ELFCTRONICS

AUDIO

Cheap DSP to transform audio amp design?

DEsICN

Working with switched capacitor filters

history

Germany's imperial wireless system RF ENGINEERING
Tests discredit CFA theory

cIRCUTT

EncINEERING

Squashing

 parasitic oscillations

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to $\mathbf{4 0}$ pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM leven SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up à slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $\mathbf{£ 3 0 0}$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 \& 68HC11

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, sottware and manual only
£395
Please add $\mathbf{£ 7}$ carriage (by overnight courier) for UK orders, $\mathbf{£ 2 0}$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9 ii

CONTENTS

FEATURES

CLOSING THE LOOP 365
In the first of a three part series, Dmitry Malinovsky examines phase-locked loops - from mathematics to the practical application of PLLs in frequency synthesis and other comms designs.
Cover: Jamel Äkib

SLICK SYSTEM SIMULATION

ON THE PC.
The power packed into today's 386 s and 486 s means that system simulation is now possible on the PC. Allen Brown wires up VisSim.

AN END TO SPURIOUS OSCILLATIONS
Oscillations are rife in analogue circuit design. Robert Pease looks at some of the ways in which problems can be solved. Serialised from his book "Troubleshooting Analog Circuits".

GPS: APPLICATIONS

\qquad
Philip Mattos describes application limits of the GPS system and the fusion of GPS with other sensor technologies for vehicle navigation. There is also the chance to register for further details about a kit of parts using the transputer hardware featured in the series.

CFA - RIP?
405
Has the debate over the crossed field antenna at last reached a conclusion? Colin Davis presents the results of scientific testing on this electrically small antenna system.

DESIGN BRIEF: ACTIVE FILTERS:

BETTER DESIGN WITH SC DEVICES
............ 394
Al-Halimi lay down lic eroind rules fors lo apply. Bashir
Al-Hashimi lays down the ground rules for effective design.
MIGHTY POWER IN MINUSCULE PACKAGES 399
Using integraled filter packages has never been easier. lan
Hickman describes their application, and an audio circuit to test response.

GERMANY'S IMPERIAL WIRELESS SYSTEM
.427
The Marconi company is normally credited with driving the technology for long distance communications. But the German imperial Wireless system was at least as impressive in its complexity and effectiveness. By George Pickworth.

COULD LOW COST DSP SIGNAL THE END FOR ANALOGUE AUDIO?
 434

New DSP chips specially designed for low-cost home and automotive audio open up opportunities for better sound and new functions in mass-market products. Phil Atherton spells out the implications.

REGULARS

COMMENT

Writing to win
UPDATE 356
US to start digital TV broadcasting with new compression algorithm; Intel's new microchip speeds up micros five times; New technology Windows.

RESEARCH NOTES
Lightning link to measure global warming, Quantum leap forward for secret codes, Clear evidence of molecular rectification, Single electron memory demonstrated.

UPDATE SPECIAL: THE CHIPS ARE DOWN FOR CORDLESS PHONES

381Access to low cost highly-integrated semiconductor components means that at last the CT- 2 digital cordless phone may be about to supersede its ageing analogue cordless telephone ancestor.

LETTERS
CD or NBG?, Optimum settings, Cable con trick cut by Occam's razor, Not trivial, Second childhood with whiskers, Old tube, Analogue by any other name, Variable Planck, War crimes.

CIRCUIT IDEAS .411
Overcurrent protector, Function generator is digitally
programmed, Voltage-to-period converter, Simple highgain amplifier, Precise power output stage, Near-field probes for EMC testing, Fast full-wave rectifier, Independent $\mathrm{m}:$ s adjustment for wide-band pulse gen.

APPLICATIONS ... 420
Linear circuit active filters, Instrumentation amps are not always the best choice, Two op-amps are better than one for $D C$ and wide-band.

WHITE NOISE .433
Hot Carrier generates some heat inside the structured world of electronics.

In next month's issue: A combined preamplifier/power amplifier from John Linsley Hood. The famous audio designer updates his original bipolar transistor model to a 30 to 50 W direct coupled mosfet version.
Also in next month's issue: integrated RX frontend and synthesiser for 2 GHz .

