of practical wisdom concerning the realworld aspects of electroric circuit design is invaluable to linear and digital designers alike. Hardback 320 pages.
Price £2500 0750511421

Business purchase: P ease send me the books listed wit 7 an invoice. I will arrange for my company to pay the accompanying invcice within 30 days. 1 will attach my business cardletterhead and have signed the form below. Guarantee: If you are not completely satisfied, books rray be returned within 30 days in a resaleab a condition for a full refund.
Remittance enclosed $£$
Cheques should be riade parable to Reed Book Services Ltd. Please debit my credit card as follows:
Access-Master
Barcla/Nisa
Amex
Diners

Credit Card No. \qquad Exp date

NAME (Please print)

orGAVISATION
StREE ${ }^{-}$
TOWN
county \qquad POST CODE \qquad COUNTRY

DATE \qquad
SICNATURE

vat r.ates

6% Be gium, 25% Denmark 5.5\% France, 7% Genlan\%, 4\% Greece, 4\% Italy, 3\% Luxembour 5, 6\% itetherlands, 5\% Portugal. 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGIS ${ }^{-}$RATION NUPABER EELOW (customers outside the EEC should leave this pa t blank)
VAT NO. \qquad
If in the UK please al ow 28 days for delivery. All prices are correct at time of going to press but may be st jeect to change.
Please delete as appropriate I do/do not wish to recieve further details about books, journals and i forma_ion services.
Reed Eusiness Publis oing - F:egistered Office - Quadrarit Hse The Quadrant Sutton Surrey SM2 5AS Registered in England 151537

Current conveyor ICs a new building block

There are unique benefits to current conveyor ICs in applications from If to rf.
Take a precision rectifier needing only two resistors and two diodes for example. Ian Hickman describes his experience with this new type of component.

At first glance, the simplified circuit in Fig. 1a looks like an op-amp. An input to bias the tail current has to be provided externally, but the circuit has the usual npn input long tail pair, feeding current mirrors connected to the positive supply rail.
With complementary emitter followers to provide a low output impedance unity gain buffer at the output, it would simply be an op-amp with facility for trading off supply current against speed. In fact, the buffer is missing. Output is taken directly from two complementary transistors arranged as current sources fighting each other. This circuit is a common operational transconductance amplifier, or OTA.
Figure 1b shows a close relative of the transconductance amplifier. With a unity gain buffer at its output, this circuit becomes a current feedback op-amp. Since the buffer is missing, the device has a high impedance current source output as does an OTA. But instead of inverting and non-inverting inputs both of high impedance, this device has a high impedance non-inverting input and a low impedance inverting input.
Known as a current conveyor, the device is similar to a current feedback op-amp. Unlike the traditional voltage feedback op-amp, the transconductance amplifier is usually used without feedback. Similarly, unlike a current feedback op-amp, so is the current conveyor.
Absence of a feedback path avoids the stability problems that can plague voltage or current-feedback op-amp designs. This is a welcome feature of the current conveyor, providing complete stability when driving reactive loads of either sign. But the device's current output requires a different approach to circuit
applications, which cover the frequency range from dc up to 100 MHz .
Figure 2a shows a simplified a current conveyor, the relation between the terminal currents and voltages, and pin-out of the CCIIOI integrated circuit. As with a current feedback op-amp, the current conveyor's non-inverting Y input is high impedance $80 \mathrm{k} \Omega$ at 1 kHz - while its inverting X input is low impedance, Fig. 2b.
Packaged in eight-pin DIL, the CCIIOI contains two current conveyors. Conveniently, these can be combined to produce an enhanced composite conveyor. This configuration provides an input impedance of less than $200 \mathrm{~m} \Omega$ at the X input up to 1 MHz or so, Fig. 2c.
With its low input impedance, the X node of either a standard or enhanced current conveyor can be used as a current summing junction for two or more signals. Its high Z-port output impedance - typically IMS 2 at a frequency of IkHz - means that signals from several current conveyors can be combined simply by hard wiring their outputs together
Numerous other applications, including differentiators and integrators, voltage and currentcontrolled negative-impedance converters, precision half and full-wave rectifiers, double terminated ampltfiers are presented in the device data sheet.

Filter

One application is as a biquad filter. Results obtained with the $C C I / O I$ configured as a 5 MHz bandpass filter ${ }^{1 /}$ are shown in the data sheet ${ }^{2}$. Equations defining performance of the filter are presented in the panel.
I experimented with the bandpass circuit at audio

Fig. 1. Operational transconductance amplifiers, (a), are similar to conventional op-amps but there is no output buffering. Current conveyors, (b), are similar but instead of having two high-impedance inputs, one is high, the other low.

frequency, deliberately using extreme values of components to verify the equations and performance. Figure 3a shows this version. Component Y_{2} is $0.1 S$. i.e. R_{2} is non existent but there is 10Ω of input impedance from X input of the first current conveyor. From the equations in the panel, the expected frequency peak was at 2250 Hz while the measured peak occurred at 226711 . As the circuit hat 20% tolerance capacitors. the close agrement was more luck than good engineering. No such close agrement was found for Q. The theoretical value was 7.03 whereas the -3 dB
points at 2052 Hz and 2495 Hz indicated $Q=5.1$.
I used the filter to pick out the seventh harmonic of a 324 Hz squarewave, Figg. 3b. Derived from the panel equations, the value of the tilter"s centre-frequency gain $\therefore 9950$ or nearly 80 cB . This is reflected in the large difference in Y deflection factors for the two traces. Given that amplitude of the seventh harmonic of the 4 mV pk-pk squarewave is about 0.73 mV pk-pk, the 7 V ph-pk average value of the filter output is as expected. In the time-domain, the damped wavetrain from the -ilter decays logarith nically after excitation by each

Current conveyor filter performance

A lowpass/bandpass filter using current conveyors is shown here. Interchanging the resistors and capacitors produces a highpass version. In terms of the admittances of the passive components, the transfer function of the circuit is,

$$
\frac{V_{B P F}}{V_{I N}}=\frac{-Y_{2} Y_{3}}{Y_{5}\left(Y_{2}+Y_{3}+Y_{4}\right)+Y_{3} Y_{4}}
$$

where γ_{2} is the conductance $1 / R_{2}, Y_{3}$ is the susceptance $s C_{3}$, etc, and s is the complex frequency variable. For analysing the steady state, s may be replaced by $j \omega$. Rewriting the equations in terms of C and R gives;

$$
\frac{V_{B P F}}{V_{I N}}=\frac{-s C_{3} R_{5}}{s^{2} R_{2} R_{5} C_{3} C_{4}+s R_{2}\left(C_{3}+C_{4}\right)+1}
$$

Comparing this with the archetypal form for a bandpass filter,

$$
\frac{V_{B P_{r}}}{V_{I N}}=\frac{A s}{s^{2}+D s+1}
$$

peak response occurs when phase shift is zero. In this case, phase shift can also be 180° due to the minus sign in the numerator. The circuit is an inverting filter. This is so when the outer terms in
the denominator add to zero, leaving just a ju term to cancel top a ad bottom, i.e. a real negative number.

Since $s^{2}=(j \omega)^{2}=-\omega^{2}$, this occurs when;

$$
\omega^{2} R_{2} R_{5} C_{3} C_{4}=1
$$

Feeding in component values from Fig. 3a produces $\omega=2 \pi f_{\mathrm{r}}=14142$ in which $r \supseteq s$ onant frequency t_{r} is 2250 Hz . At this f-eruency gain is,

$$
\frac{-C_{3} R_{5}}{R_{2}\left(C_{3}+C_{4}\right)}=-9950
$$

and $\cdot 2$ is given by

$$
\frac{1}{Q}=D=s R_{2}\left(C_{3}+C_{4}\right)
$$

In th s instance, $1 / Q$ is 0.142 and Q is 7.03

Fig. 3. Ci.cuit of a 2267 Hz bandpass
filter, (a), with deliberately extrame component values. Trace (b) is sutput of the filter, picking out the seventh harmomic of a $324 \mathrm{~Hz} 4 \mathrm{miV} \mathrm{pk}-\mathrm{f}^{k}$ TIME MASE $=1 \mathrm{mS}$
CH1 W/DIV $=5 V$ (b) squarewave.

edge of the squarewave. From this, applying the useful relationship between Q and energy stored over energy lost per radian you can calculate Q.
Careful measurements of successive peaks of the filter output waveform in Fig. 3b show that amplitude falls to 50% over each successive cycle. Energy stored falls to 25% per cycle, or to 80% per radian. Using an approximation only valid for high values, Q is about $100 \% / 20 \%$. This agrees with the measured value. mentioned earlier. I am not clear why centre frequency and gain should agree with the theoretical values but Q not.
Figure 3 a is curious. At 0 Hz , reactance of each capacitor is infinite, so they effectively no longer appear in the circuit. Gain at the lowpass output is then unity. This is because it is taken via R_{2} from the X port of the first current conveyor, the output of the device's unity gain input buffer.
At dc, the circuit is completely open loop, so some output offset might be expected at the bandpass output, given the high value of R_{5}. In fact, the output offset was zero, even with the 50Ω source disconnected leaving the Y input of the first current conveyor grounded via $100 \mathrm{k} \Omega$.
This says something for the accuracy of the device's fabrication, which is carried out by a manufacturer of advanced linear ICs, Elantec. With its $2000 \mathrm{~V} / \mu$ s slew rate and 700 MHz equivalent gain-bandwidth product, the device is specified for use up to 100 MHz .
For any active device intended to be used at high frequencies, an important parameter is reverse isolation. For stable operation - especially in tuned circuits - this should comfortably exceed the forward gain expected from any amplifier using the device.

I measured reverse isolation as a function of frequency using the test set-up of Fig. 4a. Output of the DDS-based sweeper was OdBm at low frequencies, falling linearly by no more than 1 dB up to 100 MHz .

RF amplifer

Figure 4b shows reverse isolation over that frequency range. Reference level of the spectrum analyser was OdBm and IF bandwidth set wide to 3 MHz . This was done to produce a bright enough trace to register at each step of the sweep. Reverse isolation exceeds 70 dB below 15 MHz , greater than 60 dB below 70 MHz . and still 56 dB at 100 MHz .
With this sort of performance, the CCIIOI should enable stable, high gain rf amplifier stages to be readily realised. I tested this hypothesis via Fig. 5a. Here, a series tuned circuit at a current conveyor's X port and a parallel tuned circuit, also 10.7 MHz , at its Z output is used to provide a two-pole response.

Appropriate values of L / C ratio were selected for the two tuned circuits. The second current conveyor in the package formed a high input impedance buffer to avoid loading the parallel tuned circuit.

Attenuated -50 dBm output of the sweeper was applied to the circuit, output from which is shown in Fig. 5b. This scan indicates a gain of 30 dB and a rather useful but unintentional bandpass response.
With a part having a response extending to the best part of a gigahertz, I used compact layout and a groundplane. As a result there was some coupling between the unshielded coils. Symmetry of the response indicates a lack of internal feedback. This leads to the question - can the circuit be pushed for even more gain and selectivity, without incurring instability?
The 47Ω resistor at the X input of the second current conveyor in the package was replaced by another 10.7 MHz series tuned circuit. All coils were screened. I noticed some occasional oscillation at around 400 MHz which was cured by inserting a 10Ω resistor between the X port pin 6 and the second series tuned circuit as shown in Fig. 5c.
Response, shown in Fig. 5d. indicates that the screened coils prevented unintentional coupling. Output of the circuit is now -7 dBm and gain around 43 dB . As shown in Fig. 5a however, the circuit does not provide 50Ω input termination.

Slight asymmetry in the response, with a faster falloff on the high frequency side, indicates some internal feedback. This is not surprising, since although the reverse isolation of the current conveyor at pins 5,6 and 7 exceeded 70 dB at 10 MHz the two current conveyors are physically very close.

The remarkable aspect of Fig. 5c is the almost total absence of discrete components, apart from the tuned circuits. Presumably additional tuned circuits, providing 50Ω interfaces to the chip, at input and output, would produce a five-pole response.
In practice, you would probably never need to design a 10.7 MHz amplifier using individual tuned circuits as in Fig. 5c. A wide range of block filters covering almost any conceivable requirement is available from numerous suppliers. But if an IF amplifier operating at a non-standard frequency is needed, then current conveyor ICs provide a convenient way of producing the gain and selectivity necessary with a minimum of components.
Figure 6 demonstrates two further current-conveyor applications. Configuration $\mathbf{6 a}$ is synonymous with

the voltage-controlled or short-circuit stable negativeimpedance converter. Being a current-controlled impedance converter it is open-circuit stable.
To see how the converter works, imagine Z is a $1 k \Omega$ resistor with its lower end is grounded. Voltages at ports X, Y and Z are all initially zero and relationships between the port voltages and currents are defined in Fig. 2a. Raise X to $+I V$. Since $V_{\lambda}=V_{y}$, port Y must also be at +1 V so there must be +1 V at the top end of the $1 \mathrm{k} \Omega$ resistor. A 1 mA current flows out of port Z but also nut of X since $I_{\ell}=I_{x}$. As a result. port X exhibits a resistance of $-1 \mathrm{k} \Omega$.
The lower end of Z was assumed grounded solely to simplify the explanation: in view of the device's high common mode rejection - greater than 53 dB up 10 1 MHz - neither end of Z need be grounded. The circuit offers a floating negative impedance.
High output resistance of the Z port, typically IM Ω at 1 kHz . makes it behave like an almost perfect current source. Current passing through the load is not related to the voltage-drop across it. This situation is ideal for biasing diodes in a precision rectifier circuit.

Figure 6b shows a half-wave rectifier. If R_{1} equals R_{2}, then output is identical to the input for positive voltages and is zero for negative voltages, regardless of waveform or mark/space ratio. Results obtained for a sinewave input are shown in Fig. 6c. Full-wave precision rectification is also covered in the data sheet.
If you experiment with the CCIIOI. you should be wary of the simulated grounded inductance shown in the data sheet and covered in the first reference. As expected, this set up draws a lagging current from a zero resistance source. Since both current conveyors in the loop are non-inverting, however, the circuit looks like a negative resistor at dc - unlike a real inductor. In other words, the circuit is not open-circuit stable and will lock up at one or other supply rail.

References

1 Current conveyor circuits, Electronics World and
Wireless World, Nov., 1993 pp 962-963.
2 CCllo1 data sheet, ITP Electronics Ltd, 2 Quarry Road,
Headington, Oxford O×3 8NU. Tel. 0865744232.

BOOK REVIEWS

A simple approach to digital signal processing

Over the past ten years. digital signal processing has attracted a lot of attention This is reflected by the wealth of text books on the topie.
With subjects such as digital filters and FFTs so well worn it would be difficult to find an area which has not been adequately covered in depth several times over. However Marven and Ewers have identified a deficiency in the standard book range. There is little to cater for the first time reader who is just starting out on the demanding subject of DSP.
A Simple Approach to DSP begins from ground zero and covers the majority of DSP subjects in sufficient depth to enable the new reader to gain a flavour of what the subject is about without getting bogged down in the maths and the algorithms. In this respect the book succeeds. It is very readable and the page layout is pleasant - a lesson that many other British publishers have yet to learn.

Maths is kept to a minimum and the diagrams are informative. The style is approachable and should maintain the interest of the new reader. Many introductory texts on DSP fail so often to sustain the reader`s interest. Mainly, this is because they delve into the complexity of the subject too early with little regard for the struggling reader whose maths may be a little shaky.
This is clearly not the case with this book. On establishing the reader's confidence in the first few chapters. the book succeeds on building on that confidence to introduce the more demanding aspects of DSP - digital filtering and spectral analysis. Each chapter is supported by a reasonable list of references for further reading. However when discussing processor hardware the
authors have not presented a balanced overview of commercial products. Since the authors are with Texas Instruments, one would naturatly assume a discussion on TI's processors, but not to the exclusion of their competitors. Atthough there is a brief mention at the start of Chapter 7. a discussion of competitors' products would have provided a useful prospective of hardware performance.
On the whole the book should provide a basic understanding of DSP and should serve as a useful introduction to the subject. If its cost could be reduced to less than $£ 10$ it would probably find a wider readersh ip among students as an auxiliary text.

Allen Brown
Craig Marven \& Gillian Ewers. Texas Instruments 1993. ISBN 0-904 (047-00-8. price \&19.

The multiplexer reference manual

Writen by Gilbert Held. The multiplever referelle mamual. is concerned with the multiplexer in communications, rather than the more usual connotation in our field of input multiplexers for signal processing.

The first chapter sets the scene. describing the reasons for the existence of the devices. It proceeds to recount the early uses of multiplexing in telephony and to specify the evolutionary development of the subject from frequency division to optical fibre time division. Each of the methods of multiplexing is given a chapter to itself: frequency and time division, statistical multiplexers. packet ansemblers/disassemblers. Tcarrier multiplexers and optical fibres. In all cases the alternatives are compared.

In the last chapter. Held looks at currently
evolving methods, including fast packet multiplexing and low bit-rate voice digitisation. Networks are, of course, an important aspect of multiplexing and are accorded their rightful share of attention. Perhaps the most important sections are those on statistical and TI multiplexers. which are given extensive treatment. Engineers concerned in any way - however peripherally with communications and networking will find the book a valuable reference, although the style is rather unattractive. A more extensive use of the active voice would have helped to make it a little more appealing, but this is a personal preference and in no way detracts from the value of the work

Philip Darrington
John Wiley, 188 pages, hardbach, £24.95.

The Early History of Radio, from Faraday to Marconi

This work. by GRM Garratt is the outcome of a carcer spent mosily at the Science Museum. much of that time in charge of the
Communications Collection. After early work at Metrovick and RAE Farnborough on blind landing, Gerald Garratt joined the Museum in 1934 and. except for a wartime period as Senior Engineer Staff Officer with the Royal Indian Air Force, remained there and made the history of radio his special interest.
Each of the six chapters after the introductory piece, on invention in general and electromagnetic theory in particular. is cach concerned with one major figure in this field. The last one, on Marconi, was written by his daughter Susan. after Garratt's death in 1989, using lecture notes and other published work by her father.
As the author reiterates throughout. no single person could be called the inventor of radio communication. Each of the scientists mentioned here prepared the way for Marconi's work by discovering or clarifying a part of the puzzle. On one point. Garratt is adamant: Popov merely used the circuit described by Lodge to detect distant lightning tlashes and expressed the 'hope that
such equipment might eventually be used for communication. He made no significant contribution to the subject and his subsequent elevation to the ranks of those who did was engineered by the Soviet authorities for propaganda reasons. They did him a disservice. because he was a good physicist and needed no such false reputation. One is compelled to wonder why, if Popov was a negligible contributor, it was thought necessary to include him in the book.

It seems that leaders in scientific thought were not, even a couple of hundred years ago, automatically able to command respect. Faraday, who was later to become one of the most brilliant scientists of his time, was the son of a blacksmith. understood very little of mathematics and was regarded with extreme caution, being considered a "green-fingered" experimenter with an empirical approach to science. even though his contribution to field theory was seminal. Even Clerk
Maxwell's contemporaries were seeptical until he was able to prove mathematically that both the "action-at-a-distance" fraternity and those who worhed from Faraday s lines of force had the right answer.

Some of these people were untaught and felt their way in the face of clisbelief and often ridicule from the establishment - a familiar story to the present day. Others approached the subject in a rigorously scientific manner and knew exactly what they were doing. but even they were in virgin territory with no one to consult when difficulties appeared: many of them discovered important processes without recognising what they had done. Their courage and determination to go on when the very cornerstones of the work were being questioned by their peers seem almost unbelievable.
This is a valuable little book (96 pages) in that it pulls together all the important names of the period up to and including Marconi: Faraday Maxwell. Hertz. Lodge. Popov and Marconi. It is not a dull "history book", but is nonetheless complete with all the relevant scientific detail and a little light relief in the form of personal background. It is No 20 in the IEE History of Technology series, published in hard back at $£(9.00$ in association with the Science Museum. ISBN 0852968450 . Philip Darrington

THE BEST LOW COST PROGRAMMERS Designed \& Manufactured in the UK

SPEEDMASTER 1000 SPEEDMASTER 1000E UNIVERSAL PROGRAMMER

- Superfast PC based programmer
- Programmes; EPROMS UP TO 8M BIT, FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, MICROs (8748/51), PALs, GALs, EPLDs, PEELS, MACHS, MAPLS, MAX
- Plugs directly into parallel port
- 1000E Version has ROM/RAM emulator built in: 128 k (1 Mbit) standard, optional 512K (4Mbit)

MICROMASTER 1000 MICROMASTER 1000E

 UNIVERSAL PROGRAMMER - Programmes: EPROMS UP TO 8M BIT. FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, PALs, GALs, EPLDs, PEELs, MACHs, MAPLs, MAX etc.\square PLUS over 80 different Micros including 8748/51, 68HC705, 68HC711, PICs, Z86, TMS320, TMS370 etc DIPs WITHOUT ADAPTORS OR PERSONALITY MODULES!

- Package adaptors available. - 1000E Version has ROM/ RAM emulator built in: 128 K (1Mbit) standard, optional 512 K (4 Mbit)

SPEEDMASTER 8000 GANG/SET PROGRAMMER

- 8 way, Pc or stand alone

E Super-fast programming times, manufacturer recommended algorithms

- 32 pin devices as standard
- Support for 8748,51 ,

TMS370, PIC Micros and 40 pins.

WHY BUY AN INFERIOR IMPORTED PROGRAMMER WHEN YOU CAN HAVE A MANUFACTURER APPROVED UNIVERSAL PROGRAMMER/EMULATOR DIRECT FROM ICE TECHNOLOGY!

\square We offer the best range of low-cost programmers available, now including our unique
UNIVERSAL PROGRAMMERS WITH BUILT IN EMULATORS
\square Unrivalled device support, for example the Micromaster 1000 programmes PICS, $\mathrm{Z} 86,87 \mathrm{C} 705,68 \mathrm{HC} 705$, TMS370, 77 C 82 ETC WITHOUT ADAPTORS, as well as the full range of Eproms, PLDs etc supported by all our universal programmers.
\square Approved by National Semiconductor for their full range of PALs, GALs, and MAPLs - other programmers claiming approval are often only approved for EPROMs - a much less exacting specification!
\square All our programmers and programme/emulators work off the standard parallel port with any IBM compatible PC, even laptops
\square Unbeaten programming times: Programme a 27256 in just 5 SECONDS including download and verify.
\square Easy upgrade path between Models.

THIS MONTHS SELECTION FROM OUR VAST EVER CHANGING STOCKS
THE OFFER OF 1994 !

