EICTRONICS
 WORLD

NOVEMBER 1993 £1.95

FRA

Texas Instruments charge-pumped op-amp AUDIO
Distortion in the output stage

DIGITAL DESIGN Working with PLA \& PLD logic

APPLICATIONS

 Single chip data radio
REVIEW

Digital filter design under Windows

COMPUTING

 DSP without the maths
HISTORY

Spark transmitter technology

40\% Windows EDA soffware discount see inside for details

THE WORLDS No. 1 BEST SELLING USM UNIVERSAL PROGRAMMING AND TESTING SYSTEM.

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, OFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16 Mbit .

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for 28, 8085, 8048. 8051, 6809 \& 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual only
$f 395$
Please add $\mathbf{£ 7}$ carriage (by overnight courier) for UK orders, $\mathbf{f} 20$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO. Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CP Ditadel

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

FEATURES

Cover dlustration Kevin Clarkson

CLEAR HIGHWAY FOR DIGITAL

TELEVISION. \qquad $8 \leq 2$
Although there are still no signs o^{*} it in the shops, a new TV technology will shortly make your video recorder and TV set obsolescent. Not only will picture quality visibly improve, but the availability of more programme channels will provide a new imperative to broadcasters. Tom V/oodford reports on a digital TV revolution.

WORKING WITH PROGRAMMABLE LOGIC

905Programmable logic devices are essential to compact logic design and have been so for a long time. They save component count and board area and previde adaptability of circuit function. Despite this utility their operation is not always well understood. In the first part of a new series on logic design Geoff Bostock explains the workings of programmable logic.

READER SERVICES OFFER: \qquad .902
Texas Instruments charge-pumped TLE2662 op-amp Many op-amp applications process signals which swing about ground. This requires the designer to add a negative supply rail to the system. Frank Ogden reports on a new op-amp package which generates its own.

WINDOWS SUPPORT FOR DSP DESIGN

Want to develop DSP applications under Windows?
You could try DSPworks and QEDesign. Apart from the user graphics, what else distinguishes them asks Allen Brown.

EXPERIMENTING WITH DSP
The conventional way to learn about DSP is to tackle the subject with maths. Which is probably the reason for so many otherwise competent design engineers falling down when presented with the subject. Jean-Jacques Dauchot maintains that the best way to understand DSP is to get hold of a development system and experiment.

DISTORTION IN POWER AMPLIFIERS. \qquad 928
Class B output stages differ in at lest three different ways presenting some intractable design problems. But Class AB proves to be no answer says Douglas Self in his continuing series on audio amplifier design

USING RF TRANSISTORS
Motorola RF applications engineers Norm Dye and Helge Granberg spell out the important performance parameters affecting transistor matching networks.

THE SPARK THAT GAVE RADIO TO THE WORLD 865 It seems incredible to modern technologists that the early radio engineers could achieve up to 60 per cent power conversion efficiency in spark gap transmitters. George Pickworth has conducted tests based on reconstruction of their work. His examination using modern test equipment has produced some fascinating results

COMMENT
.883

Picture of opportunity
UPDATE ... 884
Digital chips to change the face of radio? Narrow spectrum semiconductor laser. Plus a report from the European Microwave Conference.

RESEARCH NOTES \qquad .888
Sulphur chemistry recharges battery technology, Sound treatment for pollution, Robots glimpse new view of machine vision,

NEW PRODUCTS

Roundup of the best in new products in our exclusive at-a-glance guide

DESIGN BRIEF
Ian Hickman shows how to make noise work for you and looks at the design of an economical semiconductor source operating up to 1000 MHz .

APPLICATIONS
.960
Low cost radio data receiver, current conveyor circuits and lowpass/notch filter.

CIRCUIT IDEAS
 898

Economical 27 MHz phase modulator, independent on/off long period astable, low loss lamp dimmer, two wire level indicator, proportional indicator display.

DISCOUNT SOFTWARE OFFER
LETTERS. .917
Golden hcaring, Wire swapping, Frequencies please, Pause for reflection, Genius in the genes and overprocessed radio.

In next month's issue:
Do it yourself spectrum enalysis. There is nothing like a spectrum analyser oo help things along if you work or play with ZF . There is also nothing like the price tag. Ian Hicknan p-esents a good performance, penny pinching DIY design.
Also next month: ε single chip PC.
DECEMBER ISSUE IS ON SALE NOVEMBER 25

8088 XT - PC99

256k RAM - expandable to 640 k
4.7 Mhz speed

360k 5-1/4" floppy 2 serial \& 1 parallel ports
MS-DOS 4.01

- Factory burnt-in Standard 84 key keyboard
12 " green screen included
In good used condition
Optional FITTED extras: 640K RAM £39. 12" CGA colour monitor with card £39. 2nd $5-1 / 4^{\prime} 360 \mathrm{~K}$ floppy $£ 29.95 .20$
mbyte MFM hard drive £99.

Only $£ 99.00$

FLOPPY DISK DRIVES

51/4" from £22.95-31/2" from £21.95! Massive purchases of standard $51 / 44^{\text {a and }} 31 / 2{ }^{2}$ drives enables us
to present prime product at industry beating low prices! All units (unless stated) are removed from otten brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate rom slandard voliages and are of
ard size. All are $I^{\prime} M-P C$ compatible (if $31 / R^{\prime}$ supported). ${ }^{3.5 " \prime \prime}$ Panasonic JU363/4 720K or equivalent $\quad £ 29.95(\mathrm{~B})$ $3.5^{\prime \prime}$ Mitsubishi MF355C-L. 1.4 Meg. Laptops only* $£ 29.95$ (B) $3.5^{\prime \prime}$ Mitsubishi MF355C-D. 1.4 Meg . Non laptop $£ 29.95(\mathrm{~B}$
$5.25 "$ EXTRA SPECIAL BRAND NEW Mitsubishi MF501B

360 K . Absolutely standard fits most computers $£ 22.95$ (B) Data cable included in price.
Shugart 800/801 SS refurbished \& tested Shugart 851 double sided refurbished \& lested Mitsubish1 M2894-63 double sided
hard or soft sectors- BRAND NEW
£175.00(E)
£275.00(E)
£250.00(E) Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in a smart case End of line purchase scoop! Brand new NEC D2246 8" 85 megabyte of hard disk storagel Full CPU control and industry leaves the good old ST506 intertace standing In mint condition leaves the good old ST 506 interface standing. In mint condition THE AMAZING TELEBOX! Converts your colour monitor into a

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channeis. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard.
Telebox
Telebox ST for composite video input monitors $\mathbf{£ 3 2 . 9 5}$ Telebox STL as ST but with integral speaker
Telebox MB
as ST with Multiband tuner VHF-UHF-Cable. as ST with Multiband tuner VHF-UHF-Cable. \& hyperband For overseas PAL versions state Telebox RGB for analogue RGB monitors (15k

E 69.95
$\mathbf{~} 69.95$

> Shipping code on all Teleboxes is (B) RGB Telebox also suitabla for IRM mutisune monit

RGB Telebox also suitable for IBM multisync monitors with RGB

No Break Uninterruptable PSU's Brand new and boxed 230 volis uninterruptable power supplies from Densei. Model MUK 0565-AUAF is 0.5 kva and MUD 1085-AHBH is 1 kva. Both have sealed lead acid batteries. MUK are internal, MUD has them in a matching case. Times from

286AT - PC286

640k RAM expandable
with standard SIMMS 12 Mhz Landmark speed 20 meg hard disk 1.2 meg 5-1/4" floppy 1.4 meg 3-1/2" floppy EGA driver on board
BRAND NE

386 AT
PC386

2 meg. RAM expanded
by slogts
20 Mhz with 32 k cache
40 meg hard disk
1.2 meg 5-1/4" floppy

VGA card installed ports - MS-DOS 4.01 Software - FREE
 2 serial \& 1 parallel Co-processor socket - Enhanced 102 keyboard - Kwik Disk Accelerator

BRAND NEW AND BOXED! only $£ 425.00$ MONTORS
 multist Model MTS-9600 SVGA pitch. "Text" switch for word processing etc Overscan switch included. Ideal for the PC 386 or PC- 286 with SVGA card added. Also the monochrome Arniga, Atari (including good used condition (possible minor screen chimedes etc. in good used cond burns). 90 day guarantee. $15 "^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$. Only............ 1 159(E)
$14^{\prime \prime}$ Philips Model CM8873 VGA multisync
 with 640×480 resolution. CGA, EGA or VGA, digitaVanalog, switch selectable. Sound with volume conirol. There is also a spreadsheets and the like. Compatible with IBM PC's. Amitn Atari (ompatible wh monochrome high, Atari (excluding the Archimedes etc. Good used condition (possible minor screen bums) 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$. Only $\mathbf{\Sigma 1 3 9 (E)}$ Philips 9CM073 similar (not identical) to above for EGAVCGA PC and compats. 640×350 resolution. With Text switch with amber or green screen selection. $14^{\prime \prime} \times 12^{\prime \prime} \times 13-1 / 2^{\prime \prime} \ldots . . .$. £99(E)
KME $10^{\prime \prime}$ high definition colour monitors. Nice tight 0.28^{\prime} dot pitch for superb clarity and modern styling. Operates from any 15.625 khz syme RGB video source, with RGB analog and composite sync such as Atan, Commodore Arniga, Acom Archimedes \& BBC. Measures
only $13.5^{\circ} \times 12^{\circ} \times 11^{\prime}$. Also works as quality TV Only $13.5 \times 12 \times 1$. Also works as quality TV with our HGB Telebox. Good used condition. 90 day guarantee. Only. $£ 125$ (E) KME as above for PC EGA standard
£145 (E)
BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BB system on targe networked systems the architecture of the BB2 board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity mary useful applications will be found for this board!! It is supplied complete with a connector panel which brings all the l / O to 'D'
and BNC type connectors - all you have to do is provide +5 and and BNC type connectors - all you have to do is provide +5 and $\pm 12 \mathrm{~V}$ DC. The APM consists of a single PCB with most major 6502, RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating system on which we have no data, On application of DC power the system boots and provides diagnostic information on the video output. On boand anable the four extra EPROM sockets for user software. App; dirns: main board $13^{\prime \prime} \times 10^{\circ}$. V/O board $14^{\prime} \times 3^{\prime}$. Supplied teste
Only 29.95 or $2_{\text {tor } £ 53^{8}}$

SPECIAL INTEREST

Fujitsu M3041 600 LPM band printer
Fujitsu M3041 600 LPM
DEC LS 02 CPU board
Rhode \& Schwarz SBUF TV test transmitter Brand new Centronic 14" monitor for IBM PC and compatibles Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz andwidth. A super monitor in attractive style moulded case. Full 0 day guarantee. Only.
NEC CGA 12" IBM-PC compatible. High uality ex-equipment fully tested with a 90 ibbed grey plastic case measuring $15^{\circ} \mathrm{L} x$ 3"W $\times 12^{\circ} \mathrm{H}$. The front cosmetic bezel has een removed for contractual $\mathbf{E 6 9}$ (E)
Superbly made 'UK mand 26" AV SPECIALS
monitors, complete with位期,

CALL FOR PRICING ON NTSC VERSIONS! $\begin{array}{ll}\text { 25-1000mhz. Complete with SBTF2 Modulator } & \text { £6500 } \\ \text { Calcomp } 1036 \text { large drum } 3 \text { pen plotter } & \text { \& } 650 \\ & \text { \& } 355\end{array}$
1.5 kw 115 v 60 hz power source

Anton Pillar 400 Hz 3 phase frequency converer 75 K 950
Newton Derby 400 Hz 70 Kw converter
Nikon PL-2 Projection lens meter/scope
HP 7580A A1 8 pen high speed drum ploter
Kenwood DA-3501 CD tester laser pickup simu
BRAND NEW PRINTERS
Microline 183. NLQ 17×17 dot matrix. Full width. Hyundai HDP-920. NLQ 24×18 dot matrix full width. Qume Letter Pro 20 daisy. Qume QS-3 interfa
Centronics $152-29 \times 7$ dot matrix. Full width.

Superb Quality 6 foot 40u

19" Rack Cabinets

 Massive Reductions Virtually New, Ultra Smart! Less Than Half Price! Top quality 19° rack cabinets made in UK by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back
door and removable side panels. Fully addoor and removable side panels. Fully adjustable internal fixing struts, ready unched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribu-
tion strip make these racks some of the most versatile we have tion strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and theretore
require only two side panels or stand singly. Overall dimensions require only two side panels or stand singly.
are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\prime} \mathrm{W}$. Order as:

1992 WInter lssue of Display News now available - send large SAE - PACKED with bargalnsi T|FLT

EDITOR
Frank Ogden
081-652 3128

DEPUTY EDITOR

Jonathan Campbell
081-652 8638

CONSULTANT
Derek Rowe

DESIGN \& PRODUCTION

 Alan KerrEDITORIAL ADMINISTRATION Lorraine Spindler 081-652 3614

ADVERTISEMENT MANAGER
Carol Nobbs
081-652 8327

SALES EXECUTIVE

Pat Bunce
081-6528339

ADVERTISING PRODUCTION
Shirley Lawrence
081-652 8659

PUBLISHER
Susan Downey
EDITORIAL FACSIMILE 081-6528956

CLASSIFIED FACSIMILE 081-652 8931

SUBSCRIPTION HOTLINE
0622721666
Quote ref INJ

SUBSCRIPTION QUERIES 0444445566

NEWSTRADE DISTRIBUTION ENQUIRIES Martin Parr
 0816528171

BACK ISSUES
Available at $£ 2.50$
081-652 3614

REED
REED
PUBLISHING

Picture of opportunity

The European electronics industry hasn't had much cause for celebration in recent years. The consumer interests suffered badly at the hands of the Japanese while the ending of the Cold War took the steam out of the defence business. Just six months ago, its great hope for a new generation of broadcasting based on the MAC analogue TV standard fell apart as digital broadcast strategies began to emerge.
But it has become clear that the opportunity presented by digital television will be massive... Enough to replace the ailing defence interests with market driven civilian business while at the same time contriburing to technology at the first stage of its development.
There is good evidence that the initiative will not be lost on this occasion. Some 85 European broadcasters, equipment makers, satellite operators, network carriers, research organisations and Government departments have signed a memorandum of understanding to establish world class digital TV standards and infrastructure in Europe by the end of the decade. Collected interests cover all aspects of digital video: origination, production, networking to satellite and terrestrial broadcasting.
The initiative will be called the digital video broadcasting project (DVB) and the first services to be run under its unified standards will be on cable and satellite by the end of 1995 . This will be followed by digital terrestrial services some two to three years later.
The mix of interests contained in the Memorandum will ensure that it either disintegrates spectacularly or forms the basis of a world digital broadcasting standard. For instance Japanese interests are represented by Matsushita. Sony, JVC
and Toshiba. Given that the compression element of the package relies heavily on the US driven MPEG-2 technology, it is likely to succeed all over the world.
It is almost impossible to overstate the significance of this announcement to European electronics. The start point for all aspects of this venture are at least equal and possibly favourable to local interests. For instance, it seems likely that terrestrial broadcast modulation standards will use coded orthogonal frequency division multiplexing, a close relative of spread spectrum modulation, and pioneered by NTL in this country. The same organisation has also made an impressive contribution to MPEG and its work features prominently in Rupert Murdoch's satellite broadcasting plans. Tom Woodford has written a comprehensive article on the technology in this issue.
Real technical advances in digital TV technology have been made by European electronics companies such as Philips, Thomson, Nokia and Grundig, all parties to the Memorandum. They will make new equipment which, unlike MAC based sets. we will want to buy along with the rest of the world.
Unified digital TV technology will expand vastly the number of channels and types of service which broadcasters provide. Information on demand will create a new market for business and domestic terminals, essentially TV sets with digital storage facilities and two-way communications channels built-in. It will offer new business opportunities from new technology leading to the development of a new communications infrastructure.
It would be hard to find a more optimistic picture on any other channel.

Frank Ogden

[^0]
UPDATE

Digital chips to change the face of radio

Anew class of dsp based processing chips can replace traditional analogue radio architecture with direct digital processing. Developed by the US company Harris Semiconductor for the portable telecommunications market, the devices perform filtering, second local oscillator and quadrature demodulation functions without reducing the signal to baseband as in conventional receivers
The 16 bit $52 \mathrm{Msample} / \mathrm{s}$ processing rate allows the construction of filter equivalent functions with more than 100 dB of attenuation at a knee frequency of 13 MHz . Being a true digital architecture, the radio dsp family is programmable allowing design of system functions under software control. This flexibility includes the construction of separate I/Q channels for data recovery.
The company has also produced a front end chip with a 2.2 dB noise figure rf amplifier (at 900 MHz) integrated with a +10 dBm intercept double balanced mixer on the same piece of silicon. A similar device for 1.8 GHz is being developed.
Although hand-held radio is the intended application, the multiple function dsp chips will find use elsewhere. For instance the HSP50016 comprises a direct digital synthesiser with internal sine lookup table, mixer and two lowpass filters tunable with a resolution of 0.009 Hz . The local oscillator function is claimed to be spurious free down to -102 dB below carrier level. And the filter function is claimed to have less than 0.04 dB of ripple in the passband. It provides a complete downconversion subsystem on a chip.

2.2 db noise factor: HFA 3500 silicon front end

Other dsp based devices released initially include a 52 Msample /s half-band filter and a serial i / o filter with more than 140 dB of stopband attenuation.
Placing specialist radio functions in dsp
chips will eliminate much of the analogue signal chain and its associated set up adjustments. It also reduces the need for block filtering; complete data recovery can be made with very few high frequency conversions stages.
Frank Ogden

Glint in Du Pont's eye: The first merchant accelerator chip in the world for the OpenGL 3D graphics standard may be launched next year by Du Pont Pixel. Nicknamed Glint, it will be able to manipulate images like the one above at up to $300,000 \mathrm{Z}$-buffered Gourand-shaded triangles a second. High level 3D manipulation instructions are taken by the chip and performed on objects stored in a set of off-chip buffers. It will run in Unix and Windows NT host systems. The first version will not handle geometry transformations; this will be integrated into later versions of Glint, hopefully by 1996. A colour-map chip, due for launch in 1995, will be integrated into Glint by 1997.

P6 is out of order

More details have been released about the P6, Intel's planned successor to its Pentium (i586) chip. The P6, or 1686 , is in development and is scheduled for volume production in 1995.
It will be built with $0.6 \mu \mathrm{~m}$ features in an attempt to pack more than five million transistors onto a single chip. Initial versions though may be in a multi-chip set.
Speed will be 133 MHz and about 200Mips. There will be four integer and two floating point processors
Out of order instructions will be able to be executed with the processors trying to predict which instructions it will receive. A DX version will be capable of running in multiprocessor systems and the LX version will be for single processor desktop systems.

Engineers must have green fingers

The Engineering Council is putting UK engineers and technicians in the front line for safeguarding and improving the environment.

With the launch of the Code of Professional Practice on Engineers and the Environment, the 290,000 engineers on the council's register were called upon to make the environment a key consideration in every project they undertake. The code comes into effect in March.
The announcement coincided with the news that Anthony Convery of County Tyrone had won the council's 1993 Environment Award for Engineers for developing a machine to recycle waste concrete from ready-mix lorries and onsite concrete mixers

A commendation was given to an inexpensive radar for insect pest forecast and control developed by Joseph Riley. Alan Smith and Douglas Gregory of the Natural Resources Institute in Kent.

* For the second year running a girl has won the Engineering Council's Young Engineer for Britain 1993 award. Lucy Porter, 16, of Bath invented a swing exerciser for children with special needs who are unable to use their legs. The Mountbatten prize for the best project using electronics went to Samantha Haines, 18, from Guildford for a physiotherapy aid. And the best user of information technology in a project award was won by Stuart Cowley, 18, for a lubrication advice service.

Laser linewidths cut to 3.6 kHz

Asemiconductor laser with a spectral linewidth of 3.6 kHz . 3000 (imes narrower than conventional semiconductor lasers, has toeen developed by Hitachi
This narrow bandwidth may make it suitable for use in ultra-high speed coherent fibre optic communications systems operating at 2() Gbit/s or more.
Inside the laser is a stack of multiple InGaAsP layers on an InP substrate. Infrared radiation is emitted at a wavelength of $1.55 \mu \mathrm{~m}$ and output of 55 mW .

Narrow wavelength distributed feedback diode laser have a diffraction grating etched onto the device. This sets up a pattern of multiple interfering wave trains that cancel out except in a narrow frequency range. But the resulting bandwidth of about 10 MHz is too wide for coherent fibre optic communications.
To get round this. Hitachi has adjusted the pitch of the diffraction grating on the device so that the grating spacing is slightly longer in the centre of the resonator. The interference pattern produced results in a much narrower bandwidth.
The company also uses a strained layer multiple quantum well structure with alternate layers having different lattice constants.

Level playing field wanted for pcbs

Europe's peb makers are lobbying the E European parliament in a bid to give pebs the same prosection in Europe as semiconduetors. Brian Haken, executive director of the UK`s Printed Circuit Interconnection Federation, said European pob makers have a disadvantage compared with the Japanese when it comes to getting money from the banks.
He said that "Japanese board makers can borrow at low preferential interest rates and
for longer than their European counterparts. All we want is a level playing field."
He pointed out that Sony had received financial assistance from the EC to establish a peb plant in France.

Miti. Japan's industry body, has targeted pebs and semiconductors as two crucial areas for future growth and it plans to double Japan's income from pebs in the next five years.

Transistor breaks noise barrier

Droduction has started of a redesigned high electron mobility transistor. which maker Toshiba claims has a lower noise level than any other on the market. Noise output is 0.45 dB at 12 GH .

The biggest source of noise in this type of transistor i:s resistance in the channel layer. normally made of GaAs. Toshiba has used InGaAs, adjusting the level of indium
dopant to make a lattice with minimal resistance.

The crystal structure has also been improved in the AlGaAs layer, which supplies electrons to the channel layer. This makes the electron flow 40% higher than in plain GaAs devices.

Mass production is scheduled to start Norember reaching 100,000 pieces by April.

Work ethic for wireless communicator

Motorcla is to use Microsoft's At Work soltware in a new wireless personal communicator
The company has not announced when these communicators will be out or what their price will be

But Bob Growney, executive vice
president, said that "developing wireless personal communicators based on Microsoft's hand-held system allows us to leverage their strength in desk-top software to provide a pragmatic solution for today's mobile professional".

GaAs moves down commercial pipeline

The move from military to commercial applications for GaAs and the design of antenna arrays rather than simple aperture or wire types were the two most notable trends at September's European Microwave Conference in Spain.

GaAs technology has largely come of age in the form of MMICs. Until recently microwave applications for GaAs have been mainly as discrete devices, particularly the mesfet and low noise high electron mobility transistor. These devices have been integrated into planar technology circuits to form hybrid modules.
But GaAs is also a suitable substrate material for microwave transmission lines and so the complete MIC can be formed monolithically.

With the prospects appearing for consumer and commercial applications, the rewards in terms of numbers sold is very high. In military contracts a "large number" was still several orders of magnitude below that of present prospects.

A paper from E Pettenpaul of Siemens claimed an estimated market of 20 million direct broadcast satellite receivers by 1995 for Europe alone. And large scale use of personal and mobile communications in the 900 MHz and 1.8 GHz bands is estimated at 100 million units in Europe by 2000 .
For office use, including wireless lans, there is a GaAs MMIC effort in all the allocated bands to 60 GHz and above.

A paper by N Diehl of Daimler-Benz pointed out that another vast application for microwave communications is mobile computing. For example, test or calibration engineers would be able to perform complex analysis and checks on machinery, equipment and installations, and have full real time access to all data on such equipment.
There seems little doubt that in a few years there will be a steady growth in intelligent vehicle communication systems - again a potential market for 100 s of millions of sensors. Some aspects of such links in the 5.8 GHz band were presented in a paper by Bucks and Grabow. On higher frequencies 1060 GHz there are also applications for automatic collision avoidance and highspeed train links.

In all these systems the market volumes are so high that the pressure on microwave GaAs MMIC technology to achieve low cost, reliable performance and small size is very high.

On antenna design. some present and certainly future satellites will have narrow spot beams that are intelligently switchable in direction. Thus arrays are needed that have the advantage of being able to combine a total transmit power from one amplifier per array element, or perform spatial signal processing using a separate receiver in each element.

Incorporating attenuators and phase shifters with these functions lets the beams be steered and shaped.
Applications also include satellite to satellite links. But such arrays have 100) to 10.000 s of individual elements and. to be viable for consumer or commercial use the costs of the microwave circuits in each element must be dramatically smatl. Again. the emphasis is on ingenious circuit design. accurate performance modelling. and a lowcost manufacturing technology.
The conference also saw a selection of papers looking at possible applications for superconducting materials with a critical temperature above 77 K . Thesc included microwave components as high-Q circuit elements, non-dispersive signal processing circuits. or low-loss small antennas. Another developing field with wide applications is that of the interaction of microwaves and optical systems. For example, a paper from D Wake of British Telecom talked of a microwave transmitter needing no electrical power and a fibre optic input. It used video pattem data to frequency modulate a 4.1 GHz microwave oscillator. which in turn drove a laser. The fim output of the laser then passed into a dispersive delay line to generate harmonics of the microwave frequency plus modulation.
The optical signal is converted to microwaves using a zero bias edge coupled photodiode with the seventh harmonic of 28.7 GH selected and transmitted to a superhet receiver. All power requirements in the transmitter section were derived from the initial optical signal. Possible applications are links in lans for broadband access.

At the associated exhibition. ThomsonCSF announced that it is acquiring the travelling wave tube and coaxial tube business from Siemens. Also announced was that Eesof is merging with Hewlett-Packard subject to government approval. Eesof simulation software is used for microwave cad.

Mike Hosking

Vodafone wins cellular survey

V/odafone provides a more reliable service than Cellnet according to a survey of cellular networks by industry watchdog Oftel.
Some 29.000 attempts were made to make two min phone calls from mobile to fixed networks and vice versa.

On mobile to fixed network calls 97.1% were connected and completed on Vodafone compared with only 95% on Cellnet.

And on fixed network to mobile calls Vodafone again came out on top with 95.1% set up and completed compared with only 94.3% on Cellnet.

Beeb dabbles with digital

The BBC has started engineering tests of digital audio broadcasting (dab) using high power transmitters in the London area.

A 10kW erp transmitter at Crystal Palace is being joined by 1 kW erp transmitters at Alexandra Palace, Reigate and Wrotham. They will operate at 226 MHz .
Survey vehicles will measure the field strengths of each transmitter and the way they work together to form a single frequency network.

Following the tests the BBC expects to produce proposals for introducing dab services in the UK. The plan is for national and local dab services to broadcast terrestrially using vhf frequencies.

Joint project for commercial gps

GEC Plessey Semiconductors and Canadian Marconi are jointly developing receiver technology for commercial gps applications.
GEC will be responsible for making and distributing the MicroGPS family of global positioning engines. And Marconi will offer a customisation service for those who want gps functions in other equipment.
Ray Gleason, GEC's marketing director, said that among the technical advantages of MicroGPS is the "very fast 15 GHz bipolar process that enables lowcost low-power gps rf technology to become available for the first time to the commercial market place".
The family will be available as standard oem modules for direct plug-in applications.

Audio compression for comms ICs

Enfield firm Silicon Systems has been E licenced to use California-based DSP Group's Truespeech audio compression algorithm in its communication ICs for lan, modem, wireless and multimedia products.
The algorithm can compress a 1 min voice file down to 60 K byte with no noticeable degradation. This compares with about 960 Kbyte for standard audio compression algorithms.
The firm has also started to integrate DSP Group`s Pine dsp technology in the ICs to make them suitable for mobile computers, personal digital assistants and other portable computing applications.
Silicon Systems can be contacted on 081-4437061.

AMAZING PC BASE SALE

WE HAVE ACOUURED A SELECTION (OF HIGH gUALITY AMSTRAD IR` BASE UNITS AT MEGA DISCOUNT PRICES. LOOK WHIAT YOUI CAN IBIJY FIROM ONLY £I9.OO!

UNTESTED AMSTRAD PC BASE UNITS COMPLETE WITH MOTHER -BOARD, VIDEO CONTROLLER, DISK CNTRLR, \& 5.25" DRIVE(S)

AMSTRAD 15I2SD £13.00 RFF: 1W'AM19P1 AMSTIRAD 1512DD $£ 25.00 \quad$ REF: FW' AM25P1 AMSTRAI) $1640 S D \quad £ 25.00 \quad$ REI: EW AM25P2 AMSTRAD 1640ID $£ 30.00$ REF: FW AMI30PI

NEW or REFURBISHED PC BASES COMPLETE WITH KEYBOARD, MOUSE, and 5.25" DRIVE. RUNS UNDER MS-DOS VER 3 All sold guaranteed as new. All you need is a power supply unit \& monitor.

AMSTRAD 1512SI £49.00
AMSTRAD) 1512DI $\quad £ 59.00$
AMSTRAD) 1640SD 569.00
AMSTIRAD 1640DD $£ 79.00$

REF: RW AM49Pl REF: EW' .MA59]' REF: WW M69Pl REF: EW'AM791

AMSTRAD PP(: 1512 SD) $\left(512 \mathrm{k}\right.$ memory Single 3.5° disc drivel AMSIRAD PPC' 1512 DD (512 k memory Two 3 s" disc dnve)
£99.00) EW/amyopa £109.00 EW/AM100pI

AMSTRAD) PP(1640 SI) (64(ik memory one 3.5 " drive modem $£ 129.00$ EW/AM129P1 AMS'TRAD PIC 1640 ID) (640k memory two 3.5° drive modem) £ 39.00 EW/AM139P'

AMAZING COMPUTER BARGAINS

 IBM COMPATIBLE LAPTOPS ${ }_{\text {raw }}$ ONLY $\boldsymbol{£}^{99.00} 0_{\text {vus vat }}$ COMPUTER BASE UNITS ${ }_{\text {mкм }}$ ONLY $\AA^{19.00_{\text {pus vat }}}$ LIMITED OFFER - HURRY WHILE STOCKS LAST
AMAZING SALE OF BT ANSWERPHONES

As NEW, fully guaranteed BT Product as LESS than Half the original retail price!!!

RESPONSE 200 AND 400 MODELS
Each Response Unit is suppited with a Micro cassette. PSU and User Details. The following features are found on the 40) Model and the 200 has almost as many features.

Microcrassetie
Call Screening
Call coment Answer only Last No redtal
On hook dialling 13T Network Services Mute Faclity

Ren 1.0 .
Memo Facility Remote Facility 20 Memories Vartable volume Hands free speacls PABX Comqattble LCD Display

RESPONSE $200 £ 35.99$ Ref:EW36P RESPONSE $400 £ 49.99$ Ref:EW49PI

10 WATT SOLAR CELL

 (3" x 1") $14.5 \mathrm{v} / 700 \mathrm{~mA}$ Now available by mail order Coated with exceptonatly efficient amorphous stlicon these glass solar cells have an almost timeless lifespan and will not suffer with discolouration. There are possibly hundreds of uses for these cells. a few of whtch could be: for Car Battery Charging. for useon Boats or on Caravans. in fiact anywhere a portable 12 V supply is required. Several of our overseas Mediterranerancustomers with homes in remote hilly sites. use these solar cells a day daye power source to backup generators. The solar rells can beconnected in series or parallel to give higher volitges or larger current capactly. REF: EW34P2
PRICED at only

$£ 33.95$

PLUS an additional $£ 2.00$ special packaging charge

PORTABLE RADIATION

 DETECTOR SPECIAL OFFER $£ 49.99$ (plus val)
NEVER OFFERED BEFORE.
 \qquad ..We can

 now supply a unique handheld personal portable Gamma and X-Ray detector. This Radiation detector contains two Geiger Tubes has a 4 digit LCD display with a piezo speaker, giving an audio visual indication. The adiation detectors detect high energy electromagnetic quanta with an energy from 30 K VV to over 1.2 MeV and ameasuring rate 5 -9999 UR/h (sampling rate 2555) or 10-99990 NR/h (sampling rate 2.55) Sources of radiation could be Granite Kerbstones old Luminous watch dials or even a Jewellery shop where mineral ore is sold to rock collectors. A piece of uranium Ore would be idealOnly £49.99 Each Ref: EW50P 1

TRN YOU S WMPUUS STOCKMIT CASH MADDHATF SETIUEMENT WE WII MSO UOTU FOR COMLU UVACTORYCHEARANCE MECHMJCH MORE INOUR 1993 CATALOMUE MEASH SEND $41 /$ A 4 SHED SAK FOR YOUR PREE COPY: ALD DTR Preces ABERETOF VAT
 FFOMGOVERXAENT, SCHOOR, UNVEKSIGES \& LOCAL AUTHORTHES WELCOME ALI GEOD

 GUARANTEED FOR YODAYS.
KUAHTS RESERVEO TOCHANGEPRTCES \&
 ORDERS SUMTECT TO STOCK. QUOTATHON WILSAGISY GIVENFOR QUANTIHES THAN THOSE STATEI

BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX BN3 5OT
MAIL ORDER TERMS: CASH PO OR CHEQUE WITH OROERPP.USE3.00 POST PLUS VAT.

PLEASEALLOWT - TODAYS FOR DELIVERY
TELEPHOWEORDERS WEL OOME V WEA TAL: 0273303509 FAX: 0273323077

Sulphur chemistry recharges battery technology

S
cientists have developed an aqueous cathode cell based on solid sulphur with a theoretical storage capacity several times that of conventional aqueous system cathodes based on nickel, manganese, mercury or silver.
The room-temperature battery could be a significant step forward in the search for new, more efficient, energy storage, fuclled by applications as diverse as environmentally friendly vehicles and the rapid growth of cordless communications. In each case the requirements are broadly similar: high energy storage per unit weight, good safety, room-temperature working, long life and low cost
So far, no battery has met all these requirements
The highest energy systems use either molten electrolytes, or expensive or environmentally-unfriendly metals for the electrodes. Many other promising roomtemperature aqucous systems are beset with technical problems. Established technologies have weight penalties, environmental disadvantages, modest capacities or high cost. But that could change with the announcement by Dharmasena Peramunage and Stuart Licht of Clark University in

Worcester, Massachusetts, of what looks like a promising new room-temperature battery using an aqueous cathode based on solid sulphur.
Their research follows on from earlier studies into the use of aqueous sulphide solutions - unusual in that they will dissolve elemental sulphur. Sulphur is normally insoluble and non-conducting at room temperature. The resulting polysulphides have been used successfully in experimental rechargeable polysulphide cathode/tin anode cell.
But the latest development takes this approach a stage further with the development of a cathode capable of direct reduction of elemental sulphur at room temperature. It makes use of solid sulphur in contact with a fully saturated solution of polysulphide. The theoretical storage capacity of this composite sulphur cathode is several times larger than that of conventional aqueous system cathodes based on nickel, manganese, mercury or silver

Experimental batteries using an aluminium anode with the new sulphur cathode have a 40% greater capacity than the earlier experimental aluminium/polysulphide batteries. Open

Sound treatment for pollution

Acoustic agglomeration is a useful technique for separating smoke, ash and even fog. But no-one knew how it worked. Until, that is, researchers, led by Dr Gary H Koopmann of the Center for

Acoustics and Vibration at Pennsylvania State University, announced they had found the answer.
Koopmann and his team constructed a small, controlled experimental set-up with two face-to-face loudspeakers operating in phase, so that the air between them moved back and forth, rather than being compressed by the sound waves. Using commercially available $8 \mu \mathrm{~m}$ beads (snaller beads agglomerate naturally), they dispersed small amounts in the form of a cloud falling through the chamber. A variety of sounds from 600 to 1000 Hz were tested, but 800 Hz was found to provide the best agglomeration.
Key feature of the experiment was a video camera that recorded the scene at 30 frames/s. Frame by frame examination revealed that, as the particles fell through the sound fietd, the larger ones appeared to be pursued by smaller ones travelling slightly faster. Eventually the smaller particles caught up with the larger ones and coalesced.
circuit terminal voltage is also a healthy $1.28-1.30 \mathrm{~V}$
As for an overall comparison with existing commercial aqueous batteries, the sulphur cathode system is said to develop $220 \mathrm{~W} . \mathrm{Hr} / \mathrm{kg}$ - even at relatively high discharge rates - compared to 110 for zinc/air systems and up to $95 \mathrm{~W} . \mathrm{Hr} / \mathrm{kg}$ for alkaline manganese batteries.
Peramunage and Licht say they are optimistic of further improvements.

Solid sulphur cathode in charged state (left) and discharging state (right).

The Pennsylvania researchers believe that this phenomenon is a scaled-down version of what happens when a car gets into the slipstream of a lorry; the car tends to get sucked along. With suspended particles, the acoustic wind causes the smaller ones to "slipstream" larger particles and to be pulled closer before eventually colliding and clumping together.
"Not only did we see the particles coming closer together and joining, but there is also a cascade effect. Once two particles join, a third smaller one will draught the agglomerated larger particle and eventually join," says-Koopmann.
Acoustic agglomeration plants normally generate sounds at the 160 dB level, horrendously loud, but fortunately confined to chambers that prevent too much escape. The aim of such techniques is to increase particle size to above $20 \mu \mathrm{~m}$, where they can easily be filtered out using conventional techniques. One of the main applications is the removal of fly ash from the waste stacks of coal-burning plants.

JPG Electronics

Multi-Device Programmer
only
8395

Fast Programming - Intelligent Algorithms
\checkmark Connects direct to printer port
, On line "HELP" System
Easy to use menu driven software
Supports a wide range of devices
All without adapters
Including:
EPROMS E ${ }^{2} P R O M S$ Flash EPROMS
PLDs GALs PALCEs
8748 and 8051 families including $87 C 751$
Additional modules include:
Serial E ${ }^{2}$ PROMs (93C.. and 24C..)
Microchip PIC and Zilog 286 microcontrollers New parts added all the time

Contact SMART Commumications for our full range of programmers including stand-a one programmers, gang programmers and our compremensive universal device orogrammer

Tel: 081-441 3890
 Fax: 081-441 1848
 SMART

CIRCIENO. 104 ON REPIY CARD

Ericsson's TBT is used in over
50 countries world-wide

Our commitment to Training does not

Commitmert to training is essential in the rapidly changing communications workl. At Ericsson the importance of training has long been recognised. Since the early 1980s Fricsion has devetoped Technolegy Besed Training (TBr) whach allows peromonel to the tranced where and when the user needs it

Ericsions TBT presents complex and difficult taining material in an interesting and exciting way. It is a self-paced, interactive, Lser-friendly and cost cflective method of entrancing technical competence

Ericsson's generic range of IBM PC ${ }^{T M}$ compatible courseware includes the following courses:-

- Introduchion to Telecommuntations
- ISDN Overview and ISION Advanced
- OSI \& Data Networks and Ost Advanced
- X 25 and Related Protocols and X. 25 Advanced
- C7 Signalling System Parl I and Part 2
- Linderstanding Noodems
- PCM Priticiples
- Cellular Mobile Radio
- X 400 Overview

For further information please contact your local Ericsson office or
Marketing Department.
Ericsson Systerns Expertise Limited
Adelphı Centre, Upper George's Sitreet, Dun Laoghare, Co. Dubin, ireland. Tel: + 3531 ž800455. After 5pm: +35312843030 . Fax +3531280591.4

Robots glimpse improved vision processing
 frobots could flick their cameras around
 the key to human image processing is eye

in the same way as humans switch their gaze back and forth, then they could make a much better job of image processing - with a lot less memory. That is the conclusion of research currently in progress at the University of Rochester in New York.
Mary Hayhoe, associate professor of psychology and a member of the University's Center for Visual Science, has been trying to understand why human vision is so markedly superior to that of robots, even though we mortals can only see clearly in the very centre of our visual field. Why is it that robots are fooled by something as simple as a change in lighting, when they are equipped with edge-to-edge razor-sharp cameras and megabytes of digital imageprocessing capability?

Hayhoe and her colleagues discovered that
movement. Unlike the robot eye, which stares continuously at a scene, the human eye constantly flicks around. These short jerky eye movements, known as saccades, are how we circumvent the need for massive amounts of image storage and processing power.
"Eye movements provide a really efficient way to do things," says Hayhoe. Instead of keeping track of every detail in the environment, you use the world as your memory. You don't get information until you need it."

Other workers at Rochester have built on Mary Hayhoe's work and produced a number of versatile robots that mimic the way humans study their visual field. Instead of boosting processing power to enable their robots to see every detail in their

Why lightning is forked

Why does lightning zig-zag its way across the sky rather than travelling in a more-or-less straight line? As with many apparently simple questions, the answer is still being investigated. But plasma physicists at Moscow's Lebedev Institute of Physics and the Los Alamos Laboratory in New Mexico think they have the solution.
Finding a single theory to explain why lightning forks, why it generates x -rays and even why it takes place at all has been extraordinarily difficult. Numerous measurements of electric fields in thunderclouds show them to be too week to accelerate electrons to the speed necessary to create atmospheric breakdown. To create an ionised trail for lightning to follow, an electron has to gain enough acceleration to overcome the loss of energy it experiences every time it hits an air molecule.

But Robert Roussel-Dupre and his associates in the USA and Russia have now formulated a theory that provides a coherent
explanation for all the above phenomena. According to the Roussel-Dupre's team, a lightning strike is initiated when a cosmic ray entering the Earth's atmosphere from outer space collides with an air molecule, ejecting a fast-moving electron.
If the cosmic ray imparts enough energy to that electron, then the electric field strength in a typical thundercloud is quite enough to accelerate the electron further, keeping it moving as it hits and breaks apart air molecules. Every collision creates an avalanche of high-energy electrons, each in turn accelerated by the electric field and leaving behind a trail of ionised air molecules.
According to Roussel-Dupre, this avalanche rumbles downwards for about 100 m before it peters out, leaving a pool of electrically charged particles with its own associated field. The process might well stop there except that there are large numbers of cosmic rays that can re-trigger it.
environment - the usual approach to robotic vision - the Rochester group adopt an approach which they call "active vision." With this technique the robot uses sensory input from its environment to make its decisions, including the ability to move its eyes.By using artificial saccades, the Rochester robots simplify the image processing task enormously and considerably enhance their ability to make sense of the visual field. With no remote control, and in real time, these robots have been able to dodge tennis balls, manipulate toys and search for identified objects such as cereal boxes.

Saccades - humans make over 100,000 every day - are vital in our ability to make sense of the world. Our eyes move so fast that we have the illusion of being able to see the whole of our visual field in sharp focus. Tests at Rochester have shown that when people are asked to copy a pattern of building blocks, they don't rely on an image stored in the brain. Instead they make hundreds of saccades, through which they compare the original with the duplicate they are making. As Hayhoe puts it, "you don't just look once at a scene and then replicate it. Instead, your eyes are constantly going back and forth, picking up little bits of information again and again."
Traditionally artificial intelligence has assumed that huge amounts of memorised information are necessary for even the simplest pattern recognition tasks. But if the Rochester robots can successfully duplicate the full range of human eye movements, then it may, one day, be possible to perform even complex tasks without resorting to the usual elaborate models of the world

After a pause of only a few microseconds, a new cosmic ray collision sends a fastmoving electron through the pool of charged particles, creating another avalanche and another ionised trail. This new trail is linked to the first one, but heads off in a different direction.
This step by step conducting stairway heads rapidly ground-ward until it is close enough for a streamer to head up and close the circuit
It is a fascinating theory that explains both the forked nature of lightning and also the large scale - often 300 m - over which it operates.
The researchers' mechanism further explains the emission of x -rays, which are thought to result from the high energy electrons generated by each successive avalanche.

Research Notes is written by John Wilson of the BBC World Service.

