RONICS
Denmark DKr. 70.00 Germany DM 15.00 Greece Dra. 760 Holland DFI. 14

OCTOBER 1993 £1.95

RF DESIGN

Working with Wransmission lines

REVIEW

Smarter look to graphics?

APPLICATIONS

 Sn-board currentneasurement

INALOGUE DESIGN

-Nideband current mode ımplifiers

SOMPUTING

 sandpass filter on a micro processor
CIENCE

cold fusion *arming up?

SPECTRALLY CHALLENCED:

THE TOP TEN AUDIO POWER
CHIPS PUT TO THE TEST

THE WORLDS No. 1 BEST SELLING

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, OFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over £300 if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 \& 68HC11.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual only
£395
Please add $£ 7$ carriage (by overnight courier) for UK orders, $\mathbf{f} \mathbf{2 0}$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALj PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

FEATURES

	SPECTRALLY CHALLENGED: THE TOP 10 AUDIO
POWER CHIPS............................. 804	
Ben Duncan analyses distortion	
performance and harmonic spectra in the	
10 most popular audio power ICs. In a	
unique guide, he names the good, the	

SLIDING INTO A SOFTWARE SPECIALITY 814
Drawing together various graphs and plots from different sources into a coherent slide presentation is notoriously difficult. Allen brown finds Stanford Graphics makes it easy.

DISTORTION IN POWER AMPLIFIERS: THE VOLTAGE AMPLIFIER .818

The typical circuit that provides most of the voltage gain and all the voltage drive to the output stage of an audio amplifier seems likely to contribute a significant distortion component. But Douglas Self shows how detailed analysis contradicts this.

VOICE LINK OVER

SPREAD SPECTRUM RADIO
James Vincent looks at the detailed circuitry used for a fully functional experimental voice link.

REWRITING THE RULE BOOK WITH CURRENT MODE AMPLIFIERS.
.843
Current feedback amplifiers open up new designs for wide bandwidth circuits while retaining similarities with conventional amplifiers. Bashir Al-Hashimi uses commercially available current mode devices to design high performance, wideband amplifiers.

BAND PASS FILTER ON A MICROPROCESSOR ... 865
A hybrid comb FIR filter/second order IIR filter has useful benefits. Allen Brown shows how to implement the hybrid on a general purpose micropocessor.

CLAWING BACK RESPECTABILITY

FOR COLD FUSION?
869
Is there life after Fleischmann and Pons? Andy Wright reports on a revival.

REGULARS

COMMENT ./... 795
A communications revolution
UPDATE 796
Time runs out for digital iv breakthrough, Video scramble for pot of gold, Flat screen leads Matsushita's push, Europe snubs US global plans, Resources pooled to make solid state discs, BT moves on System X replacement, TFT cell. scores 3 V goal

RESEARCH NOTES

 801Blue laser burns into storage record book, Top people are always in a spin, Space service will tackle Hubble's wobbles, Geniuses are made not created, Diamonds without pressure.

USING RF TRANSISTORS
How does a figure in a data sheet relate to performance in a real circuit? Motorola RF transistor application experts Norm Dye and Helge Granberg explain how to interpret manufacturers' data sheets.

LETTERS .847
Breaking Windows, Clunky versus cost, Sounding out the critics, Power to protect, Authors wanted, Drawing error, A question of theory.

CIRCUIT IDEAS.
850
Transconductance squarer, No-loss tuned circuit, Cheap mosfet audio power, FSK receiver has auto decisionthreshold control, Electrocardiograph simulator.

NEW PRODUCTS
855
A selection of the best new products in electronics.
APPLICATIONS
860
Are 4Mbit drams a drop-in upgrade? Battery life meter from Chinatown? Op-amp transmits baseband video over 1500 m , Versatile fast-charger chip has only three pins, Using the PCB as a current shunt.

DESIGN BRIEF 872
Ian Hickman delves into the true effects of matched and unmatched loads to map the movement of energy in a transmission line.

In next month's issue: Digital television. In 1991 a MAC future for TV broadcasting seemed certain. Two years on it is now digital television which will bring 100's of channels ${ }^{\text {in into the living room }}$ of the next century. We present both the systems and the silicon. Also next month, the start a new series on using programmable logic.
NOVEMBER ISSUE IS ON SALE OCTOBER 28

INSTRUMENTS TO BUY

 FROM SAJE ELECTRONICS TEL: (0223) 425440 FAX: (0223) 424711
$183-£ 46.41,185-£ 87.54,187-£ 116.91,285$ - £128.66

SC40-£104.58, SC130-£128.08, SC230-£175.08

C01305-£217.38, CS4025-£421.83, CS5170-£1462.88

PS303-£154.65, PS3030 - £283.86, PS2243-£119.26

Prices include VAT and Postage
MULTIMETERS - The 180 series of multimeters provide advanced features and are supplied complete with probes battery and rubber holsters. 183: 3.5 digit LCD, AGV, DCV ACA, DCA, resistance, continuity buzze, diode test, hôld basic accuracy 0.5%. 185: As 1833° plus bar graph, temp. h 2 $40^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$), capacitance (1 pF to-40uF), frequency (1 Hz to 200 kHz). max/min, edit, $\%$, compare, basic accuracy 0.3%. 187: Ass 185 plus Auto ranging. 285: As 185 but 4.5 digit true rms, basic accuracy 0.05%.

EPROM PROGRAMMER/EMULATOR - The SP1000 is a full featured stand alone high speed eprom programmert emulator with extended power via a PC remote link. Most eproms up to 1 M Bit lexpandable to 4 M Bit) can be programmed, empty checked, listed, edited, verified or emulated.

COUNTERS - The SC series are high performance microprocessor based frequericy counters with radyajiced featufes \$C40: 5 Hz to 400 MHz , hand held, battery powered, 8 digit LCD, sensitivity typically 10 mV , hold, min, max, ave, diff, variable gate-and filter. SC130: as SC40 but 5 Hz to 1.3 GHz SC230: Bench version of \$C130, backlit LCD, RS232 as standard

RF GENERATORS - SG4160B, 100 kHz to $150 \mathrm{MHz}(450 \mathrm{MHz}$ with harmonics) intext modulation. SG4162AD: AS SG4160B plus on-board frequency counter.

OSCILLOSCOPES - A professional range of high quality oscilloscopes. CS4025: 20MHz dual trace, fullfeatured (inc probes). CS5170: 100 MHz dual lfrace, cursor readout (inc. probes). CO1305: 5 MHz single trace.

FUNCTION GENERATORS - MX2020: 0.02 MHz to 2 MHz sweep function generator with frequency readout, output waveforms inclide siñe, square, triängle, skewed sine, pulse and $\pi \mathrm{L}$, lin \& \log sweep, DC offset and symmetr. FG2020B 0.5 Hz to 500 kHz function generator providing sine, square and triangle wavefoims.

POWER SUPPLIES - The PS series of low cost bench power supplies offer single or dual output with output piotecection. PS303: single DC power suppiy, $0-30 \mathrm{~V} 3 \mathrm{~A}$. PS303D: dual tracking DC power supply 2x0-30V 3A. PS2243: DC power supply, 0-24V 3 A.

MULTI INSTRUMENT - The MX9000, suitable for a broad range of applications, combines four instruments including, 1. Triple output. .onyer supply with LCDoffering $0-50 \mathrm{~V} 30.5 \mathrm{SA}$, $15 \mathrm{~V} \mathrm{IA}, 5 \mathrm{~V} 2 \mathrm{~A}$, withiftull overcurrent protection. 2 . An 8 digit LED 1 Hz -100MHz frequency counter with gating rates of $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ providing resolution to 0.1 Hz plus attenuation inputs and data hold. 3. A 0.02 Hz to 2 MHz full featured sweep/function generator producing sine, square, triangle, skewed sine, pulse and a TL output and lin- Qrilog. sweep Outputs of 50Ω and 600Ω impedance are. standarc features. 4. Auto/maniual $3: 5$ digit LCD multimeter reading $D C V, D C A, A C V, A C A$, resistance and relative measurement with data hold functions.

LCR METER - The MIC40700 LCD digital LCR meter provides capacitance, inductance, resistance and dissipation measurement. Capacitance ranges are fromi 0.1 pr to $20 ; 000$ uf plus díssipation. Inductance raniges from $0.1 \mu \mathrm{H}$ to 200 H plus a digital readout of dissipation. Resistance ranges from $1 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$. Housed in rugged ABS case with integral stand complete with battery and probes.

CLAMP METER - The clamp meter provides digital readout and the following ranges, ACA $\pm 0-600 \mathrm{~A}$, ACV to 750 V , DCV to 1000 V . Resistance to $2 \mathrm{k} \Omega$. Peak detector holds the max rms value. Audio continuity for short circuits.

Name:

SP1000 - £ $£ 351.33$

SG4162AD - £262.50, §64160B - £150.87

M $\times 2020$ - £233.83, F62.020B - £159.17

MX9000 - £468.83

CREDIT CARD ORDERS BY PHONE/FAX
To order any of the above items please send this form with your cheque/credit card details to: SAE Electronics, 117 Lovell Road,
Cambridge, CB4 2QW. Please send me the following Instruments:-

I enclose a cheque to the value of E
credit card no
the sum of E

Address:

Telephone:

EDITOR
Frank Ogden
081-652 3128

DEPUTY EDITOR

 Jonathan Campbell081-652 8638

CONSULTANT

Derek Rowe
DESIGN \& PRODUCTION Alan Kerr

EDITORIAL ADMINISTRATION

 Lorraine Spindler081-652 3614
ADVERTISEMENT MANAGER
Carol Nobbs
081-652 8327

SALES EXECUTIVE

Pat Bunce
081-652 8339

ADVERTISING PRODUCTION

Shirley Lawrence
081-652 8659
PUBLISHER
Susan Downey
EDITORIAL FACSIMILE 081-652 8956

CLASSIFIED FACSIMILE 081-6528931

SUBSCRIPTION HOTLINE 0622721666
Quote ref INJ
SUBSCRIPTION QUERIES
0444445566
NEWSTRADE ENQUIRIES
Martin Parr
0712615108
BACK ISSUES
Available at $£ 2.50$
081-652 3614

REED
RUSINESS
PUBLISHING

A communications revolution

The world is about to change irrevocably. At face value, the UK now has, or will have, an extra 14 satellite TV channels controlled by News International and its associates. Whatever one may say about the quality of programming, this new group will broaden viewer choice. What we are really seeing is the start of a revolution.
For those of us who have grown up with three or four channels of terrestrial television, it is hard to conceive how we could comfortably deal with 20 or 30 channels. New digital compression technology promises to increase this viewer choice by an order of magnitude within ten years.
With hundreds of channels to choose from, individual programming will become highly specialised. The most appropriate analogy seems to be with the world of publishing. If one considers the four existing terrestrial channels as daily newspapers, then the new satellite services will become specialist magazines. Not inferior substitutes for something which already exists but a new communications medium for a specialist audience. If you want to find your particular leisure activity - for instance sailing and windsurfing - on the box whenever you want it, then the new TV explosion will almost certainly offer it to you.
But the communications revolution means more than that. Satellite video channels can transmit a large amount of data very quickly to the viewer's or user's home. When local high density storage (video recorder?) and some computing power is available at the receiving end, then many things become possible. Entertainment programmes, electronic newspapers and magazines may be downloaded off-peak for later viewing or reading - a sort of multimedia interactive video service. And since this magazine, your daily newspaper and most of the other
things you read and watch are already originated electronically, this is only a very small step from the world today. The existing telephone network will allow the viewer and reader to place their specific programme requirements with the local TV control centre.
The concept of panoramic choice is difficult to grasp; the concept of global broadcasting seems equally so. We conventionally think that our programme material should originate, in the main, from our own country. Satellite broadcasting represents true internationalism by its nature and foreign doesn't always mean inferior. Ted Turner's CNN News Service is highly regarded the world over, mostly exceeding anything which our own national networks can provide in the field of global current affairs. High quality international leisure and education services will also become available outpacing our own national networks in both scope and resource. No matter what we may think about such an idea at present, we will eventually accept and use them.
Global communications have so far acted as an humanising influence; brutal regimes can no longer hide their activities from the world's television screens. But communication without borders carries significant risk: those who would control global networks wield immense power unfettered by individual nations or electorates. This makes me uneasy. One could conceive of a new kind of tyranny where communications moguls might practice blatant propaganda or, even worse, subtle persuasion against governments and people. Broadcast technologists are now able to deliver this power to their unanswerable masters.
We must ensure that we address the moral, ethical and democratic issues of the communications revolution.

Frank Ogden.

[^0]
UPDATE

Time runs out for digital tv breakthrough

There is hardly any time left to stop tv broadcasters, electronics manufacturers and viewers in the next century looking back on 1993 as the year in which the ITC lost the UK a unique opportunity to lead Europe into a digital future.
History has left Britain in a unique position. It has a pair of frequencies in the middle of the UHF tv broadcasting band that are not used for broadcasting and can be used to kick start Britain into the digital tv age.
Unfortunately the already ageing Broadcasting Act 1990 obliges the Independent Television Commission to try to earn money for the treasury by selling off these frequencies for a fifth tv service, to be called Channel 5 . This will use the same analogue technology as is used for today's four tv channels. It will provide one new programme channel for around 70% of the population. Analogue Ch 5 will also cause interference to many millions of VCRs, satellite receivers and video games that use the frequencies to connect with a tv set.
Research work recently carried out by the BBC suggests that if the same two frequencies were used with digital technology, they could provide 97% of the population with eight new channels and less risk of interference.

If granted, the licence for analogue Ch 5 will run for 10 years - though it cannot be granted until 1994 at the earliest so the analogue route blocks the digital option until well into the next century. It is hard to find anyone, except those who hope to make quick money out of it, who favours analogue Ch 5. In the long term the digital option will generate far more revenue for the treasury. But it has yet to see the wisdom of waiting a couple of years for the technology to be ready for consumer use.
In late June the ITC published a consultation document on the broad issue of digital television. Although heavy reading, the document gives the clear message that digital tv technology makes far more efficient use of available frequency spectrum.
When the ITC published the document, Peter Rogers, the ITC's deputy chief executive, refused to discuss the issue of allocating the Ch 5 frequencies for digital tv. He said that the ITC had separated the issues of digital tv and Ch 5 , and would be publishing a second document, specifically dealing with Ch 5 , in a few weeks time.
The ITC published its Ch 5 document in mid-July and by the ITC's own admission the content was deliberately neutral. It
simply listed holding the Ch 5 frequencies free for digital tv as one of three options. The ITC says it believes it has discharged its duties.
A lost digital multi-channel opportunity will cause few tears to be shed by the Ch 3 and Ch 4 stations, who are already losing advertising to the satellite stations.
The ITC has invited anyone interested in Ch 5 to comment on the two documents* published so far, by October 15. But without wider explanation of the issues, it is a safe prediction that many of those who should be interested in commenting will not realise it until they are years too late. The Broadcasting Act may bar the ITC from taking sides, and blocking analogue Ch 5. But it does not bar it from ensuring that the mass media understand the issues and inform the public of their right to comment. If the ITC does grant a licence for analogue Ch 5 then it must stand accused by future generations of failing to ensure that the public had the best possible chance to understand what the UK stood to lose.

> Barry Fox
*Copies of both documents are still available from the ITC at 33 Foley Street, London W1P 7LB.

BT moves on System X replacement

BThas named AT\&T and Alcatel, the world's largest telephone equipment manufacturers, as its first suppliers for the digital telephone exchange technology that will replace System X exchanges at the turn of the century.

The decision not to support any development of the broadband switch technology known as ATM (asynchronous transfer mode) in Britain by ignoring a bid from GPT and Siemens is likely to come as a major blow to hundreds of engineers at GPT.
GPT is already struggling to adapt its switching business in anticipation of a run down of System X exchange orders from BT now that its UK network is largely complete. In 1991 GPT, the UK's largest telecommunications manufacturer, shed more than 1000 workers from its Liverpool switching site.
The disappointment will be increased because it was thought that the company's technical partnership with its German parent Siemens had secured its future by developing new technologies like ATM and the SDH transmission system.

Earlier this year GPT/Siemens was named as one of BT's two SDH suppliers and also won orders for broadband computer network technology known as MANs. But the failure to be named as a main ATM supplier is a blow to GPT, which supplied virtually all of BT's existing digital telephone exchanges. Siemens has already secured ATM orders in Germany and the US.
The AT\&T ATM switches will be used in BT's national telephone network while Alcatel's will support BT's participation in the European ATM trial. BT will also introduce ATM switches into the SuperJanet academic network in 1994. Richard Wilson, Electronics Weekly.

Pirates ride the waves

TThe annual report of the Radiocommunications Agency, since 1990 an Executive Agency of the DTI, tells that radio piracy is on the increase again. In the year 1990/91, the RA prosecuted 145 people for radio piracy. The Broadcasting Act 1990 then came into force and gave the RA new powers to target people who finance pirate stations and advertise on them, as well as those who broadcast. This deterred some operators and the RA prosecuted only 67 in 1991/92. But now they are broadcasting again. In the year 1992/93 the RA made 536 raids, and secured 68 convictions.

Look out for broken glass while bonding: This glass sheathed microwire (top left) was originally developed for a military application and consists of a fine core filament of copper, gold, or silver of 3 to 10 mm diameter encased in a glass sheath with an outside diameter of 15 to 30 mm . A short high energy burst of ultrasonics breaks the glass and forms the bond with a substrate allowing manufacture of microsensors in low conductivity fluids. The bared conductor may be used as a microprobe, for instance in measuring membrane potentials. Chemring 0705-735457.

Video scramble for pot of gold

When Rupert Murdoch talked recently of his "global vision" and plans to develop a common standard for digital tv transmission and the delivery of video pictures by telephone line, he is really talking about the pot of gold to be earned from scrambling pictures.

The electronics industry has already developed the digital compression technology that makes transmission and delivery possible, and in a remarkable demonstration of world wide cooperation the industry has almost finished five years work on setting a common standard. But nobody has yet been able to agree on the encryption system to be used to ensure that only those viewers who pay to watch are able to watch.
News Datacom, a small security company owned by Rupert Murdoch's News International, has already developed an encryption system. If Murdoch can get the world to adopt this, NI will earn vast royalties through the next century.

When Rupert Murdoch began broadcasting his Sky service from Luxembourg's Astra satellite in February 1989, he chose the existing analogue Pal tv system, and broadcast clear - without scrambling. A year later Sky started to scramble some transmissions, to earn money from subscriptions.

Broadcasters had previously judged it impossible to scramble analogue Pal, with sufficient security to prevent piracy and without degrading the picture when unscrambled.
Thomson Consumer Electronics of France
updated an old idea from Westinghouse in the US, which involved chopping up the lines of the picture before transmission and putting them together again in a receiver decoder. Professor Adi Shamir of the Weitzmann Institute of Science in Israel had already been working on ciphers for NI's News Datacom. Using smart card technology, TCE and NDC jointly developed Videocrypt for Sky. The system uses digital encryption to control the analogue line chopping.
Murdoch has snubbed TCE and signed a deal between what he calls the "best brains". These are NDC, NTL (formerly the Independent Broadcasting Authority's research laboratory), and US telecommunications company Comstream. A separate deal ties in British Telecom and its cellular phone network Cellnet.

The deal is nicely timed. The moving picture experts group of the ISO and IEC recently sealed a first standard, MPEG-1, for handling digital tv pictures at low data rate ($1.5 \mathrm{Mbits} / \mathrm{s}$) and the telecomms industry is already looking at ways of sending MPEG-1 data streams down telephone lines. The group is on the point of finalising its second standard, MPEG-2, for broadcasting digital tv at higher data rates (usually 4 or $8 \mathrm{Mbit} / \mathrm{s}$) from terrestrial or satellite transmitters.

Although Murdoch has dropped TCE, News Datacom had worked with TCE on a digital version of Videocrypt for use with DirecTV, the new digital satellite tv service planned by aerospace company Hughes in the US. Because the previous deals between NDC and TCE were specific to projects,

Murdoch is free to offer NDC's encryption as the common standard for use with both MPEG standards. The potential rewards for NDC are huge.

Any manufacturer wanting to make a Videocrypt decoder for use with Sky first gives TCE an up-front payment of $£ 200,000$ to cover royalties at $£ 4$ each on the first 50,000 decoders made. After that the royalty remains $£ 4$, of which half goes to NDC and half to TCE. Firms which cannot afford to manufacture in bulk, pay $£ 35$ for a readymade circuit board. Until recently they paid $£ 40$. This includes the $£ 4$ royalty split between NDC and TCE.

There are 3 million Videocrypt decoders in use round the world, meaning that NDC has already earned $£ 6 \mathrm{~m}$ in royalties. If

Murdoch can make NDC's encryption a world standard for the next century, the potential rewards are enormous.

Although patents on scrambling technology, such as chopping picture lines, have limited life, the encryption algorithms developed by NDC are covered by copyright, like computer software. NDC can thus protect it rights and draw royalties for decades into the next century.
NTL is developing multi-channel video compression and multiplexing technology for Murdoch. The firm will be looking at new methods of carrier modulation as well as a method of statistical multiplexing that will make more efficient use of the satellite transponder bandwidth

Resources pooled to make solid state discs

A^{n}merica's third largest disc-drive maker Quantum is teaming up with Silicon Storage Technology (SST), a Silicon Valley flash chip designer, to produce solid state memory discs.
The companies have signed an agreement where Quantum will gain exclusive rights to use SST's flash chips in PCMCIA memory cards with IDE and AT interfaces. It is projected that 12 million portable computers will have PCMCIA compatible slots by 1996.

James Prasad, a product manager at Quantum, said there are several reasons why Quantum has chosen SST's technology.
First, it only requires a single power supply of 5 V for programming and reading. This contrasts with the chips made by Intel, the world's largest flash supplier, which need two power supplies. This, says Prasad, means that Quantum flash devices will dissipate little power.
Secondly, the sector erase size on the SST chip is fully compatible with the AT bus
used in most PCs.
Finally, the SST flash chips have a much thicker oxide layer than Intel's chips (40 nm as opposed to 10 nm), which makes them easier to make and results in a smaller die size. The flash drives should be available in the second half of next year.

TFT cell scores 3 V goal

Mitsubishi has used its thin film transistor (TFT) static ram cell, first developed for a 4Mbit part, to build a IMbit device.
The result is a chip that operates from a 3 V supply while consuming just $0.05 \mu \mathrm{~A}$ on standby. Power consumption rises to 16 mA for the chip when active.
The device is organised as $128 \mathrm{~K} \times 8$ bit and samples will be available later this year. A fourth polysilicon layer forms the TFT yielding soft error counts of 0.03 on cycle times of 300 ns .

New
opportunities for environmentally sound electronics: small scale electricity generation projects such as the Caennes Bay wind farm in Wales are providing new opportunities for development in process control engineering. This wind farm uses rented equipment from Livingstone Hire as part of the high voltage safety commissioning procedure.

Flat screen TV leads Matsushita's display drive

$M^{\text {atsushita Electric Industrial says }}$ it plans to take 10% of the $£ 140$ million a year worldwide display market by the end of the century. And the product it believes will spearhead this push is a flat screen television launched in Japan this month. Priced at $£ 1835$ the television has a 14 in screen and is less than one third the depth of a comparable CRT. Initially about 1000 units a month will be produced.

The display is based on Matsushita's flat vision technology unveiled in 1985, and uses a similar principle to that of a CRT; a fluorescent surface is illuminated by incident electrons.
A matrix of wires is used as the electron source instead of a single gun. The electrons are focused onto confined sections of the display by electrostatic deflection circuits. Removing the gun and the conventional, but bulky, magnetic deflection circuits have let Matsushita get the depth down to less than 10 cm .
The firm claims its approach provides the brightness of an LCD combined with the picture quality of a CRT while being considerably simpler to build than an LCD. The firm plans to build larger, wall mounted versions and to improve picture quality suitable for HDTV systems.

Europe snubs US global plans

Europe's largest telephone operators Chave shunned US plans to create a global mobile telephone network using low orbit satellites.
STET, which owns Italy's public telephone network, is the only European company to commit any money to Motorola's Iridium project to build the world's first global mobile telephone system, which has raised $\$ 800 \mathrm{~m}$ from backers in the US, Japan, China, and Russia.
Europe's largest operators, Deutsche Bundespost Telekom, BT and France Telecom, are signatories of Inmarsat, the international satellite operator, which plans to launch a rival system by the end of the decade.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Marconi TF2008 - AM-FM signal generator - Also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 350$
tested to $£ 500$ as new with manual - probe kh in wooden carrying box
HP Frequency comb generator type 8406A - $£ 400$.
HP Sampling Voltmeter (Broadband) type 3406A - $£ 200$.
HP Vector Voltmeter type 8405 A - $£ 400$ to $£ 600$ - old or new colour
HP Synthesiser/signal generator type 8672A - 2 to 18 GHz £ 4000 .
HP Osclilographic recorder type 7404A - 4 track - $£ 350$.
HP Plotter type 9872B-4 pen - £300.
HP Sweep Osclilators type 8690 A \& B + plug-Ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R. HP Network Analyser type 8407A $+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$.
HP Down Converter type 117108-.01-11 Mc/s - £450.
HP Pulse Modulator type $11720 \mathrm{~A}-2-18 \mathrm{GHz}$ - $£ 1000$.
HP Modulator type 8403A - $£ 100-£ 200$.
HP PIn Modulators for above-many different frequencles - $£ 150$
HP Counter type 5342A-18GHz - LED readout - $£ 1500$.
HP Signal Generator type $8640 \mathrm{~B}-\mathrm{Opt001}+003-.5-512 \mathrm{Mc} / \mathrm{s}$ AM/FM $-£ 1000$
HP Amplifier type 8447A -. 1-400Mc/s $£ 200-$ HP 8447 F . $1-1300 \mathrm{Mc} / \mathrm{s} £ 400$
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$ - rear output $£ 800$.
HP 8410-A - B - C Network Analyser 110MC/s to 12 GHz or 18 GHz - plus most other units and displays used in this set-up-8411A-8412-8413-8414-8418-8740-8741-8742-8743 -8746-8650. From £1000.
HP Slgnal Generator type $8660 \mathrm{C}-.1-2600 \mathrm{Mc} / \mathrm{s}$. AM/FM $-£ 3000.1300 \mathrm{Mc} / \mathrm{s} £ 2000$ HP Signal Generator type 8656A - 0.1-990MC/S. AM/FM- $£ 2000$.
HP 8699B Sweep PI - 0.1-4GHz $£ 750$ - HP8690B Malnframe $£ 250$
Racal/Dana Counters 9915M -9916-9917-9921-£150 to £450.
Racal/Dana Counters $9915 \mathrm{M}-9916$ - $9917-9921$ - $£ 150$ to $£ 450$. Fitted FX standards.
Racal/Dana Modulatlon Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal-SGB Bow Z $200 / 1$ - £350.
Marconi RCL Brldge type TF2700- $£ 150$
Marconi/Saunders Signat Sources type -6058B-6070A - 6055B-6059A - 6057B-6056$£ 250-£ 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$ Marconl microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - $£ 1000$ or PI only $£ 600$.
Marconi distortion meter type TF2331 - $£ 150$, TF2331A - $£ 200$
Microwave Systems MOS $/ 3600$ Microwave frequency stabilizer -1 GHz to $40 \mathrm{GHz} £ 1 \mathrm{k}$
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12S1 - S2-S6 - S52 - PG506 - SC504 - SG502 - SG503-SG504 - DC503-DC508 - DD501 WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - P.O.R.
Alltech Stoddart recelver type 17/27A-.01-32MC/s - £2500,
Alltech Stoddart recelver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{s}-£ 2500$
Altech Stoddart recelver type NM65T - 1 to $10 \mathrm{GHz}-£ 1500$
Gould J3B Test oscillator + manual $-£ 200$.
Infra-red BInoculars in fibre-glass carrying case - tested - $£ 100$. Infra-red AFV sights $£ 100$.
ACL Fleld intensity meter receiver type SR - 209-6. Plugs-ins from $5 \mathrm{Mc} / \mathrm{s}$ to 4 GHz -P.O.R.
Tektronlx 491 spectrum analyser - $1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new - $£ 1000$ or $10 \mathrm{Mc} / \mathrm{s} 40 \mathrm{GHz}$.
Tektronix Mainframes $-7603-7623 \mathrm{~A}-7633-7704 \mathrm{~A}-7844-7904$ - TM501 - TM503
Tektronix Mainframes - 7603-7623A - 7633-7704A - 7844-7904 - TM501 - TM503-
TM506-7904-7834-7104.
Knott Polyskanner WM1001 + WM5001 + WM3002 + WM4001 - 5500
Altech 136 Precision test RX +13505 head $2-4 \mathrm{GHz}-£ 350$.
SE Lab Elght Four - FM 4 Channel recorder - $£ 200$.
Altech 757 Spectrum Analyser - 001 22GHz - Digital Storage + Readout - $£ 3000$
Dranetz 606 Power ine dlsturbance analyser - $£ 250$.
Preclslon Anerold barometers- $900-1050 \mathrm{Mb}$ - mechanical digit readout with electronic Indicator HP141T SPECTRUM ANALYSERS - ALL NEW COLOURS TESTED WITH OPER ATING MANUAL
HP 141T + 8552A or B IF-8553B RF $-1 \mathrm{kHz}-110 \mathrm{Me} / \mathrm{s}$-A IF $-£ 1300$ or B IF $-£ 1400$. HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-85548 RF-100kHz-1250 Mc/s-A IF- $£ 1400$ or B IF- $£ 1500$ HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF-8555A RF-10 Mc/s-18GHz-A IF- £2400 or B IF - £2500. HP 141T+8552A or B IF-8556A RF - $20 \mathrm{~Hz}-300 \mathrm{kHz}$-A IF-A IF - £1200 or B IF $-£ 1300$. HP8443A tracking generator/counter - $100 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP8445B racking pre-selector DC-18GHz - $£ 750$.
HP ANZ UNITS AVAIL ABLE SEPARATELY - NEW COLOURS - TESTED.
HP 141 T mainframe - $£ 550-8552 \mathrm{~A}$ IF - $£ 450-8552 \mathrm{BIF}-£ 550-8553 \mathrm{BF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}$ £ $550-8554 \mathrm{~B} \cdot \mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 650-8555 \mathrm{~A} \cdot \mathrm{RF}-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}-\mathrm{E} 1550$. HP 3580A LF-spectrum analyser -5 kHz to 50 kHz - LED readout - digital storage - $£ 1600$ with instruction manual - internal rechargeable battery.
Tektronix 7D20 plug-In 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes -£500-manual- $\mathbf{E S O}^{2}$.
Datron 1065 Auto Cal dighal multimeter with Instruction manual - $£ 500$.
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}-$ Intemal NiCad battery - $£ 150$. Aerlal array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector $-.100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpt - $£ 100$.
EIP 451 microwave pulse counter $18 \mathrm{GHz}-£ 1000$.
Marconl RF Power Amplifler TF2175-1.5Mc/s to $520 \mathrm{Mc} / \mathrm{s}$ with book - $£ 100$.
Marconl 6155A SIgnal Source - 1 to 2 GHz - LED readout - $£ 600$
Schlumberger 2741 Programmable Microwave Counter - 10 Hz to 7.1 GHz - $£ 750$.
Schlumberger 2720 Programmable
TEK 576 Calibration Fixture - 067-0597-99 - $£ 250$
HP 8006 A Word Generator - $£ 150$.
HP 1645A Data Error Analyser - $£ 150$
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS - £50-£150
HP 809C Slotted Line Carriages - various frequencies 10 18GHZ - $£ 100$ to $£ 300$.
HP 532-536-537 Frequency Meters - various frequencies - £150-E250.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $\mathbf{E 1 5 0}$
S.E. Lab SM215 Mk11 transfer standard voltmeter - 1000 volts.

Altiech Stoddart P7 programmer - $£ 200$.
H.P. 6941 B multiprogrammer extender. $£ 100$.

Fluke Y2000RTD selector + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD digital
thermometer +9 probes. $£ 350$ all three items.
H.P. 6181 DC current source. $£ 150$.
H.P. 6181 DC current source. $£ 150$.
H.P. $59501 \mathrm{~A}-\mathrm{HP}$-1B isolated D/A/power supply programmer
H.P. 3438A digital multimeter.
H.P. 6177 C DC current source. $£ 150$
H.P. 6207 B DC power supply.
H.P. $741 \mathrm{~B} \mathrm{AC/DC}$ differential voltmeter standard (old colour) $£ 100$.

Fluke 809 high polta
Fluke 80 high voltage divider.
Fluke 431 C high voltage $D C$ supply.
Tektronix M2 gated delay calibration fixture. 067-0712-00
Tektronix precision DC divider calibration fixture. 067-0503-00.
Tektronix precision DC divider calibration fixture. 067-0503-00
Avo VCM163 valve tester + book $£ 300$.
H.P. 5011T logic trouble shooting kit. £150
A.P. 5011 T logic frouble shooting kit. £150.
Marconi TF2163S attenuator - 1 GHz . $£ 200$.

PPM 8000 programmable scanner.
Fluke 730A DC transter standard.
B\&K 4815 calibrator head.

B\&K 4812 calibrator head.
Farnell power unit H60/50- $\mathbb{4 0 0}$ tested
H.P. FX doubler 938A or 940A - $£ 300$.

Racal/Dana 9300 RMS voltmeter - $£ 250$.
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz}$. 86245A $5.9-12.4 \mathrm{GHz}$
Telequipment CT71 curve tracer - $£ 200$
H.P. 461 A amplifier $-1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - old colour - $£ 100$
H.P. 8750A storage normalizer.

Tektronlx oscliloscopes type 2215A - $60 \mathrm{Mc} / \mathrm{s}-\mathrm{c} / \mathrm{w}$ book $\&$ probe -E 400 .
Tektronlx monitor type 604 - $£ 100$.
Marconi TF2330 or TF2330A wave analysers - £100- $£ 150$
HP5006A SIgnature Analyser $£ 250$ + book.
HP10783A numeric display. E150.
HP 3763 A error detector. £250.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 800$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 900$
Claude Lyons Compuline - line condition monitor - in case - LMP1 + LCM1 $£ 500$
Efratom Atomlc FX standard FRT - FRK -. 1-1-5-10Mc/s. £3K tested.
Racal 4D recorder - £350 - £450 in carrying bag as new.
HP8350A sweep oscilator mainframe + H. 11869 A RF PI adaptor - $£ 1500$.
Altech - precision automatic noise figure indicator type $75-£ 250$.
Adret FX synthesizer 2230A - $1 \mathrm{Mc} / \mathrm{s}$. $£ 250$
eltronix-7S12-7514-7r.
Rotek 10 ASI2C callorator. L2K + book.
Marconl TF2512 RF power meter - 10 or 30 watts - 50 ohms - $£ 80$
Marconi multiplex tester type 2830.
Marconl channel access switch type 2831.
Marconl automatic distortion meter type TF2337A - 150
Marconil mod meters type TF2304 - $£ 250$
HP 5240A counter -10 Hz to $12.4 \mathrm{GHz}-£ 400$
HP 3763A error detector.
HP 8016 A word generator.
HP 489A micro-wave amp - $1-2 \mathrm{GHz}$.
HP 8565A spectrum analyser -. $01-22 \mathrm{GHz}-£ 4 \mathrm{k}$.
HP 5065A rubidium vapour FX standard - $£ 5$ k
Fluke 893A differential meters - $£ 100$ ea.
Systron Donner counter type $60548-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $\mathbf{\Sigma 1 \mathrm { k } .}$
Takeda Riken TR4 120 tracking scope + TR1604P digital memory.
GGG Parc model 4001 indicator +4203 signal averager Pl.
Systron Donner 6120 counter/timer $A+B+C$ inputs $-18 G H z-£ 1 k$
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner signal generator 1702-synthesized to 1 GHz - AM/FM.
Systron Donner microwave counter $6057-18 \mathrm{GHz}$ - Nixey tube - $£ 600$.
Racal/Dana synthesized signal generator $9081-520 \mathrm{Mc} / \mathrm{s}-\mathrm{AM}-\mathrm{FM} . £ 600$.
Farnell SSG520 synthe sized signal generator - $520 \mathrm{Mc} / \mathrm{s}-£ 500$.
Farnell TTS520 test set - $£ 500$-both $£ 900$.
ektronix plug-ins - AM503 - PG501-PG508 - PS503A
Coktronix TMS15 mainframe + M5006 maintrame.
Cole power line monitor T1085- £250
Claude Lyons LCM1P line condition monitor - $£ 250$
Rhodes \& Schwarz power signal generator SLRD-280-2750Mc/s. £250-£600.
Rhodes \& Schwarz vector analyser - ZPV + E1 + E3 funers - $3-2000 \mathrm{Mc} / \mathrm{s}$
Beil \& Howell TMA3000 tape motion analyser - $£ 250$
Ball Efratom rubidium standard PT2568-FRKL.
Trend Data tester type 100-£150.
Farnell electronic load type RB1030-35.
Fairchild Interference analyser model EMC-25-14kc/s-1GHz
Fluke 1720A instrument controller + keyboard.
Marconl 2442 - microwave counter $-26.5 \mathrm{GHz}-£ 1500$
Racal/Dana counters -9904-9905-9906-9915-9916-9917-9921-50Mc/s - 3GHz-
100- $\mathbf{2 4 5 0}$ - allfitted with FX standards.
8\%K 7003 tape recorder - $£ 300$.
B\&K 2425 voltmeter - $£ 150$.
B\&K $4921+4149$ outdoor microphone.
Wlitron sweeper mainframe $610 \mathrm{D}-\mathrm{\Sigma} 500$.
HP3200B VHF osclilator $-10-500 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP3747A selective level measuring set.
HP3586A selective level meter
HP5345A electronlc counter.
HP4815A RF vect or Impedance meter c/w probe. $£ 500-£ 600$.
Marconl TF2092 noise receiver. A, B or C plus fiters.
Marconl TF2091 noise generator. A, B or C plus filters.
Tektronix oscliloscope $485-350 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP180TR, HP 182 T mainframes $£ 300-£ 500$.
Bell \& Howell CSM20008 recorders.
HP5345A automatic frequency convertor $-.015-4 \mathrm{GHz}$.
Fluke 8506A thermal RMS
HP3581A wave analyser.
Phllips panoramic recelver type PM7800-1 to 20 GHz
Marconl 6700 A sweep oscillator $+6730 \mathrm{~A}-11020 \mathrm{~Hz}$
Wiltron scaler network analyser $560+3$ heads. $£ 1 \mathrm{k}$
R\&S signal generator SMS $-0.4-1040 \mathrm{Mc} / \mathrm{s}-£ 1500$
HP8558B spectrum ANZ PI-. $1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{o} / \mathrm{C}-£ 1000$. N/C - $£ 1500$ - To fit HP180 series malnframe avallable - $£ 100$ to $£ 500$.
HP8505A network ANZ +8503 A \mathbf{S} parameter test set +8501 A normalizer $-£ 4 k$
HP8505A network ANZ + 8502A test set $-£ 3 k$.
Racal/Dana 9087 signal generator $-1300 \mathrm{Mc} / \mathrm{s}-£ 2 \mathrm{k}$.
Racal/Dana VLF frequency standard equipment. Tracor recelver type 900 A + difference
meter type 527E + rubidlum standard type 9475-£2750.
Marconl 6960-6960A power meters with 6910 heads $-10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ or $6912-30 \mathrm{kHz}$
$4.2 \mathrm{GHz}-£ 800-£ 1000$.
HP8444A-HP8444A opt 59 tracking generator $£ 1 \mathrm{k}-£ 2 \mathrm{~K}$.
B\&K dual recorder type 2308.
HP8755A scaler ANZ with heads $£ 1 \mathrm{k}$
Tektronix $475-200 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - $£ 350$ less attachments to $£ 500 \mathrm{c} / \mathrm{w}$ manual, probes etc. HP signal generators type $626-628$ - trequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A-435A or B-436A - power meters + powerheads - 10MC/s-40GHz - £200- 2280
HP37308 down convertor - $£ 200$.
Bradiey oscliloscope callbrator type $192-£ 600$.
Spectrascope SD330A LF realtime ANZ -20Hz-50kHz - LED readout - tested - $£ 500$,
HP6620A or 8620C sweep generators - £250 to $£ 1 \mathrm{k}$ with IEEE.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$
Tekironix 7L12 analyser -. 1MC/s-1.8GHz - £1500-7L14 ANZ-£2k.
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}$ - $£ 1200-$ E2k.
Marconi TF2370 spectrum ANZ+TK2373 FX extender 1250Mc/s+trk gen - E2.5k- £3k.
Racal receivers - RA17L-RA1217-RA1218-RA1772-RA1792 - P.O.R.
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$.
HP8616A slgnal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$.

ITEMS BOUGHT FROM HM GOVERMMEMT BEIMG SURPLUS. PRICE IS EX WORKS. S.A.E. FOR EMQUIRIES. PHOME FOR APPOIMTMEMT OR FOR DEMOMSTRATIOM OF AMY ITEMS. GVAILABILITY OR PRICE CHAMGE. VAI AMD CARR., EXTRA. ITEMS MARKED TESTED HAVE 30-DAY WARRANTY. WANTED; TEST EQPT - VALVES - PLUGS \& SOCKETS - SYMCROS - TRAMSMITTIMG \& RECEIVIMG EOPT. ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 651160.

EASY FAST \& POWERFUL CAD SOFTWARE THAT GIVES YOU THE EDGE

ISIS - SCHEMATIC CAPTURE

Easy to use yet extremely powerful schematic entry system with all the features you need to create input for ARES or other CAD software. Now available in a super-fast 32 bit version capable of handling huge designs even on AO-sized sheets.

- Graphical User Interface gives exceptional ease of use - two mouse clicks will place \& route a wire.
- Automatic wire routing, dot placement, label generation.
- 2D drawing capability with symbol library.
- Comprehensive device libraries.
- Heterogeneous devices (e.g. relay and coil) allowed in different places on the schematic.
- Special support for connector pins put each pin just where you want it.
- Output to printers, plotters,

Postscript.

- Export designs to DTP and WP packages.
- Netlist formats for most popular PCB \& simulation software.
- Bill of Materials and Electrical Rules Check reports.
- Multi-sheet and hierarchical design support.
- Automatic annotation/packaging.
- ASCII data import database facility.