FREE: precision light-to-frequency converter chip
ALL IN THE JUNE ISSUE ON SALE MAY 27

FROM CONCEPT TO ARTWORK IN I DAY

Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses REAL- IME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto juncti- n features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

- ULTH HII, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTiboard. Good manual placemen tools are vital to the progress of your design, therefore U. Tlboard gives you a powerful suite of REAL-TIME functioins such as, FORCE VECTORS, RATS NEST RECONNFCT and DENSITY HISTOGRAMS. Pin and gate swappirg allows you to further optimise your layout.
 your design information is transierred correciy fom

Now yo can quickly route your critical triacks. ULTIbo rd's REAL-TIME DESIGN RULE: CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHILE:-MOVE algorithms guarantee that any manual track editing is tlawless. Blind and buried vias and surface mount designs are fully support d.

If you need partial ground planes then with the Dos extended board sys ems you can automatically create copper folygons simply by drawing the outline. Thes polygon is then filled with copper of the desired net, all correct pins are connected to he polygon with thermal relief connertions and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows ycu to control which parts of your boarc are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techriques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The iautorouter will handle up to 32 layers, as well as single sided routing.
rd's backannotation automatically your ULTIcap schematic with any pin e swaps or component renumbering. Finally, your design is post processed ic generate pen / photo plots, dot matrixilaser or postscript prints and custom drill files.
CIRCIENO. 106 ON REPLY CARD

ULTIboard PCB Design/ULTIcap
Schematic Design Systems are available in low-cost DOS versions. fully cortipatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions featuring unlimited design capacity

EDITOR

Frank Ogden
081-6523128

DEPUTY EDITOR

Jonathan Campbell
081-6528638
CONSULTANT
Derek Rowe

DESIGN \& PRODUCTION

Alan Kerr

EDITORIAL ADMINISTRATION

Lorraine Spindler
081-652 3614
SALES MANAGER
Patrick lrwin
081-652 3732
SALES EXECUTIVES
Pat Bunce 081-652 8339

ADVERTISING PRODUCTION

Shirley Lawrence 081-652 8659

PUBLISHER
Susan Downey
EDITORIAL FACSIMILE 081-652 8956

CLASSIFIED FACSIMILE 081-652 8931

SUBSCRIPTION HOTLINE
0622721666
Quote ref INJ

SUBSCRIPTION QUERIES

0444445566

NEWSTRADE ENQUIRIES

Martin Parr
0712615108
BACK ISSUES
Available at $£ 2.50$

REED
BUSINESS
PUBLISHING

Writing to win

Next month EW+WW, in conjunction with HewlettPackard, is launching a major writing award scheme which we hope will unlock the innovative and creative thinking going on in our work rooms, classrooms, institutes and industry.

The person who submits the best electronics design article for publication in this magazine over the period June 1, 1993 to May 30, 1994 will be given a brand new Hewlett-Packard HP54600A 100 MHz digital storage instrument worth $£ 2500$. This is in addition to our normal authors' fees.

To win this most magnificent prize, the author would be expected to submit an unpublished script of original work concerned with applied electronics at the component level. Designs showing ingenuity in the use of modern devices will be strong contenders, particularly if documented with clear circuit diagrams and concise explanations of circuit operation.

The judging panel, which will include both myself and H-P engineering staff, would hope to see
contributions representing all areas of electronics: RF, microwave, audio, video, consumer electronics, data acquisition, signal processing and computer peripherals. The basis for the article may be hobbyist, educational or commercial. Provided that you are the accredited designer of a project and prepared to see details of your work published in full, then we look forward to reading your script.

Although there is only one oscilloscope on offer as a prize, we will naturally wish to publish other suitable submissions. All published material will attract authors' fees which are generous in themselves. For instance, a good design article is worth several hundred pounds to us.

I would be pleased to help potential writers to win the $\mathrm{H}-\mathrm{P}$ oscilloscope and get their good ideas into print. Simply give me a call at my office to discuss the publishing potential for your latest piece of high technology. I have sets of authors' guidelines for those who require them.
I look forward to hearing from you.

Frank Ogden.