Marconl TF2008-AM-FM signal generator - Also sweeper - 10KC/s - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 350$ asted to $£ 500$ as now with manual-probe ktin wooden carrying box HP Frequency comb generator type 8406A - $£ 400$ HP Sampling Voltmeter (Broadband) type 3406A - $£ 200$ HP Vector Voltmeter type 8405A - $£ 400$ to $£ 600$ - old or new colour AP Synthesiser/signal generator type 8672A - 2 to 18 GHz £4000
O sctllographic recorder type 7404A - 4 track - $£ 350$
HP Plotter type $9872 \mathrm{~B}-4$ pen - $£ 300$
HP Sweep Osclllators type 8690 A \& B + plug-ins from 10MC/s to 18 GHz also 1840 GHz P.O.
HP Network Analy ser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$
HP Down Converter type 11710B-.01-11 Mc/s - £450.
HP Pulse Moduiator type $11720 \mathrm{~A}-2 \cdot 18 \mathrm{GHz}-£ 1000$
HP Modulator type 8403A - $£ 100-£ 200$
HP PIn Modulators for above-many different frequencies - $£ 150$
HP Counter type $5342 \mathrm{~A}-18 \mathrm{GHz}-$ LED readout - $£ 1500$
HP Signal Generator type 8640B - Opt001 + 003-5-512Mc/S AM/FM - £1000
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP 8447 F . $1-1300 \mathrm{Mc} / \mathrm{s} £ 400$
HP Frequency Counter type 5340A-18GHz 10 -
Pris
displays used in this set-up
$-8746-8650$. From $£ 1000$
HP Signal Generator type $8660 \mathrm{C}-1-2600 \mathrm{Mc} / \mathrm{s}$. AM/FM- $£ 3000.1300 \mathrm{Mc} / \mathrm{s} £ 2600$
HP Signal Generator type 8656A - 0.1-990MC/S. AM FM - $£ 2000$
HP 8699B Sweep PI -0.1-4GHz £750-HP8690B Mainirame £250
Racal Dana 930tA-9302 RF Millivoltmeter $-1.5 \cdot 2 \mathrm{GHz}-£ 250-£ 400$
Racal/Dana Counters 9915 M - 9916 - 9917 - 9921 - $£ \ddagger 50$ to $£ 450$. Fitted FX standards.
Racal Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal - SG Brown Comprehensive Headset Tester (with antificial head) Z1A200/1 - £350 Marconl AF Power Meter type 893B - $£ 200$
Marconi RCL Bridge type TF2700- $£ 150$
Marconl/Saunders Signal Sources type-6058B-6070A-6055B-6059A-6057B-6056-E250- $£ 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconl TF1245 Circuit magnification meter + $1246 \& 1247$ Oscillators - $£ 100-\$ 30 C$
Marconl microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - $£ 1000$ or Pl only $£ 600$
Marconl distortion meter type TF2331-£150, TF2331A - $£ 200$
Microwave Systems MOS $/ 3600$ Microwave trequency stabilizer - 1 GHz to 40 GHz si k
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7110-7S12
S1-S2-S6 -S52 -PG506 - SC504 - SG502 - SG503 - SG504 - DC503 - DC508 - DD501
WR501 - DM501A - FG501A - TG50 - PG502 - DC505A - FG504 - P O.R
Altech Stoddart receiver type $17 / 27 \mathrm{~A}-.01-32 \mathrm{Mc} / \mathrm{s}-£ 2500$.
Alltech Stoddart recelver type $37 / 57-30 \cdot 1000 \mathrm{MC} / \mathrm{s}-£ 2500$
Gould J3B Test osclllator + manual - $£ 200$.
Intra-red Binoculars in fibre-glass carrying case-tested - £100. Infra-red AFV sights $£ 100$. ACL Field Inten sity meter receiver type SR-209-6. Plugs-ins from $5 \mathrm{MC} / \mathrm{s}$ to 4 GHz -P O. F Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new - $£ 1000$ or $10 \mathrm{Mc} / \mathrm{s} 40 \mathrm{GHz}$. Tektronix Mainframes - 7603-7623A-7633-7704A-7844-7904-TM501 - TM503 TM506-7904-7834-7104
Knott Polyskanner WM1001 - WM5001 - WM3002 + WM4001 - 5500
Aitech 136 Preclsion test RX +13505 head $2-4 \mathrm{GHz}-£ 350$.
SE Lab Elght Four - FM 4 Channel recorder - $£ 200$
Ailtech 757 Spectrum Analyser - 00122 GHz - Digital Storage + Readout - $£ 3000$
Dranetz 606 Power line disturbance analyser - $£ 250$
Precision Aneroid barometers- $900 \cdot 1050 \mathrm{Mb}$ - mechanical digit readout with elecironic indicator - battery powered Housed in polished wood carrying box - te

TESTED WITH OPERATING MANUAL
HPSTED WITH OPERATING MAN - 14552 or B IF-8553B RF - $1 \mathrm{kHz}-110 \mathrm{MC/s}-\mathrm{AlF}-£ 1300$ or $\mathrm{B} \mid \mathrm{F}-£ 14 \mathrm{CO}$

HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-8556A RF - $20 \mathrm{~Hz}-300 \mathrm{kHz} \cdot \mathrm{A} \mid \mathrm{F}-\mathrm{A} I F-£ 1200$ or B IF - 81300
HP8443A tracking generator/counter - $100 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 500$
HP8445B tracking pre-selector DC-18GHz- $£ 750$.
HP ANZ UNITS AVAIL ABLE SEPARATELY - NEW COLOURS - TESTED
HP 141 T mainframe - $£ 550-8552 \mathrm{~A}$ IF - $£ 450-8552 \mathrm{~B}$ IF- $£ 550-8553 \mathrm{~B}$ RF- $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}$ -
$£ 550-8554 \mathrm{~B}-\mathrm{AF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 650-8555 \mathrm{~A}-\mathrm{RF}-10 \mathrm{Mc} \mathrm{s}-18 \mathrm{GHz}-£ 1550$.
HP 3580 A LF-spectrum analyser -5 kHz to 50 kHz - LED readout - digital storase $-£ 1600$ with instruction manual - internal rechargeable battery.
Tektronix 7 D 20 plug-in 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes §500-manual - $£ 50$
Datron 1065 Auto Cal digltal multimeter with instruction manua - - $\mathbf{~} 500$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}$ - internal NiCad battery- $£ 150$ Aerial array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ contanning 4 aerials plus Narda detector $-100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpt - $£ 100$.
EIP 451 microwave pulse counter $18 \mathrm{GHz}-£ 1000$
Marconl RF Power Amplifier TF2175-1.5Mc/s to $520 \mathrm{Mc} / \mathrm{s}$ with book - $£ 100$
Marconl 6155A Signal Source-1 to 2 GHz -LED readout - $£ 600$
Schlumberger 2741 Programmable Microwave Counter - 10 Hz to 71 GHz - $\mathbf{~} 7.50$.
Schlumberger 2720 Programmable Universal Counter O to $1250 \mathrm{Mc} / \mathrm{s}$ - $£ 600$
HP 2225CR Thinkjet Printer - $£ 100$.
TEK 576 Calibration Fixture - 067-0597-99- 2250 .
HP 8006A Word Generator - $£ 150$.
HP 1645A Data Error Analyser - $£ 150$
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS - $550-£ 150$
HP 809C Slotted Line Carriages - various frequencies to 18GHZ - $£ 100$ to $£ 300$
HP 532-536-537 Frequency Meters - various frequencies - $£ 150-£ 250$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$
S.E. Lab SM215 Mk11 transter standard volimeter - 1000 volts

Altech Stoddart P7 programmer - $£ 200$.
Fluke Y2000 RTD selector - Fłuke 1120 A IEEE-488-translator + Fluke 2180 ATC digital
thermometer + 9 probes. $£ 350$ al three items.
H.P. 6181 DC current source £ 150 .
H.P. $59501 \mathrm{~A}-\mathrm{HP}$-IB solated D/A/power supply programmer
H.P. 3438 A digital multimeter
H.P. 6177C DC current source. $£ 150$
H.P. 6207 B DC power supply
H.P. $741 \mathrm{~B} \mathrm{AC/DC}$ differential voltmeter standard (old colour) $£ 100$
H.P. 6209 B DC power unit.

Fluke 80 high voltage divider
Fluke 431C high voltage DC supply
Tektronlx M2 gated delay calibration fixture 067-0712-00
Tektronlx precislon DC divider calibration fixture 067-0503-00
Tektron x overdrive recovery calibration
Avo VCM163 valve tester \rightarrow book $£ 300$.
Avo VCM163 valve tester - book £300.
H.P. 5011 T logic trouble shooting kit. $£ 150$
Marconi TF2163S attenuator - $\mathrm{GHz} £ 200$

PPM 8000 programmable scanne
PPM 8000 programmable scanne
Fluke 730 A DC transfer standard
B\&K 4815 calibrator head

Barnell 2 calibrator head
Farnell power unit H60/50- $£ 400$ testec
H.P. FX doubler 938A or 940A - $£ 300$.

Racal/Dana 9300 RMS voltmeter - $£ 250.6 \mathrm{GHz}-86260 \mathrm{~A}-124-18 \mathrm{GHz}-86260 \mathrm{AH} 03-10$
.P. sweeper plug-ins -86240A-2
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz} .86245 \mathrm{~A}$
Telequlpment CT71 curve tracer $-£ 200$
Telequlpment Cifier $-1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - old solour - $£ 100$
H.P. B750A storage normalizer

Tektronix oscllloscopes type 2215A - GOMC/s - ciw book \& probe - $£ 400$
Tektronix monltor type $604-£ 100$
Marconi TF2330 or TF2330A wave analusers - $£ 100-£ 150$
HP5006A Signature Analyser $£ 250+$ book
HP 10783 A numeric display $£ 150$
HP 3763A error detector $£ 250$
Racal/Dana slgnal generator $9082-1.8-520 \mathrm{Mc} / \mathrm{s}-£ 800$
Ciaude Lyons Compuline - line condition monitor - in case - LMP $1+$ LCM $\uparrow \$ 500$
Efratom Atomic FX standard FRT - FRK - .1-1-5-10Mc/s. £3K tested
Racal 4D recorder - £350-£450 in carrying bag as new
HP8350A sweep oscillator maintrame + HP11869A RF Pl adaptor - $£ 1500$.
Alltech - precision automatic noise figurg indicator rype $75-£ 250$
Adret FX synthesizer 2230A - 1Mc/s. ¿250.
Tektronix-7S12-7S14-7T11-7S:1-S 1 -S52-S53
Rotek $610 \mathrm{AC} / \mathrm{DC}$ calibrator. $£ 2 \mathrm{~K}+\mathrm{b} 00$
Marcont TF2512 RF power meter - 10 or 30 watts - 50 ohms - $£ 80$.
Marconi multiplex tester type 2830.
Marconi d gital simulator type 2828A.
Marconl channel access switch type 2831
Marconl automatic distortion meter type TF2337A - 150
MP 5240 A counter - 10 Hz to 12.4 GHz - 5400
HP 5240A counter - YOHz
HP 8016A word generator
HP 489A micro-wave amp - 1-2GHz.
HP 8565A spectrum analyser - 01-22GHz - $£ 4 \mathrm{k}$.
HP 5065A rubidium vapour FX standard- $\mathrm{C5k}$
Fluke 893A differential meters - $£ 100$ eir
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$
Takeda RIken TR4 120 tracking scope + TR1604P digital memory
EG $\$ G$ Parc model 4001 indicator +4203 signal averager PI
Systron Donner 6120 counter/timer $A+B+C$ inputs $-18 \mathrm{GHz}-£ 1 \mathrm{k}$
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner signal generator 1702 - synthesized to 1 GHz - AM FM
Systron Donner microwave counter $6057-18 \mathrm{GHz}$ - Nixey tube - $£ 600$
Racal/Dana synthesized signal generator 9081-520MCs -AM-FM $£ 600$
Farnell SSG520 synthesized signal gererator - $520 \mathrm{Mc} / \mathrm{s}-£ 500$
Farnell TTS520 test set - $£ 500$ - both $£ 900$
Tektronlx plug-ins - AM503-PG501 - PG508 - PS503A
Tektronix TM5 15 mainframe + TM500
Cole power line monitor T1085- $£ 250$.
Claude Lyons LCM1P line condition monitor - 250
Rhodes \& Schwarz power signal generator SLRD-280-2750 Mc/s £250-£600.
Rhodes \& Schwarz vector analyser - ZPV $+\mathrm{E} 1+\mathrm{E} 3$ tuners - 3-2000MC/s
Bell \& Howell TMA3000 tape motion aralyser - £250
Ball Efratom PTB-100 rubidium standard mounted in Tek PI
Ball Efratom rubidium standard PT2568-FRKL.
Trend Data tester type 100-£150
Farnell electronic load type RB1030-35
Falrchild interference analyser model EMC-25-14kc/s-1GHz
Fluke 1720A instrument controller + keyboard.
Marconi 2442 - microwave counter - $26.5 \mathrm{GHz}-£ 1500$.
Racal/Dana counters - 9904 - $9905-9906-9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$
£100-£450- alf fitted with FX standards.
B\&K 7003 tape recorder - $£ 300$
B\&K 2425 voltmeter- $£ 150$
B\&K $4921+4149$ outdoor microphone.
Wiltron sweeper mainframe $6100-5,00$
HP3200 B VHF oscillator - $10-500 \mathrm{Mc}$: $-£ 200$
HP3200B VHF oscillator-10-50,
HP3747A selective level measuring siat
HP3747A selective level measuring S
HP3586A selective level meter
HP4815A RF vector Impedance meter c / w probe . $£ 500-£ 600$.
Marcon/ TF2092 noise receiver. A. B ar C plus filters
Marconl TF 2091 noise generator. A, B or C plus tilters
Tektronlx oscllloscope $485-350 \mathrm{Mc}$'s - $£ 500$
HP180TR, HP182T malntrames $£ 300-£ 500$.
Bell \& Howell CSM2000B recorders.
HP5345A automatic frequency convertor - $015-4 \mathrm{GHz}$.
Fluke 8506A thermal RMS digital multmeter
HP3581A wave analyser
Phllips panoramic recelver type PMZ800-1 to 20 GHz
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ to 2GH
Wiltron scaler network analyser $560+3$ heads $£ 1 \mathrm{k}$.
Witron scaler network analyser $560+3$ heads $£ 1 \mathrm{k}$.
HP8558B spectrum ANZ PI-. $1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{o} / \mathrm{C}-£ 1000$. N/C $-£ 1500$ - To fit HP180 serles mainframe available $-£ 100$ to $£ 500$.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - §4k
HP8505A network ANZ +8502 A test set - £3k
Racal/Dana 9087 signal generator $-1300 \mathrm{Mc} / \mathrm{s}-£ 2 \mathrm{k}$.
Racal/Dana VLF frequency standarc equipment. Tracor receiver type 300A + difference
meter type $527 \mathrm{E}+$ rubldium standard type 9475 - $£ 2750$.
Marconl $6960-6960$ A power meters with 6910 heads - $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ or $6912-30 \mathrm{kHz}$ $4.2 \mathrm{GHz}-£ 800-£ 1000$.
HP8444A-HP8444A opt 59 tracking generator $£ 1 \mathrm{k}-£ 2 \mathrm{k}$
B\&K dual recorder type 2308
HP8755A scaler ANZ with heads $£ 1 \mathrm{k}$
Tektronlx 475 -200Mc/s osclioscopes - $£ 350$ less attachments to $£ 500 \mathrm{c} / \mathrm{W}$ manual, probes etc HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$ HP3730B down convertor - $£ 200$
Bradley oscilloscope callbrator type 192- 1600
Spectrascope SD330A LF reattime ANZ - 20Hz-50kHz - LED readout - tested - $£ 500$ HP8620A or 8620 C sweep generators - $£ 250$ to $£ 1 \mathrm{k}$ with IEEE
Barr \$ Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kC} / \mathrm{s}+$ high pass + low pass $-\varepsilon 150$
Tektronix 7L12 analyser - $1 \mathrm{MC} / \mathrm{s}-1: 8 \mathrm{GHz}-£ 1500-7 \mathrm{~L} 14$ ANZ - $£ 2 \mathrm{k}$
Marconi TF2370 spectrum ANZ-110Mc/s- $£ 1200-£ 2 \mathrm{k}$
Marconi TF2370 spectrum ANZ + TK2373 FX extender $1250 \mathrm{Mc} / \mathrm{s}+$ trik gen - $£ 2.5 \mathrm{k}-\mathrm{£3k}$
Racal recelvers-RA17L-RA1217-RA1218-RA1772-RA1792-PO.R
Systron Donner microwave counter $6057-18 \mathrm{GHz}$ - nixey tube - $£ 600$.
HP8614A slgnal gen $800 \mathrm{MC} / \mathrm{s}-24 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 40 \mathrm{C}$
HP8616A stgnal gen $18 \mathrm{GHz}-45 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$.
HP8616A signal gen $1.8 \mathrm{GHz}-45 \mathrm{GH} z$ old colour $£ 200$, new colour $£ 400$.
items bought from hm goyermment being surplus. price is ex works s.a e. for enduiries. phone for appointment or for demonstration of iny items. avallability or price change. vit and carr., extra. items marked tesied have 30 -day warranty. wanted: test eqpt - valves - plugs \& sockeis - syncros - transmitting a recelving eqpi etc.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 65160.

Clear highway for digital television

> Although there are still no signs of it in the shops, a new TV technology will shortly make your video recorder and TV set obsolescent. Not only will picture quality visibly improve, but the availability of more programme channels will provide a new imperative to the broadcasters. Tom Woodford* reports on a digital TV revolution.

[^1]Current TV broadcast technology has its origins before the Second World War. It predates magnetic tape recording, radar, stereo, and digital watches. With a few minor improvements - like better resolution, some sort of colour, and less fuzzy sound - you watch TV which is little different from Baird's and Blumlein's.
In thirty years of research the only identifiable achievement was MAC, which Fortress Europe believed would protect it from the Far Eastern invasion when the drawbridge was raised in 1993. Proving again that democracy is a poor method of choosing winners, the real threat was not a land attack from the Orient, but a Sky-borne raid from the Antipodes.
While Europe discovered that DMAC was not the consumer dream of the 1990s, the Americans and Japanese were having the odd skirmish about high-definition standards. All was pretty quiet until a small US start-up, SkyPix, hit the market with a vapourware launch of a fully digital DTH TV broadcast system in mid-1991. SkyPix would deliver some 64 TV programmes direct to the home by packing five "or more" digital channels onto each of sixteen high-power satellite transponders. Cable operators and terrestrial broadcasters would be out of business overnight..
Suddenly hundreds of developments appeared in a rash of similar announcements. Presumably this was what SkyPix had hoped since, the day after its own launch to the press, it was rumoured to be phoning around the
industry trying to buy into any working system. Like schoolchildren in their first communal shower, the industry had unwillingly been exposed to itself, only to find that everyone had been developing the same things, none of which yet actually worked.
With the secrecy and embarrassment lifted, the world was thrust into a new television era. Digital compression became public knowledge, although still unattainable. Digital TV became a reality, while yet still undefined
Digital video compression is unlike the data compression used (for example) in file exchange by modem or in PC hard-disk utilities like Stacker or SuperStor. PC Data compression uses coding techniques to eliminate redundant data. On recovery, the data is reassembled exactly in its original form. However, in any system of video or audio compression some of the original information is deliberately thrown away in the coding process; it is lost forever and is never recoverable.
The advent of digital video had a reverse effect on programme makers, who returned to silver halide technology. The "Inspector Morse" TV series was filmed in 35 mm ; Super-16 format is more common. Producers of high-value programmes want to ensure that their work is stored for the future with minimum loss of quality. They feel that current electronic storage is inadequate
Given that TV pictures are already a feeble representation of a real image, what is the enthusiasm for digital compression, and why has it suddenly become the technological hot spot?
Squeezing a bunch of lemons
In a universe with limited RF spectrum,

Squeezing a bunch of lemons

In a universe with limited RF spectrum, straight digital transmission is a relative nonstarter as an alternative to analogue techniques. A 625 -line video picture with a reasonable resolution of 400 vertical lines ($\mathrm{S}-\mathrm{VHS}$) requires 250,000 samples per frame. At 25 frames per second, and eight bits per sample, this will require at least 50 megabits per second to transmit. Add some colour and some sound, and $60 \mathrm{Mb} / \mathrm{s}$ is not unreasonable, but this still only gives a high-end-consumer picture quality.
Full studio broadcast standards would require over $140 \mathrm{Mb} / \mathrm{s}$, or at least 150 MHz of bandwidth. This compares with the 6 MHz or so that a broadcast PAL signal needs in conventional vestigial-sideband AM. Nevertheless, the perceived benefits of digital transmission - picture accuracy, dynamic range and noise immunity - have made it a very desirable objective, and this has spawned a vast amount of research into data compression algorithms

Much of a video signal is the same from frame-to-frame; in real life very few large changes occur in a twenty-fifth of a second. Obviously it should be possible to transmit only the differences between frames, and
avoid the redundant burden of repeated infor mation. There are some potential logistic problems with this approach, particularly "appearances" (see box) but the major difficulty is the actual transmission medium itself. (For the time being, "transmission" will be taken to include storage for subsequent replay)
Simple compression techniques are successful where high transmission powers are available to guarantee adequate signal-to-noise ratios at the receiver. With any sequential, differential system, a burst of noise can mask a significant change in one area of a picture. This error will remain until the damaged area is subsequently updated, which could potentially be many minutes.
In the world of terrestrial TV it is commonplace to bung a few megawatts up a big stick to broadcast distances of a few kilometres; for satellites only fifty watts are available to transmit tens of thousands of kilometres. Conversely, the satellite engineer has over 36 MHz of bandwidth to play with compared to his terrestrial colleagues' eight or so, and multipath is not a problem with less received signal power than the sound of a burning candle.

In practice it is terrestrial and cable broadcasting, with severe multipath, adjacent-chan-
nel and local interference potential, where the greatest difficulties are found.
Broadcasters see it as essential that compatibility among all delivery methods is ensured, or the commercial burden of standards conversion will invalidate any likely benefit. This argument has been the justification for the many new, rival TV standards worldwide. HDTVT, HD Divine, Spectre. Sterne, Svstem 2000, Race 203 and Diamond are only a very feu of the more prominent. However, the recent pre-emptive strikes by DirecTV in the US and by Rupert Murdoch in Europe have foreed an uncharacteristic unity, and the defacto future standard has become MPEG by default.
It would appear that the American system has won, but in reality the world's commercial grown-ups have just noticed that their technical children are still playing long after their bed-time, and have imposed some discipline.

MPEG plus, plus plus, plus minus

The Motion Picture Experts Group of ISO, the International Standards Organisation, grew oul of JPEG, the Joint Photographic Experts Group. JPEG was formed to define standards for digital storage, processing and display of still pictures on the (then) growth technology

The mpeg data stream structure

The general form of the MPEG stream comprises two layers. The System Layer contains timing and other information used to demultiplex the audio from the video and subsequently to synchronise the two.

The Compression Layer contains the compressed video and audio data streams. Audio coding will be covered in a later article.

Within the video stream there is an hierarchical data structure. The video sequence contains a sequence header code, one or more groups of pictures, and an end-of-sequence footer.
Picture Groups are strings of one or more pictures which allow access into a Sequence.
A Picture consists of three rectangular matrices representing the Luminance (Y) and the Colour Difference (Cb and Cr) values. The luminance matrix has an even number of both rows and columns. The colour-difference matrices are each half the size of the luminance matrix in both axes, so there are one each Cb and Cr for every four Y values. The Y and C values

1
-
PICTURE GROUP

MACROBLOCK

BLOCK OF 8×8 PIXELS
are arranged as 8×8 sets known as Blocks, so a chrominance block describes a picture area four times bigger than a luminance block.

The ${ }^{v}$ and C Blocks are arranged into macroblocks, each of which contains one Cb block, one Cr block and four Y blocks.

Contiguous macroblocks are ordered from left to right and top to bottom into Slices. Slices are fundamental to MPEG error hả̛ndling. Slices with errors are discarded by the decoder, which can skip immediately to the start of the next slice in the data stream. The number of slice subdivisions of the data stream is thus a tradeoff between error concealment and ultimate* picture quality.
Macroblocks form the basis for motion compensation, by adding a motion vector relating the position difference between the macroblock being coded and its reference, plus an error term relating the content difference. For a macroblock within a BPicture there are four possible codings; Intracoding with no motion compensation, forward prediction using the nearest previous i - or P - picture as reference, backward prediction referencing the nearest future 1 - or P - picture, and bi-directional prediction using the nearest past and future * I - or P - pictures. Backward prediction can be used to overcome appearances by providing the uncovered, new information in advancex

DCT demonstration: This still image has been stored as a 720 by 576 image and cut into 90 by 72 blocks. Each block is an 8 by 8, frame based, pixel area. These biocks were discrete cosine transformed to produce 64 coefficients to 12-bit accuracy.
The series of images show the effect of individual contributions of selected coefficients to full accuracy in reconstructing the final picture. The images are numbered from 1 to 7 . The first image shows the result of using just the DC term. The second image does not display a difference image but the picture information carried in three coefficients of the first layer from the DC term The third image shows the combined image of the previous two, a total of four coefficients. The images then progress through the layers until all 64 coefficients are used eventually to obtain a complete piciure.

Paul Burfield, BBC Research Depariment.
of Personal Computers, and MPEG followed to continue the work in the area of pictures that moved.
Originally MPEG was an occasional, typical gathering of like-minded engineers, evaluating compression methods and discussing the various possible applications of digital video. Participants would attend one of the routine meetings bringing a tape of their latest video, which had defeated the current state-of-the-art compression algorithms. Everyone would have a jolly good laugh, and then go up the pub to chat about it. By this process of intellectual attrition the MPEG algorithms were steadily refined, until a level of performance was reached which the consensus agreed was adequate.
It is important to understand that these early developments originated in the PC environment, and were limited by the (late 1980s) standard PC bus and clock speeds with a maximum data rate of $1.5 \mathrm{Mb} / \mathrm{s}$. Most of the participants had their backgrounds in information technology, and their objective was to achieve a reasonable performance in reasonable timescales, aimed at the multi-media markets.
Hardware evolution progressed in parallel with the specification and standardisation process, so that demonstrable systems existed and kept pace with the theoretical work, in particular the essential operational silicon buildingbricks. Like the DMAC development, the MPEG specification was an evolving summary of what had already been achieved, or was about to be.
By early 1991 the MPEG standard had reached a performance level which the majority of contributors considered adequate, and MPEG 1 was effectively defined, although still only in its "travelling draft" form. Multimedia consumer products were released to the market, in particular Philips CDInteractive or CDi, although PC expansion cards offering MPEG-I capability had already been available for some time.
Meanwhile, the professional TV broadcasters had been pursuing their own digital pathway. Starting from the minimum data rate of around $140 \mathrm{Mb} /$ s, their approach was to see how much this could be reduced while still retaining acceptability. By the late 1980s it was felt that $25-35 \mathrm{Mb} / \mathrm{s}$ was looking promising, and working systems were built to prove the point to the doubters.
Casting around for available hardware, some developers "discovered" the MPEG-1 subsystems and were delighted to find that much of the silicon would work at much higher data rates than the $1.5 \mathrm{Mb} / \mathrm{s}$ for which it was specified. These engineers were looking to upgrade existing links for broadcast distribution networks, and had only a passing interest in consumer markets.
Simultaneously, the programme makers were evaluating the new digital technology, to establish its viability as a lower-cost replacement for VHS tape and to expand cable networks. They were stunned by the picture quality which could be achieved in only $1.5 \mathrm{Mb} / \mathrm{s}$. and started to wonder what might be possible

Discrete cosine transforms, run length encoding and quantization

The MPEG algorithms use numerous stages in the source coding process. The obvious first stage for a digital system is to digitise the analogue original. This implies inherent quantization into a finite number of pixels, each with a finite number of grey levels for the luminance information, and similarly fimited chroma steps. The resulting array of pixels 's then subdivided into blocks of 64 pixels, which are then translated to the frequency domain by Discrete Cosine Transformation.
DCT is usually explained in a heavily jargonised, esoteric form. This may be better understood by considering it as deltamodulation and coding in pairs; the image block is coded as a series of transitions from one grey level to the next. If the change in luminance between any pixel pair is large, the transiormed equivalent pixel is white. If there is ro change, the transform is black. There are obviously shades of grey in between these two extremes.
As luck would have it, the average video picture has few hard contrast transition edges in proportion to the total picture area, so the DCT version tends to have a large number of very black pixels, and the few, very white pixels tend to occur in specific groups. The statistics necessary to demonstrate this are beyond the scope of this box, but anyone who wants to prove the point and has a couple of years to spare can try pausing their home VCR on a typical tape, and then inspecting the resulting frozen video frame to perform a quick DCT in their head.
The resulting DCT form of a frame has large groups of all-black or all-white pixels, or long sequences of small change representations, so the frame can be further compressed by Run-Length coding in pairs.
In simple terms this means that, if there are 1000 identical pixels in a string, then one could transmit a coded message saying "here fo lows 1000 identical pixels, all
at only slightly higher data rates which would fit into their existing five or six megahertz bandwidth.
In the worldwide climate of de-regulation, telecomms operators were also evaluating digital TV, particularly for the embryonic pay-per-view and video-on-demand domestic movie services, but also with an eye on the very lucrative news gathering market. PTTs have transmission standards at 1.2 and $8 \mathrm{Mb} / \mathrm{s}$, and thus they were also following the twin performance paths. Would $1.2 \mathrm{Mb} / \mathrm{s}$ give acceptable quality for consumers, and could $8 \mathrm{Mb} / \mathrm{s}$ be good enough for broadcast feeds?
TV setmakers, still smarting from the European MAC disaster and equally wary of the cortinuing unresolved acrimony ove: widescreen and high-definition formats, were
black", which is obviously a shorter message than all the 1000 original pixels, and a lot less boring.
For a smooth transition from black to white over a series of pixels, a similar coded message saying "the next 500 pixels increase by only one bit from one to the next .." is an equally efficient simplification.
The MPEG system interposes an additional step before run-length coding, by first zig-zag scanning the array of DCT pixe:s. This tends to produce long runs of similar or identical transformed pixels, and increases the RALC efficiency. Again, this is something to try for yourself at home on a typical TV frame or two.
The run-amplitude-length coding is also of variable word length, so that the more commonly occurring sequences have shorter codes, which further increases the coding efficiency. Conversely, some blocks need to be coded much more accurately than others. A smooth transition needs to be transferred as such, because the eye is more critical of harsh edges where they shouldn't occur than of blurred edges which ought to be sharp.
Since the original stage of the entire coding process is to divide the picture into blocks, it is vital that the edges of the blocks should join seamlessly in the final, reassembled picture. The MPEG algorithm modifies the amount of quantisation for each 16×16 "macro-block" of pixels to overcome this, and this additional process is a so used to allow smooth adaptation to changes in transmission bit rate.
Since this only describes the coding process used for one typical pair of video frames in very simple terms, you will not now be surprised that real-time MPEG encoding of raw video has only just become a reality. Indeed, one could be forgiven for wondering if there is enough raw silicon in the world to construct all the necessary MPEG encoders.
only too pleased to join in with anything that looked half sensible.
Apparently MPEG was already exploring all these areas, and it was natural for the various TV-oriented interest-groups to want to join in.
The original MPEG meetings typically attracted around fifty attendees. During 1992 the number of Representatives grew, and the gathering in Sydney earlier this year drew 270 Delegates. MPEG is now unofficially called MPIG, where the "I" stands for "Interested".
With this level of world-wide participation the speed of MPEG progress has accelerated. and now exceeds the ability of the politicians to keep up. With MPEG-1 effectively an established standard, although still officially a draft, the various Interested bodies have moved on ward to the next generation, MPEG-2.

Picture coding

The MPEG standard defines three type of pictures within the coded stream: Intra, Predicted and Bi -directional.
Intra Pictures, or " 1 -Pictures" are coded using only information present in the picture itself and therefore provide possible randomaccess points into the compressed video stream. I-Pictures use only moderate levels of compression coding, typically two bits per coded pixel.
Predicted Pictures, or "P-Pictures" are coded with reference to the nearest, previous I-Picture or P-Picture. This is referred to as
"Forward Prediction", and allows higher levels of compression than 1 -Pictures by using motion compensation. P-Pictures are used by subsequent P-Pictures and B-Pictures for prediction, and thus can propagate coding errors along the data stream.
Bi-directional Pictures, or "B-Pictures" use both a past and a future picture as a reference. By using bi-directional prediction some noise reduction is also achieved by the resultant averaging.
Although B-Pictures use the highest possible compression, they cannot propagate errors since they are never themselves used as a reference.
The MPEG algorithm allows the encoder to choose the number and positioning of I-Pictures within the data stream, depending on the original video composition (number of cuts and scene changes) and on the specific need for random accessibility.
Where random access is paramount I-Pictures occur typically twice per second.

The algorithm also determines the number of B-Pictures between any pair of P-Pictures or I-Pictures, depending on the video material content and also the encoder's memory capacity. Typically, two BPictures will occur between successive I - or P - pictures.
The MPEG encoder re-arranges pictures into a different order for transmission. Most importantly, the reference pictures needed to reconstruct any B-Pictures must be sent before the B-Pictures which actually use them as a reference. This re-arrangement or re-ordering of the video sequences requires complex re-synchronising with the sound signal in the receiver..

With the broadcasters coming down from $140 \mathrm{Mb} / \mathrm{s}$ and the PTTs going up from $1.2 \mathrm{Mb} / \mathrm{s}$ the inevitable clash occurred at around 15 Mb . If the momentum of MPEG were not to be lost it was essential that some new Peg was put in the ground to mark the direction for onward development:

MPEG-I silicon was already operating quite happily at $15 \mathrm{Mb} / \mathrm{s}$ and faster, and was growing offshoots. The leader in MPEG silicon technology, Californian C-Cube Microsystems developed its CL450 decoder with much of the actual algorithm soft-loaded as microcode. This has allowed amendments and upgrades to

Timing and synchronisation

The MPEG system performs large amounts of signal processing before transmission and after reception but before display. Although the audio and video components are multiplexed together in the data stream, they use totally different coding techniques, In particular, the video frames must be transmitted re-ordered, so the audio and video data components at any point in the stream may be totally unrelated. The MPEG standard provides suitable timing references to allow the audio and video to be resynchronised by the decoder.

The System Clock Reference is a sample of the 90 kHz MPEG system clock. This provides 7.8×10^{9} clocks in a 24 -hour day. An SCR is transmitted as a 33 -bit value, so can therefore identify any one particular clock cycle in a 24 -hour period. SCRs are inserted into the data stream by the encoder at least once every 0.7 seconds. The system decoder in the receiver extracts the SCRs
basic MPEG-1 to be demonstrable almost as soon as it evolves.

This flexibility, and the higher data rates. could be used either to improve resolution or to reduce compression artifacts, or a bit of both. The speed upgrades had already becone known as MPEG-Plus, and with multiple enhancements there is also MPEG Plus-Plus.
The confusion increased with the requirement that MPEG-2 should be backwards-compatible, and hence the parallel existence of MPEG-2-Minus..

At these various higher data rates, MPEG-1 has demonstrated performance equivalent to
and passes them on to the video and audio decoders to update their own internal clocks.
A potential time difference of nearly a second between the video and audio would be totally unacceptable, so the system also transmits Presentation Time Stamps. These are effectively 33 -bit "clapper-board" markers which can identify related sound or vision Presentation Units to within one system clock tick. PUs are specific decoded video pictures or decoded audio sequences.
The encoder inserts a PTS into the data stream at least once every 0.7 seconds to identify specific video frames and audio sequences which must occur together. The video decoder checks incoming PTS markers against the current SCR before displaying a picture. If the PTS is "early" the previous picture is repeated; if it is "late" a picture is discarded.
existing systems. At $2 \mathrm{Mb} / \mathrm{s}$, picture quality is similar to domestic VHS, and approaches broadcast PAL standard at about $12 \mathrm{Mb} / \mathrm{s}$. In between is Betacam SP used in SNG, at around $8 \mathrm{Mb} / \mathrm{s}$. Since MPEG-I already appears to have reached the various targets of the interested participants, what then is MPEG-2?
Until early September this was not a simple question since participants are party to nondisclosure agreements. The main improvements in MPEG-2 appear to be the possibility for flexible, seamless, dynamically variable data rates rather than the nominally fixed $1.5 \mathrm{Mb} / \mathrm{s}$ of MPEG-1. In addition MPEG-2 makes better use of the temporal redundancy in interlaced TV pictures, which was not exploited in the non-interlaced IT origins of MPEG-1, and MPEG-2 is defined to be fully compatible with telecommunications networks data rates. Draft specifications of MPEG-2 are notionally available from standards bodies such as BSI. but these all date from earlier this year and are already obsolescent.
MPEG has about five meetings a year, with some ad-hoc gatherings in between as required. The Spring meeting in Sydney set out MPEG-2 in outline, and these standards were chilled at the July meeting in New York. in preparation for being frozen in the Korea meeting in early November.
At the International Television Symposium al Montreux in June the Europeans apparently capitulated, finally buried MAC and adopted MPEG as the future standard. A European Launching Group meeting was planned for September to lay out a co-ordinated plan for the introduction of MPEG-2 by mid-1997. It appeared that America had indeed won the digital race.

Mapping out a digital highway

However, in a pre-emptive strike at the end of August, Rupert Murdoch announced that BSkyB would operate an MPEG-2 digital service by the end of next year. Sky will work jointly with the UK's National Transcommunications Lid (the old IBA's lechnical wing), Comstream, Thompson and News Datacom, who provide the existing VideoCrypt conditional-access system. The Murdoch digital service will therefore be virtually identical to the Hughes DirecTV system in the US, scheduled for launch in mid-'94. Thompson and C-Cube are the technical and manufacturing resource behind DirecTV.
BSkyB will undoubtedly use the potential compatibility to good effect. In late August Murdoch purchased Delphi Internet Services. one of the top five US on-line data suppliers. He has announced deals for interactive systems with telecom operators, particulary BT, and with the Kirch Group in Germany for Pay-per-view services. Significantly, all the selected partners are commercially independent; there are no government influences or state monopolies in BSkyB's Digital future.
NTL's involvement follows from its System 2000 digital transmission system, which they have been selling highly successfully as a broadcast feed since late last year. The development for Murdoch will probably be entirely new, as an MPEG-2-based consumer system. The contract expects hardware in the retail market no later than the end of 1994. With the final stages of MPEG-2 definition only expected after the meeting next November. these are tight timescales indeed for NTL, an organisation with limited experience in consumer product technology.
C-Cube is confident that it will have working MPEG-2 silicon available by Christmas, and volume product at consumer prices (under $\$ 50$) early in 1994. The apparent lead of CCube may be because R \& D head Didier Le Gall is also chairman of the MPEG video committee.
NTL's signilicance is reat-time MPEG encoding. At the end of 1991 the best available encoders took around 200 minutes to produce just one minute of programme output. By mid '92 this overhead time was down to about 70 minutes, and below 15 minutes by a year ago. While a dramatic improvement, this was still quite impracticable for any broadcast system.
Encoding was also a two-stage process, with a first pass to identify and edit out any hot spots which would defeat the MPEG algorithms. However. NTL was demonstrating real-time encoding before the end of last year. and shipping product to customers soon after. C-Cube did not deliver real-time encoders until last month. and at reputedly very much higher prices.
It is difficult to understand why BSkyB should want to move so quickly to digital, with a dominant installed base of PAL/Videocrypt customers. Perhaps it is significant that none of Murdoch's chosen associates are manufacturers; they are developers

Movement prediction and appearances

Quite a lot of the information in any given TV frame is similar to a previous or subsequent frame. The MPEG system uses this sequential redundancy to transfer some pictures in a simplified form representing only their differences from some reference picture previously or yet to be transmitted.
This technique has excellent potential for problems, in particular with visual
discontinuities known as "appearances".
The classic example is a static picture containing a black circle, which is actually the mouth of a tunnel from where, suddenly and unpredictably, bursts an express train. More subtle is the side view or an aircraft's wheels at touch-down when they (suddenly and unpredictably) start to rotate, accompanied by a puff of smoke. The opening of a door to reveal a hitherto undisclosed scene beyond is less sudden, but equally unpredictable.

Conversely, it is easy to detect consistent movement within a sequence of pictures by seeking groups of blocks which change only in their relative position to the overall picture from frame to frame. This can be
used to predict the future position of a moving group of blocks, and code a sequence of frames accordingly. This technique is known as "Movement Prediction" or "Motion Compensation", and it can improve compression ratios by a facior of three or higher. It can also create more serious problems...

I have actually seen a video of a horse race finish in which, in the digitally compressed version, a different horse wins. A wide-angle view of an applauding crowd can also create intolerable (but amusing) artefacts, since the overall movement of countless clapping hands is virtually random. Stormy seas or fields of wheat are equally incoherent.

A predicting algorithm needs to be able to decide when to give up trying and to wait around and see what happens next. The overall algorithm also needs to transmit whole pictures every so often, to allow the decoder to recover from transmission errors which would otherwise propagate endlessly from frame to frame.
and specifiers. While the litigation between the old BSB and its DMAC receiver suppliers still rumbles on, BSkyB is being careful not to incur any implied commitment to eventual sales of hardware. It is likely that Murdoch is protecting himself against the future, by trying to force ir to look the way he wants. When. and how quickly, he follows his own lead will be intriguing.
Perhaps the biggest concern is the shor-term replacement of VHS tape by Video CD. Nimbus is planning to have its add-on video decoder for audio CD machines on the market by the end of 1993. The Gang of Four (Philips. JVC, Sony and Matsushita) plan to enter the market with their rival "white book" CD-K machines early next year. Whichever system wins, either promises a drastic reduction in the cost of video rental by eliminating cheap, back-room piracy. With a common format on both sides of both the Atlantic and Pacific, the costs of programming must also fall. The quality improvement over tape will be dramatic and immediate for the ordinary consumer, with a price penalty which is low, or even zero.
The installed base of domestic TVs which can accept direct RGB inputs is small. Domestic RGB VCRs are non-existent. As with DMAC, the majority of viewers will watch their MPEG-broadcast TV as conventional PAL, SECAM or NTSC via composite video or even UHF. To time-shift a satellite movie they will certainly have to use an inferior analogue medium. Without the cost
reduction benefits of digital. and extra features like video-on-demand and interactivity, it will become increasingly difficult for broadcasters to compete with the better quality and established convenience of renting a movie on CD frem the local video store.
DirecTl and Digital Sky will be satellitebased. of course. With restrictions on coverage areas and due consideration for domestic consumers, the last European PAL transmitter will probably not be switched off until 2015 or even later. Much work has yet to be completed on alternative terrestrial transmission technology, although it looks as if NTL is again the leader with its OFDM Spectre developments. Whatever system is adopted to replace AM for terrestrial broadcast. it will be delivering digital programmes created using (by then) long-cstablished technology. In twenty years' time every home could have a fibreoptic connection, and UHF broadcast may never be upgraded at all...
At Montreux, it was suggested that MPEG actually stands for Maximising Profit and Elficiency Gains. MPEG offers the ability for broadcasters to pack five, six or more TV channels into the space occupied now by only one. As far as the average TV viewer is concerned, this will mean only More, not Better. urtil he has saved up to buy his new MPEG television in some three years time. One wonders how much extra he will have to pay for spiked fect?