SPECIAL BUY
AT 286
40 Mb HD + 3Mb Ram
LIMITED QUANTTY only of these 12Mhz HI GRADE 286 systems Made in the USA to an industrial specification, the system was
designed for reliability. The compact case houses the motherboard, integral 40 Mb hard disk drive to the front. Real time clock with batcomplete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM, DOS 5.0 . and 90 DAY Full Guarantee. Ready to Run Order as HIGRADE 286 ONLY ≤ 169.00 (E)

Optional Fitted extras: VGA graphics card	$£ 29.00$
$1.4 \mathrm{Mb} 31 / z^{\prime \prime}$ floppy disk drive (instead of 1.2 Mb)	$£ 32.95$
NE2000 Ethernet (thick, thin or twisted) network card	$£ 49.00$

FLOPPY DISK DRIVES 3.5"- 8"

5.25" from £22.95-3.5" from £24.95 Massive purchases of standard 5.25° and 3.5° drives enables us to
present prime product at industry beating low prices! All units (unless ment and are fully tested, aligned and shipped to you with a 90 day guarantee and perate from standard voltages and are of standard size. All are IBM-PC compatlble (it 3.5° supported on your PC 3.5" Panasonic JU363/4 720K or equivalent
3.5 Mitsubishl MF355C-L. 1.4 Meg. Laptops only Mitsubishi MF355C-D. 1.4 Meg. Non laptop

BRAND NEW Mitsubishi MF501B 360 K
Data cable included in price.
Shugart 800/801 8" SS refurbished \& tested Shugart 8518^{*} double sided refurbished \& tested Mitsubishi M. $2894-638$ sided swichable NEW Mitsubushi M2896-63-02U 8' DS simine

£24.95(B) £36.95(B)

£26.95(B)
£29.95 (B)
£22.95(B)
£195.00(E) ع250.00(E) £20.00(E)
£285.00(E)
E499.00(F)

HARD DISK DRIVES

End of line purchase scoop! Brand new NEC D2246 8" 85 Mbyte
of hard disk storage! Full industry standard SMD interface. Uitra h speed data transier and access time, replaces Fujitsu equivalent 3.5. FUJI FK-309-26 20 mb MFM
3.5" CONNER CP 302420 mb IDE I/F (or equiv) RODIME RO3085S 70 mb SCSI I/F equiv.) " MINISCRIBE 342520 mb MFM I/F (Mac \& Acorn)
I 5^{*} SEAGATE
\qquad THE AMAZING TELEBOX

The TELEBOX consists of an attractive fully cased mains powered
unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as MICROVITEC, ATARI,
SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also, plug directly mally receivable on most television receivers" (TELEBOX MB). Push 'off air' UHF colour television channels. TELEBOX MB covers virtual ly all television frequencies VHF and UHF including the HYPER
BAND as used by most cable TV operators. A composite video output is located on the rear panel for direct connection to mos
makes of monitor. For complete compatibility - even for monitors audio output are provided as standard.
TELEBOX ST for composite video input type monitors \quad £32.95
TELEBOX STL as ST but with integral speaker TELEBOX MB Multiband VHF-UHF-Cable-Hyperband tuner £69.95

FANS \& BLOWERS
 MITSUBUSHI MMF-D6D12DL $60 \times 25 \mathrm{~mm}$ 12VDC $£ 4.9510 / £ 42$ MITSUBUSHI MMF-09E12DH $92 \times 25 \mathrm{~mm}$ 12VDC EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or $240 \mathrm{~V} \mathbf{£ 6 . 9 5}$ EXEEQUIP $80 \times 38 \mathrm{~mm}$ AC fans - tested specity 110 or $240 \mathrm{~V} £ 5.95$

IC's TRANSISTORS DIODES

OBSOLETE - SHORT SUPPLY - BULK
 5,000000 items EX STOCK

PC SCOOP
 COMPLETE
 COLOUR SYSTEM

 ONLY $£ 99.00$

A massive buik purchase enables us to bring you a COMPLETE ready to run colour PC system, at an unheard of price!
The Display Electronics PC99 system comprises of fully comdisk drive 12^{\prime} CGA MS DOS and all connecting cables - just plug in and go 11 Ideal Fully guaranteed for 90 Days. Don't miss this opportunity Optional Filted extras: 640k RAM

£29.95.
VIDEO MONITOR SPECIALS

Archimedes \& BBC.
11^{1}. Only . $£ 125$ (E)
Good usea condition. 90 day guarantee.
TPC 64 standard $£ 145.00$ (E)
NEC CGA 12" colour IBM-PC compatible. High
guarantee. In an attractive two tone ribbed grey
piastic case measuring
front cosmetic be

$$
\begin{aligned}
& \text { as been removed for ce ce } \\
& \text { Only } 190
\end{aligned}
$$

$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

$$
\begin{aligned}
& \text { Superbly made UK manufacture. PIL all solid state colour montors, } \\
& \text { complete with composite video \& sound inputs. Attractive teak style }
\end{aligned}
$$ omplete with for Schools, Shoos, Disco Clubs, Point of Sale ett EXCELLENT little used condition with full 90 day guarantee.

DC POWER SUPPLIES

10,000 Power Supplies Ex Stock

Computer Controlled Laser Video Disk Player
 Ono them most amangas surpus sees

man
as new condition, unit tea隹 When high quality sta LaserVision CAV (active play) or CLV (Long Play) discs (which cov many features of this incredible machine are: BNC+SCART INTERFACE PAL/RGB DECODER BNC+SCART INTERFACE PAL/RGB DECODER
IR+WIRED REMOTE CONTROL FAST RANDOM ACCESS SPELIRL PURCHRSE

Only $£ 399.00_{\text {(F) }}$
BBC Model B APM Board
WWh \&100 CASH FOR THE MOST
NOVEL DEMONSTRABLE
APPLICATION

BBC Model B type computer on a board. A major purchase allows us
to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics system on large networked systems the architecture of the BBC board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this board!! It is supplied complete with a connector panel which brings all the I/O's to 'D' and BNC type connectors - all you have to
do is provide +5 and +12 v DC. The APM consists of a single PCB do is provide +5 and +12 V DC. The APM consists of a single PCB include a 6502 / 6512 CPU, RAM and an SAA5050 teletext chip.
Three 27128 EPROMS contain the custom operating system on

 18.

19" RACK CABINETS

Superb quality 6 foot 40u
Virtually New, Ultra Smart Less than Half Price! Top quality 19^{n} rack cabinets made in UK by
Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front door, full
height lockable half louvered back door and removable side panels. Fully adjustable internal fixing struts, ready punched for any config-
uration of equipment mounting plus ready mounted integral 12 way 13 amp socket
switched mains distribution strip make these racks some of the most versatile we have over sold. Racks may be stacked side by side and therefore require Overall dimensions are: $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as Rack 1 Complete with removable side panels. $\quad \begin{aligned} & \text { C } \\ & \text { R }\end{aligned}$ Over 400 racks in all sizes in stock! Call with your requirements.

LOW COST RAM UPGRADES

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT
PC-AT compatible card with 2 Mbytes of memory on board. C PC-AT compatible card with 2 Mbytes of memory on board. Card is
fully selectable for Expanded or Extended (286 processor and
above) memory. Full data and driver disk supplied. In good used condition fully tested and guaranteed. Half length 8 bit memory expansion cards for PC AT XT used to fill in RAM above 640k DOS limit. Complete with data and

No Break Uninterruptible PSU's

 Brand new and boxed 230 volis 1 KVa uninterruptible power supplyfrom system from Densel. Model MUD 1085-AHBH. Complete with sealed lead acid batteries in matching case. Approx time from interEMERSON ACCUCARD UPS, brand new 8 Bit half length PC compatible card for all IBM XT/AT compatibles. Cand provides DC powe to all internal system components in the event of power supply fail-
ure. The Accusaver software provided uses only 6 k of base RAM and automatically copies all system, expanded and video memory the hard disk in the event of loss of power. The unit teatures full self diagnostics on boot and is supplied with full
fitting instructions and manual. Normal price $£ 189.00$ Only $£ 99.0_{\text {(日) }}$ or 2 for $£ 195^{\prime}$

Issue $\mathbf{1 Z}$ of Display News now available - send large SAE - PACKED with bargains!

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Dept Ww. 32 Biggin Way Upper Norwood
ONDON SE19 3 XF

All prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order $£ 10$. Bona Fide account orders accepted from Government,
Schools Universities and Local Authorities - minimum account order $£ 40$. Carriage charges $(A)=£ 3,(A 1)=£ 4.00,(B)=£ 5.50,(C)=£ 8.50,(D)=£ 12.00,(E)=£ 15.00$ $(F)=£ 18.00,(G)=C A L L$. Allow approx 6 days for shipping - faster CALL. Scotland surcharge CALL. All goods supplied to our Standard Conditions of Sale and $(F)=£ 18.00,(G)=C A L L$. Allow approx 6 days for shipping - faster CALL. Scotland surcharge CALL. All goods supplied to our Standard Top CASH prices paid for surplus goods. All trademarks eic acknowledged. © Display Electronics 1994. E \& O

MOTORS - BATTERY 1-12V

3 different model motors, $£ 1$, Order Ref 35
Spin to start 3v DC motors for model aircraft etc, 5 for $£ 1$, Order Ref 134
Cassette Motor 1.5v, pow
Mini Cassette Motor 6 -9v working, $£ 1$, Order Ref 944 High Efficiency Motor for solar cell working, £1, Order Ref 643 .
12 V Motor ex BSR record player, $£ 1$. Order Ref 687 9 V Cassette Motor, brushless, $£ 1.50$, Order Ref 1.5P14

1/10HP 12 V DC Motor, Smiths, $£ 4$, Order Ref 4 P22 1/8HP 12 V Motor, Smiths, $£ 6$, Order Ref 6P1 $1 / 6 \mathrm{HP} 12 \mathrm{~V}$ Motor, Smiths, E8, Order Ref 8 P 14 $1 / 3 \mathrm{HP}$ Motor (Sinclair C5) £18, Order Ref 18P7.

MAINS MOTORS WITH GEARBOXES

5RPM 60W, £5, Order Ref 5P54.
25RPM 60W, £6, Order Ref 6P35.
50RPM 60W, £5, Order Ref 5P168.
110RPM 60W, £5, Order Ref 5P172 150RPM 60W, £5, Order Ref 5P169 200RPM 60W, £5, Order Ref 5P216
500W Motor with gearbox \& variable speed selection, 100 rpm upwards, £5, Order Ref 5P220
1 Rev per $24 \mathrm{hrs} 2 W$ Motor, $£ 1$, Order Ref 89
1 Rev per 12hrs 2W Motor, $£ 1$, Order Ref 90.
1 Rev per 4 hrs 2W Motor, £1, Order Ref 2P239. 1 Rev per hour 2W Extra Small Motor, 2 for $£ 1$, Order Ref 500.
12RPH Motor, $£ 2$, Order Ref 2P342
20RPH Motor, £1, Order Ref 1010
1/3RPM 2W Motor, $£ 2$, Order Ret 2P346.
1RPM Motor, £2, Order Ref 2P328.
4RPM 2W Motor, $£ 1$, Order Ref 446.
15RPM 2W Motor, $£ 2$, Order Ref 2 P321.
25RPM 2W Motor, $£ 2$, Order Ref 2 P322
200RPM 2W Motor, £1, Order Ref 175.
250RPM 2W Motor, $£ 1$, Order Ret 750 .

MAINS MOTORS

3/4 Stack Motor with $1 / 4^{\prime \prime}$ spindle, $£ 1$, Order Ref 85 Motor $11 / 2^{\prime \prime}$ Stack with good length spindle from each Motor $11 / 2^{\prime \prime}$ Stack with go
side, E 2 Order Ref 2P55.
side, £2, Order Ref 2P55." Motor 1
2P203.
${ }^{2} 2$ 203. Motor by Crompton. . 06 HP but little soiled, $£ 3$, Order
Ref 3 P4 Ref 3 P4.
JAP made Precision Motor balanced rotor reversible, 1500 rpm , £2. Order Ref 2P 12
Tape Motor by EMI 2 speed \& reversible, £2, Order Ref 2 P70.
Very Powerful Mains Motor with extra long ($2^{1 / 2} 2^{\prime \prime}$) shafts extending out each side. Makes it ideal for a reversing arrangement for, as you know, shaded pole motors are not reversible, $£ 3$, Order Ref 3 P157.

MOTORS - STEPPER

Mini Motor by Philips 12V-7.5 degree step, quite standard, data supplied, only £1, Order Ref 910 Medium Powered Jap made 1.5 degree step, £3, Order Ref 3P162.
Very Powerfuy thotor by Americàn Philips $10-14 \mathrm{~V} 7.5$ degree step f 5 . Order Ref 5P81

MAINS TRANSFORMERS
 5V 45A E20, Order Ref 20P16.

$6 \mathrm{~V} 1 \mathrm{~A}, 2$ for $\varepsilon 1$, Order 9 .
8V 1A/ £1, Order Ref 212
$9 \mathrm{~V} 1 / 2 \mathrm{~A}, 2$ for $£ 1$. Order Ref 266.
9 V 1A, £1, Order Ref 236.
$12 y 1 / 2 A, 2$ for $\Sigma 1$. Order Ref 10 $12 \mathrm{~N}, \mathrm{~A}, £ 1$, Order Ref 436 12 V 2A, £2, Order Ref 2P337. 15 V 1A, £1, Order Ref 267. 17V 1A £1, Order Ref 492 fi8V $1 / 2 \mathrm{~A}, ~ £ 1$, Order Ref 491 20V 4A, £3, Order Ref 3P1 $20 \mathrm{~V} 4 \mathrm{~A}, £ 3$, Order Ref 3 , Order Ret 337 $30 \mathrm{~V} 21 / 2 \mathrm{~A}$ \& 4 Order 36V 3A, £3, Order Ref 3P14 40V 2A, £3, Order Ref 3P107. $40 \mathrm{~V} 2 \mathrm{E}, ~ £ 3$, Order Ref 3P107 $53 \mathrm{~V} 3 / 2 \mathrm{~A}$, $£ 4$, Order Ref 4 P 14. 50 V fully shrouded, £5, Order Ref 5P139 50V 15A, E20, Order Ref 20 975 V 100 mA , 675 V 100mA, 55 , Order Ref 5P166. $3 \mathrm{KV} 3 \mathrm{~mA}, £ 7$, Order Ref 7P7. $4 \mathrm{kV} 2 \mathrm{~mA}, \varepsilon 5$, Order Ref 5P139. 6-0-6V 10VA, $£ 1$, Order Ref 281 $9-0-9 V 5 V A, ~ £ 1$. Order Ref $661 . ~$
$12-0-12 V 2 V$ $12-0-12 V 2 V 3 V A, ~ £ 1$, Order Ref 636
$12-0-12 V$ 12-0-12V 6VA, £1, Order Ref 811 15-0-15V 1VA, E1, Order Ref 937. $15-0-15 \mathrm{~V} 15 \mathrm{VA}, £ 2$, Order Ref 2 P 68 18-0-18V 10VA, $£ 1$, Order Ref 813. 20-0-20V 10VA, £1. Order Ref 812 . $20-0-20 \mathrm{~V} 10 \mathrm{VA}, £ 2$, Order Ref 2 P 85 $2 \mathrm{O}-\mathrm{0}-20 \mathrm{~V}$ 20VA, $£ 2$, Order Ref 2 P 138 .
 $36-0-36 \mathrm{~V} 20 \mathrm{VA}$, £2, Order Ref 2 P 156. $90-0-90 \mathrm{~V} 100 \mathrm{VA}, £ 4$, Order Ref 4P39.

SPECIAL TRANSFORMERS
${ }_{7} 15 \mathrm{VA}$ gives $1 \% \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 9 \mathrm{~V}$ or $10 \mathrm{~V}, £ 1$, Order Ref 744.
$8 \mathrm{~V}+8 \mathrm{~V}$ 10VA, £15, Order Ref 15P51
$38-0-38 \mathrm{~V} 15 \mathrm{VA}$ with regulator winding. $£ 10$, Order Ref 10P36.
250-0-250V 6 mA with 6.3 V 5 A additioral winding made for valve circuits, $£ 5$, Order Ref 5P167.
230-115V auto transformer 100VA, £2 Order Ref 2P6. Ditto but 10VA, $£ 1$, Order Ref 822
Ditto but 250VA, £3, Order Ret 3P142.
Ditto but $1 \mathrm{kJA}, £ 20$, Order Ref 20P.

ISOLATION-IRANSFORMERS

$230-230 \mathrm{~V}$ 104A, E1, Order Ref 82
$230-230 \mathrm{~V}$ 150VA, $£ 7.50$, Order Ref 7.5 P
$230-230 \mathrm{~V}$ with adjustabte tappings $250 \mathrm{VA}, ~ £ 10$, Order Ref 10 Pg 9.
440-240V 200VA, £10, Order Ref 10P115

SELECTIVE BARGAINS

Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shuning on the unit makes the bell ring. Completely bull and neatly cased, requires only a battery. £3. Order Ref: 3 P155.
Don't Let It Overfiow! Be it bath, sink, ceillar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted. £3. Order Rel: 3P156.
Solar Panel Bargain. Gives 3 v at 200 mA . Order Ref: 2 2P324.
Amstrad 3" Disk Drive. Brand new and standard replacement for many Amstrad and other machines, $£ 20$, Order Ret: 20P28.
Movement Alarm. Goes off with the slightest touch. Ideal to protect car, cycle, doorway, window, starway, etc. Complete witi) Piezo shrieker, ready to use, only £2, (PP3 battery not suppled), Order Ref: 2P282.
AM-FM Radio Chassis. With separate LCD module to display date and time. This is complete with loudspeaker, £3.50, Order Ref 3.5P5
20W 5" 4 Ohm Speaker. Mounted on battie with front grille, £3. Order Ref: 3P145. Matching 4 ohm 20 W tweeter on separate baffle, $£ 1.50$. Order Ref: 1.5 Pg

You Can Stand On It! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools in, intemal size approx. $10^{1} / 2^{\prime \prime} \times 4^{1} / 2^{\prime \prime} \times 6^{\prime \prime}$ high. Complete with carrying strap, price $£ 2$, Order Ref 2 P283B.
Ultra Sonic Transducers. Two metal cased units, one transmits, one receives. Bult to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref: 1.5 P 4 .

You will receive our curfent newsletter and two lists giving details of well over 1,000 of our special bargains. with your gcods when you order this month

Philips $9^{\prime \prime}$ High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing, offered at less than price of tube alone, only $£ 15$. Order Ref. 15P1.
Insulation Tester and Multimeter. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, AC/DC volts, 3 ranges DC millamps. 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, proDably cost at least £50, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra. Order Ref: 7.5P4.
Mains Isolation Transformer. Stops you getting "to earth shocks. 230 V in and 230 V out. 150 watt. $£ 7.50$, Order Ref: 75 P 5 and a 250 W version is $£ 10$. Order Ref: 10P97.
0-1 mA Full Vision Panel Meter. $2^{3 / 4} / 4^{\prime \prime}$ square. scaled 0-100 but scale easily removed for re-witing, $£ \uparrow$-each, Ordér Ref 756.

40W-250W Light Dimmers. On stancard plate to put directly in place of flush switch. Available in colours, green, red, blue and yellow. £2.50, Order Ref. 2.5P9. Or on standard 3×3 cream metal switch plate, £3. Order Ret.

Touch Dimmers 40W-250W, no knob to turn, just finger on front plate. will give more, or less light, or off Silver plate on white background, right size to replace normal switch $£ 5$. Order Ref, 5P230
LCD $31 / 2$ Digit Panel Meter. This is a small multı range voltmeter/ammeter using the A-D converter chip 7106 to provide 5 ranges each of volts and amps Supplied with full data sheet Special snip price of $£ 12$. Order Ref: 12P19.

POWER SUPPLIES - SWITCH MODE

(all 230 v mains operated)

Aster: ref B51052 with outputs $+12 \mathrm{~V} .5 \mathrm{~A},-12 \mathrm{~V} .1 \mathrm{~A},+5 \mathrm{~V}$ $3 A_{1}+10 \mathrm{~V} .05 \mathrm{~A}_{1}+5 \mathrm{~V}$. 02A unboxed on pcb size $180 \times 130 \mathrm{~mm}$. E5, Order Rel 5P188
Astes: ref BM41004 with outputs $+5 v 31 / 2 \mathrm{~A},+12 v 1.3 \mathrm{~A}$ 12v. 2A, £5, Order Ref 5P199.
Astec: No $12530+12 v 1 A_{1}-12 v .1 A,+5 v 3 A$, uncased on pcb sze $160 \times 100 \mathrm{~mm}, £ 3$, Order Ref 3P141.
Astec No BM41001 $110 \mathrm{~W} 38 \mathrm{~V} 2.5 \mathrm{~A}, 25.1 \mathrm{~V} 3 \mathrm{~A}$ part metal cased with instrument type main input socket \& on/off dp rocker switch size $354 \times 118 \times 84 \mathrm{~mm}, £ 8.50$. Order Ref 8.5 P2 Astef: model no BM135-3302 + 12v 4A, +5V 16A. -12V 0.5 A , totally encased in plated steel with mains input plug. mains output socket \& double pole on/off switch size $400 \times 130 \times 65 \mathrm{~mm}$. $£ 9.50$. Order Ref 9.5 P 4 .

POWER SUPPLIES - LINEAR

(all cased unless stated)
4.5 v dc 150 mA, E1, Order Ref 104
$5 v$ dc $21 / 2 \mathrm{~A}$ psu with filtering $\&$ volt reguiation, uncased, $£ 4$ Order Ref 4P63.
6 v dc 700 mA , $£ 1$. Order Ref 103
6 v de 200 mA output in 13A case. £2. Order Ref 2 P 112. $6-12 \mathrm{z}$ dc for models with switch to vary voltage and reverse polarity, £2, Order Ref 2P3.
9 v dc $150 \mathrm{~mA}, \mathrm{£}$. Order Ref 762
9v dc 2.1A by Sinclair, £3, Order Ref 3P151 9 v dc 100 mA £1. Order Ref 733
12 v oc 200 mA output in 13A case. £2, Order Ref 2 P 114
12 V 500 mA on 13A base, $£ 2.50$. Order Ref 25 P 4
12 v oc 1 A filtered \& regulated on pcb with relays \& piezo sounder, uncased, £3. Order Ref 3P80
Amstrad 13.5v dc at 1.8A or $12 v$ dc at 2A, 26, Order Ref 6P23.
24 v dc at 200 mA twice for stereo amplifiers, $£ 2$. Ref $2 P 4$ 9.5 v ac 60 mA made for BT, $£ 1.50$. Order Rel 1.5 P 7 .

15 v 320 mA ac on 13A base, $£ 2$, Order Ref $2 P 281$
$A C$ out $9.8 v$ a $60 \mathrm{~mA} \& 15.3 \mathrm{v}$ (a 150 mA , $£ 1$, Order Ref 751.