ARES - PCB DESIGN

Advanced netlist based PCB layout software newly updated to version 2.5. Major new features include SMT library, real time snap (for those tricky SMT spacings), thermal relief power planes and enhanced autorouting.

- Graphical User Interface
- Real time snap.
- Auto track necking
- Curved, 45/90 or any angle tracks
- Extensive through hole and SMT package libraries as standard.
- 2D drawing capability with symbol library.
- Connectivity highlight.
- Output to printers, plotters, Postscript, Gerber and NC drill.
- Gerber View facility.
- Graphics export for DTP etc.
- Advanced netlist management with forward design modification.
- Component renumber and back-annotate to ISIS.
- Full physical and electrical design rule checks.
- Autorouter handles single, double or multi-layer boards.
- Power plane generator with reliefs.
- Strategy \& DRC information
loadable from ISIS.
- Gerber import utility available

from

ISIS ILLUSTRATOR

Schematic capture for MS Windows 3.1 - produces high quality schematics like you see in the magazines with your choice of line thicknesses, fill styles, fonts, colours etc. Once entered, drawings can be copied to most Windows software through the clipboard.

New version 2 includes netlisting, bill of materials, hierarchy, and much more. An ideal front end for Windows Simulation and PCB design.
new low prices from

CADPAK - BUDGET PRICE CAD

Two programs ISIS SUPERSKETCH and PCB II for the price of one.

CADPAK has everything you need to produce circuit diagrams and PCBs on your PC and is exceptionally easy to use.
superb value at only

RESEARCH NOTES

Blue laser burns itself into storage record books cientists have demonstrated a blue laser

Soptical recording system that can write and read data at what they claim is a world record density of 2.5 gigabits per square inch on a removable magneto-optic disk. That's the equivalent of 6.5 gigabytes on a double-sided 5.25 -inch optical disk.

Researchers have long known that blue light, because of its shorter wavelength, is potentially capable of writing more data on a given disk area. It is simply that blue light can be focused on to a smaller spot than infra-red: $0.4 \mu \mathrm{~m}$, as compared to $0.8 \mu \mathrm{~m}$, about a quarter of the area. But while the theory is straightforward, the practical problems are immense. What researchers at IBM's Almaden Research Centre in California have shown is that the high storage density predicted for blue light systems can now be achieved under realistic conditions.

For their latest demonstration, the IBM team wrote a pattern of data bits on a rotating glass disk coated with a film of magneto-optic material optimised for blue light. They then read back the pattern at a realistic rate of $2 \mathrm{Mbyte} / \mathrm{s}$ and were able to distinguish the signal from the background noise as accurately as in current commercial products.
In rewritable magneto-optic recording, a mark is made when a short, high-intensity laser pulse very quickly heats a small spot of the magneto-optic coating in the presence of a magnetic field. Within a few milliseconds after the laser pulse, the material cools, locking in the magnetic orientation, which in turn affects the polarisation of any light that subsequently passes through it.
To read the data, a low intensity laser illuminates the track. A detector and its associated electronics then reads the changes in polarisation and converts them into data pulses. Erasure is achieved by re-heating the area with the high intensity laser while the magnetic field is reversed.
IBM's team generates its blue light by passing the output of an infra-red gallium arsenide diode laser through a specially designed frequency doubler. Careful feedback controls enable this process to operate efficiently at the power levels required. The blue laser technology has been licensed to Coherent Inc who will initially be targeting industrial, medical and printing applications.

Blue lasers have long proved attractive as a means to increase disk storage desnsity. Now IBM claims to have the beginnings of a real blue laser system.

The successful high density data recording experiments have depended, not just on blue laser technology, but also on the parallel development of new encoding techniques, new magneto-optic materials and a new way of mechanical tracking.
As the marks written on a disk become smaller, it becomes increasingly difficult to keep the head positioned accurately over
the data track. Current optical disks use grooves for the purpose, but the hope is that these will be eliminated because of the additional noise they cause. The latest experiments successfully used a "sample" servo to track a grooveless disk by rapidly analysing the presence of periodic patterns to determine whether or not the head is accurately positioned over the data.

Top people are always in a spin
 environment, the researchers charted the

$[W+W W$ can now reveal the secret to —staying at the top of the pile. To succeed in the stock market, politics, courtship or the media, you have to behave just a little unpredictably. At least that is the conclusion of a study by two researchers at the University of Illinois in Urbana.
Computer simulations by physics professors Alfred Hubler and David Pines show that the best strategy in any kind of chaotic situation is to be neither completely orderly nor totally unpredictable. According to Hubler: "a competitor who imposes a weakly chaotic dynamic on a chaotic environment stays leader for the longest."

Using mathematical terms to define variables such as a competitor's predictability and changes in the
results of several hypothetical long-term interactions. Their simulations suggested that the most productive arrangement for two competitors is to exist in a leaderfollower relationship. The arrangement avoids conflict, whether in the home, in the workplace or between nations.
Hubler and Pines' conclusion is hardly surprising. But what is interesting is the finding that such stable relationships last longest when a small degree of unpredictability is introduced by one or both participants. If a person, or organisation, behaves too predictably, a competitor can figure out a pattern and attempt to shortcircuit it, in turn, destabilising the relationship.

The logical advice to companies, therefore, is to avoid making your corporate strategy too transparent or unchanging.
On the other hand, says Hubler: "if behaviour is too chaotic, unpredictable and non-reproducible, it may alarm competitors who were formerly content."
Such formerly happy competitors may then energise all their efforts in a powerful,
but dangerous over-reaction. It's the sort of thing that leads to price battles, stock market collapses and ultimately, wars.
According to the computer simulation, a small degree of unpredictability is desirable for two reasons. Not only does it stabilise your position at the top, it also offers the tools to respond more quickly to changes in the economic or political climate.

Space service will tackle Hubble's wobbles

When the Space Shuttle takes off probably in December - to service the Esa/Nasa Hubble space telescope, one of its tasks will be to replace the pair of solar panels supplying the telescope with power.
The solar arrays consist of about 50,000 silicon cells covering a surface area of $70 \mathrm{~m}^{2}$.

They generate about 5 kW of electrical power when new, yet must be flexible enough to be rolled up for storage, but rigid enough to remain stable when unfurled in space. To meet this need they are constructed of huge sheets of fibreglass-reinforced Teflon held in place with metal struts,

Unfortunately, after the telescope was launched in 1990, its pointing capability was affected by jitter caused by expansion and contraction of the solar arrays every 90 minutes as the craft passed in and out of sunlight. Temperature variations of $200^{\circ} \mathrm{C}$ caused the tips of the panels to bend out of true by up to 30 cm .
The problem was solved provisionally by anticipating the temperature changes and issuing commands for the telescope to change its direction to counter the changes caused by the flexing solar panels. But this extremely cumbersome procedure occupies a large amount of on-board processing power.
Effects of the flexing have been made worse by the fact that the expansion and contraction is jerky. The new panels, with fewer moving parts, are being carefully designed to minimise the problem. Each support boom is covered with an aluminium layer supported by 900 plastic discs forming an accordion-like structure. The structure will reduce thermal gradients by a factor of 20 while, at the tip of the arrays, a complex system for countering expansion has been replaced by one of frictionless springs. The deployment drum will also be immobilised by an electrical brake.
If all this seems a bit over the top, it is important to realise the degree of stability necessary. The telescope's precision pointing system demands that residual torque from the solar cells must not exceed 0.002 Nm - equivalent to the weight of half a paper-clip held at arm's length!
As well as ridding Hubble of its wobble, the astronauts will be fitting an optical device to correct the aberration of the primary mirror. Space testing and servicing of the device will make use of the faint object camera (foc), The foc, one of the main contributions from Esa, the European Space Agency, is one of several light sensors on the telescope, and consists of a powerful image intensifier able to detect stars of magnitude 29. That is five billion times too low to be seen by the naked eye and is roughly equivalent to a candle on the moon. In conjunction with the telescope optics, the foc is sensitive enough to distinguish between a pair of coins at a distance of 200 km . At the moment, one of its two detectors is showing signs of deterioration and will also need to be fully re-tested

Final testing at British Aerospace of the roll-out solar array for the Esa/Nasa Hubble space telescope. The first servicing mission is scheduled for December.

Geniuses are made not created

$\mathrm{A}_{\mathrm{d}}^{\mathrm{t}}$t a time when British industry is desperately trying to seek out (and retain) its brightest talent, it is illuminating to ask - as psychologists at Florida State University have - exactly what are the ingredients of talent or giftedness.

Florida's Anders Ericsson, professor of psychology. may have an answer. He has been studying world-class experts in music, chess, sport and the aris to learn what talent really means. It seems that all we need to emulate feats - such as the amazing ability to recite pi 1032000 digits - is practice.

Reassuringly, he is discovering that experts may not be any smarter than the rest of us. Indeed, to judge from Ericsson's findings, giftedness has as much more to do with environment than with whatever "clever" genes we inherit. The common factor that emerges when top people are studied is not their IQ but their dedication. As Ericsson casually observes with delightful understatement: "By the time Mozart was 7, he had had a lot of practice."

Unfortunately, there may be a certain age after which you might as well give up trying to become a megastar - in the artistic professions at least. A common feature of many famous musicians and sportspersons is that they started practising consistently from a very early age. Genius at the Mozartian level appears to be difficult to create later in life if the foundations have not been laid during childhood and adolescence.

Fortunately, for those of us in more mundane engineering or academic professions, you don't necessarily have to start your PhD thesis at 18 months of age. Apparently, brilliance in these areas can flower much later in life.
To illustrate the relevance of sheer hard work and practice, professor Ericsson cites the example of students who were put through a rigorous training programme to help them memorise numbers. After a week of practising an hour a day, a typical college student could recite the value of pi to about 12 or 13 digits. After two years' practice, he or she could manage about 80 . Ericsson is now continuing his research into the ability of the 35 -year old psychology graduate and his 32000 digit pi - taking about three hours to recite: he's hoping to reach 100000 .
Ericsson says that people are not born with this sort of exceptional memory. Being gifted in this - or indeed other areas - seems to be largely a matter of motivation.
Ericsson doesn't imply that everyone can become a genius. There are undoubtedly

Research Notes is written by John Wilson of the BBC World Service.
genetic differences that make some people more likely to succeed than others. But the assumption that talent is largely in the genes is not supported by the evidence.
The key difference between ordinary people and highly talented people is the extent to which they are motivated to practise, and it is not just the quantity of practice, but its quality. Endless repetition will not create talent: the sort of practice that makes for genius is well organised and
aimed at a specific goal
Truly talented people, says Ericsson, regard properly directed practice as so essential that they come almost to enjoy what other people find an unrewarding grind. They are also motivated to seek out other experts who will direct their practice effectively. As yet no-one knows why some people have the necessary molivation to become geniuses and others, with equal intelligence, don't. Pushy parents, I'd guess.

Diamonds without pressure

Chemists at Pennsylvania State University have devised what they say is the first method for making diamond from a soluble, solid-phase non-diamond material. The process works at normal atmospheric pressure and at relatively low temperatures.
Natural diamonds are created under conditions of extremely high temperatures and pressures deep inside the Earth, and most existing industrial processes employ similarly energy-intensive approaches. The Penn State chemists, led by Patricia Bianconi, have adopted a less aggressive and therefore potentially cheaper technique. They have developed a polymer, called polyphenylcarbyne, which looks like brown sugar and has a natural tendency to turn into diamond when heated because some of its atoms are already in a diamond-like configuration. The polymer is also the first. proto-diamond material that can be dissolved in solvents. It opens up the
possibility of being able to coat objects with the polymer solution and then, by heating, to cover the object with a protective coat of wear-resistant artificial diamond.
Bianconi speculates that such artificial diamond could have widespread applications in the electronics industry. Not only does it have the highest melting point of any known material, it also has a very high thermal conductivity. She says that it might be possible to draw diamond components directly onto a chip by coating it with the polymer solution and then directing localised heat at it by means of a laser beam.
Bianconi and her team are now refining the chemistry to reduce the amount of impurity, especially graphite.

Penn State protodiamond polymer after processing (40 x). Black areas are microscopic diamond coated with graphite; transparent areas are crystalline diamond.

Ben Duncan analyses distortion performance and harmonic spectra of the UK's ten most popular audio power ICs. In a unique performance guide, he names the good, the bad - and the ugly

SPECTRALIY CHALLENGED: The top 10 audio power chips

The world's first monolithic audio power amplifier IC was released by Plessey in the UK in 1968. But it took Clive Sinclair to make a success of it as the $/ C / 2^{1}$. Since then, IC power blocks have become the mainstay of portable audio and communications equipment.
So who needs reviews? Without them, purchasers will undoubtedly work out which products are poor value and eventually bad business draws to a close. But reviewing provides feed-forward as well as speeding the feedback loop, and quality of many end products - from cars to software - has certainly been forced upwards by continuous published scrutiny.

Electronic components have faced little of this. The open-ended application of component parts appears to make comparative review (beyond checking published specifications) next to impossible. But IC power opamps are different in that they are made and used mainly for just one task - driving audio into loudspeakers.

They are used in professional audio for talkback and headphone monitoring; in low budget audio, and by one maker as a power amp driver stage. Similarly, comms, and wherever a few tenths to tens of watts are needed, from a few Hz to 20 kHz , are also likely applications.
In use, the small signal stages must be pro-
tected from positive feedback induced by asymmetric, Class A-B currents in the adjacent output section and from thermal distortion caused by widely fluctuating Class A-B junction temperatures. So design with low distortion and RF/LF stability is quite a challenge ${ }^{2}$, but today there are over 100 IC power amplifiers to choose from, several dating back twenty years. A large number are Japanese and most of these are not readily available outside the orient. The remaining main players are Nat Semi in the US, and Philips and SGSThomson (representing Europe).
For practical testing, these companies' 50 or so devices have been whittled down to the most useful ten best sellers in the UK (Table 1).

Table 1. Power op-amps under test.

		Nominal Po $\%$ THD, load
Model	Maker	$3 W, 3 \%, 4 \Omega$
LM380	Nat Seml	$3 W$,
LM383 T	Nat Semi	$17 \mathrm{~W}, 10 \%, 2$
LM386 N4	Nat Semi	$0.3 \mathrm{~W}, 3 \%, 4$
LM1875	Nat Semi	$33 \mathrm{~W}, 1 \%, 8$
TBA820 M	SGS-Thom	$1.6 \mathrm{~W}, 10 \%$, any
TDA1514	Philips	$50 \mathrm{~W}, 0.1 \%, 4$
TDA2030	SGS-Thom	$16 \mathrm{~W}, 0.5 \%, 4$
TDA2040	SGS-Thom	$36 \mathrm{~W}, 10 \%, 4$
TDA2611	Philips	$12 \mathrm{~W}, 10 \%, 8$
TDA2822 M	SGS-Thom	$1 \mathrm{~W}, 10 \%, 8$

These 10 power op-amps were chosen as being presently the largest selling models in UK, from European \& US makers. Maximum power outputs are maker's specification into lowest rated load at highest rated supply, or closest tabulated rating. They cannot be directly compared, as the loads and \%THD reference points differ: for example, power ratings at 10% THD will be higher than those taken (more properly) at 0.1% THD.

Power capabilities range from hundreds of milliwatts (TBA820M) up to tens of watts (TDA1514).

Testing standards

The devices being tested vary greatly, and bold decisions were needed to make the processing reasonably straightforward while giving meaningful results. To begin with - and unlike most IC op-amps - over half the group of power ICs is devoid of a standard package or pinouts. The four units in the Pentawatt package are the exception. With consistent pinout, and dual polarity supplies and inputs, the Pentawatt is a universal receptacle for amplifiers configured as op-amps.
Most of the remaining ICs are not pure opamps (note the requirement for a DC blocking capacitor on the LM383's -ve input, for exam-

ple, signifying internal input biasing). But they all employ mainly direct-coupled stages with overall NFB. The LM380, 386 and TDA2611, 2822 have fixed gains to save on parts count, ranging from +26 to +39 dB . This is too much gain for use at common line levels, but allows most transducers to be connected without intermediate preamplification - a particularly useful facet in ultra compact, low budget equipment. On the other hand, it prevents testing at a uniform gain.
Gain can be adjusted on all the remaining devices, and - with the exception of the TBA 820 - it is set by an external, shunt feedback

Figs. 1 to 10 show \%THD (on left) vs input level in $d B \mu$ (horizontal axis) vs output level in Log watts (on right). \%THD is the solid line. Transfer function in watts is dashed. By selecting onset of clip or 0.1% THD (whichever is highest) as the reference, power outputs can be meaningfully compared between these figures. Note that some devices employ 30 V and others 15 V , giving target powers of about 21 and about

Fig. 1. TDA1514

Fig. 2. TDA2030

4 W , assuming 2 V saturation losses. The comparison suggests some devices (eg LM 383T and TBA 820) have either rather optimistic power specifications or have entered thermal shutdown when swept - a fact not registered by thermal monitoring. Retests from cold show that spectral results are essentially unaffected by thermal conditions.

Fig. 3. LM383 T

Fig. 4. LM1875

Fig. 5 to 10. The dynamic THD and transfer plots on this page show a variety of pathologies. All plots are at 5 kHz . In Fig. 8, the distortion is barely out of the noise floor (at -31dBu input drive) before it begins to rise again, into a very soggy asymmetric clip, rather like a single ended valve amplifier. The transfer functions for all the others bend as clip is entered. The almost flat distortion curves in Figs. 6,9 and 10 are characteristic of crossover distortion.
In Fig. 5, distortion (and noise) are commendably low for signals 20 dB below clip, but $\%$ THD rises at a steady rate thereafter.

Fig. 5. TDA2040

Fig. 6. TDA2611 A

Fig. 7. LM380

Fig. 8. TBA820 M

Fig. 9. LM386 N4

Fig. 10. TDA 2822 M
divider. The LM383 (Fig. 23) employs unusually low resistor values here to enhance PSRR. Instead of fixing the gains of the flexible devices at one arbitrary level, gain is allowed to follow the maker's evaluation circuit, excepting the LM383 and LM1875, which are set at 20 dB .
The conditions are reasonable in that all the devices have gains which are close to those most used in practice, considering the ICs' span of power ratings. For example, the higher power devices are less liable to be used in portable battery-powered systems, and rather more likely to be driven at line level, requiring less gain.
All devices are operated in the non-inverting mode as this is the sole option for the non op-
amp types (Fig. 22), excepting the TDA1514. As the lowest gain is +20 dB , common mode distortion will be expected to be a minor feature. Most of the lower power ICs work on single rails, while the higher output models employ dual supplies. Maximum supply voltages vary from $\pm 30 \mathrm{~V}$ (TDA/5/4) down to +15 V (TDA2822 M). The test supply is fixed at the lowest device's maximum: +15 V for single rail devices and $\pm 15 \mathrm{~V}$ for dual rail devices. Under these conditions, the loop gain of the devices having significantly higher maximum voltages will be depressed about 10 to 15%. This affects \% THD above 5 kHz , but only marginally against the background of loop gain unit-to-unit tolerance of 30 to 50%, and the gain differences already discussed.

Test circuits

Looking at the test circuitry in more detail, on all the single rail circuits, the output DC blocking capacitor is standardised at $1000 \mu \mathrm{~F}$. Some circuits specify - and most received an RF filter capacitor at their inputs. On several ICs, it is mandatory, despite being driven by just 1.5 m of screened cable from a 25Ω source. Some units need a DC blocking capacitor at their inputs to preserve their biasing.

Figs. 11 to 21 show harmonic spectra and noise. Harmonic levels are slightly changed when testing preceeds from switch on, as opposed to being pre-warmed by quiescent current. If further changes were evident over logarithmic time intervals, the audiophile's claim that equipment sonics change over a long period of 'warm up' would be potentially validated, subject to further psychoacoustic translation. And while the broad pattern of the harmonics were only slightly changed with temperature, this might amount to a disproportionate audible change.

Fig. 11. TDA1514

Fig. 12. TDA2030

Fig. 13. LM383 T

Fig. 14. LM1875

Figs. 15 to 20. In this group the TDA2040 is a good example of monotonically reducing harmonics, with the exception of the 10th and 11th. This kind of structure is more pleasing to the ear, and more like the harmonics in euphoric musical sounds than the humped pattern of the LM380 in Fig. 17. At over twenty years, LM380 is the oldest device in the tests, and the only DIL unit having provision for copper heatsinking "wings" to be soldered to 6 of its pins. But the even more ugly, roller-coaster harmonic pattern of a much newer device like the LM386 (Fig. 19) shows that audio quality evolution cannot be counted upon.

Fig. 15. TDA2040

Fig. 16. TDA2611 A

Fig. 17. LM380

Fig. 18. TBA 820 M

Fig. 19. LM386 N4

Fig. 20. TDA2822 M

The TDA261I's stability margin is such that the Audio Precision analyser's mildly reactive loading had to be isolated with 1 k . The TDA1514 works well despite its modest supply decoupling. Past experience led me to increase the supply decoupling on other units beyond the maker's recommendations.
The $470 \mu \mathrm{~F}$ rail decoupling capacitors are all

Low-Z at HF types. Power is taken from a regulated supply with a reasonably low source impedance, below $10 \mathrm{~m} \Omega$ (including leads $\&$ connections), from below 100 Hz to above 10 kHz . In practice, many battery and low budget mains supplies will be considerably higher.

The circuits are built on Veroboard explic-

itly made for analogue prototyping and solely available from RS (433-911). As each node has five holes, inter-track capacitance is limited to a few pF. RF stability and low THD are assured by noding all the main grounds to a common point, and by running solder along power, output and ground tracks to keep resistance down. Hook-up is with $1 / 0.6 \mathrm{~mm}$ solid core wire with a maximum length of 50 mm .

Test procedure

All testing is performed into an 8Ω load, with about n F of load capacitance. As a preliminary to spectral testing, each DUT (device under test) is checked by first performing a bandwidth sweep. Several have secondary (HF) crossover distortion, slew limiting and/or RF oscillation above 20 kHz . Results of the tests led to some of the fixes described above.
Next, \%THD is plotted dynamically, against level. The DUT is driven from 15 or 20 dB below clip, up to and beyond clip, at a spot frequency of 5 kHz . The characteristic of a

Fig. 22. Test circuits.

Fig. 23. Test circuits, all Pentawatt package.

high-performance, clean device with high NFB is a "lazy V" or sideways " L " shape. The noise floor at first drops linearly to reveal the real \%THD, and the THD then rises abruptly, beyond clip. Looking at the results in Figs. 110, the TDA15/4 and LM 1875 come closest to this. The same Figs also plot the transfer function, in watts, with a log scale so that the power can be related to a given \%THD and drive level.
On Fig. 1, for example, 0.1% at A on the THD graph corresponds to point B (draw a straight vertical line above), which is around IIW. Looking down shows that input drive is around -7.5 dBu . The AP's \%THD residue is typically below 0.0007% up to clip, much lower than even the best DUTs.
As in previous tests ${ }^{3}$, the devices' harmonic spectra are then plotted, using the Audio Precision dual domain test set's DSP facility, set at 48 kHz sample rate to provide a tight, 3 Hz bandwidth. All the units had spectra (Figs. 11-20) much higher than the AP residue (Fig. 21) and their own noise, so there is none of the uncertainty that plagues measuring the better op-amps. Processing is speeded up by averaging just 16 samples for certainty, and all testing was done with DUTs placed in a steel shielding tray. The results of Figs. 1-10 were used to set the test level at between 1 and 2 dB below clip - the latter defined clearly in most cases by the point where the \%THD graph turns irrevocably upwards.
All the devices heated up when tested, and whereas external heatsink temperatures would be lower with program instead of a sinewave, and with a real loudspeaker as a load, peak junction temperatures could be much the same. Some tests were run immediately at switch on, and while several showed greater power on output, \%THD and spectral results were only marginally better, if different at all, particularly with the 8 pin DIL devices, which have small junctions and high thermal resistance.

From best to worst

Ranking devices by absolute level of their spectra (Table 2), it is fitting that Philips' TDAI514 appears as the top performer, as it's trumpeted as a "high performance Hi -Fi amplifier", as well as the being the newest in the group (1991). But that two of the oldest (circa 1975-8) devices came next best shows that evolution in audio quality is not to be relied upon. If the harmonic pattern is taken to be more critical to the ears than the absolute levels of spectra, then the clear leaders are TDAI514 and TBA820M, with their evenorder dominance. On this basis, asymmetric clipping and even the 820 's primitive, singleended output stages are beneficial!
Next most likely to be preferable on sonic grounds are the units with monotonically

Table 2. Spectral ranking generally ordered by 2nd harmonic level. Cleanest devices with least residue are at the top.

Model	Package	Harmonic pattern	Gain $\text { * }=\text { fixed }$
TDA1514	SIL	Even	+30
TDA2030	Pen	Mono	$+30$
LM383 T	Pen	Mono	+20
LM1875	Pen	Cplx	+20
TDA2040	Pen	Mono	$+30$
TDA2611	SIL	Mono	+38*
LM380	DHL 14*	Cplx	+34*
TBA820 M	DIL 8	Even	+34
LM386 N4	DIL	Cplx	+26*
TDA2822 M	DIL 8	Cplx	+39*
Notes:			
Pen = Pentaw	= five leg	0220	
Ever/Odd = even/odd harmonics dominate			
Mono = harmonics slope off monotonically			
Cplx = complex pattern * $=$ fitted with $2 \mathrm{in}^{2}$ heatsink.			

descending spectra (TDA2030, 2040, 2611 and LM383). Soft clipping may contribute to good sonics, where the amplifier's swing is forced (by design, battery technology and budget constraints) to be inadequate. When this is the case, the LM386, TBA820, TDA2822 and to a lesser extent the $L M 2040$ are expected to sound least painful in overdrive. Much hearing damage is caused by compression or signal clipping, not high SPLs per se, so it is hoped that designers of equipment driving headsets and earpieces (particularly domestic replay equipment likely to be used by children) are making notes... Ideally, audio designers will all be studying Douglas Self's treatise (series running in this issue) on fundamental bipolar amplifer distortion pathologies too.
Looking now at Fig. 10, the TDA2822M is strictly unacceptable as an audio device, on the grounds that THD consistently above 0.1% from a device with overall feedback is bound to be fatiguing and irritating. It could prove fatal (or at least needlessly stressful) if used to drive an air traffic controller's or pilot's headset, for example.
Finally, how do ICs compare to real power amplifiers? Well compared to the professional PA amplifiers measured so far, the top five ICs are returning similar absolute levels, though with different spectra. The remaining five are probably not much different to most tight budget commercial amplifiers.

References

1. Ben Duncan, AMP-02 state of the art preamplifier, Part 5, p.37-39, Hi-Fi News, May '90.
2. Martin Giles (Ed), Audio/Radio Handbook, Nat Semi, 1980, section 4 "Power amplifiers". 3. Ben Duncan, How clean is your audio opamp ?, $E W+W W$, Jan '93.
3. Ben Duncan, Evaluating Audio op-amps, Pts. 2 \& 3, Ștudio Sound, Aug-Oct '90.

Acknowledgement

The author would like to acknowledge the assistance given by Audio Synthesis and Macro Marketing.

AMAZING PC BASE SALE

WE HAVE ACGUIRED A SELECTION OF HGGH GUALITY AMSTRAD PC BASE UNITS AT MEGA discount prices. LOOK What you can buy FROM ONLY £19.00!

ITSTED AMSTPAD PCBASE UNITS COMPLETE WITH MOTHER -BOARD, VIDEO CONTROLLER, DISK CNTRLR,

AMSTRAD 1512SD £19.00 REF: EW/AM19P1 AMSTRAD 1512DD £25.00 REF: EW/AM25P1 AMSTRAD 1640SD £25.00 REF: EW/AM25P2 AMSTRAD 1640DD $£ 30.00$ REF: EW/AM30P1
 NEW or REFURBISHED PC BASES COMPLETE WITH KEYBOARD,
MOUSE, and 5.25" DRIVE.
RUNS UNDER MS-DOS VER 3 nos sot suppllad All sold guaranteed as new. All you need is a power supply unit \& monitor.

AMSTRAD 1512SD
£49.00 $\$ 59.00$ $£ 69.00$ $£ 79.00$

REF: EW/AM49Pl REF: EW/AM59P1 REF: EW/AM69P1 REF: EW/AM79P1

AMAZING COMPUTER BARGAINS

IBM COMPATIBLE LAPTOPS ${ }_{\text {raw }}$ ONLY $\AA^{99.00_{\text {mus war }}}$ LIMITED OFFER - HURRY WHILE STOCKS LAST

AMAZING SALE OF BT ANSWERPHONES

As NEW, fully guaranteed BT Product as LESS than Half the original retail price!!!

RESPONSE 200 AND 400 MODELS
Each Response Unit is supplied with a Micro cassette, PSU and User Details. The following features are found on the 400 Model and the 200 has almost as many features.:-

Micro Cassette
Call Screening Call Count Answer only Last No redial On hook dialling BT Network Services Mute Facillty

Ren 1.0.
Memo Facility Remote Facility 20 Memortes Vartable volume Hands free speach PABX Compatuble LCD Display

RESPONSE $200 £ 35.99$ Ref:EW36P1 RESPONSE $400 \& 49.99 \mathrm{Ref}: E W 49 \mathrm{P} 1$ (plus vat)

10 WATT SOLAR CELL

($3^{\prime \prime} \times 1$ ") $14.5 \mathrm{v} / 700 \mathrm{~mA}$ Now available by mail order Coated with exceptionally effictent amorphous silicon these glass solar cells have an almost timeless lifespan and will not suffer with discolouration. There are possibly hundreds of uses for these cells, a few of which could be: for Car Battery Charging, for useon Boats or on Caravans, in fact anywhere a portable 12 V supply is required. Several of our overseas Mediterranean customers with homes in remote hilly sites, use these solar cells as a daytime power source to backup generators. The solar cells can be connected inserles or parallel togive higher voltages or larger current capacity. REF: EW34P2

PRICED at only

$£^{23.95}$

PLUS an additional $\mathbf{2} 2.00$ special packaging charge
BULL ELECTRICAL 250 PGRTLAND ROA D HOVE SUSSEX bN3 sat
MAI. ORDER YERMS, CASH PO OR CHEQUE WTHORDER PLUS ET.00 POST PLUS VAT: FLEASEALLOW T: to DAYs Fon belvery
 747. 0273:203500 FAX: 0273:320077

£1 BARGAIN PACKS

In fact...cheaper than $£ 1$ because if you buy 10 you can choose one other and receive it free! $1 \times 12 v$ Stepper Motor. 7.5 degree. Order Ref: 910. 1×10 pack Screwdrivers. Order Ref: 909. $2 \times 5 \mathrm{amp}$ Pull Cord Celling Switches. Brown. Order Ref: 921
$5 \times$ reels insulation Tape. Order Ref: 911
$4 \times 14 \mathrm{Mn}$ Bull-races. Order Ref: 912
$2 \times$ Cord Grip Switch lamp Holders. Order Ref: 913 $1 \times$ DC Voltage Reducer. 12v-6v. Order Ref: 916 $1 \times 10 \mathrm{amp} 40 \mathrm{v}$ Bridge Rectifier. Order Ref. 889. $1 \times 10 \mathrm{amp} 40 \mathrm{~V}$ Bridge Rectifier. Order Ref. 889.
Llghtweight Stereo Headphones. Moving coil s Lightweight Stereo Headpho
superior sound. Order Ref: 896.
$2 \times 25 \mathrm{w}$ Crossovers. For 40 hm loudspeakers. Order $2 \times 25 W$
Ref:22
Ref: 22 .
$2 \times$ nicad Constant Current Chargers. Easily adapt able to charge almost any nicad battery. Order Ref: 30 10 m Twin Screened Flex. White pvc cover. Order Ref 122
$2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these ar ideal for light operated switch. Order Ref: 132.
$2 \times$ Reed Relay Kits. you get 8 reed switches and 2 coil sets with notes on making relays and other gadgets. Order Ref: 148
$1 \times$ Big Pull Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ puil. Order Ref: 871
$1 \times$ Big Push Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Minl Mono Amp. $3 W$ into 4 ohm speaker or $1 W$ into 8 ohm . Order Ref: 268
$1 \times$ Minl Stereo 1 W Amp. Order Ref: 870
$1 \times \mathrm{In}$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC most useful mini moving coil
passengers. Order Ref: 29.
passengers. Order Rer: 29 . $1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vis
$2 \times$ LIthium Batterles. 2.5 V penlight size. Order Ret: 2×1
874.
874.
$2 \times 3 m$
Telephone Leads. With BT flat plug. Ideal for phone extensions, fax, etc. Order Ref: 552.
$1 \times 12 \mathrm{~V}$ Solenold. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232.
$4 \times \operatorname{In}$-Flex Swliches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 16 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9
$\mathbf{2 \times}$ Humidity Switches. As the air becomes damper, the membrane stretches and operates a micro switch Order Ref: 32.

5×13 A Rocker Switch. Three tags so on/off, or

 changeover with centre off. Order Ref: 42$2 \times$ Flat Solenoids. You could make your multi-tester read AC amps with this. Order Ref: 79
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67.
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A.
$2 \times$ Stripper Boards. Each contains a 400V 2 A bridge $2 \times$ Stripper Boards. Each contains a $400 \mathrm{~V} 2 A$ bridge rectifier and 14 other diodes and rectifiers
dozens of condensers, etc. Order Ref: 120
12 Very Fine Drills. For PCB boards etc. Normal cost 12 Very Fine Drills. For Reb 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
$6 \times$ Microphone inserts. Magnetic 400 ohm, also ac as speakers. Order Ref: 139 .
$6 \times$ Neon indicators. In panel mounting holders with lens. Order Ref: 180.
$1 \times$ in-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196.
$1 \times$ Mains Solenold. Very powerful as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199.
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221.
$2 \times\left(6^{\prime \prime} \times 4^{\prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref: 243.
x Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252.
$2 \times$ Oblong Push Switches. For bell or chimes, these $2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so cour
fitted in pattress. Order Ref: 263.
$50 \times$ Mixed Silicon Diodes. Order Ref: 293
1×6 Digit Mains Operated Counter. Standard size 1×6 Digit Mains Operated Counter. 28 .
but counts in even numbers. Order Ref: 28 .
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other $2 \times 6 \mathrm{~V}$ Operated Reed Relays.
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55.
1 x Magnetic Brake. For stopping a motor or rotating lool. Order Ref: 66
$1 \times$ Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack, so quite powertul. Order Ref: 85
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86.
$1 \times$ Case. $3^{1 / 2 \times 21 / 4 \times 13 / 4}$ with $13 A$ socket pins. Order Ref: 845.
$2 \times$ Cases. $21 / 2 \times 21 / 4 \times 1^{3 / 4}$ with $13 A$ pins. Order Ref: 565. $4 \times$ Luminous Rocker Switches. 10 A mains. Order Ref: 793.
$4 \times$ Different Standard V3 Mlcro Switches. Order Ref: 340 .
$4 \times$ ${ }_{313}^{4}$.

BARGAINS GALORE

BARGAINS GALORE

megohms. The multimeter has four ranges, $A C / D C$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $\mathbf{5 0}$, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra Order Ref: 7.5P/4
Mains 230 V Fan. Best make "PAPST", $41 / 2$ " square, metal lades, 88 , Order Ref: 8 P8.
2 MW Laser. Hellum neon by Philips, full spec. £30, Orde Ref: $30 \mathrm{P1}$. Power supply for this in kit form with case is $£ 15$ 18, Order Ref: 18, or in larger case to house tube as we
18arger unit, made up, tested and eady to use, complete with laser tube $£ 69$ Order Ref. $69 P 1$ /3hp 12V Motor - The Famous SInclair C5. Brand new, E15, Order Ref: 15P8
Solar Charger. Holds 4AA nicads and recharges these in 8 hours, in very neat plastic case £6, Order Ref: 6P3 Ferrite Aerial Rod. 8 "long $\times 3 / 8^{\prime \prime}$ diameter, made by Mullard Complete with wo cols, 2 for $£ 1$, Order Ret: 832 Air Spaced Trimmer Caps. 2-20pt, ideal for precisio tuning UHF circuits, 4 for $£ 1$, Order Ref: 818 B
Mains Isolation Transformer. Stops you getting "to earth hocks. 230 V in and 230 V out. 150 watt, $£ 7.50$ Order Re $.5 \mathrm{P} / 5$ and a 250 W version is $£ 10$, Order Ref: 10P97 RPM Mains Driven. This is a shaded pole motor, $£$ Order Ref: 5P54.
Amstrad Power Unit. 13.5V at 1.9A or 12V at 2A encased and with leads and output plug, normal mains input £6, Order Ref: 6P23.
Atari 65 XE . At 65 K this is quite powerful, so suitable fo home or business, unused and in perfect order but less PSU, only $£ 19.50$, Order Ref: $19.5 \mathrm{P} / 5 \mathrm{~B}$.
BOW Mains Transformer. Two available, good quality, both with normal primaries and upright mounting, one is 20 V 4 A E3 each.
Project Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1 / 2 "}$ metai, sprayed gre
Project Box. Size approx. 8 " $\times 4$ " $x 41 / 2^{\prime \prime}$ metai, sprayed grey GPO so best quality, only $£ 3$ each, Order Ref: $3 P 74$. Water Valve. 230V operated with hose connections, idea or auto plant spray or would control air or gas into tanks etc. £1 each, Order Ref: 370.
BT Power Supply Unit. Output 9.5 V AC at 600 mA , in black plastic case with $13 A$ plugs to go straight into socket, and approximately 3 metres of twin output lead. Price 81.50 Order Ref: 1.5 P
500 V Bridge Megger. Develo ped for GPO technicians, the Ohmeter 18B is the modem equivalent of the bridge megger. 9 V battery operated, it incorporates a 500 V enerator for insulation testing and a null balance bridge for Ref: 45P2.
Experimenting with Valves. Don't spend a fortune on a mains transformer, we can supply one with standard mains nput and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at $3 \mathrm{~A}, £ 5$ Order Ref: 5P 167.
$15 \mathrm{~W} 8 \mathrm{Ohm} 8^{\prime \prime}$ Speaker \& $3^{\prime \prime}$ Tweeter. Made for a discontinued high quality music centre, gives real hi-fi and only £4 per pair, Order Ref: 4P57.
Water Pump. Very powerful, mains operated, $£ 10$, Order Ret: 10P74
-1mA Full Vision Panel Meter. $2^{3 / 4^{4}}$ square, scaled 0-100 but scale easily removed for re-writing, $£ 1$ each, Order Ref
VU Meter. Illuminate this from behind becomes on/of dicater as well, $11 /$ '" $^{\prime \prime}$ square, 75 each. Order Ref: 366. Edge-Wise Panel Meter. Ideal when short of panel space only $40 \times 14 \mathrm{~mm}$, also have built-in LED, 500 uAf .sdd, scaled -5, \&1 each, Order Ref: 131
1 RPM Motor. This is only 2 W so will not cost much to run Speed is ideal for revolving mirrors or lights. \&2, Order Ref P328.
12 Solar Cell. Could keep a battery charged even when no Battery Qulck Charger. Into a flat battery to about 5A the Battery Qulck Charger. Into a flat battery to about 5A the charging rate would be 8-10A, this would fall away as Complete kit includes mains tran sformer rectifier, capacitor, switch and metal case. $£ 7.50$, Order Reí. 7.5 P 20 15 V PSU. Mains operated nicely cased, adequately smooth dc output. £1, Order Ref. 942.
Mains Filter. Resin impregnated, nicely cased, pcb mounting. £2, Order Ref. 2 P315.
Unusual Solenold. Solenoids normally have to be energised to pull in and hold the core, this is a disadvantage wher he appliance is left on for most of the time. We now hav magnetic solenoids which hold the core until a voltage ppplied to release fit. £2. Order Ref. 2P327.
期 So you could have 16 v at 12 A or 8 v at 25 A . Could be idea
 Ref. 15P1
Prices Include VAT. Send cheque/postal order or rillg and quote credit card number. Add £3 post and packing. Orders over $\mathbf{E} 25$ post free.

> M\&B ELECTRICAL SUPPLIES LTD
> Pilgrim Works (Dept. WW)
> Stairbridge Lane, Bolney, Sussex RH17 5PA
> Telephone (0444) 881965 phone for Fax
> Callers to 12 Boundary Road Hove, Sussex.

(ova besj denjefu sovje wis you this sy500 H-P Osciloscope

THIS Hewlett-Packard oscilloscope combines the feel and display of a top line analogue instrument with the precision and programmability of digital electronics. This DSO is easy to use because it was designed by electronics engineers for electronics engineers.

Electronics World is looking for freelance authors who can bring applied electronics design alive for other electronics professionals through their writing. We want to commission articles on circuit design using the wealth of modern components now available to electronics engineers. Possible areas of interest could be RF, microwave, audio, video, consumer elęctronics, data acquisition, signal processing and computer peripherals.

All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

The author of the best script received over the period June I, 1993 to May 30, 1994 will receive an HP54600A oscilloscope in addition to the normal author's fee.

The judging panel will be drawn from Electronics World and Hewlett-Packard.

A Hewlett-Packard HP54600A 100 MHz digital storage scope could be yours when you write for Electronics World + Wireless World the journal that design engineers pay to read.

For further details about our quest for the best call or write to

Frank Ogden, Edilor, ELECTRONICS WORLD Quadrant House, The Quadrant, Sulton
SM2 5AS. Tel 081.6523128

Sliding into a software specialty

Drawing together various graphs and plots from different sources into a coherent slide presentation is notoriously difficult. Allen Brown assigns Stanford Graphics to the task.

Graph gallery in the technical section illustrating the 3-D plots available.

One of the key aspects of any good presentation is confidence. For that, a coherent and lucid aural presentation of the facts supported by well produced visual aids is essential - gone are the days when an engineer could present information simply by using half a dozen transparencies and a few felt tip pens.