Economical 27MHz phase modulator

This circuit phase-modulates a clock signal, a process finding application in PM and FM transmitters and in clock jitter testing. It exploits the properties of 74 HC cmos gates that (a) input logic threshold increases with increasing V_{cc}, (b) propagation delay increases with increasing V_{cc} and (c) V_{cc} is allowed to vary between 2 V and 6 V .
Triangular modulation of $\mathrm{I} \mathrm{Vpk}-\mathrm{pk}$ is superimposed on the nominal 4 V derived from the 4.5 V battery via the diode, which catches the modulating input and results in a V_{cc} varying between 4 V and 5 V . There is sufficient noise immunity in 74HC and $74 A C$ logic to allow correct drive to the following stage with these levels.
Since the effects of varying V_{cc} on propagation delay and logic threshold are in the same sense only on falling edges of the clock input, both inverted and noninverted clock signals are used. the timing from the rising edges being eliminated in the 74HC74, configured as a pair of divide-bytwo flip-flops. A 74HC86 Ex-Or section combines the two outputs V_{s} and V_{6} to provide the circuit output at up to 27 MHz .
Two of the spare gates in the 74HC86 will make the 27 MHz crystal oscillator and the triangular-wave generator was made from spare Schmitt inverters, with a buffer. at audio frequency. A 4.5 V supply is conveniently obtained from three alkaline manganese cells. I found it necessary to use a ground-plane board layout.
Laurence Richardson
Hersham
Surrey

At very low cost, an audio waveform phasemodulates a clock signal of up to 27 MHz . Only negative-going input edges are used, since the properties of the cmos logic exploited in the circuit have a tendency to cancel on rising edges.

Independent on/off for long-period astable

Astable multivibrators using 555 timer ICs are tlexible in that frequency and duty cyck are independently adjustable but. when long and independent on/off periods are needed. large and costly capacitors must be used. This circuit avoids the problem and gives periods up to several hours.
An 4020 14-stage binary counter divides the timer output, its Q_{1+} and $\backslash \mathrm{Q}_{1+}$ outputs connceting $R_{\text {off }}$ and $R_{\text {on }}$ at alternate transitions to give independent on and off periods. Output Q_{1} gives an indication of the output duration.

Devadoss John

Hindustan Cables LId
Hycterabad
India

Low-loss lamp dimmer

O
nce having shut the car door in a dark car-park and thereby extinguished the internal light, you can't find the keyhole to lock it. But this circuit dims the light slowly until the door is locked.
Transistor $T_{r_{2}}$ drives the lamp and in turn is driven by the 3524 regulating pulse-width modulator. With the door switch closed (door open), C_{3} is fully discharged, $T r_{1}$ fully conducting and C_{1} shorted. Pin 2 of the PWM, the noninverting input, is high and the lamp fully on.

Closing the door and thereby opening the switch causes C_{3} to charge through $R_{5,6}$. holding Tr_{1} in saturation for about a minute. When $T r_{1}$ cuts off, C_{1} charges slowly through R_{7}, bringing pin 2 of the PWM to 0.6 V , and slowly dimming the lamp.
If matters were left there, one would have to wait for the lamp to go out completely, which would take some time, so the relay is actuated by the 12 V contact on the lock to charge C_{3} quickly through R_{4}. Diode D_{1} and C_{2} prevent interference when the engine is being
started.
The driver transistor needs no heat sink since it runs in hard switching.
Yves Delbrassine,
Hovenierslanden 3,
8200 Bruges,
Belgium
This principle is, of course, not limited to dimming car lighting; low-loss drive for high-power loads is common, although it is not often seen described for such simple projects. Among the possibilities that spring to mind is a miniature crystal oven using the PWM to drive a power transistor - Ed.

Two wire level indicator

Using one IC, this two-wire remote-reading instrument indicates that water in an earthed vessel is at or above one of four levels.
If all sensing electrodes are unwetted, all Nand outputs are low and the meter reads virtually zero. As an electrode touches water, its gate goes high and the meter reads a current V_{cc} / R_{1}. A rising water level causes more gates to contribute to the current.
The optional regulator and voltage-setting resistor R_{4} allow fullscale to be adjusted by shorting all the electrodes to ground.

K N N Narayanan and C V Raman Nagar

Bangalore
India.

Proportion indicator

To show the ratio of one of several inputs to the total of all inputs as a percentage, the obvious solution involving a microprocessor can be simplified by the use of three A-to-D converters, which perform all the functions of digitising, ratio determination and driving the percent display.
The non-inverting, summing op-amp pair adds the inputs - three, in this case, as an illustration - the sum being taken as the reference voltage for all A-to-Ds and the individual inputs being fed to $V_{\text {in(hi) }}$ of each converter. Display 1 now reads
$V_{\text {in(hi) }} / V_{\text {ref(hi) }}$,

or
$V_{1}\left(V_{1}+V_{2}+V_{3}\right)$,
and similarly for the other inputs. If the right-hand decintal point in the "tens" position is turned on, the display shows a percentage.
This circuit will handle a total input of $0.2-4.5 \mathrm{~V}$ and give three readings per second; although three inputs were used in the prototype, it should work with any number.

M S Nagaraj

ISRO Satellite Centre
Bangalore

Indicator shows ratio

 of each input as a percentage of total input. Circuit replaces more exotic microprocessorbased arrangements.

SCHEMATIC DRAWING FOR WINDOWS

ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3 . The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.

Features

- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.

- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- ILLUSTRATOR+ adds netlist generation, bill of materials etc. anc is compatible with most popular CAD software for DOS \& Windows.

CADPAK - Two Programs for the Price of One.

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire
 Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

РСВ II

High performance manual PCB layout package for DOS. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Graphical User Interface with intuitive "point and do" operation gives unparalled ease of use.

ISIS and ARES for DOS - The Professional's Choice

ISIS
from £275

ISIS DESIGNER+ forms the ideal front end of your CAD system, providing schematic capture, netlisting, bill of materials and electrical rules checks. Advanced features include automatic annotation, hierarchical design and an ASCII data import facility. Put simply, DESIGNER + is one of the easiest to learn and most powerful schematics packages available for the PC.

ARES

from £275
The ARES range of advanced PCB design products links with ISIS (DOS or Windows) and other schematics programs. Working from a netlist, ARES helps you get it right first time with each connection automatically verified against the schematic.

ARES AUTOROUTE adds multi-strategy autorouting, whilst for the ultimate in performance, ARES 386 goes up to 400% faster with unlimited design capacity.

Many op-amp applications process signals which swing about ground. This requires the designer to add a negative supply rail to the system. Frank Ogden reports on a new op-amp package which generates its own.

ost portable communications and instrumentation designs must draw their power from a single battery or supply rail. The input signals which they process are usually referenced to ground. Logic level input signals pose little problem; they swing from ground towards the positive rail allowing the signal conditioning circuitry to operate from a single supply. Provided of course that there are enough volts on the supply rail to provide headroom for the signal being processed.
Most other signals swing around ground. Designers traditionally deal with these either by using cmos op-amps such as the TLC271 which include the negative rail in their common mode range or by putting in an extra power block to provide a negative supply rail referenced to ground.
Using op-amps with extended common mode range is not always a good idea. They will tolerate a below-ground swing of just a few hundred millivolts. Exceeding this, for instance during a transient, incurs a real danger of device latch-up. However, the provision of a proper negative supply rail allows fully symmetrical signal handling and extended dynamic range at the expense of power supply complexity and board area.
Texas Instruments provides an answer to this dilemma in the TLE2662. Incorporating a pair of high output drive, jfet input op-amp blocks together with an adjustable charge pump negative rail generator, it allows the design of single 5 V rail signal processing system with an input/output drive capability of $7 \mathrm{Vp}-\mathrm{p}$ about ground within a single device package. The allowable supply voltage range of the converter system extends to 15 V providing the amplifier blocks with $\pm 15 \mathrm{~V}$ supply rails and $25 \mathrm{Vp}-\mathrm{p}$ output swing about ground.

Charge pump
converter internal block diagram

Functional block diagram

Suitable for modems, PCMCIA cards, portable phones, VCOs, level shifters, battery chargers and data acquisition systems, the device comes in a wide bodied SMD package.

The amplifiers

The identical amplifier blocks exhibit fairly typical jfet opamp performance with $2 \mathrm{~V} / \mu$ s slew rate, 25 mA output drive capability and a millivolt of input offset voltage. However input bias current is just 3pA making the amplifiers highly suitable for electrometer type applications. The equivalent input noise current is also very low, about IfA $\sqrt{ } \mathrm{Hz}$. Full output swing bandwidth extends to 140 kHz at a supply voltage of $\pm 5 \mathrm{~V}$. Quiescent no load current drain is about $600 \mu \mathrm{~A}$.

The voltage converter

The bipolar charge pump voltage converter doesn't share any pins with the amplifier blocks allowing total system separation if required. It will deliver up to 100 mA provided that dissipation considerations are taken into account. Since the associated amplifiers would draw no more than about 6 mA in small signal, high impedance load applications, the converter may be configured to supply a useful amount of current to other parts of the system. An extra pair of external diodes will allow its configuration as a boost converter to increase the available positive rail voltage to the amplifier section or other external systems.
The converter block also includes a 2.5 V reference which may be used to regulate the output voltage through a resistive divider associated with a feedback/shutdown pin, or as an external reference for other circuitry.

The power converier generally operates most efficiently at the internal oscillator frequency of 25 kHz . However, this frequency may be raised, lowered or locked to an external clock with the appropriate placement of an additional external capacitor. The converter may also be strobed for interleaving with data acquisition operations. It can also be temporarily shut down. Converter supply current reduces to about $80 \mu \mathrm{~A}$ under shuldown conditions.

Design considerations

Although the circuit blocks of the TLE2662 allow great versatility in system design, the high switching currents present in the converter section require careful handling. Many applications will be able to use a direct connection between the power converter and amplifier section: this basic arrangement can lead to 25 kHz switching ripple appearing on the op-amp outputs amounting to a few tens of millivolts. A simple LC filter comprising a $50 \mu \mathrm{H}$ surface mount inductor feeding a $220 \mu \mathrm{~F}$ capacitor in each amplifier supply leg will reduce output ripple by a couple of orders of magnitude.
Alternatively, the strobe facility on the power converter section may be used to stop the oscillator during sensitive data acquisition operations.
Attention should be given to decoupling adequately the main power supply to the converter at pin $8, V_{\text {in }}$, particularly where long circuit tracks are involved. Also bear in mind that the converter ground return, pin 11, carries switching currents which could upset signal circuits if taken to a signal grounding point.

Typical application

In its most basic configuration, the switched capacitor section of the TLE 2662 provides the negative rail for the amplifiers in a single supply system. As shown in Fig. 1. the 5 V positive supply is connected to $V_{\mathrm{cc}}(\mathrm{pin} 16)$ and $V_{\text {in }}$ (pin 8). The negative output voltage, $V_{\text {out }}$, from the charge pump (pin 5) connects to the amplifier negative supply point, V_{cc} - (pin 4). Only three external components are necessary not counting the components associated with the signal handling functions of the amplifiers: storage capacitors $C_{\mathrm{in}}, C_{\text {out }}$ and a small Schottky diode to prevent $V_{\text {oul }}$ rising above ground during startup. Once the negative rail is established, it provides no further function. As shown one amplifier is connected an inverter driving a resistive load while the other forms part of an ADC system using the TLE2662 internal reference.
The second circuit, Fig. 2, shows the converter section
set up to provide a regulated negative output voltage rather than the simple of dual of the supply input voltage. Its value is determined by the ratio of R_{1} to R_{2} and, assuming a $V_{\text {ref }}$ of 2.5 V , is given by:

$$
R_{2}=R_{1}\left(\frac{V_{\mathrm{OUT}}}{\left(\frac{V_{\mathrm{REF}}}{2}-40 \mathrm{mV}\right)}+1\right)
$$

R_{\mid}should be $20 \mathrm{k} \Omega$ or greater since the reference current is limited to $\pm 100 \mu \mathrm{~A}$. R_{2} should be in the range $100 \mathrm{k} \Omega$ to $300 \mathrm{k} \Omega$. Frequency compensation is accomplished by adjusting the ratio of $C_{\text {in }}$ to

READER SERVICES OFFER

To obtain your free sample of the Texas Instruments TLE2662 charge pump dual opamp, fill in and send off the special reply card locatod between pages 936 and 937 of this issue. This reader services offer is being handled directly by Texas Instruments. Our editorial office is unable to assist in any queries relating to it.

$C_{\text {out }}$, a normal ratie of about $10: 1$. Capacitor C_{1}, required for good load regulation, should be 2 nF for all output voltages.

TLE2682

This is a higher speed derivative of the 2662 offering a typical slew rate of $40 \mathrm{~V} / \mu \mathrm{s}$ and a gain bandwidth product of 10 MHz . For instance, settling time to 0.1% on a 10 V $\operatorname{step}(1 \mathrm{k} \Omega / / 100 \mathrm{pF}$ load) is about 400 ns . In other respects it has similar characteristics to the TLE2662.

Fig. 2. The basic regulator function. $V_{\text {out }}$ referenced to ground (pin 11) must be less than the total of the supply voltage less the voltage drop across the internal charge pump switches.

Yous boss derign coutal wius you this e2500 H-P Osciloscope

HIS Hewlett-Packard oscilloscope combines the feel and display of a top line analogue instrument with the precision and programmability of digital electronics. This DSO is easy to use because it was designed by electronics engineers for electronics engineers.

Electronics World is looking for freelance authors who can bring applied electronics design alive for other electronics professionals through their writing. We want to commission articles on circuit design using the wealth of modern components now available to electronics engineers. Possiblé areas of interest could be RF, microwave, audio, video, consumer electronics, data acquisition, signal processing and computer peripherals.

All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

The author of the best script received over the period June k, 1993 to May 30, 1994 will receive an HP54600A oscilloscope in addition to the normal duthor's fee.

The judging panel will be drawn from Electroinics Wogldwand Hewlett-Packard.

A Hewlett-Packard HP54600A 1 OOMHz digital storage scope could be yours when you write for Electronics World + Wireless World, the journal that design engineers pay to read.

For further details about our quest for
the best call or write to:
Frank Ogden, Ediror, ELECTRONICS WORLD,
Quadrant House, The Quadrant, Sutton
SM2 5AS. Tel 081-652 3128

WORKING

 with programmable logicProgrammable logic devices are essential to compact logic design and have been so for a long time. They save component count and board area and provide adaptability of circuit function. Despite this utility their operation is not always well understood. In the first part of a new series, logic designer Geoff Bostock explains the workings of programmable logic.

Programmable Logic has come of age. It is at least 21 years since the first proms (programmable read only memories) came to the market.
It may seem perverse to start a series on programmable logic by mentioning memory devices, but one of the most common uses of proms is as logic devices. After all, every combination of input signals to a prom will result in a well defined set of oltput signals exactly how a combinatorial logic device might be defined. Conversely, even a 2 -input nand gate could he described in 'memory notation' as:

ADDRESS	DATA
0	1
1	1
2	1
3	0

One prom manufacturer, Monolithic Memories Inc. (now a subsidiary of AMD), even went as far as calling proms PLEs (programmable logic elements) when used in logic applications. If proms can be used as logic devices, why is there a need for pals, GALs, FPLAs and all the other PLDs (programmable logic devices) which have mushroomed onto the market? Indeed, why not just use TTL or cmos logic? By the end of the series I will hope to have answered these questions.

Proms as logic devices
Examination of the prom structure, Fig. 1a, shows how they can operate as logic devices. The 5 -input/ 8 -output prom is a real device marketed by AMD as a $27 S 19$. National as a 745288 . Philips as 825123 and Texas as an 185030 , etc. The five input signals are fully decoded into 32 internal lines. Each line drives eight transistor bases; their emitters are connected via fuses to the input side of one of the eight output buffers.
Viewed as a memory, the five inputs define an input address; this sends one of the internal lines high. Any of the outputs connected via an sntact fuse will be pulled high also; the inverting output buffer making a low appear on the corresponding output pin. Conversely, a blown fuse will let the output line stay low. sending the output high. Thus the pattern of blown fuses determines the output data corresponding to any particular input address.
The alternative way of describing the prom is to call the input decoder a fully decoded AND-array, and the output section a programmable OR-array. Line 0 in Fig, la is thus:
$!\mathrm{A} 4 \&!\mathrm{A} 3 \&!\mathrm{A} 2 \&!\mathrm{A} 1 \&!\mathrm{A} 0$
where! represents an inversion and \& the and function. The lines driving the output buffers are wire-ORed. where the fuses are intact, so an output function formed by leaving the fuses

Fig. 1a. Prom architecture

and so on, where addresses and data are in hexadecimal.
In practice, several software packages for PLD design include an assembler for proms. This allows logic to be defined as Boolean equations, and assembled into a format suitable for prom programmers. We will look at PLD assemblers and programmers in more detail later on.
One of the earliest applications for prom logic was in address decoding. Fig. 3a shows the memory map of a fairly simple, hypothetical microprocessor system, including some memory-mapped i/o, one port being read only, the other read/write. The enable signals for the various peripherals can be derived from the upper four address lines and the read/!write output from the processor.
This logic may be converted directly to the truth table in Fig. 3b, more or less by inspection. For example, A15, A 14 and A13 all low will address any location in the lowest 8 K of the map. The only complication is the ram space, which needs to be split into three segments for addressing purposes.
To convert this truth table into a hex-ascii table, which is the format needed for loading into a prom programmer, we must first allocate pins to signals. Let us assume that R/!W

A question of notation

Many designers prefer to describe logic circuits by a circuit diagram, although most PLD assemblers require Boolean logic equations as their data source. Computer aided design systems with schematic capture usually have interfaces to the popular PLD assemblers, so direct conversion of circuit diagrams to logic equations is possible. If this is not available, the conversion must be done by hand. Figures 7 a and 7 b illustrate this process for a simple circuit.
The first step is to eliminate double inversions, then the circuit can be redrawn without the constraints of standard logic family packages. The internal signals can be labelled with their logic equations, starting from the inputs. By carrying this process
through to the outputs, the logic equations for the outputs can be deduced.
Internal signals which become too complicated can be redefined as a single symbol. Most PLD assemblers allow substitution of strings or internal signals by logic equations defined in terms of input signals. They will then perform Boolean algebra on the resulting complex logic equation. The most likely snag is that the chosen target device will not have sufficient capacity for the resulting equations. The way round this, assuming that the assembler has performed some minimisation, is to redefine the active levels of the outputs with most and terms, if the device allows this, or try a different device with higher and term capacity.

Fig. 1c. pal architecture
is the most significant address line and Al2 the least significant; also assume that the outputs are assigned in order from proml as O 0 to I/O2-WRITE as O7. The output data for O0 low and all other outputs high is ' FE ', for Ol only low it is 'FD' and so on.
Proml is selected when A15, A14 and A13 are low irrespective of $\mathrm{R} /!\mathrm{W}$ and A 12 , which corresponds to addresses $0000,0001,0010$ and 0011 ; similar reasoning will determine the active addresses for the other outputs and allows us to construct the prom table of Fig. 3c.

This is a fairly elegant one-chip solution for a circuit which would otherwise take five gate packages, or a 3 to 8 decoder and two gate packages.

However, prom logic does suffer from drawbacks. Firstly, each additional input requires the number of memory cells to be doubled. Further, the number of inputs and outputs in a particular prom is fixed with, usually, either four or eight outputs. As memory size increases, so do cost, power consumption and delay time. Thus, while proms may be suitable for simple logic circuits, they soon run out of steam in more complex situations.

The FPLA solution

The major prom drawback of doubling in size for each extra input comes about because the inputs are fully decoded. This is clearly a waste of resources in our example above because six of the outputs only need a single combination of inputs decoded while the other two need just three.

In an FPLA (field programmable logic array) the input decoder is programmable as well as the output or-array. This architecture is shown in Fig. 1b. Thus, in the PLSIOO, the first commercial FPLA, only 48 input combi-

Fig. 3a. Memory map
for simple
microprocessor system

Fig. 3c. prom programming table for address decoder
nations are decoded from the 16 inputs compared with the 65536 decoded lines in a theoretical 256 k prom, with 16 inpuls.
On examming the structure of the and-array, we find that each and-gate (usually called an and term or product term) has two connections to each input line, one to the 'true' signal and one to its complement. By leaving the appropriate fuse :ntact, any signal or its complement can be present in any product term.
In our memory map example, leaving the three complement fuses of A15, A14 and A13 intact - and blowing all the other fuses - will provide the decode signal for proml.
To connect the decode signal to an output, the appropriate fuse in the or-array between this product term and the 'prom I' output must be left intact and the fuses to the other output
lines blown. Left like this, the output will be high whenever these three address lines are low, and low at all other times; this is just the inverse of what we programmed into the prom.
There are two ways out of this problem. One is ty use Boolean Algebra and rewrite the logic as:

prom1 $=$ A15 \# A14 \# A13

The other way is to make use of the programmable inverter which is usually found in FPLAs and many other PLDs. It is an exclu-sive-or gate, shown in Figure 4. with one input from the or-array and the other to a pull-up which is grounded via a fuse. With the fuse blown the logic is inverted, if unblown it is not affected.
The format for entering this data into a pro-

grammer, in order to blow the desired fuses is a dedicated truth table, although it is more usual to use a logic compiler with logic equations these days. Nevertheless, an FPLA truth table is a useful way of representing a logic function, and may still be used to by-pass logic compilation.
Fig. 5 shows the FPLA truth table for our memory map decoder. It has two halves; there is a section for defining the product terms, and a section for connecting the or-array and setting output polarity.
An ' H ' in a signal column connects the 'true' fuse to that term, an ' L ' the complement. A 'don't care', that is no connection at all, is shown by the ' - ' symbol. Putting ' 0 ' would cause both fuses to be left intact, so the and gate would see both polarities at once; it would, therefore, always be low which is an inactive state. The combination of Hs and Ls is the logic condition which will cause the product term to be active; that is to go high.
In the or-array, each column represents an output. The box at the head of each column defines the action of the programmable invert-
cr. An ' H ' means no inversion (active-high) and an 'L' causes inversion (active-low). To attach a product term to an output via the orarray, an ' A ' is placed in the box where the product term row and output column intersect. A '.' in this box means that the fuse at that orarray intersection is to be blown.
The memory map example shows that the same logic which used 32 product terms in a fully decoded prom, needs only twelve terms in an FPLA. The PLS100, though, has sixteen inputs, eight outputs and 48 product terms, so its resources are very under-used. Even if there were other logic functions to be included, all the outputs are used up so the rest of the FPLA is redundant in this application. This FPLA shares one of the drawbacks of proms, namely, a fixed number of outputs leading to an inflexible allocation of logic resources.
The next generation of FPLA, the PLS153 and $P L S / 73$, overcame this by using the bidirectional i/o structure of Fig. 6. Each FPLA has ten i/o pins and, respectively, eight and twelve inputs, with 32 product terms. If a PLS 173 were used for the memory map decoder, there would be seven inputs, two i/o pins and 20 product terms available for another logic function. However, the same FPLA could be used in an application requiring 20 inputs and just two outputs, for example.

An additional set of product terms must be programmed to define the direction of data flow through each i/o pin. An unprogrammed PLS153/173 has low levels on all the and gate outputs. The three state buffer on each i/o has an active-high control so, before programming, all the buffers are disabled and each i / o pin acts an input. If all the fuses in a product term are blown the and-gate will be unconditionally high; in this case the buffer is always enabled. If a logic function is programmed into the product term, the buffer will be enabled when the logic function is true.

INPUTS					OUTPUTS							
14	13	I_{2}	I_{1}	I_{0}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{0}
ACTIVE LEVEL					L	L	L	L	L	L	L	L
H	H	H	H	H	A	-	-	.	-	.	,	-
L	H	H	H	H	-	A	,	-	-	,	-	-
-	H	H	H	L	-	-	A	-	-	-	,	,
-	H	H	L	-	,	-	-	,	A	-	,	-
-	H	L	-	-	-	,	,	,	A	-	,	,
-	L	H	H	-	-	-	-	-	A	,	-	-
L	H	H	L	-	,	-	.	A	-	,	-	-
L	H	L	-	-	-	,	-	A	.	-	-	,
L	L	H	H	-	.	,	,	A	-	-	.	.
-	L	H	L	-	-	-	-	.	,	A	,	,
-	L	L	H	-	-	-	-	,	-	-	A	,
-	L	L	L	-	-	-	-	-	,	-	-	A

Fig. 5. FPLA programming table for address decoder

PROM, PAL or FPLA?

There are three architectures commonly used for implementing combinatorial logic functions in programmable format: prom, FPLA and pal. Although proms are designed to be used in memory applications such as program storage and look-up tables, they are equally suited to use as logic devices. Every possible input combination can be programmed to give a specific output. Any logic function which can be written as a truth table can also, in principle, be programmed into a prom; the only restriction is the number of inputs and outputs which the prom supports.

An alternative approach is draw the Karnaugh Map for the logic function. Every cell in the Karnaugh Map can be programmed individually into a prom, because the inputs are fully decoded. All the decoded lines are or-ed together in the or-array, via fuses, which transmit a high to the output when the line is addressed, but leave it low if the fuse is blown.

Adding an input to a prom doubles the number of fuses needed in the or- array. In an FPLA the input decoder is also programmable, so only 'active' input combinations need to be programmed. Thus, while a ten-input prom has the equivalent of 1024 and-gates in its input decoder, FPLAs typically have only 32 or 48 programmable and-gates.

If a logic function has a truth table with more than 48 lines, there might be problems fitting it into an FPLA. The only way round this problem is by logic minimisation. For simple functions it may be possible to draw Karnaugh Maps for each output and reduce the number of logic terms by combining map cells. For more complex functions it may be necessary to use a minimisation program on the logic equations for the function.

FPLAs possess the property of being able to allocate any and-term to any one or more outputs. However, many circuits, particularly address decoders, need each and-term for only one output. Thus the programmable or-array can be replaced by fixed or-gates without adversely affecting the utility of the device. This is the principle of pals.

Apart from simplicity, there is a gain in performance from this approach. The orarray consumes power and adds capacitance to the decoded and-term lines; pals normally run cooler and faster than FPLAs.
The chief drawback is the limitation in and-terms per output. There are, at most, only seven or eight and-terms or-ed together for each output, in simple combinatorial pals, so functions needing more than this would require an FPLA.

It should be noted that, even when the output is enabled, the i / op pin is still connected to the and-array. Any output function can, therefore, be fed back and combined with input signals. The FPLA can implement multi-level logic in this way, or make latches and flipflops as we shall see further on.
The code for entering control logic in truth table format is just the same as in the main logic array, with the addition of the symbol ' 0 ' to denote both fuses left intact. Thus, a control term for a dedicated input will usually consist of a row of 0 s.

PALs - a simpler way

While FPLAs offer a more flexible solution than proms for programmable logic, re-examination of Fig. 5 shows that they can be unnecessarily complicated. Although each product term is available in the or-array to be gated into any output, in this application every product is used in only one output. In other words the programmability of the or-array is wasted. Each output could just as well use a fixed orgate with the product terms shared between the outputs.
This is just the structure of a pal; pal stands for programmable array logic, and is illustrated in Fig. 1c. Pals were introduced by Monolithic Memories Inc. in the mid 1970s. The first pals occupied a 20 -pin package and contained just sixteen product terms. These were shared among the outputs so that a two output pal had eight terms per output, a four output device just four terms, and so on. A similar 24-pin family was also made available.
Pals have a very logical numbering system. For example, a PAL/4H4 has fourteen inputs and four active-high outputs, while a PALIGLG has sixteen inputs and six activelow outputs.
Apart from being simpler to understand and to use, pals have performance advantages over FPLAs. A fuse array is a high capacitance structure which introduces propagation delay into the logic path. Removing the or-array in favour of a fixed or-gate saved 5 ns in the first pal family, compared with the equivalent FPLA. Also, cutting down the number of product terms made a significant reduction in power consumption.
The first pal families suffered from the restrictions of fixed input and output numbers. and fixed output polarity. While adequate for simple circuits, even our simple memory map logic would not fit the pal with the appropriate i/o count, the PALIOL8. This is because two of the outputs need three product terms, but the PALIOL8 has only two terms per output.
Introduction of more complex pals, such as the PALI6L8, overcame these drawbacks. This pal has eight product terms per output, but one of these controls the three-state output in the same way that bi-directional outputs are controlled in FPLAs. Six of the eight outputs are bi-directional, so $\mathrm{i} / \mathrm{oflexibility}$ is available as well as increased logic power. There are still only ten direct inputs, but the fed back inputs make a total of sixteen into the whole array.

Fig. 6. Bidirectional i/o circuit

PALIGH8 and PALIGP8 (programmable polarity) were also made but better solutions can be tound now, as we shall see in a later article, so only the PAL/6L8 remains in current production.
Our address decoder will fit into a such a device, but truth table entry is not a preferred method of designing pals. Once personal computing became commonplace. MMI introduced a pal assembler called palasm. The designer uses logic equations to define the circuit and palasm assembles this into a file to the jedec specification. The jedec file can be loaded into a pal programmer, which blows the correct fuses in the pal to reproduce the logic in hardware.
Given that the tools exist we just have to define our circuit as logic equations. We can illustrate this by writing the logic equations for the memory map example. Each line of the truth table is a single and-term; where an output contains more than one line of truth table. the various and-terms are or-ed together.

```
!O7 = !RNW & A15 & A14 & A13 & A12
!O6 = RNN & A15 & A14 & A13 & A12
O5 = Al5 & Al4 & A13 & IA12
!O4 = !RNW & A15 & A14 & !A13
        # !RNW & A15 & ! A14
        # !RNW & !A15 & A14 & A13
!O3 = A15 & A14 & !A13
        # A15 & !A14
        # !A15 & A14 & A13
!O2 = !A15 & A14 & !A13
!O1 = !A15 & !A14& A13
!OO = !A15 & !A14 & !A13
```

Note that the above equations would not assemble in palasm because that uses a different syntax: * for and, + for or and / for invert. These symbols are used for arithmetic functions in some other assemblers which are now available.
For completeness we should mention the other combinatorial pals which are still available. The PAL20L8 is a 24 -pin version of the PALI6LS: it has fourteen dedicated inputs but is identical in every other way. Another 24-pin device is the PAL20L/O; this has only four product terms per output, one for control ant three for logic. It has twelve direct inputs, two direct outputs and eight bi-directional terms.
While these devices are still being made, it is likely that most will be phased out in favour
of the cmos generic pals, which we will examine in the third article. The exception may be the 5 ns and 7 ns pals, which are still easier to make in bipolar than cmos technology.

Design entry methods

The standard way of defining logic for any combinatorial PLD is in terms of Boolean equations. Many assemblers are now available. Some are dedicated to a particular PLD manufacturer such as AMD (palasm), National (Opal) and Philips (snap), while others are marketed for universal use. Examples of universal software suppliers are Data I/O (abel), Isdata (LOG/iC), Logical Devices (cupl) and OrCAD (OrCAD-PLD). Many work stations also feature PLD assemblers.
Most software now includes features such as logic expansion, minimisation and simulation. The former allows many functions to be written as compact equations, with brackets and multi-level logic definition, while the latter gives the designer confidence that the finished product will do the job for which it is intended. Simulation will usually result in the production of test vectors. These instruct the programmer how to functionally test the PLD after programming. Occasionally, a device will be programmed correctly but will not function because of some small fault in the device, which cannot be tested before programming.
However comprehensive the software, the correct logic data must be entered in order to guarantee a working PLD. We have seen how a tuth table can be converted into logic equations but, very often, the logic is not readily defined as a truth table.
The first step in any design is partioning... deciding which input and output signals are to be included in the logic block. If the total nurmber of signals is no more than twenty two, and there are ten or less outputs, it is likely that the logic will fit into one of the devices described so far if we allow only combinatorial logic.
The relationship between the input and output signals must eventually be defined by logic equations but some designers may not be comfortable taking that step directly. The other common way of visualising logic is with a logic diagram, or schematic. A logic

Fig. 7a. Typical logic circuit drawn for TTL or cmos implementation

Fig. 7b. Typical logic circuit after compaction for Boolean logic equations
schematic is, perhaps, the traditional way of defining a logic system as the components are clearly laid down with their interconnections drawn in. Often, the components are functional blocks from a standard logic family with a scattering of single gates and inverters. A simple example is shown in Fig. 7a.

Schematic capture software will convert logic schematics directly to logic equations in a format suitable for most of the standard logic assemblers. If schematic capture software is not available, the designer is then faced with the task of converting the data manually. This is not as traumatic as it may appear. Fig. $7 \mathbf{b}$ shows the first stage, which is to label a simplified logic schematic with internal signal names.
The second stage of the conversion is to define the internal signals in terms of input signals and 'earlier' internal signals, thus:
$\mathrm{Y} 0=!\mathrm{I} 1 \&!\mathrm{I} 2 \&!\mathrm{I} 3$
Y1 $=$! I1 \& ! I2 \& I3
$\mathrm{Y} 2=$! I1 \& I2 \& ! I3
$\mathrm{Y} 3=1 \mathrm{I} \& \mathrm{I} 2 \& 13$
IEN $=$! I $4 \&$! I5 \& Yo
If the PLD assembler can handle internal signals which are neither inputs nor outputs, LEN can be left unexpanded; otherwise it must be expanded to:

LEN $=$! $14 \&$! $15 \&!$ I $\&!$ I2 \& ! 13
The output signals may now be written in terms of input and internal signals. O1 to O6 should cause no problems, unless O 2 and O 4 need further expansion by hand,
! 02 = I5 \# ! Y2 becomes:
! $02=$ I5 \# I1 \# ! I2 \# I3 and ! $04=$ I5 \# ! Yo becomes:
! $04=$ I5 \# I1 \# I2 \# I3 by the usual de Morgan conversions.

O7 and O8 are outputs from a dual D-latch, which is not a combinatorial circuit, but can be built from combinatorial components. Fig. 8 shows the schematic of a D-latch built from nand gates, and the corresponding Karnaugh Map. The logic equation for the D-latch is:
$Q=D \& L E \# Q \&!L E \# D \& Q$
The third term (D \& Q) looks superfluous but links the other two terms on the Karnaugh Map. Without it there would be a danger of glitches when the latch changed state; as a general rule, overlapping terms in a Karnaugh Map will prevent glitches. The only problem is that the design is now untestable without adding a control signal to allow the gates to be tested individually.
We can complete the derivation of the logic equations by substituting I6 and I7 for D, O7 and O8 for Q, LEN for LE; thus O7 becomes:

Fig. 7c. Logic equations derived from Fig. 7b
! O1=Y3\#I4
! $02=$! Y 2 \#工 5
! O3=Y1\#I4
! $04=$! Y 0 \# I 5
! $05=14 \& 15$
! 06=I4\&! 5
07=I6\&LEN\#O7\&!LEN\# I 6\&07
O8=I7\&LEN\#O8\&!LEN\#I7\&O8

$07=16 \&$ LEN \# O7 \& !LEN \# $16 \& 07$
If expansion is necessary. the following results:
$07=I 6 \&!$ I1 \& ! I2 \& ! I3 \& ! I4 \& ! 15
\# $07 \&$ I1 \# $07 \& I 2$ \# $07 \& I 3$ \# $07 \& 14$ \# $07 \& 15$ \# $07 \& 16$

In most cases, expansion will not be necessary and the complete set of equations can be left as in Fig. 7c.
Design methods for sequential circuits are usually quite different from those illustrated above, and device architectures are more complex. These topics will be covered in next month's article.

Programming
The only issue left unresolved is program-
ming. Programmers come in all shapes and sizes, from large universal stand-alone machines to small dedicated units which are PC driven. Because the design will probably have been done on a PC, the data has to be transferred to the programmer. A standard format has been agreed between device manufacturers, design software houses and programmer makers.
This jedec standard numbers each fuse in the devize and the design software will produce a file with a string of 1 s and 0 s indicating which fuses are to be blown and which left intact. This file is downloaded into the programmer which addresses the device to be programmed with the correct fuse locations, according to the data in the file.
Test vectors can be appended to the pro-
gramming data and most programmers can use this to functionally test the finished device. A snall proportion of devices will not work correctly even when the correct fuses have been blown. This is because the device cannot be fully tested by the manufacturer before any fuses have been blown. Unless the device is made in an erasable technology, which many are now, the fuses cannot be blown before leaving the factory.
For similar reasons, a small proportion of devices will not program correctly either. Although programming failures can be due to matufacturing defects, they can also be caused by the programmer being out of calibration or by poor socket contact. For this reason users performing their own programming should ensure that their programmer is kept well maintained. A fall in programming yield can indicate a need for corrective action.
Many users of programmable logic buy their PLDs ready programmed, or use a specialist sub-contractor. This has the advantage of removing yield problems, and the need for investing in equipment which has to be upgraded as new devices come onto the market Once the design is proved, buying PLDs then becomes as transparent as buying standard logic and easier than masked semi-custom, because PLDs are mass-produced standard devices, unlike masked ASICs.

exCLUSIVE SOFTWARE OFFER FOR ELECTRONICS WORLD READERS

Quickroute 2.0 for Windows $3 / 3.1$ Professional Edition for only $£ 59$ (normally $£ 99$)

Quickroute 2.0 Professional Edition is a high quality easy to use PCB and schematic design system. It includes simple schematic capture, auto-router tools, Gerber import and export, and NC-Drill export features. A comprehensive set of editing tools, built-in hyper-text help, and support for more than 150 printers and plotters make this one of the most attractive packages available. As a special offer to our readers we are selling this software for only $£ 59$ compared to its normal price of $£ 99$. Add $£ 5$ for postage and packing if ordering from outside the UK. But be quick, the offer ends on 14th December.

To makes sure you get your copy of this software, fill in the form right and rush it to POWERware Software Design, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK:
> "... there is no doubt that running under Windows puts it ahead of the field and makes it a visually exciting package", Martin Cummings, EW + WW, July 1993

| Name |
| :--- | :--- |
| Address |
| Please debit my credit card for $£ 59$ (UK)/ $£ 64$ (overseas)* |
| Card type: Visa/Mastercard* |
| Number |
| Expiry date |

WINDOWS support for DSP design

DSPworks and QEDesign 1000 are available as a single package for digital filter design. But, apart from running under Windows, what else distinguishes them, asks Allen Brown?

Fig. 1. Windows DSPworks features are accessed via drop-down menus. Background window is that of a square wave with added Gaussian (normally) distributed noise (which has controllable mean and variance).

The number of digital signal processing (DSP) software packages running under Window's is still small. But Momentum Data Systems of Costa Mesa, California has added to that total with the release of two Windows packages for DSP design and analysis. QEDesign 1000, aimed at designing digital filters, and DSP works, for signal analysis.
DSPworks is a general purpose digital signal processing software package that allows many of the well known signal processing tasks to be carried out on data derived from an expansion card or previously stored in a disc file. Its easy-touse graphics allow data to be displayed in a variety of formats.
One immediate piece of good news is that DSP works does not need a dongle: the bad news is that QEDesign $/(000$ does. That said, once it is connected to the ever growing dongle string protruding from the back of your PC, you should be up and running in no time. (QEDesign 1000 will actually work

without the dongle but it will not output the filter coefficients to disc).

In DSP works, every waveform or function generated gets its own window, with the individual waveforms selected from a drop-down menu.
Reflecting the importance of DSP window functions, a large selection are available with DSPworks - including the Kaiser Bessel window, indispensable for designing finite impulse response filters (FIR) using the window technique.
Another broad choice is that of formats for the waveform generated, spanning 32-bit floating numbers, binary or ascii characters. Considerable control can be exerted over the data formats by using the utilities menu to, for example, round, truncate and convert formats. Conversion is useful when data are to be used with other applications packages.

Waveforms that have been generated or imported can then be manipulated, with options including a smooth or moving average. QUANTISE FIXED POINT enables data to be quantised. This is useful when simulating the behaviour of digital filters implemented on fixed point processors (eg Motorola DSP56000), which can differ significantly from floating point simulations.
File names are allocated to the generated waveforms, and stored on disc as they are created. Whether this is a confidence measure or a method of reducing the amount of ram required, it is certainly a convenient safeguard.
Time domain signal processing operations include all the standard functions, with an oscilloscope option available to users with an appropriate expansion card resident in the PC. SIGNAL FILTERING is only useful if data from QEDesign 1000 is present.
In this case, $Q E D e s i g n ~ 1000$ would have been used for the design of the digital filter, followed by code assembly then analysis of performance either using disc data or real-time data from an expansion card.

Of the frequency options, as with the time options, some can be performed with disc data while others are only offered when real-time data is available from a DSP card. In effect,

QEDesign allows a PC and DSP card to act as a real-time spectrum analyser with 2-d spectral displays and 3-d waterfall displays.

DSP expansion cards

To get the most out of DSP works, a DSP card is must - most engineers working in the field of DSP will probably have at least one DSP card at their disposal anyway.
Card manufacturers represented include Ariel, Loughborough Sound Images, Sonitech, DSP Research and Data Translation, a list that shows ample support for cards hosting Texas tnstruments and Motorola chips. But for cards hosting Analog Devices ADSP-2100 series chips, support is lacking, a deficiency that should be rectified since Analog Devices is capturing a sizeable part of the telecomms DSP market.
If the card has analoguc I/O facilities, DSPworks also provides options relating to sample rate and channel selection. For example the Ariel DSP32C card has sampling rates adjustable from 2 kHz to 100 kHz .

A DSP card can be used in a number of ways. For example, where signal behaviour in given frequency regions is of interest, a digital filter could be placed between the incoming data and the display on the screen. Or the expansion card could act purely as a digital filter, digital data derived from its A-to-D converter being processed and the output digital data stream being passed to its D-to-A to generate a filtered analogue output.

QEDesign 1000

QEDesign 1000 is a specialised Window's software package, solely for designing digital filters. The user is asked, through dialogue boxes, to specify filter parameters, and the appropriate filter coefficients are produced. Various filter characteristics (cg transfer function and impulse response) are plotted in individual windows, giving instant visual access to filter performance.

In practice, digital signal processors are frequently used to perform filtering tasks and part of the course of design-

Fig. 2. DSPworks
has several processing options. Smooth is shown is the background.

Fig. 3. Time domain processing options are instantly available. Screen shows the effect of applying the autocorrelation function to a noise contaminated sine wave. ing a digital filter is to determine the appropriate coefficients.

One interesting feature of QEDesign 1000 is the use of double precision (64-bit floating point) in design calculations. In design of very large filters, with many tens of taps, the numerical rounding effects can be significant. For example the Equi-ripple design method uses the Remetz exchange algorithm which is recursive and very sensitive to numerical precision. But it means that a maths coprocessor is indispensable (maths coprocessors for $33 \mathrm{MHz} 386-\mathrm{PCs}$ can be found for under $£ 60$ and every engineering PC should have one anyway).

Choosing coefficients for a digital filter is somewhat similar to choosing the $R \mathrm{~s}$ and $C \mathrm{~s}$ in an analogue filter. QEDesign 1000 presents seven plotting areas on the screen and when a filter has been designed the results are displayed in the seven regions using the tile option from the window command.

IIR filter design

QEDesign 1000 's infinite impulse response (IIR) filter design is based on the impulse invariant technique, using models of analogue equivalent filters. The models are Butterworth, Tschebychev, Elliptical and Bessel, all familiar to analogue filter designers.

EASIER CODE GENERATION

Part of QEDesign 1000 is an optional code generator(s) which is not only tailo ed to a selected DSP processor, but also to a proprietary PC expansion card.
Once satisfied with the design of a digital filter, a user can avoid the task of coding in assembly language for a specific processor by using the optional code generator.

Code gene ators are not rew - Atlanta Signal Processing, with their digital filter design package, provided a code generator for the exas Instruments TMS32010 in 1983. But they are convenient, especially when designed to work with specific PC expansion cards. Momentu.m Data Systems are currently prołucing code generators for several well established commercial expansion cards: eg the Ariel DSP32C board. But the software development tools (assemtlers and linkers) will still be needed for the processor to produce executable code.

PC ENGINEERING

Fig. 4. A DSP card allows real-time frequency processing to be achieved
Fig. 5. QEDesign 1000 choice of filter types is large.

