EICTRONICS
 WORLD

+ WIRELESS WORLD

FEBRUARY 1994 £1.95

Bass technology: Bass deception? The bass race

Designer bass:

 Big bass-small box Coupled cavitiesRF DESIGN
Using broadband RF amplifier blocks BROADCAST DAB: sound technology for the next century? APPLICATIONS Single chip GPS, inductorless
voltage conversion

20\% OFF: Audio and HiFi Handbook See inside for details

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of $\mathbf{4 0}$ set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16 Mbit .

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD. THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU 's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 \& 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card,
cable, software and manual only $\mathbf{~} \mathbf{3 9 5}$

Please add $£ 7$ carriage (by overnight courier) for UK orders, $£ 20$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CP Citarald

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

FEATURES

BASS FROM ALL ANGLES

Sounds in the lower octave are as rare in traditional Western music as they are in nature. Of late however, pop concerts heve registered on seismometers. Starting (n p100, four features show not only how t build for better bass but also allow for psychoacoustical effects.

EXTENDING BASS .100
Coupled-cavity enclosures are ideal for subwoofers but they need careful design. Ian Gosling discusses coupledcavity theory and presents a worked design example.

BIG BASS FROM A SMALL BOX 107
Small loudspeaker enclosures can be forced to reprodice the deep base. Jeff Macaulay's reflex system delivers the bottom registers through acoustic and electronic compensation.

THE SPIRIT OF BASS.
112
Ben Duncan looks at the psycoacoustics of bass anc discusses the multitude of reasons why U 2 in your liv ng room can only be a sad reflection of the real thing.

THE BASS RACE
Speaker makers continually strive for better If respense from ever smaller enclosures. Acoustic design consultant David Berriman looks at the features and compromises of loudspeaker enclosures and driver electroacoustic interfaces.

SLOPING VEES FOR VHF

For VHF and lower UHF work, the sloping vee antenna is hardly ever on the options list - unjustly according to Richard Formato. His claim is supported with both design information and performance figures.

DISTORTION IN POWER AMPLIFIERS. \qquad 137
Douglas Self explains the critical design features of the feedback network. He also presents a fully-worked design delivering 0.0015% THD at 50 W .

DAB - DELIVERY, DELAY OR DEBACLE? \qquad 160
Technologically, Digital Audio Broadcasting can offer more radio channels and signifieantly better reception. Norman McLeod discusses both the technology and its implications for local and national broadeasting.

USING RF TRANSISTORS .170
Designing a linear rf amplifier to perform adequately over a wide temperature range demands accurate bias. Norm Dye and Helge Granberg explain the design points of temperature compensated bias circuits .

FRONT COVER BOOK DFFER

Your opportunity to buy the new Audio and HiFi Handbook from Newnes at 20% discount. Use the special reply card located between pages 144/5.

REGULARS

COMMENT .91
Unsound ideas at the European Commission.
UPDATE. .92
Ultra-fast SiGe transistors for new radio front ends, CD life threat, Bulletin boards and copyright, Major companies in MPEG 2 scramble, 64 Mbit ram joint venture, War on electronic counterfeiting.

RESEARCH NOTES.
New technique promises high-density storage, better ptypes for cmos on collision course with Jupiter, pronf of power-line cancer?

LETTERS. 125
Student plea, distortion in power amplifiers, coaxial dielectrics debate, scientific theory, radio hams react, distortion on AM, what happened to allophone speech chips?

PC ENGINEERING. .127
Allen Brown traces the progress of Mathcad to its latest upgrade - version 4 - which has been rewritten for 32 bit operation. Was it worth it, he asks?

DESIGN BRIEF .130
As yet, rf building blocks are not as easy to implement as their digntal-circuit counterparts. But broadband amplifier chip promise to make the job easier.

CIRCUIT IDEAS 146
Smart fet battery charger, twin frequency marker generator, A-to-D cards for PCs, radiation detector, Wien oscillator has single-pot tuning, inductively isolated data link.

NEW PRODUCTS. \qquad 151
This month's selection of recent product launches ranges from ceramic resonators to design software.

APPLICAT\|ONS SUMMARY
.156
Global positioning core in one IC, 2.5A switching from a SOT23 transistor, modified doubler for regulated, intermediate voltages, fast, high-performance sampling. applying the fastest op-amp.

In next month's issue: Working with realtime computing. There is - or should be - a world of difference between the machines and software which handle business applications and the sort which control a production line or a scientific experiment. OS-9 starts here. Also in this issue: Using transconductance amps.
MARCH ISSUE ON SALE FEBRUARY 24.

CIRELE NO. 102 ON REPLY CANC

Finally an upgradeable PCB CAD system to suif any budiget ...

BoardCapture - Schamatic Captue

- Direct netlist lirk to Boantulakere
- Fonward annotation wilh pari values
- Full undofredo facilty (50 operalions)
- Single-sheat, mulil-pagad and hierancuicy cosignos
- Smooth serelling
- Smooth scroling (automatic junctions)
- Drnamic connectivty information
- Autamatic on-fine annotation
- Integratad on-the-fly library aditor
- Context senstive editing
- Extensive component-based power contea
- Back annotation from BoardMaker2

Board Maker

Boarshainen - Entry levor
? RW5 =ar d schimplaic deating

- Exesy ard inditho fo lise

- Gromind piave oi
- Coposar highighit and esearanoe shoveing

Boathankere - A dvenced lovet

- Air trif featuras of boarciliahtron phive
- Full Эevibt support - arcad, Suneme, pango, cadstar
- Fuilsesign Rutiv cheseling - machanical a eioctrical
- Top down mosucicution from Dig wherwatio

NEW - Therne power plares support with bet DRC

Board Router

Boardhouter - Gridless autoreuter

- Simelazoous malithayer routing
- SML and analogue suppart
- Full irterript, resume, pan and zoon while routing

Output drivers - Included as siandard

- Penjoloters - HP, Graphtec, Aoland \& Houston
- Photolotters - All Garber 3X00 and 4×00
- Excellor NC Dríl/Annotated drill crawings (BM2)

Call for info or full evaluation k l Tsien (UK) Limited Tel (0354) 695359 Fax (0354) 695957

EDITOR

Frank Ogden
081-6523128
DEPUTY EDITOR Martin Eccles
081-6528638
CONSULTANT
Derek Rowe

DESIGN \& PRODUCTION

 Alan KerrEDITORIAL ADMINISTRATION Lorraine Spindler 081-6523614

ADVERTISEMENT MANAGER Carol Nobbs 081-652 8327

SALES EXECUTIVE
Pat Bunce
081-6528339

ADVERTISING PRODUCTION
Paul Burgess
081-652 8355
PUBLISHER
Susan Downey
EDITORIAL FACSIMILE 081-652 8956

CLASSIFIED FACSIMILE 081-652 8931

SUBSCRIPTION HOTLINE 0622721666 Quote ref INJ

SUBSCRIPTION QUERIES
0444445566

NEWSTRADE DISTRIBUTION

ENQUIRIES
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
081-652 3614
ISSN 0959-8332

REED
BUSINESS
PUBLISHING

Unsound ideas at the European Commission

Nobody doubts for a moment the ingenuity and techonical excellence of the BBC 's digital audio broadcast system-DAB. Recent demonstrations both here and overseals show it to offer real improvement on standard FM for mobile reception. Although it could be argued that the London venue demonstrations were flawed by the relative siting of the FM and DAB transmitters sending out the test material the DAB sites were local while the FM1 site was 20 miles away it eliminates multipath distortion and co-channel interference. DAB provides an excellent transmission medium for mobile reception. Why then should we think very carefully before commithing ourselves to a new sound broadcast receiving system?
It is simply this. The technology, while feasible, takes little account of broadcasting reguirements. It has been tailored far too closely to the requirements of a national network with little account of local broadcasting.
The precise details of the technology are deall witt elsewhere in this issue but in essence, each DAB transmitter broadcasts six programmes simultaneously using subcarrier interleave. The frequency spreading reduces the individual data rate $/ \mathrm{Hz}$ to the point where multipath is no longer a problem but it requires that six programmes are transmitted simultaneously from a single site. Where used for local broadcasting, it would mean that six stations are locked together into an inflexible bundle. Six franchises would have to be offered to
serve a local area since $D A B$ only represents efficient use of frequency and financial resource when fully occupied. While this arrangement clearly suits Radios 1 to 5 plus another, it leaves local radio out in the cold.
The European Commission feels compelled to push Eureka DAB to gain advantage over emerging US technology in setting world standards. American digital sound broadcast technology takes as its starting point the elimination of transmission shortcomings from individual radio stations. And most broadcast systems around the world operate like the Americans'. I don't argue with assistance to our home grown DAB on philosophical grounds: let's gain any trading advantage we can. However, the world will surely turn its back on anything which isn't absolutely in lune with a market requirement.
Perhaps I should remind the EU of the MAC TV standards fiasco. And also those at the BBC/ITC with similarly short memories.
No audience or broadcasting organisation can afford to support multiple standards on the airwaves, particularly when the actual cost of hardware for the altemative will be quite high in comparison to the equipment which it is designed to replace. I urge the EU and our broadcast $R \& D$ departments to look again at the whole problem, not just selective parts of it. A total solution will receive a wider audience than a simply pragmatic one.

Frank Ogden

[^0]
Ultra fast SiGe transistors go commercial

The world's first highly integrated silicongermanium semiconductors will be on the market within nine months following an agreement between Analog Devices and IBM. Analog Devices plans to design a range of ICs for radio frequency and mixed signal applications, which will be made by IBM in New York
The new production process, which uses ultra high vacuum chemical vapour deposition to create a Ge on Si structure, allows the building of transistors with an f_{T} of more than 60 GHz without extra processing steps. SiGie devices can operate from 3 and 1.5 V supplies.
Silicon-germanium semiconductors are seen as the natural successor to cmos for high speed circuits. A 1 GHz 12-bit digital to analogue converter will be the first IC.

NTSC to VGA conversion: ITT's digital TV components perform a TV to computer display conversion for multimedia. The video adaptor uses an NTSC comb filter chip, the DPU2554 deflection processor, progressive scan processor PSP2210 and video codec VCU2134.
Simple multimedia applications do not require data reduction. The picture data is first converted to the square pixel format of computers. These are then interpolated to the required number of pixels for display on the computer screen using a picture format processor chip DTI2250.

However, Analog Devices and IBM are likely to concentrate on developing single IC front end chips for wireless communications.
This is a significant blow to the fortunes of gallium-arsenide ICs - previously the only alternative semiconductor process for very high speed circuits. SiGe circuits are significantly cheaper to produce and can be integrated onto an ordinary cmos process.

Richard Siber, director for the wireless communications service at market researcher BIS Strategic Decisions, said: "This process will negate the need for more expensive GaAs for operating frequencies up to 3 GHz . This development is truly revolutionary, giving the wireless industry a major boost."

See also Research Notes. p47

Jessi goes commercial

J
cssi, the European microelectronics research and development programme, is to produce a series of GSM chips for pocket telephones working on the European digital cellular network. These are an ATM chipset for advanced data communications equipment, a chipset for receiving digital audio broadcasts (DAB), a chipset providing the electronics for digital TVs, and an automotive safety chipset.
If used commercially, the chips could give European systems manufacturers an edge in the market for end equipment. They represent a shift away from the previous objective of Jessi which was to push forward technological capability over various disciplines without the specific intention of producing useful, commercially competitive products.

The ATM project is the most advanced. Project leader, Alcatel, already has the fourchip set in silicon on a $0.8 \mu \mathrm{~m}$ process and aims to put them onto the Jessi developed $0.5 \mu \mathrm{~m}$ process by 1995 .

The other three projects are less advanced. A two-chip GSM chipset has been designed by Alcatel, Bosch, SGS-Thomson and Mietec but is some way from implementation in silicon. The chipset follows the industry pattern of one chip for the radio frequency side and another for the digital signal processing side. The digital TV, DAB and car safety chipsets are still being designed

Bulletin boards face copyright battle

Amusic publisher in the US is suing CompuServe for copyright infringement on one of its bulletin boards. The case, to be heard in the Federal Court of New York, looks likely to set far-reaching precedents. By suing CompuServe, as provider of the host computer on which the music material is temporarily stored rather than individual system users, the music publishers are creating a precedent for the future. All electronic delivery services could become legally responsible for whatever messages subscribers post through them. The Harry Fox Agency, part of the National Music Publishers Association, is paying for music publisher Frank Music to pursue the test case on behalf of over 140 other publishers. CompuServe describes itself as "the world's most comprehensive computerised information service". The claim is for $\$ 70$ million in damages and costs for copyright infringement in just one song. If the publisher wins, the HFA, which represents 12,000 publishers and controls the licensing of 75% of all the music played in the US, will claim from any other electronic distribution system which carries music.
Over a million PCs around the world connect to the CompuServe network to exchange electronic mail messages and access 1700 different bulletin boards. Most of the messages are text, for instance news and views on new technology. But one board, called the MIDI/Music Forum, lets subscribers exchange music.
Because midi code is similar to ascii, subscribers to CompuServe have been converting music into digits and uploading it into the CompuServe computer so that other subscribers can download the code to make a PC or electronic instrument play the tune. By logging use of the musical bulletin board, the HFA has been able to cite what it describes as 690 "wilfut acts of infringement", involving more than 500 songs owned by some of the 12,000 music publishers it represents. BF

Co-op venture produces 64 Mbit ram

Texas Instruments and Hitachi have unveiled the 64 Mbit dram they have been developing for the past two years. The $228 \mathrm{~mm}^{2}$ chip can store four copies of Gone with the wind - some 2000 printed pages.

Dr Tsugio Makimoto from Hitachi said: "We pooled the best of the technologies of each side to realise benefits in terms of technology and development efficiency that greatly exceeded what either would have been able to achieve independently."
He reckons the success of the project "provides a platform for substantially strengthening and expanding our cooperative efforts in this area".
The firms are considering a similar project for the 256 Mbit dram. Toshiba, IBM and Siemens have already started joint 256 Mbit development.
A change from TI's previous drams is that the chip uses stacked rather than trench capacitor techniques.

Beeb in more HDTV tests
 The BBC and Thomson-CSF Laboratories recently carried out a

 second series of HDTV transmissions from Crystal Palace to test reception quality in a wide area around London. Transmitter power was 10 kW and channel 34 was used with an 8 MHz bandwidth, the same as an ordinary Pal signal.Bit rate was $30 \mathrm{Mbit} / \mathrm{s}$ and the compression system used a motion compensated hybrid discrete cosine transform similar but not identical to the MPEG-2 format.
There were 500 carriers using an orthogonal frequency division multiplex and 64-state QAM modulation.

Philips claims to the first company to produce a 60 W , single ended output device for use in the band 1.5 to 1.7 GHz . The LFE15600X npn transistor achieves a typical power gain of 8.5 dB at 1.5 GHz and has been designed for class $A B$ linear service: Intermodulation products are 30dB down at 60W pep output.

Cheap packaging threatens CDs

TThe latest scare story about disintegrating CDs appearing in the UK press may have been hyperbolic in its predictions of millions of CDs doomed to disintegrate but the facts behind the story have substance. The cause is not in the CD standard or manufacturing process, but sulphur content of the packaging.
Although the CD standards set by Philips specified sleeve size they did not specify materials. Analysis of the sleeves supplied by the record companies showed that some were made from high quality processed paper called solid sulphite board, and did not affect any discs, other sleeves were made from untreated wood pulp. This releases sulphur compounds which eat through the protective lacquer on the label surface of the $C D$ to erode the metal reflective layer underneath.
The first proof that CDs would not last forever came in 1988. Pressing plants discovered that the inks they were using to print label information direct onto the disc were eating through the protective lacquer coating and destroying the very thin layer of aluminiunt which reflects the laser light. So the discs stopped playing. Before that, plants pressing 30 cm laser video discs had found that the glaes used to stick the two halves of the double-sided discs together were cating away the reflective layer. The factories solved these problems by changing their inks and glues.

Now Philups' plant in Blackburn has found that some CD singles pressed in the late eighties for record companies Polygram and A and M are failing. Investigations have identified the cause as release of sulphur from some of the cardboard sleeves used to pack $C D$ singles. But the concemed organisations do not agree on the basic issues which might place CDs made by other plants at risk.
Philips built the Blackburn PdO plant to press 30 cm video discs, but demand was small so it began pressing 12 cm CDs. It uses a wet process, similar to that used for making mirrors, to deposit a layer of silver as the reflective surface. Most CD pressing plants sputter aluminium but the necessary equipment was not available when the Blackburn factory was built.

In 1988 the record companies started to sell CD singles, full size 12 cm dises carrying only around 20 minutes of music. They cut costs by using cardboard sleeves instead of plastic jewel boxes. In late 1989 the plant found that some dises in board sleeves were refusing to play after a few
months use, while others played perfectly. To confuse the issue, some discs would play on some players but not others, and then later fail on all players.

Cheap CD players immediately refused to play the disc while more expensive players with better error correction circuitry played the disc perfectly, but failed after several more months when the holes had grown larger.
The two types of sleeve look the same. "We had a real struggle to distinguish between them, but finally developed a simple test" says Dave Wilson, PdO's Technical Services Director. PdO found that if a drop of methylated spirits is put on the board surface, the material turns clear to reveal a pulp of free fibres if the board is untreated. PdO then worked with Philips to set a standard for CD sleeve chemistry. Although some record companies had started to use plastic jewel boxes for singles, because of the perceived low value of card. the card sleeve is still used in some countries. including France. Record companies in the US use card sleeves for full length CDs.

Polygram believes that the problem was confined to the Blackburn factory because the silver is more susceptible to sulphur than aluminium; the effect is similar to silver cutlery tarnishing. The disc gradually turns from silver to bronze and loses its reflectivity. But Dave Wilson of PdO believes that aluminium will degrade in exactly the same way if the record companies supply any plant with card which has a high sulphur content.
PdO now checks all card for sulphur content. PdO also checks the paper inlay notes which sit inside a jewel box and press against the disc lacquer. Dave Wilson says that all PdO technical information on the sulphur risk was made available to other plants. But the record divisions of EMI, A \& M and Polygram appeared unaware of the need to use high quality paper and board for the CD sleeves and inlays which they supply to pressing plants. EMI says it is confident that the problem is confined to discs pressed by PdO. But a spokeswoman for EMI's own CD pressing plant in Swindon was unaware of the need to check paper and card for sulphur content.
It now seem only a question of time before someone, somewhere, reports full length CDs rotting because they have either been packaged in contaminated card boxes or packed with contaminated paper sleeve notes. Barry Fox

Major companies in MPEG 2 scramble
 nticipating profit in digital TV. AT\&T
 AT\&T's visual solutions business unit, said:

AMicroelectronics, LSI Logic and SGSThomson Microelectronics have all announced details of MPEG-2 compliant real-time video decoders. The announcements presage the arrival in 1994 of digital TV receivers for satellite broadcasts and cable TV set-top decoders.
AT\&T demonstrated its chip, the AV6101, late last year at the Western Cable Show in the US. The decoder chip was paired with a real-time encoder system developed by AT\&T Transmission Systems.

Anne Schowe, managing director of
"We are claiming victory in the scramble to deliver MPEG-2 video decoder chips to the digital video market. Our AV6101 chip decodes all-the MPEG-2 video layers in real time without requiring external processor support, which means it's an ideal solution for inexpensive set-top decoder systems."

The IC is expected to cost less than $\$ 100$ in volume.

But AT\&T's claim is disputed by SGSThomson: "We would question the AT\&T claim that its chip is the first real-time MPEG- 2 decoder chip to be demonstrated.

War opens on electronic counterfeit

N|ational Westminster Bank's says it has "high confidence" in the security of its new electronic alternative to cash, the Mondex card. NatWest has been working on the smart card cash system for nearly four years, hopes it will become a global standard. It plans to introduce the system in 1995.

In its basic form Mondex relies on a conventional smart card, made to ISO standard 7816 , with inbuilt memory chip and computer processor which store cash credits, and external contacts to connect with a card reader. Anyone can use the card to make a purchase from any shop which has a reader at the till. The user's only security is to use an electronic wallet to lock, and unlock, the card's memory with a personal identification number.
The conceptual breakthrough claimed by NatWest is in the method of proofing the card against counterfeiting, so that criminals cannot make copies of cards or tamper with the memory and credit transfer signals. Tim Jones, NatWest's Head of Information Technology Policy and Strategy, says Mondex is "extraordinarily secure". But court actions brought recently by satellite broadcaster BSkyB reveal that smart cards can be a lot less secure than those who rely on them previously thought.

Credits are loaded into the Mondex card
memory or deducted to make payments by a reader at the point of sale. Both National Westminster and Midland Bank will provide hole-in-the-wall readers which let cardholders refresh cards by loading credits into the memory, while debiting their accounts. BT is already designing a domestic "smart" telephone which will let card-holders refresh them from home by calling their bank.
NatWest knows that Mondex is an open invitation to criminals who will try to print money by copying cards or pirating the signals which transfer cash from one memory to another. A spokesman for the bank "Yes we are definitely confident on security. We realise that Mondex will be targeted by criminals. There are many levels of protection against counterfeiting".
The system checks the integrity of the money signal passing from "purse" to "purse", or source and destination, to ensure that a card-holder does not tamper with the digits and so make a transfer of $£ 10$ register as $£ 1000$. Mondex also checks that each signal only registers once, to stop the same $£ 10$ transfer notching up five times to become $£ 50$. The system continually checks the validity of each purse, to ensure that the owner of one card cannot suck money from someone else's account. BF

Picture of the US electronics industry: normalised, composite graph from Electronic Business
Forecast leading indicator demonstrating year on year change in the production, order books, share price, semiconductor bookings and interest rates. Contrary to common perception, the cyclic business swings appear to be smoothing out as industry learns to plan for the perturbations.

We have been privately showing ours, the STi350t, for a while," said Simon Loe the firm's technical spokesman.
The AT\&T chip provides a $4: 2: 2$ raster output and needs 8 Mb bit of external memory as a frame store. It uses a 27 MHz clock and consumes 1.3 W .
The chip's $1 / 0$ operates from a 5 V supply whereas the core uses a 3.3 V supply. Initial samples are being provided to a few customers but production is not scheduled until later this year.
AT\&T says the $A V 6101$ device is a first generation chip capable of decoding CCIR601 broadcast quality resolution pictures conforming to the main level simple profile format in the MPEG-2 specification. This format excludes bidirectionally predicted, or B frames, in the picture sequence. They are computation intensive to encode and decode.
Main level, main profile format pictures need a minimum of 16 Mbit for frame storage.
A second generation chip is planned that can decode a main level, main profile data stream including B frames. However, AT\&T believes in the short term system builders will opt for the cheaper main level, simple profile format.
In contrast the STi3500 chip can accommodate main level, main profile and main level, simple profile picture formats by virtue of a programmable frame store. The chip can directly support between 8 and 32 Mbit of dram. An external microcontroller is needed.

Martin Bolton, technical marketing manager for the image compression group, says the external microcontroller is not a disadvantage: "There will usually be a microcontroller somewhere in the system and the load required to control the STi3500 is small. It is only a matter of setting registers every picture."

Also allowing the decoder to be controlled at the frame and field level externally allows a greater $\mathrm{a}^{\text {andibility for handling multiple }}$ standards and, importantly, special modes, said Bolton.
The STi3500 incorporates all the decoder functions, inverse discrete cosine transform, inverse quantise, frame prediction constructor and variable length decoder. The chip is highly pipelined to attain the necessary performance. The output digital video signal is in a YCrCb format multiplexed onto an 8bit bus. The synchronisation signal has to be supplied externally.

The LSI Logic $L 64000$ video decoder will also work with a main level, main profile picture format and has been developed with Zenith Electronics - one of the companies involved in the US grand alliance to develop an HDTV standard.

Simon Parry, Electronics Weekly.

AMSTRAD DMP 4000 Entire pranter assemblies includung printhead, plater, cables, stepper moturs etc. Everything bar the electronics and case. Good stripper!! Clearance price just E5 REF: MAG5 or 2 for 18 REF: MAG8
VIEWDATA SYSTEMS Brandnew units made by TANDATA complete with 1200 /75 built in modem, infra red remote controlied keyboard BT approved, Prestel compatible, Centronice printerport, RGB colour and composite output (works with any TV) complete with power supply and fully cased. Price is just E2O REF: MAG20 Also some customer returned units available at $£ 10$ each REF: MAG 10 PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance prce is 55 REF: MAG5P
IN FRA RED REMOT E CONTROLLERS Originally made for hi spec satellite equipment but perfect for all sorts of remote control projects Our clearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs etc. EZO REF: MAG2OP1
SINCLAIR C6 MOTORS We have a few left without gearboxes. These are $12 \mathrm{VDC} 3,300 \mathrm{mpm} 6^{*} \times 4^{*}, 1 / 4^{*}$ OP shaf. $£ 25$ REF: MAG25 UNNERSAL SPEED CONTROLLER KIT Designed by us for the above motor but sultable for any 12 v motor up to 30 A . Complete with PCB etc. A heat sink may be required. $£ 17.00$
REF: MAG17
VIDEO SENDER UNTT. Transmits both audio and video signals from ether a video camera, video recorder, TV or Computer etc to any standard TV set ina 100 rangel (tune TV to a spare channel) 12 V DCOP Pricels £15REF: MAG15 12vpsu is £5 extraREF: MAG5P2 - FM CORDLESS MICROP HONE Small hand held unt with a 500 rangel 2 transmit power levels. Reqs PP3 9v battery. Tuneable to any FM receiver. Price is $\mathbf{E 1 5}$ REF: MAG15P1
LOW COST WALKIE TALKIES PaIr of battery operated units with a range of about 200^{\prime}. Ideal for garden use or as an educational toy Price is $£ 8$ a pair REF: MAG 8P1 $2 \times$ PP3 req'd
*MINATURE RADIO TRANSCEIVERS A pair of walke talkies with a range of up to 2 kilometres in open country Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases and earpieces. $2 \times P \mathrm{P} 3$ req'd $£ 3000$ pair REF: MAG30
COMPOSTTE VIDEO KIT. Converts composite video into separate H sync, V sync. and video. 12 V DC operation. $£ 8.00$
REF: MAG8P2
LQ3500 PRINTER ASSEM BLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, stepper motors etc etc in fact everything barthe case and electronics, a good stnpper $£ 5$ REF: MAG5P3 or 2 for $£ 8$ REF: MAGBP3
PHILIPS LASER 2MW helium neon tube. Brand new full spec £40 REF: MAG40. Mains power supply kit E20 REF: MAG20P2. Fully built and tested unit $£ 75$ REF: MAG 75 .
SPEAKER WIRE Brown two core, 100 foot hank 12
REF MAG2P 1
LED PACK of 100 standard red 5 mm leds $£ 5$ REF: MAG5P4
JUG KETTLE ELEMENTS good general pupose heating element (about 2 kw) ideal for allsorts of heating projects etc. 2 for E 3 REF MAG3
UNIVERSAL PC POWER SUPPLY complete with flyeads. switch, fan etc. Two types avalable 150 w at $£ 15$ REF.MAG15P2 $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at E2O REF: MAG2OP3 $(23 \times 23 \times 23 \mathrm{~mm})$ OZONE FRIENDLY LATEX $250 \mathrm{~m} /$ bottle of liquid nober. sets in 2 hours. Ideal for mounting PCB's, fixing wires etc $£ 2$ each REF: MAG2P2

- FMTRANSM TTE R housed in a standard working 13A adapter! the bug runs directly off the mains solasts forever! why pay $£ 700$? or price is $£ 26$ REF: MAG26 Transmits to any FM radio.
*FM BUG KTT New design with PCB embedded coll for extra stability. Transmits to any FM radio. 9v battery req'd. $£ 5$ REF MAG5P5
*FM BUG BUILT AND TESTED superior design to kit. as supplied to detective agencies etc. Sv battery req'd £14 REF MAG14
TALKING COIN BOX STRIPPER originally made to
retail at $£ 79$ each, these units are designed to convert and ordinary phone into a payphone. The units we have generally have the locks missing and sometimesbroken hinges. However they can be adapted for their original pupose or used for something else?? Price is just $£ 3$ REF: MAG3P1
100 WATT MOSFET PAIR Same spec as 2SK343 and
 MAG3P2
VELCRO 1 metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) E2 REF: MAG2P5
MAGNETK ACFFATORS COsisting of a cased mains motor with lead. The motor has two magnets fixed to a rotor that spin round inside There are also 2 pla stic covered magnets supplied. Made for inside There are also 2 plastic covered magnets supplied. Made for 2 for $£ 5$ REF: MAG5P6
TOP QUALITY SPEAKERS Made for HI Fi televisions these are 10 watt $4 R$ Jap made 4" round with large shielded magnets Good quality general purpose speaker. £2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAG6P2
TWEETERS 2^{*} diameter good quality tweeter 140R (would be good with the above speaker) 2 for E2 REF: MAG2P5 or 4 for £3 REF: MAG3P4
AT KEYBOARDS Made by Apricot these quality keyboards need just a small modification to nun on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Pnce £6 REF MAG6P3
XT KEY BOARDS Mixed types. some retums, some good, some foreign etc but all good for spares! Pnce is $£ 2$ each REF:MAG2P6 or 4 for $£ 6$ REF: MAG6P4
PC CASES Again mixed types so you take a chance next one off the pile§12REF:MAG12 or twoidentcal ones forE20REF: MAG20P4 component pack bargain 1,000 resistors $+1,000$ capacitors (al same vaiue) $£ 2.50$ a pack. REF:MAG2P7

1994 CATALOGUE OUT NOW

Bucles BULLETSK BOARD MASSIVE
WAREHOUSE CLEARANCE FANTASTIC $£ 20.00$ REDUCTION

REFURBISHED PC BASE UNITS COMPLETE WITH KEYBOARD
from only $\mathbf{\&} 29.00$
AMSTRAD 1512 BASE UNITS GUARANTEED PERFECT WORKING ORDER.

AMSTRAD 1512SD

1512 BASE UNIT, 5.25 " FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONTOR AND POWER SUPPLY. WAS $£ 49.00$

NOW ONLY £29.00
REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25" 36CK DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

> NOW ONIY £39.00

REF: MAG39

SOLAR POWER PANELS

3FT X IFT IOWATT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
NOW AVAILABLE BY MAIL ORDER £ $\$ 3.95$

top quality amorphous silicon cells have almost a timeless lilespan with an infinite number of possible APPLICATIONS. SOME OF WHICH MAY BE CAR BATTERY APPLICAIIONS. SOME OF WHICH MAY BE CAR BAIERY WHERE A PORIABLE 12 V SUPPLY IS REQUIRED. REF: MAG 3 a

ALSO IFIX IFI GLASS SOLAR PANELS 12 V EOOmA ONIY £15.CO eE:MAG15P3

FREE SOFTWARE!

Brand now, UNUSED top qually famous brand licensed software discs. Avaikable in $5.25^{\prime \prime}$ DSDD or $5.25^{\prime \prime}$ HD only, You buy the disk and it comes with free BRAND NEW UNUSEC SOFTWARE. We are actually selling you the floppy disc for your own "MEGA CHEAP" storage facillitles, if you happen to get software that you want/need/like as well........ You get a "MEGA BARGAIN" tol
 HO PXTTO \$.99 REF: MAGAP3 PKT100 545.00 REF: MAG26P1
larger oanity prices a vallable on application
fexfexcWE BUY SURPLUS STOCK££££é£
TURN YOUR SURPLUS STOCK INTO CASH
MMMEDIATE SETTLEMENT. WE WILL AL SO QUOTE FOK COMPLETE FACTORY CLEARANCE

COMING SOON
1994 CATALOGUE
PLEASE SEND 42P, A4 SIZED SAE FOR YOUR FREE COPY

 "SOME OF OUR PRODUCTS MAY BE UNLICENSABLE W THE UK

BULL ELECTRICAL

 250 PORTEANDROAG HOVE SUSSEX $B A+507$

 WTHorober huszaiop post ruskat.CHEASLALLOWT \& $A D A Y S$ FOR OEAVEAS

$\mathrm{CLL}, 0+3200300$
FAX 077352401?

COMMODORE MICRODRNE SYSTEM mini storage device ior C64's 4 times faster than disc dives, 10
than tapes. Complete unit just E 12 REF:MAG12P1 SCHCOL STRIPPERS We have quite a fom of the above Units which are 'returns' as they are quite comprehensive units they could be used for other projects etc. Let us know how many you need at just 50 p a unit (minimum 10).
HEA DPHONES 15P These are ex Virgin Atantic You can have
8 pars for $£ 2$ REF: MAG2P8
PROXMTY SENSORS These are sman PCB's with what look like a source and sensor LED on one end and lots of components on the resi of the PCB. Complete with flyleads. Pack of $5 E 3$ REF: MAG: 3P5 ol 20 for E8 REF: MAG8P4
FIBRE OPTIC CABLE Made for Hewlett Packard sopretty good stum! you can have any length you want (min5m) first $5 \mathrm{~m} £ 7$ REF: MAG7 thereafer $£ 1$ ametre (ie 20 m is $£ 22$). REF: MAG1 Max length 250 m .
SNOOPERS EAR? Originall made to clip over the earpiece of telephone to amplify the sound-it also works quite well on the cable running abong the wall! Price is E5 REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very comprehensive manual! 5.25° only
comprehensive manual! 5.2° only
DOS PACK Microsofiversion 5 Original software but no manuals hence כnly £3 REF: MAG3P6 5.25" only.
FOREIGN DOS 3.3-Geman,French,italian etc $£ 2$ a pack with manual 5.25' only REF:MAG2P9
MOND VGA MONTTOR Made by Amstrad, refurbished 549 REF:MAG49
CTM 44 COLOUR MONTTOR. Made to work with the CPC464 home somputer. Standard RGB input so will work with othermachines. Refurbished $£ 59.00$ REF:MAG59
JUST A SMALL SELCTION
our 1 t93 catalogue (42 p stamo) or call in Mon-Sat 9.530 HAND HELD TONE DIA LLERS Ideal for the control of the Response 200 and 400 machines E5 REF MAG5P9
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range intemal units. 12v operation. Slight marks on case and unboxed (although brand new) £8 REF: MAG8P5
WIN JUP SOLAR POWERED RADIO AM/FM radio com plete with hand charger and solar panell E 14 REF: MAG14P1 COMMODORE 64 Customer returns but ok for spares etc $£ 12$ REF: MAG12P2 Tested and working units are $£ 6900$ REF MAG69 COMMODORE 64 TAPE DRNES Customer returns at 54 REF WAG4P9 Fully tested and working units are 12 12 REF: MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and FS232 input/output Ex equipment. Price is $£ 27$ REF: MAG27 MA NS CABLES These are 2 core standardblack 2 metre mains cables fitted with a $13 A$ plug on one end. cable the other Ideal for cables fitted with a 13A plug on one end. cable the other Ideal for
projects, low cost manufacturing etc. Pack of 10for $£ 3$ REF: MAG3P8 projects, low cost manufacturing etc.
Pack of $100 £ 20$ REF: MAG20P5
SURFACE MOUNT STRIPPER Onginally made as some form of high frequency amplifier (main chip is a TSA5511T 1.3 GHz syntrasiser) but good stripper value, an excellent way to play with surface mount components E 1.00 REF: MAG1P1.
MICROWAVE TIMER Electronic timer with relay output suitable to make enlarger timer etc £4 REF: MAG4P4
PLUG 420 ? showing your age? pack of 10 with leads for E2 REF: MAG2P11
MOBILE CAR PHONE E5.99 Well almost! complete in car phore excluding the box of electronics normally hidden under seat Can be made to illuminate with 12 v also has built in light sensor so display ondy illuminates when dark. Totally convincing! REF:MAG6P6 A LARM BEACONS Zenon strobe made to mount on an extemal bell box but coudd be used for caravans etc. 12 v operation Just connect up and it flashes regularly) E5 REF: MAG5P 11
FIRE A LARM CONT ROL PA NEL High quality metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. Comes with electronics but no information. E15 REF: MAG15P4
SUPER SIZE HEATSINK Supert quality aluminumm heatsink. $365 \times 183 \times 61 \mathrm{~mm}$, 15 fins enamble high heat dissipation. No holes! E9.99 REF: MAG10P1P
REMOTE CONTROL PCB These are receiver boards for garzge doo oproning systems. You may heve another use? EA ea REF: MAAG4P5
LOPTX Line output transfommers believed to be for hi res colour mokitors but useful for getting high voltages from low ones! $£ 2$ each REF:MAG2P 12 bumper pack of 10 for E12 REF: MAGTVP3

PORTABLE RADIATION DETECTOR

$£ 49.99$

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unlt detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990 Nr/h. Sup plied complete with handbook.

REF: MAG50

CIRCLE NO. 104 ON REPIY CARD

"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files.

Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output.

- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

POWERware, Dept EW, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK. Ring us on 0614497101 or write, for a full information pack. - Design

Quickroute is available for Windows $3 / 3.1$ in Professional ($£ 99.00$) and Standard ($£ 59.00$) editions,

CIRCLE NO. 105 ON REPLY CARD

RF MODULES UP TO 2GHz

GASFET LNAs $5 \mathrm{MHz}-2 \mathrm{GHz}$
Two-stage. High Q filters. Masthead or local use.
TYPE 9006 Freq: $5-250 \mathrm{MHz}$. B/W up to 40% of CF. Gain $10-40 \mathrm{~dB}$ variable. 50 ohms. NF 0.6dB.

TYPE 9004 Freq: 25

TYPE 9304 Freq: $1-2 \mathrm{GHz}$ B/W up to 10% of CF NF 0.4 dB . Gain 20dB. 50 ohms
£185
TYPE 9035 Transient protected mains power supply for above amplifiers.
£58
TYPE 9010 Masthead weatherproof unit for above amplifiers. £16

PHASE LOCK FREQUENCY CONVERTERS

TYPE 9315 Down converter. l/p frequencies $250 \mathrm{MHz-2GHz}$ O/p frequencies $20 \mathrm{MHz}-1 \mathrm{GHz} \mathrm{B} / \mathrm{W}$ up to 10 MHz . NF 07 dB Gain 30 dB variable
£350
TYPE 9316 Up/down converter. $1 / \mathrm{p}$ \& o/p trequencies $20 \mathrm{MHz}-2 \mathrm{GHz}$. B / W up to 100 MHz . NF 0.7 dB Gain 40dB variable $£ 550$
TYPE 9115A Up/down converter. $\mathrm{I} / \mathrm{p} \& \mathrm{o} / \mathrm{p}$ frequencies 20 MHz to 1 GHz . B/W up to 100 MHz . NF 0.7 dB Gain 60 dB variable O / p up to $10 \mathrm{~mW}+10 \mathrm{dBm}$ AGC.
$£ 650$

VOLTAGE TUNABLE DOWN CONVERTER
 TYPE $9317 \mathrm{l} / \mathrm{p}$ will tune 30% of CF specified in the range $300 \mathrm{MHz}-2 \mathrm{GHz}$. O/p 70 MHz NF 0.6 B Gain 60 dB O/p up to $10 \mathrm{~mW}+10 \mathrm{dBm}$ AGC

PHASE LOCK SIGNAL SOURCES $20-2000 \mathrm{MHz}$
TYPE 8034 Freq. as specitied in the range $20-250 \mathrm{MHz} \mathrm{O} / \mathrm{p} 10 \mathrm{~mW}$ TYPE 9036 Freq, as specified in the range $250-1000 \mathrm{MHz}$. O/p 10 mW TYPE 9038 Freq. as spectitied in the range $1-2 \mathrm{GHz} \mathrm{O} / \mathrm{p} 10 \mathrm{~mW}$. TYPE 9282 FM up $10 \pm 75 \mathrm{KHz}$ max Freq as specitied in the range 30 2000 MHz . O/p 10 mW

WIDEBAND AMPLIFIERS
TYPE 9301100 KHz -500MHz.NF 2 dB at 500 MHz Gain 30 dB Output $12.5 \mathrm{dBm}, 18 \mathrm{~mW} .50$ ohms.
£165
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$. NF 2 dB at 500 MHz . Gain 30 dB Output 125 dBm , 18 mW 50 ohms .
£165
TYPE 9008 Gastet $10 \mathrm{MHz}-2 \mathrm{GHz}$ NF 25 dB at 1 GHz Gain 10 dB Output
$18 \mathrm{dBm}, 65 \mathrm{~mW} 50$ ohms. £165
TYPE 9009 Gasfet $10 \mathrm{MHz}-2 \mathrm{GHz} \mathrm{NF} 3.8 \mathrm{~dB}$ at 1 GHz Gan 20dB. Output
$20 \mathrm{dBm}, 100 \mathrm{~mW}$. 50 ohms.
£185
WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 92461 watt outpu! $100 \mathrm{KHz}-175 \mathrm{MHz}$. 13 dB gain £192
TYPE 90361 watt outpu: $10 \mathrm{MHz}-1 \mathrm{GHz}$. 15dB gain $£ 312$
TYPE 92474 watt outpuł. $1-50 \mathrm{MHz}$. 13 dB gain. $£ 215$
TYPE 90514 watt output $20-200 \mathrm{MHz}$. 13dB gain. $£ 215$
TYPE 91764 watts output. $1-50 \mathrm{MHz}$. 26 dB gain $£ 345$
TYPE 91774 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain $£ 345$
TYPE 917810 watts output. $1-50 \mathrm{MHz}$. 13dB gain. $£ 304$
TYPE 917910 watts output. $20-200 \mathrm{MHz}$. 13dB gain £304
TYPE 917320 watts output. $1-50 \mathrm{MHz} 17 \mathrm{~dB}$ gain $£ 395$
TYPE 917420 watts output. 20-160MHz. 10dB gain. £395
TYPE 927140 watts output $1-50 \mathrm{MHz}$. 16dB gain. .
TYPE 917240 watts output. $20-160 \mathrm{MHz} 10 \mathrm{~dB}$ gain £748
TYPE 966060 watts output $25-75 \mathrm{MHz}$. 10 dB gain $£ 898$
UHF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$
TYPE 9123500 mW input, 5 watts output.
£350
TYPE 9124 2-3 watts input, 25 watts output $£ 510$
TYPE 91268 watts input, 50 watts output £1495

High-density storage gets chrome finish

Ccientists working at the US National Sinstitute of Standards and Technology (Nist) have glimpsed a future where very high density storage devices could be built around individual atoms of chromium.
The Nist team has used a laser to deposit neat rows of individual chromium atoms on a silicon substrate. But the significant achievement is that the rows are a mere 65 nm wide - considerably smaller than the smallest structure that can be created by conventional lithographic techniques.
Atom optics, as the technology is called, involves using a split laser beam to create a stable interference pattern - a standing wave - just above a silicon substrate. The pattern of standing waves consists essentially of alternating light and dark bands, and into it is fired a beam of chromium atoms, all inside an evacuated chamber.
The light and dark bands behave like an array of atomic lenses, focusing the chromium atoms and depositing an identical pattern on the surface of the silicon. Chromium atoms are deposited in the areas where the light intensity is lowest.