Fortunately presentation software - such as Stanford Graphics for Windows from 3-D Visions of California - is making the task of generating quality visual aid material now relatively easy.
Stanford Graphics is an alternative to the well known Harvard Graphics, and allows the user to create a set of slides with a consistent format, irrespective of source. The slides may be included in documents or used for audio visual purposes (or both).
Images can be imported from other sources (including TIF and PCX formats) and so slides can incorporate graphs,

images and text. Using the slide sorter enables slides to be displayed as an array for final checking.
The finished product could be a set of 35 mm colour transparencies for projectors (several companies will now convert EPS image files into 35 mm) and a set of accompanying hand outs, including the slide contents, which can be produced from a laser printer. When generating text slides the user has access to the Style Master which allows the creation of several templates which are used to standardise the presentation format.

Graphing

Prime feature of Stanford Graphics is its large array of graphing formats, grouped into the four categories of business, statistical, technical and custom. A "gallery" enables the user to have a quick look at each option by browsing through the possible designs. Each group offers an impressive range of designs, including 3-D options: some are well known (bar and column graphs); others not so. For example, apparently the Spider plot allows a number of system parameters to be rated on an equal scale, enabling a user to track any parameter moving outside an acceptance envelope. Among the useful business options is the Gantt chart, frequently used to plan projects (unfortunately it still does not predict slippages!).
Statistical options include histograms, scatter plots, star plots and error-bar plots, all useful for plotting very basic statistical information. But anyone needing to perform any serious statistics would probably turn to a statistical package such as SPSS or StatGraphics. These already have an impressive range of graphical representations and since they run under Windows, it is highly unlikely that an engineer or statistician would deliberately choose Stanford Graphics for statistical processing. But the technical graphing options are very useful and include polar plot, shadow-contour, Smith chart and a surface plot.

Importing data

Importing data from spreadsheets such as Microsoft Excel or Lotus 1-2-3 presents no problem. But if other sources are

used, data must be in an ascii file format with a minimum of two arrays (X and Y). Unfortunately, a sequence of data (Y co-ordinates) can not be plotted directly from a data acquisition card or data file, as X co-ordinate values must be supplied. The limitation can be irritating as all data files must be pre-processed to add the scaled X array data.

Imported data is loaded into a spreadsheet-like table, which can be edited, and the spreadsheet associated with each graph can be accessed at any time by clicking on the appropriate icon. As with spreadsheet programs, editing options allow data cells to be manipulated, including a paste function which enables a mathematical function to be applied to a cell or a range of cells (the user's guide is not very informative on this feature, and its use is confusing and needs to be cleared up on a future version). Overall, playing around with the spreadsheet facility makes it clear that technical data should be fully prepared in another package prior to importing it for plotting.
On the graphs themselves, reasonable control is exercised over labelling, axis definition and orientation of the plots, all performed through typical Windows dialogue boxes. Through format and graph menus, labelling size, orientation, font and positioning can all be specified, and axis scales can be changed to reflect logarithmic requirements, either dBs or linear. Even the 3-D pie charts can be scaled logarithmically - giving true meaning to "...lies and statisţics".

Analysis

Data, once imported and graphed, can be analysed using curve fitting (regression analysis), interpolations, statistics and an FFT.

USER'S GUIDE

Documentation is a detailed and well laid out - though hefty - soft-bound guide. Much of it is taken up with the standard interface features of Windows, while the all-important "getting started" section provides an adequate overview of features.
To help the new user, the package powers up to a "quick start" menu, guiding access to standard features. The tutorial included is well thought out, and the resulting impression of this carefully planed introduction to the package is a very favourable one for the first time user.

Drop-down menu shows the variety of 3-D choices that are offered within business graph options.

3-D and 2-D business graphs include a group map, pie-bubbles, ribbon charts and spider plot.

PC ENGINEERING

Smith charts are one of the options in the technical graphs section.

Curve fitting choices are quite reasonable including one for surface fitting which carries out a regression process on a surface plot. Another attractive feature is the graphics equaliser, allowing coefficients to be adjusted after regression modelling analysis has been carried out on a plot. The result is the original curve plus the error difference curve, generated by the coefficient adjustments. It's a sort of "what if?" analyser, though the pictorial graphics equaliser icon only seems to appear in a super-VGA graphics mode.

Speed limitation
For generating presentation slides, hand-outs and professionally drawn graphs for importing into desk top publishing packages, Stanford Graphics scores highly. Its bewildering

SYSTEM RECUIREMENTS

$33 \mathrm{MHz} 486-\mathrm{PC}$ with 8 Mbyte ram
S-VGA monitor
Laser printer

SUPPLIER DETAILS

Stanford Graphics $£ 395+$ VAT, is available from Adept Scientific Micro Systems Ltd, 6 Business Centre West, Avenue One, Letchworth, Herts SG6 2HB. Tel: 0462 480055
array of graphing options leaves the user spoilt for choice. But there are a few problems, and the main criticism of the package, apart from its inability to plot a single array of data, is speed. Under certain conditions, plotting rate on a 33 MHz 486-PC with 8 Mbyte ram can be painfully slow - spectral plots for example. Redrawing when the mouse button is released is also irritating and time consuming and "Out of memory" messages keep appearing, even when there may be 3Mbyte of unused ram left.

Running on a $16 \mathrm{MHz} 386-\mathrm{PC}$ does not bear thinking about and, though possible, should be avoided. To run this package efficiently needs a fast PC and a fair amount of memory. But once equipped, Stanford Graphics is easy to work with and very effective for producing presentation information

Each graph in Stanford Graphics has a spreadsheet attached to it which can be edited.

teleulion

Subscribe to the magazine that experienced electronics professionals never miss

Whatever your interest in the world of television electronics, there's a wealth of news, advice and hard information for you in TELEVISION.

TELEVISION offers you a definitive guide to today's TV electronics business, keeping you up-to-date with new developments in TV, video and satellite - whilst furnishing you with 'hands-on' advice and information on the latest equipment.

EVERY MONTH - EVERYTHING YOU NEED TO KNOW

Once you are a subscriber to TELEVISION you'll enjoy a great information advantage. You'll be ahead of all of the latest product developments - you'll receive inside information on important techniques and time-saving work methods - and, importantly, you'll have access to the most comprehensive marketplace for components and services in the UK.

Servicing solutions
TV fault finding

- New Products
- VCR clinic
- Satellite TV
- Equipment reviews
- Readers' letters

CD players casebook

- Components
- News and comment
- And much more!

Quite simply TELEVISION is the 'bible' of the television electronics industry - if you want to keep up with the competition, you can't afford to be without it.

SUBSCRIBING IS SIMPLE

Complete the coupon and return it to us at TELEVISION, Reed Business Publishing, FREEPOST,
9th Floor, Quadrant House, The Quadrant, SUTTON, Surrey SM2 5BR

Please send me TELEUISIOn
\square One Year at a cost of $\varepsilon 26$
Two Years at a cost of $£ 49$ SAVE £3

- Three Years at a cost of $£ 70$

SAVE $£ 8$
Name \qquad
Job Title
Company
Address \qquad

Postcode
Telephone No.
Fax No.

Reed Business Publishing Company Registered in England (registered number 151537) VAT no: 235723565

CIRCLE NO. 136 ON REPLYCARD

4 WAYS TO PAY
$1 \square I$ enclose a cheque for $£$ \qquad made payable to Reed Business Publishing
2 Please charge my:
\square Access
\square Visa
\square Diners Club
\square American Express
Expiry Date
$\square \square \square$
3 Please invoice me/my company Order No.

4 Or alternatively just ring our credit card hot-line on 0622721666 and quote reference $R J 3$

Are you registered for VAT, Yes $\square \quad$ No \square If yes, please supply your registration Number

Please send a VAT receipt \square
Signature \qquad Date
Prices apply to UK, Isle of Man, and Channel Islands only.

Distortion in power amplifiers

The typical circuit which provides most of the voltage gain and all the voltage drive to the output stage of an audio amplifier seems likely to contribute a significant distortion component. Detailed analysis contradicts this. Good design can reduce its contribution to below the noise floor. By Douglas Self.

3: the voltage-amplifier stage

The voltage-amplifier stage (or VAS) has often been regarded as the most critical part of a power-amplifier, since it not only provides all the voltage gain but also must deliver the full output voltage swing. This is in contrast to the input stage which may give substantial transconductance gain, but the output is in the form of a current. But as is common in audio design, all is not quite as it appears. A well-designed

AUDIO PRECISION APLASTSE THD+N(\%) us FREQ(Hz) 0.1
voltage amplifier stage will contribute relatively little to the overall distortion total of an amplifier, and if even the simplest steps are taken to linearise it further, its contribution sinks out of sight.
As a starting point, Fig. 1 shows the distortion plot of a model amplifier with a Class-A output, ($\pm 15 \mathrm{~V}$ rails, +16 dBu out.) The model is as described in previous articles. No special precautions have been taken to linearise the input stage or the VAS and output stage distortion is negligible. It can be seen that the distortion is below the noise floor at low frequencies; the distortion slowly rising from about 1 kHz is coming from the voltage amplifier stage. At higher frequencies, where the VAS 6 dB /octave rise becomes combined with the 12 or $18 \mathrm{~dB} /$ octave rise of input stage distortion, we can see the accelerating distortion slope typical of many amplifier designs.
The main reason why the voltage amplifier stage generates relatively little distortion is because at LF, global feedback linearises the whole amplifier, while at HF the voltage amplifier stage is linearised by local negative feedback through $C_{d o m}$.

Fig. 1: THD plot for model amp showing distortion below noise floor at low frequency, and increasing from 2 kHz to 20 kHz . The ultimate roll-off is due to the 80 kHz measurement bandwidth.

Fig. 2: The change in HF distortion resulting from varying the negative rail in the VAS test circuit. The voltage amplifier stage distortion is only revealed by degenerating the input stage with 100Ω resistors.

Examining the mechanism

Isolating the voltage amplifier stage distortion for study requires the input pair to be specially linearised, or else its steeply rising distortion characteristic will swamp the VAS contribution. This is most easily done by degenerating the input stage which also reduces the open-loop gain. The reduced feedback factor mercilessly exposes voltage amplifier stage non-linearity. This is shown in Fig. 2 , where the $6 \mathrm{~dB} /$ octave slope suggests origination in the VAS, and increases with frequency solely because the compensation is rolling-off the global feedback factor.
Confirming that this distortion is due solely to the voltage amplifier stage requires varying VAS linearity experimentally while leaving other circuit parameters unchanged. Fig. 3 shows achieves this by varying the VAS neg-

ative rail voltage; this varies the proportion of its characteristic over which the voltage amplifier stage swings, and thus only alters the effective VAS linearity, as the important input stage conditions remain unchanged. The cur-rent-mirror must go up and down with the VAS emitter for correct operation, and so the $V_{c e}$ of the input devices also varies, but this has no significant effect as can be proved by the unchanged behaviour on inserting cascode stages in the input transistor collectors.
The typical topology as shown in Fig. 4a is a classical common emitter voltage amplifier stage with a current-drive input into the base. The small-signal characteristics, which set open-loop gain and so on, can be usefully simulated by the spice model shown of Fig. 5, of a VAS reduced to its conceptual essentials. G is a current source whose value is controlled by the voltage-difference between $R_{i n}$ and $R_{f 2}$, and represents the differential transconductance input stage. F represents the voltage amplifier stage transistor, and is a current source yielding a current of beta times that sensed flowing through ammeter V which, by spice convention, is a voltage source set to 0 V .

The value of beta, representing current-gain, models the relationship between VAS collector current and base current. R_{t}, represents the total stage collector impedance, a typical real value being $22 \mathrm{k} \Omega$. With suitable parameter values, this simple model provides a useful demonstration of relationships between gain, dominant-pole frequency, and input stage cur-
rent outlined in the first article in this series. Injecting a small signal current into the output node from an extra current source also allows the fall of impedance with frequency to be examined.
The overall voltage gain clearly depends linearly on beta, which in real transistors may vary widely. Working on the trusty engineering principle that what cannot be controlled must be made irrelevant, local shunt NFB through $C_{d o m}$ sets the crucial HF gain that controls Nyquist stability. The LF gain below the dominant pole frequency P1 remains variable (and therefore so does Pl) but is ultimately of little importance; if there is an adequate NFB factor for overall linearisation at HF then there are unlikely to be problems at LF where gain is highest. As for the input stage, the linearity of the voltage amplifier stage is not greatly affected by transistor type, given a reasonably high beta value.

Stage distortion

voltage amplifier stage distortion arises from a curved transfer characteristic of the commonemitter amplifier, a small portion of an exponential ${ }^{1}$. This characteristic generates predominantly second-harmonic distortion, which, in a closed-loop amplifier, will increase at 6dB/octave with frequency.

Distortion does not get worse for more powerful amplifiers as the stage traverses a constant proportion of its characteristic as the sup-ply-rails are increased. This is not true of the
input stage: increasing output swing increases the demands on the transconductance amp as the current to drive $C_{d o m}$ increases. The increased $V_{c e}$ of the input devices does not measurably affect their linearity.
It seems ironic that VAS distortion only becomes clearly visible when the input pair is excessively degenerated - a pious intention to 'linearise before applying feedback' can make the closed loop distortion worse by reducing the open loop gain and hence the NFB factor available to linearise the VAS. In a real (nonmodel) amplifier with a distortive output stage, the deterioration will be worse.
The local open-loop gain of the VAS (that existing inside the local feedback loop closed by $C_{d o n}$) should be high, so that the voltage amplifier stage can be linearised. This precludes a simple resistive load. Increasing the value of R_{c} will decrease the collector current of the transistor reducing its transconductance. This reduces voltage gain to the starting value.

One way to ensure sufficient gain is to use an active load. Either bootstrapping or a current source will do this effectively, though the current source is perhaps more dependable and is the usual choice for hi-fi or professional amplifiers.
The bootstrap promises more output swing as the collector of Ti_{4} can soar above the positive rail. This suits applications such as automotive power amps that must make the best possible use of a restricted supply voltage ${ }^{2}$.

These two active-load techniques also ensure enough current to drive the upper half of the output stage in a positive direction right up to the supply rail. If the collector load were a simple resistor, this capability would certainly be lacking.

Checking the effectiveness of these measures is straightforward. The collector impedance may be determined by shunting the collector node to ground with decreasing resistance until the open loop gain falls by 6 dB indicating that the collector impedance is equal to the current value of the test resistor.

The popular current source version is shown in Fig. 4a. This works well, though the collector impedance is limited by the effective

Fig. 6: Showing the reduction of VAS distortion possible by cascoding. The results from adding an emitter follower to the voltage amplifier stage, as an alternative method of increasing local voltage amplifier stage feedback, are very similar.

Fig. 7: The beneficial effect of using a vaS buffer in a full scale Class B amplifier. Note that the distortion needs to be low already for the benefit to be significant.

output resistance R_{o} of the voltage amplifier stage and the current source transistors ${ }^{3}$ which is another way of saying that the improvement is limited by Early effect.
It is often stated that this topology provides current-drive to the output stage; this is only partly true. It is important to realise that once the local NFB loop has been closed by adding $C_{d o m}$ the impedance at the VAS output falls at $6 \mathrm{~dB} /$ octave for frequencies above P1. The impedance is only a few $\mathrm{k} \Omega$ at 10 kHz , and this hardly qualifies as current-drive at all.

Bootstrapping (Fig. 4b) works in most respects as well as a current source load, for all its old-fashioned flavour. The method has been criticised for prolonging recovery from clipping. I have no evidence to offer on this myself, but I can state that a subtle drawback definitely exists: LF open loop gain is dependent on amplifier output loading. The effectiveness of bootstrapping depends crucially on the output stage gain being unity or very close to it. However the presence of the output transistor emitter resistors means that there will be a load-dependant gain loss in the output stage significantly altering the amount by which the VAS collector impedance is increased. Hence
the LF feedback factor is dynamically altered by the impedance characteristics of the loudspeaker load and the spectral distribution of the source material.
This has significance if the load is a quality speaker with impedance modulus down to two ohms, in which case the gain loss is serious. If allyone needs a new audio-impairment mechanism to fret about, then I offer this one in the confident belief that its effects, while measurable, are not of audible significance.
The standing de current also varies with rail voltage. Since accurate setting and maintaining of quiescent current is difficult enough, an extra source of possible variation is decidedly unwelcome.
A less well known but more dependable form of bootstrapping is available if the amplifier incorporates a unity gain buffer between the VAS collector and the output stage as shown in Fig. 4f, where R_{c} is the collector load, defining the VAS collector current by establishing the $V_{b e}$ of the buffer transistor across itself. This is constant, and R_{c} is therefore bootstrapped and appears to the VAS collector as a constant current source.

In this sort of topology a voltage amplifier
stage current of 3 mA is quite sufficient, compared with the 6 mA standing current in the buffer stage. The voltage amplifier stage would in fact work well with collector currents down to 1 mA , but this tends to compromise linearity at the high-frequency, high-voltage corner of the operating envelope, as the VAS collector current is the only source for driving current into $C_{\text {dom }}$.

Voltage stage enhancements.

Fig. 2, which shows only VAS distortion, clearly indicates the need for further improvement over that given inherently by the presence of $C_{\text {dom }}$ if an amplifier is to avoid distortion. While the virtuous approach might be an attempt to straighten the curved voltage amplifier stage characteristic, in practice the simplest method is to increase the amount of local negative feedback through this capacitance. Equation 1 in the first article shows that the LF gain (ie the gain before $C_{d o m}$ is connected) is the product of input stage transconductance, T_{i} beta and the collector impedance R_{c}. The last two factors represent the VAS gain and therefore the amount of local NFB can be augmented by increasing either. Note
that so long as the value of $C_{\text {dom }}$ remains the same, the global feedback factor al HF is unchanged and so stability is not affected.
The effective beta of the stage can be substantially increased by replacing the VAS transistor with a Darlington, Fig. 4c. Adding an extra stage to a feedback amplifier always requires thought because, if significant additional phase-shift is introduced, the global loop stability may suffer. In this case the new stage is inside the Miller loop and so there is little likelihood of trouble. The function of such an emitter follower is sometimes described as 'buffering the input stage from the VAS' but its true function is linearisation by enhancement of local NFB.
Altematively the stage collector impedance may be increased for higher local gain. This is could be done with a cascode configuration (Fig. 4d) but the technique is only useful when driving a linear impedance rather than a ClassB output stage with its non-linear input impedance.
Assuming for the moment that this problem is dealt with, either by use of a Class-A output or by VAS-buffering, the drop in distortion is dramatic as is the beta-enhancement method. The gain increase is ultimately limited by Early effect in the cascode and current source transistors, and more seriously by the loading effect of the next stage. But it is of the order of 10 times and gives a useful improvement.
This is shown by curves A, B in Fig. 6 where the input stage of a model amplifier has been over-degenerated with 100Ω emitter resistors to bring out the voltage amplifier stage distortion more clearly.
Note that in both cases the slope of the distortion increase is $6 \mathrm{~dB} /$ octave. Curve C shows the result when a standard undegenerated input pair is combined with the cascoded VAS; the distortion is submerged in the noise floor for most of the audio band, being well below 0.001%.
This justifies my assertion that input stage and VAS distortion need not be a problem; we have all but eliminated distortions 1 and 2 from the list of seven given in the first article.
A cascode transistor also allows the use of a high-beta transistor for the voltage amplifier stage; these typically have a limited $V_{\text {ce, }}$ that cannot withstand the high rail voltages of a high-power amplifier. There is a small loss of available voltage swing, but only about 300 mV , which is usually tolerable. Experiment shows that there is nothing to be gained by cascoding the current source collector load.
A cascode topology is often used to improve frequency response by isolating the upper collector from the $C_{b c}$ of the lower transistor. In this case the frequency response is deliberately defined by a well defined passive component.
It is hard to say which technique is preferable; the emitter follower circuit is slightly simpler than the cascode version, which requires extra bias components, but the cost difference is minimal. When wrestling with these kind of financial decisions it as well to remember that the cost of a small-signal tran-
sistor is often less than a fiftieth of that of an output device, and the entire small-signal section of an amplifier usually represents less than 1% of the total cost, when heavy metal such as the mains transformer and heatsinks are included.

Benefits of voltage drive

The fundamentals of linear voltage amplifier stage operation require that the collector impedance is high, and not subject to external perturbations. Thus a Class-B output stage, with large input impedance variations around the crossover point, is the worst possible load. The 'standard' amplifier configuration stands tribute that it can handle this internal unpleasantness gracefully, $100 \mathrm{~W} / 8 \Omega$ distortion typically degrading only from 0.0008% to 0.0017% at 1 kHz assuming that the avoidable distortions have been eliminated. Note however that the effect becomes greater as the global feedback factor is reduced. There is litthe deterioration at HF, where other distortions dominate ${ }^{4}$.
The VAS buffer is most useful when LF distortion is already low, as it removes Distortion 4 , which is - or should be - only visible when grosser non-linearities have been seen to. Two equally effective ways of buffering are shown in Figs 4 e and 4 f .
There are other potential benefits to VAS buffering. The effect of beta mismatches in the output stage halves is minimised ${ }^{5}$. Voltage drive also promises the highest f_{T} from the output devices, and therefore potentially greater stability, though I have no data of my own to offer on this point. It is right and proper to feel trepidation about inserting another stage in an amplifier with global feedback, bur since this is an emitter follower its phaseshift is minimal and it works well in practice.
A VAS buffer put the right way up can implement a form of dc coupled bootstrapping that is electrically very similar to providing the voltage amplifier stage with a separate currentsource.
The use of a buffer is essential if a VAS cascode is to do some good. Fig. 7 shows before/after distortion for a full-scale power amplifier with cascode VAS driving 100 W into 8Ω.

Balanced voltage amplifier stage

When linearising an amplifier before adding negative feedback one of the few specific recommendations made is usually the use of a balanced voltage amplifier stage - sometimes combined with a double input stage consisting of two differential amplifiers, one complementary to the other. The latter seems to have little to recommend it, as you cannot balance a stage that is already balanced, but a balanced (and, by implication, more linear) voltage amplifier stage has its attractions. However, as explained above, the distortion contribution from a properly-designed VAS is negligible under most circumstances, and therefore there seems to be little to be gained.
Two possible versions are slown in Fig. 8; The first type gives approximately 10 dB more

Fig. 9: Showing how dominant pole frequency P1 can be altered by changing the LF open loop gain. The gain at HF, which determines Nyquist stability and HF distortion, is unaffected.

Fig. 10: Jwo ways to reduce open loop gain: a. simply loading down the collector. This is a cruel way to treat a VAS since current variations cause extra distortion.
b. local NFB with a resistor in parallel with Cdom. This looks crude, but actually works very well.
open loop gain than the standard, but this naturally requires an increase in $C_{\text {chm }}$, if the same stability margins are to be maintained. In a model amplifier, any improvement in linearity can be wholly explained by this o/l gain increase, so this seems (not unexpectedly) an unpromising approach. Also, as John Linsley Hood has pointed out ${ }^{6}$, the standing current through the bias generator is ill-defined compared with the usual current source VAS. Similarly the balance of the input pair is likely to be poor compared with the current-mirror version. Two signal paths from the input stage to the VAS output must have the same bandwidth; if they do not then a pole-zero doublet is generated in the open-loop gain characteristic that will markedly increase settling-time

Finally an upgradeable PCB CAD system to suit any budget ...
Board Capture
BoardCapture - Schematic Capture

- Direat netlist link to BoardMaker2
- Forward annotation with part values
- Full undofredo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Autematic on-line annotation
- Integrated on-the-lly library editor
- Context sensitive editing
- Extensive component-based power controd
- Back annotation from BoardMaker2

BoardMaker
BoardMakeri - Eniny level

- PCB and schumatic dralting
- Easy and intuifiva to use
- Suriace mount suppor
- 90, 45 and curved track comers
- Ground plane fill
por highilght and clearance checking
BoardMaker2 - Advanced level
- All the features of BoardiMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking.: mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation

NEW - Thermal power plane support with full DRC

Board Roater

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dol matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Foland \& Houston
- Photoplotters - All Geber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (BM2)

Call for info or full evaluation kit
Tsien (UK) Limited
Tel (0354) 695959
Fax (0354) 695957

Tsion (uK) Ltd, Ayleaby House, Wenny Rond, Chattersis, Cmmbridge PE16 out

RF MODULES UP TO 2GHz

PHASE LOCKED SIGNAL SOURCES
TYPE 8034 Frequency as specified in the range $20-250 \mathrm{MHz}$. Output 10 mW .
TYPE 9036 Frequency as specified in the range $250-1000 \mathrm{MHz}$. Output 10 mW
TYPE 9038 Frequency as specified in the range $1-2 \mathrm{GHz}$. Output 10 mW . $£ 350$ TYPE 9282 FM facility. Frequency as specified in the range $30-2000 \mathrm{MHz}$. Output 10 mW .

PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9315 Down converter. Input frequencies $250 \mathrm{MHz}-2 \mathrm{GHz}$. Output frequencies $20 \mathrm{MHz}-1 \mathrm{GHz}$. BN up to 10 MHz . NF 0.7 dB . Gain 30 dB variable
TYPE 9316 Up/down converter. Input \& output frequencies 20 MHz to 2 GHz BW up to 100 MHz . NF 0.7 dB . Gain 40 dB variable. $£ 550$
TYPE 9115 Up/down converter. Input \& output frequencies 20 MHz to 1 GHz BN up to 100 MHz . NF 0.7 dB . Gain 60 dB variable. Output up to 10 mW (+ 10 dBm). AGC

LOW NOISE GASFET PREAMPLIFIERS
Two-stage Gasfet preamplifiers. High Q filters. Masthead or local use TYPE 9006 Frequency $5-250 \mathrm{MHz}$. BN up to 40% of CF. NF 0.6 dB . Gain $10-$ 40dB variable. 105 TYPE 9004 Frequency $250-1000 \mathrm{MHz}$. B/W up to 10% of CF. NF 0.7 dB . Gain 25 dB variable. Gain
TYPE 9304 Frequency $1-2 \mathrm{GHz}$. BW up to 10% of CF. NF 0.7 dB . Gain 20 dB

WIDEBAND AMPLIFIERS
TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain 30dB. Output $12.5 \mathrm{dBm}, 18 \mathrm{~mW}$
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$. NF 2 dB at 500 MHz . Gain 30 dB . Output 12.5 dBm , 18 mW £165 TYPE 9008 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB . Output $18 \mathrm{dBm}, 65 \mathrm{~mW}$.
TYPE 9009 Gasfet. 10MHz-2GHz. NF 3.8 dB at 1 GHz . Gain 20dB. Output $20 \mathrm{dBm}, 100 \mathrm{~mW}$.

WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 92461 watt output. $100 \mathrm{kHz}-175 \mathrm{MHz}$. 13 dB gain £192
TYPE 93061 watt output. $10 \mathrm{MHz}-1 \mathrm{GHz}$. 15 dB gain £192
TYPE 92474 watts output. $1-50 \mathrm{MHz}$. 13dB gain. ... £215
TYPE 90514 watts output. $20-200 \mathrm{MHz}$. 13dB gain
£215
TYPE 91764 watts output. $1-50 \mathrm{MHz}$. 26 dB gain.
TYPE 91774 watts output. $20-200 \mathrm{MHz}$. 26dB gain £345

TYPE 917810 watts output. $1-50 \mathrm{MHz}$. 13 dB gain TYPE 917910 watts output. $20-200 \mathrm{MHz}$. 13 dB gain £345 £304 TYPE 917320 watts output. 1-50MHz. 17dB gain. £304 TYPE 917420 watts outout. 20.300 MHz . 10 dB gain ع395 TYPE 927140 watts output. $1-50 \mathrm{MHz}$. 16 dB gain. .. £395 TYPE 927140 watts output. $1-50 \mathrm{MHz} .16 \mathrm{~dB}$ gain. .
TYPE 917240 watts output. $20-200 \mathrm{MHz}$. 10 dB gain $£ 748$ TYPE 966060 watts output. $25-75 \mathrm{MHz}$. 10dB gain
£898

TELEVISION TRANSMISSION EQUIPMENT

TYPE 9169 Tunable television modulator. Bands I or III or IV \& V. Output 10 mW .
£350
TYPE 9269 Phase locked loop vestigial sideband television modulator with sound channel. RF o/p 10 mW on your specified channel in bands I, 111 , IV or V.

TELEVISION LINEAR POWER AMPLIFIERS

Tuned to your specified channel in bands I, III, N or V
TYPE 925210 mW input, 500 mW output
£353
TYPE 925450 mW input, 2 watts output. ... $£ 395$
TYPE 9259500 mW input, 3 watts output.
£378
TYPE 92632 - 3 watts input, 12 watts output
£638
TYPE 9364 3W input, 22-25W output. Integrał forced air cooling. £1245 TYPE $926610 \mathrm{Wi} / \mathrm{p}, 50 \mathrm{~W} \% / \mathrm{p}$. Integral forced air cooling and output transistor
protection. ... £1919

TYPE $936750 \mathrm{Wi} / \mathrm{p} .150 \mathrm{~W}$ /p. Integral forced air cooling and output transistor protection
£3950

TELEVISION TRANSMITTERS AND TRANSPOSERS

$19^{\prime \prime}$ rack mounting. Single channel. Bands I, IIt, IV or V. O/p protection, front panel meter, mains power supply, fan cooling. 5 W to 150 W £2650 to $£ 9900$

RESEARCH COMMUNICATIONS LTD Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel: 0303893631 Fax: 0303893838

AUDIO

after a transient. This seems likely to apply to all balanced voltage amplifier stage configurations. The second type is attributed by Borbely to Lender ${ }^{7}$. Fig. 8 shows one version, with a quasi-balanced drive to the VAS transistor, via both base and emitter. This configuration does not give good balance of the input pair since it depends on the tolerances of R_{2}, R_{3}, the $V_{b c}$ of the voltage amplifier stage, and so on. Borbely has advocated using two complementary versions of this giving a third type, but this would not seem to overcome the objections and the increase in complexity is significant.
All balanced voltage amplifier stages seem to be open to the objection that the vital balance of the input pair is not guaranteed, and that the current through the bias generator is not well-defined. However one advantage would seem to be the potential for sourcing and sinking large currents into $C_{\text {dom, }}$, which might improve the ultimate slew-rate and HF linearity of a very fast amplifier.

Open loop bandwidth.

Acute marketing men will appreciate that reducing the LF open loop gain, leaving HF gain unchanged, must move the PI frequency upwards, as shown in Fig. 9. Open loop gain held constant up to 2 kHz appears so much better than open loop bandwidth restricted to 20 Hz . These two statements could describe near identical amplifiers, except that the first has plenty of open loop gain at LF while the second has even more. Both amplifiers have the same feedback factor at HF, where the amount available has a direct effect on distortion performance, and could easily have the same slew rate. Nonetheless the second amplifier somehow reads as sluggish and indolent, even when the truth of the matler is known.
Reducing low frequency open loop gain may be of interest to commercial practitioners but it also has its place in the dogma of the subjectivist. Consider it this way: firstly there
is no engineering justification for it and, secondly, reducing the NFB factor will reveal more of the output stage distortion. NFB is the only weapon available to deal with this second item so blunting its edge seems ill-advised.

It is of course simple to reduce open loop gain by degenerating the input pair, but this diminishes it at HF as well as LF. To alter it at LF only requires engineering changes at the VAS. Fig. 10 shows two ways. 10a reduces gain by reducing the value of the collector impedance, having previously raised it with the use of a current source collector load. This is no way to treat a gain stage: loading resistors low enough to have a significant effect cause unwanted current variations in the VAS as well as shunting its high collector impedance, and serious LF distortion appears. While this sort of practice has been advocated in E\&WW in the past ${ }^{8}$, it seems to have nothing to recommend it. 10 b also reduces overall open loop gain by adding a frequency insensitive component to the local shunt feedback around the voltage amplifier stage. The value of $R_{N F B}$ is too high to load the collector significantly and therefore the full gain is available for local feedback at LF, even before $C_{\text {dem }}$ comes into action. Fig. 11 shows the effect on the open loop gain of a model amplifier for several values of $R_{N F B}$; this plot is in the format described in the first part of this series where error voltage is plotted rather than gain so the curve appears upside down compared with the usual presentation. Note that the dominant pole frequency is increased from 800 Hz to above 20 kHz by using a $220 \mathrm{k} \Omega$ value for $R_{\text {NFB }}$; however the gain at higher frequencies is unaffected and so is the stability. Although the amount of feedback available at 1 kHz has been decreased by nearly 20 dB , the distortion $\mathrm{at}+16 \mathrm{dBu}$ output is only increased from below 0.001% to 0.0013%. Most of the reading is due to noise.

In contrast, reducing the open loop gain by just 10 dB through loading the VAS collector
to ground requires a load of $4.7 \mathrm{k} \Omega$ which, under the same conditions, yields distortion of more than 0.01%.
It might seem that the slage which provides all the voltage gain and swing in an amplifier is a prime suspect for generating the major part of its non linearity. In actual fact, this is unlikely to be true, particularly with a cascode VAS/curient source collector load buffered from the output stage. Number 2 in the distortion list can usually be forgotten.

Next month: the power output stages

References

1. Gray \& Meyer Analysis \& Design of Analog Integrated Circuits. Wiley 1984, p251 (VAS transfer characteristic)
2. Antognetti (Ed) Power Integrated Circuits

McGraw-Hill 1986, Section 9.3.2
3. Gray \& Meyer Analysis \& Design of Analog Integrated Circuits. Wiley 1984, p252 (Rco limit on VAS gain)
4. Self Sound Mosfet Design, EW+WW Sept 1990, p760
5. Oliver Distortion In Complementary-Pair Class-B Amplifiers, Hewlett-Packard Journal, Feb 1971, p11
6. Linsley-Hood Solid State Audio Power- 3, $E W+W W$, Jan 1990, p16
7. Borbely A $60 W$ MOSFET Power Amplifier, The Audio Amateur, Issue 2, 1982, p9. 8. Hefley High Fidelity, Low Feedback, 200W, $E W+W W$, June 92 p45

M \& B RADIO (LEEDS) THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

OSCILLOSCOPES

TEKTRONIX 2445 A I50MHZ GPIB.. C1500
 KEKTRONIX 468 IOOMHZ DUAL TRACE WITH PROBES 400 EEKTRONIX SC504/TM5 03/DM501 PORTABLE 80MHZ SCOPE +
 KIKUSUI CO 6 HATSUS SM3 122 SOMHZ HITACHI V222 20MHZ DUAL TRACE WITH MANUAL..................... $\mathbf{C 2 2 5}$ GOULD OS 4000 IOMHZ DIGITAL STORAGE................................. GOULD OS250B 15 MHZ D DUAL TRACE ARNELL DTI $2 / 512 \mathrm{M}$
HP IT22B 275MHZ MICROPROCESSOR CAL MEASUREMENTS........ 6750 HP I I725 2 27SMHZ OSCILLOSCOPES (AS NEW)............................... 600 SIGNAL GENERATORS
MARCONI 2019 80KHZ TO 1040 MHZ 1900
 MARCONI 200810 KHZ TO S20MHZ INC. RF PROBE KIT-
MARCONI $2015 / 2171$ SYNCHRONIZER IOMHZ TO 520 MHZ (AS
MEW)... 2015 IOMHZ TO 520 MHZ AMIFM SIGNAL
GENERATOR..................... 6325
HP 86408 SOOKHZ TO IO2MM OPT 001 002003 6195 HP 8640 B 500 KHZ TO 550 MHZ OPT. 001 . 650 HP $3310 \mathrm{~B}, 0005 \mathrm{HZ}$ TO 5 MHZ

HP 5065 A RUBIDIUM VAPOR FREQUENCY STANDARO

 MARCONI TF 2300 B MODULATION METER. MARCONI 2331 DISTORTION FACTOR METER MARCONI 2700 LCR BRIDGE... 63000
62000
5395 - - $\quad . \quad 6395$
 FARNELL LFM4 AUDIO OSCILATOR ... TEKTRONIX 521 A PAL VECTORSCOPE................................... 1000 AMBER 4400 A MULTIPURPOSE AUDIO TEST SET DYMAR 2085 AF POWER METER.
 BIRD TENULINE 8343 IOOW 8 DB ATTENUATOR (NEW)............... 100 NARDA 3001 - 30 DIRECTIONAL COUPLER 460 MHZ TO 960 MHZ ... 6100 GRUNDIG FG7 COLOUR BAR GENERATOR................................. 6295 AVO RM215 LI2 AC/DC BREAKDOWN TESTER ROTEK ACIDC PRECISION CALIBRATOR............................... 6650 HP 3488 A SWITCH CONTROL UNIT HP I 1667 A POWER SPLITTER (NEW) I8GHZ. HP 11683 A POWER METER CALIBRATOR............ NARDA 789/6 150W 6DB HIGH POWER ATT (NEW) . RACAL DANA 9303 TRUE RMS RF LEVEL METER RACAL DANA 9000 MICROPROCESSING TIMER COUNT 1300 SZAHZ... 250 RACAL DANA 1092 THEAMAL PR NTER RACAL DANA 9302 RF MLLLIVOLTMETER 10 KHZ TO ISOOMHZ...... 6400 RACAL 9301 A RF MILLIVOLTMETER IOKHZ TO 1500 MHZ 6250
 RACAL DANA 1998 1.3GHZ FREQ COUNTERTIMER..................... 6750 RACAL 9921 3GHZ FREQUENCY COUNTER. -6400
-
RACAL 9903 TIMER COUNTER... 100

RACAL 9915 10HZ TO 520MHZ FREQUENCY COUNTER............... 6150
RACAL 9919 1.1GHZ FREQUENCY COUNTERTIMER....................... 625
HP 435 A POWER METER 8482H HEAD BICCTESTTA3IMCABL

665
. .625
BICCITEST 437 CABLELOGGER.. 650
FARNELL B 30/5 POWER SUPPLY O- 30VOLT SAMP
FARNELL B30/20 POWER SUPPLY O. 30VOLT 20AMP 100
FARNELL PSGS20 PORTABLE 520 MHZ SYNTHESISED
GENERATOR. $\begin{aligned} & \text { GARNELL ELECTRONIC LOAD RB } 1030 / 35 \\ & \end{aligned}$

 MARCONITF2913 TEST LINE GENERATOR + INSERTER................ L750

MARCONI TF29I 4 A INSERTION SIGNAL ANALYSER 750
FLUKE IO3A FREQUENCY COMPARATOR
FLUKE IO3A FREQUENCY COMPARA
LYONS PG73 PULSE GENERATOR $c 300$
$C 145$
FEEDBACK SSOLSE SINESQUAREAUDIO OSCILLATOR..................................... FEEDBACK 602 VARIABLE PHASE OSCILLATOR........................ 145
FEEDBACK SFG 611 I2MHZ SWEEP FUNCTION GENERATOR....... 1245
FEEDBACK TFA TRANSFER FUNCTION ANALYSER....................... 295
FEEDBACK EW604 ELEC TRONIC WATTMETER
HP B405A VECTOR VOLTMETER \& ACCESSORIE
HP 8406 A COMB FREQUENCY GENERATOR
HP 3468D DIGITAL MULTIMETER ...
HP 346 A DIGTAL MULTMMTER
HP 9750 A STORAL MULTIMETER NORMAIITER
HP 333A DISTORTION METER
HP 3400A TRUE RMS VOLTMETER.
HP 3403C TRUE RMS VOLTMETER DIGITAL
HP 394A VARLABLE ATTENUATOR IGHZ TO 2GHZ - 150
HP 3 408 A SAMPLNG VOITMETER GHZ TO 2GHZ HP $\$ 005 \mathrm{~B}$ SIG NATURE ANALYSER
HALCYON 500B/52IA UNIVERSAL TEST SYSTEM
TEKTRONIX 576 CURVE TRACER \& 172 PROGRAMMEABLE TEST
FIXTURE
PSI A 1001 WAVEFORM GENERATOR
IWATSUI IGHZ FREQUENCY COUNTER.-
HP 5006 A SIGNATURE ANALYSER. KEMO DPI PHASE METER IHZ TO 100KHZ SPECTRUM ANALYSERS
HP 8558 B 10 MHZ TO 15 GHZ WITH 182 T MAINFRAME $\quad \mathbf{C l}$

 HP 141T B553B/85528 110 MHZ WITH 8443A TRACKING GENERATOR HP 8444A TRACKING GENERATOR 0.S TO 1300 MHZ 1000 TEKTRONIX 492 50KHZ TO I8GHZ PORTABLE 55500 RADIO EQUIPMENT

RACAL RAI 792 HF RECEIVERS
RACAL RA2309B/RA2295 90 MHZ TO 400 MHZ 6000
900

PHILIPS 88MHZ TO 108 MHZ BROADCAST TX IOKW BULK PURCHASE SPECIALS
HP I80 SOMHZ OSCILLOSCOPES.. 145
MARCONI IIOI RC OSCILLATOR 2OHZ TO 2OKHZ
RACAL 9059 S6OMHZ FREQUENCY COUNTER WITH FREQ
STANDARD

ALL PRICES PLUS VAT AND CARRIAGE Tel: (0532) 435649 Fax: (0532) 42688 I

CIRCLE NO. 102 ON REPLY CARD

Z8 Z80 Super8 650265816 68HC11 68000... 8051...

2: detailed circuitry

> Spread spectrum radio is now used extensively for both military and civilian communications. James Vincent* describes the circuitry for a fully functional experimental voice link.

[^1]Pseudo-random codes can be categorised as being linear or non-linear codes. Linear codes are generated using linear operations (which for binary pseudo-random codes is solely modulo- 2 addition or subtraction). This essentially means only ex-OR gates are used in the shift register feedback path. A pseudo-random generator which does not use such techniques is termed non-linear.
The most commonly used group of pseudorandom sequences used in spread spectrum are the maximal linear code sequences (sometimes called M-sequences or pn - pseudonoise - codes). Maximal codes are the longest codes that a shift register of specified length can produce and have mathematical properties well suited to spread spectrum communications.
A maximal shift register pseudo-random generator consists of a shift register with selected outputs being exclusive-ORed and fed back into the shift register input. The circuit goes through a number of states (determined by the bits in the shift register at each clock pulse) before it repeats itself after a set
number of clock pulses. The maximum number of states for a shift register of length m is 2^{m}, ie for a 7 -stage shift register $2^{7}=128$ states. However the all-zero state is not allowable as the pseudo-random generator would lock-up as ex-ORing two logic 0 results in yet another logic 0 at the input. Therefore a maximal length pseudo-random code generator can produce a pseudo-random sequence $2^{m}-1$ bits long before repeating itself.