SYSTEM REQUIREMENTS

$38 E$ or 486 PC with VGA monitor
Maths coprocessor (advisable)
Expansion card hosting DSP chip (strongly advised)

DEIVER US FROM DONGLES

What happens if a user has several software pac <ages, each requiring a dongle? The result is a ribbon cable and a string of cascaded dongles. The ee must be a better solution.
One alternative that would still prevent multiple cop es of software from being made is a greater use of the cd-rom.

The cd-rom drive is continually falling in price (the Mitsumi $\angle U 005 S$ is now available for under $£ 12 \cdot 0)$ and over the next year will become a common peripheral in PCs.

But it is not only cost that will act as a driving force, there are hard disc advantages too.

H storically, the problem with computers has been their insatiable appetite for memory. No matter how much memory a computer has, it will never be enough.

Tr e dos memory limit managed to stem this protlem for several years forcing software procucers to work within the 640kbyte boundary. But ihe advent of Windows, memory managers and los extenders has brought multi-Mbyte PC softv/are packages.

Many commonly used software packages take up several megabyte of hard disc space, (for example Visual $C++$ from Microsoft takes up 40 Mbyte of hard-disc and can take up to an hour to install). A $386-\mathrm{PC}$ or 486-PC with only a single 100Mbyte disc will soon become inadequate.

By issuing software on cd-roms (either 12 cm or 8 cm , which can be executed directly, it will be poss ble to save on hard-disc space, save time by nottraving to install it, while giving a high degree of protection against illegal copying. The argument against using cd-roms usually relates to the data transfer rate from disc to ram which is much less than for hard-discs.
But imaginative use of cache techniques can minimise the problem - bearing in mind that cdrom s read-only.
If nonthly music magazines can generate giveaway cds then I'm sure, with a little imagination, software manufacturers can distribute their products on CDs.

SUPPLER DETAILS

DSPworks $£ 500+$ VAT, QEDesign $1000 £ 800+$ VAT
DSProrks Plus (Both packages) $£ 1200+$ VAT.
Bore Signal Processing, 39 Hawkswell Close,
Woking, Surrey GU21 3RS. Tel: 0483-740138 Fax:
0483740136

Fig. 6. Graphical results of an IIR filter design displayed in the seven plotting areas.

Filter profile parameters are entered by the user and. before the calculations begin proper, the package estimates the number of taps to realise the design. Results are shown in the seven plotting areas - quite an attractive feature really (Fig. 6) - showing frequency magnitude (linear), frequency magnitude (dB). phase response, zero-pole plor. group delay, step response and impulse response. The coefficients can not he accessed directly, though they can be printed from the saved file.
Most IIR filters are implemented on fixed point processors and so there are certain conventions regarding their realisation. An IIR filter can have many tens of taps. But it is normally confiqured as biquadratic structures cascaded in a series (see diagram), maximising stability of the filter. Filter coefficients are provided in groups of five for the five multiplications for each biquad.

Should the need arise to implement the filter on a floating point processor. QEDesign $/(O)(1)$ also provides appropriate floating point coefficients.

In many applications where digital filters are required, lattice filter structures are the best choice. Unfortunately in this version of QEDesign 1000 there is no provision for designing lattice filters: it would be nice to see this deficiency rennedied in future versions.

FIR filter design

Finite impulse response filters can be designed in several ways, and QEDesign IOOO supports window and equi-ripple techniques.

All linear phase FIR filters are derived from a sinc (FT) profile and truncating the function causes a problem. In the window design method, a window is applied to a function to minimise sharp truncation by softening its end values. Many windows can be used. In the frequency domain they have the effect of improving attenuation in the stop band regions usually at the expense of broadening the pass band regions.
QEDesign 1000 offers no less than 17 window functions. In response to the filter profile parameters, the package gives a choice of window function with the number of taps required to realise the filter requirement.
As in IIR filter design, results are displayed graphically. showing frequency magnitude (linear), frequency magnitude (dB) and impulse response. The other method of FIR filler design relies on the work done by Parks and McClellan in 1973. It is basically a curve fitting method. giving a minimum number of taps for a given filter profile. Computationally, it is quite intensive and does not alway: find a set of solutions (filter coefficients). But the technique does make design of multiband filters relatively easy
The result is three plots showing the filter's characteristics.
Other options in the FIR design menu include differentiators and Hilbert Transformers (HT) - HTs being useful fior generating quadrature components of waveforms. Given $\sin (\mathrm{FT})$, the HT will produce $\cos (\mathrm{FT})$ which can be used in quadrature amplitude modulation (yam) schemes.
QEDesign 1000 also has a facility to analyse the behaviour of transfer functions. Transfer function parameters are entered (either in the Z or S domain) and pole zero values are calculated. Quite complex transfer functions can be analysed. and the package will then design a biquadratic cascade ready for direet implementation of the transfer function.
On the whole, QEDesign 1001 s design path is well thought out and easy to learn. But it offers little more than the standard features generally found on digital filter design software. What would be really useful is a FIR multirate tiilter design feature for when sampling rate of the input device is different from processing rate. Cascading multirate FIR fillters can save a tot of computational effort: maybe we shall see this in a future version.

Biquadratic structure with five multiplications, two delay elements and adders.

Competitive market

Looking at both packages, engineers designing FIR and IIR digital filters will certainly find something to attract them.
But there is alse a lot of other software on the market performing very similar tasks with lower price tags - some is even free. I also feel the product is a little weak in not offering substantially more than its competitors.

Even so, as a suite, DSP works. QEDesign 1000 and a code generator, running under Window's makes an attractive package. The added facility of linking the product with a range of DSP expansion cards is particularly appealing.
The overall result is that the package is a well put together product that will surely prove a useful asset to the DSP engineer.

USER MANUALS

Curiously, the nanuals, one for each package, are not actually bound as finisted products. They come in A4 ring binders with the impression that as more options are purchased, new pages are added to the binder. The result is that the product looks to be still in a stave of flux.

In reality. fo- most software produc-s, no sooner has Version X been installed than Version $\mathrm{X}+1$ is eleased, rendering the user manual olt of date. At least witt a ring binder updated chapters can be inserted as appropriate.
Layout of the manuals is good with lots of screen shots showing how to access the various op:ions.

The Windous common user interface makes learning easier, but in general he detail is rather thin, with the feeling that the manuals are most readable by users who are very familiar with digital filter.

New users of these devices will need to have a good prior understanding of the nature of digital filters before launching into the product. What would have been useful here is a greater use of eferences to readable texts on the subject such as Digital Sigr al Processing: A Pracical Approach by E C Ifeachor and Jervis (Addison-Wesley 1993).
COMPUTER ICS

REGULATORS
LM 323 K 5V BA PLASTII
LM323K 5VA METAL
78 H 12 ASC 12 V 5 A
78M055V 0.5A
LM337T PLAS
7812 METAL 12 V 1 A
$7805 / 12 / 15 / 24$ V plastic25p 100 $+20 \mathrm{p} 1000+15 \mathrm{n}$
$7905 / 12 / 5 / 24$ plastic CA3085 TO99 variable reg.............. 25p $100+$ 2..............................
CRYSTAL OSCILLATORS
9M216 12M6864 5MO 18M000 20 MOOO 23 M 587 24M000 27M036 28M322 32 M 000 35M4816 40M000 44M4444 44M 48 MO
CRYSTALS
4MO256 1OM 368 17M6256 18M432 25M000 28M4694 31M4696 48 M 00055 M 500111 M 80112 M 80114 M 318114 M 801 MO 3M58564 3M93216 4M000 4M19304 3M 2768 3M579545 5M000 5MO688 6M0000 6M400 8M000 8M488 9M8304 10M240
 21 M 30021 M 85522 M 118424 M 00034 M 36836 M 75625 36 M 76875 36M 78125 36M 7937536 M 8062536 M 81875 37M75

TRANSISTORS

2N2907A

BC477, BC488
BC107 BCY70 PREFORMED LEADS
BC557, BC238C, BC 308 B
2N3819 FETS short leads
£1/30 £3.50/4/8
POWER TRANSISTORS
OC29 ..

3/\&1 100/E

SE9301 100V 10A DARL SIM TIP 121 2

LASTIC 3055 OR 2955 equiv 50p
00/E35
TEXTOOL ZIF SOCKETS
28 PIN USED......... £3............. 40 PIN NEW............. 10 SINGLE IN LINE 32 WAY CAN BE GANGED FORUSE WITH
ANY DUAL IN LINE DEVICES ... COUPLING SUPPLIED 2 /
CAPACITORS COMPUTER GRADE

QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPE M312.......... 1 ea HOLDERS 60p ea
24 V 150 WATTS LAMP TYPE A1/21............... $£ 2.50$ each
MISCELLANEOUS
SINCLAIR SPECTRUM +2 PSU 9 V $2 A$............................ 95 ($£ 2$ 2)
MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$
RTED SLIDERS + ROTARYPOT

100 nF 63 V X7R PHILIPS SURFACE MOUNT 30 K available
 avalable ETHERNET 4 PAIR TRANSCEIVER CABLE. BELDEN TYPE SWITCHED MODE PSU. 40 WATT UNCASED AVAlLABLE $+5 V 5 A,+12 V 2 A, 12 V 500 \mathrm{~mA}$ FLOATIN
SiM RS $361-018$ Each pair foil screened + overall braided ${ }^{2} 95$ (£2) screen .i....... plus PVC outer sheath. ON 305 $£ 300$ for 305 metre drum + plus PVC outer sheath. ON 305 metre drums
$330 \mathrm{nF} 10 \% 250 \mathrm{~V} \times 2$ AC RATED PHILIPS 60 K
AVAILABLE
220R 2.5W WIREWOUND RESISTOR 60K AVAIL....................... $\mathbf{£ 2 0 / 1 0 0}$
CMOS 555 TIMERS 2/3 LITHIUM CELLS AS USED IN COMPACT CAMERAS $£ 2.50$
CM7126CPL CMOS $31 / 2$ DIGIT LCD DRIVER CHIP S2ea 36 CORE 7/0. 2 mm OVERALL SCREENED $50 / 100 \mathrm{~m}$ LITHIUM CELL $1 / 2$ AA SIZE EUROCARD 21-SLOT BACK PLANE 96/96.WAY...... £25 ea "PROTONIC 24 VARIBUS" $16.7^{\prime \times} \times{ }^{\prime}$ " FIBREGLASS MULTILAYER PRH PCB
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
PROTONIC 24 " c/w 2 SUPPORT ARMS/EJECTORS. DIN 4161296 -WAY A/B/C SOCKET PCB RIGHT ANGLE $£ 1.30$ DIN 41612 64-WAY A/C SOCKET WIRE WRAPPINS $£ 1.30$ DIN 41612 64-WAY A/C PLUG PCB RIGHT ANGLE BT PLUG + LEAD
 MIN. TOGGLE SWITCH \uparrow POLE C/O PCB type $\quad ~ £ 1$ CD MODULE sIm. LMO 18 but needs 150 to 250 V AC for display 40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$ 6-32 UNC $5 / 16$ POZI PAN SCREWS $£ 1 / 100$ NUTS SWITCH CHANGEOVER ...100 RS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEET LONG, 15 FINS WIRED BRAID + FOIL SGREENS LCODISPLAY sim Hitachi LMO 16L............................... $\mathbb{E 6} 50$ AMERICAN 2/3 PIN CHASSIS SOCKET2/£1 WIRE ENDED FUSES 0.25A …... 30 \& 1 AISW ULTRASONIC TRANSDUCERS $32 \mathrm{kHz} \ldots \ldots . .$.
Also avalable 28 slot vari-bus backpiane same size +
BNC 50OHM SCREENED CHASSIS SOCKET
 VN10LM

CONNECTORS

	£2
34-way card edge IDCCONNECTOR (dısk drive type)	¢1.25
CENTRONICS 36 WAY IDC PLUG	$\underline{52.50}$
CENTRONICS 36 WAY IDC SKT	$£ 4.00$
BBC TO CENTRONICS PRINTER LEAD 1.5M	¢3
CENTRONICS 36 WAY PLUG SOLDER TYPE	
USED CENTRONICS 36W PLUG + SKT	

PHOTO DEVICES

HI BRIGHTNESS LEOS CQX24 RED5/£1
SLOTTED OPTO-SWITCH OPCOA OPB815 2N5777
TIL81 PHOTO TRANSISTO
TIL38 INFRA RED LED
4N25, OP12252 OPTO ISOL.......
MEL 12 (PHOTO DARLINGTON BASE n / c)
LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{K} 1$
LED'S GREEN OR YELLOW 10/乏1
FASHING RED OR GREEN LED 5 mm 50 p HIGH SPEED MEDIUM AREA PHOTODIODERS651. 100/\&40

STC NTC BEAD THERMISTORS
G22 220R. G13 1 K, G23 2K, G24 20K, G54 50K, G25 200K RES $20^{\circ} \mathrm{C}$ OIRECTLY HEATED TYPE A13 DIRECTL Y HEATED BEAD THERMISTOR 1 k res..... £1 ee audio Wien Bridge Oscillator ... £2 ea
CERMET MULTI TURN PRESETS $3 / 4$ "
10R 20 R 100 R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K
100 K 200 K 500 K 2 M IC SOCKETS
14/16/18/20/24/28/40-WAY DIL SKTS £1 per TUBE 32-WAY TURNED PIN SKKTS. 7 k available ... 12 f 1

SOLID STATE RELAYS
40A 250V AC SOLID STATE RELAYS 810

POLYESTER/POLYCARB CAPS

 100 O 250 V radial 10 mm 100 n 600V Sprague axial $10 / \mathrm{s} 1$
 On/33n/47n 250 V AC \times rated 15 mm $1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm} \mathrm{rad}$ 50p ea

RF BITS
MARCONI MICROWAVE DIODES TYPES OC2929, DC2962,
OC4229F $1 /$ F2
K.
EA
XTAL FILTERS 21M4 55M0 ... £2 ea
ALL TRIMMERS 3 for 50 p
VIOLET

YELLOW 5-65pF RED 10-110pF GREY 5-25pF FOR 50p £10/100 TRANSISTORS 2N4427, 2N3866, 2N5109 80 p
CERAMIC FILTERS 4M5/6M/9M/10M7 .. 60pea EED THRU' CERAMIC CAPS 1000 FF .. 11 6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER. BFY51 TRANSISTOR CAN SIZE)
2N2222A PLASTIIC

$5 / 2,1$
$.10 / \mathrm{si}$

PLESSEY ICS EX-STOCK

L350G SL360G SL362C SL4030 SL423A SP8655 SP8719DG

MONOLITHIC CERAMIC CAPACITORS

10 S 5	100/£4.50
100 n 50 V 2.5 mm or 5 mm	100/26
100 nax short leads	100/53
100 n ax long leads	100/55
100 n 50 V dil package 0.3" rad	100/¢8
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$	£6/100

AVEL-LINOBERG MOULOED TRANSFORMER TYPEOB10 15+15V 10VA OTY. AVAILABLE £2 e
BANDOLIERED COMPONENTS ASSORTED RS, ZENE CD MOOULE 16 CHAR. X 1 LINE (SMMILAR TO HITACHI
MY10) KYAR WIRE WRAP WIRE ... 1 REL PPI1264A 10 KV OPTO ISOLATOR
OVE STORY CLOCKWORKMUSICAL BOX 1.35 ea $100+£ 1$ ea LOVE STORY CLOCKWORK MUSICAL BOX MECHANISM Telephone cable clips
.\quad \&1 ea
$500 / \mathrm{E} 2$
OIODES AND RECTIFIERS
A115M 3A 600V FASTRECOVERYRS

KEYTRONICS

SEND \&1 STAMPS FOR CURRENTIC +SEMI STOCK LIST - ALSO AVAILABLE ON

MAIL ORDER ONLY

WEICOME
UNIVERSITIES/COLLEGES/SCHOOLS/GOVT. DEPARTMENTS P\&P AS SHOWN MIN. ACACKUNT OROERE10.00 OTHERWISE 95p

ADD 17½\% VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

LETTERS

Golden earing

I was interested to read Phil Deniss's response to Ben Duncan's article on op-amp distortion (Letters. $E W+W W$, October), but disappointed to note that he chose to write off the "claims of the golden eared or subjectivist club" with such facility and derision. The most valuable tool in any scientific research programne must surely be an open mind. And certainly the fact that we can't - yet - measure or quantify something that we can otherwise positively identify doesn't invalidate its existence. It simply means that we have to work harder to identify an appropriate measurement nethodology.

Over the last ten or so years I have worked with Ben on the development of a number of commercial power amplifier designs. From that experience I would now rank "developmental listening" as being as valid in the design of an amplifier as is the quest for product safety, long-term reliability, applications suitability and an acceptable cost of production. Indeed I find it strange to find myself writing to defend a practice which 1 had always assumed to be a "given" in the development of any audio product by definition a device which will always be employed subjectively.

However, at the risk of inviting derision from Phil Deniss and the many other members of his objectivist club, I'll describe the way in which I employ my own "golden ears". Where my description is incomplete it is because I don't currently understand the mechanisms involved, I hope that one day encephalography will perhaps tell us more.

My listening tests are carried out in Ben's sitting room, using a system which has remained essentially unchanged for the last eight years. My source material, both vinyl and CD. consists of tracks that I know well. chosen for instrumental or vocal content, performance quality or for some other aspect which I either like or have found useful.

At the stant of each session (a session may last for several days) I spend as much time as I feel I need to in re-establishing a model of our reference system in my head. During this time I find I can either switeh
from general "listening to analytical "hearing" or 1 can"t. Colds. coffee. cigarette, and fatigue can all make a difference, but not of degree. It's either yes or no. If the answer is yes, then the reference amplifier is swopped for the amplifier to be tested.
1 set myself no time limits, remain relaxed, and play music, in any order which comes to mird that I know will highlight a particular aspect of amplifier pertormance. Both amplifier channels are always in the same mod state, and I listen in stereo at levels ranging from very quiet to very loud. Because these days we don't usually statt listening until we ve confirmed channel-tochannel amplitude matching of better than +0.05 dB on the Audio Precision, and because our designs usually include the type and make of passive components which we know from experience can be expected to sound good. listening to the effects of each circuit or component change can often be quite prolenged . Long enough, in fact, for me to construct what I can only describe as a mental sonic map of what I an hearing. Longer if I am enjoying the experience.
"Hearing" is probably too limited a description of what seems to happen. Like others have reported, I find I can mentally chop up the source material to concentrate on a voice, or an instrument or a frequency band. But sense of vision also seems to play a part as well. As an example I should cite a test amplifier which incorporated a particularly low-quality preset potentiometer, positioned as a CMRR trimer across the inverting and non-inverting inputs of its differential front end stage. At any listening level I experienced quite involuntary, rapid and independent movement of each eye (behind closed lids), and eventalally became quite nauseous as a result - I presume - of trying to resolve two sets of continuously-variable errorladen information into one stable and coherent image.
That the preset was the cause of the problem was later confirmed by Audio Precision testing, in which banging the pcb (and even shouting "hoi" at the preset) were shown to cause significant step shanges in its value. Similar vision-related effects have been noted at other times, too.

Wire swapping

With regards to Roger Castle-Smith's (EW + WW, July) and RA Woolley's (August) letters concerning swapping live and neutral leads to an amplifier, Woalley's explanation of what happens in the transformer is very clear but the closing remarks make me put pen to paper.
First, most common components have tinned iron lead-outs, which will be affected by the magnetic field present in the amplifier. The effect of the trick is thus to reduce the various forms of distortion in these components. That is why high-end manufacturers all use expensive components with copper lead-outs and often outboard power supplies.
Secondly, the little hum actually created by the magnetic field may not be audible as hum, but different levels in two components of a hi-fi chain must be equalised by way of the only connection between the two - the signal connection. Consequently, the signal transfer will be given less than perfect conditions, which will affect the sound.
In most cases it is more important to connect all components in a hifi chain with the same orientation of live and neutral than it is to connect each and every component with the right orientation.

Hope this will cast some light on this piece of folklore, as Woolley prefers to call it.
Biarn Jerle
Birkerød, Denmark

One commonly-used fet driver stage design is usually drawn to include a component we now refer to as the sea-sickness capacitor.
Lack of space precludes a description of several other recurring physical effects (all, of course, brain-centred) and my apparent ability to retain mental performance "maps" test-to-test. In any event by now Phil Deniss himself may be feeling quite nauseous. Nevertheless. and despite their subjective nature, our listening tests are as rigorous as we can make them. Only one change is ever made between tests, I note my impressions during each test. and each iteration of the amplifier under test is subjected to the same suite of Audio Precision analyses from which hard copy output is compared. Interestingly this last will often produce no discemible differences under static testing, and it is largely this that prompted Ben`s latest research into areas of harmonies and dynamic performance. We want to measure and explain the differences I hear - it makes good commercial sense to be able to do so - but we can't find them all. Yet.

I made the observation earlier that I don't understand the mechamisms involved in this. although naturally I am curious to find out more. In terms of their application. thongh. I
don't think it matters that much. I m confident that I can - with reference to my experience as a studio and live sound balance engineer - use my odd physiology/training/ears to achieve the "best" sound obtainable from any well-designed audio product. The fact that our products, once finalised. tend to sound "good" on systems ranging from mid-range domestic to pro audio studio monitoring and touring reinforcement leads me to suspect that our procedures do have some validity.
The statement that "the vast majority" of people apparently can't "hear" the same things does not matter much either. I remain convinced that such a listener will benefit from our work, albeit unconsciously at an emotional level. (Sorry to introduce emotions, Phil. More difficult-to-measure mechanisms at work.) In our deliberately casual, unpressurised and completely random user tests. most subjects have reported an enhanced sense of listening comfort or satisfaction when auditioning our products.
I'm happy with that.

Jerry Mead

Mead \& Company
Royston
Herts

Not on, 10-4

While I am concerned that the huge amount of money people have invested in equipment with the 88 to 108 MHz broadcast band may have to be augmented by purchases of digital broadcast equipment with a possible lesser technical shelf life, 1 am concerned that another aspect of the use of the EM spectrum seems to be totally ignored.
I am referring to the use of communications equipment available to the general public for private purposes.
Here in these islands the only legal two-way radio communications equipment available to the public is the inefficient and interference-prone 27 MHz fm citizens' band equipment. A more useless allocation could hardly have been chosen into which to dump hundreds of thousands of users throughout Europe.
In the US citizens can buy mobile and portable equipment with minimal paperwork and licence formalities that operate in the 150 or 460 MHz regions. Australia, 1 think, still has a uhf citizens band with repeater facilities. Are governments atraid to let radio communications equipment become available to all citizens'? Think of the safety, time and frustration saving aspects in having portable or mobile communications available. Use, identification and frequency control of such equipment could be easily controlled by credit-card type smart cards to minimise abuse of the airwaves.

With two blocks of frequencies a few megahertz apart in the upper vht or uhf part of the spectrum, unit to unit or repeater use could make life
easier for many people.
Surely with encryption. scrambling. digital and spread spectrum techniques the military do not effectively use all the 225 to 400 MH z spectrum? Time for them to hand most of it over and let the public have access to the spectrum as well.
Just who is using all the vhf and uhf frequencies. Surely even 0.5% of the spectrum could be used by (theoretically) 100% of the people? The 27 MHz allocation is unusable. So why were we given it?
Des Walsh
Cork, Ireland

Genius in the genes

The article "Geniuses are made not created" ($E W+W W$. October) repeats a common major logical error. Evidence - however comprehensive - that top performance always implies high motivation and hard practice provides no proof for the converse.
Neither does the fact that many with high potential ability fail to maximise their ability prove that outstanding success may be achieved without high inherent potential.

Despite the continuing nature versus nurture argument there is much evidence for major genetic differences between individuals in animals and humans for physical. intellectual and personality characteristics.
For a wide range of physical skills even small differences in body conformation have major effects on extreme performance. The same body type does not produce top performance in all sports. Individual cases prove nothing. Top performers

Pause for reflection

If, before reading Ian Hickman's article about rf reflections ($E W+$ $W W$, October), I had known little about the theory and practice of transmission lines, I might have gained the impression by reading it that most transmission lines have phase or wave velocities of $200,000 \mathrm{~km} / \mathrm{s}$ and that somehow a coaxial configuration leads to this.
He states that "in practice any substantial increase [in velocity] proves to be impossible". What he does not point out is that this particular velocity applies only to transmission lines with solid polythene (or equivalent) dielectrics.
Transmission lines (coaxial and balanced) used by broadcasting engineers and others frequently have wave velocities in excess of $290,000 \mathrm{~km} / \mathrm{s}$, which is due to the small amount of dielectric material used to separate the two conductors. In my opinion $290,000 \mathrm{~km} / \mathrm{s}$ is a substantial increase on $200,000 \mathrm{~km} / \mathrm{s}$.
He also says that the "values of L and C per metre in free space are the lowest that can ever be achieved, giving $v=c$ and $Z_{0}=377 \Omega$ ". Surely he means that the product of the values of L and C per metre is lowest when the conductors are separated by free space, giving $v=c . L$ and C themselves may have any values, within reason. The ratio L / C determines the Z_{0} of the line, which, in theory, may also have any value.
Dick Manton
Purley, Surrey
at national or international level are not random samples but highly self selected for motivation and inherent ability. Small children normally persevere only with skills that provide satisfactory rewards.
First born children tend to produce a much higher proportion of those who achieve outstanding success in life. The normal diversion of concentrated parental attention following the birth of a second child suggests rejection and leads many first borns to make special efforts to regain a starring position.
Evidence from animals shows that similar training does not give similar results for all. Some breeds, strains and individuals do much better than others. Underlying differences in ability usually show early in life.

In domestic animals wide differences of behaviour occur between individuals treated uniformly and kept in a single group. Different breeds, especially in dogs, tend to have inherent behaviour characteristics.
Siblings, even in a similar environment, usually differ widely. This fact contrary to much popular belief supports rather than denies the argument for genetic causes.

The mathematician Norbert Wiener quoted the case of his own brother. Their father hald believed that his special teaching system had produced Norbert's outstanding skills. He was highly disappointed to find that, for his younger son, the same system produced only normal adequate competence.
The success reported by Professor Ericsson refers to the somewhat special and narrow skill in remembering a sequence of numbers. However, a menory for 3000 digits suggests an unusual brain quality far beyond the average of 80 more widely achieved by hard practice.

Competence for any skill requires sufficient practice so that the skill becomes largely unconscious and automatic. Any need for conscious thought usually worsens
performance. Small changes in target skills create major problems Konrad Loren wrote at length on this point.
Extreme levels of performance require hours of regular practice. How does this concentration of interest affect the wider range of skills?
RG Silson
Tring, Herts

Over processed radio

Can vou hear me, mother? There's a line for radio nostalgia fans. It was the catch-phrase of comedy ventriloquist Sandy Powell who used it to see if he could be heard at the back of the hall. If Sandy was working in radio today, he could be
sure we can hear him. Very loud but not so clear.

My own sense of nostalgia only goes back a couple of decades, but at last it's official. The 1970s are back! This is the best news in ages as it means all my furniture has come back into fashion.

A Quad II. an ultralinear pair of KT66s allied to a distortioncancelling pair of EF86s in a clever phase-splitter used to give me "the closest approach to the original sound" for years.
But not any more. To be honest, it sounds dreadful. Legal beagles down at Quad can save their sealing wax, there is nothing wrong with the tuner. Your only crime was to design it properly.

The problem lies in the audio processing that has slowly changed the sound balance since Mott the Hoople was in the charts. It started with wide-band compression. The BBC led the field with a limiter that gently reduced the dynamic range of all audio frequencies present by the same amount, giving an overall impression of loudness enough to counter reasonable domestic noise.
Then came the active systems. A bank of filters carve up the audio into anything up to six pass-bands. These are compressed at different rates preset by the broadcaster. the reconstituted audio then going for transmission.
In pop radio, some DJs can set their own processing at the desk leading to double compression effects which, as they have no musical analogy, can lead to listener fatigue simply due to the saturation of the sound.
Engineers say processing is here to stay - it has grown to be an industry in itself.

Radio marketing staff will tell you that those who shout loudest get the largest audience and so attract the advertising revenue. That's fine up to a point but with CD and digital audio mass storage setting new standards for source programming and radios chasing fashion by including user settings for equalisation - Megabass and the like - this must be the time for the broadcasters to reassess their use of processing to allow the final level of fidelity to align with the listeners level of investment in equipment. In other words, you'll get what you pay for.
As it is, audio processing has had the effect of putting the traditional hi-fi and the ghetto-blaster on a middling common denominator.
With so much choice now in radio, isn't it time to move the technical goalposts?

Yes, we can hear you, Sandy. It's just that there seems to be rather a lot of you.

Robert Ellis

Derby

PROMulator

CIRCLENO. 109 ON REPIY CARD

Telephone: 0203-650702 Fax: 0203-650773

PRODUGTION/A.TE. SECONDUSERERUPMENT HUGE SAVINGS ${ }_{\text {PRones }}^{\text {ON }}$

SPECIAL OFTER - SCOOP PURCHASE

TETRONIX 2236-100 MHİR Counter/Timer/DM Dual Trace Portable Oxilloscope Intes;rated Ccumter (Timer DMM, Lightwelght easy to use TEKTRONIX 576 Curve Tramer, with Cayturated DLplay Offsee Power up to $220 W$, Scale Fa tor ENVIRONMENTAL TEST

 ALTITUDE TEST CHAMBER. T

\qquad Renge $40-180^{\circ} \mathrm{C}$
$G A L E N K A M P$ FEgot/B/MDJ/R40 Chumber. Ternp
Call

 Inerrial Dimenserion $2500 \times 2510 \times 2900 \mathrm{~mm}$ m

 PROM ERASER UVIA1 IU
 Eromem in Quark Accion Slide in Drawer Timer up to 60

\qquad

 HP8410B/AA12A Netw
HPP447O RF Amplify
HPP447 Amplifer
HPT5001A S
4P3500 A Spectrum A Aaly ei interface
\qquad .6302 Prose Bandwidth Dcto 5 OHAZ 61.49

SOLDERING

 REFLOW Mól conveyor TOT AIR Rework Station ODO
TOLIS FUTURE I MM Dum

 juod Conditcon
VITRONIISS SMDIISN ieflow Oven vith Nitrogen
C4,975

SIGNALSOURCES

POWER SUPPLIES

MAINS
 MONITORING

LAUDE LYONS "Compulne" Line ITondition
TEK 222 handheld Rugged 10 MHI Digltal Storage
 is the Optmum Oxilloscope for Field Service;
Several Powerful Features including Auto Aecup. RS232, Fuil Programmabilicy and floating Measurements 1 MS .s. Dual Digitizers 100
Gillexh Capture, Autorigger, Save Reference Giltwh Capture, Autorigger, Save Relerence
Memmory: Floazable to + 00 V VH, Complete With Carrying Case and Battery Charger, Power 1995

PLOTTER

 MAMIYA ECM 83NW, Table Top Machine with acall

 UNIVERSAL MULTIMOD 6 TI2A

AXIAL Lead Forming Maxhine
HELER 715 Automatic Axial Lead Forming Machine
1295

DEX 245 Semi Automatc Printer. $254 \times 203 \mathrm{~mm}$ Print 0,950
O., ${ }^{\text {size }}$ KERSTEN Screen Printer $430 \times 400 \mathrm{~mm}$ frames size. 6

bins
FUj1 8336
36
36
Feeder Stat ons, Controller, Loader/ CC
OYNAPERTMPS3IBMPS 318 HR 60 Way Feeder DYNAPERTMPS 318/MPS318HR 60 Way Feeder

 WEIGHDATA ASC Electronic Component Counting

WIREBCNDERS

HUGHES 2460-II TAB Bonder Eucelen Condition,

OSCILLOSCOPES

 TEK2336 100 MHz TEK2445 150 MHz

SPECTRUM ANALYSERS

 63.750
65750
64,50

ATESYSTEMS

GENRAD 227X 5prems Can be comfigured to sult most

 HP 3065 Configured to suit
GENRAD 2275 St
GENRAD

METERE	
RACAL 919 UHF Frequexy Meter	${ }_{6}^{6295}$
HP 3478A HPIB Mulumeter	6495
HP5350B 20GHz Counter	62,975

WANTED If you have manufacturing equipment to sell. give us a call. We ca. turn your under-utilised assets into cash.

Subscr be Now for Your FREE Copy

See latest issue of Buyers News for full listing and Terms \& Conditions
Prices exclude VAT - Buyers Premium not included

ALTERNATIVE DISTRIBUTION (UK)LTD
 Tel: 07 I-284 4074 (UK) Fax: 071 -267 7363 (UK) 146 Camden Street, London NW I 9PF

The conventional wav to learn about DSP is to grasp fully the maths first. Which is probably why so many otherwise competent design engineers fall down badl; in applying digital signa processing. Although the basic algebra is really quite straightforward JeanJacques Dauchot maintains that the best way to understand the subject is to get hold of a DSP development system and experiment... Experimenting with $D>$

Processing signals in a numericial form using digital hardware offers significant improvements in reliability and stability over traditional analogue handling methods. With the introduction of microprocessors dedicated for digital signal processing, it is becoming econonical to use. However, the use of digital signal processing techniques requires considerable mathernatical skill.
Learning from books can be frustrating as they tend to lean on mathematics in a big way. The best way to find out about DSP is to
experiment. Using a low cost DSP kit and software developed by Tycho Designs and Hippo Solutions, this article introduces two typical uses of DSP: fir filtering and digital sinewave generation.

Experimenting with FIR

The main advantages in using digital filters are that filter characteristics are easily changed; they are stable against changes in temperature; they process low frequencies more effectively; frequency response characteristics can be made to approximate closely to the ideal; they
can be made to have no insertion loss; linear phase characteristics are possible; reliable and repaatable; no precision components or component matching; no timing required; superior performance
There are two kinds of digital filters used: finite impulse response (FIR) and infinite impulse response (IIR) filters. Digital filters with a finite impulse response can exactly achieve linear phase, cannot become unstable, and can be easily realised on general purpose or customised hardware. IIR filters are more efficient than FIR filters, and can generally
give a sharper cut-off than an FIR filter of the same order. Because IIR filter algorithm uses feedback of a previous output signal, they are also called recursive filters. Consequently, they have a non-linear phase response and can become unstable.

Which filter is better for a particular application depends on the hardware used for the implementation of the filter. For example, the Texas Instruments TM320C series family of signal processors include a special instruction to facilitate the implementation of an fir filter. The combined use of the instructions LTD and MPY are specially geared in the design of the fir filter.
The fir filter is also known as a non-recursive filter or convolution filter. From the timedomain point of view, it is also called a moving average filter. A fir filter works processing an output signal from the history of a number of previous samples each time a new sample signal is received. We can view the process of filtering through the changes in the differences in level between consecutive samples. The way the filter distinguishes between high and low frequencies is by the rate of change between samples. Large differences indicate high frequencies and small differences indicate low frequencies.

Consider the filter design in Fig. 1 and suppose a sequence of samples of values $1,8,6$, $4,1,5,3,7$ enter the system. The difference between consecutive samples ranges from 2 to 7 . Using a coefficient value g of 0.25 , the first three numbers enter the filter and are added and multiplied: $(1+8+6) x(0.25)=3.75$.
The next generation yields: $(8+6+$ 4) $x(0.25)=4.50$. After the entire sequence has passed through the system, the result is a new sequence which is $3.75,4.50,2.75,2.50 .2 .25$, 3.75. The new inter-sample difference ranges from 0.25 to 2.25 , and we have effectively achieved a low pass filter.

Filter by design

To begin with, coefficients for the filter must be calculated for a given set of parameters. The art of designing non-recursive filters is to achieve acceptable performance using as few coefficients as possible . Typically, a practical fir filter will employ between 10 and 150 cocfficients. Theoretically, in order to achieve an ideal response, a fir filter will have an infinite number of taps or coefficients, but in reality a fir filter will have a finite number of taps due to the limitation of processing time and of the hardware.

This truncation effect introduces errors, the effect of which is ringing or rippling in the stop band region. Because an fir filter has a finnite response, the actual amplitude response will be different to the theoretical value. This effect is known as the Gibb's phenomenon and has the frequency response of what is known as the rectangular window.

The spectrum of a rectangular window tends to the $\sin (x) / x$ or sinc, form. The method that can be used to reduce this effect is as follows. By multiplying the impulse response sequence with another window function smooths the

rippling in the stop band. There are several window functions that may be used and the two common ones are the Hamming and the Hanning widows.
Hanning $0.5(1-\cos ((2 \pi n) / N-1))$;
Hamming $0.540 .46 \cos ((2 \pi n) / N-1)$
The number of coefficients used in the filter will depead on the order of filtering required, the cut-off frequency and the sampling frequency used. The relationship of the cut-off frequency and the sampling frequency is an importani factor to be considered when deciding how many coefficients should be used in the design. For the filter to be efficient, the length of the delay line (ie the number of taps) must hold at least one complete cycle of samples of the required cut-off frequency.

The calculations employed in the generation of filter ceefficients are often complex and difficult to understand. These filter coefficients may early be calculated using computer methods, or may even be performed on a programmable scientific calculator.

The Fourier transform method with windowing is the simplest method of designing a linear phase fir filter. The basic formulae used to calculate the coefficients is

$$
H(n)=\frac{\sin (2 \pi W(M-n))}{\pi(m-n)} \quad 0 \leq n \leq(M-1)
$$

Where $W=$ cut-off frequency divided by the sampling frequency, and $M=1 / 2(N-1)$ where N is the length of the filter.
To achieve exact linear phase, an fir filter has to have a unit-pulse response that is syrnmetrical around the point $(M-1) / 2$. Fig. 2 shows how the coefficients for a 20 tap filter are organised to achieve linear phase. Coefficients 10 to 19 are a mirror copy of the coefficients 0 to 10 .

$$
\begin{array}{lr}
H(0)=H(19) & \\
H(1)=H(18) & \\
H(2)=H(17) & \\
H(3)=H(16) & \\
H(4)=H(15) & \text { Fig. 2. Linear phase } \\
H(5)=H(14) & \text { filters require a } \\
H(6)=H(13) & \text { symmetrical } \\
H(7)=H(12) & \text { coefficient structure. } \\
H(8)=H(11) & \\
H(9)=H(10) &
\end{array}
$$

Once the coefficients have been calculated. the formulae shown below is used to realise the filter. $Y_{n}=X(N)^{*} H(N)+X(N-1)^{*} H(N-1)$ $+X(N-2) * H(N-2)+X(N-n) * H(N-n) Y n$ is the output of the filter, $X(N)$ is the oldest sample, $X(N-n)$ is the newest sample and N is the
length of the filter. As the values of the coefficients are normalised using real numbers ranging between $-1 \leq 0 \leq 1$, they must be scaled to the processor's data word size. The TMS320C10 DSP has a 16-bit data word length, therefore all coefficient values must be scaled by multiplying then by 2^{15} to obtain values ranging between: $-32768 \leq 0 \leq 32768$ This process introduces rounding errors which degrade the perfornance of the filter further. A software package, FDesign, is to be used to design the filter. Not only will it calculate the coefficients, but it will generate the 320 ClO code as well. The parameters necessary to generate the filter coefficuents are: the sampling frequency, the cut-off frequency, the number of taps, the type of window damping.

Once the coefficients have being calculated. the frequency response of the filter is calculated and displayed in graphical form.

In this example, we will design a low pass fiiter for the developer. The specification of the filter will be as follows:
Sampling Frequency: 10 Khz .
Cut off Frequency: 2.5 Khz
Bandwidth of signal : 5.0 Khz
Number of taps: 20
Window type : Hamming
Filter coefficients calculated are shown below:
Hi00] $=H[10]=-1.39622 e-03 \quad$ Efd3
$\mathrm{H} .01]=\mathrm{H}[11]=+6.36498 \mathrm{e}-03 \quad 00 \mathrm{dO}$
$H[02]=H[12]=+1.91480 \mathrm{e}-03 \quad 003 \mathrm{e}$
$H: 03]=H[13]=-2.09039 e-02 \quad$ fd54
$H: 04]=H[14]=+3.14799 \mathrm{e}-030067$
$H[05]=H[15]=+5.00330 e-02 \quad 0667$
$\left.\mathrm{H}^{〔} 06\right\}=\mathrm{H}\{16\}=-2.62335 \mathrm{e}-02 \quad$ ECa5
$\mathrm{H}[07]=\mathrm{H}[17]=-1.07157 \mathrm{e}-01 \quad \mathrm{f} 2.49$
$H[08]=H[18]=+1.18529 \mathrm{e}-01 \quad 0 f 2 \mathrm{~b}$
H[09] $=\mathrm{H}[19]=+4.74540 \mathrm{e}-013 \mathrm{cbd}$
TMS320C10 program generated by FDesign which
is ready to be assembled and linked.

iat	'fir	filter'		
mask	equ	0		
maskl	equ	1		
$\times n$	equ	2		
$\times 01$	equ	3		
$\times 02$	equ	4		
$\times 03$	equ	5		
$\times 04$	equ	6		
$\times 05$	equ	7		
$\times 06$	equ	8		
$x 07$	equ	9×08	equ	10
$x 09$	equ	11		
$\times 10$	equ	12		
$\times 11$	equ	13		
$\times 12$	equ	14		
$\times 13$	equ	15		
$\times 14$	equ	16		

$\times 15$	equ	17		data	0x003e		ltd	$\times 13$	
$\times 16$	equ	18		data	0xfd54		mpy	h13	
$\times 17$	equ	19		data	0x0067	;			
$\times 18$	equ	20		data	0×0667		ltd	x12	
$\times 19$	equ	21		data	0xfca5			h12	
hoo	equ	22		data	0xf249	;	mpy	n12	
h01	equ	23		deta	0x0f2b		ltd	$\times 11$	
h02	equ	24		data	$0 \times 3 \mathrm{cbd}$		mpy	h11	
h03	equ	25		data	$0 \times 3 \mathrm{cbd}$;	,		
h04	equ	26		data	0×0 f 2 b		ltd	$\times 10$	mpy h 10
h05	equ	27		data	0xf249	;			mpy 110
h06	equ	28		data	$0 \times \mathrm{fea5}$		1 td	$\times 09$	
h07	equ	29		data	0×0667		mpy	no9	
h08	equ	30		data	0×0067	;			
h09	equ	31		data	0xfd54		ltd	$\times 08$	
h10	equ	32		data	$0 \times 003 \mathrm{e}$		mpy	h08	
h11	equ	33		data	$0 \times 00 \mathrm{do}$;			
h12	equ	34		data	$0 \times \mathrm{ffd3}$		1ヶd	$\times 07$	
h13	equ	35	;	End of	f coefficierts		mpy	h07	
h14	equ	36		data	0×0000	;			
h15	equ	37	tble	dat	a 0x0001		ltd	$\times 06$	
h16	equ	38					mpy	h06	
h17	equ	39	start	lack	k tble	;			
h18	equ	40		larp	0		1 td	$\times 05$	
h19	equ	41		lark	0 , one		mpy	h05	
yn	equ	42	make	tbly	r *	;			
one	equ	43		sub	one		ltd	$\times 04$	
	aorg	0		banz	make		mpy	h04	
	b	start				;			
	data	0x7fff	loop	bioz	z get		ltd	$\times 03$	
	data	0x8000			100p		mpy	h03	
	data	0x0000	get	in	xn, pao	;			
	data	0×0000		zals	mask		Itd	$\times 02$	
	data	0x0000		xor	xn		mpy	h02	
	data	0x0000		sacl	xn	;			
	data	0×0000		zac			ltd	$\times 01$	
	data	0x0000					mpy	h01	
	data	0×0000		1 t	$\times 19$;			
	data	0×0000		mpy	h19		ltd	xn	
	data	0×0000	;				mpy	hoo	
	data	0×0000		ltd	$\times 18$;			
	data	0×0000		mpy	h18		apac		
	data	0×0000	;				sach	yn, 1	
	data	0×0000		ltd	$\times 17$		zals	maskl	
	data	0×0000		mpy	h17		xor	yn	
	data	0×0000	;				sacl	y	
	data	0x0000		ltd	x 16		out	yn,pa0	
	data	0x0000		mpy	h16		b	1000	
	data	0×0000	;				end		
	data	0×0000		ltd	$\times 15$				
	data	0x0000		mpy	h15				
	Start	of	;						
coeff	icient			1 td	$\times 14$				
	data	0xffd3		mpy	h14				
	data	0x00d0	;						

Loading a filter program

The filter program generated by fdesign must be assembled and linked using the Hippo solution's DSP development package. The output file generated by the linker is in Motorola S record format. The developer is connected to an 8 -bit ADC+DAC circuit board via a 64 way backplane. The Developer's three channel timer is used to generate the sampling frequency and the input and output anti-aliasing filtering. The output of channel No. 2 is used to generate a signal that is connected to the BIO pin of the 320 Cl 10 , the channel is programmed to generate a 10000 Hz square wave
The sampling frequency must be twice that of the highest frequency being sampled. Channel Nol and Channel No2 are used to clock switched capacitor filters which provides anti-aliasing filtering, they must be clocked 100 times that of the highest frequency being sampled. The devcomms software is used to communicate with the Developer via the PC's serial port. When invoked, it attempts to communicate with the developer. Once communication has been established, a success banner is displayed and the Developer is ready to receive commands and data.
The filter code is loaded with "Load Code". selected from the File menu or by hitting the F3. It takes about 5 seconds to transmit the code to the developer.
Before the DSP is allowed to run its program, the timer has to be programmed. By hitting CTRL T, a control panel is invoked which allows the timer to be programmed. The following frequencies are programmed into the timer:
Channel No. $1500,000 \mathrm{~Hz}$

Channel No $210,000 \mathrm{~Hz}$

Channel No $3500,000 \mathrm{~Hz}$
With an audio signal generator and an oscilloscope connected to the analogue board, the loaded fir filter code can be tested. The filter design generated earlier achieved 60 dB attenuation per octave. By varying the number of filter taps, the performance of the number of taps, cut-off frequency and sampling frequency can easily be demonstrated.