According to the Nist researchers (Science, Vol 262, 877) the laser fields influence atomic trajectories by causing them to absorb and re-radiate photons. They
also create a dipole force proportional to the intensity gradient in the oscillating electric field of the laser. Both effects are at their strongest when the laser frequency coincides with the atom's natural resonance.
AT\&T Bell Laboratories first used the technique to deposit patterns of sodium atoms. But sodium is not stable in air and the resulting structure had poor life.
The Nist creation, being made of chromium, is more permanent. Next stage, according to Nist's Bob Celotta, is to create a twodimensional optical standing wave that would allow deposition, not just of lines, but of dots. Careful movement of the substrate would then permit successive dots no bigger than a few atoms in size to be deposited next to each other in arbitrary patterns.
The ability to create such structures with details as small as 5 nm (about 15 atoms) would clearly open up a whole new area of nanotechnology.
Practical problems are still immense. Quantum effiects, for example, play a big part and the team is currently investigating how thin a piece of chromium 'wire' can be before it ceases to behave electrically like a piece of wire.
But the choice of chromium will allow the researchers to investigate more than mere

Nanometre-wide lines of chromium are deposited by a standing-wave laser field that forms cylindrical lenses. These focus the chrorvium atoms into strips that could be the basis of very high density storage devices.
electrical conductivity. Celotta points out that chromium dioxide has magnetic properties that are already widely exploited in magnetic data storage. Given the ability to deposit the material in well-ordered arrays at the atomic level, the prospects of being able to develop advanced new storage technologies are considerable.
Celotta says. "We are going to try to make magnetic media with this material and that should lead to high density magnetic storage... Eventually we will also be pursuing other materials, such as silicon and gallium arseride semiconductors".

Hole story behind superfast p-mosfet

C
ornell University electrical engineers have fabricated a p-channel mosfet that overcomes one of the seemingly-inherent disadvantages of such devices - the poor mobility of holes compared to electrons.
In conventional silicon microelectronics. holes travel three times slower than electrons. leading to the disparity in performance between complementary n- and p-channel devices. But Cornell Assistant Professor Yosef Shacham-Diamand and PhD student Kaushik Bhaumik have developed a new type of p-channel device with a 10 nm (50 atom diameters) layer of silicon-germanium. This layer cracks the speed problem by creating a quantum well that captures holes providing them with a sort of conduction "fast lane". ShachamDiamand says that, for an equivalent terminal voltage, the new device passes 40% more current (about 5 mA) and switches 40% faster than a typical p-channel device.
"Now we have a p-channel device that's just as fast as an n-channel device." he says.

Electron-beam-lithography capabilities of the National Nanofabrication Facility at Cornell were used to define the gate length of the transistor to less than $0.2 \mu \mathrm{~m}$. At this sort of gate dimension, the holes in the SiGe layer travel at speeds exceeding that of holes
in silicon, an enhancement reflected in the overall performance of the device. Another henefit is a possible reduction in the operating voltage, in this case to 1.5 V rather that the more common 3.3 V . The resultant increased chip density makes greater complexity possible as well as faster speed. Despite the improvements, no special
fabrication techniques are needed and there are mo extra processing steps.
On test, the new p-channel mosfet was clocked at 35 GHz , substantially faster than the best that can be achieved with standard p-chamnel devices (about 10 GHz), and even marginally faster than the equivalent nchannel mosfet (32 GH 7).

Jupiter's big bang could shake scientific world

The scientific community is expectantly grabbing its seats to observe - albeit indirectly - one of the biggest collisions in the Solar System in recent times. The occasion will be when over twenty fragments of a broken comet, on collision course for Jupiter, hit the giant planet at a speed of $60 \mathrm{~km} / \mathrm{s}$ in July. Unfortunately, Comet Shoemaker-Levy 9 will hit the side of Jupiter facing away from the Earth. Even so, the International Astronomical Union says it expects the comet to undertake a final dramatic act of suicide in which the fragments will hit the surface of Jupiter with a force equivalent to a 100 Gt nuclear weapon. The impact would be of the same order as that thought to have oceurred 65 million years ago on Earth and which may have led to the extinction of the dinosaurs.
Shoemaker-Levy 9, named after its discoverers, is one of the strangest objects in the solar system. Instead of being a single body, it looks more like a string of pearls in the sky. Pictures taken by the Hubble space telescope show fragments ol up to 5 km in diameter, chasing each other in a procession tens of thousands of kilometres long.

The orbits of Jupiter and Shoemaker-Levy had been getting progressively closer for some time. But the history of the bizarre multi-comet actually goes back no further than July 1992 when, as a normal comet, it almost crashed into Jupiter. Instead the powerful gravity of Jupiter simply wrenched the comet into tiny pieces.

The now-awaited collision is so important that, in spite of the fact that it is happening on the dark side of the planet, astronomers are thinking up ingenious ways to observe what happens.
One idea is to look at Jupiter's various moons to see if they reflect any light from what is bound to be a firework display on the grand scale. Another idea is to look for refracted light around the rim of the planet.
Jupiter rotates very fast on its axis so astronomers will not have to wait more than an hour or two for the scars on the planet's surface to swing round into view. But observers hope to be able to see the impact directly - using Voyager 2. The spacecraft is too far beyond Jupiter to resolve a clear image, but it should still be able to measure the intensity of the flashes of light
The other hope is that Galileo, still on its way to Jupiter, might able to catch an oblique view of what's going on behind.
Precisely what will happen when all the fragments of Shoemaker-Levy hit the giant red planet remains a matter of some debate. It is expected to be a bright and speetacular event, with huge holes punched in Jupiter's atmosphere and with gigantic shock waves reverberating around the planet. Researchers at Sandia National Laboratories in Albuquerque are currently attempting to
'String of Pearls' comet on collision course with Jupiter. Left is taken from Earth, centre and right from Hubble.
gain a better understanding of this cataclysmic event by using a supercomputer system originally developed to model nuclear weapon blasts.
Sandia's Mark Boslough says that the Jovian collision will have certain differences relative to what happened here on earth 65 million years ago. On earth, the impact would have caused an instant atmospheric pressure rise, with all the force of a massive nuclear weapon. But because Jupiter does not have a solid surface, the impact may have different characteristics. Sandia`s supercomputer simulation predicts that when Shoemaker-Levy 9 enters the atmosphere of Jupiter, it will at first slice through unhindered. After that, the pressure will build up gradually until the comet pieces break up further.
At this point, each piece will have lost 2% of its kinetic energy. The remaining 98% will be carried beneath Jupiter's clouds where it will be explosively released.
Still to be worked out on this model is whether the final big bang will result in a giant mushroom cloud, another Great Red Spot or nothing at all.

The answer, for which we may need to wait until July, is more than just a matter of curiosity. Astronomers believe that impacts of this sort are the means by which the planets were created in the first place. So the way in which Shoemaker-Levy 9 commits suicide could answer some fundamental questions about our own history.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE INSTOCK

Marconi TF2008-AM-FM signal generator-Also sweeper-10 Kc/s -510 Mc/s - from 5350 tested to $£ 500$ as new with manual - probe kit in wooden carning bo HP Frequency comb generator type 8406A - $£ 400$
HP Sampling Voltmeter (Broadband) type 3406A - £200 HP Vector Voltmeter type 8405A - $£ 400$ to $£ 600$ - old or new colour HP Synthesiser/signal generator type 8672A - 2 to 18GHz £4000 HP Oscillographic recorder type 7404A - 4 track - £350 HP Sweep Osclllators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-Ins trom $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$ P O.R HP Network Analyser type 8407A +8412A $+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-\mathrm{E} 100 \mathrm{C}$ HP Down Converter type $11710 \mathrm{~B}-01-11 \mathrm{MC} / \mathrm{s}-£ 450$ HP Pulse Modulator type $\$ 1720 \mathrm{~A}-2-18 \mathrm{GHz}-£ 1000$ HP Modulator type 8403 A - $£ 100-$ - 200
HP Pin Modulators for above-many difterent frequencies - $£ 150$ HP Counter type 5342A - 18 GHz - LED readout - $£ 1500$. HP Signal Generator type 8640B-Opt001+003-5-512 MC/S AM/FM - $£ 1000$ HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200-\mathrm{HP} 8447 \mathrm{~F} .1-1300 \mathrm{Mc} / \mathrm{s} £ 400$ HP Frequency Counter type 5340A - 18 GHz £ 1000 - rear output E 800
HP $8410-\mathrm{A}-\mathrm{B}-\mathrm{C}$ Network Analyser 110 Mc s 1012 GHz . 18 GHz HP 8410 - A - B - C Network Analyser $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18GHz - plus most other units and displays used in this set-up-8411A-8412-8413-8414-8418-8740-8741-8742-874 HP Signal Generator type 8
HP Signal Generator type 8660 C -. 1-2600MC/s AM/FM - $£ 3000$ 1300 MC/s $£ 2000$
HP Signal Generat or type 8656A-0 1-990MC/s. AM/FM - £2000
Racal/Dana 9301A-9302 RF Millivoltmeter -1.5-2GHz- $£ 250-£ 400$
Racal/Dana Counters 9915M -9916-9917-9921-£150 to £450. Fitted FX standards. Racal/Dana Modulation Meter type 9009 - $8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - $£ 250$ Racal - SG Brown Comprehensive Headset Tester (with artificlal head) Z1A200/1 - 5350 Marcont AF Power Meter type 8938- 200
Marconi RCL Bridge type TF2700- $\$ 150$.
Marconi/Saunders Signal Sources type-6058B-6070A-6055B-6059A-6057B-6056 £250-£350 400 Mc/s to 18 GH
Marconi TF1245 Circuit magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$ Marconl mic rowave 6600A sweep osc. maintrame with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $665.1 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-\Sigma 1000$ or Pl only $£ 600$
Marconl distortlon meter type TF2331- §150. TF2331A - $\mathbb{2} 200$
Microwave Systems MOS/3600 Microwave frequency stabilizer - 1 GHz to 40 GHz £ik Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A203 SG54M11-7S11-7D10-7S12 S1-S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503-SG504-DC503-DC508-DD50
WR501 - OM501A -FG501A - TG501 - PG502 - DC505A - FG5G4-P WR501-OM501A-FG501A-TG501-PG502-DC505A-FG5G4-P.O.R Altech Stoddart recelver type 17/27A-01-32MC/S - $£ 2500$
Ailtech Stoddart recelver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{S}-£ 2500$
Ailtech Stoddart receiver type NM65T-ito $10 \mathrm{GHz}-£ 1500$
Gould J3B Test oscillator + manual - $£ 200$.
Infra-red BInoculars in fibre-glass carrying case-tested-£100. Infra-red AFV sights £100 ACL Fieid intensity meter receiver type SR-209-6. Plugs-ins from 5MC/s to 4GHz-F.O.R Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new $-£ 1000$ or $10 \mathrm{Mc} / \mathrm{s} 40 \mathrm{GHz}$ Tektronix Mainframes - 7603-7623A - 7633-7704A - 7844-7904-TM501 - TM 1503 TM506-7904-7834-7104.
Knott Polyskanner WM1001 + WM5001 + WM3002 + WM4001- 500
Allech 136 Precision test RX +13505 head $2-4 \mathrm{GHz}-£ 350$.
SE Lab Elght Four - FM 4 Channel recorder $-£ 200$
SE Lab Elght Four - FM 4 Channel recorder - $£ 200$
Ailtech 757 Spectrum Analyser - 00122 GHz - Digital Storage + Readout - $\$ 3000$
Dranetz 606 Power line disturbance analyser - $\$ 250$ Dranetz 606 Power line disturbance analyser - $£ 250$
Precision Anerold barometers- $900-1050 \mathrm{Mb}$ - mechanical digit readout with electronic indicato - battery powered. Housed in polished wood carrying box-tested - $£ 100-\$ 200-\S 250.1 .2 \mathrm{or} 3$ TESTED WITH OPERATING MANUAL
TESTED WITH OPERATING MANUAL
HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-8553B RF $-1 \mathrm{kHz}-110 \mathrm{MC} / \mathrm{s}-\mathrm{A}: \mathrm{F}-£ 1300$ or B IF $-£ 1400$

HP141T + 8552A or B IF-8555ARF-10 MC/s-18GHz-A IF- $£ 2400$ or B IF $-£ 2500$.
HP 141T + 8552A or B IF-8556A RF -20Hz-300kHz-A IF-A IF- § 1200 or B IF- $£ 130 \mathrm{D}$
HP8443A tracking generatof/counter $-100 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 500$
HP8445B tracking pre-selector DC-18GHz - $£ 750$
HP ANZ UNITS AVAILABLE SEPARATELY - NEW COLOURS - TESTED.
HP141T maintrame - £550-8552A IF - £450-8552BIF- £550-8553B RF- $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}$ £550-8554B-RF-100kHz-1250Mc/s - £650-8555A-RF-10Mc/s-18GHz- £1550 HP 3580A LF-spectrum analyser -5 kHz to 50 kHz - LED readout - digital storage $-\mathbb{1} 16.70 \mathrm{with}$ instruction manual - internal rechargeable battery
Tektronix 7020 plug-in 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 manframes §500-manual - $\mathfrak{5} 5$
Datron 1065 Auto Cal digital multimeter with instruction manual - $£ 500$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}$ - internal NiCad battery - $£ 150$ Aerial array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector - $100-11 \mathrm{GHz}$. Using EIP 451 microwave pulse counter $18 \mathrm{GHz}-\mathbf{~} 1000$
Marconl RF Power Amplifier TF2175 - 5M60. 520 Mc with book 5100
Marconl RF Power Amplifier TF2175-1.5MC/S to $520 \mathrm{Mc} / \mathrm{s}$ with bo
Marconi $6155 A$ SIgnal Source -1 to $2 \mathrm{GHz}-$ LED readout - $\mathbf{~} 600$
Schlumberger 274 t Programmable Mlcrowave Counter -10 Hz to $7.1 \mathrm{GHz}-£ 750$
Schlumberger 2720 Programmable Unlversal Counter 0 to $1250 \mathrm{MC} / \mathrm{S}-£ 600$
HP 2225CR Thinkjet Printer - 100
TEK 576 Calibration FIxture - 067-0597-99- $£ 250$
HP 8006A Word Generator - $£ 150$.
HP 1645A Data Error Analyser - $£ 150$
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS - §50-£150
HP 809C Slotted Line Carriages - various frequencies to $18 \mathrm{GHZ}-£ 100$ to $£ 300$
HP 532-536-537 Frequency Meters - various frequencies - $£ 150-£ 250$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + Iow pass $-\mathbb{\Sigma} 150$
S.E. Lab SM215 Mk1 1 transfer standard voltmeter - 1000 volts

Aittech Stoddart P7 programmer - $£ 200$.
H.P. 69418 multiprogrammer extender $£ 100$
 thermorneter +9 probes $£ 350$ all three items
H.P. 59501 A HP IB
H.P. 59501 A - HP-IB solated D/A/power supply programmer
H.P. 3438A digital multimeter
H.P. 6207B DC power supply
H.P. $741 \mathrm{~B} \mathrm{AC/DC}$ differential voltmeter standard (old colour) $\{100$
H.P. 6209B DC power unit.

Fluke 80 high voltage divider
Fluke 431 C high voltage $D C$ supply.
Tektronix M2 gated delay callibration fixture 067-0712-00
Tektronix preclsion DC divider calibration fixture 067-0503-00
Tektronix overdrive recovery calibration fixture 067-0608-00
Avo VCM 163 valve tester + book $£ 300$
H.P. 5011 T logic trouble shooting kit. $£ 150$

Marconl TF2163S attenuator - 1 GHz . $£ 200$
Fluke 730A DC transter standard
B\&K 4815 callbrator head.

B\&K 4812 calibrator head
Farnell power unit H60/50- $£ 400$ tested
H.P. FX doubler 938A or 940A - $£ 300$.
H.P. sweeper plug-ins - $86240 \mathrm{~A}-2-84 \mathrm{GHz}-86260 \mathrm{~A}-124$-18GHz-86260AH03-10-
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz} .86245 \mathrm{~A} 5.9-12.4 \mathrm{GHz}$
Telequipment CT71 curve tracer $-£ 200$
H.P. 461 A amplfier - $1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - oid colour - $£ 100$
H.P. 8750A storage fiormalizer

Tektronix oscilloscopes type $2215 \mathrm{~A}-60 \mathrm{Mc} / \mathrm{S}$ - C/w book \& probe - $£ 400$
Tektronix monltor type 604 - $£ 100$.
Marconi TF2330 or TF2330A wave analysers - $£ 100-£ 150$
HP5006A Signature Analyser $£ 250+$ book
HP10783A numeric display $£ 150$
HP 3763A error detector. $£ 250$
Racal/Dana slgnal generator $9082-1.5-52 \mathrm{uMc} / \mathrm{s}-\mathrm{E} 800$
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{MC} / \mathrm{s}-£ 900$.
Claude Lyons Compunne - line condition monitor - in case - LMP1 + LCM1 $£ 500$
Claude Lyons Computne - line condition monitor - in case - LMP1 + LCM1 $£ 500$
Efratom Atomic FX standard FRT-FRK-
Racal 40 recorder $-£ 350-£ 450$ in carrying tag as new.
HP8350A sweep oscillator manframe + HP 11869A RF PI adaptor - $£ 1500$.
Ailtech - precision automatic noise figure ind cator type 75 - §250.
Adret FX synthesizer 2230A - 1Mcis. $£ 250$
Tektronix-7S12 7S14 -7T11-7S11-S1-S52-S53
Rotek 610 AC DC calibrator $£ 2 \mathrm{~K}+$ book
Marconi TF2512 RF power meter - 10 or 30 watts - 50 ohms - 280 .
Marconi multiplex tester type 2830
Marconl digital simulator type 2828A
Marconi channel access switch type 2831
Marconi automatic distortion meter type TF2:337A - 150
Marconi mod meters type TF2304- £250
HP 5240A counter - 10 Hz to $12.4 \mathrm{GHz}-$ E40C
HP 3763A error detector.
HP 8016A word generator.
HP 489 A micro-wave amp-1-2GHz
HP 8565 A spectrum analyser $-01-22 \mathrm{GHz}-54 \mathrm{~K}$
Fluke 893A differential meters - $£+00$ ea
Fuke bya dikrentia meks - 100
ype $60548-20 \mathrm{Mc} s-24 \mathrm{GHz}$ - LED readout $-£ 1 \mathrm{k}$
Takeda Riken TR4 120 tracking scupe + TR1604P digital memory
Systron Donner 6120 counter/timer $A+B+C$ inputs $-18 \mathrm{GHz}-£ 1 \mathrm{k}$
Racal/Dana 9083 signal source - two tone- $\mathbf{E} 250$
Systron Donner signal generator 1702 - synthesized to 1 GHz - AM FM.
Systron Donner microwave counter 6057-18GHz - Nixey tube - $£ 600$
Racal/Dana synthesized signal generator 90B1-520MC/s - AM-FM. £600.
Farnell SSG520 synthesized signal generater - $520 \mathrm{Mc} / \mathrm{s}$ - $\mathbf{~} 500$
Farnell TTS520 test set - $\mathbf{5 0 0}$ - toth $£ 900$
Tektronix plug-ins - AM503 - PG501 - PG5:38 - PS503A
Tektronix TM 515 mainframe + TM5006 manframe
Cole power line montor T1085- 250 .
Claude Lyons LCM1P line condition monitor - §250
Rhodes \& Schwarz power signal generator SLRD-280-2750Mc's $£ 250-£ 600$
Rhodes \& Schwarz vector analyser - ZPV + E1 + E3 luners - $3-2000 \mathrm{Mc} / \mathrm{s}$
Bell \& Howell TMA3000 tape motion analyser - $£ 250$.
Ball Etratom PTB-100 rubidium standard mounted in Tek P
Ball Efratom rubidium standard PT2568-Ff*KL
Trend Data tester type $100-£ 150$.
Fairchild interference analyser micel
Falrchid intererence analyser mocel EMC $25-14 \mathrm{kc} / \mathrm{s}-1 \mathrm{GHz}$
Fluke 1720A instrument controller + keyboard
Racal Dana counters -9904-9905-990k-9915-9916-9917-9921-50MC/s-3GHz
§100- $£ 450$ - all fitted with $F X$ standards.
B\&K 7003 tape recorder - $£ 300$
B\&K 2425 voltmeter - $£ 150$.
B\&K $4921+4149$ ouldoor microphone.
WIltron sweeper mainframe 6100- $£ 500$
HP3200B VHF oscillator $-10-500 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP3747A selective level measuring set.
HP3586A selective level meter
HP5345A electronlc counter
HP4815A RF vector impedance meter C /w probe $£ 500-£ 600$
Marconi TF2092 nolse receiver. A. B or C plus filters.
Marconi 2091 noise generaior. A. B or C pius iiters
HP180TR HP192T Mainframe c300 rs00
HP180TR, HP182T mainframes $\& 300$
Bell \& Howell CSM2000B recorders.
HP5345A automatic frequency convertor $-.015-4 \mathrm{GHz}$
Fiuke 8506A thermal RMS digital multimetrr.
HP3581A wave analyser
Phillps panoramic receiver type PM7800-1 to 20GHz
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ to 2 GHz
Wiltron scaler network analyser $560+3$ heads. $£ 1 \mathrm{k}$
R\&S signal generator $S M S-0.4-1040 \mathrm{Mc} / \mathrm{S}-£ 1500$
HP8558B spectrum ANZ PI-. $1-1500 \mathrm{Mc}$ is - o/C - $£ 1000$. N/C - $£ 1500$ - To fit HP180 series mainframe available - $£ 100$ to $£ 500$.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer $-£ 4 \mathrm{k}$
HP8505A network ANZ + 8502A test set- $£ 3 k$
Racal/Dana 9087 signal generator $-1300 \mathrm{Mc} / \mathrm{s}-£ 2 \mathrm{k}$
Racal/Dana VLF requency standardequlpment. Tracor receiver type 900A + difference
meter type $527 \mathrm{E}+$ rubidium standard type 9475 - $\mathbf{£ 2 7 5 0}$.
Marconl 6960-6960A power meters with 6910 heads - $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ or $6912-30 \mathrm{kHz}$
2GHz- $8800-£ 1000$

B\& K dual recorder type 2308
Tektronlx 475 -200Mc/s oscilloscopes - 350 less attachments to $£ 500 \mathrm{c} / \mathrm{w}$ manuał, probes etc.
HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$
HP 432A-435A or B-436A - pcwer meters + powerheads - $10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}-\mathrm{E} 200-£ 280$ HP3730B down convertor - $£ 200$
Bradley oscilloscope callbrator type 192 - $\{600$
Spectrascope SD330A LF realime ANZ - 20Hz-50kHz - LED readout - tested - $£ 500$
HP8620A or 8620C sweep generators - $£ 250$ to $£ 1 \mathrm{k}$ with IEEE
Barr \& Stroud variable filter EF3 $01 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ - high pass + low pass - I 150
Tektronix 7L12 analyser-. $1 \mathrm{ME} / \mathrm{s}-1.8 \mathrm{GHz}-£ 1500-7 \mathrm{~L} 14$ ANZ-£2k
Marcon TF2370 spectrum ANZ-110Mc/s- $1200-£ 2 \mathrm{k}$
Marcon: TF2370 spectrum ANZ + TK2373 FX extender $1250 \mathrm{Mc} / \mathrm{s}+$ trk gen $-£ 2.5 \mathrm{k}-53 \mathrm{~K}$
Racal receivers - RA17L-RA1217-RA1218-RA1772-RA1792-P OR
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$
HP86164 signat gen 1 8GHz-4.5GHz oly colour E 200 , new colour E 400

ITEMS BOUGHT FROM HM GOVERNMEMT BEIMG SURPLUS. PRICE IS EX WORKS. S.A.E. FOR ENOUIRIES. PHONE FOR APPOINTMEMT OR FOR DEMONSTRATION OF AMY IIEMS. AVAILABILITY OR PRICE CHANGE. VIT AMD CARR., EXTRA. ITEMS MARKED TESTED HAVE 30-daY WARRAMTY. WANTED: TEST EQPT - VALVES - PLUGS \& SOCKETS - SYNCROS - TRAMSMITTING \& RECEIVING EQPT. ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 651160.

Abstract

Coupled-cavity loudspeakers have the combined advantages of extended bass response and shallow If roll-off. lan Gosling highlights the design process with a worked sub-woofer example.

 lowed a trend towards smaller speaker enclosures. Sparsely furnished rooms exhibit undesirable room resonance at around 30 Hz , and small speakers are more popular for aesthetic reasons. As a result, few reasonably priced systems now offer a -3 dB point much lower than 70 Hz .
Bass response has suffered. This is a pity, since the bottom octaves of piano and bass guitar both extend down to 40 Hz , and percussion much lower. Many commercial systems use vented boxes to reduce footprint, but with the penalty of steep response roll-olf. Venting also degrades transient response - an important factor in perceived sound quality
Compact discs can reproduce the full audio spectrum from 2 Hz to 20 kHz . I therefore looked for a suitable sub-woofer design to extend my existing system. Its specification was a frequency response flat down to 20 Hz , with a gradual roll-off of 12 dB /octave or better. I chose 80 Hz as the subwoofer crossover frequency. There are a few choices of enclo-
sure, each with their own merits. I chose the coupled-cavity enclosure. It is smaller than a transmission line and much smaller than a horn. In addition. radiation is only emitted from the port. which is quite small. This reduces the area of grille cloth needed, making the unit surprisingly inconspicuous in a domestic environment.
Since the high frequency response of the cavity-based subwoofer rolls off naturally. a crossover network is not needed. If you wish not to enter into filter theory. a rough design for a simple closed box can be completed in a few minutes using a calculator. For more complex enclosure types however, a first cut design procedure can give disappointing results. It is a good idea to model the frequency response on a computer before starting to cut timber.

The enclosure can be modelled as an acoustic circuit on a Spice type circuit simulator. Prices of such software nowadays can be much less than the cost of speaker materials.

Acoustic circuits

Just as voltage V and current I describe an electrical signal. so a sound wave can be described by air pressure p in $\mathrm{N} / \mathrm{m}^{2}$ and the rate of movement of air or volume velocity v in m / s. Fig. 1. Equivalent electrical components can represent acoustical loudspeaker components.
Consider first a sealed box with an air inlet. Fig. 2. When air is pumped in, the pressure rises. This is analogous to an electrical capacitor, where injecting charge causes the potential difference to rise. The acoustic equivalent of capacitance is the acoustic complance C_{A} measured in m / N.
A similar argument applies to air being pumped into the space near an elastic mechanical part such as the cone suspension. When deflected from it rest position, it exerts a pressure on the air through the attached cone. The acoustic compliance is proportional to the mechanical compliance or spring constant.
Mass of the drive unit cone and the mass of air trapped in the port tube also have acoustic equivalents. A mass moving at the same velocity as the air behind it is in equilibrium and no forces act. If the air velocity changes suddenly, the mass cannot react instantaneously to move with it, so the air starts to press on the mass. This is analogous to change of current through an inductor, which causes a back emf.

The equivalent of inductance is acoustic mass M_{A} measured in $\mathrm{kg} / \mathrm{m}^{4}$. Radiation of sound energy is analogous to electrical power dissipation. As a result, the circuit component is an acoustic radiation resistance. There is also a reactance due to the mass of air trapped just in front of the radiating surface.
Finally, the electrical part of the circuit must also be modelled. An electrical resistance R_{E} appears through the transformer action of the voice coil motor as an acoustic resistance

$$
R_{s}=\frac{(E I)^{2}}{S_{1}^{\tau} R_{t}}
$$

where B_{l} is magnetic field in the voice coil multiplied by the coiled length of wire and R_{F} is the sum of amplifier output impedance. speaher cable resistance and voice coil resis-
tance. Typically, R_{E} is around 8S2. Sensibly chosen speaker cable has a negligible contribution to this figure - another nail in the coffin for fancy cables.
Enclosure design process Fig. 3 shows the enclosure configuration. Two drive units are used to reduce the large cone excursion nec-

Fig. 1. Voltage and current in a travelling wave on an electrical two-wire transmission line compared to pressure and velocity in a sound wave. The air has maximum and minimum density at the places marked + and - respectively.

Fig. 2. Top to bottom, electrical components analogous to a sealed box of vohme V_{B} a cone suspension of spring constant $C_{A 1}$ a cone of mass m,
a port tube of volume $\boldsymbol{S P} \times t$ and a radiating surface of radius a_{D}. Parameter ρ is the density of air, c the speed of sound and S_{D} cone suiface area.
essary al low frequencies
Behind each is a sealed box of volume V_{13}. One drive unit may be mounted back to front to reduce second harmonic distortion. In this case its electrical connections must also be reversed

In acoustic circuit Fig. 4, $R_{1,2}$ are the voice coil resistances. $R_{3.4}$ the energy absorbed in the cone suspension. $L_{1,2}$ the cone masses and $C_{1,2}$ the suspension compliances. $C_{3,4}$ represent the compliance of air in boxes V_{B}. Since atl these components move logether, they displace the same amount of air, so must share the same volume velocity 1 . This is equivalent to electrical components that all carry the same current. They are therefore connected in series.
The cavity of volume $V_{C}\left(C_{5}\right)$ can be regarded as a sealed box into which air can llow
from the drive unats and from the port tube L_{3}. Since these volumes ol air add, there is a volume summing junction at one end of C_{5}, equivalent to a current summing junction.
For a closed box. Whe acoustic circuit has a high-pass resonance below which there is no useful sound output. Inspection of this circuit shows that there is a band-pass resonance. Since this lies at the centre of the operationg frequency band, the lower 3 dB point can be at least an octave below that obtainable with simpler enclosure types.
The schematic can be entered on a PC-based circuit simulator and outpul sound pressure level plotted as the voltage across the resistive part of the radiation impedance Z_{1}. Alternatively, a short program can be written to perlorm the circuit calculations and display the results. Enclosure and port dimensions are
then adjusted to obtain the required response
For a speaker response exiending down 10 $20 \mathrm{H} \ell$, the enclosure resonant Irequency should be about 40 Hz and the free air resonance of the drive units, f_{s}, should be less than 30 Hz . Manufacturers provide drive unit parameters, but they also can be measured as shown in the pance.
I used the KEF $B / 39 B$, which has low distortion and a free air resonance of $29.5 \mathrm{H} \%$. For a design procedure not involving filter theory. initially the box volume V_{B} can be made intinite. Parameler V_{C} and the acoustic mass of the port are chosen to give the required centre frequency. Then V_{B} is reduced to a sensible size and final adjustments made to the bandwidth and response shape adjusted.
To meet my specification, V_{B} should be $0.08 \mathrm{~m}^{3}, V_{\mathrm{C}}$ is $0.056 \mathrm{~m}^{3}$ and port cross-section

Bass speaker enclosures

Loudspeaker drive units were first designed for use with an infinite baffle. A closed back to the enclosure degraded the performance rather than enhancing it.

More recent air suspension drivers are designed to work with an enclosure. Compressing the air in the sealed box creates pressure on the cone, and this can be employed to provide the restoring force for the cone as opposed to the traditional stiff cone suspension. Sealed enclosures have a high-pass response with a gradual low frequency roll-off of $12 \mathrm{~dB} /$ octave.
Vented or reflex enclosures have an additional tube terminated by a port which can radiate in addition to the drive unit. This lowers the cut-off frequency of the response somewhat, but increases the roll-off slope to $18 \mathrm{~dB} /$ octave. In the transmission line enclosure, the port tube is lengthened to be a half wavelength at the cut-off frequency. Sound then emerging from the port is in phase with that directly radiated from the drive unit. This increases the sound output, extending the bass response. But the tube now becomes 8.7 m long at 20 Hz . In addition, at frequencies where the port is a whole number of wavelengths long, destructive interference occurs,

(a)

(b)
causing dips in the response.
Fibre packing in the port tube can help by attenuating the signal at mid bass frequencies and by reducing the wavelength by up to three times, as in the Bailey design ${ }^{1}$. Packing however causes pressure build-up behind the cone which can spoil the frequency response.
Sound output at low frequencies can be improved by making the cone effectively larger by attaching it to a horn. Its mouth should ideally be at least one wavelength in circumference, i.e. 4.3 m across for a flat response down to 20 Hz . The horn enclosure has a band-pass response with a very shallow If roll-off of $6 \mathrm{~dB} /$ octave.
Coupled-cavity enclosures ${ }^{2}$ have a cavity and a port in front of the drive unit. This also results in a band-pass response. The lower 3 dB point is well below that of a comparable closed box while roll-off is unchanged.

Fig. 1. Speaker enclosure types.
Diagram (a) is basic closed box, (b) is a vented box, (c) represents a transmission line, (d) a horn and (e) a coupled cavity.

Fig. 2. Comparison of frequency responses of different enclosures of broadly similar floor footprint. These curves can vary considerably with the enclosure design and drive unit parameters.

Measuring drive unit parameters

If the drive unit parameters are unknown, the following procedure can be used to obtain reasonably accurate values using reacily available instruments.
First measure area S_{D} as the area of the cone itself plus half the surround. Measure across the front of the chassis, not along the slope of the cone. Next apply a small weight to the cone. Suspension comp iance $C_{A S}$ is then $5_{D}{ }^{2}$ multiplied by the ratio of cone deflection ta the mass applied.
Now measure the DC voice coil resistance R_{E}. Connect to a signal gererater via a voltmeter and ammete- and find the free air resonant frequency, f_{s}, where current is at its minimum. Divide the $A C$ voltage by the current to find the total resistance of the drive urit, calling this $R_{\mathrm{E}}+R_{\mathrm{EC}}$. Subtract R_{E} to obtain R_{EC}.

It B_{1} is not known, measure the frequencies f_{1} and f_{2} at which $A C$ resistance is,

$$
\sqrt{R_{E}\left(R_{E}+R_{E C}\right)}
$$

Calculate the electrical

$$
Q_{E C}=f_{f}\left(f t_{2}-f_{1}\right),
$$

and hence the component value

$$
R_{1}=\frac{(B l)^{2}}{S_{B}^{Z} R_{E}},
$$

using $R_{1}=1 /\left(2 \pi f_{\mathrm{s}} Q_{\mathrm{EC}} C_{\mathrm{AS}}\right)$. Caiculate $R_{\mathrm{AS}}=R_{\mathrm{f}} R_{\mathrm{E}} / R_{\mathrm{EC}}$. Then finally,

$$
M_{A D}=\frac{1}{4 \pi^{2} f_{s}^{2} C_{A S}}-0.46 \sqrt{\frac{s_{D}}{\pi}}
$$

The secord term allows for the mass ot air traoped next to the cone.

Fig. 3. Twin-unit coupled cavity enclosure. Circular holes are for the drive units. Sound output comes from the open end of the port S_{p}. A smaller model using only one drive unit may be constructed by dividing the drawing in half along the centre line of the port tube. The speakers are mounted nose to tail.

Fig. 4. Acoustic circuit corresponding to Fig. 3. Since all the components move together, they displace the same amount of air and have the same velocity.

AUDIO

S_{P} is $0.017 \mathrm{~m}^{2}$ by length of 0.5 m . This gives an almost ideal response, Fig. 5, with slightly under-damped low and high frequency roll-off.

Electronic filter design

Electronic circuitry is required before the power amplifiers to separate the electrical drive for the sub-woofer from that for the midrange and treble. However, there can be pitfalls if this is done without care. In a loudspeaker crossover network, the electrical signal is separated into low- and high-frequency components using a low-pass and a high-pass filter. The two components are recombined by summation in the listener's ear.
A simple circuit simulation using secondorder filters with $Q=0.7$, Fig. 6, shows that, surprisingly, the recombined signal does not have a flat frequency response. The low frequency component is also in antiphase to the high frequency one. This is usually corrected by reversing the connections to one speaker drive unit - in which case the frequency response of the recombined signal has a dip.

If the circuit is modified so that the highpass filter is made from a duplicate low-pass filter plus a differential amplifier. Fig. 7 then the effect of the identical low-pass filters cancels out exactly when the signals are recombined at the ear. The resulting frequency response is perfectly flat and the phase of the response is 0° at all frequencies.
Figure 8 shows the filter circuitry for the coupled cavity subwoofer. Low-pass filter action is accomplished by the speaker acoustic circuit, so no high-power crossover network is required. The duplicate low-pass filter is a Sallen and Key op-amp filter, U_{2}. Subtraction is performed by U_{3} : the output from U_{3} is then taken to the midrange power amplifier.

Drive for the sub-woofer drive is obtained by summing the stereo channels in $U_{4 \mathrm{~A}}$. A phase shifter, comprising $U_{4 \mathrm{~B}}$ and U_{5}, may be included to correct for the room position of the sub-woofer. It comprises a very low- $Q L C R$ all-pass filter using the gyrator $U_{5 \mathrm{~B}}$ as the inductor, C_{6} and R_{28}. It gives 180° adjustment range; the other 180° is covered by swapping over the speaker cables.

Construction

Chipboard or medium density fibreboard are suitable materials for the enclosure. The two large unbraced panels should be 25 mm thick. while the remainder is 18 mm . KEF suggests connecting the drive units with a metal rod to give extra stiffness, but this requires customdesigned drive units. Here the port tube provides the bracing.
Length t of the port tube (see Fig. 3) includes the length of the bend where it joins the cavity V_{C} - a component not included in the acoustic circuit. Damping material should be fixed to the inside of the panels to reduce cabinct vibration and to eliminate high frequency cavity resonances, since there is no crossover network. I used fibreboard pressure treated with bitumen, generously glued all over. This was followed by a 50 mm layer of open cell polyester foam cushion stuffing. In practice, this also favourably reduces the Q of the response shape.

The port tube should not be lined. The bottom face should not be glued, but screwed on to allow interior access, using a foam gasket. All other joints should be glued and serewed using 25 mm square battens, ensuring airtight joints. A grille cloth may be added, but the material should offer minimum air resistance as the air volume velocity in the port is high.

References

1. Bailey, A.R., Non-Resonant Loudspeaker Enclosure Design, High Fidelity Designs, Wireless World, 1974, pp 87-90.
2. Berriman, D., Sound Concepts , Electronics World and Wireless World, Sep. 1990, pp 774-779.

Further reading

Beranek, L.L., Acoustics, American Institute of Physics, 1986. Small, R.H., Closed-Box Loudspeaker Systems, Journal of Audio Engineering Soc., 2 parts, Dec. 1972, Jan/Feb. 1973.

Coupled-cavity design software

Turbo Pascal listings for plotting frequency response and time-domain square-wave response of a twindriver coupled-cavity speaker is available on disk. It can be obtained by sending $£ 10$ plus vat to $E W \& W W$'s editorial offices at the address in the front of the magazine. This PC format software is not a fullyworked speaker design package but rather intended as a template for the computer-literate experimenter. It comprises three pascal files, each over 5 K . Documentation is limited to REM statements in the listings.

PROTEUS

Schematic caplyvre

- Easy to Use Graphical interface.
O. Netlist, Parts List \& ERC reports.

O Hierarchical Design.
O Extensive component/model libraries.
O Advanced Property Management.

- Seamless integration with simulation and PCB design.

Stmonerfor

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCAB OBSHM

- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checkíng.
- Advanced Multi-Strategy Autorouting.
- Output to arinters, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0274542868. Fax: 0274481078. 14 Marriner's Drive, Bradtord BD9 4JT.

It is now nearly seventy years since the introduction of the moving coil speaker and small speaker systems with extended bass response are still rare. In a way this is not surprising. A thorough understanding of how speaker systems operate in the bass region has only been available since the 1970s. In addition, the work of Thiele ${ }^{1}$, extended and enhanced by Small ${ }^{2}$ and others, has only recently been widely disseminated. This work forms the backbone of modern if speaker design.
An unmounted loudspeaker can be modelled by an electrical second order high pass filter. Typical response curves are shown in Fig. 1 Note that the response shape depends on the Q of the filter. Usually, the maximally flat Butterworth filter is assumed to be the best since it combines maximum pass band response flatness without peaking. However the best transient response is obtained with a Q of 0.5 . although with the penalty of a drooping If response.
Filter action is a byproduct of the speaker's fundamental resonance. This resonance occurs between the mass of the cone and the compliance of the cone surround. Response curve Q is mainly determined by electrical

J P Macaulay has thrown his subwoofer away, arguing that the best route to good lowfrequency response is to combine the advantages of a small reflex enclosure with electronic compensation.

 Small box

damping, or lack of it, imposed by the magnet assembly.
Antiphase bass radiated from the rear of the cone cancels radiation from the front. Sealing the rear of the speaker in an enclosure solves
the problem but at the expense of increasing the driver's resonant frequency. This is due to of compliance of the enclosed air effectively stiffening the surround.
Using Thiele/Small theory, the response of

Fig. 1. Typical curves for a sealed loudspeaker enclosure. Designers usually strive for a Q of 0.7 as in curve B. Curve A is tor a Q of 2 while curve C is $\mathbf{0 . 5}$.

Fig. 2. Sixth-order curve C is system response produced by combining fourth-order roll off of a reflex speaker with second-order electronic low pass filtering.
such a system can be easily be calculated - at least for the bass region. Three basic parameters of the driver are needed. First is the bass resonant frequency, f, measured in free air and second $V_{\text {as }}$. the volume of air whose compliance is equivalent to the compliance of the speaker. Finally the parallel equivalent of the mechanical and electrical bass resonant Q_{s}. or $Q_{\text {ts }}$, needs to be known. Nowadays any reputable driver manufacturer should be able to supply these details on their products.
The other widely used method of mounting a speaker is 10 introduce a duct or port into the otherwise sealed enclosure - the bass reflex system - as detailed in the panel. By juggling the speaker parameters, enctosure volume and port tuning it is possible to devise a good rellex system. But due to physical restraints, most affordable, reasonably-sized systems end up with a -3 dB point somewhere between 50 and 70 Hz . Considering that most program

Reflex enclosure design

Rather than being airtight, the reflex enclosure has a duct or vent. Air mass in the duct forms a resonant circuit with the compliance of the air in the cabinet - a form of the Helmholtz resonator.
At resonance, the reflex port inverts the phase of the cone's rear radiation so the duct radiates sound in phase with the front of the speaker. This action increases efficiency at low frequencies. As an added bonus the speaker sees a high impedance at the resonant frequency of the cabinet and cone excursion is greatly reduced for a given acoustic output. Furthermore the resonant frequency of the speaker mounted in the cabinet is hardly raised at all from its free air value.