Electron/cs World + Wireless World is published monthly By post, current issue $£ 2.25$, back issues (if avallable) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
Newstrade: IPC Marketforce, 071 261-5108
Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notify a change of address. Subscription rates 1 year (normal rate) £30 UK and £35 outside UK. USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42 nd Street, NY 10117. Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine,Paris 75008. United States of America: Ray Barnes, Reed Buslness Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

USA malling agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR
Typeset by Marlin Graphics 2-4.Powerscroft Road, Sidcup, Kent DA14 5DT
©Reed Business Publishing Ltd 1992 ISSN 09598332

MPEG-2 digital TV all set to go

The moving force behind the world's first digitally compressed television service arguably the biggest breakthrough in delivery since the Emitron system consigned Baird to history in 1936 - will be a new video compression system using the MPEG2 algorithm. It can squash up to four channels in the frequency space required for one analogue terrestrial slot.
When DirecTv starts broadcasting to America early next year, with over 150 channels from two co-located 16-transponder satellites, the decoder chips inside the Thomson-made TV sets will be supplied by C-Cube Microsystems, which claims world leadership in the development of broadcast-resolution MPEG decoding.
C-Cube, founded in August 1988 to develop digital imaging technologies, will also be providing the ICs for the encoding system being developed for DirecTv by another Silicon Valley company, Compression Labs of San Jose, Cal.
"The big deal is digital TV, not HDTV" according to Alex Balkanski, co-founder and vice-president of C-Cube. "Once one has made the break from analogue delivery, HDTV is just a matter of more chips."

C-Cube has already developed an MPEG broadcast-resolution decoder chip, the CL950. This provides a data rate of up to 10 $\mathrm{Mbit} / \mathrm{s}$ and a resolution of 704×576 pixels (in pal) which is superior to existing picture delivery, including laser disc. It follows development of the CLA50, designed to what is now called the MPEG 1 standard, for computer and CD-ROM applications. This uses a bit-rate of $1.5 \mathrm{Mbit} / \mathrm{s}$, to produce a picture of 352×288 pixels (pal), about equivalent to VHS standard.
For comparison, a standard analogue TV picture, converted to digital but uncompressed requires $90 \mathrm{Mbit} / \mathrm{s}$, taking up virtually all the bandwidth of a 36 MHz satellite transponder.
The CL950, and a new encoder chip, the CL4000, shortly to be launched, are designed to meet the new MPEG 2 standard, developed specifically for broadcast television, which was due to be ratified at the end of March. The CL4000, which has cost close to $\$ 15 \mathrm{~m}$ to develop, runs at 40 MHz clock and uses 1.2 million transistors and 400,000 gates. Balkanski claims it to be the world's first single chip real time MPEG encoder.

As well as DirecTv, applications for the two chips will include full motion video for Philips CD-I. C-Cube is not itself a volume chip manufacturer; to ensure supplies it has partnership agreements with Texas Instruments and AMD.
Because digital compression depends on transmitting only the differences in the TV picture from one frame to the next, it follows that the required bit rate will depend on the nature of the material being transmitted. A relatively static programme, such as an Open University seminar will need less bandwidth than a fast-action sports broadcast. The flexibility to apportion the desired bandwidth, within the overall availability, on a programme-by-programme basis is a characteristic of MPEG.
The MPEG-2 chips will have bit rates of 1.5-10Mbit/s (in practice, 4 to $8 \mathrm{Mbit} / \mathrm{s}$) and will be fully scalable between these limits and beyond them, by putting chips together and dividing the picture between them, to produce HDTV resolution.
Digital compression will enable broadcasters to economise on transponder space; annual rental of an Astra transponder currently costs around $£ 4.8 \mathrm{~m}$. Consumers

Bright ideas in action

Young Electronics Design Awards finalists Gary Lockton (left) and Richard Coull await judgement on their projects entered for the prestigious awards scheme sponsored jointly by Texas Instruments and Mercury Communications.
Lockton designed a wattmeter capable of calculating and predicting the electricity cost of any appliance connected to it. It uses induced field to obviate the need for a direct connection to the electricity supply. Coull's project featured an EHT generator to ionise and clean up particulates from vehicle exhausts. A series of charge injecting

needles divert particulate matter into a sidestream which is then intercepted by a conventional filter. Richard claims removal of at least 75% of solid matter from exhaust gas by this means.
Other projects reaching the finals included an hydraulic fluid tester which measures boiling point through nucleate boiling detection, a text transmission aid for deaf phone users making use of the standard DTMF key tones, and a snooker score totaliser. The age of entrants ranged from 13 to 22 . The scheme attracted more than 300 projects.

