EIECTRONICS

WORLD

+ WIRELESS WORLD

DIGITAL DESIGN The state of state machines

PC ENGINEERING IBM PC on a chip

APPLICATIONS Electronic power factor correction

RF ENGINEERING The important parameters of receiver design

ANALOGUE DESIGN
Winning double: current feedback+ transconductance
 low comistearium majes

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL $74 / 54$ series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16 Mbit .

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU 's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 \& 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card,
cable, software and manual only $\mathbf{~} \mathbf{3 9 5}$
Please add $\mathbf{£ 7}$ carriage (by overnight courier) for UK orders, $\mathbf{£ 2 0}$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD
DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

Cover:Illustration Kevin Osbourne

ADD ON A SPECTRUM

 ANALYSERSpectrum analysers are invaluable in R^{-} design but are expensive. Ian Hickman presents a modular analyser design which delivers usefut performance at an affordable price. This oscilloscope add-on can displíy a 0 to 400 MHz sweep with a true logarthirmic input amplitude response.

PC ENGINEERING \qquad 1000
Filter Master Active makes designing good analngue filters fast and reasonably straightforward, as John Anderson explains. But is it worth $£ 600$?

READER SERVICES OFFER

THE IRSF3010 is an 11 A smart power mostet. Frank Ogden documents new technology from International Rectifier which is smart enough to be virtually unburstable, yet cheap enough to replace standard mosfets in most applications. Obtain a free sample and see for yourself.

PC ON A CHIP \qquad .1003
One chip now runs software elght times as fast as the original XT computer system. David Guest investigates the single chip $P C^{\prime}$'s features and compromises.

DISTORTION IN POW'ER AMPLIFIERS10(1)
Is class $A B$ better than Class B ? Doug Self analyses audio power stage configurations and draws some interesting conclusions.

WORKING WITH PROGRAMMABLE LOGIC...... 1017
Sequential logic - Registered functions. and state machines in particular, can fit into registered PALs or field programmable logic sequencers. As with combinatorial logic, each needs to be decided on it. merits. Geoff Bostock explains the ground rules.

THE FACTS AND FIGLRES GF RECEIVER PERFORMANCE
In receiver specifications, static performance figures are useful, but nowhere near as much as dynamic parameters. Jon Dyer cuts through the haze of misunderstanding surrounding $H F$ receiver design.

USING RF TRANSISTCRS. \qquad 1049
A key criterion in RF circuit design is choosing the right transistor. Motorola applications engineers Norm Dye and Helge Granberg consider the important parameters for boah power and small-signal devices in bipolar and power mosfet form

REGULARS

COMMENT

New challenge for amateur radio.

UPDATE

972ISDN does it now. Mirror, mirror on the chip. Video disc recorder may rival tape. Dodgy chips beat gold and drugs, Antenna boost for cellular phones, Joint development sees 64Mbit dram samples. Esprit to go more commercial. Philips to make monitor tubes in Austria.

RESEARCH NOTES

Can noise improve your hearing?' Fermat's ghost lad to rest? Laser/sound will declog your tubes ... or simply steam them. Superconducting barrier starts to mett.

CIRCUIT IDEAS

Variable-inductance. low-frequency VCO. DSI233 replaces monostable, PC uses parallel printer port.
Under-frequency inverter protection. Single-diode fullwave rectifier.

LETTERS

Dirty Windon's: out in the cold. kids playing, too slow: Relay breakdown. Spectrum space. Absolute test not needed. Neural omissions, Give Workhench a chance CFA: the last word? Respect the giants

NEW PRODUCTS1039

EW + WW"s pick of new offerings in electronies and production enginecring technology.

DESIGN BRIEF

Versatile circuit building block comprising a currentfeedback and transconductance amplifiers in a single IC package is discussed by lan Hickman.

APPLICATIONS \qquad 1034
Power factor control. switching power, PABX on a chip, better LCD backlighting.

In next month's issue: Designing a microprocessor controlled power supply. Matthew Rahman details a fully keypadprogrammable, mult-rail laboratory instrument. His article provides detailed circuits and documented source code for the $Z 80$ processor at the heart of the design. This code will be made available to readers on disk.

JANUARY ISSUE IS ON SALE DECEMBER 30

ProTEUS

The Complete Electronics Design System

Schematic Capture

\square

Simutation

a Non-Linear \& Linea: Analogue Simulation.
0 Evert driven Digital Simulation with modelling anguage.

- Partitionec simulation of large designs with muticle analogue \& digital sections.
- Graphs displayed directly on the schematic.

PGB Daxtign

- Multi-Layer and SMT support.
- Unlimited Design Capacity.

O Full DRC and Connectivity Checking.

- Advanced Multi-Strategy Autorouting.
- Dutput to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

labcenter
 Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0274542868 . Fax: 0274481078.
 E I ectronics 14 Marriner's Drive, Bradford BD9 4JJ.

[^0]
New challenge for amateur radio

EDITOR
Frank Ogden
081-6523128

DEPUTY EDITOR
Martin Eccles
081-6528638

CONSULTANT
Derek Rowe
DESIGN \& PRODUCTION Alan Kerr

EDITORIAL ADMINISTRATION
Lorraine Spindler
081-652 3614
ADVERTISEMENT MANAGER
Carol Nobbs
081-6528327
SALES EXECUTIVE
Pat Bunce
081-6528339
ADVERTISING PRODUCTION
Shirley Lawrence
081-6528659
PUBLISHER
Susan Downey
EDITORIAL FACSIMHE 081-6528956

CLASSIFIED FACSIMILE 081-6528931

SUBSCRIPTION HOTLINE
0622721666
Quote ref IN J
SUBSCRIPTION QUERIES 0444445566

NEWSTRADE DISTRIRUTION ENQUIRIES
Martin Parr
0816528171

BACK ISSUES
Available at $£ 2.50$
081-6523614

REED
BUSINESS
PUBLISHING

When was the last time that you read or heard something positive about amateur radio? I can't remember either. Everyone recalls and enjoys the Hancock sketch where the man himself played a pompous, petty and technically incompetery ham communicating with a world where everybody wanted to talk and nobody wanted to listen. We remember Tony Hancock's radio amateur because it encapsulates truth about the hobby more accurately than any words that we might write about it Amateur radio desperately needs a new reason for its continued existence.
Radio communications was the principal driving force behind electronics development from its beginnings until the end of the second World War. It was used to tie empires to their mother countries, and then as an instrument of war itself when empires disintegrated. Radio hams found themselves involved in research and development especially in the early days of radio, ard then as a source of specialised skills in the war years.
There was a post-war surge of interest fuelled by the availability of surplus equipment most of which required technical competence to adapt for amateur use. But when this was gone, radio amateurs became simple consumers and mostly bought their equipment off the shelf losing much of their technical independence and usefulness. Galton and Simpson were now able to document Hancock's radio ham.
Somewhat paradoxically, the intellectual decline in amateur radio reached a trough when the numbers engaged in the hobby peaked in the early Eighties. Two factors combined and contributed in this. Firstly, the multiple choice entrance examination was an order of magnitude easier to pass
than its written predecessor; secondly, radiocomms as a hobby was massively popularised by the CB boom. Most of the new influx could contribute nothing except self-conscious and inane chatter using equipment which owed more to credit card companes than the owners" technical competence. We are now seeing a decline in the number of radio amateurs as the novelty wears off.
Naturally, this jaundiced view does not tell the whole story. One only has to look to the work of Amateur satellite groups and the activities of Surrey University to appreciate that some aspects of the hobby remain challenging, educational and useful. A few enlightened souls still manage to push the bounds of RF design engineering, usually by combining the demands of their jobs with the pursuit of their hobby. But if amateur radio is to command any respect - and retain its frequency allocations and privileges - it must take up new challenges.
The market requirement for cordless communications once again casts RF engineering as a driving technology. While it seems unlikely that amateur radio could contribute directly at chip level development, it has a role to play in enthusing and educating the next generation of RF engineers. As editor of this magazine. I hope to hear from radio amateurs prepared to experiment with direct digital synthesis, IF band DSP. spread spectrum communications, high performance small signal and large signal RF systems, broadband design techniques and packet transmission, etc.
If amateur radio finds itself incapable of, or indifferent to accepting a new challenge, then it does not deserve to survive.

Frank Ogden G4JST.

Electronics World + Wireless World is published monthly. By post, curent issue $£ 2.25$, back issues (if available) $£ 2.50$ Orders. payments and general correspondence to L333, Electronics Wirld + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: IPC Marketforce, 071 261-5108
Subscriptions: Quadrant Subscription Services, Oaktield House, Perrynount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notify a change of address. Subscription rates 1 year (normal rate) $£ 30$ UK and $£ 35$ outside UK USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions jffice, 205 E. 42nd Street, NY 10117.
Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of Amenca: Fay Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Engrehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR
Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
©Reed Busiress Publishing Ltd 1992 ISSN 09598332

UPDATE

ISDN does it now

Unkindly dubbed "it still doen nothing". seln (which actually stands for integrated services digital network) used to be regarded as an advanced telecommunications technology in search of an application

All of a sudden. there are many applications as BT demonstrated in a recent series of briefings tied to the start of the Whitbread Round the World yacht race. BT will be using isdn as the final link in
delivering compressed. digitised is picture

Virtual application or virtual reality? ISDN promises telepresence by allowing the direct transmission of digitised, compressed video images over the public switched network. Real applications, such as remote data gathering, are only just starting to appear.
transmitted via satellite from the yachts to be reconslituted by video codec at Reuters west London studio.
More mundanely, isdn is transmitting high-quality artworh between studios and clients, and letting users access and search photo libraries - and receive the images - by phone. House hunters can view properties without leaving estate agents offices. and car buyers specily the options they would like. build the model on screen and view it from various angles. outside and in. Hairstylists can show customers how they would look with various styles. called up from a centralised databank and framed around their own laces
In France the FNAC record store chain adready has in-store multimedia music sampling terminals updated by isdn.
The rechnical and human possibilities of isdn. however. far excecd the replacement of motoryche couriers or provision of a cephone juhebox. Peter Cochrane, rescareh manager at BT^{-s} Martlesham I Icath laboratories, deseribed them as "virual teleporting"
"Of necessity," he said. "we are going to hate to replace physical travel with telecommunications and telepresence." Ite looks forwad to "being able to communicate with other human beings on the basis of eye-contact, gaze awareness right size, right colour, looking real." As an cond-to-end digital link with bandwidth in cxcess of $50 \mathrm{kbits} / \mathrm{s}$, conveying sound, video. lext and data in broadcast quality, virtually error fiee isdn will soon provide that facility

Aready, via endosicopy, a surgeon can
hold a case conlerence, in effect inside a patient who is many miles away. with colleagues also at distant locations.

At Southampion. BT introduced a surrogate head, using 3D wideband isdn rechology. A user on-site wearing lightweight cameras on spectacle frames. transmits virtual reality images bach to. for example, a technical expert or a surgeon. who can condue the repair, examination or operation without leaving his or her base.
"Virtual reality may take out multimedia, predicted Cochrane. "It"s much more natural and versatile.

The other advantage of isdn is its economy of telecommunications capacity. Cochrane predicts that the local call area will grow quickly at national and continental level to become global. Even now, NatWest Securities can send closing prices from the Paris Bourse to Edinburgh in 255 s . A fashion retailer has reduced overnight polling (datagathering from 1.5 min to 35 s per store.

Although isdn is at its best on fibre opties. it can be carried on existing paired copper cables - usefully increasing their capacity in a service called ISDN 2.

A pachage for retailers proposes to put all their voice links. epos data polling, credit card authorisation. and security video monitoring, eath of which has its own dedicated line. onto one ISDN 2 line.
As the Whithread sailors are being pounded around the world on the ocean wave they ean reflect on the irom that the technology they are helping to test will one day mean that no-one need leave home again.

Peter Willis

Mirror, mirror on the chip he possibility of aluminium mimors

Tprojecting ts images from conventional cmos stams lakes a step closer this month an scientists from Texas Instruments explain that they have improved the contrast ratio of their micromimor device to a level that can compete with standard erts.

The announcement will come between the 5th and 8th of December in Washington at the International Electronic Devices Meeting, one of the leading technical conferences for breakthroughs in semiconductors and other electron devices.

TT's device is a monolithic array of rotatable aluminium mirrors integrated on to the sram chip. Fach sam cell controls the rotation of the overlying mirror via a pieso ceramic plug that changes shape depending on the charge on the cell.

Since the device was first announced. Texas Instruments has made structural improvements. increasing the contrast ratio to more than 100:1. a level necessary to compere with cathode ray tubes.

The tirm will also describe the latest results from a research programme started in 1988. This programme is amed at cutting the costs of chip production. A mini-factory in a 5000 oubic feet cleanroom has been buile for $0.35 \mu \mathrm{~m}$ chip fabrication that has achieved a world record wafer cycle time of three days.
Tradtitionally many wafers are subjected to the same manufacturing steps simultancously, and large numbers of chips are made all all once. But the need to heep large open cleanroom spaces dirl free and the use of large. complex and expensive

Microscopic rotatable mirrors fabricated on conventional static ram cells could result in a technology to compete with CRTs. This picture was formed by reflection from the nicromirrors.
capital equipment has driven production costs through the roof.
This logic has been turned on its head by TI with the idea of making only one fïnished wafer at a time from start to finish using a smaller and therefore less expensive cleanroom. Various advanced vacuum processors are used to speed up the thermal processing of the wafers.
If the cleanrooms are shrinking so are the chips being made in them. For example, Toshiba will describe what it claims to be the smallest mos transistor ever built - a 40 nm gate-length device. Sidewalls are from phospho-silicate glass and are 200mm thick. Additionally, AT\&T Bell Laboratories
will deseribe the fastest cmos IC ever built with a gate delay ol 11.8 picoseconds. It is built with 0.1um cmos technology.
As expected at any conference of this type the industry driving force of more memory in less space is represented. With 16 Mbyte chips starting to appear, eyes are turning to 256Mbyte drams, which are forecast to hit the market in about five years.
A paper from the IBM. Siemens, and Toshiba joint research team describes a 256 Mbyte dram with a $0.6 \mu \mathrm{~m}^{2}$ trencl cell structure. The cell is 25% smaller than conventional structures.
More than 200 invited and contributed research papers will be presented.

Smallest transistor in the world? Birdseye view of a gate electrode after poly-silicon reaction ion etching. Gate length obtained is 40 nm .

Video disc recorder may rival tape

Engineers at Samsung's Advanced Institute of ETechnology are close to developing a digital video recorder using discs instead of tape.

Scheduled for launch in 1995, the machine will use magneto-optical erasable discs. But the Korean company can expect fierce competition from Japanese competitors such as Matsushita and Sony.
Both are working on digital video disc and tape recorders. Samsung hopes that the key laser component, developed with Russian engineers, will put it ahead of the Japanese by several years.
Korean electronics companies Samsung. Goldstar and Daewoo have the reputation of being efficient, low cost makers of technology developed elsewhere. Samsung though wants to start setting new standards.
When broadcast iv pictures are converted into digital code, the data stream runs at more than $200 \mathrm{Mbit} / \mathrm{s}$. Data compression according the MPEG-2 standard can reduce this by about $30: 1$ to $8 \mathrm{Mbit} / \mathrm{s}$, while still delivering quality that matches the SuperVHS tape system. But at this data rate a 12 cm cd , with capacity of 600 Mbyte can store only about 10 min of video.
Samsung's storage target is a feature film up 10 1 10 min on a single dise. The first step is to make the disc double-sided, and 13 cm in diameter, matching the size of magnetooptical discs already made for the computer industry and so benefitting from existing investment in manufacturing plant.
To store 55 min on each side of a 13 cm disc requires a data capacity more than 25Gbyte per side. To achieve this the piteh of the spiral track of data pits is reduced from $1.6 \mu \mathrm{~m}$ for cd to $1 \mu \mathrm{~m}$, and the length of the data pits reduced from 3 to $0.3 \mu \mathrm{~m}$.
The beam from an infra-red laser as used in a cd player or existing dise recorder cannot be focused tightly enough to read such small pits; the wavelength is 100 long.

The Japanese are developing solid state blue lasers 10 do the job. Samsung's strategy has been to base the D-VDR on green laser light: predictions are that the high power blue lasers needed for recording onto dise
will not be available at consumer prices until towards the end of the decade. Samsung believes green laser technology will be ready 10 sell by 1995 and this will put the D-VDR far enough ahead of the Japanese to create a de facto standard.
There is no high power solid stare green laser yet but in 1991 SAIT engineer Insik Park went to Russia and saw how the IOFFE Technical Institute in St Petersburg was getting green light from infra-red lasers. Samsung signed a deal which brought Russian engineers to Korea for two years 10 work the D-VDR.
The technique is known as second harmonic generation. The source light is infrared from a 500 mW GaAs laser, with wavelength of $0.8 \mu \mathrm{~m}$. This is beamed into a crystal of yttioum-aluminium-garnet doped with neodymium.

The infra red pumps the yag into lasing action that emits coherent light at a wavelength around $1 \mu \mathrm{~m}$. This light is then beamed into a second crystal of KTP (potassium titanyl phosphate) that has a nonlinear optical characteristic and generates a second harmonic of the input frequency at
$0.5 \mu \mathrm{~m}$. Thus the system emits coherent green light at a power of 20 mW , strong enough to record onto the disc.
The US military has been working on the same technique to communicate with submarines, because sea water has an optical window at this wavelength. Very probably the work done in Russia was originally comntissioned by the military. The practical difficulties, for instance keeping the infra-red laser cool enough to avoid self-destruction, have deterred electronics companies from trying to use the system for consumer products. US researchers used Peltier junctions. Samsung thinks the help it got from Russia makes the system affordable.
Said Insik Park: "Russian enginecrs are a lot cheaper than Japanese, and Japanese are reluctant to transfer technology. So it is much easier to hire Russian engineers."
SAIT recently showed a prototype video dise recorder spread out over a laboratory bench. This makes the 1995 target for a consumer launch seem optimistic but Samsung has a good track record of delivering promises on time.

Barry Fox

Dodgy chips beat gold and drugs

C tolen chips are worth more than gold or drugs, according to police fighting a growing microprocessor crimewave in Silicon Valley.
But some firms are fighting back. Intel is giving its microprocessors serial numbers following robberies that have led to a thriving grey market in 486 chips.

Intel will stamp serial numbers on its microprocessors and possibly extend the numbering system to other products. Other US semiconductor makers are also expected to announce that higher priced chips will have serial numbers.
In the most recent armed robbery, TEG Micro Technology in Fremont, California
had more than $\$ 500.000$ worth of chips stolen. mostly i486 microprocessors valued at more than $\$ 400$ each. Two other armed robberies of Fremont businesses netted more than $\$ 300,000$ worth of chips just weeks before the latest robbery.
Police say robbers can easily unload the chips in the grey market. Once they reach the grey market they are untraceable.
The serial number scheme is also intended to prevent the growing number of thefts by chip company staff who can easily smuggle out a handful of chips and earn hundreds of dollars.
Police say more chips are lost through staff theft than armed robberies.

Antenna boost for cellular phones

Aredesigned antenna looks set to save costs and give better coverage for cellular telephone services.
Called SmartAntenna and developed by Northern Telecom, the device uses four flat antenna panels mounted on a mast. Each panel can send out five overlapping beams that can be individually adjusted for strength.
This means the coverage area can be tailored to requirements with higher strength beams hitting built up areas, for example. It also gives more flexibility in the positioning of the antenna; the base station no longer needs to be at the centre of the cell.

Multiple beam, flat-plate antenna allows propagation to be tailored to the terrain in any direction.

The mast is connected to a control module and radio base station in a cabin at the foot of the tower. Active electronics in the masthead and cabin comprises five functional blocks. The first is the antenna array itself along with beamformers and duplexers. Secondly, there is the switch matrix for transmit and receive that switches multiple transceivers into a single beam.
Dual redundant low noise amplifiers for each receive beam are fitted in the masthead equipment.
The control module in the cabin is responsible for switching the best transmit and receive beams to each of the transceivers on a timeslot by time-slot basis. Selection of the best beam is made according to received signal amplitude.
Finally, transmit power amplifiers, hybrid combiners and duplexers are fitted at the masthead. Test and alarm functions are distributed throughout the system.
Each plate antenna covers a 90° arc with its five beams. Each beam covers a fixed 18° arc and is controlled by changing the gain. Because of the higher gain. the antenna has about twice the range of a standard omni cell in rural areas, which can cut the number of base stations by up to 75% compared with omni cell sites and 50% compared with trisectored cell sites.
Improved carrier to interference ratio allows greater frequency re-use. Each time slot of cach transceiver can be allocated to any mobile on any radial beam. Shadowing caused by buildings is also cut, reducing the number of dropped calls from mobile users.
Increases in receive sensitivity let mobiles transmit at lower power, increasing battery life and talk time.
Nortel Matra's cellular pcn system for providing DCS 1800 networks in Europe will be the first to use the antennas.

Joint development sees 64Mbit dram samples

Siemens and IBM are sampling the 64 Mbit $S_{\text {dram they co-developed, but have yet to }}$ decide whether they will combine forces to make it.
Asked if sampling the chip to potential customers meant Siemens intended to supply it as a product, a representative replieda: "If we are sampling I understand that someone might be interested to manufacture it."
But he added: "Our development agreement with IBM does not include joint manufacturing."
Siemens' options on making the chip are "completely open" he said. "Both parties are negotiating the question what to do now."

IBM and Siemens reckon the decision is not urgent because first production of the 64 Mbit will not be required until late 1995. ramping up to volume production in 1996.
"We are not in a hurry," said the Siemens representative. "We"ll decide later next year."
Since it takes 18 months to build a wafer fab and bring it into production, the building works would have to be started in June 1994 for there to be any chance of making first silicon by late 1995.
As well as the 64Mbit deal, Siemens and IBM jointly make 16Mbit drams and share with Toshiba a joint research and development effort on the 256 Mbit dram.

Esprit to go more commercial

The vice-chair of the European Commission, Martin Bangemann, has challenged critics of EC funded research saying future Esprit programmes will be tailored to produce more commercial results and products.
The fourth framework of projects to be awarded under the Esprit programme will, he said: "not only focus on technical challenges, but will ensure that the special activity will be noticed by the general public."
Bangemann, who is also commissioner in charge of information technology, said the previous policy of Esprit projects concentrating on "precompetitive development" led to accusations that the commission was spending money on nothing.
He rejected such charges saying: "It is not true that our programmes have no results, but the wider public is often unaware of them."
Bangemann was speaking at the launch of Goldrush, a computer from ICL that uses parallel processing technology. It was developed as part of an Esprit project called EDS.
Goldrush is a database server that can have up to 127 Hypersparc risc microprocessors.
Bangemann said: "Our future depends on quick acceptance of developments. We must see to it that European enterprises gain advantage through early access to products offered."

Philips to make monitor tubes in Austria

Dhilips is to start producing colour monitor tubes at its factory in Lebring, Austria.
About 29 million Dutch guilders are being invested to add 0.4 million monitor tubes to the 2 million cathode ray tubes already produced.
European demand for monitor tubes is expected to double from 2.5 million pieces a year to 5 million by 1997 .

Monitor tube production will start late next year ending the monopoly of imports from the Far East. First off the line will be 15 in tubes followed soon by 17 in models.
Around 40 jobs will be created and some existing staff will be retrained to work on the new line. Philips already produces 2.5 million monitor tubes a year at its Taiwanese factory.

Can noise improve your hearing?

Traditional engineering wisdom takes for granted the assumption that you can hear better in a quiet environment. But workers in the US have been questioning that fact by using increased background noise to improve s/rin ratios - with a little help from a crayfish.
In electronics design, great emphasis has always been placed on low-noise circuitry, whether for domestic audio or in rf frontends listening for errant Martian spacecraft.
According to conventional linear information theory, random noise is detrimental to the transmission of data: end of argument... well, not quite.
Frank Moss and colleagues from the

University of Missouri at St Louis have shown that a small amount of random noise may enhance, rather than obscure weak signals. Experiments to confirm this speculation (Nature, Vol 365, No 6444) were conducted, not with conventional electronic components, but with pick-up devices unlikely to be found in the average engincer's tool-bag. Moss and his team used specialised biological cells called mechanoreceptors, taken from crayfish tails.
As the name suggests, the normal function of these cells is to detect tiny water movements that might signal the presence of some larger and hungrier species. Because they are always working at (or beyond) the limits of conventional information theory in a permanently noisy environment, they were regarded as a good starting place to investigate the possibility of enhanced signal-to-noise performance.
The rather counter-intuitive notion that noise might actually improve performance derives from some research conducted over a decade ago into periodicities in climate. This work, together with later theoretical studies, showed that, in certain non-linear systems, the information content of a weak signal can be enhanced by noise through "stochastic resonance" in which the output coherence relative to the output noise passes through a maximum at an optimal value of the input noise. In other
words a little noise does you good.
At the University of Missouri, Moss and his colleagues wired up the crayfish cells and stimulated them by moving water back and forth. The cells are so naturally sensitive that the equipment had to be isolated from everyday building vibrations at 10 Hz and lower. What the team were trying to assess was the extent to which randomlyintroduced water fluctuation affected the cells’ ability to respond to regular periodic fluctuations.
When the effective signal-to-noise ratio of the system was computed from the measured electrical activity of the cells, Moss found very clear evidence of a certain noise intensity at which the s / n is a maximum. This improvement is about 4.5 dB compared with the figure in the absence of noise.
Whether this enhancement is something that Nature has evolved to make the best of a noisy environment is a question as yet unanswered. But it does seem that the crayfish is by no means unique. Moss and his colleagues draw attention in their paper to various psycho-physical studies that have hinted at the existence of this effect in human visual perception. People, it seems, are much better at perceiving ambiguous shapes when they are presented in the context of visual "noise". Stochastic resonance is clearly not something which will improve the performance of conventional linear transducers. But in any artificial intelligence system or information processing context where non-linearity plays a part, we might well learn a lesson or two from the humble crayfish.

Fermat's ghost laid to rest?

For close on 400 years mathematicians have puzzled over one of the most intriguing numerical mysteries, the socalled last theorem of Pierre de Fermat. Fermat was a 17th century Frenchman who asserted that, for any whole number n greater than 2 , the equation $x^{n}+y^{n}=z^{n}$ has no solution for which x, y and z are whole numbers greater than zero. What makes this assertion so intriguing is Fermat's tantalising hint that he knew a wonderful proof. But Fermat claimed he had no space in his notebook to write it down. The search for it has been a challenge to mathematicians ever since.
Over the years, the "theorem" has been verified in different ways for a variety of specific values of n. Number-crunching
computer studies in the USA have recently validated Fermat's assertion for values of n up to 4 million, But a general proof has remained elusive... until a surprise announcement by Andrew Wiles, a British mathematician working at Princeton University.
Wiles' break-through follows some ground-laying by other workers who have progressively established links between Fermat's assertion and the properties of elliptic curves. Key to this is the so-called Taniyama conjecture, named after the Japanese mathematician Yutaka Taniyama. Proof of the Taniyama conjecture is generally agreed to amount to proof of Fermat's theorem.
Andrew Wiles has now presented a 200
page proof of the Taniyama conjecture, causing excitement for mathematicians all over the world - those who can understand it!
Some experts are saying that Wiles proof might take as long as a year to check over thoroughly, though it is said to look good. Establishing Fermat's assertion as a true theorem - something that can be proved as a general statement - will be far more than just a tour de force of number crunching. Mathematicians who have studied Wiles' work say that it will provide a valuable new tool to open up whole areas of number theory. One wonders if that's what Pierre de Fermat had in mind all those years ago.

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM NG2 3GY
TEL: (0602) 864902 \& 864041
FAX: (0602) 864667

ONE MONTH SPECIAL OFFERS

SPECTRUM ANALYSERS

HEWLETT PACKARD 11710B DOWN CONVERTOR
(for 8640/8654 Sig Gens).......... 15
MARCONI TF 2167 Wide Band RF Amplifier 47db gain.
£75

A WIDE RANGE OF SIGNAL GENERATORS AND RF ANALYSIS EQUIPMENT IN STOCK NOW TOO MUCH TO LIST. PLEASE PHONE FOR DETAILS

AND. . .

SOLARTRON 7060 SYSTEMS VOLTMETER 6.5 DIGIT LED. GPIB..........£325
SOLARTRON 7045 DIGITAL MULTIMETERS 4.5 DIGIT LED.......... .65
RACAL DANA 488 GPIB ANALYSER LCD READOUT£75

SPECIAL DEALS ON OSCILLOSCOPES FOR ONE MONTH ONLY HP 1722A • 300MHZ • DUAL TRACE • DUAL TIMEBASE $£ 495$ HP1741A • 100MHZ • STORAGE • DUAL TRACE • DUAL TIMEBASE..........£405

HP 1740A • 100MHZ • DUAL TRACE • DUAL TIMEBASE $\mathbf{\$ 3 7 5}$
TEK $2215 \cdot 60 \mathrm{MHZ} \cdot$ DUAL TRACE • DUAL TIMEBASE.......... $£ 495$
TEK $475 \cdot 200 \mathrm{MHZ} \cdot$ DUAL TRACE • DUAL TIMEBASE.......... $\mathbf{~} 475$
TEK $454 \cdot 150 \mathrm{MHZ} \cdot$ DUAL TRACE • DUAL TIMEBASE.......... $\mathbf{£ 3 5 0}$
TEK $453 \cdot 50 \mathrm{MHZ} \cdot \mathrm{DUAL}$ TRACE • DUAL TIMEBASE........... 295 TEK $434 \cdot 25 \mathrm{MHZ} \cdot$ STORAGE • DUAL TRACE.......... $£ 250$

ALL EQUIPMENT IS FULLY TESTED WITH VERIFIED CALIBRATION AND COMES WITH OUR 30 DAY UNCONDITIONAL WARRANTY. ALL PRICES EXCLUDE VAT AND CARRIAGE

Laser/sound probe will declog your tubes...

Development by a UK team of a miniaturised probe that makes use of a laser`s ability to cut as well as its ultrasonic characteristics could transform laser surgery of clogged arteries from the possible - into the practical.
Clogged arleries (atherosclerosis) are among the main causes of strokes and heart attacks. What happens is that a lining of cholesterol and similar fatty materials builds up in the form of plaques on the arterial walls until the blood supply is blocked or dangerously restricted. Doctors have long been trying to treat such blockages with drugs by mechanically scraping away the cholesterol. by balloon angioplasty (stretching the artery walls) and by bypass surgery. More recently it has been shown that atherosclerotic plaques can be blasted away with pulses of powerful laser light.
But though enough laser energy can be fed along a libre-optic catheter into some of the bigger blood vessels. laser ablation is not an-easy technique. It is made particularly difficult by the fact that. while x-rays can be used to guide a catheter. they will not show up the soft walls of the vessels.
Most therapeutic systems incorporate a second catheter, carrying an ultrasound probe to provide pictures on a screen for the surgeon to study. The only problem is that not many blood vessels are big enough

to take two catheters at once. especially if they are already half blocked.

A new approach to this problem has been described (Electonics Letters. Vol 29. No 18) by a team of researchers at Umist and the Kiltingworth Hospital in Leeds. They have developed an experimental system that should eventually make it possible. using a single catheter. 10 image the body tissue at the same time as treating it with laser ablation.

The single-catheter probe makes use of the fact that laser light can induce its own ultrasonic vibrations when it hits a target. The team showed that usable ultrasonic signals could be generated in an
experimental human finger using lased pulses with an energy of around 3 mJ . This (thank fully for the volunteer) is enough to produce good images. but not enough to do any damage. In the experimental set-up. the energy was delivered along exactly the same $600 / \mu \mathrm{m}$ core fibre that is used at higher powers for ablation treatment. In their experiments, the leam successfully picked up ultrasound echoes using a 3 mm diameter polymer transducer fitted around the tip of the optical fibre. They say that further miniaturisation should lead to a whole range of medical applications apart. that is, from combining intra-arterial imaging with laser ablative therapy.

...or simply steam clean them

Rescarchers at Sandia National Laboratories in Albuquerque. New Mexico. have developed a steam engine smaller than a pinhead. The special motor is designed to power the growing number of micromechanical devices found in everything from weapons to medical equipment. Engineers have been able to machine tiny gear wheels. axles and ratchets no bigger than a few microns across. for some time. Manufacluring techniques are borrowed from the world of chip fabrication. where etching of components this size is routine. But the main problem with micromechanical devices has been to find a suitable micro-motor to power them. You can scale down a gear wheel to micron dimensions. but not a diesel engine or even a conventional electric motor or acluator: there are simply too many parts.
Micro-mechanical engineers machines have been forced to make do with

Gensex essex

Department of Electronic Systems Engineering RADIO FREQUENCY ENGINEERING

17-21 January 1993

A 5-day Short Course that provides a solid foundation in Radio Frequency design and an introduction in the latest advances in digital radio systems and technology.
FOR BOOKINGS AND FURTHERINFORMATION CONTACT:
The Short Course Office, Department of ESE, UNIVERSITY OF ESSEX Colchester CO4 3SO.
Phone: 0206872419 Fax: 0206872900

CIRCIE NO. 105 ON REPIY CARD

CIRCIE NO. 106 ON REPLY CARD

> "... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files.

- Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output.
- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

	POWERware, Dept EW, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK Ring us on 0614497101 or write, for a full information pack.	rom
POWER ware Sofiware . - Design	Quickroute is available for Windows $3 / 3.1$ in Professional ($£ 99.00$) and Standard ($£ 59.00$) editions, and for DOS with reduced features ($£ 39.00$). All prices inclusive. Add $£ 5 \mathrm{P}+\mathrm{P}$ outside UK	

electrontatic micro-actuators. limited by anall electrostatic forces and rarely having enough power to do much uselul norh. Enter the micro , vam engine a motor that work on exactly the same principle as in larger cousins. except that it does it all inside a polysilionn cylinder a mere $2 \mu \mathrm{~m}$ in diameter. Stean formed at one end of the colinder when a micro-drop of water is heated by a hot filament. moves the time piston in propertion to the current upplied. A folding spring, attiached to the piston, then relums it to it original position when the current is asitched off.
Scaling the heam engine down to micron
size han preenented fewer prohlem, than might be expected. Surface tension, which is often a bugbear in the use of fluids. hals actually been exploited by the Sandia researclers in a way not ponsible on the macro scale. In the micro-cylinder it pronides a periect clatsic membrane on the surface of the liquid drop
Each troke of the micro veam engine is a only 20.tum in lengith. But unlike electrontatio micro-motors, it develops enough power to do a lot of useful work - such as performing surgery inside an atery
James Watt would have loved it.

Superconducting barrier starts to melt

High lemperature supereonductivity is bach in the new with an amouncement that selentists may be on the brink of ambient pressure superconduching at over 150 K
The exedement haw be heen ereated bs Paul Chu and associates of the Texas Center for Supereonductivity at the ('nisersity of Houston (Nimure. Vol 365. No 6 +++) . If their exults are anything to go by. it look an if we atre se for another vhatp rise in T_{6}, the critical temperature at 4 hich coramic copper oxide matterialb lose atl their resistance. Thee high-temperature (in supercondecting lerms) superconductors are significant hecallase the temperatures at which they work
can be cheaply and casily achieved using liguid nitrogen. Admittedly. many technical problems. still remain in utilising superconducting ceramics industrially, but they nevertheless hold out caciting prospects. èpecially if superconducivity can be achiesed at room temperature.

At the beginning of this year. Chues rescarch group - and others in Russia. Japan and Swizerland - had painstakingly produced materials that would superconduct at 1.35 degrees above ahsolnte zero. These layer compounds contained mereury in addition to barium. copper and oxygen and were a triumph of laboratory cookery.

Theory. for the mosi part. lagged hehind palicnt empiricism.
Paul Chůs latest step forward (or upwand) is the result both of meticulous experimental technique and also a critical antalyo of progress so far.
"We found that the stracture of the mercury-conaining compound is rather diflerent from others. That gave us the hint that the application of pressure would raise the temperature substantially". he says.
Using a ceramic based on mercury. barium. calcium. copper and oxyen. Chu found that a $I_{\text {. of }} 153 \mathrm{~K}$ could be achieved at a pressure of 150 hbar. This is the highest temperature a which any material has yet exhibited superconducting properties though the theoretical underpimning is still rather shetchy. "Two things happen, says Cha. "One is that we reduce the inter-atomic distances. As a result. some of the electrical charges move throngh the copper/oxygen layer, the active component of the material. more easily. Therefore the critical temperallure goes higher.
"In addition to that we ve now found another factor. But the details of that are still unk nown. We re still trying to find out.
That modest assessment of this pioncering work belies the real progress that has been made. Paul Chu and his colleagues have now assembled enough theoretical understanding to be able to predict the next step with confidence. Instead of using high pressures. they aim to make use of clever chemistry. As Chu observes: "lligh pressure brings atoms closer together, and there are chemical ways of doing the same thing. So by using chemical substitution, we hope to retain a high critical temperature at atmospheric pressure.
Early substitution atlempts have so far not proved successful. mainly because attempts to linker with the chemistry hate disturhed the structure of the molecular lattice. But the team confidently expect to make a material that will become superconducting at 160 K before very long.
Pratical roon-temperature superconductors are of course still a lone waty off. and even the existing hight $T_{\text {c }}$ ceramies are not without considerable manufacturing and operating problems. Physical brittleness and the loss of superconducting properties in the presence of strong magnetic ficld. are but two major obstacles. But if the history of this fascinating subject is anything 0 go by. there is bound to be more unexpected progress just when everyone is becoming complacent. Such is the nature of seientilic discovery

Research Notes is written by lohn Wilson of the $B B C$ World Service.

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

CIRCLENO. 108 ON REPLY CARD

Encounters with RF are

 much easier if a spectrum analyser is to hand. Although based on a commercial TV tuning head, lan Hickman's design delivers linear, useful performance in its basic form and may be adapted to a much higher degree of sophistication including continuous coverage andAn oscilloscope is undoubtedly the basic tool of the trade in general electronic design and development work. For investigating rf equipment, an instrument of sufficient bandwidth is a help and certainly much better than nothing.
A standard spectrum analyser is expensive; even a second hand model will cost the best part of $£ 2000$. An add-on box to the ubiquitous oscilloscope provides a much cheaper alternative. The design shown here is capable of further development in several directions, so this article should be regarded as a starting point.
As it stands, it has its limitations so I think of it more as a spectrum monitor rather than a spectrum analyser. Nevertheless, it has already proved itself useful and would be even more so with suggested further development.
The spectrum monitor is built around a TV
tuner, the particular one used here is a beautifully crafted all surface-mount example, the Toshiba EG522F. Possible suppliers of this unit are given in Ref. 1.
The EG522F provides continuous coverage from the bottom of Band I to the top of Band III in two ranges, a third range covering Bands IV/V. There is a gap between the top of Band III and the bottom of Band IV; the continuous coverage tuner mentioned in Ref. 2 is apparently no longer available. The design of this spectrum monitor is generally applicable to most types of TV tuner and any necessary circuit modifications should be straightforward.
It was desired to give the finished unit as much as possible of the feel of a classic spectrum analyser rather than the current generation of push-button controlled instruments. The design challenge was to leave the way open for further development if required. To wider frequency span.
his end. within its case the montor was constructed as three separate units - PSUs, sweep generator. RF/IF unit - interconnected by ribbon cables.
Power rails are $\pm 15 \mathrm{~V}$ for general analog circuitry. +12 V for the tuner and +30 V for its tuning varactor supply. Fig. 1, terminating in a 7 -pin plug accepting a mating ribbon-cablemounted socket (RS "inter PCB crimp" style).

Sweep circuitry

The sweep circuitry to drive the tuner's varactor tuning input is shown in basic form in Fig. 2a. This produces a sawtooth waveform of adjustable amplitude and fixed duration symmetrically disposed about ground. This means that as the span (the tuning range covered by the monitor) is increased or decreased (the dispersion is decreased or increased), a signal at or near the centre of the display becomes contracted or expanded width-wise but remains on-screen. This is a great convenience in use.
Operation is as follows. On negative excursions of the clock drive, Tr_{2} is off and Tr_{1} clamps the capacitor C_{1} and the NI input of A_{2} to the voltage at the output of A_{1}, liclamp: the output therefore also sits at $V_{\text {dimup }}$, the voltage at the wiper of R_{2}. A_{2} forms a Howland current pump. so that when $T_{r_{2}}$ is turned on. removing the clamp, a negative charging current $l_{\text {clamp }} / R_{5}$ is applied to the capacitor. As A_{2} must act to maintain voltage equality between its inputs, a linear negative going ramp results. If C_{1} is selected correctly relative to the cloch frequency, the voltage across it will just reach - ${ }^{\prime}$ clamp during each positive excursion of the clock. Fig. 2b.

For convenience, the clock frequency is derived from the mains. giving a choice of sweep durations. The sweep amplitude can be set to any value from zero to maximum. the sweep remaining ground centred as illustrated in Fig. 2c. where R_{2} was used to advance $V_{\text {clamp }}^{\prime}$ steadily from ground to its maximum value, over a number of sweeps.
Fig. 3 shows the full circuit of the sweep cir-
cuitry which operates as follows. The 15 V ac from the pou is sliced by $T r_{1}$ (Fig. 3a) and fed to a hex inverter to sharpen up the edges. R_{k} and R_{9} around the first two inverters provide some hysteresis - without this, noise on the mains waveform will simply be squared up and fed to the counters as glitches causing miscounting. The output of the inverters is a clean 50 Hz squarewave and appears at position I of switch S_{IB}. The half period is 10 ms , this setting the shontest sweep duration. A string of four $7+\angle S 90$ decade counters provide alternative sweep durations up to 100 seconds.
The selected squarewave from $S_{1 B}$ is level shifted by T_{2} and T_{3} to give a control waveform swinging (potentially) over $\pm 15 \mathrm{~V}$. although the positive excursion only reaches $V_{\text {clamp. }}$ This waveform is routed to control the fet in the sweep circuit, line $1 . A_{2}$ and A_{1} provide currents via R_{5} and R_{6} which are fed 10 a summing amplifier to provide the main and fine tuning controls, line 2. R_{4} is adjusted to
make the full range of the centre frequency set control R_{1} just cover the required 30 V varactor tuning range of the TV tuner.

Lines 1 and 2 are connected as shown in Fig. 3b. line 1 operating the clamp transistor $T i_{4}$. Being a jfet, the gate turns on at 0.6 V above $V_{\text {clamp }}$ so line 1 never in fact reaches +15 V . The sweep generator operates as in Fig. 2a, with one or two additions. $S_{\text {IA }}$ selects a size of capacitor appropriate to the sweep duration. two of the capacitors being re-used by altering the charging current by a factor of 100) via S_{IC}. (Note that for a linear sweep, it is sufficient to ensure that the ratio of R_{19} to R_{21} is the same as the ratio of the two resistors connected to the non-inverting input of A_{3}. the actuat values can be whatever is convenient.)
R_{17} is adjusted so that the ramp output from A_{3} swings equally positive and negative about earth. S_{2} selects the span from tull span for the selected band of operation of the TV tuner, via decade steps down to zero span, where the

Fig. 2a. Basic circuit of the tuning sweep generator, employing a Howland current pump (A2 and associated resistors).

Fig. 2b. Output waveform shown in relation to the controlling clock waveform. c. Advancing R2 from groumd to maximum increases the sweep width whilst remaining ground-centred.

Fig. 3b. Sweep generator, sweep/centre-frequency summer and sweep shaping circuits.

though almost any other model covering Bands I to V inclusive could be used.
tuner operates unswept at the spot freguency selected with centre frequency controls R_{i} and $R_{2} . R_{16}$ provides a cont inuously variable control between the settings given by $S_{2} . R_{14}$ enables the full span, with var at max. to be set just to swing over the 0 to 30 V tuning range of the tuner when centre frequency R_{1} is set appropriately. If centre frequency is set to minimum or maximum. only the upper or lower half of the span will be displayed. at the left or right side of the oscilloscope trace respectively.

Inverting amplifier A_{s} sums the negativegoing sweep waveform and the negative tuning input from R_{1} and R_{2}. to provide a posi-tive-going voltage between 0 and +30 V . It also provides waveform shaping, the reason for which is discussed later. The shaped sweep output from A_{5} is level shifted by T_{6} and D_{4} before passing to the TV tuner varactor tuning input since it is important that the sweep should start right from zero volts if the bottom few $\mathrm{MH} /$ of Band I are to be covered.

All of the front panel controls shown in Fig. 3 (except the reset control, of which more later) were mounted on a sub-panel behind the main panel and connected to the sweep circuit board - mounted on the same sub-panel - via ribbon cable, making a self contained sub-unit.

RF section

Fig. 4 shows the RF/IF unit. which is powered via a ribbon cable from the sweep circuit board. The gain of the TV tuner $/ C_{8}$ can be varied by means of R_{41}, which thus substitutes for the input attenuator of a conventional specmom analyser. Compared to the latter this
spectrum monitor has the advantage of a tuned front end as against a widehand direct-tomixer architecture.
The front end tuning helpe to minimize spurous responses - always a problem with any receiver, including spectrum analysers. The IF output of the tuner. covering approximately $3+$ - $40 \mathrm{MH} \angle$. is applied via a fet buffer to grounded base amplifier Try. This provides IF gatin and some selectivity. its output being buffered by emitter follower $T_{\text {re }}$ and applied to the main IF filter F_{1}, of which more will be said later. The oupput of the filter is applied to a true successive detection logarithmic IF amplifier ${ }^{3}$.
The required well decoupled +5 V supply is produced locally by $/ C_{y}$. The log amp output $V_{\text {leg }}$ is applied to an output butter op-anp $/ C_{11}$ via a simple single-pole switchable video (post detection) filter, which is useful in reducing grass on the baseline when using a high dispersion (very naurow span) and a suitably slow sweep speed.
Filter tinne-constants up to one second were fitted in the instrument illustrated. but such large values will only be useful with wide dispersions at the slowest sweep speeds. The buffered $V_{\text {dow }}$ is applied to the Y inpul of the display used. typically an osealloscope. R_{52} permits the scaling of the output to be adjusted to give a $10 \mathrm{~dB} /$ division display.