There is a trade off with the reflex

design. The speaker system now responds like a fourth-order high-pass filter with potentially worse transient response.
Response of a reflex enclosure can be determined from the following relationships.

$$
\begin{aligned}
& A=\left(f_{\mathrm{b}} / f_{\mathrm{s}}\right)_{2} \\
& B=A Q_{\mathrm{ts}}{ }^{-1}+f_{\mathrm{b}}\left(Q_{\mathrm{i}} f_{\mathrm{s}}\right) \\
& \left.C=1+A+V_{\mathrm{as}} v_{\mathrm{b}}\right)+f_{\mathrm{b}}\left(Q_{\mathrm{i}} f_{\mathrm{s}} Q_{\mathrm{ts}}\right) \\
& D=1 / Q_{\mathrm{ts}}+f_{\mathrm{f}} /\left(Q_{\mathrm{i}} f_{\mathrm{s}}\right)
\end{aligned}
$$

For any given frequency f, the relative response in $\mathrm{dB}(\mathrm{dB}=20 \log R)$ can be found from,

$$
R=\frac{f_{n}^{4}}{\sqrt{\left.f_{n}^{4}-C f_{n}^{2}+A\right)^{2}+f_{n}^{2}\left(D f_{n}^{2}-B\right)^{2}}}
$$

where f_{s} is free air resonant frequency

Tuning the reflex. The reflex enclosure resonant frequency is independent of the speaker fittted. Knowing the vent dimensions it can be shown that the resonant frequency t_{C} is

$$
f_{\mathrm{C}}=\frac{344.8 R}{2 \sqrt{\pi V_{\mathrm{b}}(L+1.7 \bar{R})}} \quad \begin{aligned}
& R=\text { vent radius } \\
& L=\text { vent length } \\
& V=\text { cabinet volume }
\end{aligned}
$$

of the driver, f_{b} is resonant frequency of the enclosure and port, $V_{a s}$ is the volume of air whose compliance is equal to that of the driver, $Q_{t \mathrm{t}}$ is Q of the driver's bass resonance, Q_{i} is a measure of box losses and can be taken as 7 for normal enclosures, F_{n} is f / f_{s} and v_{b} is enclosure volume.
The resulting curve resembles that of a fourth-order filter in the case of the optinnum enclosure but closely follows that of a second-order filter for very small enclosures. Small in this case refers to the $V_{b} / V_{\text {as }}$ ratio.
A closed box system has a
straightforward second-order frequency response in the bass region. This can be calculated from the following.

```
\(A=\left(f f f_{\mathrm{C}}\right)^{2}\)
\(B=(A-1)^{2}\)
\(C=f /\left(Q_{0} f_{\mathrm{c}}\right)\)
\(D=C^{2}\)
\(E=\sqrt{ }(B+D)\)
\(f(\omega=A / E\)
\(N(\mathrm{~dB})=20 \log \left(f_{\left(\omega_{0}\right)}\right)\)
```

where f_{c} is resonant frequency of the driver in its enclosure, Q_{0} is the resonance and f is the frequency of interest.
When the enclosure is sufficiently small to produce a second-order response, the curve is analysed and the equivalent f_{C} and Q_{0} determined. This information is applied to check the accuracy of the deduction by calculating the equivalent infinite-baffle response, inverting it and adding it to the enclosure response. Enclosure size is determined mainly by the required cut-off frequency.
sources have a bass response that extends to 20 Hz or lower, at least an octave of musical information is lost.
To make up the shortfall in response. subwoofers are becoming popular. Nevertheless in order to respond down to the lowest octave such systems need to be large. The only sane afternative way of extending bass response is to use equalisation. I hasten to add that I am not advocating the use of graphic equalisers. but rather a precise inverse frequency response tailored to the system being used ${ }^{3}$.
Probably the best known example of this hind of system is the sixth-order alignment proposed by Kcele'. The label 'sixth order" refers to the fourth-order roll off of a reflex speaker whose If output is augmented by a second-order low pass filter.
Resulting roll off is that of a sixth-order filter, as in Fig. 2. Here a retlex cabinet is luned low to produce an over-damped If response which is then boosted flat by the auxiliary high-pass filter.

Bandpass subwoofer

While experimenting with a similar system I discovered an interesting approach to the problem. I had a Kef B200 mounted in a 19 litres sealed cabinet. This 200 mm unit has a free-air resonance at 25 Hz , a Q_{1}, of 0.51 and a $V_{\text {as }}$ of 161 litres. With the speaker mounted in the eabinet, response of the system is that of a second order filter with an f_{c} of $9(\mathrm{H} / 2$ and a Q of 1.8 .
The system was equalised for a bancl-pass response tlat between 30 Hz and 100 Hz to -3 dB . This was made possible by feeding the input signal through a low-pass second order lilter. Fig. 3. Inspiration for this system was the subwoofer unit presented by Harcourt ${ }^{5}$.
Although response was well extended, power handling was inadequate. Of course a reflex speaker in a small cabinet has a secondorder response similar to the closed box. I reasoned that I could possibly increase power handling by fitting a suitable vent and adjusting the equalisation.
The result exceeded my best expectations. Power handling was vastly improved. Moreover the amount of deep bass output was amazing and without wind noises from the decidedly small 50 mm diameter vent.
Initially I could not account for the performance of the unit until I read an article by Plach and Williams from 1951. It transpires that when a reflex cabinet is made sufficiently small compared to the driver"s $V_{\text {in }}$ the phase angle between the vent and driver output changes slowly through the vent resonant frequency. The result is that vent radiation is still in phase with the driver's above and below the resonant frequency.
This phenomenon accounts for the unequalised response curve which rolls off slowly down to 10Hz and then rapidly plummets due to the vent and driver radiation being in antiphase. Just as importantly though the vent radiation, in a normal" reflex design peaks strongly at the vent's resonant

Linkwitz-Riey fiters

The Lunkwitz-Riley filter is an ingenious and versatile network originally designed for use with closed box speaker systems. Normally, when designing such a system the final response curve in the bass region is determined by the driver parameters. Unfortunately, with the majority of drivers a s.mall enclosure means a high cut-off Irequency combined with an undesirable peak in response.
A well designed Linkwitz-Riley filter provides bass boost and correction for the peak. The filter is placed before the power amplifier driving the speaker system. The net result is a system that will respond deeper into the bass region, with a better transient response than that of the original speaker driven by the power amplifier alone.
In a closed box system the available acoustic output at low frequencies is limited to the amount of air that can be shifted. This in turn is limited by the maximum displacement of the cone. Most modern long-throw drivers are limited to a linear excursion of 6 mm peak to peak. Typically, damage will occur at twice this limit so it is vital to ensure that this cannot occur. Contrary
to popular belief the amount of power required at low frequencies is substantially less than the driver's normal rating. For every halving of input frequency the cone excursion will double for a constant drive voltage.
Luckily the low frequency content of musical signals diminishes rapidly below 100 Hz . Another objection to bass boosting is that, below resonance, the output is controlled by tne linearity of the cone suspension. However research has shown that 40% THD is inaudible on program at $40 \mathrm{~Hz}^{*}$.
With the design proposed -a severely overdamped reflex system efficiency is substantially higher because of the contribution of the vent. A feature of reflex systems is that the resonant frequency is only slightly higher than the free air value so distortion due to sub-resonant operation is minimal. What distortion there is substantially reduced by the high impedance air load provided by the vent.
*This will apply to first harmonic content only -Ed.

Fig. 3. Reducing the size of the reflex enclosure produced second-order characteristic B. Adding electronic second-order low-pass transfer function A produced a bandpass system exhibiting curve C.
frequency. With the system described here the Q of this peak is much reduced, Fig. 4. It follows that the vent can be made smaller because of the lower sound velocity at resonance without generating wind noise. I have found that a vent area $1 / 16$ of the driver radiating area suffices.
Just as important is the inherently low rate of roll off in the system's stop band. We have a reflex system with the roll off characteristics of a sealed box and with it the better transient response of a sealed enclosure system.

Building a full range system based on the principle proved to be quite simple. All that is needed is a Linkwitz-Riley filter ${ }^{3}$. This network is designed to compensate for a given second-order response and substitute it with another of the designer's choosing.

Originally the Linkwitz-Riley network was designed for use with closed box systems. However its second-order response curve is easily calculated. All that remains before designing the network is to determine the equivalent f_{0} and Q of the unequalised system response.

The system has the most desirable characteristic of a sealed speaker cabinet superior transient response. Since the vent and enclosure need to be small to obtain the correct response, the cabinet can be made unobtrusive. It has an extended low frequency response combined with low cone excursions due to the favourable phase shift between driver and vent. Because the final response curve is equalised by an extemal filter, drivers with relatively high f_{s} and Q_{ts}-i.c. cheap ones - will suffice.

Full-range system details

In my design, called the Microflex, I used a pair of Kef $B 200$ s for bass and mid range together with a pair of Audax DTW 100 T/ 25 F FFG tweeters.
My enclosure is made from 15 mm medium density chipboard panels with overall dimensions of 355 mm high by 258 mm wide by 303 mm . This yields an internal volume of
19.961. The cabinet is unlagged and tuned to 34 Hz by a 215 mm long 51 mm diameter vent.
The Kef speakers have a high frequency roll off above 3.5 kHz accompanied by a rather large response peak. Roll off is that of a second order filter with a Q of 3.5 . I had decided from the outset that the speaker system was to be active so I turned this roll off into an advantage. I fed the bass signal through a 3.5 kHz low pass second order filter with a Q of 0.143 . This combination gives an acoustic response from the $B 200$ of a fourth order low pass with a Q of 0.5 .
This is ideal since the aim was to implement a Linkwitz-Riley-Riley crossover. This type of crossover uses fourth order filtering for both high and low pass sections combined with a Q of 0.5 for the best possible transient response. My tweeters are titanium dome types with a natural resonance frequency of 1.2 kHz which is over an octave below the crossover frequency. Filtering for the tweeter is provided by a cascaded pair of Sallen and Key secondorder high pass filters built around a dual opamp, Fig. 5.

At the bass end, the input signal is first buffered before being processed. Active filters only operate as intended when driven from a low impedance source. The signal is then fed into a second-order high-pass filter with a turnover frequency of 30 Hz and a Q of 1 . This filter is an optional extra and is most useful when using vinyl discs.
Bass information is now fed to the LinkwitzRiley filter. Values shown are determined empirically. From here the signal is fed into the low pass filter previously described, which forms part of the low pass crossover net work. Also fed from the input buffer are the cascaded high-pass crossover filter sections. From here, output is fed to the power amplifier via a preset potentiometer to equalise signal levels to the speakers.

Bass response is flat down to 30 Hz and the system can produce a good acoustic sine wave at this frequency. Transient response is good and system performance is good on all material - especially speech. I have dismantled my subwoofer as it is no longer necessary. I now feel that the real historical significance of Thiele/Small theory will be showing us where to set our equalisers.

References

1. Thiele, A. N., Loudspeakers in vented boxes, 1. Aud. Eng. Soc., Vol 19. May/Jun 1971. 2. Small, R.H., Closed box loudspeaker systems, J. Aud. Eng. Soc. Vol 21, Jun/Sep 1973
2. Linkwitz-Riley, S., A three enclosure loudspeaker system, parts 1-3, Loudspeaker Builder 2-4, 1980.
3. Keele, D. B., A new set of sixth-order vented box loudspeaker system alignments, I. Aud. Eng. Soc., vol 23, pp354-360 June 1975. 5. Harcourt, R. I., An acoustically small loudspeaker, Wireless World, Oct. 1980.

Fig. 4. Curves for the electronically augmented reflex enclosure show that response is flat down to the cut-off point.

Values
Resistors, 1%
$R_{1,6,7,10,13} 56 \mathrm{k}$
$R_{2,4} \quad 12 \mathrm{k}$
$R_{3,5} \quad 22 \mathrm{k}$
$R_{8,9} \quad 15 \mathrm{k}$
$R_{11,12} \quad 100 \mathrm{k}$
$R_{14,15} \quad 820 \mathrm{k}$
$R_{16,17} \quad 4 \mathrm{k} 7$

Capacitors
$C_{1-4} \quad 2 n 7$
$C_{5}, \quad 100 \mathrm{n}$
C_{7} 4n7
C
$C_{10} \quad 3 n 3$
$C_{11} 33 n$
$C_{12,13} \quad 100 \mathrm{n}$ cer
$C_{14} \quad 68 \mathrm{n}$

Semconductors
A $_{1-6} \quad$ TLOT2 (3off)
$1 C_{3} \quad 7915$

Fig. 5. Linkwitz-Riley crossover with electronic woofer equalisation. This circuit compensates for low-frequency response deviation in a small reflex enclosure Microflex. Further optional filtering removes sub-sonics for disc replay.

LOW COST RANGER1 PCB DESIGN FROM SEETRAX
 - Circuit Schematic
 - Circuit Capture
 - PCB Design
 - Host Of Outputs All-In-One Design System $£ 100$
 Fully Integrated Auto Router $\AA 50$

Ask Us About Trade-In Deals Call Now For Demo Disk on 0705591037

Seetrax CAE • Hinton Daubnay House Broadway Lane • Lovedean • Hants • POB 0SG

Tel: 0705591037 • Fax: 0705599036 権

Pay by Visa or Access

The spirit of

Hard and fast lines cannot be drawn. but bass energy in music starts somewhere around 300 H 7 . contains over half the octaves that music spans, and turns into subbass - something you feel more than hear below about 30 Hz .
Bass energies have been important to mankind for more than 10,000 years. The rock festival that can be heard miles away uses kilowatts of electricity to parallel tribal drumming ceremonies, audible at over ten miles. But the lowermost three octaves, $10-80 \mathrm{~Hz}$, are rarely appreciated in the majority of Western listening, which takes place on compromised. so called high-fidelity systems.
While it is superficially possible to appreciate much 'classical' Western music largely without these lower registers. the fulsome reproduction of bass profoundly enhances and expands the experience and consciousness of the serious music lover. With an 18th century oratorio or a pipe organ, the low content may only be the grandiose. But most of rhythmic music's therapeutic power resides in the low bass.
There is a widespread misconception among those without a global appreciation of music that very low bass is somehow dangerous*. I have repeatedly experienced outdoors some of the highest musical low-bass sound pressure levels yet created. For myself and many others, the experience is extremely physical, pleasurable and ultimately cathartic.

Bass - the acoustic background

Rudimentary audio knowledge talks of music requiring a -3 dB bandwidth that begins at 20 Hz or even higher. It is true that few traditional instruments generate fundamentals below 40 Hz . but this does not mean that they

[^1]> Unlike traditional Western music producers, many modern artists rely heavily deep bass for exciting their audiences. Ben Duncan discusses why U2 never quite sounds the same in your living room.

produce no output. Moreover, pipe organs, gongs and synthesizers, as well as diverse sounds that have been sampled and pitch shifted. as used in today"s House and Ambient music, reach down to at least 20 Hz , if not below 10 Hz .
In domestic reproduction, the relevance of frequencies below 100 Hz and the ability to recreate them in any ordinary living room is debatable. In many cases, they are not realisable on at least three counts. First, the LF response of two-way domestic speaker systems is stymied by acceptable size. Second, the maximum sound pressure level that can be developed in the bottom decade of domestic speakers is usually severely limited by driver excursion limits. Particularly in sealed box enclosure. the cone moves proportionately further with decreasing frequency for a given sound pressure level.

A continuum of trade-offs exists between piston area, excursion and allowable harmonic, Fig.1, and Doppler distortion. So the average domestic speaker capable of 105 dB at 1 kHz is likely to be limited to 70 dB or less below 50 Hz . A speaker that has been tuned to go lower will have less maximum output since extension is traded against cxcursion.

Third, and often overlooked, Robinson and Dadson curves, Fig. 2, show that the threshold of human perception at 20 Hz - the minimum audible frequency - is around 75 dB pressure level. This suggests that a speaker has to produce more than 70 dB at 20 Hz for programme at this frequency to even begin to be audible.
On the other hand, a number of specialist bass enclosures and sub-woofers are capable of producing useable bass to well below 40 Hz with dimensions suitable a domestic setting ${ }^{1}$ and smaller than elementary theory suggests is possible.
It is sometimes thought that our perception of bass qualities in familiar music is greatly influenced by the ear's ability to synthesise missing or attenuated frequencies using the
mid frequency harmonics as cues. It follows that accurate mid-frequency reproduction has as much influence on bass sonics as the bass perse.
Synthesis of the fundamental explains how mini and micro-monitors and the majority of small domestic speakers can satisfactorily portray bass lines while being incapable of reproducing the fundamental audibly. Still, the mind has to work to achieve this. and some of music's higher qualities are lost.
Physical presence of the lower octaves, say -3 dB at or below 50 Hz , is found more relaxing and preferable to most listencrs. Equally, deficiencies, excesses or imbalances in the HF are inversely reciprocated by our senses: Listeners may hear an excess of low bass as a lack of treble, and vice-versa².
It is also not widely appreciated that the rule of thumb that 1 dB is the smallest perceptible change to the average listener is true only at conversational pressure levels, at mid-frequencies. Smaller changes are exaggerated at higher and particulary lower frequencies. At mid-frequencies, a 10 dB increase from 65 dB to 75 dB is perceived as a doubling of loudness, but the same change at 20 Hz would be perceived as more than a loudness quadrupling.
This is evident from Fig. 2. by following the distance between the curves. It follows that whereas electronics and audio both use $\log 20$ decibel scales for discussions and comparisons of attenuation, gain and amplitude, the meaning of audio equipment figures in decibels must be considered.
Ambient sounds are important cues, and while not musical per se, they are part of the hologram of up-marhet hi-fi reproduction. They include the "feel" - almost a throb - of the wooden stage or floor that the musicians are on. These are difficult to describe, but obvious when present.

System roll-offs, capacitors and delays Most audio equipment contains too many de blocking capacitors. The only positively mandatory series capacitors in audio are one for analogue disc, usually RIAA/IEC, and one for each standard of tape equalisation. At most, up to three series capacitors are essential. These are for up to $-18 \mathrm{~dB} /$ octave highpass filtration to roll-off unwanted bass and even these should be preferably bypassable.
Every series capacitor in the chain creates a high-pass pole. As a result, the response falls off below $x \mathrm{~Hz}$ at $-6 \mathrm{~dB} /$ octave times the number of series capacitors - assuming all roll-offs are the same within an octave or two. Since filtering caused by dc blocking is wholly passive, it is at least highly damped (sub-Bessel). With active high-pass filters, non linearities in degrees phase per hertz (with frequency plotted linearly) are compounded by Q and their gross effect reaches higher into the audio spectrum with cvery pole.
Setting very low -3 dB roll-off points, well helow 20 Hz , and minimising the number of roll-off as is important on several counts. One is group delay or phase dispersion. In 1990. 1
published possibly the first analysis of the effects of audio signal chains in the time and frequency domains ${ }^{3}$.
Figure 3 shows a portion of lf music program variably delayed by 0 to 8 ms . The delay depends ont the dominant comporent after the signal has passed through each of 24 stages having a modest 3 dB low-pass roll-off, or $\mathrm{f}_{3 \mathrm{~L}}$,
of 2.1 Hz . Such response is typical of a conventional. complex recording studio signal path. so it is a feature of most recordings. It was also a feature of carlier hi-fi systems. Fortunately not everyone is sensitive to it.
A well designed modern domestic replay system can have as little as one series capacitor, giving an ultimate roll-off in the electron-

Fig. 1. Cone excursion required to produce $135 d B$ sound-pressure level. Even using four 15 in drivers the excursion needed at 40 Hz is considerable.

Fig. 2. Often overlooked equal loudness contours from Robinson and Dadson show that a speaker has to produce over $70 d B$ to be detectable at 20 Hz .

ics limited to-6dB/octave. Phase dispersion embedded in the recording cannot be fixed this way, but further damage is avoided. In recording studio equipment chains. and wherever more than one series capacitor is essential, phase dispersion is kept at bay by setting $F_{3 \mathrm{~L}} \ll 1 \mathrm{~Hz}$.

Properties of real capacitors lead to the same conclusion. An electrolytic capacitor can act as a filter with a huge temperature coefficient, frequency-dependent capacitance and complex, non-linear parasitics ${ }^{4,5}$. The threshold where they cease to act this way is properly set by considering psychoaccoustics, taking the outer limits, and adding a margin of 300% (just 10 dB , remember).
For dc blocking in purist audio equipment, electrolytic capacitor values are practically as

Music - the ultimate test signal

Musical information spans at least ten octaves, while mankind's entire visual world is drawn from just the one octave of visible light. Music signals are the antithesis of the pure sine wave routinely used to test audio equipment. The sine wave has a crest factor of 3 dB . The most adventurous test signal used for the majority of 'objective' audio testing is filtered and slightly clipped pink noise. This can crudely imitate music's variable crest factor or 'peak-to-mean ratio', which averages 15 dB but varies from around 8 dB up to 25 dB .
Music is made up of 'shifty' sine waves, many of them harmonically related. Their periodicity, amplitude, frequency and rate of change of these parameters, hence envelope, is some combination of the regular, the rhythmic, the self-similar, the nested, the random and the chaotic.

Fig. 3. Phase dispersion illustrated as varying delay in the output of a studio signal chain, compared to the input. Delay varies up to 10 ms with dominant instantaneous frequency. In a fully direct coupled system, the delay would be absent.
large as can be borne by the circuit-board area available, while maintaining a resonant frequency that is comfortably above 20 kHz . In the few places I use DC blocking, an audio grade, low inductance $1000 \mu \mathrm{~F}$ electrolytic capacitor is combined with $10 \mathrm{k} \Omega$, giving an $F_{3 L}$ of 0.016 Hz .
Why not use film capacitors, whose characteristics are nearly perfect? Well, to attain even a modest F_{31} of say 1 Hz using moderate resistor values, the values needed are unacceptably physically large and expensive $16 \mu \mathrm{~F}$, for $10 \mathrm{k} \Omega$. A smaller and more acceptably priced 150 nF would require partnering with $1 M \Omega$ for an $F_{3 L}$ of 1 Hz . But a resistance this high will cause problems with microphony, electrostatic pickup, dc offset and possibly thermal noise.
Microphony is by far the most serious problem. The capacitor allows a distorted acoustic signal to egress at a random point in the chain, causing tonal defects and smearing. This is a common defect in vacuum tube amplifiers, with their high impedance networks. In discrete transistor topologies, some capacitor locations such as bootstraps can cause bias shifts and 'tails' when driven or momentarily overdriven. Asymmetrical music signals can cause this even though the system may behave perfectly with a sinewave (see panel). It is rarely acknowledged that the temperature coefficient of resistors and particulary the capacitors that set $F_{3 L} s$ will cause the system $F_{3 L}$, as well as the phase dispersion, to change as a large audio system warms up. Assume that the net system $F_{3 L}$ is set too high at 30 Hz - a common feature of mass-market equip-
ment. To astute listeners equipped with a suitable system, a plausible IdB change in bass response as the system warms up will be perceivable as around a doubling in loudness. But if net $F_{3 L}$ is 16 mHz , then the same shift will lie below audibility.

Direct coupling

In the past decade, the construction of directly coupled audio circuits has been made possible by the arrival of op-amps that combine good ac performance with high DC precision. PMI`s OP37 was the first. followed by Linear Technology's LTIO37 and LTIO28 in 1983.
Il this was made possible by George Erdi's work in combining bias-current cancellation with low-noise input pairs ${ }^{6.7}$. Since then, Analog Devices/PMI, Harris, and Texas have all produced even better parts. But what about drift ? My AMP-OI preamplifier design of 1983^{8} contained up to five direct-coupled opamps in a line. These were individually nulled. After ten years, I can report that drift causing dc levels to build up, to make pots 'scrapey' or cause significant clicks when switching, has not been an issue.
Since then, I have designed a crossover for use in some of the world's foremost recording studios. It has twelve direct coupled stages and requires absolute reliability over thousands of hours operation. Using Harris HA3-522 $1-5 s$ to replace the $N E 5534 s$, no nulling was required. In addition, bass sonics are vastly improved over the MkI design, which was mostly ac coupled. Servos may be used to force offisets to zero. But this technique just moves the capacitor, adds another, and adds an op-amp with its attendant cost, supply consumption and noise injection.

Power Supply optimisation

Benefits of regulated supplies with regard to low frequency capability and purity have been covered in some depth ${ }^{9,10}$. Considering envelope modulation, the 'sample rate' of a conventional $50 / 60 \mathrm{~Hz}$ power supply interacts with the bass frequencies dominating the music envelope.
In 1986, I helped create the $D V T-300$. This was the first high power - 600 W per channel - audio amplifier to use a quasi-resonant switching supply. Switching was at 80 kHz , which placed the power supply recharge rate well above the audio band.

Today, several UK amplifier makers use this and other power conversion techniques above 20 kHz . Bass clarity has been shown to be improved by exchanging a given output stage circuit between linear and 80 kHz switching power supplies.

Dynamic tonal correction

Knowing about the ear's non-linear perception of the 3D change-of-SPL versus SPL versus frequency, instead of frequency leads to the conclusion that sonic accuracy in audio systems hinges on reproducing music at precisely the original sound pressure level (this same effect causes musicians think in terms of pitch). At any other level, the music will be

DBC: Digital to binary convertor
BAC: Binary to analog convertor
tonally and dynamically different, and the low bass content will be most affected by the most common practice of listening to reproduced music at 10 or 20 dB below the original.
On this basis, turned-down volume controls act to make the music recede into the distance, rather than simply making the musicians shrink. Small tonal differences can masquerade as dynamic differences. The 'loudness' switch on down-market audio equipment attempts to compensate for this. It increases LF (and HF) at low levels, but its operation is based for the most part on false premises ${ }^{11}$.
At the very least, any tonal compensation for the purposes of replay at lower than real levels requires some reference to the original sound level. The correct equalisation is certainly not the Fletcher and Munson curve. In 1986, I designed the Inflexor - an automatic tonal compensator. Fig. 4, which was more correctly referenced psychoaccoustically ${ }^{12}$.
While the curves accepted professionally ${ }^{13}$ most serious domestic listeners, preferring the minimum signal path, either compensate for the tonal errors in their heads, or listen at what seems to be the original level.

Dynamics

With the exception of COG ceramic capacitors, all components used in analogue electronics vary in characteristics due to the temperature changes that occur in real equipment.
None is more acutely sensitive and fast responding than the semiconductor, particulary one with small junctions. Conventionally, thermal distortion is considered to be an affliction restricted to power amplifiers at bass frequencies. By bass I mean signals that can have periods long enough, above say 10 ms , 10 cause considerable cycle-to-cycle and even sub-cycle temperature changes.
Higher level errors generated by inter-component and inter-stage thermal feedback are mostly limited to monolithic ICs. But even

Fig. 4. The Inflexor, a dynamic loudness compensator, allows music to retain its bass vitality when reproduced at up to 40 dB below the original sound-pressure level. The short audio signal path can be seen at the top, and below, the analogue computing elements used to track compensatory equalisation. This overcomes the ear's non-linear perception of change-of-SPL versus SPL versus frequency.
small signal transistors in long tailed pars reflect their thermal environment in the sonic end-result ${ }^{14}$.
Thermal distortion can be measured with sine waves on an open-loop fixture ${ }^{15}$, but its real effect on music is more complex, as it can be highly asymmetric (sec panel). So for example, one half of an output stage will experience greater cycle-to-cycle changes, creating an error that manifests as even-harmonic residue. Large geometry transistors with thermally conductive epoxy casing have been used 10 reduce the audibility of thermal tails.
Both analogue and digital ICs can be as sensitive to vibration, by bass in particular, as capacitors. Spectral analysis has demonstrated the value of shock mounting a CD player's digital electronics. In a UK university, laser interferometry has showed that the legs of semiconductor devices dance when passing music, but whether this is caused by acoustic excitation, or by magneto-restriction effects, is as yet unclear. Bob Pease`s anecdote ${ }^{16}$ about integrated circuits being transparent to infrared radiation and hence modulation by 50 Hz ambient lighting flicker or noisy leds, is an example of the potential for left-of-field bass contamination.

References

1. Butler, T., In search of 30 sound, Hi-Fi News, Nov '93.
2. Philip Newell, Hi-fi \& monitoring: hearing is believing, Studio Sound, Oct 1993.
3. Duncan, B., The signal Chain, Studio Sound, June 1991t.
4. Duncan, B., With a Strange Device, $\mathrm{Hi}-\mathrm{Fi}$ News, Parts 2-5, Jun, July, Sept, Nov 1986.
(Available in one volume, as Audio Quality Investugations, Vol. 1 from Audio Synthesis, 99 Lapwing Lane, Manchester M20 0UT. Tel. 0614340126 .)
5. Hawksford, M., The Essex Echo, tracks 3 \& 4, Hi-Fi News, Oct 1986 \& Feb 1987.
6. Erdi, G. \& Cakhnokhi, Y., A bipolar op-amp with a noise resistance of less than 50 ohms, IEEE solid-state circuits conference, Fel 1986. 7. Erdi, G., Jung, W., Bernardi, S., Schwartz,
T., Op-amps tackles noise, Electronics Design International, Dec 1980.
7. Duncan, B., AMP-01 modular preamplifier, Hi-Fi Vews, May-Nov 1984.
8. Du'man, B., PSU regulation boosts audio performance, $E W+W W$, Oct 1992.
9. Hawksford, M., The Plot Thickens,

EW+IVW, Letters, Mar 1991.
11. Holman, T., \& Kampmann, F., Loudness Compensation: Use \& abuse, Journal of the AES July/Aug 1978.
12. Duncan, B., Dynamic Loudness

Compensation, Reproduced Sound 3, Nov 1987, Institute of Acoustics.
13. Dibble, K., Greystone Inflexor - psychology of volume restriction, Disco \& Club Trade Interriational, Feb '88.
15. Graeme, J. G., Desigring with op-amps, application alternatives, pp. 229-231, McGraw Hill, 1977.
16: Pease, R., Troubleshooting analogue circuits, Butterworth, 1991.
17. Watson, L., Supernature - a natural history of the Supernatural, Hodder \& Stoughton, 1973

COMPUTER ICS	
271 BBC DISC CONTROLLER CHIP EX	
A 5050 TELETEXT CHIP EX EQPT	
$2817 \mathrm{~A}-20$ (2K $\times 8$) EEPHOM x eqpt.	
27 C 64.25	
D41256C-15 256Kx1 PULLS	
$80 С 31$ MICRO	
D8751.8 NEW	
MK48Z02-20 ZERO POWER RAM EQUIV 6116LP	
NEW 4164-15	
USED 4125	
BBCC VIDEO ULA 1 £10	
11 MIC	
KS82C55-250 SAM	
$\times 41256-15$ SIMM	
8×4164 SIP MODULE NEW	
27C1001-202 NEW MMEPROM	
68000-8 PROCESSOR NEW	
ALL USED EPAOMS ERASED AND BLANK CHECKED	
2716-45 USED	¢2
2732-45 USED	
64-30 USED	
C256-30 USED	
C512 USED	£3.50
2 EPROM EX EQP	
2114 EX EQPT 50p 4116 EX EO6264.15 8K STATIC RAM.....	
GR281 NON VOLATILE RAM EQUIV 611	
TMS27PC128.25ONE SHOT 27 C	
80387-16 CO PROCESSOR (OK WITH 25MHz 386)	
$712631 / 2$ DIGIT LCD DRIVER CHIP	
16A-30 HOUSE MARKED	
IBM PART NO. 68×6271 PANASONIC PART NO	
MN4B40512S85	
S9000NL PROCE	
TMS9901/2/3NL, TIM9904NL	
HM6167LP-8	
REGULATORS	
LM323K 5VA METAL	
SANKEN STR451 USED IN AMSTRAD MONITORS	
78 M 055 V 0.5 A	
M317H To5	
3177 PLASTIC TO220 variable	
$7805 / 12 / 15 / 24 \mathrm{~V}$ plastc $\ldots \quad . .25 p 100+20 \mathrm{p} 1000+15 \mathrm{p}$$7905 / 12 / 15 / 24$ plastic $25 \mathrm{p} 100+20 \mathrm{p} 1000+15 \mathrm{p}$	

CRYSTAL OSCILLATORS

2M4576 3 M6864 5MO 5M76 6M144 7M000 7M37288M000 12M000 14M3181 17M6256 16M257 18M000 20M000 23M58 24M000 25M175 27M0 27 M 03628 M 322 32M000 35M4816
 38M10000 56M6092 76M1 84M0
CAYSTALS
H10256 10M368 17M6256 18M432 25 MOOO 28 M 469431 M 4696. 1 M8432 2M000 2M4576 2M77 ЗM00 3M2768 3M579545 3M58564 3M932 16 4M000 4M19304 4M433619 4M608 4M9158 5 M 0005 M 0688 6M0000 6M400 8M000 8M488 9M8304 10M240 10M245 10M70000 11 M 00012 MO 00 13M000 13M270 14M000 14 M 38181815 M 00016 M 00016 M 5888 17M000 20 M 000 36 M 7687536 M 7812536 M 7937536 M 8062536 M 81875 36 M 83125 36M84375 38M900 49M504 54M1916654M 7416 57 M 7583360 M 000 69M545 69M550 BN 26 M 995 RO27M045 OR27M095 YW27M145 GN27M195 BL27M245 £1 eac

TRANSISTORS

MPSA92
N2907A
BC107BCY70 PREFORMED LEADS
BC557, BC238C, BC308B
2N3819 FETS short leads
POWER TRANSISTORS
PPOWER FET IRF9531 8A 60 V

…..... 10/£1 10121

$\varepsilon 1 £ 4 / 100 £ 30 / 1000$
£ $1 / 30 £ 3.50 / 100$

2SC 1520 sim BF 259
….. 3/乏1 100/£22
SE9301 100 V 1DA DARL SIM TIP 121 LASTIC 3055 OR 2955 equiv

TEXTOOL ZIF SOCKETS

28 PIN USED $£ 3 . \ldots$......... 40 PIN NEW $£ 10$ ANYDUAL IN LINE DEVICES ... COUPLING SUPPLIED ... 2 £1.50

QUARTZ HALOGEN LAMPS

2V 50watt LAMP TYPE M312.......... \&1 ea HOLDERS 60p ea

MISCELLANEOUS

KEYTRONICS
TEL. 0279-505543
FAX. 0279-757656
POBOX 634
BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX

100 NF $63 V$ X7R PHILIPS SURFACE MOUNT 30 K avalable 10 NF $63 V \times 7$ 구 PHILIPS SURFACE MOUNT 160 K $£ 42 / 4000$ box
 ETHERNET 4 PAIR TRANSCEIVER CABLE. BELDEN TYPE SWITCHED MODË PSU 40 WATT UN̈CASED QTY.
AVAILABLE $+5 V 5 A_{1}+12 V 2 A, 12 V 500 \mathrm{~mA}$ FLOATING
SIMRS 361.018 Each pair foil screened + overall braided ${ }^{9} 95$ (22) $£ 300$ for 305 metre drum + plus PVC outer sheath. ON 305 metre drums
330nF $10 \% 250 \mathrm{~V} \times 2$ AC RATED PHILIPS 60 K
$330 \mathrm{NF} 10 \% 250 \mathrm{~V} \times 2$ AC RATED PHILIPS 60 K
AVAILABLE WI....................................
220R 25 WOU
CMOS 555 TIMERS
CMOS 555 TIMERS ...
$2 / 3$ LITHIUM CELLS AS USED IN COMPACT CAMERAS $£ 2.50$
ICM7126CPL CMOS $31 / 2$ DIGIT LCD DRIVER CHIP....... £2ea 36 CORE $7 / 0.2 \mathrm{mmOVERALL}$ SCREENED … $£ 50.100 \mathrm{~m}$ LITHIUM CELL $1 / 2$ AA SIZE 2 FOR $£$

EUROCARD 21-SLOT BACK PLANE 96/96-WAY £25 ea "PROTONIC 24 VARIBUS" $16.7^{\prime \prime} \times 5^{\prime \prime}$ FIBREGLASS MULTILAYER PRH PCB
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
-PROTONIC 24 " CIW 2 SUPPORT ARMSIE JECTORS
DIN 41612 96.WAY AB/C SOCKET PCB RIGHT ANGLE $£ 1.30$ DIN 4161296 -WAY AB/C SOCKET WIRE WRAP PINS $£ 1.30$ DIN 41612 64-WAY AIC SOCKET WIRE WRAP PINS 11 DIN 4161264 -WAY AC PLUG PCB RIGHT ANGLE £1
DIN 4161264 -WAY AB SOCKET WIRE WRAP (2 -ROWBODY)

BT PLUG+LEAD
13A MOULDED PLUG +2 m lead
MIN. TOGGLE SWITCH 1 POLE ©OOPCB type $5 / \mathrm{I} 1$ CO MODULE sim. LM0 18 but needs 150 to 250 V AC for display 40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$................
TL 4312.5 to 36 V TO92 ADJ. SHUNT REG
6-32 UNC 5/16 POZI PAN SCREWS $1 / 1 / 100$
NUTS
PUSH SWITCH CHANGEOVER,
25 FEET LONG, 15 PINS WIRED BRAID + FOILSCREENS 25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS CD DISPLAY sim HitachI LM016L.............................. £6. 50 HUMIDITY SWITCH ADJUSTABLE .. WIRE ENDED FUSES $0.25 A$........ $3 \ldots$ $\pi \mathrm{KHz}$...........
Also available 28 slot vari-bus backplane same size

Price ... BNC 50OHM SCREENED CHASSIS SOCKET OMALL MICROWAVE-WIOUES AEEAY 10 1026A $4 / 5 / 6$-WAY 180 VOLT 1 WATT ZENERS also 12 V \& 75 V VN10LM
\qquad
\square

RELAY 5V 2-pole changeover looks like RS 355-741 marke STC 47WBost. MINIATURE CO-AX FREE PLUG RS 456-071
MINIATURE CO-AX FREE SKTRS $456-273$
PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY If
$100 \mathrm{~m} 0.5 W$ thick film resistors (yes tour hundred megohms) ... $4 /$
1
STRAIN GAUGES 40 onm Foll type polyester backed balco grid
alloy ea $10+£ 1$

1 pole 12 -way rotary switch AUDIO 555 TIM LM380 LM RS $£ 1746$ TDA 2003 I OP AMP
 555 TIM RRS £1 741 OP AMP
 3

COAX ALUGS nice ones
COAX BACK TO BACK JOINERS
$4 \times \not$ MEMBRANE KEYBOARD

12 V 12 W -smatirwle lamps ht

MTEREO CASSETTE HEAD
THEROMASS. HEAD 1 ERAS HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 1$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$.
IRASTANSISTOR COVERS
TO-220 micas + bushes ... 10150 p 100/£1
TO- 3 micas + bushes.
Large heat shrink sleeving pack
IEC chassis plug filter 10 A
IEC chassis plug filter 10A
40k U/S TRANSDUCERS EX-EQPT NO DATA LM335Z 10MV/degree C
LM234Z CONST. CURRENT I.....

BNC TO 4MM BINDING POST SII

\qquad
解 $10.5 v$ COIL 6A CONTACTS 1 p ole
AVEL-LINDBERGMOUULDED TRANSFORMER TYPEOB1O $15+15 V$ IOVA QTY. AVAILABLE 22 ea
BANDOLIEREDCOMPONENTS ASSORTEDRS, ZENERS
LCD MODULE 16 CHAR. $X 1$ LINE (SIMILAA TO HITACHI $£ 5 / 1000$
 OP11264A 10kVOPTO ISOLATOR 'LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM Telephone cable clips 51 ea
$.500 / \mathrm{E} 2$

DIODES AND RECTIFIERS

A115M 3 A 600V FAST RECOVERY DIODE 4/E1

N5407 3A 1000 V
N4148 \ldots. $\because \because 0$
N4004 SD4 1 A 300 V
A 1581 a 400 V fas
Y127 1200V 1 tas recovery
BY254 800 V 3 3
BY 2551300 V 3 A
6 A 100 V SIMILAR MR7 75
A GOOV BRIDGE RECTIFIER
4A 100V BRIDGE
10A 200V BRIDGE
55A 200 VBRIDGE $£ 2$
2KA 400V BRIDGE £2.50
scas

PULSE TRANSFORMERS $11+$
 $£ 1.25$ $.3 / \mathrm{E} 1$

2P4MEQUIVC106D
2P4MEQUIV C106D
TICV106D 800mA 400C SCR 3/Ž
MEU21 PROG. UNIJUNCTION
100/E15

TRIACS

DIACS 4/£1
5/£2 100/£30
NEC TRIAC ACO 8 F 8 BA 600 V T
XTA 08-400 1 SO TAB 500 mA 5 mA GAT
$\begin{array}{ll}5 / £ 2 & 100 / \Sigma 30 \\ 2 / \Sigma 1 & 100 / £ 35\end{array}$
TAAL22300 30A 400V ISOLATED STUD L5 ea
TRIAC 1 A 800 V TLC 381 T 16k AVAILABLE
5 FOR \&1 £15/100

CONNECTORS

25 IDC PLUG OR SOCKET. .i.
CENTRONICS 36 WAY IDC PLUG
BBC TO CENTRONICS PRINTER LEAD 1.5 M
CENTRONICS 36 WAY PLUG SOLDER TYPE
USED CENTRONICS 36W PLUG + SK

PHOTO DEVICES

HI BRIGHTNESSLEDS CQX24 RED
SLOTE OPTO-SWITCHOPCOAOPB815 2N5777.

TIL38 INP TO TRANSISTOA
4N25, OPRARED LED
PHOTO DL252OPTO ISOLATOA
MEL 12 (PHOTO DARLINGTON BASE N/C)
ED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{s} 1$
FLASHING RED OR GREEN LED 5 mm 50 p $\begin{array}{ll}\text { HIGH SPEED MEDIUM AREA PHOTODIODE RS651....... } & \text { 100/(I40 }\end{array}$ 995 ...

10 ea
STC NTC BEAD THERMISTORS
G22 220R, G13 $1 \mathrm{~K}, \mathrm{G} 232 \mathrm{~K}, \mathrm{G} 2420 \mathrm{~K}, \mathrm{G} 5450 \mathrm{~K}, \mathrm{G} 25200 \mathrm{~K}$,
RES $20^{\circ} \mathrm{C}$ DIRECTLYHEATED TYPE
FS22BW NTC BEAD INSIDE END OF i° GLASS PROBE RES
 audio Wien Brid

CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$
10R 20R 100 R 200 R
100 K 200 K 500 K 2 M
50p
IC SOCKETS
14/16/18/20/24/28/40-WAY DIL SKTS §1 per TUBE
32-WAY TURNED PIN SKTS. 7k avalable
£2 per TUBE
3 for $£ 1$
$\ldots 1$

SOLID STATE RELAYS

40A 250V AC SOLID STATE RELAYS
$£ 10$
POLYESTER/POLYCARB CAPS

330nF 10\% 250 V ac	30. £20/100
$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$	20/51 100/53
$1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} 6 / 8 \mathrm{n} 2 / 10 \mathrm{n} 1 \% 63 \mathrm{~V} 10 \mathrm{~mm}$	100/¢5
$10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n}$. 10 mm rad	100/E3.50
100 n 250 V radial 10 mm	
100 n 600 V Spraque-axat-10¢f1	100/L6 (E1)
$2 \mathrm{Lr2160V} \mathrm{rad} 22 \mathrm{~mm}, 2 \mu 2100 \mathrm{Vrad} 15 \mathrm{~mm}$	100/£10
$10 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC \times rated 15 mm	10/21
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC	50p ea
100 V rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm} \mathrm{rad}$	100/86

RF BITS

MABCONI MICRO WAVE DIODES TYPES DC2929, DC2962, OC4229F1/F2................
ALL TRIMMERS 3 for 50 p
YELLOW $5-65 \mathrm{pF}$ RED $10-110 \mathrm{pF}$ GREY $5-25 \mathrm{pF}$
SMALL MULIARD 2 to 22 pF 3 FOR 50 p £ $10 / 100$
SMALL MULLARD 2 to 22 pF 3 FOR 50p £10/100
TRANSISTORS 2N4427, 2N3866, $2 N 5109$.. 80 p
CERAMIC FILTERS 4M5/6M/9M/10M7
FEED THRU' CERAMIC CAPS 1000pF
6 SOLLT TELEDYNE RELAYS 2 POLELE CHANGEOOUER

60 e
10 E
$\ldots .$.

(BFY51 TRANSISTORCAN SIZE)
2N2N22222A PLASTI
5/E
PLESSEYICS EX-STOCK
SL350G SL360G SL362C SL403D SL423A
SL521B SL523C SL541B SL850C SL1021A
SL521B SL523C
SP8655 SP8719DG
MONOLITHIC CERAMIC CAPACITORS

100 n 50 V 2.5 mm or 5 mm
100 n ax shortleads
00/26
00 n 50 V dil package $0.3^{\prime \prime} \mathrm{rad}$

Abstract

Over the years, designers have battled with the laws of physics to eke more bass from ever more compact enclosures. Acoustic design consultant David Berriman examines the compromises involved in trying to squeeze out that last decibel.