BT power supply unit 206AS, charges 12 v battery and cuts off output should voltage fall below pre-set, $£ 16$, Order Ref 16P6
Sinclair microvision psu, £5. Order Ref 5P148

LASERS \& LASER BITS

2MW Laser. Helium neon by Philips, full spec. £30, Order Ref: 30P1. Power supply for this in kit form with case is £15. Order Ref: 15P16, or in larger case to house tube as well £18, Order Ref: 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $\mathbf{£ 6 9}$, Order Ref69 P 1

SOLAR CELLS \& PROJECTS
100 mA solar cell, $£ 1$, Order Ref 631
400 mA solar cell, $£ 2$, Order Ref 2P119 700 mA sotar cell, $£ 3$, Order Ref 3P42 1A soiar cell, $£ 3.50$. Order Ref 3.5P2. 3 V 200 mA solar cell, $£ 2$, Order Ref 2 P 324. 15V 200 mA solar cell. £15. Order Ref 15P47 Solar Educational Kit with parts to make solar fan. $£ 8$, Order Ref 8 P42
Solas kits - make vintage gramophone, $£ 7.50$. Order Ref 7.5P2

Make helicopter, $\mathbf{~ 7} .50$, Order Ret 7.5P17.
Make monoplane, $£ 7.50$, Order Ref $7.5 P 18$

The above prices include VAT but please add $£ 3$ towards our packing and carriage if your order is under $£ 25$. Send cheque or postal orders or phone \& quote credit card number.

> M\&B ELECTRICAL SUPPLIES LTD
> Pilgrim Works (Dept. WW), Stairbridge Lane, Bolney, Sussex RH17 5PA Telephone (0444) 881965phone for Fax
> Callers to 12 Boundary Road, Hove, Sussex.

MICROWAVES

2: The laws of microstrip

Mont currently designed micromave circuitry is based upen microstrip tranmisuion line. This comsisis of a conducting trach separated from a ground plane by a dielectric layer. The electromagnetic fields propagate and interact but ate comfined to the region in the vicinits of conducting track and ground plane. ()ne camon, ol course. conline 1 oftry of these lieds within the dielectric and some portion will extend into the air above the circuit. Besides alfecting the propagation characteristion, yuch fringing liceds will also couple to any adjacent portions of circuit. This latter effect in not aluays a dinadvantage and, as we shatl wee later, emablen a variely of passive components to be realised. Fig. 1 shows the gencral tructure of a transmission line.
The microwate circuit designer initialls need to hnow tho main circuit parameters: the wavelenglh within the microstrip circuit (or. equivalently, the dielectric constant or the phase velocity and the characteristic impedance of the transmission line. Lifortunately, although the configuration of the transmission line appeats cimple. the

> Microstrip engineering, more than any other technique, provides the foundation to modern microwave design. Mike Hosking* spells out the design rules which turn unwanted reactance into a positive asset.

[^2]answer are deceptisels dilficull to obtain accuratels.
Unlike waveruide or coan iall line the conducting boundaries atre no carily or míquely definable and ann evact yontheris can only be made using, lypically, conformal maping or linite element techniques. The resulth of such analsues ate not convenient. clowedform devign equations for enginering use and, in fact. much of the design effort over the past Ino decades has heen spent on developinge and improving ath closel-firm wolution derived from the larger models. The result hats been a steady improvement in the accuracy to which circuil designs may be made and the evolution of comprehensive, internationally used CAD tools auch as the Eesof frecently merged with H-P) and Sipeer (ompract suites.
The wavelength within the circuit inself (the guide wavelengh) must to hnown, hecause all designs are based on the electrical dimemions of small sections of circuit. The essence of high frequency circuit design lies in the delermination of the inductive capacitive or impedance transforming effeen produced "hen an electromagnetic field 'sees' dimen-
sional changes in its transmission line. If all of the field was confined to the dielectric medium then the velocity of propagation, would simply be the velocity of light c divided by $\sqrt{ } \varepsilon_{r}$ where ε_{r} is the intrinsic dielectric constant (relative permittivity) of the substrate material. However, due to the fact that some portion of the field travels in air (for which $\varepsilon_{\mathrm{r}}=1$) an effective dielectric constant ε_{e} must be used and ε_{e} depends upon several circuit parameters, including frequency. All transmission circuits including free space, present an impedance to the electromagnetic wave, the characteristic impedance, Z_{0}. Its value must be known in order to design circuits with optimum power transfer and minimised internal reflections.

Microstrip design equations

The velocity of propagation, hence wavelength, within the microstrip circuit depends upon an effective dielectric constant ε_{e}. In turn, ε_{e} depends upon the proportion of field within the substrate to that travelling outside. Both of these depend upon the actual dimensions of the line, together with the substrate material and frequency. For example, we may intuitively appreciate that as the top conducting track becomes wider and wider, then more of the fields can be contained within the substrate. Conversely, for narrow lines, more of the field extends to the air. Thus, the effective dielectric constant must lie somewhere between the extremes of unity and the intrinsic value ε_{r}.
In practice, the effects of frequency on ε_{e} can often be neglected below 1 or 2 GHz and, in this case, we have a 'quasi-static' solution to the design (see further reading) where, for example:

$$
\varepsilon_{e}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2}\left[1+\frac{10 h}{w^{\prime}}-\frac{t / h}{\sqrt{w^{\prime} / h}}\right]^{-0.555}
$$

within a certain range of w / h and ε_{r}.
Thus, the guide wavelength is a function of track width and substrate thickness. For thin metal films, their thickness t can be neglected. Similarly, the characteristic impedance is also a function of n, and h, shown graphically in Fig. 2.
As a design example, take the two cases of a 50Ω characteristic impedance microstrip line. one on a 1.25 mm thick plastic substrate having $\varepsilon_{r}=2.2$ and the other on 0.125 mm thick GaAs having $\varepsilon_{\mathrm{r}}=13.1$. The former circuit would have $\varepsilon_{\mathrm{e}}=1.9$ and a track width of 3.85 mm , while the respective values for the latter would be $\varepsilon_{\mathrm{e}}=8.4$ and $n=0.09 \mathrm{~mm}$. At frequencies where dispersion must be taken into account (accuracies of $<0.5 \%$ are usually required) the effective dielectric constant can usually be described by an expression of the form:

$$
\varepsilon_{\mathrm{c}}(f)=\varepsilon_{r}-\frac{\varepsilon_{r}-\varepsilon_{\mathrm{c}}}{1+P(f)}
$$

where $P(f)$ is a semi-empirical modeiled term which varies with frequency.

At frequencies higher than those indicated

Fig. 1a. General form of microstrip transmission line, showing the electric field pattern with substrate and ground plane.

b. Coplanar waveguide, where conductor and groundplanes are all on the same surface, showing typical field configuration.

Fig. 2. Graphs of the characteristic impedance of a microstrip line as a function of the line width to substrate thickness ratio for two substrate dielectric constants. It shows that the line width decreases as ε_{r} increases and that higher values of impedance require narrower lines.

above, account must be taken of what is termed dispersion. In addition to the wavelength cranging with frequency, the actual propagation velocity of the fields changes as well.

Other important design parameters are the signal losses which occur within a circuit (caused by dissipative losses within the conductors). dielectric loss (caused by the substrate) and radiation loss. There is also an
upper frequency limit for microstrip, dependant on thickness and ε_{r} beyond which a higher mode occurs; this would typically be above 100 GHz . Finally, practical circuits must be packaged within some form of enclosure, the sides and top of which can modify their performance by interaction with the fringing fields. Such effects may cither be taken into account from analysis of fields within a box, or by ensuring that the enclosing walls are

RF ENGINEERING

spaced far enough away from the circuit so as to avoid interaction.

Substrate materials

Virtuosity in circuit design accuracy would be of little account if not matched by a corresponding quality of manufacture, particularly in the area of substrate technology. Not only must a choice of materials be available, but
their dimensional accuracy, stability and homogeneity must lie within tight tolerances. Table 1 lists the dielectric constant and loss tangent for some of the more prevalent substrate materials. A wide range of the plastic materials is available. Many of these are based on PTFE, filled with either finc glass or ceramic, although irradiated polyolefin is also used.

Fig. 3a. Four designs of an 18 GHz microstrip bandpass filter on an alumina substrate. The length of each short section of line is approximately $\lambda_{g} / 2$ and the amount of overlap between adjacent lines is $\lambda_{g} / 4$.

b. The bandpass filter equivalent circuit is realised in practice by the parallel resonances due to the $\lambda_{g} / 2$ sections and the series resonances caused by the coupling of the fields between lines.

Fig. 4a. A low pass filter can be produced in microstrip by a cascaded series of low and high impedance sections of line, appearing as series-L and shunt-C elements

b. Conventional equivalent circuit of the low pass filter.

Table 1

Material	Tand $(10 \mathrm{GHz})$	$\mathrm{e}_{\mathbf{r}}$
PTFE/glass	10^{-4}	$2.1-2.6$
PTFE/ceramic	4×10^{-4}	$9-11$
Alumina $\left(\mathrm{AlO}_{2}, 99.5 \%\right)$	2×10^{-4}	9.8
Fused quartz	10^{-4}	3.8
Irradiated polyolefin	5×10^{-4}	2.3
Sapphire (anisotropic)	5×10^{-5}	$9.4 \& 11.6$
Semi-insulating GaAs	6×10^{-4}	13.1

Reactance with a difference

If we take a length, I, of transmission line having a characteristic impedance Z_{0} and we terminate the line with some impedance Z_{L}, where $Z_{L} \neq Z_{\mathrm{o}}$, then a portion of any input signal will be reflected, due to the impedance mismatch. We can analyse the circuit in terms of those incident and reflected waves and may eventually express the input impedance (neglecting line losses) as:

$$
Z_{i n}=Z_{o}\left[\frac{Z_{L}+\mathrm{j} Z_{o} \tan \beta l}{Z_{o}+\mathrm{j} Z_{L} \tan \beta l}\right] \quad \ldots
$$

where β is called the phase constant $=2 \pi / \lambda_{\text {g }}$ where λ_{g} is the guide wavelength.
Equation 1 leads to some very interesting results. Take the two extreme cases of making Z_{L} either a short circuit or an open circuit. In the former case, $Z_{L}=0$ and equation 1 reduces to:
$Z_{\text {in }}=j Z_{0} \tan \beta / \quad \ldots 2$
This is the expression for a pure reactance, the value of which depends on the length of line l. It can be seen that, for values of l, up to one quarter wavelength $\left(I_{g} / 4\right), Z_{\text {in }}$ is inductive and can have any value between zero and infinity. From $I_{g} / 4$ to $I_{8} / 2, Z_{\text {in }}$ becomes capacitive and can vary between $-\infty$ and 0 . A similar situation exists for an open circ uit termination, for which $Z_{L}=\infty$. In this case $Z_{i n}=-j Z_{0} \cot B /$ and may again take on any value between $\pm \infty$ as / varies between 0 and $l_{g} / 2$. Thus, we can make a capacitor or inductor from a simple length of open or short circuited transmission line. Two special lengths of line are also of interest: when I is a quarter wavelength (or odd multiples thereof) then equation 1 gives:

$$
\frac{Z_{i n}}{Z_{o}}=\frac{Z_{o}}{Z_{L}} \text { or } Z_{o}=\sqrt{Z_{i n} Z_{L}} \quad \ldots 3
$$

This is an impedance transforming function, as it has converted the load impedance Z_{L} into an admittance $1 / Z_{\text {L }}$. Alternatively, equation 3 shows that the magnitudes of an input and output impedance may be matched by inserting a quarter wavelength section of transmission line between them, of a characteristic impedance equal to their geometric mean.
The other special length is when $I=\lambda_{\mathrm{p}} / 2$; then $Z_{\text {in }}=Z_{L}$. In other words, we could move backwards from the load in half wavelength steps and it would appear as if Z_{l} was connected at these points. This is a useful aid in designing impedance matching circuitry, a fet amplifier for example, as the circuit elements need not all be crowded together (probably physically impossible anyway) at the actual terminals of the fet.

Actual circuit fabrication is usually a photoetching process similar to normal printed-circuit board manufacture, the substrates being supplied with a $\frac{1}{2}$ oz or loz copper coating. High purity alumina is a popular substrate and can be obtained with gold metallisation on both surfaces ready for selective etching. Alternatively, screen printing using conductive thick-film inks which are then fired, may be used with alumina. Thick films are ultimately limited by the edge definition, due to the screen, but are successfully used to above 10 GHz in frequency. In both of the above types of material, active devices such as diodes and transistors can be bonded to the circuits to produce hybrid components.
Monolithic circuitry with GaAs as the substrate requires a semiconductor manufacturing technology to produce deposited conductor patterns with diffused or implanted regions forming the active devices

Passive component design

The fact that the physical dimensions of microwave transmission lines are comparable in size to the wavelength itself (typically cm or mm) means that the very presence of a section of line. or of a change in dimension, can locally change the phase of the electromagnetic fields and can appear as inductive or capacitive elements. We thus have the concept of "distributed" circuit design. If a conventional type of lower frequency inductor or capacitor were placed into a microwave circuit, it would not behave in accordance with its value. It would appear rather as some complicated discontinuity with a complex equivalent circuit.
A further design technique makes use of the field coupling which occurs when two sections of microstrip line are brought close

Fig. 5. An abrupt change in conductor width causes a local distortion of the electromagnetic fields to which it appears as an IC circuit in this example. Hence, reactive circuit elements may be produced from physical changes in the line geometry.
together. "Close" typically means between 0.025 mm and 5 mm depending upon the substrate material and the particular application. With a combination of these design tools, components such as resonators, low pass, high pass, band pass and band stop filters. hybrid directional couplers, power splitters, impedance matching networks and delay lines may be realised. All of these appear as innocuous lines on a substrate but are, in reality, the distributed counterparts of lower frequency discrete-element circuits.
As an example of a passive microwave circuit, Fig. 3a shows four microstrip bandpass filters on an alumina substrate operating at about 18 GHz .
Each filter has the normal equivalent circuit of cascaded $L C$ networks, as in Fig. 3b, and indeed, the individual filter elements are calculated in the same way as for lower frequency designs to provide bandpass responses such as Butterworth, Chebyshev, elliptic function; with a trade-off between stop-band attenuation. rate of cutoff, insertion loss and number of poles.
In Fig 3(a), each of the shorter lengths of line is approximately a $1 / 2 \lambda$ long and appears,
electrically, as a parallel $L C$ resonant circuit. Individual lines overlap each ether by a nominal $1 / 4 \lambda$ wavelength and mutually couple, thereby appearing as series $L C$ combinations. In practice, an open circuit microstrip line radiates slightly and has fringing fields from the line ends, with the result that it appears slightly capacitive. Thus, a length correction must be made.
A slightly different approach to a tilter design, in this case lowpass, is illustrated in Fig. 4a with its conventional, electronic equivalent circuit in Fig. 4b
A length of microstrip line much narrower (high impedance) than another section of line loading it, will appear as a series inductance, whilst a wide (low impedance) section will appear largely as a parallel capacitance. Thus. the desired response can be produced by cascading L and C sections. One typical use of such a filter is in the bias circuit to an active device: dc connections have to be made without allowing the microwave signal to travel into the supply circuit or introducing mismatch.
In practice, this particular type of filter is restricted to frequencies below a few GHz due

Fig. 6. Four types of microstrip directional coupler in common use: a. A 90° hybrid branch line;
b. A 180° hybrid ring
("rat race");
c. Edge-coupled strip
having a coupling dependant upon the gap; d. A Lange coupler used on wideband circuits, giving a 3dB power split with a 90° phase difference.

Fig. 9. A balanced amplifier configuration used for wideband circuits reduces the problems of internal mismatch and provides continuous operation should one fet fail.
to fringing ficlds from the step discontinuity. As shown in Fig. 5, these cause the local dimensional change to appear as another form of $L C$ network, degrading the filter performance. This latter point serves to illustrate the fine detail which has to be taken into account in the design of high frequency circuits.

Directional couplers

This device is a basic circuit building block used in applications such as balanced, double balanced and image-rejection mixers, balanced
amplifiers and certain antenna feed networks. The coupler performs a power splitting function, ic one input and two outputs. but with usually a 90° or 180° phase shift between the two outputs. Fig. 6 shows four types of commonly used coupler in microstrip form.
Type (a) is a 90° hybrid branch line coupler so called because of its ability to provide an equal power split with a 90° phase shift between outputs. Each section of the coupler is normally $1 / 4 \lambda$ long and the branched design has the property that a signal input at Port 1 ,
say, will split equally with half going to Port 2 and half to Port 3. However, the output at Port 2 has travelled a distance of $\lambda_{\mathrm{g} / 4}$, while that at Port 3 has travelled $\lambda \mathrm{g} / 2$, thereby introducing a 90° phase difference.

In practice, the T-junctions of the lines have an equivalent circuit shown in Fig. 7 and thus the local detail around the " T " must be altered, in order to introduce additional reactances for matching. Again. this is an example of the design detail required for microwave circuits.
This type of coupler is widely used in balanced mixer design, shown schematically in Fig. 8. The two mixer diodes are connected in opposite polarity and their outputs are combined via low pass filters to give the IF, while the overall effect of the phase shift introduced by the coupler is to produce cancellation of the local oscillator AM noise.
The coupler shown in Fig. 6b is also used in mixer circuits and is called a hybrid ring or rat-race coupler. A phase shift of 180° is introduced between outputs with, usually, an equal power split, although this can be changed by varying the characteristic impedance of the coupler sections.

An input at Port I will split equally, say, at the ring junction and the two components will travel in opposite directions around the ring. At Port 2, one component will have travelled $\lambda_{g} / 4$ and the other $5 \lambda_{g} / 4$ so they will both be in phase at this port and will thus partially couple out.
At Port 3, one signal will have travelled $\lambda_{\mathrm{g}} / 2$ and the other λ_{g} so they will be 180° out of phase and will cancel, giving no output.
At port 4, the two components will again be in phase and can, therefore, exit but, because they have travelled an extra $\lambda_{g} / 2$ compared with those at Port 2 , the coupler outputs have a 180° phase difference.
Instead of forcing the microwave fields to split into two parts at a junction. couplers may be designed just by bringing two tracks into close proximity as in Fig. 6c. Even and odd mode waves are generated, cach having a different impedance and phase velocity. The amount of coupling depends upon the proximity of the lines. However, it is difficult to
achieve a coupling of more than about -10 dB .
The previous coupler types have the disad vantage that they are inherently narrow band designs, although the bandwidth of the branch line hybrid and side coupler can be increased by adding more sections at the expense of greater substrate area and insertion loss. A design which avoids these problems is the Lange coupler of Fig. 6d.
Of interdigital construction, it uses bond wires to equalise the even and odd mode phase velocities and gives a 3 dB power split with a 90° phase difference between outputs. However, the big difference is that the amplitude and phase balance is maintained over frequency bands in excess of an octave, leading to widespread use in balanced amplifiers, as in Fig. 9. Sce also Fig. 4 in Part /.

A microstrip receiver circuit which brings together several of these elements is shown in Fig. 10. The substrate is alumina, about 0.6 mm thick and most of the tracks are 50Ω transmission lines. The hybrid ring style of mixer can be seen, with the microwave input signal passing through a coupled line bandpass filter. A single. edge coupled strip is used to sample power from an external source to provide the local oscillator signal. The discs in the foreground are bias magnets for circulators on ferrite substrates.

Fig. 10. A complete receiver circuit showing hybrid ring mixer, bandpass filter, edge coupled strips and ferrite circulators.

Further reading
Foundations for Microstrip Circuit Design, 2nd, edition, 1992, T Edwards, Wiley.

Next Month:
lumped components and waveguides.

DO YOU HAVE A £100 CIRCUIT? EACH MONTH'S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL OTHER PUBLISHED IDEAS WILL BE WORTH £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN COMPONENTS

£100 WINNER

SCR inverter

With one or two drawbacks, the saving grace of this single-SCR inverter is its simplicity. It produces a vaguely sinusoidal waveform of around 320 V AC at 400 Hz , the

Very simple inverter, whose output is virtually unaffected by supply voltage, produces about 320 VAC at 15 mA .
frequency being only slightly affected by supply voltage and load. Losses in the RS 209847 transformer dictate an efficiency of 50% with a resistive load.
At switch on, oscillations must be allowed to build up slowly on a light load, since a heavy load would cause latch-up in the conducting state, necessitating some kind of currrent limiting.
The only variable is the resistor, which will affect the output voltage to some extent and allow lower or higher supply-voltage working. A lower frequency requires a larger resonating capacitor, which should not be an electrolytic type.
D Di Mario
Milan
ltaly

Simple oscillator for up to 100 kHz , using an operational transconductance amplifier to give a 1 V pk output at 50 kHz .

OTA oscillator

| n non-linear mode, an operational Itransconductance amplifier will function as an $L C$ oscillator in the circuit originally described by Baxandall in 1959 .
The parallel $L C$ circuit on the non-inverting input of the 3080 OTA receives feedback from the output. At resonance, the tuned circuit appears as a resistive load $R_{d}=2 \pi f_{0} L \mathrm{Q}$. Bias current in the OTA, set by R_{abc}, determines g_{m}. which is about $2 \mathrm{~mA} / \mathrm{V}$ for an $I_{\text {abc }}$ of 1 mA . Oscillation at f_{0} takes place when $g_{\mathrm{m}} R_{\mathrm{d}}>1$,
increasing in amplitude until the amplifier limits, acting as a switch to drive constant I_{abc} and $-I_{\mathrm{abc}}$ into the tuned circuit, the waveform across it being sinusoidal with an amplitude of $4 R_{\mathrm{d}} /_{\mathrm{abc}} / \pi$ and third-harmonic distortion of (100/8Q) \%.
The circuit works to about 100 kHz , although distortion rises at higher frequencies. J Willis
Macclesfield
Cheshire

YOU COULD BE USING A IGHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee together with $£ 25$ for all other ideas published. Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

Voltage-independent time delay

AIthough this is an $R C$ time-delay, no adjustment is needed and supply variations have no effect, since such variations affect both inputs to a voltage comparator equally.
Input pulses cause a ' 1 ' at the output of $I C_{1 \mathrm{~b}}$, this being applied to the $R C$ and to $R_{2.3}$, so that

$$
\begin{aligned}
& v_{C 1}=v_{1}\left(1-e^{-t_{0} / R_{1} C_{1}}\right) \\
& v_{R 3}=v_{1} R_{3}\left(R_{2}-R_{3}\right)
\end{aligned}
$$

Since the delay is determined by the time needed for $\mathrm{v}_{\mathrm{C} 1}$ to become equal to $\mathrm{v}_{\mathrm{R} 3}$, solving that equation for t_{0} produces

$$
t_{0}=-R_{1} C_{1} \ln \left(1-R_{3} /\left(R_{2}+R_{3}\right)\right)
$$

where t_{0} depends only on the $R C$ combination. and voltage plays no part.
The diodes avoid the possibility of two zeros on the comparator inputs, when the input is zero. Inverting input is always high, since either $I C_{1 \mathrm{a}}$ output or $I C_{1 \mathrm{~b}}$ output is always present.

Nilavrentiev

Kalningrad
Moscow Region
Russia
This time delay is independent of supply-voltage variations, even though delav is determined by an RC circuit.

Comparator extends alarm system

Several alarm sensors, presenting either normally open or normally closed contacts, are used as inputs to a digital comparator, which emits an enable to an alarm system when any sensor contact changes state.
A 74LS688 has two sets of eight inputs, P
and Q , and one $\mathrm{P}=\mathrm{Q}$ output; when all P inputs are equal to all Q inputs, $\mathrm{P}=\mathrm{Q}$ is low, otherwise it remains high.
Any Q input may be set at 0 or 1 by the dil switches and the $10 \mathrm{k} \Omega$ sil resistors. On the P side, normally closed contacts such as that on P0 pull the inputs high, an opened switch
taking the input low via its $1 \mathrm{k} \Omega$ resistor. Normally open contacts allow transistor switches to provide normaliy high inputs to their P inputs, closing switches again taking the P input low; the use of transistors avoids trouble with varying supply voltages. For lowlevel sensors, the contact could feed the transistor base directly, as in (b).
Connecting eight 688 s to a summing 688 would extend the number of possible sensors to 64.