Special considerations

The frequency vs tuning voltage law of the TV tuner is not linear, being simply whatever the L.O. varactor characteristic produces. Just how non-lincar is clearly shown in Fig. 5a
which shows both the linear tuning ramp and the output I log from the IF strip. showing harmonnes of a 10 MHz pulse generator at 50,60 through to 110 MHz . plus a 115 MHz marker (span range switch S_{2} being at full span and span variable control R_{16} fully clockwise). Alse visible are the responses to the signals during the retrace. these being telescoped and delayed.
The frequency coverage is squashed up in the widdle and unduly spread out towards the end with a yawning gap between 110 and 115 MHz . The result of some simple linearisation is shown in Fig. 5b. As the ramp reaches about 10 V . Tr 5 tums on, adding a second feedback resistor R_{32} in parallel with R_{33}. halving the gain of A_{5} and slowing the ramp down so as decompress the frequency coverage in the region of $7(0$ to 100 MHz . maintaining a 10 MHz /division display.

Just before 100 MHz . D_{2} tums on. shunting some of the feedback current via R_{35} away from the input and thus speeding the ramp up again, whilst another more vicious breakpoint. due to D_{3} at around $110 \mathrm{MH} \angle$, speeds the ramp on its way to 30 V , correctly locating the 115 MHz marker just half a division away from the 110 MHz harmonic.

The linearisation has been optimised for operation on Band A (bands I and II) and hokds quite well on B (band III) with the particular tuner used. Ideally other shaping stages similar to A_{5} would be employed for band III ano band IV/V.

Note that whilst the linearisation shown in Figs 4 and 5 has produced an approximately constant $10 \mathrm{MHz} /$ division display on full span.

Fig. 5a. Upper trace, channel 1: the sweep outuut at cathode of D-4 beiore the addition of kinearising circuitry, 2nm/div. horizontal; $30 \mathrm{y} / \mathrm{div}$. vertical. Lower trace, channel 2 : output Vlog from If strip showing barmonics of a 10 MHz pulse generator at 50,60 , etc to 10 MHz plus a 115 MHz marker. Sweep tinse 10nis.

Fig. 5 b. Upper trace: the tamp after shaping to linearise the frequency coverage, $1 \mathrm{~ms} / \mathrm{div}$. horizontal; $10 \mathrm{~V} / \mathrm{div}$. Lertical.
Lower trace: as 5a. Note, as the ranm now reaches +30 V in less fhar the 10 ms nominal sweep timie, the responses during the retrace are off-screen to the right.

Fig. 5c. Channel 2 only: as $\mathbf{5}$ except sweep time 10 mms . Many FM stations now visible in the range $88-104 \mathrm{MHz}$.

Fig. 5 d. $80 \mathrm{MHz}_{z} \mathrm{CW}$ signal reducing in six steps of 70 dB plus two further steps of 5 dB . Indicating excellent log-contornity over a 65 dB range. SWEEP 100 ms , SPAN $3 G 0 \mathrm{kHz} / \mathrm{div}$, VIDED FIL TER, 100us. (For clarity, the spectrum monitor dine tuning comtrol was used to offset the display of the signal one division to the right at each step in this nultiple exposure photo.)
for reduced spans S_{2} altenuates the sawtooth before it is conveyed to the shaping stage. Consequently. for reduced spans the actual span/div depends upon the setting of the centre frequency control, although the portion of the full band displayed will be approximately lincar. except where it happens to lie across one of the break points.
The filter used in the spectrum monitor illustrated is a 35.4 MHz 6 -pole erystal unin designed for 20 kHz channel spacing applications. This was used as it was to hand just wating for a suitable application. However, it is not ideal. having a basically square passband shape approximating the proverbial brick wall filter.
This is not a great inconvenience in practice: it simply means that a slower sweep speed than would suffice with an optimam Gaussian filter musa be used. Even with a Gaussian fillter, the combination of large span and fist sweep speed used in Fig. 5a and 5b would have been quite excessive - it was used as the stretching of the responses makes the effect of linearisation more easily visible.

Fig. 5c shous the same Band A $1+3$ to 118 MHz) display using the nominal 100 ms sweep. FM stations in the range 88 to I $)+\mathrm{MHz}$ are clearly visible no longer being lost in the tails of other responses.
Although the particular crystal filter used is no longer available. a number of alternatives present themselves. A not too dissimilar filter with a centre frequency of 34.368 MHz is available from Ref. 4. Its 20 kHz 3 dB bandwidth (compared with 9.5 hHz for the filter used in the prototype) would permit faster sweep speeds or wider spans to be used bur. being only a t-pole type. its ultimate attenuttion is rather less and the one-off price may make it unattractive.
A choice of no less than live crystal filters in the range 35.0 to 35.9 MH zz is available from Ref. 5 . with bandwidths ranging from 8 kHz at -6dB (type $X F-354 S(2)$) 10 125 hHz at -3 dB (type $X F-3$ SOSO2 a linear phase type). A simple altemative would be to use symehronously luned LC filters ${ }^{2}$ though at least iwice as many tuned stages should be employed in order to take advantage of the greatly increased on-screen dynamic range offered by the log-amp in the design featured here. compared to the linear scale used in Ref. 2.

The excellent dynamic range of the spectrum monitor is illustrated in the multiple

exposure photo Fig. 5d. which shows an 80 MHz CW signal applied to the monitor via a 0 to 99.9 dB step attenuator. The signal generator output frequency and tevel were left constant and a minimum of 20 dB attenaation was employed. to buffer the monitor input from the signal generator outpat. The attenuation was increased by 60 dB in 10 dB steps and then by wo further steps of 5 dB . the display of the signal being offset to the right using the centre frequency controls at each step. Fig. 5d shows the excellent log-conlormity of the display over a 65 dB range. the error increasing to 3 dB at -70 dB relative to top-of-screen reference level. It also shows the inadequate 6.3 dB uttimate attenuation of the crystal filter used, with the much wider LC stage taking over below that level.

An alternative to crystal or L.C filters is to use sau filters, a suitable type being Murata SAF39.2MB50P. This is a lou impedance 39.2 MHz type designed for TV/VCR sound IF. some additional gain being necessary to allow for its 17 dB typical insertion loss. Two of these filters ${ }^{6}$ would provide an ultimate attenuation of around $8($ dB. enabling full use to be made of the subsequent log-amp?s dynamic range. The 600 kHz 6dB bandw idth of each filter would limit the discrimination of fine detail. but allow full span operation at the finstest sweep speed. They could then be backed up by switching in a narrower band filter as and when necessary

Further development

A number of refinements which will occur to the reader could be incorporated in this spectrum monitor. 10 increase its capabilities and usefulness. One simple measure concerns the method of display. As my oscilloscope has sweep speed ranges in 1-2-5 sequence plus a variable control. the output from $S_{1 B}$ was simply used as a scope trigger. However, if R_{16} is set permanently at l clamp and a further buffer op-amp adked between A_{3} and A_{5} to implement the san(var) function, the fixed amplitude output from A_{3} (suitably scaled and buffered) can be ted out to the display oscilloscope. set to de coupled extermal X input. providine a sweep speed automatically coupled to the sweep speed control S_{1}.

At the slower sweep speeds. eg 1 or 10 seconds per sweep a long persistence scope provides better viewing. whilst for the 100 . sweep a digital storage scope or a simple storage adapter is very useful. However the slower sweep speeds are only necessary when using a narron filter with a wide span.
If one of the slowest sweep speeds is in use. it can be very frustrating to realise just after the signal of interest appears on the screen. that one needed a different setting of this or that control. since there will be a long wait while the scan completes and then restarts. Pressing the reset button $S_{\text {; }}$ will reset the tuner sweep voltage to I dann to give another chance to see the signal. but without resetting either the sweep period selected by S_{1} or the oscilloscope trace.

If one of the sections of the $4069 / C_{7}$ is

Using the instrument

This spectrum monitor is rather like the earliest spectrum analysers; ie. it is
entirely up to the user to en-ure that an atparopriate IF bandividih, video lilter seming and sweep speed are used, suitable for the selcecled pan. Failure to do so means that as the spectrum andvier sweeps past a signal the latter will not remain within the filter bardwidth long enough for its full amplitude to be registered. This is impertant in lillblown analyser, where the eierence level (ustally kop of screen) is calibrated in absolute terms, eg. OdBm

Fig. 6a. Oscilloscope display of the $\quad \mathbf{1 0 0 \mathrm { MHz }}$ output at maximum level from an inexpensive signal generator, with the fixed level internal 1 kHz AM applied. Oscilloscope set to $100 \mathrm{mV} / \mathrm{div}$ vertical, $500 \mathrm{q} / \mathrm{s} / \mathrm{div}$ horizontal.

Fig. 6b. Display using the spectrum monitor of the same output bat using 50 kHz external modulation, set for the same modulation depth. SPAN $100 \mathrm{kHz} / \mathrm{div}_{z}$ vertical $10 \mathrm{~dB} / \mathrm{div}$, 10 ms SWEEP speed

Fig. oc. As $6 b$, but external modulafion input reduced by 30 dB , displayed 100 me SWFFP.

Fig. 6a shows the 100 MH Iz output from an inexpensive signal generator with the internal 7 kHz amplitude modulation sivitcherl on The modulation is basically sinusoital, though some low order disiortion is clearly present. 50 kHz external sinusoidal moduldtion was applied in place of the internal modulation, adjusted ior the same modulation depith.
Fig, 6b shows the output, this time displayed via the spectram monitor, at a dispersion of 100 kt z/div. The large number of sidebands present, of slowly diminishing amplitucie, are much more than could be explained by the small amount of AM envelope distortion, indicating a great deal of incidental FM on AM, a common occurrence in signal generators when, as here, the amplitude modulation is applied to the RF oscillaton stage itselt.
In Fig. 6c, the amplitude of the applied 50 kHz modulating waveform has been attenuated by 30 rib, so the $A M$ modulation depth is reduced fom about 20% in Fig. 6a to 0.63%. This corresponels to AM sidebands of ahout 50 d B down on carrier, whereas those in Fig . 6 c are only around 30 diz down They are theretore almost entirely due to FM, the $A M$ sidebands being responsible for the slight difterence in level between the upper and lower FM sidebonds. (While AM and first FM sidebands on one side of the carrier add, those on the other subtract.) Note that at the 10 ms sweep used in Fig. 6b the sidebands are not completely resolved. For Fig. 6c, the 100 ms siveep was selected, the 50 WHz sidebands being resolved right down to the 60dB level.
Fig. 7a shous the spectrum monitor operating on Band C - covering bands IV and V. The span is just over I Milz/div and shows a band IV tv signal showing (left to right) the vision carrier, the colour subcarrier, the sound carrie and immediately adiacent to it, the much broader band occupied by the nicam sound chamnel.
Fig. $7 \mathbf{b}$ shows $4.8 \mathrm{~kb} / \mathrm{s}$ data applied to a VHF FM modulator, producing FSK with a ± 4 HHIz shit. The signal is spread over a considerable band and clearly a receiver bandwidth in excess oi 80 kliz would be necessary to handle the signal If a carrier is frequency modulated with a sinew ave using a very large modulation index (peak deviation much larger than the modulating irequency), a rather similar picture results, excepl that the dip in the middle is much less pronounced and the sidebands iall away very mapidly al irequencies beyond the peak positive and negative deviation.
The spectrum shape approximates in facl the l'SD (porver spectral density) of the baseband s:newave. The PSD of a triangular wave is simply rectangular, and Fig. 7c shows triangular modulation applied to the inexpensive signal generator. At the carrier trequency of 100 MHz , the AN1 modulation is in facl mainly FM and clearly clasely approximates a rectangular distribution, the Variation being no more than \pm I dB over at bandw idth of 100 kHz .
Such a signal is a useful excitation source for a testing a narrow band filter the tilter's characteristic can be displayed by applying its output to a spectrum analvser. I his dodge is handy when, as with this spectrum

Fig. -a. A band IV TV signal, showing (L to R) the vision carrier, colour sub-carrier, soand subcarrier and Nicam digital stereo signal.

Fig. Th. 4.3kb/s data FSK modulated onfo a VHF carrier; $10 \mathrm{~dB} / \mathrm{div}$ vertical, $40 \mathrm{kHz} / \mathrm{div}$ horizontal.

Fig. ${ }^{7}$ c. High modulation index FM produced by a triangedar modulating waveform has a near rectangular envelope with a flat top and steep sides. Individual spectral lines are not visible in this 20s exposure as there was no relation befween the modulating frequency and the sweep repetition period. The wary lines are due to ringing on the tails of the filler response.
montor, there is no built-in tracking oscillator. A modulating freguency waich beals no simple ratio to the repetition rate of the display sweep should be used, on herwise a series of snectral lines, stationarv or slowly passing through the clisplay, may result. This is due to a stroboscopic effect similar to the stationary or slowly rolling pattern of a Lissajous figure when the two frequencies are at or near af simple numerical relation

Fig. 8. Block diagram showing modified architecture, giving a choice of IF bandwidths. It is simpler to provide different signal paths for the different bandwidths rather than select the bandwidth by switching in one or other of several filters all operating at the same IF frequency.
priate tuning voltage from the DAC^{7}. The use of multiplying DACs will provide linear interpolation between points, giving in effect a shaped varactor drive voltage waveform with n breakpoints per scan. With many breakpoints available, the change of slope at each will be very small, avoiding the harsh breaks visible in Fig. 5b. The two msbs of the prom could be used as select lines to call up a different law for each of the three bands.

Frequency readout

A true digital readout can be provided by counting the frepuency of the LO output from the TV tuner, prescaled by a divide-by- 100 circuit ${ }^{\circ}$ to a more convenient frequency. Using the positive half cycle of the 5 Hz squarewave at pin 12 of $/ C_{8}$ provides a 100 ms gate time which, in conjunction with the divide-by- 100 prescaler, gives a 1 kHz resolution. The posi-tive-going edge can be used to jam a count equal to the IF frequency into a string of reversible counters, set to count down, the appearance of the borrow output switching a thip-flop to set the counters to UP count for the rest of the gate period.

Fig. 9a. The L.O. output of the EG522F tuner at 490 MHz , showing also the 2nd and 3 rd
harmonics. Span $100 \mathrm{MHz} /$ div, vertical $10 \mathrm{~dB} / \mathrm{div}$, ref. level (top of screen) 0 dBm .
redeployed to a position between $S_{1 B}$ and R_{10}. the sweep will occur during the negative half of the squarewave selected by $S_{1 B}$ (see Fig. 2b). A second pole of S_{3} can then be used to reset $/ C_{8-11}$ to all logic zeros. avoiding a long wait during the unused 50% of the selected squarewave output from $S_{1 B}$ before the trace restarts - assuming the display scope is in the external X input mode, rather than using triggered internal timebase.
Working with a single IF bandwidth has its drawbacks. Switching filters is a messy business however it is achieved. Fig. 8 shows an economical scheme using inexpensive stock filters.
Wide bandwidth LC or saw filters operating somewhere in the range 35 to .39 MHz are used for the tirst IF permitting full span on each band to be examined without resort to very slow sweep speeds. A second conversion to 10.7 MHz enables stock 50 kHz filters to be

used as an intermediate bandwidth, while a third conversion to 455 kHz provides a choice of filters with bandwidths of 5 kHz or less.
As Fig. 8 indicates, no filter switching is involved: the desired output is simply selected and fed to the log IF strip, which can operate quite happily at each of these frequencies. The net gain of the second and third IFs is fixed at unity, so that switching bandwidths does not alter the height of the displayed response provided of course that the span and sweep speed are not excessive. Another improvement would be better linearisation of the frequency axis avoiding sharp breakpoints, with the provision of shaping appropriate to each band. The easiest way to achieve this is probably to store n values in prom, n being a power of two, and read these out successively to DAC. The n values would correspond to equal increments along the frequency axis, each value being what was required to provide the appro-

The negative-going edge can reset the flipflop and latch the count: for economy the negative half period could simply enable a seven segment decoder/display driven direct from the counters if you don't mind a flashing display.
If span is set to zero, the tuned frequency is indicated exactly. If span is set to one thousaudth or even one hundredth of full span, the frequency will correspond to the centre of the screen, being of course the average frequency over the duration of the scan. In principle, the same applies up to full span, if the linearisation is good.
A simpler scheme for frequency readout uses a digital voltmeter. The output of A_{2}. besides feeding A_{5}, is also fed to a summing amplifier with pre-settable gain which combines it with a pre-settable offset. This is arranged (for example. on band A) so that with R_{1} at zero, its output is 430 mV and with
R_{1} at maximum its output is 1.18 V . This is fed to the DVM on the 2 (oooV range, providing a readout of $100 \mathrm{kH} / \mathrm{m} \mathrm{mV}$. Similar scaling arrangements can be employed for the other bands. the accuracy of the resulting readout depending upon the accuracy of the linearisation employed.

This arrangement ignores the effect of centre frequency fine control R_{2} which can, if desired, be taken into account as follows. The outputs of A_{1} and A_{2} are combined in a unity gain non-inverting summing amplifier. the output of which is fed via a 47 K resistor to A_{5} as now. and also to the scaling-cum-offset amplifier.
However. the simplest frequency calibration scheme of all, unlike the counters and displays. requires no additional kit whatever and unlike the DVM scheme, is totally independent of the exactness of linearisation. It is simply to calibrate. for each of the three bands, the centre screen frequency against the reading of the digital dial of the ten lum set centre freguency control R_{1}. Calibration charts are aseffective as they are cheap. and in the present application they can also be very accurate, since all of the instrument's supplies are stabilised.

Continuous coverage

My final word concems the missing coverage between the lop of band III and the bottom of band IV, whilst also adding coverage from
zero Hz up to the bottom of band I .
Many tuner, now available will probably. like the Tonhiba EG522F. have an LO output available. Fig. 9a show the LO output from the tumer when tuned near the bottom of Band IV/V. The level of the 490 MHz fundamental is - I8dBm and the second and third harmonics are both well over 25 dB down. The output over the rest of the band is well in encess of -I8dBm. Using broadband amplifiers to boost the tuner"s (.) output to say +7 dBm , it can then be applied as the mixer drive to a commercial double-balanced mixer, the signal input being applied to the mixer"s signal port via a 4000 MHz low pass filter.

This tuner is used purely as a local oscillator. with the mixer's output being applied to the signal input of a second tw inner fixed tuned to 870 MHz . Fig. 9 b . The second tumer thus becomes the lirst IF of an up-converting $0-400 \mathrm{MHz}$ spectrum analyser, its output being fed to a 35 MHz second IF strip as in Fig. 4.
This arrangement provides continuous covcrage from $(\mathrm{OHz}$ amost up to the top end of the $225-400 \mathrm{MH}$ aviation hand in one sweep, so only one set of sweep linearisation is necessary
A most useful feature in a spectrum analyser. not aluays found even in professional models is a tracking generator. This provides a constant amplitude CW test signal to which the analyser is always on tune. Fig. 9b also shows how for the paltry cost of yet another
tuner ind mixer, such a facility can be engineered. Used in conjunction with a reflection coefficient bridge, it turns a spectrum analyser into a rudimentary scalar nethork analyser.

References

1. SENDZ Components. 63 Bishopsteignton. Shoeburyness. Essex SS3 8AF Tel. 1702332992 2. Spectrum analysis on the cheap. Nick Wheeler Electratics Wowld + Wioeless Worldp 205. March 1992.
2. Log amps for radar - and murch more lan Hickmen, Electronics World + Wireless World. p.314. April 1992.
3. Tele Quarz lype TQF 34-01. Webster Electronics. Tel. (0) 0057166
4. KVG-GmbH. UK agent: Inertial Aeronystems Lid. Tel. $02527824+2$
5. Intime Electronics Ltd. Tel. $0787+78470$
6. Anatus Electronics Lan Hickman Buterworth Heimemann 1993. ISBN 0750616342 8. 1 Low Cost 1.2 GH: Pre-Sculer lan Hichman Pratikal Wireless August 1992 pp $18-23$ 9. Mck.night Crystal Lid. Tel 07113848961

CIRCLE NO. 111 ON REPIY CARD

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial E2, PALS, GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.
 Park Road Centre

TEL. 0656825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK

GERMANY 089/4602071 NORWAY 0702-17890 ITALY 0292103554 Also from VEROSPEED UK

"Smart power" is generally taken to mean the inclusion of control and protection facilities into a discrete power transistor package. Most devices with this tag offer only limited protection through their integral thermal and overvoltage protection circuitry. International Rectifer has produced a mosfet which is so smart as to be virtually unburstable, yet cheap enough to replace standard mosfets in most applications. By Frank Ogden.

Smart enough to avoid destruction?

IRSF $\mathbf{3 0 1 0}$	
$\mathrm{V}_{\text {ds }}$	50 V
$\mathrm{R}_{\mathrm{d}(\text { (on })}$	0.08Ω
I_{ds}	11 A
$\mathrm{~T}_{\text {junction }}$	$155^{\circ} \mathrm{C}$
E_{AS}	44 mJ

The ideal power mosfet would include decisive thermal shutdown with excess junction temperature, an overcurrent sensing mechanism which doesn't adversely affect onresistance and a fast overvoltage clamp which dissipates spike energy in the main transistor channel. If device protection can be provided in a standard three-terminal package, so much the better. There are

transistors on the market which have some these characteristics. The IRSF3010 has all of them - plus full ESD protection.
The device behaves like the n-channel $11 \mathrm{~A}, 50 \mathrm{~V}$ power mosfet which it is until a critical parameter is exceeded. From then on, internal protection circuitry takes over. Referning to the functional diagram, the zener diode between the input and source provides ESD protection for the input and also limits the applicable voltage at the input to 10 V . This mechanism wil withstand the full 4000 V body model discharge through the input pin of the device removing the need for any special handling precautions.
The internal RS bistable memorises the occurence of an error condition and controls the state of the output transistor through Q_{2} and Q_{3}. The tlip-flop may be cleared by holding the input to the device low for a specified minimum period, typically around $7 \mu \mathrm{~s}$.
The comparator pair senses overcurrent and over-temperature signals against an internally generated reference. Either comparator can reset the fault flip-flop and turn the power transistor off. During fault condition. Q_{2} disconnects the gate of Q_{1} from the input while Q_{3} shorts this to ground ensuring rapid power device turnoft.
The zener diode between the gate and
drain of the main power transistor causes channel conduction when the drain-source voltage of the device exceeds a predefined limit

Device operation

The control logic and protection circuits are powered from the signal on the input pin of the IRSF3010. When positive voltage appears at the input to the device, the flip-flop turns Q_{2} on and connects the gate of the main device to the input. The turn-on speed is limited by the channel resistance of Q_{2} and the gate charge requirements of Q_{i}. Using a higher input voltage will improve the turn-on time but it does not affect the turn-off switching speed. The control circuitry draws around $300 \mu \mathrm{~A}$ from the device input terminal enabling compatibility with most drive circuitry.
When the drain current exceeds the preset limit, the protection circuit resets the internal flip-flop and turns Q, off. Holding the device input below 1.3 V for a minimum of $7 \mu \mathrm{~s}$ will restore normal operation. Unlike schemes which monitor the total current through the power transistor channel, current measurement in

the IR device is made by examining the current flowing in just a tew cells out of the severaf hundred thousand which make up the power transistor. This avoids an increase in device saturation voltage to accommodate the sensing circuitry.
The device overvoltage circuitry also differs from the conventional. When the drain to source voltage exceeds 55 V , the zener diode between gate and drain turns the device on before the breakdown voltage of the drain-source diode is reached. This greatly enhances the energy the device can dissipate during turn-off of inductive loads compared to the avalanche breakdoun mode. Thus the transistor can be used for fast de-energisation of inductive loads. The absorbed energy is limited only by the maximum junction temperatere.

READER SERVICES OFFER
To obtain your free sample of the
International Rectifier IRSF3010 protected power transistor, fill in and send off the special reply card located between pages 1024 and 1025 of this issue. This reader services offer is being handled directly by International Rectifier. Our editorial office is unable to assist in any queries relating to it. This offer is restricted to the first 500 replies.

Above. Typical waveforms at overcurrent shutdown. After furn-on, the current in the inductor at the drain starts ramping up. At about 15A, the overcurrent protection shuts down the device.

Above right. Switching waveforms from clarmped inductive load using 5 V input voltage. In typical switching applications below 40 KHz , the difference in switching losses between the IRSF3010 and a similar current rated standard mosfet is negligible.

Right. Over-temperature protection. The graphs show an JRSF3010 switching a 1Ω resistive load connected to a 12 V power supply. When thermal balance is established, the junction temperature is limited on a pulse by pulse basis.

Your besi desigju soulel vilu you inis E2500 H-P Oscilloscope

5HIS Hewlett-Packard oscilloscope combines the feel and display of a top line analogue instrument with the precision and programmability of digital electronics. This DSO is easy to use because it was designed by electronics engineers for electronics engineers.

Electronics World is looking for freelance authors who can bring applied electronics design alive for other electronics professionals through their writing. We want to commission articles on circuit design using the wealth of modern components now available to electronics engineers. Possible areas of interest could be RF, microwave, audio, video, consumer electronics, data acquisition, signal processing and computer peripherals.

All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

The author of the best script received over the period June I, 1993 to May 30, 1994 will receive an HP54600A oscilloscope in addition to the normal author's fee.

The judging panel will be drawn from Electronics World and Hewlett-Packard.

A Hewlett-Packard HP54600A 1 OOMHz digital storage scope could be yours when you write for Electronics World + Wireless World, the journal that design engineers pay to read.

For further delails about our quest for
the best call or write to:
Frank Ogden, Editor, ELECTRONICS WORLD
Quadrant House, The Quadrant, Suftion
SM2 5AS. Tel 081-652 3128

DO YOU HAVE A £100 CIRCUIT? EACH MONTH'S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL OTHER PUBLISHED IDEAS WILL BE WORTH £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN COMPONENTS

Variable-inductance, low-frequency VCO

Variable-frequency oscillators using the then principle of varying inductance of a coil by varying mutual inductance in a transformer were first described by K C Johnson in WW April and May 1949. My adaptation is shown in the diagram. If L is the inductance of a coil through which flows an alternating current and some part of the same current flows in a mutually coupled coil, the effective inductance of the first coil L_{e} is $L_{2} \pm M$, since the second coil the same sense. M is the mutual inductance. A differential voltage controlled amplifier can be used to vary the proportion of the oscillatory current flowing through the second coil, the total oscillatory emitter current being shared in a varying proportion between the two halves of the amplifier. Since the effective inductance is in a series resonant circuit, the oscillator frequency also varies.
Transistor Tr_{3} is an emitter follower feeding the common-base amplifier made up of $T r^{\prime}$, and $T r_{2}$, the differential pair, whose output goes to Tr_{3} and completes the toop. Loop gain is set by $R_{6 B \Delta 2}$

Voltage control varies series inductance and therefore frequency in this LF oscillator.
to just over unity. Frequency is determined by C_{1} and L_{e}, although since the coil in Tr_{2} collector passes a direct current. ferrite cores affect the frequency. In the oscillator shown, L_{1} and L_{2} were made from a telephone exchange line transformer, which gave a frequency range of $47-64 \mathrm{~Hz}$ for a $0-5 \mathrm{~V}$ input voltage.

Squegging at 600 kHz occurred at zero crossing points, which was eliminated by the addition of C_{2} : a more suitable transformer may be designed to avoid the problem.

Mike Button

TDR Ltd,
Malmesbury
Wiltshre

DS1233 replaces monostable

Dallas's DS1233 EconoReset, described in the March 1992 issue (p910) normally resets a microprocessor after detecting upsets on its supply, but has other possibilities, being effectively a monostable in a TO-92 package which maintains a low on the output for 350 ms after power is applied. Here, it delays and produces an inverted pulse with a fixed width. Its frugal power needs can be supplied by a cmos gate.
Figure 1 shows the former, in which it delays a rising edge by 350 ms , replacing a monostable and an and-gate. When the cmos gate output rises, the DS 1233 output remains low for 350 ms , going high after that period and returning low when power is removed.
In Fig. 2, a negative-going pulse wider
than 350 ms at the gate output produces a 350 ms pulse from the DS1233. When the gate output goes low it applies power to the $D S 1233$, the output going low for the time-out period and then returning high, unless the gate output is shorter than 350 ms , in which case the output will correspond to the input.
Steve Winder
Ipswich, Suffolk

Fig. 1. Dallas's Econoreset microprocessor reset device used to delay a pulse rising edge by a fixed 350 ms . Used in such a way, the DS1233 replaces a monostable and an And gate is contained in a small package. Power comes from the cmos gate.

Fig. 2. The DS1233 produces a fixed 350 ms negative-going pulse.

PC counter uses parallel printer port

Needing to use a PC as a counter/limer without tying up the i/o bus, it seemed that the printer port would serve the purpose, but that the counter would need a separate power supply. In the event, this was unnecessary, since power at 8 mA is derived from the serial port. The circuit allows measurement of frequency and period of a TTL input under software control from the PC.
Figure 1 shows clock signals coming from the 4060 32.768 kHz crystal oscillator, which delivers the basic crystal frequency for period counting. In this mode, one cycle of input signal gates the clock to the counter. In frequency measurement the gate is open for 1 s , during which the input goes to the counter. Four quad tri-state switches pass the counter

output, a nibble at a time, to the status port.
Operating procedure is first to select the frequency or period mode; to reset flip-flop 1 and the counter, FFI being set by the rising edge of the input or the 1 Hz reference in period mode; counting begins and when FF1 output goes to 1 , counting stops. The PC then reads the 16 bits, four bits at a time.

Figure 2 is the complete circuit diagram of the counter adaptor and Fig. 3 the power supply using the serial port.

The 5-bit input status port reads the count and monitors measurement cycle status, the data port to enable tri-state switches and for mode selection and the control port to reset FF 1 , the address of the printer adaptor in use (LPT 1,2 or 3) being found in the dos data area.
In period mode, the count must be multiplied by $1 / 32768$ to obtain a sensible reading.
Dhananjay V Gadre
Inter-University Centre for Astronomy and Astrophysics Pune
India

Using a PC's printer adaptor, this circuit converts the computer into a frequency/period counter needing no other power supply than the serial port.

Under-frequency inverter protection
 ff a 50 Hz inverter's output frequency falls

 below that required by the equipment it powers, this circuit disconnects the output. Input comes from the inverter's driver stage. any asymmetry being eliminated by the first D-type flip-flop. At each low-tohigh transition of $Q_{1} . C_{T}$ discharges through the transistor $T r_{1}$, and begins to charge again through R_{T} and ρ_{T}. As this voltage reaches the threshold voltage of Clock 2 input, the $\backslash Q_{\text {, output latches into the second flip-flop. }}$ As shown in the timing diagram, the $\backslash Q_{2}$ output, which drives the output transistor

Simple circuit disconnects inverter output if its frequency falls below a preset limit. It could easily be used with portable AC generators.
and therefore the relay, is either 0) or 1 , depending on the input frequency. Resistor R_{F} inserts a little hysteresis to prevent relay chatter.
Adjust P_{1} to make $T_{\mathrm{TII}}=T_{\mathrm{u}}\left(=1 / f_{\mathrm{u}}\right.$, the frequency at which the relay disconnects the load). This trip frequency can lie in the 48 62 Hz range with the components shown.

M S Nagaraj

Isro Satellite Centre
Bangalore
India

Single-diode full-wave rectifier

$R_{1}=195 k$
$R_{2}=R_{3}=22 k$
$R_{4}=2 R_{1}=390 k$
D_{1} schottky diode BAT43
Op-amp 741..
$v_{c c}=6$ to 12 V symmetrical

[^1]This single-diode, single op-amp rectifier is used for LF reetification in an RTTY FSK demodulator.
During a positive input half wave, D_{1} conducts and the circuit becones a noninverting amplifier, so that

$$
v_{o u t}=v_{i n} \frac{R_{1}}{R_{1}+R_{2}}
$$

for positive inputs. On negative half cycles, D_{1} is virtually an oper circuit and on riegative inputs.

$$
v_{\partial u t}=v_{i n} \frac{R_{1}}{R_{1}+R_{2}}\left(1-\frac{R_{2} R_{4}}{R_{1} R_{3}}\right)
$$

Naking $R_{3}=R_{4}$ and $R_{1}=2 R_{2}$ reduces this to

$$
v_{\text {out }}=v_{\text {in }} \frac{-R_{1}}{R_{1}+R_{2}}
$$

which is the inverse of that for positive inpats and both half cycles are amplified.
Ciode imperfections can cause an imbalance between the halves: in such cases, increase R_{1} to $200-220 \mathrm{k} \Omega$.
Francois Guillet
France

Dirty
 Windows

What an interesting coincidence that Barry Fox : guest editorial ($E W^{\prime}+$ WW, September quarying whether innovallions and fancy features actually satisfy users needs, was in the same issuc as some wag was telling us that Microsoft had spent the last ten years perfecling Windons (Update).

Is that why we hear about unrecoverable errors, lack of speed. the amount of hard disk space uned. how many third party applications have to be loaded as well, how it gobbles up memory or what a pain it is to do a simple thing like copy a file:? Or course, all these things will he sonted out in Windows N'7, won"t they? Or did I hear there was something catled (airo beyond that?

A less charitathe vieu is that for the past 12 years Microsoft's
operating systems have been crippled by some very poor decisions made in the eagerness to rush out something for the IBM PC. and the various verstons of Windows followed a similar pattern because of eagerness to compete with the Macintosh gui.

Anyone who strays into their local school is likely to see quite young children opening windows, resizing them, launching applications by double clicking with a mouse.
selecting files created by one application and dropping them into another. In other words using Acorn Risc Os they can do all the things a Windows user wants to do. and a good deal more easily.

Isn't it time that someone anked why it is that a small British company can produce a wimp based operating system which runs comfortably on a I Mbyte machine with a single floppy disk, while multi-million dollar Microsoft is still

Out in the Cold

I was most interested to read Andy Wright's article on cold fusion ($E W+W W$. October). The emphasis is more on the radiation emitted and products formed, rather than on heat production. Even so. some important points were omitted, presumably for brevity. The original authors (Pons and Fleischmann) have withdrawn their claim for radiation emission and tritium formation. They concentrate only on heat production. They generate enough heat to bring the electrolyte to the boil, but the heat is much more easily explained in straight chemical terms on the assumption that there is no cold fusion.

I have seen a video of the F \& P equipment in action and was surprised to see that no effort had been made to keep oxygen away from the palladium. The fact that hydrogen saturated palladium gets hot in the presence of oxygen has been known for a very long time. Palladium acts as a catalyst in the conversion of hydrogen (or heavy hydrogen) and oxygen to form water and heat.

During normal running the palladium is surrounded by oxygen in solution in the electrolyte, by oxygen bubbles coming off the platinum anode, and by oxygen in the gas above the liquid. Heavy hydrogen bubbles coming off the palladium effectively purge the oxygen from solution in the immediate vicinity of the cathode. If this equilibrium is disturbed, so that some oxygen reaches the palladium, then a hot spot is created, this sets up a convection current. bringing more oxygen down from the anode round the bottom of the tube and up past the central palladium electrode, producing even more heat. In the video, the electrolyte came to the boil, allowing oxygen from the gas phase to reach the palladium.

The total heat generated in the experiments of F \& P was always less than the electrical energy put into the system. The electrical energy input was applied over several days or weeks. During this time it was accumulating a store of chemical energy in the form of hydrogen in the palladium. If for any reason, oxygen reached the palladium then this accumulated energy was released in a few minutes.

If am right then you would also expect an experiment using ordinary light water to generate heat. Well, according to Pons himself, "It does". Sce Nature Vol 338 page 691.
David Dewey
Happs Edge, Herts

Andy Wright's timely reminder $(E W+W W$, October) that there is life in cold fusion after Fleischmann and Pons gives me a chance to state that there was one experimental angle that was ignored by the lemmings who rushed to exorcise the fusion cell 'heresy' threatening 'good' megabuck science.
All the experiments set up to investigate the F \& P results took great care to screen the experiment from external radiation.
F \& P did not - in fact the successful tests took place in an open laboratory well above sea level during the last solar maximum.
Could it be that the fusion cell has to be pumped with external radiation to start the reaction. and that this happened accidentally in the laboratory on several occasions coinciding with a solar flare? It would be easy to check from the solar emission records.
There's nothing unusual about starting a reaction by adding energy from a different source.
The chemical reaction in every internal combustion engine is started by external cranking power. and a fusion bomb has to be triggered by an atom (fission) bomb. So why not use external nuclear radiation to prime a cold fusion cell?
Until this approach has been tested, I consider reports of the death of cold fusion à la F \& P to be premature and unjustified.
Anthony Hopwood
Upton-on-Severn, Worcester

The article "Clawing back respectability for cold fusion?" ($E W+W W$, October) tells us how AEA Harwell's researchers were unable to duplicate the Fleischmann and Pons results, but also reports that some researchers are "gaining tantalising glimpses of the effects first noted by Pons and Fleischmann".

Obviously, there is a reason why some fail and some occasionally succeed and eventually, with hindsight, the reason will become as clear as our understanding of why an oscillator can need an initial stimulus before it starts oscillating.
The F \& P tests were seen to involve possible errors in estimating heat production due to small temperature differences between different cathode regions in the cell. Therefore, in setting out to replicate the experiment and measure any excess heat with greater precision the so-called experts used calorimeters in which cell temperature was assuredly uniform to within a small fraction of a degree.
The cold fusion reaction did not occur.
The physics of the 19th century tells us that a temperature gradient can develop an electric potential in a metal and so a non-uniform temperature can set up a residual charge in that metal. Such a source of negative charge could, within a cathode full of positive deuterons having the right geometry and current excitation, assist in bringing those deuterons close enough to fuse. But one needs a temperature gradient.
The cold fusion process no doubt depends upon the prior existence of a temperature gradient in the cathode before it develops heat that sustains in that cathode a temperature gradient so heat can be conducted away. This, as we well know from analogy with electric circuit theory, is a recipe for exponential escalation, instability, and even the runaway heat generation that $F \& P$ found in one experiment. The action needs that initial temperature gradient to be triggered!

So, since Harwell and others set out to do calorimeter tests rigorously and properly with well-monitored calorimeter apparatus, deliberately minimising temperature differentials to assure the temperat ure was monitored precisely, they merely choked off the action they sought to measure.
The recipe for sustained success involves injecting heat initially to get the cold fusion reactor started. The trigger depends upon a thermoelectric phenomenon, the Nernst effect.

Harold Aspden

Chilworth, Southampton
promising to sort things out with Windows NT? The last thing I read about Windows NT said that it would expect to find 8 Mbyte of ram. but really needed 12 Mbyte !
Apparently not! Month after month the computer press is full of reviews with headlines like "C compiler shoot out". "486 wars" or "Word-processor head to head". Magazines get fatter, worthwhile articles get fewer, but the advertising revenue rolls in
Sadly I'm beginning to see the first signs of this trend in $E W+W W$. Almost every month there is an article described as "PC
Engineering". It isn t . it's just a program review by a fancy name. 1 cannot remember when I last saw an article that mentioned any other computer than a PC
The assumption seems to be that the PC is the industry standard and that any other computer nust be a toy. Unfortunately joining two or three pieces of standard and supposedly compatible equipment. then persuading them to talk to each other. can still take a very long time.
I find it very hard to believe that people are not finding worthwhile and commercially viable uses for computers like the Amiga, Atari or the various Acorn Risc machines. which could find a mention in your pages. Looking back over 20 odd years of your magazine in its various guises. one thing that stands out is the number of oddballs finding a voice in your pages. So why the present obsession with helping Bill Gates` bid for world domination? Les May
Rochdale
I agree with every word the corespondent says. Intel architecture is slow' and stunted while Microsoft operating systems have alwoys been cumbersome and inefficient. How' IBM ever allowed Bill Gates to become the world's highest paid executive, and Intel the world's most profitable semiconductor is heyond me. The truth is that the two compamies have more of their products in use than all their. competitors combined -by a factor of several times. To ignore this in our revien's would be to do a disservice to our readers.
Personally I use a Macintosh. Editor

Kids playing with Windows

John Carrey raises somen very valid points about the dreadful Windows ($E W+W W$. October). To my understanding Windows was conceived as an aid for chaldren to use PCs without the need to comprehend dos. That the adult world embraced the product is hardly in accordance with the old quotation: "When I became a man I put away childish things". Apart from this large useless package taking up a useful chunk of ny hard disk. I can do anything quicker under dos.
I resent the loss of some 9 Mbyte of disk space for a program that I am forced to use to run sottware because there is no dos alternative. But how much worse it is for schools with their low budgets and old machines, where a 40 Mbyte hard disk is a luxury; more than 25% of disk space taken up with operating systems!

Professionally, I am involved in satellite remote sensing analysis, where the operational software is dos based. I am happy to report that I don' 1 know of any Window's products in this field.

Recently I completed a low cost satellite image analysis package for schools, which includes 20Mbyte of high resolution satellite images, which for low capacity hard disk users can be loaded individually (250Kbyte each) from floppy. The analysis software requires 1 Mbyte and no it does not run under Windows nor ever will!

D) Standen

Slower using Windows

John Carrey's letter ($E W$ + WW, October) criticises several aspects of Windows. The writer, as do other Windows critics, overlooks a basic fault inherent in Windows software.
Much commercial use of Windows type software involves continuous interaction with the keyboard user. The typical slow reaction time of the user partly conceals the extreme slowness of Windows basic execution.
Our work uses PC programs that need minimal user interaction and emphasise any slowness in execution. Two pairs of sample runs

- each using identical input data and a 66 MHz 486 system - demonstrate the inefficiency of graphics based text screens. These programs allow a run-time choice between text only and EGA graphics based screens.
For data requiring limited calculation the text only screen took 9s. An identical calculation using the EGA alternative took 283 s more than 30 times as long.
With data needing extended calculation the graphics screen had less effect but still took twice as long - 5 and 10 hours.
These were short test calculations. Practical use intplies single runs lasting from a few minutes up to several months continuous calculation - with pro rata time increases for EGA. Apologists for Windows state that faster processors will solve this kind of problem forgetting that many basic calculations are still far too slow.
Windows NT appears to offer even worse possibilities. A recent review emphasised its need for the fastest processors - presumably not to improve the speed of basic calculation.

When will someone produce a 32bit operating system that combines all essential basic facilities with maximum processor utilisation and excludes complex gimmicks?
RG Silson
Tring, Herts

Relay breakdown

After reading A. Millar's letter (Chanky versus Cost, EW +WW, October). I feel that several points raised in the letter are in need of clarification.
Mr Millar says that you cannot dismiss the mechanical switch or the relay too lightly. I wasn't aware, from what was written, that I had. The manuscript, as originally submitted, went into some depth about the pros and cons of sadd devices, but the editorial knife removed these references, probably because the article was primarily about solid state switehing.
As far as lab tests on a new board are concerned. 1. too. whole heartedly concur that a quality relay does present itself as a perfect switch - no semiconductors to distor the signal or cause noise when new. However, Mr Millar seems to have missed the fact that all rekays do agc, the cheaper types

Spectrum space

The article "FM stations may close in spectrum shake-up" ($E W+W W$. September) about finding room in the spectrum for T-DAB makes me wonder whatever happened to bands I and III? These useful
frequencies, once the home of 405-line tv in the UK, are stil used for $t v$ in the rest of the world.

I well remember the
introduction of 625 -line iv on uhf. We were told that, in about 20 years time, the vhf bands would carry two 625 line networks, in addition to the four planned on uhf.
loseph B Fox
Redhill,
Surrey
faster than others. Once contacts become oxidised, the resultant high resistance, or resistance modulated by signal level. will cause all manner of intermittency, noise and distortion problems.
Cost was mentioned briefly by Mr Millar but not properly pursued. Yes, the Focusrite console dispenses unilaterally with any solid state switching. and its sonic
performance, in all respects, is widely acclaimed by the pro-audio industry, and rightly so. However, it does cost hundreds of thousands of pounds: transparent audio performance is not achieved without some considerable cost. The real challenge is to engineer an audio switch which is fairly transparent and is economic enough to be fitted hundreds of times over in a budget/mid-priced console.
Furthermore, the cost of relay switching isn't related purely to the cost of the devices used. but more to the careful design of the environment surrounding the component. The inductive nature of the relay means that audio and switching ground return paths have to be isolated if splats are to be avoided. This philosophy can be extended as far as providing completely separate switching and audio supply rails, mechanical isolation of the relays (separate PCB's) and hefty
rackwork/extensive ground planes. Furthermore, mutual-inductance coupling, poor regulation of supply rails. even microphonic pickup, all have to be considered if a design is to be a success. The extra time this requires at the design stage, the cost of larger or separate PCBs. drive and protection circuitry. isolation using opto-isolators etc. all add insidiously to the overall cost.
As far as the SSM2/42 solid state switch package is concerned it is sonically attractive but costly. around $£ 8$ per IC. with the switching function made "splat-free" using internal complementary ramp generators and comparators. Again. performance is achieved with cost.
Where commercial mixer switch designs are concerned. manufacturers are understandably reticent to publish circuit diagrams, so comparison with those shown in the article is somewhat difficult. What I had intended from the paper was an appraisal of the basic techniques employed in audio switching, rather than to provide the last word on commercial. cost-no object, topologies which have little relevance to most budget or mid-priced applications.
Mike Meechan
Reading
Berks

Absolute test not needed

1 refer to the letter from Greg M Ball ($E W+W W$, August) about my articles a year earlier $(E W+W W$. July 1992). He notes that the simple THD test circuit (my Fig. 1a reproduced from the Burr Brown data sheet) results in a common mode input to the op amp as large as the signal output, which I did not specifically point out as it will have been appreciated by most readers.
Additional distortion in the noninverting comection compared with the inverting circuit (often described as being due to common-mode failure) is a well known phenomenon and is the reason the inverting connection is usually preferred where lowest possible distortion is the design criterion. Equally the non-inverting circuit is usually preferred where lowest possible noise is the design criterion. leaving one with a problen where the largest possible dynamic range is the goal. since then noise and largesignal distortion are equally important.
The additional distortion in the NI connection due to common-mode failure is, as Ball notes, often even order, but my measurements show that the residual distortion of the OPA2640 is also even order in inverting operation. This leads to the intriguing possibility that in the NI commection there could be either
addition or partial cancellation of the two sources of second harmonic distortion.
So while the ingenious Burr Brown test circuit is very convenient for an approximate evaluation of the device's distortion using a THD meter with only a modess performance, for precision measurements there is prima facie no substitute for a test set-up that takes absolute distortion measurements without relying on the distortion-multiplying arrangement discussed.
However, in practice less esoteric equipment can prove entirely adequate. Thus, where a designer has chosen to use the NI connection, the additional distortion due to common mode failure has to be accepted and the test method discussed (using the same gain as in the application envisaged) is appropriate.