To obtain a maximal sequence, the correct shift register outputs (tap points) must be found. These could be found be experimentation but this would be very time consuming! However tables of feedback connections are available ${ }^{3}$.

A 7-stage (ie seven flip-flop) shift register can produce a maximal code of length $2^{7}-1=$ 127 bits (known as chips in spread spectrum 'terminology) long. The feedback tap points may be taken from the following stages:
[7,1] [7,3] [7,3,2,1] [7,4,3,2] [7,6,4,2] [7,6,3,1] [7,6,5,2] [7,6,5,4,2,1] and [7,5,4,3,2,1]

127 chip maximal length pseudorandom code generator

As the simplest circuit implementation is often desired, the first option of tapping the seventh and first stages is selected
To avoid the all-zero lock up problem, inverting stages are inserted before the shift register input and at the output of the shift register. When the shift register is switched on, a reset pulse is initiated. This pulse initiates all
shift register outputs to logic 0 . This would normally lock up the pseudo-random sequence generator. However the input inverter injects a logic 1 so that the maximal sequence can commence. The output inverter ensures that maximal code output is inverted negating the effect of the anti-lock-up inverter at the input. The maximal code is also available at the out-
put (A) of the modulo-2 adder, but the second inverter output is normally used to permit direct drive of the DBM in a direct sequence system

Receiver functional description

The 435 MHz direct sequence (ds) signal is first amplified by a low noise amplifier ${ }^{2}$ followed by a helical filter and further amplification by a low noise amplifier block (MANI$L N$) and a MAR8. The ds signal is mixed with a 7 dBm 365 MHz local oscillator in a downconverter. The ds signal now centred on an intermediate frequency of 70 MHz is amplified (MAR8) and bandpass filtered (PIF-70), before being resistively split into three identical signal paths. In each signal path (late, on time or early) the 70 MHz signal is amplified by a further MAR6 amplifier. A DBM configured as a biphase shift keyer is driven by an early, on time or late pn code. The DBM is

Power amplifier and driver circuit for direct sequence transmitter.

The delay locked loop

 despread (correlate) the received direct sequence signal.

The composite correlation function and correlator waveforms in the 1/2 chip delay locked loop.
transmitter's code clock at a point halfway between the maximum and minimum values of the composite correlation function.
An optimum solution is to have a third on-time (punctual) pn sequence correlator channel for signal recovery, with early and late correlators simply providing tracking to keep the on-time channel in the middle of the correlation window. Such an approach provides an optimally correlated (despread) output signal for subsequent data demodulation.

The $1 / 2$ chip delay locked loop system. An analogue difference signal derived from the relative correlation levels of advanced and retarded PN code controls a high stability VXCO such that code synchronisation is maintained

buffered by 50Ω pads and driven by an AC logic buffer as with the DBM used as a BPSK modulator in the transmitter.
Assuming synchronism the despread output is injected into a NE605 low power FM IF integrated circuit. The second local oscillator at 64 MHz in conjunction with the on-chip mixer downconverts the despread signal (which contains the data in a BPSK format) to 6 MHz . The NE605 further amplifies the 6 MHz signal and provides filtering using 6 MHz ceramic filters originally designed for television sound strips.
A RSSI (received signal strength indicator) is available from each NE605 with a 90 dB
range logarithmic output. The RSSI outputs from the early and late channels go to the delay locked loop circuit. The despread data output from the on time (punctual) channel is further amplified by a MAR8 amplifier before being frequency doubled in a Mini Circuits RK3 doubler. As previously discussed the despread data signal has a biphase shift keyed (BPSK) format. The BPSK frequency spectra is similar to that of a double sideband suppressed carrier and as for DSBSC, carrier recovery is required to demodulate the signal. It can be shown mathematically ${ }^{3}$ that by squaring or doubling a BPSK signal a twice frequency carrier is obtained. After passing the
doubled signal through a 12 MHz crystal used as an exceptionally narrow bandpass filter, the signal is applied to a synchronous oscillator. This versatile circuit (see section The Synchronous Oscillator) free runs at 6 MHz and on application of the 12 MHz signal synchronously locks to half of the input frequency, effectively regenerating the 6 MHz carrier reference. This locked 6 MHz output is buffered and amplified to produce a logic level $0,+5 \mathrm{~V}$ output, which together with the signal output from the on-time (punctual) NE605 IC is injected into a DBM configured as a phase detector. The voltage output of the phase detector is amplified, level shifted and

[^2] from the upper and lower blocks provide data for the synchronisation function. The output from the middle block is eventually decoded to audio

using a voltage comparator converted into standard logic levels.
The output from this squaring loop BPSK demodulator does not recover the original data polarity as the original phase of the signal is lost in the doubling process. This is why the data was diphase encoded at the transmitter so that the correct data polarity could be recovered at the receiver.
An edge detector configured from an exclu-sive-OR gates produces a negative pulse for both positive and negative edges of the comparator's diphase data stream output. The edge detector output triggers monostable A, one half of a dual monostable. (Note: all monostables are non-retriggerable). Monostable A is set to produce a positive output pulse with a duration of 75% of the diphase bit cell period. The Q output of monostable A triggers monostable B which produces a positive output pulse of duration 25% of the diphase bit cell period.

In turn the negative going edge of monostable B output triggers monostable C which produces a positive pulse with a duration of 50% of the diphase bit cell period. D-type flipflop D_{I} is clocked by the /Q output of monostable C and flip-flop D_{2} by the Q output.
The positive edges of the Q and $/ Q$ outputs of monostable C occur before and after any mid-bit transition. Thus when D_{1} and D_{2} are clocked, their outputs will be different if the diphase encoded bit represents a one, or the same if the diphase encoded bit represent a

The synchronous oscillator

The synchronous oscillator is an elegant but little known circuit which can be used to advantage where a phase-locked loop (PLL) would normally be employed. The SO is a free-running oscillator which oscillates at a frequency determined by its LC tank with no signal applied to its input.

When a signal is applied within the SO's acquisition bandwidth the oscillator synchronises and tracks the input signal. The SO output amplitude is constant when locked to and tracking an input signal. A decrease in the input carrier-to-noise ratio reduces the

SO's tracking bandwidth to maintain a constant signal-tonoise ratio at the SO's output. This characteristic allows a SO to acquire and track very noisy signals.
The SO can also act as a frequency multiplier or divider. In the direct sequence receiver, the SO locks to a noisy 12 MHz signal and provides a stable 6 MHz output. This function could be achieved using a PLL but the SO has many advantages ${ }^{5,6,7,8}$ and, as it is based on only two transistors, is much simpler to implement.
A simplified explanation of operation is that the upper
transistor acts as a Class C oscillator. The upper transistor only conducts for a very brief period of time; when the upper transistor conducts, there is a voltage across the lower transistor biasing it allowing it to conduct. At this time the input signal can then be injected to synchronise the oscillator. During the rest of the oscillator cycle input noise is unable to enter the oscillator as the lower transistor is reverse biased. This arrangement produces coherent amplification which is why the SO can extract signals from very low signal-to-noise inputs.

zero. If D_{l} and D_{2} outputs are exclusive ORed then the instantaneous NRZ data is obtained. The clock is recovered at the Q output of monostable A. It can be seen that missing or corrupted diphase data could cause monostable A to trigger on a mid-bit transition rather than a 'start' transition. This false synchronisation will be corrected on the next diphase encoded zero as monostable A will not be triggered.
The recovered clock and NRZ data is delivered to the delta modulator integrated circuit where it is converted back into audio and amplified to a loudspeaker.
The delay lock loop and code generation circuitry permits code correlation, synchronisation and tracking. The difference amplifier has its inverting and non-inverting inputs respectively connected to the early and late channel RSSI outputs. The difference amplifier is followed by a summing amplifier used to adjust the quiescent frequency of the voltage controlled crystal oscillator and a low pass filter. The output of the inverter drives the control input of the voltage controlled oscillator. The VCXO consists of a high stability AT cut crystal in a discrete transistor based oscillator with varicap frequency control. The oscillator's low voltage output is amplified by approximately 10,000 with a linear biased $H C$ logic gate. This hard limits the buffer's output to standard logic levels. The VCXO provides a highly stable, repeatable output which has a 2 kHz tuning range centred on 8 MHz for a tuning voltage of 0 to 6 V .
The VCXO output is divided by two to produce a 4 MHz clock. This clock signal drives the 127 chip maximal pn generator. The output of this pn generator is re-clocked through a shift register by the original 8 MHz clock. By extracting the three outputs from neighbouring outputs three identical pn codes are available (early, on-time and late) but with a half clock cycle difference between them. Thus the early code is one clock cycle (or "chip" in spread spectrum terminology) ahead of the late code. Each pn code generator output drives the rel-
evant correlator (de-spreader). See section Delay Locked Loop.
In operation the VCXO is offset to a slightly higher frequency than the crystal clock in the transmitter, effectively producing a sliding correlator. Assuming that the receiver is in range and unsynchronised, the receiver code will slide past the transmitter code. At one point in time the two codes will match. This will result in correlation and the direct sequence signal will be despread. The early channel will be despread before the late channel and the early RSSI value will be considerably higher than the late uncorrelated channel. This difference signal after filtering steers the VCXO output towards the frequency of the transmitter clock. When the receiver and transmitter clocks and pn codes are synchronised the RSSI outputs from the early and late channels will be identical and the difference amplifier output will be zero. Should the receiver clock be retarded greater energy will in the late channel than the early channel, and the VCXO will be driven by the difference amplifier to increase its frequency. If the receiver clock is advanced greater energy will be in the early channel than the late channel and the VCXO will be driven by the difference amplifier to decrease its frequency. Thus the delay locked loop will maintain synchronism once the sliding correlator has caused the receiver to lock. The frequency offset is selected such that it will cause rapid synchronisation but remain within the capture range of the loop.

Construction and Testing

The direct sequence transmitter and receiver were constructed on a combination of Veroboard and double-sided printed circuit boards. The radio-frequency circuits were built on the double-sided pcbs, with the usual RF design techniques employed. The photograph of the completed transmitter- exciter and receiver shows the combination of construction techniques used.(See August $E W+W W$).

The system is designed around easily
obtainable components and all inductors and filters are selected from either the Toko or Mini-Circuits range to avoid the difficulties of winding coils.

The set-up of the receiver requires a functioning exciter as a source of a direct sequence signal, hence the exciter is adjusted first. This involves setting the master 4 MHz crystal oscillator with the aid of a frequency counter.

Now the receiver can be directly connected (with a suitable attenuator in-line to prevent overload) to the exciter output. Initially the 64 MHz second local oscillator should be adjusted on frequency. The VCXO's frequency is set using the centre frequency adjust potentiometer, to be slightly higher or lower than twice the measured frequency of the transmitter's master clock

The resonant circuit of the synchronous oscillator (SO) has to be adjusted until it freeruns at 6 MHz . It is important to ensure that the SO oscillates at 6 MHz (ie not a harmonic) and the input level potentiometer is set to the minimum input level which permits reliable operation.
The gain and comparator reference point potentiometers should be adjusted such that the phase detector recovers the diphase data stream with HC logic compatible levels.

The VCXO frequency is slowly adjusted until the sliding correlator and delay locked loop lock to and track the transmitter. If a spectrum analyser is available, a narrowband despread BPSK data signal will can be detected at the input to the PIF-70 filter. A dual channel oscilloscope can be used to monitor and compare the transmitter and receiver (punctual) pn codes. If the receiver has synchronised then the two pn codes will line up and the receiver code will be seen to track the transmitter's code. If all is correctly adjusted then the synchronous oscillator will regenerate the 6 MHz carrier with the data recovery circuit and delta-modulator i.c. recovering the audio. Various waveforms are shown on the circuit diagram to aid trouble shooting.

After this initial procedure the power and

pre-amplifiers can be added for free-space checks (provided radio regulations permit). Some minor adjustments particularly of the VCXO frequency may be required to ensure reliable acquisition and locking. If the VCXO frequency offset is too great then the receiver will initially acquire the signal, but will be unable to track it. A degree of trial and error may be necessary to arrive at a receiver clock offset which provides rapid synchronisation and reliable tracking performance. The prototype took less than two seconds from powerup to synchronise and would remain in lock provided the signal was not lost.
The Radiocommunications Agency (the UK radio regulatory authority) granted special authority to the author to experiment with spread spectrum techniques on the 70 cm band under his amateur radio service licence.

At present the UK amateur radio licence does not permit the use of spread spectrum modulation. It is hoped that in the future the standard UK licence will permit spread spectrum modes of operation as is allowed in the USA by the Federal Communications Commission.

The design and circuitry presented in this article is held in copyright by James A Vincent, 1993.

References

1. Convert NRZ to Biphase. John T.

McGaughey. Electronic Design April 121990
2. High Performance 70 cm Pre-Amp. Timothy Edwards. Radio and Electronics World March 1982
3. Appendix 4 - Multiplication of Direct Sequence Signals. Spread Spectrum Systems Second Edition Robert C. Dixon. Wiley interscience.
4. Communication in the Presence of Noise.
C.E. Shannon. Proc.IRE, vol.37, No1,(pp10-21) Jan 1949.
5. The Synchronous Oscillator: A

Synchronisation and Tracking Network. Vasil Uzunoglu \& Marvin H. White. IEEE Journal of Solid-State Circuits. Vol. SC-20, No. 6 December 1985.
6. Synchronous and the Coherent PhaseLocked Synchronous Oscillators: New Techniques in Synchronisation and Tracking. Vasil Uzunoglu \& Marvin H. White. IEEE Transactions on Circuits and Systems. Vol.36, No7, July 1989.
7. A Practical Direct-Sequence Spread Spectrum UHF Link. André Kesteloot, N4ICK. QST magazine. [Re-printed in the ARRL Spread Spectrum Handbook (pp8-47-8-54) The American Radio Relay League. 8. United States Patents: 4335 404, 4274 $067,4356456$.

Bibliography

Spread Spectrum Systems Second Edition. Robert C Dixon, Wiley Interscience, ISBN 0-471-88309-3.
The ARRL Spread Spectrum Sourcebook. Editors André Kesteloot N4ICK and Charles Hutchinson K8CH. The American Radio Relay League. ISBN 0-87259-317-7. Spread Spectrum Communications Volume 1, 2 and 3. Marvin K Simon, Jim K Omura, Robert A Scholtz and Barry K Levitt.
Computer Science Press. ISBN 0-88175-017-7 (Set).
Coherent Spread Spectrum Systems Jack K Holmes. Wiley Interscience. ISBN 0-471-03301-4.
Digital Communication by Satellite. James
J. Spilker Jr. Prentice-Hall. ISBN 0-13-214155-8.

TUF1, RK3 and MAR series devices are manufactured by Mini-Circuits (from Cirkit in the UK and Dole Electronics, Camberley) FX609J from Consiumer Microcircuits, Witham, Essex.
Crystals are available from IQD Lid, Crewkerne, Somerset. RFFM2 DBM comes from Walmore Electronics, London.

USING RF TRANSISTORS 1: Making rf data sheets make sense

> How does a figure in a data sheet relate to performance in a real circuit? In an extract from their book Radio frequency transistors: principles and practical applications, Norm Dye and Helge Granberg explain how to interpret manufacturers' data sheets.

Norm Dye is Motorola's product planning manager in the Semiconductor Products Sector, and Helge Granberg is Member of Technical Staff, Radio Frequency Power Group (Semiconductor Products) at Motorola. Their rf transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the UHF frequencies

RF Transistors: Principles and practical applications is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614). 288pp HARDBACK 0750690593
Cost $£ 19.95$ + Postage $£ 2.50$

Data sheets are often the sole guide to a product's capability and characteristics. Circuit designers, unable to talk directly with the factory, must rely on the data sheet for device information. So it is vital that user and manufacturer of rf products speak a common language. The problem is that what the semiconductor manufacturer is saying about an rf device is not always fully appreciated by the circuit designer.

DC specifications

Rf transistors are characterised by two types of parameters: dc and functional.
By definition, "dc" specs consist, of breakdown voltages, leakage currents, $h_{F E}$ (dc beta). and capacitances. Functional specs cover gain, ruggedness, noise figure, $Z_{i n}$ and $Z_{\text {our }}, S$ parameters, distortion, etc.
Thermal characteristics do not fall cleanly into either category since thermal resistance and power dissipation can be either dc or ac. So thermal resistance is best treated as a special specification.
Table 1 is from a typical rf power data sheet showing dc and functions and specs. A critical part of selecting a transistor is choosing one that has breakdown voltages compatible with the supply voltage of an intended application. The design engineer must select a transistor that, on the one hand, has breakdown voltages which will not be exceeded by the dc and rf voltages appearing across the various junctions of the transistor; and on the other, has breakdown voltages permitting the "gain at frequency" objectives to be met by the transistor.
Mobile radios normally operate from a 12 V source and portable radios use a lower voltage, typically 6 to 9 V . Avionics applications are commonly 28 V , while base station and other ground applications such as medical electronics generally take advantage of the superior performance characteristics of high voltage devices, operating with $24-50 \mathrm{~V}$ supplies.
In making a transistor, breakdown voltages are largely determined by material resistivity
and junction depths (Fig. 1), so breakdown voltages are intimately entwined with functional performance characteristics. Most product portfolios in the rf power transistor industry have families of transistors designed for use at specified supply voltages such as 7.5 V , 12.5 volts, 28 , and 50 V .

Leakage currents (defined as reverse biased junction currents occurring prior to avalanche breakdown) are likely to be more varied in their specification - and also more informative.
Many transistors do not have leakage currents specified because they can result in excessive, and frequently unnecessary, wafer/die yield losses. Leakage currents arise as a result of material defects, mask imperfections, and/or undesired impurities entering wafer processing. Some sources of leakage currents are potential reliability problems: most are not. Leakage currents can be materi-al-related such as stacking faults and dislocations, or can be "pipes" created by mask defects and/or processing inadequacies. These sources result in leakage currents that are constant with time. If initially acceptable for a particular application, they will remain so, and do not pose long term reliability problems.
But channels induced by mobile ionic contaminants in the oxide (primarily sodium) cause leakage currents that tend to change with time and can lead to increases that render the device useless for a specific application. Distinguishing sources of leakage current can be difficult, which is one reason devices for application in military environments require HTRB (high temperature reverse bias) and burn-in testing. But even for commercial applications - particularly where battery drain is critical or where bias considerations dictate limitations - a leakage current limit should be included in any complete device specification.
Dc parameters such as $h_{F E}$ and $C_{o b}$ (output capacitance) need little comment. Typically, for of devices, $h_{F E}$ is relatively unimportant for unbiased power transistors because the functional parameter of gain at the desired fre-
quency of operation is specified. Note, though, that dc beta is related to ac beta (Fig. 2). Functional gain will track dc beta particularly at lower of frequencies. An $h_{F E}$ specification is needed for transistors requiring bias, which includes most small signal devices normally operated in a linear (class A) mode. Generally rf device manufacturers do not like to have tight limits placed on $h_{F E}$, primarily because:

- There is a lack of correlation with rf performance;
- difficulty in controlling wafer processing;
- other device manufacturing constraints dictated by functional performance specs which preclude tight limits for $h_{F E}$.

A good rule of thumb for $h_{F E}$ is to set a max-imum-to-minimum ratio of not less than 3 and not more than 4 , with minimum $h_{F E}$ value determined by an acceptable margin in functional gain. Output capacitance is an excellent measure of comparison of device size (base area) provided most of the output capacitance is created by the base-collector junction and not parasitic capacitance arising from bond pads and other top metal of the die. Remember that junction capacitance will vary with voltage (Fig. 3) while parasitic capacitance will not. Also, in comparing devices, the voltage at which a given capacitance is specified should be noted, as no industry standard exists. The preferred voltage at Motorola is the transistor $V_{c c}$ rating, ie 12.5 V for $12 . \mathrm{V}$ transistors and 28 V for 28 volt transistors.

Ratings and thermal characteristics

Maximum ratings (Table 2) tend to be the most frequently misunderstood group of device specifications. Ratings for maximum junction voltages are straightforward, and simply reflect the minimum values set forth in the dc specs for breakdown voltages. If a device meets the specified minimum breakdown voltages, then voltages less than this will not cause junctions to reach reverse bias breakdown and the potentially destructive current levels.
The value of $B V_{C E O}$ is sometimes misinterpreted. Its value can approach or even equal the supply voltage rating of the transistor, and the question naturally arises as to how such a low voltage can be used in practical applications. First, $B V_{C E O}$ is the breakdown voltage of the collector-base junction, plus the forward drop across the base-emitter junction with the base open. It is never encountered in amplifiers where the base is at or near the potential of the emitter. That is, most amplifiers have the base shorted or use a low value of resistance such that the breakdown value of interest approaches $B V_{C E S}$.

Second, $B V_{\text {CEO }}$ involves the current gain of the transistor and increases as frequency increases. So the value of $B V_{C E O}$ at rf frequencies is always greater than the value at dc .

Maximum rating for power dissipation (P_{d}) is closely associated with thermal resistance ($\theta_{J C}$). In reality, maximum P_{d} is a fictitious number because it assumes that case temperature is maintained at $25^{\circ} \mathrm{C}$. But, providing

Table 1. Typical dc and functional specifications from an rf power data sheet.

Symbol	Min	Typ	Max	Unit
$V_{(B R) C E O}$	16	-	-	Vdc
$V_{\text {(BR)CES }}$	36	-	-	Vdc
$V_{\text {(BR)EBO }}$	4.0	-	-	Vdc
$I_{C E S}$	-	-	10	mAdc
		70	150	

On characteristics:
DC current gain
$\left(I_{C}=4.0 \mathrm{~A} \mathrm{dc}, V_{C E}=5.0 \mathrm{~V} \mathrm{dc}\right) \quad h_{F E} \quad 20 \quad 70 \quad 150$
Dynamic characteristics:
Output capacitance
$\left(V_{C B}=12.5 \mathrm{Vdc}, I_{E}=0, f=1.0 \mathrm{MHz}\right) \quad C_{o b} \quad-\quad 90 \quad 125 \quad \mathrm{pF}$
Functional tests:
Common-emitter amplifier power gain
($V_{C C}=12.5 \mathrm{~V}$ dc, $P_{\text {out }}=45 \mathrm{~W}$,
$l_{C}($ max $)=5.8 \mathrm{Adc}, f=470 \mathrm{MHz}$)
Input power
$\left(V_{C C}=12.5 \mathrm{~V} \mathrm{dc}, P_{\text {out }}=45 \mathrm{~W}, f=470 \mathrm{MHz}\right)$

$G_{p e}$	4.8	5.4	-	$d B$				
$P_{\text {in }}$	-	13	15	watts				
η	55	60	-	$\%$				
ψ^{*}								
No degradation in output power								

($V_{C C}=12.5 \mathrm{~V} \mathrm{dc}, P_{\text {out }}=45 \mathrm{~W}$,
$I_{c}(\max)=5.8 \mathrm{Adc}, f=470 \mathrm{MHz}$)
Load mismatch stress
$\left(V_{C C}=16 \mathrm{~V} \mathrm{dc}, P_{\text {in }}=\right.$ Note $1, f=470 \mathrm{MHz}$,
$V S W R=20: 1$, all phase angles
$\psi^{*} \quad$ No degradation in output power
Series equivalent input impedance
$\left(V_{C C}=12.5 \mathrm{~V} \mathrm{dc}, P_{\text {out }}=45 \mathrm{~W}, f=470 \mathrm{MHz}\right)$
$z_{\text {in }}-1.4+j 4.0$ - ohms
Series equivalent output impedance
$\left(V_{C C}=12.5 \mathrm{~V} \mathrm{dc}, P_{\text {out }}=45 \mathrm{~W}, f=470 \mathrm{MHz}\right)$
$Z_{\mathrm{OL}} \quad-1.2+\mathrm{j} 2.8 \quad-\quad$ ohms

Notes:

1. $P_{\text {in }}=150 \%$ of drive requirement for 45 W output @ 12.5 V .
$\psi^{*}=$ Mismatch stress factor - the electrical criterion established to verify the device resistance to load mismatch failure. The mismatch stress test is accomplished in the standard test fixture terminated in a 20:1 minimum load mismatch at all phase angles.

Fig. 1. Curvature and resistivity determine breakdown voltage.
everyone arrives at the value in a similar manner, the rating of maximum P_{d} is also a useful comparative.
Even so, several reasons dictate a conservative value be placed on $\theta_{J C}$. Thermal resistance increases with temperature, and die tem-

perature T_{j} is not a worst case number. Also, by using a conservative value of $\theta_{I C}$, a realistic value is determined for maximum P_{d}. Generally, Motorola's practice is to publish $\theta_{J C}$ numbers approximately 25% higher than that determined

Fig. 2. Dc beta is related to ac beta.

Fig. 3. Junction capacitance varies with voltage

Now onto die temperature. Reliability considerations dictate a safe value for an all-Au (gold) system (die top metal and wire) to be $200^{\circ} \mathrm{C}$. Once $T_{j} m a x$ is determined, along with a value for $\theta_{J C}$, maximum P_{d} is simply:

$$
P_{d}(\text { max })=\left(T_{j}(\max)-25^{\circ} \mathrm{C}\right) / \theta_{J C}
$$

Specifying maximum P_{d} for $T_{c}=25^{\circ} \mathrm{C}$ leads to the necessity to derate maximum P_{d} for any value of T_{c} above $25^{\circ} \mathrm{C}$. The derating factor is simply the reciprocal of $\theta_{J C}$!
Maximum collector current I_{c} is probably the most subjective maximum rating on the transistor data sheets. Different methods of determination lead to different maximum ratios. The only valid maximum current limitations in an rf transistor concern the current handling ability of the wires or the die. But
power dissipation ratings may restrict current to values far below (what should be) the maximum rating. Unfortunately, many older transistors had their maximum current rating determined by dividing maximum P_{d} by collector voltage (or by $B V_{C E O}$ for added safety). But this is not a fundamental maximum current limitation of the part. Many lower frequency parts have relatively gross top metal on the transistor die - ie wide metal runners and the "weak current link" in the part is the current handling capability of the emitter wires (for common-emitter parts). Current handling ability of wire is well known, so maximum current rating may be limited by the number, size and material used for emitter wires.
Most modern high-frequency transistors are die-limited because of high current densities

[^3]resulting from very small current carrying conductors. These densities can lead to metal migration and premature failure.
It is up to the transistor manufacturer to specify an I_{c} max based on whichever of the two limitations, die or wire, is paramount. Circuit design engineers should consult semiconductor manufacturers for additional information if $I_{c} \max$ is of any concern.
Storage temperature is another maximum rating that is frequently not given the attention it deserves. A range of $-55^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ has become more or less standard. For the singlemetal, hermetic-packaged type of device, $200^{\circ} \mathrm{C}$ creates no reliability problems. But a lower high-temperalure limitation exists for plastic encapsulated or epoxy-sealed devices which should not be subjected to $>150^{\circ} \mathrm{C}$ to prevent deterioration of the plastic material.

Power transistor characteristics

Selection of a power transistor usually depends on frequency of operation, output power, desired gain, voltage of operation and preferred package configuration consistent with circuit construction techniques.
By necessity, functional characteristics of an rf power transistor are tied to a specific test circuit. Without specifying a circuit, the functional parameters of gain, reflected power, efficiency and even ruggedness, hold little meaning. Furthermore, most test circuits used by of transistor manufacturers (even those used to characterise devices) are designed mechanically to allow for easy insertion and removal of the device under test (DUT). This mechanical restriction sometimes limits achievable device performance, explaining why performance by users frequently exceeds that indicated in data sheet curves.

Conversely, a circuit used to characterise a device is usually narrow band and tunable, resulting in higher gain than attainable in a broadband circuit. Unless otherwise stated, characterisation data such as P_{O} vs frequency can be assumed to be generated on a point-bypoint basis by tuning a narrow band circuit across a band of frequencies. As such it represents what can be achieved at a specific frequency of interest provided the circuit presents
optimum source and load impedances to the DUT.
Broad-band, fixed tuned test circuits are the most desirable for testing functional performance of an rf transistor. Fixed-tuned is particularly important in assuring everyone manufacturer and user - of product consistency on a day to day basis.
Tunable, narrow-band circuits have led to device users and manufacturers resorting to the use of "correlation units" to assure product consistency over time. Fixed tuned circuits minimise (if not eliminate) the requirements for correlation. In so doing, they tend to compensate for the increased constraints placed on the device manufacturer. Against this, manufacturers prefer tunabie test circuits because they allow adjustments to compensate for variations in die fabrication and/or device assembly. Unfortunately, gain is normally less in a broad-band circuit than in a narrow-band circuit, and this fact frequently forces transistor manufacturers to use narrow-band circuits to make their products more attractive when compared with competitors (specsmanship!). One compromise the transistor manufacturer can make is to use narrow-band circuits with all tuning adjustments "locked" in place.
For all these reasons, when comparing devices, the data sheet reader should observe carefully the test circuit in which specific parameter limits are guaranteed.

Ruggedness

RF power transistors give considerable weight to ruggedness.

Ruggedness is the characteristic of a transistor to withstand extreme mismatch conditions in operation - causing large amounts of output power to be "dumped back" into the transistor - without altering performance capability or reliability.
Many circuit environments, particularly portable and mobile radios, have limited control over the impedance presented to the power amplifier by an antenna (at least for some duration of time). In portables, the antenna may be placed against a metal surface; in mobiles, perhaps the antenna is broken off or inadvertently disconnected from the radio.

RF power transistors must be able to survive such load mismatches without effect on subsequent operation. One realistic possibility for mobile radio transistors, though not a normal situation, is where an RF power device "sees" a worst case load mismatch (an open circuit, any phase angle) along with maximum $V_{c c}$ and greater than normal input drive - all at the same time.

So the ulimate test for ruggedness is to subject a transistor to a $P_{\text {in }}$ (rf) 50% above that necessary to create rated P_{O}; increase $V_{c c}$ by about 25% (12.5 V to 16 V for mobile transistors); and then set the load reflection coefficient at a unity while its phase angle is varied through all possible values from $0-360^{\circ}$.

Ruggedness specifications come in many forms. Older devices (and even some newer ones) simply have no ruggedness specifica-

Die temperature is measured using an infra-red microscope.
tion. Others are said to be "capable of" withstanding load mismatches, while still others are guaranteed to withstand load mismatches of $2: 1$ VSWR, to infinity at rated output power. A few truly rugged transistors are guaranteed to withstand $30: 1$ VSWR at all phase angles with both overvoltage and overdrive: for all practical purposes 30:I VSWR is the same as infinity VSWR.

Again, the user must match circuit requirements against device specifications.
But, confusing the whole issue even further is the way semiconductor manufactures define what constitutes passing the ruggedness test, generally saying that after testing the DUT "shall have no degradation in output power." A better phrase would be "no measurable change in output power", though even this is not perfect. Unfortunately, the DUT can be damaged by the ruggedness test and still have "no degradation in output power."

RF power transistors now consist of up to 1000 or more low power transistors connected in parallel. Emitter resistors are placed in series with groups of these transistors to give best control of power sharing throughout the transistor die.

Manufacturers know that a high percentage of an rf power transistor die ($25-30 \%$) can be destroyed with the transistor still able to deliver rated power at rated gain - at least for a while. If a ruggedness test destroys a high percentage of cells in a transistor, then a second ruggedness test (by manufacturer or user while in circuit) would probably result in additional damage and premature device failure.

A more scientific measurement of passing or failing a ruggedness test is called $\Delta V_{\text {re }}$, the change in emitter resistance before and after the ruggedness test. $V_{r e}$ is determined to a large extent by the net value of emitter resistance in the transistor die. So if cells are destroyed, emitter resistance will change with a resultant change in $V_{\text {re }}$.

Changes as small as 1% are readily

Physical test jig for an rf power transistor.

detectable, with 5% or less normally considered an acceptable limit.

More advanced device specifications for rf power transistors use this criteria to determine success or failure in ruggedness testing.

Matching circuit

A circuit designer must know the input/output characteristics of the rf power transistor(s) selected, to design a circuit that matches the transistor over the frequency band of operation. Data sheets provide this information in the form of large signal impedance parameters, $Z_{\text {in }}$ and $Z_{\text {out }}$ (commonly referred to as $Z^{*} O L$). Normally, these are stated as a function of frequency and are plotted on a Smith chart and/or given in tabular form.
$Z_{i n}$ and $Z_{o u t}$ apply only for a specified set of operating conditions, - power output, voltage and frequency - and are determined in a similar way: place the DUT in a tunable circuit and tune both input and output circuit elements to achieve maximum gain for the desired set of operating conditions. At maximum gain, DUT impedances will be the conjugate of the input and output network impedances. So terminate the input and output ports of the test circuit, remove the device and measure Z looking from the device - first, toward the input to obtain the conjugate of $Z_{\text {in }}$ and, second, toward the output to obtain $Z_{O L}$,

Test station for rf power transistors used by Motorola.
the output load required to achieve maximum P_{O} A network analyser is used to determine the complex reflection coefficient of the circuit using, typically, the edge of the package as a plane of reference
Once $Z_{\text {in }}$ and $Z_{O L}$ of the transistor are known as a function of frequency, cad can be used to design L and C matching networks for a particular application.
The complete impedance measuring process is somewhat time-consuming since it must be
repeated for each frequency of interest: note that the frequency range permitted for characterisation is that over which the circuit will tune. For other frequencies, additional test circuits must be designed and constructed, explaining why it is sometimes difficult to get a semiconductor manufacturer to supply impedance data for special conditions of operation such as different frequencies, different power levels or different operating voltages.

> LOW COST RANGERI PCB DESIGN FROM SEETRAX

PROMulator

\checkmark Emulates up to $4 \quad \checkmark$ Emulates 24, 28, 32, 1 Mbit EPROMs vla one standard printer port
/ Full screen editor
\checkmark Downloads 27256
(Other models available in 3 seconds
\checkmark Accepts Intel Hex, Motorola S-Records and Binary flles

CALL FOR
FULL DATA SHEET

Tel: 081-441 3890 Fax: 081-441 1843

CIRCIE NO. 105 ON REPLY CARD

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact:
 ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre,
Etloe Road, Leyton, London, E10 7BT
Telephone: (081) 5390136
Fax: (081) 5397746

Electrolalue

Electrol/alue CATALOGUE

Profusely illustrated, this $140+$ page A4 size catalogue packs a wealth of information on items from the highly sophisticated to modest but essential screws, washers and wire, etc. With 28 years in personal mail order services we know how much you rely on quality of goods above everything plus backup service from the supplier i.e. Electrovalue. We've got the catalogue you want and we deliver the goods!
To obtain your catalogue Send cheque or postal order for $£ 1.50$ to address on coupon or phone your Credit Card No. \& its expiry date. Catalogue comes with two $£ 1$ vouchers, each for spending with orders value $£ 10$, or more.
*Shops at
Egham, Surrey
28 St Jude's Road, Englefield Green, Tel. 0784434757. Burnage, Manchester
680 Burnage Lane, Tel. 0614324945. *Personal shoppers not mail order.

[^4]in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0750609249

CIRCUIT MANUALS
Ray Marston
A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual Paperbačk 224 pages
Price £13.95 0434912077
Audio IC Circuits Manual Paperback 168 pages Price £13.95 0434912107

CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circuits Manual
Paperback 144 pages
Price $£ 13.950750600640$
Timer/Generator Circuits
Manual
Paperback 224 pages
Price £13.95 0434912913
Programmable Logic
Handbook
Geoff Bostock
Logic circuit designers are increasingly turning to programmable logic devices as a means of solving problems. This book, for the established electronics engineer, student and technician, is a thorough introduction to programmable logic. Geoff Bostock will take you to a level where you, as a designer, can take full advantage of the growing product range of ASICs and other selfprogrammable arrays used in computer and control systems. Paperback 256 pages. Price $£ 19.950750608080$

Understand Electrical and Electronic Maths Owen Bishop People who find maths difficult often have, as a result, difficulty

Diode, Transistor and FET Circuits Manual
Paperback 240 pages
Price $£ 13.950750602287$
Instrumentation and Test Gear Circuits Manual Ray Marston
Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price $£ 16.950750607580$

Logic Designers Handbook Andrew Parr
Easy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0750605359
Digital Audio and Compact Disc Technology Luc Baert, Luc Theunissen \& Guido Vergult Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A/D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Paperback 240 pages. Price £16.95 0750606142

NEWNES POCKET BOOKS
A series of handy, inexpensive, pocket sized books to be kept by your side and used every day. Their size makes them an ideal 'travelling' companion as well.

Newnes Data Communications Pocket Book Michael Tooley
Hardback 192 pages
Price £12.95 0750604271
Newnes Telecommunications Pocket Book
JE Varrall \& EA Edis
Hardback 400 pages
Price $£ 12.950750603070$
Newnes Z80 Pocket Book Chrls Roberts
Hardback 185 pages
Price £12.95 0750603089
Newnes 68000 Pocket Book Mike Tooley
Hardback 257 pages
Price £12.95 0750603097
Newnes Electrical Pocket Book
21st edition
E A Parr
Paperback 526 pages
£12.95
0750605138
Newnes Electric Circults Pocket Book Linear IC Ray Marston Hardback 336 pages Price £12.95 0750601329

Newnes Guide to Satellite TV D J Stephenson
A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price $£ 17.950750602155$

Newnes Practical RF Handbook lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages. Price £16.95 0750608714

Troubleshooting Analog Circuits R A Pease
Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price £14.95 0750616326
PC-Based Instrumentation and Control

M Tooley

Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95 0750616318

Electronic Circuits Handbook

 M TooleyProvides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages.
Price £24.95 0750607505
Communication Services via Satellite

G E Lewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379

Digital Logic Design

 Brian HoldsworthAs one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays.
Paperback 448 pages.
Price £19. 500750605014

The Circuit Designers
Companion

T Wiliams

This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike. Hardback 320 pages
Price £2500 0750611421

Credif card orders

 accepted by phone 0816523614
AUDIO IC

CIRCUITS MANUAL
ROBERT A. PEASE Troubleshooting

MICROPROCESSOR

ARCHITECIURES AND SYSTEMS RISC. CISC \& DSI
M. MARSION E

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Please supply the following titles:

I PLEASE ADD $£ 2.50$ FOR POSTAGE

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE \qquad TOTAL

Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleable condition for a full refund.

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd Please debit my credit card as follows
Access/Master
BarclayNisa
Amex
Diners

Credit Card No. \qquad Exp date
NAME (Please print)
organisation
STREET
TOWN
COUNTY \qquad POST CODE \qquad COUNTRY

DATE

\qquad TELEPHONE NUMBER

SIGNATURE

vat rates

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Gemany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6% Netherlands, 5\% Portugal, 3% Spain. FOR COMPANIES RECISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about books, journals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5AS

Registered in England 151537

PRODUGTION/A.T.E. SECOND USER ECUIPMENT HUGE SAVINGS ${ }_{\text {PRICES }}^{\text {ONN }}$

SPECIAL OFFER -

scilloscope Batter Oged MWZ Digloi Sorage Scilloscope 8 attery Operation ize Several Powerful Features including Auto Aet-up. RS232. Full Programmability and Floasting Measurements $10 \mathrm{MS} / \mathrm{s}$ Dual Digitit zers 800 Ns
Gilssh Capture, Autorigzer, Save Reference
 Adapter
KANE MAY 1000 Mand held Inlratrace Infa Red c99
Thermometcr $0^{\circ} \mathrm{C}$: $1000^{\circ} \mathrm{C}$.

 included
$70^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ SKKELM2 Therm4 Shock ChamberALTITUDE TEST CHAMBER. Temperature/
 GALENKAMP TGC200, HERAEUS VTR 5
ange $40^{\circ} 1880^{\circ} \mathrm{C}$ C Vacium Drying Oven. Temp. GALENKAMP FESOT/B/MDJ/RAO Chamber. Temp
Range $40^{\circ} \mathrm{C}$ 20 $+100^{\circ} \mathrm{C}$ GALLENKAMP OVR 200/010w Humblity Oven. emp Range Ambo wo 00°. Humidity Range 0 to 95%, $1,1,0$
Litres Workmg Volume
 hemal Dimensions $2500 \times 2500 \times 2900 \mathrm{~mm}$ C C_{a}
MISCELLANEOUS

MIGMA
$201-13$

 Mrogrammer ECM 8400 Automatic High Prectision IC Palace wath Vibion Systems \& Board Conveyor ic, MAMIYA ECM 83NW. Table Top Machline with Computer ECM 8300. With Give Dispersing Head. CCa $^{\text {Mal }}$
 SIEMENS HSI 80 Lre. Hinh Speed Surface Mount Call
 Princter. 550×750 Im Print Area
SIEMENS MS72 Automatic Prick 8 Place Machine
 UNIVERSAL MULTIMOD ©T72A © 18,50 ROBIN AMBOTECH AXII/DIL Isserter
 COAXIAL CABLE/CUT \& STRIP Bench Top 999 AXIALLLad Forming Machine
HELLER $1 / 5$ Automatic Axial Lead Forming Machinc
©29 Complecely returb: shed DEK 245 Serni Autormatc Prnter. $254 \times 203 \mathrm{~mm}$ Prime
size
KERSTEN Screen Printer. $430 \times 400 \mathrm{~mm}$ frames size 6 size
KERTEN S
Irames svailable
rames svalable
IRESTON PA-bOL Paternoster Assembly Station with TRESTON PA-GOL Paternoster Assembly Station with
10 shelve. Motorized somponent tray. Ami static buins 833636 Feeder Suazons, Concroller, Loader! (Ca)
 OYNAPERT MP SJIIRMPS SII8HR 6O Way Feeder
Bed. Vision System VVrious Feeder Combinations
 Machine with Linear Fecder Bee, Full Sper Machlne with Current Upgrades Range of foeders Excellent Condion.
Package Prices from 179,000
CONTAX C5400A Light Guided Assembly Sation 10 CONTAX CS 400A Light Guide Assembly sation 10

SIGNAL SOURCES

OSCILLOSCOPES

HPS4501A O.igrizing TEK2201 Ogytal Siorag
 EK222 10 MHz DSO Baxe Poruble

 TEK2336 100 MHzPHIIIPS 3322000 MHz DSO
HP 5121207206 Hz Digitul

SPECTRUM ANALYSERS	
HP3582A 0.02 Hz - 25.5 KHz HP35A5A $20 \mathrm{~Hz}-40 \mathrm{MHz}$ MARCONI 2380/73E1 400MHz	63,750 8,790 6,9950
ATESTSTEMS	
GENRAD 227X Systems. Can be configured to suis most applikations MARCONI 10 Checkmate. IXDVS. IxiCT. IxRCC. $7 \times 1 C R$. IXDMM. I \times UTC. IxPWS Montor. Printer.	ured to sutt most *KT. IxRCC. Printer. From C13,000 C22,500 cCall

MAINS
 MONITORING

WANTED -- if you have manufacturing equipment to sell, give us a call. We can tum your under-utilised assets into cash. Subscribe Now for Your FREE Copy

See latest issue of Buyers News for full listing and Terms \& Conditions Prices exclude VAT - Buyers Premium not included

ALTERNATIVE DISTRIBUTION (UK)LTD Tel: 07 I-284 4074 (UK) Fax: 071 -267 7363 (UK) 146 Camden Street, London NW 1 9PF

SYSTEM 200 DEVICE PROGRAMMEFi

SYSTEM: Programs $24,28,32$ pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost
Expandable to cover virtually any programmable part including serial E2, PALS GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd. Park Road Centre
Malmesbury, Wiltshire. SN16 OBXX. UK
TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK
GERMANY 089/4602071 NORWAY 071-17890 ITALY 029210355 FRANCE (1)69.30.13.79
Also from VEROSPEED UK CIRCLE NO. 1194 ON REPIY CARD

Low cost data acquisition for IBM PCs \& compatibles

Rewriting the rules with current mode amplifiers

Abstract

Current mode amplifiers open up new designs for wide bandwidth circuits while retaining similarities with conventional operational amplifiers. Bashir Al-Hashimi uses commercially available devices in design examples of high performance, wideband amplifiers.