M Saunders

Leicester

Up to eight contact sensor connected to one 74LS688 generate an alarm enable when one sensor is actuated, whether the sensors are normally open or closed contacts. At (b) is a simplified transistor feed for low-

(b)

Push-button alternately opens and closes analogue switch.

Analogue switch with memory

Apush-button switch connects or disconnects an analogue signal in successive operations, using one IC, three resistors and a capacitor. Analogue signals go through one channel of a $40.53 B$ three-channel multiplexer, the other two being connected as a bistable flip-flop so that outputs O_{B} and O_{C} are alternately I or 0 . When O_{C} is 0 , the capacitor is also at 0 V ; pressing the button connects it to the input I_{C} and triggers the flip-flop. As the button is released, the capacitor charges again to $V_{D D}$
A second operation causes the capacitor to apply V_{CC} to $/ \mathrm{C}$, which retriggers the flip-flop so that the capacitor is once again discharged when the button is released. Since the flip-flop is toggled each time the button is pressed. output O_{C} opens and closes the top channel to the analogue signal.
Requirements are $V_{\mathrm{DD}}=5 \mathrm{~V}-1.5 \mathrm{~V}$, negative supply $V_{\text {RE: }}=-13.5 \mathrm{~V}-0 \mathrm{~V}$ and $\left(V_{\mathrm{DD}}-V_{\mathrm{EE}}\right)=15 \mathrm{~V}$ maximum.

M S Nagaraj

ISRO Satellite Centre
Bangalore
India

Variable-frequency generator has switchable duty cycle

t any frequency up to around 330 kHz , the duty cycle of this generator is settable between $3: 1$ and 1:3.
Four stages of ripple counter 4040 drive the 74 C 154 16-line decoder, clock input to the 4 MHz counter being divided by 12 . When output 12 of the decoder goes low, it sets the output flip-flop, resetting the counter, which
starts to count again from zero. As the count reaches that corresponding to the decoder output selected by the switch, the flip-flop is reset. Maximum input frequency is about 4 MHz .

Alberto R Marino

Madrid
Spain

At one-twelfth of the clock frequency, this rectangular-wave generator has a duty cycle selected between 3:1 and 1:3.

Inductance meter

W ${ }_{\text {counter }}^{\text {hen this two-transistor circuit }}$ indicates inductance within about 5% in the range $0.1 \mu \mathrm{H}-2000 \mu \mathrm{H}$. The reading is not direct but a simple calculation or perhaps even a graph or look-up table gives the result.

An rf oscillator operating at $3.5-4 \mathrm{MHz}$ feeds a buffer to drive the counter. The terminals L_{x}, when shorted, result in the oscillator's natural frequency; comecting the unknown inductor increases the total inductance and produces a lower frequency, which is displayed and used to calculate the inductance. C being known. A receiver covering $300 \mathrm{kHz}-4 \mathrm{MHz}$ could possibly be used instead of the counter.

The value of the of choke must be subtracted from the calculation, which, since the total value of the two 470 pF capacitors and the
$0.001 \mu \mathrm{~F}$ comes to 190 pF , becomes

$$
L_{\lambda}=\left(\frac{1}{4 \pi^{2} f^{2} \times 190 \times 10^{-6}}\right)-10
$$

where inductance is in $\mu \mathrm{H}$, frequency in MHz anc capacitance in $\mu \mathrm{F}$.
Practically, the usual if precautions must be observed, namely rigid metal enclosure, regulated supply, good-quality capacitors, and the use of short, rigid connections. These include those to the unknown inductor. Any small-signal npu transistor will suffice and the rl choke can be a standard type.

Peter Parker
Bentley
Australia

Easy to use mains timer

T-ogether with a thousand or so others, our household is currently part of an electricity tariff experiment. During the day, electricity is much more expensive than standard rate, at 12.6 p a unit but in the evenings it drops to 5.6 p and between $12: 30$ and $07: 30$ at night it is only 2.6 p. This easy to use timer was designed to run the washing machine and dryer after 12:30 at night.
Two outlets are needed because the dryer and washer cannot be run together from one 13A socket. There is only one control, a switch, which allows manual selection of either of the two sockets. Switching to either resets the timer while switching back to the centre position initiates the timing sequence.
A red LED signals the timer's wait period while a green one signals the end of the cycle. Set up as shown, the first socket turns on
about 3 h 40 m after reset and stays on for just under an hour and a half, after which the second socket turns on for the same period. These periods mean that the timer can be initiated at any time between 8:53 and 12:55 in the evening. Using jumpers allows the on and selay periods to be altered.
Reset must be initiated in both switch positions to eliminate the possibility of having both sockets on at once, overloading the outlet. How long the capacitor can supply the cmos ICs during mains failure is difficult to determine since connecting a voltmeter to the supply increases the discharge rate. It should be at least a few minutes.

James Stevenson
Newcastle-u-Lyme
Staffordshire

Soft-start filament driver

Two power mosfets with a ramped gate voltage switch on slowly and eliminate a current surge into a cold filiment.
The mosfets act as variable resistors, two charge pumps applying a slow-rising DC bias to the gates. Initially, the mosfets are off and the $22 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ capacitors charge through the 33052 resistors and the internal drain/source diodes of the opposite mosfets. During this time, the load receives drive from one mosfet and the substrate diode of the other during each half eycie. When the capacitors are fully charged, both mosfets are on. voltage drop through the circuit being determined by the mosfet $R_{\mathrm{DS}(0 n)}$ of about 0.2Ω. The gate drivers give a slow charge, fast discharge characteristic.
Mosfets without the substrate diode can
be used, hut must have a diode such as the

LETTERS

Self challenges Duncan over hot audio

Having read Ben Duncan's article Spirit of Bass (EW + WW. February) I felt there were a few 100 many unsupported assertions to let them all go.
The alleged benefits of regulated supplies for power anplifiers may have been covered in some depth in previous articles. but this is different from proving that these benefits exist. Ben's previous contribution ($E W+W W$. October) concludes that distortion introduced by ripple and signal on supply lines is a serious problem. But to reach this conclusion he found it necessary to assume that the PSRR of the amplifier in question was about 25 dB . which is unrealistically awful even for an unsophisticated circuit.
I question the statement that some sort of "envelope modulation" results between the $100 / 120 \mathrm{~Hz}$. reservoir charging frequency and bass frequencies. This obviously occurs when an amplifier with an unregulated supply is driven into continuous clipping, but what has this to do with the finer nuances of
reproduction'? I can think of no other way for such modulation to happen: perhaps Ben can enlighten me.
I also winced when I read that "bass clarity has been shown to be improved by... exchanging linear and 80 kHz switching PSUs". Has it? When and by whom? And what definition of "bass clarity" are we using here? Is it intermodulation distortion, or something so magically non-measurable that only subjectivist hi-fi reviewers can perceive it?
However, my main concern is the reference to "thermal distortion" at the end of the article. Ben seems to take it as given that such a distortion mechanism exists in power amplifiers, but having studied the subject in some depth I have yet to see the effect, and frankly I don't think it exists.
I do agree that it happens in op amps, because of having output and input devices on the same chip, so there is very close thermal coupling between them. But this has nothing to do with amplifiers constructed from discrete devices. I note that his reference 13 deals with op amps only, and even then it seems necessary to measure the thermal

	10Hz AP out	Amp out	1 kHz AP out	Amp out
Fundamental	$.00013 \%$	$.00031 \%$	$.00012 \%$	$.00035 \%$
Second	$.00033 \%$	$.00092 \%$	$.00008 \%$	$.00060 \%$
Third	$.00035 \%$	$.00050 \%$	$.000013 \%$	$.00024 \%$
Fourth	$<.000002 \%$	$.00035 \%$	$<.000008 \%$	$.00048 \%$
Fifth	$<.00025 \%$	$<.00045 \%$	$.000014 \%$	$.00024 \%$
Sixth	$<.000006 \%$	$.00030 \%$	$.000008 \%$	$.00021 \%$
Seventh	$<.000006 \%$	$<.00008 \%$	$.000009 \%$	$.00009 \%$
Eighth	$<.000003 \%$	$.00003 \%$	$.000008 \%$	$.00016 \%$
Ninth	$<.000004 \%$	$.00011 \%$	$.000007 \%$	$<.00008 \%$
AP THD reading	$.00046 \%$	$.00095 \%$	$.00060 \%$	$.00117 \%$

(80 kHz bandwidth)
NB: The rejection of the fundamental is not perfect, and this is shown as it contributes to the THD figure.
distortion effect at 1 Hz . well outside the audio band.
While there have been odd mentions of thermal distortion in power amps in some of the hi-fi press. I have never seen any explanation of how it might work. any estimate of the magnitude of the effect. and a circuit that will

Virtual travel

Compared to previous booms in brown goods. the relatively highly priced camcorder may have been less exciting than video recorders or colour televisions. But the industry must look for a new product, and the buzz is about virtual reality.
A number of new technologies have appeared recently that can be put together to make a remarkable family of devices, which will probably be as near as we will ever get to Star Trek's transporter.
The initial or basic offering will be relatively crude and consist of a transmitter and receiver that can be plugged into telephone sockets anywhere. The receiver will be a virtual reality helmet. with stereo headphones and two video displays with arrangements to focus them as a stereo pair to the viewer. It will be connected to a box that decodes the video and audio data from the fractal compression system used to send it down the telephone system.
The transmitter will be a head sized object with binaural microphones and a pair of television cameras, and the data will be fed via a fractal compression unit to the telephone line. It will probably be sold at high prices to business users so that, for example, someone can be shown round an office or factory to decide whether they are sufficiently interested in buying it before visiting it in person.
Being shown round with this set up would be a bit like a quadriplegic being wheeled around in a wheelchair. Although you would have the feel of being there, you would have to look where your head was pointed.
The next development would be to arrange for the receiver to send to the transmitter signals representing the azimuth and bearing of the head, so that the viewer could turn his or her head around and look where he or she wants. But the head's location would still be moved by the people the other end. This would be more like a
paraplegic being wheeled around in a wheelchair.
The stage on from this would be to mount the head on a small airship-type flying machine, and set its computer to keep it at head height. Then directional signals could also be sent to it from the receiving person. I suggest that a flying machine would be easier and cheaper to make than a walking machine. The buoyancy could still be obtained by a cylinder, held vertically by its flight control system, equal in volume to a body and legs and it only need float a few inches above the ground. It may look a bit like an Datek or animated dustbin, but it would do the job and should be easy enough to mass produce.
However, as it stands people would not be able to use this product to visit each other, as the person receiving the visit would still see the animated dustbin rather than the person.
But a simple trick could be used to get over this. A camera at the terminal of the subscriber making the virtual visit would record his or her appearance, and the person being visited could also wear a virtual reality helmet. However, this helmet would display the home image, except instead of the animated dustbin it would display the image of the person making the visit. It could not be impossible to edit out the VR helmets the two people would be wearing, so each would see the other as if they were a real person.
Of course there will be those who will suggest that this can never replace travel and it would be bad for the soul and so on. However, I can see no technical reason why it would not happen, and in reality it could well have uses to enhance travel rather than suppress it. Never again could the travel agent suppress the fact that the hotel is between the crematorium and the abattoir if customers expect a quick VR tour before laying out their money for the tickets!

John de Rivas

Truro,
Cornwall
demonstrate its production
In the usual absence of specifics. I can only assume that the alleged mechanism induces parameter changes in semiconductors whose power dissipation varies over a cycle. If this happens, it would presumably manifest itself as a rise in second or third harmonic distortion at very low frequencies, but this simply does not happen. The largest effects would be expected in Class B output stages where dissipation varies wildly over a cycle; the effect is still wholly absent.
One reason for this may be that drivers and output devices have relatively large junctions with high thermal inertia. A few minutes work with hammer and chisel revealed that an M.IE340 driver has a chip with four times the total area of a TLO72. Given this thermal mass. parameters presumably cannot change much even at 10 Hz . Low frequencies are also where the global NFB factor is at its maximum: it is perfectly possible to design an amplifier with 100 dB of feedback at 10 Hz , though much more modest figures are sufficient 10 make distortion unmeasurably low up to lkHz or so. Using my design methodology, a blameless amplifier can be straightforwardly designed to produce less than 0.0006% THD at $10 \mathrm{~Hz}(150 \mathrm{~W} / 8 \Omega)$ without even thinking about thermal distortion. I think this suggests that we have here a non-problem.

I accept that it is not uncommon to see amplifier TH plots that rise at low frequencies: but whenever I could investigate this. the LF rise could be eliminated by attending to either defective decoupling or feedback-capacitor distortion. Ben says he accepts the effect must be at a very low level as it is invisible at 0.0006% : remember that this is the level of a THD reading that is vistally pure noise, though there are
real amplifier distortion products buried in it.
I have therefore done some deeper investigation by spectrum analysis of the residual. which enables the harmonics to be extracted from the noise. The test amplifier was an optimally biased Class B machine very similar to that in part 7 . except with a CFP output. The Audio Precision oscillator is very clean but this amplifier tests it to its limits. and so the table shows harmonics in a before-ind-after-amplifier comparison. The spectrum analyser bandwidth was 1 Hz for 10 Hz tests. and 4.5 Hz for $1 \mathrm{kH} /$, to discriminate against wideband noise.
This further peeling of the distortion onion shows several things: that the Audio Precision is a brilliant piece of machinery. and that the amplifier is really quite linear too. However there is nothing resembling evidence for thermal distortion effects.
As a final argument. consider the distortion residual of a slightly underbiased power amp, using a CFP output configuration so output device junction temperatures do not affect the quiescent current. It therefore depends only on the driver temperatures. When the amplifier is switched on and begins to apply sine wave power to a load, the crossover spikes (generated by the deliberate underbiasing) will be seen to slowly shrink in height over a couple of minutes as the drivers warm up. This occurs even with the usual temperature compensation system, because of the delays and losses in heating up the V_{bc} multiplier transistor.
The size of these crossover spikes gives in effect a continuous readout of driver temperature, and the slow variations seen imply time constants measured in tens of seconds or more. This must mean a negligible response at 10 Hz .

There is no doubt that long-term thermal effects can alter Class B amplifier distortion, because as I have uritten elsewhere, the quiescent current setting is critical for the lowest possible highfrequency THD. However. this is strictly a slow (several minutes) phenomenon, whereas Duncan's comments about "even-harmonic residues" show that he is thinking of the usual sort of per-cycle distortion.
The above arguments lead me to conclude that thermal distortion as usually described does not exist at a detectable level. Nonetheless. if anyone has any hard evidence in rebuttal, I would be interested to hear it. Subjectivist impressions. however. are not required.

Douglas Self.

Forest Gate,
Iondon

Duncan replies

Douglas Self is being economical with the facts. Regulation improved the $\% \mathrm{THD}+\mathrm{N}$ performance of the amplifier for which I developed the regulator (see Fig. 2, p822, EW' + WW. October 1992), by up to tenfold above 1 kHz .
His guidance on PSRR, while correct in the circumstances, has no relevance to the topology I used (the driver stage had a 100% separate and ground isolated regulated supply) and having many years’ experience in power audio. I resent any implication that my 0 V noding or NFB takeoff were anything other than blameless. long before I even considered improving performance with a regulator.
At $650 \mathrm{~W} / 482$ the amplifier in question also had considerably larger currents flying about and regulation dramatically cleaned up residue on the supply wires, which makes the black art of lead dress and twist less of an issue, opening new possibilities for ultra-compact pachaging of high power without runaway noise induction.
More generally, Douglas is attempting to show that supply regulation is jusi not needed - ever. without even trying it, and based on idealised experience with just one classic topology. Simultaneously, he implies it has never been needed. The latter appears to be an unsupported assertion of his own, as he shows no measurements of PSR vs frequency or the supply residue of commercial products.
My -25dB PSRR figure was clearly intended as a worst case baseline at 20 kHz . and not a wholly unrealistic one with some topologies and real-world PSR-reducing compromises found in PA and upmarket hi-fi amplifiers.
Douglas Self has shown supply regulation may not be needed to get quite low static \%THD+N figures when driving an $8 S 2$ resistor with his own idealistically laid out 50 W development of the Lin topology (1956). But where are those measurements demonstrating the extent to which the blameless performance won't be disrupted by RFI on the mains supply or perturbations caused by the transient demands of a hungry. capacitative loudspeaker?
Self's own words are forked, if, as he says in part 1. a power amplifier really is just an op-amp with boots on. So if all power amplifiers can work blamelessly with a raw supply. then why does he and everyone else bother to use regulated supplies for IC op amps in, say, mixing consoles?
Concerning improvements in bass clarity, the MSL-Rauch P600 is a $600 \mathrm{~W} / 4 \mathrm{~S} 2 /$ channel amplifier with an

80 kHz switching supply, but otherwise its audio path replicates Rauch Precision`s older DI'T 250s model. which has a conventional supply.
Both amplifiers have had an enduring presence in the UK and European live performance. rehearsal and recording studio circuit, and over the pasi seven years, a number of experienced sound engineers have noted the improved sonics when changing between the two models.
Subjectivists yes, but also top professionats, and here Douglas ignores reality if he cannot accept that humans necessarily have the final say about equipment intended to communicate with most people who have a right brain, capable of measuring music - something machines are still too daft to even recognise.
As the improvement occurs across a wide range of units, artistes. microphones. venues and speaker systems, it has been rokustly demonstrated. The relative absence of 50 Hz harmonics and intermod products goes some way to accounting for differences. These and others can doubtless be identified and validated. if someone wishes tis Douglas volunteering?') to sponsor the research effort.
As to looking for thermal distortion in monolithic ICs, the JG Graeme test I cited naturally uses 1 Hz to create a fairly gross (say > 3% error for visibility's sake on a curve tracer, and to overcome display hysteresis. As most low to mid market domestic power amplifiers are nowaday's monolithic ICs, the very kind of thermal distortion that even Douglas Self admits is more rife than ever!
Inside his own discrete circuitry. my adversary is wasting his time looking for thermal errors by minutely analysing harmonics with a uniform low crest test signal - and in sluggish output devices of all places.
His figures merely demonstrate that an\% thermal distortion is not contribating much to \%THD with a specific topology and specific devices. This is not the same as proving it doesn't exist, ever. anywhere. Showing that 10 Hz \% THD did or did not change when the device's thermal inertia is say quadrupled. would be more daring.
If Douglas scrutinised the hated hifi press more carefully, he might gather that thermal distortion is the industry's best working hyporhesis with regard to certain A-B tests between notionally equivalent components.
Superb as it is, the Audio Precision SYS-22 is completely the wrong tool for this hind of detective
assignment. Measuring a heat wiggle will happen one day: wait until the professionals get there.
Turning over fully to Douglas Self's own series, it on the one hand deserves praise for writing style and content, for engineering pragnatism and clarity of thought, for organising formerly sporadic, diverse and oft half-baked information into simplicity, and not using the infamous seasickress capacitor location to compensate. His series is indeed excellent stuff for teaching.
But anyone bothered about nusical accuracy should be
cautioned that Self"s entire presentation is limited to honing the original transistor amplifier topology for minimum static \%THD+N. His reductionist shears have cut too far. I understand the profound satisfaction he gets from steady linearity. and it may have been smart electronics two decades ago when the Space Shutile was on the drawing board, but today, the real audio design process hasn't even begun.
By the time a truly modern design (likely employing one of the other. more recent. principal topologies with very different rules) has been optimised according to listening tests and \%IMD. \%DIM and the various AP. Belcher. NMR and other SOTA DSP-based measurements, and after real world requirements like packaging and making it abuse proof have been attended to, then the $\% \mathrm{THD}+\mathrm{N}$ residue will likely be adjusted away from its minima.

Ben Duncan

Lincoln

Diagram as a language

I agree with your editorial remarks in the March issue. It is indeed a pity that the circuit diagram is so rarely accorded its true status as a powerful language.

It can be used at many different yet compatible levels from the briefest block diagram representing a whole system at one extreme to a complete schedule of parts at the other.
Even the final board layout is no more than a topological transformation of the same set of relationships.

Circuit sketches enable instant communication of ideas in a manner that has no equal.
Attempts to replace the concept are to be welcomed if they offer at least the same virtues, but so far have been no more successful than those intended to replace the similarly highly developed and subtle representation of music by a printed score.

RH Pearson

Bourne, Lincs

Sagnac sensors

It may be relevant to mention that the Sagnac effect (1913), referred to by Gerardus Bouw ($E W+W W$. March), is the basis of the laser gyro and other rotation sensing devices.
A laser beam is split into two parts, which are sent in opposite directions round a common optical transmission circuit. Rotation of the structure causes an apparent lengthening of the transmission path in one direction relative to the other (actually a transmission time difference).
This changes the interference pattern between the two sets of coherent light waves and the result is sensed by a photoelectric detector. Tom Ivall
Staines, Middlesex

c the light

Martin Berner's question ($E W+$ WW. March) on relative speeds versus the light barrier can be best understood by considering the velocity of a particle in three dimensions.
If the particle travels at c in each direction the classical result would be to add the squares and take the square root, resulting in a speed faster than c.
By contrast the correct relativistic calculations result in the overall speed being c - effectively one can
travel at c in each direction and still only be travelling at c. Also there is nothing wrong with having two observers whose relative velocity exceeds c, the result will only be that they cannot communicate with any device limited to c, like a photon.
Changing subject, AJ Quinton $(E W+W W$, March $)$ is on the right lines with his ideas about linking permanent magnets and superconductors, but misses the point in connecting with roomtemperature effects.
Magnetism is caused by charges in motion, and to have a north and south requires an area to be traversed by such charges. If one takes the simplest area - that of the circle - and the simplest particle with a magnetic field - the electron. then I would argue that the electron consists of a number of smaller particles, all chasing each other around the circumference of a circle. This would be, in effect, a permanent magnet and a superconductor at any temperature.

Mike Lawrence

Montgomeryshire

O frabjous days

I am surprised by the neorejectionism of modern physicists put forth in your magazine.
Anyone who listens to Lewis

Appalling editor

I was appalled when reading Frank Ogden's comments ($E W+W W$. March) on the use of VHDL and other logic design languages. Contrary to Ogden, I believe electronics design is about solving real problems for real people, and not about whether one uses schematic entry or wire diagrams.
What Ogden fails to understand is that it is exactly the high level of abstraction possible with modern logic design tools that facilitate creativity in the design process, by allowing designers to concentrate on the problems they are trying to solve, rather than attempting to trace out wires between numerous gates and flip-flops culled from the manufacturers' data books.
He then continues to take a snipe at the using of pre-defined modules in a design, rather than being creative and designing it yourself. I then have to ask what the difference is between using an op-amp or a TTL flip-flop in a design or using an algorithm for implementing the same function on a piece of silicon.
The third point, about circuit complexity, is not very well thought out. The whole reason for moving away from schematic entry is because most humans (even real designers) can only comprehend about five to eight functional blocks at the same time. By implementing functional blocks of high complexity as high-level statements, one reduces the amount of information necessary to interpret the function of the design. Wires and gates convey almost no information about what the design actually does, as anyone getting stuck with a broken state machine of medium complexity will testify.
Regardless of what Ogden claims, the way electronics designers think and work is changing. We will continue to use the best tools available to us, simply because it allows us to design better, faster and more reliable systems.