On the other hand. for the inverting case, one can use a technique similar to one often used in evaluating an op amp's settlingtime. A side chain eonsisting of an input and a feedback resistor equal in value to those defining the op amp`s gain is used. the voltage at their junction being a mirror of that at the op amp's inverting input, that is the drive signal is largely cancelled out at this point.
Slight adjustment of one of the sidechain resistors, plus maybe a whisper of quadrature trim, let the input signal be entirely outphased at this point. It can then be connected to the virtual earth of another op amp, which will provide an amplified version of any signal at the output of the DUT for which there is no corresponding input signal, viz the DUT's distortion.
While cancellation of the input signal can never in practice be absolutely complete, up to 60 dB of input signal rejection is certainly feasible. permitting the use of a modest THD meter to complete the measurement.

Ian Hickman

Waterlooville, Hampshire

Neural omissions

With reference to my article "Neural networks hit the jack pot?" ($E W$ + $W W$, August), an important part of the original article appears to be missing.
The missing section should be added at the end of the box "Back propagation algorithm". where it states: "Contribution to the network error of the weights located between the input and hidden nodes can be found from calculating the derivative as follows:'
Unfortunately the calculations are not shown. Here is the missing part:

$$
\frac{\delta E_{n}}{\delta U_{y}}=y_{i} y_{i}\left(1-y_{j}\right) \beta_{i}
$$

where β_{1} is the error at the output of a hidden mode, and is defined as:

$$
\beta_{i}=\sum_{k} W_{i k v_{k}}\left(1-y_{k}\right) \beta_{k}
$$

We have derived B for each laver of the network, all that remains is to adjust the weights in the network to reduce the error. The change required in value for a weight between the input and hidden nodes is given by:

$$
\Delta W_{i,}=-\delta y_{i} v_{j}\left(1-v_{j}\right) \beta_{j}
$$

and likewise for a weight between the hidden and output nodes:

$$
\Delta W_{ر k}=-\delta y_{j} y_{k}\left(1-y_{k}\right) \beta_{k}
$$

where δ represents the step size used in weight adjustment.
A typical value for δ used in other optimisation methods is 0.5 . This is confirmed by Drew van Camp (a computer programmer and researcher at the University of Toronto).

Also, there is a small but important printing error on page 6.52 in the text below the first equation: e_{i} is not squared as stated. The second equation is correct since this involves taking the sum of the square of the errors.
George Overton
Kelmscott, Leicestershire

Give Workbench a chance

It is to be regretted that your reviewer of Electronic Workbench Pro ($E W+W W$. September) gave it a somewhat cool reception. It is obvious to me, that insufficient time was spent with what is after all a unique example of cad software. And it is unfortunate that the simple circuits that come with the software were the only ones that were tried.

The generally negative tenor of the review might well deter younger computer users and educational establishments from investigating it: where else can you find a program that has all the features it offers and at the price?
Sure enough, having used it for a number of months. it has idiosyncrasies and the odd bug or two (which were clearly not discovered, either). But then, what cad software hasn't? If I wanted more aceurate quantitative measurements. I would go for Spice or Analyser III.
But for a designer, the sheer pleasure of knocking together a sample circuit in a few minutes and seeing how it behaves is extraordinarily valuable and time saving. Yes, it is memory greedy and not a little tardy, but with greater familiarity, ways reund all
these become apparent.
Also, version 3.0 is due any time and will address all the criticisms I have of it. But has your reviewer ever waited for a student to construct and then fathom out the workings of a simple circuit on a laboratory bench? This takes ? min 25s using a 386 plus coprocessor for a bandpass filter, which was the longest simulation I have recorded about the same time for the
soldering iron to heat.
Reg Williamson
Kidsgrove, Staffs

CFA: the last word?

FM Kabbary's letter ($E W+W W$, September) seeks to continue the debate on the crossed-field antenna but maybe it is time this dead horse was spared further flogging.
The claim to have found corrections to Maxwell's equations places Kabbary firmly in the ranks of the eccentrics. As for the assertion that many scientific and rigorous measurements have been made on the CFA. I feel this would be more convincing if any of these results had ever been published.
In the "CFA - RIP" article ($E W+$ WH: May) a CFA was shown to produce a loss of 23 dB , which corresponds to an efficiency of 0.5%. This is consistent with the results quoted by Martin Spencer ($E W+W W$. June 1991) who found an efficiency of 0.1%. These results are in my opinion quite believable and I do not think the CFA's protagonists can improve very much on them in properly controlled conditions. If I am wrong, where is the evidence?
Alan Boswell
Great Baddow, Chelmsford

Respect the giants

For many years space has been found in $E W+W W$ for entertaining controversy about the validity of experiments on the effect of movement on the propagation of light. I want to suggest that it is unfair to readers without specialist knowledge of the issues to continue to imply that the observations are open to simple dispute. If you continue to publish letters perhaps they should come with some sort of health warning.

For those unfamiliar with the correspondence a bricf explanation is appropriate. In the 19th century a number of experiments were carried out to discover the effects of moving the apparatus used to measure the speed of light. Those which Michelson and Morley performed in 1887 are the most famous.
It was strongly believed that light
was a wave motion and it was natural to e epect that moving the apparatus wrould aller the speed of the light in the same way that wind alters the measured speed of sound. No effect at all could be discovered. This was a surprise to the earlier experimenters though it was probably what Michelson and Morley had come to expect.
However the source and receiver are moved. the measured speed of light in free space (commonly witten as t°) is. to the limit of experimental accuracy, that predicted by Maxwell for electromagnetic waves.
These experiments were difficult because the speeds with which natural effects move the apparatus are quite small compared with c. The speed of the carth in its orbit is about $30 \mathrm{~km} / \mathrm{s}$ compared with c at about $300,000 \mathrm{~km} / \mathrm{s}$. To make the situation worse the elfects studied depended on $(1 / 6)^{2}$.

Nevertheless so long ago as 1892 Fitigerald accepted the correctiness of the observations and published the hypothesis that some then unknown physical effect shortened moving objects by just the amount needed 10 conceal the expected effects of change in speed. Liter
theorists showed that the effect would also have 10 reduce the duration of effects in moving apparatus to explain the
observations fully.
Einstein"s approach was entirely different. Accepting evervday experience. he assumed that motion had no effect on physical ofjects: changes that are only apparent arise in rulers and clocks whet we try to relate measurements made at different speeds in a way that takes into account the constant velocity of light.

Later astronomical discoveries revealed movements, including the rotation of the galaxy, with speeds about ten times as great as the Earth's orbital motion. These factors too might have been expected 10 produce observable effects. Because of $(1 / / \cdot)^{2}$ these would be .100 times as large. making our confidence in the null actually recorded far greater than the experimenters themselves could feel.

All attempts to detect these eflects of motion on the speed of light have relied on comparing the speed in two diflerent directions. Until the development of atomic cloeks in the last few decades indirect methods had to be used and these led to the
$(v / c)^{2}$ that made the effects so small Nowadays it is possible to work in the obvious way with one clock al the source and another at the receiver. The global positioning system using artificial earth satellites inverts the procedure. assuming the speed of light to be conslamt and deducing positions by measuring the difference in arrival times of radio signals from several satellites. Any variation of the speed of light along one path would produce a proportional change in the apparent length of that path, leading 10 a corresponding error in position.

The accuracy of the system is a few tens of metres. while the path lengths are a few tens of thousands of kilometres. Thus changes of the speed of light of around one part in a million would be noticed as malfunctions of the system. I have noted above that the Earth's orbital motion has a speed one tenthousandth part of that of light. much greater than this resolution.

As these satellites are in rapid motion relative to the Earth the suggestion that a stationary Earth is an adequate explanation for the null results of the l9th century
experiments is ruled out. There are similar but more complex
experiments which shove the limit to be more than two orders of magnitude smaller. These measurements are so accurate that a second is now defined to be the time taken by 9,192,631.770 oscillations of a resonance frequency of the atom of cesium 133. The metre is defined implicitly by specifying the speed of light to be $299,792,458$ metres per second.
It must be admitted that it is very surprising but light waves do not behave like sound waves or water waves in this respect. Twentieth century studies have shown that there are rather few respects in which they are similar but the others don 1 seem to worty your
correspondents so much.
I have to say that most of the Jetter writers reveal an unaftractive arrogance. Not only Einstein but several others who have contributed to the growth of modern physics are amorirg the greatest intellects the world has known. How can anyone helieve that with a few minutes casual thought (or rather lack of it) they can discover these giants errors?
Michael WeatheriN Fife

CIRCLE NO. 113 ON REPLY CARD

Mastilive analogue filters

Designing a good analogue filter can be tedious and time consuming. Filter Master Active for the PC makes design quick and easy but at a price - as John Anderson explains.

Selection of the analogue filter type and its approximation is straightforward. The process is simplified further by using the mouse option.

Filter Master Active is a dos based filter design and optimisation tool intended to help specifying. dimensioning and analysing analogue filters. The package is from Omicrom, licensed by Intusoft of San Pedro, California. It handles a range of filter pass characteristics and allows selection of various approximations. There is also a choice of design options. I remember well the struggle of synthesizing analogue filters to solve specific problems. The task was always tedious and a tricky compromise in component selection. This product provides a good route through the problem and is fast, allowing plenty of iterations in a reasonable amount of time.

Package overview

Comprising just a slim 150 page slim paperback manual, a disc and a parallel port dongle, the package costs over $£ 600$. Its manual is professionally produced and supplemented by a number of screen examples. A dozen

sheet 'application note’ is supplied though in reality this is really an addendum to the manual.
Installation was simple and uneventful, taking about 1.2Mbyte of hard disc space. The tiles comprise a number of Borland Graphical Interface (BGI) types. These allow the software to work with a wide range of different screen formats from CGA to VGA. Automatic screen sensing can be manually overridden to force mono graphics for lap top operation for example.

Tutorial section

On starting the program you are presented with an opening menu. This is the root menu for a quite complex tree of menus used to set the options for the program, synthesize filters and output results.
The manual leads in with an excellent tutorial of the design of a tenth order Cauer filter which took longer to specify than to synthesize! In only a few minutes, the tutorial introduction took this first design from paper specification to final design. This shows the user interface to be if not pretty then at least intuitive.
These glowing comments must be balanced against a fairly crude menu tree compared with modern graphical user interfaces. This problem shows up again in several other aspects of the program performance. In the end however, it is functionality and productivity that matter.
Throughout the program - even in graphics mode - a context sensitive help facility is available. It is at best adequate and at worst just a short description of each command. The help contents is a list of descriptors, usually one word, presented in a rather untidy list at the top of the screen.

Filter realisation

Filter Master Active uses a cascading technique to implement the final filter design. The technique involves a decoupled modes approach where first and second order filter structures are compounded to produce the final transfer function. In practice, problems can occur with this approach if capacitive loading on the output of the opamps is large. This loading introduces additional poles in
the transler function. In severe cases the current limit of the op-amp could be exceeded and a non-linear slew rate limit imposed. The fïlter synthesis technique is supposed to ensure that capacitive loading is kept low.

During the set-up sequence there is an option to select how the component values are to be realised. Options are specilically based on normal component values, the exact value or values based on series or parallel combinations of values.
To aid inspection of the synthesized filter, it can be 'drawn' as a circuit diagram using text characters. This is both crude and likely to cause confusion - if there was ever a reason for using a GUI, this is it. A nice feature is the ability to alter the individuat component values. This allows assessment of the effects of choosing more practical component values. However this facility lalls a long way short of a Monte Carlo tolerancing facility needed to determine the range of filter performances that might be expected with real components.
It is important to remember that Filter Master Active is limited to the design of active filters (those with operational amplifiers) using only resistors and capacitors.

Producing graphs

There is a variely of frequency and time simulations that can be run to assess the filter performance, ranging from Bode plots to time domain response. All simulations ran very quickly, producing an output graph in about a second.
The graphing facility has a very nice zoom feature. With the aid of the mouse, a rectangle around the area of interest is selected on the graph. This area is then presented as the new graph. The procedure can then be repeated several limes. A useful facility is that you can have the design target filter specification superposed on the graph of the frequency response simulation. In this way. you can see how and where the target is not met.
Graphs include phase and group delay as well as linear amplitude frequency response. Although the automatic scaling was generally good it failed to scale the phase response properly. However the automatic scaling can be overridden manually.
The hard copy section is really rather crude. One would expect a program of this price to at least present a comprehensive list of supported printers and plotters. Plotter outpul is HPGL, but with no pen selection. The printer output suits either an IBM dot matrix printer, nonIBM (presumably Epson) dot matrix printer, or PostScript, So if you use Laserjel or Ink jet printers you may have 10 invest in Posstscript emulation.
A netlist for the filter design in ascii Spice form can be selected. The manual suggests that this will work with arry Spice program but recommends the use of IsSprice - a version of Spice supplied by Intusoft.

The difficult bits

For any filter design, tolerancing is one of the more difficult tasks. Filter Master Active does not provide any component tolerancing assistance. The only way in which this could be achieved is by using separate Spice modelling.
A similar problem exists tor the effect of op-amp performance. Although the program allows specification of the op-amp, this is merely appended to the Spice file. No trimming of the lilter components is provided to compensate. An example of this is presented in the

Graph display is usefully enhanced by the zoom function. With the aid of a mouse, the section of the curve to be zoomed is simply selected by pulling a rectangle around it.

Move uitl [Cursor keys]
oUTPUI: File Printer Spicelnfo spiceCutput
Quit ?

This crude circuit diagram, compiled from ralues created by the filter design software, is intended to provide an overview of the final circuit. Being based on text rather than graphical symbols however, it can be confusing.

Once the analogue filter is designed, you can tweak it by altering the values of individual components.

Part of the package is a tutorial covering the design of a tenth-order Cauer filter which takes longer to specify than design.
applications sheet in the section dealing with interfacing with spice

Conclusions

This is a good product with good fundamental performance. The ability to synthesize and optimise filters quickly must improve productivity. If you need to design

DYGW RECUREMETI

PE with DOS 3.1 or later, 640 K memory, 1.2Mbyte hard disc, optiona mouse, cga, ega, vga, ATT, MCGA or Hercules display, IBM dot matrix or PostScript printer. HPGL plotter, parallel port for dongle.

Surpien Dayte

At $£ 610$ plus $£ 20$ delivery, Filter Master Active is available from Technology Sources Lidd, Grove House Lodge, Falmouth Avenue, Newmarket, Suffolk. Tel. 0638561460.
half a dozen non-canonic filters then the cost of the software will be easily repaid
That said the whole program, although, functional and robust, has a very crude feeling from the menu structure to the circuit drawing and printer support. Although the program does provide a spice interface, there is no netist facility. This makes the transcription of the final design to schematic capture prone to error. But in the end these are user interface issues. In its, encapsulation of filter design rule, the program performs with distinction.

Further reading

The Active Filter Design Book by Moschytz and Hom. published by Wiley, provides a useful design guide for about $£ 30$.

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

Pay by Visa or Access

Integration has now reached a level where it is possible to build a computer capable of out-performing the original PC-XT on a board with a credit-card footprint, as David Guest explains.

The embedded PC is not a new idea. Historically, the PC-XT was followed by the release of the $80188 / 80186$. which introduced the concept. Subsequently, NEC released the 1 serial port and enhanced instruction set.
Register bank swapping and interrupt-driven macro services were introduced into the next generation - the 125. making the devices much more useful in real time systems. Finally, the later 155 family comprised two processors. the PI and SC aimed at printer/fax applications and local area network (LAN) markets respectively.
Unlike the previously mentioned devices, the recently introduced PC-on-a-chip allows all the functions of a PC to be incorporated in embedded systems. This chip also takes advantage of PC user interfaces such as the keyboard and display, saving valuable development time.
Software tools for the embedded PC are inexpensive. Cross-compilers and emulators normally associated with micro-controller development are unnecessary. Software can easily be written easily on a high-level PC compiler,

Input/output system

TThe basic input/output system, or biss, has evolved with the PC. It has a well documented interface that isolates the operating system from the differences in the hardware of the system. It prov des a power-on-self-test tpost) initialising all of the peripherals in a well-defined sequence. First it configu res the 8237 DMA and the 8253 timer chip io refresh dram. It then initialises a data field at 400_{h} to keep track of the hardvare configuration. Next it sequenves through the remaining peripherals.
Bios allows the dos operating system, and sometimes the comriler, to interface to the hardware via nell-def ned software interrupt calls. This is similar to the dos interface. Roatines cre called by the 8086 INT zommand with parameters beinj passed via the processor registers. For exampee the following code would prirt the character " a " to the screen:

$$
\begin{aligned}
& \operatorname{mov} F \cdot H, 02 \\
& \operatorname{mov}[\text {, "a" } \\
& \text { INT } 21
\end{aligned}
$$

The bios and dos calls are well docamented in various text bo aks.

Fig. 1. PC features relevant to embedded peripherals are integrated into the F8680 PC-on-a-chip which is eight times faster than the original XT.

Original PC architecture progresses

In August 1981, IBM announced the first IBM Personal Computer based on the 8088. Folowing a series of advances, the most significant of which was the launch of the 80286 in 1984, AT machines incorporating the new Intel 80386 processor, also called the 1386 , started shipping in 1987. Two versions existed, the $5 X$ with its cheaper external 16 bits bus and the DX with a full 32 bit system. Now, the 80386 could support an enormous 4Gbyte of virtual memory. Its virtual 8086 mode supported multitasking software, notably Microsoft Windows, capable of running most dosbased software written for the 8086 and 80286 processors.
With its updated internal architecture, optimised instructions and higher clock speeds, the 16 MHz 80386 SX was approximately fourteen times faster than the original XT. The higher system clock speeds associated with the 386 necessitated the use of special cache memory to realize its true performance.
The 80486 (or 4486) chip is the logical successor to the more expensive top-end 80386 systems. The 80486 includes its own numerical co-processor with 8 Kbyte of on-board cache. Its improved external bus supports burst mode, taking full advantage of the faster access modes of dram
Recently, the Pentium made its appearance. This is in fact the 80586 , but intel decided in favour of a name rather than a number for copyright reasons. It boasts a 64 bit data bus architecture with an internal architecture similar to two 1486 s in parallel.
Pentium has had mixed reviews in the press as its performance is hampered by the archaic PC architecture, and whether the performance justifies the extra expense is being debated. The recent introduction of "memory-hungry" Windows NT software is used as a stand alone operating system replacing dos, and brings Windows compatibility to computers based on other processors.
Two such computers claiming Workstation type performance are the PowerPC developed by Motorola and the Alpha chip developed by DEC. AMD is proposing K5, a hybrid RISC and CISC processor running PC software but technologically independent of Intel. Its performance would be equal to, if not if not better than, that of the Pentium.
such as Turbo C. Pascal or Basic. I prefer Turbo C. Its integrated environment and powerful debugging facilities substantially reduce software development time. Vast libraries for all the compilers are available. These provide windowed environments with a complex menu structure and with a multitude of input devices, such as keyboards. keypads and mice.
Two high-integration devices are currently on the market, providing all the architectural features of the AT computer. These are the I' $G 230$ by Vadem or the $F 8680$ by Chips and Technologies. They have in common an interface for connecting directly to a PC keyboard. a CGA monitor with the option of driving an LCD graphics panel. and UART providing an RS232 serial port.
These ICs also support two PCMCIA 2.0 standard cardslot interfaces. Such cards make use of eredit-card sized

Table 1. By far the strongest selling point of the F8680 PC-on a chip is its power management. In active mode a feature adding up to 127 cycles to the execution time of each instruction reduces memory accesses frequency and consequently current consumption.

Extra cycles	SRAM			DRAM		
	CHIP		RAM	CHIP		RAM
	5 V	3 V	5 V	5 V	3 V	5 V
0	46.7 mA	34.8 mA	26.2 mA	50.2 mA	38.4 mA	65 mA
127	16.6 mA	1.4 .9 mA	1.3 mA	23.9 mA	15.7 mA	16 mA

Sram and dram current consumptions are based on six 128 Kbyte chips and 256 Kbyte SIMMs respectively, organised as three word wide banks of 256 K byte.
memory and I/O modules with a range of peripherals like modems, Ethernet, and hard-disk drives. Additionally, the Vadem has a built-in scamned keypad interface and a Centronics parallel port.
This article concentrates on the $F 8680$ PC-Chip for two reasons. Firstly it is readily available in small quantities without significant up-front costs. Secondly it is about half the price of its counterparts, at around $£ 35$ for small quantities.

Integrated PC-on-a-chip

The $F 8680$ PC-Chip. Fig. 1, is equivalent to an XT while containing all the peripherals associated with an AT. It runs software cight times faster than the original XT. This is twice as fast as the original AT, or approximately the same speed of a low end 16 MHz 386 SX with slow dram and no cache. With over one hundred configuration registers. the $F 8680 \mathrm{PC}$-chip provides more system features than a desktop PC. It is also optimised for use in battery powered systems.

Power management

By far the strongest selling point of the $F 8680$ PC-Chip is its power management facility. It places the device into a league of its own. Many of the chip's features are convenient but not essential. The power management however encompasses the complete system usefully reducing memory and external peripheral currents wherever possible.

The $F 8680$ PC-Chip is a static core device maintaining all its internal registers, even after stopping the processor cloch. This allows it to operate from only $15 \mu \mathrm{~A}$, while still maintaining the real-time clock.
At pre-defined intervals the chip can be restored to full operation under control of the RTC or an external signal on the PWRUP pin. Operating the device at 3.3 V reduces the current down even further to $5 \mu \mathrm{~A}$. Even when fully operational, the device only consunnes around 40 mA for an sram-based system to 75 mA for one with dram.
When the system is active there is a fine-control feature adding up to 127 cycles to the execution time of each instruction. This reduces the frequency of memory accesses and, consequently, current consumption. Additionally, the chip itself uses less current, but the reduction is less significant. Table 1.
Access to power management is through a bios call (IF_{H}), making an easy-to-use software interface. Within the bios is a utility which assesses system activity and automatically controls the power management features to reduce the operating current of the system.

Memory management

On board, the PC-Chip has all the control and interface hardware for three banks of memory and system rom. It can drive dram memory directly, supplying both the multiplexed address lines and refresh cycle.
Each bank has an associated bank select register. Bank select registers, Fig. 2. detine the memory cycle type, i.e. XT bus cycle, dram, sram or PCMCIA. They also define the memory size and its width, of either $8 / 16$ bit. For CPU word transfers, the memory controller performs two accesses to byte wide memory.

There are two distinct mechanisms for controlling memory. Firstly, memory mapping maps the 16Mbyte of processor address space into physical memory, segmentable down to 32 Kbyte . There can be 32 by 32 K byte or 32 by 64 K byte sections for the low end of memory with an additional two 512 K or 1 Mbyte sections for high end memory respectively.

Each of the 34 mapping registers contains two bits
specifying the associated bank select register, which in turn defines the physical memory parameters. An additional three bits shift the location of the section on 128 K boundaries, Fig. 3.
Bank switching is the second mechanism for controlling memory. It maps $16 \mathrm{Kbyte}, 32 \mathrm{~K}$ byle, 64 K byte blocks in segments $\mathrm{D} 000, \mathrm{~B} 000$ and $\mathrm{C} 000 / \mathrm{E} 000 / \mathrm{F} 000$ respectively. Fig. 4. Therefore, available memory can be expanded below the IMByte boundary imposed by dos (EMS).
When enabled, the bank switch supplies the upper address lines. giving access to the full 64 Mbyte of address space. The PCMCIA interface uses the bank switching to access large amounts of memory, often used instead of disc drives. A full set of PCMCIA configuration registers supports two PCMCIA slots at revision 2.0. This revision is significant since it is the only one that has $i / 0$ features supporting a range of PCMCIA cards.
Additional registers allow even finer tuning of memory management, but the description of how is too lengthy for a magazine article.

i/o subsystem

All of the peripherals of the PC-XT in addition to the RTC normally associated with the PC-AT are contained in the i/o subsystem. Functions used within the XT architecture are implemented in hardware and SuperState R software. This association emulates the DMA subsystem and outperforms the standard DMA device.
Provision is also made for five multipurpose control pins which can be used for address decoding and for generating signals reflecting divisions of the 32 kHz clock and processor status.

bios support

For a small royalty fee a fully configurable basic/input output system - bios - is available. Accompanied by a manual. the bios configuration utility adapts the bios to your own specific system requirements.
I will outline the more salient features. Firstly, the configuration software is interactive and gives a menu structure to all the modifiable system parameters. This can directly generate a binary image of the bios with the parameters and corresponding text file. The text file can be viewed and edited, and then read back into the configuration software.
To take advantage of the sophisticated power management facilities of the chip, the bios provides an automatic power saving mode. It also uses the battery backed ram associated with the real time clock to support a range of options. These can be modified via a built-in setup screen when the system is active. This allows basic changes to the system parameters such as time and date and diskette type, which can be standard $51 / 4 \mathrm{in}, 31 / 2$ in or PCMCIA.
Additional external peripheral devices can be initialized by the bios, which is ideal for setting up intelligent

SuperState R

SuperState R logic is a hardware facility that intercepts all i/o transers, interrupt Sand DMA reques's. It supports a supervisory operating system wh ch provides another level of hardware isolatior belon the bios This allows the irterception of bios and dos calls. The chip uses such interception to simulate the real time clock with a simple 32 bit counter and other system functions.

Execute-in-place software

In small low powered systems, magnetic media are impractical. For this reason, roms are used for permanent data storage, so called rom-disks. As programs can be executed from ram, the rom disk introduces a new program format, XIP, which minimizes system ram requirements and educes cost and power consumption.

Fig. 2. Bank select registers add flexibility by allowing the memory cycle type to be defined. Choices are XT bus cycle, dram, sram or PCMCIA.

CREG CO	R	R	BS 1	Bso	Ro	C19	C18	C17
	RES	VED	BANK	ECT	READ ONL Y		MAPPI	EITS
	CONFIGURATION OF CPU MEMORT ADDRESS RANGE OOOOO - OTFFF							
CREG C1		6	ON OF	U MEM	ADDR	Ran	88000	OFFF
CREG C2..de								
CREG DF	CONFIGURATION OF CPU HEMORY ADDRESS RANGE FBIOC - FFFFF							
CREG EO	CONFIGURATION OF CPU MEMORY ADDRESS RANGE 100000 - 180000							
CREG FO	FIGURATION OF CPU MEMORY ADDRESS RANGE 180000 - 1FFFFF							

This map assumes 32kb Block option. For 64 kB block option maltply
all addresses by two.
Fig. 3. Within the PC on a chip, memory mapping charts 16Mbyte of processor address space into physical memory, segmentable down to 32 Kbyte .

Fig. 4. In addition to memory mapping, the PC on a chip has bank switch registers for mapping 16Kbyte, 32Kbyte, 64Kbyte blocks in different segments. In this way, available memory can be expanded below the 1MByte dos boundary.
external peripherals. Smaller LCD screens are supported and allow panning around the screen with specific keystrokes. This works well, except where the software generates menu bars across the top/hottom of the screen.
Eight or sixteen shades of grey can be displayed on an LCD module via the device's 'visual map" feature. Each shade is individually associated with any of the sixteen foreground and sixteen background colours available on a CGA monitor.

Dos for embedded systems

Thhe dos operating system provides the foundation necessary to run PC programs. PC programs come in two formats - executable files with the default extension .EXE, and command files with the extension .COM. Executable files have a header that informs dos of their memory requirements. dos will allocate the necessary memory and copy the program into memory.

Command files requires no memory allocation, and will load and run faster than the EXE files. However they can only be used for programs with less than 64 K of memory. Both need dos for low level functions, such as reading a character from the keyboard or displaying characters to the VDU.
Standard dos includes numerous features that would not normally be appropriate for embedded systems. Some companies offer a cut-down version specifically adapted for such systems.
As far as I know, there are four systems providing a range of unique features, from the use of reduced memory to embedded debuggers. They are Promdos manufactured by Appcom, distributed by DSL, Rom-Dos manufactured by Datalite and distributed by Dex Dyne, MS dos 5 rom version manufactured by Microsoft, distributed by MMD and Embedded dos manufactured by General Software, distributed by Great Western Instruments.

Further, a minibug utility is built into the bios which provides features similar to the standard debug utility. This allows interactive modification of memory and i / o. viewing of system registers and basic assembler/disassembler functions. It also supports single stepping through code and the addition of breakpoints.
Modification of SuperState R parameters is also possible via the dehugger. To allow allows the use of keypads instead of an extemal PC type keyboard, the SuperState R feature provides a scanned keyboard facility.

Further reading

F8680 PC/Chip Progranmers Data Pack, Revision D, 1993, Chips and Technologies, California (C\&T is distributed by Siretta mic roelectronics, Reading, Berkshire).
Hogan, T., The programmer's PC sourcebook, 1991, second edition, Microsoft Press, Washington.
IBM personal computer AT technical reference manual, IBM Corporation 1990 , New York.
Jones, S., DOS meets Real-Time. Embedded Systems Progranming.
lones, S., Avoiding the BIOS blues, Embedded Systems Progranming, pp. 14-30, Nov 1992.
Norton, P., Inside the IBM PC, 1986, Brady Books, New York. Reid, J., Newnes PC user's pocket book, 1991, Butterworth Heinemann, Oxford.
Sinclair, l., Newnes 8086 family pocket book, 1990, Butterworth Heinemann, Oxford
Vadem VG-230 sub-notebook engine technical reference, Vadem, 1992, San Jose, California.

JPG Electronics

[^2]
SOUND-IN-SYNCS BLANKING UNITS TYPE SIS111/SIS112

- REMOVES SOUND-IN-SYNCS INFORMATION FROM VIDEO SIGNALS
- UP TO 4 BLANKING MODULES PER 1 U FRAME
- 3 OUTPUTS FROM EACH BLANKING MODULE VIDEO PRESENT FLAG

```
                                    *****************
```

* VIDEO OPTICAL ISOLATORS
* 3 O/P PORTABLE VIDEO DA
* AUDIO/VIDEO DISTRIBUTION AMPLIFIERS
* MICROPHONE C/O UNITS
* VIDEO \& AUDIO MATRICES $4 \times 1,10 \times 1,16 \times 4,32 \times 4,12 \times 2$
* MIXER/MATRIX AUDIO SYSTEM
* TV TX PI EQUIPMENT
* 8 BIT VICS ENCODERS/DECODERS
* DESIGN AND MANUFACTURE OF SPECIAL PROJECTS
All equipment to full broadcasting specifications

> INVOTRON LIMITED
> P.0. Box 55, Bray, Co. Wicklow, Ireland

> Tel: (Intl + 353 1) 2863725/2863759
> Fax: (Intl + 353 1) 2863484

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be hignlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Visa, MasterCard, Amex welcome

Affordable Electronics CAD

EASY-PC: Low cost PCB and Schematic CAD	$\mathbf{£ 9 8 . 0 0}$
EASY. PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
PULSAR: Low cost Digital Circuit Simulator ~ 1500 gate capacity.	£98.00
PULSAR Professional: Digital Circuit Simulator $\sim 50,000$ gate capacity.	£195.00
ANALYSER III: Low cost inear Analogue Circuit Simulator ~ 130 nodes	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes	£195.00
Z-MATCH for Windows: Smith Chart Program for R.F. Engineers	£245.00

Number One Systems Ltd.

Ref WW. Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK. For Full Information Please Write, Phone or Fax. Tel: 0480461778
Fax: 0480494042

TWIN TWIN PPM

Comprising two PPM9 boards, featuring inherent stability with law under micro-processor control, the unit gives simultaneous monitoring of A / B on red/green and M / S on white/yellow pointers. Together these provide complete information about stereo signals. Manufactured under licence from the BBC.

PPM10 In Vision PPN and Chart Recorder generates a high quality colour video display emulating the well known coaxial twin movements, long regarded as a most satisfactory way of monitoring stereo audio levels and mono compatibility. The eye can judge the level displayed, at a glance, from the angle of pointers, without needing to refer to scale markings.

Advanced Active Aerial $4 \mathrm{kHz} \cdot 30 \mathrm{MHz*}$ Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter *PPM5 hybrid and PPM8 IEC/ DIN $-50 /+6 \mathrm{~dB}$ drives and movements *Broadcast Stereo Coders.

SURREY ELECTRONICS LTD

 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.Telephone: 0483 275997. Fax: 276477.

INTERFACING WITH C

by
HOWARD HUTCHINGS

[^3]C HERE!
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

> The previous article in this series dealt with several popular output stages, showing how their distortion could be attributed to three different mechanisms. This article examines ways of dealing with these shortcomings, and the effect of the distortion mechanisms on a closed loop output stage.

By Douglas Self.

Distortion in power amplifiers

5: output stages

From earlier work in this series. distor tion from the small-signal sages may be hept to levels that will prove negligible compared with distortion from : closed-loop output stage. Similarly. future work in this series will show that distortion mechanisms 4 to 7 from my original lisa $(E W+U W$. JH 9 9?) can be effectively climinated by lesser-known but straightorward methods. This leaves the third mechanism in its three components as the only distortion that is in any sense unavoidable: Class-B stagen free from crossover artifacts are not exachly commonplace.

This is a good place to introduce the concept of a blameless amplifier. one dewigned so that all the easily-defeated distortion mechanisms. have heen rendered negligible. The word hameless has been carefully chosen to not imply perfection.

The first distortion, nom-linearity in the input stage. cannot be totally eradicated but its onset can be pushed well above 20 kHz . The second distortion. non-linearity in the voltage amplifier stage, can be effectively eliminated by cascoding. Distortion mechanisms four to seven. concerned with such thing. as carth recurn loops. power supply impedance and non-linear loading. can be made negligible by simple measures to be described bater.

Large-signal distortion

The large-signal nonlinearity performance of all the bipolar junction transistor stage outlined in the previous part of this series have these features in common:
Large-signal nonlincarity increases an load impedance decreases. In a typical oupur tage loaded with 8Ω. closed-loop LSSN is usually
negligible, the THI revidual beine deminated by high-order crossover artelate that are redaced lew by negative feedhach. At lower impedancers buch as 4Ω. relatibely pure third harmonic become obvious in the residual.
LSN worens as the driter emiter or collector resinances are reduced, hecalse the driver coment swinge are later. On the other hand. has reduction imprones sutput device turn-off. and will so decrease n witchoff disforion: the ustal compromice is around 47Ω 10) 10002

The B.IT output gam plote in the previous article reveral that the I.SN incomprensive, the voltage gan falling off with higher ouput currens. It is roughly symmetrical, generating third-hammonic, and is much greater at the very lowest load impedances: this is more of an isue now that 2S-capable (for a few minutes, antway amplifien are comsidered macho. and some speaker devignem are happy with 2S impedance troughs.
I كugesed that the fundamenal reason for this gaitr droop is the fall in output tramsistor beta as wollector current inerabes. due to the onset of high level injection effect . In the emiter follower topology, this fall in beta draw more outut transivor biae current from the driver emitter. pulling its galin down further from danty: this is the change in gain that affects the overall tramser ratio.
The watput device gain is not directly affect ed, as beta doe not appear in the classical expressor for emitter follower sam. providing the source impedance is negligibly low. Thin assertion haw been verified by altering an out put bage simulated in Spice such that the output hase are driven directly from zero impedance voltage sources rather than drivers:

this abolivhe the gatin droop effect, so it must be in the drivers rather than the output tran-〈istor.
Further evidence for thin vien is that in Spice cimulation, the output derice EberMoll model can be attered wo that beta doen not drop with / (simply increase the value of the parameter KFI^{2}) and one more the gatn droop does not occur. even with drivers. Here is one of the best uses of circuit simukation tweaking the untweakable. (iain droop doen not affece tet oupputs. Which have no equivalent beta lom mechamism. See Fig. I2 of Part 4. Where the u ings of the tet gain plot do not turn downwards at large outpuls.
It used to be commonplace for output transintore to be sold in pair roughly matched for betai allegedy to minimise dintortion: this pratice seemis of have been abandoned. Simulation how that beta mismatch produceram unbalanced gain droop that markedI! increase low order hamonics withour much effect on the higher ones. Nodern ammlifiers 4 ith adequate feedback factor will lincarise this effectisely. This appeare to be why the pratice has ceaned.

Improving large signal linearity
It will be suggeved that, in a closed loop blameles amplifior. the large sigmal nonlineatits combibution to total divtortion (for $8 \Omega \Omega$ loating) is actually very umall compared with that frome erowover and witchoff. This is no longer true at 48 and still less so for lower load impedances. Thus way of reducing this mechanism will still be useful.

The best precaution is to choose the mont lirear output lopology: The previous article sugeseded that the open loop complementary

Fig. 2. Gain/output-voltage Spice plot for an emitter follower output shows how non-conjugate transistor characteristics at the crossover region cannot be blended into a flat line at any bias voltage setting. Bias varies 2.75 to 2.95 V in 25 mV steps, from too little to too much quiescent.

Fig. 1. Simple diode feedforward reduces distortion with sub-882 loads. Measured at 210 W into 2.7Ω.
feedback pair output is at least twice as linear as its nearest competitor, (the emitter follower output) and so the CFP is usually the best choice unless the design emphasis is on minimising switchoff distortion.
In the small signal stages, we could virtually eliminate distortion. If the linearity of the input or voltage amplifier stage was inadequate, it was possible to come up with several ways in which it could be dramatically improved. A Class B output stage is a tougher proposition. In particular we must avoid complications to the forward path that lower the second amplifier pole P 2 , as this would reduce the amount of feedback that can be safely applied.
Several authors ${ }^{2.3}$ have tried to show that the output emitter resistors of bipolar outputs can be fine tuned in value to minimise large signal distortion, the rationale being that the current dependent internal r_{e} of the output transistors will tend to cause the gain to rise at high currents, and that this gain variation can be minimised by appropriate choice of the external $R_{\text {e }}$. This is not true in practical output stages whose gain behaviour tends to be dominated by beta loss and its effect on the drivers. In any case the resistor values suggested are such tiny fractions of an ohm that quiescent stability would be perilous.
In real life the R_{e} of a CFP output stage can be varied between 0.5 and 0.2Ω without significantly affecting linearity; 0.22Ω is a good compromise between efficiency and stability.
The gain droop at high $l_{\mathrm{c}} \mathrm{s}$ can be partly cancelled by a simple but effective feedforward mechanism. The emitter resistors R_{c} are shunted with silicon power diodes, which with typical circuit values will only conduct when 4 Ohm loads (or less) are driven. This causes a slight gain increase that works against the beta loss droop. The modest but dependable improvement can be seen in Fig. 1, measured with a 2.7Ω load.
If a $100 \mathrm{~W} / 8 \Omega$ amplifier is required to drive 4Ω loads then it will need paralleled output devices to cope with the power dissipation. Perhaps surprisingly, the paralleling of output BJTs (driven as usual from a single driver) has little effect on linearity, given elementary precautions to ensure current sharing. However, for the 2Ω case there is a definite linearity improvement on resorting to tripled output devices; this is consistent with the theory that LSN results from beta loss at high collector currents.

Crossover distortion

The worst problem in Class B is the crossover region, where control of the output voltage must be transferred from one device to another. Crossover distortion generates unpleasant

Fig. 3. Power supply current versus frequency, for a CFP output with the driver collector resistors varied. There is little to be gained from reducing Rc below 5032.
high order harmonics with the potential to increase in percentage as signal level falls. There is a consensus that crossover caused the transistor sound of the 1960 's, though to the best of my knowledge this has never actually been confirmed by the double blind testing of vintage equipment.
The $V_{\mathrm{be}}-I_{\mathrm{c}}$ characteristic of a bipolar transistor is initially exponential, blending into linear as the emitter resistance R_{e} comes to dominate the transconductance. The usual Class B stage puts two of these curves back to back, and Peter Blomley has shown that these curves are non-conjugate ${ }^{4}$, ie there is no way they can be rearranged to sum to a completely linear transfer characteristic, whatever the offset imposed by the bias voltage.
This can be demonstrated quickly and easily by Spice simulation; see Fig. 2. There is at first sight not much you can do except maintain the bias voltage, and hence quiescent current, at some optimal level for minimum gain deviation at crossover; quiescent current control is a topic that could fill a book in itself, and cannot be considered properly here.
It should be said that the crossover distortion levels generated in a blameless amplifier can be low up to around 1 kHz , being barely visible in residual noise and only measurable with a spectrum analyser. For example, if a blameless closed-loop Class B amplifier is driven through a TL072 unity gain buffer the added noise from this op-amp will usually submerge the 1 kHz crossover artifacts into the noise floor. (lt is most important to note that distortion mechanisms 4 to 7 create disturbances of the THD residual at the zero crossing point that can be easily mistaken for crossover distortion, but the actual mechanisms are quite different). However, the crossover distortion becomes obvious as the frequency increases, and the high order harmonics benefit less from NFB. See text panel Improwing crossorer distortion.

It will be seen later that in a blameless amplifier the linearity is dominated by crossover distortion, even with a well designed and optimally biased output stage. There is an obvious incentive to minimise it, but there seems no obvious way to reduce crossover gain deviations by tinkering with any of the relatively conventional stages considered so far. Significant improvement is only likely through application of one of the following techniques:

- The use of Class AB stages where the handover from one output device to the other is genuinely gradual, and not subject to the g_{m} doubling effects that an over biased Class B stage shows. One possibility is the so called Harmonic AB mode ${ }^{5}$.
- Non-switching output stages where the output devices are clamped to prevent turn off, and thus hopefully avoiding the worst part of the $V_{\mathrm{be}}-I_{\mathrm{c}}$ curve ${ }^{6}$
- Error correcting output stages implementing either error feedforward or error feedback. The latter is not the same thing as global NFB, being instead a form of cancellation ${ }^{7}$.

Fig. 4. HF THD reduction by adding speed-up capacitance across the common driver resistance of a Type II emitter follower output stage. Taken at $30 \mathrm{~W} / 8 \Omega$

Once more, these will have to be examined in the furure.

Switching distortion

This depends on several variables, notably the speed characteristics of the output devices and the output topology. Leaving aside the semiconductor physics and concentrating on the topology, the critical factor is whether or not the output stage can reverse bias the output device base emitter junctions to maximise the speed at which carriers are sucked out, so the device is turned off quickly.
The only conventional configuration that can reverse bias the output base emitter junctions is the emitter follower type II, described in the previous article. A second influence is the value of the driver emitter or collector resistors: the lower they are the faster the stored charge can be removed.

Applying these criteria can reduce HF distortion markedly, but it is equally important that it minimises output conduction overlap at high frequencies. If unchecked overlap results in an inefficient - and potentially destructive increase in supply current ${ }^{8}$. Illustrating this, Fig. 3 sinows current consumption vs frequency for varying driver collector resistance, for a CFP type output.

Figure 4 shows how HF THD is reduced by adding a speed-up capacitor over the common driver resistor of a type I/ emitter follower. At LF the difference is small, but at 40 kHz THD is halved, indicating much cleaner switch-off. There is also a small benefit over the range 300 Hz to 8 kHz .

Selecting an output stage

Even if we stick to the most conventional of output stages, there are still an embarrassingly large number to choose from. The cost of a complementary pair of power fets is currently at least twice that of roughly equivalent BJTs, and taken with the poor linearity and low efficiency of these devices, the use of them may require a marketing rather than a technical motivation.

Turning to BJTs, and taking the material in this article with that in Part 4, I conclude that these are the following candidates for best output stage:
The emitter follower type // output stage is

The seven main sources of distortion

It is one of the central themes of this Iseries that the primary sources of power amplifier distortion are sevenfold:

1. Nonlinearity in the input stage. For a well balanced differential pair distortion rises at 18 dB /octave, and is 3 rd harmonic. When unbalanced, HF distortion is higher and rises at $12 \mathrm{~dB} /$ octave, being mostly 2 nd harnonic.
2. Nonlinearity of the voltage amplifier stage (VAS), 2nd harmonic, rising at $6 \mathrm{~dB} /$ octave.
3. Nonlinearity of the output stage. In Class B this may be a mix of large signal distortion and crossover effects, in general rising at $6 \mathrm{~dB} /$ octave as the amount of NFB decreases; worsens with heavier loads.
4. Nonlinear loading of the VAS by the nonlinear input impedance of the output stage. Magnitude is essentially constant with frequency.
5. Nonlinearity caused by large rail decoupling capacitors feeding the distorted supply rail signals into the signal ground.
6. Nonlinearity caused by induction of Class B supply currents into the output, ground, or negative feedback lines.
7. Nonlinearity resulting from taking the NFB feed incorrectly.
the best at coping with switchoff distortion but the quiescent current stability is not of the best:
The CFP topology has good quiescent stability and low LSN; its worst drawback is that reverse biasing the output bases for fast switchoff is impossible without additional HT rails;
The quasi-complementary with Baxandall diode stage comes close to mimicking the emitter follower type stages in linearity, with a potential for cost saving on output devices. Quiescent stability is not as good as the CFP.