Generating sine waves

Sinewave generators are fundamental building blocks of signal processing systems in applications such as communication, instrumentation and control. In the past, engineers designed oscillators using analogue components with their inherent tendency to drift. Using DSP it is possible to produce stable, low distortion sine waves over a wide range of frequencies. Two methods of sinewave generations using the TMS320IO will be described.

The first frequency response plot left shows the Gibb's effect using a rectangular window, the second plot right shows the effect reduced by using a hamming window. The plots are of a 21 taps FIR filter with a cut-off frequency of 2500 Hz using a sampling frequency of $10,000 \mathrm{~Hz}$

The developer

The developer is based on the TMS320Cl0 running at 20 MHz . An 80C31 microcontroller is used as a master processor to the
DSP and its serial port is used to connect to an IBM PC. A software package on the PC communicates to the DSP developer which allows DSP programs to be downloaded to the DSP program memory.
The DSP developer is constructed on a extended single eurocard with all the 320 Cl 10 data. control and input/output signals connected to the 64-way DIN connector.
The board includes a three channel timer chip controlled by the 8()$C 3 /$ cpu which can be used for anti-aliasing, sampling rate, and reconstruction filtering. The three timer channels outputs are connected to the 64-way DIN connector. A backplane is available to connect the DSP board to analogue/digital interface cards complete with 64 way DIN connectors.
The $80(0 \mathrm{C} 3 /$ has full access to the DSP program memory which can be loaded with a program or contents read. The output port of the 80 C 31 has control of the TMS32010 reset line.
The developer comes with two software packages, the IBM PC Developer interface and real-time firmware in an EPROM plugged into the DSP developer board. The PC Developer interface software is a set of windows and pop down menus which allow the user to control the developer via the serial in:erface using simple commands.

The software package used to develop the programs for the 320 C 10 is the Hippo Solutions TMS320CXX development tools Together with the Developer, it offers a complete and low cost development system for the DSP chip.
The software system consists of a compiler, assembler, linker and simulator. Broadly speaking, the compiler translates ' C ' language subset source into assembly language. These sources are
combined with other assembly language sources, assembled and linked into a single executable image which can be either split into high and low byte images with the provided utility 'U1X' or loaded into the simulator or downloaded into the DSP Developer to be run.
On its own, the DSP developer board can do little. A suitable input/output board must be connected to the developer via the 64 way back plane. An eight pit adc/dac circuit is shown on Fig. xx. It uses the popular DAC800 dac chip and the Analog Devices $A D C 7575$ analog ADC chip. Anti-aliasing filtering is accomplished with a 2 nd order low pass filter and an 8th order clock tunable low pass filter using a MAX291 chip from MAXIM. The clocking frequency for the filter is provided by the $82 C 53$ timer channel 0 under the zontrol of the $80 \mathrm{C} 3 /$ controller. The clockng frequency must be a hundred times that of the highest frequency being sampled.

Sampling is initiated by reading the $A D C 7575$ which loads the contents of the previous sample and starts the next sampling process. The ADC nas a built in sample and hold circuit. The sampling period can be determined by the use of the $320 \mathrm{C} 10^{\circ} \mathrm{s}$ BIO pin connected to the output of the monostable. The 82 C 53 timer 3 is programmed to trigger the monostable.
The output of the dac is connected to another MAX291 filter circuit which reconstructs the signal and filters out the sampling frequency. The conventional 2 nd order filter circuit removes any residue clocking signal. The $82 C 53$ timer 0 provides the clock for the switching capacitor filter.
The DSP developer and the TMS3201X Software development tools can be obtained from Tycho Designs 38, Playfields Drive. Branksome. Poole, Dorse! BH12 2EQ Phone 0202-736791. Prices start from about $£ 100$.

The first is the fast direct table lookup method and the second is the use of IIR filters.

Direct table lookup sine generator

The first algorithm is a simple, fast table lookup process. The sine values of N angles which are uniformly spaced round the unit circle are stored in a table. The values have the
following format:

A slne wave is generated by stepping through the table at a constant rate, wrapping

round at the end of the table when 360° is exceeded. What determines the frequency are the step size in degrees between samples and the time interval between successive samples (ie the sampling interval $f s$). The frequency is given by the equation:
$f=$ step size $/(f s \times$ table size $)$
The accuracy of the sine wave depends on the size of the table, the greater the number of steps in the table the greater the accuracy is. To satisfy the Nyquist criterion there must be ar least two samples generated for each sinusoidal period. The values in the table are all normalised using the two's complement hexadecimal Q14 notation. The decimal values between +1.0 and -1.0 are multiplied by 16384. Rounding is applied, rather than truncation to reduce further distortion. To run the sinewave generator into the DSP developer, use the assembler and the linker to build an executable. .COD file from the following program.

LTD and MYP instructions

The combined use of the LTD and MPY/MPYK instructions implements a basic FIR filter tap.

LTD X1

The load T register and Shift Data instruction (LTD) implements three key operations in parallel. During the execution of this instruction, the P Register is added to the accumulator, the T Register is loaded with the data from the operand, and the data value is shifted to the next internal memory address.

MPYK and MPY

The MPYK instruction multiplies the contents of the T register by a signed 13 -bit constant and the result is loaded into the P register.

The MPY instruction multiplies the contents of the T register by the contents of a specified data memory address, and the result stored in the P register.
The following example illustrates the use of this powerful instruction in implementing FIR filters. The routine assumes an I/O device on Port 0 which inputs a sample. The TMS320IO then computes a number (Y), based on this and previous samples. Y is output to the I/O device on Port 1. The following symbols are used:
$Y=$ output to I / O device on Port 1

```
    X1 = current sample taken at time "t"
    X2 = sample taken at t-1
    x3 = sample taken at t-2
    X4 = sample taken at t-3
```

X4 is at a higher address than X3; X3 is at a higher address than
X 2 , etc
The formula is $Y=3^{*}(X 1)+4^{*}(X 2)+5 *(X 3)+6 *(X 4)$ Data is shifted down one interval by LTD

Example:		
X1	EQU	1
$\times 2$	EQU	2
$X 3$	EQU	3
$X 4$	EQU	4
Y	EQU	5

START:

$$
\text { IN } \quad X I, P A 0
$$

shift data here

$$
\text { IN } \quad X_{1, P A 0} \quad ; \text { Load } T \text { register no need to }
$$

$$
\text { ZAC } \quad \text {; Zero accumulator }
$$

$$
\text { MPYK } 6 \quad \text { : Multiply } 6 \times(X 4)
$$

$$
\begin{array}{cl}
\text { LTD X3 } & \text { (X4) Move (X3) }-->\mathrm{T} \text { a } \\
\text { MPYK } 5 & \text {; Multiply } 5 \times(\mathrm{X} 3)
\end{array}
$$

$$
-->(\times 3)^{-1}
$$

$$
\text { MPYK } 4 \text {; Multiply } 4 \times(\times 2)
$$

\rightarrow (X2)
MPYK 3 ; Multiply 4 x (X2)
APAC ; Add P Register to Accumulator
SACL Y ; Store result to Y location
OUT Y,PAl ; Output result
B START ; do it again

SIGN EQU 8
;
; Initlalise generator
START LDP 0
LACK 0×80
SACL SIGN
LACK M1
TBLR MASK
LACK SINE
SACL OFSET
SACL ALPHA

- Wait for hardware

Cimer
WAIT BIOZ SWAVE1
; Infinite Loop to
output sine samples
SWAVE1 LAC ALPHA, 8 SACH TEMP
LAC TEMP
ADD OESET
TBLR SINA
LAC SINA, 8
ADDH SIGN
SACH OUTV, 0
OUT OUTV,PAO

- Output this sample to
the DAC
LAC ALPHA
Save new phase value
for next sample ADD DELTA AND MASK
SACL ALPHA
B WAIT
SINE DATA \#O
DATA \#324
DATA \#646
DATA \#964
DATA \#C7C
DATA \#F8D
DATA \#1294
DATA \#1590
DATA \#187E
DATA \#1B5D

DATA	\# 1E2B
DATA	\# 20E7
DATA	\# 238 E
DATA	\#2620
DATA	\#289A
DATA	\#2AFB
DATA	\#2D41
DATA	\#2F6C
DATA	\#3179
DATA	\#3368
DATA	\#3537
DATA	\#36E5
DATA	\#3871
DATA	\#39DB
DATA	\#3B21
DATA	\#3C42
DATA	\# 3D3F
DATA	\# 3E15
DATA	\# 3EC5
DATA	\#3F4F
DATA	\# 3FB1
DATA	\# 3FEC
DATA	\# 4000
DATA	\# 3FEC
DATA	\# 3FB1
DATA	\# 3F4F
DATA	\# 3EC5
DATA	\# 3E15
DATA	\# 3D3F
DATA	\#3C42
DATA	\#3B21

DATA \#39DB
DATA $\# 3871$.

DATA	\# E 782		DATA	\#C3BE
DATA	\# 4 4A3		DATA	\#C4DE
DATA	\# E1D 5		DATA	\#C625
DATA	\#DF19		DATA	\#C78E
DATA	\#DC72		DATA	\#C91B
DATA	\#D9E0		DATA	\#CAC9
DATA	\#D766		DATA	\#CC98
DATA	\#D505		DATA	\#CE8 7
DATA	\#D2BE		DATA	\#D094
DATA	\#D094		DATA	\#D2BF
DATA	\#CE87		DATA	\#D505
DATA	\#CC98		DATA	\#D766
DATA	\#CAC9		DATA	\#D9E0
DATA	\#C91B		DATA	\#DC72
DATA	\#C78F		DATA	\#DE19
DATA	\#C625		DATA	\#E1D5
DATA	\#C4DE		DATA	\#E4A3
DATA	\#C3BE		DATA	\#E782
DATA	\# ${ }^{\text {C2C1 }}$		DATA	\# EA70
DATA	\#C1EB		DATA	\#ED6C
DATA	\#C13B		DATA	\#F073
DATA	\#COB1		DATA	\#F384
DATA	\#C04F		DATA	\#F69C
DATA	\#C014		DATA	\#F9BA
DATA	\#C000		DATA	\#FCDC
DATA	\#C014	M1	DATA	\# 7EFE
DATA	\#C04F		PEND	
DATA	\#COB1			
DATA	\#C13B			
DATA	\#C1EB			
DATA	\# C 2 C 1			

Architecture

The general architecture of the TMS320 processor family uses a modified Harvard architecture for speed and flexibility. In a strict Harvard architecture, program and data memory lie in two separate spaces, permitting a full overlap of instruction fetch and execution. The TMS320 family's modification allows transfers between
program and data spaces, thereby increasing the flexibility of the device. This modification permits coefficients stored in program memory to be read into the internal ram area, eliminating the need for a separate coefficient rom. It also makes available immediate instructions and subroutines based on commuted values.

Then load the program into the developer. The following frequencies are programmed into the timer:
Channel No 210000 Hz
Channel No 3500000 Hz

Sinewave generation using IIR filters

One disadvantage using IIR filters is that they can become unstable under certain conditions. These conditions occur when the poles of the filter function approach and extend past the unit circle. Without going into too much detail, poles and zeros determines the behaviour and impulse response of a recursive filter. If an pulse of finite time and magnitude is injected into a second order IIR filter with its poles located within the unit circle, a sinewave will be generated with its amplitude decaying exponentially in time. However, if the same pulse is injected into the same type of filter with its poles located outside the unit circle, the same sinewave is generated. But this time, the amplitude of the wave will increase exponentially in time until the filter saturates. Now, if the poles of the filter are calculated so that they reside on the unit circle and a pulse is applied, the filter will oscillate forever. The formulae to generate the sinewave is as follows:
$Y[n]=(y[n-1] \times(w))-(C 2 \times y[n-2])+X_{n}$
Where $Y[n]$ is the output of the filter $y[n-1]$ and $y[n-2]$ are the direct form II IIR filter delay elements.
C 2 is the coefficient representing the radius of the pole of the filter.
The frequency is calculated using the following equation :w $=2 \pi$ (Freq/Sampling Freq)

Example : $F_{\text {sampling }} 10 \mathrm{kHz}, F_{\text {sinewave }} 500 \mathrm{~Hz}$
$w=2 \times \cos (2 \pi(500 / 10,000))=1.90211$.
w must be converted to Q14 notation, therefore $w=1.90211 \times 16384=31164$. Below is

a program written in ' C ' and compiled with the Hippo solution ' C ' compiler and assembler. To demonstrate the filter will decay if the C 2 is set to value of less then 1 , change the value to 0.999999 . You will see that the oscillation will decay. If the value of C 2 is set to 1.0001. the filter will go unstable. Several sinewave can be generated simultaneously be duplicating the formulae variable and sine function subroutine. Care must be taken not to saturate the output of the DAC when adding the resulting output value of each of the tones.
The following frequencies are programmed into the timer:
Chanrel No $210,000 \mathrm{~Hz}$
Channel No $3500,000 \mathrm{~Hz}$

The Developer has a three channel timer connected to the backplane. Channel No 1 is used to clock a switched capacitor filter circuit used for anti-aliasing filter, channel No 2 is used for generating the sampling frequency and chamel No 3 is used to clock a filter circuit for the reconstruction of the signal.

```
    #endasm
#define walt
    #asm
    copy 'wait.asm'
    #endasm
int yl=0, yz=0; /* Direct Eorm II
IIF filter delay elements */
Int OutVal; /* OutFut value
int A = +1.90211 ; /* 500 Hz 2ccs(w)
*/
int C2 = 1.0 /* Radzus of the
poze */
main()
znt impuise= 500; /* Initial
puise amplitude */
    while (1)
        wart ; /* wait for the BIO
pir**/
    out(OutVal, 0): /\pi Output the
value */
    /* DAC80C0 binary offset DAC */
        OutVal=(sine(1mpulse)-2048) >> 4;
        impulse =0; /* set pulse to
zeIo */
}* Sinewave generation subroutine */
faz sine(int in)/* y[n] = A x y[n-1]
- C2 x y [n-2] + x[n] *,
!
int tmp, y;
tmp=D1<*>A - (C2<*>DQ)-1n:
D2=D1;
D1=tmp;
rezurn tmp;
Assembler routine for th? sampling of
th\ni BIO pir. which is copied
into the main 'C' progran at compile
tine.
lojp bioz go
    go nop
```


MOTORS - BATTERY 1-12V

3 Different model motors, $£ 1$, Order Ref. 35
Spin to start 3 v dc motors for model aircraft etc. 5 for $£ 1$, Order Ref. 134
Cassette motor $1.5-12 \mathrm{v}$ powerful speed increases with voltage, $£ 1$, Order Ref. 224
Minl cassette motor $6-9 \mathrm{v}$ working, £1, Order Ref. 944. High efficlency motor for solar cell working, £1, Order Ref. 643.

12v motor ex BSR record player, $£ 1$, Order Ret. 687. 9v cassette motor, brushless, $£ 1.50$, Order Ref. 1.5P14 /rohp 12v dc motor Smiths, £4, Order Ref. 4P22 1/8hp 12 v motor, Smiths, £6, Order Ref. 6P1 1/6hp 12v motor, Smiths, £8, Order Ref. 8P14 1/3hp motor (Sinclair C5), £15, Order Ref. 15P8

MAINS MOTORS WITH GEARBOXES

5rpm 60W £5, Order Ref. 5P54
40rpm 100W, E6, Order Ref. 6P2
50rpm 60W, £5, Order Ref. 5P 168
60rpm 60W, £5, Order Ref. 5P171
$110 \mathrm{rpm} 60 \mathrm{~W}, \mathrm{\Sigma 5}$, Order Ref. 5P172
150rpm 60W, Order Ref. 5P169
200rpm 60W, 55 , Order Ref. 5P 216
500W motor with gearbox \& variable speed selector 100rpm upwards, $£ 5$, Order Ref. 5P220
1 rev per 24 hours $2 W$ motor, $£ 1$, Order Ref. 89
1 rev per 12 hours 2W motor, £1, Order Ref. 90 1 rev per 4 hours 2W motor, £2. Order Ref. 2P239 1 rev per hour 2 W extra small motor, 2 for $£ 1$. Order Ref. 500
$1 / 2 \mathrm{rpm}$ mini motor, £3, Order Ref. 3P64
1 rpm mini motor, £2, Order Ref. 2P328
4 rpm 2 W motor, $£ 1$, Order Ref. 446
15 rpm 2 W motor, £2, Order Ref. 2P32
15rpm 2W motor, £2, Order Ret. 2P321
200rpm 2W motor, £1, Order Ref. 175
250rpm 2W motor, £1, Order Ref. 750

MAINS MOTORS

$3 / 4$ stack motor with $1 / 4^{\prime \prime}$ spindle, $£ 1$, Order Ref. 85 Motor $1 \frac{1}{2 \prime \prime}$ stack with good length spindle from each side, £2, Order Ref. 2P55
Motor $1^{11 / 4^{\prime \prime}}$ stack with $4^{\prime \prime}$ long spindle, $£ 2$, Order Ref. 2P203 Motor by Crompton .06 hp but little soiled, $£ 3$, Order Ref. 3 P 4
Jap made precision motor balanced rotor \& reversible, 1500rpm, £2, Order Ref. 2P12
Tape motor by EMI 2 speed $\&$ reversible, £2, Order Ref. 2P70
1/4hp 1000rpm, £8, Order Ref. 8P7

MOTORS - STEPPER

Mini motor by Philips 12v-7.5 degree step, quite standard data supplied, only $£ 1$. Order Ref. 910 Medium powered Jap made 1.5 degree step, £3, Order Ref. 3P162
Very powerful motor by American Phllips 10-14v 7.5 degree step, £5, Order Ref. 5P81

LOUDSPEAKERS

$2^{\prime \prime}$ round 50 ohm coil $1 / 2 \mathrm{~W}, 2$ for $£ 1$, Order Ref. 908 $21 / 4^{\prime \prime} 8$ ohm, 2 for $£ 1$. Order Ref. 454 $21 / 2^{\prime \prime} 35$ ohm, 2 for $£ 1$. Order Ref. 514 $31 / 2^{\prime \prime} 8$ ohm, 2 for £1, Order Ref. 682 $61 / 2^{\prime \prime} 4$ ohm with tweeter, $£ 1$, Order Ref. 895 $61 / 2^{\prime \prime} 6 \mathrm{ohm}, \mathrm{£} 1$, Order Ret. 896
$61 / 2^{\prime \prime} 8$ ohm, with tweeter, $£ 1$, Order Ret. 897
$6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm, £1, Order Ref. 242
5"x5" $15 \mathrm{ohm}, ~ £ 1$ Order Ref. 906
$5^{\prime \prime \times 3^{\prime \prime}} 16$ ohm, $£ 1$, Order Ref. 725
7"x4" 16 ohm, 2 for $£ 1$, Order Ref. 684
$8^{\prime \prime}, 15$ ohm audax, $£ 1$. Order Ref. 504
$9^{\prime \prime} \times 3^{\prime \prime} 8$ ohm $5 W, \Sigma 1$. Order Ref. 138
$3^{\prime \prime} 4$ ohm tweeter, $£ 1$, Order Ref. 433
Goodmans 6 $1 / 2^{\prime \prime}$ ' 10 W ' 4 ohm, £2, Order Ref. 2P27
Horn speaker $41 / 2^{\prime \prime} 8$ ohm, $£ 3$ Order Ref. $3 P 82$
20W 5" by Goodman, £3, Order Ref. 3P145
20W 4 ohm tweeter, $£ 1.50$. Order Ref. 1.5P9
Amstrad 8" 15W 8 ohm with matching tweeter, £4, Order
Ref. 4P57 Ref. 4P57
Cased pair of stereo speakers by Bush 4 ohm $£ 5$ per pair, Order Ref. 5P141
Double wound voice coil 25W, ITT, £7, Order Ref. 7P12 Bulkhead speaker, metal cased, £10, Order Ref. 1043 25W 2 way crossover, 2 for £1, Order Ref. 22
40W 3 way crossover, E1. Order Ref. 23

MONITORS AND BITS

Philips 9" high resolution monitor, £15, Order Ref. 15P1 Metal case for the above Philips monitor, £12, Order Ref. 12 P 3
Philips 9" high resolution tube Ref. M24 306W, £12, Order Ref. 12P7
$\mathbf{6}^{\prime \prime}$ electrostatic monitor tube Ref. SE5J31, £10. Order Ref. 10P104
Mini scope tube face size $2^{\prime \prime \prime} \times 2^{1 / 2 "}$ ", electrostatic $3 v$ heater 1 Kv in new metal shield, £10, Order Ret. 10P73

SOME POPULAR BARGAINS

POWER SUPPLIES - SWITCH MODE
BATTERY QUICK CHARGER, into a flat battery the charging rate would be 8-10A, this would fall away to about 5A as the battery charges up or it can be switched to a lower rate. Complete kit includes mains transformer, rectifier capacitor, switch and metal case, $\mathfrak{\Sigma 7 . 5 0 \text { , Order Ref. 7.5P20 }}$ 200W MAINS TRANSFORMER, secondary voltages $8 \mathrm{v}-0$ 8 V , so you could have 16 V at 12 A or 8 V at 25A. Could be ideal for car starter charger, soil heating, spot welding, ideal for car starter charger, soil heating, spot welding, carbon rod welding or
£15, Order Ref. 15P1
LCD $31 / 2$ DIGIT PANEL METER, this is a multi range voltmeter/ammeter using the A.D converter chip 7106 to provide 5 ranges each of volts and amps. Supplied with full data sheet. Special snip price of $£ 12$, Order Ref. 12P19 500 V INSULATION TESTER, we still have a few perfect $B T$ bridge meggers $£ 45$, Ref. 45P2, also we still have some slightly imperfect but quite repairable. Faults would be perhaps bad case, battery cover missing, terminals broken, no one would have all these fauts but could have one or two, £25. Order Ref. 25P15
MINI TRANSFORMER, mini construction and resin filled PCB mounting. Two versions, one with $2 \times 15 v$ secondaries PCB mounting. Two versions, one with $2 \times 15 \mathrm{v}$ secondaries
each rated at .75 vA , Order Ref. 937 ; other with $2 \times 18 \mathrm{v}$ each rated at .75 vA , Order Ref. 937 ; other with $2 \times 18 \mathrm{v}$
secondaries each rated at .7 VA . Order Ref. $941, £ 1$ each secondaries each rated at .7 VA , Order Ref. 941 , £ 1 each
$12 \mathrm{~V}-0-12 \mathrm{~V} 6 \mathrm{VA}$ PCB MOUNTING MAINS TRANSFOR-12V-0-12V 6VA PCB MOUNTING MAINS TRANSFOR-
MER, normal 230 v primary and conventional open winding MER, normal 230 v primary and conventional open winding construction, £1, Order Ref. 938
AMSTRAD $3^{\prime \prime}$ DISK DRIVE, brand new. Standard replacement or why not have an extra one? $£ 20$, Order Ref. 20P28 THIS COULD SAVE YOU EXPENSIVE BATTERIES, an incar unit for operating 6 v radio, cassette player, etc from car lighter socket, £2, Order Ref. 2P318
MEDICINE CUPBOARD ALARM, or it could be used to warn when any cupboard door is opened, built and neatly cased requires only a battery, £3, Order Ref. 3P155 FULLY ENCLOSED MAINS TRANSFORMER, on a 2 m 3 core lead terminating with a 13A plug. Secondary rated at 6v 4A. Brought out on a well insulated 2 core lead terminating with insulated push on tags. £3, Order Ref. 3P152, Ditto but 5A, £4, Order Ref. 4P69
DON'T LET IT OVERFLOW, be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you or any other thing that could flood. This device will tell you
when the water has risen to the pre-set level. Adjustable when the water has risen to the pre-set level. Adjustable over quite a useful range, neatly cased for wall mounting
ready to work when battery fitted, $£ 3$, Order Ref. 3P156 ready to work when battery fitted, £3, Order Ref. 3P156
DIGITAL MULTI TESTER MG3800, single switching cover DIGITAL MULTI TESTER MG3800, single switching covers
30 ranges including 20A ac and dc 10 meg input impedence, 30 ranges including 20A ac and de 10 meg input impedence, by many dealers at nearly $£ 40$, our price only $£ 25$, Orde Ref. 25P14
ANALOGUE TESTER, input impedence 2 K ohms per volt It has 14 ranges, ac volts $0-500 \mathrm{dc}$ volts $0-500$, dc current 500 micro amps at 250 milliamp, resistance $0-1 \mathrm{meg}$-ohm decibels 2056 dB . Fitted diode protection, overall size $90 \times 60 \times 30 \mathrm{~mm}$. Complete with test prods, price $£ 7.50$, Order Ref. 7.5P8
LCD CLOCK MODULE, 1.5 v battery operated, fits nicely into our 50p project box, Order Ref. 876. Only £2, Order Ref 2P307
SENTINEL COMPONENT BOARD, amongst hundreds of other parts, this has 15 ICs all plug in so don't need de soldering. Cost well over $£ 100$, yours for $£ 4$, Order Ref 4P67 AMSTRAD KEYBOARD MODEL KB5. this is a mos comprehensive keyboard, having over 100 keys including of course. full numerical and qwerty. Brand new, still in maker's packing, £5, Order Ref. 5P202
SOLAR PANEL BARGAIN, gives $3 v$ © 100 mA , $£ 2$, Order Ref. 2P324
ULTRA SONIC TRANSDUCERS, 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz $£ 1.50$ the pair, Order Ref. 1.5P4
INSULATION TESTER WITH MULTIMETER, internally generates voltages which enables you to read insulation directly in megohms. The multimeter has 4 ranges ac/dc volts, 3 ranges de milliamps, 3 ranges resistance and 5 amps. These instruments are ex BT but in very good condition, tested and guaranteed OK, yours for only $£ 7.50$. with leads, carrying case £2 extra, Order Ref. 7.5P4
MAINS ISOLATION TRANSFORMER, stops you getting to earth shocks, 230 v in and 230 v out. 150 W upright mounting $£ 7.50$, Order Ref. 7.5P5 and a 250 W torroidal isolation, $£ 10$ Order Ref. 10P97
MINI MONO AMP on pcb. Size 4 " $x 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 W into 4 ohm speaker using 12 V or 1 W into 8 ohm using 9 v . Brand new and perfect, only $£ 1$ each, Order Ref. 495
EXPERIMENTING WITH VALVES, don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs. of $250-0-250 \mathrm{v}$ at 75 mA and 6.3 V at mains input and secs. of
$0-1$ MA FULL VISION PANEL METER, $23 / 4^{\prime \prime}$ square, scaled $0-100$ but scale easily removed for re-writing, $£ 1$, Order Ref. 756
PCB DRILLS, 12 assorted sizes between .75 and 1.5 mm £1 the lot, Order Ref. 128.
12V AXIAL FAN, for only $£ 1$, ideal for equipment cooling brand new, made by West German company. Brushless so virtually everlasting. Supplied complete with simple 12 V transistor circuit, £1, Order Ref. 918.
(all 230v mains operated)
Astec ref. B51052 with outputs $+12 \mathrm{v} .5 \mathrm{~A},-12 \mathrm{v} .1 \mathrm{~A},+5 \mathrm{v}$ $3 \mathrm{~A},+10 \mathrm{v} .05 \mathrm{~A},+5 \mathrm{v} .02 \mathrm{~A}$ unboxed on pcb size $180 \times 130 \mathrm{~mm}$ £5, Order Ref. 5P188.
Astec ref. BM41004 with outputs $+5 \mathrm{v} 31 / 2 \mathrm{~A},+12 \mathrm{v} 1.5 \mathrm{~A},-$ 12v 1.5A, £5, Order Ref. 5P199
Astec No. $12530+12 \mathrm{v} 1 \mathrm{~A},-12 \mathrm{v} .1 \mathrm{~A},+5 \mathrm{v} 3 \mathrm{~A}$, uncased on pcb size $160 \times 100 \mathrm{~mm}$. £3, Order Ref. 3P141
Astec No, BM41001 110W 38v 2.5A, 25.1v 3A part meta cased with instrument type main input socket \& on/off dp rocker switch size $354 \times 118 \times 84 \mathrm{~mm}, £ 8.50$, Order Ref. 8.5P2 Astec model No. BM135-3302 $+12 \mathrm{~V} 4 \mathrm{~A},+5 \mathrm{~V}$ 16A, -12 V 0.5 A totally encased in plated steel with mains input plug, mains output socket \& double pole onoff switch size $400 \times 130 \times 65 \mathrm{~mm}, £ 9.50$. Order Ref. 9.5 P 4

POWER SUPPLIES-LINEAR

(all cased unless stated)
4.5 v dc $150 \mathrm{~mA}, £ 1$, Order Ref. 104
$5 v$ dc $21 / 2 A$ psu with filtering \& volt regulation, uncased, $£ 4$ Order Ref. 4P63
6 v oc $700 \mathrm{~mA}, ~ £ 1$, Order Ref. 103
$\mathbf{6 v}$ dc $\mathbf{2 0 0 m A}$ output in 13A case, £2, Order Ref. 2P112 $6-12 \mathrm{v} d c$ for models with switch to vary voltage and reverse polarity, £2, order Ref. 2P3
9v dc 150 mA , $£ 1$, Order Ret. 762
9v de 2.1A by Sinclair, £3, Order Ref. 3P151
$9 v \mathrm{dc} 100 \mathrm{~mA}, £ 1$ Order Ref. 733
12v dc 200mA output in 13A case, £2, Order Ref. 2P114
12 v 500 mA on 13A base, $£ 2.50$. Order Ref. 2.5 P 4
12v 1A fittered \& regulated on pcb with relays \& Piezo sounder, uncased, $£ 3$, Order Ref. 3P80
Amstrad 13.5 v dc at 1.8 A or 12 v dc at 2A, £6, Order Ref 6P23
24 v dc at 200 mA twice for stereo amplifiers, $£ 2$. Order Ref. 2 P 4
9.5 v ac 60 mA made for $\mathrm{BT}, £ 1.50 \mathrm{~m}$, Order Ref. 1.5 P 7

15 V 500 mA ac on 13A base, $£ 2$, Order Ref. 2P281
AC out 9.8v (a) 60mA \& 15.3 v @ 150 mA , £1, Order Ref. 751 BT power supply unit 206AS, charges $12 v$ battery and cuts off output should voltage fall below pre-set, $£ 16$. Order Ref. 16P6
Sinclair microvision psu, £5, Order Ref. 5P148

LASERS \& LASER BITS

2 mW laser, helium neon by Philips, full spec. $£ 30$, Order Ref. 30P1
Power supply for this in kit form with case is $£ 15$. Order Ret. 15P16, or in larger case to house tube as well, £18, Order Ref. 18P2.
The larger unit, made up, tested and ready to use, complete with laser tube £69, Order Ref. 69P1

HEATING UNITS

Linear quartz glass tubes $360 \mathrm{~W}, 2$ in series for mains, $£ \uparrow$ Order Ref. 907
1000W spiral elements for repairing fires etc. 3 for $£ 1$ Order Ref. 223
1000W pencil elements, 2 for $£ 1$. Order Ref. 376
1.2 kW mini tangential heater, ideal for under desk etc, $£ 5$ Order Ref. 5P23
$\mathbf{2 k W}$ tangential heater, £6, Order Ref. 6P30
3kW tangential heater, 58 , Order Ref. 8P24
12' tubular heater, slightly storage soiled, £6. Order Ref. 6P31
Water-proof heating wire, 600 hms per metre, 15 m is right length for connecting to mains, £5. Order Ref. 5P109
The above prices include VAT but please add £3 towards our packing and carrlage if your order is under £50. Send cheque or postal orders or phone \& quote credit card number.
M\&B ELECTRICAL SUPPLIES LTD
Pilgrim Works (Dept. WW),
Stairbridge Lane, Bolney, Sussex RH17 5PA Telephone 0444881965 (Also fax but phone first)

electronic engineers REEERENCE BOOK

6th Edition F F Mazda

T
his reference bock is diviced into f ve parts: techniques physical phenome 7 a, materials and components; electronic design and applications. The sixth edition was updated throughout to take into acocunt changes in standards and materials as well as advances in techniques, and was expanced to include new chapters on surface rrount tec nology, hardware and software design techriques, semi-custom electronics and data comm..nications.

Fraidoon Mazda has worked in the

ELECTRONICS ENGINEERS

Raflemence BOOK

 electrer cs and telecorr nunications incustry for over twenty years, and is currently Product and Operations Manager, Generic Network Management, with Northern Telecom. He is the author of six technizel books (transtated into four larguages) and the editor of the Comrl lications Engineers Reference Book published by Butter corthHeinerrann.

CONTENTS: Techriques Trigorcmetric functions and general formulae; Calculus; Series and transforms; Matrices and determmants; Electric circlit theory; Statistics. P7ysical Phenomena Quantities and units; Electricity; Lizht; Radiation; The imosphere and troposphere. Materials and components Resistive materials and componerts; Dielecaric materials and components; Magnetic materials; Inductors and transformers; Relays; Piezoelectric materials and compcnents; Connectors; Printed circuits; Power sources; Discrete semiconductors; Mis owave semiconductor devices; Dptical digital integrated circ」-s; Linear integrated circuits; Semizonductor memories; Microp-acessors; Application-specific integrated circuits; Eleciron microssopy; Digital design; Software engineering; Digital systems єาalysis; Control systems; Antenras and arrays; Noise management in electronic herdware; Noise and communication; Computer aided design; Television and sJund broedcasting. Applicaliens Communica'ion satellites; Point-to-point communicat c 7; Fibreoptic commlnication; The integrated services digital network (ISDN); Local area networks; Radar systems; Computars and their applicazion; Videotepe recorcing; Office commu pations; Medical electronics.

1006 pages PAPERBACK SBN 0750608099 £42.50 (ine post \& packaging)

Please return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

* Now available to Electronics World \& Wireless World readers in paperback.
* Expert coveraje of all aspects of electronizs
* Over 50 contributors

Fir electronic engineers, technicians and students
Please supply me - copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RATE FOF UK \& EIRE TOTAL
Business purchase: Please se 1 me the books listed with an invoice. I will arrange for my corpany to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 davs in a resalable condition for a full refund

Remittance enclosed $£$
Chzques should be r ade payable to Reed Book Services Ltd.

Please debit my credit card as follows
A.ccess/Master Barclay/Visa
A.mex

Diners
Credit Card No \qquad Exp date

NAME (Please print)
OFGANISATICN
STREET
TCWN
CCIUNTY \qquad POST CODE
CCIUNTRY \qquad
DATE TELEPHONE NUMBER \qquad
SIGNATURE
T3000

VAT RATES

6\% Belgium, 25\% Deาmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Ita y, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3% SJain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPP_Y YOUR REGISTRATION NUMBER BELOW (customers cutside the EEC should leave this part blank)
VATNO

If in the UK please allon 28 days for delivery. All prices are correct at time of going to fress but may be subject to change.

Please delete as approrriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders
accepted by phone.
Cal 0816523614.

"Power tends to corrupt." First Baron Acton.

> Class B output stages differ in at least three different ways, presenting some intractable design problems. But class $A B$ proves to be no answer, says Douglas Self.

Distortion in power amplifiers

4: the power amplifier stages

The almost universal choice in semiconductor power amplifiers is for a unity gain output stage, and specifi cally a volage follower. Output stages with gain are not unknown', but they are not common. Most designers feel that controlling distortion while handling large currents is hard enough without trying to generate gain at the same time.
The first three parts of this series have dealt with one kind of distortion at a time, due to the monotonic transfer claracteristics of small signal stages, which usually, but not invariably, work in class A ${ }^{2}$. Economic and thermal realities mean that most output stages are class B, and so we must now consider crossover distortion, which remains the thorniest problem in power amplifier design, and HF switchoff effects.
It is now also necessary to consider what kind of active device is to be used; jiets offer few if any advantages in the small current stages, but power fets are a real possibility. providing that the extra cost brings with it tangible benefit.

The class war

The fundamental factor in determining output stage distortion is the class of operation. Apart from its inherent inelficiency, class A is the ideal operating mode, because there can be no crossover or switchoff distortion. However, of those designs which have been published or reviewed, it is notable that the large signal distortion produced is still significant. This looks like an opportunity lost, as of the distortion mechanisms discussed in the tirst part of this series, we now only have to deal with Distortion 1 (input stage), Distortion 2 (vas).
and Distortion 3 (output stage large signal non-linearity). Distortions $4,5,6$ and 7 , as mentioned earlier, are direct results of class B operation and therefore can be thankfully disregarded in a class A design. However, class B is overwhelmingly of the greater importance, and is therefore dealt with in detail.
Class B is subject to misunderstanding. The slatement is often made that a pair of output transistors operated without any bias are working in "class B", and therefore "generate severe crossover distortion". In fact, with no bias each output device is operating for slightly less than half the time, and the question arises as to whether it would not be more accurate to call this class C and reserve class B for that condition of quiescent current which eliminates, or rather minimises, the crossover artifacis.

A further complication exists: it is not generally appreciated that moving into what is usually called class $A B$, by increasing the quiescent current, does not make things better. In lact, the THD reading will increase as the bias control is advanced, with what is usually known as " g_{m} doubling" (ie a voltage gain increase caused by both devices conducting simultaneously in the centre of the output voltage range) putting edges into the distortion residual that generate high order harmonics in much the same way that underbiasing does. This important fact seems almost unknown, presumably because the ξ_{m} doubling distortion is at a relatively low level and is completely obscured in most amplifiers by other distortion mechanisms.
The phenomenon is demonstrated in Figs. 1a.b,c which shows spectrum analysis of the distortion residuals for under biasing. optimal,

and over biasing of a $150 \mathrm{~W} / 8 \Omega$ amplifier at 1 kHz .
As before, all non-linearities except the unavoidable Distortion 3 (output stage) have been effectively eliminated. The over biased case had its quiescent current increased until the gm doubling edges in the residual had an approximately 50:50 mark/space ratio, and so was in class A about half the time which represents a rather generous amount of quiescent for class AB . Nonetheless. the higher order odd harmonics in Fig. Ic are at least 10 dB greater in amplitude than those for the optimal class B case, and the third harmonic is actually higher than for the under-biased case as well. However the under biased amplifier, generating the familiar sharp spikes on the residual, has a generally greater level of highorder odd harmonics above the 5th; about 8 dB higher than the AB case.
Bearing in mind that high order odd harmonics are generally considered to be the most unpleasant, there seems to be a clear case for avoiding Class $A B$ altogether, as it will always be less efficient and generate more high order distortion than the equivalent class B circuit. class distinction therefore seems to resolve itself into a binary choice between A or B .
It must be emphasised that these effects can only be seen in an amplifier where the other forms of distortion have been properly minimised. The rms THD reading for case 1a was 0.00151%, for case 1b 0.00103%, and for case 1c 0.00153%. The tests were repeated at the 40 W power level with very similar resulls. The spike just below 16 k Hz is interference from the lest gear VDU.
This may secm complicated enough, but there are other and deeper subtleties in class B.

Fig. 1. Spectrum analysis of class $B \& A B$ distortion residual. 1a). Under-biased class B; 1b) Optimal class $B ; 1$ c) class $A B$.

Distortions of the output

I have designated the distortion produced directly by output stages as Distortion 3 (see Pari 1); this subdivides into three categories. Mechanism 3a describes the large signal distortion produced by both class A and B, ultimately because of the large current swings in the active devices. In bipolars, but not fets. large collector currents reduce the beta leading to drooping gain at large output excursions. I shall use the term "LSN" for large signal nonlinearity, as opposed to crossover and switchoff phenomena that cause trouble at all output levels.
The other two contributions to Distortion 3 are associated with class B only; Distortion 3b the classic crossover distortion resulting from the non-conjugate nature of the output characteristics, and is essentially frequency independent.
In contrast, Distortion 3c is switchoff distortion generated by the output devices failing to turn off quickly and cleanly at high frequencies. This mechanism is strongly frequency dependent. It is sometimes called switching distortion, but this allows room for confusion, as some writers use "switching distortion" to cover crossover distortion as well. I refer specifically to charge storage turn off troubles.
One of my aims for this series has been to show how to isolate individual distortion mechanisms. To examine output behaviour, it is perfectly practical to drive output stages open loop providing the driving source impedance is properly specified; this is difficult with a conventional amplifier, as it means the output must be driven from a frequency dependant impedance simulating that at the vas collector with some sort of feedback mechanism incorporated to keep the drive voltage constant.
However, if the vas is buffered from the output stage by some form of emitter follower, as described in the last part, it makes things much simpler. a straightforward low impedance source (eg 50 Ω) providing a good approximation of a vas-buffered closed loop amplifier. The vas buffer makes the system more designable by eliminating two variables - the vas collector impedance at LF, and the frequency at which it starts to decrease due to local feedback through $C_{\text {dom }}$. This markedly simplifies the study of output stage behaviour.
The large signal linearity of various kinds of open loop output stage with typical values are shown in Figs. 6-15. These diagrams were all generated by spice simulation, and are plotted as incremental output gain against output voltage, with the load resistance stepped from 16 !2 to 2Ω. The power devices are M.J802 and M.4.4502, which are more complementary than many transistor pairs, and minimise distracting large signal asymmetry. The quiescent current

Fig. 2. Three types of emitter follower output stages.