Frithiof Jensen

Abingdon, Oxfordshire

Carroll, Monty Python and Douglas Hofstadter will most likely contend that everything is screwed up nowadays and that there must be something wrong with a scientific theory that doesn't contain some seemingly paradoxical feature.
This reaction coincides with the closure of all Isracli universities until the end of this semester because the new so-called socialist government tried to reduce the salary of professors, who of course were too intelligent to accept this offer.
Some loony Chabadnik named Amnon Goldberg (I hope he's not a relative of Barukh Goldstein's because he might kill me for this) insinuates that many attempted proofs of the theory of relativity have been shown to be based on fudged evidence. Well I suppose that if physicists keep eating fudge while making measurements, the chewing activity and high sugar content of the fudge may distract their attention from the correct adjustment of their instruments. Fortunately for physics, no experiment is taken for granted by the scientific community unless it is repeatable in all laboratories.
You are certainly prejudiced if you think that Newton's theory of gravitation has been proven to be universally valid, or even that this validity isn't inflicted with paradoxy.
I was once told by a nuclear physicist that Newton's formula conflicts with the hypothesis that the universe is uniformly filled with matter. If a stone is dropped, the gravitational attraction from stars can certainly be neglected by approximation, and the more distant they are the less their influence.
But near space is not typical of the universe in general. If spherical shells are considered. the mass contained in those shells grows quadratically with distance while gravitation grows inverse quadratically. The net effect of these shells when integrated over the entire mass contained in the universe is to counteract the interaction of the system of the stone and the Earth almost entirely so that the observed constant of gravity must be less than the real by a factor of 50 , as was already calculated by Laplace (or was that Poincarré).
He made the same argument re the dispersion of sunlight in the universe. I have been unable to find these statements anywhere in university textbooks on physics, but as it probably is correct, Einstein may very well have had this in mind when he devised his general theory of relativity.
Michael Williams
Beth Shemesh, Isreal

Short agreement

Regarding your editorial comment on VHDL in March issue: Here! Here!
Richard Ashwell
Newbury, Berkshire

Life is easier with Dos

Jason Ross ($E W+W W$, April)
claims naive users have less to remember with Windows and will find it much easier to use than Dos. In fact a well designed Dos system is far casier to use. It also avoids the confusing and cluttered Windows screen and the difficulties of memorising the meanings of small differences between numerous icons. Icons may be fine for work involving a narrow range of software but are hardly ideal for users with wide and complex interests.
My systems use a single small control file M.bat - I find 8K sufficient. This automatically displays a full screen descriptive menu of 36 subject groups - on booting or at any time from any point in the system by typing M.
This method potentially eliminates the need to remember or type any file names or Dos commands.
A single character - figure or letter - identifies each menu item. Typing the chosen item - for example M B - either runs a program, performs a system operation, lists a full or partial directory tree, lists a directory in alphabetical order or displays a secondary menu with similar facilities. Menu choices may combine these and other possibilities in most combinations.
The method allows the user an efficient structure to describe any requirement simple, specialised or highly complex.
Secondary menus - with two character codes - permit more than 1,000 choices. Tertiary menus using three characters - expand to 30,000 or more.
Major uses obviously go into the primary directory. The user has no need to remember any details but may at any time go direct to any point in the whole menu tree by typing the appropriate short menu code in full.
Joel Sciamma $(E W+W W$. April) asks why bother about saving a few milliseconds. The greatly increased speed of systems not using a gui can allow real time operation for many program operations, without killing time waiting for completion. At the other extreme gui slowness may mean the expense of extra
computers to meet a work load.

RG Silson

Tring, Herts

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

3 V embedded array. Toshiba's new $0.5 \mu \mathrm{~m}$ cmos embedded array combines the functionality and performance of standard cells with the faster turnround times of gate arrays. With a typical gate propagation delay of 0.25 ns and gate power consumption of $2.2 \mu \mathrm{~W} / \mathrm{MHz}$, TC180E outperforms $0.8 \mu \mathrm{~m} 5 \mathrm{~V}$ asics on 3.3 V supplies. The device contains up to 340,000 usable gates. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276691583.

Multi-product wafers. A capability known as Multi-Product Wafer (MPW) Train in $0.8,1,1.2$ and $2 \mu \mathrm{~m} \mathrm{cmos}$ and $1.2 \mu \mathrm{~m}$ BiCMOS is being used by Austria Mikro Systeme to allow the processing of several different devices on one wafer. Development charges are thereby reduced by up to 50% and AMS points out that, at a small extra cost, customers can have several versions of a design at once, saving waiting time for evaluation. AMS takes a tape from the customer and delivers finished, packaged parts. Austria Mikro Systeme International. Tel., 0276 23399; fax. 027629353.

A-to-D and D-to-A converters

Stereo codecs. AD1847 and AD1846 single-chip, sigma-delta, stereo, digital audio codecs from Analog both support the Windows Sound System 2.0 and Compag Business Audio. The 1847's serial port allows direct interface to a DSP or system i/o chip. needing fewer pins than a parallel port and costing less. AD1846 is a reduced-cost version of the AD 1848K industry standard Soundport and is pin and register-compatible, offering
up to 70 dB of dynamic range. Both devices provide CD-quality audio on an ISA or EISA add-in card. Analog Devices Ltd. Tel.. 0932 253320; fax. 0932247401.

Discrete active devices

Low-resistance power fets. Two new TO-220 Hexfet power mosfets by International Rectifier, the 30 V IRL2203 and the 50V IRL3705 offer $R_{\text {ds(on) }}$ values of 10 ms and 12 ms respectively, both devices operating from a 5 V logic-level drive as well as the standard 10 V . International Rectifier. Tel., $08837132^{\circ} 5$; fax, 0883714234

Dmos power mosfets In the 14member NDS9XXX family of dmos power mosfets from National Semiconductor are single and dual n channel and p-channel types and complementary n-p dual mosfets. All are in SO-8 surface-mounted packages and the devices are pin-topin compatible with other SM dmos mosfets, but with better performance at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{gg}}$. National Semiconductor Tel., 010498141 103300, fax, 01049 8141103515.

Switching diode. A fast silicon epitaxial switching dioce from ITT, the BAL99, has a leakage current of only $2.5 \mu \mathrm{~A}$ at 70 V and a recovery time of 6 ns . Forward voltage at 1 mA is 0.715 V and 1.25 V at 150 mA . Power dissipation is 350 mW at up to $25^{\circ} \mathrm{C}$ ambient. The diodes are designed for automatic insertion. ITT
Semiconductors. Tel., 0932336116 fax, 093233148.

Linear integrated circuits

3 V low dropout regulators. Four new low-voltage, 100 mA micropower low dropout regulators from National feature 380 mV dropout voltage at full load. LP2950-3.0 and -3.3 are fixed-

Linear integrated circuits. Two new voltage-feedback op-amos from National, the LMC6572 and LMC6574 dual and quad devices. NEre released early in the year and are intended for use in current-to-voltage conversion or amplification in mobile radio or instrumentation. Thəy offer 2.7 V and 3 V operation at $40 \mu \mathrm{~A}$ for each amplifier, an input curvert of 20 fA and 120 dB gain on a 2.7 V rail.
Theses amplifiers are therefore well suited to battery power and will cope with either 3.3 V digital logic regulated supplies or unregulated ai s. Since the output swing is virtually rail-to-rail, within 20 mV of the supply with a $5 \mathrm{k} \Omega$ load, enhanced signal-to-noise ratio and dynamic range make the devices highly suitable for interfacing with A-to-D converters. They will trive heavy loads and their high voltage gain reduces the need for cascaded amplifiers, resulting in better accuracy. Both amplifiers have guaranteed ferformance over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range and are available in 8 -pin and 14 -pin plastic dips and 8 -pin or 14 -pin plastic SOICs. National
Semiconductor GmbH. Tel., 01049814110382 ; fax, $0104981+103515$.

Low-power Rx IC. Temic

Telefunken has a fam ly of lowpower UHF receiver ICs
intenced for car security. wireless lans and appliance control that take a standby current of only 1 mA . The U $431 \times B$ series operate at 433 MHz . A modulated carrier is converted by a UHF stage to 10.7 MHz IF and amplified by the $\mathrm{U} 431 \times$ B , its log. amplifier acting as demodulator for AM FM being handled by a quadrature detector. Digita data is regenerated ir the baseband by a clamping comparator and op-amp, the universal output intertacing ic a decoder. Temic TelefJnken GmbH. Tel., 010497131 672747: tax, 010497131 993312.

voltage, three-terminal types, the LP2951-3.0 and -3.3 being adjustable and fitted with 3 V and 3.3 V tap:s, which avoid external resistors. Quiescent current at light loads is $75 \mu \mathrm{~A}$ and there is a shutdown tacility and an error flag to indicate when the regulator falls out of regulation by over 5%. National Semiconducior GmbH. Tel., 01049814110 3382; fax, 010498141103515.

Precision references. $1.26 \mathrm{~V}, 2.5 \mathrm{~V}$ and 5 V (Rets 12, 25 and 50) micropower references by GEC Plessey use the bandgap principle and thereby avoid the need for an external shaping capacitor. Knee currents are $40 \mu \mathrm{~A}$ and $80 \mu \mathrm{~A}$, battery operating power $113 \mu \mathrm{~W}, 150 \mu \mathrm{~W}$ and $300 \mu \mathrm{~W}$ and initial voltage tolerance $\pm 1 \%$. Gothic Crellon Ltd. Tel., 0734 78887B; fax, 0734776095.

3V RF amplifiers. 1.9GHz, 3V amplifiers in NEC's μ PC2745T-2749T range consume 50% less power than others available, running from a supply as low as 1.8 V . They are meant for use in receiver buffer amplifiers and exhibit a noise figure of 2.8 dB at a gain of 9 to 21 dB . Packaging is a six-pin mini-mculd measuring 2.9 by 1.5 by 1.1 mm and are made in NEC's 20GHz NESAT III silicon bipolar process. NEC Electronics (UK) Ltd. Tel., 0903 691133; fax. 0908670290.

Variable-gain amplifier. CLC522 by Comlinear is a DC-coupled, twoquadrant multiplier with differential voltage inputs and a single-ended voltage output and forms a complete variable-gain system containing two input buffers and an output op-amp. Signal channel and gain-control bandwidth is 165 MHz at a gain of 10 , maximum gain is set externally over the range 2 to 100 , the gain control giving more than 40 dB variation. At the smallest maximum gain of 2 , bandwidth is 350 MHz and gain control non-linearity 0.5%. Comlinear Europe Ltd. Tel., 0203 422958; łax, 0203422961.

FM IF amplifiers. Sony has a family of low-voltage, low-power FM IF amplifiers for cordess and cellular telephones. The newest model is the CXA $1683 \mathrm{M} / \mathrm{N}$, which is a 100 MHz wide bandwidth double balanced mixer design for cordless telephones operating on 1.8-to 6 V DC. The chip has a programmable low-pass filter at the detection output stage, a squelch filter operational amplifier and a signal strength indicator with a 70 dB dynamic range. Typical current drain is 4 mA from 2.3V. The CXA1293M/N is similar, but with features for cellular telephones. Sony Semiconductor Europe. Tel., 0256 478771; fax, 0256 818194.
3.3V references. Knee currents down to $15 \mu \mathrm{~A}$, with a temperature

Video ram simm. Video ram MC-250 Is a 256K by 32bit device made up of four $\boldsymbol{\mu}$ PD 482235 video rams in a simm format, with two decoupling capacitors for each device, the whole module measuring 82.5 mm by 17 mm . Each ram has a random-access port and a serial read/write port connected to an internal 16384-bit data register. The device has a split serial buffer, so that data is transferred into one half as serial data is being read from the other half, avoiding flyback noise or flicker in video systems. All I/o is at TTL levels. Sunrise Electronics Ltd. Tel., 0908 263999; tax, 0908 263003.
coefficient of $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are obtained from the Zetex ZRC330 3.3V precision references, which use a bandgap technique needing no external capacitor. Operating current is $20 \mu \mathrm{~A}-5 \mathrm{~mA}$ and the device tolerates temperatures from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Since the device is based on an asic, metal mask programming allows Zetex to offer any voltage between 2 V and 10 V and voltage trimming does not affect temperature coefficient trim. Zetex plc. Tel., 061627 5105; fax, 0616275467

5 GHz dual differential amplifier. A

 dual amplifier for RF and IF down and up converters, Harris's HFA3102 is a dual long-tailed pair with a transistor in each tail, giving a power gainbandwidth product of 5 GHz . Current gain is 70 and is matched between the halves to within 10%. Noise figure is 3.5 dB , collector cutoff current is 10 nA and collector leakage current 0.01 nA . The IC is pin-compatible with other available devices. Spice models are available. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276 682323.
Infrared receivers. Infrared

 communication inside offices, say between computers and printers, is the province of Temic Telefunken's new receiver modules, which are required to work in conditions of high visual and electrical interference. TFMS $5 . .0$ and TFMT 5.0 operate on carriers between 30 and 56 kHz , special versions being made for 20 to 60 kHz . A pin diode detects the carrier and is followed by signal processingand a Schmitt output. Shielding by the housing reduces the effects of both visual and electrical interference on paths of up to 40 m . Temic Telefunken GmbH. Tel., 010497131 672747; fax 010497131993342.

Battery charger/monitor. The Microchip TrueGauge MTA11200 monitors the state of health of rechargeable batteries and recharges them. The device provides information on remaining capacity measured during discharge only, total capacity, voltage, current and temperature, a single-wire to the host microcontroller allowing a module with a Truegauge to stay in the battery pack. There are 35 programmable system parameters from battery warning levels to end-of-discharge voltage, and the device is optimised for different battery types by specifying negative delta peak detection and protection against thermal overcharge, time-out overcharge and peak voltage Development software is available. Polar Electronics. Tel., 0525 377093; fax, 0525378367.

Femtoamp-input op-amp

Guaranteed input current of National's LMC6001 op-amp is $25 \times 10^{-15} \mathrm{~A}$, other characteristics including an offset voltage of $350 \mu \mathrm{~V}, 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum drift and input-referred noise of 22 n V / Hz , which allows a better signal-to noise ratio than jfet electrometer amplifiers. Versions are available with input currents of $25 \mathrm{t}^{\mathrm{A}}$ and 100 fA . Thame Components Ltd. Tel., 0844 261188; fax, 0844261681

Logic building blocks

Fibre-channel transceiver. METL's RCC700 is a cmos transceiver. operating at up to 265 Mbaud , which integrates $8 \mathrm{~B} / 10 \mathrm{~B}$ encoder/decoder, serialiser and deserialiser, a PLL synthesiser, a PLL clock and data recovery and a byte alignment circuit. PCB evaluation assemblies are available for fibre or coaxial interfaces. Microetectronics Technology Ltd. Tel., 9844 278781; fax, 0844278746.

Memory chips

Fast srams. Cmos srams in the Alliance Semiconductor 7 C 256256 K series are fast - 12 to 25 ns - and sparing of power, maximum active power in the 15 ns type being 605 mW . Standby power levels as low as 1.1 mW are achieved and data is retained down to 2 V . Supply is 5 V or 3.3V. Hunter Electronic Components Ltd. Tel., 0628 75911; fax. 0628 75611.

Microprocessors and controllers

Embedded 386. AMD is cffering the Am386 processor in two embedded versions, the Am386DE and Am386SE. Any X86 PC can be used as a development platform, the FusionE86 support program providing software and hardware from more than 60 suppliers, including Microsoft's Microsoft At Work operating software. Both versions work at either 3 V or 5 V , with standby modes. Am386DE, the 33 MHz type, is available now, the SE following in a few weeks. Advanced Micro Devices (UK) Lid. Tel., 0483740440 ; fax, 0483756196.

16-bit V-series micro. NEC's V55PI is a 16 -bit, single-chip microcomputer with 16Mbyte of address space and 64 Kbyte i/o space; the CPU is 8086 compatible, so that existing software is usable. The CPU executes instruction about twice as quickly as the V35 and higher-performance peripherals include two uarts, operating at 780 kbit s asynchronous and up to 3.125Mbit/s clock synchronous, and an 8 -bit parallel
interface contigures as either a general-purpose 8 -bit $1 / 0$ port or as a Centronics type giving high-speed bidirectional parallel communications as a slave or as a driver. There are also a four-channel DMA controller, a 4-channel 8 -bit A-to-D converter, a PWM operating up to 24.4 kHz , a watchdog timer, four 16 -bit timers and a 16 -bit software interval timer. Sunrise Electronics Ltd. Tel., 0908 263999; fax, 0908263003.

32-bit risc microcontrollers. The $S H$ series of microcontrollers by Hitach use a 32 -bit risc core, the first to be available operating with cycle times of 50 ns on a 5 V supply or 83 ns on 3.3 V Most instructions execute in a single cycle using a 5 -stage pipeline to give a 16 Dhrystone Mips performance. Other features include 16, 32-bit wide general-purpose registers and a hardware multiplier performing 16 by 16 -bit plus 42 -bit multiply and accumulate operations in 100 to 150 ns . Current consumption is 100 mA at 20 MHz and 40 mA at 12.5 MHz for the 3.3 V type, several sleep modes being provided. First models to appear are the SH7032, which is romless with 8Kbyte of onchip ram, and the SH7034 with 64 Kbyte of rom/prom and 4 Kbyte of ram. Hitachi Europe Ltd. Tel., 0628 585000; fax, 0628585200.

Mixed-signal ICs

MPEG2 decoder. Toshiba's new single-chip video decoder meets the MPEG2 standard and decodes compressed 1153 by 1024 line, 30 frames/s digital signals with HDTVlevel resolution. Parallel decoding in the variable-length decoder and the risc microprocessor allows both to decode data bit streams at the same time to provide the necessary speed Toshiba Electronics UK Ltd. Tel., 0276 694600; fax, 0276691583.

Optical devices

Miniature leds. Seven-segment leds in HP's new HDSP-U series have grey or black surfaces for better contrast and provide an 8 mm character height in a 11 mm by 7.1 mm by 5 mm package. Red, orange,

Mixed-signal ICs

Consumer chips. ITT's Jigital Systems 3000 is effectively the next generation of digital consumer electronics, building on the earlier, selfcontained, television-orie רted D/GIT2000 system of ICs to become a structure for virtually unlimited app ication in multimedia systems. Most Digital Systems 3000 ICs are self-contain $\ni d$ and combine analogue and digital techniques. The system copes with functions beyond the current consumer area: services such as telefax, videotext and modem functions take the system into telecommunications and picture compression and transmission, computer audio and graphic user interfaces link consumer electronics, telecomms and computers in the area of multimedia services.
Since all the modules are small and powerful and are produced by the same lechnology, tailor-made, one-chip implementations for special applications can be made relatively cheapy.
The company says it is ready to put into practice the idea of single-chip systems for the new, extended area of consumer electronics. For example, ITT is able to integrate several DSP kernels and their ram and rom on one chip, whereas the existing practice is to use an MCU and an interface chip, taking up more space and requiring more extensive interfacing. ITT Semiconductors. Tel., 0932336116 ; fax, 093233148.
yellow or green character colours are available at luminous intensities of 480 mcd for yellow to over 1000 mcd for the red and green. Hewlett Packard L.td. Tel., 0344362277 ; fax, 0344362269.

Laser diode for optical memory.

 Intended for use with optical disk memory or memory cards, Mitsubishi's HSO1 high-power HF Super-Imposition laser diode operates from 5 V and is in a steel packing-inshield case for low noise; RIN figure is $-125 \mathrm{~dB} / \mathrm{Hz}$. Maximum output is 35 mW continuous and 45 mW pulsed Mitsubishi Electric UK Ltd. Tel., 0707 276100 ; fax. 0707278692.
Two-colour photodiode. The

Tandem two-colour photodiode detector combines a 2.5 mm diameter silicon diode and a 1 mm diameter InGaAs diode in a single TO-5 package to provide sensitivity over the 400 to 1700 nm spectral range each detector being individually addressed. It can be optimised at 820,880 and 940 nm . Different InGaAs diode diameters can be specified. Aerotech World Trade Ltd Tel., 0628 34555; fax, 0628781070.

Oscillators

Clock oscillators. Raltron C04810 and C04910 clock oscillators are only 2 mm high, with a footprint of 7.5 mm by 5 mm . Frequency stability is 50 ppm and power consumption of the 04810 . depending on frequency, is 20 to 35 mA , driving 10 LSTTL loads or 15 pF mos. The C04910 drives 10 TTL loads or 50 pF mos, but still takes only 25 to 60 mA . Frequency range is up to 60 MHz, a 3.3 V version being also available. The $\mathrm{H}-13$ is a low-profile SM device, with a height of 1.3 mm and consuming 0.1 mW . Flint Distribution. Tel., 0530 510333; fax, 0530510275.

Power semiconductors

High-voltage mosfets. Motorola has upgraded its entire 400 to 600 V range of power mostets to 800 V and 1000 V using a new technique in which multiple rings provide a better field

40 GHz YIG-tuned oscillator. Avantek, an HP subsidiary, offers the AV-20040, which it believes to be the first YIC-tuned oscillator to cover 20 to 40 GHz without filters. multipliers or amplifiers to
produce a minimum of 10 dBm ,
with -60dBc spurious output. It is
hermetically sealed and operates from a single 15 V supply
Frequency drift is 60 MHz
maximum. Hewlet1-Packard Ltd
Tel., 0344362277 ; fax, 0344 362269.

shaping towards the edge of the mosfet die. This gives improved voltage blocking to protect against surface charges at high voltages. As examples, MTY10N100E, a 1000 V type, has an $R_{\text {ds }(\text { on })}$ of 1.3Ω at 10A and the 800 V MTP4N80E has a 352 $R_{\text {dston) }}$ at 4A. Motorola Inc. Tel., 0908 614614; fax, 0908618650

1500W suppressor. Semtech's SMCJ transient voltage suppressors are either unidirectional or bidirectional and are in a $00-214 \mathrm{AB}$ plastic package. Response time is 1 ps and forward surge rating 200A. Having a voltage range of 5 to 170 V , the devices have a steady-state power dissipation of $3 \mathrm{~W}(1500 \mathrm{~W}$ peak). Semtech Ltd. Tel., 0592 773520 ; fax, 0592774781.

Fast power diode. Ten members of Harris's Hyperfast RHR series of power diodes exhibit reverse recovery times of 60 to 100 ns . Three of the devices have breakdown voltages of 1200 V and $t_{r r}$ of 75 ns at 30 A , one of them being offered as a dual device. Two 75A types are 1200 V rated and have $t_{r r}$ of 100 ns ; three lower-voltage types recovering in 60ns. A 150A type breaks down at 1000 V , with a $t_{\text {tr }}$ of toons. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276682323.