Closing the loop

In Parts 2 and 3 of this series it was shown how relatively simple design rules could ensure that the THD of the small signal stages alone could be reduced to less than 0.001% across the audio band, in a repeatable fashion.
and without using frightening amounts of negative feedback. Combining this subsystem with one of the more linear output stages such as the CFP version which gives 0.014% THD open loop, and having a feedback factor of at least 70 times across the band, it seems we have the ingredients for a virtually distortionless power amplifier, with THD below 0.001% from 10 Hz to 20 kHz . However, life is rarely so simple..
Fig. 5 shows the distortion performance of such a closed loop amplifier with an emitter follower output stage, Fig. 6 showing the same with a CFP output stage. Fig. 7 shows the THD of a quasi-complementary stage with Baxandall diode ${ }^{9}$. In each case distortion mechanisms 1, 2 and 4-7 have been eliminated by methods described in past and future sections of this series, to make the amplifier blameless.

It will be seen at once that these amplifiers are definitely not distortionless, though the performance is markedly superior to the usual run of hardware. THD in the LF region is very low, well below a noise floor of 0.0007%, and the usual rise below 100 Hz is very small indeed. However, above 2 kHz , THD rises with frequency at between 6 to $12 \mathrm{~dB} /$ octave, and the residual in this region is clearly time aligned with the crossover region, and consists of high order harmonics rather than second or third.
It is intriguing to note that the quasi-Bax output gives about the same HF THD as the emitter follower topology, confirming the statement that the addition of a Baxandall diode turns a conventional quasi-complementary slage with serious crossover asymmetry into a reasonable emulation of a complementary emitter follower stage.

Harmonic generation by crossover distortion

$\mathrm{T}_{\mathrm{s}}^{\mathrm{n}}$he usual nonlinear distortions generate most of their unwanted energy in low order harmonics that NFB can deal with effectively. However, crossover and switching distortions that warp only a small part of the output swing tend to push energy into high order harmonics, and this important process is demonstrated here, by Fourier analysis of a Spice waveform.
Take a sinewave fundamental, and treat the distortion as an added error signal E, letting the ratio WR describe the proportion of the cycle where $E>0$. If this error is a triangle wave extending over the whole cycle ($W R=1$) this would represent large signal nonlinearity, and Fig. 9 shows that most of the harmonic energy goes into the 3 rd and 5 th harmonics; the even harmonics are all zero due to the symmetry of the waveform.
Fig. 10 shows how the situation is made more like crossover or switching distortion by squeezing the triangular

error into the centre of the cycle so that its value is zero elsewhere; now $E>0$ for only half the cycle (denoted by $W R=$ 0.5) and Fig. 9 shows that the even

Fig. 10. Diagram of the error waveform E for some values of WR.
harmonics are no longer absent. As WR is further decreased, the energy is pushed into higher order harmonics, the amplitude of the lower harmonics falling.
These high harmonics have roughly equal amplitude, spectrum analysis confirming that even in a blameless amplifier driven at 1 kHz , harmonics are freely generated from the 7 th to the 19th at a level within a dB or so. The 19 th harmonic is only 10 dB below the 3rd.
Thus, in an amplifier with crossover distortion, the order of the harmonics will decrease as signal amplitude educes, and $W R$ increases; their lower requencies allow them to be better corrected by the frequency dependant negative feedback. This effect seems to work against the commonly assumed rise of percentage crossover distortion as level is reduced.

Table 1. summary of closed loop amp THD performance.

	1 kHz	10 kHz	
Emitter follower	0.0019%	0.013%	Fig. 5
CFP	0.0008%	0.005%	Fig. 6
Quasi Bax	0.0015%	0.015%	Fig. 7

AP plots in Figs 5 to 7 were taken at $100 \mathrm{Wrms} / 8 \mathrm{~s}$, from an amplifier with an input error of -70 dB at 10 kHz and c / I gain of 27 dB , giving a feedback factor of $43 d B$ at this frequency. This is well above the dominant pole frequency, so the NFB factor is dropping at 6dB/octave and will be down to $37 d B$ (or 70x) at 20 kHz . My experience suggests that this is about as much NFB as is safe for general use, assuming an output inductor to improve stability with capacitive loads. Sadly, published data on this touchy topic seems non-existent.

There is significantly less HF THD with a CFP output; this cannot be due to large signal nonlinearity as this is negligible with an 8Ω load for all three stages, and must result from lower levels of high order crossover products.
Despite the promising ingredients, a distortionless amplifier has failed to materialise, so we had better find out why..
When an amplifier with a frequency dependent NFB factor produces distortion, the reduction is not due to the NFB factor at the fundamental frequency, but the amount available at the frequency of the hammonic in question.
A typical amplifier with open loop gain rolling off at $6 d B /$ /octave will be half as effective at reducing 4th-harmonic distortion as it is at reducing the second harmonic. LSN is largely third (and possibly second) harmonic. and so NFB will deal with this effectively. However, both crossover and switchoff distortions generate high-order harmonics significant up to at least the 191 h and these receive much less linearisation. As the fundamental moves up in frequency the harmonics do too, and get even less feedback. This is the reason for the differentiated look to many distomion residuals; higher harmonics are emphasised at the rate of 6db/octave.

Here is a real example of the inability of NFB to cure all amplifier ills. To reduce this HF distortion we must reduce the crossover gain deviations of the output stage before closing the loop. There seems no obvious way to do this by minor modifications to any of the conventional output stages; we can only optimise the quiescent current.
Increasing the quiescent current will do no good for, as outlined in the previous article. Class AB is generally Not A Good Thing. producing more distortion than Class B, not less. Fig. 8 makes this painfully clear for the closed-loop case; Class AB clearly gives the worst performance. (As before, the $A B$ quiescent was set for $50: 50 \mathrm{~m} / \mathrm{s}$ ratio of the g_{m} doubling artefacts on the residual).
In this case the closect loop distortion is much greater than that from the small signal stages alone: however this is not automatic, and if the input pair is badly designed its HF distontion can casily exceed that caused by the output stage.

Fig. 5. Closed-loop amplifier performance with emitter follower output stage. 100 W into $8 \Omega 2$.

Fig. 6. Clesed-loop amplifier performance with CFP output. 100 W into 8Ω.

Fig. 7. Closed-loop amplifier performance; quasi-complementary output stage with Baxandall diode. 100 W into 88.

Fig. 8. Closed-loop CFP amp. Setting quiescent for Class AB gives more HF THD than either Class A or B.

The distortion figures given in this article are rather better than the usual run. I must cmphasise that these are not freakish or unrepeatable figures. They are simply the result of attending to all seven of the major sources of distortion rather than just one or two. I have so far built 12 CFP amplifiers. and performance shows little variation.

Conclusions

Taking this and the previous article together, we can summarise. Class $A B$ is best avoided. Use pure Class A or B. as $A B$ will always have more distortion than either. Fet outputs offer freedom from some BJT problems, but in general have poorer linearity, lower efficiency. and cost more.

Distortion generated by a blameless amplifier driving an 8Ω load is almost entirely due to crossover effects and switching distortion. This does not hold for 4Ω or lower loads where third harmonic on the residual shows the presence of large signal nonlinearity calused by beta loss at high output currents.

References

1. Ciray \& Meyer Analysis \& Design of Analog Integrated Circuits. Wiley 1984, p172.
2. Crecraft et al Electronics Chapman \& Hall 1993, p538.
3. Oliver Distortion In Complementary Pair Class B Amps. Hewlett Packard Journal, Feb 1971, p11.
4. Blomley, P. New Approach To Class B Wireless World, Feb 1971, p57. 5. Thus, F. A. Compact Bipolar Class AB Output Stage Using 1 V Power Supply IEEE lourn of Solid State Circuits, Dec 1992, p1718. (Harmonic AB). 6. Tanaka, S. A. New Biasing Circuit for Class B Operation. JAES Jan/Feb 1981, p27. 7. Hawksford, M. Distortion Correction In Audio Power Amplifiers JAES March 1981, p148.
5. Alves, J. Power Bandwidth Limitations in Audio Amplifiers IEEE Trans on Broadcast \& TV, March 1973, p79.
6. Baxandall, P. Symmetry in Class B, Letters, Wireless World Sept 1969, p416 (Baxandall diode).

Micro-Controller Development Systems 8748/9 Series and 8751 Series No Emulator or Programmer required

This is what a customer said

Your system has proved an excellent and very economic way or a hobbyist to pet into embedded microprocessors OS (C Eng MEE) Southend on-Sea
MRE 48 8748/9 Systent Recommended for beg oners Includes Single Board Computer Using 8749 OTP Micro with bult in Montor/Downloader prog, Allows downloading of assembled progs to non-volatite 2 k menory Edit individua) bytes and exam ne memory Swith to external memory to ru loaded prugram Comes complete with Shareware Edtior AI IC s socketed In fact all you need ts an IBM comparite PC and a Sv power supply. Sottware avallable on $31 / 2$ or $51 / 4$

Piease note no charge is made for sotware, and wil require eegistration for continuted use Built E64.68 INC VaI Kit $£ 49 \mathrm{ImC}$ vat.
MaRE 518751 System As above but using 8751 OTP Micro with Monitor Downloader Program Built E75.74 IHC VAT, Kit E59 INC Vat MICRO-COHTROLLERS
80 C 31 d I / plastic $£ 3.00 \mathrm{PBOC} 32 \mathrm{~d}$ - 4 plast $\mathrm{C} £ 5.00$ 087C51 Eprom ceramic $£ 21.00$ D8748H Eprom ceramic $£ 6.00$ P.C. B. $35^{* *} * 35^{\prime \prime}$ for $8040+$ latch +2 M memory PCB only $£ 4$ P.C.B. $35^{n *} * 3.5^{n}$ FOR 8031/2 + latch + 2 K memory P.C.B PIESE AD

PC EPROM PROCRAMMER Internal Card for PC, XT, AT, 386, 486 or Compatible c128 INC "Christmas Special Offer"
\star Affordable
\star Easy to instal, just plug in
\star Programs E(E)proms and flash memory

* Supports 2716 through 27C2001 EPROMS
\star Reads, programs, verifies and saves to disk
\star Accepts Intel hex, Motorola S, and binary format
\star Requires 8 -bit bus slot of MS-DOS PC with 512 K ram.
* Supplied with software and 60 page handbook
* 1 year warranty
* MICRO ADAPTORS AVAILABLE

STAND-ALONE PROGRAMMERS also available
Call us today for further information and DEMO DISK
KARE ELECTRONICS
32 Pear Tree Avenue, Ditton, Aylesford
Kent ME20 6EB Tel: 0732844633

KESTREL ELECTRONIC COMPONENTS LTD

it All items guaranteed to manufacturers' spec. \& Many other items available.
'Exclusive of V.A.T. and post and package'

	$\mathbf{1 +}$	$\mathbf{1 0 0}+$		$\mathbf{1 +}$	$\mathbf{1 0 0}+$
EPROMS			STATIC RAMS		
2764A-250	2.40	2.10	62256ALP-10	3.00	2.50
27C64-150	2.20	1.85	6264ALP-10	1.80	1.45
27C128-150	2.50	1.90	6116ALP-10	0.95	0.80
27128A-200	2.20	1.90	628128LP-80	11.00	10.00
27256-250	2.20	1.70	HD6321P	1.85	1.25
27C256-150	2.70	2.20	HD63B21P	1.95	1.50
27C512-150	2.90	2.40	65C02P2	2.90	2.50
27C010-150	5.80	4.20	65C21P2	2.90	2.50
27C020-150	9.00	7.80	65C22P2	2.75	2.25
80C31-12	2.60	2.10	Z80A CPU	1.00	0.85
82C55-2	200	1.58	Z80A P10	0.95	0.75
D8749H	4.40	3.80	Z80A CTC	0.90	0.70

$74 \mathrm{LS}, 74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available Phone for full price list

All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road,
Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-6684190.

8088 XT - PC99 286 AT - PC286

640k RAM expandable - 2 serial \& 1 parallel with standard SIMMS 2 seri 12 Mhz Landmark speed • MS-DOS 4.01 - 20 meg hard disk 256k RA
to 640 k
4.7 Mhz speed 360k 5-1/4" floppy - 2 serial \& 1 parallel ports - MS-DOS 4.01

Optional FITTED extras: 640K RAM £39. 12° CGA colour monitor with card $£ 39$. 2nd $5-1 / 4^{\prime} 360 \mathrm{~K}$ floppy $£ 29.95 .20$ mbyte MFM hard drive £99.

only $£ 99.00$

FLOPPY DISK DRIVES

51/4" from £22.95-31/2" from £21.95! Massive purchases of standard $51 / 4^{\circ}$ and 312° drives enables us
to preseni prime product at industry beating low prices! All units to present prime product at industry beating low pricesl All units
(unless stated) are removed from often brand new equipmen (unless stated) are removed form otien brand new equipmen
and are fully tested, aligned and shipped to you with a 90 day guarantee and operate trom slandard voitages and are of
3.5" Panasonic JU363/4 720K or equivalent

E29.95(B) 3.5" Mitsubishi MF355C-L. 1.4 Meg. Laptops only* $£ 29.95$ (B) 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop $£ 29.95$ (B) 5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B

360 K . Absolutely standard fits most comput
Shugart 800/801 SS refurbished \& tested Shugat 851 double sided refurbished \& tested Mitsubishi M2894-63 double sided switchable Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in a smart case
£175.00 (E
£250.00(E) End of line purchase scoopt and iow NEC D2246 a" End of line purch ase scoopl Brand new NEC D2246 8" 85 megabyte of hard disk storagel Full CPU control and industry
standard SMD interface. Ultra hi speed transfer and access time leaves the good old ST506 interface standing. In mint condifition

THE AMAZING TELEBOX!

Converts your colour monitor into a
QUALITY COLOUR TV!

 TV SOUND \& VIDEO
 TUNER!

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a hos of video monitors made by manufacturers such as
MICROVITEC. ATARI, SANYO, SONY, COMMODORE PHILIPS. TATUNG, AMSTRAD and many more. The composit video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UH colour television or video channels. TELEBOX MB covers vi tually all television frequencies VHF and UHF including th HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct connection to mosi makes of montor. For complete compatibility even for monitors without sound - an integral 4 watt audio
amplifier and low level Hi Fi audio output are provided as standard.
$\begin{array}{ll}\text { elebox ST for composite video input monitors } \\ & \text { £32.95 }\end{array}$ Telebox STL as ST but with integral speaker £36.50 Telebox MB as ST with Multiband tuner VHF-UHF-Cable. hyperband For overseas PAL versions state 5.5 or 6 mhz sound specification.
$£ 69.95$ Telebox RGB for analogue RGB monitors (15khz)
Shipping code on all Teleboxes is (B) RGB Telebox also suitable for IBM multisync monitors with RGB

No Break Uninterruptable PSU's

Brand new and boxed 230 volts uninternuptable power supplies from Densel. Model MUK 0565-AUAF is 0.5 kva and MUD $1085-\mathrm{AHBH}$ is 1 kva . Both have sealed lead acid batteries. MUK are intemal, MUD has them in a matching case. Times from
interrupt are 5 and 15 minutes respectively. Complete with full
operation manuals.........MUK......£249 (F) MUD..... 5525 (G)

386 AT - PC386

2 meg RAM expanded

 lby slơts20 Mhz with $32 k$ cache 40 meg hard disk

- 1.2 meg 5-1/4" floppy

VGA card installed
2 serial 1 paralle ports

- MS-DOS 4.01 Co-processor socket - Enhanced 102 keyboard Kwik Disk Accelerator Software - FREE
only $£ 425.00$ MONITORS
14 " Forefront Model MTS-9600 SVGA multisync with resolution of $1024 \times 768.0 .28$ pitch. "Text' switch for word processing etc. Overscan switch included. Ideal for the PC
386 or PC- 286 with SVGA 386 or PC-286 with SVGA card added. Also the monochrome high resolution mocluding or used condition (possible minor screen bums). 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$. Only........... $£ 159(\mathrm{E})$
 with 640×480 resolution. CGA, EGA or VGA, digitaVanalog, switch selectable.
Sound with volume control. There is also a special "Text" switch for word processing spreadsheets and the like. Compatible with IBM PC's, Amiga Atari (excluding the monochrome high resolution mode), BBC, rchimeres otc. Good used condition (possible minor screen Jums) 9 C day guarantee. $15^{\prime} \times 14^{\prime} \times 12^{\prime \prime}$. Only $£ 139(\mathrm{E})$ Phillps SCM 073 similar (not identical) to above for EGACGA C and compats. 640×350 resolulion. With Text swich wit(KME $10^{\text {m }}$ high definition colour monitors. Nice
Kight $023^{\prime \prime}$ det pitch for superb clarity and $\square \longrightarrow$ modem syling. Operates from any 15.625 khz modem syling. Operates from any 15.625 khz sync RGE video source, with RGB analog and Amiga Acom Archimedes \& BBC. Measures
Amiga, Acom Archimedes \& BBC. Measures
3nly $13.5^{\times} \times 12^{\prime} \times 11$. Also works as quality Tv win our HGB Telebox. 3ood used condition, 90 day guarantee. Only. $£ 125$ (E) Brand new Centronic 14" monitor for IBM PC and compatibles at a lower than ever price! Completely CGA equivalent. Hi-res Mitsubisli 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz bandwidth. A super monitor in attractive style moulded case.Full 90 day guarantee. Only
quality -equipment fully tested with a 90 day guarantee. In an attractive two tone ribbed gey plastic case measuring $15^{\circ} \mathrm{L} \times$ $13 W \times 2 \mathrm{H}$. The front cosmetic bezel has

E69 (E)

Superb made 'UK mand 26" AV SPECIU PIL all solid
monitors, complete with composite video \& sound inputs. AttracENT little used condition with full 90 day guarante
20"....£135 22"....£155 26"....£185 (f)
CALL FOR PRICING ON NTSC VERSIONSI
Superb Quality 6 foot 40u
$19^{\text {" Rack Cabinets }}$ Massive Reductions Virtually New, Ultra Smart Less Than Half Price!
Top quality 19 ' rack cabinets made in UK by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable fron door, full height lockable half louvered back door and removable side panels. Fuly adustable internal fixing struts, ready punched for any configuraliaf acket switched mains distribu mounted integral 12 way 13 amp sock ene most versatile we have ever sold. Racks may be stacked side by side and therefore ever sold. Racks may be stacked side by side and thereiore are $77-1 / 2^{\circ} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as:
Rack Complete with removable side panels.......E275.00 (G) D) Rack = Less side panels.

1992 WInter Issue of Display News now available - send large SAE - PACKED with bargalnsI

-ELECTREANIES-

3 Different model motors, E1. Order Ref. 35
Spin to start $3 v$ dc motors for model aircraft etc. 5 for $£ 1$, Order Ref. 134
Cassette motor $1.5-12 \mathrm{v}$ powerful speed increases with voltage, £1, Order Ref. 224
Mini cassette motor 6-9v working, £1. Order Ref. 944 High efficiency motor for solar cell working, $£ 1$, Order Ref.

643.

12 v motor ex BSR record player, $£ 1$, Order Ret. 687. 9 v cassette motor, brushless, $£ 1.50$, Order Ref. 1.5P 1/10hp 12v dc motor Smiths, £4, Order Ref. 4P22
1/8hp $12 v$ motor, Smiths, $£ 6$, Order Ref. 6P1
$1 / 6 \mathrm{hp} 12 \mathrm{v}$ motor, Smiths, $£ 8$, Order Ref. 8P14
1/3hp motor (Sinclair C5), E15, Order Ref. 15P8

MAINS MOTORS WITH GEARBOXES

5rpm 60W £5. Order Ret. 5P54
40rpm 100W, $£ 6$, Order Ref. 6P2
50rpm 60W, £5, Order Ref. 5P168
60rpm 60W, £5, Order Ref. 5P171
110rpm 60W, £5, Order Ref. 5P172
150rpm 60W, £5, Order Ref. 5P169
200rpm 60W, £5, Order Ref. 5P216
500W motor with gearbox \& variable speed selector 100 rpm upwards, 55 . Order Ref. 5P220
1 rev per 24 hours $2 W$ motor, $£ 1$, Order Ref. 89
1 rev per 12 hours $2 W$ motor, $£ 1$. Order Ref. 90
1 rev per 4 hours $2 W$ motor, $£ 2$, Order Ret. 2P239 1 rev per hour $2 W$ extra small motor, 2 for $£ 1$, Order Ref.
500 500
$1 / 2 \mathrm{rpm}$ mini motor, $£ 3$. Order Ref. 3P64
1 rpm mini motor, $£ 2$, Order Ref. 2P328
4 rpm 2 W motor, $£ 1$, Order Ref. 446
15rpm 2W motor, £2, Order Ref. 2P321
25rpm 2W motor, £2, Order Ref. 2P322
25rpm 2W motor, E2, Order Ref. 2P322
200rpm 2 W motor, $£ 1$, Order Ref. 175
250rpm 2 W motor. £1, Order Ref. 750

MAINS MOTORS

$3 / 4$ stack motor with $1 / 4^{\prime \prime}$ spindle, $£ 1$, Order Ref. 85 Motor $1 \frac{1}{2} 2^{\prime \prime}$ stack with good length spindle from each side Motor Order Ref. 2P55
Motor 11/4" stack with $4^{\prime \prime}$ long spindie, £2, Order Ref. 2P203 Motor by Crompton .06 hp but little soiled, $£ 3$. Order Ref. Moto
$3 \mathrm{P}_{4}$
Jap made precision motor balanced rotor \& reversible. 1500 rpm . £2, Order Ref. 2P12
Tape motor by EMI 2 speed \& reversible, £2. Order Ref.
2P70 $1 / 4 \mathrm{hp} 1000 \mathrm{rpm}, \mathbf{~ 8 8}$, Order Ref. 8P7
Very Powerful Mains Motor, with extra long ($21 / 2^{\prime \prime}$) shafts extending out each side. Makes it ideal for a reversing arrangement for, as you know, shaded pole motors are not reversible, £3, Order Ref. 3P157

MOTORS-STEPPER

Mini motor by Philips 12v-7.5 degree step, quite standard data supplied, only £1, Order Ref. 910 Medium powered Jap made 1.5 degree step, £3, Order Ref. 3P162
Very powerful motor by American Philips 10-14v 7.5 degree step, £5, Order Ref. 5P81

LOUDSPEAKERS

$2^{\prime \prime}$ round 50 ohm coil $1 / 2 \mathrm{~W}, 2$ for $£ 1$. Order Ref. 908 $2^{1 / 4^{\prime \prime}} 8 \mathrm{ohm}, 2$ for E 1 , Order Ref. 454
$21 / 2^{\prime \prime} 35 \mathrm{ohm}, 2$ for $£ 1$, Order Ref. 514
$6^{1 / 22^{\prime \prime}} 8 \mathrm{ohm}, 2$ for $£ 1$, Order Ref. 682
$61 / 2^{\prime \prime} 4 \mathrm{ohm}$ with tweeter, $£ 1$, Order Ref. 895
$61 / 2^{\prime \prime} 6 \mathrm{ohm}$. $£ 1$. Order Ref 896
$61 / 2^{\prime \prime} 6 \mathrm{ohm}$. $£ 1$. Order Rei. 896
$6^{1 / 22^{\prime \prime}} 8 \mathrm{ohm}$, with tweeter, $£ 1$, Order Ref. 897
$6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm, $£ 1$. Order Ref. 242
$5^{\prime \prime} \times 5^{\prime \prime} 16$ ohm, 151 Order Ret 725
$5^{6 \times 4^{\prime \prime}} 16$ ohm, 16 , Order Ref. 725
$8^{\prime \prime}, 15 \mathrm{ohm}$ audax, E1, Order Ref. 504
8,' 15 ohm audax, E1, Order Ref. 504
3,4 ohm tweeter. \&1, Order Ret 433
Goodmans $61 / 210 \mathrm{~W} 4$ ohm, E 2, Order Ref. 2P27
Horn speaker $41 / 2^{\prime \prime} 8 \mathrm{ohm}$, £3 Order Ref. 3P 82
Horn speaker $41 / 2^{\prime \prime} 8$ ohm, $£ 3$ Order Ref. 3P8
20W $5^{\prime \prime}$ by Goodman, $£ 3$. Order Ref. 3P145
20W $5^{\prime \prime}$ by Goodman, £3, Order Ref. 3P 145
20W 4 ohm tweeter, $£ 1.50$ Order Ref $15 P 9$
Amstrad $8^{\prime \prime} 15 \mathrm{~W} 8$ ohm with-matching tweeter, £4, OOider Ret. 4P57
Cased pair of stereo speakers by Bush 4 ohm $£ 5$ per pair. Order Ref. 5P141
Double wound voice coil 25W, 1TT, £7. Order Ref. 7P12 Bulkhead speaker, metal cased, $£ 10$. Order Ref. 1043 25W 2 way crossover, 2 for $£ 1$, Order Ref. 22
40W 3 way crossover, E1, Order Ref. 23

MONITORS AND BITS

Philips 9" high resolution monitor. E15, Order Ref. 15P1 Metal case for the above Philips monitor, £12, Order Ref, 12P3
Philips $9^{\prime \prime}$ high resolution tube Ref. M24 306W, £12, Order Ref. 12P7
$6^{\prime \prime}$ electros
$6^{\prime \prime}$ electrostatic monitor tube Ref. SE5J31, $£ 10$, Order Ref. 10P104
Mini scope tube face size $2^{\prime \prime} \times 2^{1 / 2 "}$, electrostatic $3 v$ heater 1 Kv in new metal shield, $£ 10$. Order Rel. 10 P 73

SOME POPULAR BARGAINS

LCD $31 / 2$ DIGIT PANEL METER, this is a multi range voltmeter/ammeter using the A-D converter chip 7106 to provide 5 ranges ech of volts and amps. Supplied with full data sheet. Special snip price of E 12 . Order Ref. 12P19 $12 \mathrm{~V}-0-12 \mathrm{~V}$ PCB MOUNTING MAINS TRANSFORMER normal 230 V primary and conventioal open winding connormal 230 v primary and co
struction, $£ 1$. Order Ref. 938
struction, $£ 1$, Order Ret. 938
AMSTRAD $3^{\prime \prime}$ DISK DRIVE, brand new. Standard replaceAMSTRAD $3^{\prime \prime}$ DISK DRIVE, brand new. Standard replace-
ment or why not have an extra one? £20, Order Ref. ment or
20 P 28
THIS COULD SAVE YOU EXPENSIVE BATTERIES, an incar utt for operating 6 V radio, cassette layer, etc from car lighter socket, £2, Order Rel. 2P318
MEDICINE CUPBOARD ALARM, or it could be used to warn when any cupboard door is opened, built and neatly cased requires only a battery, £3, Order Ret. 3P155
FULLY ENCLOSED MAINS TRANSFORMER, on a 2 m 3 core lead terminating with a 13A plug. Secondary rated at 6V 4A. Brought out on a well insulated push on tags, E3. Order Ref. 3P152, Ditto but 8A, Order Ref. 4P69
DON'T LET IT OVERFLOW, be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you or any other thing that could flood. This device will tell you when the water has risen to the pre-set level Adjustable over quite a useful range, neatly cased for wall mounting, ready to work when battery fitted, £3, Order Ref. 3P156 DIGITAL MULTI TESTER MG3800, single switching covers 30 ranges including 20A ac and dc 10 meg input impedence, $31 / 2$ LCD display. Complete with lead. Currently advertised by many dealers at nearly $£ 40$, our price only $£ 25$. Order Ref. 25P14
ANALOGUE TESTER, input impedence 2 K ohms per volt. It has 14 ranges, ac volts $0-500$ dc volts $0-500$, dc current 500 micro amps at 250 millsamp, resistance $0-1 \mathrm{meg}$-ohm, decibels 2056 dB . Fitted diode protection, overall size $90 \times 60 \times 30 \mathrm{~mm}$. Complete with test prods, price $£ 7.50$, Order Ref. 7.5P8
LCD CLOCK MODULE, 1.5 v battery operated, fits nicely into our 50p project box, Order Ref. 876. Only £2. Order Ref. Into our 50p project box, Order Ref. 876. Only £2, Order Ref.
2P307 SENTINEL COMPONENT BOARD, amongst hundreds of other parts, this has 15 ICs all plug in so don't need desoldering. Cost well over $£ 100$, yours for $£ 4$, Order Ref 4P67 AMSTRAD KEYBOARD MODEL KB5. this is a most comprehensive keyboard, having over 100 keys including, of course, full numerical and qwerty. Brand new, still in maker's packing, £5, Order Ret. 5P202
SOLAR PANEL BARGAIN, gives $3 v$ @ $200 \mathrm{~mA}, £ 2$, Order Ref. 2P324
ULTRA SONIC TRANSDUCERS, 2 metal cased units, one transmits, one recelves. Built to operate around 40 kHz , £1.50 the parr, Order Ref. 1.5P4
INSULATION TESTER WITH MULTIMETER, internally generates voltages which enables you to read insulation directly in megohms. The multimeter has 4 ranges ac/dc volts, 3 ranges dc milliamps, 3 ranges resistance and 5 amps. These instruments are ex BT but in very good conditon, tested and guaranteed OK, yours for only $£ 7.50$, with leads, carrying case £2 extra. Order Ref. 7.5P4
MAINS ISOLATION TRANSFORMER, stops you getting to earth shocks, 230 v in and 230 v out. 150 W upright mountirg, $£ 7.50$. Order Ref. 7.5P5 and a 250 W torroidal isolation, $£ 10$, Order Ret. 10P97
MINI MONO AMP on pCD. Size 4 " $x 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 W into 4 ohm speaker using 12 v or 1 W into 8 ohm using 9 v . Brand new and perfect, only $£ 1$ each. Order Ret. 495
EXPERIMENTING WITH VALVES, don't spend a fortune on a mains transformer. we can supply one with standard mains input and secs. of $250-0-250 \mathrm{v}$ at 75 mA and 6.3 v at 3A, £5. Order Ref. 5P167
0-1 MA FULL VISION PANEL METER, $23 / 4^{\prime \prime}$ square, scaled 0-100 but scale easily removed for re-writing, £1, Order Ref. 756
PCB DRILLS, 12 assorted sizes between .75 and 1.5 mm , £1 the lot. Order Ret. 128 .
12 V AXIAL FAN, for only $£ 1$, ideal for equipment cooling. brand new, made by West German company. Brushless so virtually everlasting. Supplied complete with diagram of simple transıstor driver, £1, Order Ref. 918.
PC OPERATING SYSTEMS, fully user documented and including software, MS-DOS 3.20 , with $5^{\prime \prime}$ disk. £5, Order Ref. 5P2076: MS-DOS 3.3 with 3½" disk, £5, Order Ref 5P208, or with 5" disk, £5, Order Ref. 5P208/5: MS-DOS 4.01 with $31 / 2^{\prime \prime}$ disk, £10. Order Ref. 10P99

45A DOUBLE POLE MAINS SWITCH. Mounted on a $6 \times 31 / 2$ aluminum plate, beautifully finished in gold, with pilot light. Top quality. made by MEM. £2, Order Ref. 2P316
HIGH QUALITY KEY SWITCH. This is a single pole, 2 position switch, changeover or on/off. Ideal for mounting through a front panel when it would be secured by a hexagonal nut. It's a Yale type switch and comes complete with 2 keys. Good British make, normally retails at $£ 3$, our price £1.50, Order Ref. 1.5P12.
SOLAR ENERGY EDUCATIONAL KIT. It shows how to make solar circuits and electrical circuits, how to increase voltage or current, to work a radio, calculator, cassette player and to charge nicad batteries. The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal frame to hold it to complete a free-standing electric tan. A really well written instruction manual. £8, Order Ref. 842B.

POWER SUPPLIES - SWITCH MODE
(all 230 v mains operated)
Astec ref. B51052 with outputs $+12 \mathrm{v} .5 \mathrm{~A},-12 \mathrm{v} .1 \mathrm{~A}_{1}+5 \mathrm{v}$ $3 \mathrm{~A},+10 \mathrm{v} .05 \mathrm{~A},+5 \mathrm{v} .02 \mathrm{~A}$ unbexed on pcb size $180 \times 130 \mathrm{~mm}$ 55. Order Ref. 5P188.

Astec ref. BM4 1004 with outputs $+5 v 31 / 2 \mathrm{~A},+12 \mathrm{vc} 1.3 \mathrm{~A}$ -12v 1.2A. £5, Order Ret. 5P199
Astec No. $12530+12 \mathrm{~V} 1 \mathrm{~A},-12 \mathrm{~V} .1 \mathrm{~A},+5 \mathrm{v} 3 \mathrm{~A}$, uncased on pcb size $160 \times 100 \mathrm{~mm}$. E3, Order Ref. 3P141
Astec No. BM41001 110W $38 \vee 2.5 \mathrm{~A}, 25.1 \mathrm{v} 3 \mathrm{~A}$ part metal cased with instrument type main input socket $\&$ on/off dp rocker switch size $354 \times 118 \times 84 \mathrm{~mm}$, £8.50, Order Ref. 8.5P2 Astec model No. BM135-3302 + 12v 4A, +5 V 16A, -12 V 0.5A totally encased in plated steel with mains input plug, mains output socket \& double pole on/off switch size $400 \times 130 \times 65 \mathrm{~mm}, £ 9.50$, Order Ref. 9.5P4

POWER SUPPLIES - LINEAR

(all cased unless stated)
4.5 v dc $150 \mathrm{~mA}, \mathrm{E} 1$, Order Ref. 104
$5 v$ dc $21 / 2 A$ psu with filtering \& volt regulation, uncased, $£ 4$, Order Ref. 4P63
6 v dc 700 mA , $£ 1$, Order Ret. 103
6 v dc 200 mA output in 13A case. E2, Order Ref. 2P112 $6-12 \mathrm{v}$ dc for models with switch to vary voltage and reverse polarity, £2, order Ref. 2P3
9 v dc $150 \mathrm{~mA}, ~ £ 1$, Order Ret. 762
9 v dc 2.1A by Sinclair, £3, Order Ref. 3P151
9 v dc 100 mA , $£ 1$ Order Ref. 733
12v dc 200mA output in 13A case, £2, Order Ref. 2P114 $12 v 500 \mathrm{~mA}$ on 13A base, $£ 2.50$, Order Ref. 2.5P4
12v 1A filtered \& regulated on pcb with relays \& Piezo sounder, uncased, £3. Order Ref. 3P80
Amstrad 13.5 v dc at 1.8 A or 12 v dc at $2 \mathrm{~A}, £ 6$, Order Ref 6P23
24 v dc at 200 mA twice for stereo amplifiers, $£ 2$, Order Ref. 2P4
9.5 v ac 600 mA made for BT, $£ 1.50 \mathrm{~m}$, Order Ref. 1.5 P 7 15 v 500 mA ac on 13A base, £2, Order Ref. 2P281 AC out 9.8 v (ω 60mA \& 15.3 v (ω) $150 \mathrm{~mA}, £ 1$, Order Ref. 751 BT power supply unit 206AS, charges $12 v$ battery and cuts off output should voltage fall below pre-set, £16, Order Ref. 16P6
Sinclair microvision psu, £5, Order Ref. 5P148

LASERS \& LASER BITS

2 mW laser, nellum neon by Phlips. full spec. £30, Order Ref. 30P1
Power supply for this in kit form with case is $£ 15$, Order Ret. 15P16, or in larger case to house tube as well, $£ 18$ Order Ref. 18P2.
The larger unit, made up, tested and ready to use, complete with laser tube, £69, Order Ref. 69P 1

HEATING UNITS

Linear quartz glass tubes $360 \mathrm{~W}, 2$ in series for mains, $£ 1$, Order Ref. 907
1000 W spiral elements for reparing fires etc. 3 for $£ 1$. Order Ref. 223
1000W pencil elements, 2 tor $£ 1$. Order Ref. 376
1.2 kW mini tangential heater, ideal for under desk etc, $£ 5$, Order Ref. 5P23
2kW tangential heater, £6, Order Ref. 6P30
3kW tangential heater, £8, Order Ref. 8P24
12' tubular heater, slightly storage soiled, $£ 6$, Order Ref. 6P31
Water-proof heating wire, 600 hms per metre, 15 m is right length for connecting to mains, £5, Order Ref. 5P109
The above prices include VAT but please add $£ 3$ towards our packing and carriage if your order is under £50. Send cheque or postal orders or phone \& quote credit card number.

> M\&B ELECTRICAL SUPPLIES LTD Pilgrim Works (Dept. WW),
> Stairbridge Lane, Bolney, Sussex RH17 5PA Telephone 0444881965 (Also fax but phone first) Callers to 12 Boundary Road, Hove, Sussex

Working with programmable logic 2 : sequential logic

In combinatorial logic circuits, the order in which signals are applied makes no difference to the end result, once propagation delays have worked through. The converse is true with sequential logic.
There is usually a trigger signal. called the clock, which controls the passing of data from inputs to outputs. The triggering event is often the low to high transition of the cloch input, and the state of the inputs at this moment (and a few nanoseconds before and after) determines what state the oulputs will take immediately after the active clock edge. Any changes of input levels away from the active clock edge will not affect the output.
If the outputs are fed back, so that they form part of the input to the device. the result is a state machine. A typical state machine is shown in Fig. 1. The output state is held in a set of flip-flops called a register: the same clock is shared by all the flip-flops so that data is loaded into each one simultancously. The core of the machine is still combinatorial togic but. even if the output of the core logic changes. the output register will not be altered until the active clock edge.
Many practical systems can be defined as state machines. Consider something as common as a lift (or elevator). In a three storey building, a lift can have seven possible states (see Fig. 2): it can be stationary at a floor. or in transit between anty two of the floors. moving up or down. If it is stationary it will only move if it is called to another floor: if it is moving it will only stop if it has been called to the floor which it is approaching, unless that happens to be the top or bottom.
It may appear as if there is no clock in operation, but a system like this will use a clock to sample the state of the call buttons and lift position. These signals form the inputs to the system; the ouputs will act as signals to the lift motor and brake. hut will also be fed back as inputs so that the logic knows what the lift is doing.
For example, a call to floor three would be ignored if the lift was descending between floors two and one, but it would be acted on if the lift was stationary at floor two or one.
Note that a practical system would require several auxiliary circuits. For example, some prioritising of the call signals to prevent hogging and a time delay for the door opening and closing, but this does not alter the principles involved.

Registered proms

A standard prom can behave as a combinatoriat logic circuit, so a circuit capable of supporting state machines can be made by adding an internal register. Because state information must be logically combined with input data, some of the prom outputs need to be connected back to the

Illustration TRACY N.ARTIN

> Registered functions, and state machines in particular, can fit into registered proms, registered PALs or FPLSs. Of these, FPLSs are versatile but also expensive and power hungry. As with combinatorial logic, each application needs to be decided on its merits. Geoff Bostock explains the ground rules.

Fig. 1. Basic state machine block diagram.

Fig. 2. Ihree-floor lift - basic states.

Fig. 4b. State
equations for
three-floor lift
controller.
inputs. This has the effect of restricting the number of inputs available for logic connection.
Figure 3 shows how a $16 \mathrm{~K}(2 \mathrm{~K} \times 8$) registered prom could be connected to control the lift example described above. The seven states can be defined in three state bits; this leaves eight inputs free for inputs to control the lift. Some obvious inputs would be the call signals to the three floors and, perhaps, a door open indicator and emergency stop. It would also be sensible to include signals to indicate when each floor has been reached, in order to allow the lift to be stopped and the door opened.
There are also five outputs free. Possible uses for these could include signals to operate the lift motor, the door motor and one for the brake.
This configuration will just fit into a 16 K prom but, as with combinatorial circuits, addition of another input would require a prom of twice the size to accommodate it. Moreover, two more states (ie nine altogether) would need another input and output because four state bits are required to define from nine to sixteen states.

Nevertheless, registered proms are available up to 64 K in size and may be used for state machines. Indeed, Cypress has just brought out two proms specifically aimed at state machine applications. The $C Y 7 C 258$ and $C Y 7 C 259$ have internal feedback paths from some outputs to the input side of the prom array. Here they are multiplexed with address lines, giving the designer the option of choosing the width of the fed back state word. Each prom has a 16 -bit wide output, although only eight are available in the $C Y 7 C 258$, and an 11-bit input with up to 11 output bits fed back

The lift example, as described above, would just fit into one of these proms, so let us see how the system would be defined. Fig. 4a shows the state diagram for the lift controller. The seven states are defined as in Fig. 2, logether with the values of B2, B1 and Bo for each state, while the arrows show the possible transitions between each state, together with the logic conditions which trigger the transition. Some way is needed to translate this diagram into a format that a PLD assembler will recognise.

This usually takes the form of state equations; the equations, which are equivalent to the state diagram, are shown in Fig. 4b. Conventionally, states are enclosed in square brackets; thus, [AT3] means state at3. The while [S1] IF T1 THEN [S2] WITH O1 format is straightforward; S1 is the present state of the system, T1 is the logic condition which triggers a jump to state $\mathbf{S} 2$,
while 01 is the condition of the outputs in state $\mathbf{S 2}$.
The states and logic conditions must be defined separately, often by means of logic equations. For example, we could define [AT3] by:
[AT3] = B2 \& B1 \& ! BO,
or as a number by [AT3] $=6 \mathrm{~h}$ or [AT3] $=110 \mathrm{~b}$, in hexadecimal or binary respectively; the exact format

```
WHILE [AT3]
    IF !STOP & !DOOR OPEN & (CALL1 # CALL2) THEN [3TO2] WITH DOWN & CLOSE_DOOR
WHILE [3TO2]
    IF FLOOR2 & CALL2 THEN [AT2] WITH BRAKE & OPEN_DOOR
    IF !DOOR OPEN & !STOP & CALL1 & !CALL2 & FLOOR2 THEN [2TO1]
WHILE [2TO3]
    IF FLOOR3 & CALL3 THEN [AT3] WITH BRAKE & OPEN DOOR
WHILE [AT2]
    IF IDOOR OPEN & !STOP & CALL3 THEN [2TO3] WITH UP & CLOSE DOOR
    IF !DOOR OPEN & !STOP & CALLI THEN [2TO1] WITH DOWN & CLOSE_DOOR
WHILE [2TO1]
    IF FLOOR1 & CALL1 THEN [ATT] WITH BRAKE & OPEN DOOR
WHILE [1TO2]
    IF FLOOR2 & CALL2 THEN [AT2] WITH BRAKE & OPEN_DOOR
    IF FLOOR2 & CALL2 THEN [AI2] WITH BRAKE & OPEN-DOOR THEN [2TO3]
WHILE [AT1]
    IF !DOOR_OPEN & !STOP & (CALL2 # CALL3) THEN [1TO2] WITH UP & CLOSE_DOOR
```


Fig. 3. 16K registered prom block diagram - wired as lift controlier.

Fig. 4a. State diagram for three-floor lift controller.
The first step in building a state machine is to draw the state diagram of the system. Fig. $4 a$ is the state diagram of a simplified controller for a lift operating between three floors. In a state machine, the state information is held in a set of flip-flops called the state register. Each state in the state diagram must be uniquely numbered so that correspondence can be established between the register and the diagram.
Iransitions between states are shown on the diagram as arrows; each arrow is labelled with the logic function which must be true for the transition to occur. This is the transition condition for the jump, which will take place at the active edge of the common clock driving the state register.
To program a PLD with this data it must be converted to a format which will be recognised by a PLD logic assembler. A common format is the WHILE [..] IF ... THEN [..] WITH ... notation. The WHILE operator refers to the present state, the IF argument is the transition condition, THEN gives the next state and WITH defines any output which may be associated with the next state. The state equations derived from figure $4 a$ are shown in Fig. $4 b$.
depends on which logic formatter is being used.
To complete this example the door_close and emergency stop signats must be defined. Door_close happens automatically when a call button is pressed and the door is open. although in a practical system there would be some delay after the lift reached a floor to allow passengers time to leave or enter the lift. It is defined by the equation:
CLOSE_DOOR := DOOR_OPEN \& (CALL3 \# CALL2 \# CALL1)
Here the symbol ' $:=$ ' means equals at the active clock edge.

Similarly we can write an equation:
BRAKE : $=$ STOP \# AT3 \# AT2 \# AT1
implying that the brakes are applied when the emergency stop button is hit or when the lift is stopped at one of the floors. Note that this notation means that the brakes will only be applied as long as the stop signal is active. This is because the register is made from D-type flip-flops, which do not hold their data once an input is removed. unlike J-K flip-flops.

Registered PALs

Registered proms suffer from the same drawhacks as combinatorial proms, the chief one being that an extra input requires a doubling of array size. This can be particularly irksome in state machines whose arrays have several inputs allocated to fed back outputs. As with combinatorial logic. the simplest solution is to make the and-array programmabie: if the or-array is fixed the result is a PAL structure.
The circuit diagram of a basic registered PAL output is shown in Fig. 5. The registered output passes through an inverting three state buffer, but the feedback to the andarray is taken directly from the inverting output of the flipflop. Even when the outputs are switched off the feedback is still operating. Both output and feedback are inverted, so registered PALs are effectively active-low, meaning that care must be taken over the way in which transition terms trigger state bit changes.

As with proms, D-type flip-flops are used to form the state register. Any state bit which should not change when the transition condition is removed must. therefore, be provided with a separate product term defining the 'hold" condition. We can illustrate this with a simple binary counter example.