(a)

Fig. 3. CFP circuit and quasi complementary stages.

is in each case set to minimise the peak deviations of gain around the crossover point for 8Ω loading; for the moment it is assumed that you can set this accurately and keep it where you want it. The difficulties in actually doing this will be examined later.
There are at least 16 distinct configurations in straightforward output stages not including error correcting ${ }^{3}$, current dumping ${ }^{4}$ or Blomley ${ }^{5}$ types. These are as follows:

Emitter Follower	3 types	Fig. 2
Complementary Feedback Pair	1 type	Fig. 3
Quasi Complementary	2 types	Fig. 3
Output Triples	At least 7 types.	Fig. 4
Power FET	3 types	Fig. 5

The emitter follower output

Figure 2 shows three versions of the most common type of output stage; the doubleemitter follower where the first follower acts
as driver to the second (output) device. I have deliberately called this an emitter follower rather than a Darlington configuration, as this latter implies an integrated device with associated resistors. As for all the circuitry here, the component values are representative of real practice.
Two important attributes of this topology are: The input is transferred to the output via two base emitter junctions in series, with no local feedback around the stage (apart from the very local 100% voltage feedback that makes an emitter follower what it is);
There are two dissimilar base emitter junctions between the bias voltage and the emitter resistor R_{e}, carrying different currents and at different temperatures. The bias generator must attempt to compensate for both at once, though it can only be thermally coupled to one. The output devices have substantial thermal inertia and thus thermal compensation
represents a time average of the preceding conditions. Fig. 2a shows the most prevalent version (type I) which has its driver emitter resistors connected to the output rail.
The type II configuration in Fig. $2 b$ is at first sight merely a pointless variation on type I, but in fact it has a valuable extra property. The shared driver emitter resistor R_{d}, with no output rail connection, allows the drivers to reverse bias the base emitter junction of the output device being turned off.
Assume that the output voltage is heading downwards through the crossover region; the current through $R_{\text {el }}$ has dropped to zero, but that through $R_{\mathrm{e} 2}$ is increasing, giving a voltage drop across it, so $T r_{4}$ base is caused to go more negative to get the output to the right voltage. This negative excursion is coupled to $T r_{3}$ base through R_{d}, and with the values shown can reverse bias it by up to 0.5 V , increasing to 1.6 V with a 4Ω load. The speed

Fig. 4. Three of the possible output triple configurations.
up capacitor C_{s} markedly improves this action, preventing the charge suckout rate being limited by the resistance of R_{d}. While the type I circuit has a similar voltage drop across $R_{\mathrm{e} 2}$, the connection of the mid point of R_{1}, R_{2} to the output rail prevents this from reaching Tr_{3} base; instead $T r_{1}$ base is reverse biased as the output moves negative, and since charge storage in the drivers is usually not a problem, this does little good. In the type II circuit the drivers are never reverse biased, though they do turn off. The important issue of output turn off and switching distortion is further examined in the next part of this series.
The type III topology shown in Fig. 2c maintains the drivers in class A by connecting the driver emitter resistors to the opposite supply rail rather than the output rail. It is a common misconception ${ }^{6}$ that class A drivers somehow maintain better low frequency control over the output devices, but I have yet to substantiate any advantage myself. The driver dissipation is of course substantially increased, and nothing seems to be gained at LF as far as the output transistors are concerned, for in both type I and type Il the drivers are still conducting at the moment the outputs turn off, and are back in conduction before the outputs turn on, which would seem to be all that matters.
Type III is equally good as type II in reverse biasing the output bases, and may give even cleaner HF turn off as the carriers are being swept from the bases by a higher resistance terminated in a higher voltage approximating constant current drive; I have yet to try this.

Fig. 5. Three mosfet output architectures.

The large signal linearity of the three versions is virtually identical - all have the same feature of two base emitter junctions in series between input and load.
The gain,output voltage plot is shown at Fig. 6; with BJTs the gain reduction with increasing loading is largely due to the emitter resistors. Note that the crossover region appears as a relatively smooth wobble rather than a jagged shape. Another major feature is the gain droop at high output voltages and low loads indicating that high collector currents are the fundamental cause of this.
A close up of the crossover region gain for 8Ω loading only is shown in Fig. 7; note that no $V_{\text {hias }}$ setting can be found to give a constant or even monotonic gain; the double dip and central gain peak are characteristic of optimal adjustment. The region extends over about $\pm 5 \mathrm{~V}$, independent of load resistance.

Complementary feedback output

The other major type of bipolar output is the complementary feedback parr (CFP) sometimes called the Sziklai Pair. Fig. 3a. There seems to be only one popular configuration, though versions with gain are possible. The drivers are now placed so that they compare output voltage with that at the input. Wrapping the outputs in a local negative feedback loop promises better linearity than emitter follower versions with 100% feedback applied separately to driver and output transistors.
This topology also has better thermal stability, because the $V_{\text {be }}$ of the output devices is inside the local feedback loop, and only the driver $V_{\text {be }}$ affects the quiescent current. It is usually simple to keep drivers cool, and thermal feedback from them to the $V_{\text {bias }}$ generator transistor can be much faster and mechanically simpler.

Fig. 6. Emitter follower large signal gain vs output.

Fig. 8. Complementary feedback pair gain vs output.

Fig. 7. Emitter follower crossover region gain deviations, ± 5 V range.

Fig. 9. CFP crossover region $\pm 2 \mathrm{~V}$, Vbias as a parameter.

Like emitter follower outputs, the drivers are conducting whenever the outputs are, and so special arrangements to keep them in class A seem pointless. This stage, like emitter follower type I, can only reverse bias the driver bases rather than the outputs, unless extra voltage rails outside the main ones are provided.
The output gain plot is shown in Fig. 8. Fourier analysis shows that the CFP generates less than half the large signal distortion of an emitter follower stage. (See Table 1) Given also the greater quiescent stability, it is hard to see why this topology is not more popular.
The crossover region is much narrower, at about $\pm 0.3 \mathrm{~V}$ (Fig. 9). When under biased, this shows up on the distortion residual as narrower spikes than an emitter follower output gives.

The bad effects of g_{m} doubling as $V_{\text {bias }}$ increases above optimal (here 1.296 V) can be seen in the slopes moving outwards from the centre.

Quasi complementary outputs

The original quasi complementary configuration ${ }^{7}$ was almost mandatory, as it was a long time before pnp silicon power transistors matched the performance of the npn versions. The standard version shown at Fig. 3 b is well known for poor symmetry around the crossover region, as shown at Fig. 10. A close-up of the crossover region (Fig. 11) reveals an unhappy hybrid of the emitter follower and CFP, as might be expected, and that no setting of bias voltage can remove the sharp edge in the gain plot.

A major improvement to symmetry may be made by using a Baxandall diode ${ }^{8}$ as shown in Fig. 3c. This stratagem yields gain plots very similar to those for the true complementary emitter follower at Figs 6, 7, though in practice the crossover distortion seems rather higher. When a quasi Baxandall stage is used closed loop in an amplifier in which distortion mechanisms 1 and 2, and 4 to 7 have been properly eliminated, it is capable of better performance than is commonly believed. For example, $0.0015 \%(1 \mathrm{kHz})$ and 0.015% $(10 \mathrm{kHz})$ at 100 W is straightforward to obtain from an amplifier with a negative feedback factor of about 34 dB at 20 kHz .
The best reason to use the quasi Baxandall approach today is to save money on output devices, as pnp power transistors remain

	Emitter Follower	CFP	Quasi Simple	Quasi Bax	Triple Type 1	Simple mosfet	Quasi mosfet	Hybrid mosfet
8 S THD:	0.031\%	0.014\%	0.069\%	0.050\%	0.13\%	0.47\%	0.44\%	0.052\%
Gain:	0.97	0.97	0.97	0.96	0.97	0.83	0.84	0.97
4Ω THD:	0.042\%	0.030\%	0.079\%	0.083\%	0.60\%	0.84\%	0.072\%	0.072\%
Gain:	0.94	0.94	0.94	0.94	0.92	0.72	0.73	0.94
Table 1. This summarises the spice curves for 4 and 8Ω loadings. Each was subjected to Fourier analysis to calculate THD results for $\mathbf{a} \pm 40 \mathrm{~V}$ input.								

somewhat pricier than npns. Given the tiny cost of a Baxandall diode, and the absolutely dependable improvement it gives, there seems no reason why anyone should ever use the standard quasi circuit. My experiments show that the value of R_{1} in Fig. 3c is not critical; making it about the same as R_{c} seems to work well.

Triples

With three rather than two bipolar transistors in each half of an output stage the number of circuit permutations possible leaps upwards. There are two main advantages if output triples are used correctly: better linearity at high output voltages and currents; and more stable quiescent setting as the pre drivers can be arranged to handle very little power, and remain almost cold in use.
However, triples do not automatically reduce crossover distortion, and they are, as usually configured, incapable of reverse biasing the output bases to improve switch-off. Fig. 4 shows three ways to make a triple output stage - all of those shown (with the possible exception of Fig. 4c, which I have just made up) have been used in commercial designs. The circuit of 4a is the Quad 303 quasi complementary triple. The design of
triples demands care, as the possibility of local HF instability in each output half is very real.

Power fet outputs

Power mosfets are often claimed to be a solution to all amplifier problems, but they have their drawbacks: poor linearity and a high onresistance that makes output efficiency mediocre. The high frequency response is better, implying that the second pole P2 of the amplifier response will be higher, allowing the dominant pole Pl be raised with the same stability margin, and in turn allowing more overall feedback to reduce distortion. However, the extra feedback (if it proves available in practice) is needed to correct the higher open loop distortion.
To complicate matters, the compensation cannot necessarily be lighter because the higher output resistance makes the lowering of the output pok by capacitive loading more likely.
The extended frequency response creates its own problems; the HF capabilities mean that rigorous care must be taken to prevent parasitic oscillation, as this is often promptly followed by an explosion of disconcerting violence. Fets should at least give freedom from switchoff troubles as they do not suffer from charge storage effects.

Three types of fet output stage are shown in Fig. 5. Figures 12 to 15 show spice gain plots, using 2SK135/2S.J50 devices.
Most fet amplifiers use the simple source follower configuration in Fig. 5a; the large signal gain plot at Fig. 12 shows that the gain for a given load is lower, (0.83 rather than 0.97 for bipolar, at $8 \Omega 2$) because of low g_{m}. This, with the high on resistance, noticeably reduces output efficiency.
Open loop distortion is markedly higher; however large signal non-linearity does not increase with heavier loading, there being no equivalent of "bipolar gain droop". The crossover region has sharper and larger gain deviations than a bipolar stage, and generally looks pretty nasty; Fig. 13 shows the difficulty of finding a 'correct' $V_{\text {bias }}$ setting.
Fig. 5b shows a hybrid (ie bipolar/fet) quasi complementary output stage ${ }^{9}$. The stage is intended to maximise economy rather than performance, once the decision has been made (probably for marketing reasons) to use fets. by making both output devices cheap n-channel devices; complementary mosfet pairs remain relatively rare and expensive.
The basic configuration is badly asymmetrical, the hybrid lower half having a higher and more constant gain than the source fol-

AUDIO

Fig. 12. Source follower fet large signal gain vs output.

Fig. 14. Complementary bipolar fet gain vs output.

OUTFET CIR FET 0/P stage, voltage arive, 2SK135/2S.J50 14/6/93 Date/Time run 08/05/93 21.3219 Temperature 250

Fig. 13. Source follower fet crossover region $\pm 15 \mathrm{~V}$ range.
BIPFET.CIR COmp FET 0/P stage, BJT drivers, 2SK135/2SJ50. 15/6/93 Date/Time run. 08/05/93 $2151 \cdot 23$ Stage, BJT drivers, 2 SK135/2SJ50 $15 / 6 / 93$

Fig. 15. Complementary BJT fet crossover region $\pm 15 \mathrm{~V}$ range.
lower upper half. Increasing the value of $R_{\mathrm{e} 2}$ gives a reasonable match between the gains of the two halves, but leaves a daunting crossover discontinuity.
The hybrid full complementary stage in Fig. 5 c was conceived ${ }^{10}$ to maximise performance by linearising the output devices with local feedback and reducing I_{q} variations due to the low power dissipation of the bipolar drivers. It is highly linear, showing no gain droop at heavier loadings (Fig. 14) and promises freedom from switchoff distortion. But, as shown, it is rather inefficient in voltage swing. The crossover region (Fig. 15) still has some dubious sharp corners, but the total crossover gain deviation ($0.96-0.97$ at 8Ω) is much smaller than for the quasi hybrid $(0.78-0.90)$ and so less high order harmonic energy is generated.

Next month: Controlling large signal nonlinearity, crossover, and switch-off distortion.

References

1. Mann R. The Texan $20+20$ Watt Stereo Amplifier. Practical Wireless, May 1972, p48. 2. Takahashi. Design \& Construction of High Slew Rate Amplifiers Preprint No. 1348 (A 4)
for 60th AES Convention 1978
2. Hawksford MO. Distortion Correction in

Audio Power Amplifiers. JAES Jan/Feb 1981 p27 (Error correction)
4. Walker P. Current dumping audio amplifier. Wireless World 1975 pp60/62
5. Blomley. New Approach To class B. Wireless World, Feb 1971, p57 \& Mar 1971, p127/131
6. Otala. An Audio Power Amplifier for Ultimate Quality Requirements IEEE Trans on Audio \& Electroacoustics, Dec 1973, p548
7. Lin, H. Electronics, Sept 1956 pp173/175
8. Baxandall P. Symmetry in class B. Letters, Wireless World
Sept 1969 p416.
9. Self D. Sound mosfet design. Electronics \& Wireless World Sept 1990, p760.
10. Self D. Mosfet audio output, letter, Electronics \& Wireless World, May 1989, p524 (see also ${ }^{9}$.)

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

MARCONI 2955 COMMUNLCATIONS TEST SET
MARCONN 2305 MODULATION METER. MARCONI 2305 MODULATION METER.
MARCOONITF2303 MODULATONMER.
MARCONI 2331 ISTORTIONFACTOR METER.
FARNEU MARCONI 2331 ISTORTIONFACTOR METER....
FARNEUL LAS2RF AMPLFIER I SMHZ TO 520 MH

63000
62000
6895

AOTEKACDCPPECIIION CALIBRATOR .
EXACT 33 CURFENT PREISION CALIBRATOR
EXACT 334 CURF.ENT PRECISION CALIBRATOO
HP $1167 A$ POWER SPLITTER (NEW) I8GHZ ...

WACAL DANA S 02 WIDEBAND LEVELMETER

S2OMHZ....

ACAL DANA $1+98$ 1.3GHZ FREQ COUNTERTIMER
RACAL 9921 3GF Z FREQUENCY COUNTER
ACAL 9903 TIM

BICCITEST TA3IM CABLE TEST SET..
CCCFEST TA3IM CABLE TEST

FARRNEL ELECTRONK LOADERAIOOB3S.................
FARNEELLLSO10. AMP POWER SUPPLY
MARCONI TF2\%10/4 TV LINEAR DISTORTION ANAOMYSE
MARCONI TF2913 TEST LINE GENERATOR + INSERTE

FEEDBACK SSOGOS SINESOMARE AUDROSOSIILATOR
FEEDBACK 602 VARIABLE PHASEOSCILLATOR SFC $6112 M H Z$ SWEEP FUNCTONGERATOR
EEDBACK TFA TRANSFER FUNCTION ANAL
EEDBACK EW SO4 ELECTRONIC WATTMETER

HP 8496A COMMER REQUENCY GENERATSORIE
HP 3466 D DIGIT ML MULTTMMETER
HP 3464 DIGIT AL MUITIMETER
HP 87SOA STOR + GE NORMALIZER

ALL PRICES PLUS VAT AND CARRIAGE

86 Bishopsgate Street, Leeds LSI 4BB
Tel: (0532) 435649 Fax: (0532) 426881

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact: ELLMAX ELECTRONICS LTD., Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 7BT
Telephone: (081) 5390136
Fax: (081) 5397746

10 OUTLET DISTRIBUTION AMPLIFIER 4

A compact mains powered unit with one balanced input and ten $A C$ and DC isolated floating line outputs.

- Exemplary RF breakthrough specifications giving trouble-free operation in close proximity to radio telephones and links
- Excellent figures for noise, THD, statıc and dynamic IMD.
- Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences.
Meets IEC65-2, BS415 safety.
*Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for howl reduction *Broadcast Monitor Receiver $15 \mathrm{JkHz}-30 \mathrm{MHz}$ *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements *Broadcast Stereo Coders

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG.
Telephone: 0483 275997. Fax: 276477

teleulition

Subscribe to the magazine that experienced electronics professionals never miss

Whatever your interest in the world of television electronics, there's a wealth of news, advice and hard information for you in TELEVISION.

TELEVISION offers you a definitive guide to today's TV electronics business, keeping you up-to-date with new developments in TV, video and satellite - whilst furnishing you with 'hands-on' advice and information on the latest equipment.

EVERY MONTH - EVERYTHING YOU NEED TO KNOW

Once you are a subscriber to TELEVISION you'll enjoy a great information advantage. You'll be ahead of all of the latest product developments - you'll receive inside information on important techniques and time-saving work methods - and, importantly, you'll have access to the most comprehensive marketplace for components and services in the UK.

- Servicing solutions

- TV fault finding
- New Products
- VCR clinic
- Satellite TV
- Equipment reviews
- Readers' letters
- CD players casebook
- Components
- News and comment
- And much more!

Quite simply TELEVISION is the 'bible' of the television electronics industry - if you want to keep up with the competition, you can't afford to be without it.

SUBSCRIBING IS SIMPLE

Complete the coupon and return it to us at TELEVISION, Reed Business Publishing, FREEPOST, 9th Floor, Quadrant House, The Quadrant, SUTTON, Surrey SM2 5BR

Please send me TELEVISIDI

\square One Year at a cost of
 $\varepsilon 26$

- Two Years at a cost of £49
\square Three Years at a cost of $£ 70$
SAVE £3
SAVE \& 8

Name

\qquad
Job Title
Company
\qquad

Address \qquad

Postcode \qquad
Telephone No.
Fax No. \qquad

Reed Business Publishing Company Registered in England (registered number 1515:37) VAT no: 2:3572:3565

WAYS TO PAY
$1 \square I$ enclose a cheque for $£$ \qquad made payable to Reed Business Publishing
2 Please charge my: 2
Access
\square Visa

Diners Club \square American Express
Expiry Date
$\square \square
3 Please invoice me/my company Order No.

4 Or alternatively just ring our credit card hot-line on 0622721666 and quote reference $R J 3$

Are you registered for VAT, Yes $\square \quad$ No \square If yes, please supply your registration Number

Please send a VAT receipt \square
Signature__ Date
Prices apply to UK, Isie of Man, and Channel Islands only.

George Pickworth traces the evolution of the rotary discharger, from simple hemispherical electrode to the complexity of Marconi's 300kW transmitter

The spark that gave RADIO

The spark-clectrode assembly, the discharger, was of vital importance 10 the the spark transmitter, in the same way as the thermionic valve was to the valve-type transmitter.

Early dischargers were simply a pair of hemispherical electrodes housed in a sound deadenang wooden box. But this design was superseded, in all but low power installations, by Wien's quenched gap - adopted almost universally by the Telefunken company - and by rotary type dischargers taken up by the Marconi company

Evolution of the spark transmitter is essentially that of the discharger. In this article. we will concentrate mainly on the rotary discharger, of which there two basic types: plain, using dise type electrodes to facilitate cooling and so reduce electrode erosion: and those employing radial or transverse electrodes whose sole was to initiate and then quench a discharge after a given number of oscillations. These are referred to as either interrupters, or quenched-spark type dischargers.

As they were self cooling, rotary dischargers were inherently suited to high power installations. Their development stemmed from experimentation with different methods of
quenching the discharge, and from carly hemispherical types to highly complex rotary designs - culminating in Marconi's 1914. 30) KW synchronous discharger

Resonatirg selectivity

The term "spark transmitter" described what appeared to be a momentary electric discharge, and it became the generic name for this type of transmitter. The discharge was oscillatory with a duration corresponding to the train of oscillations.
Perlaps "are" would have been a slightly: more exact description, but this would have caused confusion with quenched-are continu-ous-waye systems. Spark transmitters were generalised as wave train transmitters. Amplitude of the wave train declined steeply especially with carly systems.
This was the principal reason for developing continuous wave systems: "syntony", a ternı invented by radio pioneer Lodge to describe receiver selectivity by resonance, where oscillations progressively build up in amplitude in the receiver tuncr.

With sark transmitters, resonance, and therefore syntony, is largely ineffective. One effect of quench-type dischargers was to
incease the number of significant waves in each train and so allow a smell measure of syntony.
Even where syntony wats not vital, for example in maritime systems which did not require a long range and where the frequency span was large, quenching still greatly improved transmitter efficiency.

Quest for long range

Early in the history of radio. before the relationship of wavelength and transmission distance was appreciated, long range was synonymous with high power.
Engineers knew that higt effective power could best be obtained by woring energy and suddenly releasing it by spark discharge - the basic principle of spark transmitters
Much of Marconi's early wark in the quest for long range was with "unthned" systens. where energy was stored in the antenna and released by a spark discharge - virtually as an

The Caernarfon three turn, 2.0 m diameter primary circuit inductor - a single layer helix of stranded insulated wire wound around a hollow 300 mm tuhe. The three section antenna coupling coil was supported on a square section wooden beam.
electromagnetic pulse. The pulse, being apcriodic, has no frequency, so cannot be tuned (syntony was out of the question).
Nonetheless, an EM pulse can contain an enormous amount of energy: inducing a current pulse in the receiver antema; triggering the coherer (a sensitive relay): aclivating a morse-inker (powered by its own battery), and so registering a dot for each pulse.
Grouped pulses were used for Morse signalling (Fig. 3).

Spark system principles

A capacitor suddenly discharging across a spark gap and through an inductor causes an oscillatory discharge at a frequency set by the values of the capacitor and inductor. (Fig. 1).

In early spark systems, DC pulses generated by an induction coil periodically charged the capacitor. But because of the short duration of the pulses, capacity value was limited to that which could be charged (typically to 15 kV) within the pulse duration - only a fraction of the coil's open circuit potential.

Theoretically, an open circuit allows the potential across the secondary of an induction coil to rise to infinity when the primary circuit is interrupted. So, to avoid damaging the coil through a broken charging circuit, protection spark gaps were placed across the coil's secondary winding. Induction coils were graded by maximum safe open circuit spark length, for example 6 in or 12 in .
Transformer systems give a much longer duration of each negative- or positive-going AC half cycle than an induction coil pulse. Their longer charging period enables more energy to be stored, while still allowing the capacitor to charge to typically $15-30 \mathrm{kV}$.
When the potential reaches the point where the air dielectric between the sparkgap breaks down - typically $4.0 \mathrm{kV} / 1.0 \mathrm{~mm}$ gap - ionisation dramatically reduces the resistance across the gap. Every discharge initiates a wave train, with the period between each train setting the tone heard with rectifier type receivers.
Induction coil-type transmitters had their discharge rate set by the interrupter typically a few hundred Hz .
For the early transformer systems, employing fixed hemispherical electrodes, discharge repetition rates were set by the $A C$ frequency (bearing in mind that there are two discharges per cycle). High frequency alternators, typically 500 Hz , were generally used with transformer systems.
In rotary dischargers, drive speed and the number of electrodes set the discharge rate.

Shock excitation

Instead of discharging the capacitor directly through the tuned circuit, as with simple spark systems, it can be discharged through an additional coil with very low inductance and resistance, inductively coupled to the tuned circuit. Quickly quenching the discharge so that the capacitor discharges virtually a single unidirectional pulse, shocks

More energy from tuned systems

Much more energy could be stored in a capacitor proper than in an antenna. So later tuned systems discharged the capacitor through an inductor to generate a train of exponentially declining oscillations. Frequency was set by the value of the capacitor and inductor (see box)
All the radiated energy first had to be stored in the capacitor so it had a large value. But to tune the system to the maritime frequencies 500 kHz and 1.0 MHz - the inductor value was low, typically a few turns of heavy gauge wire.

Originally, the antenna was connected directly to the inductor, and energy was radiated as exponentially declining waves. But, at close range, the large-amplitude first wave of the train shocked the receiver tuner into oscillation at the frequency to which it happened to be tuned, known as "spark jamming".

At longer range, syntony was virtually nil. The amplitude of the waves declined too rapidly for resonance to be effective, though the coherer could still be used as the detector (Figs. 4 and 4a).
the tuned circuit into oscillation at its resonant frequency. This was the effect exploited by Prof Wien and adopted by the Telefunken system under the name "quenched spark", Fig. 1a.
The quenched-arc system had its roots in Elihu Thompson's 1892 "wave generator" which consisted of an arc lamp burning DC and shorted by an inductor and capacitor in series. The oscillator generated continuous oscillations, so the arc appeared to burn continuously - hence the name. But this too was quenched and re-ignited every rf half cycle (Fig. 2). Operation of the quenched arc is complicated and still not fully understood. But a simplified explanation is that the choking coils, and in some cases a variable resistor, limit the rate at which the capacitor can charge. Once the arc is struck, its resistance falls to a low level. Current is then drawn from the capacitor faster than it is replaced, and potential falls to a point where the arc is quenched.
Resistance across the gap then reverts to a high level and the capacitor re-charges. The cycle is repeated at a rate set by the resonant frequency of the inductor/capacitor.
Potential at which the arc is quenched is set by the gap-width, but to ensure quenching, ionised gases have to be scavenged.

Spark or quenched arc?

As a general rule, early systems powered by high potential pulsed $D C$, generated by an induction coil, can be considered as spark systems.

Ordinary transformer-type spark transmitters with hemispherical electrodes also operated as true spark systems because the spark-gap was set so wide that discharge did not occur until the capacitor had charged to operational potential.

Marconi's interrupter-type rotary dischargers also made use of shock excitation. These were mechanical, so much slower than the Wien quenched gap, which was a magnetic device. Quenching seems to have occurred after a number of oscillations, depending on design of the interrupter and resonant frequency of the exciter circuit. However, subsequent oscillations declined very rapidly in amplitude after the initial pulse.

A similar shock effect would also have been significant with early spark transmitters employing loosely-coupled antenna circuits.
Marconi's transmitters, with their multispark interrupter rotary-dischargers, seem to have operated primarily in the shock
excitation mode. But they may well have operated in quenched-arc mode during each negative- or positive-going half AC cycle when, in effect, the source current is DC. Systems employing fixed gap dischargers and energised by smooth high potential DC invariably operated in the quenched arc mode.

Fig. 1. Basic spark oscillator.

Fig. 1a. Wien's quenched spark adopted by Telefunken.

Fig. 2. Quenched arc oscillator generating continuous oscillations, with the arc quenched and reignited every rf half cycle.

Loose antenna coupling

Ionisation dramatically lowers the resistance across the spark-gap. But as the gap is in series with the capacitor and inductor, it dissipates appreciable energy. The logical way to minimise the loss is immediate transfer of the energy by EM induction to a tuned-secondary circuit, normally the antenna system.

The horizontal part of the antenna has capacitance with earth, or ship deck, and in conjunction with the antenna coupling coil, creates a resonant circuit. The antenna`s low capacitance value meant the secondary winding normally had many more turns than the primary. But, with small ships where the length between the masts is limited. antenna capacity was increased by employing several parallel wires.

When the antenna circuit was precisely in tune with the primary circuit, the amplitude of the oscillations in the antenna circuit rose less steeply and declined more slowly than in the primary circuit, radiating pear-shaped wave trains. Although the amplitude of pear-shaped oscillation trains declined as a result of energy being radiated, the reduction in number of significant waves was much less pronounced than with exponentially declining wave trains. allowing a very limited degree of syntony (Fig. 5, 5a, 5b and 5c).

Beats occurred if the primary and secondary circuits were not tuned to precisely the same frequency (Fig. 5d) but this problem was avoided by shock excitation.

Quenching

Even a loosely-coupled antenna coil allowed some energy to be re-transferred to the primary circuit and dissipated by the spark-gap. The logical approach was to quench the discharge so that the spark-gap reverted to its high resistance state. By quickly quenching the discharge. the incidence of beat notes was greatly reduced.

In Wien's quenched gap, the discharge was probably quenched after less than six oscillations, so the the secondary circuit was virtually shock excited. To all intents, this prevented generation of beats.

One way of quenching was to direct an airblast across the gap to disperse the ionised gases. As energy was transterred to the secondary circuit. amplitude dropped to the point where the air-blast prevented re-ignition of the are after being quenched at the end of an ri half cycle. But the method posed practical problems and was not widely used.

Prof Wien's simple and elegant approach, developed in 1906, was to use the spark's own magnetic field to drive the discharge radially to a wide part of the gap where it was automatically quenched. This "quenched-gap" was adopted almost universally by the Telefunken Company (Fig. 6a).

Essential feature of the Wien quenched gap was its pile of pairs of dises, cach pair separated by mica washers to create a spark gap. The discs all had a circular groove close to the periphery. and their flat surfaces were parallel

Fig. 3. Marconi's untuned system. Energy stored in the antenna was released by a spark discharge.

and silver plated to prevent formation of pimples that would short the discs (Fig 6).
During discharge, the magnetic field that developed around the axis of the pile drove the sparks radially to the groove where gapwidth was greater and the discharge wat extinguished. The number of pairs of dises in cascade depended on power requirements: fo: 12.5 kV this was typically 14 .

The capacitor was discharged virtually as a single uridirectional pulse, shocking the tuned circuit into oscillation at its resonant frequency.

Marcen experimented with a similar device but rejected it in favour of his rotary-type
quenched-discharger where the gaps widened after each discharge.

Interrupter-type rotary dischargers

Early Marconi synchronous rotary dischargers consisted of a hub with four radial electrodes which rotated between a pair of fixed rod-type electrodes. The hub was driven by a shaf extending from its complementary alternator so the two rotated synchronously - hence the name.
Discharge commenced while the gaps were still narrowing and potental of a half cycle was increasing. Further narrowing as the electrodes rotated. reduced resistance across the

Fig. 5a. Oscillation train in a primary circuit. Antenna (secondary circuit) is loosely coupled.

Fig. 5c. Wave trains radiated by a loosely coupled antenna.

Fig. 5b. Oscillation train in a loosely coupled antenna circuit.

Fig. 5d. Oscillations in secondary circuit when not tuned to precise frequency of primary circuit.

Fig. 5. Second generation tuned system with loosely coupled antenna.

gaps as the amplitude of the oscillations dectined. and while energy was being transferred to the secondary circuit. The gaps then widened and the draught created by the rotating electrodes dispersed ionised gases. quenching the discharge and returning the gaps to a high resistance state (fig. 7b).
Rotary dischargers originally had four radial electrodes - corresponding to the alterna-

Horizontal antenna section

Secondary circuit
tor's four pole pieces, - aligning four times during each revolution. Rotation speed was typically $25 \mathrm{rev} / \mathrm{sec}$ ($1500 \mathrm{rev} / \mathrm{min}$). Each revolution generated two cycles, so there were four discharges/rev, 100 discharges/sec. But the corresponding tone produced by rectifier receivers was too low to be heard through "static" interference. (Fig. 7b)

Multiple-spark dischargers

To raise the pitch of the tone, Marconi increased the number of radial electrodes to 16 or 32. depending on the model. But the rugged four pole piece alternator was retained so that instead of one discharge per ac half cycle, there were now four or eight discrete discharges (Fig. 8a).
Furthermore, the magnitude of successive discharges varied according to the point on each AC half cycle where discharge occurred (Fig. 8b).
Operation was primarily in the shock excitation mode. But it could also have been in the quenched are mode because during each neg-ative- or positive-going ac half-cycle, the power supply was in effect dc. The 16 radialelectrode model gave 16 discharges/rev - at $25 \mathrm{rec} / \mathrm{sec} 400$ discharges $/ \mathrm{sec}$ - while the 32 electrode model gave 800 discharges/sec, producing a pleasant tone with rectifier type receivers. But because energy available from each AC half cycle was distributed among several wave trains, effective power was less than if the energy had teen radiated as a single wave train.
Maritime systems had the alternator driven by a $D C$ motor running off the ship's $D C$ supply. Terrestrial installations used a petrol

Fig. 6. Quenched spark system - Wien's quenched gap - showing two spark-gap sections.

Fig. 6a. Oscillation train in primary circuit with a quenching type discharger.

Fig. 7a. below. Quenched spark system schematic with its rotating electrodes.
engine. or mains power and a transformer - in which case the drive motor was synchronised with the mains supply.
The electrodes rotated in synchrony with the alternator, though this was not cssential and there was no noticeable difference in performance with transformer systems and an asynchronous drive motor. Indeed, the multiple discharger hatd it roots in an asynchronous version developed by Tesla for use with his "Magnifying Transmitter".

Only a limited degree of syntony was possible, but this was of no great significance with carly maritime systems. More important was that the discharger was efficient and, in conjunction with thermionic valve regenerative receivers, remained in service with maritime systems until the 1930s when interference caused to other radio uscrs could no longer be tolerated.

Marconi-Mackie disc discharger

A scaled up version of the smaller maritime multiple-spark discharger, capable of han-

Detectors

The gradual rise in amplitude of the wave train greatly reduced spark jarnming. But because the pulse effect was cramatically recuced, the coherer was alm ost useless as a detector.
Fessenden, another giant in radio his:ory, developed a liquid deector which was also a relay type. With a battery and with rf current present, it produced a roaring sound in headphones. Massie's pour contact or microphonic detector was als s of the relay type and produced a similar sound to the liquid detector.
Marconi's famous magnet c detector als 3 produced a sound in heayphones. Be ng a rugged magnetic/mectanical device it was far better suited to shipboard use than the liquid or microphonic delector, though it was less sensitive.
Rectifier-type detectors, inc uding the silizon detector and the audion valve, were experimented with by other picneers. But unlike relay tyous and the magnetic detector, rectifier detectors produced a sound with a pitc'? co-responding to the wave train repetition rats. Pear-shaped wave trairs produced an almost musical note, as ea th wave tra n gently caused the earpieze diāphragm to vibrate in sympathy with -he wave train repetition rate. But the first weve of exponential wave tra ns virtual y
"hammered" the diaphragm into vit ration.
With all rectifier-type detectors, and the magnetic detector energy to froduce the sound was derived from the em waves and this limited sensitivity; th s in turn brought about the development of highly semsitive headphones.
dling considerable power, is the MarconiMackie discharger. Largest example seems to have been 60 kW machines employed by maritime relay stations.
The assembly was installed in a brick "silence-cabin" with the drive shaft and flexible coupling extending through the wall to the alternator.

Fig. 7b. below right. Rotating electrodes.

Fig. 8a. Marconi's multiple spark discharger.

Fig. 8b. Relationship of discharges to AC half-cycles - synchronised version.

Rod-type static electrodes were eventually superseded by rotating side discs 300 mm diameter and 30 mm thick. The main disc, or hub, was of solid copper 900 mm diameter and 30 mm thick with 24 radial electrodes each about 200 mm long. At its normal speed of $25 \mathrm{rev} / \mathrm{sec}$ the 24 radial electrodes gave 600 discharges/sec.

Caernarfon synchronous discharger

Numerous operator manuals were produced to explain the workings of maritime radio systems. But very little meaningful technical data were published on the super stations. They were one-off installations, and because of their strategic importance during the World War I and the fact that they were used to signal to

Fig. 9. Caernarfon synchronised discharger.
submerged submarines during that war, they were shrouded in secrecy.
So, to fill gaps in known specifications, some assumptions have to be made.
The 300 kW Caernarfon 21.4 kHz transmitter had a discharger that evolved from of the early maritime-synchronous-discharger. But instead of four radial electrodes, 12 copper stud electrodes, 10 mm long, extended transversely from both sides of the periphery of a 900 mm diameter steel disc. These aligned with a pair of slowly rotating copper side discs, each 300 mm diameter.
The steel disc was coupled to the alternator by a non-conductive shaft extending through the brick wall of the silence cabin, which housed the machine, to the 300 kW single phase alternator driven by a three-phase motor drawing power from high voltage mains (Fig. 9)
Contemporaneous notes state that the alternator - and so the discharger - ran at $25 \mathrm{rev} / \mathrm{s}$ ($1500 \mathrm{rev} / \mathrm{min}$) and that AC frequency was 150 Hz . But they give little further technical information. The assumption is that the alternator had 12 pole pieces and the discharger had 12 electrodes, giving 12 discharges/rev or 300 discharges/s. To pack maximum energy into each wave train, there was one discharge per ac half cycle.
Wave trains would have been pear-shaped and contain about 25 waves of significant amplitude. Each wave had a period of $46 \mu \mathrm{~s}$, so the duration of the wave train was 1.175 ms . Period between each wave train was 3.3 ms . Keying was by breaking the capacitor charging circuit, and the arc which developed when the circuit was broken, was quenched by an air blast at 2.0 psi .
The three turn, 2.0 m diameter primary circuit inductor consisted of a single layer helix of stranded insulated wire wound around a hollow tube 300 mm in diameter. The multiturn, three section antenna coupling coil of stranded insulated wire was supported on a square section wooden beam that allowed the coil to slide axially inside the primary coil, and thereby adjust the degree of coupling
The antenna was an inverted L and comprised 10 parallel wires each 1300 m long supported by 10 tubular steel masts 130 m high over an earth screen (9.0 m above the ground. Antenna resistance was given as 0.62Ω and maximum antenna current as 220A.
Efficiency from alternator to antenna was given as 30% in one document - but 60% in another.
Two dischargers were completed in 1914, one of which seems to have been a stand-by. Although perfectly satisfactory in service, syntony was poor and in 1916 they were replaced by the timed-spark transmitter which radiated continuous but undulating waves.

[^2]
Keep in touch with ANTEX Precision Soldering

Antex thermally balanced irons are available with a wide selection of soldering bits. There are also adjustable temperature controlled irons for low temperature work.

Solder Station with optional digital
temperature
read-out are
also available

Ask for Antex at leading Electronic Distributors.

Antex (Electronics) Ltd.

2 Westbridge Industrial Estate, Tavistock, Devon PL19 8DE
Telephone: (0822) 613565 Fax: (0822) 617598
CIRCLENO. 116 ON REPLY CARD

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost
Expandable to cover virtually any programmable part including serial E2, PALS, GALS, EPLD's and microcontrollers from ali manufacturers.

DESIGN:
Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual

SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd
Malmesbury, Wiltshire. SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK
GERMANY 089/4602071 NORWAY 071-17890 $\begin{array}{ll}\text { ITALY } & 0292103554 \\ \text { FRANCE } & \text { (1)69.30.13.79 }\end{array}$ Also from VEROSPEED UK

CIRCLE NO. 117 ON REPLY CARD

"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

- Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER. files, and exports GERBER and NC-DRILL files
- Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output

Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

POWERware, Dept EW, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK. Ring us on 0614497101 or write, for a full information pack.
Quickroute is available for Windows $3 / 3.1$ in Professional ($£ 99.00$) and Standard ($£ 59.00$) editions and for DOS with reduced features ($£ 39.00$). All prices inclusive. Add $£ 5 \mathrm{P}+\mathrm{P}$ outside UK.

troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to troubleshoot. Paperback 217 pages.
Price $£ 14.95$
0750616326

PC-Based Instrumentation and
 Control

M Tooley

Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.

Price £14.95 0750616318

Electronic Circuits Handbook

M Tooley

Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages.

Price £24.95 0750607505

Communication Services via Satellite
 G E Lewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and givi g several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379

Digital Logic Design

 Brian HoldsworthAs one of the most successful and well established electronics textbooks on digital logic design, this book reflects recen: developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays.
Paperback 448 pages.
Price £19. 500750605014
The Circuit Designers

Companion

T Wiliams

This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers al ke. Hardback 320 pages
Price £2500 0750611421

USING RF TRANSITTORS 2: Putting a figure on low power devices

Abstract

Continuing the series based on their book Radio frequency transistors: principles and practical applications, Norm Dye and Helge Granberg show how to select a low power transistor with exactly the right parameters.

0ne of the most useful means of specifying a linear device is to use scattering parameters, commonly referred to as S-parameters, in reality voltage reflection and transmission coefficients when the device is embedded into a $50 \Omega 2$ system.
Magnitude of the input reflection coefficient $\left|S_{1 /}\right|$ is directly related to input VSWR by the equation

$$
\operatorname{VSWR}=\left(1+\left|S_{/ l}\right|\right) /\left(1-\left|S_{l /}\right|\right)
$$

Likewise magnitude of the output reflection coefficient $\left|S_{22}\right|$ is directly related to output VSWR (Fig. 1). Square of the magnitude of the input-to-output transfer function $\left|S_{22}\right|^{2}$ is also the power gain of the device, referred to on data sheets as "insertion gain". Note that $\left|S_{22}\right|^{2}$ is the power gain of the device when the source and load impedances are 50Ω. An improvement in gain can always be achieved by matching device input and output impedances - almost always not $50 \Omega 2$ - to

Norm Dye is Motorola's product planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Motorola. Their rf transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the UHF frequencies .

RF Transistors: Principles and practical applications is available by postal application to room $\mathbf{L 3 3 3} \mathbf{E W + W W}$, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614).
288pp HARDBACK 0750690593 Cost $£ 19.95$ + Postage $£ 2.50$
50Ω through matching networks. The larger the linear device, the lower the impedances and the greater is the need to use matching networks to achieve useful gain.
Another gain specification shown on low power data sheets is "associated gain", with the symbol $G_{N F}$. It is simply the gain of the device when matched for minimum noise figure. Yet another term is "maximum unilateral gain", $G_{U \max }$. As expected, $G_{U_{\max }}$ is the gain achievable by the transistor when the input and output are conjugately matched for maximum power transfer (and $S_{I 2}=0$.). $G_{U \text { max }}$ can be derived using scattering parameters:

$$
G_{U \max }=\left|S_{2 I}\right|^{2} /\left\{\left(1-\left|S_{I I}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)\right\}
$$

Simply stated, this is the 50Ω gain increased by a factor which represents matching the input, and increased again by a factor representing matching the output.
RF low power transistors are often used as low noise amplifiers, leading to several transistor data sheet parameters related to noise figures. $N F_{\text {min }}$ is defined as the minimum noise figure that can be achieved with the transistor. Achieving this $N F$ requires source impedance matching which is usually different from that required to achieve maximum gain. So design of a low noise amplifier is always a compromise between gain and $N F$.
A useful tool in aiding this compromise is a Smith Chart plot of constant gain and noise figure contours, drawn for specific operating conditions - typically bias and frequency (Fig. 2). These contours are circles, either totally or partially complete within the confines of the Smith Chart.
If the gain circles are contained entirely within the Smith Chart, then the device is unconditionally stable: if portions are outside, then the device is "conditionally stable", and the device designer must investigate instabilities, particularly outside the normal frequency range of operation.
Where the data sheet includes noise parameters, a value will be given for the optimum

Intercept point

The intercept point is a useful concept in that it allows the value of distortion for any signal level to be determined.
Second order distortion products can be shown mathematically to have amplitudes that are directly proportional to the square of the input signal level. Third order distortion products have amplitudes that are proportional to the cube of the input signal level. The conclusion is that a plot of each response on a log-log scale (or $\mathrm{dB} / \mathrm{dB}$ scale) will be a straight line with a slope corresponding to the order of the response.

Fundamental responses will have a slope of 1 , the second order responses will have a slope of 2 , and the third order responses a slope of 3 . Note that the difference between fundamental and second order is a slope of 1 , and between fundamental and third order is a slope of 2 . So for second order distortion, a 1 dB change in signal level results in a 1 dB change in second order distortion, but a 2 dB change in third order distortion. Using the curves shown in the figure, if the output level is 0 dBm , second order distortion is at -30 dBc and third order distortion is at -60 dBc . Change the output level to -10 dBm and the second order distortion should improve to -40 dBc (-50 dBm) but third order distortion will improve to $0 \mathrm{dBc}(-90 \mathrm{dBm})$.
Thus, a 10 dB decrease in signal has improved second order distortion by 10 dB , and third order distortion by 20 dB .
The intercept point is defined as the point on the plot of fundamental response and second (or third) order response where the two straight lines intercept each other. It is also that value
of signal (hypothetical) at which the level of distortion would equal the initial signal level.
For example, if at the point of measurement, second order cistortion is -40 dBc and the signal level is -10 dBm , then the second order intercept point is 40 dB atove -10 dBm or +30 cBm . In the figure, +30 dBm is the value cf output signal at which the fundamertal and second irder response lines cross. The beauty of the intercept point is that once it is known, the value of distortion for any signal level can be determined, provided it is in a region of operaticn governed by the
matherratical relationships stated -
typicallu IMDs greater than 6JdB below the carr er.
Similarl\%, to determine third order intercert point, measure third order distorticn at a known signal level. Then,
take ralf the value of the distortion (expressed in dBc) and add to the sigral level For example, if the signal level is $+10 c \mathrm{Bm}$ and the third orde-distortion is -40 BBC , the third order intercept point is the same as the second orcer intercept point or $10 \mathrm{dBm}+20 \mathrm{~dB}=$ 30 dEm . Both second order and third orde• intercept points are il ustrated.