Reverse blocking switch. Replacing two mosfets and their drive circuit, the Siliconix Si9718CY is a reverse blocking switch for battery disconnect application in dual-battery notebook computers, allowing the computer to switch from one battery pack to the other before cells completely discharge. A new process eliminates the parasitic diode found in standard mosfets, reducing on resistance to $80 \mathrm{~m} \Omega$ at 3.5 A . The device also includes a charge pump and enable circuitry, and undervoltage lockout protects the system. Siliconix/Temic Marketing. Tel., 0344 485757; fax 0344427371.

Low-power PWM controller

Unitrode claims a first for its UCC3570 BiCMOS voltage-mode PWM controller for use in isolated, high-frequency switched-mode power supplies. It features an $85 \mu \mathrm{~A}$ start up current, 1 mA run current and the ability to drive a 1 A mosiet gate at up to 500 kHz . Using voltage
feedforward, the device responds accurately and within one clock cycle to wide line-voltage variations and is not noise sensitive. Unitrode (UK) L.td Tel., 081318 1431; fax, 081318 2549.

300W transient suppressors.

Semtech's SM series of surfacemounted silicon transient voltage suppressors are low-cost devices for data line or supply rail use, having a peak pulse power of 300 W . a response time of 1 ps and unidirectional or bidirectional operation, depending on type. Voltage range is 5 to 24 V , breakdown 5 to 26.7V minimum, clamping voltage at $5 \mathrm{~A}, 11$ to 55 V and leakage current 1 to 100μ A. Semtech Ltd. Tel., 0592 773520 ; fax, 0592774781

Waveform generator. Yokogawa's AG1200 arbitrary waveform generator captures ard reprocuces signals from digital storage oscillcscopes. It interfaces to the DSO via a GPIB port and has a 3.5 in floppy drive for waveform storage. Waveforms loaded from the DSO are reproduced, displayed and output directly, or modified and edited on screè. Output is 4 -cr annel u th a 10 MHz clock and 12 -bit resolution, instru nents perhaps being cambined to give 16 channels or channels comb ned to provide 32 -bit petterns. Waveforms are also כroduced from functizns and/or generated by the Scope Draw technique in which the wavevorm is sketched and ed :ed on screen. Martron Instruments Ltd. Tel., 0494459200 ; fa<, 0494535002.

PASSIVE

Passive components

Crossover electrolytics. Bipolar electrolytic capacitors in Nichicon's DB. GB series are meant for use in audio crossover networks and have values from $1 \mu \mathrm{~F}$ to $68 \mu \mathrm{~F}$ in $\pm 20 \%$ (DB) and $\pm 10 \%$ (GB) tolerance. Working voltage is 50 V , leakage current $3 \mu \mathrm{~A}$ and allowable ripple 205 to 1200 mA (DB), 760 to 1120 mA (GB). The radial-lead components resist most halogenous cleaning fluids. Nichicon (Europe) Ltd. Tel., 0276 685393; fax, 0276686531

High-ternperature ceranic

capacitors. Vitramon's H range of chip capacitors uses the X8R dielectria which has the stability of

X7R but withstands temperatures up to $150^{\circ} \mathrm{C}$, making them suitable for unfriendly environments such as under the bonnet of a car. Sizes 0805, 1206, 1210, 1812 and 2225 are available in values from 470 pF to $1 \mu \mathrm{~F}$ at $50 \mathrm{~V} D \mathrm{C}$ and in tolerances from $\pm 5 \%$ to $\pm 20 \%$. Insulation resistance at $25^{\circ} \mathrm{C}$ is $100 \mathrm{G} \Omega$ and a minimum of $10 \mathrm{G} \Omega$ at $150^{\circ} \mathrm{C}$. Vitramon Ltd. Tel. 0628524933 ; fax, 0628525435.

Vertical inductors. In values of $0.47 \mu \mathrm{H}$ to $1000 \mu \mathrm{H}$ at $\pm 10 \%$ standard tolerance, microSpire MIVI-PK 0455 series of vertically mounted inductors save board space כy offering diameters of 5 to 13 mm and a height of 11 to 17 mm . Se f-resonant

Hand-heid IC tester. Capable of testing 74/74LST4HC TTL and 4000 series cmos togic devices and $41 / 44$ serles dynamic rams, the Polar D320 is hand-held and is powered by a 9V Pp3 cell. More than 350 devices are in its buill-in library and it can be switched into a search mode to compare an unknown device with available data. Components are placed in a 20 -pin zif sockat. Polar Instruments Lid. - el., 0481 53081; fax, 048152476.

frequencies are 2.5 MHz for the $1000 \mu \mathrm{H}$ version up to 145 MHz for the $0.47 \mu \mathrm{H}$ type. Surtech interconnection Ltd. Tel., 025651221 ; fax, 0256 471180.

Multilayer ceramics. Multilayer ceramic capacitors in AVX's CM series are in 0603, 0805 and 1206 cases sizes at working voltages of 16 V . Values up to 100 nF for the 0603 470 nF in the 0805 and $1 \mu \mathrm{~F}$ for the 1206 types are available, all with leakage currents given by an insulation resistance of over 10Gsz or $500 \mathrm{M} \Omega / \mu \mathrm{F}$, whichever is the smallest. AVX Ltd. Tel., 0252336868 ; fax, 0252346643

Resistor networks. Made to the customer's specification of values, tolerance and circuit configuration, Beyschlag surface-mounted resistor networks are available in quantities down to 100 pieces. The thin-film resistors are the Beyschlag MicroMELF type, welded to a metal frame which is shaped to form the circuit. Values in the range $10 \Omega 2$ to 2 Ms 2 are used to tolerances of 1% or better and with temperature coefficients of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better. The networks are said to possess a high pulse load capability. Flint Distribution. Tel., 0530 510333; fax, 0530510275.

Connectors and cabling

Adaptable board connector, 65,536 different connection patterns are possible in a housing smaller than a dil package with the Erg system. The two-part component is a pin header and matching jumper block which is selectively loaded to obtain the required pattern of contacts. The multi-jumper block fits over the 1-16
three-pin rows of gold-plated heade pins, enclosing and protecting them and setting up the interconnection pattern. Standard blocks are fully loaded, but Erg can supply any pattern to order. Blocks are either polarised or reversible. Erg
Components. Tel., 0582662241 ; fax, 0582600767.

Filters

Notch filters. A new approach to temperature compensation in cavity filters has been adopted by Wainwright Instruments GmbH in Germany in their range of ultra-stable notch filters for GSM, PCN and other mobile comms systems. Drift is less than $\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The technique has also been applied to filters for other requencies and characteristics Wainwright Instruments GmbH. Tel., 010498152 2245; fax, 010498152 5174.

Hardware

Conductive keypad. The Grayhill Series 90 conductive rubber keypad is now available from Highland. The pads are available in 3 by 3 and 4 by 4 forms with matrix circuitry and are rated at 12 VDC and 5 mA for 0.5 s . Contact resistance is 100Ω and bounce time less than 12 ms Highland Electronics Ltd. Tel., 0444 236000; fax, 0444236641

Shielding can. Made in tin-plated steel, West Hyde's Isolator is a boardmounted shield attached to the board by four solder prongs set on 0.1 in pitch. The one-piece unit is fully soldered on the internal faces to provide efficient sealing. It comes in a range of sizes and can be made to

Computer peripheral

Contactless smart card. Measuring 43 mm by 54 mm and 5 mm thick, Mitsubishi's new contactless MelCard is tough enough to stand wear and will withstand being made into a key fob. The cards operate a read/write device linked to a computer network for data i/o, read and write operations, the device automatically transmitting data at up to 455 kHz ; the frequency can be customised for specific applications such as operating a ticket barrier or recognising parts in a factory.
Cards are read at a distance up to 800 mm in less than 0.2 s . They contain a single-chip, 8-bit microcontroller which uses little power, the use of sram for user memory also takes little power and enables high-speed read and write. RF transmission avoids the problems associated with dirty contacts and facilitates volume throughput.
The cards have been thoroughly tested while being bent and twisted at temperatures from $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ and, should the occasion arise, they wil survive being immersed in 1 m of water for 30 minutes. Mitsubishi Electric UK Ltd. Tel., 0707276100 ; fax, 0707278692.

PC oscilloscope control. DSO Manager is a package by FemtoTek for the control of a Leader Instruments 3100D digital storage oscilloscope from a PC, using a GUI and a mouse. It is based on National's LabWirdows software and comes as the software only or as a complete system including a GPIB interface board. All the oscilloscope funcions are settable from the PC and wavetorms can be stored on and retrieved from disk, plotted on a printer and sent to Ascif files for later use. National Instruments UK. Tel., 0635 523545; fax, 0635523154.
order in seven days. It is also available at lower cost without soldering. West Hyde Enclosures Tel., 0453731831 ; fax, 0453886637

Instrumentation

GPIB test gear. Thurlby Thandar has additions to its range of rackmounted, GPIB test equipment including power supplies, multimeters, generators, logic analysers and oscilloscopes, which are in 2 U cases. All instruments conform to IEEE488.2 in addition to IEEE-488.1.

Thurlby Thandar Instruments Ltd. Tel., 0480412451 ; fax, 0480450409.

Loop-powered process meters. Models 81 and 823.5 and 4.5 digit process meters are powered by the 4 20 mA current loop process signal. offset and scale values being adjustable to allow the use of a range of engineering units. Accuracies are $\pm 0.1 \%$ and $\pm 0.02 \%$ respectively and the signal input can be set to $4-20 \mathrm{~mA}$ or 10-50 mA. Panel-mounting hardware is included. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273570215.

Clean RF generators. Designed to be used as either bench-top instruments or as part of an ATE system, the Giga-tronics 606X series of RF signal generators covers the $100 \mathrm{kHz}-2.1 \mathrm{GHz}$ range in three models; 6060/1/2, the 60602 having ast-rise pulse modulation for transponder and radar testing. As standard, a 10 MHz crystal oscillator ages at $< \pm 5 \times 10^{-7} /$ month and warms up in an hour. Alternatively, an optional oven-controlled reference ages at $<5 \times 10^{-10}$ and warms up in 30 min . Sematron UK Ltd. Tel., 0734 819970; fax, 0734819786

Micro-based thermometers. ETI's Microtherma thermometers are lightweight, handheld instruments
based on microprocessors to allow continuous and automatic recalibration. Temperature range is $-200^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$ with either $0.1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{C}$ resolution. Each has a 4 -digit display with open-circuit and low battery indication. Type K, J, T, E or N sensors can be selected by the keypad, and there is a conversion facility from celsius to fahrenheit. Electronic Temperature Instruments Ltd. Tel., 0903202151 ; fax. 0903 202445.

Auto timebase oscilloscopes.

Hitachi's V1065 and V665, 60MHz and 100 MHz oscilloscopes, in a new family of compact instruments, provide automatic timebase setting, with manual override, and on-screen display of A and B sweep time, delay time and hold-off. Channel sensitivities are also displayed and the instruments have a cursor readout for voltage, time difference and frequency. Two models in the range feature a 4 -digit frequency meter and all models have delayed sweep and autotrigger in the usual modes.
Thurlby Thandar Instruments Ltd. Tel., 0480412451 ; fax, 0480450409.

Vibration analyser/data collector. A technique developed by SKF, spectral emitted energy technology (SEE), is used in the Microlog CMVA1O singlechannel vibration analyser to give a true multi-parameter capability. The rechnique is an acoustic enveloping process that helps to detect rolling element defects and predict bearing failure at an early stage. The instrument has 4 Mbyte of on-board ram to allow the use of a multi-plane balancing routine in the unit. It is also compatible with the PRISM computeraided condition monitoring software. Endevco UK Ltd. Tel., 0763 261311; fax, 0763261120.

Lan cable tester. For the use of lan installers and maintenance people,
the Fluke 650 Cablemeter tests eithe coaxial cables or unshielded twisted pairs in both Ethernet and Token-ring lans. A single function knob and a four-line display, together with display and storage of up to 50 results, make for ease of use. It tests a circuit's characteristic impedance and will monitor Ethernet traffic and measure inherent noise over time to locate intermittent trouble. An autotest feature performs a set of tests compares the results against standards and gives indication of a problem by a tone and fail message. Jensen Tools. Tel., 0604 787060; fax 0604785573.

Literature

Audio products. Crystal's complete range of audio ICs is described in a 1072 page book. Information includes all specifications. block diagrams, theory of operation, applications and schematics. Devices detailed are data converters and codecs. DSPs and synthesiser, digital audio transmitters and receivers and volume controls. Crystal Semiconductor Corporation Tel., 0101512442 7555; fax, 0101 55124457581

Power supplies

Rechargeable 996. A direct replacement for the 996 dry battery. Power-Sonic's 6V, 5Ah sealed leadacid battery type PS650 can be recharged up to 1000 times and includes an overload self-resetting cutout. The company now has more than 100 models of SLA rechargeables with capacities in the range 0.5 Ah to 4800 Ah. Power-Sonic Europe Ltd. Tel.. 0268560686 ; fax. 0268560902.

Radio communications products

GaAs fet amplifiers. Multi-octave and narrow-band GaAs fet amplifiers by Lucas covering the $0.1-40 \mathrm{GHz}$ range are based on a library of modules for rapid development and modification and low cost. They use mesfet or hemt devices and most of them incorporate temperature compensation. Many are in the lowcost quasi-MMIC form, in which all passive components are integrated and the active devices bonded separately. Custom designs incorporating limiters, special filters. variable gain, etc.. are undertaken. Connection options include standard waveguide, coaxial and microstrip. Anglia Microwaves Ltd. Tel., 0277 630000: fax, 0277631111.

Switches and relays

Solid-state relays. Series RA relays from Teledyne handle loads voltages up to 250 V RMS from 40 Hz to 440 Hz with reactive loads at power factors down to 0.2. Inverse parallel SCRs, configured for zero-voltage turn-on, handle current surges to 250A. If temperature exceeds set limits, the relays shut down and latch off until the input recycles and case temperature returns to normal, the trip being signalled by a status output. Teledyne Electronic Technologies. Tel., 081571 9596; fax. 0815719637

COMPUTER
 Computer board-level products
 Vision inspection system. PAC-

 Scan by Pro-Active Control is an inspection system quality control, on line inspection and component identification, using a range of standard cameras and monitors. It is based on a Eurocard and three processors are offered for large or small frame stores. monochrome camera and a toolkit. Resclution is 512 by 576 pixels and there are 256 greyscale levels. Examples of the system's application are a PCB positioner, accurate to with in $50 \mu \mathrm{~m}$ and a canning factory system in which cans are checked for damage. ProActive Control Ltd. Tel.. 0223300801 : fax, 0223300979Thermocouple data acquisition. DI$221 T C$ from Dataq is a 12 -bit, 16 channel portable data acquisition system, optimised for grounded thermocouples but suitable for other analogue inputs to the built-in signal i/o panel. a sensor on the PCB signal terminal receptacles providing cold junction compensation. The instrument linearises thermocouple signals in real time with DSP-based, 10th-order polynomial calculation softrvare, voltage inputs being autorratically converted to temperature indications in the user's choice of range. either $\pm 1200^{\circ} \mathrm{C}$ or $\pm 120^{\circ} \mathrm{C}$. It plugs into the printer port of a PC and has its own battery. Keithley Instruments Ltd. Tel., 0734575666 ; fax, 0734536469.

40 MHz DSP board. LSI says its PC/C31-40 applications board is the first to be based on the Texas Instruments TMS320C31 40 MHz digital signal processor. It is a two-thirds-length PC AT card and comes with a complete Windows 3 development and integration software package, the Hypersignal Block Diagram software autometically 'generating ANSI C code and providing real-time suppot for the board. There is also the TI floatingpoint C compiler and debugging is assisted by LSI's Windows-based View31 tool and libraries of C -called DSP and maths functions.
Loughberough Sound Images Ltd. Tel., 05c9 231843; fax, 0.509262433.

Computer systems

Industrial computers. SealTouch computers by the American Deeco company are high-performance units in panel-mounting configuration and proof against hostile environments. CPUs are 486DX or DX-2 and control is by an infrared system that "looks" like a mouse to the computer. The system includes a sealec activematrix 10.4 in VGA display. a 3.5 in drive. a 120 MB hard disk, four expansion slots. on-board dram and dos. Deeco Systems. Tel.. 0101471 4700; fax. 01014893500.

Data communications

Parallel port data acquisitlon. About the size of a laptop computer, Paralle/

Controller design kit. A starter kit for embedded system design from NEC costs only 5% the price of a full kit, but still contains everything needed to design systems based on the NEC 78 KO range of microcontrollers. It includes an assembler and full-screen debugger for use on a PC, an evaluation toard with 32 K ram, a programmer for UV and one-time-programmable: devices. a UV-erasable 78 KO microcontroller and all necessary hardware. NEC Electronics (UK) Ltd. Tel., 0908691133 ; fax, 0908670290.

Pad by Computer Instrumentation acquires data for a PC or notebook computer at up to 100 kHz . Its 12 -bit converter has programmable ranges from $\pm 10 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$. Additionally, a screw terminal block may be plugged in to previde eight 4 -wire inputs for thermocouples, PRTs,
accelerometers and other sensors. There are 32 programmable logic i/o channels and a pair of counter timers. A stand-alone logging mode allows the unit to continue collecting data when its notebook computer has gone home. Computer Instrumentation Ltd. Tel., 0903700755 ; fax, 0903700788.

Portable data acquisition

Containing not only analogue interfacing circuitry for on-site data acquisition, but also a 48625 MHz PC. Onsite's Techstation -ci series are 16 -ch annel, 100 kHz analogue signal recorders based on a no:ebook PC. offering on-line spectrum analysis while logging data to disk. The whole thing measures 15 in by 12 in by 3.5 in and weighs 6 kg . Everything warks under Windows. so that no programming is needed and the data can be output in common formats for transfe" to other software or loeding to mainframes. Software supplied as standard is Windows, dos and Onsite's DasyLab acquisition software. Laplace Instruments Ltd Tel., 0692500777 ; fax, 0692406177.

Development and evaluation

386CXIEX ICE. Hitex announces full in-circuit emulators for the Intel 80386 CX and EX embedded microprocessors, using the existing PC-based T32/386SX emulator as a base to allow true ICE of the central processor at up to 25 MHz in
100PQFP and MQFP packages. The HiTOF386 debugger is now extended to support the CX's new periptierals and C compilers by Microsoft, Borland and In:el are supported. Real-time debugging and analysis are enabled. Hitek (UK) Ltd. Tel., 0203 692066; fax, 0203692131

Cheaper Checkmate. Checkmate's Intel 80C186EA in-circuit emulator has been reduced to $£ 3500$, including the Paradigm Debug debugger. The emulator does not interfere with the target hardware's operation and does not use the target's stack or insert wait-states when running from overlay memory and is guaranteed to run in the user's target. Great Western Instruments Ltd. Tel., 0272860400 ; fax, 0272860401.

Programming hardware

Field programmer. Sprint Plus 48 by Concentrated Programming is a lowcost device programmer supporting more than 3000 devices. including most popular FPGAs, CPLDs, PLDs, microcontrollers, eeproms and eproms. It uses the ram, CPU and hard disk of the user's PC via a parallel port for menu-driven read, blank check, program, verify, sum check and ID check, the use of a notebook or laptop giving portability Software is updated when required. Concentrated Programming Ltd. Tel. 0279600313 ; fax, 0279600322.

Software

RISCOS software. Steve Hunt offers software applications for the Acorn RISCOS computers, with the needs of RF engineers in mind, including a filter designer, a receiver noise figure/intercept point analysis tool, an inductance ready reckoner and a Smith chart design aid. Steve Hunt 0604858090 (evenings).

Mathcad updates. Two new versions of Mathcad tech nical calculation software have appeared: Mathcad 5.0 and Mathcad PLUS 5.0. The former has been made easier to use, with easier equation and text editing and pull-down menus. yet offers new functions such as trace and zoom for graphics, print preview and a spell checker for document preparation. Mathcad PLUS has the same ease of use. but also provides a new set of functions, including differential equation solvers and advanced matrix algebra. Mathsoft Europe. Tel., 0344 23491; tax, 0344873461.

APPLICATIONS

Please mention Electronics World + Wireless World when seeking further information.

Low drop-out regulators

iven a 250 mA load, early linear voltage Iregulating ICs like the $L M 78 \mathrm{rrx}$ series needed an input supply at least 1.5 V higher than their output before their regulators started to function properly.
Two recent ICs produced by National Semiconductor need an input-to-output differential of only 470 mV to achieve the same output current. One of these devices is specifically for microprocessor applications, the other a more general-purpose type designed to consume very little quiescent power.
Called LP2957, the IC for microprocessor applications has a fixed 5 V output. Being designed for minimal energy losses, this IC can compete with switching regulators in battery powered applications. For this reason, reverse battery protection is incorporated. Via its integral power transistor, the IC can deliver up to 250 mA yet its quiescent current is only $150 \mu \mathrm{~A}$. As the first set of diagrams show, the TO220-packaged LP2957 can act as a basic 5 V three-terminal regulator but with shut-

At light loads, quiescent current of the LP2956A low drop-out regulator is $170 \mu \mathrm{~A}$, making it suitable for battery-power applications. Shown here are both 5 V fixed and and 1.2 to 29 V variable output configurations. Fixed-voltage circuit shows the auxiliary supply which remains on when the main supply is disabled.

down input and error output features added. The error output drives low whenever the output falls out of regulation by more than about 5%.
In the same set of illustrations is a snap-on/snap-off configuration. This arrangement is used to prevent the unpredictable microprocessor operation that oceurs when supply input voltage falls below a preset level. If input to the regulator falls below the threshold, supply to the microprocessor
'snaps’ off, causing a clean power down.
Housed in a 16 -pin DIL or surface-mount package, the general-purpose LP2956 shown in the second set of diagrams is more flexible than the five-pin LP2957. Its output is adjustable from 1.23 to 29 V and it has an auxiliary output that can be used, say, for powering memory when the main supply is turned off via its shut-down pin
Again, this device has a comparator that signals when the main output falls more than
5% out of its regulation limits. Outpu voltage of the 75 mA auxiliary regulator which also features low drop-out capability - is independently adjustable.

Comprehensive performance curves and applications data are presented for both devices in their individual data sheets.

National Semiconductor, The Maple, Kembrey Park, Swindon, Wiltshire SN2 6UT. Tel. 0793614141 , tax 697522.