Ever since the earliest loudspeakers literally loud-speaking telephones engineers have tried to extend the bandwidth of the audible spectrum at both ends. While high frequencies have been wellserved by small and light diaphragms driven by various means, low frequencies have invariably involved bulky cabinets and/or low conversion efficiencies.
At lower frequencies, sound pressure level is directly related to the amount of air the loudspeaker diaphragm can move. Volume velocity is the product of the radiating element's velocity and area: the higher the figure, the greater the sound pressure. A large cone is therefore desirable but most people want more bass from a smaller box
The obvious alternative is to make the smaller diaphragm move further. Extended travel needs either a very long voice coil in a short gap or a short coil in a long gap. The former wastes amplifier power while the latter requires a much larger, more costly magnet.
Increasing cone area improves coupling between the cone and the air load, increasing efficiency. However the resulting cone is also usually heavier, offsetting the sensitivity gain.

THE BASS RACE

So large area diaphragms are usually required to produce decp, powerful bass. There is no casy way of overcoming this general rule, though many schemes have been devised to achieve the best possible bass for a given size of driver and/or box.
Woofers can be designed to suit specific loudspeaker systems. (or cabinets optimised for woofers) by using a calculator. Thiel Small parameters and a few basic formulac. Far better are modern purpose-designed cad packages such as Leap, which achieve the same ends much faster and more accurately.
One thing is certain. Woofers need some sort of enclosure to work properly - and there are plenty to choose from.

Enclosures

Open baffle. At its most basic, this is a large board with the woofer bolted in a hole at the centre. Unfortunately, the pressure wave from the rear of the woofer passes around the baffle and because it is 180° out of phase with the frontal radiation it causes cancellation at lower frequencies. At high frequencies the wavelength is shorter and cancellation does not occur.
Between the two frequency extrences there
is a rather uneven low-frequency roll off. Though the woofer on its own is basically a second-order system (and thus rolls off asymptotically to 12 dB per octave below resonance) the roll-off for most real open baflles starts well above this frequency and reduces the output by a half for every halving in frequency, which is equal to $6 d B$ per octave. For a circular baffle of radius r, the rear wave must travel $2 r$ to reach the front. So. there is a roll-off in output at frequencies where the wavelength is longer than the baffle diameter ($f=c / /$ baffle diameter where c is the speed of sound in air).
Increasing baffle size lowers the turn-over frequency, but giant baffles are domestically unacceptable. One solution is boosting the ourput at 6 dB per octave below the "knee", but this dramatically increases the cone excursion. Boosting can be achieved by adding a large inductor or by active compensation.
Bass from such a system can sound very natural. Even so, open-baffle bass loudspeakers are limited to the esoteric end of the hi-fi market and will only ever have a limited foilowing. For popular consumption, most systems come in more compact packages.

Fig. 1. Mechanical/acoustical circuit for a woofer in a sealed box. $\mathbf{R}_{a b}$ and $\mathbf{R}_{a l}$ represent box and leakage losses respectively. The cone is represented by a transformer of ratio $1 . S_{d}$, where S_{d} is cone area, thus converting mechanical force to pressure and velocity u to volume velocity U . Input is force from the voice coil.

Fig. 2. Acoustical circuit for a woofer in a sealed box (a). Mechanical impedances in Fig. 5 have been converted to acoustic impedances. Input is now a pressure source. In (b) is a simplified acoustic circuit for a woofer in a sealed box, combining woofer, box and leakage losses to form R_{a}. These total capacitances representing driver C_{as} and box compliances $\mathrm{C}_{a b}$ to form $\mathrm{C}_{a r}$. This

Fig. 3. Electrical circuit for sealed box woofer system with $\mathrm{L}_{\text {cat }}$ representing woofer compliance and $\mathrm{C}_{\text {mes }}$ the woofer diaphragm moving mass. Impedance peaks at resonance with a sharpness dependent on losses.

is the minimum form. Sound pressure is proportional to the product of U and frequency. Provided Q is low enough in this circuit, U will rise at $6 d B$ per octave below resonance and fall at $6 d B$ per octave above. Sound pressure is proportional to the product of U and frequency, giving a flat output above resonance and a high pass 12dB per octave filtering action below.

Fig. 4. Capacitive tuning of a sealed box extends bass by interacting with C_{at} and $\mathrm{C}_{\text {mess }}$ while also forming a third order high-pass electro/acoustic filter. Only the electrical equivalents are shown here.

Sealed enclosure. For the simple sealed-box loudspeaker, the acoustical compliance of air in the cabinet, $C_{a b}$ and the mechanical compliance of the woofer suspension C_{ms}, Fig. 1, behave acoustically like series capacitors. These are C_{as} for the speaker and C_{ab} for the box, as shown in the acoustical circuit, Fig. 2. When transferred to the electrical 'side' of the model, Fig. 3, they become parallel inductors of total value $L_{\text {cat }}$.
Conversely, the woofer's moving mass M_{ms} behaves like an inductor on the acoustical side, but is transformed via the voice coil and cone to a capacitor $C_{\text {mes }}$ on the electrical side as in Fig. 3. The resulting inductance and capacitance form a damped resonant circuit. Clearly, the presence of the box increases the stiffness on which the moving mass resonates, thus raising the resonance frequency.
From the acoustical viewpoint of the equivalent circuit, placing one capacitor. represented by the enclosure, in series with another, the suspension, reduces the capacitance and raises the resonance frequency. From the electrical equivalent viewpoint this is like placing two inductors in parallel. Their total value is reduced while their resonance frequency is increased.

Whichever way it is viewed, the end result is the same.

With a small box, a very compliant suspension is needed to keep the resonance frequency low and assure a decent lowfrequency output. If the $B L$ product representing the woofer's electrical/magnetic system - is too high, the total electrical Q of the speaker ($Q_{\text {ts }}$) is too low and electrical damping is too great. Efficiency is gained, but at the expense of bass loss. A $B L$ product which is too small (higher $Q_{\text {rs }}$) looses efficiency and can cause a rise in bass output near and above resonance. In addition, transient response can become poor and bass may tend to boom.

Final Q of the speaker in a closed cabinet is known as $Q_{\text {tc }}$. Generally in a sealed box, Q_{tc} values above unity can tend to boom, while $Q_{\text {tc }}$ values below 0.5 can sound very dry. Critical damping occurs at a $Q_{\text {tc }}$ of $0.5,(-6 \mathrm{~dB}$ sound pressure level at resonance). For the socalled Butterworth alignment $(-3 \mathrm{~dB}$ sound pressure at resonance) occurs when Q_{tc} is 0.7 .

Capacitance loading. A development of the acoustic suspension, sealed, or totally enclosed box, is the use of a series capacitor to modify
the frequency response, Fig. 4. Series electrical capacitor C_{1} interacts with the capacitive electrical equivalent of the woofer mass $C_{\text {mes }}$ and inductive electrical equivalent of the driver/air compliance $L_{\text {car }}$ to form an electrical/acoustical filter. This modifies the input current, and hence volume velocity, at low frequencies.

The net result of a correctly aligned filter is that the low-frequency roll-off changes from second order to third order and the -3 dB frequency is reduced. This makes capacitance tuning a handy way of extending bass without incurring the poor sub-bass woofer loading which a reflex port causes. Expressed another way, the loudspeaker can be more compact and protected from being over-driven.
Input to the woofer is reduced at very low frequencies, thus curtailing excursion and improving power handling below resonance. However, a major disadvantage is the deterioration in sound introduced by the largevalue capacitor of a few hundred microfarads. Typically, for economic reasons this is an electrolytic type, which is hardly ideal in terms of linearity.

Reflex. In reflex loading, a hole, or port,

Driver characteristics

Assuming no influence from output from the rear of the speaker, sound output above resonance is flat. Below it falls off by $12 \mathrm{~dB} /$ octave. Strength of the motor is determined by flux density and wire length in the gap. This is expressed as $B \times L$ in newtons or tesla metres.
Voice coil and cone are interfaces between the acoustical, mechanical and electrical parts of the woofer. To anralyse electro/acoustic systems, acoustics engineers have turned to electrical engineering and borrowed ac circuit analysis models which have proved ideal
Acoustical parameters must first be converted into electrical analogues. The results of these transformations are circuits are quite different from electrical circuits. They are not directly comparable to ac filters, but should be thought of as electro/acoustic filters.

Due to interaction between motor/generator, mechanical and acoustical parts, the loudspeaker's modulus of impedance curve shows a peak at low frequencies where resonance occurs. The shape and centre frequency of this curve is determined not only by electrical parameters, but also by the acoustical and electrical ones.
For more involved systems, such as reflex loaded woofers, the impedance curve is more complex. Normally it shows two humps representing the higher and lower frequency resonances either side of a dip at port resonance.
Until Thiel and Small's work in the early 1970s analysing drive units was difficult. They derived Thiel/Small parameters which are now used by virtually all loudspeaker designers to help them align woofer systems.

located in one of the cabinet's panels, introduces another second-order resonant system to the simple second-order closed box. Air mass in the port behaves in the acoustical cireuit like another inductor, which resonates with the enclosed air’s acoustical capacitance.

Inductance in the acoustical circuit representing the driver's moving mass, $M_{\text {as }}$, also resonates with this capacitance. In the electrical equivalent, the roles of capacitance and inductance are reversed. The upshot is that the extra tuned circuit due to the port, coupled to that of the woofer and internal air volume, further complicates the electrical equivalent circuit filter. The total sound pressure radiated is the vector sum of that from the cone and the port. In other words, this is derived from the volume velocity of the port. added to the woofer volume velocity.
The two equivalent second-order tuned circuits interact electro/mechanically and combine acoustically to create fourth-order high-pass filter, Fig. 5. In the reflex system, the single peak in the impedance curve presented by the open backed and sealed box loudspeakers is replaced by two peaks. representing upper and lower resonances. These are either side of a dip at the port resonance. where restricted cone motion gencrates minimal back EMF.
Acoustically, at the port resonance, cone velocity and excursion are at a minimum due to extra loading by the high pressure of air in the cabinet. This is produced by the air in the port, which rushes into the cabinct
simultaneously with the cone and at greater velocity - an excellent example of resonance amplitude exceeding the excitation. The increase in port output here fills the 'hole" created by the lack of cone output at resonance, thus transferring the main radiating zone from diaphragm to port, Fig. 5.
In a well-designed reflex, the combined response can be smooth down to the lowfrequency roll-off. With a poor one, there are unwanted peaks and troughs and an inferior transient response. In a well-designed reflex loudspeaker, power handling is improved and cone excursion reduced, at the same time as moving more air at low frequencies.
For a given sensitivity, the reflex loudspeaker ean be given a wider bandwidth than a comparable sealed box. Conversely, it can have a greater sensitivity than a sealed box having a comparable bandwidth. The main drawback is that below the port resonance, the cone excursion rises rapidly. Because it is unrestrained by the box's air spring, the cone moves further than that of a comparable acoustic suspension design. This can be overcome by capacitive loading, as with the capacitively-coupled sealed box, which reduces the electrical input at low frequencies, while extending bass and creating a fifth-order high-pass filter characteristic.

Passive Radiator Passive radiator loudspeakers are a sub-division of the reflex category. The difference is that the port's air mass is replaced by a subsidiary drone cone
with its own suspension. Mass of this drone resonates with the air spring in the cabinet, and the compliance of its own suspension. The main advantage of this type of bass loading is that it avoids the sound of air chuffing through the reflex port.
Unfortunately, passive radiator loudspeakers have, in the past, been even more difficult to design than good reflex loudspeakers, so the breed has gained a rather poor reputation. perhaps unfairly.

Coupled cavity. This type of enclosure is a cross between a sealed enclosure and a reflex. Output from a conventional reflex loudspeaker comprises that of the port, driven by the rear of the cone, plus that from the front of the cone. In contrast, output from a coupled cavity can be considered to be solely that from the port driven by one side of the cone. The other side of the cone couples to a sealed box. which disposes of the sound from this side and acts merely like an acoustic spring, Fig. 6.

Figure 7 shows the acoustic equivalent circuit for a coupled cavity using a passive radiator. The coupled cavity is not a high-pass filtering reflex. It acts as a band-pass filter with lower and upper slopes of 12 dB per octave. Though reflex in concept, it is no sharper acting than a sealed box and, in theory at least, achieves automatic low-pass crossover filtering.
In theory, no erossover filter is required. However, unlike the interior of sealed box loudspeakers, the front cavity cannot be completely filled with absorbent wadding. Consequently, air resonances at higher frequencies, even when damped as far as is practicable, can rather spoil the sound.

Advantages of coupled-cavity loading are many. The main gains are a great improvement in the amount of air that can be shifted by the woofer at low frequencies and the bandpass nature of the design. Because the coupled cavity is a tuned system, the port output can exceed that of the cone alone, while cone movement is restricted. This reduces distortion and enables more power to be accepted before the maximum linear excursion is reached.
For sealed rear cavities, cone excursion is limited below resonance, which is good for power handling. By altering the port and cavity dimensions, sensitivity can be traded for bandwidth, or vice verse. This makes it a very flexible system but one which really needs cad.

Transmission line. This alternative is named after the transmission line of classical electrical theory with lumped absorption, mass and compliance (lumped resistance inductance and capacitance). In theory, it attenuates the wave from the cone rear, preventing it from being reflected at the open end to influence the wooter, or radiating from the open end.
In reality, the transmission line could not be more different. Often, the line is lightly damped and tuned, rather like an rf co-axial 'stub". Sound takes a finite time to travel
down the line which is chosen to be a quarter, or sometimes an cighth of a wavelength of sound in the line at frequencies where bass reinforcentent is required.
The delay brings the output from the end of the line roughly opposite in phase to that from the rear of the cone. Thus it is more or less inphase with the front of the cone over quite a wide range of frequencies and reinforces the low-frequency output of the loudspeaker at around the woofer resonance and below. In addition, the reflected watve from the misterminated end travels back through the line to increase the air load behind the cone.
Similarly to reflex loudspeakers, this reduces the excursion and simultancously reinforces bass output, but over a wide range, not a sharply tuned frequency band. Conmercial transmission lines thus behave a little like a reflex loudspeakers, but not quite. They also add their own pipe-like resonances.

Horn loudspeakers. While the previous examples behave like relatively simple highpass filters, the hom loudspeaker is rather more complex. behaving also like an acoustic transformer. This is because the flare of the horn couples the large air load at the mouth on to the smaller diameter of the drive unit end. The driver diaphragm is very much better coupled to the air than without the horn. Thus a relatively small diaphragm is almost magically provided with a very large radiating area without the penalty of a large and heavy diaphragm.
The horn's acoustic impedance is largely resistive. Fig. 8, and very high in value. As a result the driver becomes resistance controlled over a wide bandwidth, instead of mass controlled. The resistive load adds considerable damping to the diaphragm. which also reduces resonances within it.
As always there is a trade off - in this case size. Below the horn's cut-off frequency, its resistance falls away sharply, with a corresponding rapid drop in output. At near to cut-off, with a finite-length horn, impedance can fluctuate by quite a wide margin, thus giving rise to large unwanted variations in output and corresponding audible colorations (honking). Careful design can help minimise these variations. but they can never be eliminated.
Ideally, to accommodate the required flare protile and work properly down to 30 Hz , a hom would need to be over 9 m long. In practice, designers have brought cabinet sizes down considerably by folding the horn (which adds colouration) and using the room corner as an extension of the horn.

Quart from a pint pot?

By now it should be apparent that deep bass means large woofers and cabinets. So. it is perhaps not surprising that designers have tried various ideas to extract deeper bass from cabinets than would normally be possible. In particular, the "Holy Grail' of deep bass from very small boxes has been with us for many years. Once the established techniques of
using a smatl long-throw, low sensitivity woofer in a small cabinet and retlex or capacitive loading have been investigated, other means must be sought to extend bass or shrink the box.

Equalisation

This involves boosting bass output at frequencies where it would otherwise roll off. For instance, with a sealed box loudspeaker, having a $Q_{1 s}$ (system Q at resonance) of (0.7, and -3 dB at system resonance (the so-called Butterworth alignment), electrical boost of 3 dB could be applied at resonance, rising asymptotically to 12 dB per octave as frequency is reduced.

At some low bass frequency the electronic boost is arrested and changed to a low-pass characteristic. Thus the frequency response is levelled down to a cut-off frequency lower that the system resonance, below which the bass rolls off at greater than 12 dB per octave, due to the electronic filter.

Putting voice-coil thermal considerations
aside, the nation limitation to power handling at low frequencies is cone excursion. With a nomal sealed box, or open baffle loudspeaker, cone excursion increases at 12 dB per octave as frequency is reduced towards resonance. At resonance there is a transition: below this frequency the wooter diaphragm is under stiffness control: and the increase in the excursion levels off
However, while electronic equalisation boosts bass, it also increases conc excursion below resonance, placing much greater demands on the woofer and limiting low frequency power output. Even within the power limit, distortion is bound to rise as frequency drops.
With some manufacturers, the subresonance boost is made programme dependent in an attempt to minimise the excursion problen and the distortion or damage which over-driving can cause. In other words. bass boost is made greater for quiet bass sounds and smaller for loud bass sounds. However, sudden deep bass notes can

Fig. 7. Simplified acoustic analogue circuit for the bandpass, or double (coupled) cavity system. Input is pressure from the cone, output is volume velocity from the port.

Fig. 8. Acoustic resistance and reactance acting at the throat of a theoretical infinite exponential horn, and of a piston in an infinite baffle. The resistive element for the horn is higher and very a wide band, while reactance drops very low at high frequencies. A horn can load a diaphragm with a high resistive air load, reducing amplitude of movement while coupling the diaphragm more effectively to the air. This gives greater efficiency.
catch the system out and as a result they can often be heard working.
Bass equalisation can just as easily be applied to reflex loudspeakers. There is a whole family of bass alignment curves which are well-suited for this application. Of course, this results in an even sharper high-pass tilter cut-ofl than an equalised sealed box, with even greater phase shilts. Such systems musi be designed very carefully if hass quality is not to sulfer.

Negative Output Impedance. Another approach is to make the power amplifier behave as part of the loudspeaker. One way of doing this is to use negative feedback to create a negative output impedance, cancelling out the voice coil de resistance. This enables the loudspeaker driver and cabinet to be designed as if it had no de resistance losses at all. Winh a retlex loudspeaker. this allows the Q of the port resonance to be made higher, because there is less waste of energy through damping.

Though the use of negative outpur impedance was used to improve woofer control as long ago as 1950 s, this idea was resurrected a few year's ago by Yamaha, who launched Active Servo Technology, which is still used in some of their equipment. The
main disadvantage of this technique is that the power amplifier and loud speaker must be designed for each other, so it is hardly a miversal solution. However, it does have the advantage that standard bass units can be used, which minimises the cost increase.

Motional feedback

None of the above bass systems requires anything other than standard drive units for their operation. However, the only way to control the wooter absolutely is to include it in the feedback loop in a totally active system. To achieve this, a transducer must be used to delect cone motion - either position, acceleration or velocity. Output from the transducer is moditied and used, in classic control-system fashion, to derive an error signal for a feedback amplifier
The extra complexity and cost of such systems has restricled motional-feedbach woofer loudspeakers in the past to mainly studio applications. A variety of sensing systems may be used, from capacitive displacement sensors, to accelerometers. Alternatively the signal from an extra winding on the voice coil can be electronically converted to displacement or acceleration.
Not only can motional feedback extend bass
response below the normal cut-off, it can also greatly reduce non-linear distortions important if the voice coil and cone are moving a long distance. Wooler distortion always rises al low frequencies, so motional feedback can help solve one of the main problems in bass reproduction.

Despite numerous 'come backs', motional feedback woofer systems seem to have receded in recent years, though Tannoy has recently announced a new system. Perhaps with today's digital technology it could be due for a revival. Certainly the extra signal processing required could be included on a chip with relative ease for use within a loudspeaker providing on-board dacs, digital crossover filters and internal power amplitiers. Similar so-called digital loudspeakers have already been introduced by Philips and Meridian.
Over the years we maly see new attempls to get deeper bass from smaller boxes. Most ol these 'new' ideas are likely to have already been tried in one form of another, though the technology used will undoubtedly be advanced. Ultimately designers are up against the same laws of physics as their predecessors. who so many times used those same laws to their advantage

FRGF 10 SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTEL Y FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should cal| Pat Bunce on 081-652 8339

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fullil the terms of this offer

Please send your completed forms to:
Free Classified Offer: Electronics World, 11 th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Sloping vees for VHF and UHF

Abstract

Armed with performance figures, Richard Formato contends that the sloping vee antenna is unjustly ignored for high-frequency use.

RF design software

If you want to experiment with VHF/UHF vees, a sloping vee modelling program is essential. It is the only way to investigate trade-offis as various antenna or ground parameters are changed. Radiation patterns in this article were computed using inexpensive PC compatible antenna design software from Phadean Engineering Co Inc. The company is at PO Box 611. Shrewsbury MA 015453611 (SAE for prices).

When antennas for VHF and lower UHF band are mentioned, most engineers think of whips. Yagis. log-periodics. The sloping vee is conspicuously aheent from this list. But the vee happens to be a superb antenna - especially at shorter wavelengtls. Yet it isn"t well known or widely used by amateur operators on the higher frequencies.
The sloping vee is inexpensive, mechanically and electrically simple and easily transported and installed. Most importantly, it provides excellent gain-bandwidth performance particularly for single-band operation. Because the radiating elements are inclined wires, vees also provide the added honus of inherent polarization diversity.
A slopmeg vee comprises two radiating wires diverging from the antenna feed point. Fig. 1. A typical installation is shown in Fig. 2. Note that Fig . 1 is a perspective view in which both resistors R are at the same height H_{1}. These non-inductive resistors terminate the radiating elements. The resistance value is hall the antenna input resistance, and the power rating is typically. 10 to 20% of the maximum antenna input power.
Incident energy that has not been radiated into space is absorbed by the resistors. This suppresses reflections which would otherwise generate standing waves and create strong resonances. The resistors are connected by a shorting wire to complete the current paih.

Since the sloping vee is a balanced radiating system any unbalanced feed line, such as coa*ial cable. requires a balun. The balun should have the lowest possible insertion loss and flatest possible response over the vee's operating frequency range. As an engineering rule-of-thumb, the vee is considered a 600 s 2 antenna. To match to a $50 \Omega 2$ feed system, a balen with a $12: 1$ impedance ratio is required (sycuare of the turns ratio). In practice, the " 60012 " antenna may actually turn out to be a $400 \Omega 2$ or even a $900 \Omega 2$ system, which, of course. changes the balun requirements.
Tiogive you an idea of how good a vee can he, the three plots show computed vertical radiation patterns for a 6 m sloping vee. Although not optimised. the antenna performs very well. The design frequency range is the 6 m amateur band (50 to 54 MHz). It is assumed that the antenna will be deployed over average ground with an electrical conductivity of $0.002 \mathrm{~S} / \mathrm{m}$ and a relative permittivity (dielectric constant) of 8 .
Antenna parameters are as follows. Diameter of the radiating element is 3.2 mm while the apex angle - the angle between wires at the feed point - is 15°. Feed point height above ground is 6 m and above ground terminating resistor height is 8 m .
Input resistances of the vee are 455,446 and 437Ω at frequencies of 48.52 and 56 MHz respectively. Taking the average value of $44 n \Omega$ as representative, each terminating resistor should have a value of 22352 . In practice, 20% or $250 \Omega 2$ is close enough. Since computed input resistance varies only 4% between 48 and 56 MHz . this design should provide essentially flat VSWR from 50 to 54 MHz .
The plots show total power gain in dBi (decibels relative to an isotropic radiator). To convert to dBd (decibels relative to a dipole). subtract 2.15 since gain of a half-wave dipole in free space is 2.15 dBi . Note that the total power gain includes both horizontal and vertical radiated fields, as well as antenna radiation efficiency. Patterns were computed at 48. 52 and 56 MHz for three radiating element lengths of 20.40 and 60 m as annotated on the curves. These radiation patterns are in a vertical plane bisecting the elements (zero azimulh angle). They are plotted on linear scales which provide a more detailed view than polar plots.
Key computed performance parameters are

The following table summarizes key computed performance parameters:

summarised in the table. It is evident that this simple antenna exhibits exceptionally good performance. With the largest element 160 m long, main lobe gain varies from 16.3 to 18 dBi between 48 and 56 MHz . Maximum gain for all lengths occurs at take-off angles

This curve family shows antenna gain (dBi)

 versus take-off angle for three lengths over three frequencies. It assumes the optimum case where the feed point at the apex is lower than the termination side. The more convenient arrangement shown in the drawings may incur a gain penalty of up to 3dB.between 9 and 12°, which is a suitable range for long-distance links. Take-off angle can be controlled by adjusting the radiating element lengths and feed point and termination heights. As expected, the shortest element of 20 m provides the lowest gain, but even its performance is very respectable (7.7 to 9.3 dBi).
This design example shows how well the sloping vee performs at VHF and UHF. As the example illustrates, the physical size of a high gain vee can be large. But its dimensions are not so imposing, compared to the size of a Yagi providing the same gain. Of course at higher frequencies, the shorter wavelengths

Specialist antenna components

Non-inductive film power resistors for termination: Power Film Systems Inc, Yellville, AR 72687.
Stranded 7x9 phosphor-bronze cable (avoids kinks and tangles): Astro
Industries Inc, Dayton OH 43432.
Strong non-metallic masting: J.T.
Ryerson Co., P0 Box 1111, Boston MA 02103.

Toroidal ferrite balun cores: Radio Kit Inc, P0 Box 97, Pelham NH 0076.
result in much smaller designs.
Another advantage provided by the vee is simple installation. The three different size antennas in the design example could be deployed in a variety of places, for example, between trees, or hung from a building or other structure. The range of possibilities is limited only by your imagination. Most antennas do not provide the installation flexibility that the vee does. About the only caveat to bear in mind is that, like any antenna, the vee's performance is influenced by nearby metallic structures. If they are too close to the radiating elements, parasitic effects may become a problem.
The vee's electrical performance is the same whether an exotic stranded cable or a plain single-conductor wire is used. The main difference is convenience. As far as masts go, trees provide the same results as fancy dielectric ones, with somewhat less convenience perhaps, but probably more fun.
It is evident that the sloping vee antenna exhibits exceptionally good performance, despite its simplicity. Maximum gain for all lengths occurs at take-off angles between 9 and 12° which is a suitable range for longdistance links
Radiating element length is L and main lobe maximum gain is $G_{\text {max }}$. Take-off angle for maximum gain is given in degrees above the horizon while approximate main-lobe beam width is in degrees between points 3 dB down from maximum gain. First side-lobe level is given in dBi and relative to the maximum gain (decibels down from the main lobe).

Sloping Vee 48 Mhz Pattern
$\mathrm{S}=.002, \mathrm{Eps} \mathrm{R}=8, \mathrm{D}=.32 \mathrm{~cm}, \mathrm{Hf}=6 \mathrm{~m}, \mathrm{Ht}=8 \mathrm{~m}$

Sloping Vee 52 Mhz Pattern
$\mathrm{S}=.002, \mathrm{EpsF}=8, \mathrm{D}=.32 \mathrm{~cm}, \mathrm{Hf}=6 \mathrm{~m}, \mathrm{Ht}=8 \mathrm{~m}$

Sloping Vee 56 Mhz Pattern
$\mathrm{S}=.002, \mathrm{EpsR}=8, \mathrm{D}=.32 \mathrm{~cm}, \mathrm{Hf}=6 \mathrm{~m}, \mathrm{Ht}=8 \mathrm{~m}$

LETTERS

Think of students

I was very interested to read the letter about your review of Electronic Work bench ($\mathrm{EW}+\mathrm{WW}$ December 1993), and found myself firmly in agreement with virtually all of it. But I feel Reg Williamson' favourable bias tow ard the program should perhaps be balanced by a student's view.
A student rarely has months to become familiar with a software package, a program like Work bench being used for maybe one or two units of a course. and here lies the main problem.
Workbench requires the dexterity of a watchmaker to place connections. and there seem to be a lew inconsistencies in the way the circuits operate in the package. For example. in the digital version one of two identical circuits failed to function when macroed. Couple this with the fact that the help and print facility do not aluays produce the desired results, and perhaps it is possible to appreciate that this package takes a considerable amount of time to master.
I have spent around three hours trying to find a problem in a Workbench circuit that I could have built trouble free in one hour. How many students can afford this time? At previous educational establishments I have attended, there wals a very restricted access to anything other than word processing software, and even now I cannol guarantee to get any extra time with a technical package outside normal classes.
Should I wish to investigate a typical one-to-twenty active device educational circuit. one could be fabricated from a collection of TTL chips or a few small signal semiconductors fairly easily and quite cheaply. This can even be done and tested at home if the interest, inclination. and a few pounds worth of basic test equipment are there.
To prototype the same circuit using Workbench, I have to either ensure that the circuit is completed. tested and all results obtained within 1 to 2 hours. or try to arrange extra laboratory sessions that will not clash with the timetables.
I have been on the receiving end of PC oriented courses for a few years and, in general, after getling acquainted with symtax. file handling, and other little quirks. have found the PC quite an aid to design and development. Throw in the odd bug (nearly every package has them). add a few badly written batch files, courtesy of lecturers and technicians` menu writing skills, restrict the time available with the technology, and the student ends up frustrated angry and. towards the
term end when the obligatory kilogram of printouts are due in. panic stricken.
Perhaps colleges and universitie might like to bear in ming that the average student cannot afforl the cost of a package such as Workhench. Unless they contemplate computer access over and above normal course recuirements. a more practical approach to digital design would perhaps be more advantageous.
For analogue work 1 sec no reason to consider Workbench at all. as there is a limited node version of Pspice and Prohe freely available for students own use.
I have spent quite some time with Workhench and. like Mr Williamson. I conśider the package has some very good poins. The trouble is it takes a fair fen mouse miles to appreciate them.

H. Neary

Stoke on Trent, Stafts

Solid air

Dick Mamon was quite right to point out $\left(E W^{\prime}+W W\right.$. Nosember 1993) for the bencfit of those whe might have been confused that my comments on coastial cable referred to solid dielectric types. Air spatcod types offer higher velocity ratios. approaching unity. For example. Andrew Heliax air dielectric coaxial cable type $H / H-50$ (0.5 in corrugated solid copper outer, air-spaced imnet supported on a helical spaer cord) has a $50 \mathbf{2}$ impedance and a velocity of 91.4% of $\%$
Feeding these into the formula in my article. L (per metre) $=Z_{0} \times h$ gives $152 \mathrm{nH} / \mathrm{m}$ for this cable, well below the free space value of $1256 \mathrm{nH} / \mathrm{m}$.
Likewise. I would imagine that C / m for an air spaced 1200Ω balanced line is well below the free space value. As for velocity of propagation in a line. coaxial or otherwise this can vary widely.

In a coaxial delay cable as used for delaying an oscilloscope's Y amplitier signal, a spiral wound inner is used. This reduces the velocity of propagation way below the 0.6 .5 e typical of a solid dielectric coaxial cable. In a loaded telephone line the velocity of propagation may be as little as a 20 of of
However, when I said the values of L and C per metre in free space are the lowest that can ever be achieved I meant just that - in free space. If a space wave is propagating in a medium where the value of C is greater thatn $88.5-12 / \mathrm{m}$. that is in a dielectric medium. it will be slowed down This effect is used in certain types of radar lenses.
Similarly. a wave propagating in a medium where L is greater than $+\times p \times 10^{-7} / \mathrm{m}$ will likewise be sloued. an effect used in certain waveguide structures.
Further to my comments in the

Silent problems

Five recent papers on distortion in power amplifiers by Douglas Self make very interesting reading and it is good to have the various aspects of the subject considered as an entity. They will be recommended reading for my final year undergraduate audio systems engineering class.
He stresses, quite correctly, the need to avoid the generation of high order harmonic and intermodulation products, but appears to accept that for stability of the feedback loop, the high-frequency open-loop gain of an amplifier should fall at $-6 \mathrm{~dB} / \mathrm{oct}$, starting from a frequency well within the audio range.
Do not overlook that audible intermodulation products can arise from spurious signals with frequencies above human hearing. The linearising benefits of negative teedback are therefore reduced just where they are really wanted.
He also sees little advantage in using fets as output devices as opposed to tipolar transistors. I agree they are not perfect devices and are in some respects inferior to bipolars, but when used in suitable circuits they offer the possibility of considerably wider bandwidth output stages. This is their most significant advantage.
In this case it is possible to employ a considerable amount of feedback and have an open-loop bandwidth covering the whole audio range. The high frequency roll-off needs careful design to have an average rate of about $-9 \mathrm{~dB} / o c t$. This can be achieved by a succession of poles and zeros in the response. rather than one dominant time constant.
The immediate reaction of listeners to niy amplifiers designed this way is that they have an enhanced treble response. Further listening, and comparison with other types, alters this assessment to one of greater clarity and realism, sreating the illusion of more treble. A stereo pair with suitable speakers are capable of excellent imaging.

lvor Brown

University of West London
Uxbridge

Douglas Self replies.

"I thank Mr Brown for his comments. It is quite true that in general I expect the open loop gain of an amplifier ultimately decrease at $6 \mathrm{~dB} / o c t a v e$, though I do not assume that this rolloff begins "well inside the audio range". The actual frequency at which rolloff starts, as far as I can see, of very little importance in itself; what natters is the amount of feedback available at the upper end of the audio band, because only here will the distortion of a Blameless amplifier be measurable, and also the amount and slope of rolloff at the unity loop gain frequency. because this sets HF stability.
As I showed in the article on the voltage amplifier stage, with the aid of a cunningly placed resistor, you can make the start of the rolloff occur at almost any frequency you like (20 Hz if you wish) without affecting the most critical part of the open loop gain characteristic. This is why I prefer to quote NFB factors at 20 kHz .
I do indeed take a rather pessimistic view of fets in output stages, and have always found the greater bandwidth to be more of a hindrance than a help They may promise a higher bandwidth output stage, but do they deliver, especially when capacitively loaded? If Mr Brown has some data on this, I hope he will share it with us. The worst drawback of fets is that they are so depressingly nonlinear. despite what you sometimes read in the hi-fi press.
I am well aware that there are other kinds of compensation, as future parts of the series will show. However. I don't much care for the 9 dB /octave approach, because if this slope is maintained up to the unity-gain frequency, it directly reduces the stability margins. It also requires a series of alternate poles and zeros that are not easy to fit into the conventional amplifier topology I have been discussing. I think a better method uses two pole compensation because: it is cheap and easy to implement if you know and avoid the snags; gives a stunning reduction in HF distortion; allows the gain slope to be returned to $6 \mathrm{~dB} /$ octave before the unity gain frequency is reached giving HF stability no worse than standard dominant pole compensation."
article concerning a per-unit gencrator that atways supplies a total of 2 W . wherever it is dissipated and whatever the load, no one has so far written in to quote an earlier
reference. While they are admittedly academic constructs rather than useful circuit arrangements. perlaps the Hickman generators types I and II really are novel after all.

Ian Hickman

Waterlooville, Hants

Theories of science

Judging from the sort of arguments, presented in these columns over the past year or so, the jolt A. M. New ($E W+W W$. October 1993) gave us was much needed. In the simplest of language he reminded us of a truth that most of us seem to want to
forget - all scientific theories are fiction.
This puts into perspective such disingenuous questions as how we can accept theory based on the constancy of the speed of light in vicw of the experimental cvidence that it is bent by gravity.
Those who propose such questions scem entirely blind to the fact that they may be applied to other theories. We might equally ask how. in view of the experimental evidence that neither mass nor time are invariants, we can possibly accept a theory based on the assumption that they are. And yet we accept and strongly defend such a theory on a daily basis.

As far as the question about special relativity is concerned. Einstein dealt with the matter in 1916. long before any experimental evidence existed. In his book Relativity. the special and the gencral theory he points out that general theory predicts the bending of light, which must call the assumption of the constancy of its velocity into question, and examines what this means for his earlier theory. He says, "We can only conclude that the special theory of relativity cannot claim an unlimited domain of validity: its results hold good only so long as we are able to disregard the intluences of gravitational fields on the phenomena. for example of light."
If necessary, we might well paraphrase this and say. "We can only conclude that Newtonian theory cannot claim an unlimited domain of validity. Its results hold good only so long as we are able to disregard the influences of relative motion on the phenomena. for example mass and time."
To fail to do this is to hold double standards, a failing that seems not uncommon even among physicists. The harsh fact is that all theories

Radio ham baloney

While I endorse most of the remarks contained in your editorial comment ($E W+W W$, December 1993). I nust take issue on several of your opening points.

First, you quite rightly state that Tony Hancock's radio amateur was "pompous, petty and technically incompetent", but then you go on to say that this interpretation "encapsulates the truth about the hobby". I strongly object to being described by any of these adjectives and would think the majority of other radio amateurs agree with me, particularly when the remarks are made by a fellow amateur who edits a respected technical periodical.
Secondly, it is open to debate whether "everyone... enjoys the Hancock sketch." The fact that many people found the sketch offensive and insulting was evidenced by letters to editors of various magazines at the time, which I suggest was long before you obtained your licence.
Hancock was, in fact, demonstrating the "self conscious and inane chatter" you attribute to the new influx of radio amateurs, but unlike them was broadcasting to a far wider audience. Mr and Mrs A verage are unfamiliar with amateur radio and therefore assume Hancock's parody mirrors the truth. On the other hand, the trivial prattle heard on many amateur bands is heard only by other radio amateurs, most of whom are capable of treating it with the contempt it deserves.

While I do not condone 'cheque-book engineering' and am unhappy with many of the evolutionary changes that have affected amateur radio over the years. I am a realist and accept that times changé. However much we might like to believe it, the likelihood of a radio amateur working in his garden shed coming up with an idea that will revolutionise radio communication is fatuous nonsense.

We, as radio amateurs, must not fall into the trap of taking ourselves too seriously and thus forget that amateur radio is a hobby to be enjoyed and not some vast army of latterday Maxwells or Heavisides.
To think otherwise is as pompous as Hancock's portrayal of a typical radio amateur, but then you think this encapsulates the truth anyway. Perhaps I have teen wasting my leisure time over the last 34 years on t.ee air enjoying my hobby when I should have been engaged in more productive pursuits whereby the f-ontiers of knowledge could have been pushed further forward.
As a chartered engineer, I am content in the knowledge that I have contributed to the advance of knowledge during the working day and see no necessity to carry on in the same vein while pursuing may hobby. We should concentrate our efforts into improving the image of the hobby rather than hankering after passed glories that are unlikely to be repeated in the late 20th century.
Far more could be gained by cleaning up the lenguage and improving operating procedures on our hard won frequencies than will ever be achieved by bemoaning the fact that revolutionary advances in spread-spectrum techniques are not being developed by the amateur fraternity.

A. C. Wadsworth G3NPF

horsham, West Sussex
You make some excellent points in you editorial on an lateur radio (December 1993). However you fail to mention the fact that amateur radio is a hobby and that in itself justifies its existence. Just as people still climb Everest, we can all experience the thrill of personal firsts long after the achievement has become commonplace.
G. P. Stanley G3MCK

Staine Middlesex
have shortcomings by their very nature. Some may be shorter than others. We ought to be spending our energy on determining what those are and how they influence the domain of validity of any particular theory, not on arguing whether any one theory is the truth. Truth in this case is - dare I say it - entirely relative?
Alan Watson
Mallorca, Spain

Not going round in circles

It has been repeatedly demonstrated by men such as Poor. Ives. Dingle. Marinov. Beekmann. Sachs and Hayden that Einstein's relativity involves circular logic. and is quite impossible. The idea of the constancy of the speed of light in all directions. independent of source and observer. can be shown to violate the second law of thermodynamics.
Many alleged conclusive proofs of relativity have been shown to be based on fudged data. such as Eddington's on the gravitational bending of light. the perihelion precession of Mercury. the Navstar
project, and Hafele and Keating's on time dilation. Relativity is riddled with anomalies and paradoxes: the Ehrenfest paradox. the paradox of self refcrence, the curvature of space paradox, the ruler paradox. the clock paradox. the simultancity paradox etc. To this day, all MichelsonMorley type experiments are unable to detect even a smidgen of the earth's purported $67.000 \mathrm{mile} / \mathrm{h}$ translational velocity around the sun. As Professor Lincoln Barnett said. "We cannot feel our motion-hhrough space; indeed no experiment has ever shown that the earth actually is in motion".
Relativity is refuted by the aberration of starlight, the everyday operation of numerous electrooptical engineering devices, the Sagnace effect. and the results of the Michelson-Gale experiment, which are all exactly what one would expect in a geocentric universe.
There is much more recent evidence from astronomy and quantum physics to show that the earth is indeed the preferred frame of reference in the universe. located at or near its centre.

Bertrand Russel said. "Whether the earth rotates once a day from west to east as Copernicus taught, or
the heavens revolve once a day from east to west as his predecessors held. the observable phenomena will be exactly the same: a metaphysical assumption has to be made".
See Geocentricity. Gerardus Bouw 1993. "The earth is not moving 400 years of deception exposed". Marshall Hall 1992. and The cosmos. Einstein and the truth. Walter van der Ramp, 1993.
Amnon Goldberg
Loncton

Black hole error

In my article on gravity and electric force in a black hole ($E W+W W$, February 1993) a small printing error managed to creep through. The symbol h of the last equation was misprinted. The correct equation is:
$G=c^{5} \alpha^{2}(2-\alpha)^{2}\left(e / 4 \pi^{2}\right)^{4} / \pi h$
D. Di Mario Milan, Italy

KんiblickiL 16 bits of difference?

Over the five years since its launch, Mathcad has become faster and evolved from DOS to Windows. But according to Allen Brown it remains quirky and has progressed little in real problem solving power.

One of the foremost equation processing packages Mathcad from Mathsoft - has been upgraded to version four. The principal difference between this version and its predecessor version 3.0 is its ability to take full advantage of the 32 bit architecture of the $386 / 486 \mathrm{PC}$ Surprisingly, 32 bit 386 PCs have been available for at least five years, yet very little software is actually coded in 32 bits. Most $P C$ software is still coded in 16 bit format which is a waste of the extended data bus width.
Installation of Mathcad 4.0 is straightforward. The only notable point is the creation of a sub-directory of WINDOWS/SYSTEM called WIN32S. It contains the dynamic link libraries (DLLs) used in the 32bit processing.
Mathcod is a mathematical scratch pad allowing you to express equations directly on screen. Solutions can be displayed in tabular form or graphically in either two or three-dimensions. Additionally, equations can be solved to give either numerical or analytical solutions using the Maple equation processor. In fact Mathcad can be envisaged as a sort of super calculator.
Version 4 for Windows is installed like any other Windows software and possesses the general familiar features, including buttons and dialogue boxes. However it does require the virtual memory facility for swapping between hard disk and system ram. As the illustrations show, the screen display is rich in icons, permitting easy access of Mathcad's many features. The Windows version also aliows you to use the range of Windows fonts for creating text alongside equations, tables, graphs or diagrams.
For modelling linear systems. Mathcad is a very attractive tool. It can be effective for designing infiniteimpulse response (IIR) digital filters, Fig. 1, since they are derived from a linear system model. The same applies to finite impulse response (FIR) filters based on the window design - again a linear system model. Things get a little more awkward when dealing with coupled linear systems since one has resort to using Mathcad's matrix facilities
Within Mathcod is a large array of easily accessible built in functions. For example if you want to determine the

condition for an optical fibre to support single mode then you need the first root of the equation.

$$
J_{0}(x)=0
$$

where J_{0} is a Bessel function. Figure 2 shows a plot of this equation and from the plot the function is zero when x is around 2. By using the ROOT function with your guess of 2 . Mathcad will give the correct value of $x=2.404$.