In .jeneral, the intercept foints for seco ond and third order distortion will be different because the non-linearities that create second order distortion are usua ly different from those that create third order distortion. However, the concept of the intercept po nt is still valic: the slopes of the responses are still - , 2, and 3 respectively. All that neecs to be done is to specify a second orde- intercept point different from the third order intercept point.

input reflection coefficient to achieve minimum noise figure, Γ_{0} or sometimes $\Gamma_{\text {opt }}$. But remember, matching this value of input reflection coefficient means far less gain is likely to be available than is achievable by the transistor.
Input reflection coefficient for maximum gain is normally called $\Gamma_{M S}$ while the output reflection coefficient for maximum gain is normally called $\Gamma_{M I}$.
Another important noise parameter is noise resistance, R_{n}, expressed in ohms. Sometimes in tabular form, this value may be normalised to 50Ω, in which case it is designated r_{n}. The significance of r_{n} can be seen in the formula:
$N F$
$=N F_{\text {min }}+\left\{4 r_{n}\left|\Gamma_{s}-\Gamma_{s}\right| I^{2}\right\} /\left(\left(1-\left|\Gamma_{s}\right|^{2}\right)| | \mid\right.$ $\left.+\left.\Gamma_{o}\right|^{2}\right\}$
which determines noise figure $N F$ of a tran-
sistor for any source reflection coefficient Γ_{s} if the three mise parameters $N F_{m, m}, r_{n}$ and Γ_{0} (the source resistance for minimum noise figure) are known (Table 1).

The locus of points for a given $N F$ turns out to be a circle - the $N F_{\text {min }}$ circle being a point. So by choosing different values of $N F$. a series of noise circles can be plotted on the chart.

Fig. 2. Gain and noise contours. Solid circles represent gain, and dotted circles represent noise figures.

Fig. 4. Gain-bandwidth product vs collector current.

Fig. 5. Linear gain and the $1 d B$ compression point.

Table 1. Typical noise parameters for the MRF942 transistor.
$V_{C E} \quad I_{C} \quad f \quad N F_{\min } G_{N F} \quad \Gamma_{0} \quad R_{N} N F_{50 \Omega}$ $\left(V_{d c}\right)(\mathrm{mA})(\mathrm{MHz})(\mathrm{dB})(\mathrm{dB}) \quad(\mathrm{mag}, \quad(\Omega) \quad \mathrm{dB}$
$\begin{array}{llllllll}3 & 1000 & 1.3 & 16 & 0.36 & \angle 94 & 17.5 & 1.7\end{array}$ $\begin{array}{lllllll}2000 & 2.0 & 11 & 0.37 & \angle .145 & 15.5 & 2.6\end{array}$ $\begin{array}{lllllll}4000 & 2.9 & 8.0 & 0.50<134 & 21.5 & 4.3\end{array}$
$15 \quad 1000 \begin{array}{rrrrrr}15.1 & 19 & 0.25 \angle 150 & 13 & 2.6 \\ & 2000 & 2.7 & 14 & 0.26 \angle 173 & 16.5 \\ & 4000 & 4.1\end{array}$ $\begin{array}{lllllll}4000 & 4.3 & 9.0 & 0.48 & <-96 & 47 & 5.4\end{array}$
r_{n} can be measured by measuring noise figure for $\Gamma_{s}=0$ and applying the above equation.
A parameter found on most rf low power data sheets is commonly called the current gain-bandwidth product, f_{τ}. Sometimes it is referred to as the cut-off frequency, because it is generally thought to be the product of low frequency current gain and the frequency at which the current gain becomes unity. While this is not precisely true (Fig. 3), it is close enough for practical purposes. It is true that f_{τ} is an excellent figure-of-merit , becoming useful in comparing devices for gain and noise figure capability.

High values of f_{τ} are normally required to achieve higher gain at higher frequencies other factors being equal.

To the device designer, high f_{τ} specs mean decreased spacings between emitter and base diffusions, and shallower diffusions - factors that are more difficult to achieve in making an rf transistor.
The complete rf low power transistor data sheet will include a plot of f_{τ} versus collector current. Such a curve (Fig. 4) will increase with current, will flatten, and then begin to decrease as I_{C} increases thereby revealing useful information about the optimum current with which to achieve maximum device gain.
Another group of characteristics associated with linear (or class A) transistors has to do with the degree to which the device is linear. Most common are terms such as " $P_{o}, 1 \mathrm{~dB}$ gain compression point" and "third order intercept point" (ITO). P_{o}, IdB gain compression point is simply the output power at which the input power has a gain associated with it that is IdB less than the low power gain. In other words, the device is beginning to go into saturation, where increases in input power fail to realise comparable increases in output power(Fig. 5).
Importance of the 1 dB gain compression point is that it is generally accepted as the limit of non-linearity tolerable in a 'linear" amplifier and points to the dynamic range of the low power amplifier. On the low end of dynamic range is the limit imposed by noise: on the high end is the limit imposed by "gain compression."

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated auto natically using PULSAR, ANALYSER III and Z-MATCH II our simulation programs.

Digital and Analogue Simulation

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

EASY- PC: Low cost PCB and Schematic CAD	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	$£ 195.00$
PULSAR: Low cost Digital Circuit Simulator \sim 1500 gate capaciy.	$£ 98.00$
PULSAR Professional: Digital Circuit Simulator $\sim 50,000 ~ g a t e ~ c a p a c i t y . ~$	$£ 195.00$
ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 nodes	$£ 98.00$
A NALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes	$£ 195.00$
Z-MATCH II: S nith Chart Program for R.F. Engineers	$£ 195.00$
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref WW. Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full information Please Write, Phone or Fax.

CIRCLENO. 121 ON REPLY CARD

STEWART of READING
Telephone: (0734) 268041 . Fax: (0734) 351696 Callers Welcome 9am-5 30pm Monday to Friday (untu| 8 pm Thuisday)

R.s. LANGREX SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country

Over 5 million items in stock covering more than 6,000 different types, including CRT's camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
W'here still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch with in 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CRO 20P
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

Finally an upgradeable PCB CAD system to suit any budget ...

Board Copture

Bcarcapture - Schematc Capture
Direet nelios Irs so ByardMalar2

- Fortard anrotaion with part "alues
- Full urdoredo acility (50 opecations)
- Singesheet milt-pagad and hierarchice cesigns
- Smanth screlling
- Intelgent wires (automatic juretions)
- Dyremic coañectivity informatiōn
- Aute natic ondire arnotation
- integated on-tha-fiy litrary eder
- Cortaxi sensitiva editing
- Exterivive component-tased power colirs
- Bace annotation from 3oardMaker?

Board Maker

BoardMaker1 - Entry level

- PCB and schematic dratting
- Easy and intuitive to use
- Surtace mount support
- 90,45 and curved track comers
- Ground plane fill

Copper highlight and clearance checking
BoardMaker2 - Advanced level

- All the features of BoardMaker 1 plus
- Full netlist support - OrCad. Schema, Tanjo. CadStar
- Full Design Rule Checking. mechanical E electrical
- Top down modification from the schematic
- Component renumber with back annotatior

Report generator - Database ASCII, BOM
595
N3W - Thermal power pane support with full DRS

beard Rodter

BoardRouter - Gridless autorouter

- Simultaneous muti-layer routing

2700

- SMD and analogue support
and zoom whlle routing
Output drivers - Included as standard
- Printers - 9 \& 24 pin Dot matnx. HPLasefiet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - Al Gerber 3×00 and 4×00

Excellon NC Drill / Annolated drill drawing (BM2)

Psien (UKK Lta, Aylesoy Houss. Wenny Rond, Chattersi, Carabridge PE16 gut

Custom metalyork good \& quick!
Plus a wide range of rack-mounting cases etc. from stoak.
Send for our new Product catalogus.

IPK Broadcast Systems
3 Darwin Close Realing Berks RC2 OTB Tel: (0734) 311030 Fax: 00734) 313836

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

8000-gate PLD. EPF8820 is a nember of Altera's Flex8000 family of high-density programmable logic devices in 0.8 micron technology. EPF8820 contains 820 registers and has 152 user i/o pins in 208-pin quad flat pack, 192-pin PGA and 192-pin ball grid array packs. Average benchmark speed is 40 MHz Altera Ltd, 0628488811.

A-to-D \& D-to-A converters

Codec. In Mitel's MT9125 adaptive differential pulse-code modulator, two $64 \mathrm{~kb} / \mathrm{s}$ PCM channels are compressed into two $32 \mathrm{~kb} / \mathrm{s}$ ADPCM channels and ADPCM to PCM, The ADPCM algorithm conforming to CCITT G. 721 and ANSI T1.303-1989. It also supports a $24 \mathrm{~kb} / \mathrm{s}$ (3-bit word) algorithm CCITT G.723. The device needs only 50 mW for dual-channel working. Mitel Semiconductor, 0291 430000

Discrete active devices

Automotive fets. Low-voltage power mosfets from IR are particularly suited to the car electronics market. The 60V IRFP064 has an on resistance of $9 \mathrm{~m} \Omega$, and a current rating of 70A, while the IRFZ48 handles 50A with an on resistance of $18 \mathrm{~m} \Omega$. Two further devices, IRFZ46 and IRFP048, are meant for use in traction and transmission control, UPSs, DC-DC converters and motor control. International Rectifier, 0883 714234.

SM, p-channel mosfet. New in the Supertex family of p-channel enhancement-mode mosfets with gate thresholds of 1 V maximum is the LP0701LG, a surface-mounted version of the TO92 LP0701N3 and LP0701ND die. Drain-source breakdown is 16.5 V and on resistance is better than 1.5Ω at 5 V and 300 mA . Kudos Thame Ltd, 0734 351010.

Adjustable zener. Two external resistors program the Zetex ZR431 surface-mounted shunt regulator in the range $2.5-20 \mathrm{~V}$. No-load current
consumption is $35 \mu \mathrm{~A}$ and the device handles 2 W maximum. Maximum output current is 100 mA and temperature stability is 50 , pm/.C. Zetex plc, 061-627 5105

Digital signal processor

16-bit 52Msample/s digital filter. Harris's HSP43216 is a digital halfband filter with 16-bit piecision. It incorporates a 67 -tap filter processing 16-bit data with 20 -bit coefficients and gives better than 90 dB stop-band attenuation and 0.0005 dB pass-band ripple, with 1.24-1 filter shape factor. Decimation or interpolation by 2 and quadrature up or down conversion are on-chip, as is coefficient generation. Harris Semiconductor (UK), 0276 686886.

16-bit DSP. Tl's newest additon to its TEC320C DSP family is the
TEC320C52, which has a 16-bit, fixed-point DSP and an array from the 0.8 micron TGC1000 series to provide 10 K usable gates, 3 V or 5 V operation and 25 ns or 35 ns processing speed. The core executes up to 40 Mips , has 4 Kword of rom and 1 Kword of dualaccess ram. Texas Ins:ruments, 0234 223252.

Linear integrated

 circuitsLow-noise amplifier. With a noise figure of 2.5 dB , bandwidth of 1.8 3 GHz , gain of 17 dB and 10 dBm output power. Harris's HMP-130203 is a microwave monolithic gallium arsenide cascadable amplifier, designed for the $1.8 / 1.9$ and 2.4 GHz industrial, scientific and medical bands. Anglia Microwaves Ltd, 0277 630000.

Digital volume control. With a dynamic range of 110 dB and THD of better than 0.001%, Crystal's CS3310 stereo digital volume control is claimed to be the industry's best performer and is on a single chip, needing no extras. Zero crossing volume changes avoid noisy transitions and the log-law characteristic gives good control at low levels. The three-wire interface controls two independent channels and allows daisy-chaining of multiple units. Crystal Semiconductor Corp., (512) 4457222 (US)

Pager receiver. Sensitivity of -130 dBm is claimed for GEC Plessey's SL6609 pager reciver IC, which offers better integration, lower power consumption and smaller outline than its predecessor, the

SL6649-1. SL6609 uses direct conversion and needs no external ceramic filters, operating up to 350 MHz at 512, 1200 or 2400baud with 70 dB adjacent-channel rejection. A $1 \mathrm{~V}, 5 \mathrm{~mA}$ regulator is included. GEC Plessey Semiconductors, 0793 518582

One-chip car radio. ITT's car audio processor (CAP) integrates stereo decoder, baseband proeessing, fasttuning synthesiser, AM tuning for 455 kHz or 10.7 MHz IF, AM IF processing and AM stereo demodulation. The CAP will handle both analogue and digital audio input and has a programmable digital audio interface. Flexibility in conferred by the DSP core which, with standard software, provides a complete solution but which can be easily adapted to requirements. $\mathrm{S}: \mathrm{N}$ ratio is 85 dB and THD less than 0.01%. ITT Semiconductors, 0932336116

SVGA video ICs. National's LA11205 130 MHz RGB video preamplifier, together with the LM2419 CRT driver, forms a complete video channel in 1024 by 768 SVGA non-interlaced monitors, inluding VESA formats Video adjustment is DC to allow digital drive from a microcontrolier to adjust contrast, channel gain for colour temperature setting and cut-off. LM2419 amplifies the 4V LM1205 output to 50 V with a bandwidth of 65 MHz . National Semiconductor, 0793697415

Switched-mode controller. Siliconix has designed its Si9114 switchedmode control chip for use in communications equipment. It has the elements of the standard $\operatorname{Si} 9100$ series and increased functions and performance, including a 500 kHz switching frequency. Soft start. internal start-up and latched shutdown are included and, using telephone-line voltage, flyback or forwaris converters car be buil: to switch at up to 1 MHz . Siliconix/Temic, $0344<85757$

Charge pump/dual op-amp.

 Replacing two separate devices in less board space, Tl's TLE26E2 consists of a negative-rail charge pump and a pair of op-amps ir one 16 -pin wide-body SM package. The inverting charge pump supplies 100 mA , used to power the op-amp negative rail and other sub systems, and each op-amp gives over 25 mA with micropower requirements of less than $600 \mu \mathrm{~A}$. When the negative rail is not needed, it can be shut down. Texas Instruments, 0234223252.

Fast cmos. The first 20 members of Toshiba's 150 MHz cmos logic famild are now being samplec. Jropagation delay is 3.5 ns and switching noise 0.8 V , and the devices will interface betwzen 3 V and 5 V systems, by means of a signalvoltage shift. Oltput drive is 8 mA . Toshiba Eectronics (UK) Ltd, 0276694 が 0.

Logic building blocks

Disk-drive chip. Allegro's A8980CJT Superservo provides drive, management and control of the voice coil and spindle-motor power actuation subsystems for hard-disk drives. Internal circuitry gives start-up and microcomputer-assisted run modes with no reed for external components; all current-sensing and diode protection is internal. Allegro MicroSystems, 0932253355.

Video clock synthesiser. Amega's AMCC S4503 bicmos video clock synthesiser is designed for clock distribution, providing multiple clock frequencies up to 300 MHz from one crystal, producing independently selected outputs in the $10-300 \mathrm{MHz}$ range. A pair of positive-referenced ECL outputs with only 250 ps jitter operate to 300 MHz and a second pair provide complementary 24 mA outputs at up to 80 MHz . Amega Electronics, 0256843166.

Microprocessor supervisors Maxim's MAX805t and MAX813L
generate active-high resets when a microprocessor's supply voltage drops below 4.65 V , in any phase of operation, this type of reset being needed by Intel devices, as opposed to active-low resets. A watchdog timer monitoring software operation issues a reset whenever activity on a selected i/o line lapses for over 1.6 s. There is battery back-up for other circuitry in the system. Maxim Integrated Products Ltd, 0734 845255.

Memory chips

PCMCIA memory. Atmel announces the AT28C16-T, a low-power eeprom for the attribute memory of PCMCIA cards in a TSOP package measuring only $0.045 i n$ in the Z dimension and needing only 0.165 square inches of board. The 1 C needs a 5 V supply at $30 \mathrm{~mA}(10 \mu \mathrm{~A}$ in standby) and it is reprogrammable in byte-sized increments. Write cycle occupies 1 ms . Atmel (UK) Ltd, 0276686677

PCMCIA memory development.
Highland has put together a development kit to allow Mitsubishi PCMCIA memory cards to be

Woofers. Low and mid-range loudspeaker drive units from Morel use shielded neodymium magnets for high flux density and techniques to linearise impedance and reduce distortion. A copper shorting device cancels voicecoil modulation, prevents impedance increase with frequency and eliminates position modulation. Units in the range 5 in to 12 in are made. 0284828926

programmed from a PC. It includes a Mitsubishi 1Mbyte sram card, Elan $J 101$ card reader/writer, application software and all documentation and accessories. Highland Technology, 0444236000.

Mixed-signal ICs.

Television chip-set. Philips has a complete chip-set for image enhancement and flicker reduction in multi-standard, improved-definition television applications. It improves the quality of pictures on standard $50 / 60 \mathrm{~Hz}$ transmissions and allows the design of a single, alignment-free Pal/Secam/NTSC board for use anywhere in the world. The set consists of the TDA9141 colour decoder/sync. processor, the TDA9150B or TDA9151B deflection controller, TDA8755 video A-to-D converter, SAA4950WP memory controller, SAA4940H noise reducer and SAA159WP back-end chip Philips Semiconductors, 8071580 6633

Wave-table synthesis. CS8905 and CS9203 by Sequoia are wave-table synthesiser chips offering the performance needed for professional keyboards and electric pianos. They are compatible with Roland GS enhancements to the General MIDI spec and with the MPC Level 2 Extended Multitimbral spec defining performance in Windows. Sequoia Technology Ltd, 0734311822.

Power semiconductors

3A regulators. Semtech's
LM1576/2576 3A switching regulators are interchangeable with National Semiconductor chips. They come in a range of versions including 3 V and $3.3 V$ types with fixed outputs from 3 V to 15 V and variable outputs from 1.23 V to 37 V , from inputs of $4-40 \mathrm{~V}$. Semtech Ltd, 0592773520.

C-band power fets. 30W GaAs fets by Toshiba are designed to replace several lower-power transistors, giving 45 dBm 1 dB point total power and gains of between 10 dB and 6 dB , depending on frequency. Bandwidth is up to 800 MHz , the six devices covering the $3.7-8.5 \mathrm{GHz}$ range. As an example, the TIM7785-30L operates at $7.7-8.5 \mathrm{GHz}$, with intermodulation distortion of -43 dBc . Toshiba Electronics (UK) Ltd, 0276694600

Current-mode PWM controllers.

Unitrode's UCC1/2/3806 BicMOS PWM controllers have dual, 1 A fet driving outputs, a true differential input current sense amplifier and a well defined voltage threshold for turn-on. Maximum operating current is 1.4 mA and delay from current-sense inputs to outputs is 125 ns . Start-up current is $50 \mu \mathrm{~A}$. Unitrode UK Ltd, 081 3181431.

PASSIVE

Passive components

EMI suppression inductor. In a 1.6 mm by 0.8 mm by 0.8 mm package Murata's BLM11A12 chip inductor for EMI suppression has a current rating of 200 mA DC and 0.5Ω maximum resistance. Impedance at 100 MHz is 220Ω. Other models in the BLM series have $5-2000 \Omega$ impedances Murata Electronics (UK) Ltd, 0252 811666.

Tantalum chips. Surface-mounted tantalum chip capacitors in Panasonic's KE series have no lead frame and are therefore only about half the size of the previous TE type. measuring 2 by 1.25 mm . Values in the first to be made are 4.7,6.8 and $10 \mu \mathrm{~F}$ in ratings of $10,6.3$ and 4 V . More in the series are due in April 1994. Panasonic Industrial Ltd, 0344 853827.

EMI/ESD protection. Murata's VFR303 combines electromagnetic interference suppression with protection against electrostatic discharges and is meant to protect cmos and TTL circuitry. It will handle ESD surges of up to 30 kV and attenuates radiated interference by 30 dB at 250 MHz . Surtech interconnection Lid, 025651221

SM inductors. Vishay's LPC range of inductors, which cover the $47-6800 \mu \mathrm{H}$ range, have wrap-round terminals printed on the ceramic base for increased reliability, solderless wire/pad bonding being used for invulnerability to reflow solder temperatures. The surface-mounted devices are rated at $7-10 \mathrm{~mA}$. Vishay Components (UK) Ltd, 0915144155

Connectors and cabling

Microwave cable assemblies.
Flexible 18 GHz cable assemblies by ITT Cannon can be cut to any size and terminated by the company with any current type of connector. They can be formed into the desired shape by the user. Diameter is the same as in the RG-405/402 semi-rigid cables, but losses are lower. An FEP outer is fitted. ITT Cannon/Sealectro, 0256 473171.

Data-network connectors. M/A COM Greenpar connectors are available for data networks including Ethernet and PC networks.
Connectors are made in nickel-plated brass, the internal PC types being of die-cast material. They fit all common cables, come in BNC, N and Twinax
types, can be assembled with a lowcost tool and the N and BNC versions have an earth tagged terminal. M/ACOM Sales Ltd, 0344869595.

Smart-card connectors. Connectors accepting ISO 7816 smart cards are made by ITT Cannon. They have 16 contacts for up to eight pads on the card, the contacts being gold over nickel-plated copper alloy to give $100 \mathrm{~m} \Omega$ contact resistance.
Connectors are either in the lowercost friction version or in the landing variation. RS Components Ltd, 0536 201234.

Card-edge connectors. Palladiumhickel edge connectors in Thomas and Betts's Holmberg range are capable of over 5000 mating cycles. The design accommodates a full range of board thicknesses and the contoured mating surface
concentrates the force in the correct area. Individual contacts are eplaceable. Operating conditions are $600-1500 \mathrm{~V}$ DC and 3-5A. Thomas \& Betts Ltd, 0582608816

Audio connectors. A range of professional audio connectors from Neutrik, distributed here by Verospeed, now includes right-angled versions of the XLR and XLRcompatible mains connectors, audio jack plugs and sockets. Verospeed, 0703644555.

Filters

Band-pass filters. Covering most of the IFs currently in use, Chronos high-performance elliptic band-pass filters offer out-of-band rejection of 45 dB , insertion loss of 1.5 dB maximum and 1.2 dB VSWR in the pass-band. Mounting is by 8 -pin relay header or in leaded or non-leaded surface mounting. Chronos Technology Ltd, 098985471.

Hardware

Keyboard components. Keys and indicators by Rafi are for use in lowprofile, membrane keyboards and flat data-entry equipment. The RF15 and RF19 series of board-mounted devices includes non-illuminated, spot-illuminated and fully illuminated keyswitches with several indicator options with standard or multicoloured leds. Rafi (GB) Ltd, 0737 778660.

Instrumentation

Pulse-response measurement. IMP is short for Impulse response Measurement and Processing. It consists of a software/hardware package to be used with a PC to perform measurements on loudspeakers or associated equipment. Its output pulse drives the speaker, whose acoustic output is picked up by a microphone, the
output of this being fed back to the IMP board, digitised and taken to the PC by way of its printer port. The IMP software then analyses the data Falcon Acoustics Ltd, 050878272

Oscilloscopes. New Tektronix oscilloscopes include the TDS320, a 100 MHz digital real-time instrument that allows sampling at five times its analogue bandwidth, $500 \mathrm{Msample} / \mathrm{s}$ on both channels without aliasing. It has the TDS user interface a 1 K record length and auto measurement The TAS400 series comprises four analogue units with bandwidths from 60 MHz to 200 MHz Feedback Instruments Ltd, 0892653322.

TV signal generators. Three new instrument families from Fluke cover most requirements in television and video testing. Features include 16:9 test patterns for wide-screen equipment; Y/C outputs for SuperVHS and $\mathrm{Hi}-8$ recorders and satellite receivers; and video program system and program delivery control for testing automated video recorder operation. PM5414V offers basic tv and video test for Pal and NTSC; PM5415 versions cover more extensive testing; and PM5418 models offer the widest selection of functions and will test Secam equipment. Fluke (UK) Ltd, 0923 240511.

Laser analyser. Melles Griot/Photon Control offers the 13 SKP 001 BeamAlyzer, which measures width, 3D intensity profile, power and position of a CW laser beam in real time, using a tomographic technique. Working with a PC, it will handle lasers in the 400-1050nm range with beam widths between $3 \mu \mathrm{~m}$ and $5 \mu \mathrm{~m}$ The system consists of a plug-in card and software. Melles Griot Ltd, 0223 420071
$\mathbf{2 6 . 5 G H z}$ signal analyser. Rohde \& Schwarz's FSMS is a spectrum and network analyser working in the $100 \mathrm{~Hz}-26.5 \mathrm{GHz}$ range, finding application in the digital techniques used in mobile and directional radio, satcoms and microwave module and component test. Features include -142 dBm inherent noise, -103 dBc phase noise at 1 kHz from carrier and some flexible software. Rohde \& Schwarz UK Ltd, 0252811377.

2 MHz function generator. Variablesymmetry sine, square and triangular waveforms from 0.002 Hz to 2 MHz from Thurlby Thandar's TG215 are digitally indicated in frequency, amplitude and DC offset. At low frequencies, resolution and speed of display up-date are preserved by arranging for the counter to read the VCO control voltage rather than signal period. Output is 20 V peak from 50Ω or 600Ω and there is a TTL/cmos output. An external voltage-control input is provided.

Thurlby Thandar Instrurrents, 0480 412451.

Interfaces Optical Tx/Rx modules. Claimed by Toshiba to the Norld's smallest and fastest, optical data transmitter and receiver modules are less than one-sixtieth the s ze of conventional systems but, with a transmission speed of $10 \mathrm{Goit} / \mathrm{s}$, will handle the equivalent of 1 CO HD television channels or 150,300 telephone lines simultaneo.jsly. Five GaAs mesfet chips in 0.5 micron technology comprise the set, the transmitter including multiplexer, laser diode driver and laser diode and the receiver a demultiplexer, pre-amp, decision IC and photodiode. Toshiba Corporation, fax (03)3456-4776.

Literature

Video/imaging ICs. Hairris's video and imaging product guide describes 850 MHz amplifiers, 8 GHz transistor arrays, signal converters and processing chips such as FIR filters, convolvers, histogrammers, multipliers and buffers. There are also video switches, sync generators, PLLs and chroma processors. Harris Semiconductor (UK), 0276686886.

T \& M catalogue. Among the 29 oscilloscopes in the Hitachi Denshi 1993/4 catalogue is the VC-704 fourchannel, $100 \mathrm{Msample} / \mathrm{s} .150 \mathrm{MHz}$ digitising instrument, which has its own printer, 64 Kbyte to 2 Mbyte sram, auto set-up, go/no-go comparison and window trigger. Other equipment described includes signal processor and analysis software, television measuring instruments, ccunters, plotters and function gene-ators. Hitachi Denshi (UK) Ltd. 081-202 4311.

Data analysis tutorial. A free interactive software tutorial from National Instruments, Analysis Advisor covers data analysis techniques for use with LabVIEW graphical programming software and LabWindows automatic codegeneration. The package deals with DSP, statistics, simulation and timedomain analysis, with demonstrations in each session. Requimenents are a $386 / 33$ or better, Windcws 3.1, 8 Mb memory and a VGA or SVGA. National Instruments Uく, J635 523545.

Emulator tutorial. In-cresit emulators in Pentica's Aime series are the subject of a free tutorial disk. It shows screen displays concerned with high-level debug and trace qualification and indica:es how they are used. Typical problerrs are covered in detail in a simllated emulation session. Pertica Systems Ltd, 0734792101.

IGBTs. Toshiba's range of secondgeneration insulated-gate bipolar

transistors is the subject of a new brochure, which covers all the compan's's devices, including a 200 A , 1200 V module and a nu nber of devices protected against overcurnent, over tempe ature and drive un Jervoltage. Toshiba Electronics (UK) Ltd, 0276694630.

Power supplies

55W SMPS. A new series of cased switched-mode power supplies, the PUP fro 7 Amplicon, giv 35 W continucus power from single, dual or triple outputs. Input voltages are 85264 V , ϵ fficiency 65%, rold-up t me 10 ms and line regulation at full bad $\pm 0.5 \%$. Amplicon Liveline Ltd, (Free)0800 525335.

Batteries. NiCad and nickel metal hydride cells made by GP Batteries use foam or sponge type electrodes to allow a maximum of active

Shielding tape kit. An engineering kit tram 3M consiss of eight foil shielding tapes in E dispenser and is ntended for design, prototype and manufacture of small quantities where a few inches are needed. Each roll is 1.9 cm wide and 3.66 m long, the kit being priced to allow one for each engineer 3M United Kingdom plc, 0344 858000.
1.3 GHz counter. Although a hand-held instrument, Thurlby Thandar's PFM1300 digital frequency meter sovers the 5rz1.3 GHz range and uses reciprocal counting to give 0.001 mHz resolution at low frequencies, the reciprocal being computed for d solay. A low-pass filter can be selected. Thurlty Thandar Instruments, 0480 412451.

material. NiCad $1 / 3$ AA cells have 180 mAh capacity, AA cells 850 mAh and 7/5AF cells 2 Ah , while the nickel metal hydride types in 2/3AA give $550 \mathrm{mAh}, \mathrm{AA} 1.2 \mathrm{Ah}$ and 7/5AF 2.3Ah. The company now has ISO 9002 approval. GP Batteries (UK) Ltd, 0278 445995.

In-cable DC-DC converter

Development of Microspire's SC series of 15 W DC-DC smart converters has produced the latest 55 mm by 18 mm by 28 mm diameter version, which is designed to be mounted inside a cable for use in towed arrays and similar marine and defence applications. Outputs are from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ from inputs of 28 V or 170V. Microspire UK Ltd, 0227 740368.

EMI suppressors. Surface-mounted EMI suppressors in the ACC range by TDK have current ratings between 1.5A and 3A and use a ferrite chip to allow wide-band operation with the correct conductor thickness for low resistance. Eleven versions have impedances from 60Ω to 750Ω and with resistance of 0.05Ω and 0.04Ω in the 1.5A and 3A types. TDK UK Ltd 0737772323

Radio communications products

Directional coupler. Working in the frequency ranges $400-1500 \mathrm{MHz}$ and $1600-2000 \mathrm{MHz}$, Murata's LDC series of surface-mounted directional couplers are claimed to be the world's smallest. They are meant for cellphone application, are shielded against interference and offer -3 dB to -17 dB coupling. Nominal impedance is 50Ω, insertion loss 0.2 dB and emissible power 3W. Murata Electronics (UK) Ltd, 0252811666

GPS receiver. Navcore MicroTracker is Rockwell's new credit-card-sized five-channel global positioning system receiver, which has an average power usage of 670 mW . One option available with the new design is RTCM SC-104 compatible differential GPS, which improves error from 100 m to 5 m most of the time. It is designer to work with a passive antenna. Time to first fix is 20-30s from a warm start and dynamic tracking avoids the effects of foliage, buildings and vibration. Rockwell International, 0103393003301

Mobile data terminal. Solo has a range of mobile data terminals for use by transport and distribution organisations and field workers needing access to a central database. The MDU800 series operates on the Cognito communications network, being easily configurable and taking a variety of input and output devices, particularly for use in vehicles. It is designed for use by unskilled people Solo Electronic Systems Ltd, 0202 676859.

Switches and relays

Solid-state relays. High-voltage Form C relays are introduced by the American company Coto Wabash

They provide 3750 V RMS isolation, linear AC/DC operation and low thermal EMF characteristics with break-before-make operation. 200 V 200 mA and $400 \mathrm{~V}, 150 \mathrm{~mA}$ versions are available. Coto Europe, $+31-45-$ 320838.

Reed relay. The Coto Wabash model 2342 changeover reed relay in 2C form occupies a board space of 5.3 by 20.6 mm and is encapsulated in a steel shell. The switches come in 3 V and 5 V versions, are rated at 3 W at up to $100 \mathrm{~V} D C$ and peak $A C$, and maximum switched current is 0.25 0.5 A continuous. Rhopoint Components, 0883717988

Transducers and

sensors
Linear displacement sensors. Fast linear displacement sensors from Control Transducers are now reduced in length to give a length to measuring range of $1: 1$ and a 15 kHz frequency response. No RFI shielding is needed, accuracy is within 0.15% and there is a range of signal processors. FS5000 operates over the -50 to $125^{\circ} \mathrm{C}$ temperature range. Control Transducers, 0234217704.

Digital potentiometer. Based on an optical encoder, Control
Transducers's DP100BT digipot produces $10,20,50$ or 100 two-phase square-wave counts per revolution to provide a maximum of 400 binary 2bit code changes per rev. A free design guide is on offer, which advises on interfacing. Control Transducers, 0234217704

COMPUIER

Computer board level products

Video card. TI's TIGAVIDEO card captures and displays high-res. images in Windows 3.1 in real time. It is supplied with free Adobe Photoshop Light software for image manipulation, capturing images from RGB, Pal, Y/C(SVHS,HI-8mm) inputs, still images being captured in .TIFF and .BMP format. The card provides screen resolutions from 160 by 160 , 360 by 288 and 768 by 576 in 16 -bit form. Texas Instruments, 0234 223252.

Development and evaluation

DSP Eurocard. MPE's TMS320C31 CPU board has 33Mflop capability in transient analysis, spectrum analysis, filtering and waveform generation. On a $3 u$ high, 160 mm deep card, the board includes up to 512 K zero-waitstate static ram, two serial ports with RS232 or $2 / 4$-wire RS485, 24 TTL i/o lines, a $15 \mu \mathrm{~s}$, 12-bit A-to-D converter and a socket for a 1 MByte eprom. It

has access to all the MPE Powerboard i/o family ard is suited to high-level languages such as Forth or C. MicroProcessor Engir eering Ltd 0703631441.

Fast firmware up-grades. Flash memory in PEP's VM30 somputer allows complete firmware code change in situ with no hardware handling. 1 Mbyte of 5 V flash eprom on the VMEbus unit takes new code from disk or modem in a few minutes with little technical effort jeing needed. VM30 now operates a almost 12Mips and, with a 68882 coprocessor, at 4.5Mflops. JEP Modular Computers (UK)Ltd, 0273441188.

DSP starter kit. Texas Inistruments has a kit which includes everything needed to make a start ir DSP, including a PC-linkable b jard, assembler and debugger software and documentation. Two versions are based on TMS320C26 or TMS320C51 DSPs. Polar Electronics Ltd, 0525377093.

Software

PC signal analysis. Inteligent Instrumentation has the signalyzer on offer - a data-acquisition, analysis and display software package running under Windows. From 1 to 32 channels of data at samp e rates up to 10 MHz are acquired in bursts to the PC ram or streamed b disk, the software then supporting joth time and frequency-domain analysis, with FIR and IIR filter analysis being an extra. The software supports the existing range of PCl date acquisition boards. Intelligent Instrur entation, 0923896989.

Emulator: The PC card-basec Universal Emulator from Flash Designs offers a fast way of developing embedded C or Assembler code for all 4/8/16bit microprocessors. Using the Flash DMA technique for accessing all registers and symbols allows very rapid program development and debugging, No monitor is required. The software will work with all popular assemblers and IAR/Keil C cross-compilers. It can also be used within Windows to allow comprehensive integrated debugging. Animate, continue to next break and snapshot are all include. Turbo-trace gives logic analyser functions such as tracing memory reads and writes in real time.

32-channel A-to-D card. An addition to IMS's PC-Lab range is the PCL-813 32channel, 12 -bit A-to-D on a $2 / 3$ length card. Opto-isolators give over 500 V DC protection and input range, A-to-D triggering and data transfer are all software-controlled. Analogue input ranges supported are $\pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 1.25 \mathrm{~V}$ and $\pm 0.625 \mathrm{~V}$, gain being set individually. Integrated Measurement Systerns, 0703 771143.

BENCH POWER SUPPLIES
from DIAWA INDUSTRY CO

	PS120MkIIA PS140NIkIIA	PS304	RS40X	
I/P VOLTAGE	$230 / 117$	$230 / 117$	$230 / 117$	$230 / 117$
O/P VOLTAGE	$3-15$	13.8	1.15	$1-15$
O/P CLRRENT	12	14	30	40
MAX RATED	9.2	12	24	32
RIPPLE	3 MV	3 MV	3 MV	3 MV
SIZE (WHD)	$128 \times 104 \times 225$	$128 \times 104 \times 225$	$175 \times 150 \times 225$	$280 \times 140 \times 225$
WEIGHT	5 KG	5 KG	8 KG	10 KG
PRICE INC VAT*	79.95	79.95	129.95	189.00

*Carriage extra

- Compact and lightweight

■ Cost efficient

- Rapid delivery

SOUTH MIIL ANDS COMMUNICATIONS LIMITED S M House, School Close, Chandlers Ford Ind Est. Eastleigh, Hampshire, SO5 3BY Tel: (0703) 255111 Fax: (0703) 263507

Low cost dafa acquisition for IBM PCs \& compatibles

PICO TECHNOLOGY LTD
Sroadway House, 149-151 SI Neots hoad, Hardwisk, Cambridge CB3 70J
VISA TEL: 0954-211716 FAX: 0954-211880

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

Pay by Visa or Access

DESIGN BRIEF

WHITE NOISEWHITE KNIGHT?

lan Hickman shows how to make noise work for you and looks at the principles behind an economical semiconductor noise source operating up to 1000 MHz .

Fig. 1a. Simplified circuit diagram of a wideband if noise generator employing a temperature limited diode.

Fig. 1b. Suggested if noise generator using a Schottky diode.

Noise is an unwanted guest in all analogue circuits, so it seems perverse to want to make yet more noise; but the reason is simply summed up in the old adage "Know thine enemy".

A calibrated noise source is a great convenience when developing a low noise circuit, and - although other methods do exist - is almost essential for the accurate determination of the noise figure of a low noise amplifier or receiver.

(b)

The classical approach to the design of a wideband noise generator is to use a temperature limited thermionic diode. This is one where all the electrons emitted from the cathode are attracted directly to the anode: there is no cloud of electrons forming a space charge surrounding the cathode. The effect is usually achieved with a pure tungsten filament cathode, fed with a smooth de current which can be adjusted to set the anode current to the desired value.
The resultant noise is described as shot noise since the electrons forming the anode current fall onto the anode like lead shot onto a corrugated iron roof. If there is no residual gas in the valve to be ionised, and the anode voltage is not so high that secondary emission results, the rms fluctuation (noise) current i is related to the dc anode current I, according to the formula:

$$
i^{2}=3.18 \times 10^{-19} \times / \times d f
$$

where $/$ is in amperes and $d f$ is the bandwidth of interest. By contrast, the noise current i flowing in a short-circuit across a resistor R, is given by:

$$
i^{2}=\left(1.59 \times 10^{-20} \times d f\right) / R
$$

so that a noise diode passing an anode current of $/$ gives as much rms noise current as an equivalent resistor $R_{\text {eq }}=0,05 / / \Omega$
Noise current available from a noise diode permits construction of a noise source whose output forms a known. absolute standard. Figure 1a shows the arrangement, where the anode current is passed through a $50 \Omega 2$ resistor. This forms a source of noise matched to the circuit under test. the magnitude of the noise power relative to that of a 50Ω resistor being precisely known.
In theory, df can extend from OHz up to any frequency, although in practice an upper limit is set by the shunt capacitance to ground of the noise diode anode, as well as other factors. Rhode and Schwarz are probably the best known European manufacturer
of noise sources of this kind, with a specified operating range up to 1000 MHz .

Measurement

Measurement of receiver noise is simple. With the noise generator connected to the receiver under test and the diode anode current zero, the noise output from the receiver is noted, using a suitable measuring instrument. Then 3 dB of attenuation is inserted between the receiver output and the measuring instrument. and the output from the noise generator increased to restore the previous level.
Noise supplied by the noise generator is equal to the receiver's own front end noise. A meter in the noise generator monitors the anode current and is directly calibrated in dB above thermal, with corresponding values of kTB also given.
Practical considerations in manufacture of the noise diode limit the maximum output that can be achieved to around 15 dB above thermal. If the aim is to measure the noise figure of a receiver higher than this. the output of the noise generator must be amplified first. Clearly the amplifier used for this purpose will need to have a good signal-to-noise ratio.

A solid state alternative to the thermionic diode noise generator was described by TH O'Dell'. Here. the source of noise was the flow of reverse leakage current induced by the creation of hole - electron pairs in a photodiode, by photons illuminating the same.

It was stated that the reverse photodiode current is subject to the same relation between dc and its shot noise component as the saturated thermionic diode. But, as the practical limit to the available current. at $100 \mu \mathrm{~A}$, is only about 1% of the maximum current possible with the thermionic diode, we must work at an impedance level of around 5 K and provide a $10: 1$ turns ratio transformation to 50Ω. As just IpF of stray capacitance across a 5 K source would give a -3 dB point of 32 MHz , a tuned transformer was used, this having the additional advantage of absorbing the self capacitance of the diode as well as that of the transformer.

Subsitute diode

Not having a sample of the HP5082-4220 photodiode to play with, I wondered whether an HP5082-2301 (IN5I65) Schotky diode could be used. The paint was scraped off and the diode's reverse leakage current at $V r=15 \mathrm{~V}$ found to be totally unaffected by any practical level of illumination.
But, there is another mechanism for inducing holeelectron pairs in a semiconductor - heat. The leakage of the sample diode at $V r=15 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$ was $0.056 \mu \mathrm{~A}$, against the manufacturer's quoted maximum of $0.300 \mu \mathrm{~A}$. Raising the temperature of the device by holding it close to, but not touching, a soldering iron. produced a leakage current of more than $100 \mu \mathrm{~A}$. at an estimated temperature of between 200 and $250^{\circ} \mathrm{C}$. This is beyond the device's top rated temperature of $150^{\circ} \mathrm{C}$, but on being left to cool, the current fell to less than a microamp in seconds and right back to $0.056 \mu \mathrm{~A}$ within a few minutes.
Thus this scheme might form the basis of a practical noise generator, the utility of which would clearly be much increased if it were broadband, rather than

Fig. 2a. Output spectrum of National Semiconductors MM5437 digital noise generator (output 2, pin 5), with top-of-screen reference level-20dBm, resolution bandwidth 3 kHz , video filter maximum, $10 \mathrm{~dB} / \mathrm{div}$ vertical, $20 \mathrm{kHz} /$ div horizontal, and centre frequency 100 kHz . The output of the MM5437 was not low pass intered, so some 180 kHz clock breakthrough is visible in the first zero of the spectrum.

limited to a spot frequency ${ }^{\prime}$. Figure 1 shows such a possible scheme.
In addition to the diode's self capacitance of under 0.3 pF at 1.5 V reverse bias, there is the input capacitance of the amplifier to consider, typically several pF , limiting the useful top frequency to less

Fig. 2b. As Fig. 2a except resolution bandwidth 10 kHz , $100 \mathrm{kHz} /$ div horizontal, and centre freq̧uency 500 kHz .

Fig. 3a. Circuit used to test the base-emitter junction of a 2N918 as an rf noise source. Fig. 3b. Circuit of a noise source using the baseemitter junction of a BFR90A in reverse breakdown.