The least significant bit always toggles when the counter is counting. It may be defined very simply by:

QO := ! Q \& COUNT

The next bit (Q1) toggles only when $Q 0$ is high; this might be defined by:

Q1 : $=$! Q1 \& QO \& COUNT

This definition will cause $Q 1$ to go low whenever the transition condition ($!Q 1 \& Q 0 \&$ COUNT) is not true but we want $Q 1$ to remain high when $Q 1$ is high and $Q 0$ is low: that is counting from two to three. We also want Q1 to stay high if COUNT goes low, and the count is halted temporarily. To do this we must add terms to that effect, so the complete equation for $Q 1$ becomes:

```
Q1 := !Q1 & Q0 & COUNT
    # Q1 & !QO & COUNT
    # Q1 & !COUNT
```

If we investigate adding a third counter bit we find that the situation becomes even worse. Q 2 will toggle low to high on the three to four transition, but must be held high on the next three counts, four, five and six. These three present states need two product terms to cover them: Q 2 is fully defined by:
$Q^{2}:=!Q 2 \& Q 1 \& Q 0 \&$ COUNT (toggle at 3 or 7)
\# Q2 \& ! Q1 \& COUNT (hold high at 4 or 5)

\# Q2 \& ! $00 \&$ COUNT (hold high at 4 or 6)
\# Q2 \& ! COUNT (hold high interrupted count)
Every higher bit we count needs an additional product term to define the hold while counting condition. As we saall see, standard registered PALs contain just eight product terms per output. so the $Q 6$ output would use all the product terms atvailable to it.
Fig. 6 shows the Karnaugh map for Q2. From this it may be deduced that Q 2 can be written:
Q2 := Q2 :\#: Q1 \& Q0 \& COUNT
A registered output. such as that shown in Fig. 7, can cope with any order bit in a counter chain because the exclusive-or gate allows equations like this to be programmed directly into the PAL.
The standard families of registered PAL are based on the 20 pin combinatorial PAL/6L8 and 24 pir PAL20LS. In each case a series of PALs is available with registered outputs of the form of Fig. 5 replacing four. six or all eight of the combinatorial outputs. These make the PALI/6Rt. PALIGRG and PALIORX from the PALIOL8, and PAL2OR4, PAL2OR6 and PAL2ORS from the PAL.2OLS.
A third family has been created by replacing four. eight or ten of the PAL20L10 combinatorial outputs by exclusive-OR registered outputs, as in Fig. 7. These are the PAL20Xt. PAL20X8 and PAL20X10. Their principal use is in making counters; up to divide-by-1024 can be incorporated into the PAL20X1O.
The $P A L / 6 R n$ and $P A L 2 O R n$ families may be used for making small state machines. but are limited by having only eight product terms per output, and by the need to include terms to hold the output high. as we saw with the basic counter. They are also useful in applications where synchronisation is required, when they can be considered merely as a combinatorial logic block driving a synchronising register.

Field programmable logic sequencers

Just as registered proms and PALs are derived from their combinatorial counterparts, so FPLSs are derived from

Fig. 5. One oulput of a standard registered PAL.

		0	0	1	1	COUNT
		0	1	1	0	Q2
0	0		H	H		
0	1		H	H		
1	1		H		H	
1	0		H	H		
Q1	00					

Fig. 6. Karnaugh map for third bit of a binary counter.

Fig. 8. Field programmable logic sequencer (FPLS) block diagram.

Fig. 9a, below left, state diagram of a priority controller for lift calls.

Fig. 9b, below right, state table of a priority controller for lift calls. FPLS programmers can accept state transition data in a state table format. This makes it unnecessary to use a logic assembler. Each present state is coded into the table, just as in an FPLA truth
table, and the transition condition and next state entered on the same line. If there is more than one transition from any state then each transition must occupy a separate line, but the order in which lines are entered is unimportant except for readability. This table is the state table derived from the state diagram of Fig. 9a.

FPLAs. Figure 8 shows a very general FPLS architecture; not all FPLSs have all the features shown in this diagram. Because the principal use of FPLSs is in building state machines, I will describe their architecture while bearing this in mind.
The state of the FPLS before the next active clock edge is called the present state, and this data is held in the buried register and/or the output register. The present state is fed back to the and-array where it is logically combined with input data. If the combination of feedback and input has been programmed into the FPLS as a valid transition condition, the appropriate product term will be high and will be fed into the or-array.
FPLSs use either R-S or J-K flip-flops as their register elements. Unlike D-types, once a high or low is established it will remain until the flip-flop is actively
changed. A high from the and-array can be transmitted via programmable connections to or-terms feeding the flipflop inputs. At the active clock edge these flip-flops will be set or reset, while any not receiving a high will remain unchanged. In this way a new present state is asserted.
If the feedback/input combination does not form a valid transition condition all the flip-flop inputs will be low when clocked, and the state of the register will remain unchanged.
As an example of how an FPLS can be used for a simple state machine, let us construct a priority control circuit for the three floor lift. The state diagram is shown in Fig. 9a. The state machine interrogates each call signal in turn and accepts the call if the signal is high. Floor 2 is given extra priority as it makes sense not to by-pass this floor if the lift is moving from one to three or vice versa. The diagram is

inPuTS						Present state			next state		
CALI	Call 2	САН 3	AI 1	AI 2	AT 3	S2	S1	S0	S2	S1	So
H	-	-	-	-	-	L	L	L	L	L	H
L	-	-	-	-	-	L	L	L	L	H	L
-	-	-	H	-	-	L	L	H	L	H	L
-	H	-	-	-	-	L	H	L	L	H	H
-	L	-	-	-	-	L	H	L	H	H	L
-	-	-	-	H	-	L	H	H	H	H	L
-	-	H	-	-	-	H	H	L	H	H	H
-	-	L	-	-	-	H	H	L	H	L	L
-	-	-	-	-	H	H	H	H	H	L	L
-	H	-	-	-	-	H	L	L	H	L	H
-	L	-	-	-	-	H	L	L	L	L	L
-	-	-	-	H	-	H	L	H	L	L	L

arranged so that the third floor has priority over the first if the first floor was visited last, and the same in reverse.
The first stage in designing an FPLS for this state machine is to allocate binary numbers to each state. In this case we have given the [ASK1] state the number 000. The second floor enquiries have two states depending on the position of the lift; when it is at the first floor, or no response has been made to a first floor enquiry, we have the [ASK2A] state which we are calling 010, and so on for all eight states.

An FPLS state table has three sections in each row, or transition term: these are the input conditions, the present state and the next state. The usual way to proceed is to take each state in turn and define all the possible transitions out of them. Thus, the first line in the state table in Fig. 9b is the transition from [ASK1] 10 [ACCEPT1], which needs Calll high. The next line gives the result if callu is low, when the next state is [ASK2A] In all, twelve transition terms are required. each one corresponding to one arrow in the state diagram.
Physically, each transition term occupies one AND term in the and-array, with the inputs and present state, while the next state defines the or-array connections. An 'H' in an output column causes the AND term output to be connected to the 'J' of a J-K flip-flop or the 'S' of an R-S type, while an ' L ' will join it to the ' K ' or ' R '.
While we have described a manual entry method for generating the state table, it is equally valid to write state equations in the syntax described earlier. For example we could write:

```
WHILE [ASK1]
    IF CALL1 THEN [ACCEPT1]
    IF !CALL1 THEN [ASK2A]
```

and so on.
Either the Philips SNAP program or one of the proprietary assemblers, such as ABEL, CUPL or LOG/iC, can then be used to generate the state table from the state equations.

While this example is based on an imaginary lift which is confined to three floors, it might be easily modified to a situation where three processors are competing for resources in a multi-processor environment. Two methods are commonly used in this type of application, round robin, where each subject is interrogated in turn until one is found requiring service, and last granted lowest priority, where the controller creates a queue, the last processor going to the back of the queue when it has finished using the shared resources.

One feature unique to FPLSs is the complement term; it is an inverting feedback from the or-array to the and-array. Its purpose is to allow the ELSE construct in state equations. Logically, it does this by or-ing all the defined transitions from a given state and inverting the result. This is then itself used as an input condition for the case when none of the defined conditions is true.
The physical construction of the complement array is shown in Fig. 10, and we can illustrate its use with the state table in Fig. 11a. This is a state machine which allows access to a system via an entry code; it bears some resemblance to an automatic teller system ('hole-in-thewall'), except that the PIN is hard-wired and only three digits have to be entered.
From the state [START] an ' 8 ' must be entered; this will be accompanied by a Key signal to indicate a key depression and will cause a jump to state [OK1]. Any other number with KEY will cause a jump to [FAIL]. Releasing key ' 8 ' changes KEY to ! KEY and state [PAUSE1] is entered. This proceeds with a ' 1 ' and a ' 3 ' until state [PASS] is reached when the system can be accessed. Once the transaction is complete the system will

Fig. 10. FPLS complement term.

Fig. 11a. State diagram of a simple coded access system.
Fig. 11b. State table of a simple coded access system. The complement term found in FPLSs is used to implement the ELSE condition. In the state diagram of Fig. 11a, a transition from [START] to [OK1] is triggered by an ' 8 ' being entered along with a valid key signal. Any other number will cause a jump to the [FAII] state. This could be achieved by making transition terms with all other possible numbers, but the complement term allows this to be done in a single term.
Feeding back the inverse of ' 8 ' \& KEY provides a logic signal which triggers the jump to [FAIL] when gated with the valid key input. The same complement term can be used by other states without interference because any TRUE transition overrides any FALSE inputs to the OR gate which drives the feedback. Also, if all the transitions from the current present state are FALSE, no other transitions can be TRUE because their present states are not the current present state.
Fig. 11b shows how the complement term is entered into a state table. An ' A ' in the complement term column (C) generates a complement, that is it connects a transition to the complement OR gate. A \because 'propagates the complement back to the input array.

Fig. 12. PIS105 block diagram.

Fig. 13. PLS155 family output stage.
reset the state machine to [START]. [FAIL] will have the same effect except that the cash card will be retained.
The jump condition from [START] to [OK1] is easily defined as:

WHILE [START]

IF B3 \& ! B2 \& ! B1 \& ! BO \& KEY THEN [OKI] but the jump to [FAIL] needs four terms as (!B3 \& ! B2 \& ! B1 \& ! B0) must be expanded to ! B3 \# B2 \# B1 \# Bo. However, with the complement term we can write the jump condition as:
ELSE IF KEY THEN [FAIL]
The complement term can still be used with transitions from states [PAUSE1] and [PAUSE2] because the logic signal which is fed back, inverted, is low if any of the transition terms or-ed into it is high. Even though, while in state [START], the transitions out of [PAUSE1] and [PAUSE2] are invalid, the complement term will remain inactive unless the transition from [START] to [OK1] is itself invalid. A similar argument applies to [PAUSE1] and [PAUSE2] themselves.
Figure 11 b shows the full state table for this system. The convention for entering the complement term is to use an 'A' for attaching it to an and-term, and a '.' for feeding it back to the and-array. The whole diagram can be defined in nine terms, and further reduction is possible with some simple logic minimisation. Without minimisation and the complement term, eighteen transition terms would have been required.
We can now look at FPLS device options. There are two families of FPLS based, respectively, on R-S and J-K flipflops. The PLS/05 was introduced about fifteen years ago and has a straightforward architecture, as in Fig. 12. With

sixteen inputs, an eight-bit output register, a six-bit internal register, 48 transition terms and a complement term, it can cope with some very complex state machines. The coded access system described above would fit into one corner of a PLSIOS.
There have been a number of derivatives of the chip. Where the PLSIO5 needs a 28 pin package, the PLS/67 and PLS/68 fit into 24 pin packages by reducing the number of inputs and, in the case of the PLS/67, the number of outputs. Some enhanced versions, such as the PLUS405, the PLS506 and PLS30S16 have also been made. They follow the same basic architecture but may have more transition terms or register bits.
Figure 13 shows the output register of the PLS155 family. Based on a J-K flip-flop, it is surrounded by other programmable features which increase its versatility. Foremost of these is the J to K inverter. When this is active, it makes the J-K flip-flop emulate a D-type. The flip-flop type can be set for whichever is the most efficient for the application, and can even be changed in mid operation. This is described in a Philips application note, where a PLS159 is used as an eight bit shift register/counter.
Another useful feature is the ability to load the register directly from the outputs. This could be used in testing the device, to set the register into a known state, or in operation: data from a microprocessor bus could be loaded into the register, and then read back at a later time after some modification according to the input conditions.

This family also contains combinatorial i/o pins. Each device has twelve potential outputs. These are either four (PLS155), six (PLS157) or eight (PLS159/PLS179) registered with the balance of twelve bidirectional i/o. The $P L S / 79$ is a 24 pin device, with eight dedicated inputs, the others come in 20 pin packages with four inputs.

As a final example of using FPLSs, and the PLS155 in particular, we can look at the design of a Gray Code counter. The count sequence for four bits is shown in Fig. 14a. Because there are sixteen states, sixteen transition terms would be needed if this were designed as a basic state machine. The Karnaugh Maps for the four counter bits are shown in Fig. 14b, for a design using D-type flipflops. This cuts the design to thirteen transition terms.

Note, however, that Q3 and Q2 each require three terms, but inspection of the count sequence shows that they only change their level twice, as indicated by the rings round the changes in Fig. 14a. Toggling is a function of J-K flipflops, so if Q3 and Q2 use these, two more terms can be saved. This is not crucial if no other functions are being incorporated into the FPLS, but a reduction from sixteen to eleven terms might be important if the Gray Code counter is only one part of the overall FPLS function.

The full state table for the FPLS is shown in Fig. 14c. The symbol ' 0 ' is used for the toggle function as both ' J ' and ' K ' inputs must be driven high for toggling; this is the unblown fuse condition of the FPLS. The fuse which enables the J to K inverter must also be blown for Q 3 and Q2 , shown by a '. in the flip-flop control field (FC). The ' A ' in this field for $\mathbf{Q 1}$ and $\mathbf{Q 0}$ leaves the inverter enable fuse intact.
To specify this function with equations is equally valid, and will give the same result if a PLD compiler is used to assemble them. The usual format for specifying the flipflop type in any device where this is alterable is:

```
Q3.T := !Q3 & Q2 & !Q1 & !Q0
    # Q3 & !Q2 & !Q1 & !Q0
    QO.D := !Q3 & !Q2 & !Q1
    # etc.
```

$Q 3$	02	Q_{1}	$Q 0$
0	0	0	0
0	0	0	1
0	0	1	1
0	0	1	0
0	1	1	0
0	1	1	1
0	1	0	1
0	1	0	0
1	1	0	0
1	1	0	1
1	1	1	1
1	1	1	0
1	0	1	0
1	0	1	1
1	0	0	1
1	0	0	0
0	0	0	0

Fig. 14a. Gray code count sequence. Inspection of the count sequence shows that Q2 and Q3 only change state fwice. As a result, two terms can be saved.

		0	0	1	1	O 3
		0	1	1	0	O 2
0	0		H	H		
0	1			H	H	
1	1			H	H	
1	0			H	H	
Q 1	Q 0					

		0	0	1	1	Q3
		0	1	1	0	Q2
0	0		H	H		
0	1		H	H		
1	1		H	H		
1	0	H	H			
Q1	Q0					

		0	0	1	1	Q3
		0	1	1	0	Q2
0	0					
0	1	H		H		
1	1	H		H		
1	0	H	H	H	H	
Q1	Q0					

		0	0	1	1	Q3
		0	1	1	0	Q2
0	0	H		H		
0	1	H		H		
1	1		H		H	
1	0		H		H	
01	Q0					

Fig. 14b. Karnaugh maps for gray code count bits.

Fig. 14c. State table for Gray Code counter. The composite flip-flop of the PLS155 can sometimes be useful in saving transition terms. and-term reduction is not such a useful function in registered PALs because each output has a fixed allocation of terms and, unless an output is likely to use more than its allocation, no advantage is obtained by reducing the number of terms in any one output because they cannot be used elsewhere.
In an FPLS, all the transition terms are useable by all outputs, so any saving makes more fransition terms available for use if other functions are being included in the same PLD. The example of a Gray Code counter is relevant because this could well form just part of the overall function in one FPLS. The composite flip-flop can be used as either a D type or a t-k flip-flop. The count sequence of Fig. 14a is transformed into Karnaugh maps for D-types by entering the state prior to that in which the bit being mapped is set high. Thus, one cell for Q0 is 0000 because the next line in the sequence has QO set high.
Fig. 14b shows the resulting maps. Q3, Q2 and Q1

	PRESENT STATE				NEXT STATE			
FC	Q3	Q2	Q1	Q0	Q3	Q2	Q1	OO
-	L	H	L	L	0	-	-	-
-	H	L	L	L	0	-	-	-
-	L	L	H	L	-	0	-	-
-	H	H	H	L	-	0	-	-
A	L	L	-	H	-	-	H	-
A	H	H	-	H	-	-	H	-
A	-	-	H	L	-	-	H	-
A	L	L	L	-	-	-	-	H
A	H	H	H	-	-	-	-	H
A	L	H	H	-	-	-	-	H
A	H	L	H	-	-	-	-	H

Inspection of the count sequence shows that Q3 and Q2 toggle twice per count but Q1 toggles four times and Q0 eight times. Sixteen terms would be used if all the flip-flops were set to toggle but, if only Q3 and Q2 are toggles, the ferm count is reauced to eleven.
The state table in Fig. 14c has just eleven lines. The first four use ‘'' in the flip-flop control column; this defines the flip-flop as $I-K$, and the ' 0 's in the next state mean both / and K are connected to the active and-term, resulting in toggle operation.
The remaining seven lines, with 'A' in the flip-flop control column, leave the flip-flop as a D-type, with the I to K inverter enabled.

Ericsson's TBT is used in over 50 commtries world-wide

Our commitment to Training does not

Commitment to training is essential in the rapidly changing communications world. At Ericsson the importance of training has long been recognised. Since the early 1980s Ericsson has deteloped Technology Based Training (TBT) which allows personnel to be trained where and when the user neects it

Ericsson's TBT presents complex and difficult training material in an interesting and exciting way. It is a self-paced, interactive, user-friendly and cost effective method of enhancing lechnical competence

Ericsson's generic range of IBM PCTM compatible courseware includes the following courses:-

- Introduction to Telecommunications
- ISDN Overvicw and ISIDN Advanced
- OSI \& Data Networks and OSI Advanced
- X. 25 and Related Protocols and X. 25 Advanced
- C7 Signalling System Part 1 and Part 2
- Understanding Modems
- PCM Principles
- Cellular Mol:le Radio
- X. 400 Overvien

For further information please contact your local Ericsson office or

Marketing Department,

Ericsson Systems Expertise Limited
Adelphi Centre, Upper George's Street, Dun Laoghare, Co. Dublin, Ireland Tel: +35312800455 . Atter 5pm: + 35312843030 . Fax: +35312805914

Marconi TF2008-AM FM signal generator-Also sweeper-10Kc/s-510Mc/s - from £350 tested to $£ 500$ as new with manual - probe kit in wooden carrying bo HP Frequency comb generator type 8406A - $£ 400$
HP Sampiing Voltmeter (Broadband) type 3406A-£200
HP Vector Voltmeter type 8405A - £400 to $£ 600$ - old or new colou
HP Synthesiser/signal generator type 8672A-2 to 18GHz
HP Oscillographic recorder type
HP Plotter type 9872 - 4 pen - $£ 300$
HP Sweep Osclllators type 8690 A \& B + piug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$ HP Down Converter type $11710 \mathrm{~B}-.01-11 \mathrm{MC} / \mathrm{s}-£ 450$ HP Down Converter type $11710 \mathrm{~B}-01$ - H M Puise Modulator type $11720 \mathrm{~A}-2-18 \mathrm{GHz}-£ 1000$ HP Modulator type 8403A - $£ 100-£ 200$.
HP Pin Modulators for above-many different frequencies - $£ 150$
HP Counter type 5342A-18GHz-LED readout - $£ 1500$
HP Signal Generator type 8640B - Opt001 + 003-.5-512Mc/s AM/FM - £1000 HP Ampllfier type 8447A-1-400Mc/s $£ 200$-HP8447F $1-1300 \mathrm{Mc} / \mathrm{s} £ 400$ HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$ - rear output $£ 800$ HP 8410 - A-B - C Network Analyser $110 \mathrm{Mc} /$ s to 12 GHz or 18 GHz - plus most other units and displays used in this set-up -8411A-8412-8413-8414-8418-8740-8741-8742-8743 displays used inthis set-up
HP Signal Generator type $8660 \mathrm{C}-.1-2600 \mathrm{Mc} / \mathrm{s}$. AM/FM $-£ 3000.1300 \mathrm{Mc} / \mathrm{s} £ 2000$ HP Signal Generator type 8656A-0.1-990MC/S. AM/FM- £2000
HP 8699B Sweep Pi-0.1-4GHz $£ 750$ - HP8690B Maintrame $£ 250$
Racal/Dana 9301A-9302 RF Milvoltmeter - $1.5-2 \mathrm{GHz}$ - $2250-£ 400$
Racal/Dana Counters 9915 M - 95 - $917-9921-£ 150$ to $£ 450$. Fitted FX standards
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - $£ 250$
Racal - SG Brown Comprehensive Headse Tester (wth artificial head) Z1A200/1-£350 Marconi AF Power Meter type $8938-£ 200$
Marconi RCL Bridge type TF2700- $£ 150$
Marconi/Saunders Signal Sources type-6058B-6070A-6055B-6059A-6057B-6056 $£ 250-£ 350400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF 1245 Circut magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$ Marconi microwave 6600A sweep osc, mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - $£ 1000$ or Pl only $£ 600$
Marconl distortion meter type TF2331- £150, TF2331A - £200
Microwave Systems MOS/ 3600 Microwave frequency stabilizer - 1 GHz to 40 GHz £ 1 k . Tektronlx Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12 S1-52-S6-S52 - PG506-SC504-SG502 - SG503-SG504-DC503-DC508-DD501 WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - P.O.R
Ailtech Stoddart receiver type $17 / 27 \mathrm{~A}-01-32 \mathrm{Mc} / \mathrm{S}-£ 2500$.
Alltech Stoddart receiver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{s}-£ 2500$
Ailtech Stoddart receiver type NM65T-1 to $10 \mathrm{GHz}-£ 1500$
Gould J3B Test oscillator + manual - £200
Infra-red Binoculars in fibre-glass carrying case - tested- $£ 100$. Infra-red AFV sights $£ 100$. ACL Field intensity meter receiver type SR-209-6. Plugs-ins from $5 \mathrm{Mc} / \mathrm{s}$ to $4 \mathrm{GHz}-\mathrm{PO}$ Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new - $£ 1000$ or $10 \mathrm{Mc} / \mathrm{S} 40 \mathrm{GHz}$.
Tektronix Mainframes $-7603-7623 \mathrm{~A}-7633-7704 \mathrm{~A}-7844-7904-\mathrm{TM} 501-\mathrm{TM} 503$ Tektronix Ma inframes - 7603-7623A - 7633-7704A - 7844-7904 - TM501 - TM503 M506-7904-7834-7104.
Knoth Polysk
Ailtech 136 Precision test RX +13505 head $2-4 \mathrm{GHz}-£ 350$
Ailtech 757 Spectrum Analyser $-00122 \mathrm{GHz}-$ Digital Storage + Readout $-£ 3000$
Dranetz 606 Power line disturbance analyser - £250.
Precision Aneroid barometers- $900-1050 \mathrm{Mb}$ - mechanical digit readout with electronic indicator - battery powered Housed in polished wood carrying box-tested - £100-£200-£250. 1, 2 or 3 HP141T SPECTRUM ANALYSERS - ALL NEW COLOURS TESTED WITH OPERATING MANUAL
HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF $-8553 \mathrm{BRF}-1 \mathrm{kHz}-110 \mathrm{MC} / \mathrm{s}-\mathrm{AIF}-£ 1300$ or $\mathrm{BIF}-£ 1400$ HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-8554B RF $-100 \mathrm{kHz}-1250 \mathrm{MC} / \mathrm{s}-\mathrm{A} \mid \mathrm{F}-£ 1400$ or BiF -E 1500 HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-8555A RF-10MC/S-18GHz-A IF - $£ 2400$ or B IF - $£ 2500$ HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-8556A RF-20Hz-300kHz-A IF-A IF - $£ 1200$ or B IF- $£ 1300$ HP8443A tracking generator/Counter $-100 \mathrm{kHz}-110$
HP8445B tracking pre-selector DC-18GHz- $\mathbf{E 7 5 0}$.
HP ANZ UNITS AVAIL ABLE SEPAR ATELY - NEW COLOURS - TESTED.
HP141T Mantrame - $550-8552$ A IF - $450-8552$ BIF
HP141T maintrame-£550-8552A IF - £450-8552B IF - £550-8553BRF-1kHz-110MC/s
HP 3580 A L F -spectrum analyser -5 kHz to 50 kHz - IED readout-digtal storage $-£ 1600$
instruction manual - internal rechargeable battery
Tektronix $7 \mathrm{DD20}$ plug-in 2 -channel programmable digltizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes £500-manual - £50
Datron 1065 Auto Cal digitai multimeter with instruction manual - $£ 500$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}$ - internal NiCad battery - $£ 150$ Aerial array on metal plate $9 \times 9^{\prime \prime}$ containing 4 aerias plus Narda detector - . $100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpt - $£ 100$
EIP 451 microwave pulse counter 18GHz - $£ 1000$
Marconi RF Power Amplifier TF2175-15Mc/s to $520 \mathrm{Mc} / \mathrm{s}$ with book-£100
Marconi 6155 A Signal Source - 1 to 2 GHz - LED readout - $£ 600$.
Schlumberger 2741 Programmable Microwave Counter - 10 Hz to $7.1 \mathrm{GHz}-£ 750$
Schlumberger 2720 Programmable Universal Counter 0 to $1250 \mathrm{MC} / \mathrm{s}$ - $£ 60$
HP 2225 CR Thinkjet Printer - $£ 100$
TEK 576 Calibration Fixiure - 067-0597-99- $£ 250$
HP 8006A Word Generator - $£ 150$
Texscan Rotary Attenuators-BNC/SMA 0-10-60-100DBS - £50-£ 150.
HP 809C Slotted LIne Carrlages - various trequencies to 18 GHZ - $£ 100$ to $£ 300$
HP 532-536-537 Frequency Meters - various frequencies - £ $150-£ 250$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ - high pass + low pass - $£ 150$
S.E. Lab SM215 Mk11 transfer standard voltmeter - 1000 volts

Ailtech Stoddart P7 programmer - $£ 200$
H.P. 69418 multiprogrammer extender. $£ 100$

Fluke Y2000 RTD selector + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD digital
thermometer +9 probes. $£ 350$ all three items.
H.P. 6181 DC current source. $£ 150$
H. P. 59501 A - HP-IB isolated D/A/power supply programmer
H.P. 3438 A digital multimeter.
H.P. 6177 C DC current source $£ 150$
H.P 6207 B DC
H.P. 6207 B DC power supply
H.P. $741 \mathrm{~B} \mathrm{AC/DC}$ differential voltmeter standard (old colour) $£ 100$
H.P. 6209 DC power unit.
Fluke 80 high voltage divider

Fluke 431 C high voltage $D C$ supply
Tektronix M2 gated delay calibration fixture. 067-0712-00.
Tektronix precision DC divider callbration fixture. 067-0503-00
Tektronix overdrive recovery calibration fixture 067-0608-00
Avo VCM163 valve tester + book £300.
H.P. 5011 T logic trouble shooting kit. $£ 150$.

Marconi TF2163S attenuator - 1 GHz . §200
PPM 8000 programmable scanner
Fluke 730A DC transfer standard.
B\&K 4815 calibratorthead.

B\&K 4812 calibrator head.
Farnell power unit H60/50- $£ 400$ tested
H.P. FX doubler 938A or 940A - £300.

Racal/Dana 9300 RMS voitmeter - $£ 250$
H.P. sweeper plug-ins - 86240A - $2-8.4 \mathrm{GHz}$ - 86260A - 12 4-18GHz - 86260AH03-10-
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz} .86245 \mathrm{~A} 5.9-12.4 \mathrm{GHz}$
Telequipment CT7 \dagger curve tracer - $£ 200$
H.P. 461 A amplitier $-1 \mathrm{kC}-150 \mathrm{Mc} / \mathrm{s}$ - ofd colour - $£ 100$

Tektronix oscllose normalizer.
Tektronix monitor type $604-£ 100$
Marconi TF2330 or TF2330A wave analysers - £100- $£ 150$
HP5006A Signature Analyser $£ 250$ + book.
HP 10783 A numeric display. $£ 150$
HP 3763A error detector. £250.
Racal/Dana signal generator 9082-1.5-520Mc/s-£800
Racal/Dana signal generator $9082 \mathrm{H}-15-520 \mathrm{Mc} / \mathrm{s}-£ 900$
Claude Lyons Compuline - line condition monitor - in Case - LMP1 + LCM1 $£ 500$
Efratom Atomic FX standard FRT - FRK-.1-1-5-10Mc/s. £3K tested.
Racal 4D recorder - £350- $£ 450$ in carrying bag as new.
HP8350A sweep oscillator mainframe + HP1 1869A RF Pl a daptor - £1500
Alltech - precision automatic noise figure indicator type 75 - $£ 250$.
Adret FX synthesizer 2230A- $1 \mathrm{MC} / \mathrm{s}$. $£ 250$
Tektronix-7S12-7S14-7T11-7S11-S1-S52-S53.
Rotek 610 AC/DC calibrator. $£ 2 \mathrm{~K}$ + book
Marconi TF2512 RF power meter - 10 or 30 watts - 50 ohms - $£ 80$
Marcont multiplex tester type 2830
Marconi digital simulator type 2828 A
Marconi digital simulator type 2828A
Marconi channel access switch type 2831.
Marconl automatic distortion meter type TF2337A - 1150
Marcon automatic distortion meter type 1
HP 5240A counter -10 Hz to $12.4 \mathrm{GHz}-£ 400$
HP 3763 A error detector.
HP 8016A word generator
HP 489A micro-wave amp-1-2GHz
HP 8565 A spectrum analyser - $01-22 \mathrm{GHz}-£ 4 \mathrm{k}$
HP 5065 A rubidium vapour $F X$ standard - -5
Fluke 893A differential meters - $£ 100$ ea.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$
Takeda Riken TR4 120 tracking scope + TR1604P digital memory.
EG\&G Parc model 4001 indicator +4203 signal averager PI.
Systron Donner 6120 counter/timer $A+B+C$ inputs - $18 \mathrm{GHz}-£ 1 \mathrm{~K}$.
Racal/Dana 9083 signal source - two tone - $£ 250$
Systron Donner signal generator 1702 - synthesized 10 1GHz - AM/FM.
Systron Donner microwave counter $6057-18 \mathrm{GHz}$ - Nixey tube - $£ 600$.
Racal/Dana synthesized signa generator $9081-520 \mathrm{Mc} / \mathrm{s}$-AM-FM $£ 600$
Racal/Dana synthesized signal generator $9081-520 \mathrm{Mc} / \mathrm{s}$-AM-FM. $£ 600$.
Farnell SSG520 synthesized signal generator -520Mc/s - £500
Farnell TTS520 test set - $£ 500$ - boin $£ 900$.
Tektronx plug-ins - AM503 - PG501 - PG508 - PS503A
Tektronix TM515 maintrame - TM500
Cole power ine monitor T1085- $£ 250$
Cole power ine monitor T1085-£250.
Claude Lyons LCM1P ine condition monitor - $£ 250$
Rhodes \& Schwarz power signal generator SLRD-280-2750Mc/s. £250- 6600
Rhodes \& Schwarz vector analyser - ZPV $-E 1+E 3$ tuners $-3-2000 \mathrm{Mc} / \mathrm{s}$.
Bell \& Howell TMA3000 tape motion analyser - $£ 250$
Ball Efratom PTB-100 rubidium standard mounted in Tek PI
Ball Efratom rubidium standard PT2568-FRKL.
Trend Data tester type $100-£ 150$.
Farnell electronic load type RB1030-35
Fairchild interference analyser model EMC-25-14kc/s-1GHz
Fluke 1720 A instrument controler + EMe
Fluke 1720A instrument controller + keyboard
Marconi 2442 -microwave counter $-26.5 \mathrm{GHz}-£ 1500$
Racal/Dana counters - 9904-9905-9906-9915-9916-9917-9921-50Mc/s-3GHz
E\&K 7003 -ape recorder - $£ 300$
B\&K 7003 tape recorder $-£ 300$
B $\& 2425$ voltmeter $-£ 150$
B\&K 4925 voltmeter $-£ 150$.
Wiltron sweeper mainframe $610 \mathrm{D}-\mathrm{\Sigma} 500$
HP3200B VHF oscillator - $10-500 \mathrm{MC} / \mathrm{s}-£ 200$.
HP3747A seiective level measuring set.
HP3586A selective level meter
HP5345A electronic counter.
HP4815A RF vector impedance meter c/w probe. $£ 500-5600$
Marconl TF2092 noise receiver. A. B or C plus fiters.
Marconi TF2091 noise generator. A. B or C plus fitters
Tektronix oscilloscope $485-350 \mathrm{Mc} / \mathrm{s}-£ 500$
HP180TR HP $182 T$ maintrames $5300-£ 500$
HP180TR, HP 182 T maintrames $£ 300-£ 500$
Beil \& Howell CSM2000B recorders
HP5345A automatic frequency conve
HP5345A automatic frequency convertor - $015-4 \mathrm{GHz}$.
Fluke 8506A thermal RMS digital multimeter
HP3SB A wave analyser
Philips panoramic receiver type PM7800-1 to 20GHz
Marconi 6700 A sweep oscillator $+6730 \mathrm{~A}-1$ to 2 GHz
Wiltron scaler network
R\&S signal generator SMS $-0.4-1040 \mathrm{Mc} / \mathrm{s}-\Sigma 1500$
HP8558B spectrum ANZ PI - $-1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{o} / \mathrm{C}-£ 1000$. N/C - $£ 1500$ - To tit HP180 series
mainframe available $-£ 100$ to $£ 500$.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer $-£ 4 \mathrm{k}$
HP8505A network ANZ +8502 A test set - $£ 3 k$
Racal/Dana 9087 signaigenerator $-1300 \mathrm{MC} / \mathrm{s}-£ 2 \mathrm{k}$.
Racal/Dana VLF frequency standard equipment. Tracor receiver type 900A + difference meter type $527 \mathrm{E}+$ rubidium standard type $9475-£ 2750$.
Marconi $6960-6960 \mathrm{~A}$ power meters with 6910 heads - $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ or $6912-30 \mathrm{kHz}-$
4.2 GHz - $£ 800-£ 1000$

HP8444 A-HP8444A opt 59 tracking generator $£ 1 \mathrm{k}-£ 2 \mathrm{~K}$
B\&K dual recorder type 2308.
HP8755A scaler ANZ with heads $£ 1 \mathrm{~K}$
Tektronix $475-200 \mathrm{Mc} / \mathrm{s}$ oscilloscopes- $£ 350$ less attachments to $£ 500 \mathrm{c} / \mathrm{w}$ manual, probes etc. HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 3730 B 位
HP3730B down convertor - $£ 200$
Bradley oscilloscope calibrator type $192-£ 600$. 5 kHz - LED readout - tested - $£ 500$
HP8620A or 8620C sweep generators - £250 to $£ 1 \mathrm{k}$ with IEEE.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass $-£ 150$
Tektronix 7 LL 12 analyser $-.1 \mathrm{MC} / \mathrm{s}-1.8 \mathrm{GHz}-£ 1500-7 \mathrm{~L} 14$ ANZ - $£ 2 \mathrm{k}$.
Marconi TF2370 spectrum ANZ-110MC/S- $£ 1200-£ 2 \mathrm{k}$.
Marconi TF2370 spectrum ANZ + TK2373 FX extender 1250Ma/s + trk gen - $£ 2.5 \mathrm{k}-\mathrm{£} 3 \mathrm{k}$.
Racal recelvers - RA17L-RA 1217-RA1218-RA1772-RA1792-P.O.R.
Systron Donner microwave counter $6057-18 \mathrm{GHz}$ - nixey tube - $£ 600$
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$.

electronic engineers REFERENCE BOOK

6th Edition F F Mazda

This reference book is divided into five parts: techniques, physical phenomena, materials and components; electronic design and applicaions. T7e sixth edition was updated throughout tc take into account changes in standards and materizls as well as adve $1 c e s$ in techniques, and was expanded to include new chapters on surface mou tt technology, hardware ard software design techniques, semi-custom Electron cs and data communications.

Fraidoon Mazda

 has worked in the electronics and telecommunications indus-y for over twenty years, and is currently P-oduct and Operations Nanager, Ceneric Network Nanagerrent, with Northern Telecom. He is the autho of six technical jooks (t-anslated nto fcur langlajes) and the ed-or of the Communications Engineers Reference Book p dblished by ButterwothHeinemanr.
OONTENTS

 Techniques T-igonometric functions and general formulae; Calculus; Series and transferms; Matrices and determinants; Electric circuit theory; Statistics. Physical Phenomena Quantities and units; Electrisity; Light: Radiation The ior esphere änd troposphere. Materials and components Fesistive materials and components; Dielectric materials and comosnents; Magnetic materials; Inducto"s and transformers; Relays; Piezoelectric materials and somponents; Connestors; Printed circuits; Power sources; Discrete semiconductors; Microwave semiconductor devices; Opfical digita integratec circuits; Linear integrated circuits; Semiconductor memories; Microprocessors; Application-specific integrated circuits; Electron nicroscopy; Digital design; Software encineering; Digital systems analvsis; Control systems; Antennas and arrays; Noise management in electronic hardware; Noise and communication; Computer aided design; Television and sourd broadcasting. Applications Communication satellites; Foint-to-point commu ication= Fibreoptic communication; The integrated services digital netwark (ISDN); Local area networks; Radar systems; Computers and their application; Videotape recording. Office communications; Medical electronics.1006 pages PAPERBACK ISEN 0750608099 \&42.50 (inc post \& pachaging)

Please return to: Lorraine Spindier, Room L333.
Quadrant House, The Quadrant, Sutton, Surrey Sin2 5AS

* Now available to Electronics World \& Wireless World readers in paperback
* Expert coverage of all aspects of electronics
* Over 50 contributors
* For electronic engineers, technicians and students

Please supply me - copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE TOTAL
Business purchase: Please send me the books list ed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd.

Ple.ase debit my credit card as follows:
Access/Master Barclay/Visa
Amex
Diners
Credit Card No. \qquad
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY \qquad POST CODE
COUNTRY
DATE TEl_EPHONE NUMBER
SIGNATURE
T3000

VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELCW (customers outside the EEC should leave this part blank)
VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change

Please delete as appropriate. I do/do not wish to receive further details about yooks, journals and information services

Credit card orders
accepted by phone
Call 0816523614.

The facts and figures of $\mathbf{H F}$ receiver performance

Jon Dyer cuts through the haze of misunderstanding surrounding receiver performance. He looks in detail at each parameter, what it means and why it's important, and shows why "dynamic" performance parameters are vital.

Receiver performance specifications can be complex. But that is a necessity, as all parameters must be specilied accurately and completely if contusion is to be avoided.
The first parameter to look at is sensitivity, the measure of a receiver's capability to amplity the smallest of signals without losing any of the "intelligence" carried by the signal. Once the signal level falls close to the receiver noisc level, nomally expressed as a signal to noise ratio (S / N). intelligibility will be lost. Even a hypothetically pertect (noiseless) receiver would still run into thermal noise.
Sensilivity is defined as the signal voltage required to give a specific S / N in a particular receiver bandwidth. for a particular receiver inode (eg AM or SSB). Modulation level is specified for AM (often 30%), and a modulation deviation (eg 5 kHz) for FM. An allernalive delinition for FM is to use quieting sensitivity: the inpul level required to reduce oulput noise by, say, 20 dB (scuelch off). Bandwidth inust also be taken into account becaluse noise is proportional to square root of the bandwidih.
Bipolar transistors and fets can produce sensitivities of $0.5 \mu \mathrm{~V}_{\mathrm{EMF}}$ for a $10 \mathrm{AB} \mathrm{S} / \mathrm{N}$ ratio (3 kHz bandwidth, HF, for an SSB or CW signal) and similar levels can be obtained on FM.

The figure for $\mathrm{AM}(30 \%$ modulation level. 6 or 8 kHz bandwidth) is about $9-10 \mathrm{~dB}$ (about three times) worse than the SSB/CW figure ($1.6 \mu \mathrm{~V}_{\mathrm{EMF}}$).
On VHF and above, receiver sensitivities are often even better.

Noise factor

The sensitivity figure is an intuitive way of describing the sensitivity of a receiver. But it is also rather complex, related to a particular bandwidth, lemperature, receiver mode, S / N ratio, and input impedance.
A much more convenient measurement is the noise factor (NF), a single number telling everything that needs to be known about a receiver's sensitivity. It is the ratio of the S / N of a hypothetically perfect (noiseless) receiver, to that of a real receiver which adds its own noise to that of the thermal noise.
As the ratio of two ratios it is independent of bandwidth, temperature, mode, S / N, and impedance. 10 dB is typical NF for an HF receiver, while at VHF/UHF noise factors of 5 dB or less are common.

Noise on HF

But what happens in real life? In a wideband antenna system using a 3 kHz receiver bandwidth at a quiet location. themnal noise calcu-

Fig. 1. Noise on HF in a 3 kHz bandwidth. Even for a quiet atmosphere, a receiver with 0.5μ VEMF for $10 d B S / N$ will need a signal of between 1μ VEMF and 1OLVEMF.

Noise
voltage

lated for a typical system would be $-26 \mathrm{~dB} \mu \mathrm{~V}$ If the receiver has a NF of 10 dB , then its noise floor will be (Fig. 1) at $-26+10=-16 \mathrm{~dB} \mu \mathrm{~V}$. For mosi HF modes (SSB. AM. CW) an S / N of 10 dB is adequate. To achicve 10 dB , a signal will need to he 10 dB above the receiver noise floor, which in this case is at $-16+10=$ $-6 \mathrm{~dB} \mu \mathrm{~V}$, or $0.5 \mu \mathrm{~V}_{\mathrm{FMF}}$, shown in Fig. 1 as the horizontal dashed line.

This gives the well-known relationship that an NF of 10 dB is equivalent to a sensitivity of approximately $0.5 \mu \mathrm{~V}_{\mathrm{EMF}}$ for a $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ in a 3 kHz bandwidth. Sensitivity for any other bandwidth or S / N can be calculated using:

$$
\text { Sensitivity }{ }_{(\mathrm{dB})}=N F_{(\mathrm{dB})}+V_{\mathrm{N}(\mathrm{~dB})}+\mathrm{S} / \mathrm{N}_{(\mathrm{dB})}
$$

Figure I also shows that the typical atmospheric noise for a quiet area at a quiet time is between 5 and 25 dB above receiver noise. Under real operating conditions on HF, our receiver with its published sensitivity of $0.5 \mu \mathrm{~V}_{\mathrm{I}: \mathrm{MF}}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, will need a signal of between $1 \mu V_{\text {FMF }}$ (at 30 MHz) and $10 \mu \mathrm{~V}_{\mathrm{FMI}}$ (3 MHz) to give a $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - and this is for a quiet atmosphere (and no QRM)!

So. for this receiver, amospheric noise, not receiver noise, limits performance on HF . Indeed, sensitivity could be reduced to $1 \mu V_{\text {EMF }}(15 \mathrm{~dB} \mathrm{NF}$) without loss of performance. except perhaps at 20 10 30 MHz . There is litte point in reducing NF below 10 dB for an HF receiver using a wideband antenna - especially as sensitivity can only be obtained at the expense of dynamic effects such as intermodulation performance.

Advertised claims of $0.15 \mu \mathrm{~V}_{\mathrm{EMF}}$ for 10 dB S / N are quite impossible. Even a perfect receiver with OdB NF needs $0.16 \mu \mathrm{~V}_{\mathrm{EMF}}$ $(-16 \mathrm{~dB} \mu \mathrm{~V})$ to achieve $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. due to the thermal threshold of $-26 \mathrm{~dB} \mu \mathrm{~V}$.

VHF and above

Above 30 MHz . as frequency increases background noise, now mainly cosmic, received by the antenna continues to fall: at greater than $120 \mathrm{MH} \%$ it drops below thermal noise with the
result that at quiet locations VHF and UHF receivers can benefit from less than 10 dB NF . $2-5 \mathrm{~dB}$ or less is quite achievable using careful circuit design.
Overall NF is usually determined by the NF of the first amplifying stage in the receiver normally an RF amplilier (but sometimes a mixer). RF amplifiers invariably use lownoise fets, and careful attention must be pald to the circuit which couples the antenna to the first stage.
"Noise matching" is sometimes used on VHF/UHF equipment where. instead of matching receiver input impedance to the antenna impedance, the two impedances are deliberately mismatched to optimise NF.
Noise is proportional to the square root of bandwidth. If bandwidth is reduced from 3 kHz to $30(\mathrm{HHz}$, all noise voltages (thermal. receiver, man-made, and atmospheric) drop by a factor of $\forall 10=3.16$, or 10 dB . So, at this bandwidth, sensitivity for the 10 dB NF receiver $\left(0.5 \mu \mathrm{~V}_{\text {19MF }}\right.$ in $3 \mathrm{kH} /$), would be $0.5 / 3.16$ $=0.16 \mu \mathrm{~V}_{\mathrm{EMF}}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$.
This explains the continuing use of CW in the HF bands as a CW signal can still be copied when SSB would be lost in the noise.

Selectivity

Selectivity is the ability to tune one signal while rejecting other close-in signals, usually achieved by using crystal. mechanical, or ceramic block filters. The old constraint of a low second IF no longer applies, and in fact it is easier 10 design crystal filter frequencies higher than 1 MHz . Standard IFs have been established at $1.4,1.6,9.0$ and 10.7 MHz , alihough the 4.55 kHz IF is still very commonplace using ceramic filters.
Block Filters are also used as "roofing filters" in the first IF of HF receivers' They are commonly in the VHF region, using 40 to 90 MHz crystal filters. VHF and UHF receivers nay have a first IF of many hundreds of $\mathrm{MH} z$, using surface acoustic wave (SAW) filters.
Ideal filter response is a llat top with low
ripple, and steep sides going (lowa to a -80 dB (or greater) stop band which extends a long way out (Fig. 2). Sclectivity is usually quoted at the nose handwidth (6 dB down), and the skirt tandwidth (at 60 dB down), and for an cight pole $S S B$ filter good values are 2.7 kHz and 4.4 kHz respectively.
One convenient measure of filter performances is shape factor (SF) , the ratio of skirt bandwidth to nose bandwidth. Ideal SF is $1: 1$. with anything less than $2: 1$ for a 3 kHz SSB filter being good.
Impedance matching into and out of a filter is significant and insertion less (the loss caused by the filter in the niddle of the passband - usually less than 10dB) must be made up by amplification.