TThe latest version of I-Deas Master mechanical design software contains a modeller with a variational geometry constraint management system that combines solid, surface, and wire-frame representations in a single structure. This modeller, shown in the picture, serves as the nucleus for all the other I-Deas applications, incorporating as it does nearly all aspects of the design including dimensions, variational constraints, assemblies, drawings, tolerances, and manufacturing data. It was developed by Structural Dynamic Research of Hitchin.
are likely be faced with a high equipment cost. Decoders are heavy on ram which is not cheap in the quantities needed. Expected launch price of the DirecTv integrated receiver-decoder is $\$ 700$ ($£ 500$), with, so it is claimed, very little room for reduction as volume sales get underway. The unit includes a modem, for passing pay-per-view information back to the central control unit, as well as Videocrypt module. Compression Labs has already developed and marketed compression systems for use in videoconferencing, business television and distance learning channels. It has also supplied the system, brand-named SpectrumSaver, which enables Greenland's television service to overcome the problems of satellite reception so far north of the equator: the more robust digital signal eliminates the snow and ghosting caused in analogue by the poor signal to noise ratio at those latitudes. Programmes which were previously distributed to the more remote areas on videotape can now be retransmitted (on VHF) from eight downlinks.

Peter Willis
C-Cube Microsystems (010 1) 408-944 6300.

BBC science coverage is abysmal

The magazine Science \& Public Affairs representing the views of the Royal Society and the British Association has launched a savage attack on the BBC for its lack of science coverage.
The attack comes from the BBC's own Nick Ross who writes "scientists might well wonder why they bothered to discover and invent radio and television for all the good these media have done for science."
Attacking the broadcast industry for heavy
bias towards the arts, Ross asks why so few senior BBC staff are science graduates. He also criticises the gee-whizz style of popular science programming.
He said: "We live in a society that is crippled by scientific illiteracy and pseudoscientific balderdash."
With renewal of the BBC charter only three years away, Ross believes that scientists should push for a charter forcing the BBC to raise public awareness of science.

Japan works on mind reading computer

$\mathrm{S}_{\mathrm{b}}^{\mathrm{c}}$cientists in Japan may have made a breakthrough in creating a system which can read human thoughts before they are turned into words. Fujitsu Laboratories and the Research Institute for Electronic Science of Hokkaido University have isolated the brain wave changes associated with communication even without speech.
The experiment consisted of measuring the brain wave distribution of subjects thinking the sound of the vowel "a." Preliminary
results indicated that the speakers' thoughts were observed successfully.
By applying this technology, it could become possible to commercialise a thought input computer by which data can be input simply by thought.
The recognition of silent speech was verified by the measurement of a negative potential distribution generated in the subject's frontal lobe roughly 0.42 s after the vowel " a " is thought.

Windows on New Technology

This year will see an unprecedented number of major operating systems being introduced, some capable of running on different microprocessor architectures. It is a battle to determine the necessary components of future computer systems.
Microsoft is the largest developer of operating systems, dominating the market with MS-dos which is tied to the Intel architecture. Microsoft is releasing Dos 6.0 which improves on the standard with various new features such as data compression. Microsoft also supplies Windows 3.1, a graphical user interface that sits on top of MS-dos.
Later this year there will be a 32 -bit version of dos integrated with Windows and next year there will be Cairo, an objectoriented version of Windows NT. But it is the eagerly awaited Windows $N T$ that is the big news this year since it represents a break with MS-dos and its inherent limitations on memory addressing and multitasking capabilities.
Windows $N T$ is a true 32 -bit operating system, offering multitasking in which different applications can be run at the same time and also multi-threading capabilities in which several different tasks can be performed without the overhead of launching different applications to manage those tasks.
It will integrate advanced networking capabilities which are increasingly important in computing. $N T$ is also an example of a
portable operating system in that it will run on different microprocessors. It is seen to be the key to unlocking the potential high performance of Intel's Pentium microprocessor but it will also run on Mips microprocessors, and DEC's Alpha chip.
Microsoft also plans other attacks on the operating system market. There is Modular Windows which is a stripped down windows version that can be frozen into rom chips, and WinPad, an operating system based on windows application programming interfaces to produce a slimmed down operating system designed for PDA devices.
NT's biggest competitors are the various varieties of Unix and IBM's OS/2. Unix continues to make slow and steady progress but it suffers from high system overheads and problems in attracting computer users more familiar with dos operating systems.
Unix is also a multitasking, multi-threaded 32-bit operating system but requires large memories and much hard disk space. Novell, the leading developer of network operating systems, is in the process of acquiring Unix Systems Labs which controls development of Unix System V, the dominant Unix variety. It will be interesting to see if it can combine its Netware operating system with Unix to produce a strong competitor to Microsoft's Windows NT.
IBM's OS/2 2.0 is also growing steadily and IBM expects to have almost four million users by the end of this year. Like NT, it is a multitasking, multi-threaded 32-bit
operating system with a key advantage in that by the time Windows $N T$ debuts this summer it will have been around longer; it also takes up fewer system resources than Windows NT. Version 2.1 will be out just before Windows NT is introduced. IBM plans a portable version of OS/2 that will run on different microprocessors and it will eventually be integrated into a Unix-like operating system through IBM's use of the Mach operating system kernel from Carnegie-Mellon University.
Later this year we will also see the first versions of the Pink or PowerOpen operating system from Apple and IBM. This represents a new type of operating system called object-oriented which eases software development and portability to different hardware platforms. This will come out of the Taligent joint venture between the two companies and is designed to run on the Power $P C$ risc architecture.
Another object oriented operating system due out this year is NexiStep 486 from Next Computer which recently ditched its hardware business to concentrate on its systems software. Next has ported the operating system to run on 486 systems and is preparing to port it to the Pentium and other hardware platforms too. Sun Microsystems plans to update its well respected Solaris operating system later this year and has plans to port it to non-Sparc based systems.