Symbolic Calculator

One of the attractive features of Mathead is Symbolic Calculator. Developed by Waterloo Maple Software of Ontario, this is a derivative of Maple which performs algebra and calculus analytically or symbolically.
Given an integral, you no longer have to work it out.
Figure 3 shows an integration and an expansion of a series. Even when manipulating matrices, variables can be

Fig. 1. Mathcad can be quite effective at modelling infinite impulse response filters.

PC ENGINEERING

fig. 2. There is a wide choice of built-in functions. This is an example of finding roots to aid determining the condition for an optical fibre to support single mode.

Fig. 3. Symbolic Calculator in action - integration and expansion of a series.

Fig. 4. An example of network analysis with Mathcad. When manipulating matrices, variables can be used as elements in the matrix.
used as elements in the matrix - handy when you are performing small scale network analysis. Fig. 4.

Using Symbolic Calculator for evaluating analytical expressions you also have the option of mixing constants witlo numbers. For example if you put an actual value on the upper limit of an integral sign and a variable on the lower limit, Mathead will perform the integration, carrying the variable through. With the previous version of Mathcad. Symbolic Calculator was rather slow but version 4 makes it noticeably faster.

SmartMath

An interesting variation on the Symbolic Calculator is SmartMath which uses an expert system to hest combine symbolic and numerical evaluations. The ordinary Symbolic Calculator dutifully takes every expression literally and works out the answer. SmartMath on the other hand examines what you have entered and works out the optimum method of solution according to a set of expert system rules. It is difficult to divine why Mathcad 4 should carry the Symbolic Calculator at all since SmartMath appears to do the same job in a fraction of the time.

Graph Plotting

Even with the first version of Mathcod, graph plotting was particularly easy to perform. This was especially true for two dimensional graphs. Later versions of the product had the provision for drawing 3D surface plots but it was not particularly easy to generate these since the user was expected to create a matrix of the surface first.
The same awkward and unappealing technique is used in version 4. However the new version can produce polar plots with the same case as two dimensional plots and is useful for estimating field patterns from radiators, Fig. 5. In addition there is a new facility for contour plots which has contour labelling. This is common feature with commercial graphics packages and it is reassuring to see parts of Mathcad keeping up with its competition.

Electronic books

When Mathcod is installed two eleetronic books are loaded onto the hard disk, the tutorial and the standard handbook. The handbook contains information drawn from the Rubber Handbook ${ }^{1}$. Althouglı useful, it contains only a relatively small snippet from it. Maybe a future CD-rom version of Mathead will contain all the non-ehemical information from the Rubber Handbook. The tutorial book on the other hand should prove very useful, especially for newcomers to Mathead and those upgrading from the dos version.

Deficiencies

Initially I was very keen about Mathcad but with subsequent versions my enthusiasm has waned due to its lack of progress. True, the screen presentation is better under Windows, and it now runs faster. Computationally however, it cannot do a great deal more than the dos version 2 release.

The Sumbilic Calculator is certainly novel and could serve as a powerful teaching aid. However it is the absent features that worry me. For instance you cannot directly solve differential equations - even lincar ones. In fact they are not even mentioned in the user guide. As any practising engineer knows virtually all modelling is performed with differential equations.
With Mathacod, if you want to model a simple $L C R$
circuit for instance then you would be struggling. One way is 10 generate a pair ol difference equations from your $L C R$ equation and solve them using matrix notation, Fig. 6, which is very messy.

My reservations regarding 3D plotting have already been mentioned. If you have a function $f(x, y)$ you should be able to plot it directly without first having to go ihrough the tiresome process of converting the function into a matrix. I cannot help thinking that in order to get Mathcat to solve a difficult problem you have to spend so much time trying to evade the limitations imposed by the soltware.
Operation of the package for complex tasks is not intuitive and becomes rather quirky. For example if you want to perform an atuocorrelation function and you enter the equation,

$$
r_{n}=\frac{1}{N} \sum_{k} x_{k} x_{n+k}
$$

Mathcad will refuse to perlorm the operation. Everyone knows that if you have N samples then you are going to run into problems when $n+k$ exceeds N. So why cannot the soltware issue a warning and perform the calculation up 10 $n+k=N$ automatically? Instead it stops dead and does nothing. In order to carry out the task, you have to enter conditionals.
This is typical of problems with the first release five years ago. One does not expect to have the same deficiency live years on. There is also a concern regarding memory consumption. It is questionable whether Mathad makes as elficient use of memory as it should. For example when generating data for a graph. should it use high numerical precision for something which is purely visual?

User guide

The user guide is a single volume manual which is indispensable - even lor the veteran user of the product. Alter several iterations it has becone a well crafted document whose layout is appealing and opulently illustrated with valuable screen dumps.
As stated. much of Mathoad's operation is rather quirky and the guide is invaluable for learning the product's peculiarities. Maybe Mathsott should issue the user guide as a text book as I believe there is a ready market for it.

Conclusion

When Mathcod was lirst introduced about five years ago it was novel, and in its day powerful. It was very popular because of its ease of use and its graphic front end.
Several versions later its presentation has improved and its compatibility with Windows makes it an attractive package. But it is still fundamentally a maths fool for solving small scale linear problems only. It has not grown with expectation.

The main redecming features are the additions of SmartMath and the electronic books. What Mathead does it does very well. but what worries me is what it does not do. However for small scale linear modelling there is no better product on the market and this new version will surely find many enthusiasts - especially among the student population.

Reference

CRC handhook of chemistry and physics, CRC Press, (regularly updated).

Fig. 5. Polar plots are useful for displaying field patterns from radiators.

Fig. 6. In Mathcad, modelling an LCR circuit is difficult. One method is to generate a pair of difference equations and solve them using matrix notation.

SYMITM REOUREMEMIS

PC compatiole (Apple version alss available), 386 or 486 processor, maths coprocessor, Microsoft rouse, W'indows 3. , qMbyte ram, TOMbyle hard disk, 8Mtyte virtual hard disk space.

GUPRIER DIAILS

At $£ 375$ plus $£ 10$ delive y, Mathead is available from Adept Sc entific Nicro Systems, 6 Business Centre, West Avenue One, Letchworth Hertfo dshire S 562 HB . Tel. 0462- -80055 , fax. 1)462- <80213. Apple version is same price.

Ready to use rf amplifiers

Abstract

Electronic component design has yet to reach the point where rf building blocks can be applied as easily as their logic counterparts. As lan Hickman shows, the MAR series of rf amplifiers require the minimum of skill to apply.

While it may pay to design a clever rf amplifier stage, especially if constraints such as a current consumption apply, an off-the-peg solution can be attractive. In these circumstances, the ready-to-use rf amplifiers described here can fill the bill perfectly.

The devices referred to are the MAR series from Mini Circuits (a Division of Scientific Components Corporation) and the performance offered by the various members of the family is summarised in Table 1. It is an open secret that these are basically an Avantec range of components, but sold by Mini Circuits at supermarket prices, making them an attractive buy.
One way to take a quick look-see what an amplifier can do is to connect its output back to its input, to implement an oscillator. As Fig. 1 shows, the integrated two-stage amplifier is inverting, the component values having been carefully designed to give a nominal match to 50Ω at both input and output (type MAR 8 excepted). Thus it will oscillate at a frequency F_{0} when its output is connected back to its input via a length of 50Ω coax whose electrical length is $\lambda / 2$ at F_{0}, as shown in Fig. 2a. With the length of coax shown and assuming it has a wave velocity of
65% that of free space, the expected frequency is 0.65 $\times 300 /(2 \times 0.965)=101 \mathrm{MHz}$. As the loss in the feedbach network is negligible, the excess loop gain is virtually equal to to stage's forward gain, so the waveform would not be expected to be very good, as Fig. 2b confirms. Given that the 1 ns wide spikes on the edges of the waveform are way beyond the 250 MHz bandwidth of the oscilloscope, their true amplitude must be even more horrendous than it appears.
The hard limiting in the amplifier is also responsible for excess phase delay (at this frequency the device exhibits 9° of excess phase anyway, even under small signal conditions) or, put another way, the circuit is almost a relaxation oscillator, which always results in a lower frequency of oscillation than if the loop gain barely exceeds unity. In consequence, the actual frequency of oscillation is less than 100 MHz , Fig. 2c, which shows high amplitudes of harmonies: the tenth harmonic is as large as the second, both barely more than 20 dB down on the fundamental, while the third harmonic is only 8 dB down - definitely not a clean oscillator.
Fig. 3a shows the interesting effect of reducing the supply voltage to the circuit of Fig. 2a from +12 to +8 V . The narrow spikes are no longer so evident, but

Table 1. Performance summary of MAR series amplifiers. (The colour dot referred to, in addition to denoting the type number, also indicates the input lead).

Fig. 1 a) The internal circuit of an MAR series amplifier. The resistor Rc is not part of the device, but provides an external DC feed path, while doubling as an of choke.

be advisable in addition, in those cases where the value of R_{C} is fairly low (i.e. with the lower supply voltages).

Amplifier	Bias Current	Bias Voltage	Approximate Bias Resistor (Ohms)	Resistor Dissipation (Watts)		
	$I_{\mathrm{B}}(\mathrm{mA})$	$+V_{\mathrm{O}}$	$+5 \mathrm{~V}+9 \mathrm{~V}+12 \mathrm{~V}+15 \mathrm{~V}$	$+\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$		
MAR-1	17	-5	-	235	412	588
MAR-2	25	-5	-	160	280	400
MAR-3	35	-5	-	114	200	286
MAR-4	50	-6	-	60	120	180
MAR-6	16	-3.5	98	344	531	.12
MAR-7	22	-4	45	227	364	500
MAR-8	36	-8	-	-	111	194

notes (unless othermise specified)
1 dimensions are in in
2 tolerances $\frac{x x x}{x x}=\frac{.010}{.25}$

Fig. 2 a) Connecting the amplifier's output back to its input via a halfwavelength of coax causes it to oscillate. In view of the wildly excessive loop gain, this circuit is sheer cruelty to helpless ICs.

Fig. 3 a) Showing the effect of winding the supply voltage to the circuit of Fig. 2 a down from +12 to +8 V , frequency halving is evident.

b) The waveform produced by the circuit of a ($10 \mathrm{mV} /$ div. vertical, $10 \mathrm{~ns} /$ div. horizontal

c) The output of the oscillator, viewed in the frequency domain. (Ref. level +10dBm but eifectively higher due to the 4702 resistor) vertical $10 \mathrm{~dB} /$ div, horizontal $100 \mathrm{MHz} /$ div, 1 MHz IF bandwidth, video filter off.

b) As a), in the frequency domain.

c) With further change of supply volts, behavious is even more chaotic.

Fig. 4 a) Circuit of Fig. 2 modified to reduce the excessive loop gain. With $R=15052$ the circuit oscillates, but not with $R=22052$. Second harmonic 30 dB below fundamental, third harmonic 20 dB down. The reduced output loading due to R enables the amplifier to supply almost its rated output power to an external 5022 load circuit.

circuit behaviour is beginning to be chaotic. It exhibits a tendency to frequency halving (clearly shown in the frequency domain in Fig. 3b-the circuit has reached the "first bifurcation point", described in Ref.1. A further slight change in supply volts prompts even more chaotic behaviour, with wide noise-like sidebands appearing around the fundamental and harmonics and the seventh harmonic actually greater than the fundamental, Fig. 3c.
To produce a more sanitary oscillator, attenuation was added in the feedback loop, to reduce the excess loop gain. Fig. 4a. With $R=220 \Omega$, the circuit did not oscillate, but did so with $R=150 \Omega$. The amplitude control loop of Fig. 4b was grafted on and the performance was then as illustrated in Fig. 4c. The output is very clean; second and third are the only significant harmonics, both well over 30 dB down. The circuit of Fig. 4a was then run without the amplitude control loop and with a $2-10 \mathrm{pF}$ trimmer in parallel with the 51Ω resistor in the feedback network. This provided a 7 MHz tuning range, and it was noticeable that at the 10 pF setting, the harmonics were substantially lower than at 2 pF , due to filtering action on the feedback signal; the levels of 2nd -4 th harmonics seen were respectively $-22 \mathrm{~dB},-28 \mathrm{~dB}$. -48 dB , higher harmonics being negligible.
To check the performance obtainable at much higher frequencies with such a crude and simple oscillator, the circuit of Fig. 4a was used, with the trimmer removed and the length of line drastically reduced. The circuit oscillated at 930 MHz (Fig. 4d) which shows how well the gain of the MARG is maintained with frequency, since R was still set at 150 2 . Note, however, that the amplitude was substantially reduced. The frequency of oscillation was well below that predicted by the line length, due to the excess phase shift through the amplifier at this frequency, amounting to some 70° according to the data sheet.

Crystal control

The spectral purity of the simple oscillators described above, with their frequency controlled by a length of transmission line, will not of course compare with that obtainable with an oscillator controlled by a high Q tuned circuit. This is because in the latter case, the change of phase shift around the loop with change of frequency is much more rapid than with a $\lambda / 2$ transmission line. Fig. 5a shows a possible configuration with the necessary 180° phase reversal provided by a tuned circuit, provided with matching for both ports of the amplifier.
Even greater stability and spectral purity will result from crystal control and an 85 MHz crystal was connected into the circuit of Fig. 5b. Being an overtone crystal operating at series resonance, it cannot conveniently be arranged to provide a phase reversal in the same way as a parallel resonant crystal, so a small two hole balun core was used to provide the phase reversal. It was also arranged to step up the impedance presented by the crystal circuit to the amplifier's output, while a series tuned circuit set to resonate at the desired frequency was interposed between the amplifier output and the reversing transformer, to suppress oscillations at any but the intended overtone. Excess loop gain was avoided by fitting a pad between the other side of the crystal and the amplifier's input. As Fig. 5c shows, the circuit produced an output of -7 dBm with low harmonic content, the waveform being shown in Fig. $\mathbf{5 d}$. This is

visibly a bit "secondish", not so very different from an asymmetrical triangular wave. By taking the output from the point showr, it has not had the benefit of the filtering action of the frequency selective components. An output with lower harmonic content could be obtained from an additional buffer connected downstream of the series tuned LC circuit, or even from the pad downstream of the crystal.

Other considerations

The experiments suggest that these amplifiers are delightfully tame and easy to apply, provided the two earth leads are connected directly to a ground plane. Microstrip construction is recommended with all transmission lines and ground plane running flush to the package, which means mounting it in a hole in the board. But for the experiments reported here, a fairly cavalier approach was adopted. The device was sat on top of the ground plane and the two ground leads were cranked down to connect to connect to it, resulting in lead lengths of a millimeter or more, while other components were mounted using fresh air. Even so,

Fig. 7 a) Comparing the performance of a single ended stage with that of pushpull stages with and without unilateralisation.
b) Level of second harmonic output, $d B C$, for the push-pull stage.
c) Level of second harmonic output, $d B C$, for the single ended stage.

Configuration	Freq. $(\mathbf{M H z})$	Gain (dB)	$\mathbf{P}_{-1 \mathrm{~dB}}(\mathrm{dBm})$	2nd Harmonic @ $\mathrm{P}_{-1 \mathrm{~dB}}$ $(\mathrm{~dB}$ below carrier)
Single-ended	100	12	+10	-15
Pusth-pull (Unilateralized)	100	15	+13.5	-26
Push-pull	100	12	+17	-34

no problems of instability were encountered.
The results indicate that when the amplifiers are run at well below their output compression point, second harmonic distortion predominates (e.g. Fig. 5c). With overdrive resulting in heavy compression, third harmonic is the largest, as the waveform approaches a squarewave, Fig. 2b and c for instance. Where it is desired to obtain more output than available from a single device while retaining low harmonic levels, $M A R$ series amplifiers may be paralleled as in Fig. 6a - this is possible since they are (MAR8 excepted) unconditionally stable. The input and output impedances of the paralleled amplifiers fall within the range that is conveniently accommodated by standard 4:1,9:1 and 16:1 broadband line transformer configurations. The bandwidth of such a paralleled stage will be limited by the bandwidth of the necessary matching transformers. In narrower bandwidth applications, other matching and combining techniques, such as quarterwave transformers and n-way Wilkinson splitters/combiners can be considered.
Note that the gain of such a compound amplifier is only the same as that of the component individual amplifiers, so to get the desired increased output, additional drive power must be applied. Paralleled amplifiers offer only increased output power, not lower levels of harmonics (unless derated). The four amplifiers in Fig. 6a could advantageously be redeployed into the slightly more complex circuit of Fig. 6b. In this circuit, owing to the push-pull arrangement, even order harmonics will tend to cancel out.

A push-pull pair of $M A R$ series amplifiers also lends itself to unilateralisation, Fig. 6c. (Unlike neutralisation, in which only the reactive components of the devices* internal feedback are cancelled,
unilateralisation is a technique in which both the reat and the imaginary terms of the feedback elements are cancelled. Consequently, unilateralisation tends to be effective over a wider frequency range than neutralisation.
The reason that these amplifiers are so easily and effectively unilateralised is that the Q of their internal feedback paths is low compared to conventional amplifiers. In an amplifier that has been unilateralised, the reverse isolation is greatly increased, so that variations in the load impedance will no longer affect the inpat impedance nor variations in the source impedance affect the output impedance. But unilateralisation tends to increase both the amplifier's input and output impedances, so careful attention must be paid to the effects of unilateralisation on input and output match.
Fig. 7a compares the performance of a single ended $M A R$ series amplifier with that of a push-pull pair with and without unilateralisaton. It is clear that the only major advantage of unilateralisation is the increased reverse isolation, the straighforward pushpull pair being better on other counts. In particular, unilateralisation has lowered the 1 dB compression point by 3.5 dB . This is partly due to the power lost in the resistive components of the cross-coupled feedback networks and partly to the effect on input and output impedances. Fig. $7 \mathbf{b}$ and \mathbf{c} compare the level of second harmonic in dBc for the single ended and push-pull amplifiers respectively.

References.

1. Chaos and engineering R. Dettmer IEE Review Sept. 1993 pp 199-203
Mini Circuits. For further information contact Tel. 0252 835094 .

CIRCLENO. 110 ON REPLY CARD

CIRCIE NO. 115 ON REPLY CARD

Z8 Z80 Super8 650265816 68HC11 68000... 8051... and many more

Call for data sheets
Tel: 081-441 3890 Fax: 081-441 1843

CIRCLE NO. 116 ON REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD

$\&$ All items guaranteed to manufacturers' spec.
$\dot{\psi}$ Many other items available.
'Exclusive of V.A.T. and post and package'

	$\mathbf{1 +}$	$\mathbf{1 0 0}+$		$\mathbf{1 +}$	$\mathbf{1 0 0 +}$
EPROMS			STATIC RAMS		
2764A-250	2.50	2.20	62256ALP-10	3.30	2.60
27C64-150	2.50	2.20	6264ALP-10	1.95	1.48
27128A-200	2.40	2.20	6116ALP-10	1.10	0.80
27256-250	2.30	2.10	628128LP-10	12.00	10.00
27C256-150	2.90	2.30	HD63B21P	1.95	1.50
27C512-150	3.30	2.55	6522P	2.40	1.80
27C010-150	5.80	4.20	65C02P2	2.90	2.50
27C020-150	9.00	7.60	65C21P2	2.90	2.50
68B50P	1.40	0.85	65C22P2	2.75	2.40
D8749H	4.40	3.75	Z80A CPU	1.30	0.99
MM58274CN	700	3.95	Z80A P10	0.95	0.75
80C31-12meg	260	2.10	Z80A CTC	0.90	0.70
75176BP	1.90	0.95	Z80A DART	2.20	1.38

74LS, 74HC, 74HCT Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road,
Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-6684190.

PICO TECHNOLOGY ITD
Broadway House, 149 - 151 St Meots Road, Hardwikh, Cambridge (B3 701
VISA TEL: 0954-21I716 FAX: 0954-21I880

In the penultimate part of his series on power amplifier design, Douglas Self presents a worked example delivering 0.0015% total harmonic distortion. But this performance is only attainable with correctly chosen compensation...

Distortion in power amplifiers

7: Frequency compensation and real designs

The distortion performance of an amplilier is determined now only by open loop lincarity, but also the negative feedback factor applied when the loop is closed. In most practical circumstances doubling the NFB factor halves the distortion. To date, this series has focused on basic circuit linearity. I have assumed that open loop gain falls at frdB/oclave due to a single dominant pole. with the amount of NFB permissible at hif being set by the demands of hit stability Because of this. the distortion residuals. from a -blameless" amplifier are comprised almost entirely of crossover artifacts due to their high frequency content. Audio amplifiers using more advanced compensation are rather rare. However, certain techniques do exist.
This series has stuck close to conventional topologies, because even commonplace circuitry has heen shown to have little known
aspects and interesting possibilities. This implies a two-gain-stage circuil (unity gain outut stages not being counted) with mosst of the feedfack applied globally, but smoothly transferted to the volage amplifier stage alone as frequerey increases. Other conligurations are possible; a one stage amplifier is an intriguing possibility - they are common in cmos op-amps - but is probably ill-suited to power :anp impedances. See reterence I for an eccentric three-stage amplifier with an open loop gain of just 52 dB (due to inc dogged use of local feedback) and only 20 dB of global feedbach. Most of the section below refers only to the conventional two-stage structure.

Making a pole dominant
Dominant pole compensation is the simplest kind, though its implementation involves subtlety. Simply take the lowest pole to hand

(P1) and make it dominant, ic so much lower in frequency than the next pole P2 that the total loop gain the open loop gain as reduced by the atlenuation in the feedback network) falls below unity before enough phase shifi accumulates to cause hf oscillation. With a single pole, the gain must tall an $6 \mathrm{~dB} / \mathrm{octave}$. corresponding to a constant 90° phase shift. Thus the phase margin will be 90° giving good stability. Figure 1a shows the traditional Miller method of making a dominant pole. The collector pole of Tr_{+}is lowered by adding the Miller capacitance $C_{\text {dem }}$ to that which

Fig. 1. Implementing dominant-pole compensation. (a) Miller capacitor, (b) Shunt-lag circuit (c) Output-stage Inclusive Miller compensation. (d) How to implement 2-pole compensation. See p 140.

FIG 1 1B gim-Lng.
GHM-LAG
CTMEENENTITN.

FIG 1C anfu-stme-molerve
FIG 1C muler momention.

FIG 1D

unavoidably exists as the C_{bc} of the VAS transistor. However there are other beneficial effects; $C_{\text {dom }}$ causes "pole splitting", in which the pole at T_{2} collector is pushed up in frequency as Pl moves down - most desirable for stability. Simultaneously the local NFB through $C_{\text {dom }}$ linearises the vas.
Assuming that input stage transconductance is set to a plausible $5 \mathrm{~mA} / \mathrm{V}$, and stability considerations set the maximal 20 kHz open loop gain to 50 dB , then from the equations in Part $1, C_{\text {dom }}$ must be 125 pF . This is more than enough to swamp the internal capacitances of the vas transistor, and is a realistic value.

The peak current that flows in and out of this capacitor for an output of 20 V rms , 20 kHz , is $447 \mu \mathrm{~A}$. Recalling that the input stage must sink $C_{\text {dom }}$ current while the vas collector load sources it, and likewise the input stage must source it white the vas sinks it, there are four possible places in which slew rate might be limited by inadequate current capacity. If the input stage is properly designed then the usual limiting factor is vas current sourcing. In this example a peak current of less than 0.5 mA should be easy to deal with, and the maximum frequency for unslewed output will be comfortably above 20 kHz .

Figure 1b shows a much less satisfactory method - the addition of capacitance to ground from the vas collector. This is usually
called shunt lag compensation, and as Peter Baxandall aptly put it,"The technique is in all respects sub-optimal ${ }^{2}$."
We have already seen in Part 3 that loading the vas collector resistively to ground is a very poor option for reducing LF open loop gain, and a similar argument shows that capacitive loading to ground for compensation purposes is an even worse idea. To reduce open loop gain at 20 kHz to 50 dB as before, the shunt capacitor $C_{\text {lag }}$ must be 43.6 nF , which is a whole different order of things from 125 pF . The current flowing in $C_{\text {lay }}$ at 20 V rms, 20 kHz , is 155 mA peak, which is going to require some serious electronics to provide it. This important result can be derived by simple calculation, and I have confirmed it with Spice simulation. The input stage no longer constrains the slew rate limits, which now depend entirely on the vas.
A vas working under these conditions is almost certain to have poor linearity. The current variations in the stage, caused by the extrat loading, produces more distortion and there is now no local NFB through a Miller capacitor to correct it. To make matters worse, the dominant pole Pl will probably need to be set to a lower frequency than for the Miller case, to maintain the same stability margins, as there is now no pole splitting to raise the pole at the input stage collector. Hence $C_{\text {lag }}$ may have to be even larger, and require even higher peak

currents. Takahashi has produced a fascinating paper on this approach ${ }^{3}$, showing one way of heaving about the enormous compensation currents required for good slew rates. The only thing missing is an explanation of why shunt compensation was chosen in the first place.

Including the output stage

Miller capacitor compensation elegantly solves several problems at once, and the decision to use it is not hard. However the question of whether to include the output stage in the Miller feedback loop is less casy. Such inclusion (see Fig. 1c) presents the desirable possibility that local feedback could linearise both the vas and the output stage, with just the input stage left out in the cold as frequency rises and global NFB falls. This idea is most attractive as it would greatly increase the feedback available to linearise a Class B output stage.

There is certainly some truth in this where applying $C_{\text {dom }}$ around the output as well as the $V_{\mathrm{a},}$ reduced the peak 1 kHz THD from 0.05% to 0.02%. However it should be pointed out that the output stage was deliberately under biased to induce crossover spikes because, with optimal bias, the improvement was too small to be either convincing or worthwhile. Also, this demonstration used a model amplifier with TO-92 "output" transistors. In my experience this technique just does not work with real power bipolars because it induces intractable HF oscillation.

The use of local NFB to linearise the vas demands a tight loop with minimal extra phase shift beyond that inherent in the $C_{\text {dom }}$ dominant pole. It is permissible to insert a cascode or a snall signal emitter follower into this local loop, but a sluggish output stage seems to be pushing the phase margin too far; the output stage poles are now included in the loop, which loses its dependable HF stability. Bob Widlar has stated that output stage behaviour must be well controlled up to 100 MHz for the technique to be reliable ${ }^{5}$. This would appear 10 be virtually impossible for discrete power stages with varying loads.

While I have so far not found "Inclusive Miller compensation" to be workable myself, others may know different. If anyone can shed further light I would be most interested.

Nested feedback loops

Nested feedback is a way to apply more NFB around the output stage without increasing the

global feedback factor. The output has an extra voltage gain stage bolted on, and a local feedback loop is closed around these two stages. This NFB around the composite bloc reduces output stage distortion and increases frequency response, to make it safe to include in the global NFB loop.
Suppose that bloc A_{1} (Fig. 2a) is a distortionless small signal amplifier providing all the open loop gain and so including the dominant pole. A_{3} is a unity gain output stage with its own main pole at 1 MHz and distortion of 1% under given conditions: this 1 MHz pole puts a firm limit on the amount of global NFB that can be safely applied.
Fig 2b shows a nested feedback version; an extra gain bloc A_{2} has been added, with local feedback around the output stage. A_{3} has the modest gain of 20 dB so there is a good chance of stability when this loop is closed to bring the gain of $A_{3}+A_{2}$ back to unity. A_{2} now experiences 20 dB of NFB , bringing the distortion down to 0.1%, and raising the main pole 10

Fig. 5. Spice plot of the voltage-peaking behaviour of a current-compensated bias generator.

Fig. 4. 50W Class B amplifier circuit diagram. Transistor numbers correspond with the generic amplifier in Part 1.

Fig. 6. Class B amplifier: THD performance at $50 \mathrm{~W} / 8$-ohm; measurement bandwidths 30 kHz and 80 kHz .

Fig.7. The dramatic THD improvement obtained by converting the Class B amplifier to 2-pole

10 MHz , which should allow the application of 20 dB more global NFB around the overall loop that includes A_{1}. We have thus decreased the distortion that exists before global NFB is applied, and simultancously increased the amount of NFB that can be safely used, promising that the final linearity could be very good indeed. For another theoretical example see reference 6 .

Real life examples of this technique in power amps are not easy to find, but a variation is widely used in op-amps. Many of us were long puzzled by the way that the much loved 5534 maintained such low THD up to high frequencies. Contemplation of its entrails appears to reveal a threc-gain stage design with an inner Miller loop around the third stage, and an outer Miller loop around the second and third stages; global NFB is then applied externally around the whole lot. Nested Miller compensation has reached its
apotheosis in cmos op-amps - the present record appears to be three nested Miller loops plus the global NFB ${ }^{7}$. Don't try this one at home.

Two pole compensation

Two pole compensation is a mildly obscure technique for squeezing the best performance from an op-amp ${ }^{8.9}$, but it has rarely been applied to power amplifiers. I know of only one example ${ }^{5}$. An extra HF time constant is inserted in the $C_{\text {dom }}$ path, giving an open loop gain curve that initially falls at almost $12 \mathrm{~dB} /$ octave, but which gradually reverts to $6 \mathrm{~dB} /$ octave as frequency continues to increase. This reversion is arranged to happen well before the unity loop gain line is reached, and so stability should be the same as for the conventional dominant pole scheme, but with increased negative feedback over part of the operational frequency range. The faster gain
roll off means that the maximum amount of feedback can be maintained up to a higher frequency. There is no measurable mid band peak in the closed loop response.

One should be cautious about any circuit arrangement which increases the NFB factor. Power amplifiers face loads that vary widely: it is difficult to be sure that a design will always be stable under all circumstances. This makes designers rather conservative about compensation, and I approached this technique with some trepidation. However, results were excellent with no obvious reduction in stability. Figure 7 shows the result of applying this technique to the Class B amplifier described below.

The simplest way to implement two pole compensation is shown in Fig 1d, with typical values. $C_{P!}$ should have the same value as it would for stable single pole compensation, and $C_{\mathrm{P} 2}$ should be at least twice as big; R_{p} is usually in the region $1 \mathrm{k}-10 \mathrm{k}$. At intermediate frequencies $C_{\mathrm{P} 2}$ has an impedance comparable with R_{p}, and the resulting extra time constant causes the local feedback around the vas to increase more rapidly with frequency, reducing the open loop gain at almost 12 d B /octave.

At HF the impedance of R_{p} is high compared with $C_{\mathrm{P} 2}$, the gain slope asymptotes back to 6 dB /octave, and then operation is the same as conventional dominant pole, with $C_{\text {dom }}$ equal to the series capacitance combination. So long as the slope returns to $6 \mathrm{~dB} /$ octave before the unity loop gain crossing occurs, there seems no obvious reason why the Nyquist stability should be impaired.
Fig. 3 shows a simulated open loop gain plot for realistic component values; $C_{P 2}$ should be at least twice C_{PI} so the gain falls back to the $6 \mathrm{~dB} /$ octave line before the unity loop gain line is crossed. The potential feedback factor has been increased by more than 20 dB from 3 kHz to $30 \mathrm{kH} z$, a region where THD tends to increase due to falling NFB. The open loop gain peak at 8 kHz looks extremely dubious, but I have so far failed to detect any resulting ill effects in the closed loop behaviour.

There is however a snag to the simple approach shown here, which reduces the linearity improvement. Two-pole compensation may decrease open loop linearity at the same time as it raises the feedback factor that strives to correct it. At HF, $C_{\mathrm{P} 2}$ has low impedance and allows R_{p} to directly load the vas collector to ground. This worsens vas linearity as we have seen. However, if $C_{\mathrm{P} 2}$ and R_{p} are correctly proportioned the overall reduction in distortion is dramatic and extremely valuable. When two pole compensation was added to Fig. 4, the crossover glitches on the THD residual almost disappeared, being partially replaced by low level 2 nd harmonic which almost certainly results from vas loading. The positive slew rate will also be slightly reduced.
This looks like an attractive technique, as it can be simply applied to an existing design by adding two inexpensive components. If $C_{P 2}$ is much larger than $C_{P 1}$, then adding/removing R_{p} allows instant comparison between the two kinds of compensation. Be warned that if an
amplifier is prone to HF parasitics then this kind of compensation may exacerbate them.

Design example: a 50 W class B amplifier Figure 4 shows a design example of a Class B amplifier intended for domestic audio. Despite its conventional appearance, the circuit delivers a far better distortion performance than that normally associated with the arrangement.
With the supply voltages and values shown it delivers $50 \mathrm{~W} / 8 \Omega 2$ from IV rms input. In previous articles I have used the word blameless: to describe amplifiers in which all distortion mechanisms, except the apparently unavoidable ones due to Class B, have been rendered negligible. This circuit has the potential to be blameless. but achieving this depends on care in cabling and layout. It does not aim to be a cookbook project: for example. overcurrent and DC offset protection are omitted.
The investigation presented in parts 4 and 5 concluded that power fets were expensive, incfficient and non linear. Bipolars make good output devices. The best BJT configurations were the emitter follower type II, with least output switch-off distortion, and the complementary fecdback pair (CFP) giving best basic linearity and quiescent stability.
I assume that domestic ambient temperatures will be benign, and the duty moderate, so that adequate quiescent stability can be attained by suitable heatsinking and thermal compensation. The configuration chosen is therefore emitter follower type II, which has the advantage of reducing switch-off nonlinearities (Distortion 3c) due to the action of R_{15} in reverse biasing the output base emitter junctions as they turn off. The disadvantage is that quiescent stability is worse than for the CFP output topology, as there is no local feedback loop to servo out $V_{\text {be }}$ variations in the hot output devices.
The NFB factor was chosen as 30 dB at 20 kHz . which should give generous HF stability margins. The input stage (current source $T r_{1}, T_{14}$ and differential pair $T r_{2,3}$) is heavily degenerated by R_{2}, R_{3} to delay the onset of third harmonic Distortion 1. To assist this the contribution of transistor internal r_{e} variation is minimised by using the unusually high tail current of 4 mA . Tr $r_{10,11}$ form a degenerated current mirror that enforces accurate balance of the $T_{r_{2.3}}$ collector currents. preventing second harmonic distortion. Tail source $T_{1,14}$ has a basic PSRR 10 dB better than the usual two diode version, though this is academic when C_{11} is fitted.
Input resistor R_{1} and feedback arm R_{8} are made equal and kept as low as possible consistent with a reasonably high input impedance. so that base current mismatch caused by beta variations will give a minimal DC offset. This does not affect $\mathrm{Tr}_{2}-\mathrm{Tr}_{3} \mathrm{~V}_{\mathrm{be}}$ mismatches, which appear directly at the output, but these are much smaller than the effects of I_{b}. Even if $T r_{2,3}$ are high voltage types with low beta. the output offset should be within $\pm 50 \mathrm{mV}$, which should be quite adequate, and eliminates balance presets and DC servos. A low value for R_{8} also gives a low

Fig. 8. Class B amplifier with simple quasi-complementary output. Lower trace is for two-pole compensation (80 kHz bandwidth.

Fig. 9. Class B amplifier with quasi-comp plus Baxandall diode output. Lower trace is the 2-pole case (80 kHz bandwidth).
value for R_{9}, which improves the noise performance.
The value of C_{2} shown ($22(4 \mu \mathrm{~F}$) gives an LF roll off with R_{y} that is -3 dB at 1.4 Hz . The aim is not an unreasonably extended sub-bass response, but to prevent an LF rise in distortion due to capacitor non linearity.
For example. $100 \mu \mathrm{~F}$ degraded the THD at 10 Hz from less than 0.0006% to 0.0011%. Band limiting should be done carlier, with non electrolytic capacitors. Protection diode D_{1} prevents damage to C_{2} if the amplifier suffers a fault that makes it saturate negatively: it looks unlikely but causes no measurable dis-
tortion ${ }^{10}$. C_{7} provides some stabilising phase advance and limits the closed loop bandwidth: F_{20} prevents it upsetting T_{3}.
The vas stage is enhanced by an emitter follower inside the Miller compensation loop. so that the local NFB which lmearises the vas is increased by augmenting total vas beta, rather than by increasing the collector impedance by cascoding. The extra local NFB effectively eliminates vas nonlinearity (Distortion 2).
Increasing vas beta like this presents a much lower collector impedance than a cascode stage due to the greater local feedback. The improvement appears to make a vas buffer to

Fig. 10. Class B amplifier with complementary feedback pair (CFP) output stage.
eliminate Distortion 4 (loading of vas collector by the nonlinear input impedance of the output stage) unnecessary. $C_{\text {dom }}$ is relatively high at 100 pF , to swamp transistor internal capacitances and circuit strays, and make the design predictable. The slew rate calculates as $40 \mathrm{~V} / \mu \mathrm{sec}$. The vas collector load is a standard current source, to avoid the uncertainties of bootstrapping.

Quiescent current stability

Since almost all the THD from a blameless amplifier is crossover, keeping the quiescent optimal is essential. Quiescent stability requires the bias generator to cancel out the l' he variations of four junctions in series; those of two drivers and two output devices. Bias generator $T r_{13}$ is the standard $V_{\text {be }}$ multiplier, modified to make its voltage more stable against variations in the current through it. These occur because the biasing of $T r_{5}$ does not completely reject rail variations: its output current drifts initially due to heating thus changing its $V_{\text {be }}$. Kceping a Class B quiescent stable is hard enough at the best of times, and so it makes sense to keep these extra factors out of the equation.
The basic $V_{\text {be }}$ multiplier has an incremental resistance of about 20Ω; in other words its voltage changes by 1 mV for a $50 \mu \mathrm{~A}$ drift in standing current. Adding R_{14} converts this to a gently peaking characteristic that can be made perfectly flat at one chosen current; see Fig. 5. Setting R_{14} to 22Ω makes the voltage peak at 6 mA , and standing current now musi deviate from this value by more than $500 \mu \mathrm{~A}$ for a lmV bias change. The R_{14} value necds to be altered if T_{5} is run at a different current. For example, 16Ω makes the voltage peak at 8 mA instead. If TO3 outputs are used, the bias generator should be in contact with the top or can of one of the output devices, rather than the
heatsink, as this is the fastest and least attenuated source for thermal feedback.

Output stage

The output stage is a standard double emitter follower apart from the connection of R_{15} between the driver emitters without connection to the output rail. This gives quicker and cleaner switch-off of the outputs at high frequencies; this may be significant from 10 kHz upwards dependent on transistor type. Speed up capacitor C_{5} improves the switch-off action. C_{6}, R_{18} form the Zobel network while L_{1}, damped by R_{19}, isolates the amplifier from load capacitance.
Figure 6 shows the $50 \mathrm{~W} / 8 \Omega$ distortion performance, about 0.001% at 1 kHz , and 0.006% at 10 kHz . The measurement bandwidth makes a big difference to the appearance, because what little distortion is present is crossover derived, and so high order. It rises at $6 \mathrm{~dB} /$ octave, the rate at which feedback factor fatls. The crossover glitches emerge from the noise. like Grendel from the marsh, as the test frequency increases above 1 kHz . There is no precipitous THD rise in the ultrasonic region, and so I suppose this might be called a high speed amplifier.
Note that the zigrags on the LF end of the plot are measurement artifacts, apparently caused by the Audio Precision system trying to winkle distortion from visually pure white noise. Below 700 Hz the residual was pure noise with a level equivalent to approx 0.0006% at 30 kHz bandwidth. The actual THD here must be microscopic.

This performance can only be obtained if all seven of the distortion mechanisms are properly addressed; Distortions I-4 are determined by the circuit design, but the remaining thrce depend critically on physical layout and grounding topology.

Figure 7 shows the startling results of applying 2-pole compensation to the amplifier. C_{3} remains 100 pF , while $C_{\mathrm{P} 2}$ was 220 pF and $R_{\mathrm{p}} \mathrm{lkS}$. The extra NFB does its work extremely well, the 10 kHz THD dropping to 0.0015%, while the 1 kHz figure can only be gucssed at. There were no unusual signs of instability on the bench, but I have not tried a wide range of loads.

This experimental amplifier was rebuilt with three alternative output stages: the simple quasi-complementary, the quasi-Baxandall and the CFP. The results for both single and two pole compensation are shown in Figs 8.9, and 10 . The simple quasi comp generates more crossover distortion, as expected, and the quasi Baxandall version is not a lot better, due to remaining asymmetry around the crossover region. The CFP gives even lower distortion than the original EF-II output. Figure 10 shows only the result for single pole compensation; in this case the improvement with two pole was marginal and the trace is omitted for clarity.

The AP plots in earlier parts of this series were mostly done with an amplifier similar to Fig. 6, though of higher power. Main differences were the use of a cascode-vas with a buffer, and a CFP output to minimise distracting quiescent variations. Measurements at powers above $100 \mathrm{~W} / 8 \Omega$ used a version with two paralleled output devices.

Next month: In the final part of this series, Douglas Self presents a full Class A amplifier design.

References

1. Otala, An Audio Power Amplifier for Ultimate Quality Requirements. IEEE Trans on Audio \& Electroacoustics, Vol AU-21, No.6, Dec 1973. 2. Baxandall, Audio Power Amplifier Design. Part 4. Wireless World, July 1978, p76. 3. Takahashi, et al, Design \& Construction of High Slew-Rate Amplifiers. AES 60th Convention, Preprint No. 1348 (A-4) 1978 4. Self, Crossover Distortion \& Compensation. Letters, Electronics \& Wireless World, Aug 1992, p. 657.
2. Widlar, A Monolithic Power Op-Amp. IEEE lournal of Solid-State Circuits, Vol 23, No 2, April 1988
3. Bonello, Advanced Negative Fecolback Design for High Performance Amplifiers. AES 67th
Convention, Preprint No. 1706 (D-5) 1980. 7. Pernici, A CMOS Low-Distortion Amplitier with Double-Nested et al Miller Compensation. IEFE J. Solid-State Circuits, July 1993, p. 758. 8. Fast Compensation Extends Power Bandwidth Linear Brief 4, National Semiconductor Linear Applications Handbook 1997.
4. Feucht, Handbook of Analog Circuit Design. Academic Press 1990, p. 264.
5. Self, An Advanced Preamplifier. Wircless World, Nov 76, p. 43.

LIVELINES

Dual port serial communications for your PC

The PC 47,48 and 49AT boards each provide two independent serial ports for any PC/XT/AT(ISA) computer. RS232, RS422 and RS485 standards are supported and all combinations are possible with this range of low power boards.

9 pin D connectors a re provided for the RS422 and 485 ports. RS232 can be connected via 9 or 25 way D connectors and charge pump circuitry ensures signal levels in excess of 7 V are transmitted.

Interrupt and base addresses are independently selectable for each port, full, half duplex and multidrop communications are fully supported and all boards use the industry standard 82C450, UART.

Designed and manufactured by Amplicon Liveline each board is supplied with a comprehensive technical manual and interrupt driven device driver software is available. Write in number 1

750 kHz professional

 data acquisition with Windows support PC226 from Amplicon Liveline provides 16 true differential 12 bit analog inputs each with dynamically programmable gain. PC 226 has sample rates up to 400 kHz multichannel and 750 kHz single channel, programmable scanning hardware, flexible triggers and a 2048 sample FIFO to ease programming in high speed applications.PC 226 is supplied with menu driven software for DOS and Windows, LabTech Notebook drivers and comprehensive well documented libraries for most popular high level languages.
Optional software support for Microsoft Windows includes a complete Dynamic Link Library (DLL) and two icon driven packages, Signal Centre for signal capture and analysis and TRACS for process monitoring, visualisation and control. Write in number 2

Electronic engineers REFERENCE BOOK

6th Edition F F Mazda

This reference book is divided into five parts: techniques, physical pheromena, materials and components; electronic design and applications. The sixth edition was updated throughout to take into account changes in standards and materials as well as advances in techniques, and was expanded to include new chapters on surface mourit technology, hardware and software design techniques, semi-custom electronics and data communications.