A typical "suite" of filters itr a high grade HF communications receiver might he $8 \mathrm{kH} / \mathrm{H}$ for AM. 2.7 kHz for SSB (often with $1 w o$ asymmetrical filters, one for USB, one for LSB) and 1.0 kHz .300 Hz , and 100 Hz for CW . RTTY, and other narrowband data transmissions The trend in Amateur equipment is for the tightest possible SSB filter $: 2.4 \mathrm{kHz}$), and often 600 Hz or 300 Hz are used for CW. A VHF/UHF receiver may have any of these plus wider filters, perhaps 12 kHz and 50 kHz or even wider for FM (Hi-Fi FM tuners need a 200 kH lz filter).

Image (second channel) rejection

In the normal superheterodyming process, a wanted signal (f_{S}) beats in the mixer with the locar oscillator (or synthesiser outpul) frequency ($f_{\text {LO }}$). One of the resultant products of the mixing process, usually $f_{\mathrm{LO}}-f_{\mathrm{S}}$, at the intermediate frequency (IF), is passed by the IF sclectivity filter.
But another frequency, the inage or second charnel frequency $\left(f_{1 . O}+f_{\mathrm{FF}}\right)$, also beats with the local oscillator to produce a product at the IF. This frequency must be rejected by RF tuning, either ganged to the "tune" control or using a separate pre-selector control; or by switched bandpass filters, usually automatically switched on synthesised receivers. Image

Fig. 2. Ideal filter response with a flat top and steep sides going down to $-b 0 d B$ stopband which extends a long way out.

Fig. 3 Third order intercept gives a good indication of intermodulation, crass-modulation and blocking performance.

RF ENGINEERING

Fig. 4. Second order intermodulation products. A pair of signals causing beats at 10 MHz . In a well designed receiver, second order IMP should be rejected by front-end tuning.

Fig. 6. Close-in third order IMPs that can not be rejected by front-end tuning.

Fig. 7. Intermodulation of $90 d B$. Intercept point and dynamic range can be constructed.
should easily reject both signals.
Output leve

frequency is equal to $f_{\text {S }}$ plus twice the IF. So the higher the first IF, the further away from f_{S} will be the image frequency, and the easier it will be to reject. Up-conversion techniques on a HF receiver will put the first IF at 40 $90 \mathrm{MHz}^{1}$. The image frequency will also be at VHF and so can be rejected by a simple 35 MHz low-pass filter at the receiver input.

Image frequency rejection is specified as the ratio in dB of an unwanted signal above $1 \mu \mathrm{~V}_{\mathrm{EMF}}$, to give the same output as a wanted (on-tune) $1 \mu \mathrm{~V}_{\mathrm{EMF}}$ signal. 60 dB of rejection is a poor performance: 90 dB or more is good.

IF rejection

Intermediate frequency, or IF. interference occurs when a strong signal at a receiver's IF directly breaks through the early receiver stages and into the IF amplifier. IF rejection is specified similarly to image rejection, with 90 dB being the target.

Internal spurious responses

Internal spurious responses (spurii or spurs) are responses of the receiver to self-generated noises and whistles. Problems are caused when they occur at the signal frequency or an intermediate frequency.

Oscillators and mixers may act as noise generators as can digital circuitry - especially the drive lines to multiplexed displays. Other causes are power supply harmonics, parasitic oscillations in amplifiers, and even sub-harmonics of any up-conversion IFs.

Frequency synthesisers and other digital circuits produce large numbers of frequencies,
and most waveforms are digital square waves with fast rise-times rich in harmonics.

Careful circuit design, with adequate lowpass and bandpass filtering, keep spurious outputs 100 dB down on the main output, ensuring that all spurious responses are no more than 3 dB above the receiver noise floor in a 3 kHz bandwidth.

Stability

Stability is the measure of frequency drift of a receiver with time and temperature. A fully synthesised receiver can have a stability approximately equal to that of its temperature controlled frequency reference source ${ }^{1}$. An oven-controlled temperature-stabilised crystal oscillator can achieve a stability of less than one part in $10^{8} /{ }^{\circ} \mathrm{C}\left(0.1 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}\right.$ at 10 MHz$)$.

Sometimes stability is specified as a shortterm (temperature) drift plus a long-term (crystal ageing) drift. With partial synthesis the stability is normally governed by the stability of the VFO, but with cool, buffered solid-state designs short term drift (after a three hour warm-up) of 50 Hz /hour is possible.

Dynamic performance

So far, only 'static' performance parameters have been dealt with. This section looks at dynamic performance, which relates more closely to real-world conditions.

Dynamic effects are generally caused by large off-tune signals, making the receiver operate nonlinearly.

Two unwanted signals can intermodulate to produce a product at the same frequency as
the wanted signal (intermodulation); or modulation from an unwanted signal can be transferred to the required signal (cross modulation). Alternatively an unwanted signal can reduce the sensitivity of (or block) the required signal (blocking).

One problem is that activity on the bands (especially on HF and VHF) has increased to such an extent that many large off-tune signals are always present at the receiver's input stages. It is these dynamic effects rather than the traditional sensitivity/selectivity/stability parameters that largely determine performance of the communications receiver under real-life signal conditions.

Intercept point

Intermodulation, cross modulation, and blocking are caused by second and third order products, as the receiver responds to these at a greater rate than it responds to the fundamental signal input (Fig. 3).

Second-order products cause the output to increase as the square of the input - twice as many dB - and third-order products as the cube of the input - three times dB. Forth, fifth, and higher order intermodulation products are normally ignored as second and third order effects predominate.
Arguably the single most useful performance parameter of all is the intercept point, where two extrapolated responses cross. Third-order effects are generally more significant than second-order. Figure 3 shows how the third-order response crosses the fundamental response which is extrapolated at

12() $\mathrm{dB} \mu \mathrm{V}$ or +7 dBm .
Most amplitude measurements are defined using voltages ($\mu \mathrm{V}, \mathrm{mV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{ctc}$.). But the intercept point is usually specified as a power ratio, the dBm . where a dBm is a dB relative to a power of 1 mW into the receiver input impedance.
The third-order intercept is so important because it is a single number giving a good indication of the intermodulation, cross-modulation, and blocking performance. +5 to +35 dBm is considered good.

Dynamic range

Dynamic range is the span of signal amplitudes - from smallest to largest - to which the receiver responds.
The "single signal" dynamic range is limited at the low end by noise, and at the upper by gain compression: amplifier outputs start hitting the supply rails and the outputs can increase no further.
Definitions of dynamic range are often of limited value in the real situation of a large number of signals - some of which are very large in amplitude. It is the large signals that really limit the dynamic range (again due to the receiver"s nonlinearities).
Dynamic range is best described as the range of input signals over which dynamic interference effects produce non-significant outputs, at or below the noise floor. A useful working definition is that it is two-thirds of the difference in level between the noise floor and the intercept point in a 3 kHz bandwidth. Or. it is the difference between the fundamental response input level and the third-order response input level as measured along the noise floor (sometimes defined as 3 dB above the noise floor) in a $3 \mathrm{kH} /$ handwidth, Fig. 3. Reducing the bandwidth improves dynamic range because of the effect on noise.

Using this definition, dynamic range for the receiver depicted in Fig. 3 is 90 dB , compared with more like 130 dB when a single signal definition is used.
Clearly great care must be taken in interpreting manufacturer`s figures. Using our preferred definition, a dynamic range of 90 to 110 dB for 3 kHz bandwidth with an intercept point of 120 to $150 \mathrm{~dB} \mu \mathrm{~V}$ (or +7 to +37 dBm) is good.

Intermodulation

Second-order intermodulation products are simply equal to $f_{1} \pm f_{2}$. where f_{1} and f_{2} are the two unwanted frequencies. An example. Fig. 4, is where the two unwanted signals are at II and 21 MHz causing a beat at 10 MHz . Other pairs of signals at (say) 6 and 16 MHz . or 3 and 7 MHz would produce a similar product at 10 MHz .
For second-order intermodulation to oceur. one of the signals must be far removed from the wanted signal and can easily be rejected by any reasonably tight tuning - including the passband of any octave or sub-octave block front-end filter fitted to many modern communications receivers ${ }^{1}$.
luput/output isolation around these filters

Decibel definition

The $d B \mu V$ is a decibel relative to 1μ VEMF. Decibels relative to 1 mW into a system with a nominal 50Ω impedance are referred $t c$ as dBm . Again in a 50Ω impedance system, 0 dB m equates to 224 mVPD , or $113 \mathrm{~dB} \mu \mathrm{~V}$ To convert from $d B \mu V$ to $c B m$, simply subtract 113. For example, $0 \mathrm{~dB} \mu \mathrm{~V}=1 \alpha \mathrm{VEMF}=0.5 \mu \mathrm{VPD}=-$ 113 dBm .
Note that RF voltages in this article are electromotive forces unless otherwise stated.
Recently, manufacturers are more commonly specifying sensitivities and other parameters using patential difference instead.
Whether you use PD or EMAF is not too important provided that the distinction is made clear. Often this is not the case, which usually implies that potential differences are intended. Ol course the use of potential differences makes many parameters, sensitivity for example, look wice $1 s$ good, i.e. a 6 dB improvement. This is because in a matched impedance system, PD is always half ENiF!
must be good, or second-order intermodulation can be a real problem. On some low cost general coverage HF receivers, third-order intermodulation performance is quite good. but second-order performance is poor if using a wideband antenna without an artenna tuning unit (ATU.)

Third-order intermodulation tend to be equal in frequency to $2 f_{1} \pm f_{2}$. For example. the second harmonic of a 6 MHz signal (at 12 MHz) beats with a 22 MHz signal to produce a 10 MHz third-order product at the wanted frequency (Fig. 5). Front-end tuning should casily reject hoth signats. But where say, the second harmonic of a 10.4 MHz signal (at 20.8 MHz intermodulates with a 10.8 MHz . signal to produce the $10 \mathrm{MH} /$ interfering signal (Fig. 6), both unwanted signals are very close to the wanted signal, and well within the rif passband regardless of RF tuning.

Third-order intermodulation is normally considered more important than second-order. This is because it camot be rejected by frontend luning.

Intermodulation performance (IMP) is typically specified as the levels of two unwanted signals not less than (say) 20 kHz off tune to give a $0 \mathrm{~dB} \mu \mathrm{~V}\left(1 \mu \mathrm{~V}_{\mathrm{EMF}}\right)$ response.

A good lif receiver will have a third-order intermodulation performance of $80-100 \mathrm{~dB} \mu \mathrm{~V}$. Second-order performance should be similar, but is often not stated - which can be misleading. Statistical analysis of the actual signals received over the whole HF band using wideband thombic) antennas indicates that at least 90 dB of third-order intermodutation performance is required? ${ }^{2}$ 3. That level corresponds 10.32 mV FMF and at almost any time there will be tens of broadcast (and other) stations putting $10-100 \mathrm{~m} \mathrm{~V}_{\text {EMF }}$ onto a wideband

IIF antenna, with hundreds of others in the range $1-10 \mathrm{mV}_{\text {EMF }}$.
A simple example should help put everything into perspective.
Take the 10 dB NF receiver, with its noise floor at - $16 \mathrm{~dB} \mu \mathrm{~V}$ for 3 kHz bandwidth, and a good IMP of 90 dB (indicated by the line at the $0 \mathrm{~dB} \mu \mathrm{~V}$ level on Fig. 7). Third order response will have a slope three times that of the fundamental response, with its position defined by the 90 dB IMP line. The intercept occurs at $135 \mathrm{~dB} \mu \mathrm{~V}$ or $+22 \mathrm{dBm}(50 \Omega)$ where the extrapolated responses cross. (In practice the actual responses bend over before crossing as shown due to gain compression.)
Calculated dynamic range turns out to be 100.67 dB .

In-band intermodulation

In-band intermodulation, when two signals within the IF passband intermodulate to produce extra products, is normally of little signifieance except where multichannel "voice frequency telegraphy (VFT)" systems such as "Piccolo" are in use. It is specified as the level of an unwanted intermedulation product relative to two equal wanted in-band signals (a product of 40 dB below two equal in-band signak is good).

Cross-modulation

Cross modulation occurs when modulation from a single unwanted amplitude modulated signal transfers itself across, and modulates the wanted signal (Fig. 8). Non-linearities in the early receiver stages are the cause, and sormetimes the same modulation may reapprear on each adjacent signal tuned in. The parameter may be specified as the level required, in $\mathrm{dB} \mu \mathrm{V}$, for a 30% modulated car-

RF ENGINEERING

Fig. 8. Cross modulation where a single unwanted amplitudemodulated signal transfers itself across and modulates the wanted signal.
rier greater than (say) 20 kHz off-tune, to cause an interfering signal 20 dB below a wanted signal, greater than some specified level, in a .3 kHz bandwidth for example.

As cross-modulation is a third-order effect, good third-order intermodulation performance will tend to mean good cross modulation performance. The level of an interfering signal will normally have to be higher than for intermodulation. The signal will be within the front-end tuning bandwidth of the receiver, so will typically be in the same or adjacent broadeast band to the band being received. $100-120 \mathrm{~dB} \mu \mathrm{~V}$ is good.

Blocking

De-sensitising, or blocking, occurs when the large off-tune interfering signal causes a reduction in wanted signal output, through a product generated by the non-linearities of the receiver front-end.

It is specified as the level of an unwanted signal, removed from the wanted channel by at least (say) 20 kHz . required to reduce a wanted output by 3dB. Blocking can often be caused by a strong CW signal, causing gain to go up and down with the keying. $90-110 \mathrm{~dB} \mu \mathrm{~V}$ for a 3 dB reduction is good, for a wanted $1 \mathrm{mV}_{\mathrm{EmF}}$ signal.

A value of at least 20 kHz is specified for this and other dynamic performance parameters. to ensure that the unwanted signal will be outside the passband of the receiver IF stages. While it is suitable for a HF receiver with a good roofing filter (which might have a nose bandwidth of $12 \mathrm{kH} \angle$ or so), 50 kHz might be a better figure for a VHF or UHF receiver.

Causes and cures of non-linearity effects

The only really effective solution to improving performance is to improve front-end linearity.

Linearity of bipolar transistors in rf amplifiers and mixers is not good. But fets are approximately square-law devices and modern designs invariably use fets (often mosfets) for good third-order performance, with sub-octave front-end filters to ensure good second-order performance.
Lincarity can be further improved by using high voltage supplies, and by keeping preroofing filter gain to a minimum.

Almost anything imaginable can be a cause of non-lincarity, and all components normally considered to be linear, passive. and reciprocal must be carefully cheched to ensure they really are. But. with careful consideration. very

Fig. 10. Selectivity of a receiver in a "real life" situation of a band full of signals.
good lincarity can be achieved with an intercept point of $140 \mathrm{~dB} \mu \mathrm{~V}(+27 \mathrm{dBm})$.

Reciprocal mixing

Reciprocal mixing is due to high levels of unwanted signals mixing with the noise sidebands of the local oscillator/synthesiser. producing unwanted products at the wanted frequency (Fig. 9).

Its importance is that it reduces selectivity of the receiver in the presence of large close-in signals, in a way not revealed by "selectivity" figures quoted in specifications. The off-tune signals are introduced into the IF at levels proportional to their distance from the wanted signal. Figure 10 indicates dynamic selectivity in a "real life" band full of signals. As can be seen, it is the stopband of the filter response that has been changed, and with 50 dB of reciprocal mixing, a considerable loss of performance occurs. Improving it to 70 dB considerably reduces its effect on filter response.

Reciprocal mixing is specified as the dB of an unwanted signal at (say) 20 kHz ofif-tune. above a wanted signal, to produce a noise product 20 dB down on the wanted signal level, in a specified bandwidth (3 kHz).
The unwanted signal, fairly close to the wanted signal. cannot be rejected by front-end filtering, and as it is not caused by front-end non-linearity, the above cures are no use. The only solution is to design oscillators with very low noise outputs. especially close-in phase noisc. by employing high " Q " in the oscilla-
tory circuit, and also by using high powers in the oscillator to improve S / N.

Phase locked loops (PLLs) in frequency synthesisers can be very poor in this respect, especially single-loop designs which have low loop gain resulting in high levels of noise. Also PLL's frequently use low Q and low power VCOs in the output.

The noise produced is phase modulated and cannot be removed by limiting. Good design can produce a frequency synthesiser output noise of $90-100 \mathrm{dBc}$ (referenced to the carrier output), and a good fel crystal oscillator can give 110 dB . ensuring a reciprocal mixing performance of 70 dB .
Sometimes reciprocal mixing is specified as a 3 dB reduction of sinad of the wanted signal, rather than a product 20 dB down on the wanted signal. In this case the figure will look almost 20 dB better, at around 90 dB .

References

1. J.A. Dver, "I IF Receiver Design," Communications Quarterly, Summer 1992, pp 81.
2. R.F.E. Winn, "Synthesized Communications Receiver," Wiroless World, October 1974, pp 413-417.
3. R.F.E. Winn, Effects of Recciver Design in Communications Systems. IFRE Proceedings of the Conference on Radio Receivers and Associated Systems, 4-6 July, 1972, pp 193-204.

BENCH POWER SUPPLIES
from diawa indudstry co

	PS120MkIIA	PS140MkIIA	PS304	RS40X
I/P VOLTAGE	$230 / 117$	$230 / 117$	$230 / 117$	$230 / \mathrm{F} 17$
O/P VOLTAGE	$3-15$	13.8	$1-15$	$1-15$
O/P CURRENT	12	14	30	40
MAX RATED	9.2	12	24	32
RIPPLE	3 MV	3 MV	3 MV	3 MV
SIZE (WHD)	$128 \times 104 \times 225$	$128 \times 104 \times 225$	$175 \times 150 \times 225$	$280 \times 140 \times 225$
WLIGIIT	5 KG	5 KG	8 KG	10 KG
PRICE INC VAT*	79.95	79.95	129.95	189.00

- Compact and lightweight
- Cost efficient
- Rapid delivery

SOUTH MIDLANDS COMIIUNICATIONS LIMITED S M House, School Close, Chandlers Ford Ind Est. Eastleigh, Hampshire, SO5 3BY Tel: (0703) 255111 Fax: (0703) 263507

CIRCLE NO. 126 ON REPLY CARD

Low cost dafa acquisition for IBM PCs \& compatibles

- 8 - bil resolution
one channel
- 10-25K samples per serond
- Oscilloscope/Voltmeter soffware
- O-5V inpur range

$E 49$

- 10-bit resolution
- 11 channel
- 5-10K samples per second
- Data logger software
-0.2.5V input range
- Connects to printer port

E75

ADC- 16

- $8,12,16$ - bitres olution + sign
- $8 \mathrm{~s} / \mathrm{e}$ or 4 differential inputs
- 216 or 300 8-bit samples per second
- $\pm 2.5 \mathrm{~V}$ input range
- Data logger software
- Connects lo serial port

$E 99$

PICO TECHNOLOGY ITD

Broadway House, 149-151 St Neofs Road, Hardwirk, Cambridge (B3 70)
VISA TEL: 0954-211716 FAX: 0954-211880

PRODUGTON/ATRE SECOND USERECUUPMENT HUGE SAVINGS ${ }_{\text {PRACES }}^{\text {ond }}$

	SCHLUMBERGER $1834-5$, AI Plotter $\$ 1,500$ OCE 13 DIE LINE PRINTER. Períect for Plans/ Gircuir Digs	
8×8 fi linerral Dimensions Service and ISK insallation AARQUE 202 Dye Line 6795		
Llenk:am		
NRAMP OVR 2001010 W Humidis Oven		
Lirres Worting VolumeUNG 725.425 V bration Systems		
PROLAN PE E 300 F 45H Climatic Chamber with hummidy		
eraeus ut 5042 E Laboratory Oven Ambient		
GALLENKAMP OVL-5 $70-010 \mathrm{~J}$ Vacuum Oven Amb to200 C Volume 31 Litres	Feeder Bed, Vision System. Various	
C5HANEOUS		
MARCONI 8938 Af POWER		
	速	
201.13 Computer 6500 CMos0 w		
EPROM	MMIYA ECM 8300 With Glu	
${ }_{\text {E A APROM }}$		
rable Safery isolating Transformer 500VA Input		
	CO	
HP8410E/8413A Network Analyser/Phase Magnirude HELLER T15 Automatic Axal Lead Forming Machinc.		
TELSONIC M4000 Ulirasonic Welding Sysiem liate frames avalabie		
	TRESTON PA-60L Paternoster Assembly Station	
TEKTRONIX AMSO3S Current Probe 5ystem with bins		
302 Pr:		
Ster Sequencer hiserier in Line Cropping Masthine		
, ${ }^{\text {a }}$	LOUPOT MK6 Axal Cut \& Bend Lead former	
PROJEC TINA AG LP 300 Misroscopic inspection		
	ELITE VB Axal Cut \& Bend Lead former	
HELLEE TJ.AIR Lead Pro	WIN Autosplice Semi Auto	
KAYBE Conveyor System ${ }_{\text {S }}$ E5		
(6395		
- DERNNC		
	HUGHES 2460-11 TAB Bonder. Excellent Condition ${ }_{\text {¢ }}^{\text {Call }}$	
	Sticter	
HOLLİ ASTRA 16" Dual Wave Solder Machni. Foam Fluxer with variable control. Air Knife. Adustable angle Ulerasolic Generator $815-1.00$ Crosshair CCTV System Camera \& Monitor Bourch \& Lomb Stersozoom 4 [4,950		
MOT AIR Rework Station 1000 1495 MOLLIS FUTURE I SMT Dual Wave Solder Machine OSCILLOSCOPZS		

SPECTRUM ANALYSERS

SICNAL SOURCES

 HPB360: 8629082 - 18.6 GHz 5 Sweep Gererator 64,950

POWER SUPPLIES

MAINS

MONTIORING

METERS	
RACAL 9919 UMF Frequency Meter	4295
FLUKE 8520A GPIP Mulimeter	1495
HP3478A HP IB Muitumeter	1495
HP5350B20GHz Counter	62.975

WANTED - If you have manufacturing equipment to sell; give us a call. We can turn your under-utilised assets into cash.

Sulbscribe Now for Your FREE Copy
See latest issue of Buyers News for full listing and Terms \& Conditions. Prices exclude VAT - Buyers Premium not included

ALTERNATIVE DISTRIBUTION (UK)LTD Tel: 071 -284 4074 (UK) Fax: 071 -267 7363 (UK) 146 Camden Street, London NWI 9PF

in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0750609249

CIRCUIT MANUALS

Ray Marston
A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual Paperback 224 pages Price £13.95 0434912077

Audio IC Circuits Manual Paperback 168 pages Price £13.95 0434912107

CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circuits Manual
Paperback 144 pages
Price £13.95 0750600640
Timer/Generator Circuits
Manual
Paperback 224 pages
Price £13.95 0434912913

Diode, Transistor and FET
Circuits Manual
Paperback 240 pages
Price £13.95 0750602287
Instrumentation and Test Gear Circuits Manual

Ray Marston

Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price £16.95 0750607580

Logic Designers Handbook Andrew Parr
Easy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price $£ 25.00 \quad 0750605359$
Digital Audio and Compact Disc Technology
Luc Baert, Luc Theunissen \& Guido Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A / D conversion systems, codes for aigital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, FCM, Video
8, R-DAT and S-DAT. Paperback 240 pages.
Price £16.95 0750606142

NEWNES POCKET BOOKS

A series of handy, inexpensive, pocket sized books to be kept by your side and used every day. Their size makes them an ideal 'travelling' companion as well.

Newnes Electronics
Engineer's Pocket Eook
Keith Brindley
Hardback 319 pages
Price £12.95 OF50609370

Newnes Electronics Assembly Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0750602228

Newnes Television and Video Engineer's Pocket B ook
Eugene Trundle
Hardback 384 pages
Price £12.95 0750606770

Newnes Circuit Calculations
Pocket Book
T Davies
Hardback 300 pages
Price £10.95 0750601957

Newnes Data Communications Pocket Book
Michael Tooley
Hardback 192 pages
Price £12.95 0750604271
Newnes Telecommunications Pocket Book
JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070

Newnes 280 Pocket Book
Chris Roberts
Hardback 185 pages
Price £12.95 0750603089
Newnes 68000 Pocket Book Mike Tooley
Hardback 257 pages
Price £12.95 0750603097

Newnes Electrical Pocket Book
21st edition
E A Parr
Paperback 526 pages
£12.95
0750605138
Newnes Electric Circuits
Pocket Book Linear IC
Ray Marston
Hardback 336 pages
Price £12.95 0750601329
Newnes Guide to Satellite TV
D J Stephenson
A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price £17.95 0750602155
Newnes Practical RF Handbook
lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages
Price £16.95 0750608714

Troubleshooting Analog
 Circuits
 R A Pease

Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price £14.95 0750616326

PC-Based Instrumentation and Control
 M Tooley

Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.

Price £14.95 0750616318

Electronic Circuits Handbook

 M TooleyProvides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without. recourse to theoretical texts. Paperback 345 pages.
Price £24.95 0750607505

Communication Services via Satellite

G E Lewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in
television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379

Digital Logic Design

 Brian HoldsworthAs one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays.
Paperback 448 pages.
Price £19. 500750605014

The Circuit Designers
Companion

T Wiliams

This compendium of practical wisdom concerning the real world aspects of electronic circuit design is invaluable for linear and digital designers alike. Hardback 320 pages
Price £2500 0750611421

> Credif curd orders accepted by phone 0816523614

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please supply the following titles:

PLEASE ADI £2.50 FOR PeSTAGE
Add V:AT at local rate
NB ZERO RATE FOR UK \& EIRE ...
Business purchase: Please send me the books listed w th an invoice. I will arrange for my company to pay the accompanying insoice within 30 clays. will attach my business card/letterhead and have signed the form below Guarantee: If you are not completely satisfied, books may be returned with in 30 days in a resaleable condition for a full retund.

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd.
Please debit my credit carc as tollows:
Access/Master BarclayNisa Amex Diners

Credit Card No.
Exp date
NAME (Please print)
ORCANISATION
STREET
TOWN
COUNTY POST CODE COUNTRY

DATE \qquad TELEPHONE NUMBER

SIGNATURE

VAT RATES

6% Belgium, 25% Denmark, 5.5% France, 7% Gentany, 4% Greece, 4% Italy, 3% Luxembourg, $6^{\%} \%$ Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about boaks, journals ard information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5AS

Registered in England 1.515 .37

APPLICATIONS

Power factor controller

D
emand for economical ways of making switch-mode supplies and electronic ballasts exhibit a unity power factor is growing. Having a non-unity power factor introduces harmonic distortion on the mains - a nuisance that electricity suppliers are becoming increasingly concerned about.

Designed for minimal component count, the new MC34262 forms the heart of a preconverter that sits between the mains supply and a switch-mode supply or ballast, Fig. 1. In the circuit configurations outlined in the preliminary data sheet, the IC has the ability to bring the power factor up to between 0.989 and 0.999 . Switch-mode supplies typically exhibit power factors of 0.5 to 0.7

Most electronic ballasts and switch-mode power supplies incorporate a bridge rectifier and reservoir capacitor directly connected to the mains. This provides raw DC to drive the main power converter circuitry.
A simple rectifier only draws current at the peaks of the mains sinusoid, where the voltage at the input exceeds the voltage over the capacitor. As a result, the current waveform comprises spikes which are rich in harmonics, Fig. 1.
Power factor correctors can be passive or active. Passive types usually contain a combination of large capacitors, inductors and rectifiers. Active types incorporate some form of high-frequency switching converter for the power processing. This is usually a boost converter conliguration of the type shown in Fig. 2.
Since active circuits operate at much higher frequencies than their passive counterparts, they are much smaller, lighter and more efficient. With proper control of the preconverter, almost any complex load can be made to appear resistive to the mains.
Figure 3 shows a complete 175 W converter circuit. This is one of three in the

note, the remaining two being similar but designed for 80 W and 450 W . The circuit is a peak detecting boost converter configured in current mode. It operates in critical conduction mode with a fixed on time and variable off time, Fig. 4.
A major benefit of critical conduction mode is that the current loop is inherently stable which eliminates the need for ramp compensation. This circuit operates over a wide input range of 90 to 268 V AC without adjustment.

Built into the MC34262 is an overvoltage comparator to stop output voltage rising too high if the load is removed. There is also a undervoltage lock-out, maximum peak switching current limitation and a pulse metering latch. Output clamping prevents damage to the mosfet gate.

Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Telephone 0628585000.

Fig. 2. Active power factor controllers for switch-mode power supplies and electronic ballasts sit between the mains rectifier and storage capacitor. Switching at high frequency, they share the current loading on the mains over the full cycle, resulting in desirable unity power factor.

APPLICATIONS

Power Factor Controlier Test Data

AC Line input									DC Output				
				Current Harmonic Distortion (\% Ifund)					$V_{O}(p-p)$	Vo	10	Po	$n(\%)$
$V_{\text {rms }}$	$\mathrm{P}_{\text {in }}$	PF	Ifund	THD	2	3	5	7					
90	193.3	0.991	2.15	2.8	0.18	2.6	0.55	1.0	3.3	402.1	0.44	176.9	91.5
120	190.1	0.998	1.59	1.6	0.10	1.4	0.23	0.72	3.3	402.1	0.44	176.9	93.1
138	188.2	0.999	1.36	1.2	0.12	1.3	0.65	0.80	3.3	402.1	0.44	176.9	94.0
180	184.9	0.998	1.03	2.0	010	0.49	1.2	0.82	3.4	402.1	0.44	176.9	95.7
240	182.0	0.993	0.76	4.4	0.09	1.6	2.3	0.51	3.4	402.1	0.44	176.9	97.2
268	180.9	0.989	0.69	5.9	0.10	2.3	2.9	0.46	3.4	402.1	0.44	176.9	97.8

This data was taken with the test set-up shown in Figure 24.
$T=$ Coilcratt N2880-A
Primary: 78 turns of \# 16 AWG
Secondary: 6 turns of \#18 AWG
Core: Coilcraft PT4215, EE 42-15
Gap: $0.104^{\prime \prime}$ total for a primary inductance (Lp) of $870 \mu \mathrm{H}$
Heatsink = AAVID Engineering Inc. 590302B03600
Fig. 3. At 240 V input, this universal input circuit brings power factor of a switch-mode PSU up to 0.99 .3 from typically 0.5 to 0.7. It delivers up 1o 175 W .

Fig. 4. This diagram shows inductor current and MOSFET gate voltage waveforms. It illustrates how the power factor corrector circuit of fig. 3 spreads loading over the full mains cycle to obtain an almost unity power factor.

Switching regulator

Despite its very low component count this switching regulator is around 85% efficient given 0.5 A louding and a 10 V supply.

Designed primarily for step-down applications, the $L T / / 76$ can also be used as a positive-to-negative power converter or in flyback mode. It has a truc analogue multiplier in its leedback loop. making its responses to changes in inpul voltage levels nearly instantaneous.

Output current is up to 0.8 A and quiescent current is just 8 mA . Pulse by pulse current limiting at 1.7 A is built in, as is a 100 kHz oscillator. When configured as shown, the input voltage range is from 8 to 35 V . In inverting and boost configurations, a self-boost facility built in to the IC allows input voltages as low as 5 V.

Used as a buck converter, the IC has an

Basic 5V Positive Buck Converter

output voltage range of 2.5 To 30 V . Note that there are two versions of the IC, one with a fixed 5 V output, the other adjustable.

Linear Technology, 111 Windmill Road, Sumbury-on-Thames, Middlesex TW16 7EF. Telephone 0932765688.

5V Buck Converter Efficiency

One eight-pin IC provides a 0.A, 5V switching power supply with fairly high efficiency and short-circuit protection. Running at 100 kHz , the circuit requires a relatively small inductor and smoothing capacitor.

PABX chip handles two trunks with twelve extensions

AII telephone transmission, reception Aand call-progress circuits for mixing voice and control signals are contained in a new highly integrated chip from Sierra. This chip forms the heart of a PABX capable of handling up to five external lines and twelve extensions.
A complete evaluation system for this private automatic branch exchange IC is detailed in the SC11391391 integrated telephone systems hardware design manual. Software is also available and the
manual includes PCB details.
Key elements of the chip are two matrixes, one 20 by 23 and the second 4 by 4 . There are also two DTMF transmitters, two DTMF receivers, a ring generator and programmable call progress monitors. Additionally, the device can handle conference calls, differentiate between fax and voice and connect to tape or ram for recording speech.
Besides switching between the various lines, the matrixes connect various control
devices. These include programmable gain circuits, the DTMF transmitters and receivers, call progress monitors, voice detectors and programmable bandpass filters.
Since the circuit diagrams run to fourteen A4 pages, there is only enough room to publish the block diagram.

Sierra Semiconductor, Terminal 3, 3B2 Stonehill Green, Westlea, Swindon, Wiltshire SN5 7HB. Tel. 0793618492.

Techniques for 92\% efficient fluorescent backlight driving

Comprehensive information on driving fluorescent backlighting for LCDs is presented in Techniques for 92% efficiont LCD illumination from Linear Technology. Since backlighting can be responsible for as much as 80% of battery drain, drive circuit efficiency is very important.
Cold-cathode fluorescent lamps present a complex load. Power conversion efficiency is affected by the lamp's current. temperature, dimensions, gas constituents and proximity to nearby conductors. Drive waveform characteristics also play a role.
As the curves shown imply, predicting lamp behaviour under various operating conditions is difficult. Maximum electrical efficiency does not necessarily correspond to the best optical efficiency. It is possible to build a 94% electrically efficient circuit that produces less light output than one with only 80% efficiency. For this reason, electrical and photometric evaluation of a circuit is advisable. Methods for both are covered in the booklet.
Other factors greatly affecting efficiency are lossy display enclosures and excessively long connecting wires. Display enclosures with too much conducting material near the lamp can have huge losses due to capacitive
coupling. Poorly designed enclosures can casily account for 20% efficiency degradation while high-voltage wire runs typically cause a fall of 1% per inch.
Cold-calhode fluorescent lamps represent a complex load. The voltage needed to force them into conduction. around 1 kV . is significartly higher than their operating voltage which is typically 300 to 400 V . Until their firing voltage is reached. fluoresceרt lamps exhibit a very high resistance but after firing, their resistance falls considerably. To compound the problem, the resistance transition is fast.
Due to the combined effects of the coldcathode fluorescent lamp’s resistance characteristics and the frequency compensation problems associated with switching regulators, severe loop instabilities can arise. These are a particular nuisance at start-up. Once the lamp is on. it assumes a linear load characteristic, easing stability erteria.
Although fluorescent lamps can be powered from DC, it is inadvisable to do so since migration inside the lamp will quickly damage it. Typically, lamp operating frequencies are 20 to 100 kHz . A sinusoidal drive waveform is preferred since it

Cold-cathode fluorescent lamps for ICD backlighting present a complex load, as these charts show. Emissivity for a typical 6 mA lamp shows how excessive current is wasteful, (a). Curve (b) illustrates how worthwhile it is to ensure that the lamp does not overheat while (c) indicates that voltage over the lamp falls rapidly with increasing current. How tube length affects operating voltage is outlined in (d) for normal and cold operating temperatures.

Many liquid crystal displays operate from battery supplies so power consumption is an important issue. This circuit drives two coldcathode fluorescent backlighting lamps at 92\% efficiency. It also features dimming and shutdown facilities to help maximise battery life.
minimises RF emissions while maximising efficiency.
The design shown here is one of many solutions described and offers a 92% efficient supply for 10 mA loads. With this particular circuit. drive is provided for two lamps - a typical requirement for current LCD laptop colour displays. Other features are dimming and remote shutdown which are essential for minimising battery power consumption.
Further information in the note deals with LCD biasing, low-power cold-cathode fluorescent lamps, and feedback stability. There are full chapters on mechanical design considerations. efficiency measurements and power saving techniques. There is also a well-supported section challenging a number of existing lamp driver circuits.

Linear Technology, Coliseum Business
Centre, Riverside Way, Camberley,
Surrey GU15 3YL. Tel. 0276677676.

AMSTRAD DMP 4000 Entire printer assemblies including printhead, pla en. cables, stepper macors etc. Everythung bar the electron ics and case. Good stripper!! Clearance price pust is REF: MAG5 or 2 for 88 REF: MAGB
VIEWDATA SYSTEMS Brandnew unts made by TANDATA complete with $1200 / 75$ built in modem, infra red remote controled keyboard BT approved, Prestel compatible, Centronice printer port RGB colour and composite output (works with any TV) complete with power supply and fully cased. Price is just $£ 20$ REF: MAG20 Also some customer returned units available at $£ 10$ each REF: MAG 10 PPC MODEM CARDS These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginally made fo his spec satelite equipment but perfect for all sorts of remote contro
projects. Our dearance pnce is just $£ 2$ REF. projects. Our dearance piciI IMS TRANSISTOR
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts. specs
etc. ELO RE: MAG20P1
SINCLAIR C6 MOTORS We have a few lef without gearboxes, Theseare $12 \mathrm{~V} D C 3,300 \mathrm{pm} 6^{\circ} \mathrm{K}^{\circ} \cdot 1 / 4^{\circ}$ OP shat. $£ 25$ REF: MAG25 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the above motor but suitable for any 12 v motor up to 30A Complete with PCB etc. A heat sink may be required. $£ 1700$ REF: MAG 17
VIDEO SENDER UNTT. Transmits both audio and video signals fromit either a video camera, videc recorder. TV or Computer etc to DC Op Pnce is 15 REF: MAG15 12 V psuis $£ 5$ Sextra REF: MAG5P2 -FM CORDLESS MICROPHONE Smal hand held unit with a 500 'range! 2 transmit power levels Reqs PP3 9 battery Tuneable to any FM receiver. Price is $£ 15$ REF: MAG 15 P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200' Ideal for garden use or as an educational toy Price is $£ 8$ a pair REF: MAG BP $12 \times P$ P3 req'd.
-MINATURE RADIO TRANSCEIVERS A pair of walkie talkes with a range of up to 2 kilometres in open country Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases and earpieces. $2 \times \mathrm{PP} 3$ req'd $£ 30.00$ parr REF: MAG30
COMPOSTE VIDEO KIT. Converts composite ndeo into separate H synnc, V sync, and video. $12 \mathrm{~V} D C$ operation $£ 8.00$ REF: MAGBP2
LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entre mechanical printer assemblies including printhead, stepper stnoper E5 REF: MAGSP3 or 2 for E8 REF: MAGBP3 PHILIPS LASER 2MW
PHILIPS LASER 2MW relium neon tube. Brand new full spec £40 REF. MAG40. Mains power supply kit $£ 20$ REF: MAG20P2
Fully built and tested uni $£ 75$ REF. MAG 75 . Fuly buitr and tested unit है75 REF: MAG 75.
SPEAKER WIRE Brown two core, 100 foot hank $£ 2$ REF: MAG2P
LED PACK of 100 standard red 5 mm leds $£ 5$ REF: MAG5P4
JUG KEITLE ELEMENTS good general purpose heating element (about 2 kw) Ideal for allsorts of heating projects etc. 2 for $£ 3$ REF. MAG3
UNIVERSAL PC POWER SUPPLY complete with flyeads, switch. fan etc Two types avalable 150 w at $£ 15$ REF:MAG15P2 $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at $£ 20$ REF: MAG2OP3 ($23 \times 23 \times 23 \mathrm{~mm}$) OZON ERIENDLY LATEX 250 ml botte of llquird rubber, sets in 2 hours. Ideal for mounting PCB's, fixing wires etc $£ 2$ each REF: MAG2P2

- FM TRA NSM TTE R noused In a standard workng 13 A adapter! the bug runs directy off the mains solasts forever! why pay $\Sigma 700$? or price is $£ 26$ REF MAG26 Transmits to any FM radio
- FM BUG KTT New design with PCB embedded coil for extra stabillty. Transmits to any FM radio gv battery req'd £5 REF MAGSPS
-FM BUG BUILT AND TESTED superior design to kit, as supplied to detective agencies etc. $9 v$ battery req'd $£ 14$ REF MAG14
TALKING COINBOX STRIPPER orginally made to
retail at $£ 79$ each, these units are designed to convert and ordinary phone into a payphone. The units we have generally have the locks missing and sometmes broken ninges. Howeverthey can be adapted for their onginal pupose or used for something else? Price is Just $\varepsilon 3$ REF: MAG3P1
100 WATT MOSFET PAIR Same spec as 2SK343 and 2SJ443(8A, $140 \mathrm{~V}, 100 \mathrm{~W}$) 1 N channel and 1 P channel, £3 apair REF: MAG3P2
VELCRO 1 metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) $£ 2$ REF: MAG2P3
MAGNETIC AGTATORS Cosisting of a cased mains motor with lead. The motor has two magnets fixed to a rotor that spin round inside There are also 2 piastic covered magnets supplied. Made for remotely stimngliquidsl you may have a use? $£ 3$ each REF: MAG3P3
2 for $£ 5$ REF: MAGSPO 2 for $£ 5$ REF: MAGSP6
TOP QUALTTY SPEAKERS Made for HI Fi televisions these are 10 watt 4 R Jap made 4^{4} round with large shielded magnets. Good quality general purpose speaker $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ REF: MAG6P2
TWEETERS 2 dameter good quality tweeter 140 R (would be good with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4
AT KEYBOARDS Made by Apricot these quality keyboards need justa a small modification to run on any $A T$, they work perfecty but you will have 10 put up with 1 or 2 foreign keycaps1 Price $£ 6$ REF: MAG6P3
XT KEYBO ARDS Mixed types, some retums, some good, some forergn etc but all good for spares! Price is $£ 2$ each REF:MAG2P8 or 4 for $£ 6$ REF: MAG6P4
PC CASES Again mixed types so you take a chance next one off PC CASES Again mixe types so you take a chance next one of the pile 12 REF:MAG 12 ortwoidentical ones for \&20REF: MAG20P4
component pack bargain 1,000 resistors $+1,000$ capacitors (all component pack bargain 1,000 ressistors
same vaiue) $£ 250$ a pack REF:MAG2P7

1994 CATALOGUE OUT NOW

BULL'S BULEETAK BOARD MASSIVE

WAREHOUSE CLEARANCE FANTASTIC $£ 20.00$ REDUCTION

REFURBISHED PC BASE UNITS
COMPLETE WITH KEYBOARD
from only $£ 29.00$

AMSTRAD 1512 BASE UNITS guaranteed
 PERFECT WORKING ORDER.

AMSTRAD 1512SD
1512 BASE UNIT, 5.25" FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONTOR AND POWER SUPPLY. WAS $£ 49.00$

NOW ONLY £29.00 REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25" 360K DRIVES ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS 559.00

NOW ONLY £39.00
REF: MAG39

SOLAR POWER PANELS

3FT X IFT IOWATT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
NOW AVAILABLE BY MAIL ORDER $£ 33.95$

IOP QUALITY AMORPHOUS SILICON CELLS HAVE AImOST A tImeless lifespan with an infinite number of possible APPLICATIONS, SOME OF WHICH MAY BE CAR BATTERY CHARGING. FOR USE ON BOATS OR CARAVANS, OR ANY
WHERE A PORTABLE $12 V$ SUPPIY IS REQURED. REF: MAG 34
also IFTX IFT GLASS SOLAR PANELS 12 v 200 mA
ONLYE15.00. RE: MAG15P3

FREE SOFTWARE!