Matthew Thomas, Electronics Weekly

Pentium paves path for faster PCs

The next generation of dos/Windows personal computers might be up to five times faster than the present generation of machines following Intel's launch of the Pentium, aka i586, microprocessor.
Initial versions have clock speeds of 60 and 66 MHz and deliver 63.4 specmarks integer performance, and 54.5 specmarks in floating point. By the fourth quarter of this year Intel is expected to launch a Pentium with a speed of more than 100 MHz .
The device contains the equivalent of two 486SX processor cores, a floating point unit, and 64 -bit data buses. On performance, Intel claims it is second only to DEC's Alpha chip and is twice as fast as the most powerful 486 in integer processing terms. But on the floating point ratings, it lags behind workstation processors from HewlettPackard, Texas Instruments, and IBM.
The versions due out later this year though will, Intel claims, have a better performance than all other commercial microprocessors.

Made using a $0.8 \mu \mathrm{~m}$ bicmos process and designed with superscalar risc architecture, the Pentium has two five stage execution
units and can process up to two instructions in a single clock cycle. Later versions will be made using a $0.6 \mu \mathrm{~m}$ process.
There are two 8 K on-chip caches and a $64-$ bit burst-mode external bus. It employs 3.1 million transistors, nearly three times as many as the $i 486$.
Operating voltage for the new device is 5 V , but the $0.6 \mu \mathrm{~m}$ units will work at 3.3 V providing power reduction for the notebook and palmtop market. In its 5 V form it appears to require a fan-cooled heatsink to function.
Intel itself has introduced a housekeeping chipset for the Pentium called the 82430 and the company is working with compiler, tools, operating system, and application developers to assist use of the device architecture.
It is possible to have two Pentiums in the same computer and it seems likely that dual processor machines will be launched next year. Single processor machines will be upgradeable to dual-processor machines. Though Dos and Windows do not support multiprocessing, the new Windows NT does.

Optical breakthrough for fast PSTN

Researchers at British Telecom have pioneered a technique using only optical components for recovering clock signals from high bit rate data streams. It is part of what BT claims is the first all-optical telephone signal repeater.
It uses a mode-locked laser and an erbium fibre cavity to derive a stream of picosecond optical pulses which are synchronised to the input optical data stream. The incoming $1.54 \mu \mathrm{~m}$ pulses are coupled into dispersion shifted fibre which is part of an erbium fibre ring laser.
The non-linear refractive index of the fibre sets up a periodic phase modulation in the cavity which mode-locks the laser. This generates an optical clock signal of $1.54 \mu \mathrm{~m}$ pulses which is used to synchronise the amplified data signal.

The ability optically to regenerate a telephone signal without first needing to convert it into an electrical signal, according to BT, will open the way to $100 \mathrm{Gbit} / \mathrm{s}$ data rates in the public switched telephone network.