(a)

(b)

DESIGN BRIEF

Fig. 4a. Output of the noise source of Fig. 3a: lower trace, diode current zero; middle trace, diode current $156 \mu A$; and upper trace, diode current 3101A (10 dB /div vertical, reference level -33 dBm , centre frequency 500 MHz , span 1000 MHz , IF resolution bandwidth 1 MHz , video filter maximum).

Fig. 4b. As Fig. 4a, but a 51Ω load resistor added to the source.

Fig. 4c. Output of an amplified BFR90 zener source: lower trace, diode current zero; upper trace, diode current 1.3 mA (10dB/div vertical, reference level $-33 d B m$, centre frequency 500 MHz , span 1000 MHz , IF resolution bandwidth 1 MHz , video filter maximum).

than 10 MHz . But. given a modern low noise current feedback op-amp with a bandwidth at a non-inverting gain of two approaching 1 GHz , the high frequency attenuation of the diode noise due to the total shunt capacitance could be avoided by cancelling it with an equal shunt negative capacitance to ground ${ }^{2}$. Here, it just involves connecting the equal capacitance between points A and B in Fig. 1b.

Noise measurements are also necessary in audio circuits. and Fig. 1 of refcrence 3 shows three different audio frequency noise generators, while pointing out that they can conveniently be replaced by a simple digital noise generator, the National Semiconductors MM5437, shown in Fig. 3 of that article. This also shows the typical output noise in the time domain, that is waveforms.

Figure 2a shows the output of the MM5437 in the frequency domain, indicating that the noise level is virtually flat to 60 kHz and only 3 dB down at about 100 kHz . Note, however, that this is with no low-pass filtering of the pseudo random digital output from the chip, so that the amplitude distribution is not Gaussian.

The omission of any low-pass filtering also makes the first zero of the output at 180 kHz very obvious, with a spectral line due to clock breakthrough sitting
in its middle. The spectrum repeats, at diminishing amplitude, around multiples of twice the clock frequency, so the device can be used as a noise source, over limited bandwidths, at frequencies well above that of the clock, up to low radio frequencies (see Fig. 2b).

Higher frequencies

For higher radio frequencies, while a noise source based on a temperature limited noise diode source is convenient for lab measurements, it is too large and expensive for building into equipment. One based on the shot noise in an illuminated photodiode or a heated Schottky diode is likely to be limited to operation at frequencies in the lower VHF range.

A number of manufacturers specialise in producing compact semiconductor noise sources for OEMs to build into equipment, probably the best known maker being an American company ${ }^{4}$.
Figure lb of reference 1 shows a zener diode used as a semiconductor noise source, with the comment that this can work up to vhf, given a suitable diode. A $2 N 9 / 8$, running the base emitter diode in reverse breakdown with the collector left disconnected, with some qualifications, works well and has been used as a noise diode in the built-in test equipment of a military tactical radio system, as a go/no-go test of the front-end and IF modules.
Figure 3a shows a circuit using a $2 N 9 / 8$ thrown together to reproduce those results, the performance being as in Fig. 4a. The lower trace is with the diode current at zero: it shows the noise floor of the spectrum analyser, with a local tv station just making itself visible at around 510 MHz .
The top-of-screen reference level is -33 dBm so the trace is at -93 dBm , and (assuming the noise bandwidth of the analyser's 1 MHz IF resolution bandwidth filter is equivalent to a 1 MHz wide brickwall filter) this corresponds to $-1.53 \mathrm{dBm} / \mathrm{Hz}$. Thermal weighs in at $-174 \mathrm{dBm} / \mathrm{Hz}$, equating to a noise figure of 2 ldB - rising to 22 dB at IGHz.
This is good for a spectrum analyser, since these are always designed primarily for linearity rather than sensitivity; 25 dB is a not untypical noise figure. With a diode current of $156 \mu \mathrm{~A}$, the power delivered to the analyser is about 12 dB above the noise level, or about 33 dB above thermal - a lot more than one can get from a noise generator using a thermionic noise diode. If the current is increased to $310 \mu \mathrm{~A}$, the noise level above 300 MHz is unchanged, but the level rises below that frequency. Further increases of current see the picture alternating smoothly between the two upper traces.

The noise is definitely falling off by 1500 MHz , so the total noise delivered to the 50Ω load presented by the spectrum analyser's input is roughly -60 dBm or a bit less, around $0.001 \mu \mathrm{~W}$.

With the base emitter breakdown voltage of 4.5 V , $156 \mu \mathrm{~A}$ represents a power input to the diode of $700 \mu \mathrm{~W}$, giving a fairly low efficiency as a noise generator, but still much higher than a thermionic
noise diode. The variations of around $\pm 1 \mathrm{~dB}$ in noise output were a mystery at this stage. Their periodicity is around 150 MHz , corresponding to a round journey in co-ax of around 65 cm , but the circuit was connected to the analyser by a lead of no more than 6 cm , including the BNC plug.

Figure $\mathbf{4 b}$ shows the effect of connecting a 51Ω resistor in parallel with the noise output; the variations in level have been largely damped out, especially up to 300 or 400 MHz . The level has apparently fallen by 4 or 5 dB , but is so close to the analyser noise that the latter is contributing to the indicated level. The true fall is probably nearer 6 dB , which is what one would expect if the diode acted as a perfect constant noisecurrent generator.
So we have a matched 50Ω noise source, albeit at lower power. Where the noise power was $i^{2} \times 50$, with the extra resistor in parallel it becomes $i^{2} \times 25$, the rms noise current i being constant. Not only is noise power halved, but half of what there is, is dissipated in the additional $50 \Omega 2$ resistor, hence the 6 dB drop in output.
Another $2 N 918$ was tried in this circuit with generally similar results, except that there was no value of operating current that would avoid some rise in output below 300 MHz . As the 2 N 918 is a very ancient device, an obvious next step was to try a more modern transistor. A BFR9()A was therefore connected in circuit, but found to give a much lower output than the $2 N 918$, barely above the analyser's input noise. A 20 dB broadband amplifier stage, using a Mini Circuits ${ }^{5}$ Mar 6 type amplifier was therefore added, as in Fig. 3b, the resulting output then being about 13 dB above analyser noise (Fig. 4c).

Variations in output level

The variations of output level with frequency are quite low right up to 1000 MHz . This is not due to the different device but to certain other circuit changes. The 1 k resistor in Fig. 3a was an $1 / 8 \mathrm{~W}$ miniature carbon film axial lead type. Such resistors are made with a film of about 1% of the nominal value, required final value being achieved by making a spiral cut in the film.
Such resistors thus have an appreciable inductance. though it is often possible to ignore this due to its low Q. The output shown in Fig. 4c was achieved with a different feed resistor, Fig. 3b, namely a 6 k 8 subminiature solid carbon type, with a further substantial improvement by selecting the optimum supply voltage to the amplifier. With the aid of a heater, the whole noise generator circuit was raised to $+75^{\circ} \mathrm{C}$, with no measurable change in output noise at any part of the 0 to 1000 MHz range.
While the circuit of Fig. 3b offers the basis of a potentially useful noise source, its output level is fixed, not readily adjustable from thermal upwards as in the case of a thermionic diode noise source.

However, this limitation is easily circumvented by the addition of a step attenuator. As the attenuation is increased from zero, the noise delivered to the circuit under test is reduced, in principle only reaching

thermal when the added attenuation is infinite. In practice, as Fig. 5 shows, 31 dB is sufficient to reduce a noise level of 25 dB above thermal to a mere 1 dB above thermal, low enough to test any amplifier or receiver operating at room temperarure, with the possible exception of a parametric amplifier.

A noise output of 25 dB above thermal was mooted, as it is sufficient for most applications (and certainly much more than obtainable from most thermionic diode noise sources), but well below the level available from the circuit of Fig. 3b. This allows for the fitting of a fixed 9 dB pad at the output of the Mar t amplifier, which would be enough to provide a source with a return loss of 18 dB even if the output vswr of the amplifier were infinity. In fact, the output vswr of the Mar 6 is $1.8: 1$ maximum up to 2 GHz , corresponding to a return loss of 11 dB , so the addition of a 9 dB pad at the output would provide a noise source with an output vswr of less than 1.08:1-a return loss of around 30 dB .

It seems clear that a very economical semiconductor noise source operating up to 1000 MHz , with a calibrated adjustable output flat to within $\pm 1 \mathrm{~dB}$ and suitable for the laboratory measurement of receiver noise figures and other purposes, could be constructed for little more than the cost of the variable attenuator: or no more than a few pounds if an attenuator is already to hand.

References

1. "Self-calibrating noise source using silicon," TH O^{\prime} Dell, $E W+W W$, February 1993, pp 170-172.2. "Negative approach to positive thinking," lan Hickman, EW + WW, March 1993, pp 258-261. 3. "Making a right white noise," Ian Hickman, EW + WW March 1992, pp 256-257. 4. Noise/Com, E. 49 Midland Avenue, Paramus, New Jersey, 07652, USA. UK agent Densitron Microwave, 4 Vang」ard Way, Shoeburyness, Essex, SS3 9SH. Tel: 0702-294255, fax: 0702293979
2. Mini Circuits, a division of Scientific Components Corporation, PO Box 350166 , Brooklyn, New York, 11235-0003, USA. UK agent BFI Electronics, BFI Ibexsa House, Burnt Ash Road, Quarry Wood Estate, Aylesford, Kent, ME20 7NA. Tel: 0622-882467, fax: 0622-882469.

Low-cost 198 kHz radio data receiver

Phase-modulated data from BBC Radio 4 transmissions can be received via a single IC from GEC Plessey and a common, low cost op-amp.
As described in note AN86, the SL6659 is a general-purpose FM radio IC. It contains a limiting IF strip and FM detector, both of which are used in this application. Further, the device contains a signal-strength indicator and a mixer stage. It needs a supply of between 2.5 and 7.5 V at less than 2 mA .
Within the note are equations detailing how a 1.8 V peak-to-peak phase signal is obtained from the $\pm 22.5^{\circ}$ phase modulation using integration.
Carrier at 198 kHz received on the tuned antenna should be adjusted for maximum at test point $T P_{1}$ via the trimmer capacitor, Fig. 1. Because of the frequency of the broadcast, the rf signal is affected by interference from switch-mode supplies in televisions and monitors. Without the crystal filter following the fet buffer, the
receiver fails to work consistently at a metre away from a switch-mode supply. With the filter however, the distance at which problems start falls to a few centimetres
To reduce Q , a resistor is placed in series with the crystal. Sourcing this series resonant 198 kHz crystal may prove difficult; an address is given later.
Limiting within the SL6659 turns the signal into a 198 kHz square wave, available at pin 1. Phase shifting takes place in the quadrature tuned circuit and the resulting signal is fed to the demodulator. At this stage, the signal is compared with the inphase signal to produce a demodulated output at pin 3 .
Amplitude and source impedance of this signal are $10 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ and $40 \mathrm{k} \Omega$ respectively. Buffering via the transistor is needed in order to drive the Sallen and Key filter.
Tuning of the quadrature circuit is set by DC voltage at the collector of the transistor. When adjusted for resonance at 198 kHz .
output at 198 kHz jumps from 1.2 to 4 V . The inductor slug is then tuned to set output voltage at $T P_{2}$ to 3 V DC.
A critical component is the quadrature coil. Since the inductor has a high Q of 200, temperature drift, winding settling and other ageing effects become significant. As a result, careful design is needed. An RM6/160 was used in the prototype.

Sallen and Key filter

Initial low-pass filtering removes interference, which could cause distortion and rapid DC shifts on the output, Fig. 2. Next the signal is amplified 47 times. Gain is adjustable by altering the $47 \mathrm{k} \Omega$ resistor, which may be necessary to compensate for the quadrature-coil Q factor.
A clean signal, as in the upper part of Fig. 3 , should now be present at $T P_{4}$. If the signal is distorted, check the Sallen and Key filter bandwidth, the crystal series resistor or the $330 \mu \mathrm{~F}$ capacitor.
Output from the integrator will be between

Fig. 1. This low-cost radio-data receiver consumes only a few milliamps. Potential applications for radio-data information are numerous, among them high-accuracy clock/timer/calendars that never need adjusting.

1 and 3 V pk-pk with a DC component that can drift between 1.5 and 4 V . This drift is removed by a comparator which produces the final rectangular wave signal. A small piezo-electric sounder over the output helps alignment.
Output data comprises two frequencies of 12.5 and 25 Hz . From these, both data and clock signals can be recovered.
Clock recovery is best carried out using a microprocessor to detect edges within the phase waveforms. When the clock is
recovered, the data is sampled to see if there

the data effecting the audio

information, it is slotted into the 0 to 50 Hz band below the audio range at 25bit/s.
One block is transmitted every two seconds, with block zero sta ting at the
is a falling or rising edge within the middle of each 40 ms clock period. A falling edge represents logic one and a rising edge logic zero.
Crystals can be obtained from AEL Crystals Ltd, Worth Corner, Turners Hill Road, Craw ley, West Sussex, RH 10 7SL. Tel: 0293882299.
GEC Plassey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. Tel: 0793518000.

Fig. 3. Radio Data output at TP4 should be undistorted as in the top trace. If not, remedies are suggested in the text.

Radio Data

From February 1988, BBC Radio 4 on long wave shifted in frequency from 200 kHz down to 198 kHz . This carrier now also contains phase-modulated Radio Data as shown here. To avoid
top of the minute. Block 29, the last block, contains time of day. north, year, leap year and local offset information. Each block also contains a cyclic redundancy check word.

Fig. 2. Raw information from the Radio Data receiver is converted to a rectangular waveform ready for clock and data recovery by this filter, amplifier, integrator and comparator.

Current conveyor circuits

Unlike op-amps, current conveyors do not have their bandwidth restricted by feedback. According to LTP Electronics' data sheet on the CCIIO1, they extend familiar op-amp functions to 100 MHz bandwidths. Additionally, they remain stable with both inductive and capacitive loads.
These circuits illustrate that current conveyors need few additional passive components. Many circuits can be implemented by adding just one or two resistors so the problems of resistor matching are reduced too.
Bandwidth of the CCIIO1 dual conveyor is 100 MHz and its slew rate is $2000 \mathrm{~V} / \mu \mathrm{s}$. Each element comprises three terminals. The one marked X is a virtual-ground current-input/voltage-output. This i/o line exhibits low impedance. Terminal Y is a high-impedance voltage input while terminal Z provides the current output.
From Fig. 1 you can see that current mirrors replicate X-node current at the Z output, which has a high impedance. Port relationships of the conveyor are simply $V_{\mathrm{X}}=V_{\mathrm{Y}}, I_{\mathrm{Y}}=0$ and $I_{\mathrm{Z}}=I_{\mathrm{X}}$.
Ideally, voltage at the Y input follows voltage at the X node and input current at node X is copied exactly by current at node Z. In practice though, the buffer between X and Y has an output impedance of about

Fig. 1. Current conveyors are a combination of voltage and current-mode devices offering low component count and high bandwidth. Voltage at Y is followed by voltage at X and input current at X is copied by current at Z.
10Ω up to 10 MHz . Above this frequency, the impedance starts to rise, reaching 25Ω at 100 MHz . This reduces accuracy of the V_{Y} to V_{X} transfer, and hence the accuracy of I_{X} to I_{Z}, as frequency rises.
The data sheet discusses voltage compliance and maximum current considerations. It also describes using two
conveyors as a single conveyor. This improves the voltage buffer by more than two orders of magnitude and the current buffer by one order of magnitude.

ITP Electronics, 2 Quarry Road, Headington, Oxford OX3 8NU. Telephone 0865200767.

Fig. 2. As current conveyors work without feedback, they do not suffer from the same bandwidth limitations as op-amps. These circuits illustrate that they can reduce component count too, relative to conventional op-amps.

Voltage controlled negative impedance converter

Filter example

A single CCllO1 can be used as a biquad filter to realise lowpass, highpass, and bandpass functions.

- Low-pass and bandpass filter
Y_{1} is an open circuit
Y_{2} and Y_{5} are resistors
Y_{3} and Y_{4} are capacitors
- High-pass fiter
Y_{1} is an open circuit
Y_{2} and Y_{5} are capacitors
Y_{3} and Y_{4} are resistors

$$
\frac{V_{L P F} \text { and } H P F}{V_{\mathbb{N}}}=\frac{-Y_{2} Y_{5}}{Y_{5}\left(Y_{2}+Y_{3}+Y_{4}\right)+Y_{3} Y_{4}} \quad \frac{V_{B P F}}{V_{I N}}=\frac{-Y_{2} Y_{3}}{Y_{5}\left(Y_{2}+Y_{3}+Y_{4}\right)+Y_{3} Y_{4}}
$$

Simulated grounded inductance

Fully balanced differential amplifier

- Differential inputs $I_{x}=\frac{V_{\text {IN }}}{R_{1}}$
- Common-mode inputs $I_{x}=0$
- No matched components
- Typically CMRR=53dB at 1 MHz

Lowpass/notch filter

T
his circuits a sample from the Linear Technology Chronicle, Vol 4, No 4. Some applications require two transfer functions superimposed. An A-to-D converter for example may need low-pass filtering at its input to remove LF noise together with notch filtering to reduce the effects of mains hum. Normally this would involve two circuits but the solution shown uses only one IC followed by a sbuffer.

The LTC1063 is a fifth-order Butterworth filter tuned via a signal from an built-in RC controlled oscillator or external clock. It remains accurate down to DC, where it exhibits less than 1 mV offset, and can be tuned continuously up to 50 kHz .
To provide the notch, the upper two resistors are chosen to cancel exactly at the frequency where phase shift is 180°. This is at 1.19 times the comer frequency of the low-pass filter and is not adjustable. It is set by the internal transfer function of the filter. A 50.42 Hz low-pass frequency for example sets the notch at exactly 60 Hz
at (this circuit was designed for American mains hum of course).

Linear Technology, 111 Windmill
Road, Sunbury-on-Thames, Middlesex
TW10 \mathcal{T} EF. Telephone 0932765688.

RF MODULES UP TO 2GHz

TELEVISION TRANSMISSION EQUIPMENT
TYPE 9169 Tunable television modulator. Bands I or III or IV or V. Output 50 mW . With audio channel
TYPE 9169A As above but video channel only
TYPE 9269 Phase locked loop vestia sideband te evision mod sound channe RF OP 10 mW on your spectied chs in band

\checkmark to your specified 10 chs. ImV i/p, $10 \mathrm{~mW}+10 \mathrm{dBm}$ o/p. Low noise Gasfet front end. NF 0.7 dB AGC
Linear channelised power amplifiers:
TYPE 925210 mW input, 500 mW output
TYPE 925450 mW input, 2 watts output
TYPE 9259500 mW input, 3 watts output
TYPE 9263 2-3 watts input, 12 watts output.
TYPE 93643 watts input, 22-25 watts output
TYPE 926613 watts input, 50 watts output.
TYPE 936750 watts input, 150 watts output.

TELEVISION RECEPTION EQUIPMENT
Two-stage Gasfet preamplifiers. High Q filters. Masthead or local use TYPE 9006TV Bands 1 or III. NF 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable TYPE $9002 \mathrm{~B} / \mathrm{W}$ up to 10 adjacent chs in bands IV or V NF 0.7 dB 25 dB .

LOW NOISE GASFET PREAMPLIFIERS $5 \mathrm{MHz}-2 \mathrm{GHz}$ TYPE 9006 Freq $5-250 \mathrm{MHz}$. B/W up to 40% of CF. NF 0.6 dB . Gain 10-40dB variable. TYPE 9004 Freq $250-1000 \mathrm{MHz}$ BW up to 10% Cr NF.......... £105 25dB TYPE 9304 Freq: $1-2 \mathrm{GHz}$ BN up to 10% of CF NF 04 dB Gain 20 dB

WIDEBAND AMPLIFIERS
TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain $30 \mathrm{~dB} \mathrm{O} / \mathrm{p} 12.5 \mathrm{dBm}$, 18 mW .
£165
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$. NF 2 dB at 500 MHz Gain 30 dB . O/p 12.5 dBm
18 mW . £165

TYPE 9008 Gasfet, $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5dB at 1 GHz Gain 10 dB O/p 18 dBm
65 mW ...
TYPE 9009 Gasfet $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB O/p 20 dBm , 100 mW
£185
UHF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$
TYPE 9123500 mW imput, 5 watts output
TYPE 9123 500mW imput, 5 watts output
TYPE $91242-3$ watts input, 25 watts output. .. $£ 510$
TYPE 91268 watts input, 50 watts output. ...
PHASE LOCKED SIGNAL SOURCES
TYPE 8034 Freq as specified in the range $20-250 \mathrm{MHz}$. O/p 10 mW £194
TYPE 9036 Freq as specified in the range $250-1000 \mathrm{MHz}$. O/p 10 mW £291 TYPE 9038 Freq as specified in the range $1-2 \mathrm{GHz}$. O/p $10 \mathrm{~mW} £ 350$ TYPE 9282 FM tacility. Freq as specified in the range $30-2000 \mathrm{MHz}$. O/p 10 mW
£ 378
PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9315 Down converter $1 / \mathrm{p}$ frequencies $250 \mathrm{MHz}-2 \mathrm{GHz}$. O/p frequencies $20 \mathrm{MHz}-1 \mathrm{GHz}$. BN up to 10 MHz . NF 0.7 dB Gain 30 dB variable $£ 350$ TYPE 9316 Up/down converter. I / p \& o/p frequencies 20 MHz to 2 GHz . B/W up to 100 MHz NF 0.7 dB . Gain 40 dB variable... TYPE 9115 Up/down converter. I / p \& o/p frequencies 20 MHz to 1 GHz BN up to 100 MHz . NF 0.7 dB . Gain 60 dB variable O / p up to $10 \mathrm{~mW}+10 \mathrm{dBm}$. AGC
£650
TYPE 9317 Tunable down converter l/p will tune 30% of CF specified in the range $300 \mathrm{MHz}-2 \mathrm{GHz}$ O/p 70 MHz . NF 0.6 dB . Gain 60 dB O/p up to $10 \mathrm{~mW}+$ 10 dBm AGC
£950
Prices exclude p\&p charges and VAT
RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel: 0303893631 Fax: 0303893838

CIRCLE NO. 128 ON REPLY CARD

FREF TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only Trade advertisers should call Paf Bunce on 081-652 8339
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject odverts which do not fulfil the terms of this offer

Please send your completed forms to:
Free Classified Offer: Electronics World, 11 th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

CLASSIFIED

ARTICLES FOR SALE

E

 Cooke International
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWA YS AVAILABLE SPECIALIST REPAIR WORK \& CALIBRATION UNDERTAKEN
ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.,K. ENQUIRIES WELCOME,
SEND S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS.
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: $(+44) 0243545111 / 2 \quad$ Fax $(1+44) 0243542457$
HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED

ARIICLES WANTED

WANTED

High-end Test Equipment, only brand names as Hewlett-Packard,
Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid
Please send or fax your offer to. HTB ELEK TRONLK
Alter Apeler Weg 5, 2858 Schiffdorf, West Germany
TEL. 0104941067044
FAX: 0104947067049

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's. Plugs and Sockets, Computers, Edge Connectors TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TG. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

WANTED

Test equipment, recaivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash M \& B RADIO
86 Bishopgate Street,
Leeds LSTi 4BB
Tel: 0532435649
Fax: 0532426881

STEWART OF READING

110 WYKEHAM ROAD, READING, RG61PL TEL. 0734268041 FAX: 0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANITYT

PURCHASE FOR CASH
SURPLUS - OBSOLETE - REDUNDANT
EXCESS Stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to: K.B. COMPONENTS

21 Playle Chase, Gt. Totham, Maldon, Essex CM9 8UT
Telephone: 0621893204 Facsimile: 0621893180

TURN YOUR SURPLUS
TRANSISTORS, ICS ETC, INTO CASH
Immediate settlement.
We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO. 103 South Brink Wisbech, Cambs PE14 0RJ.
ESTABLISHED OVER 15 YEAR
Buyers of Surplus Inventory
Tel: 0945584188 Fax: 0945475216

PRODUCTION CAPACITY
A BS5750 registered manufacturing company located in Hertfordshire.
e currently have spare capacity and our highly skilled team can offer high quality assembly, hand soldering visual inspection.
We also have a surface mount capability. Please contact us for a competitive price. BOX NO. A3223

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates,
please contact Pat Bunce on:
Tel: 081-652 8339 Fcix: 081-652 8931

ARTICLES WANTED

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

REPRINTS

a ready made sales aid

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact:

Jan Crowther
Room 1006
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS, UK
Telephone: 081-652 8229
Fax: 081-652 4728

ARTICLES FOR SALE

VALVES AND C.R.T.S
 (also Magnetrons, Klystrons, 4CX250/350)
 Minimum order charge of $250+$ VAT

One million valves in stock. Obsolete types a speciality! Fax or phone for quote.
Special prices for wholesale quantities.
Orders from government departments, overseas etc. most welcome Many other types in stock. Please enquire re any type not listed.
CATHODERAY TUBES 400 different types in stock

valves
A2426
C1149-1
C1166
CCS1.
in stock. Not all
listed below
listed belo
Please
Please
inquire.
CV488
CV1881
CV2355
CV1881
CV2355
CV4014
CV4024
CV6087
CV7180
CX1140
DA42
DET22
DET23
DE122
DET23
DF91
E801
E80L
E83F
E8BCC
E180F

M8162 Mul	28034
M513B Magnetrons	Y644
PC500	2 K 25
PCC89	3828
PD500	$3 \cdot 160 \mathrm{E}$
PL509	4-65A
Qovo3-10	4-125A Eimac
QOVO3-10 Mul	4-400A
OOV03-20A	4 C 28
QOVO3-20A EEV	$4 \mathrm{C} \times 250 \mathrm{~B}$
OQV06-40A	$4 \mathrm{CX250BC}$
OOV06-40A Mul	$4 \mathrm{C} \times 350 \mathrm{~A}$
OY3-125	$4 \mathrm{C} \times 1000 \mathrm{~A}$
OY4-250	$4 \mathrm{CX5000} \mathrm{~A}$
QV04-7	5 B -254M
R10	5B-255M
SU2150	5B-257M
T21	$5 \mathrm{~B}-258 \mathrm{M}$
S11E12	5 U 4 G
TD03-10E	6AK5W
$\cup 19$	6A56
UBC4 ${ }^{\text {+ }}$	6BH6
UCL82	68, 6
UY85	6BM6
VL5631	6 CH 6

6F33
$6 L 6 \mathrm{GC}$
6 GLTG
$6 \mathrm{GN7GT}$
$12 \mathrm{BH7}$
12 E 1
13 E,
19 AOS
211
805
807
811 A
813
4635
5763
6336 A
6973
8056
8122
Sockets:
B9A PCB
B9A chassis
Octal crassis
Many others
Testing to special quallty - Military/CV, low microphony etc available on request

BILLINGTON EXPORT Ltd
Unit 1E. Gillmans Industrial Estate. Billingshurst. Sussex RH14.9EZ. Callers by appointment only.
Telephone: 0403 784961 Fax: 0403783519
Min. UK order 550 . VAT. Min. Export order 550 . Carriage:

BOOKS \& MANUALS

CBLLULAR TELEPHONE MODIFICATION HANDBOOK
 How are hackers making cellular phone calls for free?
 - How to have two phones with the same number
 - Techniques for decoding \& changing cellular phones' NAMS
 - Descriptions of cellular phones's vulnerabilities!
 - Cellular phone manufacturers ESN codes
 Complete Manual only $£ 50$
 SPY Supply, 108 New Bond Street London W1Y 9AA (US) 617-327-7272
 Sold for educational purposes only

FREE CLASSIFIED

[^3]
ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

The sustem 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MQP ELECTRONICS LTD. Tel: 0666825146
Fax: 0666825141
CIRCIENO. 142 ON REPLICARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcastrig, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BAI^{\top} ISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884 Fax: 0818852496

CIRCLE NO. 143 ON REPLY CARD

075567700

ELECTRONICS WORLD
 + WIREL ESS WORLD

ELECTRONIC UPDATE is
Electronic World and Wireless World's section for advertisers to market their product information. From catalogues to newsletters, Data Update is designed to present your product information in a clear and attractive manner while our "CIRCLE NUMBERS" help readers to obtain the information they need fast. CIRCIE NO. 145 ON REPLY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

FREE VXI BROCHURE

The National Instruments VXI brochure describes the company's embedded PC and GPIB controllers, MXIbus interface kits for multiple platforms, and NI-VXI, LabWindows, and LabVIEW software for developing and controlling VXI instrumentation systems.

NATIONAL INSTRUMENTS
 Tel: 0800289877

CIRCIENO. 146 on Nefir card

DATAUPDATE is
Electronics Weekly's section for advertisers to market their product information. From catalogues to newsletters Data Update is designed to present your product information in a clear and attractive manner, whilst our colour coded enquiry numbers help readers to obtain the information they need fast.

CIRCLE NO. 147 ON REPLY CARD

2nd EDITION TOKO RF CATALOGUE

Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs

The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN10 7NQ Tel: (0992) 441306 Fax: (0992) 441306 CIRCLE NO. 148 ON REPLY CARD

High Speed EPROM \& FLASH Programming from your PC

\square Programs EPROMs to 4 Mbits/ 32-pins
\square Superfast 8,16 \& 32-bit programming
\square Approved algorithms
\square Menu driven software included
\square Sophisticated editor functions

- Easy file management
\square FREE demo disk available
Stag Programmers Limited Martinfield Welwyn Garden Cliy,
Herfordshire, AL7 IJ UK
Tel: (0707) 332148
Fax: (0707) 371503

TEKTRONIX 492P PORTABLE 21 GHz 50 kHz 21 GHz (ext. mixing to 220 GHz). GPIB. 80dB dynamic range. Lowest ever price. £5000

HP8568B 100 Hz - 1500 MHz High performance. $£ 9500$

HP85698 10MHz-22GHz (ext to 115 GHz) Internal preselector. $\mathbf{6 6 0 0 0}$

TEKTRONIX 496P as above with tracking generator TR 503 \& frequency counter

 installed in GPIB-man frame TM5006$£ 6000$
MARCONIINSTRUMENTS
2019 SYNTHESIZED SIGNAL GENERATOR 80kHz-1040MHz. AMFM. £1950

RATEE • DTECIRONICS
 36 EASTCOTE LANE. S HARROW. MIDDLESEX HA $80 B$

331 A distortion meter 339A distortion meter (option 01) 3406 A sampling voltmeter 355 C attenuator DC-1 GHz O-1 1 db \& $355 \mathrm{D} 0-120 \mathrm{db}$ 3325 A synthesizer f function generator 33258 synnessizerfifunction generator 3335 A synthesizerlievel generator with option of 3552A transmission test set $3575 \mathrm{Again} /$ phase meter 1 Hz - 13 MHz db \& ratio \& © opt 0 371 An -converter ($17-4$ 2 GHz) analyser (MLA) with 3793B \& 3730B/3730B RF
 AVORM215L-2 insulation $\mathbf{8}$ breakdown tester DRANETZ 626 mans disturbance analyser/2xPA-6001
 FLANN MICROWAVE 27032 frequency

NAGRAAV-SI Tape recorder

down-conventer ($1.7-4.2 \mathrm{GHz}$) 3782A error detector

HP8673M SYNTHESIZED SIGNAL GENERATORS
 2.18 GHz frequency range. AM/FM/Pulse mod

4 Calibrated op from -120 to +8 dbm . $£ 7500$.
HP8901A MODULATION ANALYSERS $150 \mathrm{kHz}-1300 \mathrm{MHz}$ Measures ANFM to 1\% accuracy. Also measures RF frequency \& power. Automatic. $£ 3000$

HP8559A 10MHz-21 GH_{2} SPECTRUM ANALYSERS Installed in 182T main-frame. $£ 4000$

HP 5344S MICROWAVE SOURCE SYNCHRONIZER phase locks μ wave signal to give synthesizer asccuracy includes 5342A. 1 18GHz counter. $£ 1500$

8601 A 110 MHz sweep generator
8620 C sweep generator, many plugin units available
8671 A synthesized signal generator 2.62 GHz TESTED BEFORE DIS PATCH BY NDEPETDE ATIOA.VERIFICATIO We would be pleased to handle al grades of calibration or NAMAS certification by same laboratory at cost pice. All items covered by our 90 -day parts and labour guarantee and 7 -day 'Right to Refuse' (money back) warranty.

ALL PRICES SUBJECT TO ADDITIONAL VAT AND CARRIAGE

Index to A dvertisers

Alternative Distribution (UK) Lid 919
Antex Electronics 943
Bull Electrical. 887
Citadel Products Ltd IFC
Dataman Programmers Ltd OBB
Display Electronics Lid. 882
Electrovalue Ltd 950
Ellmax Electronics Ltd 935
Ericsson 889
Halcyon Electronics Ltd 968
IPK Broadcast Systems Ltd 950
Johns Radio 882
JPG Electronics 889
Keytronics 916
Labcentre 901
Langrex Supplies Ltd 949
M\&B Electrical Supplies Ltd 926
M\&B Radio (Leeds) 935
MQP Electronics 943
Number One Systems Lid 949
Piso Technology Ltd 955
Powerware. 94
Ralfe Electronics 968
Research Communications 964
SAJE Electronics BC
Sectrax Ltd 955
Smart Communications , 919
SMC Lid 95
Stewart of Reading 949
Surrey Electronics Lid 935
Telnet. 919
Tsien Ltd 950

NEW THE DEFINITIVE 'OFF-AIR'

FREQUENCY STANDARD

 £195 carriage extra

- Provides $10 \mathrm{MHZ} 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
* Use it for calibrating equipment that relies on quart crystals. TCXOS

VXCOs, oven crystals

* Phase locks to DROITWICH (rubidium controlled and traceable to NPL
* For ADDED VALUE also phase locks to ALLOUIS (cesium controlled
and traceable to OP - French eq to NPL
- British designed and Britishrmanufactured
* Now with Sine Wave Option, output 1 volt into 50Ω

Output frequencies
10 MHZ , $5 \mathrm{MHZ}, 1 \mathrm{MHZ}$ Short term stability - better han $1 \times 10^{-8}(1$ sec) ypical- $\pm 4 \times 10^{-9}(1 \mathrm{sec})$ $2 \times 10^{-12}(1000 \mathrm{sec})$

TELEQUIPMENT D 1011 10MHZ LeAL TRACE IWATSU SS -5802 DIGITAL STORAGE TEKTRONIX 221560 MHZ 2 TRACE DEL IB TEKTRONIX $453 A$ SOMHZ2 TRACE DEL TB TELEQUIPMENT S62 SINGLE TACE 5MHZ SCOP HP. 8405 A VECTOR V METER 16 HZ PLESSEY TCT1O SIG GEN/ANAL 50-300 BOS TELEQUIPMENT D61A 10MHZDIJAL TRACE SE LABS SM111 18MHZ DUAL IF ACE TELEQUIPMENT D67A 25MHZ, IT, OELT/B H.P 1700A 35 MHZ DUAL TRACE HITACHI VC 601510 MHZ DIGITAl STORAGE H.P 1340 X-Y DISPLAYS OERTLING VO SINGLE PAN BALANCES 200GM ANALYTICAL BALANCES WITH WEIGHTS 250GM VACUUM PUMPS $1.5 \& 2.8 \mathrm{CLU}$. M/ HR 1258 £149 AKRON 402 P SYNCHRONy ARON 402P SYNCHRONISING PULSE GEN \& 605P ENCODER RADIOMETER BKF6 DIST. METE 20 HZ -20K HZ RADIOMETER AFM2 MOD METER $7 M H Z$-GHZ MARCONI TF2330 WAVE ANALY.SER 20HZ-50KHZ HP. 5315A GHZ F/CTR, OPTS 4.283 LIST AVAILABLE BUT 1000 '3 OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF P\&P ANO VAT QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED

HALCYON ELECTRONICS

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

INSTRUMENTS TO BUY

 FROM SAJE ELECTRONICS TEL: (0223) 425440 FAX: (0223) 424711

S $540-£ 104.58$, SC130-\&128:08, SC230- $£ 175.08$

PS303-£154.65, PS3030-£283.86, PS2£43-£119.20

MIC-40700 - £123.38

MULTIMETERS - The 180 series. of multimeters, provide advanced features and are supplied complete 'with probes battery and ribber holsters 183: 3.5 digit LCD, ACV, DC ACA, DCA, resistarce, continuity buzzer, diode fest, hold, basiso-accuracy 0.5%. 185: As. 188% plisibat graph; temp. ($40^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$), capacitance (lpp to 4Quf), frequency (1 H to $200 \mathrm{k} H z$), max/min, edit, \%, corripare, basic accurac 0.3%. 187: As 185 plus Auto ran"ging. 285: As 185 but 4.5 digit true rms, basiz accuracy 0.05%.

EPROM PROGRAMMER/EMULATOR - The SP1 1000 is a fu featured stand aione high speed eprom progiammer emulator with extended power via a PC remote link. Most eproms up to 1 N Bit (expandable to 4 M Bit) can be programmed, emrty checked, listed, edited, verified or emulated.

COUNTERS - The SC series are high pèfromatice mictopro cessor pased frequency counters' with' advanced features SC40: 5 Hzz to A 00 MHz , hand held, battery powered, 8 digit LCD, sensitivity typically 10 miv , hold min, max, ave, diff, variable gate and filter. SC130:eas SC40 bifit 5 Hz to 1.3 CH Hz . SC230: Bench vesion of SC130, batkilit LCD, RS232 as standard.

RF GENERATORS - SG4 $460 \mathrm{~B}, 1.00 \mathrm{Kkz}$ to 150 MHz (450 MHz with harmonics) intlext modulation. SG4162AD: As SG4160B plus on-board frecuency counter.

OSCILLOSCOPES - A professional range of high quality
 probes). CO1305:5MHz singletrace.

FUNCTION GENERATORS - MK2020: 0:02MHz to 2 MHz swee unction generator with frequeficy readout, output wave forms iticlude sine, square, triangle, skewed sinie, pulse anc TL , lin \& log sweep, DC offset and symimety, FG2020B 0.5 Hz to 500 kHzf function generator proviçing sine, square and triangle waveforms.

POWER SUPPLIE - The PS series of low cosst bench powe
supplies offer single of:dual output with output protection PS303: single D.3 power supply, 0-30V 3A PS3030: dua tracking D'C power subpiy $2 \times 0-30 \mathrm{~V} 3 \mathrm{~A}, \mathrm{PS} 2243$: DC powe supply, $0-24 \mathrm{~V} 3$.

MULTI INSTRUMENT - The MX9000, suitable for a broas range of applicazions, combines four instruitents including 1. Triple output Jower supply with LCD'offering 0-50V 0.5 15V. $1 \mathrm{H}, 5 \mathrm{~V}, 2 \mathrm{~A}$, with full overcurrent protection. 2. An 8 dig
 $0: 1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ providing-resolưtion to.0.1 Hz ple attenuation inputs and dáta . hold. 3. A O.02Hz to 2 MHz fut featured isweepfunction generator producing sine, squar: trizngle, skewed sine, pulse and a TLoutput and lin or $10=1$ pre Outputs of 50Ω and 600Ω impedance are standax

S64162AD - £262.50, S64160B - £150.87

M×2020- £233.83, F620208-£159:17
 featurges. 4. Auta/manual 3.5 digit LCD multimeter readirg $D C Q, D C A, A C Y$, ACA, resistance and relative mea surement w th data holdturictions.

LCR METER - The MIC40700 LCD digital LCR meter provides, capacitance, inductance, resistranges areffor 0.1 pt to 20,000 ouf plus dissipatiofi. Inductance ranges from $0.1 \mu \mathrm{H}$ to 200 H plus a digital realout of dissipation. Resistance ranges from $1 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$. Housed in rugged ABSI case with integral stand complete with battery and probes

CLAMP METER - The clamp meterpprovides digital readout and the following sangeses, $A C A$ to 600 A ACV to $750 \mathrm{~V}, \mathrm{DCV}$ to 1000 V , Resistalice to $.2 \mathrm{k} \Omega$ Peak detector holds the max rms value. Audio continuity for short circuits.

CREDIT CARD ORDERS BY PHONE/FAX
Io order any of the above items please send this form with your cheque/credil card details to: SAE Electronics, 117 Lovell Road, Cambridge, CB4 2QW. Please send me the following instruments:-
The sum of $£$
(NB: All prices quoted above include VAT).

Hame:

Address:

The smallest, most powertul personal programmer you can buy!

 Owning the worlds best selling portable programmer emulator is just a phone call away. From engine management to Antarctic survey teams, the powerful and versatile 54 goes where others get left behind.A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8 Mbit . And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24 hr download from our high speed bulietin boards.

Emulation

See your code running before committing yoursell to an EPROM. With S4's powerful and easy-to-use internal emulation systern, download your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen immediately - just one reason why S4 is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or extemal power sources; earth loop problems are a thing of the past. S4 even emulates RAM.
Femote Pantinol

As well as being totally stand alone and self contained, S4 can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal software and a pop-up TSR communications utility.

> Tire Gampany

If you are looking for a supplier with longevity and stability, then you'll be pleased to leam that

Dataman has been designing and selling innovative programmers world-wide for over 15 years. As well as having sales and support offices in both the UK and the USA, we supply the world demand for our products via a network of approved dealers stretching from Norway to Australia.
The Package
S4 comes fully charged and contigured for immediate use. You get a mains charger, emulation lead, write lead, personal organiser instruction manual, MS-DOS communications sotware, spare Library ROM and a 3 year guarantee. Optional modules available for serial EPROMs, 40 pin EPROMs and microcontrollers.
\square
Avanlabilliy
S4 is always in stock. Phone through your credit card details to ensure next working day delivery. Full 30 day no-risk refund

Credit card hotline: 0300320719 for same-day dispatch

[^0]: Electronics World + Wireless World is Fublished monthly By post, current issue $£ 2.25$, back issues (11 available) $£ 2.50$ Orders, padments and general correspondence to L333, Ele stronics World + Wireless World, Quadrant House, The Quadrant, St tton, Surrey SM2 5AS. Tel-x:892984 REED BP G Cheques should be made payable to Reed Business Publishing Gr Jup.
 Newstrade: I ${ }^{\circ} \mathrm{C}$ Marketforce. 071 261-5138
 Subscriptons: Quadrant Subscription Services, Oakfield House, Perymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0414441212 . Please notify a change of address. Subscriptan rates 1 year (normal rate) £30 UK and £35 outside UK USA: \$11E.OC airmail. Reed Business Publishing (USA), Suzscriptior soffice, 205 E. 42nd Street, NY 10117.
 Overseas advertising agents: France ar Belgium: Pierre vussard, 18-20 Place de la Madeleine,Paris 75008. United States of America Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd itreet, NY 10117. Telephone (212) 867-2080. Telex 23827.

 USA maiil 1 g agents: Mercury Airfreight I Iternational Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001 2nd class postage paid at Rahway N. Postmaster. Send address changes to above.
 Printed b) BPCC Magazines (Carlisle) Ltt, Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR
 Typeset by Martin Graphics 2-4 Powerscoft Road, Sidcup. Kent DA14 5DT

[^1]: *Tom Woodford has spent much of his adult life in the semiconductor industry and now runs a consultancy specialising in communications projects, radio and data broadcasting. Someday soon he plans to move to France, to sail, write and grow tomatoes.

[^2]: Marconi comtinuous-wave transmitter will be covered in a future article

[^3]: 8514 MONITOR (IBM) Scrvice manua or Schematic needed urgently. Your costs reimbursed. R. Mueller, Germany (49) 2461614259.

 EPROM PROGRAMMER MQP model $18 £ 65$ ono, telequipment D75 scope par tially working for spares or repair inc manual $£ 50$. Colchester 020648571.
 FOR SALE HP 8556A L.H. section H.P 553 B 110 MHz plug-in units for 141 T analyzer. Excellent condition O.I.R.O $£ 550$ or exchange/noise source. Tel: 0442 842457.