Brand new, UNUSED top qually famous brand licensed software discs. Available in $5.25^{\prime \prime}$ DSDD or $5.25^{\prime \prime}$ HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFTWARE. We are actually selling you the floppy disc tor your own "MEGA CHEAP" storage facillites, if you happento get software that you want/need/like as welt.....you get a "MEGA BARGAIN" tol
$\begin{array}{lll}\text { OSDD PKT10 } £ 2.99 \text { REF: MAG } 3 P 7 & \text { PKI } 100 £ 16.00 \text { REF: MAG } 16 \\ \text { HD PKT10 } & \end{array}$ PK10

LaRGER QANTITY PRICES A VAILABLE ON APPLICATION
££££££WE BUY SURPIUS STOCK££££££ TURN YOUR SURPLUS STOCK INTO CASH
mMEDIATE SETTLEMENT WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

1994 CATALOGUE

PLEASE SEND 42 P , A4 SIZED SAE FOR YOUR FREE COPY

-SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

BLLL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX

 BNB 5QTMAL ORDER TERMS: CASH PO OR CHIEQUE WHTH ORDER PI US E3.00 POST PLUS VAT. PLEASE ALLOWT T ODAYAFOR OELIMENY TELPHONE ORDERS WELCONE THL. 0273200501 FAX O2T3 323077

COMMODORE MICRODRVE SYSTEM mini storage device tor C64's 4 tmes faster than disc dnves, 10
than tapes. Complete Unitit ust 12 REF: MAG 12P1
SCHOOL STRIPPERS We have quite a few of the above
units which are 'returns' as they are quite comprenensive units they could be used for other proiects etc Let us know how many you need at just 50p a unit (minimum 10)
HEA DPHONES 16P These are ex Virgin Atlantic. You can have 8 pairs for 22 REF: MAG2P8
PROX MITY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB Complete with flyleads. Pack of $5 £ 3$ REF: MAG: 3P5 or 20 for $\mathrm{E8}$ REF: MAG8P4
FIBRE OPTIC CABLE Made for Hew lett Packard so pretty good stuff you can have any length you want ($\min 5 \mathrm{~m}$) first $5 \mathrm{~m} £ 7$ REF: MAG7 thereafter£ 1 a metre (ie 20 m is £22). REF: MAG1 Maxlength 250 m .
SNOOPERS EAR? Originall made to clip over the earpiece of telephone to amplify the sound-it also works quite well on the cabie running along the walll Pnce is $£ 5$ REF: MAG5P7
DOS PACKS Microsoft version 33 or higher complete with all manuals or price just E5 REF: MAG5P8 Worth it just for the very comprehensive manual! 525° only.
DOS PACK Microsoft version 5 Original software bui no manuals hence onty £3 REF: MAG3P6 5.25° only.
FOREIGN DOS 3.3-German,French,italian etc $£ 2$ a pack with manual 525° only REF:MAG2P9
MONO VGA MONTTOR Made by Amstrad, refurbished £ 49 REF:MAG49
CTM644 COLOURMONTTOR Made to w ork withtheCPC464 home computer Standard RGB input so will work with other machunes Refurbished 559.00 REF:MAG59
JUST A SMA LL SELCTION of what we have to see moreget our 1994 catalogue (42 p stamp) or call in Mon-Sat $9-5.30$
HAND HELD TONE DIALLERS ideal for the control of the Response 200 and 400 machines. E5 REF:MAG5P9
PIR DET ECTOR Made by famous UK alarm manufacturerthese are hi spec, long range intemal units 12 v operation. Slight marks on case and unboxed (although brand new) E8 REF: MAG8P5
WINDUP SOLAR POWERED RADIO AM/FM radio com plete with hand charger and solar pane!! $£ 14$ REF: MAG14P1 COMMODORE 64 Customer returns but ok for spares etc $£ 12$ REF MAG12P2 Tested and working units are $£ 69.00$ REF MAG69 COMMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF: MAG4P9 Fullytested andw orking units are $£ 12$ REF:MAG12P5
COMPUTER TERMINA COMPUTER TERMINALS complete with screen, keyboard and RS232 input/output. Ex equipment. Price is $£ 27$ REF MAG27 MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a $13 A$ plug on one end. cable the other Ideal for projects. low cost manufacturing etc. Pack of 10 for $₹ 3$ REF. MAG3P8
Pack of $100 £ 2$ REF. MAG20P5 Pack of 100 E20 REF: MAG20P5
SURFACE MOUNT STRIPPER Onginally made as some form of high frequency amplifier (main chip is a TSA 5511 T 1.3 GHz
synthasiser) but good stripper value, an excellent way to play with synthasiser) but good stripper value, an excelient way to play with surface mount components $£ 1$ O REF: MAGiP1.
MICROWAVE TIMER Electronictmerwith relay output suitable to make enlarger timer etc $£ 4$ REF: MAG4P4
PLUG 420 ? showing your age? pack of 10 with leads for $£ 2$ REF: MAG2P 1
MOBILE CAR PHONE 55.99 Well aimost! complete in car phone excluding the box of electronics normally hidden under seat Can be made to lilumnate with 12 V also has buill in light sensor so display only illuminates when dark Totally convincing! REF MAG6P6 A LARM BEACONS Zenon strobe made to mount on an extema: bell box but could be used for caravans etc. 12 V operation. Just connect up and it flasnes regulary) E5 REF: MAG5P11
FIRE A LA RM CONTROL PA NEL High quailty metal cased alam panel $350 \times 165 \times 80 \mathrm{~mm}$ Comes with electronics but no information. £15 REF: MAG15P4
SUPER SIZE HEATSINK Supert quality aluminium heatsink. $365 \times 183 \times 61 \mathrm{~mm}$. 15 fins enamble high heat dissipation. No holes REMOTE CONT
garater boards for garage door opening systems. You may have another use? £4 ea LORTX
monitors but useful for getting high voltages from low oheste 2 each REF: MAG2P12 bumper pack of 10 for $£ 12$ REF: MAG12P3.

PORTABLE RADIATION DETECTOR

$£ 49.99$

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. Sup plied complete with handbook.

REF: MAG50

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

$0.7 \mu \mathrm{~m} \mathrm{cmos}$ gate arrays. GPS announces the CLA80000 0.7 um cmos family of low-power gate arrays, having a power dissipation of $1.3 \mu \mathrm{~W} / \mathrm{MHz}$ at 3 V . Largest in the series has 300000 usable gates. Delay of a two-input Nand is 210 ps and novel core cell design allows a compact design of elements such as static rams. Mixed voltages supply the core and i/o to minimise power consumption. GEC Plessey Semiconductors, 0793518510

Telecomms switching. TI's
TGB2000E gate array is meant for the telecommunications market, in which it allows switching systems to run high-level functions at 60% less power. It is derived from the standard TGB1000 BiCMOS array, but is for 622.08 MHz systems (STM-4). Embedded macros enable signal conditioning on-chip, eliminating the separate ECL or GaAs chip formerly needed. Texas Instruments. 0234 223252.

A-to-D \& D-to-A
 converters

Low-power A-to-Ds. Two analogue to-digital converters from Micro Call LTC1286/1298, are in 8 -pin, small outline packages and draw $3 \mu \mathrm{~A}$ standby current. These 12-bit devices are successive-approximation types, using $80 \mu \mathrm{~A}$ when active and shutting down when not converting. S / H is onboard and conversion time is $48 \mu \mathrm{~s}$ at 15 kHz sampling rate, interfacing to most 3 -wire serial ports. Micro Cali Ltd. 0844261939.

Discrete active devices

GaAs power fets. Harris Microwave Semiconductors introduce the HMF12020 gallium arsenide power fet. which offers $2-12 \mathrm{GHz}$ frequency range and output power at 1 dB compression of 27.5 dBm at 12 GHz , gain at this frequency being 5 dB . HMF24020 has a similar range, but increased power output of 30.5 dBm and gain of 4 dB . Packaging is metal/ceramic. Anglia Microwaves Ltd, 0277630000.

Fast, 500 V mosfet. With switching times of 5 ns and a 500 V breakdown voltage, Harris's RFV10N50BE mosfet handles 10A and switches eight times faster than ctmparable devices. in which a $40 n \cong$ fall time has been the fastest. The package contains the high-voltage mosfet, a control mosfet. a separate source Kelvin terminal and protective zeners. On resistance is $0.48 \Omega 2$ and input capacitance 3800 pF . Harris Semiconductor (UK). O 076686886.

Green/yellow led. Proclucing a greenish-yellow light. HP's HLMA CPOO 1000 mcd led has an 8^{c} viewing angle at 20 mA . The company has, with this addition to the range of highbrightness devices. all three of the popular colours for indicators, all being suitable for outdcor use. Hewlett-Packard Ltd, 0.344362277.

Blue leds. Silicon carbrde leds by IMO generate true blue light peaking at 470 nm . They are available in clear or diffused 3 mm or 5 mm vackages with viewing angles of 16 and 28 in the clear versions or 34 and 42° in the diffused type. Also announced are 3 mm GaAlAs and GaF leds emitting red or green light at sufficient brightness for outdoor use. IMO Precision Controls Ltd 031 4526444.

Small, 60 V mosfets. Three devices, the first in the Siliconi> Liftle Foot family of surface-mounted power mosfets, are on release. All rated at 60 V , the single p-charinel Si9407DY. the dual n-channel Sif9445DY and the Si9948DY dual p-channel offer $100 \mathrm{~ms} 2-250 \mathrm{~ms} 2$ on resisfance and are designed for 4.5 V gate drive. Siliconix, 0344485757

P-channel IGBT. Zetex s ZCNO545 n-channel insulated-gate bipolar transistor now has a p-channel stablemate - the ZCP0545A, in a TO92 package. Both are 450 V devices and have tur 7 -on and turn-off times of 150 ns and 350 ns , handle a continuous 0.37A and bave an input capacitance of 120 pF . Gate/source threshold is 3.5 V anc diain/source saturation is 3 V at 0.5 A . with $6 \Omega 2$ on resistance. Zetex plc. 061-6275105.

Linear integrated

circuits
LDO voltage regulators. A surfacemounted low dropout 5 V regulator, the Allegro A8181, provides a fixed 5 V at over 500 mA or 1 A at 20% duty cycle, while input/output differential can be less than 301 mV .
Consumption is 1204A and line input

between 5.5 V and 10 V . Flint Distribution Ltd. 0530510333

Phase control. GEC Plessey's TDA2036 phase-control device is meant tor use in AC closed-loop or open-loop circuitry with either resistive or inductive loads. Its -15 V shunt regulator can be powered by AC or a 12 V DC supply and a -5 V output is provided. On-chip average or peak load-current limiting is included, as is a ramp generatir to give controlled acceleration. Output triac pulses are negative. Gothic Crellor Ltd. 0734788878

Current-mode multiplier. Two highspeed current-mode. four-quadrant multipiers from Elantec, the EL4083/4. provide hign isolation switching. low distortion and operation from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ rails. They are said to be the first current-in/differential currerit-out devices to be produced and are intended mainly for HDTV gain control use. Kudos Tharre Ltd. 0734351010

3-state op-amp. Tl claims its TLE2301 to be the first wide-band opamp in a single package to have a three state output. It will sink and source 1 A and has a gain/bandwidth of 8 MHz : THD is 0.04%. Texas Instruments. 0234223252.

Voltage references. Five IC precision reterences in the Zetex ZRT series cover the 2.5-9.8V range, prod ucing only $50 \mu \mathrm{~V}$ of output noise and with a temperature coefficient of $15 \mathrm{ppm} / \mathrm{C}$. Current handling of the 5 V device is $0.15-60 \mathrm{~mA}$ and there is a pin for output trim by an external potentiometer. Zetex plc. 061-627 5105.

900 V IGBT. IR now has a family of fast 900V insulatedgate bipolar transistors, providing power dissipation of 60-200W at a case temperature of $25^{\circ} \mathrm{C}$.
IRGBF20F/30F/40F/50F are in TO-220 and TO-247 and take 31-51A in the latter package. switching losses being 2.9 mJ and 1.57 mJ for 51 A and 31 A devices. International Rectifier, 0883714234

Logic building blocks

 DDS + DAC chip. Analog's AD7008 is a direct digital synthesis circuit with an integral D -to-A converter for highperformance frequency synthesis. It combines a numerically controlled oscillator with a 32-bit phase accumulator, sine and cosine look-up tables and a 10-bit D-to-A converter. Clock rate is up to 50 MHz and serial and parallel interfaces operate independently and asynchronously from the DDS clock. Spurious-free dynamic range is $-70 \mathrm{~dB}, \mathrm{~S}: \mathrm{N} 50 \mathrm{~dB}$ and THD -55 dB . Analog Devices Ltd, 0932253320Prescalers. For use on portable equipment, GEC Plessey's SP8714/5 1.1 and 2.1 GHz prescalers take only 3.6 mA and 6.8 mA , reducing to less than $30 \mu \mathrm{~A}$ on standby. A"push-pull" output stage allows a nearly $50: 50$ M:S ration at the output, with no load resistor. Modulus control input signal is latched with the device output to improve setup time. SP8714 offers 32/33 and 64/65 division, while SP8715 divides by 64/65 and 128/129. GEC Plessey Semiconductors. 0793518510.
3.2ns logic. IDT's E Speed double density logic devices offer propagation delays of 3.2 ns and use less power than any other logic family. IDT74FCT16XXXT devices have high current output and the IDT74FCT162XXXT types balanced output drive, the former possessing a power-off disable allowing power to be applied to inputs, outputs or i/os even when the supply rail is absent and the $\pm 24 \mathrm{~mA}$ balanced drive type has integrated series terminating R for capacitive loads, also reducing ground bounce to 600 mV . Integrated Device Technology, 0372363734

Dual fifos. Features and performance of two synchronous first-in-first-out registers are contained in one 20 ns 4 K by 9 by 2 IDT2841, the first member of IDT's double-wide 9 -bit wide dual SyncFIFOs, available in 64 pin thin quad flat packs. Integrated Device Technology, 0372363734.

Single-chip EIA-232. SN75LBC187

 and '241 by TI support the 9 -pin Dtype EIA232 serial interface. containing multiple drivers and receivers and forming a one-chip solution. The ' 187 supports data rates beyond $116 \mathrm{~kb} / \mathrm{s}$ and both devices have internal charge pumps and a shutdown facility to $10 \mu \mathrm{~A}$. Packaging is the 28 -pin wide-body SOIC for the '241 and 28 -pin SSOP for the 187 . Texas Instruments. 0234223252
Memory chips

4 Mb video rams. Toshiba's range of video rams is augmented by the $0.6 \mu \mathrm{~m} 4 \mathrm{Mb}$ rams. TC524

Power mosfet. Housed in the new HDPAK surface-mounted package for high-power transistors. Hitachi's 2SK2174 is rated at 500 V and 20 A . but has an on resistance of 0.22Ω at 10 V and high-speed switching. Hitachi Europe Lid 0628585000.

162/262/165/265 SF/FT/TR×16 organised memories. Access times are 60 ns at 5 V or 80 ns at 3.3 V . By using the pipe-lined fast page mode cycle times can be reduced from 115 ns to 40 ns. A 512 by 16 serial memory is included. 2 Mb types are also offered. Toshiba Electronics (UK) Ltd, 0276694600.

Mixed-signal ICs

MPU supervisors. AD's ADM69X series monitor microprocessor power supplies and take necessary action when they drop below specified levels. Pin-compatible chips are available. but these use 80% less power at 5 mW and give 100 mA output current, in addition to a 5 ns chip-enable propagation delay and 50 ms supply-to-reset response Functions include backup battery switching, watchdog timing, cmos ram write protection and power failure alert. Analog Devices Ltd. 0932 253320.

Oscillators

SM clock oscillator. AVX's K50 series of ceramic-packaged. surfacemounted clock oscillators are claimed to be the world's smallest at 7 by 5 by 1.8 mm and come in cmos. TTL and 3.3 V versions. These tri-state devices cover the $1.5-50 \mathrm{MHz}$ range with stabilities of $50-100 \mathrm{ppm}$. Supply current at 50 MHz is between 30 and 40 mA . depending on model. AVX Ltd. 0252336868.

S-band VCO. In the range $2.6-3 \mathrm{GHz}$. the $C-810$ voltage-controlled oscillator by Z -Comm offers a 400 MHz tuning bandwidth for a $0-12 \mathrm{~V}$ tuning voltage, with 90% linearity. An output of $15 \mathrm{dBm} \pm 2 \mathrm{dBm}$ into $50 \Omega 2$ suits low-level mixers and phase noise is $-95 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz . Eurosource Electronics Ltd, 0819771105

Clock oscillators. IQD's clock oscillators are now specified at 25 rather than an overall frequency olerance quoted between 0 and $70^{\circ} \mathrm{C}$. Adjustment can be as close as $\pm 5 \mathrm{ppm}$ for 3 V and 5 V types a frequencles in the $250 \mathrm{kHz}-70 \mathrm{MHz}$ range (3 V types from 4 MHz). IQD Ltd 046077155.

Programmable logic

 arraysFPGAs. Actel's ACT 2 family of fieldprogrammable gate arrays now costs ess and performs better. after a process shrink from $1.2 \mu \mathrm{~m}$ to $1 \mu \mathrm{~m}$ resulted in a 25% speed
improvement. As an example, the A1225A-2 2500 reaches data-path speeds of 105 MHz . 66 MHz in a 16 -bit counter a system speed of 50 MHz . Actel Europe Ltd. 025629209

Fast 84-pin EPLD. Latest member of Altera's MAX 7000 family of erasable
programmable logic devices is the 64 macrocell EPM7064. which offers 7.5 ns single-level logic delays and 125 MHz in-system performance. It is supported by the MAX+PLUS II development software for PCs. Altera UK Ltd, 062848881

APLA. Intel's iFX780 field programmable gate array is the first in the company's FLEXlogic family and incorporates flexible memory and logic options in a low-power chip. as easy to use as a conventional PLD. Eighty macrocells are organised as eight independently corfigurable function block. internal logic carrying out the contiguration. Pin-to-pin delays are 10 ns and there are 12 clocking options. 1/o of each block is independently operable at either 3.3 V or 5 V . Jermyn Distribution, 0732 743743.

Fastest 28-pin PLD. Laitice Semiconductor's GAL 26CV12C is claimed to be the fastest 28-pin PLD available, running at clock frequency of 142.8 MHz . It takes a typical 90 mA supply current and provides 1.2 times the logic density of the standard GAL 22 V 10 . being contained in either 28 pin dip or PLCC packages with centre-pin supply and ground. Micro Call Lid. 0844261939.

Power semiconductors

Step-down switcher. Maxim's MAX $727 / 8 / 9$ are $5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 3 V DC-to-DC switching regulators working from $8-40 \mathrm{~V}$ input and rated at 2 A . An on-chip oscillator removes the need for a large number of external components. Cycle-by-cycle current limiting protects against overcurrent and output shorts and there is micropower shutdown and adjustable current limiting. Maxim Integrated Products Ltd, 0734845255.

Micropower LDO regulator. National says its LP2956 is the first dual. micropower, low dropout regulator with 470 mV dropout, $170 \mu \mathrm{~A}$ quiescent current and 250 mA output and provided with shutdown pin, error flas pin, auxiliary comparator and an additional 75 mA regulator to ensure data retention during system shutdown. LP2957 is a fixed 5V. 250mA LDO regulator in a TO-220 package for higher power. National Semiconductor. 0793697592.

IGBTs. A new silicon structure developed by Toshiba is used in the MG30/90/180V2YS40 and MG240/360VIUS41 insulated-gate bipolar power transistors to provide operating voltages of 1700 V at up to 360A. The 30. 90 and 180A types are dual half bridges and the 240 and 360A versions single JGBTs. These devices hard switch at up to 20 kHz Saturation voltage is 3.2 V . Toshiba Electronics (UK) Ltd, 0276694600

PASSIVE

Passive components
Ceramic capacitors. New packages for Kyocera's ceramics designed for use in switched-mode power supplies are in radial. four-terminal and dual-in-line form in both through-hole and SM types. Finish is dipped. lacquered back-fill boxed or uncoated. Other types such as screw fixing being available to order. AVX Ltd, 0252 336868.

Thick-film resistors. When high voltage transients occur. as in inductive switching. laser trimming across the resistor body can cause localised hot spots and cracking Murata's new components are trimmed longitudinally, leaving no weak points and achieving a tolerance of $\pm 0.2 \%$. Components are made to customers' requirements. Murata Electronics (UK) Ltd. 0252 811666

Chip coil. LQP21A ultra-miniature chip coils by Murata are made in thin film form to obtan a $\pm 5 \%$ tolerance and low stray capacitance. Selfresonant frequency is over 2 GHz a 8 nH . minimum Q is 10 at 500 MHz . resistance is between 1Ω and $2 \Omega 2$. depending on value and maximum current 100 mA . Package size is 2 by 1.25 by 0.5 mm , surface mounted Murata Electronics (UK) Ltd. 0252 811666
3.3F backup capacitor. NEC's Supercaps are extremely high-value capacitors intended to replace batteries in backing up cmos circuitry. Values are as high as 3.3F and a 256-bit ram. for example, can be supported for 50 hours by a 2.2 F Supercap. Reliability is ensured by the method of charge storage - at the interface between activated carbon and sulphuric acid - and NEC claim that there is no limit to the number of allowable charge/discharge cycles. NEC Electronics (UK) Ltd, 0908 691133.

Crystals. Micro-Crystal oscillators are made by means of an advanced photolithographic technique. which results in increased resistance to shock and vibration and confers low ageing characteristics. Ovencontrolled. voltage-controlled and standard clock oscillators are offered in the range $100 \mathrm{kHz}-50 \mathrm{MHz}$. depending on model. and the oscillators are contained in dit or ceramic packages. The company offers a custom design service. Stanler Components Ltd, 0376 340902.

Line-match transformers. MILM-
1200 series line-matching
Iransformers from microSpire feature a return loss specification that exceeds BS415.624 and 6301 and are approved to BABT EN41003. Transformer return loss is 16 dB or petter over $0.2-4 \mathrm{kHz}$. (24 dB innetwork) and 26 dB over $0.2-3 \mathrm{kHz}$. Distortion is 0.1% or better. At DC dielectric strength in 1 min tests is 7 kV - 4kV RMS. As standard, impedance is 6002 . but others are available. Surtech Interconnection Ltd. 0256 51221.

EMI filters. The smallest member of TDK's $A C B$ range of compact. surface-mounted. interference suppression filters measures only 1.6 by 0.8 mm and provides 120 s 2 impedance at 100 MHz . Other models in the range exhibit 40-600s: at 100 MHz . Resistance of 0.3-1.312 and current ratings of 0.1-0.5A enable their use as signal-line nose suppressors. TDK UK Ltd. 0737 772323.

EMC protection. FutAr by Telematic combines RFI filtering. surge and ring suppression, which eliminates ringing caused by surges and transients. Telematic Systems Ltd. 0727833147

Displays

Display evaluation kits. Lascar's
DMXC3 is a complete dot-matrix and graphics controlier. actıng as an Ascii terminal for character modules or producing a bit pattern for the graphics module. An optional second rom allows stored messages or pictures to be displayed by way of the serial or parallel port. EVAL. 3 and EVAL3G are evaluation kits including graphics and character L.CD, the DMX3C. cable. bezel kits and sottware. Connection to the PC is via an RS232 port. Verospeed, 0703 644555.

Hardware

PCB milling. Gravograph's $V X M$ and IS engraving and milling machines will produce prototype and small batch circuit boards when driven by Gerber files from a PC. no photography or chemicals being involved. The machines are also suitable for milling. cutting and engraving front panels. Gravograph Ltd. 071-5115901.

PCB repairs. Royel has a device to assist with the replacement of components on multilayer boards avoıding copper delamination and glass-fibre breakdown. The ramp-up Hot Air Preheater PH9000 supplies hot arr/gas through a small aperture. its temperature being closely controlled by thermocouple. An audible signal indicates that a threshold temperature is reached, whereupon a soldering iron supplies the small extra temperature for the
repair Production Equipment Sales Ltd. 0323811694

Instrumentation

DSO/logic analyser. A low-cost digital storage oscilloscope and logic analyser made by Link Gr.aphics Inc. samples at up to 200 M sample s with eight 100 MHz logic channels. The triggering circuitry allows analogue events affecting logic and vice versa to be captured and showr for correlation. A 4 K -deep samfle buffer stores data and analogue intormation before. after or ether side of the trigger. PC card based the unit is supplied with a software interface that will save configuration and waveform data to disk. Computer Solutions Ltd, 0932829460

60 MHz oscilloscope. Hitachi Denshis V - 68060 MHz cursorreadout real-time oscilloscope has three channels. six traces and delayed sweep and cost $\subseteq 750$. Setting values are displayed on-screen and the cursors provide direci readout of voltage time and frequency Maximum sweep speed is Ens/div. and Y sensitivity 100 mV div. Trigger hold-off is provided as is a tv sync. separator Hitachi Denshi (UK) Ltd. 081-202 4311.

Current-sensing shunts. Fourterminal current-sensing stunts in the $P L V$ range by Kynmore covers the $0.00512-10052$ range with 0005% tolerance at 25 . temperature coefficient $0 \pm 15 \mathrm{ppm}$, C and temperature span 65 C 0275 C . A typical component of $10 \mathrm{~ms} 2 \pm 1 \%$ at 10W carrying 30A changes. resistance by less than 01% with no
measurable EMF change between the copper terminals, Kynmore Engineering Co. Ltd, 0714056060.

Oscillographic recorder. Martron's ORP1200 recorder is the fr st of a range designed to use thermal paper rather than the more expensive ultra-violet-sensitive type. producing A4 or A5 output. ORP 1200 offers
100ksample's sampling. 14-bit resolution and a range of recording. display and memory functions. It is available with four or eighi channels, with a high-voltage AC madule and a high-sensitivity 14 -bit iriput module with signal conditioning. an additional option being the recording of 16 channels of logic alongsice the analogue traces. Martron Instruments Ltd. 0494459200

Functional test. TR-6 from R\&S is a single PC expansion card. combining digital multimeter. couriter/timer. function generator. DC source. relay switching and digital $\mid 0$, the card working as a stand-alone unit or with the TR-4 Checksum manufacturing detects analyser to form a low-cost system Software is supplied. Rohde \& Schwarz UK L.td. 0252811377.

Literature
AT\&T. AT\&T Microelectronics's $\uparrow 40-$ page selection guide lists compo vents concerned with telecomms. computers. cellular and data comims and disk drives Circuit application is included AT\&T Microelectronics 0732742999.

SMPS catalogue. Calex has split its catalogue into three parts. coverting linear. DC-to-DC and switched-mode units. this being the last. Notable in the new publication is the 72000 series, which is flexible in configuration and produces up to 250W Calex Electronics Ltd. 0525 373178.

Power supplies
Low-noise PSUs. Gresham's GEM 392 and 393 minature power supplies use line ar techniques rather than switched-mode methods to achieve a 1 mV RMS output noise. Three outputs are $5 \mathrm{~V}-1 \mathrm{~A},+12 \mathrm{~V}-150 \mathrm{~mA}$ and $5 \mathrm{~V}-1 \mathrm{~A}$ and $+15 \mathrm{~V}-150 \mathrm{~mA}$. with stabilisation of 005% and regulation 02% for a full-load change. Chassis or PCB-mounted versions are avallable and solder-pin spacing is to Europe:an or US standards. Gresham Power Electronics Lid. 0722413060.

PSU chips. Voltage detectors and voltage regulators used in Seiko's watches are now offered to the industrial market. In the SOT8E package (4.5 by 4.25 mm footprint). the SCl 7700 detectors cover G .9 V to 5.3 V at a quiescent current of $\bar{c} \mu \mathrm{~A}$. while the SCI 7710 regulators produce -5 V to 5 V at a similar quiescent current on injuts up to 15 V . A tree zopy of Seiko's catalogue is on otfer. Hero Electronics Ltd. $05 \approx 5$ 405015

300 MHz DSO. By virtue of its two 2.5GS/s independent digltisers. LeCroy's 9361 dual-channel digital storage oscilloscope digitises all wavefcrms in one shot instead of by repetitive sampling. also ensuring the accuracy of inter-channel time measurement. A range of trigger modes is availatle and options include basic or more advanced maths functions and an FFT package. Storage is by DOScompatible floppy disk and a bult-in printer is a further option. LeCroy Ltd. $023 \overline{2} 533114$.

Faster radio modem. A new model of Wood $\&$ Douglas s Surtel 1200 and 2400 taud radio modems, the $D G X 450$. uses Gaussian minırum-shift keying to reach 9600 bauc in a 25 kHz channel (4800 bald in 12.5 kHz). It operates on a single channel in any 20 MHz band in the 400 500 MHz region with a $\pm 3 \mathrm{ppm}$ frequency stability. putting out 500 mW from 12 V . Packaging is ether a desk-top type or dust and morsture-proot. Wood \& Douglas Ltd. 0734811444

Connectors and cabling

Optical-fibre connectors
Quick Shot ST-compatible
ramped-bayonet connectors by ITT Cannon offer fast , simple and safe termination of the fibre. A special holder eliminates the danger of burnt fingers, a stripped fibre being placed in the holder, which has temperature indicators, the whole going into an oven. When the epoxy is molten, the holder is taken out of the oven, a stripped fibre inserted and the assembly left to cool. The use of blue epoxy allows quick, one-stage polishing. ITT Cannon, 0256473171.

Flat NiCd cells. Energy density of Saft Nite's flat prismatic nickelcadmium cells is now increased by at least 5% to give over 30% better than cylindrical types. With 1.2 V nominal voltage, the smallest GP4 type now has 380 mAh rated capacity and measures 47.5 mm by 16.4 mm by 5.6 mm . The cells are now more freely available to industry. Saft Nife Ltd, 0819797755.

Radio communications products

SM power dividers. Leaded, surfacemounted two-, three-, and four-way power dividers by Synergy Microwave are available in bandwidths from 2 MHz to 1000 MHz , with 0.7 dB typical insertion loss above the theoretical split loss. The SLD series has amplitude unbalance of 0.4 dB , phase unbalance of 3° and isolation of 18 25 dB between outputs. $S L Q$ devices offer $3-1900 \mathrm{MHz}$ bandwidth with 0.2 dB insertion loss and better amplitude and phase balance. Chronos Technology Ltd, 0989 85471.

Quadrature hybrids. $D Q P$ series
quadrature hybrids from Synergy
Microwave cover $10-500 \mathrm{MHz}$ with $5: 1$ bandwidths, offering 1 dB insertion loss in the $5: 1$ band with a amplitude unbalance of 0.8 dB . Phase balance is 4°, isolation 20 dB and VSWR 1.5:1 on all ports. Chronos Technology Ltd, 098985471.

Discoidal filters. Oxley's $d B Z 2$ range of discoidal feedthrough filters provide up to 65 dB of loss at 10 GHz in a 50 s 2 system, without resonances. They fit a 3.5 mm hole, are solder mounted and are hermetically or epoxy sealed. Voltage handling is 200 V DC up to $85^{\circ} \mathrm{C}$, derating to 100 V up to $125^{\circ} \mathrm{C}$. Values are $10 \mathrm{pF}-5 \mathrm{nF}$. Oxley Developments Co. Ltd, 022952621.

Switches and relays

Solid-state relays. C P Clare has released the 140 Series of solid-state relays, which are in 1 form A and 2 Form A , handling 400 V load (DC or AC peak), 250 mA local current and having an on resistance of 6Ω. Switching speed is 1 ms at 5 mA drive current and the units are in 6 -pin and 8 -pin dips. C P Clare Corporation. 046041771.

Transducers and

 sensorsDigital pots. Control Transducers's 500 Series of Digipots now includes models providing 540, 1000 and 1024 lines per revolution. These devices are non-contacting shatt encoders which convert rotary movement to digital form for input to counters or controllers, working continuously at up to $10000 \mathrm{rev} / \mathrm{min}$, if necessary. Output is two-channel quadrature at TTL levels. Control Transducers, 0234217704.

Tilt sensor. Dual sensitivity in the Cline angle transducer, selected by jumper, transforms the normal sensitivity of $\pm 45^{\circ}$ to $\pm 10^{\circ}$ when sensitivity is increased from $\pm 60 \mathrm{~V} /{ }^{\circ}$ to $\pm 200 \mathrm{mV}$ Two versions offer plus and minus analogue output or analogue ratiometric output. Accuracy is $\pm 0.1 \%$ up to 10° and about 1% of reading at $\pm 45^{\circ}$, with a 300 ms time constant and frequency response of 0.5 Hz . Kynmore Engineering Co. Ltd, 071 4056060.

COMPUTER

Development and

 evaluationHPVEE for Windows. H-P's Visual Engineering Environment, originally a Unix application, now runs under Windows for PCs. HPVEE is a programming language that allows users to create test programs by connecting icons with a mouse to give
a speed increase over text entry as in Basic or C. although code written in that way can be integrated into HPVEE. Either 386/436 machines are needed. Hewlett-Packard Ltd. 0344 362277.

80C166 debugger. 800166 family debuggers from Hitex come in at less than £2000 and are chaimed to be the first at this level. RON!link 166 does not use CPU serial ports. simply replacing an eprom or ram in the target to provide a direct connection to a PC printer port, via which code can be down-loaded to the 166 and debugged in situ. Source-level debugging of Keil and Tasking C compilers is possible via the Turbostyle HiTOP user interface. Hitex (UK) Ltd. 0203692066.

8051 development. SDT-51 is a developer's kit for the 8051 microprocessor produced by Logicom at a cost of $£ 549$. It includes a C compiler. relocatable macroassembler. source language debugger and in-circuit emulator. needing only a PC with a text editor of some kind. The ICE supports singlestep and continuous emulation, in which up to 800 break points are settable. Logicom Communications Ltd, 0817561284

Software

FPGA synthesis. Actel"s Designer field-programmable gate array software is now offered with the Innovative Synthesis Software ACTMap FPGA fitter, which provides a simple route from PALs to FPGAs. ACTMap converts Palasm or EDIF output into binary decision dagrams which are then decomposed into BDD representation of Actel's logic
modules. Output is passed to automatic place-and-route software. Upgrades of Designer and its Windows version carry no additional charge. Actel Europe Lid. 0256 29209.

Logic compiler. Stag claims to supply the "world's fastest and friendliest logic compiler" - CUPL for Windows, which is an FPGA and PLD compiler. the CUPL language supporting combinations of statemachine. truth table and Boolean entry methods. There are four different minimisers at varying levels. including Quine-McCluskey, and polarity optimisation. Output is in several formats, including Open PLA, Palasm and XNF for Xilinx. Stag Programmers Ltd, 0707332148.

Data loggers. An entirely new range of data loggers. the S $P C X$ and associated equipment, is announced by Laplace Instruments. Two types of logger have eight analogue inputs, with an external battery pack. optional card reader and 64 Kbyte 512 Kbyte memory cards. Both are programmed and interrogated from a PC via the software provided. Any combination of 5,1 and 20 mA . thermistor, 1,10 and 100 mV and thermocouple can be handled, depending on model, with resolutions of 1 part in 1000 to an accuracy within $\pm 1 \%$. Laplace Instruments Ltd. 0692500777.

NEW THE DEFINITIVE ‘OFF-AIR’ FREQUENCY STANDARD

IWATSUSS511E DUAL TRACE, 10MHZ TELEQUIPMENT D 1011 10MHZ DUAL TRACE IWATSUSS-580́ DIGITAL STORAGE
SCOPEX 456 6NZ SINGLE TAACE TEKTRONIX 2215 60MHZ2 TRACE DEL TB TEKTRONIX 45:A 50MHZ2 TRACE DEL TB TELEQUIPMEN- S62 SINGLE TRACE 5MHz SCOPE H.P. 8405 F VECTOR VIMETER 1 GH Z PLESSEY TCT 13 SIG GEN/ANAL. $50-300$ BDS ELEQUIPMENT D61A 10 MHZ DUAL TRACE TELEQUPMENTD67A 25MHZ. 2T. DEL T/B H.P 1700A 35MHZ DUAL TRACE HITACHI VC 60^{-5} 10MHZ DIGITAL STORAGE OERTLING VZO SINGLE PAN BALANCES 200 GM OERTLNGVOSINGLE PAN BALANCES 200GM ANALYTCALBALANCES WITH WEIGHTS 250 GM KINGSHILL NS 540 15V 40 A PSU'S CASED, AS NEW ACRON 402P SYNCHRONISING PULSE GEN \& 605 ENCODER RADIOMETER 3 KF6 DIST. METER $20 \mathrm{HZ}-20 \mathrm{KHZ}$ ADIOMETER 4FM2 MOD METER 7MHZ-1GHZ MARCONI TF2304 AMM FMMOD METER PRTBLE HP 5315A 1GH2 F CTR, OPTS 1.283

LIST AVALLABLE BUT 1000 's OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF P\&P AND VAT QUALITY ELECTRONIC EQUIPMENT AL WAYS WANTED

HALCYON ELECTRONICS

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340 CIRCLE NO. 130 ON REPLY CARD

MEASUREMENT DATA ACO JISITION \& CONTROL BOARDS
AR-B3CO1
16 Channel 12Bit A/D Card
£66
AR-B3201
8 Channel, 12 Bit A/D +3 Channel D/A Card

PCL-711B
PCL-8†2-PG
PCL-8.3
PCL-8 8 BH
PCL-814
PCL-8.6
PCL-8. 6
PCL-840
PCL-840
AR-B2901
AR-B2001
AR-B2102
AR-B2102
AR-B2201
AR-B9221
AR-B9101
PCL-720
PCL-722
PCL-724
PCL-725
PCL-726
PCL-726
PCL- 238
PCL. 750
8 Channel, 12 Bit, Da־a Acquisition \& Control Card, Programmable Gai 6 Channel 12Bit, D ita Acquisition \& Control Card. Programmable Gain 32 ChanneL, 12Bit. Dita Acquisition Card
High Perfo mance 18 Chanel, 12 Bit Data Acquisition \& Control Card
Modular Maltifunction 16 Channel, 14Bit. Data Acquisition \& Control Card Modular Multifunction 16 Channel. 16Bit. Data Acquisition \& Control Card $41 / 2$ Digit Voltmete (DCV/ACV/DCR) Card 16 Channe Opto-Isc ated Digital I/P Card 16 Channe SPST Ralay Switch Card 64 Channes Digital l; J Card
3 Por (24 Bit) Digit I I/O, 3 Chan Counter/Timer. Prototype Card 32 Channel SSR Sw \&ching Card (For AR-B922I) 144 Bits ($24^{*} 6$) of Euffered Digital $/ / 0$
24 Bit Dig tal I/O Cad
8 Channel Relay +8 Channel Isolated Digtal $/ \mathrm{P}$
6 Channet 12 Bit D/A Output Card (16 Channel Digital I/P +16 Channel $0 / P$) Stepper Votor Contol (3 Motors), 16 Channel D/IP + 16 Channel D/OP Prototype Developnent Card
PC-Bus 8 Bıt Switct Fxtension Card
PC/XT BUS Expansion System (Master + Slave Cards + 1 m Cable) $\begin{array}{ll}\text { PCX- } 94 & \text { PC/XT BUS Expansion System (Master + Slave Cal } \\ \text { PCL- } 830 & 10 \text { Chann } 1 \mathrm{l} \text { of } 16 \mathrm{E} \text { I Counter Timer (AMD9513 }\end{array}$
SIGNaL CONDITIONING/CONTROL DAUGHTER BOARDS (For use with PCL cards)
PCLD-782 Opto Isolated Digital I/P (16 Channel)
PCLD-785 16 Channel Relay CJP Board.
$\begin{array}{ll}\text { PCLL-787 } & 8 \text { Channet Sample a Hold Card } \\ \text { PCLL. } \\ \text { P88 } & \text { Relay Scanner/Mulfiplexer Board }\end{array}$
PCLC-788 Relay Scanner/Mulfiplexer Board
PCL[-779 8 Channel Isolated Relay Mux and Amplitier Board
COMMUNICATIONS \& INTERFACE BOARDS (RS232/RS422/RS423/RS485/IEEE-488
$\begin{array}{ll}i-104 & 4 \text { Port Serial RS232 PC Card } \\ \text { PCL-743 } & \text { Dual Pon RS } 422 / 435 \text { PC Interface Card }\end{array}$
PCL-744 Intelligent 8 Port FS232 PC Interface Card with on-board CPU
$\begin{array}{ll}\text { AR-E9011 } & \text { Dual Port RS422/485 PC interface Card. } \\ \text { PC-232-485 } & \text { RS232-PS485 or } \\ \text { 232 }\end{array}$
$\begin{array}{ll}\text { PC-232-485 } & \text { RS232-AS485 or (232-422) Converter Adaptor, Self Powered } \\ \text { PCL-848A } & \text { IEEE-488 Interface Board }\end{array}$
ADAIM REMOTE/DISTRIRUTED MODULAR DATA ACQUISITION MODULES
ADAV-4011 Analogue input Mradule ($\mathrm{mV}, \mathrm{V}, \mathrm{mA}$, Thermocouple)
ADAM-4021 Analogue Output Module (V or mA)
ADAM-4021 Analogue Output Moral $\begin{aligned} & \text { Digital Input/Output Module }\end{aligned}$
ADAM-4060 Relay Output Module
AOAM-4520 Isolated RS-232/PS-485 Converter Module
19" RACK MOUNTING MULTI-SLQT INDUSTRIAL PC CHASSIS
AR-IPC12A Industrial 19" Rack Mounting Chassis, 12 Slot, 200W PSU
IPC-610A Industrial 19 19ack Mounting Chassis, Motherboard fitting.
IPC-610MB Industria| 19" Rack Mounting Chassis. Motherboard fitting, 250W PSU
IPC $6520 \quad 19^{*}$ Rack Mount Monitor Kit for 14* Monitor
PC-BUS CARD CHASSIS FOR CUSTOM ENCLOSURES/EMBEDDED APPLICATION
IPC-6706 PC-Bus Card Cag Enclosure Chassis (With 6 Slot Passive Backplane)
IPC-6806 6 Slot Node IPC Chassis, 150W PSU, Floppy + Hard Disk Mountings AR-IPC6MP 6 Slot Hode IPC Chassis, 200W PSU, Floppy + Hard Disk Mountings MBPC-640 Micro Box Industrial PC Chassis (With 3 Slot Backplane)
PCZU-205 PC BUS Expansicn Unit (With 5 Slot Backptane \& Power Supply) IPC-6010 8 Slot Passive Backplane Card Cage ($6^{*} 16+2+8$ Bit), card clamp, speake $\begin{array}{ll}\text { AR CC6LP } & 6 \text { Slot (16 Bit) Passive Backplane Card Cage. Full Length, } 150 \mathrm{~W} \text { PSU } \\ \text { AR CC11LP } & 11 \text { Slot (16 Bit) Passive Backplane Card Cage, Full Length, } 150 \mathrm{~W} \text { PSU }\end{array}$

SOLID STATE FLASH/SRAM/RON DISK CARDS
AR-B7008 512 K FOM or 253 K SRAM Disk Card
AR-B7010 512 K R.OM Disk Jard.
AR-B7040 4MB Flash/SRAN/ROM Disk Card
PCD-890 $\quad 12 \mathrm{MB}$ Flash/SRAM/ROM Disk
£59

PCD-892B 6MB Flash/ROM Disk Card
200

Plus MUCH more
Please CaLL for vour FREE copy of our latest Catalogue

> tM, Dester \& Fducational Enquiries Welcome
\qquad
Integrated Measurement Systems Lid -s Mreqrated $305-308$ Solent Business Centre, Millbrook Rd West SYSTEMS

Tel: (0703) 771143 Fax: (0703) 704301

DESIGN BRIEF

Versatile twin amplifier has many uses

Combining a current-feedback amplifier in the same package as a transconductance amplifier produces a versatile building block, as lan Hickman explains.

There are many dual op-amps available, but the subject of this design brief is not a dual, but rather a twin amplifier. The eight-pin $L T / 228$ from Linear Technology contains an operational transconductance amplifier (OTA) with a maximum bandwidth of 75 MHz . Its second element is a useful current feedback amplifier, or CFA, with a bandwidth of 100 MHz .
Single-ended current output of the transconductance amplifier is tied internally to the non-inverting input of the current-feedback amplifier, which can act as a buffer. This junction is also brought out to a pin. Since the non-inverting input resistance of the CFA is very

Fig. 1a. Electronic gain control is an ideal application for operational transconductance amplifiers. This design has a bandwidth of around 20 MHz and is adjustable from - 18 to $+2 d B$. Curves in (b) show frequency characteristics for three CFA gains. Bandwidth of the OTA section is presented in (c)i, THD versus input level is illustrated in (c)ii and small-signal control-path bandwidth versus $I_{\text {set }}$ is shown in (c)iii.

(b) FREQUENCY (Hz)

(c)

Total Harmonic Distortion vs input Voltage

INPUT VOLTAGE (mVp-p)

Voltage Gain and Phase vs

high, at typically 25 MS 2, it may be ignored and the OTA used on its own if desired.
One of the more obvious applications for an OTA is as an electronically-controlled variable gain stage. Figure 1a shows such a circuit with an input resistance of $10 \mathrm{k} \Omega$, a gain range of -18 to +2 dB and a -3 dB handwidth of around 20 MHz . Its input may be differential as shown. or unbalanced, inverting or non-inverting, in which case $R_{3 \mathrm{~A}}$ or $R_{2 \mathrm{~A}}$ respectively may be omitted. Gain is directly proportional to $I_{\text {set }}$, the current into pin 5 of the device.
Compensation for two internal diode drops in the gain setting section is provided by the Thévenin source arrangemem, R_{4} and R_{6}. Assuming stabilised 15 V rails. this arrangement ensures that any set gain remains constant within 1% over the device's full temperature range of -55 to $+125^{\circ} \mathrm{C}$.
Resistor values need changing if a different negative supply rail voltage is used. If the negative rail is not stabilised, compensation may be achieved via an LT/004 negative 2.5 V reference. Alternatively, for more accurate and linear control of gain, $I_{\text {,el }}$ may be supplied by a single op-amp voltage-to-current converter circuit.
The input attenuator ensures that the circuit can accept inputs up to 10 V pk-pk. Mutual conductance g_{m} (output current divided by the voltage between pins 2 and 3 , in $\mathrm{mA} / \mathrm{V})$ is $1\left(0 \times I_{\text {ser }}\right.$. In the circuit shown this flows in R_{1}, buffered by the high input impedance of the currentfeedback amplifier.
At low frequencies. voltage gain of the current-feedback amplifier is $\left(R_{\mathrm{t}}+R_{\mathrm{p}}\right) / R_{\mathrm{y}}$. This applies up to the frequency where the CFA's gain bandwidth product of about 1 GHz becomes significant. How bandwidth of the CFA varies with demanded gain is shown in Fig. 1b.
Overall, the gain A_{v} in Fig. la is given by

$$
A_{\mathrm{v}}=R_{3} /\left(R_{3}+R_{3 \mathrm{~A}}\right) \times 10 \times I_{\mathrm{sel}} \times R_{1} \times\left(R_{\mathrm{t}}+R_{\mathrm{g}}\right) / R_{\mathrm{g}} .
$$

If maximum expected input is less than $10 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, the $10 \mathrm{k} \Omega$ resistor(s) at the input may be reduced, giving an increased A_{v}. If an increase in A_{v} is not needed, R_{g} may be increased. This demands less gain from the CFA and increases the circuit's bandwidth. However, any substantial increase in bandwidth may be limited by the bandwidth of the transconductance amplifier section. which is shown in Fig. 1c i.
Total harmonic distortion of the transconductance amplifier as a function of input signal amplitude is shown in Fig. 1c ii. In the application in Fig. Ia. $I_{\text {set }}$ is basically a direct current whose value is adjustable for any desired gain. In some applications, such as Fig. 6. high-frequency signals may be inserted in the control path input at pin 5. Figure 1c iii shows the small signal control path bandwidth versus $I_{\text {,el }}$.