Designing with DC-to-DC converters

Poossibly the most comprehensive book on using and selecting DC-to-DC converters and power supply systems has been produced by the Energy Systems Division of Ericsson. Comprising over a hundred A4 pages, the Powerbook covers topics ranging from circuit needs to electrical and thermal design of decentralised power systems. Particularly popular in telecomms. decentralised power systems have a number of advantages over traditional alternatives involving a single central power supply. Heat caused by power supply regulation is evenly distributed throughout the enclosure. Regulation is carried out local to the PCB being scrved so cable voltage drop is minimised.
Upgrading a 100 W centralised PSU to 110W, say, would involve replacing an expensive unit. Upgrading a system with ten 10 W converters involves simply adding another 10W converter. Likewise, the failure
of a distributed regulator is less drastic than the failure of a central PSU. In some cases, a distributed regulator can even be replaced while the system is powered up.
Finally, the cost of holding replacement power supplies for maintenance is also lower and energy consumption can be reduced since converters desigred for distributed power can usually be turned on and off under microprocessor control.
In a seation on converter topologies. clarification of the various types of converter is provided. Because different names can be used to describe the same topology, and since there are so many different types, describing topologies often causes confusion. According to the book, there are hundreds of different topologies and variations but no universally accepted classification scheme exists: but one option is presented on the next page.
Most widely used in commercial DC-to-

Push-pull DC converters are most useful for !ower input voltages since each of the power switches sees a voltage twice that of the supply rail due to the tapped transformer primary.

DC converters are flyback, push-pull, halfbridge and full bridge topologies. In the flyback converter, not shown here due to its simplicity, transformer voltage 'flies back'

POWER PER SHELF
DC/DC POWER BOARDS <200w

POWER PER FUNCTION
DC/DC POWER MODULES
<50W DC/DC

Widely used in telecomms, decentralised power architectures are gradually evolving towards the solution on the right. Dividing up the regulation into one DC converter per PCB has numerous advantages over the original solution comprising one regulated power supply per rack system.

 Low cost

Full-bridge circuits, mainly used for converters delivering more than 150W, have four switches each seeing the full supply voltage but experiencing only half the current of their counterparts in the half bridge.

when the power switch turns off. Of the four types mentioned, this is the only one where the transformer acts as an energy storage device. It comprises a single transistor driving a transformer primary winding and rectification logether with smoothing
following the isolated secondary winding.
All four topologies are reviewed but the book points out that topology should not be a major criterion when selecting a DC converter for a particular application. No one topology is best, as the table on the
previous page indicates.

Ericsson Components AB, Energy Systems Division, S16481 Kista-Stockholm, Sweden. Tel. +4687216356 , Fax 721 7001

Radio pager design

Full circuit details, PCB layout and Fadjustment procedures for an fsk radio pager are presented in GEC Plessey's note ANI72. Radio pager design using the SLo649-I and MV6639.
Operating at $153 \mathrm{MH} _$, the system is a direct-conversion receiver that converts frequency-shift-keyed rf into digital data for decoding. Output data is 512 baud tone data. All filtering is carried out on chip and two reference voltages are available for rf amplifier biasing.
Within the MV6639 POCSAG* decoder, which is capable of operating from a supply as low as IV, is a voltage doubler intended to drive an LCD.
In the circuit shown, two references within the $S L 66+9$ bias an external cascode of amplifier. This amplifier then feeds differential inputs of the mixer through a transformer. Input networking to the
amplificr. L_{4}, C_{31} and C_{32}, is optimised for noise figure and best overall device sensitivity.
In the local oscillator. L_{1} tunes out the crystal capacitance and suppresses oscillation at the fundamental frequency. It may need tuning to suit the crystal.
Circuitry around Tr_{3} 's collector is designed for resonance at 153 MHz . Output feeds an RC quadrature network comprising R_{7} / C_{18} with R_{6} / C_{17} and subsequently the mixer local oscillator input ports. Screening is important around the oscillator to prevent sensitivity fall-off due to feed-through to the rf input.
Buffering is provided by $T_{1.5}$ to isolate receiver data output and the POCSAG decoder data input. On leaving the buffer, POCSAG data feeds the MV6639 decoder whose reference is a 32 kHz watch crystal. Radio identification code, bit rate selection

*POCSAG

Covered also by CCIR RPC No1, Pocsag is the most widely accepted radio paging standard. It accommodates over two-million pager IDs, two of which can be recognised by each MV6639 Pocsag decoder.
An acronym for Post-Office Code Standardisation Advisory Group, Pocsag transmission code comprises at least 576 bits of alternate one, zero sequence preamble followed by batches of code words. Each batch starts with a sync string followed by eight frames dual 32 bit code words.
In addition to simple bleeping, Pocsag also allows simple messages to be transmitted.

Complete three-chip radio pager for 153 MHz uses three ICs. Output is tone only but included in the MV6639 POCSAG decoder is a voltage doubler for powering LCD-readout.
and housekeeping information is held in eeprom. At switch-on, the decoder resets and reads information from this prom.

On receiving a correct message, the sounder receives a low level for 4 s then a high level for 12 s , unless the signal is terminated via $S W_{2}$.
Antenna matching shown provides the necessary 50Ω source impedance. With it is a curve showing the dip it produces at 153 MHz . Variable capacitor $V C_{1}$ is capable of tuning the dip to within at least $\pm 5 \mathrm{MHz}$ of the resonant frequency. Coupling capacitor C_{y} also contributes to the tuning but it should be kept small to maximise Q .
Antenna material should have a high conductivity. This is because the radiation resistance of this type of antenna is very low. Any ohmic loss will degrade efficiency. Within the note is a description of the procedure for finding the pager's terminal sensitivity, which should be
-126 dBm or lower.
GEC Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. Tel. 0793518000 , fax 518550.

DIMENSIONS IN mm MATERIAL COPPER

Loop antenna for the 153 MHz pager. When combined with the matching components shown on the circuit diagram, its terminal impedance is 50S. High-conductivity material such as copper must be used to minimise ohmic losses.

B\&K EQUIPMENT IN STOCK NOW

Sencore SC61 Waveform Anz-Microprocessor Controlled$60 \mathrm{Mc} / \mathrm{s}$ Useable $100 \mathrm{Mc} / \mathrm{S}-£ 350$.
Schlumberger 3531D - Date Acquisition System - £300.
Fluke 335A DC Voltage Standard - £250.
Marconi Sweep Oscillator 6700A with 1-2GHZ PI 6730A £400.
B\&K Sound Level Meter - Type 2218 - £600.
EIP 331 18GHz Counter-Microwave - Led - $£ 700$.
EIP 351D 18GHz Dounter-Microwave - Led - $£ 800$
EIP 451 18GHz Counter-Microwave - Led - $£ 900$
EIP 545 18GHz Counter-Microwave - Led - $£ 1,200$.
Systron Donner 6054D 18GHz Counter - Led - $£ 800$
Systron Donner 6057 18GHz Counter - Microwave-Nixey -
£600.
HP5340A 18GHz Counter Microwave - Led - $£ 1,200$.
HP5340A 18GHz Counter Microwave - Nixey - $£ 800$.
Systron Donner - Type 6016 18GHz Counter-Microwave -
Nixey-£500.
Austron Frequency Multiplier Type 6014-£250.
Austron Receiver Loran - Type 2004 - £250.
Austron Linear Phase Recorder Type 1201A - £250.
Austron Disciplined FX Standard Type 2010A - £250.
Microtel MSR-903 Microwave Receiver - 0.03-18GHz-AM-FM - $£ 2,000$.
Microtel MSR-903 Microwave Receiver - $0.1-18 \mathrm{GHz}$-AMFM - £2,000.
Microtel FC903A 18GHz FX Counter for above - $£ 1,000$.
Ailtech NM17/27 EMI/Field Intensity Meter $-0.01-32 \mathrm{mc} / \mathrm{s}$.
Ailtech NM37/57 EMI/Field Intensity Meter - 30-1000MC/s.
Ailtech NM65T - $1-10 \mathrm{GHz}$.
Fluke 5205A Power Amp - $£ 1,200$.
B\&K1623 Tracing Filter.
B\&K2607 Measuring Amp.
B\&K2134 Sound Intensity Analyser.
B\&K280 Microphone power supply.

B\&K4408 Two Channel Microphone selector. B\&K4910 Stroboscope.
B\&K1606 Pre-Amp Vibration.
B\&K4420 Distribution analyser.
B\&K1014 B.F.O. Oscillator.
B\&K2707 Power Amplifier.
B\&K2305 Level Reorders.
B\&K2307 Level Recorders.
B\&K7003 Tape Recorders.
B\&K2615 Charge Amplifier.
Fluke 9010A Micro-systems trouble shooter + many pods £350 + pods or probe.
Racal/Dana 5002 Wide Band Level Meter.
Racal/Dana 5006 Digital Multimeter.
Racal/Dana 5005-4622 Digital Multimeter.
AVO RM215 - L/2 AC/DC Breakdown Leakage \& Ionisation Tester
Fluke 80K - 40 High Voltage Probes - New in Case - $£ 100$.
Watkins Johnson 340A - 340A-4 RX LF-1-800KC/s AM-
FM-CW - Led Readout.
Watkins Johnson DMS - 105A Demodulator-AM-FM-SSB

- Led Readout.

Watkins Johnson RS-111-1B-40 VHF Receiver -
$30 \mathrm{MC} / \mathrm{s}-1000 \mathrm{MC} / \mathrm{s}$ - AM - FM-CW - Pan Display.
Watkins Johnson 373A-2 HF Receiver $-0.5-30 \mathrm{MC} / \mathrm{s}$ -AM-FM-CW.
Watkins Johnson Receivers from $1 \mathrm{KC} / \mathrm{s}$ to $10,000 \mathrm{MC} / \mathrm{s}$ also Tuning Heads - Amps-Counter Readouts - Signal Displays - Distribution Amps - HF Multicouplers - IF Demodulators - Signal Monitors etc.
Racal MA1720 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 500-£ 750$.
Racal MA1723 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 1,000-£ 1,500$
Racal MA1724 TX Drive Units $1.6-25 \mathrm{MC} / \mathrm{s}-£ 500$.
Racal RA1792 HF RX-100KC/s-30MC/s - £1,000.
Racal RA1772 HF RX-15KC/s-30MC/s - $£ 600$.

TEKTRONIX 7000 SERIES OSCILLOSCOPES
We can supply all variations of Mainframes and Plug-Ins for this range from stock up to 500MC/S $-£ 300$ to $£ 1000$.
All items in this advert are in stock at time of printing, most items are held in quantity at both our warehouses which is probably the largest stock of electronic surplus in the UK.
Bulk and trade buyers from UK and abroad are welcome by appointment to bring own transport for quick purchasing and loading of listed and non-listed items.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradiord BD11 2ER. Tel. No. (0274) 684007. Fax (0274) 651160.

Patently unclear

> Just because it's patented doesn't make it good. And just because it's good doesn't mean it will be successful. Barrie Blake-Coleman* explains how big companies play by the unwritten rules of the patent game.
> "Anything that won't sell I don't want to invent - a sale is proof of utility and utility is success". Thomas Alva Edison 1847-1931.

[^3]Asingle patent can often embody, in unemotive terms, years of toil and accumulated genius. Eventually, it may become the only accessible record of a project, representing a huge commitment in time, facilities, money and intellectual effort.
Patents emanating from corporate resourcehungry exercises fall into this category. They are usually the outcome of dogged, but straighiforward problem solving by large corporate machines able to throw capital at a particular project.

In contrast, there is the patent based on a moment's revelation by a gitted individual. Like the team effort, the inspirational pathway to invention is just as likely 10 originate in a corporate environment as from the perseverance of an individual.
Whatever the source, the result can be a patent specification worth a lot of money. A successful patent can gain substantial intrinsic
value by virtue of what it cost to attain the information contained in it.
On the other hand. many patents are never tested technically or for their commercial potential and there is no real intention of exploiting their merits. These come about for a number of reasons, not least that of corporate bodies detending current, or future, trading positions.
In the case of the typical gizmo, a device of impressive cleverness stamped all over with "World Patents", we see something that fills a need few of us had spotted, and we stand in admiration at the commercial perception that created it.
But probably greater wealth is buried in the deep undercurrents of industrial technology and here the patenting game is far more serious. With vast sums committed to r\&d, the most important innovations are typically those which reduce production costs. Unfortunately,

Going for brokers

The person least likely to arrive at a realistic assessment of the business difficulties of promoting an invention is the inventor. Some are street wise and become highly skilled at getting their product off the ground. But most find it difficult to sell their idea, lacking the time, experience and negotiating skills.
The alternative to hawking a patent about is to look for professional help. Reputable brokers for ip (intellectual property) tend to operate on their best estimation of the likely returns on the venture. Some require 'a small fee now and a large piece of the action when I make you rich'. Others will waive the initial fee and simply settle for a percentage when the idea generates
creative product or process engineering enshrined in patents is seldom without risk.

A strategy for defence

Only a fool would hand a competitor a route to a competing technology, particularly if they haven't paid for it. Even more foolish would be to patent - and so publish - a method showing competitors precisely which technology you have chosen to pursue. This is particularly true if a patent fails to protect procedures that might do the same thing. Thus is born the defensive patent, part of the new policy of strategic patenting.
Organisations committed to aggressive competition may look on strategic patenting as a way of maintaining a product lead. For example, blanket patenting entails patenting a preferred primary technology or process, then filing other patent applications describing procedures which conceivably could do the same thing. No-one needs to establish the validity of these parallel methods, the aim is simply to think up all other possible variations which could bypass the primary patent.

Success in obtaining patents on all your applications means competitors will (supposedly) be technically isolated. Of course, strategic patenting is perfectly legal. It has only one immediate drawback - cost.
Single-nation patenting costs can be modest. But to be truly effective a patent must be filed universally. One "International" patent (Patent Cooperation Treaty), assuming no hiccups, might soak up between $£ 15,000$ and $£ 45,000$, and servicing/renewal costs are prohibitive The expense gives perspective to the comparison of patents granted to the leading industrial nations.

The patenting record of the Japanese as compared to the UK, US, France and Germany reflects a willingness to spend money on patents, rather than their technical and commercial value. We should never presume that all patents are viable. Statistics give only the number of patents filed, but give no clue as to commercial fitness. The true value of a patent lies in its ability to be exploited.
income. Yet others will not charge an inventor who can not afford the starting fee but will use the shotgun approach: "I won't make a formal, systematic search, but if I happen to pass a target that needs your invention I'll shoot the idea at them"
All are reasonable methods of sharing the load and in most cases have the merit of giving the broker or agent an incentive to make a real effort.
As a rule, a broker will tell an individual inventor the hard truth about the value of a patent. After all, he or she has the none too difficult task of finding outlets for the manifestly marketable ideas let alone those categorised as a solution looking for a problem.

Falling numbers of British patents say less about the decay of British inventiveness than about the decline of British industrial solvency. In recent times, not only has government and industry neglected to resource the r\&d that generates ideas worth protecting, there has been a marked reluctance to finance exploitation - even when lucrative ideas are on offer.
Unless we use our creative talents to create wealth, the wherewithal to protect our ideas will dwindle. With it will go the incentive to patent at all.

Keeping ahead of the competition

It is naive to believe that competitors will not poach on an originator's "natural" right to monopolise an invention. Patents are designed to protect an idea, but they can invite competition at a time when it could best be done without.
One lesson is that - strategic reasons apart if you can't afford to do it right with a full inviolate patent portfolio, don't do it at all. As a result, there are probably more technical breakthroughs left unpublished than there are locked up in the patent office.
Indeed, this catch-me-if-you-can policy is an alternative to strategic patenting, though it calls for a lot of confidence in an ability to run faster than the opposition.
An application that fails or is abandoned still constitutes a publication and so can impede a competitor's chances of acquiring a similar patent. It may also cause a collision at some later date with subsequent patents filed by the original applicant.
Nevertheless, the guiding rule should be that if the idea makes commercial sense and has the realistic potential to generate income then the wise decision is to proceed. Like accident insurance, owning the right patent means you are unlucky if you have to rely on it.
But if the application is for less sound reasons, the maxim remains - a patent is only as strong as the litigation that tests it. A patent grant says only that the examiner is prepared to allow it, not that the examiner is infallible and guarantees the legal invulnerability of the
patent. Furthermore, the rights conferred on an inventor tend to focus on preventing others from profiting from the method embodied in the patent and have little influence on manufacturing rights.

Finding an interested party

Let's assume you have found someone reputable to pick up your intellectual property (see box Going for brokers) and run with it beware of cowboy patent shops and never sign over rights to an agent.
To attract, the idea must appeal to the recipient and make commercial sense. But any professional involved with ipr (intellectual property rights) can cite a massive array of negative, as well as positive, reasons why a business will or won't acquire patents.
Seldom is it obvious why a company declines interest in a technical acquisition of apparent value to it. Even some of the positive reasons tend to be defensive. For example, a patent might be acquired by a company to ensure it does not impede parallel "in house" development: or the company might want to keep the idea out of the hands of competitors. Or it may want to be certain that no other factor could change the commercial life expectancy of its products.
There are many subtle technical and manufacturing reasons that can prompt companies to turn down a patent. For example:

- failure to understand the implications of a technical development;
- existing product range viewed as suffi-
cient without inviting undue competition;
- appropriate pre-production
development/design facilities are lacking;
- new idea departs from core business:
- idea not seen as technically feasible or production orientated (ie requires too many ex-house skills), or
- client has technical confidence but is unfamiliar with or lacks marketing skills to make new idea successful.

But internal politics is by far the most dangerous area for new ideas. Jobs go with products and a new idea may mean changes of responsibilities and skills. It could signal future security for some, but perhaps not for those linked to an old product.
There are also risks in adopting a new product. Those responsible for deciding an acquisition will want it to succeed, perhaps bleeding resource from other areas or depleting already overstretched budgets.
For these reasons, many new ventures never see the light of day and the inventor receives yet another refusal.

Right decision, right reasons?

Of the positive reasons for acquiring a patent, the most compelling concerns the wish to use it as a major source for income generation or saving money.
The ideal vehicle for a new idea is one with the technical and financial resource quickly to
extract the full value of the patent. Willingness to do so depends on whether the patent is properly understood in terms of a marketing and manulacturing strategy.

A good agent will establish a pyramid of prospective lakers for an invention. At the top will be those with an industrial interest that aligns itself with the invention. Then there are those who are evidently diverse in their business strategy and will be open to persuasion as to the business merits of taking on the idea.
Below them comes the option of an entirely fresh business venture, requiring complete start-up from scratch. This clearly would be indicated where finance could be acquired to begin a new manufacturing operation.
In many cases, a company"s existing technical expertise in a related area bodes well for a new idea - making it easier to evaluate in terms of the potential commercial worth.
A good agent will pick out the appropriate decision makers in an organisation and put up a convincing argument in favour of acceptance. The aim will be to show that the new idea is technically sound: aligns itself with the company"s business interests; demonstrates a relum on investment that justilies pre-production and marketing costs: does nol divert resource from existing profitable operations, and that the terms of acquisition are not unacceplable
In shont, the sale of the ip must be with a full and sympathetic understanding of the factors that need to be satisfied in the business and manufacturing enviromment.

A deal is a deal?

Inventors usually become frustrated with the redious business of ipr transfer and the apparent inability of prospective takers to appreciate the breathtaking revelations detailed in their patent specification. But the more experienced inventor knows that any recipient of an idea is placing a heavy commitment on themselves.
Many factors have to be satisfied. particularly if rights and licensing agreements are coupled to dates when production is to begin.
Typically, a patent is acquired as a primary risk venture, on a royalty basis or as a split risk (see box Patent agreements). The advantage to the recipient in huying out the inventor under a primary risk venture is obvious. In accepling a once-only payment, the inventor surrenders control and interest in the patent. As such. the organisation acquiring the invention is not obliged to use it. Similarly, "option" deals pay the inventor a retainer for exclusive use by the recipient at some future. indeterminate, date.
To win the best deals, inventors must realise they are an integral part of the acquisition. Peddling ipr is as much a public relations exercise as a conveyancing of technical information. Few companies are likely to want an unfamiliar technical process without direct access to the originator. The patent is seldom enough and it is not uncommon for inventors to be overly defensive about their ideas, not even trusting the safety of a patent. So, by

Patent agreements

P_{d}imary risk venture: the recipient agrees direct purchase of ownership and the inventor melinquishes all rights and control for a lump sum.

Royalty: the inventor is paid a substantial royalty (cr moderate lump sum + royalty) on a "sharec risk" basis, giving a icence to the recipient and placing a duty on them to go into production.
'Split risk': a substantial lump sum is paid upfront for a licence (or ownership) and the inventor takes a chance on when/if use,
deliberate omission or oversight. many specifications are deficient in essential technical features, making it very difficult to repeat the work.
Granted. in certain circumstances the mere exposure to an idea is enough for a technical-ly-competent individual to succeed in producing the same end product. Likewise. the merit of a patent may be in its ability to identify a new application for a well established procedure.

But, whatever the situation, the inventor is usually seen as importan to the success of the undertaking. An acquisition should be seen as an exchange: the inventor gets the chance to see his or her idea used - with a possible financial benefit - in exchange giving expert howledge and a patent.

Hard negotiation

Having negotiated a half-decent deal, should we think twice before refusing it? The offer could have been long in coming, following years of traipsing around the country listening to constant refusals.
Companics usually move cautiously and a decision not to proceed after months of negotiation can take the fight out of even the most enthusiastic of inventors.
The bird in the hand, thougl not good policy, is all too common and the burden of personal involvement and sundry costs can quichly exhaust the patentee.
But instead of despair the exercise should be reconsidered in terms of whether the objectives are sound. Open-minded applicants will learn from the observations made at various meelings. Perhaps opinion agrees that the idea embodied in the patent is heavily flawed. For the inventor, the facts can be hard to swallow but the more quickly they are. the less painful it will be.
The consensus could be that the idea is good, but the application or approach is in error. Perhaps the industrial sector targeted is actually inappropriate.
But the positive side of getting used to "no" is that it cart teach how to get a "yes". Edison (1093 patents) knew the game very well: "It is
manufacture and any royalty on sales com nences. Whatever happens, royalties will be a- a much reduced percentage.

Royalty agreements are generally exclusive to the recipient or pre-defined in terms of the industrial and marketing area covered. Somatimes, where the invention may spawn other novel products, or where the recipient wan s absolute market contro, the licensing arrangement may include sub-licensing concitions. In the case of a non-product orientated deal (process or cost saving ideas) the inventor receives a part of the cost saving.
easy enough to invent things and set the newspapers talking, but the trouhle comes when you try to perfect your inventions so as 10 give then a commercial value."

Inventors need to cultivate pragmatism and good business sense to profil by their efforts. Put another way. vendors of ipr need to be able to say no too. If a thing is valuable, it shouldn’t be given away. Again. professional help is advisable - if only to suggest where to invest the money.

On what terms?

Corporate r\&d now accounts. for the greater proportion of patents and the day of the amateur inventor is past its zenith. Nevertheless. patents are still bartered. exchanged and sold and it is as well to consider how terms are agreed and what constrains typical negotiation.
Few people realise just how much resource is needed when investing in a new idea, particularly if it represents a new product. The importance of the intellectual contribution can casily be overestimated and the mechanics of furn ing the concept into a reality, underestimated.
Rizks can be large, with costs ranging from the staff needed. to the set-up costs. Time spent by personnel in establishing the production and marketing operations must also be included.
So when negotiating a licence for ipr or the transfer of rights. it is in the vendor's interests 10) agree terms which are favourable to the recipient in the fïst instance. Recipients. should not have their chances of success marginalised because of an over-demanding "money now" agreement. This epitomises the reasen for the shared rish approach. Better to wait for long-term rewards than risk short term failure. as can happen when small firms take on new patents requiring substantial investment in time and equipment.