Circuits working at video frequencies used to depend largely on discrete or hybrid designs. But now, better fabrication techniques coupled with novel circuit design have given rise to a new family of integrated circuit amplifiers based on the current feedback approach ${ }^{1}$ (CFA).
Performance of these monolithic amplifiers matches or surpasses their hybrid counterparts at a fraction of the cost.
To minimise deviation from the standard approach, CFA manufacturers are designing their products to be used directly in text-book op-amp configurations - in spite of their significantly different internal design from conventional op-amps. So obtaining optimum performance with the various commercially available CFAs ${ }^{2,3}$, (Table 1), has meant a new set of design rules has been formulated. It is these rules for design of wideband amplifiers that will be considered, using the EL2030 8 -pin device (Fig. 1, Table 1) from Elantec.
As an illustration, we will look at the requirement for a HDTV system amplifier (Table. 2).

HDTV amplifier design

The HDTV amplifier (Fig. 2) needs a gain of 2 to provide matching to its termination. and uses the standard non-inverting op-amp configuration where the gain is $\left(1+R_{F} / R_{l}\right)$. Voitage feedback amplifiers (VFAs) allow an almost arbitrary choice of feedback - provided the ratio of R_{F} to R_{l} is correct.

Table 1. Typical list of commercially available CFAs.

Company	Part no	3dB bw (MHz)	SR $(\mathrm{V} / \mu \mathrm{s})$	ST $(\mathbf{n s})$	Op current (mA)	Quiescent current (mA)	Diff gain and phase
Elantic	EL2030	120	2000	40 to 0.25%	65	15	$0.01 \%, 0.01$
Harris	HA-5020	100	800	45 to $\%$	60	7.5	$0.02 \%, 0.03$
Linear Tech	LT1223	100	1000	75 to 0.1%	50	6	$0.02 \%, 0.12$
Comlinear	CLC410	200	2500	12 to 0.05%	70	16	$0.01 \%, 0.01$
Analogue DeV	AD811	140	2500	50 to 0.1%	100	15	$0.01 \%, 0.01$
Bur-Brown	OPA603	100	1000	50 to 0.1%	150	21	$0.03 \%, 0.02$
Nat Semi	LM 6181	100	2000	50100.1%	100	8	$0.5 \%, 0.4$

This is the first, and possibly most important, difference between CFAs and VFAs.
With CFAs, the feedback resistor sets the amplifier bandwidth and the frequency response shape, as well as defining the gain of the circuit. R_{F} and R_{l} must not be arbitrary.

Table 2 Typical specification of a HDTV amplifier

Design parameter specification	Target
Bandwidth	DC to 30 MHz
Gain flatness	$<0.1 \mathrm{~dB}$
Goup delay ripple	$<2 \mathrm{~ns}$
O signal level output	1 V (pk-pk) into 75Ω

Fig. 1. The EL2030 8-pin device from Elantec used to test out the new design rules.

Fig. 2. The HDTV amplifier has a gain of 2 to match its termination and uses the standard non-inverting op-amp configuration where the gain is $\left(1+R_{F} / R_{1}\right)$.

Design rules to tackle disadvantages

Compared to VFAs, CFAs have several advantages and disadvantages. Advantages are: Bandwidth largely independent of the closed loop gain;
Superior AC performance, including high slew rate and low settling time;
Linear phase response.
Disadvantages include:
Feedback resistor must be optimised
Unstable with capacitive feedback
Supply voltage affects performance.
But by following certain design rules, CFAs can be used much more effectively, with disadvantages largely overcome:

Choose the feedback resistor to set the amplifier bandwidth and the shape of the frequency response;

- Choose the other resistor $\left(R_{j}\right)$ to set the amplifier gain;
- Do not use capacitive networks in the feedback path, since this drives the amplifier into oscillation
- Use maximum allowable supply voltage since this allows CFAs to achieve optimum performance;
- Always terminate the amplifier input and output;
- Use RF layout techniques (see box)

fig. 3. HDTV amplifier frequency response for different values of RF. Adjusting R_{1} for correct gain shows that RF affects the amplifier
bandwidth and the frequency response peaks. R1 has no effect on bandwidth and frequency response, only affecting the gain.

Fig. 4. Examining the phase response of the amplifier shows good phase linearity at high frequencies and the phase shift increases as the bandwidth decreases.

Frequency response of the HDTV amplifier at three different values of $R_{F}(560 \Omega, 820 \Omega$ and Ik2) - adjusting R_{f} for correct gain - shows that R_{F} (Fig. 3) affects the amplifier bandwidth and the frequency response peaks. R_{I} has no effect on bandwidth and frequency response, only affecting the gain ${ }^{5}$. But it becomes clear that optimum bandwidth and maximally flat frequency response at a gain of +2 is obtained when $R_{F}=820 \Omega$, the measured -3 dB bandwidth being approximately 110 MHz . Higher values of R_{F} decrease the bandwidth: lower values increase bandwidth at the expense of peaking in the amplifier frequency response. The minimum value for a given CFA - below which the CFA becomes unstable - is usually given in its data sheet. For example, lowering R_{F} in the HDTV amplifier below 400Ω causes the amplifier to oscillate. So, to change the amplifier gain, $R_{/}$ should be varied not R_{F}.
Good signal fidelity will depend on a video amplifier exhibiting linear phase shift or a flat group-delay response. Examining the phase response of the amplifier for the previously used three different values of R_{F} (Fig. 4), we can see good phase linearity at high frequencies and the phase shift increases as the bandwidth decreases (or R_{F} increases).
Another difference between CFAs and VFAs is the effect of power supply. For example, lowering the supply voltage of the HDTV amplifier from $\pm 15 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$ reduces amplifier bandwidth from approximately 110 MHz to 96 MHz (Fig. 5).
Returning to the target specification (Table 2), for the required gain flatness and group delay ripple, R_{F} must be 820Ω. Both requirements for the gain flatness and group delay are met (Figs. 6 and 7)
As with VFAs, the ratio of the feedback resistor to the input resistor $\left(-R_{F} / R_{f}\right)$ determines the CFA voltage gain (Fig. 8). R_{F} sets

Fig. 5. Lowering the supply voltage of the HDTV amplifier from ± 15 to $\pm 7 V$ reduces amplifier bandwidth from approximately 110 MHz to 96 MHz .

Fig. 6. Requirements for gain flatness...

Fig. 7...and group delay are both met.

Fig. 8. Ratio of the feedhack resistor to input resistor determines the CFA voltage gain.

Fig. 9. There is no problem in simultaneously achieving the amplifier input resistance and the gain because a shunt resistor can be added.

Fig. 10. In CFA-based buffers the output must be connected to the inverting amplifier input through the recommended feedback resistor.

```
REF Level 0.094 dB
```


/DIV

```
MARKER 100000.000 Hz
```


Fig. 11a. Modifying the circuit to a gain of +1 causes frequency response peaking due to stray capacitance to ground from the inverting input. 11 b . Adding 2 pF results in a further $2 d B$ peaking, implying that 2pF of equivalent strays originally existed.
11c. Changing RF to 960Ω provides a flat response.
the bandwidth and frequency-response peaking, while R_{I} sets the gain. R_{I} also determines the input impedance of the amplifier, so a maximum input impedance is possible for a given amplifier gain. For example, take a 75Ω input impedance amplifier with a gain of -4 . We know that the $E L 2030$ requires $R_{F}=820 \Omega$ to achieve maximally flat frequency response and optimum bandwidth. This gives $R_{l}=$ 205Ω.

Clearly there is a no problem in simultaneously achieving the required amplifier input resistance and the gain because a shunt resistor $\left(R_{x}\right)$ can be added (Fig. 9). Amplifier gain is still $\left(-R_{F} / R_{l}\right)$, and the value of R_{x} is given by:

$$
R_{x}=\left(R_{l} R_{i n}\right) /\left(R_{l}-R_{i n}\right)
$$

where $R_{i n}$ is the required amplifier input resistance.
Referring back to the example, if $R_{\text {in }}=75 \Omega$, $R_{F}=820 \Omega$ and $R_{l}=205 \Omega$ (to achieve a gain of -4), this gives $R_{x}=118 \Omega$. Care needs to be taken when using CFAs in applications requiring low impedances and relatively high gains. If in the previous case the gain required was $-30, R_{/}$would be 27Ω which would provide too low an impedance, and a buffer would be necessary.
Common practice in voltage feedback inverting amplifiers is to connect the non inverting input to ground through a resistor of value equal to R_{F} / R_{l}, giving bias current cancellation. Unlike a voltage feedback amplifier, a current feedback amplifier does not have two high impedance inputs ${ }^{1}$.
The non-inverting input is a high impedance, of the order of $\mathrm{IM} \Omega$, while the inverting input is a low impedance, around 30S. It means that the two CFA bias currents are unrelated and no attempt need be made to minimise them through the impedance matching of the inverting and non inverting inputs. In CFA-based inverting amplifier circuits, the non-inverting input should be connected directly to ground or through a small resistor $(<30 \Omega)$ to ensure stability ${ }^{6}$.

Buffer amplifier design

A common application of CFAs is in buffer amplifiers driving high speed flash A-to-D converters. These amplifiers must have wide bandwidth; fast settling time; low output impedance and the ability to drive large and variable capacitive loads.
Current feedback amplifiers meet all these requirement (Table 1), but to realise the full capabilities of an A-to-D converter, bandwidth of the driver amplifier should be at least three times the Nyquist frequency (half the sampling frequency), minimising gain and phase aberrations ${ }^{7}$. Also, the driver amplifier should be able to settle within one-half LSB of the correct value within the sampling period. For example, the driver amplifier must settle to 0.2% within 10 ns , for use with an 8 -bit 100 MHz flash A-to-D converter.
In voltage feedback buffer amplifiers, the output may be connected directly to the invert-

Board layout and passive components

As with any high frequency device, care must be taken in board layout to maximise performance of current feedback amplifiers. Key points include:

- Use a large ground plane to asure that low impedance ground is available throughout the layout.
- Do not extend the ground plane under nodes which are sensitive to stray capacitance, in particular the inverting amplifier input. Make short and wide connection tracks to minimise losses.
- Bypass power supplies very close to the amplifier pins. For best results, bypass the power supplies with 1 to $10 \mu \mathrm{~F}$ tantalum capacitors in parallel with 100 nF ceramic capacitors. The power supplies should be well stabilised. - Use surface mount passive components since they have the lowest inductance and capacitance. - Avoid use of IC sockets.

Fig. 12. Pulse response of the buffer amplifier shows excessive overshoot. (Top trace input, bottom trace output).

Fig. 13. To reduce overshoot, insert a series resistor between the amplifier output and the load.

Fig. 14. Much improved performance is the result of adding the series resistance. (Top trace input, bottom trace output).
ing input, but in CFA-based buffers, the output must be connected to the inverting amplifier input through the recommended feedback resistor (Fig. 10), ensuring amplifier stability. Current feedback amplifiers are sensitive to stray capacitances, in particular stray capacitance to ground at the inverting input. Effect of this capacitance is shown in the form of peaks in the frequency response (Fig. 11).

From the previous results outlined for a gain of +2 , the optimum feedback resistor R_{F} is 820Ω. Modifying the circuit to a gain of +1 by removing R_{l}, causes frequency response peaking to take place (Fig. 11a), due to stray capacitance to ground from the inverting input.
When gain is employed, R_{l} shunts the effects of strays, and adding a capacitor to simulate larger strays gives the results in Fig. 11 b . Here adding 2 pF results in a further 2 dB peaking, implying that 2 pF of equivalent strays originally existed. Changing R_{F} to 960Ω provides a flat response (Fig 11c).
An important feature of CFAs is that once R_{F} is chosen correctly, the -3 dB bandwidth of the amplifier is approximately 116 MHz with a gain of +1 , and 110 MHz with a gain of +2 . Gain-bandwidth limitation of VFAs is not followed by CFA's.
Input impedance of flash A-to-D converters is highly capacitive, so that a typical 8 -bit, 20 MHz video flash converter will have an impedance of $25 \mathrm{pF} / / 100 \mathrm{k} \Omega$.
Pulse response of the buffer amplifier driving directly a $24 \mathrm{pF} / / 100 \mathrm{k} \Omega$ load (Fig. 12) shows excessive overshoot, and increasing the load capacitor further results in the amplifier becoming more unstable. One way of reducing the overshoot and boosting the buffer-
capability to drive higher capacitive loads, is to insert a small series $\left(R_{s}\right)$ resistor between the amplifier output and the load (Fig. 13). The result is a much improved performance (Fig. 14), when $R_{s}=47 \Omega$. Value of resistor $\left(R_{s}\right)$ depends on the value of the load capacitor and should be determined from manufacturer data.
The drawback to this method is a reduction in amplifier bandwidth.

Reference

1. Application Note 300-1, "A New Approach to Op Amp Design", Comlinear Corporation, March 1985.
2. Ogden, F. "Current Alternative to Operational Amplifiers, EW + WW, August 1992.
3. Finnegan, T. "Analysing Performance of Current Mode Op Amps", $E W+W W$, April 1993.
4. Swager, A. "Video Amplifiers Set Sights Beyond Large 3-dB Bandwidths", EDN, June 1992
5. Application Note OA-13, "Current Feedback Amplifier Loop Gain Analysis and Performance Enhancements", Comlinear Corporation. 6. Application Note OA-15, "Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers", Comlinear Corporation. 7. Application Note 103-1, "Flash Analog to Digital Converters: Optimising Performance" Comlinear Corporation.

NEW E@UPPMENT

CuCK STAR EQMPMEMT (PSP all units L5)
 APOLLO $100-100 \mathrm{MHz}$ lis above with mare functions).
WITEOR MTEOR 100 FREOUENCY COUNTER 10 SMHz
METEOR GOO FREQUENCY COUMTER $500 M H 2$ METEOR 600 FREOUEACY COUNTER 600 MH
WETTOR 1000 FREOUENCY COUNTER 1 CHZ
 oriom Colour bar generator pa/TTMideo --

Al other Black Siar Equipment aval able

Used Equipmont - GUARANTEED. Manuals suppiled If posmitble.
This is a VERY SMALL SAMPLE OF STOCK SAE or Telephone for lists. Please check availability before ordering.
CARRIAGE all Units $£ 16$. VAT to be added to Total of Goods and Camiage. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Camiage.

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (0734) 268041 . Fax: (0734) 351696 Callers Welcome 9am-5.30pm Monday to F Fiday (Untili $8 p \pi$ Thursday)

JPG Electronics

LEDs 3 mm or 5 mm . red or green.................... 6p each	SL.952 UHF Limtung amplifier LC 16
	Sinclair
0.00	
${ }^{\text {shm }} 1027$	
guatity photo resist copper diad epoxy	
single sided double sided	
	QWERTY keyboard 58 key good quality suithes
¢	
${ }^{\text {AH/ }}$ With solder	
TV)... ${ }^{\text {a }}$ 21.95	Philiost 12
charger diare	
echarged ara	
$\underset{F}{\text { Spectal ofiten. prease check for }}$	and
	9 12
4 cell batery 94	
Compater grade capacitors with	
	AM
$E 20.00$ $E 1.60$ per $(1) 1.100$ 100	Dish drive boxes for 5.25 disk drid
	STh
	87.50
per 100 Used	each 850.00 per 100
CMOS TTL 74 HC 74 FLinem Transi	ard p\&p. VAT i id cluced in sil price.
PG Electronics, 276-278 Chats	orth Road, Chesterfield S
Access/Visa (0246)	11202 Callers welcome

CIRCLE NO. 111 ON REPLY CARD

Breaking Windows

With the profusion of Windows software being marketed and reviewed in the computer press, I'm struck by the paradox that so few people that actually like and use it.
Everyone seems to have their tale of woe regarding installation followed by the realisation that the cost in computer memory and disk space appears to be too great in comparison to any benefits gained.
Although computer magazines offer plenty of technical criticism of Windows, I don't ever recall seeing the need for its very existence being called into question. The truth of the matter I believe is that Window's hungry demand for high performance machines is the driving force behind the computer sales market today. And the personal computer magazines that depend on the industry's advertising budgets are hardly likely to bite the hand that feeds them.If the trend is for software producers to concentrate their efforts only on Windows compatible versions, I suppose all of us will eventually be forced into buying expensive upgrades to maintain compatibility.
It seems a pity that the steady improvements in PC price and performance should be soaked up by such a cumbersome and gimmicky operating system rather than more powerful applications.
In the meantime is there anyone else out there prepared to stand up and say "I'm sorry I don't do Windows".
John Carrey
Malvern

Clunky versus cost
 Having spent a large proportion of

 the past six years investigating the perfect audio switch for use in high quality music recording consoles, I would like to add a few comments to Mike Meechan's article on the subject ($E W+W W$, July).First, I'm afraid that you cannot dismiss the mechanical switch or relay too lightly; it still provides the closest we have to an ideal automatable switch. In both laboratory and listening tests I have found no problem with either speed or wear with modern relays. Power consumption, too, can be overcome by using either reed or latching relays, although the latter can cause a problem if the system forgets how they are set.
The problem is a trade-off between clunkiness and cost. A clunky relay and its driver cost about the same as
a decent semiconductor switch, a reed relay rather more. The Focusright console, regarded as having extremely high audio purity, uses as far as I know only reed relays for signal routing.
Secondly, the humble jfets. Meechan passes over these rather quickly, yet they have been the standard for top-of-the range mixing consoles for many years. They have the advantage over cmos switches of a lower on impedance, higher voltage range, and infinitely lower propensity to blow up when you look at them. Simply switching the gate via a $10 \mathrm{M} \Omega$ resistor gives good results. However, if the gate drive is bootstrapped, as Meechan shows, then high frequency distortion will improve due to the negation of the gate-drain capacitance.
Bootstrapping the gate can also avoid the other annoying problem of jfet switches, that the gate current appears in the channel, requiring it always to be fed from a source of low dc impedance. It was as a result of our development at Solid State Logic of the bootstrapped jfet arrangement that Analog Devices developed the SSM2402, and the derivative 2412 mentioned in the article.
Last, but definitely not least, a J1 12 jfet costs about a quarter the price of a VN88 mosfet.
As a final thought, having finally escaped from the audio industry I am now able to start using cmos switches seriously. Can anyone explain why they seem to be so much more prone to static damage than other modern cmos devices? Andy Millar Whitstone, Devon

Sounding out the critics

I was pleased to see Drs BlakeColeman and Yorke report on their investigation into fancy speaker cables ($E W+W W$, May). Their results seem to be pretty much in accord with what Davis ${ }^{1}$, Greiner ${ }^{2}$ and others have been trying to tell us for years. In fact, I was personally involved in a similar test recently that produced pretty much the same result. I am pleased that the good doctors have publicly put their weight behind a more informed approach to hi-fi interconnections.
I also read with keen interest Ben Duncan's article on op-amp distortion "How clean is your audio op-amp?" ($E W+W W$, January $)^{3}$. It was a thought provoking piece, more for the explanation of the

Power to protect

On reading R Gough's letter ($E W+W W$, August), I was struck by several points. I study with a group of people that doesn't know that the human body is tuned to a cosmic keyboard, but there you are; there's just no telling some people.
However, I was most perturbed to read that certain music sounds can stimulate the pancreas, pineal glands and so on. Clearly there are unsuspected dangers in listening to music or indeed any other sound unlooked-for stimulation of the pancreas is likely to send us into insulin coma while nudging the pineal is going to cause sudden uncontrollable attacks of jet-lag, or possibly mass hibernation.
The hazards are obvious, and I think that Mr Gough has a clear duty to specify which frequencies have these hitherto unsuspected effects, so that we audio engineers can guard the public against them with suitable banks of filters.
Seriously though, what is this kind of wretched nonsense doing in EW $+W W$? Without wishing to be catty, surely the "I've out-thought
Einstein" contingent are enough of a cross to bear.

Douglas Self

London
As editor, I have a duty to allow heretical discussion and presentation of controversial views. This is not just a result of some woolly liberalism, but the shameless desire to give entertainment to other readers - FO.
exercise than the actual data. I was a little amused, however, that Duncan has been unable to uncover any harmonics generated by resistors.
Resistors are about the most linear circuit components around. I think his time might be more productively spent investigating the non-linear behaviour of electrolytic capacitors! There are also many other factors, such as circuit layout, more important to distortion than resistor non-linearity.
I disagree with Duncan's idea that the "Cause of the difference is... relatively unimportant". Before we can accept his hypothesis as anything more than conjecture, it is essential that we establish any genuinely audible effects and to ascribe them accurately to differences in the circuit. For example, it is pointless to measure differences in distortion if listeners respond only to a change in mains noise.
As far as Chris Daly's remarks go ($E W+W W$, April), I think he has the wrong end of the stick. One does not need a hot soldering iron nor any practical application to recognise a poor argument.
My criticism of Duncan's is that he proves nothing much. Since there is no scientific evidence that the effects are audible Duncan has furnished us with no more than hypothesis. Unsubstantiated anecdotes are not proof. It is often the lack of theoretical and experimental rigour that renders claims from the golden eared or subjectivist club invalid.

Reproducible experimental results and a firm basis in theory are needed before we can take them seriously.
For the record, I consider it to be very bad practice to trust critical signals to the quite dubious performance of a reversed biased electrolytic capacitor. In fact it would be better if electrolytic capacitors were not used in the signal path at all. The only good features of electros are their relatively small physical size and their cheapness, and in all other respects their performance is pretty lousy.
Also, I have no doubt that some people will think that using this circuit makes their amp sound more euphonious, but that does not mean that they can actually hear any differences, whatever the cause. The levels of distortion that we are discussing are probably inaudible to the vast majority of people ${ }^{4}$. The fact is that average enthusiasts cannot perform properly controlled listening tests in their own living rooms. They very rarely have the facilities or the expertise.
For example, it is necessary to control the effects of room acoustics, extraneous noise and the position of the listeners. It is essential that the sound level and the frequency response be maintained to within $0.2 \mathrm{~dB}^{5}$ (that is about 2% across the audio band, which is outside the capabilities of most multimeters and oscilloscopes).
Also from my own experience I know the sound will depend upon the age and experience of the

IETIERS

listener, as well as their state of health and fatigue, and whether they have had any stimulants or depressants (such as coffee, tea, alcohol, cigarettes, and so on) within hours before any auditioning. Lipshitz and Vanderkooy even suggest that the source material often has greater effect on the sound than the performance of the reproduction equipment ${ }^{6}$.
Based on the evidence that Duncan has published it is unlikely that the new harmonic structure is due to harmonics from the mains. If it were caused by mains we would see many more spectral lines at multiples of 50 Hz , not just the 1 kHz spacing that we do see. I think Duncan would probably agree with me there.
It is interesting then that Daly claims "the near total absence of mains noise (hum)" when Duncan's results show no effect on mains noise. Duncan shows that the reverse biased capacitor causes an increase in even harmonic distortion. Daly on the other land says only that he "noticed no sonic degradation". One cannot say that Daly's claims support Duncan's results, since Daly's experience with this modification is quite at odds with what Duncan seems to be saying. If anything Daly's claim that he "noticed no sonic degradation" tends to suggest that these levels of distortion are inaudible.
However, I am perplexed by a philosophy that seems to be telling me that some distortion is acceptable because it makes the music more euphonious (to some people), but at the same time tone controls should not be allowed because they introduce distortion, even though they reduce sonic aberrations and make the music more euphonious when properly used. Such an illogical and inconsistent philosophy is not likely to maintain much credibility.

Authors wanted

There are a number of subjects and ideas that I have not seen in print that could provide the base for some interesting articles. For example information on surface acoustic wave resonators; they come in one and two port configurations. One manufacturer of these, Siemens, is fully booked through 1994. I would like to see a list of other possible suppliers.
Incidently did you know saw resonator oscillators hold the record for noise floor/spectral purity, they give a better figure than the best crystal oscillators. It is not only Q that matters, saws can operate at much higher power
A review of university departments would be interesting for prospective students and people with research money. Who is an expert at what and where?
Good technical information means finding out what is not on the manufacturer's data sheet. This is possible if its made in the UK and almost impossible from elsewhere. Few distributors are interested in providing technical information on products from their suppliers that are outside the range they stock.
What MPs have a technical background? To whom are we to write if we wish to complain about the sale of the UK's last truly world class electronics capability - STC Submarine Cables.
Submarine fibre optic cables are preferred by telecommunications companies worldwide to satellite for commercial and user convenience. The competitors ATT and Alcatel are regarded in their
own countries as critically strategic. They are directly supported and control would never pass outside their national boundary.
Inertial sensors could only be afforded by the military. An inertial platform for a submarine could set one back $£ 0.5 \mathrm{~m}$. Accelerometers are available to the automotive industry for a few pounds. Angutar rate sensors (the equivalent of a rate gyro) are required to sense car turning for computer control of steering geometry, suspension rotation, steering wheel spin (the Magimix effect), and to interpolate between GPS fixes.
Who makes these low cost sensors, what specification parameters are important, and what other applications could ride on low cost automotive devices?
The department of the government chemist is really useful in letting interested parties communicate in the field of chemical sensors; this should be a model for the rest of the DTI which in most things is truly appalling.
Douglas Dwyer
Okehampton, Devon

If any readers are interested in taking up some of the above ideas for articles, may 1 remind them of the writers' award scheme that we run. Turn to page 813 to find out more - Editor.

Phil Denniss

University of Sydney,
Australia
I. Fred E Davis, "Effects of cable, Ioudspeaker, and amplifier interactions", J. Audio Eng. Soc.. vol. 39, pp461-468 (1991 June).
2. RA Greiner, "Cables and the amplifier interface", pp46-53, Audio, 1989 August. 3. pp42-46, $E W+W W$. Jan 1993
4. Stanley P Lipshitz and John

Vanderkooy, "The great debate:
subjective evaluation", J. Audio Eng.
Soc., vol. 29, pp489 (1981 July/August). 5. ibid, p484.
6. ibid, p485.

A question of theory

Surely messrs Catt, Elmendorf, and Goldberg ($E W+W W$, August) have missed the point. It is rare indeed for a scientific theory or formula to be proved correct or even incorrect, as the continuing big-bang versus steady-state controversy illustrates.
All one can generally say is that the predictions of one tend to fit the evidence better than those of others. The other reason for preferring a theory is simplicity. Generally a very large number of possible

Drawing error

Unfortunately there is an error in the redrawing of the circuit diagram in my article "Audio induction technology for the deaf" $(E W+W W$, September $)$.
The universal preamp should have shown separate jack sockets to different points in the circuit for the dynamic (M) and electret (E) microphone inputs, the former being open circuit and the latter being short circuit when unused.

This provides the different configurations needed for the two types of microphone and results in a similar overall sensitivity.
Specifically, for M, the E input is grounded giving a low noise, low impedance input and a higher gain for lower impedance microphones. For \mathbf{E}, \mathbf{M} is open circuit giving medium gain, medium impedance input and providing dc to power the fet in the microphone. JP Wilson
Keele University

theories will fit the observations; to pick the simplest one has itself proved to be a useful principle.
The Michelson-Morley experiment indicated the aether to be stationary with respect to the Earth, a circumstance untenable in the prevailing philosophy. Another possibility not considered by Goldberg or anyone at the time is. that the aether is viscous, and stationary wherever it is measured rather like air, which tends to attach itself to moving bodies. Of course this makes nonsense of the constancy of the velocity of light, and can be dismissed lightly; its only value as an explanation would be if it fitted reality better than current theories.
We sometimes forget that our theories - and indeed basic concepts ike particle and wave - are only convenient fictions to describe complex behaviour.
I could go on, but since challenges seem to be in fashion, I challenge Elmendorf to indicate first with respect to what is the Earth's rotation to be measured, and secondly, if he finds our weather systems unconvincing, what conceivable type of evidence he would accept as absolute proof that it does?
AM New
Bristol

INTERFACING WITH C

by
HOWARD HUTCHINGS
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

CIRCUIT IDEAS

THIS MONTH'S £100 CIRCUIT IDEA

FSK receiver has auto decision-threshold control

DO YOU HAVE A £100 CIRCUIT?, EACH MONTH'S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL
OTHER PUBLISHED IDEAS WILL BE WORTH £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN

COMPONENTS

Thhis low-cost. low-power PLL receiver for FSK binary-coded data automatically sels the best decisionthreshold level for recovering the data. Ideally, $V_{t h}$ should be midway between V_{h} and V_{l}, the upper and lower peak voltages of the demodulated signal, which are not usually stable due to the effects of drifts and gain inequalities. Signal from the LM568 demodulator passes to comparators $/ C_{2 u .2 b}$, which work in conjunction with current source $\operatorname{Tr}_{2,3}$ and sink $T_{4_{45}}$ as positive and negative peak detectors, tracking variations of the peak voltages. Their outpuls are combined and averaged by $R_{/ 2}$ to put $V_{\text {d/ }}$ half way, this voltage going to the output comparators, which also accept the input from the demodulator. Current generators improve the dynamic range of the peak detectors.

With a 100 mV carrier at 110 kHz , the local oscillator at $2 F_{c}$ and frequency deviation between 500 Hz and 5 kHz , drift was simulated by adding a 0.1 Hz signal to the $300 \mathrm{~b} / \mathrm{s}$ digital modulation. When V_{h} V_{1} is between 100 mV and 600 mV and $V_{t h}$ $1-3 \mathrm{~V}$. data is always recovered with negligible jitter.

G Stochino

Ericsson Fatme Spa
Rome
Italy

Simple method of adapting data-recovery decision-level threshold to take account of noise, drift and gain variations in the amplifiers and demodulator.

Cheap mosfet audio power

Too provide very good performance using cheap mosfet output devices, this circuit uses an op-amp driving a conventional source follower outpu stage.
Transistor $T_{r_{1}}$ sets the quiescent current, the iwo leds dropping a fixed 3.2 V ; a single zener would be just as suitable. Therc is a small drift, but since quiescent current is not critical, there is no correction.
Since the output stage voltage gain is less than unity, the op-amp should be chosen to have enough internal frequency compensation to avoid instability; it should also have a high slewing rate and reasonable current drive. Capacitor C_{2} reduces gain at higher frequencies.
Power output depends on supply voltage; at $\pm 22 \mathrm{~V}$, power is 15 W into 8Ω.
Being a low-cost circuit. it may be feasible to use several with active crossovers, rather than one higher-quality amplifier.

Andrew Southgate

Sutton, Cambridgeshire

No-loss tuned circuit

The circuit shown is (ideally) a loss-free parallel tuned circuit, for use as part of a band-pass filter or as a reasonably accurate sinewave oscillator if the dotted resistor is in place, although a diode limiter across one of the capcitors may be needed in the oscillator form. With component values normalised to unity, the dotted resistor would be typically 50 .

Frequency control is also unity, R being the top half to give
$\omega=\sqrt{\frac{R}{1-R}}$.
Varying the control gives a fairly straight line over around two octaves, accurate enough for use in a simple spectrum analyser. McKenny W Egerton jr
Owneys Mills, Maryland, USA

Transconductance squarer

A n op-amp and a dual fet Acombine to give output $k v_{i}{ }^{2}$ when $v_{i}>0$.

National Semiconductor's 2N5452 n-channel dual fet has good matching between the two devices and low output conductance. Normally, the voltage belween the fet gates and the non-inverting op-amp input is constant at V_{p}. the pinch-off voltage of the two transistors. $\mathrm{V}_{\mathrm{GS} 2}$ is $\left(\mathrm{v}_{\mathrm{i}}{ }^{+}+\mathrm{V}_{\mathrm{p}}\right)$ and $i_{\text {out }}$ is proportional to v_{i}^{2}.
The coefficient k is adjustable by means of the $5 \mathrm{k} \Omega$ input variable, the two diodes and the $4.7 \mathrm{k} \Omega$ resistor ensuring that $i_{\text {out }}$ does not
exceed $I_{\text {DSS }}$ and affording negative feedback should $v_{i}{ }^{+}$ become greater than $\left|\mathrm{V}_{\mathrm{p}}\right|$. Output voltage must lie within the $5-15 \mathrm{~V}$ range.
Including an absolute-value detector at the input produces a true squarer: either polarity of input gives the same output. With a $\mu A 741$, the circuit works al several
 kilohertz. Alexandru Ciubotaru University of Texas at Arlington
Texas,
USA

Loss-free parallel tuned circuit with one frequency control to give a nearly straight resistance/frequency response over two octaves.
 trequency response over two octaves.

Zero-crossing detector

A^{1} every zero crossing, this circuit produces a $150 \mu \mathrm{~s}$ pulse, centred on the crossing, the output being optically isolated from mains input.
Diodes $D_{1.4}$ reclify the input current, which is limited by $R_{1,2}$ to around 1.3 mA : power dissipation is minimal, so virlually any kind of resistor will suffice. Output from the rectifier powers the quad N and $/ C_{/}$, zener D_{6} limiting the voltage to aboul 12 V .
Since input to $/ C_{/}$is normally high, output from the three parallel gates is high, except for the period around each zero crossing, when input to $I C_{/}$is low and so is the output, which turns the led and output transistor on. Resistor R_{f} avoids trouble caused by stray coupling at the transistor

Electrocardiograph simulator

This simple ECG simulator has been useful for some years in teaching and equipment test and development.
$I C_{\text {th.ta }}$ form an astable flip-flop at 20 Hz to drive the clock input of the decade counter IC C_{2}, which produces sequential highs on its $Q_{0.9}$ outputs. The voltage at the common point of the output resistors is determined by the potentiometer action of one on resistor and nine off, the values being chosen to form the required pulse slape.
When Q_{9} goes high, it inhibits the $/ C_{/ C \cdot d}$
Electrocardiograph simulator, variable from 30 to 160 pulses per minute, pulse shape
monostable for a time set by the $2.2 \mathrm{M} \Omega$ variable resistor, so controlling the pulse rate from 30pulses $/ \mathrm{m}$ in to $160 \mathrm{p} / \mathrm{m}$. At each pulse, led D_{2} blinks.
The $10 \mathrm{k} \Omega$ resistor and $1.5 \mu \mathrm{~F}$ capacitor smooth the stepped output from the resistor bank and the $10 \mathrm{k} \Omega$ pot. sets the output to

Simple zero-crossing detector produces an isolated pulse, used by the author to synchronise a sawtooth generator.
base. Capacitor $C_{\text {/ }}$ takes about 100 ms to charge at switch-on.

AJ Flind

Taunton, Somerset
$0.2 \mathrm{mV}-2 \mathrm{mV}$ pk-pk. Over $4 \mathrm{k} \Omega$ output impedance could trigger the "lost electrode" alarm on some cardiac monitors.
Alberto R Marino
Madrid
Spain

being synthesised by sequential outputs

Electronic Designs Right First Time?

See us on Stand P29 EDS Wembley 5-7 Oct

Integrated Electronics CAD

For Less than $£ 400$!

Affordable Electronics CAD

EASY- PC: Low cost PCB and Schematic CAD	$£ 98.00$
EASY- PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
PULSAR: Low cost Digital Circuit Simulator ~ 1500 gate capacity.	£98.00
PULSAR Professional: Digital Circuit Simulator $\sim 50,000$ gate capacity.	£195.00
ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 nodes	$£ 98.00$
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes	£195.00
Z-MATCH II: Smith Chart Program for R.F. Engineers	£195.00
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information Please Write, Phone or Fax.

$$
\begin{aligned}
& \text { Tel: } 0480461778 \\
& \text { Fax: } 0480494042
\end{aligned}
$$

CIRCLE NO. 113 ON REPLY CARD

Micro-Controller Development Systems 8748/9 Series and 8751 Series No Emulator or Programmer required
 This is what a customer said:
 "Your system has proved an excellent and very economic way for a hobbyist to get into embedded microprocessors". D.S. (C.Eng MEE) Southend-on-Sea
 KRRE 48 8748/9 System. Recommended for beginners Includes Single Board Computer. Using 8749 OTP Micro with built in Monitor/Downloader prog. Ailows downloading of bytes and examine memory Switch to external memory to run byles and examine memory. Switch to exiernal memory to rui loaded program. Comes complete with Shareware Editor Assembler and Comms package. RS232 inter-connect lead. All IC's socketed. In fact all you need, is an IBM compatible PC and a 5v power supply. Software available on $31 / 2$ or $51 / 4$.
 Please note no charge is made for software, and will require registration for continued use. Built $£ 64.68$ + VAT kit $£ 49+$ vaI kit $\mathrm{E} 49+\mathrm{VaI}$.
 KARE 518751 System. As above, but using 8751 OTP Micro with Monitor Downloader Program. Built $\mathrm{E75} .74$ + VHT, Kit $59+$ val.
 68HC11 Oev Kit available soon. SIMGIE BOARD
 SBM 40 Sin michos
 SBM 40 Single board micro-controller with $80 C 40$ micro Latch, 2 K memon. Built $£ 29.00+$ VIT, Kit $£ 19.95+$ VII SBM 30 Single boand micro-controller with 80 C 32 micro, Latch, 2 K memon. 16 IO s available. Buitt $£ 29+\mathrm{MrT}$, Kit $£ 19.95$ + VII.

PC EPROM PROGRAMMER

Internal Card for PC, XT, AT, 386, 486 or Compatible £128 + VAT "Special Offer"

* Affordable
* Easy to instal, just plug in
* Programs E(E)proms and flash memory
* Supports 2716 through 27C2001 EPROMS
* Reads, programs, verifies and saves to disk
* Accepts Intel hex, Motorola S, and binary format
* Requires 8 -bit bus slot of MS-DOS PC with 512 K ram.
* Supplied with software and 60 page handbook
* 1 year warranty
* MICRO ADAPTORS AVAILABLE STAND-ALONE PROGRAMMERS also available Call us today for further information and DEMO DISK

KARE ELECTRONICS

32 Pear Tree Avenue, Ditton, Aylesford Kent ME20 6EB Tel: 0732844633

BENCH POWER SUPPLIES

 from diawa industry co

	PS120	PS140	PS304	RS40X
I/P VOLTAGE	$230 / 117$	$230 / 117$	$230 / 117$	$230 / 117$
O/P VOLTAGE	$3-15$	13.8	$1-15$	$1-15$
O/P CURRENT	12	14	30	40
MAX RATED	9.2	12	24	32
RIPPLE	3 MV	3 MV	3 MV	3 MV
SIZE (WHD)	$128 \times 104 \times 225$	$128 \times 104 \times 225$	$175 \times 150 \times 225$	$280 \times 140 \times 225$
WEIGHT	5 KG	5 KG	8 KG	10 KG
PRICE INC VAT $*$	69.96	65.00	129.95	189.00

*Carriage extra

- Compact and lightweight
- Cost efficient
- Rapid delivery

SOUTH MIDLANDS COMMUNICATIONS LIMITED S M House, School Close, Chandlers Ford Ind Est. Eastleigh, Hampshire, SO5 3BY
Tel: (0703) 255111 Fax: (0703) 263507

CIRCLENO. 117 ON REPLY CARD

RADIO MODEM

* MPT1329 licence exempt.
\star Range up to 20 km in free space or 1 km in buildings.
* Half duplex asynchronous transmision at 4800/ 9600 bits/sec.
\star Serial interface with baud rates of 1200 , 2400, 4800 and 9600.
$\star 4 K$ of buffer memory.
\star Predictor/corrector error checking.
* Automatic repeater mode to extend range.
\star Station addressable.
\star Analogue and digital interfaces.
* Low power battery operation.

> Warwick Industrial Electronics Ltd The Manor Aston Flamville Leicestershire Tel: 0455233616

CIRCLE NO. 118 ON REPLY CARD

R.S.T. LANGREX SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country
Over 5 million items in stock covering more than 6,000 different types, including CRT's camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers.

Mail order service available.
LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

Mixed-signal asics. Fujitsu has a new family of mixed-signal, standardcell asics in 1.2 and 0.8 micron cmos, which includes two layers of polysilicon and three metal layers for the integration of analogue and fast, dense logic. Fujitsu Microelectronics Ltd, 062876100.

A-to-D \& D-to-A converters

12-bit, 2 MHz ADC. Datel's ADS132/883 analogue-to-digital converter, qualified to MIL-STD-883, is a highspeed A-to-D combined with a fast sample-and-hold amplifier in a small 32-pin TDIP package. It has its own reference, three-state outputs, digital correction circuitry and internal clock. Total harmonic distortion is -80 dB . Datel (UK) Ltd, 0256880444.