Fraidoon Mazda has worked in the

ELECIRONICS ENGMEER'S REFFilincz
BOOK
 electronics and telecommunications industry for over twenty years, and is currently Product and Operations Manager, Generic Network Management, with Northern Telecom. He is the author of six technical books (translated into four languages) and the editor of the Communications Engineers Reference Book published by ButterworthHeinemann.

CONTENTS: Techniques Trigonometric functions and general formulae; Calculus; Series and transforms; Matrices and determinants; Electric circuit theory; Statistics. Physical Phenomena Quantities and units; Electricity; Light; Radiation; The ionosphere and troposphere. Materials and components Resistive materials and componerts; Dielectric materials and components; Magnetic materials; Inductors and transformers; Relays; Piezoelectric materials and components; Connectors; Printed circuits; Power sources; Discrete semiconductors; Microwave semiconductor devices; Optical digital integrated circuits; Linear integrated circuits; Semiconductor memories; Microprocessors; Application-specific integrated. ci-cuits; Electron microscopy; Digital design; Software enginee-ing; Digital systems analysis; Control systems; Antennas and arrays; Noise management in electronic hardware; Noise and communication; Computer aided design; Television and sound brcadcasting. Applications Communication satellites; Point-D-point communication; Fibreoptic communication; The integreted services digital network (ISDN); Local area networks; Radar systems; Computers and their application; Videotape recorsing; Office communications; Medical electronics.

1006 pages PAPERBACK ISBN 0750608099 $\mathbf{E 4 2 . 5 0}$ (inc post \& packaging)

Please return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrent, Sutton, Surrey SM2 5AS

* Now available to Electronics World \& Wireless World readers in paperback.
* Expert coverage of all aspects of electronics
* Over 50 contributors
* For electronic engineers, technicians and students

Please supply me _- copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RAㅌ F FOR UK \& EIRE TOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Remittance enclosed £
Cheques should be made payable to Reed Book Services Ltd.

Please debit my credit card as follows:
Access/Master Barclay/Visa
Amex Diners
Credit Card No. \qquad Exp date
NAME (Please orint)
ORGANISATION
STREET
TOWN
COUNTY
POST CODE
COUNTRY
DATE TELEPHONE NUMBER
SIGNATURE
T3000

VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO

If in the UK please ヨllow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

Please delete as appropriate. I do/do not wish to receive further details about books, journels and information services.

Credit card orders
accepted by phone
Call 0816523614.

NEW THE DEFINITIVE 'OFF-AIR FREQUENCY STANDARD

* Provides 10 MHz 5 MHz \& 1 MHz
* Use it lor calibrating equipment that rel es on quartz crystals, TCXOS

VxCOs, oven crystals

- Phase locks tc OROITWICH (rubidium controlled and traceable to NPL) * For ADDED VALUE also phase locks to ALLOUIS (cesium controlled
- and traceable to OP - French eqtoNPL
- Bish designed and British manufacture

Abstract

500

IDEAL BEGINNERS SCOPE, SCOPEX 4 S 66 MHz SINGLE TRACE, INT/EXT TRIG, TRACE LOCATE, BRIGHT LINE AUTO, 10 mV SENSITIVITY, $1 \mu \mathrm{~S}-100 \mathrm{mS} / \mathrm{cm}$, etc $\mathbf{~} 95$
 WATSU SS5116CUAL TRACE, 10MHZ E175 RADIOMETER AFM2MOD METER 7MHZ GLZ POA ELEQUIPMENT C1011 10 MHZ DUAL TRACE WATSU SS-5802 DIGITAL STORAGE TEKTRONIX 2215 SOMHZ 2 TRACE DEL TB EKTRONIX 4J3A 5OMHZ2 TRACE DEL T/B PLESSEY TCTIO SIG GENANAL $50-300$ BD TEK 465 B HOOMHZ̄ DUAL TRACE DEL T/B ELEQUIPMENT D67A 25MHZ, 2T, DEL T/B H.P 1700A 35MHZ DUAL TRACE

HTACHIVC 6015 10MHZ DIGITAL STORAGE P1340A X-Y DISPLAYS
OERTLING VZO SNGLE PAN BAL 1 Mc (100 NAL YTICAL BAL ANCES WITH WEIGHTS 250 GM ACUUM PUMPS 1.5 \& 2.8CU.MHR Kingshil NS 154015 V 40 A PUU's CASED. AS NEW ACRON 402 S SYMCHRONISING PULSE GEN \& 605 P ENCODER £375ea $£ 695$ MARCONI TF230: AM FM MOD METER PRTBLE MARCONITF233O WAVE ANALYSER 20 Hz -50kiz HP $5315 A 1$ GHz FICTR, OPTS 1.283 EVELL TM3B MICRO V-METER 3MHZ
£85 LCRCOMPONENT COMPARATOR AVO CZ4E7/S ESS
\square HALCYON ELECTRONICS
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SVY20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-512 0340

CIRCIE NO. 119 ON REPLY CARD

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMS, EEPROMS FLASH and Emulators as standard quickly, reliably and at low cost.
Expandable to cover virtually any pro grammable part including serial E ${ }^{2}$, PALS GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control sottware cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd Park Road Centre Malmesbury, Wiltshire SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORIAATION PACK

GERMANY 089/4602071 NORWAY 0702-17890 ITALY 0292103554 FRANCE i1)59.30.13.79 Also from VEROSPEED UK

PROMulator

ROM Emulator

Fast
Flexible
from only
£9!
\checkmark Emulates up to 4 1 Mbit EPROMs via one standard printer port
\checkmark Downloads 27256 In 3 seconds
\checkmark Accepts Intel Hex, Motorola S-Records and Binary files

CALL FOR
FULL DATA SHEET

Tel: 081-441 3890 Fax: 081-441 1873
 SMART

CIRCLENO. 120 ON REPLY CARD
Field Electric Ltd. Tel: 0438-353781 Fax: 0438359397 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8AB. 16 bit VGA controller card $£ 140+C / P$
1.44 Mb Laptop floppy disk drives new £18 C/P £ 3.75 16 bit Fam cards with Ram from E16C/P $£ 3$ 16 bit Fam cards with Ram from
PS2 upgrade cards please ring for list 72 pin Simms for PS2 Compaq Dell etc
Paralle \& Serial data switches up to 8 ways Ring for details
Sony colour monitors with data $9^{\prime \prime}$ screen £130 C/P £17 240VAC input cased
Compaq enhanced at keyboards (no cable) £11C/P£5
5 Mb Sipp Motherboard with various chips
MC68451L10: MC68010FN10: SRM2264C12 etc:
£60 C/P £6
Wyse 60A Terminals with ASC1 keyboards, new \& boxed 240VAC $£ 190 \mathrm{C} / \mathrm{P}$ £25
PC power supplies up to 600 w , in stock Prices start from £19 C/P £6
IBM 3363 optical disk drive
£100 C/P £20

TEST AND MEASUREMENT EQUIPMENT	
HP 19180A Protocol Analyzer c/w manual etc: RS232C V24/RS449	$£ 1250$
HP86A Computer New \& Boxed	$£ 70$
Tektronix 454150 MHz 24 ns rise time scope	$£ 250$
Tektronix 45550 MHz scope	$£ 250$
Tektronix TM504 M/Frame ciwith DD501/WR501 LA 501	$£ 90$
Tektronix 434 25MHz scope	$£ 95$
Tektonix 7B92/7A18N Plug ins	$£ 95$
Telequipment D75 50MHz c/with V4 \& S2A Plug ins	$£ 130$
Gould OS 100A 30MHz scope (faulty HT)	$£ 75$
Lambda LES-F-03-OV-V 0-36v 24A Digital PSU	$£ 375$
Lambda LK 342A FNV 0-36v 52A	$£ 120$
AVO RM 215F3 AC Breakdown Tester	$£ 95$
Schlumberger 4000 Precision Sig: Gen:	$£ 150$
Schlumberger 4900 RF-AF Measuring Unit	$£ 150$
RFL912 Gaussmeter	$£ 120$
Wyse 60A Terminals new \& boxed with keyboards	$\mathbf{£ 1 9 5}$

forminals new \& boxed with keyboards
Sony Videotex Terminal KTX. 1000
Datatruck 7 short haul multiplexer
Gandalf GLM 518 Line miser
All above equipment $+17.5 \%$ VAT Please ring for c/p prices

We would like the opportunity to lender for surplus equipment Official orders, credit card telephone orders accepted with Access, Amex, Diners. Visa cards. Overseas enquiries weicome cip rates UK mainland only. Please ring for c/p rates not shown
All prices inc VAT unless stated. Stock list available

CIRCLE NO. 122 ON REPLY CARD

DO YOU HAVE A $£ 100$ CIRCUIT? EACH MONTH'S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL OTHER PUBLISHED IDEAS WILL BE WORTH £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN COMPONENTS

Smart fet battery charger

This circuit uses an external transistor wrap-around to boost the current capability of a voltage regulator for a constant voltage lead-acid battery charging application. Using the International Rectifier IRFS30/0 smart mosfet ($E W+W W$ Dec 93 p990) in this position confers current, voltage and thermal protection to the circuit. Standard devices will also work but will self-destruct under short circuit and other unfavourable conditions.

The normal configuration would use a positive variable regulator of the $3 / 7$ type together with a pnp bypass. Since the IR fet
is an n-channel device, it requires the use of a negative rail regulator producing a negative rail but this shouldn't be problem if the raw DC supply is made floating.
Operation is self explanatory. The cut-in point for the external fet will be determined by the value of the input resistor to the variable regulator. It should be chosen so that the voltage across it fully enhances the channel before the 337 reaches its own 1.9A current limit. The DC supply should have enough overvoltage to allow for this. Although the devices have inherent thermal protection, they require appropriate
heatsinking for continuous operation.
Nick Wheeler
Sutton
Surrey

$10 \mathrm{MHz} / 1 \mathrm{MHz}$ marker generator

Acommon-base amplifier with a diode connected inversely across base and emitter and fed with TTL input produces narrow negative-going pulses at the collector. Two such devices fed with 10 MHz and 1 MHz input generate marker pulses - in my case for a 300 MHz spectrum analyser.
Signal from a 10 MHz oscillator goes to the 10 MHz pulse generator directly and, by way of a decade divider, to the 1 MHz generator. Depending on the position of the power switch, the voltage supply goes either to the 10 MHz circuit alone or to both circuits to produce a $10 \mathrm{MHz} / 1 \mathrm{MHz}$ "comb".
Resistor R_{1} isolates the load, causing a 20 dB loss. The 10 MHz output is -50 dBm , that at 1 MHz being -70 dBm .

D Hutchinson

Bromsgrove
Worcestershire

A-to-D card for PCs

EC Plessey`s $Z N 448$ has a built-in
clock running at up to 1 MHz , has its. own reference and is an 8 -bit device, resolving to 39 mV . This card converts a $\pm 5 \mathrm{~V}$ input to 256 bits, 128 bits corresponding to 0 V .
Since the $Z N 448$ is a single-channel design, a $74 H C 435 / 8$-channel analogue multiplexer precedes it, the output on Z being selected by Y_{0-7} when LE latches the input-select data on S_{0-2}. The analogue voltage at Z goes to the analogue input of the $2 N 448$ via the potentiometer chain.
Conversion starts when WR \backslash goes low, RD enabling the data latch, valid data appearing 8-9 clock cycles after the conversion has started.
When the address data on the P inputs of the $74 L S 688$ comparator corresponds to that on the 8-way dip-switch, the $\mathrm{P}+\mathrm{Q} \backslash$ output enables the $74 L S 245$ bidirectional bus buffer and gates read and write signals to the ZN448. IOR \backslash also controls the direction of the buffer for read and write.
Addresses must be in the $300-31 \mathrm{~F}$ range. For 300, switch I is off (A8-9 high), 2 and 4 on (A_{5-7} low) and setting the rest on alters the address upwards. Base address plus 1 enables the multiplexer latch.
To calibrate the card, apply +5 V and
adjust $V R_{2}$ until D_{7} flicks between 0 and 1 to give a reading on the screen of 254-255. Now apply -5 V and adjust $V R_{1}$ for a flicker between 0 and 1 on D_{0}, the screen showing ()-1. The adjustments are interactive.

This program continuously reads the ZN448 and displays the result on screen.

10	bas $\epsilon=$ \# $300:$ base1=\#301 rem;
	for example!
20	out basel, X rem; select any input channel
30	out bise, Y rem; write to ZN448 to start
40	for $t=1$ to 50:next T rem; if necessary
50	$A=$ inp (base) rem; collect result
60	print A rem; display result
70	goto 20 rem; start again
80	rem; $\mathrm{X}=0-7$: $\mathrm{Y}=$ any value
	aunders
	ster

A-to-D converter on a PC card resolves to 39 mV . Configuration shown measures $\pm 5 \mathrm{~V}$ inputs

Fig.1. Dipole dimensioned for the microwave heating frequency, 2.45 GHz ; the diode is a Schottky type.
A wire dipole is somewhat subject to static charges, which are relatively unimportant in the slot antenna.

Radiation detector

M
icrowave heating in domestic ovens and in industrial processes must comply with radiation standards. New equipment does so, at least when properly loaded, but older ovens can leak through deteriorating door and service openings, particularly when improper loading generates harmonics of the magnetron's 2.45 GHz . When calibrated, this detector measures $0.01-10 \mathrm{~mW} / \mathrm{cm}^{2}$ power density.
Figure 1 shows the simplest type of detector - a simple, half-wave dipole with a Schottky diode in the gap, of correct dimensions for 2.45 GHz , although these are not critical. Depending on the diode and meter used, sensitivity is I to
$10 \mathrm{~mW} / \mathrm{cm}^{2}$. The slot antenna is an improvement, being as sensitive to RF power, but much less vulnerable to static charges. Adjust the distance from the oven and the angle so that a maximum can be seen. If the meter shows full-scale at 1 m , it is showing up to $1 \mathrm{~W} / \mathrm{cm}^{2}$ and that is dangerous.
Adding an amplifier, as in Fig. 2, improves sensitivity to around $0.01 \mathrm{~mW} / \mathrm{cm}^{2}$. Ceramic "radar" diodes work as well as Schottkys, whereas glass seal diodes have their problems.
A more comprehensive circuit, shown as Fig. 3, is provided with two detectors, one horizontal and the other vertical, each with
its own amplifier. Comparators, set to produce an output when preset levels are exceeded, activate the audio oscillator alarm and trip the relay supplying power to the magnetron.
Ji í Polívka
Mexican National Autonomous
University
Mexico

Fig. 2. Adding a meter (a cassette recorder level meter was used in the prototype) increases sensitivity to $0.01 \mathrm{~mW} / \mathrm{cm} 2$.

Single pot tunes Wien oscillator

/arying one of the resistors in a Wien bridge alters the frequency and alsc the attenuation. In the circuit shown here, the tuרing resistor also varies the gain of a compensating amplifier to compensate exactly for the varying attenuation.
Since the inverting input of $I C_{2}$ is a virtual earth, the at enuation of the bridge is determined by the setting of R_{6}, which is also the nput arm of the compensating amplifier feedback network, the gain of w hich is now R_{5} / R_{6}. Since the frequency varies as $1 /\left(R_{3}, R_{6}\right), R_{6}$ must hawe a resistance range of $100: 1$, increasing the amplifier gain in the same proportion.

Diodes $D_{1,2}$ and R_{1} form the AGC circuit. As the amplitude of output increases towards the distortion region, The diodes begin to conduct on peaks, tringing R_{1} in to circuit in parallel with R_{2} which, with R_{4}, sets the gain of the maintaining amplifier $/ C_{1}$. Gain thereby reduces and amplitude stabilises. This function is usually performed by a thermistor or small light bulb with, perhaps, a little less distortion but with a certair amount of "bounce".
An upper limit to the frequency is fixed by the gain of $I C_{2}$ falling at higher frequencies - when more gain is needed for comfersation.

W A Cambridge

Richmond
Wien-bridge oscillator with cne variable resistor,
Surrey which copes with varying b-ioge attenuation by adjusting compensatung amplifier gain.

Inductively isolated data link

Inductive coupling between two small chohes up to 6 mm apart has the advantage over optical coupling that the link can be made across an opaque barrier, such as through the wall of a sealed plastic case Inductanice values shown here work for 1200baud transmission, but 9600 baud should be possible with smaller chokes.
Complementary emitter-followers buffer the input and drive the overdamped $L C R$ circuit $R_{2} C_{1} L_{1}$, in which short current pulses flow at Iransitions without causing any baseline shift in non-return-to-zero data. Inductor L_{1}, placed in line across the barricr. must be sensed not to invert the data.
Two comparators see the induced voltage across L_{2} and produce low pulses for positive and negative data transitions, R_{7} climinating ringing. These pulses trigger and
retrigger the flip-flop, made from $40 / 2$ gates, to reconstitute the data. During breaks in data. C_{4} charges and forces the third comparator"s output low, resetting the flipflop to a known state, which is Mark for

CIRCLE NO. 123 ON REPLY CARD

PEAK DEVIATION METER

The Peak Deviation Meter with its high impedance probe provides off-air monitoring in conjunction with a receiver. The unit includes a 7.5 kHz deviation standard based on a Bessel null and thus provides a fundamental calibration standard.
*10 Outlet Distribution Amplifier 4 *Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ *Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ *PPM10 in-vision PPM and Chart Recorder *Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for howl reduction *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Broadcast Stereo Coder *PPM5 hybrid. PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. Telephone: 0483 275997. Fax: 276477.

JPG Electronics

 prumary 0-260-285 verondar … feg. 95	A.952 1 HF Limating amplifier LC: 16 surlace meminting parkage with data sheet . 1.65
High intensiv ted. gicin on yeliow smmm ... sop earh	100+(6p, 16
Cable ues. 1p eath. 25.95 per $10(0)$, 2.44 .50 per $10,00 \%$	sinclan light gun termunded with a pack plug and 1'P3 dip gives a signal when pointed at 50 hz
	llickering light with oupput wave form (hart ..
SAA 1027 stepping motor duver hip. 1495	-DC, onsertor Relahility model vil 2 P5 12v in 56
High gualiev photo resust copper chad epoxs glaw boards	200na out 300 v input to output Isolation with data... 495 eathot pack of 10... 439.50
Dimensions single sided double sided	Honr commer used 7 dyght 240v a 50 Hz $£ 1.45$
3xamher f095 fil	QWERTY kerboard 58 kev goord quality shitches
	new55.(16)
6x12 minhes £. 3.37	-pax A82903-C: lange stepping motor 1iv 7.5^{\prime} step
12×12 methes $\mathrm{E}^{10,6}$	
Rechaigea	E200 OO tor a bex of 30
	Polvester capactiorn box type 225 mm lead putch
	luf 250Vda . .20peach 15p.100+ 10p...1000+
© 2AH with solder 10(1tP2) 12AH. $x^{2} 60$	22 ut 250 wd30peach $20 \mathrm{p} 100+1.5 \mathrm{p} .1000+$
	3.3uf lutwde . 30 p carh 20 p...100+ 15p...1000+
D 4AH with soldet 11 limalith it. 195	1ut 5ty bipolar electrolvtie axial leads 15p each $7.5 \mathrm{p} . .10(1)+$
1/2AA with solder lake .i.... ± 250	0.22 ut 250 v polvestet axal leads 15 peach. 7.5 p
	ulips 123 seres soltul alumimum dxial leads - 33uf 102\&2.2ut 40w $10 \mathrm{peach} 25 \mathrm{p} 100+$
Standard chatger eharges 1 AA cellt in 5 houn or 4Cs of Ds in 12-1 1 hours $+1 \times \mathrm{PPS}$ (1, 2, 3 or taells	Philips 1988 serics 22 ut 63n axial 30p eath ${ }^{35 \mathrm{p}, \text {. } 10(\mathrm{HI} 1+}$
mas be (harged al atime) 5595	utilaver AVX ceramic capations all 5 mm pitch
High ponet charger ds alxowe but chatges the conand	100v 100pt. 130pt. 220pf. 10.060pf (10m)... 10p
Dsmothour Ats Csanch ins	ach 5p...100+ 3.5p...1000t
2 ial offers. pleaxe che	
13 3	
87 mm 3950	
	sold carbon resistors sert lon moductance adeal for
stick of i 177 mmax I mman dia with ied k blach leads	
	ath
4 cell batters $94 \times 25 \mathrm{mma}$ dea (1/2 0 cells)	have a range of 02500.5 w 1 u arkd
Computer grade capastors witl screw te:m	arbon resistors. please uend SAE,
	clugent 1 digit d
	22.00...31+ Dat
package.. $\mathbf{x} 1185$	
	Disk dive hoxes tor 5.25 dish drive with soom for a
(f995 $10+$. $5795100+1$	2486 gas relas. $30 \times 10 \mathrm{~mm}$ dia with 3 wire terme
250) P thanmel mowtel 40 45 BC559	nals, will also work as a neon light 20p
	cad h ± 50.00 per 100
Mictexonuoller $£ 3.50$	
Wide range of CMOS TTL 74HC 74F Linear Transistors kits. Rechargeable batteries, capacitors, tools etc always in stock. Please add $£ 1.95$ towards $\mathrm{p} \&$ p. VAT included in all prices.	
JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH	
Access/Visa	212 Callers welcome

NEW PRODUCTS CLASSIFIED

ACTIVE

A-to-D \& D-to-A converters

Sample-rate converters. SamplePort stereo, asynchronous sample-rate converters from Analog, namely AD1890/91, solve sample rate and digital data interconnection problems in computer connections and audio applications. They are used to convert a digital input sample stream at an arbitrarily clocked or changing sample rate to an output sample rate set by the user, input clock frequency being sensed automatically. Incompatible equipment such as MiniDisc, CD and DCC players, HDTV and digital speakers will interface simply using these devices. AD1890 is the professional device, taking sample widths up to 20 bits, while the 1891 for consumer use takes up to 16 bits at a slightly reduced functionality. Analog Devices Ltd, 0932253320.

Discrete active devices

Dual zeners. ITT announces a series of two-zener packages, each having a common cathode. They are silicon planar diodes to the E24 standard and come in surface-mounting form. DZ23 devices dissipate 300 mW at $25^{\circ} \mathrm{C}$ and cover the $2.7 \mathrm{~V}-51 \mathrm{~V}$ range of voltages, while the DZ89 series has a range of 3.9 V to 200 V , dissipates 600 mW and takes maximum test currents of 100 mA down to 5 mA . Packages are SOT-23 and SOT-89A ITT Semiconductors, 0932336116.

SOT23 n-p-n. Of surface-mounted n-p-n transistors in Zetex's $F Z T$ range, the FZT853 handles a collector/emitter voltage of 100 V and collector current of 6 A while the FZT857 copes with 300V/3.5A, with a minimum gain of 100 . Saturation voltage of the 853 is 340 mV at 5A. All devices in the $F Z T$ range will dissipate 3 W at $25^{\circ} \mathrm{C}$ and all take a 10A peak current. Zetex plc, 061-627 5105.

Linear integrated circuits

Dual audio op-amp. Exhibiting a voltage noise density of $5.2 \mathrm{nV} / \mathrm{WHz}$ and total harmonic distortion of 0.004% at a gain of 1 at 1 kHz with

1Vpk-pk output, Analog's SSM2135 dual op-amp is meant for +5 V singlesupply operation in audio applications. It will drive 24S headphones directly. Its applications include balanced line driving and receiving and sigma-delta A-to-D buffering and it can be used as a lowpass filter and current-to-voltage converter at the output of ani 18 -bit D-to-A converter, for example. Analog suggests it is most suited for use with stereo codecs in computer audio systems. Analog Devices. Ltd, 0932 253320.

Temperature controller. Analog Devices's TMP01 is a termperature sensor that generates a voltage output proportional to absolute temperature and a control signal from one of two outputs to indicaie when the device is above or below a set temperature range. An on-board reference gives a stable 2.5 V output and a sensor output with a temperature coefficient of $5 \mathrm{mV} / \mathrm{K}$ at an accuracy of $\pm 2 \%$. Wirdow comparators provide an opencollector output to signal when high or low thresholds are exceeded, trip points being resistor-programmable. TMP01 is in an 8-pin plastic mini-dip, an 8 -pin SOIC or an 8-lead TO-99 can. Analog Devices Ltd. 0932 253320.

Buffers. A range of wide-band, lowpower buffers by Calogic includes the CLM4122/4222/4322 ultra-low power types which exhibit a $2000: / / \mu$ s slew rate, 180 MHz bandwidth and need only 4 mW from the supply, while delivering 60 mA peak drive current. These devices are meant to drive coaxial and twisted-pair caples in open-loop application, being specified to drive into $50 \Omega 2$ loads.
CLM4102/4202/4302 devices slew at $2500 \mathrm{~V} / \mu \mathrm{s}$ at 250 MHz and take only 5 mA from the $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supply. The 4102 is said to be an improved version of the Elantec EL 2002 buffer. Calogic Corporation, 025651569.

Micropower op-amps. MAX 417 and MAX418/9 dual and quad op-amps from Maxim use a novel output stage to enable them to operate at a supply current of $1.2 \mu \mathrm{~A}$ maximum per amplifier. With rail-to-rall output swings and single or dual rail working they are well suited to batterypowered equipment. Each output sources up to 2 mA and drves a 1000pF load with no extemal components; input bias is less than 0.1 pA input voltage range extending from the negative rail to within 1 V of the positive rail. Unity-gain-stable,

quad MA. 2418 has an 8 kHz GB product and $5 \mathrm{~V} / \mathrm{ms}$ slew rate, while the dual and quad 417 ard 418 are stable at jains over 10 , have a 150 kHz GB product and $80 \mathrm{~V} / \mathrm{ms}$ slewing. Maxim Integratey Produsts Ltd, 0734845255.

Voltage dropper. Semtech's electronic zener (EZ) dropper, formerly only in TO-220, is now available in SOT-23 and TO-92 packages. The devices convert 5 V to 3.3 V or 3 V for mixed circuitry, passing currents from 0.1A to 1A No filtering is needed and, since dissipation is 2 W , neither is a heat sink, although if one is used, the device handles more than 8A. Semtech Ltd, 0592773520.

Bifet op-amps. Up-graded familles of bifet op-amps from TI provide 1 CMHz bandwidth and $40 \mathrm{~V} / \mu \mathrm{s}$ slew rates. TH distortion is reduced to 0.008% and wide-band noise voltage to
$11.6 \mathrm{nV} / \mathrm{HHz}$. Both the TLE2070 and TLE2080 are available as single, dual and quad devices. Texas Instruments, 0234223252.

Logic building blocks

Window comparator. Hysteresis programmable from 3 mV to 20 mV and 150 mW drive capability enables Harris's CA3098 low-cost comp.arator to function as a programmable Schmitt trigger, as a window comparator in signal processing and in automotive sensing applications, where it will switch semiconductor or inductive devices without interfacing. Hysteresis control is by means of a bias variation, other characteristics such as input and quiescent power also being controllable; the same input is used for strobing or squelching. Power needed is +5 V to

Narrow-spectrum lasers.

NEC claims its NDL7408Px multiple-quantum well lasers to have the narrowest spectral width of any available, at 1.3 nm . In addition, the lasers work at temperares up to $85^{\circ} \mathrm{C}$ with no neəd for semiconductor cooling. Since these devices exhibit low relative noise intensity, low intermodulation distortion and linear transfer characteristics they are well suited to analogue systems such as cable television Conforming to CCITT requirements, the lasers are available in 0.2 mW and 1 mW versions. The absence of cooling reduces current requirement from 1A to around 35mA. NEC Electronics (UK) Ltd, 0908691133.

16 V or $\pm 6 \mathrm{~V}$ at a maximum of $800 \mu \mathrm{~A}$ Harris Semiconductor (UK), 0276 686886 .

Fast SCSI controller. M53CF94 fast SCSI controller design by MJE is compatible with 53CF94 devices and supports both SCSI-1 and SCSI-2 protocols. It reduces demands on the CPU by implementing common SCSI sequences from a single command and is microcode free. The design is supplied on tape to enable it to be incorporated into a asic, being part of the MEJ MacroWare range of designs. MEJ Electronics Ltd, 0483 505895.

Mixed-signal ICs

Modem chipsets. High-speed modem chipsets from AT\&T offer
cellular, voice and V.32terbo facility and include an integrated microcontroller and datapump with voice compression. The HSM devices cover $9600 \mathrm{bit} / \mathrm{s}$ and $14400 \mathrm{bit} / \mathrm{s}$ data rates in form factors for desktop, laptop and PCMCIA use. MNP4/5/10 error-correction is included. HSM chipsets now offer three choices: data/fax, data/fax/voice or
data/fax/cellular options. AT\&T
Microelectronics, 0732742999.
Serial-data interface. Maxim's
MAX562 is a three-driver, fivereceiver serial-data interface that copes with data rates up to $250 \mathrm{kbit} / \mathrm{s}$, guaranteed slew rate being $4 \mathrm{~V} / \mu \mathrm{s}$. It is designed for use in notebook and palmtop computers and meets EIA/TIA-562; it is therefore compatible with RS-232 interfaces. Acceptable power supply is 40 mW from 2.7 V 5.2 V in normal use, all five receivers remaining active in low-power shutdown mode in which only $60 \mu \mathrm{~A}$ is needed ($10 \mu \mathrm{~A}$ in complete shutdown). Packaging is 28 -pin SO and SSOP, with driver outputs and receiver inputs on the same side of the device. Maxim Integrated Products Ltd, 0734845255.

Optical devices

Optical-fibre modules. FORCE model 267 optical-fibre datacomm modules transfer NRZ digital data on single-mode fibre at speeds up to $2.5 \mathrm{~Gb} / \mathrm{s}$, supporting an optical-loss budget of 10 dB . Transmitter uses a 1300 nm laser diode and the receiver a pin-diode detector, each unit being in an RFI/EMI-shielded enclosure. Minimum full-specification distance is 10 km , but up to 25 km is obtainable with care in connections and splicing. Both units are intended for direct PCB soldering, interfacing with PicoLogic, 10 k or 100 k ECL levels. No setting up is needed. Aerotech World Trade, 062834555.

Power semiconductors

Microwave power. A microwave power transistor from Motorola, the MRF2000-5L is meant mainly for use in up to 2 GHz , in large-signal output and driver linear amplifier stages. It delivers 5 W output for 1 W input, operating from 20 V supply, as a Class-A common-emitter amplifier. Motorola Inc., (USA) 6029946561.

HV power mosfets. A number of new power mosfets by Motorola use a patented high-voltage power technique - a multiple-ring layout that provides field shaping towards the edge of the die, giving enhanced voltage blocking to protect against surface charges that commonly occur on the junction termination at high voltages. Motorola's $400-600 \mathrm{~V}$ set of mosfets have been upgraded to use this technique and new 800 V and 1000 V devices are now included.

Three 800 V devices have drain currents of 4A and 7A, depending on the package, two of them having on resistances of 3Ω and the third 1.4Ω. Six 1000 V devices have drain currents of 1-10A with on resistances of 1.3 2 -10 0 . Motorola Ltd, 0296 395252.

Transient suppressors. A range of surface-mounted transient-voltage suppressors handling peak powers of $300 \mathrm{~W}, 600 \mathrm{~W}$ and 1500 W from Semtech includes an array, the SMDA in an SO-8 package and two singles, SMBJ and SMCJ, in DO214AA and DO-214 AB packages. They are suitable for data, signal and supply bus protection and come in unidirectional and bidirectional forms. Reverse stand-off is $5-24 \mathrm{~V}$ for the array and $5-170 \mathrm{~V}$ for the singles; leakage current $1-100 \mu \mathrm{~A}, 5-800 \mu \mathrm{~A}$ or $5-1000 \mu \mathrm{~A}$, depending on version. Semtech Ltd, 0592773520.

PCMCIA power switch. First in a series of PCMCIA power switching ICs by Siliconix, the Sig710CY is a PCMCIA power interface switch offering an on resistance down to 150 ms 2 . In response to voltages at the cmos-compatible inputs, it switches either 3.3 V or 5 V to the

Ceramic resonators. Tougher

 and smaller than crystals, Murata's new range of ceramic resonators includes two and three-terminal types, equivalent to series crystals and threeterminal crystal filters, the latter having built-in load capacitors. The filters cover the frequency range $3-33 \mathrm{MHz}$ in standard frequencies, with custom designs available. Initial frequency tolerance is $\pm 0.5 \%$ with a stability of $\pm 0.3 \%- \pm 0.4 \%$ with temperature. Two-terminal units operate between 1.8 MHz and 33.86 MHz , again with custom designs offered. Initial centrefrequency tolerance is $\pm 5 \%$ with stability of $\pm 0.3 \%- \pm 0.4 \%$ Surtech Interconnection Ltd, 025651221.supply pin in the computer's PCMCIA slot and $3 \mathrm{~V}, 5 \mathrm{~V}$ or 12 V to the flash memory program voltage pin, thereby providing all the voltage switching needed for a single PCMCIA slot. The device is packaged in SO-16 form. Siliconix/TEMIC Marketing, 0344 485757.

PASSIVE

Connectors and cabling
Memory card connectors. Interconnection and packaging for memory cards made by Elco meet PCMCIA and JEIDA standards, being fitted with dual contact beams, first-mate/last-break contacts on the headers and high-temperature insulators to cope with reflow soldering. Elco says it can design and make these connectors to individual specification. Elco Europe Ltd, 0638 664514

Filters

Ceramic chip resonat.jr. Operating at $2-20 \mathrm{MHz}$ and incorporating built-in load capacitors, AVX's PBRC-B series of ceramic chip capacitors measures 7.4 by 2.6 by 2 mm , ceramic casings allowirg reflow soldering and washing. Resonant resistance to 8 MHz is 30Ω and 150Ω up to 20 MHz ; stability nith temperature $\pm 0.5 \%$ from 2 to 8 MHz and $+0.2 \%$ from 8 to 20 VHz for $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. A new catalogue of timing devices is available on request. AVX Ltd, 0252336868.

Hardware

RFI/EMI shielding. ElectroCoat coatings come in chromə, satin chrome, brass, nickel, ciopper and gold finishes on suitable plastics.

IVC's ElectroCoat 280 is a multilayer coating of nickel and copper deposited by electroless plating for shielding to over 80 dB with a $1.5 \mu \mathrm{~m}$ layer of copper and for abrasionresistance properties. The 380 version has a top layer of chrome to provide corrosion resistance and is meant for use on sub-miniature connectors. Jigs exist for many connectors and customers may not need to invest in tooling. Inco Vacuum Coatings, 021-511 1115.

Literature

Amplicon Liveline. This has been redesigned completely, now containing sections on test and measurement, GPIB and industrial communications, data acquisition and control, power conversion and panel instruments. Newest products described include a low-cost neural networking board for PCs, an optoisolated digital i/o boar, a 488.2compatible GPIB controller for PCs, and two software packages: TRACS process monitoring and control and Signal Centre data acquisition and analyse, both these being for Windows. Amplicon Liveline Ltd, (Free)0800 525335.

Farnell catalogue. 2500 new items are contained in the Farnell Electronic Components catalogue, which includes new sections on networking and data communications and safety, security and warning devices, including CCTV systems. ICs from nearly 30 manufacturers are listed and the new Psion series 3a pocket computer is on offer. Editions are published in European languages and currencies and one in Australasian currency. Farnell Electronics plc, 0532636311.

Resonators. IQD's Crystal Products Data Book for 1984 is increased to 272 pages, now being split into leaded and surface-mounted devices. New products this year include very low profile SM crystals for PCMCIA cards, a new range of plasticpackaged, SM clock oscillators and some ceramic-packaged SM oscillators for high-end and PCMCIA card use, measuring 2.3 mm high by 5 mm by 7.5 mm . Ceramic resonators are available in the frequency range $190 \mathrm{kHz}-20 \mathrm{MHz}$. IQD Ltd, 0460 77155.

Instrument rental. Livingston has a new mini-catalogue of instrumentation and data recording. Instruments from Racal, Yokogawa, Sony, Fluke, Siemens and Graphtec are described, but additionally the catalogue provides an assessment of the economics of renting or otherwise acquiring data recorders, bearing in mind utilisation, obsolescence and depreciation. Livingston Hire Ltd, 0819435151.

Power supplies

DC-DC converters. Three-watt DC-to-DC converters from Gresham accept 2:1 inputs from 4.5 V to 72 V , which makes them suitable for use from 5 V bus supplies, 12 V and 24 V batteries and in 48 V communications systems. They are plastic encapsulated, are the same size as standard 24 -pin dil packages, nut need only convection cooling and suffer no derating at temperatures from $-25^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$. There are six single and dual output voltages of 5 V 12 V and 15 V and four input-voltage ratings. Gresham Power Electronics Ltd, 0722413060.

$3.3 \mathrm{~V} / 5 \mathrm{~V}$ converters. Linear

Technology's LT100 step-up DC-DC converter is programmable for either 3.3 V or 5 V , provides 250 mA at 5 V from a 2 V supply and takes a quiescent current of $120 \mu \mathrm{~A}$, or $10 \mu \mathrm{~A}$ during shut-down. Its power switch exhibits a saturation voltage at 1 A of 170 mV . Since operating frequency is a minimum of 150 kHz , inductors and capacitors around the circuit may be small, surface-mounted types. Efficiency is up to 88% at 1.8 V input. The device comes in 8 -pin dip or 8 lead SOIC packaging. Micro Call Ltd, 0844261939.

Radio communications products

8 GHz IC attenuator. Contained in an SOIC plastic package, Samsung's HMP-100008-2 is a voltage-variable attenuator in a GaAs monolithic

Standard signal generator.
Programmable AM/FM standard signal generator SG-5260 by
Trio Kenwood uses PLL
synthesis to produce a resolution of 100 Hz over the 10 kHz 260 MHz frequency range, its output being from $-20 \mathrm{~dB} \mu$ to $132 \mathrm{~dB} \mu$ in 0.1 dB steps. A digital display provides a 7 -digit frequency readout, a 4-digit output EMF figure and amplitude or frequency modulation setting. Modulation is internal or external and a non-volatile memory contains up to 100 conditions to be quickly set up. Trio Kenwood UK Ltd, 0923816444.
microwave integrated circuit (MMIC). Using two analogue voltages of -3 V to 0 V at less than $30 \mu \mathrm{~A}$ to control attenuation, the device pravides up to 60 dB over the $0-8 \mathrm{GHz}$ range of frequencies, without external circuitry Units are cascadable for greater attenuation. Operating temperature is $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Anglia Microwaves Ltd, 0277630000.

RF power amplifier. RF2013, a GaAs heterojunction bipolar transistor by RF Micro Devices, provides up to 135 mW output power from a 3 V supply and up to 800 mW from 6.3 V ; average power output for a two-tone input signal is 400 mW from a 6.3 V supply. Total gain, depending on the output matching, is $25-30 \mathrm{~dB}$, flatness being $\pm 3 \mathrm{~dB}$ from 800 MHz to 1000 MHz ($\pm 0.75 \mathrm{~dB}$ from 800 MHz to 950 MHz). Input voltage standingwave ratio of less than 2:1 and better than $-125 \mathrm{dBm} / \mathrm{Hz}$ output noise power are combined with an efficiency of 47% from 6.3 V and 40% trom a 3 V supply. The device is intended for use in mobile radio and wide-area networks. Anglia Microwaves Ltd, 0277630000.

Mini mixer. A $200 \mathrm{MHz}-3000 \mathrm{MHz}$ mixer by Mini-Circuits is packaged in a ceramic surface-mount measuring 0.25 in by 0.31 in by 0.275 in . RMS-30 has an IF response down to zero frequency and can be used for up and down conversion of RF as well as biphase, QPSK and I\&Q modulators and phase detectors. The devices conform to MIL-M-28837 standards for resistance to shock and vibration and the solder pads have solder over nickel barrier for leach resistance and solderability. Mini-Circuits Europe, 0252835094

Transducers and

 sensorsHall-effect switches. Hall-effect ICs capable of operating at temperatures up to $150^{\circ} \mathrm{C}$ in automotive or industrial environments are introduced by Allegro. Types 3121/2/3 interface with bipolar or cmos logic circuitry and incorporate a yoltage regulator to handle suppies of 4.524 V , a reverse battery protection diode, a quadratic Hall-voltage generator, amplifier, Schmitt trigger and open-collector output sinking up to 25 mA . They are unipolar-switching devices for operation with bar

magnets end all three are identica except for differing magne:ic switcpoints. Allegro Microsystems, 0932 253355.

COMPUTER

Computer board level products

PC modules. Apex embedded PC modules by Blue Crip are PC/AT building blocks which enable a manufact arer quickly to develop e target system while allowing him oo concentrete on the application's requirements. Functional support modules nay be added to a processo- to form a sub-assembly or a complete system. Modules conlain a fully featured 80386 SX or CX486slc PC/AT system with AMI BIOS, watchdog, DMA and programmable counter/timers. There are also two asynchronous serial ports, a mouse, keyboard and utility connectors. 512 K of flash memory is available and VGA 640 by 480 resolution through a support module. Two hard-disk and two floppy drives are provided. Blue Chip Technology, 0244520222.

Data acquisition board. A 68 -pin version of National's AT-MIO-16X high-performance, high-resolution, multi-function data-acquisition board is announced. It is an analogue, digital and timing i/o board for PCs and compatible computers, having a 16 -bit sampling A-to-D converter with 16 analague inputs configurable as single-ended, pseudo-differential or fully differential inputs. National's N/$P G A$ instrumentation amplifier is used in the new version to enable the board to settle to high accuracy at 100ksample/s at all gains when scanning multiple channels. Cable assemblies are available in lengths up to 10 m to connect the board to an SCSI chassis and to a wide range of

Instrumentation

Programmable PSUs. PL-P series power supplies from Thandar are controllable by RS232 or GPIB, which also provide readback to the serial port of a PC without an interface card. The series includes single, dual and triple models, all being made in bench-top or rack-mounted form. Main output is variable from 0 to 32V, with a variable current limit to 3.1 A . A $4 \mathrm{~V}-6 \mathrm{~V}$ logic output is included. Providing power levels to 360 W , the other new series, the $T S X-P$, is available in $35 \mathrm{~V} / 10 \mathrm{~A}$ and $18 \mathrm{~V} / 20 \mathrm{~A}$ versions. The hardware and software of the RS-232 interface also supports an extended multiinstrument mode ARC, in which up to 32 instruments may be linked and computer-controlled. Thandar Instruments, 0480 412451.

Digital potentiometer. The
Digipot series of digital potentiometers by Control Transducers now includes model MD, a miniature unit that detects direction, position and speed. Output is a square wave at a resolution of between 100 and 1024 pulses per revolution, dual channel, with ar optional marker/index pulse. Shaft sizes from 3 mm to 8 mm are acceptable and there are many mounting choices. The unit handles shaft play of ± 0.01 in and has a screwed housing. Power requirement is +5 V at 40 mA . Control Transducers, 0234 217704.

50-pin signal-conditioning and termination accessories. A full range of software is offered. National Instruments UK, 0635523545.