Philips TV boss: "never again" for investment in Euro-standard

Rob Oostenbrugge, head of TV manufacturing at Philips, does not try to hide his frustration. After ten years of development, he has watched Europe's macbased strategy for HDTV fall apart in an orgy of Euro-bickering.
Oostenbrugge has vowed never again to base Philips' TV future on agreements between European governments. He now doubts that any pan-European agreement can be reached on TV standards, and is highly sceptical about talk of a European strategy for digital HDTV.
"When I look at the way we handled mac I am very critical of the way we are now dealing with digital," he said.
Part of the problem is that each country has research groups working on their own brand of digital TV. Oostenbrugge believes these vested interests will make it very difficult to decide on a single digital standard. "Everyone is hanging on to their own ideas. To merge the European proposals would be quite an achievement".
Even if a single standard emerges, Oostenbrugge doubts that the EC can whip into line all the players in the chain, from programme producers through equipment suppliers to broadcasters, needed to turn it into reality. "The question is, is it possible to make everyone in the chain happy? We are sceptical now. We have been through the whole process before with mac."
As a result, Philips has effectively put European HDTV on the back burner. Oostenbrugge will only move if someone else comes forward with firm proposals. "If
there is economics in it and private broadcasters committed to providing new services we will join," he said.
But Oostenbrugge is confident that by taking a pragmatic approach Philips can make money out of advanced TV systems over the next few years. He expects to make bucks out of terrestrial digital TV in the US. In Europe, he sees opportunities in standard definition digital TV delivered by cable and satellite, and in analogue widescreen TV.
Digital technology will take off in Europe, he says, because it will enable satellite and cable TV firms to provide more channels at a lower cost than today, thanks to MPEG digital video compression technology.
"In 1995 digital satellite will happen in Europe," Oostenbrugge insisted. "That's business. By the year 2000 we could have more than 1,000 satellite channels in Europe, of which hundreds are digital".
For terrestrial digital TV he sees France as the best bet, because the French Government has a proven record of seeing projects through to implementation. "I am impressed with the French", he said. If they say they will do something, they do it. With the French you can make a deal".

Oostenbrugge says there is interest in France in a system that carries both an improved definition picture for home TVs and a rugged lower definition signal for mobile receivers, for example in cars.
Irrespective of transmission format, Oostenbrugge sees a strong market developing for widescreen TV. He believes the market will start to take off when

PalPlus transmissions start in 1995, enabling both standard and widescreen sets to display pictures from the same signal.
"Once broadcasters start using PalPlus, the high-end TV market will change over to widescreen very quickly," he predicted.

Along with other interested parties, Philips is now urging the EC to give a 500 m ECU subsidy to help make widescreen programmes. Oostenbrugge argues that even the budget-conscious UK government has no excuse for not backing widescreen. "If you calculate the extra revenue from VAT through selling 16:9, governments actually get more money out than they put in", he pointed out.
Oostenbrugge admits he is disappointed. "We can't stop it, so let's see how we can make money out of it".

Karl Schneider, Electronics Weekly

Bank sees manufacturing hike

Nearly 13% of all start-up companies in 1992 were involved in manufacturing, the highest since 1980 according to figures released by Barclays Bank.

A statement from the bank said: "Since around 10% of the business stock is in manufacturing, generating an average of 25% of national output, an increase in confidence in this sector is vital for economic recovery to take place."
Despite this, manufacturing output fell 0.4% in 1992. But Barclays predicts a 0.8% growth this year and 2.9% next year

EASY FAST \& POWERFUL CAD SOFTWARE THAT GIVES YOU THE EDGE

ISIS - SCHEMATIC CAPTURE

Easy to use yet extremely powerful schematic entry system with all the features you need to create input for ARES or other CAD software. Now available in a super-fast 32 bit version capable of handling huge designs even on A0-sized sheets.

- Graphical User Interface gives exceptional ease of use - two mouse clicks will place \& route a wire.
- Automatic wire routing, dot placement, label generation
- 2D drawing capability with symbol library
- Comprehensive device libraries.
- Heterogeneous devices (e.g. relay and coil) allowed in different places on the schematic.
- Special support for connector pins. put each pin just where you want it.
- Output to printers, plotters Postscript.
- Export designs to DTP and WP packages.
- Netlist formats for most popular PCB \& simulation software
- Bill of Materials and Electrical Rules Check reports.
- Multi-sheet and hierarchical design support.
- Automatic annotation/packaging
- ASCII data import database facility.

ARES - PCB DESIGN

Advanced netlist based PCB layout software newly updated to version 2.5. Major new features include SMT library, real time snap (for those tricky SMT spacings), thermal relief power planes and enhanced autorouting.