It is a salutary lesson that most of the familiar patented processes took a long time to make it. Typically. the period for a concept to materialise as a product is seven years.
Float glass took seven years to perfect; major advances in petrolcum craching needed
twelve years; nylon was only perfected after six years and, even with an effective recovery process, large scale production of penicillin took twelve years. The transistor only became reality five years after the first crude demonstration of the effect, and production of creaseresistant fibres required another five years of work following the first patent disclosure of the method.

For the invention to succeed, it has to be possible for the user to succeed. That does not mean concluding a bad deal for the vendor.

Some agreements are immensely beneficial to the vendors immediately. But these are generally where the rights transfer instantly confers some financial advantage to the recipient. Being able to market without hinderance a product whose launch would infringe the patent in question is just one example. The further proportionately-smaller investment needed to acquire a licence frees the company to continue profitable trading and eliminates the need to write off the original manufacturing investment.
Unencumbered exchange of licences, where two competitors have both invested in nearly identical products, is another and precludes costly litigation or mutually destructive price wars.

Rewards of success

As we have seen, the delay before a product
based on a patent makes its mark commercially can be protracted. The individual inventor has, on past records at least, tended to produce ideas "before their time" and must face an uphill struggle to convince others. Often, too, inventors see economic advantages as secondary to the pleasure of conceiving and demonstrating a novel concept.
But the problems faced in converting ideas into industrial reality remain essentially the same today as in the inventive heyday of the 19th century - as do the rewards if successful. The Black and Decker Workmate made its inventor Ron Hickman very wealthy. But, as is now part of inventor folklore, when he first approached B \& D they declined to pursue the idea because they thought that too few would be sold to warrant volume manufacture. He set up his own manufacturing operation and when sales clearly started to pick up he offered the idea to $\mathrm{B} \& \mathrm{D}$ again.
A redesign for cost effective mass manufacture resulted in massive sales. In this case, Hickman needed to prove his idea commercially, beyond its technical merits. In the end, the popularity of his product proved that his marketing perception was better than that of the professionals.
It is possible to win and lose at the same time. At the end of the 19th century Westinghouse, desperate to break the hold that his arch rival, Edison, had in de electrical gen-
cration offered a straight million dollars for Tesla's patents on ac electricity supply. They shook hands on the offer just minutes after their first meeting started. As it turned out, the patents were actually to be worth much more than the fabulous sum agreed. Though Tesla was delighted, Westinghouse later confided that had Tesla demurred, he would have been prepared to go as high as three million dollars. However, Westinghouse was unsure how his board of directors would react. They were unclear of Westinghouse's intentions and on hearing about the million offered to Tesla thought Westinghouse had taken leave of his senses. Tesla believed he had done extraordinarily well but, ultimately, nearly exhausted all his money on a fine lifestyle and virtually sterile experimentation. Curious, then, that in retrospect Tesla was content with far less than he could have got, Westinghouse achieved more than he expected, while the Westinghouse board thought the whole arrangement was foolhardy as it stood, without realising how bad it could have been. In the end Westinghouse was vindicated but might not have been had he committed the full three million, making it difficult for the company to develop Testa's technology. A lesson for us all?

R.S.T. LANGREX SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country

Over 5 million items in stock covering more than 6,000 different types, including CRT's camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
 1 Mayo Road, Croydon, Surrey CR0 2QP Tel: 081-684 1166
 Telex: 946708 Fax: 081-684 3056

Ghelmer Valve Gompany
Worldwide supplier with 30 year's experience

- Electron tubes: Transmitting, Industrial, Microwave, Audio, Receiving, Display, etc, etc.
- For Maintenance, Spares or Production.
- Semiconductors: Transistors, Thyristors, Diodes, RF, Power I/C's, etc.
- We have one of the largest stocks in the U.K.

TRY US! \star
fax, phone, pust or telex your requirements
130 NEW LONDON ROAD, CHELMSFORD, ESSEX CM2 ORG, ENGLAND
Telephone: (0245) $355296 / 265865$
Telex: 995398 SEEVEEG Fax: (0245) 490064

ARTICLES FOR SALE

VALVES AND CRTS

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT
Telephone 0621-893204. Facsimile 0621.893180.

19" RACK-MOUNT EQUIPMENT?
Frames, cabinets and fight cases for rack - snd non-rsck - equipment. A wide range of accessories available. For further information and brochure GROVESTREAM ENG ROVES SEPVICES SERVICES
29. Silverdale Road. Tadley PHONE/FAX 0734813395

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Ltd,
1, Mayo Road, Croydon, Surrey, CRO 2OP TEL; 0816841166 FAX 0816843056

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settiement We also welcome the opportunity to quote for complete factory clearance Contact
COLES-HARDING \& CO. 103 South Brink Wisbech, Cambs PE14 ORJ. ESTABLISHED OVER 15 YEARS Buyers of Surplus Inventory el: 0945584188 Fax: 0945475216

ADVERTISERS

 PLEASE NOTEFor all your future enquiries on advertising rates, please contact.
Malcolm Wells on: Tel: 081-652-3620

ARIICLES WANTED

STEWART OF READING
110 WYKEHAM ROAD, READING, RG6 1PL TEL. 0734268041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EOUIPMENT, COMPUTER EOUIPMENT COMPONENTS, etc ANY OUANITYT

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 043881238 Telephone: 0763246939

WANTED

High-end Test Equipment, ony brand names as Hewlett-Packard Tektronix, Rhode \& Schwarz, Marco etc. Top prices paid.
Please send or fax your offer to: HTB ELEKTRONIK
Alter Apeler Weg 5, 2858 Schiffdorf West Germany TEL: 0104947067044 FAX: 0104947067049

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity

Prompt service and cash. M \& B RADIO
86 Bishopgate Street Leeds LS 14 BB Tel: 0532435649 Fax: 0532426881

5

 V/SA
 Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham Bognor Regis, West Sussex, PO22 0EB

Tel: $(+44) 0243545111 / 2$
Fax: $(+44) 0243542457$
HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED

FREF CLASSIFIED

DRANETZ. 305c Phasc meter for sale 2 Hz to $7 \mathrm{KHz}, 0.01$ degrees resolution fully working with plug-ins. OI.R.O 2360. Ask for Mike after 7 pm (0483 487189.

FOR SALE

16 bit ADC AD13761D analog devices, 62 pieces. Also CS5326 crystal semi, 16 bit ADC. Offers considered. Contact Russ Trayling 0734311405.

WANTEID: WW2 suitcase/Gandestinc sets - German ex-service receivers, trans mitters. WIHYZ OZ8RO. RAS Otter stad, Hosterkohucj, 10 DK-3461) Birkerod, Demmark. Tei: 010-45-42815205. FOR SALE. Dranctz 305C Phasemeter 2HL - 7 (0)K $\mathrm{KHz} 0.01^{\circ}$ resolution fully working f34(1) ovno. Tul: (1276682841 Day 10483487189 Eves. Ash tor Miku
WaNTED: One or more, 128 ksobi ("pick-a-back"). memory chips for origi nal I.B.M AT computer. Tony bishop 171-624 (1) 687

Wanted: Very old Philips televisions Jac Janssen, Hogeham 1171), NL-51(1) d Dongen (Netherlands). Tel: +31162 18158; Fax (office): + $311362466+$

TENDERS

NORTHAMPTONSHIRE

 COUNTY COUNCIL COUNTY SUPPLIES Police Radio Communications Equipment MaintenanceApplications are invited trom service providers for the maintenance of a dide range' of communications equpment for Northamptonshire Police Full details obtainable from the Project Co-ordinator
County Supplies,
Northamptonshire County Council PO Box 202, John Dryden House 8-10 The Lakes,
Northampton, NN+7DB Tel: 06()4-236800
Fax: 060 $04-237168$
Applicants will be required to complete a pre-tender questionnaire, which must bu

ARTICLES WANTED

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS
INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME
REDUNDANT. WE ARE CASH PURCHASERS OF SUCH
MATERIALS AND WOULD
APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE.

WE PAY TOP PRICES AND COLLECT.
R.HENSON LTD.

21 Lodge Lane, N.Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE
081-445-2713/0749
FAX 081-445-5702.

ADVERTISERS PLEASE NOTE

For all your future

 enquiries on advertising rates, please contact
Malcolm Wells on:

Tel: 081-652-3620

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	19	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.10$ per word.

Special rates:

6 insertions $£ 2.10$ per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \longrightarrow
Extras:
Spot Colour 20%
Box number service £22.00

EXAMPLE

 SIZE$3 \mathrm{~cm} \times 1$ column
For 1 insertion cost is: $£ 45.00$

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT:
All major credit cards accepted
Please debit my \qquad card a total of $£$

ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

FREE VXI BROCHURE

The National Instruments VXI brochure describes the company's embedded PC and GPIB controllers, MXIbus interface kits for multiple platforms, and NI-VXI, LabWindows, and LabVIEW software for developing and controlling VXI instrumentation systems.

NATIONAL INSTRUMENTS
 Tel: 0800289877

CIRCII No. 146 O N REPPI CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.
Olson Electronics Limited Tel: 0818852884
Fax: 0818852496
CIRCLE NO. 143 ON REPLY CARD

ENGINEERING \& SCIENTIFIC PC

The new 230 page 1994 PC-LAB catalogue covers an extensive range of PC-based data acquisition, measurement, control, and interface plug-in cards plus supporting software packages for engineering \& scientific applications. Also includes $19^{\prime \prime}$ rack mounting industrial PCS, custom OEM PC chassis and associated sub-systems
Please contact integrated measurement systems for a free catalogue copy.

Tel: (0703) 771143
Fax: (0703) 704301

INDUSTRIAL PCs

Arcom's PCbus range is expressly developed for embedded control and data acquisition, providing high integrity industrial solutions with:

* full range of CPU and I/O functions * industrial EMC enclosures * mezzanine bus expansion * industry standard signal conditioning * Windows I/ O drivers with predictable performance.
Arcom Control Systems makes plugtogether PC solutions for undustry a reality!
Please forward all enquiries to Alan Timmins at: Arcom Control Systems Ltd, Units $8-10$ Clifton Road, Cambridge CBI 4WH, UK. Tel: +44 (0)233 411200 Fix: 411457

SPICE A/D Simulation

- Mixed Analogue and Digital
- All SPICE 2G6 analyses
- Behavioural Modelling
- Graphical post-processor
- FREE 10 transistor version
- 640K version £395
- 32 bit extd. mem. ver. £695
- Schematic front-end £149

To receive your FREE working evaluation version just send a 1.44 MB HD 3.5in disk to: EW+WW Offer, CRaG Systems, 8 Shakespeare Rd, Thatcham, Newbury, Berks
RG13 4DG, Tel (0635) 873670
CIRCLE NO. 147 ON REPLY CARD

2nd EDITION TOKO RF CATALOGUE

Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.

The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN10 7NQ Tel: (0992) 441306 Fax: (0992) 441306 CIRCLE NO. 148 ON REPLY CARD

High Speed EPROM \& FLASH Programming from your PC
\square Programs EPROMs to 4 Mbits/ 32-pins
\square Superfast $8,16 \& 32$-bit programming
\square Approved algorithms
\square Menu driven software included

- Sophisticaled editor functions
\square Easy file management
\square FREE demo disk available
Stag Programmers Limited Martinfield Welwyn Garden City, Hefordshire, AL7 1JT UK
Tel: (0707) 332148
Fax: (0707) 371503

36 EASTCOTE LANE. S. HARROW. MIDDLESEX HA2 $8 D B$

* HP85698 TOMHz-22GHz microwave spectrum analysers *

High-Performance features include external mixingto
15 GHz , Internal Preselection
1.7-22 GHz . Wide resolution range $100 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$. On-screen readout direct ploterer ouput. Digital storage. RF Inpult trom -123 to +30 dbm. HPIB PRICE \qquad .£5950

ADVANTESTTR4 133A 199kHz-200GHz H1-spec spectrum analyser
TEKTRONIX 49222 GHz spectrum analyser IFR A7550 1 GHz analyser synthesized, with trackng gen opl
£8500
§5000 $\begin{array}{r} \\ £ 5000 \\ \\ \hline\end{array}$ MARCONIINSTRUMENTS 2017 signal generator 10 KHz -1024MHz microprocessor-controlled cavity-Uned Iow-noise AM. FM +194 dbmoutpul. Fewonly FREE CALIBRATION INCLUDING FREE CALIBRATION - $\{2000$ each

2019 synthesized AMFM signal generatior 80kHz-1040MHz 6 to CLEAR£1500 EACH
$20301.356 H_{2}$ MMFM synthesizied signal generatur
 2040 hispecticadion sigal penerator, woptions the 6950 6910 dipial: RF power meter IOWHz-206Hz 6PPE 6912 power sensor 30kHz-4.26hztor above series 8938 audiopower meter
 tre3se 1 Dinh spectrum analyser
 TF2944TVi insertion siggal anay yser TF2910TVY inteval time

$E 4000$

 E6000 16800

ANTISUME5I 8 A PCM portable error ratetest sel RUEL 8 KJAER 2511 vibration meler sevi 1622 fither RRUEL \& KJAER2610 measuring ampiffer SRUEL \& KJAER 23077 leve recorder RUEL \& KJAER 2317 porabie level recorder RUUEL 8 KJAER 3204 tappingmachine RRUEL \& KJAER 3513 pornable vibration analyser BRUEL \& KJAER 2515 vibration analyser AVO RM2 $15 L-2$ insulation \& breakdowntes

2955A/2960 RADIO COMMUNICATIONS TEST SET

with cellular adaptor with TACS \&
BAND III software
£6000

MUCH MORE, FULLYEE FUFESSFED, FULLY GUARANTEED TEST

 EQUIPMENT AVAILABLE FROM STOCK. PLEASE REQUEST OUR CURRENT LISTINGS. WE CAN FAX LISTS \& SHIP GOODS WORLD WIDE. HIGH-END EQUIPMENT AL WAYS WANTED FOR STOCK. CALL USNOW
Mar Mcropany 8550 ETMC-raibation

 Hilipspm 23.4 dig gla mult meter
 achl $2: 101$ I requency counter 216 Hz

 RCCAL-JAN 9 SO3 level neter diphal

331 Adistortion meter 339Adistortion meter
3406A sampling voltmeter 355C attenuator DC. 1 GHz $0-11 \mathrm{dab} \$ 355 \mathrm{D} 0-120 \mathrm{ab}$

325A synthesizerfunction generatato $3335 A$ syntitesizefleve generator with option 01 3552A Atransmission test set
3562A Aynnamic signal analyser
 down-converter (1.7 .4 .4 .2 Hz)
22AL impeeance anaysen
275Amulliequercol. meeier
400 FL VV-Meter 100 VV V 300 V is $20 \mathrm{~Hz}-4 \mathrm{MHz}$
415E swr meter
4274 Amult -trequency ($100 \mathrm{~Hz}-100 \mathrm{kHz}$) LCR component meter 276A001 LCZ meter
432AA478A microwave oower meter $10 \mathrm{MHz}-10 \mathrm{GHz}$ 132AR486A uwave power meler $26.5-40 \mathrm{GHz}$ (waveguic)
5342A 18GH Hz requvency counter
343 A 26 GH Hz trequency counter
6253 A dual power supply 0.20 V 0.3 A twice
6825 A bpolarpower supp ylyamp -20 to $+20 \mathrm{vdc} 0-1 \mathrm{~A}$ 70300A trackinggenerator plug-in unit
70907A external mixeef for 70000 -ser spectrum ana yser
7035 BX -Y singlepen analogue chat recorder
779 D duar- birectional coupler 1.7-12.4GHz (also others) ${ }^{8112 A}$ Apuse generator
8011A Apuse generator0. $1 \mathrm{~Hz} \cdot 20 \mathrm{WH}$
816Asloted Ine $1.8-18 \mathrm{GHz}$ wth carriage 809 C \& 447 B
8405A vectorvoltm eter, voltage \& phase to 1000 MHz
3406A comb generator
447A AF amplifier $0.1 \cdot 1300 \mathrm{MHz}, 22 \mathrm{db}$ gain 0.0 .1 Wol
8505A network anayseer system including 8503 A S -parameter test set and 501A storage nomalise
20 1 Miz meergenerator

. 2.2 GLs signa generator $2-6.2 \mathrm{GHz}$ TESTL CTED BEF ORE DESPATCH By HDEF PENDETH LABURATORY
We would be pleased to hande all grades of callbration or NAMAS certificaition by same laborator atcostrprice. All iems covered by our 90 -day parts and iabou guarantee and 7 -day 'Right to Retuse' (money back) warranty

ALL PRICES SUBJECTTO ADDITIONALVAT AND CARRIAGE

CIRCLE NO. 131 ON REPLY CARD

INDEX TO ADVERTISERS

PAGE
PAGE

Anchor Surplus Lutd
BK Electronics
Bull Electrical
Chelmer Valve Company
4.36

IFC
Citadel Products Itd
OBC
Display Electronics Lid
408
35
$39+$
Fich Electric Lid
Halcyon Elearonics Lad
394

ICE Technology Lid
$4(1) 7$

John's Radio
Johns Radio
432
JPG Electronics
390

4t) Telne
Kare Electronics
300 Those Enginecrs Lid
Keytronics
363 Tsien Lid

8051 In-Circuit Emulator $£ 225$

Cost-effective ICE, Assembler and Source-Level Symbolic Debugger for 8051 family devices

Supported Devices: 8051/52 80C51/52 8031/32 80C31/32
$\left(E A^{*}=0\right)$
colour catalogue available

- Adapters for 8751, 8051 (EA* $=1$), 80C451, 80C552, 80C562, 80C652, 87C751, 87C752
- Up to 48K emulation memory for program or data
- Powerful windowed menu-driven symbolic debugger
- Built-in assembler - output loads directly to emulator
- Source-level debug ASM, PL/M-51 and C programs
- Optional EPROM and 8751, 8752, 87C552, 87C751, 87C752 programmers available from £39
- 10 day money back guarantee
- Call us today for further information

KARE ELECTRONICS

32 Pear Tree Avenue, Ditton, Aylesford Kent ME20 6EB Tel: 0732844633

LIVELINES

Dual port serial communications for your PC

The PC 47,48 and 49AT boards each provide two independent serial ports for any PC/XT/AT(ISA) computer. RS232, RS422 and RS485 standards are supported and all combinations are possible with this range of low power boards.

9 pin D connectors are provided for the RS422 and 485 ports. RS232 can be connected via 9 or 25 way D connectors and charge pump circuitry ensures signal levels in excess of 7 V are transmitted.
Interrupt and base addresses are independently selectable for each port, full, half duplex and multidrop communications are fully supported and all boards use the industry standard 82C450, UART.

Designed and manufactured by Amplicon Liveline each board is supplied with a comprehensive technical manual and interrupt driven device driver software is available Write in number 1

750kHz professional data acquisition with Windows support

PC226 from Amplicon Liveline provides 16 true differential 12 bit analog inputs each with dynamically programmable gain. PC226 has sample rates up to 400 kHz multichannel and 750 kHz single channel, programmable scanning hardware, flexible triggers and a 2048 sample FIFO to ease programming in high speed applications.
PC 226 is supplied with menu driven software for DOS and Windows, LabTech Notebook drivers and comprehensive well documented libraries for most popular high level languages.

Optional software support for Microsoft Windows includes a complete Dynamic Link Library (DLL) and two icon driven packages, Signal Centre for signal capture and analysis and TRACS for process monitoring, visualisation and control.
Write in number 2

48 lines TTL I/O with 16bit counter timers

PC 14AT available from Amplicon Liveline is a high quality general purpose interface board for $\mathrm{PC} / \mathrm{XT} / \mathrm{AT}$ (ISA) computers.

The board has 48 lines of TTL compatible digital I/O provided as six 8 bit ports four of which can be programmed to be all inputs or all outputs and two which can be split to be 4 inputs and 4 outputs if required. There are also three 16bit counter timers which can be used to generate and measure pulses at up to 5 MHz .

An on board 4 MHz crystal oscillator is also included on PC 14AT along with LEDs showing the status of a selection of the I/O ports, these can be used as programming and debugging aids.

PC 14AT is suitable for a wide variety of interface, monitoring and control applications

and an LP (low power) version PC 14LP is available for installation in laptop computers, both boards have flexible base address and interrupt support. Write in number 3

I want it. What does it do?

- 8-BIT EPROM - 16-BIT EPROM* \checkmark EEPROM \checkmark SERIAL EEPROM* \checkmark FLASH『 PIC* 8751* \checkmark EMULATION - FREE UPGRADES \checkmark TOTALLY HANDHELD - 3 YEAR GUARANTEE \square AVAILABLE TODAY!

*Requires optional modules

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8 Mbit . And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24 hr download from our high speed bulletin boards.

Emulation

See your code running before committing yourself to an EPROM. With S4's powerful and easy-10use internal emulation system, download your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen immediately - just one reason why S 4 is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or external power sources; earth loop problems are a thing of the past. S 4 even emulates RAM.

Remote Control

As well as being totally stand alone and self contained, S 4 can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal software and a pop-up TSR communications utility.

The Company

If you are looking for a supplier with longevity and stability, then you'll be pleased to learn that

Dataman has been designing and selling innovative programmers world-wide for over 15 years. As well as having sales and support offices in both the UK and the USA, we supply the world demand for our products via a network of approved dealers stretching from Norway to Australia.

The Package

S4 comes fully charged and configured for immediate use. You get a mains charger, emulation lead, write lead, personal organiser instruction manual, MS-DOS communications sottware and a spare Library ROM. Optional modules available for Serial EEPROMS, 40-pin EPROMS, 8751's and PIC's.

Availability

S4 is always in stock. Phone through your credit card details to ensure next working day delivery Full 30 day no-risk refund

Credit card hotline: 0300320719 for same-day dispatch Hocen (Mastemenc) VISA

[^0]: Electronics World + Wireless World is published monthly. By post. current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333. Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. T|x:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group
 Newstrade: IPC N'arketforce. 071 261-5108.
 Subscriptions: Quadrant Subscription Services, Oakfield
 Subscriptions: Quadrant Subscription Services, Oakfield
 House, Perrymount Road, Haywards Heath, Sussex RH16 House, Perrymount Road, Haywards Heath, Sussex RH16
 3DH, Telephone 0.444445566 . Please notify change of 3DH, Telephone 0444445566 . Please notify change of
 address. Subsciption rates 1 year (normal rate) £30 UK and address. Subscription rates 1 year (normal rate) £30 UK
 £ 43 outside UK USA: $\$ 5200$ aiimail. Reed Business Publishirg (USA). Subscriptions olfice, 205 E. 42nd Street, NY 10117.

[^1]: * 8/9 and 24 pin dot-matrix printers
 * HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
 * HP-GL, Houston Instruments plotters
 * Gerber photoplotters
 * NC Drill Excellon. Sieb \& Meyer
 * AutoCAD DXF

[^2]: Mike Hosking is a lecturer in
 teleconmunications and microwaves at the University of Portsmouth.

[^3]: *Barrie Blake-Coleman is Industrial Liaison Officer at CAMR, Porton Down.