Development and evaluation

80386 EX simulator. A range of 32 -bit development tools by Systems and Software now includes the $386 E X / S / M$, a software simulation of the complete chip. It allows engineers to develop software in assembler, C or PL/M, including routines that use the on-chip device with source-level debug facilities while hardware is still being developed, before chips and boards become available. Codedebugging can go ahead, in many cases showing faults not detected by

LabVIEW graphics. Using National's new LabVIEW Picture Control Toolkit, users are able to generate their own front-panel displays for the LabVIEW computer-instrumentation software. Possible displays include bar graphs, polar plots and Smith charts, and objects such as robot arms can be animated. Images are described by graphics instructions stored as a series of drawing commands. There is also a library that implements a set of functions that take an existing picture and add new instructions to create a more elaborate picture. National Instruments UK, 0635523545.

ICE. The simulator replicates all devices, including master and slave 8529 interrupt controllers, 8524 interval timers, 8250 uarts, synchronous serial units, etc, and up to 4Gbyte of memory. Computer Solutions Ltd, 0932829460.
$87 C 750$ development. Micro Computer Control offers the 87C750SDK, which is a software development kit for Philips's 87C750 microprocessor, containing all tools needed to create and execute programs. There is a multi-window text editor and an assembler that finds syntax errors, converts source code to machine code and generates program listings. The kit also provides a software simulator and debugger to run programs on a PC without extra hardware. An optional Micro-C compiler is available. Logicom Communications Ltd, 0817561284.

8051 emulator. For those working with the 8031/51 microcontroller, the Micro AMPS in-circuit emulator operates up to 16 MHz , has 64 Mbyte of battery-backed memory partitionable in 4 K blocks between program and on-board or off-board data, 64 K hardware breakpoints in program and extended data memory single-step and software trace. Micro AMPS Ltd, 0483268999

In-circuit emulator. Biceps51 is an in-circuit emulator that supports almost all 8051 derivatives, combining the features of an eprom emulator with those of a full-function ICE. It replaces the eprom in a test circuit with 64 K byte of emulation ram that
may be partitioned in 4 K blocks. The package includes high-level debugging, hardware breakpoint capability, cross assembler and realtime trace buffer that can be interrogated on the fly. A single adaptor allows the unit to emulate almost all 8051 derivatives. Micro AMPS Ltd, 0483268999

Eprom emulator. MicroRom from Squarewave is a conventional eprom emulator, but is contained in an 11 mm high module that plugs into a PC's eprom socket, eliminating the usual ribbon cable and often obviating the need to remove the target board. After programming, the device may remain in circuit, being non-volatile. It is usable with any computer fitted with a Centronics printer port and downloads a 512 Kb file in two seconds. Squarewave suggests it be regarded as an eprom with a built-in programmer and an unlimited number of write cycles. Squarewave Electronics Ltd, 081-880 9889.

Software

Windows data acquisition. Visual Designer is a software package for data acquisition designers that allows users to develop a PC-based system by generating custom applications without any programming. It runs under Windows 3.1, icons representing function blocks such as i/o, graphic displays, waveform generators, measurement and comparison functions, maths and logic operations. The package is termed an application generator, holding the middle ground between

fixed-function application software and complex programming languages. Custom software can be developed simply by drawing a block diagram on the screen and specifying parameters; each block then represents perhaps hundreds of lines of C code. Intelligent Instrumentation, 0923896989.

Spice for RF. A new model library for RF devices that is three times the size of the earlier version is announced by Intusoft of California. Device models provided include pin diodes. monolithic microwave ICs, H-P GaAs mesfets, Philips's BJTs and an ideal coupler. These models are usable with any Berkeley Spice-compatible simulator on any computer. This approach to modelling RF devices is claimed to be superior to that usually adopted, in that no unrealistic parameters are needed to "force-fit" the device behaviour; custom subcircuits account for all parasitics and match published s-parameters in magnitude and phase. Any Spice program is thereby enabled to simulate linear and non-linear RF circuits in frequency, time and DC domains. Intusoft, 0101 (310)8339658.

Loudspeaker design. Audiosoft of Melbourne, Australia, has the Calsod 3.00 , the latest version of a software package for loudspeaker design and system optimisation. It simulates sound pressure and impedance response of individual drivers, multiple systems and crossovers, effects of geometric layout of various types of enclosure being included in the analysis. Models of the systems include loss parameters for leakage, absorption and port or passive radiator losses. Multiple off-axis observation points for response calculation can be specified, overlaid colour screen plots being produced for each location. A circuit optimiser is included, both active and passive crossovers being optimised, and Thiele-Small parameters of drivers are determined from two impedance measurements under mass or compliance perturbation conditions. Calsod imports data files and supports SYSid, System One, MLSSA, IMP and LMS systems. Munro Associates, 071-379 7600.

Autorouter. ULTIroute GXR is a ripup-and-retry autorouter by ULTImate Technology which runs under Windows and allows the user to influence the way the router performs, so customising it to his own type of design. "Keep-out" areas can be specified, both for vias and the general trace. New versions of ULTIboard, a PC board designer with real-time design-rule checks, and ULTIcap are 32-bit packages using a Windows-compatible dos extender, so that they will run in Windows or dos with no performance loss. ULTimate Technology Ltd, 0734812030.

Technologies change

Ericssons TBT is used in oter
50 collmtries world-wide

Our commitment to Training does not

Commitment to training is essential in the rapidly changing communications wortd. A Ericssor the importance of training has long been recognised. since the early 1980s Ericsson has devetoped Technology Based Training (TBT) which allow: personnel to bee tratined where and when the user neecls it

Ericsson's Tl3'5 presents comples and difficult training materiat in an interesting and exciting way. It is a self-paced, interactwe user-friendly and cost effective method of enlancing lechnical comperence

Ericsson's generic range of IBM $\mathrm{PC}^{\text {M }}$ compatible courseware includes the following courses:

- Introduction to Telecommunications
- ISDN Overvier and ISDN Advanced
- OSI \& Data Networks and OSI Advanced
- X. 25 and Related Protocols and X. 25 Aclvanced
- C7 Signalling systcm Part 1 and P2art ?
- Uncterstanding Modemes
- PCM Principles
- Cellular Mosble Radio
- X. 400 Overviey

For further informatioa please contact your local Ericsson office or
Marketing Department
Ericsson Systems Expertise Limited
Adelphi Centre, Upper George's Street, Dun Laoghaire, Co. Dublin, Ireland. Tel: + 3531 2800455. Atter 5pm: +35312843030 . Fax +35312805914

ERICSSON

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Protessional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design
The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic

Visa, MasterCara, Amex welcome

Affordable Electronics CAD

EASY- PC: Entry level PCB and Schematic CAD
EASY- PC Professional: Schematic Capture and

EASY-PC Professional Schematic Capture and
FCB CAD. Links to ANALYSER III and PULSAR.
PULSAR. Entry
PULSAR: Entry level Digital Circuit Simulator
~ 1500 gate capacity.

PULSAR Professional: Digital Circuit Simulator	$£ 195.00$
	-50,000 gate capacity.

ANALYSER III: Entry level Linear Analogue Circuit £98.00
ANALYSER III Professional: Linear Analogue £195

Z-MATCH for Windows: Smith Chart based problem £245.00 solving program for R.F. Engineers
No penalty upgrade policy. Prices exclude P\&F and VAT.

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information Please Write, Phone or Fax.

> Tel: 0480461778 Fax: 0480494042

APPLICATIONS

Global positioning core in one IC

A
Il the active circuitry needed to convert global positioning information in rf spread-spectrum form to 4.309 MHz final IF is contained in a single IC called the GP1010. Its manufacturer, GEC Plessey, has published application note AN/39 containing details on how to simplify the device's evaluation.
Input to the evaluation circuit described is C/A code signals on the GPS L1 carrier at 1575.42MHz. Peripheral functions needed are a low-noise preamplifier, a 10 MHz . reference and a sample clock for the output digitiser.
Local oscillators of $1.4 \mathrm{GHz}, 140 \mathrm{MHz}$ and 31.1 MHz are provided by the GP/OIO onchip synthesizer while clocking at 40 MHz is available for an external processor. There are rf and IF amplifiers with external first and second IF filters. The third IF stage needs no external filtering.
Output magnitude data controls the onchip AGC loop whose time constant is set by an external capacitor. For testing, the AGC can be forced to maximum gain.
In commercial GPS applications, the first IF filter, at 175 MHz , can be implemented
using $L C$ networking. This provides a 3 dB bandwidth of approximately 20 MHz . If severe out-of-band interference is expected, a SAW filter may be substituted for the $L C$ version. The device is designed to cope with large interfering signals without
compression. This may be important where the GPS receiver is co-located with interfering signal sources such as Inmarsat transmitters.
Second 35.42 MHz IF filtering is via a custom SAW device that provides a 1.8 MHz

bandwidth with 1 dB ripple and 40 dB out-ofband rejection. Tuning indicators are needed at the SAW filter output and input
A reference source for the oscillator for the local oscillator synthesizer can be configured on-chip by simply adding an external crystal. However the frequency accuracy and stability of global positioning
system receivers demands better characteristics than can be provided by such a simple source. For this reason the evaluation board is designed to accept an external source. This source can be derived from a high-performance signal generator or fixed frequency temperature controlled crystal oscillator.

To minimise signal breakthrough the 5 V supply is separately decoupled to the rf, IF and VCO stages via $3.3 \mu \mathrm{H}$ inductors.

GEC Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. Tel. 0793518000 , fax 0793 518411.

Uses for a 2.5A transistor in SOT23

By reducing saturation voltage and redesigning the lead frame, Zetex has produced a pair of SOT23 transistors that outperform much larger SOT223 devices. One is a 20 V device with a 2.5 A continuous current rating, the other 50 V at 2 A . Gain of the former is at least 200 at 2A while that of the latter is 200 at 1 A . Both have a power rating of 625 mW which is over 200 mW higher than the industry norm.
At 2.5 A , the FMMT6/8 has a saturation voltage of typically 130 mV so it is a good choice for switching in battery applications since losses will be minimal. These circuits are from a document entitled Features and applications of the FMMT618 and FMMTDI9.
The first circuit is a remote-control transmitter. To maximise the range of the transmitter, each photodiode needs to be pulsed at between I and 2A so the combined

To produce useful output over extended distances, infra-red leds in remote control units need to be pulsed at up to 2A each. High gain of the FMMT618 means that no additional interfacing is needed and low saturation minimises losses.

load is 2 10 4A. Transmitter pulses are 16 ms wide. Although 4A exceeds the FMMT6/8's continuous current rating, it is within its pulsed limit of 6A.
Low saturation is also a useful parameter
in power converter applications such as the one in the second diagram. This is an unregulated isolating power supply switching at about 90 kHz . Although tiny, the circuit has a theoretical output of 10 W

DC-to-DC converter with isolation. Given a smaller transformer core, this circuit could be built into a 0.3 in wide DII package. Note that even though the diodes are Schottky types, they are the main contributors to losses.

Part of a 32 by 32 matrix display. Column drive current is up to half an amp so transistors with good gain at high current are needed to minimise component count.
but this is limited by rectifier losses and power dissipation capability of the substrate. Efficiency with values shown will be around 85% with most of the loss due to the rectifier diodes.
In moving message displays such as the one in the third diagram, interface circuitry needs to be as small and simple as possible due to the large number of row and column
drivers. The circuit shown is a small portion of a 32 by 32 matrix. Each LED needs about 15 mA so total column current is just under half an amp. Because of its high gain at high current, the FMMT6I8 needs only 5 mA of base current to saturate to below 50 mV . As a result, it can be used for direct interfacing to low power logic registers.

Other applications outlined are printer
stepper motor driving and 1.5 to 5 V power conversion. It is also suggested that the devices would be useful as pin drivers and FPLA programmers due to their low saturation voltage.

Zetex, Fields New Road, Chadderton, Oldham, Lancashire OL9 8NP. Tel. 061 6275105, fax 0616275467.

Inductorless voltage booster provides intermediate voltages

Charge-pump circuits are convenient for doubling or inverting a voltage. They are also cheap and easy to design since they need no inductors. On the other hand, they do not regulate or make it easy to provide intermediate voltages.
Adding a comparator and reference can provide a degrec of regulation and offer the ability to produce intermediate voltages without significantly increasing complexity. As this configuration from the latest Maxim Engineering Journal shows, it is possible to produce a 3 V to 5 V converter that varies by only 0.1 V for loads down to 50Ω.
Both reference and comparator functions are provided within $I C_{2}$. Charge pump $I C_{1}$

Output parameters versus load for the regulating, variable voltage charge-pump circuit. These figures assume a $3 V$ supply.

Load	Output (\mathbf{V})	Ripple $(\mathbf{m V}$ p-p)
∞	5.00	30
10 k	5.00	35
1 k	5.00	100
100	4.96	100
50	4.59	150

has an internal oscillator whose 45 kHz switching transfers charge from C_{1} to C_{2}, causing the regulated output to rise. When feedback voltage at pin 3 of $I C_{2}$ exceeds 1.18 V , the comparator turns off the oscillator via the transistor.
Because the control loop needs no hysteresis, it is set to zero but hysteresis can easily be added via $I C_{2}$. At turn on, the oscillator generates two cycles, which is always enough to drive output voltage slightly above the desired level before feed back turns the oscillator off again.
Resulting output ripple depends mainly on input voltage and output current.

Output ripple can be reduced at the expense of efficiency by adding a small resistor of about 1Ω in series with C_{1}. Ripple also depends on the value and ESR of C_{1}. Smaller values of C_{1} transfer less charge to C_{2}, producing smaller jumps in output voltage.

Maxim, 21C Horseshoe Park, Pangbourne, Reading RG8 7JW, Tel 0734845255 , fax 0734.

Charge pump circuits are normally only good for doubling or inverting a supply voltage. Adding a comparator and reference provides both regulation and intermediate output voltages.

Fast, high-performance sampling

n a sample-and-hold system, sampling time is limited by two consecutive events the transition time of the multiplexer and the settling time of the sampled signal at the output.
Application hints in the $D G 406 / 7$ data sheet from Siliconix describe how to increase the accuracy of low-level signal measurements by using differential multiplexing.
The DG406 is a 16 -channel highperformance analogue multiplexer while the 407 is identical except for being configured as a dual eight-channel device.
In a sample and hold system such as the one shown, transition time is that of the multiplexer, in this case 300 ns maximum. Settling time at the load depends on several parameters, including fos(on). of the multiplexer, source impedance and multiplexer and load capacitances. Charge injection of the multiplexer and required accuracy also play a role.
Settling time for the multiplexer alone can be derived from the model shown.
Assuming a low impedance source. such as presented by an operational or buffer amplifier, settling time of the $R C$ network for a given accuracy is $n \tau$.

\% accuracy	\# of bits	n
0.25	8	6
0.012	12	9
0.0017	15	11

Maximum sampling frequency of the multiplexer is.

$$
f_{s}=\frac{1}{x\left(t_{S_{c t t} / m s}+t_{\gamma_{r u m s}}\right)}
$$

where x is the number of channels to scan and.

$$
t_{S_{e}(t h n,}=n \tau=n \times r_{D)(o m)} \times C_{D(m)}
$$

Simplified model of a single-channel multiplever. With this model, settling time for the input multiplexer of the sample-and-hold circuit can be derived.

Given a DG406 at room temperature, for 12 bit accar acy using maximum limits.

$$
f_{i}=\frac{1}{16\left(9 \times 1000 \Omega \times 100 \times 10^{12} f\right)+300 \times 10^{-12} s}
$$

or $f_{\mathrm{s}}=694 \mathrm{kH} /$
From the sampling theorem, to properly recover the original signal, the sampling frequency should be more than itw ice the maximum frequency of the original signal. This assumes perfect band limiting. In a real application, sampling at three or four times the frequency of the filter cut-off frequency is advisable so.

$$
f_{t}=\frac{1}{4} \times f_{5}=173 \mathrm{kHz}
$$

This shows that the $D G \neq(06$ can sample sixteen different signals with a maximum component to 173 kHz . Using two channels to double sample the incoming signal also doubies cut-off frequency.

In the block diagram is a typical dataacquisition front end suitable for low-level analogue signals. Differential multiplexing of sntall signals is preferred since it helps 10 reject common-mode noise. This is especially important when sensors are located at a distance.
A low $r_{\text {DSton), }}$, low leakage multiplexer helps to reduce measurement errors. The $D G 407$ has lower than usual power dissipation so on-chip thermal gradients are reduced. These gradients can cause errors due to temperature mismatch along parasitic thermocouple paths.

Siliconix, East Hampstead Road,
Brarknell, Berkshire RG12 1LX. Tel. 0344485757 , tax 0344427371

Ultra-fast op-amp with clamp

Claimed to be the fastest monolithic amplifier available, the HFA1I30 from Harris has a -3 dB bandwidth of 850 MHz and a slew rate of $2300 \mathrm{~V} / \mu \mathrm{s}$. Distortion is low, at -56 dBc , and the device has user programmable output clamping to protect later stages from damage or input saturation.

Acconding to the device data sheet, there is an evaluation board for the cevice following this circuit. Discussed within the sheet are optium feedback resistance. clamp cperation, PCB design and recovery from overdrive. Comprehensive performance figures are also presented.
Overdrive recovery of the device is
typically less than a nanosecor.d while settling time is 11 ns . Gain flatness at 100 PHz is 0.14 dB .

Har-is Semiconductor, Riverside Way, Canoberley, Surrey GU15 3YQ, Tel. 0276686886.

 - delivery, delay or debacle?

> Digital Audio Broadcasting is seen by many as the logical progression in sound transmission for the next century. It undoubtedly represents magnificent technical progress. However, the packing of channels which is part of the system reduces the independence of individual station operators. It delivers the quality but will it deliver the audience? Norman McLeod reports.

The politics of DAB
I overheard a delegate al the Radio Academy "s lechnical conference last November muter "Will DAB be another RDS...?" RDS - the Radio Data System - was launched in a blaze of glory six years ago, as nothing less than *The greatest improvement in radio sets since the invention of the transistor" and "the key to the future of radio listening ${ }^{1 \cdot}$. Few would make such hyperbolic clams for this decidedly minor miracle today.
DAB - Digital Audio Broadcasting - lirst came to public attention amid similarly glouing praise for its properties of high sound quality and immunity to interference. It has been popularly reported as a spectacular technology under test and demonstration condilions, but without much anticipation of its wider implications and real-life practicality as a consumer product.
Eureka DAB - the European version of digital audio broadcasting - is an impressive attempt at tackling the technical shorlcomings of present-day FM radio broadcasts.

The fall of FM

FM has not lived up to the ambitions expressed by early pioneers for an interfer-ence-free high quality service intended even-
tually to replace AM broadcasting on long and medium wave. In the fifties, when VHF broadcasting first started. excellent mono results could be obtained from lixed VHI/FM receivers comected to an outdoor rooftop acrial, as was the accepted nom for television reception.
What was not foreseen at the time was the advent of portable and mobile VHF receivers with modest, street-level aerials. And stereo was in its infancy - the Zenith-GE multiplex system unheard of. Both these factors heavily compromise FM reception quality today.

Any prospective broadcasting service must work well in portable and car radios. The signals picked up by these receivers, already much lower than the rooftop signals for which VHF broadcasting was originally planned, Tlucluate randomly by up to 20 dB as the receiver is moved. This causes swishes and pops of noise whenever the signal falls 100 low for reasonable quieting.
FM broadcasis are also affected by multipath distortion caused by time-delayed components, due to signal reflections from buildings and other obstacles, which arrive at the antenna varying in phase and amplitude with respect to the direct signal ${ }^{-}$. Multipath distortion of the FM signal at the antenna translates

into unpleasant nonlinear distortion of the received audio. When the Zenith-GE pilot rone stereo system is in operation. matters get considerably worse
Siereo operation worsens the signal-10-noise ratio of the transmission by 20 dB :
Multiplexing makes co- and adjacent channel interference more troublesome - some 15 to 20 dB more protection is required when the stereo decoder is operational;
Separation between the channels is incomplete and highly vulnerable 10 small errors on the multiplex anywhere in the transmission chain from coder to decoder
Multipath reflections can distort the supersonic ' S ' signal to the extent that reception which is tolerable in mono can be unlistenahle in stereo. even when the signal level is such that noise is not a problem

The Eureka DAB ahternative positively thrives on multipath effects. has no penalty for stereo working. and offers the flexibility to
trade off utantity agams yuality when it comes 10 allocating bits to services. It performs magnificently.

But it is bemg called into question, not by engincers. hut hy the people who will have 10 work with it and foot the bill for the new technology

Standard struggle

While DAB shines fechnically, it is clear that there is a political imperative to heat US technical proposals: IBOC (in-band on-channel) is currently being rescarched hy USA Digital. AT\&T Bell Communications and Amati Communications Corp. IBOC systems piggyback a digital carrier on top of existing analogue FM (or even AM) transmissions. They do not require a new frequency band. and place firm control of the new medium in the hands of existing operators with their own transmilters. sites and frequencies.

Although US work is at a much earlier stage
of development than Eureka. IBOC has such strong attractions for established broadcasters that if they do prove viable. Eureka will almost certainly be eclipsed. So there is a rush bordering on desperation to have Eurekat accepted and up and rumning hetore IBOC has the chance to prove inself one way or the other. Adoption of Eureka inevitably means centralised control of a broadcasting channel for its interleaved services. The lechnical aspects of this system make it mandatory to supply a multiplex of services from centrallyassembled data streams. The "frequency diversity properties which allow the multiplex to resist drop-outs in the incoming signal. which are typically between 30 and .300 kHz wide make it necessary to occupy a wide bandw idth with an interleaved signal.
Frequencies must be planned on the basis of 1.75 N 1 Hz wide chunks, as opposed to segments an eighth of that size on FM. This makes Eureka planning a much less flexible

COFDM: transmitting the digits

COFDM (coded orthogonal frequency division multiplex) describes the process used by Eureka DAB to send data over the radio transmission path ${ }^{14}$. The essential feature of this system is that a large number of closely-spaced carriers are used, each of which carries a relatively slow data rate. In Mode 1 DAB, as demonstrated by the BBC on 226 MHz , a total of 1536 carriers are used 1 kHz apart
The total RF bandwidth occupied is therefore 1.537 MHz , but a further 250 kHz guard band is needed between adjacent blocks, as the DAB signal does not cut-off very cleanly at the edges of the spectrum, and is prone to spread due to intermodulation effects. It has been noted that TV transmitters carrying DAB may be backed off some 9 dB on pep output for good IM performance.
Two bit QPSK symbols are transmitted on each carrier at intervals of 1.246 ms , made up of 1 ms active symbol duration, and a 246μ s guard interval period. The bit rate per carrier is therefore just over 1600 bits per second, making the total available data rate some $2.46 \mathrm{Mbits} / \mathrm{s}$. Of this, $1.09 \mathrm{Mbits} / \mathrm{s}$ was used in the BBC demonstration to transmit audio from the five national radio networks at three different quality grades - the rest is accounted for by error correction and identification data.
Each slow COFDM carrier is unrutiled by delayed signalls arriving up to 1.2 times the guard interval later than the direct signal - in this case $300 \mu \mathrm{~s}$, corresponding to an extra path length for the delayed signal of 90 km . Indeed delayed signals caused by multipath reflections add to, rather than detract from, the received signal quality. The 300μ s permissible delay is well beyond the delay
encountered in multipath conditions from a single ormsmitter, and opens up the possibility of Single Frequency Networks (SFNs). Transmitters carrying the same programme selection can all operate on the same frequency, and provided the difference in path length between two transmitters does not exceed 90 km , and the transmitted signals are synchronised with each other, the effect on the receiver of multiple signals is wholly beneficial

COFDM in Mode 1 is limited to applications below about 350 MHz because it is sensitive to frequency shifts caused by the Doppler effect. A shift of $1 / 20$ of the carrier spacing (50 Hz) increases the required carrier-to-noise ratio by 4 dB . It is convenient to remember that at 300 MHz the Doppler shift in hertz has the same numeric value as the speed of a moving
receiver in m / s. So signals picked up in a speeding car or a fast train moving at $50 \mathrm{~m} / \mathrm{s}$ (about $112 \mathrm{mile} / \mathrm{h}$) directly away from or toward the transmitter will suffer a 50 Hz shift at 300 MHz , and pro rata at higher or lower frequencies. At the 226 MHz frequency proposed as a 'parking band' for DAB, the 'velocity loss' will not exceed 4 dB until the vehicle is travelling at nearly $150 \mathrm{mile} / \mathrm{h}$.

Modes 2 and 3 define carriers 4 and 8 kHz apart, and can be used without unacceptable Doppler limitations up to about 1.4 and 2.8 GHz respectively. Mode 2 may be applicable to local broadcasting and timited-area single-frequency networks, and allows a guard interval of $62.5 \mu \mathrm{~s}$. Mode 3 suits satellite or hybrid systems in the ' L ' and ' S ' bands - the guard interval here is $31.25 \mu \mathrm{~s}$.

COFDM in practice: This shows the COFDM (coded orthogonal frequency division multiplex) system working in Mark 1 (FDMA) mode. Each programme permanently occupies one carrier in every six. FDMA was used in the early Rennes and Geneva DAB demonstrations.
The Mark 2 TDMA mode - used in the BBC and NAB DAB demonstrations - uses all the carriers interleaved in the time domain for all the programmes, and seems to be more resistant to impulsive interference. But it would preclude radiating a set of skeleton carriers in an attempt to introduce more flexibility for individual channel operators.
process when it comes to matching local radio services to particular communities. It means for instance that a 'one-for-one" guarantee that every current FM service can have a comparable DAB outle - would be impossible to achieve cconomically. The shape and structure of the radio market will change fundamentally with Eureka DAB.

Private fears

Eureka means bundled broadcast channels. Independent operators running just one or two services do not want another four or five starting up in parallel with them, while stand-itone services in rural areas or small markets do not want to have to pay for a six-service installalion when all they require is one, always assuming that a frequency band would be available for them. Eureka DAB can run sin-
gle-frequency networks with great ease over wide areas. hut the benclits of this sort of working turn to dust when a dillerent progranme is required in a different area. and the protection ratios required end up much the same as FM^{3}.
A recent report from Germany, the birthplace of DAB, began with Ursula Adelt of the Private Broadcasters' Association sending shock waves through the recent IFA show in Berlin by declaring that "for the private radio operators, Eureka 147 is dead ${ }^{\dagger}$." Already ARD, the German state broadcaster, has caused gloom in the Eureka lobby by announcing that it could not afford to implement DAB until 1997.

Now private broadcasters are beginning to fret about who is going to pay for il, whether listeners really watnt it, or whether it might
share the fate of Digital Satellite Radio, with jusi 100,000 listeners after five years. Reports from Washington also put the very existence of a US digital radio business in doubl given the current business environment ${ }^{5}$.

The development of DAB

The Eureka Project EU147 on digital broadcasting was launched at the European Conference of Ministers in Stockholm in 1986, initially for a four-year plan of research and development between 1987 and 1991. Late in 1991, the second phase began. It has been looking into system specifications, appli-cation-specilic integrated circuits and details of mass communication services additional to broadcasting which could be provided. These might include public or subscription services carrying data, for which there is some spare

Musicam: cutting the bit budget

A decade of work on bit rate reduction has made the compact disc, shifting $1.4 \mathrm{Mbit} / \mathrm{s}$ for two channels of audio, look highly extravagant. Television's nicam system manages with $728 \mathrm{kbits} / \mathrm{s}$ using a simple scaling technique, but Musicam - in the form known by the snappy title "ISOMPEG Layer 2: IEC CD 11172-3" offers between $192-256 \mathrm{kbits} / \mathrm{s}$ per stereo channel for quality closely approaching that of the original source.
The block diagram of the audio encoder is shown below. The heart of the process is the 'psychoacoustic model' - a device which exploits the fact that the threshold of hearing is programme-dependent. In the
presence of a 500 Hz tone at 70 dBA , for example, the threshold of hearing is raised 10 dB between 300 Hz and 1 kHz , while between 400 and 600 Hz energy needs to be above 40 dBA to be detected. Ultimately, 'perceptual coders' such as this one aim to produce a noise floor which pumps up and down in 32 subbands in such a way that it is always masked by the programme material above $\mathrm{it}^{12.13}$.
The bit allocation for each sub-band is determined by a calculation involving input from a 1024 -point FFT scan capable of detecting the difference between sinusoidal and noise-like energy and adjusting

masking thresholds to suit. The data from the sub-band filter is re-quantised to maintain just enough resolution (maybe only two or three bits) for the quantisation noise to be inaudible below the masking threshold for each band.
The perceived sound quality of this very complex process can be traded against bit rate to a fine degree. The BBC demonstrations offered the following options:
$256 \mathrm{kbit} / \mathrm{s}$ independent stereo for Radio 3; $224 \mathrm{kbit} / \mathrm{s}$ joint stereo for Radios 1 \& 2; [92kbit/s joint stereo for Radios $4 \& 5$.
The 'joint stereo' process exploits the redundancy between lelt and right signals of a stereo pair to provide better quality for a given bit budget than could be obtained with two independent mono channels each running at half the rate. The overall bit budgets that can be assigned vary from $32 \mathrm{kbit} / \mathrm{s}$ to $192 \mathrm{kbit} / \mathrm{s}$ for a single channel, the latter allowing headroom for further processing after reception, or from $64 \mathrm{kbit} / \mathrm{s}$ to $320 \mathrm{kbit} / \mathrm{s}$ for a stereo channel or pair of services.
It is very difficult to assess the performance of Musicam at the bit-rates offered when the original, uncompressed signal is not available for comparison, and there is currently such a shortage of DAB receivers that it was not possible to do an A / B listening test inside Broadcasting House.
Any lack of transparency has a fundamentally different quality from familiar analogue shortcomings, although listeners who have taken part in demonstrations say that once the ear has learnt what to listen for, deficiencies can be more readily detected. In the BBC coach, any sonic difference between $D A B$ and undegraded $F M$ was very subtle at the bit rates chosen for demonstration.

Demonstrating DAB

"The digits deliver the goods - they solve everything," said one engineer at the BBC demonstration of Digital Audio Broadcasting in central London in early December. From a technical point of view, the coach ride - with DAB or FM selectable on headphones - was impressive, but with reservations.
We were invited to compare FM reception from Wrotham, 20 miles to the East in Kent, with DAB reception from much closer transmitters at Crystal Palace and Alexandra Palace running simultaneously. DAB reception was solid all the way, while FM was subject to the familiar noise and fading which mars much city reception. But we were not, it has to be said, comparing like with like.
I put this to the BBC, suggesting that a fairer demonstration would have been to compare DAB with FM reception from Crystal Palace (the BBC's GLR transmitter on 94.9 MHz), or alternatively to radiate DAB only from Wrotham so that it suffered the same degradation as the FM network signal. I was told that the BBC wanted to show DAB on the network services with their various programme content, for which there is no central London transmitter, and that to bring DAB into central London from Wrotham would require a transmitter power of at least 10 kW , which was not at the BBC's disposal.
Originally, the tests were wired to provide unprocessed, uncompressed feeds to the DAB transmitter while leaving the 'Optimod' multi-band signal processors in circuit on the FM system. This proved to be in unwise move: listeners commented on differences in the sound quality of the two services. attributing them (wrongly) to inherent characteristics of FM versus DAB, where-
as in fact they were observing the effects of the Optimod units, which make programme material seem denser, louder and superficially more impressive. So DAB got the same processed feeds as FM after the first day.
This meant that, interference apart, DAB audio quality sounded practically identical to FM. It may indeed have been sold short by having been fed first from a Nicam link sampling at 32 kHz and therefore limiting
the audio bandwidth on both systems to 15 kHz . To get digital quality above, and not just on a par with, FM may well need some re-engineering of distribution networks in the future. And we have been reminded that most people prefer limited dynamic range on their radio material, with the exception of a few readers of Hi Fi News ${ }^{11}$, so that CD levels of dynamic range are positively unwelcome to most consumers.

Arrangements for the London DAB demonstration. This shows the arrangements made to distribute and demonstrate $D A B$ br the $B B C$ in central London, with two important omissions. The input to the Musicam coders wa's transferred to the output of the 'Optimod' processors to avoid misleading listeners hearing the effects of the processor. And the process of distributing audio to the DAB network was handled by a Nicam system operating at 32 kHz sampling rate, which is not shown on the diagram.

bipolar $\mathrm{f}_{\mathrm{t}}=5 \mathrm{GHz}$	cmos/bicmos clock speed $=50 \mathrm{MHz}$ gates $=50 \mathrm{~K}$	cmos/bicmos clock speed $=40 \mathrm{MHz}$ gates $=100 \mathrm{~K}$
RF/IF	DSP I	DSP II
$\begin{aligned} & \text { RF Mixer } \\ & \text { IF } \\ & \text { LO } \end{aligned}$	$\xrightarrow{\text { A/D }}$FFT Synch.	De-interleave ${ }^{\text {Viterbi Dec. }}$ QPSK Det
		1
	cmos clock speed $=40 \mathrm{MHz}$ semi custom audio DSP	Source Decode

Proposed four-chip DAB receiver. This shows a possible architecture for a practical DAB receiver. RF functions are handled by high speed bipolar technology using an oxide or trench isolated process. The first DSP incorporates the A/D converter, FFT algorithm and synchronisation circuitry. The next two ICs take in the Viterbi decoder, de-interleaver, QPSK detector and source decoder. The hope is that source decoders will become off-the-shelf devices if the DAB Musicam audio compression standard is widely implemented elsewhere. Source: Ref. 6
capacity. The project is a consortium of partners including broadcasters, PTT administrations and consumer electronics interests.
In the UK, Michael Heseltine announced the setting up of a DAB Forum in the Commons on 16 February 1983, declaring that he was anxious to ensure the benefits and opportunities of DAB were made available in the UK. Broadcasters, equipment manufacturers and other interested parties were invited to join. At a meeting with opposite numbers representing France, Germany and the Netherlands. they considered factors necessary for the successful early introduction of DAB. They concluded that success depended on the following:

- an early move to a single frequency band with sufficient spectrum for all public and private broadcasting systems:
- new programmes on DAB, not just simulcasts of current channels:
additional services, such as data broadcasting: - new ways of financing digital broadcasting. including encryption and pay-per-listen;
the support of car manufacturers to create a pool of DAB car radios:
- a legal framework which provides incentives and allows for innovation; conditions which will provide sufficient rewards for DAB pioneers.

Alongside these committee recommendations remains the fundamental question: how much will DAB cost to transmit?
At the transmission end of the chain. Mike Thorne. of UK transmission providers NTL, the privatised wing of the old IBA, has been bold enough to put a figure on transmitting DAB to a large urban area, although he would be the first to admit that these are projected costs at this stage. and not a bid for a contract.
NTL's costs assume that an existing transmitter site can be used. with space available on the mast for the 230 MHz antenna system. and room below in the building for the apparatus. Given this, construction costs for a single 1 kW station are put $1 \mathrm{al} £ 450,000$, and the running costs - use of mast, rent of building. electricity. BT lines and maintenance etc. would amount to $£ 70,000$ pa. To provide a
'total broadcast contract', including paying back the capital costs over some $8-10$ years. and a sixth of the running cosis above, would cost each of six operators $£ 25,000$ pa.
To put together five 250 W transmitters in a single frequency network (SFN) would cost each operator about double the amount for a single transmitter ($£ 40-50,000 \mathrm{pa}$), but would provide much more solid coverage and better frequency use. This is not dissimilar to the present-day costs of a comparable FM service from the same company.

Receiver costs

As for the receiver, the current state of development is known as the third generation, and consists of a substantial rack of equipment drawing 2.5 A from a 12 V supply, and costing over $£ 3000$. A four-chip future receiver selling for the price of a good CD player ($£ 150-$ $£ 200$) has been sketched out but is still a long way offt.
More immediately, an assessment of likely parameters for a start-up phase in 1995^{7} anticipates that first generation consumer DAB products will contain around ten specific integrated circuits together with their peripheral components.
The first sets will be expensive, on a par, perhaps, with the early fax machines or mobile phones. It is highly unlikely that a $£ 50$ DAB 'Walkman' radio will be a practical proposition for a few years. DAB and FM will not compete initially for mass-appeal receivers.
Estimates of demand and penetration levels have been produced ${ }^{4}$. The most hopeful projection does not foresee DAB reaching 50% of the marketplace before 2010 . This is three years later than the date when some are recommending that FM stations are closed down to make way for it^{8}.

DAB and the radio business

In the long term. Eureka DAB, with its centralised transmission system. will profoundly affect the nature of the marketplace in radio for both transmission and programme services. favouring national networks and large-area
broadcasters over smaller companies. That DAB is seen not as an addition to FM but in the long term as a replacement for it implies a possible threat to FM stations.
If an existing operator merely re-broadcasts current programmes on DAB, he possibly faces the additional costs of transmitting the new service, but without the audience and revenue to fund it. There may however be some profit in subsidiary data services. Previous attempts to market Radiotext data services on top of FM broadcasts have been unsuccessful.
On the other hand, if an established or new operator decides to offer a separate audio service on DAB in the hope of attracting new listeners and sources of revenue, he will have to bear the costs of producing this alternative programme. This is in addition to transmitting it while the service builds up to profitable proportions.

Future developments

These possible business shortcomings in the DAB system have focussed thoughts on modifications. Dr. Brian Evans ${ }^{10}$ has suggested that were the Mark 1 FDMA interleaving process to be adopted, it ought to be possible to crase five of the six sets of carriers from the mix in order to permit individual transmitters to provide individual services without the need for inter-broadcaster synchronisation of sources.
There are penalties with this system in that it is no longer possible to reach the theoretical minimum spacing between carriers, and the FDMA system is generally less efficient than a full TDMA multiplex at resisting interference. But it does address the handicap of centralised transmission without losing the key cyuality features of DAB.
Improvements to DAB's non-graceful degradation are under examination. To have a system fail completely, even if only 1% of locations are affected, is still a serious handicap compared to the more graceful degradation of analogue systems. AM carriers or some analogue 'helper’ signals which could be added to the DAB multiplex to save the day without themselves taking up too much bandwidth or power might smooth out this technical rough edge to everyone's satisfaction.

DAB spectrum use and frequency planning

Plans for the UK interim DAB service on Band III propose two 1.75 MHz -wide blocks for national services, one set for the BBC and one for the commercial sector, and five further blocks for local and regional coverage. A maximum of 42 services could be potentially available if all blocks could be received in a given location.
In terms of programme packing density per megahertz. DAB is very broadly equivalent to FM when set against the local radio sections of the FM band (94.6-97.6 and 102 105 MHz). Typically six DAB services are provided in 1.75 MH 7 of spectrum. Where Band II is well-used, it is also possible to pick out six or so FM services across $1.75 \mathrm{MH} /$ on
a reasonably good tuner and aerial. The noise bandwidth per service used for DAB s / n calculations is typically 300 kHz , slightly greater than the bandwidth of an FM transmission (240 kHz).

National networks

For national networks, DAB looks splendidly efficient at frequency use, since the same 1.75 MHz slab of spectrum can be re-used $a d$ infinitum across the UK to provide five or six national services. The current five national FM services consume 11 MHz between them more than half of the Band II allocation.
The ability to extend national networks over an SFN stops, of course, at national boundaries. Maps like the one shown have been produced showing Europe painted according to the four-colour map theory. This would enable four blocks to be used for national SFNs with only minor problems in places like Luxembourg or Liechtenstein. National blocks assigned to other countries could, of course, be re-used by smaller regional or local services away from the frontiers.
DAB fails - abruptly and completely when the incoming carrier-to-noise ratio falls below $10-14 \mathrm{~dB}$. Above that, there is solid reception independent of signal strength. FM systems degrade gracefully as the signal fails, so that for planning purposes a median curve (signal exceeded in 50% of locations, 50% of the time) can give a good rule of thumb for setting 'coverage'. Anyone receiving less than a fair share of signal may get degraded reception, but will still be able to follow the service.
Because DAB does not behave in this manner, calculations for DAB planning have to be based on generous margins - up to 99% probability - on top of median values which look impressive in isolation. Calculations have shown that assuming a receiver noise figure of 8 dB operating at 200 MHz from a practical car antenna, the required DAB field strength must be at least $22 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ in the vicinity of the aerial, which may be barely 2 m off the ground ${ }^{15}$. The familiar planning curves for FM broadcasting assume the use of an antenna 10 m high ${ }^{16}$. A correction for this discrepancy is open to debate but we will assume 12 dB . bringing the signal requirement at 10 m to a modest $34 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}(50 \mu \mathrm{~V} / \mathrm{m})$. On a fixed FM tuner with an outdoor aerial this level of strength will produce tolerably quiet mono reception, but mobile FM reception would be choppy even with a good receiver.
Onto this figure must be added a factor to increase the probability of the signal reaching this minimum value from 50% to, say, 99%. This would amount to 19 dB . bringing the required median level to $53 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$, very similar to the field strength required for stereo reception of the FM service. However, where an SFN is in operation (and this is the most likely situation) there is a factor working to improve matters because the receiver acrial is being illuminated by signals from more than one direction. greatly increasing the chances of successful reception. An advantage of $6-$ 10 dB might be expected from this source. But

against this, propagation curves for Band II (CCIR Rec 370) need to be scaled down by 6 dB when applied to 230 MHz predictions: this is a function of the frequency, of course. and not the system, but it works against DAB in Band III (though would work in its favour on Band I).
Man-made interference in populated areas is becoming significant. This can increase the noise floor of the received signal by 7 dB or more. The effect is worst in dense urban areas, but gencrally signals are planned to be stronger in these locations as a matter of course. Nevertheless, a value of 4 dB has been suggested as an overall margin to allow for current levels of pollution from computer and digital electronic equipment.
In general, it seems that a DAB SFN of perhaps five 250 W DAB transmitters could provide substantially better coverage over a large urban area than a single FM transmitter running $2-5 \mathrm{~kW}$. Were the DAB transmitters to be co-sited with existing UHF television transmitters where aerial space above and accommodation below are already available, initial projections show that DAB may offer slight savings over a comparable number of FM services. But there are still trade-off's and margins in DAB planning.