[^4]
Electronically tunable filters

Another major application for transconductance amplifiers is electronically tuned filters. A single-pole filter is the simplest possible type. offering a flat pass-band with a - $6 \mathrm{~dB} /$ octave roll-off in the stop-band. Such a filter can be electronically controlled over a wide range, as Fig. 2 illustrates.
For operation as a low-pass filter the high-pass input should be grounded. and vice versa. Considering the low-pass case, at high frequencies where C is almost a short circuit, there is little output and what there is will be in quadrature. On the other hand, at low frequencies. where C is effectively open circuit, voltage gain of the OTA A is indefinitely large. It is included along with the non-inverting gain of two of the CFA (the high-pass input is grounded) within an overall negative-feedback loop to the OTA's inverting input, pin 2.
As the two voltage dividers at the OTA inputs have the same ratio, there is unity non-inverting gain from the low-pass input to the output. The -3 dB point where the phase shift through the circuit is -45° can be set by

Fig. 2. Operational transconductance amplifiers simplify single pole low, high and all-pass filter design. For low-pass operation the high-pass input is grounded and vice versa for high-pass. With the two inputs tied together, ar all-pass response is obtained.

Fig. 3. Second-order state variable filter with electronic tuning and lowpass and band-pass outputs. This design features logarithmic tuning sensitivity.

Fig. 4. In the all-pass filter based oscillator, (a), the 0.6 V Vbe of Tr1 stabilises amplitude at $1.2 \mathrm{~V} p k$-pk. It does this by robbing Iset from IC3 until the loop gain just equals unity. Curve (b) shows open loop gain and phase as Bode and vector plots while (c) gives output waveforms of IC1 and IC3. Scales are horizontal 125ns/div vertical and $500 \mathrm{mV} / \mathrm{div}$. In (d), output spectrum from IC2 shows second harmonic content $38 d B$ below the fundamental 2 MHz output. All other harmonics are greater than $40 d B$ down. Scales horizontal $2 \mathrm{MHz} /$ div; vertical $10 \mathrm{~dB} / \mathrm{div}$.

(d)

adjusting the current $I_{\text {sel }}$ into pin 5 .
If the low-pass input is grounded instead. a high-pass response is obtained. with the same -3 dB corner frequency and unity imverting gain in the pass band. With the two inputs tied together. an all-pass response is obtained. This is as predicted by the Theorem of Superposition. passing from zero phase shift att $0 \mathrm{~Hz}_{z}$ through 90° at the comer frequency to 180° at high frequencies.
Two $L T 1228$ s can be conligured to give electronically tunable versions of any of the standard second order filter sections. Part of the data is the ingenious circuit shown in Fig. 3, which accepts inputs up to 3 V peak to peak.
Unlike circuits designed with conventional integrators. this version of the state-variable filler does not need a third inverting op-amp. This is because the OTA integrators have both inverting and non-inverting inputs available. If one were used. then a high-pass output would also be available. The circuit provides the novel feature of logarithmic tuning sensitivity. As a result. it
could be turned into a logarithmic sweep generator. To do this. the value of the damping resistor R_{d} would have to be raised and antiparallel diodes connected in series with it. Oscillation would also need to be ensured by including negative damping to the non-inverting input. pin 3. of the upper OTA.

Oscillators

All-pass circuits can also be configured as oscillators. The firss such example probably predates WWII and several such designs having appeared in this journal. One of these ${ }^{1}$ was a very low distortion audio oscillator covering 20 Hz to 20 KHz and using an ingenious distortion out- phasing scheme.
Figure 4a shows the circuit of an all-pass oscillator I have experimented with. Since both of the all-pass stages are non-inverting at dc, a third LT1228 was added to give the necessary inversion. This addition permits overall negative feedback and hence stability at 0 Hz . It also stabilises oscillation amplitude. Figure 4b shows the gain and phase of the circuit with the loop broken.

but with $I_{\text {ser }}$ applied to pin 5 of $I C_{3}$ equal to what it is when the loop is closed.
At the corner frequency of the two all-pass stages. each contributes 90° phase shift, giving a total loop gain of exactly unity, non-inverting, and hence stable oscillation. This occurs at a level which just turns on T_{1} on positive-going peaks, reducing the $I_{\text {sel }}$ available to $/ C_{3}$ as necessary.
Figure 4c shows output waveforms of $I C_{3}$ (leading trace) and $I C_{1}$ with tuning control $R V_{1}$ set for a 2 MHz output. Low distortion and accurate quadrature are both evident. The circuit operates from well below 1 MHz to beyond 5 MHz . By 5 MHz the quadrature phasing is less than 90°. due to the onset of additional loop phase shift in the inverting stage $/ C_{3}$.
Beyond about 7 MHz , the quadrature phasing becomes so marked that the circuit switches to a different mode of oscillation. There is around 60° of phase shift in each of the three stages and operation in this mode continues to 25 MHz or more. Figure 4 d shows the output spectrum of $I C_{2}$ at 2 MHz (horizontal division $=2 \mathrm{MHz}$, start $=$ $\mathrm{OHz}_{\mathrm{z}}$) At 1 MHz and below all harmonics are more than 4)dB down.

The OTA is versatile. Among other things, it allows an electronically-controlled resistor to be simulated by grounding its non-inverting input and connecting its inverting input to its output. If the output is taken positive relative to ground, the OTA will sink current, or
source if taken negative, just as a resistor would.
Figure 5a shows this arrangement used as part of a spot frequency Wien Bridge oscillator operating from a single supply. The OTA acts as an atenuator to stabilise the oscillator's output amplitude.
To avoid distortion due to overdrive, the gain of 34 supplied by the CFA keeps the swing at the input to the OTA down to 15 mV This precaution is necessary since for lowest distortion the $L T / 228$. like all OTAs, can only accept a limited input swing.
Total harmonic distortion reaches 0.2% at 30 mV rms input. An OTA's permissible input voltage swing is limited. This is because there is no emitter to emitter degeneration in the input stage, as is clear from Fig. $\mathbf{5 b}$. Operational transconductance amplifiers are frequently required to operate with no overall feedback to keep the inverting to non-inverting input voltage to a small value.
Grounding an OTA`s inverting input and connecting its non-inverting input to its output also simulates a resistance, a negative one in this case. Figure 5c shows such a negative resistor. It is connected across an rf tank circuit, so as to cancel the losses and raise the tuned circuit's dynamic resistance R_{d} to infinity. Here, the $9.1 \mathrm{k} \Omega / \mathrm{k} \Omega$ network at the OTA's input keeps the drive to a level that the device can handle linearly. Again, a transistor is used as a detector to sense output amplitude from the CFA buffer. It also adjusts the $I_{\text {set }}$ of the OTA to stabilise oscillation amplitude.

Fig. 6. Frequency doubler using an LT1228 for four quadrant multiplication (a). Circuit works by phasing out residual of the input waveform in the output. Oscillograph (b) shows 500 kHz sinewave doubled to 1 MHz . Upper trace input at $1 \mathrm{~V} /$ div, lower trace output at $50 \mathrm{mV} /$ div. Horizontal scaling is $1 \mu \mathrm{~s} /$ div. Trace (c) shows output spectrum. The 500 kHz input is suppressed by 40 dB . At 1 MHz , input third harmonic at 1.5 MHz is 35 dB down relative to the wanted doubled output. All other outputs were at or below analyser noise level.

Fig. 7. Video cross fader. Relative to unity gain (potentiometer at mid travel) a 15 MHz bandwidth to each signal is maintained down to an attenuation of 20 dB . Suppression of one or other signal at each end of the potentiometer travel is complete.

An intriguing possibility is the use of this circuit to maintain a constant very fow level of oscillation in the tuned circuit of a simple radio receiver. Level would remain constant over the entire tuning range and the circuit would act both as an automated reaction control and as AGC. Such a receiver could handle both AM and SSB signals, offering very good selectivity due to the tuned circuit operating at a very high Q.

Sinewave frequency doubling

An OTA can also function as a squarer, and hence as a frequency doubler. Current swing at the output of an OTA is proportional to the amplitude of the signal applied to the inverting or non-inverting input. It is also proportional to the magnitude of $I_{\text {sel }}$, and therefore to the product of the two quantities.
If a signal is applied simultaneously to both the inverting and $I_{\text {set }}$ inputs, output current will contain a component representing the square of the input voltage. The resulting circuit is a two quadrant multiplier. Signal input can be bipolar but the $I_{\text {set }}$ current must always be greater than zero, or the device simply cuts off. So the

input merely modulates the magnitude of $/$,et , which is always positive. The de component of $/$ set is responsible for a component in the output current corresponding to the original input.
To try the scheme out. I made up a doubler circuit using the LT/228 on the lines described but with a crucial addition. Fig. 6. Since the signal is applied to the imverting input, pin 2, all components of the voltage developed across the $100 \Omega 2$ load resistor at the output are inverted in phase relative to the input. As a result, the component of the input voltage in the output can be phase cancelled by adding in a component from the input via the upper $1.2 \mathrm{k} \Omega$ resistor, leaving just the squared component. Since the square of $\sin (w t)$ is

$(1-\sin (2 w t)) / 2$, the circuit will thus double the frequency of an input sinewave to 2 wt radians per second. Due to phasing, it will have no component at the original wt. The circuit is purely aperiodic. Apart from the trimmer at pin 2, no frequency sensitive components are involved.
Trimming extends the operating frequency range of the circuit by compensating for slight phase shift in the OTA at higher frequencies. Output will therefore be a pure sinewave at wice the frequency of the input, assumed to be a sinewave, over a wide range of frequencies. However, it would be wise not to rely on as much suppression of the fundamental input as illustrated in Fig. 6c.
As a final example of the many applications for this versatile part, Fig. 7 shows the circuit of a video cross fader. This uses two $L T / 228$ s in the feedback loop of an LT/22.3 CFA. Each of the two video inputs is applied via a $1 \mathrm{k} \Omega$ resistor to the OTA section of an $L T / 228$, the CFA sections being unused.

Both OTA output currents are connected to the inverting input of a further CFA. This input is a lowimpedance current-driven type. Negative feedback is applied from the output of the CFA to the non-inverting input of each OTA via a $1 \mathrm{k} \Omega$ resistor. In this way, unity gain is given to cach signal when the wiper of the $10 \mathrm{k} \Omega$ potentiometer is at mid-travel.
The amount of signal from each input passing to the output is set by the ratio of the set currents of the two LT/228s - not by their absolute value. Both set currents remain high over most of the potentiometer's range. This keeps the bandwidth of each signal in excess of $15 \mathrm{MH} z$, even when attenuated by 20 dB . By this time, the other signal is dominant in the output video, and as the pot reaches the end of its travel, the attenuated signal is turned off completely.

Reference

I. Phase-shifting oscillator, R Rosens, Wireless World Feb. 1982 pp 38-41.

USING RF TRANSISTORS Choosing the right device

How does the intended application affect transistor choice? And what type of device would give the best performance? In this extract from their book RF Transistors: Principles and practical applications, Norm Dye and Helge Granberg answer both questions.

Fig. 1. One way to select an it transistor for a specific application. Usually, voltage is predetermuned When considiering
frequency, you also need to consider gain.
Power selection is the most straghtforward.

Looking first at low power, and the needs of a low noise amplifier, the main transistor selection criteria are operating frequencs and noise figure. The most practical consideration is probably to choose a transistor characterised by the mannfacturer with the necessary nosise parameters. These are minimum noise figure at a given frequency, noise resistance and source resistance for mimimm noise

Manuftemers freguently plot gain and noise ligure contours for a specified bias condition and frequency of operation. These are extremely helpful in making the necessary trade off between optimum gain and optimum noise when designing the low noise stage
Choosing a transistor for other low power applications is generally simpler than for either low noise or high power hecause the choices are fewer. Most low power transistors have similar breakdown voltages although a few are fesigned for higher voltage use.
Occasionally, a special low power tansistor designed to operate at very low voltages and low current will crop up. But generally all that need be done is to select a low power transistor with sufficient cument rating for an intended application and with a high enough cut-olf frequency to provide the desired gain at the operating frequency. Where switching is involved the higher the cut-olif frequency, the faster the switching capability of the device.
Pachage type can be an important consideration when choosing a fow power transistor. The same die is frequenly oftered in meal can, platic stripline opposed emitter (SOE), surface roount. and hermetically sealed metalceramic pachages. Usually, the smaller the package the lower the package parasitics and

the better the RF performance of the die espectially al higher frequencies.

High power applications

A wite choice of high power of transistors, i.e devices greater than 1 W . presents additional problems in selection. The major distinctions are in voltage of operation. operating frequenty and output power, Fig. 1
Assuming the application is an amplifier, other factors include linearity and bandwidih regutred, efficiency, thermal requirements for reliability and. of course, the type of packane. Ruggedness, defined as the ability to withstand unfavourable load environments, is also a factor.
Voltage. Operating voltage is usually a predetermined specification, but in some applications - such as tixed location transmitters there may be a choice. In these cases, designers must determine the advantages and disadballages of low and high voltage designs. There is no significant difference in input impedance and matching. But output impedance is highly dependent on operating voltuge and power output level.
Depending on power level. the operating voltage that gives the lowest impedance transformation required of the load impedance. usually 50Ω, should be selected. In multistage designs, the drivers and predrivers are often operated at a lower supply voltage than the power amplifier stage - partly due to their naturally higher ourput impeatances. The result is a closer match to the input of the following stage.
Frequency. Choice of operating frequency is more straight-forward. Marulacturers generally grade high-power rf transistors by frequency as well as voltage. Also, a transistor with adequate gain at the desired operating frequency should be selected.
High-frequency transistors can always be used at lower freyuencies, although special attention needs to be paid to stability, ruggedness, and cosi. Normally, gain in rf transistors decreases with increasing frequency. When used at frequencies below their normal operating range, the gain will be higher and may create instabilities.
High frequency transistors are built using shallower diffusions. lower collector resistivity and less emitter ballasting - all necessary to achieve greater amplification at higher frequencies. Unfortunately, these are also the opoosite of what is needed to improve ruggedness of a transistor. Gain and ruggedness at a
given frequency are a trade off in device design.
Finally, high frequency transistors cost more than lower frequency transistors, all other factors being equal. So, choose a transistor that will give the desired gain, but no more, at a given frequency.
Power. The third major factor, output power, is an easier choice - simply select one that will give a sufficient level. Design of an amplifier line-up should always start at the output stage, working back from that point to select transistors. Gain available from the output transistor then sets the requirements for the driver stage.

Bandwidth considerations

Circuit design usually determines bandwidth. But at higher frequencies, the Q of the input impedance of a power transistor increases. This makes it more difficult to achieve broad hand circuit designs. As the transistor's power rating and operating frequency increase, input and output impedances of the device decrease.
Think of it this way. Higher power transistors are simply low power transistors connected in parallel. Resistors in parallel result in a lower overall resistance; capacitors in parallel result in a higher overall capacitance. The
net result is an input impedance for highpower, high-frequency transistors that is 100 low to be practical for circuit designers having access only to the terminals of the transistor.
Manufacturers have alleviated the problem of low input impedance and high Q of highpower, high-frequency transistors by placing impedance matching networks inside the device package, near to the die. These not only raise the impedance of the transistor as seen at the edge of the package but also transform impedance values to reduce the reactive components, and hence Q.

Impedance matching

An internally-matched transistor causes less difficulty in broad band circuits over its specified frequency range. In general, bipolar transistors designed for VHF and rated for 40 50 W or higher use internal matching techniques. At UHF the corresponding numbers are $10-20 \mathrm{~W}$ and at 800 MHz about 5 W .
Internal matching networks are low-pass filters usually optimised for the high end of the specified spectrum range, where power gain and impedance levels are lowest. Most rf power devices for operating below 1 GHz have only internal input matching. But internal output matching is also applied to higher power

UHF transistors and most microwave devices.
Normally, the input matching network consists of an $L C L$ combination, where L is the distributed inductance of the die bonding wires and C is a mos capacitor, Fig. 2. The same guidelines are used for output matching network designs.

Obviously, these internal matching networks place some banclwidth limitations on device operation, particularly at frequencies above the rated limits of operation. For example, a matched transistor designed for operation in the $225-400 \mathrm{MHz}$ range should perform well within this band.
Above 400 MHz , power gain will drop sharply and the base-to-emitter impedance will increase in its reactive component. There comes a point where the given drive power cannot be transferred to the die itself. At an even higher frequency, the internal matching network will have a point of resonance where the input impedance becomes extremely high and the device's power gain is minimal.

Below the low end of the specified operating range, the internal matching network has a diminishing effect. However, at some intermediate frequency, $100-200 \mathrm{MHz}$ in this case, the matching network may produce an even lower input impedance than without internal

Table 1. Summary of specific characteristics of each device type. Note that the table focuses only on silicon mosfets in the fet category and some of the characteristics may not apply to jfets and other depletion mode fets. Similar electrical sizes for each are assumed for the impedance comparison.

Characteristic	Bipolar	Mosfet
$Z_{\text {in }} R_{\text {s }} / X_{\text {s }}(2.0 \mathrm{MHz})$	$3.80-j 2.0 \Omega$	19.0-j3.0S
$Z_{\text {in }} R_{\mathrm{s}} / X_{\mathrm{s}}(150 \mathrm{MHz})$	$0.40+j 1.50 \Omega$	$0.40+\mathrm{j} 1.50 \Omega$
$Z_{\text {OI }}$ (load impedance)	Nearly equal for each transistor, depending on supply voltage and power output.	
Biasing	Not required, except for linear operation. High current ($/ I_{C} / h_{\text {FE }}$) constant voltage source necessary.	Required for linear operation. Low current source, such as resistor divider is sufficient. Gate voltage can be varied to provide an AGC function.
Linearity	Low order distortion depends on electrical size of die, geometry and $h_{\text {FE }}$. High order intermodulation is a function of type and value of emitter ballast resistors.	Low order distortion worse than with bipolars for a given die size and geometry. High order intermodulation better due to lack of ballast resistors and associated non-linear feedback.
Stability	Instability mode known as half f_{0} troublesome because of varactor effect in base-emitter junction. Lower ratio of teedback capacitance versus input impedance.	Superior stability because of lack of diode junctions and higher ratio of feedback capacitance versus input impedance.
Ruggedness	Usually fails under high current conditions (over-dissipation). Thermal runaway and secondary breakdown possible. h_{FE} increases with temperature.	Over-dissipation failure less likely, except under high voltage conditions. $g_{\text {FS }}$ decreases with temperature. Other failure modes: gate punch through
Advantages	Wafer processing simpler, making devices less expensive. Low collector-emitter saturation voltage makes low voltage operation feasible.	Input impedance more constant under varying drive levels. Better stability, better high order intermodulation, easier to broadband. Devices and die can be paralleled with certain precautions. High voltage devices easy to implement.
Disadvantages	Low input impedance with high reactive component. Internal matching required to increase input impedance. Input impedance varies with drive level. Devices or die can not easily be paralleled.	Larger die required for comparable power level. Non-recoverable gate puncture. High drain-source saturation, which makes low voltage, high power devices less practical.

matching. This is due to the lesser effect of the series $L s$ and the remaining shunt C.
Dropping further in frequency, the effect of the intemal $L s$ and $C s$ will reach a point where a normal input impedance is approached. As a result, the internally matched transistors may not be suitable for bandwidths wider than those that the transistor was originatly designed for.

There are certain design techniques for extemal circuitry that allow matched transistors to be used at lower frequencies and for extended bandwidths. with somewhat compromised performance. But such matching circuitry is usually complex. Furthermore, the device impedance profile at these frequencies - not given in most data sheets - must be known.

Mosfets versus bipolars

It appears that extremely wideband amplifier designs are only possible with mosfets. For if power purposes, the techmology has been available for approximately fifteen years, although most of the breakthrough has occurred within the past five.
No internal impedance matching is used with mosfets. except in rare cases at $80(0)$ $900 \mathrm{MH} / z$ and higher frequencies. Such data sheet bandwidth specifications as $2-175 \mathrm{MHz}$. $100-500 \mathrm{MH} \not \approx$, and 390 MHz are misleading since all unmatched mosfets, as well as bipolar transistors, are operable down to DC if stability can be maintained. They can also be used at higher than the specified frequency limit, keeping in mind the normal 5 dB per octave power gain roll off.
Since the input impedance of a mosfet is several times higher than that of a comparable bipolar transistor without internal input matching, multi-octave bandwidths can easily be realised with proper circuit design. But because a mosfet is a high voltage device by its nature (high $R_{\mathrm{DS}\left(\mathrm{m}_{1}\right)}$ compared to bipolar $I_{\text {(EE, at })}$) its perfornance in low voltage applications may be challenged by its bipolar counterpart.

Fet or BJT?

There are now two basic types of rf power transistor - bipolar junction and field effect. Bipolar junction transistors, or BJTs.s yield superior performance in some applications. In others. field effect transistors do a better job. Only two types of bipolar junction transistor are commercially available today, NPN and PNP.

Despite their inferior performance over NPN types, PNP transistors are primarily used in land mobile communications equipment requiring a positive ground system. All UHF and higher frequency devices are NPN due to their higher mobility of electrons as majority carriers, translating into higher cut-off frequency and improved high-frequency power gain.

Far more types of fet are commercially available for RF power use. The static induction transistor, or sit. is a version of a deple-tion-mode junction fet and metal gate

Schotky fet, or mesfet. Usuatly. the mesfet is made of gallium arsenide and is also a deple-tion-mode type

Another depletion-mode device is the standard junction tet. But this is only practical in low power pre-drivers and mixers, etc. The most common RF power fet is the vertical channel silicon mosfer. This device comes in a number of varieties of die structures. each having slightly different characteristics of $R_{\mathrm{DS}(o m)}$) and the various capacitances. It has been available since around 1975. and numerous improvements have been made in its performance and manufacturability.

There is aiso a lateral channel power mosfet in existence, consisting of a series of small signal fels connected in paralle! on a single chip. Due to its lateral channel structure. it consumes noore die area for a given power rating than the vertical channel device. As a result it is cost effective. However it has extremely low feedback capacitance, $C_{\text {RSS }}$, resulting in increased stability and higher gain at high frequencies.
Both these silicon mosfets are enhancementmode devices. For the drain-source channel to conduct. their gates require positive voltages with respect to the sources. Conversely, a depletion mode fet conducts when the gate and source are at an equal potential, and requires a negative gate voltage for turn off (depletion).

Comparing parameters

With of amplifiers, a major difference between a BJT and a mosfet is the need for base/gate bias voltage. A BJT only needs base bias for linear operation. There is very little difference in its power gain between a biased (class A. AB , or B) and an unbiased condition (class C).
In an unbiased enhancement-inode fet, gate input voltage swing must overeome the gate threshold voltage to turn the fet "on" with its positive peaks. Some fets have their gate threshold voltages specified as high as 6 V . If the dc gate voltage is brought closer to its threshold level. a smaller voltage swing is needed to overcome it. Since in each case the gate-source of impedance is about the same. the actual power gain can vary as much as 56dB depending on the initial threshold voltage and frequency of operation.

For linearity, a fet also needs to be biased in class A or AB operation. Since no de current is drawn, the bias source may be a simple resistor divider, whereas a BJT requires a constant veltage source of $0.65-0.70 \mathrm{~V}$ with a current capability of $/ C_{\text {(peak) }} / h_{\mathrm{FE}}$.

Most KF power design engitteers accustomed to circuit design with BJTs are beginning to look at fet designs and learn about the differences in parameters and behaviour between the two types of semiconductors. Table I. Circuit design with each is very similar. The same if design practices - grounding, filtering, bypassing, and creating a good circuit board layout - all apply.

For each type of device, some precautions must he daken. Fets are sensitive to gate rupture. This is caused by excessive do potential

Fig. 2. Electrical models of an unmatched transistor (a) and one with internal input matching (b). Components X1 and X2 represent the standard base and emitter wire bonds. In (b), $X 1$ and X3 represent wire bond loops whose height must be closely controlled. Component X4 is a mos capacitor with typical values of $150-500 \mathrm{pF}$ for UHF and up to 2000 pF for VHF.
or an instantancous transient between the gate and the source. The effect can be compared to exceeding the voltage rating of a capacitor. usually resulting in a short or leakage.

A power fet can be "restored" in some instances by applying a voltage lower than the rupture level between the gate and the source. The current must be sufficient. but not higher than $1-1.5 \mathrm{~A}$, to clear the gate short. A higher curent would fuse one of the bonding wires to the area of the short on the die.
Some cells will always be destroyed, but with larger devices - 30W and higher - no difference in performance may be noticed. However, long term reliability can be jeopardised. and the practice is not recommended where high reliability is required.
A weak spot with the BJT is the possibility of themal runaway. Devices with diffused silicon emitter ballast resistors are less susceptible than those having nichrome resistors. The diffused silicon resistors have a slight positive temperature coefficient: the nichrome ones have near zero coefficient. However, the diffused resistors are non-linear with current. Devices using them are less suitable for applicarions requiring good linearity.
The main reason for thermal runaway of a $\mathrm{B} J \mathrm{~T}$ is that h_{FE} increases with temperature. In a mosfet. $g_{\text {FS }}$ goes down, trying to turn the device off. In contrast, the gate threshold voltage decreases by about $\operatorname{lm} \mathrm{V} /{ }^{\circ} \mathrm{C}$, making the temperature profile of a gate-biased device dependent on the initial value of $g_{F S}$ and the voltage of operation.
Figures of merit for a BJT and fet are defined as the emitter periphery/base area and gate periphery/channel length respectively. In practical tems these relate to the ratio of feedback capacitance to input impedance. This is because finer geometries produce lower feed-
back capacitance for common emitter and common source configurations.
It appears that devices with higher figures of merit are more stable. This would be true, except that power gain is also higher, leading to instabilities through stray feedback. At a high frequency, feedback capacitance produces positive feedback due to phase delays.
One more BJT instability mechanism is a result of a varactor effect in its diode junctions, mainly the collector-base. This "half f_{0} " is usually a steady spurious signal at half the frequency of the excitation. Lack of junctions in a fet mean this phenomenon is unknown in mosfet power circuits.

Matching impedance

The largest difference in impedance matching can be seen in the base-emitter and gatesource impedances. At dc the mosfet has an infinite gate-source impedance, whereas the BJT exhibits the impedance of a forwardbiased diode.

At higher frequencies, depending on the device's electrical size, the gate-source capacitance, $C_{\text {iss }}$, is enhanced by the Miller effect. This, together with the wire bond inductances, forms a complex impedance which may be lower than that of the BJT. Output capacitance $C_{\mathrm{OB}} / C_{\text {OSS }}$ is almost equal for both types, of equivalent electrical size. Output capacitance has a large effect on the efficiency of an amplifier. This is because it must be charged, to around twice the supply voltage, and discharged again during each cycle of the operating frequency. Power used in charging is dissipated in the amplifying device. At a single frequency, a part - but not all - of the capacitance can be tuned out since its value varies with the output voltage swing.
Power loss due to output capacitance for a single ended BJT amplifier, for example, can be defined as,

$$
P_{\mathrm{s}}=\left(2 C_{\mathrm{ob}}\right)\left(V_{\mathrm{CC}}\right)^{2}(f)
$$

where P_{s} is power loss, f is frequency and efficiency is $P_{\mathrm{oul}} /\left(P_{\mathrm{oul}}+P_{\mathrm{s}}\right)$.
Power loss is directly related to capacitance and to the square of the supply voltage. So a higher operating voltage does not always result in higher efficiency, as commonly thought.

Equivalent parameters and their designations for bipolar transistors and mosfets are compared in Table 2. Note that all parameters are not applicable to both types of devices.

RF Transistors: Principles and practical applications is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614).
288pp HARDBACK 0750690593 Cost £19.95 + Postage £2.50

Bipolar mosfet
$B V_{\text {CEO }} \quad B V_{\text {DSO }}$

$B V_{\text {ces }}$	$B V_{\text {DSS }}$	Breakdown avalanche voltage, measured with the base and emitter or gate and source shorted. Normal method of measuring mostet breakdown voltage.
$B V_{\text {CBO }}$	$B V_{\text {DGO }}$	Breakdown avalanche voltage, measured with the emitter open. Not specified or measurable with mosfets. Gate-source rupture voltage could be exceeded.
$B V_{\text {Ebo }}$	$V_{\text {GS }}$	Reverse breakdown voltage of the base-emitter junction. Not specified or measurable with mosfets unless dene carefully at low current levels. Gate rupture can be compared to exceeding a capacitor's maximum voltage rating.
V_{B} (forw	d) $\quad V_{G S}$	Not specified or necessary in most cases for a BJT. For a mosfet this parameter determines the turn-on gate voltage, and must be known for biasing the device.
$I_{\text {ces }}$	J ${ }_{\text {SS }}$	Collector-emitter or drain source leakage current with base and emitter or gate and source shorted. BJT and fet parameters are equivalent and normally the only effects of leakage are wasted dc power, increased dissipation and long term reliability.
$I_{\text {ebo }}$	$I_{\text {GS }}$	Base-emitter reverse leakage current and gate-source leakage current. Not normally given in B.JT data sheets, but important for mosfet biasing. Both affect their associated devices's longterm reliability.

$V_{\text {CE }}(S A T) V_{\text {DS }}(S A T)$		Device saturation at dc. Not usually given in BJT data sheets but important in certain
$h_{\text {FE }}$	$g_{\text {FS }}$	These are parameters for low frequency current and voltage gain, respectively. In a mosfet the $g_{F S}$ is an indication of the device's electrical size. To a certain extent, it depends on device type and die geometry.
$f_{\text {¢ }}$	(f_{T})	Unity current or voltage gain frequency. Not given in many BJT or mosfet data sheets. The value can be two to five times greater for the mosfet for equivalent geometry and electrical size.
$\bar{G}_{\text {PE }}$	$G_{\text {PS }}$	Power gain in common-emitter or common-source configurations. This figure is roughly the same for both types of devices. It is normally regarded as current gain for the BJT and voltage gain for the mosfet.
$c_{\text {ib }}$	$c_{\text {iss }}$	Base-emitter or gate-source capacitance. Rarely given for a BJT. In if power fets the $C_{\text {iss }}$ has a greater effect on the gate-source impedance.
$\mathrm{C}_{\text {ob }}$	$C_{\text {oss }}$	Collector-emitter or drain-source capacitance. Both are usually specified, and are approximately equal in value for a given device rating and voltage. Both tare combinations of mos and diode capacitance.
$c_{\text {rb }}$	$C_{\text {rss }}$	Collector-base or drain-gate capacitance. Rarely specified for BJTs. Normally referred to as the feedback capacitance for mosfets.

CLASSIFIED

ARTICLES FOR SALE

Cooke International

 SUPPLIER OF QUALITY USED TEST INSTRUMENTSANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. AL WAYS AVAILABLE SPECIALIST REPAIR WORK \& CALIBRATION UNDERTAKEN

ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.,K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS.
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: $(+44) 0243545111 / 2 \quad$ Fax ($(+44) 0243542457$
HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED

PURCHASE FOR CASH
SURPLUS - OBSOLETE - REDUNDANT
EXCESS Stocks of electronic, electrical components/accessories, part processed and/or finished products. Please subnit preliminary information or lists for immediate response ro: K.B. COMPONENTS

21 Playle Chase, Gt. Totham, Maldon, Essex CM9 BUT Telephone: 0621893204 Facsimile: 0621893180

TURN YOUR SURPLUS
TRANSISTORS, ICS ETC, INTO CASH
Immediate settlement
We also welcome the opportunity to quote for complete factory clearance.
COLES-HARDING Contact
Wishoing \& CO. 103 South Brink Wisbech, Cambs PE14 ORJ
ESTABLISHED OVER 15 YEARS
Buyers of Surplus Inventory
Tel: 0945584188 Fax: 0945475216

FIELD ELECTRICLTD

Test \& Measurement Equipment: IBM Compatible Computers. Power Supplles: Monitors: Audio Equipment' Disk Dives Motherboards: Telephone Equipment Piugs \& Connectors: Mall order Service pay by cheque: PO Access
or Visa, Callers by arrangement. Field Electric Lid, Unit 2
Merrymead Workshops, Willows LInk, Stevenage, Herts SG2 \&AB 0438353959 : $0438716931: 0836540328$

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact Pat Bunce on:

Tel: 081-652 8339 Fax: 081-652 8931
SPECTRUM ANALYSER H.P.141T.
85523, 85546. 1250 Milz Ex Cond, any
test \ddagger lofo Tel 1734815704

VALVES AND C.R.T.S
 (also Magnetrons, Klystrons, 4CX250/350) Minimum order charge of $\mathbf{8 5 0}+$ VAT

One million valves in stock. Obsolete types a speciality! Fax or phone for quote
Special prices for wholesale quantities.
Orders from government departments, overseas etc. most welcome Many other types in stock. Please enquire re any type not listed.
CATHODE RAY TUBES 400 different types in stock
Please enquire if your requirements are not listed below

$3 \mathrm{JP1}$	$\$ 18.00$	Di3.630GH	£53.00	F-28-130LDS	¢41.00	M31 182GV	£41.00
12 CSF 4	¢27.00	D.14.200GM	£79.50	F31 12LD	£132.00	M31 184W	¢41
1074H	§43.50	D.16.100GH97	¢79.50	10708	£61.50	M31 190GR	£61.5
1396 P	[43.50	DG7.5	£53.00	M7.120W	£15.75	M31,191W	¢61.50
CME1523W	$£ 27.00$	DG7-6	£61,50	M14.100GM	£18.00	M31 325GH	¢29.0
CRE 1400	¢27.00	067-32	¢28.80	M17.151GVR	£112.00	M38 100 W	£135.00
D9 11(6GH	£61.50	D67.36	£12.00	M23 112GV	¢61.50	M40 120W	¢61.50
CME1431W	£21.00	DH3.91	$\underline{597.50}$	M24 121GH	£61.50	MV6-5 (Mul)	\$47.00
D 13611 GH	¢53.00	F21-12LC	\$125.00	M24.122WA	£61.50	SE5FP31	£41.00
$4 \mathrm{C} \times 250 \mathrm{~B} \mid 7 \mathrm{~T}$, used but fully tested $4 \mathrm{C} \times 350$ A Emac, used but fully tested			£27.00	M28.13LG	£61.50	VLS429AG	25.00
			£29.00	Discounts for	or more		

VALVES	Prices on application. Please enquire re any type not listed below			
A2426	EC158	M8162 Mul	28034	6 F 33
A2521	ECC8 1	M5138	Y644	$6 \mathrm{L6GC}$
C114-1	ECC81 Spec Q	Magnetrons	1835A	6SL7GT
C1166	ECC82	PC900	2K25	6SN7GT
CCS1	ECC8E SpecQ	PCC89	3 B 28	128 H 7
CT TYPES Many	ECCB3	PD500	3-160E	12E1
in stock. Not all	ECCBa Spec 0	PL509	4-65A	13E1
listed below	ECC88	QQV03-10	4-125A Eimac	$19 \mathrm{AQ5}$
Please	ECC88 Spec 0	QQV03-10 Mul	4-400A	
inquire	EF39	QQV03-20A	4 C 28	805
CV488	EF73	QOV03-20a EEV	$4 \mathrm{CX250B}$	807
CV1881	EF91	QQV06-40A	$4 \mathrm{C} \times 250 \mathrm{BC}$	811 A
CV2355	EF92	QQV06-40A Mul	$4 \mathrm{CX350A}$	813
CV40,4	EF93	QY3-125	4CX1000A	4635
CV4024	EF95	OY4-250	4CX5000A	5763
CV6037	EL34	QV04.7	58.254 M	6336A
CV7130	EL38	R10	58-255M	6973
CX1140	EL81	SU2150	58-257M	8056
DA42	EL81 Mul	T121	58.258M	8122
DET22	EL84	S11E12	5 U 4 G	Sockets:
DEI 23	EL5070	TO03-10E	6 6K5w	89A PCB
DF91	GY501	U19	6A56	B9A chassis
E80L	Klystrons	UBC41	$6 \mathrm{BH6}$	Octal chassis
E83F	K 761 KT 71	UCL82	68J6 68M6	Many others
E180F	KT88/5550	VL5631	${ }_{6} \mathrm{CH} 6$	
E810F	M8136 Mul	2759	6 6J6	

Testing to special quality - Milltary/CV, low microphony etc avallable on request

BILLINGTON EXPORT Ltd

Unit 1E. Gillmans Industrial Estate. Billingshurst. Sussex RH14 9EZ. Callers by appointment only
Telephone: 0403 784961 Fax: 0403783519
Min. UK order $\mathbf{5 5 0}+$ VAT. Min. Export order $\mathbf{5} 50$ + Carriage.

ARIICLES WANTED

WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marcon etc. Top prices paid
Please send or fax your offer to: HTB ELEKTRONIX
Alter Apeler Weg 5, 2858 Schiffdorf, West Germany TEL: 0104947067044 FAX: 0104947067049

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M \& B RADIO 86 Bishopgate Street Leeds LS 1 4BB
Tel: 0532435649 Fax: 0532426881 9956

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabiey Heath, Wewyn, Heris AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0434812387 Telephone: 0763 246934

STEWART OF READING

110 WYKEHAM ROAD. READING, RG6 1PL TEL. 0734268041 FAX: 0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EOUIPMENT, COMPUTER EQUIPMENT,
COMPONENTS, etc. ANY QUANITYT

ARTICLES WANTED

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY
RAPID CHANGE TAKING PLACE
IN THE ELECTRONICS
INDUSTRY, LARGE QUANTITIES
OF COMPONENTS BECOME
REDUNDANT. WE ARE CASH
PURCHASERS OF SUCH
MATERIALS AND WOULD APPRECIATE A TELEPHONE
CALL OR A LIST IF AVAILABLE.
WE PAY TOP PRICES AND COLLECT.
R.HENSON LTD.

21 Lodge Lane, N.Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

FREE CLASSIFIED

FOR SALE Electronic components. books and tools no Test cquipment. Ring for lists High Wycombe 485670 .

BRUEL \& KJAER 2307 level recorder c w pots 5666 filter set 4416 response unit and manuals $\mathfrak{6} 250$. Telephonc 0353 648981.

COLLECTORS ITEMS - Marconi Siggan TF390G $16-150 \mathrm{MHz}$ original MOD transit case. V.heavy. Musi collect Offers? Crowthorne 034476342 .
E.H.T. HoKV meter made by Leader $£ 15$ ono. Phone 09137346015.

EPROM GANG PROGRAMMER as new
with handbook and eraser $£+0$. GE2 ()OO Terminet KSR R5232 keyboard, printer, tractors $£ 40$ phone 0242527504 .

FOR SALE original thinking multi disciplined design development $\&$ prototype engineerbensing \& process control. any location M.J. Nicholas $02(2+32502$. WANTED IBM compatible computer equipment, monitors, drives, simms cpu's ete. Contact Stuart on $061627+1.52$ WANTED urgently PLL synth I.C TC9125p for sick sharp Olponica Tuner Tel 1524594199.
WANTED by serious collector; pre-war televsion. Can collect. Jac Janssen, Hoge Ham 117D, NL-5104 JD Dongen Netherlands. Tel (11031162318158
WANTED. books mags reports on radio telecomms, antennas and propragation for personal library, age immaterial R.E: Parker. 2 Saxon Road, Steyning, BN+t 3FP 1903879083
WIRELESS WORLI) MACAZINE from 1967 to 1987 for sale. Tel 10753542637 (daytime).

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact Pat Bunce on: Tel: 081-652 8339
Fcix: $081-6528931$

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.10$ per word.

Special rates:

6 insertions $£ 2.10$ per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow
Extras:
Spot Colour 20%
Box number service £22.00

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT:
All major credit cards accepted
Please debit my \qquad
\qquad

Expiry Date:
Please ensure that address given is where your credit card statement goes to.
NAME
ADDRESS
TEL NO
SIGNATURE
All advertisements must be received five weeks prior to publication date.
All cancellations must be received by eight weeks prior to publication date. After that no advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Pat Bunce on 081-652 8339.

ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MQP ELECTRONICS LTD.
Tel: 0666825146
Fax: 0666825141
CIRCLE NO. 142 ON REPLY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884 Fax: 0818852496
CIRCLE NO. 143 ON REPLY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

DATAUPDATE is
Electronics Weekly's section for advertisers to market their product information. From catalogues to newsletters Data Update is designed to present your product information in a clear and attractive manner, whilst our colour coded enquiry numbers help readers to obtain the information they need fast.
CIRCLE NO. 147 ON REPLY CARD

IR Group, Europe's leading supplier of used
instrumentation, has published the latest update of models available. With a range from power supplies to network analysers, most items are available on short delivery and come with a 12 month parts and labour warranty. For a detailed quotation call
0753670000.

CIRCLE NO. 144 ON REPIY CARD

2nd EDITION TOKO RF

CATALOGUE

Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.

The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Ltd, Park Lane,
Broxbourne, Herts, EN10 7NQ
Tel: (0992) 441306
Fax: (0992) 441306
CIRCIE NO. 148 ON REPLY CARD

ELECTRONIC UPDATE is
Electronic World and
Wireless World's section for advertisers to market their product information. From catalogues to newsletters, Data Update is designed to present your product information in a clear and attractive manner while our "CIRCLE NUMBERS" help readers to obtain the information they need fast. circle no. 145 on reply card

High Speed EPROM \& FLASH Programming from your PC
\square Programs EPROMs to 4 Mbits/ 32-pins
\square Superfast 8, 16 \& 32-bit programming
\square Approved algorithms
\square Menu driven software included
\square Sophisticaled editor functions
\square Easy file management
\square FREE demo disk available
Stag Programmers Limited
Martinfield Welwyn Garden City,
Herfordshire, AL7 1 JT UK
Tel: (0707) 332148
Fax: (0707) 371503
CIRCLE NO. 149 ON REPLY CARD

INDEX TO ADVERTISERS

Anchor Surplus Ltd 977PAGEPAGE
Alternative Distribution (UK) Ltd 1031
Bull Electrical 1038
Citadel Products Ltd IFC
Chelmer Valve Co 1007
Cook International 975
Dataman Programmers Ltd OBC
Display Electronics Ltd
Electrovalue Ltd 981
Ericsson Systems 1023
Essex University 979
Flash Designs 979
Halcyon Electronics Ltd 1043
IPK Broadcast Systems Ltd 1043
Intergrated Measurement 1043
Invotron Ltd 1006
Johns Radio 1024
JPG Electronics 1006
Kare Electronics 1014
Kestral Electronics 1014
Labcentre 970
M\&B Electrical Supplies Ltd 1016
M\&B Radio (Leeds) 981
MQP Electronics 989
Number One Systems 1007
Pico Technology Ltd 1031
Powerware 979
Ralfe Electronics 1056
Seetrax Ltd 1002
SMC Ltd 1031
Stewart of Reading 981
Surrey Electronics Ltd 1007
Telnet 989
Tsien Ltd 999
Ultimate Technology IBC

FROM CONCEPT TO ARTWORK IN I DAY

Your design ideas are quickly captured using the ULTIcav schematic design Tool. ULTIcap uses REAL-TIME checks to prevent Icgic errors. Schematic editirg is painless; simply click your start and enid points and ULTIcap autometically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netist is complete, thereby relieving you of tedious netlist checking.

Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHLE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outine. The polygan is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, o the whole board. ULTIboard's inteligent router uses copper sharing techniques to minimise route lengths. Automatic via

The lesendary S4.

the smallest, most powerful personal programmer you can buy - and only $£ 495$!. Plus V,A.T. rom engine management to Antarctic survey teams, you can find S4s the world over, up and running where the competition is left far behind. S4 gets the job done in every situation you might expect - and quite a few you wouldn't!

CAPABILITIES

- A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices. Dataman S4 programs devices up to 8 Mbits and the unique, loadable Library means that new parts can be added quickly without extra cost! Serial EPROMs, 40 pin EPROMs and micro-controllers are all supported with optional modules.
- S4 EMULATION

With Dataman S4's powerful emulation system you see your code running before committing yourself to an EPROM. Simply download your code to $\$ \overline{4}$, press EMULATE', and your target system runs, in real time, asit an EPROM was plugged in

Dataman S4 has its own internal processor and memory, but can also be operated remotely from your PC at speeds up to 115,200 Baud. $S 4$ is supplièd with a free disk containing custom terminal software and a pop-up TSR communications utility.

Datamân S4 is shipped ready to use, complete with a mains charger, emulation lead, write lead, personal organiser/ instruction manual, MS-DOS communications software, spare Library ROM - and a 3 year guarantee.

[^5]
[^0]: Proteus software is for PC 386 compatibles and runs under MS-DOS. Prices start from £475 ex 1 AT; full system costs $£ 1495$ call for information about our budget, educational \& Windows products. All manufacturers' trademarks acknowiedged

[^1]: Using only one diode and a single op-amp, this is a
 low-frequency, full-wave rectifier

[^2]: JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH
 Access/Visa
 (0246) 211202

 Callers welcome

[^3]: Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM 5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
 A disk containing all the example listings used in this boork is available at $£ 29.96$. Please specify size required.

[^4]: $\mathrm{C}_{0}=100 \mathrm{kHz}$ AT $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$
 $1_{0}=200 \mathrm{kHz} A T V_{C}=1 \mathrm{~V}$
 $10=400 \mathrm{kHz}$ AT $V_{C}=2 V$
 $10=800 \mathrm{kHz}$ AT $V_{C}=3 \mathrm{~V}$
 $\mathrm{C}_{0}=16 \mathrm{MHZATV} \mathrm{C}_{\mathrm{C}}=4 \mathrm{~V}$

[^5]: Station Road, Maiden Newton, Oorset, DT2 OAE, UK. Telephone: 0300320719 . Fax: 0300321012 . Telex: 418442 • BBS: 0300321095 24hr - Modem: V32his/16.8K HST. 22 Lake Beauty Drive, Suite 101, Orlando, FL 32806. USA. Telephone: (407) 649-3335 . Fax: (407) 649-3310 - BBS: (407) 649-3159 24hr . Modem: V32bis/16.8K HSI.