Discrete active devices

13.5 GHz transistor. The industry's highest gain/bandwidth product of 13.5 GHz is achieved by Hitachi's 2SC5080, which also offers a noise factor of 1.1 dB at $900 \mathrm{MHz}, 5 \mathrm{~V}$ and 5 mA . At a bandwidth of 2 GHz , forward transfer gain at around 900 MHz is 11.7 dB . The device is in a miniature SM resin moulded MPAK-4 package. Hitachi Europe Ltd, 0628 585000 .

SM rectifier diodes. 1W surfacemounting rectifier diodes by TemicTelefunken are available in the 50 V 1000 V range in standard, fast and ultrafast versions. ITT MULTIcomponents, 0753824212.

UHF mesfet. SGM2014M is a GaAs dual-gate mesfet by Sony, intended for UHF low-noise amplifiers, mixers and oscillators. Noise figure is 1.5 dB at 900 MHz and gain is 18 dB ; cross modulation is low and there is a gateprotection diode built in. The device is packaged in a standard four-pad SOT-143. Sony Semiconductor Europe, 0784466660.

Linear integrated circuits

VHF linear amplifier. RF2103 is a medium-power linear amplifier for
digital or spread-spectrum
transmitters operating in the 800 1000 MHz region, or as an exciter for higher powers. The IC is selfcontained, with a power-down facility, and produces 800 mW CW or 400 mW average for two-tone input, at 6.3 V DC or 3 V (135 mW CW). Gain is 25 30dB. Anglia Microwaves Ltd, 0277 630000 .

Current-feedback op-amp. BurrBrown OPA623 has a large-signal bandwidth of 350 MHz at $2.8 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ and $\pm 70 \mathrm{~mA}$ output. Quiescent current is 4 mA . An external feedback resistor sets open-loop gain for best frequency response and constant bandwidth with varying gain. Slew rate is $2100 \mathrm{~V} / \mu \mathrm{s}$. Burr-Brown International Ltd, 0923233837.

Power-factor controllers.

MC34262/33262 are power-factor controller ICs meant for use as preconverters in electronic ballasts and in off-line power converters. They include start-up timer, single-quadrant multiplier for near-unity power factor, zero-current detector,
transconductance error amplifier, trimmed bandgap reference and output for power mosfets. There is a full range of protective measures. Motorola Ltd, 0908614614.

Logic building blocks

Modems. Hitachi has released three new single-chip modem ICs, HD819003/04/10, based on the earlier 81900. They conform to CCITT V.29, V.27ter and V. 21 ch2 standards and carry out G-III fax mod./demod. operations. Functions now on-chip include touch-tone telephone control, transmission message record and playback and reception data error correction. Hitachi Europe Ltd, 0628 585000.

Bus interface. IDT's IDT74 FC1625 $11 T$ is said to be the fastest buffered parity generation and checking device available, and can be configured as a register, latch or transceiver, supporting 16 bits with byte-level parity generation and checking. The 56 -pin IC replaces up to eight chips. Integrated Device Technology, 0372 377375.

RS232/562 transceiver. Designed for low-power application, the Linear LT1331 is a three-driver, five-receiver interface IC that keeps only one receiver alive during shut-down. It operates in 3 V and $3 \mathrm{~V} / 5 \mathrm{~V}$ systems and includes $\pm 10 \mathrm{kV}$ electrostatic
discharge protection, which is claimed to be the industry's highest. Using $0.1 \mu \mathrm{~F}$ charge-pump capacitors, the device supports data rates to 120 kb bud into 3Ω and 2500 pF in either mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or 3 V only modes. The active receiver wakes the system up on receipt of data. Linear Technolgy (UK) Ltd, 0276677676.

CD interface/audio processor. MCD220 by Motorola interfaces CD drives with the CD-I system bus, performing all CD-I base case audio functions; it is compatible with CDDA, CD-ROM, CD-karaoke and Photo-CD standards. The device runs at normal, double or quadruple speed and supports JTAG boundary scan. Motorola Ltd, 0908614614.

Home automation modem. ST7537 by SGS-Thomson is a modem IC intended for the control of domestic heating, security and other functions in the home. The use of frequencyshift keying makes for reliability, data rate being $1200 \mathrm{~b} / \mathrm{s}$ at a carrier frequency of 132.45 kHz . Data is conveyed by AC power cables in compliance with Cenelec EN50065-1 and the US FCC standards. Multiple devices operate on the same power line. SGS-Thomson Microelectronics, (Italy) 39-6035-597.

Fifos. Tl's new first-in-first-out families are expressly designed for communications and digital signal processing, using multi-stage clocked architecture to handle data at up to 67 MHz clock speed. One-bit fifos are available for telecomms, in which users have been forced to specify up to 9 -bit devices, wasting memory. For DSP, there is a 36 -bit design, the SN74ACT36XX, running at 67 MHz . Texas Instruments, 0234223252.

Memory chips

64 Kb eeprom. AMT's 24 C 65 is claimed to be the world's first 64 Kb device and is the first in a new series of smart serial eeproms. Bus rate is 400 kHz , there is a 64 Kbyte data-input cache and up to eight devices can be on the same bus to give 512 Kb . A 4 K block of one million cycle erase/write memory is provided, as is a 60 K block 10,000-cycle memory. Arizona Microchip Technology, 0628850303.

Microprocessors and controllers

Floating-point accelerator. An arithmetic co-processor board using the risc machine's floating-point accelerator chip is meant for use with

Telecomms controllers. HD404638/9 are low-power telecommunication system controllers operating from voltages down to 2.7 V , several power-saving stand-by and stop modes being provided, as well as a 32 kHz "sub-active" clock. The two devices have 8 K and 16 K by 10 bits of rom respectively and 1152 by 4 bits of ram. The HD4074639 has 16 K of one-time-programmable memory, and all three have DTMF generator, timers, serial interfaces, a voltage comparator and input capture. Hitachi Europe Ltd, 0628 585000.
the Archimedes A540 and A5000 and the R260 Unix station. The FPA10 interfaces with the ARM family of CPUs,implementing often-used instructions on-chip and asoftware/chip combination for the rest. The chip fits a socket on the A5000 motherboard and the A540 card to increase floating-point performance by about 50 times; double and extended precision calculations are accurate to 14 and 18 decimal places respectively. Acorn Computers Ltd, 0223245200.

Microcontroller. An eight-bit risc microcontroller by Arizona, the PIC16C84 contains 1K by 14b of eeprom program memory, 64Kbyte of eeprom data memory and 38 by 8 b of
general-purpose ram. Supply is $2-6 \mathrm{~V}$ and the sleep mode current is 400 nA . There are four hardware interrupts, including wake-up on keystroke and the instruction set has 35 single-word instructions to give a single-cycle execution rate of 400 ns . Arizona Microchip Technology, 0628850303.

Frugal micro. TMP68003F by

 Toshiba is a microprocessor based on the 68HC000 microprocessor core, but with two types of power-down and a clock generator. In power-down, either the clock alone is left running to support external circuits or the whole thing is turned off, in which case current drain is 0.1 mA . The 80 -pin PQFP package has all the address bus pins on one side and all the data pins on the other. Toshiba Electronics (UK) Ltd, 0276694600.
MIxed-signal ICs.

PC sound synthesiser. Yamaha's YMF278 sound synthesiser generates both PCM and FM sound through a single device; PCM comes from a 16 Mb rom. With the addition of a D -to-A converter, an effects processor and a wave rom, it forms a MIDI level 1 system. The FM generator is compatible with the YMF278 sound source LSI. Twenty-four tones may be generated simultaneously at 44.1 kHz sampling rate, the data word being 8 , 12 or 16 bit. Output is in stereo. Polar plc, 0525377093.

Volce for modems. Rockwell's RC96V24ACW cmos modem chipset allows a PC to act as a comms station for data, fax and voice storage and playback from one telephone line. It conforms to the TR29.2 standard and Rockwell has a development program (VAPI) for Windows and dos which provides a driver. VAPI stores data on disk and has intelligent call discrimination to sort out the use of the single line. RCS Microsystems Ltd, 081-979 2204.

Optical devices

Bright led. Tosbright TLOA156P by Toshiba is an exeptionally bright led, intended in the main for use as highmounted car stop lights, where it offers size and placing advantage over the more usual incandescent bulb, measuring only 5 mm diameter. Intensity is 800 mcd at 620 nm over 30 deg angle, with a forward current of 20 mA . Toshiba Electronics (UK) Ltd, 0276694600.

Programmable logic arrays

5 ns eecmos pal. Claimed by AMD to be the fastest electrically erasable 20 pin programmable loglc device currently being sold. Maximum clock speed is 142.8 MHz and the device uses less power than bipolar 5 ns ICs, also offering the facility of frequent and fast reprogramming.
PALCE16V8H-5 has pull-up resistors on inputs and i / o and is a plug-in replacement for the PAL16R8 and most of the PAL10H8 series. Advanced Micro Devices UK Ltd, 0483740440.

600 MHz DSO. With a sampling rate of up to 5Gsample/s, LeCroy's 9360 digital oscilloscope is able to digitise waveforms completely in one shot, bandwidth being 600 MHz . Smart triggering offers edge, window, glitch, pulse width, interval width, state and edge qualified, dropout and television triggers. Basic waveform processing is included, with enhanced processing a firmware extra. A built-in printer produces screen dumps in 10 s. LeCroy Ltd, 0235533114.

PCMCIA PLA. EPM7032 is Altera's first entry to the personal computer memory card market and is one of the multiple-array matrix 7000 family of high-speed EPLDs, having 32 macrocells and 36 i/o pins. Pin-to-pln delay is 7.5 ns . The devices are supported by MAX+PLUS // software for PCs and workstations. Altera UK Ltd, 0628488811.

Power semiconductors

95% efficlency regulator. Linear's
LTC1147 is an 8-pin step-down switcher exhibiting 95% efficiency at an output current of $20 \mathrm{~mA}-2 \mathrm{~A}$. with a stand-by current of $160 \mu \mathrm{~A}$ (quiescent $20 \mu \mathrm{~A}$). It comes in fixed 3.3 V and 5 V versions, accepting $4 \mathrm{~V}-16 \mathrm{~V}$ at the inputs. An external mosfet is driven at up to 250 kHz . Burst mode stand-by power is 2 mW with a 10 V input. Linear Technology (UK) Ltd, 0932 765688.
$2 \mathrm{~A}, 5 \mathrm{~V}$ switcher. MAX726 is a stepdown switching regulator, accepting $8 \mathrm{~V}-40 \mathrm{~V}(60 \mathrm{~V}$ in the 726 HV$)$ and producing $2.5 \mathrm{~V}-40 \mathrm{~V}$. It is a buck regulator and can be arranged as an inverter, a negative boost converter or a flyback converter with input down to 5 V . Power switch, 100 kHz oscillator and control circuitry are built in. Maxim Integrated Products Ltd, 0734 845255.

Transient suppressor. Semtech's tranient voltage suppression diode array handles 300 W peak pulse power per line, has data, signal and DC supply line protection, and is obtainable in unidirectional and bidirectional forms. Reverse stand-off voltage is $5-24 \mathrm{~V}$, leakage current $1 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}$ and capacitance $63-550 \mathrm{pF}$. Semtech Ltd, 0592773520.

Motor control. Sillconix's S/9901 provides low-to-high-voltage interfacing to the Si9911 and Si9914 high-side drivers, with built-in protection for high-voltage motor control. Si9901 low-side driver includes the bootstrap diode, protection circuitry, fault indication, cmos-compatible input and a pump oscillator. $\mathrm{A} 1 \mu \mathrm{~A}$ quiescent current reduces drain on the boostrap capacitor. Siliconix, 0344485757.

Power mos arrays. Under the name POWER+ ARRAYS, Texas offers up to seven power transistors on one chip. In various packages, TPIC5201/2202/2301/2701 contain from two to seven devices. Those with up to three transistors are 7.5A, 60 V devices, while the seven-device package (TPIC2701)contains 0.5A types. Texas Instruments, 0234 223252.

PASSIVE

Passive components

Encapsulated transformers. For switched-mode power supplies, MicroSpire has introduced the MPMP series of transformers and MPLP inductors, both of which offer high power in a small size; 40 W from 3400 cubic millimetres, for example. Height is as liftle as 5 mm above the board and, since the core material touches the board, it acts as a heat sink, so that the units withstand $150^{\circ} \mathrm{C}$. Microspire UK Ltd, 0227740368.

Tantalum chips. Ultra-miniature tantalum-chip capacitors in NEC's SVS range measure 2 by 1.2 by 1.25 mm , but come in values from $0.33 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ at voltages from 2.5 V to 16 V DC. Leakage current is $0.5 \mu \mathrm{~A}$ maximum with a dissipation factor of 0.1. The existing R series covers the $0.047-330 \mu \mathrm{~F}$ range at up to 50 V DC. NEC Electronics (UK) Ltd, 0908 691133.

Electrolytics. Nichicon's Muse electrolytic capacitors come in nine varieties, all of them intended for audio use. Range of values is 0.1 $22,000 \mu \mathrm{~F}$ at $4-100 \mathrm{~V}$ DC. The ranges have various levels of use: $K Z$, for example, is meant for high-quality audio, ES is non-polarised, FA is for mid-to-top quality work and $K V$ is a 6 mm long chip type. Nichicon (Europe) Ltd, 0276685393.

Lithium batteries. High-performance manganese dioxide lithium backup batteries in button form for 3 V operation are available from P Caro. Six sizes from 25 mAh to 500 mAh provide continuous current of 2 mA to 20 mA . P Caro \& Associates Ltd, 021 7421328.

Current limiters. Surge-Gard current-limiting devices from Rhopoint handle steady-state current from 0.3A to 30A and are meant for use in bridge power supplies to limit the inrush current for up to two seconds, whereupon their resistance decreases so that voltage drop is negligible. Several may be placed in series. Rhopoint Components, 0883717988.

Chip capacitors. Solid tantalum chip capacitors in the Matsuo Tanchip 267 range are resin moulded and designed for surface mounting, being as small as 3.2 by 1.6 mm and precisely sized. Capacitance range is $0.1 \mu \mathrm{~F}-100 \mu \mathrm{~F}$ at $4-35 \mathrm{~V}$, or up to $220 \mu \mathrm{~F}$ in a larger case. Operating
temperature is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Surtech Interconnection Lid, 0256 51221.

Connectors and cabling

Edge connector. Methode has an edge connector with a 0.05 in pitch and 0.3 in off-board height. Between 20 and 132 beryllium-copper pins are mounted on a 0.05 by 0.1 in grid in a heat-resistant polyphenylene sulphide body. ITT MULTIcomponents, 0753 824212.

Filtered BNCs. Noise problems in coax. transmission lines are reduced by Oxley's BNC connector with builtin filtering. The cable outer is not connected to chassis, avoiding ground loops, integral multilayer ceramic capacitors providing AC coupling, so that noise currents on the screen can be decoupled to ground. VSWR is better than 1.3:1 over 04 GHz and, with 10 nF between cable screen and equipment shield, attenuation is over 30 dB . Oxley Developments Co. Ltd, 022952621

Euro V35 connector. St Cross now stocks the Belgian CDM range of products, including the CDM-V. 35 connector designed for the V. 35 CCITT interface, which incorporates strain relief and RFI/EMI shielding. St Cross Electronics Ltd, 0703227636.

Displays

Panel meters. Digitron's new 440 series panel indicators work with a variety of sensors, for which the indicators provide a $12-24 \mathrm{~V}$ supply. Model 445 is a 3.5 digit led type, while the 448 also has a single set-point changeover relay. The units are approved to BS 5750. Digitron Instrumentation Ltd, 0992587441.

Slim displays. Epson's EG8501 graphics displays have 320 by 240 pixel screens, the pixels being 0.36 mm by 0.36 mm . Total size of the units is 154 mm by 110 mm by 18.1 mm , active area taking up 115 mm by 86 mm . Displays come in blue and black-on-silver with backlights and a reflective silver. Hawke Components Ltd, 0256 880800.

Filters

UHF filters. Toko UHF dielectric filters are now available in surfacemount packages. They are meant chiefly for RF front-end filtering in cellular and cordless telephones and GPS, with centre frequencies in the $800-1700 \mathrm{MHz}$ range and $\pm 12.5 \mathrm{MHz}$ bandwidth. Insertion loss of the two and three-pole types is 2 dB , passband ripple less than 1 dB and VSWR 2dB. Cirkit Distribution Ltd, 0992 444111.

Satellite filters. Four new satellite
filters from Matthey are meant for use in SNG video upconverter equipment and professional satellite recelvers. Centre frequency is 70 MHz and the filters conform to Eutelsat amplitude and group delay shaping characteristics for both full and half transponder use. Matthey Electronics, 0782577588.

Hardware

Air packing. Air Box is a doublewalled plastic bag for transporting delicate components. When the package is inflated, the inner bag contracts and is surrounded by air under pressure, the whole then being put into a carton. The contents can be seen before opening. The Post Office recognises the Air Box for sending blood products. The bag can be inflated by mouth or by air line. Air Bag Packaging Ltd, 0789297000.

RF shielding material. Available in a number of forms, EMI shielding material from RS is made from copper-coated non-woven nylon fabric, in self-adhesive and nonadhesive varieties. There is a 25 mm door-seal tape in gasket form, laminated to a PVC foam strip. All types attenuate by 60 dB in the 1 MHz 10 GHz range and have a typical surface conductivity of 0.04Ω per square. RS Components Ltd, 0536 201234.

Instrumentation

Subminiature DVM. Datel's DMS20PC is a 3.5 -digit digital voltmeter that occupies around 0.5 cubic inch. Thirty-six models cover the range $\pm 0.2-200 \mathrm{~V}$, with $1000 \mathrm{M} \Omega$ inputs, autozero and autopolarity. Display is by 0.37 in leds and the units are surface-mounted or panel-mounted. Datel (UK) Ltd, 0256880444.

20 MHz oscilloscope. Hitachi Denshi's V-212 20MHz oscillscope costs only £365, yet offers all the usual facilities: Alternate and chop sweep at all speeds, Ch1 output, triggering vert mode, which allows examination of signals at different repetition freequencies on Ch1 and Ch2 slmultaneously. Vertical sensitivity is $1 \mathrm{mV} /$ div. with magnification; rise time is 17.5 ns and sweep time is $0.2 \mu \mathrm{~s} / \mathrm{div}$. to $0.2 \mathrm{~s} / \mathrm{div}$, or $0.1 \mu \mathrm{~s} / \mathrm{div}$. uncalibrated. Hitachi Denshi (UK) Ltd, 081-202 4311.

DAT instrument recorder. Sony's PC116 instrument recorder uses digital audio tape techniques for increased accuracy. Analogue input is converted to PCM digital form, which is then recorded without the corruption that sometimes accompanies analogue recording and wlth a recording time of 120 min . Sixteen channels have a dynamic range of over 80 dB . Livingston Hire Ltd.

Vector wattmeter. Simultaneously performing 144 quantities, Infratek's 305A vector wattmeter works in the 0 800 kHz range up to 16 kV and 800 A , in single. two and three phase versions. It provides direct indication of current, voltage, power, apparent power, reactive power, impedance, energy and frequency, determining harmonic current and voltage and showing power in vectorial form for harmonics to the 59th. Versions for transformer, motor and burden test are available. Tandem Technology Ltd, 0243576121.

Interfaces

Networks and PCs. For networked keyboard users who need to use PC facilitles such as Windows and MSDOS, Cherry has the G80-2550 IBMcompatible keyboard, which combines the functions of an MFII keyboard for PCs with those provided by a dataentry device for IBM hosts. Cherry Electrical Products, 0582763100.

Literature

Test gear. New instruments in the Alpha product guide include power analysers, power supplies and oscilloscopes from Tektronix and Hameg, together with equipment by Fluke, Avo, Edgcumbe, Robin, Kewtechnic, Seaward and Thurlby Thandar. Alpha Electronics plc, 0942 873434.

Reflection coefficient. Marconi now has the 6210, an add-on to the 6200 series microwave test set family of instruments, which is designed to provide precision reflection analysis on microwave and RF systems and
components in the 250 MHz 26.5 GHz range. Time-domain analysis is also offered by way of a simplifying user interface. Display formats Include phase, polar, real, imaginary and Smith chart, in addition to normal Cartesian return loss and VSWR. Accuracy is such that return loss measurement of 20 dB is accurate to within 0.5 dB . Marconi Instruments Ltd, 072759292.

Cirkit catalogue. Cirkit's Summer 1993 catalogue includes details of Kenwood oscilloscopes, new low-cost alarms, scanning receivers and new kits by Velleman. The catalogue costs £1.90 direct from Cirkit or newsagents. Cirkit Distribution Ltd, 0992444111.

PSU handbook. Computer Products 1993 power-supply handbook covers AC/DC supplies and DC/DC converters. It also has a technical section on recent advances in design, with a multilingual glossary of terms. There is an offer of free technical handbooks on safety and EMC and

NEW PRODUCTS CLASSIFIED
Please quote "Electronics World + Wireless World" when seeking further information
thermal management. Computer Products, 0494883113.

Audio amplifiers. Philips Semiconductors offers the Audio Amplifier Cook Book, which lists audio power devices from 150 mW to 50 W and contains over 100 pages of application notes, including PCB design. Gothic Crellon Ltd, 0734 788878.

DSP. The DSP Catalogue gives details of what LSI claims to be the world's most comprehensive range of digital signal processing and data acquisition boards and software support, including products for VMEbus, PCbus and Sbus. There are also specifications of all the leading DSP chips currently available, including the TI TMS320C40 and Motorola's DSP96002. Loughborough Sound Images Ltd, 0509231843.

Radio communications products

Microwave link. Designed for secure, point-to-point Ethernet and voice, Digilink 60 from Wadsworth can be installed in less than a day and offers communication between sites up to 1 km apart. Beam width is 2 deg for invulnerability to movement. Two versions operate at $2 \mathrm{Mb} / \mathrm{s}$ and $10 \mathrm{Mb} / \mathrm{s}$ and frequency is 60 GHz , at which the equipment is said to be completely safe; an operating licence is supplied with the units. Wadsworth Electronics Ltd, 081-941 4716.

Transducers and

sensors

Gas sensors. The Capteur G series of semiconductor selective toxic gas sensors measure ammonia and hydrogen sulphide concentration in the 0-100ppm and 0-1000ppm ranges. Unusually, the sensors exhibit a resistance increase in the presence of the target gases, with negligible interference from methane and other toxic gases. Contalned in one cubic centimetere, they can be PCBmounted or in flame-proof enclosures. Circuit diagrams or ready-built interface boards are offered. Capteur Sensors \& Analysers, 0235821323.

Gas sensor modules. Only a 5 V reference is required by Nippon Ceramic gas sensor modules to convert gas concentration into voltage. An output indicator completes the imstrument, which measures air cleanliness of 1003000 ppm hydrogen or tabacco smoke, 0.1 -10ppm nitrous oxide, 10 500 ppm alcohol or $10-100 \mathrm{ppm}$ organic solvents. Chartland Electronics, 0372363666.

Optical encoders. Codechamp optical encoders are now distributed by Pandect. Specifications include a maximum resolution of
22bits/revolution with an accuracy better than 2 seconds of arc. Units are discrete or in slip-ring assemblies. Pandect Precision Components, 0494 526303.

Winding temperature

 Sensors.Sensor elements designed to measure the temperature of motor and generator windings are fitted in place of a stator slot separator and varnished In . The sensors use a bifilar winding on a glass former, the whole encapsulated in a silicon glass board. Twisted PTFE leads are provided. Class H insulation withstands 2 kV RMS for a minute. Range of sizes is up to 700 mm long, 50 mm wide and anything over 2 mm thick.Thermocouple Instruments Ltd, 0222 734121

COMPUTER

Development and evaluation

Embedded computer development. Arcom's Fastcycle-88 is a multitasking STEbus processor board with the SourceVIEW PC-based debug environment. It works with Borland C or Pascal compilers, the combination optimising Borland's Turbo Debug to produce code for embedded systems. Arcom Control Systems Ltd, 0223 411200.

Fuzzy logic toolset. The Togai Infralogic Fuzzy Logic toolset enables system development for a range of microcontrollers such as the 8051, 68 HC 11 and 80C166. Resulting fuzzy rule base can then be integrated with C code, which can also form part of the rule base, whose output is a defuzzified variable for use in the application. A simulator proves the system, which is then compiled to C code for the processor. A free demo version is available. Hitex (UK) Ltd, 0203692066.

CAN development. Hitex has a range of development tools for the Controller Area Network protocol, in software and hardware. The range includes the Keil C51 Ansl C compiler, Keil RTX51/CAN operating system for the 8051, a Phytec microcomputer card, Hitop51 sourcelevel debugger and the Hitex Teletest 51 emufator. Hitex (UK) Ltd, 0203 692066.

PLD development. PDS-1016 software from Micro Call is an entrylevel system to enable full implementation of designs with Lattice pLSI and ispLSI 1016110 MHz programmable logic devices. It runs on 386/486 PCs under Windows 3.0 or later, using Boolean logic equations and TTL-like logic macro entry. Micro Call Ltd, 0844261939.

Data acquisition. New features of the latest Windmill data acqusition and control software include alarm indication on all inputs, up to eight channels on each window showing

the chart recorder and up to 100 channels for each copy of the data logger. A graphics program allows custom displays to be designed and another enables RS232 interfacing. The package can be linked to Windows spreadsheets, word processors or database software. Windmill Software Ltd, 0618832782

Computer peripherals

Shielded VME bus. Elco's VME bus system provides shielding and data protection and is available in up to eight-layer form for use in every known bus application. Press-fit, multilayer back panels make for optimum capacity and cross talk to adjacent pins is 350 mVSS . Ceramic capacitors between slots reduce LF disturbances. Elco Europe Ltd, 0638 664514.

Software

Antenna calculation. A set of programs called RF Tools assists in the production of critical base antenna calculations and tailoring to special requirements. DXPLOT allows precise calculation of beamtilt coverage; PATPLOT displays dilgitised base antenna patterns; and ANTPLOT develops patterns for sidemounted base antennas. The programs come on three 5.25 in disks, but can be down-loaded free from the company's bulletin board, of which the modem format is 300/1200/2400/9600-N81; telephone (US) (216)349-8698. The Antenna Specialists Co., (US) 0101216 3498400.

PCB design. TangoPRO PCB board design software now runs under Windows, a cut/copy/paste capability aillowing selected items to be moved to and from the Windows clipboard. Design errors are shown on screen and there are enhanced report formats and improved attribute editing. Redraw, file loading and move/delete are now faster. TangoPro Route, also running under Windows, allows simultaneous routeing on all layers, true 45° routeing, manufacture improvement passes and copper sharing. Pentica Systems Ltd, 0734 792101.

RF amplifier plotting program. Motorola's Plotting Utility Program disk enables the plotting of RF amplifier characteristics on Smith chart or polar plots. It will plot input and output stability circles, transition frequency against log frequency and maximum gain in dB against log frequency. Needs are an IBM-type PC with a $5.25 \mathrm{in}, 1.2 \mathrm{M}$ drive, a VGA display and dos. The program disk is free. Motorola Inc., (USA) 602994 6561.

8088 XT - PC99

286 AT - PC286

640k RAM expandable - 2 serial \& 1 parallel with standard SIMMS 2 seri
ports

- 12 Mhz Landmark speed • MS-DOS 4.01

256k RAM - expandable - Factory burnt-in to 640 k
4.7 Mhz speed

- Standard 84 key keyboard
360k 5-1/4" floppy 12" green screen
- 2 serial \& 1 parallel ports included
- MS-DOS 4.01
- In good used condition

Optional FITTED extras: 640K RAM £39. 12" CGA colour
monitor with card $£ 39$. 2nd $5-1 / 4^{4} 360 \mathrm{~K}$ floppy $£ 29.95 .20$ monitor with card £39. 2nd
mbye MFM hard drive £99.

only£99.00

FLOPPY DISK DRIVES

51/4" from £22.95-31/2" from £21.95!

 Massive purchases of standard $51 /{ }^{4}$ " and $31 / 2{ }^{2}$ drives enables us to present prime product at industry beating low pricest All units (unless stated) are removed from often brand new equipmentand are fully tested, aligned and shipped to you with a 90 day and are fully tested, aligned and shipped to you with a 90 day guarantee and operate rrom standard voltages and are of s
ard size. All are IBM-PC compatible (if $31 / 2^{\prime \prime}$ supported). 3.5" Panasonic JU363/4 720K or equivalent $£ 29.95$ (B) 3.5" Mitsubishi MF355C-L. 1.4 Meg. Laptops only" £29.95(B) 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop £29.95(B) 5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B

360 K . Absolutely standard fits most computers $£ 22.95$ (B) Data cable included in price.
Shugart 800/801 SS refurbished \& tested
$\begin{array}{lll}\text { Shugart } 800 / 801 \mathrm{SS} \text { refurbished \& tested } & £ 175.00(\mathrm{E}) \\ \text { Shugar } 851 \text { double sided refurbished \& tested } & £ 275.00(\mathrm{E})\end{array}$ Mitsub ishi M2894-63 double sided switchable
hard or soft sectors- BRAND NEW
ع250.00(E)
Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in a smart case with built in power supplyl Ideal as exterior drives! $£ 499.00(\mathrm{~F})$ End of line purchase scoop! Brand new NEC D2246 8' 85 megabyte of hard disk storagel Full CPU control and industry standard SMD interface. Ultra hi speed transfer and access time
leaves the good old ST506 interface standing. In mint condition leaves the good old ST506 interface standing. In mint condition and comes complete with manual. On'......................

Converts your colour monitor into a
QUALITY COLOUR TV!

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host MICROVITEC, ATARI, SANYO, SONY, COMMODORE PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channels. TELEBOX MB covers vir tually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct connection to most makes of monitor. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard.
Telebox ST for composite video input monitors
£32.95
Telebox STL as ST but with integral speaker £36.50 Telebox MB as ST with Multiband tuner VHF-UHF-Cable. \& hyperband For overseas PAL versions state 5.5 or 6 mhz sound specification. $\mathbf{\Sigma 6 9 . 9 5}$ Telebox RGB for analogue RGB monitors (15 khz)
Shipping code on all Teleboxes is (B) Shipping code on all Teleboxes is (B)
RGB Telebox also suitable for IBM multisync monitors with RGB analog and composite sync. Overseas versions VHF \& UHF call.

No Break Uninterruptable PSU's

 Brand new and boxed 230 volts uninterruptable power supplies from Densel. Model MUK 0565-AUAF is 0.5 kva and MUD 1085-AHBH is 1 kva . Both have sealed lead acid batteries. MUK are internal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with ful operation manuals...........MUK......E249 (F) MUD......E525 (G)20 meg hard disk
1.2 meg 5-1/4" floppy

- 1.4 meg 3-1/2" floppy

EGA driver on board

only249.00

The Philips 9CM073 is suggested for the PC286 and the
CM8873 for the PC386. Either may use the SVGAMTS-9600 if a suitable card is installed. We can fit this at a cost of $£ 49.00$ for the PC286 and £39.00 for the PC386.

POWER SUPPLIES

Power One SPL200-5200P 200 watt (250 w peak).Semi open frame giving $+5 \mathrm{v} 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8a peak), -12 v 1.5 a +24 v 4 a (6a peak). All outputs fully regulated with over voltage
 Power One SPL 130.130 watts. Selectable for $12 v(4 A)$ or $24 v$ (2A). 5 v @ 20A. $\pm 12 \mathrm{v}$ (G) 1.5A. Switch mode. New. E59.95(B) Astec AC-8151 40 watts. Switch mode. $+5 v$ (1) $2.5 a .+12 v$ © $2 \mathrm{a} .-12 \mathrm{v}$ 0.1a. 6-1/4' $\times 4^{\prime \prime} \times 1-3 / 4^{\prime}$.New £22.95(B) Greendale 19AB0E 60 watts switch mode. +5 V @ $6 \mathrm{a}, \pm 12 \mathrm{v}$ (C) $1 \mathrm{a},+15 \mathrm{v}$ @1a. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $\mathbf{2} 24.95$ (C) Conver AC130. 130 watt hi-grade VDE spec. Switch mode. +5 V @15a,-5v@1a, $\pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$.New. $\mathbf{8 4 9 . 9 5 (C)}$ Boshert 13090. Switch mode. Ideal for drives \& system. $+5 v$ © $6 a$,
$+12 v$ 2.5a, $12 v$ © $0.5 a,-5 v @ 0.5 a$.
E29.95(B) $+12 v$ © $2.5 a,-12 v @ 0.5 a,-5 v \oplus 0.5 a$.
 Famell $\mathbf{G 2 4 / 5 S}$. As above but $24 v$ © 5 a .

BBC Model B APM Board

WIN SIOD
 CASH!

 \&100 CASH FOR THE MOST NOVEL DEMONSTRATABLE APPLICATION!BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics system on large networked systerns the architecture of the BBC
board has so many similarities to the regular BBC model B that board has so many similarities to the regular BBC model B tha we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this boardll it is supplied complete with a connector panel which brings all the I/O to ' D '
and BNC type connectors - all you have to do is provide +5 and $\pm 12 \mathrm{v}$ DC. The APM consists of a single PCB with most mand ic's socketed. The ic's are too numerous to list but inctur 6502, RAM The ic's are too numerous to list but include a EPROMS have no contain the custorn operating system on which we provides diagnostic information DC power the system boots and DIP switches and jumpers select the ECONET address and enable the four extra EPROM sockets for user software. Appx dims: main board $13^{\circ} \times 10^{\prime}$. //O board $14^{\prime \prime} \times 3^{\prime}$. Supplied teste

Only $£ 29.95{ }^{\circ}{ }^{\circ} 2$ for $£ 53^{\circ}$

SPECIAL INTEREST
 ujiteu M3041 600 LPM band printer
 EC LS/02 CPU

Rode \& Schwarz SBUF TV test transmitter $25-1000 \mathrm{mhz}$. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter
Thurlby LA 160 B logic analyser
1.5 kw 115 v 60 hz power source

Anton Pillar 400 Hz 3 phase frequency converter 75 Kw Newton Derby 400 Hz 70 Kw converter Nikon PL-2 Projection lens meter/scope
Sekonic SO 150 H 18 channel Hybrid recorder
HP 7580A A1 8 pen high speed drum plotter
N- DA-3501 CD tester, laser pickup simulator

BRAND NEW PRINTERS

Microline 183. NLQ 17×17 dot matrix. Full width. Hyundai HDP-920. NLQ 24×18 dot matrix full with Qume LetterPro 20 daisy. Qume QS-3 interface. Contronics 152-2 9×7 dot matrix. Full width.

386 AT - PC386

2 meg RAM expanded by slots
20 Mhz with 32 k cache Expandable to $64 k$ - 40 meg hard disk - 1.2 meg 5-1/4" floppy

- VGA card installed
 - 2 serial \& 1 parallel ports
- MS-DOS 4.01

Co-processor socket - Enhanced 102 keyboard - Kwik Disk Accelerator Software - FREE

MONITORS

 mulisync with resolution of $1024 \times 768.0 .28$ pich. Text switch for word processing elc 386 or PCC 28 . compti-286 with SVGA card added. Acting compalibe with BBC, Amiga, Atan (includiso chimedes etc. In good used condition (possible minor screen bums). 90 day guarantee. $15^{\prime} \times 14^{\prime} \times 12^{\prime}$. Only........E159(E) 14" Philips Model CM8873 VGA multisync with 640×480 resolution. CGA, EGA or VGA, digitaVanalog, switch selectable. Sound with volume control. There is also a special "Text" switch for word processing, spreadsheels and he like. Compalibe with IBM PC's, Amiga, Atari (excluding the Archimedes etc. Good used condition (possible minor screen bums) 90 day guarantee. $15^{\prime \prime} \times 14^{\prime} \times 12^{\prime}$. Only $£ 139(\mathrm{E})$
Phillips 9CM073 similar (not identical) to above for EGACGA amber compats. 640×350 resolution. With Text switch with amber or green screen selection. $14^{\prime} \times 12^{\prime \prime} \times 13-1 / 2^{\prime} \ldots99(\mathrm{E})$ KME $10^{\prime \prime}$ high definition colour monitors. Nice
tight 0.28^{*} dot pitch for superb clarity and modem styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Alari, Commodore Amiga, Acom Archimedes \& BBC. Measures Amiga, Acom Archimedes \& BRC. Measures Telebox Good used condition 90 day quarantee win our HGB KME as above for PC EGA standard Brand new Centronic 14^{*} monitor for IBM PC and compatibles at a lower than ever pricel Completely CGA equivalent. Hi-res Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz bandwidth. A super monitor in attractive style moulded case. Full 90 day guarantee. Only.
EC CGA 12 IBM-PC compatible. High quality ex-equipment fully tested with a 90 day guarantee. In an attractive two tone $13^{\circ} \mathrm{W} \times 12^{\circ} \mathrm{H}$. The front cosmetic bezel has E69 (E)

Superbly made $20^{\prime \prime} 2^{\prime \prime}$ " and $266^{\prime \prime}$ AV SSECIALS
monitors, come UK manufacture. PIL all solid state colour tive teak style case. Perfect for Schools,Shops,Disco, Clubs. $20 " 135$ 20"....£135 22"....£155 26"....E185 (f) CALL FOR PRICING ON NTSC VERSIONSI
Superb Quality 6 foot 40 u 19" Rack Cabinets Massive Reductions Virtually New, Ultra Smart! Less Than Half Price!
Top quality 19° rack cabinets made in UK by Optima Enclosures Litd. Units feature designer, smoked acrylic, lockable front door, full height lockable half louvered back door and removable side panels. Fully adjustable internal fixing struts, ready unched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore equire only two side panels or stand singly. Overall dimensions are $77-1 / 2^{\prime} \mathrm{H} \times 32-1 / 2^{\prime} \mathrm{D} \times 22^{\prime} \mathrm{W}$. Order as:
Rack 1 Complete with removable side panels..
D) Rack 1 Complete with remo
(D) Rack2
Less side panels ...

SAE - PACKED with bargal

wlth bargalnsi

Kews now available - send Iarge R \& OFFICES
Frig.00-5.30
2 Biggin Way,
Norwood.
SE19 3XF.
LONDON SHOP
Open Mon-Sal 9-5.30
Thursday till 9.00pm
215 Whitehorse Lane.
South Norwood.
London. SE25.

Are 4Mbit drams a drop-in upgrade?

One megabit drams with pin designations to jedec and EIAJ standards were designed with upgradability in mind. This applies to both small-outline J-lead and zip package formats. In theory, any PCB layout for a standard IMbit chip will work equally well with a 4Mbit upgrade without needing any modification, assuming only 1Mbit needs to be addressed of course.
Standardisation fulfils two needs. Firstly, upgradability is simplified. The only circuit modification needed to address a 4Mbit chip as opposed to a 1 Mbit device is to connect an extra multiplexed address line (for the additional two bits) to a previously unused pad. Secondly, standardisation ensures that equipment designs performing adequately with IMbit chips will not be forced into redesign or obsolescence when the unit price of a 4Mbit ram chip falls below that of its 1 Mbit predecessor.
Electrically however, compatibility is not 100% in all applications. Motorola application note ANI 124 discusses possible incompatibilities with refresh and power-up sequences. Both incompatibilities exist because the 4Mbit dram has a different testmode entry sequence from its predecessor.
Because 4Mbit drams have 1024 rows as opposed to 512 for a 1 Mbil device, refresh-

	4 M		1 M	
	Normal Power			
	Low Power			
1024	Normal Power	Low Power		
Number of bits per row	4096	4096	2048	2048
Refresh period (t $\mathrm{t}_{\text {fFSH }}$)	16 ms	128 ms	8 ms	64 ms
Distributed refresh period	$15.6 \mu \mathrm{~s}$	$124.8 \mu \mathrm{~s}$	$15.6 \mu \mathrm{~s}$	$124.8 \mu \mathrm{~s}$
Burst refresh period	16 ms	128 ms	8 ms	64 ms
Time to refresh 1 row (tRC)	130 ns	130 ns	130 ns	130 ns
Cumulative time to refresh entire array	$133.1 \mu \mathrm{~s}$	$133.1 \mu \mathrm{~s}$	$66.6 \mu \mathrm{~s}$	$66.6 \mu \mathrm{~s}$
Refresh time/operating time	0.833%	0.104%	0.833%	0.104%

In most respects, industry-standard 4Mbit dynamic RAMs are a drop-in replacement for their 1Mbit predecessors. Minor refresh and power-up incompatibilities can cause problems however. This table compares standard $70 n \mathrm{n}$ parts.
ing takes twice as long. Refresh versus operating time is however the same, as the table shows. In common with many contemporary dynamic rams, both 1 Mbit and 4Mbit industry-standard parts can be refreshed in a number of ways.

A potential incompatibility between the two device sizes can occur when CAS-before-RAS refresh is used. For a 1 Mbit dynamic ram, the state of the write input is irrelevant during a CAS-before-RAS refresh. With 4Mbit devices however, the negated write input must be disabled, ie high, to prevent the device from entering

Battery life meter from Chinatown?

In the film Chinatown, Jack Nicholson placed a cheap analogue watch under a parked car's tyre so that he could return at his leisure to find out precisely what time the car departed.

This trick allegedly provided the inspiration for the circuit shown here. The design shown is intended to provide an accurate reading of battery life. Unlike its ancestor however, this new idea provides a read out without irreversibly slopping the time piece.

Essentially the clock shown in Fig. 1 - a cheap analogue quartz movement - is powered until cell or battery voliage falls below a programmable threshold. Provided that the initial state of the clock is known, it records very accurately how long the battery has been in use.

Battery life is hardly affecied by the metering circuit. Most quartz analogue clocks consume very little power, running for many months on one AA cell. The monitoring circuitry needs less than $20 \mu \mathrm{~A}$ of supply current and gradually less as the battery voltage falls due to discharge.
To set the "battery-expired" point, a voltage equalling the minimum needed to power the circuit relying on the battery or cell is connected to the input terminals
marked on the diagram. Next, the ten-turn potentiometer is adjusted to the threshold where the clock starts operating.

To commission the circuit, the note advises, "remove the power supply, set the clock to 12:00, connect the test circuit and go home". Presumably, connect the test circuit means connect the equipment that the battery normally supplies to the battery's positive and negative terminals.
There is no mention of connecting the same battery or cell to the input terminals shown on the diagram but it is difficult to see how the circuit would operate otherwise.