References

1. RDS - an ear to the future, BBC Engineering Training Department, 1988
2. Pat Hawker, How serious is multipath distortion?, Wireless World, April 1980, p. 45 3. Gerd Petke, Institut fur Rundfunktechnik GmBh, Planning aspects and plans for terrestrial DAB implementation, Proc. of Montreux DAB Symposium, 1992, p. 167 (EBU)
3. Fundamental Questions Hamper German DAB, Radio World, 23 Nov 1993, p. 24 5. USA DAB Confronts New Obstacles, Radio World, 23 Nov 1993, p. 20
4. McComas, Kady \& Warren, Delco Electronics Corp., Manufacturing $D A B$ automobile receivers, Proc. of Montreux DAB Symposium, 1992, p. 235 (EBU)
5. Manfred Halbe, Philips Consumer Electronics International bv, $D A B$ receiver technology and implementation considerations, Proc. of Montreux DAB symposium, 1992, p. 121 (EBU) 8. FA Stations may close in spectrum shakeup, Electronics World and Wireless World, September 1993, p. 708
6. Ni. Carrasco \& A. Lange, Idate consortium, What markets for $D A B$ in Western Europe, Proc. of Montreux DAB Symposium, 1992, p. 245 (EBU)
7. Dr. Brian Evans, Tantara Tek Ltd., Ensuring a bright future for independent DAB, Seplember 1993
8. Reg Williamson, The Limiting Factor, Hi-Fi News \& Record Review, October 1993, p. 73 12. Fred Wylie, APT, Digital Audio Data Compression, Audio Media, September 1993, p. 84
9. Gerhard Stoll, Institut for Rundfunktechnik, Munich, Source Coding for DAB and the evaluation of its performance: a major apa/ication of the new ISO Audio Coding Standard, Proc. of Montreux DAB Symposium, 1992, p. 83 (EBU)
10. B. Le Floch, CCETT, Channel coding and modulation for DAB, proc. of Montreux DAB Symposium, 1992, p. 99 (EBU)
11. C.P.Bell \& W.F.Williams, BBC Research

Dept., DAB: Digital Audio Broadcasting coverage aspects of a single-frequency network IBC, july 1992
16. Recommendations and reports of the CCIR, Volume V, Rec. 370-5, ITU, 1990

LOW COST PC SPECIALISTS - ALL EXPANDABLE 8088 XT - PC99
 286AT-PC286

 256k RAM - expandable
 Factory burnt-in

to 640 k
4.7 Mhz speed

360k 5-1/4" floppy
2 serial \& 1 parallel ports
MS-DOS 4.01 Standard 84 key keyboard
12" green screen ncluded
In good used condition
Optional FITTED extras: 640K RAM £39. 12" CGA colour monitor with card $£ 39$. 2nd $5-1 / 4^{*} 360 \mathrm{~K}$ floppy $£ 29.95 .20$

Only $£ 99.00$

FLOPPY DISK DRIVES

51/4 " from £22.95-31/2" from £21.95!

 Massive purchases of standard $51 / 4^{4}$ and 312^{2} drives enables usto present prime product at industry beating low prices। All units (unless stated) are removed ftom oflen brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of stan ard size. All are IBM-PC compatible (if $31 /{ }^{\prime \prime}$ supported).
 ${ }^{3.5 "}$ " Mitsubishi MF355C-L. 1.4 Meg. Laptops only" $£ 29.95$ (B) 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop $£ 29.95$ (B)
5.25" EXTRA SPECIAL BRAND NEW Mitsublshi MF501B
5.25" EXTRA SPECIAL BRAND NEW Mitsublshi MF501B
360 K . Absolutely standard fits most computers $£ 22.95$ (B)

Data cable included in price.
Shugart 800/801 SS refurbished \& tested

$£ 175.00(\mathrm{E})$
$£ 275.00(\mathrm{E})$

hard or soft sectors- BRAND NEW
250.00 (

Dual 8 " drives with 2 mbyte capacity housed in a smart case End of line purchase scoopl Brand new NEC D2246 8* 85 megabyte of hard disk storagel Full CPU control and industr tandard SMD ineriace. Utra hispeed iransfer and access time and comes complete with manual Snly

THE AMAZING TELEBOX!

Converts your colour monitor into a

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as
MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on mosi television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channels. TELEBOX MB covers vir ually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct onnection to most makes of monitor. For complete compatibility even for monitors without sound - an integral 4 watt audio
$\begin{array}{ll}\text { standard. } \\ \text { Telebox ST } \\ \text { for composite video input monitors } & \text { £32.95 }\end{array}$ Telebox STL as ST but with integral speaker E36.50 \& hyperband For overseas PAL versions state 5.5 or 6 mhz sound specification. $\mathbf{£ 6 9 . 9 5}$ Telebox RGB for analogue RGB monitors (15khz) E69.95 RGB Tel Shipping code on all Teleboxes is (B)
analog and

No Break Uninterruptable PSU's

Brand new and boxd 230 vots uninteruptabepower supplies

 fom Densel. Model MUK 0565-AUAF is 0.5 kva and MUD 085-AHBH is 1 kva . Both have sealed lead acid batteries. MUK are intemal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with full

640k RAM expandable - 2 serial \& 1 parallel with standard SIMMS ports

20 meg hard disk

1.2 meg 5-1/4" floppy -1.4 meg 3-1/2" floppy EGA driver on board

E BRAND NE
 onvy249.00

The Philips 9CM073 is suggested for the PC286 and the if a suitable card is installed. We can fit this at a cost of $£ 49.30$ tor the PC286 and $£ 39.00$ for the PC386.
to

POWER SUPPLIES

Power One SPL200-5200P 200 watt (250 w peak). Semi open rame giving $+5 v 35 a,-5 v 1.5 a,+12 v 4 a(8 a$ peak), $-12 v 15 a, 4 a$ (6 a peak). All outputs fully regulated
24ith protection on the $+5 v$ output. AC input selectable for $110 / 240$ ac . Dims $13^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime}$. Fully quaranteed RFE. $\quad £ 85.00(\mathrm{~B})$ Power One SPL130. 130 watts. Selectable for 12 v (4A) or $\bar{z} 4$ 2A). 5 v @ 20A. $\pm 12 \mathrm{v}$ @ 1.5A. Switch mode. New. \quad E59.95(B) stec AC-8151 40 watts. Switch mode. $+5 v$ © $2.5 a+12 v$ (
 Greendale 19AB0E 60 watts switch mode. $+5 \mathrm{v} \oplus 6 \mathrm{a}, \pm 12 \mathrm{v}$ © 9
$1 \mathrm{a},+15 \mathrm{v} 91 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms} .824 .95{ }^{\circ} \mathrm{C}$ Conver AC130. 130 watt hi-grade VDE spec. Switch mode. +5 (4) $15 \mathrm{a},-5 \mathrm{v}$ © $1 \mathrm{a}, \pm 12 \mathrm{v}$ © $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New. $£ 49.95^{\circ} \mathrm{C}$ $+12 v$ © 2.5a, $-12 v$ © $0.5 a,-5 v @ 0.5 a$. Famell G6/40A. Switch mode. 5 v (40 a . Encased E 95.00 HC) Farnell G24/5S. As above but 24 v (9) 5a.

BBC Model B APM Beard in 400 $=$ WIN GIOD £ 100 CASH FOR THE MOST NOVEL DEMONSTRATABLE APPLICATION!
BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics board has so many similarities to the regular BBC model B trat
we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this board!l It is supplie complete with a connector panel which brings all the I/O to ' and BNC type connectors - all you have to do is provide +5 and 12 V DC. The APM consists of a single PCB with most maj c's socketed. The ic's are too numerous to list but include a 6502, RAM and an SAA5050 teletext chip. Three 271:8 EPROMS contain the custom operating system on which we have no data, On application of DC power the system boots ard provides diagnostic information on the video output. On boand IP switches and jumpers select the ECONET address and dims: main board $13^{\circ} \times 10^{\circ}$. VO board $14^{\prime \prime} \times 3^{\prime \prime}$. Supplied tested

Only $£ 29.95_{\text {or } 2}$ for 553_{8}

SPECIAL INTEREST

Trio $0-18$ vdc bench PSU. 30 amps. New

Fujitsu M3041 600 LPM band printer
DEC LS/02 CPU board
250 de \& Schwarz SBUF TV test transmitter
Calcomp 1036 . Complete with SBTF2 Modulator
Caicomp 1036 large drum 3 pen plotte
Thurby La 160 B logic analyser
Anton Pitlar 400 Hz 3 pource
Newton Derby 400 Hz 70 Kw converter
Nikon PL-2 Projection lens meter/scope
Sekonic SD 150H 18 channel Hybrid recorder
HP 7580A A1 8 pen high speed drum plotte
Kenwood DA-3501 CD tester, laser pickup simulat

BRAND NEW PRINTERS

Hyundine 183. NLQ 17×17 dot matrix. Full width.

 Humal HDP-920. NLQ 24×18 dot matrix full width. Centronice 152-2 2×7 daisy. Qume QS-3 interface
ALL PC COMPATIBLE 386 AT - PC386

4xome

2 meg RAM expanded by siots
20 Mhz with 32 k cache.
Expandable to 64 k Expandable to $64 k$ 40 meg hard disk 1.2 meg 5-1/4" floppy VGA card installed

2 serial \& 1 parallel ports MS-DOS 4.01

- Co-processor socket Enhanced 102 keyboard Kwik Disk Accelerator
Sottware - FREE BRAND NEW AND BOXED!

ony£425.00

MONITORS

14" Forefront Model MTS-9600 SVGA multisync with resolution of $1024 \times 768.0 .28$ pitch. "Text" switch for word processing etc Overscan switch included. Ideal for the PC 386 or PC-286 with SVGA card added. Also compatibe with BBC, Amiga, Atari (including chimedes etc. In good used condition (possible minor screen bums). 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\circ}$. Only........... $14^{\prime \prime}$ Ph (E) 14" Philips Model CM8873 VGA multisync WGA 640×480 resolution. CGA, EGA o Sound with volume control. There is also a special "Text" switch for word processing, spreadsheets and the like. Compatible with BM PC's, Amiga, Atari (excluding the Archimedes etc. Good used condition (possible minor screen (Ens) 90 day guarantee. $15^{4} \times 14^{\circ} \times 12^{\prime}$. OnlyE139(E) Philips 9CM073 similar (not identical) to above for EGA/CGA amber or green screen selection. $14^{\prime \prime} \times 12^{\prime \prime} \times 13-1 / 2^{\prime \prime} \quad$ I99(E) KME 10 " high definition colour manitors. Nice
tight $0.28^{\prime \prime}$ dot pitch for superb clarity and modern styling. Operates from any 15.625 khz composite sync such as Atari, Commodore Amiga, Acom Archimedes \& BBC. Measures
only $13.5^{\circ} \times 12^{\prime \prime} \times 11^{\prime \prime}$. Also works as quality
elebox. Good used condition. 90 day guarant WTh our HGB KME as above for PC EGA standard. a lower than ever price! Completely CGA equivalent. Hi-res Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz andwith. A super monitor in attractive style moulded case. Ful NEC CGA 12"

E129 (E
quality ex-equipment fully tested with a 90 ay guarantee. In an attractive two tone bobed grey plastic case measuring $15^{\circ} \mathrm{L} \times$ been removed for contractual $\mathbf{5} 69$ (E)
20"',2"" and $26^{\prime \prime}$ AV SPECIALS
monitors, complete with composite video \& sound state colour ve teak style case. Perfect for Schools, Shops, Disco, Clubs $20^{\prime \prime}$. 20"....£135 22"....£155 26"....£185 (F) LL FOR PRICING ON NTSC VERSIONS! Superb Quality 6 foot $40 u$

19" Rack Cabinets

 Massive Reductions Virtually New, Ultra Smart Less Than Half Price!Top quality 19^{\prime} rack cabinets made in UK by Optima Enclosures Lid. Units feature door, full height lockable hali louvered back door and removable side panels. Fully ad justable internal fixing struts, ready nguration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribu ion sinp make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore equire only two side panels or stand singly. Overall dimension are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\prime} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as.
Rack 1 Complete with rem
Rack 2 Less side panels.
8275.00 (G)

- PACKED wlth bargalns

1992 WInter Issae of Display News now available - send larg

 All goods supplied subject to our standard Conditlons of Sale and undess otherwise stated guaranteed for go days. Al guarantees on a retum to bast basis. Rights reserved to
change prices \& specifications without prior notice. Orders subject to stock. Quotations willingly given for higher quantities than those stated. Bulk supplus always wanted for cash

INTERFACING WITH C

by
HOWARD HUTCHINGS
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

C HERE!
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to troubleshoot. Paperback 217 pages.
Price £14.95 0750616326

PC-Based Instrumentation and

Control

M Tooley
Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.

Price £14.95 0750616318

Electronic Circuits Handbook M Tooley

Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts.
Paperback 345 pages.
Price £24.95 0750607505

Communication Services via

Satellite

GELewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379
Digital Logic Design Brian Holdsworth
As one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays. Paperback 448 pages.
Price £19. 500750605014

The Circuit Designers
Companion
T Wiliams
This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike. Hardback 320 pages
Price £2500 0 750611421

> Credil card orders accepted by phone 0816523614

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please supply the following titles:

PLEASE ADI $£ 2.50$ FOR POSTAGE

Add VAT at local rate
NB ZER() RATE FOR UK \& EIRE ...
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to Day the ac companying invoice within 30 days. I will atlach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleatzle condition for a full refund.

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Lid. Please debit my credit card as follows:
Accesi/Master Barclay/Nisa Amex Diners

Credit Card No.
Exp date
NAME (Please print)
organisationn
STREET
TOWN
cOUVTY \qquad POST CODE \qquad COUNTRY

DATE TELEPHONE NUMBER
signature

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Gemany, $f \%$ Greece, 4% Italy, 3 "\% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VATNO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Pledse delete as appropriate. I do/do not wish to recieve further (letails about books, iournals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutten Surrey SM25AS Registered in England 151537

USING RF TRANSISTORS

Biased view

Norm Dye and Helge
Granberg explain the ins and outs of bias circuits, and show how to handle
temperature
compensation. The authors also look at using devices in pulse mode. From the book RF Transistors: principles and practical applications.

Iu hipolar transistors, base current is equal to $\mathrm{I}_{\mathrm{c}(\text { peak }} / \mathrm{l}_{\mathrm{FE}}$. So the base bias supply must be able to supply this current without too much eifect on the base-emitter voltage between the no-signal and the maximum signal conditions. The supply should also be a constant voltage source, as variations of a few millivolts represent a large portion of the nominal (0.63-0.67V typical value.
But specific applications demand many other requirements of the base bias voltage source.
In some instances a large value capacitor can be connected across the voltage supply, further reducing its ac impedance. But this makes impedance dependent on frequency of modulation, and is a practical solution only where the modulating frequency is in the medium to high audio frequency range.
One of the simplest biasing circuits for bipolar transistors (Fig. 1) uses a clamping diode to provide a low impedance voltage source.
Forward current of the diode musi be greater than the peak base current of the transistor. In the circuit. current is adjusted with R_{2} and the resistance of $R F C_{1}$ and R_{1} is used to reduce the actual base voltage to a slightly lower value than the forward voltage of D_{1}. Mechanical connection to the heat sink or the transistor housing performs a temperature compensating function for $T r_{1}$ - an adequate

Fis. 1. Simple biasing circuit using a champing diode. It is inefficient since a minimum of $I_{B(p e a k)}$ must go through D_{1}. $T_{r_{7}}$ is the transistor to be biased.

Fig. 2. A clamping diode scheme is used as in Fig. 1, but a low current flows through the diodes and is then amplified by an emitter follower.
solution although for perfect temperature racking, $T r_{1}$ and D, should have similar do parameters.
A disadvantage of the cireuit is its inefficiency, especially in biasing high power devices: $\left(V_{\mathrm{cc}}-V_{\mathrm{b}}\right) \times I_{\mathrm{b}(\max)}$ will always be dissipated in the dropping resistors.

But the loss can be overcome by amplifying the clamping diode current with an emitter follower (Fig. 2). Two series diodes (D_{1} and D_{2}) are used so that one can compensate for the $V_{\mathrm{BE}(1)}$ drop in $T r_{1}$. In this case low current signal diodes can be used and their forward current is equal to $/_{\text {(hias) }} / h_{\mathrm{FE}(\mathrm{Tr})}$.

For best result, $T r_{i}$ should have a linear h_{FE} up to the peak bias current required. In higher power systems Tr, must be cooled, and ideally, it and one of the series diodes should remain at ambient temperature. The other diode (D_{1} or D_{2}) can be used for temperature compensation of the if device.

When the diode (having long leads) is located near the rf transistor the result is an effective fast-responding system. The leads can be formed to allow the body of the diode to be pressed against the ceramic lid of the if transistor and fastened in place with thermally conductive epoxy.
Resistor R_{1} sets the bias idle current and R_{2} limits its range of adjustment - the value of R_{2} depends on the supply voltage employed. Capacitor C_{1} and of choke ofc are there simply to prevent the ri signal from getting into $T_{r_{1}}$.
Another fairly simple bipolar bias source (Fig. 3) has its output voltage equal to the base emitter junction drop of $T r_{1}$ plus the drop across $R_{3} . R_{1}$ must be selected to provide suflicient base drive current for $T r_{2}$. sel by its $h_{\text {re }}$. Normally this current is in the range of a few milliamperes, and $T r$, can be any small signal transistor in a package that can be easily attached to the heat sink or rf transistor housing for temperature compensation. The only requirement is that its $V_{\text {BE: (})}$ at that current must be lower than that of the rf transistor at its bias current level. Maximum current capability depends on T_{2} and R_{2}.

Power dissipation of T_{2} can be up to a few watts. In most cases it should be heat sunk.

But it must be electrically isolated from ground. The value of R_{2} can be calculated as:

$$
\left(V_{C E}-l_{C E(\text { ata }}\right) / /_{\mathrm{b}}
$$

Capacitors C_{1-3} are a precaution to suppress high frequency oscillations. but may not be necessary depending on the transistors used and the physical circuit lay-out.
Output source impedances for the circuit. when used in conjunction with a 300 W amplifier, have been calculated as low as 200300 ms .

Biasing mosfets

Gate threshold voltages of mosfets are $5-6 \mathrm{~V}$. so some gate bias voltage is needed in most applications.
Class C operation is possible (zero gate bias), though there is a cost in low power gain: the input voltage swing must be big enough to overcome the gate voltage, from zero to over the threshold level. But drain efficiency is usually higher than in other classes. Operation can also approach class D - especially if overdriven.

Zero bias is of ten used in amplifiers intended for signals not needing linear amplification - such as fm signals and some forms of cw signals. Efficiencies in excess of 80% are not uncommon.
In class B, the gate bias voltage is set just below the threshold, resulting in zero drain idle-current flow. Power gain is higher than in
class C, but drain efficiency is $10-15 \%$ lower Class B is also suitable only for non-linear amplification.

Between classes. the decisions to be made are whether the system has power gain 10 spare and the importance of efficiency.

At higher frequencies, such as uhf. a good compromise may be class B or even class $A B$. In class $A B$ the gate bias voltage is somewhat higher that the device threshold, with drain itlle-current flow resulting.
The idle sutrent required to place the device in the linear mode is usually given in a data sheet. In this respect, mosfets are much more sensitive to idle current than bipolar transistors. and also require somewhat higher current levels compared to bipolars of similar electrical size.

Temperature compensation

Temperature compensation of mosfets can most readily be accomplished with networks of thermisiors and resistors - the ratio of the two musi be adjusted for thermistor characteristics and the g_{f} of the fet. Changes in the gate thresinold voltage are inversely proportional to temperature and amount to approximately $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. They have a larger effect on the $/ \mathrm{DQ}$ of a fet with high gfs than one with low gfs. Unfortunately the situation is complicated by the fact that g_{f}, is also reduced at elevated temperatures, making the drain idecurrent dependent on two variables.

In spite of this dependence, this compensa-

Fig. 3. Bias circuit featuring the lowest source impedance of the less complex bias circuits. It is recommended for high power device biasing and for other demanding applications.
tion method can operate satisfactorily and is repeatable for production. The thermistor is therrally connected into a convenient location in the heat source in a similar way to the compensating diodes with bipolar units. Figure 4 shows a simple mostet biasing circuit.
Most mosfet device data sheets give $V_{\text {gst(h) }}$ versus I_{1} data. But the values are only typical. In some cases gfs can vary as much as 100% from unit 10 unit. In production. the devices shoulid have gfs values within 20% of each othet, or every amplifier will have to be indi-

Operating transistors in a pulse mode

RF energy, in the form of pulses, is exploited in many applications including medical electronics, laser excitation and various types of radar. In each, the specifications of carrier frequency, pulse repetition rate and duty cycle vary.
The carrier frequency is usually much higher than the pulse repetition rate, resulting in the generation of bursts of rf at the carrier frequency whose lengths depend on the pulse width. Pulse repetition rates are typically in the audio range and duty cycles range between 0.05 and 10%.
For low duty-cycle applications - such as radar - special devices have been developed to operate at higher peak powers, but with relatively low average powers, reducing dissipation. These transistors (uhf to microwave) are almost exclusively bipolar.
In general, bjts have higher peak power capabilities than mosfets. Peak power performance can be further improved by reducing the emitter ballast resistor values to lower than normally required for cw.
The epitaxial layer that controls the transistor's saturated power, is also made thinner than normal since the problem of ruggedness is partly eliminated by the low average power.
Increasing the pulse width increases the dissipation, and at pulse widths of 1 ms and wider the device can be considered to operate like a cw signal: the temperature time constant of a medium size rf power die is around 1 ms , beyond which more heat will be transferred into the bulk silicon and through it to the transistor housing.
If the pulses are short but the repetition rate approaches 1 kHz (1 ms period), the effect is the same. Transistors made
exclusively for pulse operation can produce peak power levels of five to six times the cw rating for a die of a similar size.
Standard transistors designed for cw have a multiplying factor more of the order of three to four.

Mosfets for pulsed power

Mosfets can be used for pulsed power operation, but they have disadvantages as well as advantages compared to bjts. Disadvantages include pulse drooping, where the trailing end of the pulse has a lower amplitude than the leading end. It is caused by the decreasing $g_{f s}$ of a mosfet with temperature. Corrective circuitry can compensate, but adds to circuit complexity.
Advantages include smaller phase delays and faster rise and fall times. Choice depends on the application and on what the designer decides which is the most suitable.
Additional considerations in design of a pulsed amplifier are energy storage near the device, and minimising inductance in the emitter leads. Both affect rise time of the pulse and prevent droop resulting from voltage decay during its duration.
Some trade-off will be required because as the emitter inductance to ground is reduced, wideband matching is made more difficult. Also a minimum amount of inductance is needed in the collector circuit to achieve adequate decoupling. But pulses with rise times of the order of tens of nanoseconds can be obtained with devices that deliver up to several hundred watts of power over bandwidths of at least 20 to 30%.

Fig. 4. Mosfet bias circuit using a thermistorresistor network for temperature compensation.
vidually checked for temperature tracking. Some manufacturers such as Motorola supply rf power fets with specified ranges of $g_{\text {is }}$ matching.
A closed loop system for mosfet biasing (Fig. 5) could provide an automatic and precise temperature compensation for any mosfet regardless of electrical size and g_{fs}.
No temperature sensing elements need be connected to the heat sink or to the device housing. In fact, fets with different gate threshold voltages can be changed in the amplifier without affecting the idle current, so the gate threshold voltage can vary within wide limits over a short or long time for a variety of reasons.
Other factors affecting $V_{\text {gsth }}$, in addition to temperature, might be moisture levels and atmospheric pressure.

Principle of automatic bias

In the automatic bias circuit, the idle current of the mosfet amplifier is initially set to class A. $A B$, or anywhere in between these bias limits by $R_{7}-$ which also provides a stable voltage reference to the negative input of the operational amplifier U_{1}.
Current flows through R_{1} with a consequent voltage generated across it. The voltage is fed
to the positive input of U_{1}, resulting in the output of U_{1} following it in polarity but not in amplitude. Due to the voltage gain in U_{1}, which operates in a dc open loop mode, its output voltage excursions are much higher than those generated across R_{1}. So if the current through R_{1} tends to increase for any reason, part of the output voltage of U_{1} fed to the amplifier gate bias input will adjust to a lower level, holding the current through R_{\mid}at its original valuc. A similar self adjustment will also take place in the opposite direction.
Values for the resistive voltage divider R_{+-5} have been selected for a suitable range, sufficient to control the amplifier fet gate with the full voltage swing at the output of U_{1}.
When the amplifier is rf driven, the current through R_{1} increases and the bias voltage to the amplifier tends to decrease along with the voltage to the positive input of U_{1}.

But at the same time, T_{i}, will start conducting, lowering the effective value of R_{1} since $T r_{1}$ is in parallel with it. The turn-on gate voltage for T_{1} is obtained from the voltage drop across R_{2}.
Typical values for R_{1} are 5-10 10 and for R_{2}. $0.1-0.2 \Omega$. The values must be selected on the characteristics of $T_{r_{1}}$, the exact application and the currents in question.
The higher the current drawn by the amplifier, the harder will $T r_{1}$ be turned on. For example if R_{1} is 5Ω and $T r_{1}$ is fully turned on with its $r_{\mathrm{DS}(o n)}$ of 0.2Ω, the effective value of $R_{\text {। }}$ will vary between 5Ω and less than 0.2Ω, depending on the current drawn. So the current variable resistor ($T_{r_{1}}-R_{1}$) makes it possible to keep the output of U_{1} and the resulting amplifier bias voltage relatively stable under varying current conditions.

The circuit is ideal for class A amplifiers, where the drain current remains constant regardless of the rf drive. $T_{r_{1}}, R_{2}$ and R_{3} can be omitted for class A amplifiers and the value of R_{1} can be made as low as $0.05-0.1 \Omega$.

> Radio Frequency Transistors

Principles and? ?ractical Applications

Norm Dye is Motorola's product planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Motorola. Their rf transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the UHF frequencies.

> RF Transistors: Principles and practical applications is available by postal application to room L333 EW+WW,
> Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
> Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614).
> 288pp HARDBACK 075069059 3 Cost $£ 19.95$ + Postage $£ 2.50$

CLASSIFIED

ARTICLES FOR SALE

V/SA

Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWA YS AVAILABLE SPECIALIST REPAIR WORK \& CALIBRATION UNDERTAKEN
ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: $(+44) 0243545111 / 2 \quad$ Fax: $(+44) 0243542457$ HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED
CIRCIE NO. 133 ON REPLY CARD

CIRCUIT BOAROS

TELEKINETIKS

 RS232 CONTROLLED VO FOR IBN COMPATBLES INEXPENSIVE DATA ACQUISTIOP AND CONTROL Populated PCB with protoryang arez applications with Poplated PCB with prototyping aree applications withsource code in Tuto
asca include AD Conversion, DOA Corversion Ste ypor Motor Con ans Waverm Synthesis Pace of kt including documentaton $₹ 100$ (all Sole Proprietor: B. Thleki (make cheques payable to a Tolekl) ank, Newcastle Undor-Lymee, Statts ST5 OSL. Teiephone (0782) 662099

FREE CLASSIFIED

SELLING: NEW PORTABLE CB trasceiver curosonic FM, P.L.L. 40 channels $4 / \mathrm{I}$ watts, UK-model, ultra-slim $(7.24 \mathrm{H}$ x $2.76 \mathrm{~W} \times 1.73 \mathrm{D}$ inch) squelch/tone control, jack for external micro/earphone/ power supply. BNC antenna connector, rubher antenna: Tel: $01(043 / 512 / 26(1371$ (after 8 pm , please ask for Christoph).

FOR SALE HP 8556A IIP8553B plug-in units for 14IT O.I.R.O. £550. Tel: 0442 842457 wanted parabolic antenna and feed $>1.2 \mathrm{~m}$ good for 12 G .

WHY NOT FAX YOUR ADVERT ON 0816528931

COMPELEC

1994 BARGAIN LIST
THE ELECTRONIC ESSENTIAL, MILLIONS OF COMPONENTS AT

UNBEATABLE PRICES. FOR A FREE COPY PIONE, FAX, OR WRITE (TRAI IE ONLY) compelec
14 CONSTABLE ROAD, ST. IVES, huntingidon, CAMiss. PR176EQ 0480300819
WE AISO PITRCHASE ALL TYPES OF Electronic components. LISTS TO Above ampress.

WANTED
 Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M \& B RADIO
 86 Bishopgate Street Leeds LS1 4BB
 Tel: 0532435649
 Fax: 0532426881
 3956

WANTED

Receivers, Transmitters, Tes Equipment, Components, Cabre and Electronic, Scrap. Boxes PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT A.R. Sinclair, Electronics, Stockholders 2 Normaris Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193 Mobile. 0860 214302. Fax: 0438812387 Telephone: 0763246939

STEWART OF READING

 110 WYKEHAM ROAD, READING, RG6 1PL. TEL. 0734268041 FAX: 0734351696TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANITYT

WFNTED

High-end Test Equipment, only brand names as Hewlett-Packard Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid
Please send or fax your offer to: HTB ELEKTRONIK
Alter Apeler Weg 5, 2858 Schiffdorf, West Germany
TEL: 0104947067044
FAX: 0104947067049

NEW VMEDSP MPV901 Boxed. Offers: 0703733312.

Wanted valyes especially KT66 KY88. PX4, PX25 (also transistors IC's capacitors, valve radios/hi-fi). If possible send written list for offer by return to Billington Export, 1E Gilmans Ind Estate, Billinghurst, Sussex, RH1 19 EZ. Tel 0403784961 . Fax 0403783519.

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME
REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD.

21 Lodge Lane, N.Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates,

please contact

Pat Bunce on:

Tel: 081-652 8339 Fax: 081-652 8931

BOOKS \& MANUALS

THE VINTAGE WIRELESS BOOK LISTING
Published regularty containing 100s of out-ot-print, old and collectable wireless and TV books, amateur radio books and magazines. Send six first class stamps for 100 page listing or $\mathbf{~ 3} .75$ for next four issues.

NEW BOOKS

JANES MILTAAPY COMMUNICATIONS 1989. 10th Edition A vast volume (862 pages) Large format wraps Contains descriptions. photographs and basic technical detal sof the world's mi tary communications equipment Brand new in cärton Published at $£ 80$ Special Offer $£ 45$ ncluding postage $\cup \mathrm{K}$ Foreign postage extra
JANES COMMAND INFORMAHON SYSTEMS 1989-1990. (C31 Systems) Large format 208po Contalns descriptions, photographs and basic technical details of the world's mill tary command commun cations and intelligence gathering systems, including radar equipment Brand new in carton Published at $£ 80$ Speciat Offer $£ 40$ inclusive of postage $\cup \mathrm{K}$
WINIING THE RADAR WAR A new book on World war 2 radar The suspense filled story of the experiments and electronic eavesdroppirg Author was one of the key technicans 224 pp illus $£ 995+£ 200 \mathrm{p}+\mathrm{p}$

CHEVET VINTAGE SUPPLIES

Dept P.W. 157 Dickson Road, Blackpool FY1 2EU Tel: 0-253 751858 or 0253302979

VISA

REPRINTS

a ready made sales aid

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact: Jan Crowther, Room 1006, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, UK Telephone: 081-652 8229 Fax: 081-652 4728

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.10$ per word.

Special rates:

6 insertions f 2.10 per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \longrightarrow
Extras:
Spot Colour $\mathbf{2 0 \%}$
Box number service $\mathbf{£} 22.00$

EXAMPLE SIZE

$3 \mathrm{~cm} \times 1$ column
For 1 insertion cost is: $£ 45.00$

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.
all rates quoted are exclusive of vat: All major credit cards accepted
Please debit my \qquad card a total of f \qquad -

Expiry Date:
Please ensure that address given is where your credit card statement goes to.
NAME .
ADDRESS
TEL NO .
\qquad
....................... SIGNATURE
All advertisements must be received five weeks prior to publication date. All cancellations must be received by eight weeks prior to publication date. After that no advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Pat Bunce on 081-652 8339.

ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

 readers to obtain more information on companies' products or services.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorots verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff

MQP ELECTRONICS LTD.
Tel: 0666825146
Fax: 0666825141
CIRCLENO. 142 ON REPIY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Commurications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERAMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.
Olson Electronics Limited Tel: 0818852884 Fax: 0818852496
CIRCIE NO. 143 ON RERY Y CARD

FREE VXI BROCHURE

The National Instruments VXI brochure describes the company's embedded PC and GPIB controllers, MXIbus interface kits for multiple platforms, and NI-VXI, LabWindows, and LabVIEW software for developing and controlling VXI instrumentation systems.

NATIONAL INSTRUMENTS
 Tel: 0800289877

CIRCLE NO. 146 ON REPLY CARD

DATAUPDATE is
Electronics Weekly's section for advertisers to market their product information. From catalogues to newsletters Data Update is designed to present your product information in a clear and attractive manner, whilst our colour coded enquiry numbers help readers to obtain the information they need fast.
CIRCIE NO. 147 ON REPLY CARD

ELECTRONNCS WORID
 + WIRELESS WORLD

IR Group, Europe's leading supplier of used instrumentation, has published the latest update of models available. With a range from power supplies to network analysers, most items are available on short delivery and come with a 12 month parts and labour warranty. For a detailed quotation call
0753670000. circle no. 144 on reply card

2nd EDITION TOKO RF catalogue

Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.
The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN10 7NQ Tel: (0992) 441306 Fax: (0992) 441306 CIRCIE NO. 148 ON REPIY CARD

ELECTRONIC UPDATE is Electronic World and Wireless World's section for advertisers to market their product information. From catalogues to newsletters, Data Update is designed to present your product information in a clear and attractive manner while our "CIRCLE NUMBERS" help readers to obtain the information they need fast. CIRCLE NO. 145 ON REPIY CARD

High Speed EPROM \& FLASH Programming from your PC \square Programs EPROMs to 4 Mbits/ 32-pins
\square Superfast 8,16 \& 32-bit programming
\square Approved algorithms
\square Menu driven software included
\square Sophisticated editor functions
\square Easy file management
\square FREE demo disk available
Stag Programmers Limited Martinfield Welwyn Garden Clity, Herfordshire, AL7 1 J UK
Tel: (0707) 332148
Fax: (0707) 371503
CIRCLENO. 149 ON REPLY CARD

* HP8569B 10 MHz -226Hz micRowave SPECTRUM ANALYSERS * High-Performance features include external mixing to

115 GHz , Internal Preselection $1.7-22 \mathrm{GHz}$. Wide resolution range $100 \mathrm{~Hz}-3 \mathrm{MHz}$. On-screen readout, direct plotter output. Digital storage. RF input trom -123 to +30 dom. MPIB 'UNREPEATABLE Price $\mathbb{4 9 5 0}$ each

* MARCONI IF2370 1250 MHz SPECTRUM AMAL YSER SYSTEM *

TF2370 including TK2373 trequency extender to $1.25 \mathrm{GHz}, 100 \mathrm{db}$ dynamic range. $0.1 \mathrm{db} \& 5 \mathrm{~Hz}$ resolution. Frequency resolution to 1 Hz Many features inc phase lock, digital storage, tracking generator. Modern brown livery. Factory New condition
\qquad
MARCONIINSTRUMENTS 2017 signal generator $10 \mathrm{kHz}-1024 \mathrm{MHz}$ microprocessor-controlled cavty-tuned low-noise AM/FM $+194 d$ bm output. Few only FREE CALIBRATION INCLUDING FREE CALIBRATION- $£ 2000$ each

2019 syst: hesized AM/FM signal generator $80 \mathrm{kHz}-1040 \mathrm{MHz}$ 6059A signal source $12-18 \mathrm{GH}$ z
6140 GPIB adapter
6460.6420 power meter $10 \mathrm{MHz} \cdot 12.4 \mathrm{GHz} 03 \mathrm{uW}-10 \mathrm{~mW}$ $6460 / 6423$ power meter $10 \mathrm{MKz}-12.4 \mathrm{GHz} 0.3 \mathrm{~mW}-3 \mathrm{~W}$ 6700 B sweep oscillator $8 \cdot 12.4 \mathrm{GHz} \& 12.4 \cdot 18 \mathrm{GHz}$ $6960: 6910$ digital RF power meter 10 MHz -20GHz G.PIB 6912 power sensor $30 \mathrm{kHz}-4.2 \mathrm{GHz}$ for above series 893B audio power metes
OA2805A PCM regenerator tesis set
TF2370110MHz spectrumanalyser
TF2910,4 non-linear distortion (video) analyser TF2914A TV insertion signal analyse TF2910 TV interval timer

36 EASTCOTELANE S HARROU NIIDDLESEX HAZSDB TEL: 081-422 3593. FAX: 081.423 1009

331A distortion meter
339A distortion meter
349A distorion meter
355 C atenuator $\mathrm{DC}-1 \mathrm{GHz} \mathrm{O}-11 \mathrm{db} \& 355 \mathrm{D} 0-120 \mathrm{db}$

TEST EQUIPMENT

ANRITSUMEE18A PCM portable error rate test set BRUEL 8 KJAER 2511 vibration meter set/1621 filte BRUEL \& KJAER 2610 meas unng amplif BRUEL \& KJAER 3317 Ieverabor RRUE \& KJAER 1618 bandel evel recorder BRUEL \& KJAER 3204 tapping machine BRUEL \& KJAER 3513 portable vbration analyser BRUEL \& KJAER 2515 vibration analyser AVORM215L. 2 insulation \& breakdown teste DATRON 1065 digital multimeter
DRANET2 626 mains disturbance analyser/ $2 \times P A-600$ DRANETZ 606 -3 line d isturbance analyser FLANN MICROWAVE 27072 frequency meter $73-113 \mathrm{GHz}$ KEITHEY 192 progrator

MUCH MORE, FULLY RE-FURBISHED, FULLY GUARANTEED TES

 EQUIPMENT AVAILABLE FROM STOCK. PLEASE REQUEST OUR CURRENT LISTINGS WE CAN FAX LISTS \& SHIP GOODS WORLD WIDE HIGH-END EOUIPMENT AL WAYS WANTED FOR STOCK. CALL USNOW -
MAURY MICROWAVE8650E TNC-calibration kit

NAGRAIV-SJ tape recorder

PHILIPS PM5 193 synthesized function generato PHiLIPSPM2534 digital muitimeter
PHILIPS PM8272 XY \& Xtdual-pen analogue plotte RACAL 2101 trequency counter 21 GHz
RACAL 9008 automatic modulation meter $\$ 325.9009$ RACAL 9081 synthesized AM/FM sig' gen' 5.520 mHz RACAL 9300 RMS voltmeter -80 dB to +50 dB RACAL. DANA 9302 RF milli-voltmeter 1.5 GHZ
RACAL-DANA 9303 level meter, digital
ROBERTS \& ARMSTRONG fo-cable end-cut measure unit
TEKTRONIX TM503/SG503/G501/PG506 scope cal ibrator TEKTRONIX J16 diglial photometer TEKTRONIXAM503 current amplifier 7 TM501/A630220A probe TEKTRONIX AM503/A6303/TM501 100A current probe TEKTRONIX 22351 100M Hz OSClloscope
WAVETEK $20000-1400 \mathrm{MHz}$ wep ger

3325 A synthes izerfiuncion generator 3335 A synthesizer'level generator with option 01 3552A transmission test set 3562A dynamic signal analyser (MLA) with 37938 \& $3730 B / 3736$ R RF cown-converter ($1.7-4.2 \mathrm{GHz}$)
3781 A pattem generator
3782Aeror detector
400 FL mV -Meter 100 uV - $300 \mathrm{~V} \mathrm{fs}, 20 \mathrm{~Hz}-4 \mathrm{MHz}$ 415 E swr meter
4274A mutti-frequercy (100 Hz -100kHz) LCR component meter 4276N001 LCZ meter
432 A 478 A microwave power meter $10 \mathrm{MHz}-10 \mathrm{GHz}$ 432AR4886A uwavepower meter 26.5-40GHz (waveguide) 5342A 18GHz frequency counter
6253 A dual power supply 0 -20V 0 -3A twice
6253A dual power supply 0-20V 0-3A twice 6825 A b polar power supplylamp-20 to
70300 A track ing generatorp ug-in unit
70907 A extemal mixer for 70000 -ser spec
70907 A extemal mixer for 70000 -ser spectrum analyse
7035 BX Y single pen analogue chart recorder
7035 BX - s single pen analogue chart recorder 8112A pulse generator
8011 A pulse generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$ B16Asloted line 1.8 .18 GHz with carriage 809 C \& 447 B 8405A vector vollmeter, voltage \& phase to 1000 MHz 8406A comb generator
8447ARF amplifer $0.1-1300 \mathrm{MHz}$, 22db gain, 0. TW o/p 8505A network anaiyser system inclucing 8503A S -parameter test set an 8501A storage normaliser 8601A110MHz sweep generator
8620 C sweep generator, many plug-in units ava lable 8671 A synthes sized signal generator $2 \cdot 6.2 \mathrm{GHz}$ 86732 -18GHz synthesized signal generator TESTED BEFORE DESPATCH BY INDEPE YDENT LABOR VITORY We would be pleased to handle all grades of calibration or NAMAS certification by same laboratory at cost price. All items covered by our 90 -day parts and labour guarantee and 7 -day 'Right to Refuse (money back) warranty. ALL PRICES SUBJECT TO ADDITIONAL VAT AND CARRIAGE

INDEX TO ADVERTISERS

	$P A G E$		$P A G E$
Amplicon Liveline	143	M \& B Radio (Leeds)	135
Bull Electrical	95	MQP Electronics	145
Citadel Products Ltd	IFC	Number One Systems	155
Chemar Value	150	Pico Technology Ltd	136
Dataman Programmers Ltd	OBC	Powerware	96
Display Electronics Ltd	166	Ralfe Electronics	176
Electrovalue Ltd	135	Research Communications	96
Ericsson	155	Seetrax Ltd	111
Field Electric	145	Smatr Communications	136,145
Halcyon Electronics Ltd	145	Stewart of Reading	150
Johns Radio	99	Surrey Electronics Ltd	150
JPG Electronics	150	Telnet	136
Kestral Electronics	136	Texas Instruments	90
Keytronics	116	Tsien Ltd	90
Kinloch	135	Ultimate Technology	IBC
Labcentre	106		

FROM CONCEPT TO ARTWORK IN I DAY

Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses REAL-IM 三 checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the de sired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTiboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, of the whole board. ULTlboard's inteiligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTlboard's backannotation automatically t.pdates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is posi processed to generate pen / photo plots, dot matrixlaser or postscript prints and custom drill files.
CIRCLENO. 100 ON REPLY CARD

ULTlboard PCB Design/ULTIcap

Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions,
featuring unlimited design capacity.

The Enropean quality alternative

the smallest, most powerful personal programmer you can buy - and only $£ 495$! Plus V, AT rom engine management to Antarctic survey teams, you can find S4s the world over, up and running where the competition is left far behind. S4 gets the job done in every situation you might' expect - and quite a few you would ont! CAPABILITIES - A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices. Dataman S4 programs devices up to 8 Mbits and the unique, loadable Library means that new parts can be added quickly without extra cost! Serial EPRoMs, 40 pin EPROMs and micro-controllers are all supported with optional modules.

Datamân $\$ 4$ is shipped ready to use, complete with a mains charger, emulation lead, write lead, personal organiser/ instruction manual, MS-DOS communications software, spare Library ROM - and a 3 year guarantee.

[^2]
[^0]: Subscriptions ottice, 205 E. 42nd Street, NY 10117 Overseas advertising agents France and Beigium Pierre Mussard $1 \mathrm{~B}-20$ Place de la Madeleine Paris 75008 United States of America Ray Barnes Reed Business Publishing States of America: Ray Barnes, Reed Business Pubishing Ltid 205 E 42nd St 2680. Telex 23827

 USA mailing agents Mercury Airfreight International Ltd Inc. 10(b) Englehard Ave, Avene: NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above
 Printed by BPCC Magazines (Carlisle) Lidd Newtown Trading Eskte, Carlisle. Cumbria, CA2 7NR Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
 ©Reed Business Publishing Ltd 1992 ISSN 09598332

[^1]: * I believe the misunderstanding arises from Lyall Watson's first book ${ }^{17}$ in which he reported how experiments with continuous subsonic wavetorms not nusical 'sub-bass' demonstrated destructive and fatal qualities.

[^2]: Station Road, Maiden Newton, Dorset? OT2 OAE, UǨ. Telephone: 0300320719 . Fax: 0300321012 . Telex: 418442 - BBS: 0300321095 24hr . Madam: V32bis/16.8K HST. 22 Lake Beauty Drive, Suite 101, Orlando, FL 32806, USA. Telephone: (407) 649-3335 . Fax: (407) 649-3310 . BBS: (407) 649-3159 24hr . Modem: V32bis/16.8K HSI.