Among other circuits discussed in Maxim's Engineering Journal Volume 11 are a third-order high-pass filter incorporating a synthetic inductor and two circuits for converting 3 V supplies to 5 V . There is also a pulse stretcher for capturing pulses down to 15 ns that, unlike most flip-flop alternatives, will respond to amplitudes down to 100 mV .
The bulletin's in-depth article discusses new transconductance amplifiers, culminating in the op-amp circuit
the jedec standard test mode. Test mode on a IMbit memory is entered in an entirely different manner.

During power up, both 1 and 4Mbit drams need a 200 ms pause followed by eight RAS cycles to guarantee proper operation. To prevent a 4Mbit ram from erroneously entering test mode however, these RAS cycles should be either RAS-only or CAS-before-RAS types.
Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Telephone 0628585000.

Fig. 1. Battery life can be indicated very accurately but cheaply using an analogue quartz clock. When cell or battery voltage falls below a threshold programmed via the ten-turn potentiometer, the clock stops.
Provided that the initial time on the clock is known and battery life is less than 12 hours, this simple circuit provides a very accurate readout of battery life.

Op-amp transmits baseband video over 1500m

AIthough very easy to implement, the high-speed link shown in Fig. 2 achieves exceptional performance. Using new high-performance transconductance op-amps, it provides an interface for transmitting baseband video via a twisted pair over distances up to 1.5 km .
Twisted-pair cable is cheaper and more compact than its coaxial counterpart. On the other hand, twisted pair links involve transformers and have limited bandwidth. Without sacrificing the noise immunity of transformer-based twisted-pair transmission systems, this circuit signals down to DC without coupling transformers.
Operating with around 150 m of 22 gauge (American) twisted pair intended for bur-glar-alarm wiring, the circuit attenuates a baseband video 3.58 MHz colour burst by about 6 dB , Fig. 3. In many cases this will not matter. If it does, overall brightness resulting from ohmic losses is adjusted via R_{1} and bandwidth can be extended by trim$\operatorname{ming} C_{1}$. Figure 4 compares a waveform resulting from R_{1} and C_{1} being in their nominal settings.

According to the note, stranded and unstranded twisted pairs exhibit similar bandwidths. Unshielded pairs with low dielectric constant polyethylene or polypropylene insulation offer the highest bandwidth. Gauge of the twisted pair becomes increasingly important as distance increases due to ohmic losses in the cable.
At the driver end, each cable is terminated by 50Ω to ground. Mismatches can degrade video quality but amplifier stability is unaffected since the MAX435 has no feedback.

Fig. 2. Video and data transmission via coaxial cabling is expensive relative to twisted-pair alternatives. This simple transmitter and receiver communicates signals over a twisted-pair link up to 1.5 km without the bandwidth restrictions of transformer coupling.

Fig. 3. Operating with around 150 m of twisted pair intended for burglar-alarm wiring, the data transmission circuit attenuates a baseband video 3.58 MHz colour burst by about 6 dB .

Maxim Integrated Products, 21C
Horseshoe Park, Pangbourne, Reading RG8 7JW. Telephone 0734845255.

Versatile fast-charger chip has only three pins

Asingle three-terminal IC, whose functional diagram is shown here, is capable of fast charging lithium, $\mathrm{NiCd}, \mathrm{NiMH}$ or lead-acid batteries without any additional components. Called the DSI 300 , this IC holds its charging parameters digitally in user programmable non-volatile memory. As a result, it can be set up to produce charging characteristics for a wide variety of cell types and sizes.
Primarily designed with portable equipment in mind, the DS/300 handles standard or trickle charging of batteries up to 3.7 V , given a 5 V input. With a 6 V input, maximum battery voltage capability rises to 4.7 V .

Throughout the charging cycle, output current can be directly related to battery voltage. With simple chargers, output current falls as battery voltage rises. Most batteries however can handle the same current at all stages in their charge cycle so the gradual decrease in current wastes time.
With the DS/300, output current versus battery voltage is programmable. The
device can be programmed to provide con-stant-current charging until the battery voltage reaches a certain threshold. Alternatively it can be programmed to provide any charge current at any of 32 discrete battery voltages in roughly 37 mV steps.
Being TO220 packaged, the device has only three pins - one connecting supply input, one feeding the battery and one providing a ground connection. For programming, the pins are fed with a special access sequence which initiates single-wire communications.
Once initiated for programming, the device can be fed with parameters including power supply range, charge-current load line and trickle-charge rate. An optionally selectable timer provides charge termination after a programmed period. There are also five fully preprogrammed options catering for triple NiCd packs charging at 20 to 100 mA .
Dallas Semiconductor, Unit 26, West Midlands Freeport, Birmingham B26 3QD. Telephone 0217822959.

Housed in TO220 power-device packaging, this battery charger IC has only three terminals yet can be programmed to fast charge a variety of rechargeable technologies up to 4.7 V . Five programmable parameters are charge on, pulse width, Thevenin resistance field, open-circuit voltage and breakpoint voltage. All are programmable in 32 steps. There is an additional register for limiting charge time from 2 to 32 hours.

Using PCB as a current shunt

To keep power losses to a minimum, current sensing shunts for mosfets passing tens of amps need to drop as little voltage as possible. Purpose designed power mosfet current sensors like the LTC1154/5/6 can detect voltage drops of less than 100 mV .
For a mosfet passing ten amps, the resistance needed to develop 100 mV is just 0.01Ω. In this example, dissipation is 1 W . Resistors with such a low value and capable of dissipating more than a watt can be difficult to obtain, particularly in surface-mount format.
For applications where the accuracy of a special current shunt in unnecessary,
Application Note 53 from Linear Technology suggests using a printed circuit board track to provide the necessary voltage drop.
Copper used for PCBs is often expressed in ounces of copper per square foot. The thickness of loz copper-clad board is approximately 0.00343 cm . Resistivity of pure copper is $1.822 \mu \Omega-\mathrm{cm}$ so the 'sheet' resistance of a 0.00343 cm thick layer of copper is around $530 \mu \Omega /$ square. This means that a section of loz copper-clad board one unit long by one unit wide has a resistance of $530 \mu \Omega$, regardless of the unit size.
Using loz copper board, a 0.01Ω resistor for sensing 10A will be approximately 20 squares long, i.e. a strip one unit wide by twenty units long. For loz board, a current density of 50 A per 25 mm width of copper is considered conservative. This means that a shunt 5 mm wide by 100 mm long should suffice.
From Fig. 1, you can see that four connections are made, as is common with power shunts. Two large terminals connect the supply to the power mosfet drain and two sensing terminals provide the voltage

signal for the low-power circuit that senses current. As far as the voltage drop seen by the sensing circuit is concerned, only the distance between the two sensing terminals is important.
If a long stretch of PCB is unavailable, the resistor can be folded. In this case, the corner resistors should be counted as 0.6 squares since current concentrates at the inside corner, Fig. 2.

Copper has a rather high positive temperature coefficient of around $0.39 \% / \mathrm{C}$. As a result, shunt resistance rises with increasing temperature. In some applications this may be a disadvantage but in others, it will be desirable to reduce the current limit as circuit board temperature rises.

Linear Technology, 111 Windmill Road, Sunbury-on-Thames, Middlesex, TW16 7EF. Telephone 0932765688.

Fig. 1. Resistors with values below 0.1Ω are difficult to find, particularly in surface mount form with power ratings above a few hundred milliwatts. Circuit-board tracks form ideal power shunt resistors where accuracy and power dissipation are not too critical.

Fig. 2. Where board area available for a PCB track lowvalue resistor is limited, a serpentine layout may offer an alternative. Compared with the straight-line resistor layout, overall length needs to be increased since adjacent corner squares exhibit 0.6 the resistance of their linearly spread counterparts.

Fig. 3. While providing ideas for mosfet switching, these circuits illustrate designs where low-value resistors formed from copper on a PCB could be useful.
a) Here, a low-value resistor senses current to make sure that the mosfet is kept within its safe operating area.

b) Protection circuit for a mosfet switch handling a resistive load. A 10us delay built into the drain sense circuitry eliminates false triggering due to power supply or load transients.
 energy to ground.
 charging and discharging.

e) Inrush current when a lamp turns on can be up to 20 times the rated operating current. In this circuit, the current limit is raised at turn on.

electronic engineers REEERENCE BOOK

6th Edition F F Mazda

This reference book is divided into five parts: techniques, physical phenomena, materials and components; electronic design and applications. The sixth edition was updated throughout to take into account changes in standards and materials as well as advances in techniques, and was expanded to include new chapters on surface mount technology, hardware and software design techniques, semi-custom electronics and data communications.

ElECTRONICS

6th Edition ENGINEER'S REFERENCE
BOOK

Fraidoon Mazda has worked in the electronics and telecommunications industry for over twenty years, and is currently Product and Operations Manager, Generic

Network Management, with Northern Telecom. He is the author of six technical books (translated into four languages) and the editor of the
Communications Engineers Reference Book published by ButterworthHeinemann.

CONTENTS:
Techniques Trigonometric functions and general formulae; Calculus; Series and transforms; Matrices and determinants; Electric circuit theory; Statistics. Physical Phenomena Quantities and units; Electricity; Light; Radiation; The ionosphere and troposphere. Materials and components Resistive materials and components; Dielectric materials and components; Magnetic materials; Inductors and transformers; Relays; Piezoelectric materials and components; Connectors; Printed circuits; Power sources; Discrete semiconductors; Microwave semiconductor devices; Optical digital integrated circuits; Linear integrated circuits; Semiconductor memories; Microprocessors; Application-specific integrated circuits; Electron microscopy; Digital design; Software engineering; Digital systems analysis; Control systems; Antennas and arrays; Noise management in electronic hardware; Noise and communication; Computer aided design; Television and sound broadcasting. Applications Communication satellites; Point-to-po int communication; Fibreoptic communication; The integrated services digital network (ISDN); Local area networks; Radar systems; Computers and their application; Videotape recording; Office communications; Medical electronics.

1006 pages PAPERBACK ISBN 0750608099 £42.50 (inc post \& packaging)

Please return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
*Now available to Electronics World \& Wireless World readers in paperback.

* Expert coverage of all aspects of electronics
* Over 50 contributors
* For electronic engineers, technicians and students

Please supply me - copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE TOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd.

Please debit my credit card as follows:
Access/Master Barclay/Visa
Amex
Diners
Credit Card No. \qquad Exp date
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY
Y

POST CODE
COUNTRY \qquad
DATE \qquad TELEPHONE NUMBER \qquad
SIGNATURE \qquad
T3000

VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank) VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at
time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders
accepted by phone.
Call 0816523614.

Implementing a band pass filter on a microprocessor

> A hybrid comb FIR filter/second order IIR filter has useful benefits. Allen Brown shows how to implement the hybrid on a general purpose microprocessor.

Digital filters have become regular building blocks in the design of digital based systems. Remarkable roll-off and ease of design and implementation has led to their widespread use. Like their analogue counterparts, they are available in various forms and can suffer from the same problems - pass band ripple and ringing.

Fixed gain digital filters broadly fall into two camps, the finite impulse response (FIR) and infinite impulse response (IIR) filters.
An FIR filter is dependent on the current and the previous input samples: the IIR filter is not only dependent on the current and previous input samples but also on previous output samples. So it is recursive and can suffer from instability problems due to the feedback of output to input. FIR filters on the other hand are unconditionally stable (no feedback)
but require more computation (more taps) to achieve the same performance as equivalent IIR filters.
The ideal would be to have the benefits of an IIR filter without the problem of potential instability, achievable by constructing a hybrid of a comb FIR filter and a second order IIR filter.
Under certain conditions this hybrid digital filter can be implemented on a general purpose microprocessor. Normally that is not an option since digital filters require intensive multiplications that cannot be performed efficiently on microprocessors. But the problem can be overcome by eliminating multiplications through ensuring that the digital filter only requires the numerical additions at which microprocessors excel.
A comb filter (Fig. 1) has an input sample

Fig. 2. Unit circle showing the positions of the four zeros and their respective frequencies.

Fig. 3. Transfer function of comb filter with four zeros. Every point where the value of $|H(q)|$ is zero corresponds to a zero in the unit circle.

Fig. 4. Schematic representation of the second order recursive filter.

Fig. 1. A comb filter has an input sample sequence $\{x(n)\}$ and an output sequence $\{y(n)\}$ with m intermediate storage locations for the m previous input samples.
sequence $\{x(n)\}$ and an output sequence $\{y(n)\}$ with m intermediate storage locations (D memory shift registers) for the m previous input samples. An attraction of the comb filter is its non-recursive nature, in that there are no feedback components which can lead to instability in a filter's operation.
Actual output of the comb filter is the difference in the newest input $x(n)$ and the oldest $x(n-m)$ expressed as,

$$
\begin{equation*}
y(n)=x(n)-x(n-m) \tag{1}
\end{equation*}
$$

Now the behaviour of the filter must be considered in the Z domain, and for this the Z transform needs to be invoked. Two properties of the Z-transform will be used,

$$
\begin{align*}
& \mathrm{Z}\left\{x_{1}(n)+x_{2}(z)\right\}=\mathrm{Z}\left\{x_{l}(n)\right\}+\mathrm{Z}\left\{x_{2}(n)\right\}(2) \\
& \text { and, } \\
& \mathrm{Z}\{x(n-m)\}=\mathrm{Z}^{-n} \mathrm{Z}\{x(n)\} \tag{3}
\end{align*}
$$

When the Z-transform is applied to Eq. 1, then

$$
\mathrm{Z}\{y(n)\}=\mathrm{Y}(z) \text { and } \mathrm{Z}\{x(n-m)\}=z^{-m} \mathrm{X}(z)
$$

which leaves,

$$
\begin{equation*}
Y(z)=X(z)-z^{-m} X(z) \tag{4}
\end{equation*}
$$

where $\mathrm{X}(z)$ is the Z-transform of $x(n)$ and $\mathrm{Y}(z)$ is the Z-transform of $y(n)$. Eq. 4 can be written as

$$
\begin{equation*}
Y(z)=X(z)\left[1-z^{-m}\right] \tag{5}
\end{equation*}
$$

The transfer function $\mathrm{H}(\mathrm{z})$ for the comb filter can be defined

$$
\begin{equation*}
H(z)=\frac{Y(z)}{X(z)}=1-z^{-m} \tag{6}
\end{equation*}
$$

Dividing the right hand side by z^{-m} this equation becomes

$$
\begin{equation*}
\mathrm{H}(z)=\frac{z^{m}-1}{z^{m}} \tag{7}
\end{equation*}
$$

But what are the conditions needed to ensure that $\mathrm{H}(z)=0$?: when the right hand side is zero. For this to happen

$$
\begin{equation*}
z^{m}=1 \tag{8}
\end{equation*}
$$

When $\mathrm{H}(z)$ is zero it means that when a signal, whose frequency matches the value of z is fed into the filter, there is no output from the filter. In the Z plane, all the activity revolves around the unit circle, a circle with a radius of one unit (Fig. 2).
The east point of the circle represents 0 Hz and the west point represents the maximum frequency which can be realised in a digital system, and that is half the sampling frequency.

Moving anti-clockwise along the perimeter from east to west is the positive frequency direction: moving east to west clockwise is the negative frequency direction. (In DSP, negative frequencies are just as real as positive ones.) The points at which the transfer function is zero are displayed as small zeros on the unit circle. These are frequencies where there is no output from the filter.

Taking a closer look at Eq. 8 shows that every time Eq. 8 is true then a zero will appear in the comb filter (a zero in the unit circle). From this equation there will be m zeros in the unit circle (each delay element in Fig. 1 will give rise to a zero in the unit circle). Remembering that z is a complex number with real and imaginary components, then z may be expressed as,

$$
\begin{equation*}
z^{n \theta}=e^{j m \theta}=\cos (m \theta)+j \sin (m \theta) \tag{9}
\end{equation*}
$$

For z^{m} to be a real, then the imaginary component in this equation must be zero. For this to occur then $m \theta=2 \pi$, since $\sin (2 \pi)=0$.

Our comb filter will therefore have m zeros, equally distributed on the perimeter of the unit circle. So for example if there were four zeros ($m=4$), then

$$
\begin{align*}
& z^{4}-1=\left(z^{2}+1\right)\left(z^{2}-1\right) \\
& =(z+j)(z-j)(z+1)(z-1) \tag{10}
\end{align*}
$$

The first zero at the south point ($z=j$, $f_{s} / 4 \mathrm{~Hz}$), the second zero at the north point (z $=j,+f_{s} / 4 \mathrm{~Hz}$), the third zero at the west point ($z=1, \pm f_{s} / 2 \mathrm{~Hz}$) and the forth point at east point ($z=1,0 \mathrm{~Hz}$). These are shown on the unit circle in Fig. 2. As the number of delay elements increases in the comb filter, more zeros appear on the unit circle, all equally spaced and closer together. To see what the transfer function of the comb filter looks like in real terms, use the complex conjugate:

$$
\begin{align*}
& \mathrm{H}(z) \mathrm{H}^{*}(z)=\left(z^{4}-1\right)\left(z^{-4}-1^{\prime}\right) \\
& =2-\left(z^{4}+\mathrm{z}^{-4}\right) \tag{11}\\
& \text { Since } z^{4}=\mathrm{e}^{j 4 \pi}
\end{align*}
$$

$$
\cos (4 \theta)=\frac{e^{j 4 q}+e^{-j 4 q}}{2}
$$

then

$$
|\mathrm{H}(\theta)|^{2}=2\{1-\cos (4 \theta)\}
$$

A plot of $\mathrm{H}(\theta)$ is shown in Fig. 3, showing

Fig. 5. Combining the comb filter with a second order recursive filter.
why the comb filter is so called. Every point where the value of $|\mathrm{H}(\theta)|$ is zero corresponds to a zero in the unit circle.
We are now going to use a comb filter for m $=12$ in combination with a second order recursive filter which has conjugate poles. Remember the poles in a filter gives rise to its resonance behaviour.

Consider a second order filter whose transfer function is,

$$
\begin{align*}
\mathrm{H}(z) & =\frac{z}{z-e^{j \alpha}} \frac{z}{z-e^{-j \alpha}} \\
& =\frac{z^{2}}{z^{2}-2 \cos (\alpha)-1} \tag{13}
\end{align*}
$$

The filter will have a second order zero at the origin, but we are now interested in the behaviour of the poles which are on the perimeter of the unit circle. The condition for the filter to remain stable is that its poles must remain within the unit circle. This filter is on the margin of stability, if it is subjected to an impulse it will be excited into an oscillating condition. Now look at the case when $\alpha=60^{\circ}$ then $2 \cos (\alpha)=1$, the above equation will therefore become,

FIg. 6. Transfer function of band pass filter (order 12).

$$
\begin{align*}
\mathrm{H}(z) & =\frac{z}{\left(z^{2}-z+1\right)} \\
& =\frac{z^{2}}{(z-0.5+0.866 j)(z-0.5-0.866 j)} \tag{14}
\end{align*}
$$

with pole values, $z_{l}=0.5-0.866 j$ and $z_{2}=0.5$ $+0.866 j$, where $\left|z_{1}\right|=\left|z_{2}\right|=1$ which shows that the conjugate poles are on the perimeter of the unit circle. Performing an inverse Z-transform on this equation, we can rewrite the equation as,

$$
\begin{equation*}
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-z^{-1}+z^{-2}} \tag{15}
\end{equation*}
$$

Rearranging the terms, we get,

$$
\begin{equation*}
\mathrm{Y}(z)\left[1-z^{-1}+z^{-2}\right]=\mathrm{X}(z) \tag{16}
\end{equation*}
$$

noting that the inverse Z transform will give,

$$
\begin{aligned}
& \mathrm{Z}-1\{\mathrm{Y}(z)\}=y(n) \\
& \mathrm{Z}-1\left\{z^{-1} \mathrm{Y}(z)\right\}=y(n-1) \\
& \mathrm{Z}-1\left\{z^{-2} \mathrm{Y}(z)\right\}=y(n-2)
\end{aligned}
$$

then the difference equation for the recursive filter becomes,

$$
\begin{equation*}
y(n)=y(n-1)-y(n-2)+x(n) \tag{17}
\end{equation*}
$$

which can be represented schematically as shown in Fig. 4. Now what has to be done is to combine this second order recursive filter with a comb filter and ensure that the two poles reside on top of two of the zeros of the comb filter. The operation will cancel out the effects of the poles and the two zeros under them. To do this we can choose a comb filter of order 12 since two of its zeros will reside at an angle of 60°, the same angle as the recursive filter. The resulting system will be non recursive, having the advantage of being unconditionally stable. Schematically the combination is shown in Fig. 5. The difference equation for this hybrid filter is,

$$
\begin{gather*}
y(n)=y(n-1)-y(n-2)+x(n) \tag{18}\\
-x(n-12)
\end{gather*}
$$

A program in C to implement this filter is given in Listing 1.
The transfer function for this expression is

shown in Fig. 6 which clearly demonstrates the band pass nature of the filter. The greater the order of the comb filter the narrower the band-pass filter. Some problems may arise when trying to implement this filter due to the truncation errors which occur in fixed point processors. The poles may not exactly reside over the zeros which can give rise to some oscillation in the output.

Using a microprocessor

When implementing the band pass filter structure it is possible to choose an appropriate sampling frequency which avoids the need to perform multiplication as seen in Eq. 18. If this is the case the filter can effectively be performed by a general purpose microprocessor, very efficient at moving data and performing arithmetic additions of fixed point numbers. The option is a very cheap one and is ideal for low frequency (< few kHz) applications

NEW
 THE DEFINITIVE ‘OFF-AIR’ FREQUENCY STANDARD

Only £195.+rar

carriage extra

* Provides $19 \mathrm{MHz}, 5 \mathrm{MHz}$ \& 1 MHz
* Use it for calibrating equipment that relies on quartz cryslals, TCXOs, VXCOs, oven crystals
* Phase locks to DROITWICH (rubidium controlled and traceable to NPL) * For ADDED VALUE also phase locks io ALLOUIS (cessum controlled and raceable to OP - French eq io NPL)
* Now with Sine Wave Option, output 1 volt into 50Ω

Output frequencies $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ Shor term slabality - better
than $1 \times 10^{-8}(1 \mathrm{sec})$ than $1 \times 10^{-8}(1 \mathrm{sec})$
Typical $- \pm 4 \times 10^{-9}$ Typical $- \pm 4 \times 10^{-9}$ (1 se $)$
Long term - lends 10 $2 \times 10^{-12}(1000 \mathrm{sec})$

ACRON 402 P SYNCHRONISING PULSE GEN $\& 605 P$

 ECG MONITOR SEM430 WITH SEM420/2 ENCODER \quad E375ea i695/pr CARDIACRECORDERS LTD MIN:GRAPH TYPE 123 POA GF PALMER CARDETTE 4 ELECTROCARDIOGRAPH POA RADIOMETER AFM2 MOD METER IMHZ-IGHZ POA GOULD 2400 4.PENCHART RECORDER DAWE 14050 SOUND LEVEL METER 40-120dB(A) DAWE 8902C ULTRASONIC LEAK DETECTOR IWATSUSS-5802 DIGITAL STORAGE SCOPEX $4 S 66 \mathrm{MHZ}$ SINGLE TRACE TEKTRONIX 2215 60MHZ2 TRACE DEL T/B TEKTRONIX 453A 50MHZ 2 TRACE DEL T/B TELEQUPMENT S62 SINGLE TRACE 5 MHZ SCOPE PHILIPS PM 3226 15MHZ DUAL TRACE TELEQUIPMENT DGIA IOMHZ DUAL TRACE SE LABS SM 111 18MHZ DUAL TRACE TEK 465B 100MHZ DUAL TRACE DEL T/B TELEQUIPMENTO67A 25MHZ 2T, DEL T/B H.P. 1700 A $35 M H Z$ DUAL TRACEHITACHIVC 6015 1OMHZ DIGITAL STORAGE WANDE GOLTERMANN WANDELGOLTERMANN SPM-2 LEVEL METER
WANDEUGOLTERMANN SPM-3 LEVEL METER WANDELGOLTERMANNPS-3 SIGNAL GEN MARCONI TF2304 AWFM MOD METER PRTBLE MARCONI TF2330 WAVE ANALYSER 2OHZ-50KHZ
H.P. $5315 A 1$ GHZFICTR, OPT'S 1,283
 LIST AVALLABLE BUT 1000's OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF P\&P AND VAT

QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED

HALCYON ELECTRONICS
 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

CIRCLE NO. 120 ON REPLYCARD

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communicaitons use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements.
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion:THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $20 \mathrm{~dB}, 10 \%$).
*Advanced Active Aerial $\mathbf{4 k H z - 3 0 M H z}$ *PPM10 In-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier 4 *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and movements *Broadcast Stereo Coders

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
Telephone: 0483 275997. Fax: 276477

Custom metalwork good \& quick!

Plus a wide range of rack-mounting cases etc. from stock. Send for our new Product Catalogue.

IPK Broadcast Systems
3 Darwin Close Reading Berks RG2 OTB Tel: (0734) 311030 Fax: (0734) 313836

CIRCLE NO. 122 ON REPLY CARD

Protorpeses manuactured diectyr My your own lag in onya tew hours

LPKF offers a complete solution: Professional periphery for every CAD System.

Time spec sheet of a 4 layer multilayer milling inner layer: 45 min $\begin{array}{ll}\text { pressing: } & 120 \mathrm{~min} \\ \text { drilling: } & 10 \mathrm{~min}\end{array}$ drilling: $\quad 10 \mathrm{~min}$ through plating: 105 min milling outer layer: 60 min operating time: 5 hrs .40 min

CAD Milling/Drilling Prototypes Through Plating $\boldsymbol{\text { MULTPRESS }}$
For prototype production LPKF Mill/Drilling Request info material or call: machines have proven its merits in thousands of installations all over the world. CAD data can be downloaded from any CAD system and prototypes are manufactured automatically either through the mill/drilling machine or by means of our latest laser technology
The CONTAC through plating system and theMULTIPRESS completes the system. Suitable for any CAD system! (5) ${ }^{4}{ }^{5}$ 5^{5} GH Systems. 12 Coningsby
Bracknell. Berkshire, RG12
4BE Te: 10344866020255046 Fax 0344411346 Telex: 849462 TELEFACG

Is there life in cold fusion after Fleischmann and Pons? Andy Wright reports on a growing scientific community that says yes.
 Clawing back respectability for cold fusion?

Cold fusion looked dead. Fleischmann and Pons were discredited, the public had lost interest, and within a year work published on the subject had been cut to a trickle. Science magazines were jostling to write obituaries.
But now the technology seems to have come back to life, with scientists from Europe, the US and Japan revealing evidence showing that perhaps the two professors were on the right track.
Following the Fleischmann and Pons debacle (see box) cold fusion was starved of funds, with work occasionally carried on in researchers' spare time, and sometimes lacking the scientific rigour demanded by such a controversial topic. But at the Third International Conference on Cold Fusion ${ }^{3}$. heretics with substantial academic credentials were presenting credible results indicating both the generation of excess heat and nuclear products.

Excess heat

M C H McKubre's group at the Stanford Research Institute in California is funded by the Electric Power Research Institute. Using sealed and pressurised electrochemical cells, they observed excess power between 2 and 50% of the power they put in - with occasional bursts of 350 to 500% of power-in. The excess only occurred when the palladium cathode was highly loaded with deuterium specifically when \boldsymbol{x} is greater than approximately 0.9 in the beta phase of the palladiumdeuterium system PdD_{x}. Other factors are also implicated, but these have not been characterised in detail.
At face value, there seems little room for error. Some 17 electrochemical variables were carefully controlled and the reaction parameters recorded on-line. Great care went into the cell design and electrochemical aspects of the loading process gained close attention. In particular, deuterium loading was carefully mon-
itored in situ for the duration of the test so the team could be sure that this was indeed a key condition for excess heat.
McKubre's team is not alone in reporting excess heat. In similar experiments, a group from Osaka University in Japan has recorded 70% excess heat from a cell with a palladium plate cathode. Other experiments using the same method (by E Celani of INFN Laboratory, Frascati, Italy) have also generated 25% excess power.
So, from the Los Alamos National Laboratory in New Mexico, through IMRA in Japan to IMRA SA, France, scientists are independently gaining tantalising glimpses of the effects first noted by Pons and Fleischmann.
Apparently, high deuterium/palladium loading ratios are necessary to create excess enthalpy. But it is also clear that this is not the only significant variable - and still the results are not repeatable on demand.

Fusion physics

Several nuclear fusion reactions have been proposed as cold fusion candidates.

Deuteron-deuteron fusion
$d+d \rightarrow 3 \mathrm{He}(0.82 \mathrm{MeV})+n(2,45 \mathrm{MeV})$
$\rightarrow t(1.01 \mathrm{MeV})+\mathrm{p}(3.02 \mathrm{MeV})$
is one possibility, and some authors have claimed to have observed characteristic 2.5 MeV neutrons in cold electrolytic experiments.
More likely at low temperatures is the proton-
deuteron reaction
$p+d \rightarrow{ }^{3} \mathrm{He}+\mathrm{g}(5.49 \mathrm{MeV})$
calculated to proceed at rates more than eight orders of magnitude faster than $d+d$. Observation of 5.49 MeV gamma rays should therefore provide a stricter test of cold fusion than neutron measurements Deuteron-triton reactions may account for the emission of ${ }^{4} \mathrm{He}$, through the mechanism
$d+t \rightarrow n+{ }^{4} \mathrm{He}$.
As illustrated in the graph, such fusion has a higher cross-section than $d+d$

Text-book nuclear fusion at extremely high temperatures. Reaction probability per second is shown for density one gram-atom per cm^{3} for each reacting nucleus. For example two gram atoms $D / \mathrm{cm} 3$ for $D+D$, one gram atom $T+$ one gram atom D for $D+T$.

SIIENCE

Furthermore, an explanation involving nuclear reactions requires other corroborative evidence.

Nuclear products

Direct observation of nuclear products at ordinary temperatures is more convincing evidence for fusion. Soon after the PonsFleischmann bombshell, fusion-generated neutrons were indeed observed in electrolytic cells ${ }^{1}$, though the validity of these observations remains in doubt.
Nevertheless the work has continued. A collaboration between Provo Canyon Laboratory, Utah and the University of Tokyo has recorded small steady emissions of neutrons in an underground laboratory. In Osaka and Rome teams have reported neutron emissions in elec-
trochemical experiments, coinciding with apparent excess heat production. In the Italian experiments, neutrons came in bursts.

Another group, working at NTT Basic Research Laboratories, Tokyo, claims to have identified $\mathrm{He}-4$ coming from deuterated palladium. Early-on in the investigation, large neutron bursts were seen simultaneously with explosive release of gas, with plastic bending of the sample and production of excess heat. Later, ultra-high resolution mass spectrometry indicated the presence of $\mathrm{He}-4$ during evolution of excess heat.
Similarly M F Miles and B F Bush of China Lake, California, have repeatedly correlated He-4 signals with excess heat in electrochemical reactions, though they have not so far been able to make the excess heat production
repeatable
J O'M Bockris of Texas A \& M University has reported production of "massive quantities" of tritium at a palladium electrode, accompanied by $\mathrm{He}-4$ production. Thermal expulsion and mass spectrometry by N Hoffmann of Rockwell International Corporation confirmed that $\mathrm{He}-4$ was present in nine out of ten specimens - in quantities corresponding to two or three hundred times the background. No helium was present prior to tritium production, implying that the element was synthesised by fusion

Pro-cold fusion data suppressed

Several explanations have been put forward to explain cold fusion. For example, substituting a charged radioactive particle called a muon,

Cold fusion explosion

Top: AEA Harwell's sixteen 50cc 'Fleischman' cells undergoing excess heat studies. Some of these are control cells. The experiment would normally be covered with an insulated lid.

Right: Experminetal cold fusion cell structure co-located with neutron and gamma detectors.

The scientific community was shocked in March 1989, when Professors Pons and Fleischmann announced ${ }^{2}$ they had discovered nuclear fusion at ordinary temperatures. Their evidence was production of excess heat during heavy water electrolysis experiments, using a palladium cathode and platinum anode in a simple calorimeter. The only way excess heat could have been produced, it was claimed, was via nuclear reactions between deuterons (heavy hydrogen nuclei).
The reactions just shouldn't happen. After all conventional wisdom is that fusion can only happen at very high temperatures millions of K - such as the nuclear reactions that fuel the stars. Such energies are needed to bring the nuclei close enough together for fusion. For it to occur in condensed matter, at room temperature, some novel mechanisms must be at work, perhaps as a result of the non-equilibrium conditions.
Spurred on by the possibility of low-cost inexhaustible energy, scientists tried to repeat the experiments, concentrating on verifying the energy-balance calculations and attempting to find nuclear isotopes or
particles that could only come from fusion reactions. Most failed, or at least produced cryptic effects.
Some of the most painstaking research was carried out at AEA Harwell under Professor Williams ${ }^{3}$. In three months, of seven-days-a-week investigation at a cost some $£ 320,000$, the Harwell team found that observations attributed to cold fusion could be artefacts arising from several possible errors. Among defects identified were inadequate controls; imprecise material characterisation; insufficiently thorough calorimeter calibration; problems in distinguishing neutron counts from the background; and well-known spurious effects with ${ }^{10} \mathrm{BF}_{3}$ and ${ }^{3} \mathrm{He}$ proportional counters.
The AEA work was perhaps the turningpoint for cold fusion research. While producing an essentially negative result, it also set a tough standard for researchers to follow, concluding: "Claims of observations of cold fusion ought now to meet similar standards of data analysis and materials characterisation, so that a proper assessment can be made."
Spiral wound
platinum
anode

200 times heavier than the electron in a hydrogen molecular ion, increases the probability of fusion by around eighty orders of magnitude. A similar distortion of the wave function between nuclei could arise when deuterons are loaded into a metal lattice, particularly under the special conditions that might occur during electrolysis.

But this amounts to little more than speculation until it is backed by real scientific results.

The lack of reproducibility is not in itself surprising as electrochemical reactions are by their very nature highly sensitive to the state of the surfaces involved. In addition, cold fusion is a notoriously difficult field involving several highly specialised scientific disciplines spanning nuclear physics, materials science,
electro-chemistry and instrumentation technology. Nevertheless, it is surprising that none of the pro-cold-fusion data gathered has earned publication in a respectable, refereed scientific journal - arguably publishing data at conferences of fellow enthusiasts does not add to the body of scientific evidence.
So can the latest research pass the scrutiny of the orthodox scientific community? Increased funding, especially from Japan, may produce results. But the fact that so much effort has yielded so few conclusions, gives little room for optimism. The case for cold nuclear fusion remains unproved through lack of reliable witnesses. Unfortunately, on the current evidence it seems unlikely to even reach court.

References

1. Jones S E, Palmer E P, Czirr J B, Decker D L, Jensen G L, Thorne J M, Taylor S F , and Rafelski J. "Observation of cold nuclear fusion in condensed matter", Nature, Vol 338, April 1989.
2. Fleischmann M, Pons S and Hawkins M. Journal of Electroanalytical Chemistry, Vol 261, March 1989.
3. Thomson D T. "Further evidence for cold fusion. A report on the Third International Conference", Platinum Metals Review, Vol 37, No 1, January 1993.
4. Williams D E, Findlay D I S, Craston D H, Sené MR, Bailey M, Croft S, Hooton B W, Jones C P, Kucernak A R J, Mason J A and Taylor R I. "Upper bounds on cold fusion in electrolytic cells". Nature, Vol 342, Nov 1989.

Inconclusive search: Dr Derek Craston examines data logging equipment used in the calorimetric measurements on 24 cold fusion cells. Despite closely matching the original conditions which were said to have produced excess heat, AEA Harwell's researchers were unable to duplicate the results.

DESIGN BRIEF

RF RELLECIONS

Ian Hickman delves into the true effects of matched and unmatched loads, to map the movement of energy in a transmission line.

Fig. $1 \mathrm{a} .1 \Omega$ source which delivers $1 W$ to a 1Ω load dissipates 1 W internally, but for other loads the source's internal dissipation may be anything between OW and $4 W$. Power in load (curved line) and source's internal dissipation (sloping line) plotted against load resistance and terminal voltage. Power in load exceeds 75% of maximum for $0.33<R L<32^{1}$.
1b. 1Ω source tries to deliver 1 W to a matched line terminated with a 100% reflection. Why isn't the internal dissipation in the source $2 W$?

The maximum power theorem says that a practical power source will deliver the maximum power of which it is capable to a load, when that load is matched - that is, has the same value of resistance as the source's internal resistance. Its corollary is that the internal dissipation in the source is then equal to that in the load R_{L}, giving an overall system efficiency of 50%. This applies at dc, or at ac if reactive components are absent - and even if they are present given certain conditions.
To keep the sums simple, a 1Ω source delivering 1 W to a matched load is assumed, except where otherwise stated. But for other value loads, the internal dissipation in the source can be anything from zero to four times that delivered to a matched load.
In practical situations where high system efficiency is desired, eg a flash-lamp or a 500 MW turbo-alternator, the load resistance will be much higher than the internal resistance of the source, so that most of the energy finishes up where it is wanted, in the load.
In Fig. 1b the 1Ω source is connected to a transmission line with a 1Ω characteristic impedance, terminated with either a short- or an open-circuit. Either way, 100% of the incident energy is reflected. But the internal dissipation in the source is anything but 2 W (1 W as with a matched load plus 1 W supplied to the line but entirely reflected back by the load).
I had come across this conundrum years before and

concluded that what was reflected was basically voltage (and current), and that the question of power had to be deferred until we saw how the reflected voltage combined with the incident voltage at the output terminals of the source.
But this is a wrong conclusion. Looking back into the output terminals of the source you see a matched source, yes: but because of the presence of the ideal voltage generator, a matched load, no.
This difference becomes clearer if we consider what happens in more detail (Fig. 2a), when the source is connected to a loss-free coaxial transmission line $200,000 \mathrm{~km}$ long.
Velocity of propagation in the line is two thirds that of the speed of light - commonly the case with coax - and on closing switch S_{l} at time $t=0$ seconds, the source sees a matched load and delivers 1 W to it. After 1s the source has supplied 1 J (1 watt second) to the line, and its internal dissipation is 1 W . At $t=1 \mathrm{~s}$, (Fig. 2b), the 1 V wavefront reaches the load, which we will assume to be open circuit, but cannot continue any further. Therefore the 1 A current in the line must somehow fall to zero at this point, the current being reflected back towards the source.
To cause the current to flow back again against the incident wavefront, the voltage at the open circuit end of the line must rise to 2 V - the current is reflected in antiphase and the voltage in phase. The 2 V step propagates back along the line, arriving at the source at $\mathrm{t}=2 \mathrm{~s}$. Line voltage now equals the source emf so there is zero voltage across the internal source resistance R_{S} and no current flows in it. The source has effectively disconnected itself at $t=2 \mathrm{~s}$ exactly, so we can open S_{l} at $t=2 \mathrm{~s}$ or any subsequent time without making the slightest difference to the 2 J of energy stored in the line.
But if instead of opening S_{l} at $t=2 \mathrm{~s}$, we had instead replaced the 2 V generator by a short circuit, the source would now look like a matched load and would dissipate 1 W during the next 2 s , until at $t=4 \mathrm{~s}$, all the energy reflected from the load would be dissipated in the "source".
Radar transmitter designers uses a line charged up to kilovolts in just this way to to feed a short square high power dc pulse to a magnetron.

Avoiding contradictions

It is tempting to think that at $t=2 \mathrm{~s}$, and thereafter, there is no current in the line and all the energy is stored in the line's capacitance. But this leads to a contradiction, only
avoided by an apparently slightly absurd hypothesis. Namely that there really is a current of 1 A flowing left to right and another flowing, on the same line at the same time, from right to left, like a train going round the long thin loop of London's Circle Line - a train so long that its head is hitched up to its tail. This is just a case of a pulse of IV amplitude and 2 s duration circulating in the line and there is no reason why it should not. Consider the case of a IV pulse of Is duration, Fig. 3a. Here, the switch connects the line to source for just one second from $t=0$ to $t=1$. Figure 3 b shows the state of affairs at various subsequent times.
After the source is disconnected, the pulse bounces back and forth along the loss-free line for ever, the voltage being 1 V at $t=1,2,3 \ldots$ seconds, but 2 V on half of the line and zero on the other half at $1.5,2.5,3.5 \mathrm{~s}$.

If total capacitance of the line is C Farads, then at 1,2 seconds etc, if the energy were all stored in the line's capacitance it would total $1 / 2 C 1^{2}$ or (numerically) $C / 2$ joules: at $1.5,2.5$ seconds when the energy is all stored in one half of the line, it would total $1 / 2(C / 2) 2^{2}$ or C joules - twice as much! The conclusion can only be that the energy is stored jointly in the line's capacitance and inductance, which presupposes that current is flowing in the line.

Sinewave signal

If the signal supplied to the 1Ω open circuit line were not a dc pulse of whatever duration, but a sinewave, the situation at the open circuit is just the same. Voltage is reflected in-phase and the current in antiphase (Fig. 5). Vectors further down the line (ie to the right in the case of the incident wave and to the left in the case of the reflected) are shown lagging - displaced clockwise since they will not catch up until a little later. The incident v and i vectors are unit vectors, IV and 1A. It can be seen that at $\lambda / 8$ from the open circuit, the resultant voltage and current is 1 V and 1 A in quadrature, with the current leading. So at a distance of $\lambda / 8$, the impedance seen looking towards the open circuit is a capacitive reactance equal to Z_{0}, or $-\mathrm{j} 1 \Omega$ in this case. Drawing the diagram for the short circuit case gives $+\mathrm{j} 1 \Omega$, illustrating the well known fact that

$$
Z_{0}=\sqrt{ }\left(Z_{o c} \cdot Z_{s c}\right)
$$

The voltage and current both vary from zero to twice the incident value, at different points along the line, giving a standing wave ratio of infinity to 1 . This would apply only on the right half of the $200,000 \mathrm{~km}$ line at $t=1.5 \mathrm{~s}$, if an rf source were connected to the line for just 1 s , the rest of the line being devoid of energy travelling in either direction.

As in the dc case, a 2 s pulse would fill the line twice over, the standing waves demonstrating that energy was indeed travelling both ways all the time. Hanging a very high input impedance buffer amplifier on one end of the line, would make available - almost indefinitely - a sample of the rf, giving a signal which was greatly "stretched" in time.
Receiving a radar pulse and retransmitting it at low level in such a stretched form is the basis of one type of counter-measure used in electronic warfare.
The fact that a line of (about) $200,000 \mathrm{~km}$ provides a delay of 1 s (ie the signal travels at about two thirds the speed of light) comes about as follows:

$$
Z_{0}=\sqrt{ }(L / C)
$$

(see box) where L and C are the inductance and capacitance of any length of line.

(a)

Fig. 2a. The source of Fig. 1a driving a $200,000 \mathrm{~km}$ long lossfree line with a characteristic impedance $Z 0$ of 1Ω. 2b. Showing the situation at various times after switch S1 is closed.

Fig. 3a. The source of Fig. 1a driving a 1s long pulse into $200,000 \mathrm{~km}$ long loss-free line with a characteristic impedance $\mathbf{z 0}$ of 1Ω. 3b. Showing the situation at various times after switch $\mathbf{S 1}$ is closed at $\mathrm{t}=0$ (S 1 is opened again at $t=1 \mathrm{~s}$).

Fig. 5. Radio frequency signal applied to an open circuit transmission line ${ }^{2}$.

Actual length is immaterial as it cancels out. For a coaxial cable, C is typically about $100 \mathrm{pF} / \mathrm{m}$, so L works out at $250 \mathrm{nH} / \mathrm{m}$. The delay experienced by a signal in travelling along the line is $V(L C) \mathrm{ns} / \mathrm{m}$ (see box). Substituting the given values of L anc C gives the delay as $5 \mathrm{~ns} / \mathrm{m}$ where the velocity v is $200,000 \mathrm{~km} / \mathrm{s}$. Reducing L without increasing C, or vice versa, would raise the velocity. But in practice any substantial increase proves to be impossible.

Increasing the diameter of the inner until it nearly fills the outer would reduce the inductance: the length of the magnetic flux paths would be increased and the cross sectional area available to carry the flux reduced - both effects increasing the reluctance of the magnetic circuit, reducing the total flux caused by the current. But capacitance would be increased, offsetting any gain.

Conversely, moves such as increasing the diameter of the outer could only reduce the capacitance at the expense of increasing the inductance. A fortune awaits the inventor who can half both L and C simultaneously, as the velocity in such a cable would exceed that in free space. Values of L and C per metre in free space are the lowest that can ever be achieved, giving $v=c$ (the velocity of light) and $Z_{0}=377 \Omega$.

Given that $Z_{0}=377 \Omega$ and $\beta=1 / c=3.33 \mathrm{~ns} / \mathrm{m}$, we can find out just what they are, since:
$Z_{0} \times \beta=\sqrt{ }(L / C) \times \sqrt{ }(L C)=L=377 \times 3.3310^{-9}=$ $1256 \mathrm{nH} / \mathrm{m}$
and
$\beta / Z_{0}=\sqrt{ }(L C) / \sqrt{ }(L / C)=C=3.3310^{-9} / 377=$ $8.85 \mathrm{pF} / \mathrm{m}$.

The value of $8.85 \mathrm{pF} / \mathrm{m}$ for C is easy to visualise: it is the capacitance of two metal plates each of area $A=1 \mathrm{~m}^{2}$ separated by distance $d=1 \mathrm{~m}$ (ignoring fringing). Since $C=\left(\eta_{0} \eta_{1} A\right) / d$ - and the relative permittivity η_{r} for air is unity - then $8.85 \mathrm{pF} / \mathrm{m}$ is numerically equal to η_{0}. $1256 \mathrm{nH} / \mathrm{m}$ is more difficult to visualise, but is in fact equal to $4 \pi 10^{-7}$, the value of the permeability of free space μ_{0}.

$$
\text { So } \beta=V\left(\eta_{0} \mu_{0}\right) \text { and }
$$

$c=1 /\left[\sqrt{ }\left(\eta_{0} \mu_{0}\right)\right]$.
That the internal dissipation in the source is apparently

Unit discussion

The characteristic impedance Z_{0} and phase constant β of a line are given by approximately $\sqrt{ }(L / C)$ and $\sqrt{ }(L C)$ respectively where L and C are the inductance and capacitance per unit line length (or per section in the case of a delay line composed of $L C$ sections) assuming the losses are low. At least, these are the commonly quoted expressions. A low
loss line is one such as the balanced line in Fig. 4 - which shows a very short section and its equivalent circuit. G and R are both near zero. Actually it is not the values of inductance and capacitance which determine the line parameters, but their reactances; the product in the case of Z_{0} and the quotient in the case of β. But as $\mathrm{j} \omega L$ and $1 /(\mathrm{j} \omega C)$ both
have units of ohms, their product has units of ohms squared. Z_{0} has units of ohms independent of frequency, as the $j \omega$ terms cancel out.
With β, it is the ohms that cancel out, leaving units of... what? To find out, it is best to go to the full expressions for Z_{0} and the line propagation constant.

$$
\begin{aligned}
\mathrm{Z}_{0} & =\sqrt{\frac{R+\mathrm{j} \omega L}{G+\mathrm{j} \omega C}} \\
\gamma & =\sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)} \\
& =\sqrt{(R+\mathrm{j} X)(G+\mathrm{j} B)}
\end{aligned}
$$

In the case of Z_{0}, if $R=G=0$ then the expression simplifies, as described, above to $\sqrt{(L / C)}$. The propagation constant is in general a complex quantity γ which is made up of $\alpha+\mathrm{j} \beta$, where α and β are the attenuation and phase constants respectively, per unit line length (or per section in the case of an $L C$ delay line). As the wave propagates along the line, its amplitude and phase relative to the input can be expressed succinctly as:
$\mathrm{e}^{-} \gamma=\mathrm{e}-(\alpha+\mathrm{j} \beta)$.
not 2 W , when the load reflects 100% of the incident energy, is true of both a Thevenin generator (Fig. 1a) and a Norton generator (Fig. 6a) - at dc. But it is not necessarily so at ac.

When a 1Ω Thevenin generator tries to deliver 1W to a purely reactive load which, at the frequency in question, has a reactance of 1Ω, the internal dissipation is indeed 2W, Fig. 6b. The same is true for the Norton generator. But it would be elegant to find a generator which always dissipated 2 W internally. The clue to such an arrangement is the fact that on short-circuit a Thevenin generator dissipates 4 W internally while a Norton dissipates zero, and vice versa on open-circuit. Take two 2Ω loads, one receiving 0.5 W from a matched Thevenin generator and the other receiving 0.5 W from a matched Norton generator, connect them in parallel and the result will be $I W$ delivered to a 1Ω load from a source, dissipating 2 W internally on either short- or open-circuit (Fig. 7a).
2 W is also dissipated internally when trying to deliver IW into any purely reactive load (Fig. 7b). The situation can be a little confusing to envisage without resorting to formal mesh analysis. But the vector diagram is easily derived if the Thevenin and Norton sections are provided with separate $j 2 \Omega$ loads, which are subsequently paralleled. Furthermore, for any impedance load with any phase angle, the sources in the two generators always supply a total of 2 W between them - any power not finishing up in the load being dissipated internally. I leave algebra to prove this to you.
Compared to a $1 \Omega 1 \mathrm{~W}$ Norton generator, the Norton section of the "Hickman type I" generator (Fig. 7a) has a 1 A constant current generator instead of a 2 A one, and a 2Ω shunt resistor in place of a 1Ω one. By contrast, in

Fig. 6a. When a Norton generator representation of the source is used, its internal dissipation is zero with a short circuit load and 4 W on open circuit, just the opposite from a Thevenin generator.
6b. A 1Ω Thevenin generator supplies a purely reactive load of 1Ω. It internal dissipation is exactly 2 W . (M is the modulus or magnitude of the current; $l=M / f$ where $M=|I| \mid$

For a loss free line where $R=G=0, \gamma$ simplifies to β, the j in the exponential indicating that it refers to the sine wave's phase, not its exponentially decreasing amplitude. So, if $R=G=0$, then:

$$
\begin{aligned}
& \beta=\sqrt{\mathrm{j} \omega L \cdot \mathrm{j} \omega} \\
& =\sqrt{-\omega^{2} L C}
\end{aligned}
$$

and $|\beta|=$

$$
=j \omega \sqrt{L C}
$$

at 1 radian/s.
The phase constant is proportional to frequency and has units of radians per unit distance along the line - radians per metre if L and C are the inductance and capacitance per metre of the line.
The difference beween θ and β must be borne in mind. θ refers to the continually changing phase of the signal at a fixed point on the line $-\theta=\omega$ where the instantaneous voltage $V=V_{\text {max }} \sin (\omega t)$ - the latter to the phase at one point on the line relative to another at the same instant. The Figure shows a sinewave of frequency fHz (f cycles per second) entering a transmission line, the voltage at the input being $+V_{\max }$ at time $t=0$, which makes it in fact a cosine wave. To see

Fig. 4. A short section of a balanced line and its equivalent circuit. For a coaxial line the circuit is similar except that the upper leg consists of R and L in series while the lower leg is a straight through connection2.
what happens, put a spot of red paint on the waveform at the input at $t=0, \operatorname{point} A$ in the figure. Then at $t=1 / f$ s later, the next peak B is just entering the line while the spot of red paint is distance d down the line. Distance d between successive peaks on the line is the wavelength λ on the line, in the case of coax typically two thirds of the free space wavelength. The phase of the signal at the point on the line where the red spot is now (at $t=1 / f$) is lagging that at the input by 2π radians - it won't have caught up until $t=2 / f$, by which time the red spot will be a further distance d $=\lambda \quad$ down the line. After 1 s , the red spot will have travelled a distance f λ down the line, so the velocity v of the wave is $\mathrm{f} \lambda \mathrm{m} / \mathrm{s}$.
β is the phase lag per metre. The lag at the point distance d down the line at $t=1 / f$ is one cycle or 2π radians. So $d=2 \pi / \beta=\beta$ and $v=$ $\mathrm{f} \beta=(\omega / 2 \pi)(2 \pi / \beta)=\omega / \beta$.
The result can be arrived at more directly by noting that:

$$
\beta=\mathrm{J} \omega \sqrt{L C}
$$

(L and C are values for 1 metre of line) has units of radians/metre. Dividing by ω gives the result independent of frequency and has units of $(\mathrm{rad} / \mathrm{m}) /(\mathrm{rad} / \mathrm{s})=\mathrm{s} / \mathrm{m}$.
$\beta / \omega=\sqrt{ }(L C)$ has units of seconds delay per metre for the particular cable in question, and the reciprocal of this has units of metres per second, giving $v=\omega \beta$ directly.
That excellent if ancient textbook, The Handbook of Line Communications, calls v the phase or wave velocity, adding darkly, without further explanation, that: "the group velocity (ie, the velocity at which energy is transferred along the line) is $\mathrm{d} \omega / \mathrm{d} \beta^{\prime \prime}$.
In the present case of a transmission line, where β is directly proportional to ω their ratio is constant so the wave and group velocities are the same and are independent of frequency.

the Thevenin section, only the series source resistor changes, from 1Ω to 2Ω. From a philosophical point of view there seems an odd lack of symmetry. But this is due to the fact that - in the short circuit case - currents in parallel add, whereas - in the open circuit case - voltages in parallel do not.

Symmetry is restored by taking into account the dual, the Hickman type Il generator (Fig. 7c). Here it is a case of voltages in series add, but currents in series do not.
1 have not seen this type of generator mentioned in any text book, but almost certainly some-one else has invented it already, in which case doubtless a well-informed reader will kindly write in to the Editor, quoting chapter and verse, and the name by which it should rightly be known.

References

1. Analog Electronics lan Hickman Butterworth-Heineman 1993 ISBN 0750616342
2. The Newnes Practical RF Handbook lan Hickman Butterworth-Heinemann 1993 ISBN 0750608714

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Pat Bunce on 081-652 8339
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer

Please send your completed forms to:
Free Classified Offer: Electronics World, 11 th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

COMPUTERICS

CRYSTAL OSCILLATORS

2M4576 3M6864 5MO 5M76 6M144 7M000 7M3728 8M000
 27М036 28 M 322 З2М $48 \mathrm{MO000} 64 \mathrm{MOOO}$ 1M000 1 M 8432 4M000 10M000 16M000 18M432000 19M0500 20M0500 38M10000 56M6092

CRYSTALS
4M0256 10M 368 17M6256 18M432 25M000 28M4694 31M4696 8 MOOO 55 M 50011 M 8 O 12M80 14M318 114 M 801 MO M 58564 3M93216 4M 0004 M 193044 M 4336194 M 608 4M9152
 10 M 245 10M70000 1 MOOO 12 MOCOO 13MOOO 13M270 14MOOO 14M381818 15 MOOOO 16M000 16 M 5888 17M000 20M000
21 M 30021 M855 22 M 118424 MOOO 34 M 368 36M75625
 36 M 83125 36M84375 38M900 49M504 54 M19166 54 M 7416 57M75833 60м000 69M54569M550 $\Sigma 1$ each
TRANSISTORS
MPSA92.
2N2907A
$10 / 81$
$10 / 81$
C4777 BC48

E1 £4/100 $£ 301000$

POWER TRANSISTORS

偖 2N3773 NPN 25A 160V \&1.60

TEXTOOL ZIF SOCKETS

28 PIN USED......................... 40 PIN NEW............ 10 ANY DUAL IN LINE DEVICES. . COUPLING SUPPLIED

CAPACITORS COMPUTER GRADE

QUARTZ HALOGEN LAMPS
$12 V 50$ watl LAMP TYPE M312......... $£ 1$ ea HOLDERS 60 pea MISCELLANEOUS
SINCLAIR SPECTRUM + 2 PSU $9 V 2$ A.................... $£ 3.95$ ((2) MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$ $3.95(£ 2)$
$-. \quad 10 / \mathrm{E} 1$ 0 ASSORTED SLIDERS + ROTARY POT 100 nF 63 V X7R PHILIPS SURFACE MOUNT 30K available

TEL. 0279-505543
FAX. 0279-757656 P O BOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

10NF $63 V \times 7 R$ PHILIPS SURFACE MOUNT 160 K
 £60 for 50 metre 9892 SWITCHED MODE PSU 40 WATT UNCASED QTY.
AVAILABLE $+5 \mathrm{~V} 5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{mAFLOATING}$ ($£ .95$ SIM RS $361-018$ Each pair foil screened + overall braided screen ..00 for 305 metre drum $330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ X 2 AC RATED PHILIPS 60 K AVAILABLE... $20 / 100$
$220 R 25 W$ WIR 220R 2.5 W WIREWOUND RESISTOR 60 K AVAILABLE CMOS 555 TIMERS ..2/E CT CAMERAS $£ 2.5$ ICM7126CPL CMOS $31 / 2$ DIGIT LCD DRIVER CHIP $£ 2$ ea 36 CORE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREENED $£ 50 / 100 \mathrm{~m}$ LITHIUM CELL $1 / 2$ AA SIZE 2 FOR $£$ PASSIVEINFRARED SENSOR CHIP + MIRROR + CIRCUIT "PROTONIC 24 VARIBUS" 16.7 " $\times 5$ " F|BREGLASS MULTIL AYER PRH PCB
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
"PROTONIC $24^{n} \mathrm{c} / \mathrm{w} 2$ SUPPORT ARMS/EJECTORS. DIN 4161296 -WAY AB/C SOCKET PCBRIGHT ANGLE $£ 1.30$ DIN 4161296 -WAY AB/C SOCKET WIRE WRAP PINS $£ 1.30$ DIN 41612 64-WAY ALC SOCKET WIRE WRAP PINS DIN 4116264 -WAY AC PLUG PCB RIGHT ANGLE DIN 41612 64-WAY AB SOCKET WIRE WRAP (2-ROW BODY) BT PLUG +LEAD
13 A MOULDED PLUG +2 lead
MIN. TOGGLE SWITCH 1 POLE C/o PCB type 40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$
TL431 2.5 to 36V TO92 ADJ. SHUNT REG
$6-32$ UNC $5 / 16$ POZI PAN SCREWS 6-32 UNC
PUSH SWITCH CHANGEOVER
$\begin{array}{r}£ 1.25 / 100 \\ \hline 1 / 100 \\ \hline\end{array}$ RS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEET LONG, 15 PINS WIRED BRAID + FOIL ILSCREENS STICK ON CABINET FEET RS NO 543-327 STICKONCAY SIM AMERICAN $2 / 3$ PIN CHASSIS SOCK HUMIDITY SWITCH ADJUSTABLE WIRE ENDED FUSES $0.25 A$ NEW ULTRASONIC TRANSDUCERS 32 kHz \qquad

$$
\begin{aligned}
& \text { Also available } 28 \text { slot vari-bus backplane same size } \\
& \text { Price }
\end{aligned}
$$

POWERFUL SMALL CYLINDRICAL MAGNETS BNC 50OHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIODES AE1 OC1026A
DIIL. SWITCHES 10 -WAY $£ 1$-WAY $80 \mathrm{p} 4 / 5 / 6$-WAY 180 VOLT I WATT ZENERS also 12 V \& 75 V
VN10L

MIN GLASS NEONS

REL AY 5 V 2-pole changeover looks like RS 355-741
STC 47WBost .. marked

 PCB WITH 2N2646 UNIJUNCTION WITH 12 V 4 -POLE RELAY
400 m 0.5 W thick film resistors (yes four hundred megohms)
STR AIN GAUGES 40 ohm Foil type polyester backed oalco grid ELECTRETMICROPHONE INSERT.. Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-267
HALL EFFECT IC UGS3040 + magnet
OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10$........................... $£ 1$
1 pole 12 -way rotary switch.............

AUDIO ICS LM 380 LM 386 TD 555 TIMERS $£ 1741$ OP AMP

555 TIMERS £1 741 OP AN
ZN414AMRADIOCHIP..
COAX PLUGS nice ones,
4×4 MEMBRANE KEYBOARD
INDUCTOR 20 1 H $1.5 A$..........
1.25" PANEL FUSEHOLDERS
CHROMED STEEL HINGES 14.5×1 OPEN
12 V 1.2 W small w/e lamps fit most modern cars
STEREO CASSETTE HEAD................
MONO CASS. HEAD E1 ERASEHEAD
MONOCASS. HEAD E1 ERASEHEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C}$ 240V 15A
TO-3 TRANSISTOR COVERS
PCB PINS FIT $0.1^{\prime \prime}$ VERO

TO-220 micas + bushes ... $200 /$ 10 50 1 $100 /$.
TO. 3 micas + bushes ...
Large heat shrink sleeving pack
POTS SHORT SPINDLES 2K5 10K 25 K 1M 2 M 5
40 k U/S TR ANSDUCERS EX-EOPT NO DATA ...
LM335Z 10MV/degree C.........
BNC TO 4MM BINDING POST SIM
BUIN PCB POWERRELAYS 10.5v COIL............................... 4
AVEL-LINDBERG MOULDED TRANSFORMER TYPE OB10 $15+15 V$ 1OVA OTY. AVAILABLE
BANDOLIERED COMPONENTS ASSORTEDRS, Cs, ZENERS BANDOLIERED COMPONENTS ASSORTED RS, CS, ZENERS

 'LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM MADE BY SANKYO
£1 ea
$500 / \varepsilon 2$
DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE

1N54073A 1000V
N4148 S........... $00 £ 1.50$
$100 / \varepsilon 3$
1N5401 3A100V 10 £1
$100 £ 3$
BA158 1A 400V fast recovery
BY127 1200V 1.2A
BY254 800V 3A.
GY Y OOOV SIMIL AR MR751
A G00V BRIDGE RECTIFIEA
4 A 100V BRIDGE
A 100 V BRIDGE
10A 200V BRIDGE
25A 200 V BRIDGE $£ 2$....
2KBP02 IN LINE 2 A 200 V BRIDGE REC

SCRS

PULSE TRANSFORMERS 1:1+1 .. 25 2P4MEQUIVC106D
TICV 106 D 800 mA 400 C SCR $3 / \mathrm{L} 1$ $3 / E 1$
00015 ICVIPROG UNIUNCTION DIACS $4 / \varepsilon 1$
TRIACS $5 / 22100 / E 30$
$2 / 21100 / \mathrm{E} 35$
NEC TRIAC ACOBF 8 A 600 V TO220 XAL225 8A 500 V 5 mA GATE TRAL2230D 30 A 400 V ISOL ATED STUD TRAL2230D 30 A 400 V ISOL ATED STUD.

5 FOR $£ 1 £ 15 / 100$

CONNECTORS

D25 IDC SOCKET FU.JITSU ,.. 22
34-way card edge IDCCONNECTOR (disk drive type)
CENTRONICS 36 WAY IDC PLUG
CENTRONICS 36 WAY IDC SKT
CENTRONICS 36 WAY IDC SKT............
BBC TO CENTRONICS PRINTER LEAD 1.5 M
BBC TO CENTRONICS PRINTER LEAD $1.5 M$
CENTRONICS 36 WAY PLUG SOLDER TYPE
USED CENTRONICS 36W PLUG+SKT
$\begin{array}{r}\text {.. } £ 2.50 \\ . .84 .00 \\ \\ \hline\end{array}$

PHOTO DEVICES

HI BRIGHTNESS LEDS CQX24 RED5/51
SLOTTED OPTO-SWITCH OPCOA OPB8
TIL81 PHOTO TRANSISTOR
TIL38 INFRARED LED...................
4N25, OP12252OPTOISOLATOR
PHOTODIODE 50P
MEL 12 (PHOTO DARLINGTONBASE r/c)
LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{E} 1$
FL ASHING RED OR GREEN $10 \varepsilon 1$.. $100 / \mathrm{s}$ HIGH SPEED MEDIUM AREA PHOTODIODE R............. 100/£40

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K. G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE \&1 ea
FS22BWNTC BEAD INSIDE END OF 1 GLASS PROBE RES FS22BWNTC BEAD INSIDE END OF 1" GLASS PROBE RES A13 DIRECTLY HE ATED BEAD THERMISTOR 1 k res. ideal for
CERMET MULTI TURN PRESETS $3 / 4{ }^{\prime \prime}$
10R20R 100R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K 100 K 200 K 500 K 2 M

IC SOCKETS

14/16/18/20/24/28/40-WAY DIL SKTS £1 per TUBE 32-WAY TURNED PIN SK TTS. 7k available 3 for $£ 1$
SIMM SOCKET FOR 2×30-way SIMMS

SOLID STATE RELAYS
40A 250V AC SOLID STATE RELAYS £10

POLYESTER/POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHILIPS TYPE $330 . . . £ 20 / 100$
$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$
$1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} 6 / 8 \mathrm{n} 2 / 10 \mathrm{n} 1 \% 63 \mathrm{~V} 10 \mathrm{~mm}$. $10 n / 15 n / 22 n / 33 n / 47 n / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad}$
100 n 250 V radial 10 mm
100 n 600 V Spraque axial $10 / \mathrm{ci}$ £1 $100 / £ 3$
$100 / 55$

100 n 600 V Sprague axial $10 / \mathrm{E} 1$
5 mm
$10 \mathrm{r} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC x rated 1
$1 \mu 0100 \mathrm{~V}$ rad 15 mm . $1 \mu 022 \mathrm{~mm}$ rad $100.100 / \mathrm{E}$
100

RF BITS

MARCONI MICROWAVE DIODES TYPES DC2929, DC2962, DC4229F1/F2 ALL TRIMMERS .. 3 for 50 p
YELLOW 5-65pF RED 10-110pF GREY 5-25pF SMAL L MULL ARD 2 to 22pF
TRANSISTORS 2N4427, 2N3866, 2N5109 80 p CERAMIC FILTERS $4 \mathrm{M} 5 / 6 \mathrm{M} / 9 \mathrm{M} / 10 \mathrm{M} 7$ FEED THRU' CERAMIC CAPS 1000 pF

(BFY5 1 TRANSISTOR CAN SIZE)
2N2222 METAL
$. .5 / \Sigma 1$
$.10 / \Sigma 1$
$5 / \Sigma 1$

PLESSEYICS EX-STOCK

SL350G SL360G SL362C SL403D SL423A
SL5218 SL523C SL541B SL850C SL1021A
SL5218 SL523C SL
SP8655 SP8719DG

MONOLITHIC CERAMIC CAPACITORS

10n 50 V 2.5 mm .. $100 / \mathrm{E}_{4} .5$
 00/26

100 n ax short leads 5 mm
100 n ax long leads

$100 / £ 3$
$100 / £ 5$
$1, \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$

KEYTRONICS

CLASSIFIED

ARTICLES FOR SALE

Σ

 Cooke International

Supplier of Quality Used Test Instruments

October Sales Offers

SPECTRUM ANALYSER

H.P. 141 T Display with 8553 B and 8552 B Plug-Ins. Freq 1 KHz 110 MHz
£1200
Tektronix 7603 O'scope R/O Main Frame with 7L5 Spectrum Analyser Plug-In. Freq $20 \mathrm{~Hz}-5 \mathrm{MHz}$ with L2 Module 75 ohm complete $£ 2500$ H.P. 214B Pulse Generator $10 \mathrm{~Hz}-10 \mathrm{MHz} 100 \mathrm{~V}$ output
H.P. 8640 B Signal Generator AM/FM/Pulse $500 \mathrm{KHz}-512 \mathrm{MHz}$ £950 H.P. 8620C Sweep/Oscillator with 86260A Module. Freq 12.418 GHz
£1500
H.P. 86241 A R.F. Module $3.2-6.5 \mathrm{GHz}$
$£ 400$
H.P. 86290 A R.F. Module $2-18 \mathrm{GHz}$
£1750
H.P. 86242A R.F. Module $5.9-9.0 \mathrm{GHz}$
£400
H.P. 432A R.F. Power Meter plus Lead and 478A Thermister Mount
£175
H.P. 3455 A Digital Voltmeter $61 / 2$ digit Autorange
£ 375
H.P. 8405 A Vector Voltmeter $0.5-1024 \mathrm{MHz}$

Marconi TF2154 P.S.U. 0.30 v 4 amp max variable
£35
Farnell 60/50-stabilised P.S.U. 60 v 50 amps
£400
All Prices Exclude VAT and Carriage

- Much more equipment available ex-stock
- Original service manuals for sale - Copy Service also available

Send large s.a.e. for lists of equipment and manuals Calibration and repairs undertaken - enquire for details

Export, Trade and U.K. Enquiries Welcome
Discount for Bulk Orders - Shipping Arranged Open Monday-Friday 9am-5pm

Cooke International

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB
Tel (+44) 0243 545111/2 Fax (+44) 0243542457

* HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED *

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT
EXCESS Stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:

21 Playle Chase, Gt. Totham, Maldon, Essex CM9 8UT Telephone: 0621893204 Facsimile: 0621893180

ARTICLES WANTED

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London 112 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

> | TRANSISTORS, ICS ETC, INTO CASH |
| :--- |
| Immediate settlement. |
| We also welcome the opportunity to quote for |
| complete factory clearance. |
| Contact: |
| COLES-HARDING \& CO. 103 South Brink |
| Wisbech, Cambs PE14 ORJ. |
| ESTABLISHED OVER 15 YEARS |
| Buyers of Surplus Inventory |
| Tel: 0945584188 Fax: 0945475216 |

CLASSIFIED

BACK COPIES Wireless World 1980-
1992 £1 each, plus postage. Tel 0243
545111

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact Pat Bunce on: Tel: 081-652 8339 Fax: 081-6528931

ARTICLES WANTED

WFNTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid.
Please send or fax your offer to: HTB ELEKTRONIK
Alter Apeler Weg 5, 2858 Schiffdorf, West Cermany TEL: 0104947067044 FAX: 0104947067049

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash M \& B RADIO
86 Bishopgate Street,
Leeds LS1 4BB
Tel: 0532435649
Fax: 0532426881

- WANTED - WANTED - WANTED -

PROFESSIONAL TEST \& MEASUREMENT EQUIPMENT
Spectrum analysers, signal generators, comms test sets, etc.

- ralfe \bullet electronics -

Please call 081-422 3593 or fax us on 081-423 4009

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Moble: 0860 214302. Fax: 0438812387

STEWART OF READING
110 WYKEHAM ROAD, READING, RG6 1PL. TEL. 0734268041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT.
COMPONENTS, etc. ANY QUANITYT

ARTICLES FOR SALE

BILLINGTON EXPORT LAd

Unit 1E. Gillmans industrial Estate. Billingshurst. Sussex RH14 9EZ. Callers by appointment only
Telephone: 0403784961 Fax: 0403783519
Min. UK order $£ 50$ + VAT. Min. Export order $£ 50+$ Carriage.

SERVICES

REPRINTS a ready made sales aid

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact:

Jan Crowther
Room 1006
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS, UK
Telephone: 081-652 8229
Fax: 081-652 4728

BOOKS \& MANUALS

CELLULAR TELEPHONE MODIFICATION HANDBOOK
 How are hackers making cellular phone calls for free?
 - How to have two phones with the same number
 - Techniques for decoding \& changing cellular phones' NAMS
 - Descriptions of cellular phones's vulnerabilities!
 - Cellular phone manufacturers ESN codes
 Complete Manual only £ 50
 SPY Supply, 108 New Bond Street
 London W1Y 9AA
 (US) 617-327.7272
 Sold for educational purposes only

FREE CLASSIFIED

[^5]

88K2031 narow band audio analyser HP 3580 A 5 Hz -50KHz audio spectrum manalyser HP3552A Aual-channel 25KHzz analyser £1500
$£ 1500$
左 ${ }^{\text {E }}$

HP3585A 20HZ-40MHz GPIB anayser HPP558BP182C 1500 MHz analyse HP P182C18559A0.01-21GHz spectrum anarser
 MARCON TF 233701010 MHz

TESTEQUPMENT	
BRUEL \& KJAEP 3534 sound \& vibration field measuring	
	${ }_{\text {¢ }}^{\text {¢25200 }}$
BRUUL 8 KJAER 2610 measurig amphter	¢1000
BRUEL\&KAER S307 levoliecodee	850
BRUEL LKJAAER 1618 band bass filuer	c750
BRUEL LKJAE 3 3 204 tapaping mactine	£1000
\& MUCH MORE ASK FOR FULL BEK STONK LIST *	
VORM2 15L-2 insulation \& breakdown tester	
RON 1065 digitila mulimeler	
	${ }^{21255}$
FLANNMCGOWAVE 27072 trequency meter 73.113 GHz	${ }_{\text {c27 }}$
KEITH LEY 192 croarammable	¢400
MAURY MICROWAVE E650E TNC-calibration kit	¢1500
PHALIPSPMS193s synhitesized tunction generator	${ }_{\text {c1 }}$
PHiLIPS PM2534 digral multimeter	ع450
FACAL 9008 automatic modiutaion meter 53255	c300
	${ }_{\text {c6ese }}$
AACAI	
	50

TEKTRONIX $271101.8 G H 2$ Spectum andyse
TEKTRONIX 496P as above with racking generator TR503 \& tequency
counter ins talled inGPIB-man trame TM5006
MARCONIINSTRUMENTS
2017 signal genereralor
2019A A synthesized signal generatior $80 \mathrm{KHz} \cdot 1040 \mathrm{MHz}$ 2955AN2950 (TACS SANDIII opis) mobile radiotetst set 2 2828A2829 digital simulatorlanalyser
2830 mutiplex tester
2955:2960 test se with cellular adapler options $30 \& 50$ 2956NMT Telluar adapier, Iatestissue sotware
6140 GPIB adapter
6460:6420 Dower meler $10 \mathrm{MHz}-12.4 \mathrm{GHzO} 0.3 \mathrm{UW}-10 \mathrm{~mW}$

MANY MORE FULLY RE-FURBISHED, FULLY GUARANTEED TEST INSTRUMENTS AVAILABLE FROM STOCK. PLEASE ASK FOR OUR CURRENT LISTING. WE CAN FAX LISTS \& SHIP GOODS WORLDWIDE. HIGH-END EQUJPMENT ALWAYS WANTED FOR STOCK. "CALL US NOW"

6460/6423.3.ower meter $10 \mathrm{MHz}-12.4 \mathrm{GHz} 0.3 \mathrm{~mW}-3 \mathrm{~W}$ S600A sweep generator $26.5 \cdot 40 \mathrm{GHz}$ 6700 B sweep osall ator $8-12.4 \mathrm{GHz} \& 12.4 .18 \mathrm{GHz}$ 6960,6910 digial RF power meler 10 MHz -20GHZGPIB 6912 power sensor 30 KHz -4.2GHz for above series 893B audio power meter
OA2805A ACM regenerato test set
TF2015/2171 signaligenerator AMFM 10.520 MHz TF2304 automatic modulution metes
TF2370 110 MHz spectrum analy set
TF2910/4n non-linear distortion(video) analyser
TF2910 TVinteral itimeI

RACAL-DANA 9303 tevel moter, dxyital
POBERTS ARMSTRONG to cable end-cul measure unit SCHAFF NER NSG430 static discharge simulator TEKTRONIX TM503/SG503/TG501/PG506 scope catibrator EKTRONIX J16 dightal photometer EKTRONIX $1503 \mathrm{~B}: 03 / 04$ TOA cableterster TEKTRONIX 221350 MHz dual-trace EKTRONIX 2235 100MHzo'scope TEK TRONIX AA501A distortion analyser (pug--n) unit
TEKTRONIX 7000 -series MANY CONFIGURAT TELONIC $1205 A 1.1500 \mathrm{MHZ}$ S Weep genurar WAVETEK $20000-1400 \mathrm{MHz}$ sweep generator WYNAE KERA RAOCOMOMatc precasion bricige

331 d distortion meter
331A distortion meter (otion 01) 3406 A sampling vo tmeter $3325 A$ synthesizerfunction generator
3325 Sy synthes izerfunction generator 3335A synthesizerlevei generator with option O 3552A transmission test set
3575A gain/phasemeter $1 \mathrm{~Hz}-13 \mathrm{MHz}$ do V ratio 8 a opt 01 3711A3712A microwave link anaysser (MLA) with 3793B \& 3730B/3736 down-converter (1.7-42GHz) 3781A pattern generato
3782A error delector

> HP8673M SYNTHESIZED SIGNAL GENERATORS 2-18GHz frequency range. AM/FM/Pulse mod. Calibrated o/p trom - 120 to + 8dbm. £7500. HP8901AMODULATION ANALYSERS $150 \mathrm{kHz-1300MHz}$ Measures AM FM to 1% accuracy. Also measures RF frequency \& power. Automatic. £3000 HP8559A 10MHz-21GHz SPECTRUM ANAL YSERS Installed in 182T mainoframe. £4000

$7035 B X-Y$ singte pen analogue chart recorder

790 dual-difectional coupler $1.7-12.4 \mathrm{GHz}$ (also others) 8011 A pulse generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$ 816A sotted line $1.8 \cdot 18 \mathrm{GHz}$ with carriage 809 C \& 447 B 8405 A vector voltmeter, voltage \& phase to 1000 MHz 8406 A comb generator
8447A AF amplifier $0.1 \cdot 1300 \mathrm{MHz}$, 22dbgain, $0.1 \mathrm{Wo} / \mathrm{P}$ 8505A network analyser system including 8503A S-parameter test set and 8501 A storage normaliser
8620 C sweep generator, many plug-in units available 8671A synthesized slgnalgenerator $2-6.2 \mathrm{GHz}$
PLEASE NOTE: ALL OUR EQUIPMENTISNOW OPERATION-VERIFICATION
TESTED BEFOREDESPATCH BY INDEPENDENT LABORATORY
We would be pleased to handie all grades of calibration or NAMAS certification by same laboratory at cost price. All items covered by our 90 -day parts and by same laboratory at cost price. All items covered by our 90 -day
labourguarantee and 7 -day "Right to Refuse (money back) waranty.

ALL PRICES SUBJECT TO ADDITIONAL VAT AND CAARIAGE

INDEX TO ADVERTISERS

PAGE

Alternative Distribution (UK) Ltd842
Bull Electrical 811
Citadel Products Ltd IFC
Chelmer Valve 853
Dataman ProgrammersLtdOBC
Display Electronics Ltd 859
Electrovalue Ltd 839
Ellmax Electronics Ltd 839
Flash Designs 825
G H Systems Ltd 868
Halycon Electronics Ltd 868
Ice Technology Ltd IBC

PAGE
IPK Broadcast Systems 868
Johns Radio 799
JPG Electronics 846
Kare Electronics 853
Keytronics 877
Labcentre 800
Langrex Supplies Ltd 854
M \& B Electrical
Supplies Ltd812

M \& B Radio (Leeds) ... 823
MQP Electronics 842
Number One Systems
Ltd

PAGE
Pico Technology Ltd 842
Ralfe Electronics 880
Research
Communications 823
SAJE Electronics 794
Seetrax Ltd 838
Smart
Communications 825, 839
SMC Ltd 854
Stewart of Reading 846
Surrey Electronics Ltd .. 868
Telnet 854
Tsien Ltd 825
Warwick Industrial Elec 854

France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008.
United States of Amerlca: Jay Fenman, Reed Business Lid., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827

THE BEST LOW COST PROGRAMMERS Designed \& Manufactured in the UK

SPEEDMASTER 1000

SPEEDMASTER 1000E

 UNIVERSAL PROGRAMMERSuperfast PC based programmer Programmes; EPROMS UP TO 8M BIT, FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, MICROs (8748/51), PALs, GALs, EPLDs, PEELS, MACHS, MAPLs, MAX II Plugs directly into parallel port
1000E Version has ROM/RAM emulator built in: 128 k (1 Mbit) standard, optional 512K (4Mbit)

MICROMASTER 1000 MICROMASTER 1000E

 UNIVERSAL PROGRAMMER - Programmes: EPROMS UP TO 8M BIT. FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, PALs, GALs, EPLDs, PEELs, MACHs, MAPLs, MAX etc. PLUS over 80 different Micros including 8748/51, 68HC705, 68HC711, PICs, Z86, TMS320, TMS370 etc DIPs WITHOUT ADAPTORS OR PERSONALITY MODULES! Package adaptors available. 1000E Version has ROM/ RAM emulator built in: 128 K (1Mbit) standard, optional 512K (4 Mbit)

SPEEDMASTER 8000 GANG/SET PROGRAMMER

8 way, Pc or stand alone Super-fast programming times, manufacturer recommended algorithms
■ 32 pin devices as standard Support for 8748,51 ,
TMS370, PIC Micros and 40 pins.

management to Antarctic survey teams, you can find S4s the world over, up and running where the competition is left far behind. S4 gets the job done in every situation you might expect - and -quite a few you wouldn't!

- A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices. Dataman S4 programs devices up to 8Mbits and the unique, loadable Libray means that new parts can be added quickly without extra cost! Serial EPROMs, 40 pin EPROMs and micro-controllers are all supported with optional. modules.

[^6]
[^0]: Electronics World + Wireless World is published monthly By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$, Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
 Newstrade: IPC Marketiorce, $071261-5108$
 Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notity a change of address. Subscription rates 1 year (normal rate) £30 UK and $£ 35$ outside UK USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42 nd Street, NY 10117. Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine,Paris 75008. Uniled States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42 nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

 USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR
 Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
 ©Reed Business Publishing Ltd 1992 ISSN 09598332

[^1]: "James Vincent G1PVZ works for a major aerospace company.

[^2]: Direct sequence receiver delay lock loop and PN code 1/2 chip generator

[^3]: ..designed for 12.5 V UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 520 MHz .

 - Guaranteed $440,470,512 \mathrm{Mhz} 12.5 \mathrm{~V}$ characteristics.

 Output power $=50 \mathrm{~W}$
 Minimum gain $=5.2 \mathrm{~dB} @ 440,470 \mathrm{MHz}$
 Efficiency $=55 \%$ @ $440,470 \mathrm{MHz}$
 IRL - 10 dB

 - Characterised with series equivalent large-signal impedance parameters from $400-520 \mathrm{MHz}$.
 - Built in matching network for broad-band operation.
 - Triple ion implanted for more consistent characteristics.
 - Implanted emitter ballast resistors.
 - Silicon nitride passivated.
 -100\% tested for load mismatch stress at all phase angles with $20: 1$ VSWR @ 15.5 V dc, 2.0 dB overdrive.

 ## Maximum ratings:

 Collector-emitter voltage
 Collector-emitter voltage
 Emitter-base voltage
 Collector-current - continuous
 Total device dissipation@ $T_{C} 25^{\circ} \mathrm{C}$
 Derate above $25^{\circ} \mathrm{C}$
 Storage temperature range
 Thermal characteristics
 Thermal resistance, junction to case

 Table 2. Maximum power ratings of a typical rf power transistor, the Motorola MRF650.

[^4]: ELECTROVALUE LTD, UNIT 3, CENTRAL TRADING ESTATE, STAINES TW18 4UX Phone 0784-442253 FAX 0784-460320
 | Your 1993/94 Catalogue please, to
 | Name
 | Address .. |
 | .. |
 | ...|
 Block letters please, and POST CODE
 I enclose cheque/postal order for $£$
 If not using coupon pleaṣe quote this journal when writing.

[^5]: BRITISH AMATEUR TELEVISION WIRELESS WORLD MAGAZINE from Club for details send SAE to; B. Sum- 1976 to date (also "Television"). Most mers, 11 Harefield Road, Uxbridge, years complete series. Will sell together. Middx UB8 1PH. For list and price please send SAE to; S. WANTED PRE-WAR TELEVISION Jacovides, 20 Cheverton Road, London Good price paid. Can collect, Jac Jan- N193AY
 ssen, Hoge Ham 117d, NL-5104JD
 Dongen, Netherlands 01031162318158.

[^6]: Station Road, Maiden Newton, Dorset, DT2 OAE, UK. Telephone: 0300320719. Fax: 0300321012 . Telex: 418442 - BBS: 030032109524 hr - Modem: V32his/16.8K HST 22 Lake Beauty Drive, Suite 101, Orlando, FL 32806, USA. Telephone: (407) 649-3335 • Fax: (407) 649-3310 • BBS: (407) 649-3159 24hr - Modem: V32his/16.8K HSI.