- Graphical User Interface.
- Real time snap.
- Auto track necking
- Curved, 45/90 or any angle tracks.
- Extensive through hole and SMT package libraries as standard.
- 2D drawing capability with symbol library.
- Connectivity highlight.
- Output to printers, plotters, Postscript, Gerber and NC drill.
- Gerber View facility
- Graphics export for DTP etc.
- Advanced netlist management with forward design modification.
- Component renumber and back-annotate to ISIS.
- Full physical and electrical design rule checks.
- Autorouter handies single, double or multi-layer boards
- Power plane generator with reliefs
- Strategy \& DRC information loadable from ISIS
- Gerber import utility available

Call us today on 0274542868 or tax 0274481078 for a demo pack. Combination, multi-oopy and educational discounts available. Prices exc P\&P and VAT.

Lightning link to measure global warming

limatologists are still uncertain as to whether global warming is actually occurring and if so, how fast. Climate models mostly predict a rise in average temperatures of about $2^{\circ} \mathrm{C}$ by the middle of the next century. At the moment the average rise (from a baseline before the Industrial Revolution) is not thought to be more than about half a degree at most. But because of the relatively large day-by-day and season-by-season temperature changes, climatologists have great difficulty in detecting this tiny signal buried in a relatively huge amount of "noise".

In his search for an increasingly sensitive global thermometer, Earle Williams, a geophysicist at the Massachusetts Institute of Technology has been studying the unlikely subject of lightning flashes. Williams showed some years ago that there was a strong correlation between the temperature in a particular part of the globe and the incidence of lightning strikes - that is why there are far more electrical storms in the tropics.

Sensitivity of the effect is so great that in one observation in Darwin, Australia, a measured $2^{\circ} \mathrm{C}$ increase of temperature led to a 100 -fold increase in lightning strikes.

To measure the incidence of lightning on a worldwide basis, Williams has set up an antenna on the roof of MIT to detect an effect known as the Schumann Resonance (SR). The SR consists of low frequency (750 Hz) standing waves in a global circuit bounded by the Earth and the ionosphere.

Lightning flashes, which occur about a hundred times a second around the world, are constantly exciting these Schumann resonances - a bit like a hammer continually hitting a bell. So amplitude of the SR is highly dependent on the exact incidence of lightning strikes and, given appropriate calibration, is likely to provide a sensitive means of measuring global temperatures.
But there are problems. The extent to which the SR amplitude at any one site can yield a globally representative temperature signal is a matter of debate. Williams says that although SR signals do have a global value, readings vary from site to site. He is therefore comparing his readings at MIT with those made in Alaska and Australia.
Eventually, when the reading are analysed and compared with those collected by other groups during the sixties and seventies, it should be possible to calibrate the SR signal at any given site and use it as a sort of highly sensitive thermometer for global average temperatures.
Another hopeful "electric" thermometer is a quantity called the ionospheric potential, the PD between the Earth and the ionosphere. This potential, which can be measured from balloons and aircraft, may prove to be an even more sensitive indicator of global temperatures. The ionospheric potential is created by the action of lightning, and also by electrified clouds that are not necessarily discharged.

[^0]
Quantum leap forward for secret codes

Data encryption is a vital technology these days, not just for obvious military applications, but also for financial transactions and other sensitive situations. The Camillagate affair, where a private phone-call seems to have been bugged, underlined only too well the need for effective coding of voice messages. Now a quantum-based encryption technology under development could help keep secrets secret.
In any encryption/decryption process, the need is to transmit some form of "key" that will unlock the message at the far end. The key can either be built into the equipment (in which case it can be pirated, as in the case of illicit satellite decoders) or can be transmitted along with the data (in which case there's risk of it being intercepted) Under normal circumstances there is no such thing as an entirely secure encryption process. However clever a system is, someone is bound to be one step ahead... Unless, that is you're using quantum encryption.
Tests on a practical system have been conducted by BT Laboratories at Martlesham and by the Defence Research Agency at Malvern. The system hinges on the fact that it is now possible to transmit a key - usually no more than few hundred bits of data - in total security. More precisely, it is possible to transmit the key and to know for sure whether it has arrived securely, or someone has intercepted it. In practice these two situations are virtually equivalent because, if a decoding k ey is intercepted, no further data would be transmitted on that particular communications link.

The clever aspect about quantum cryptography is that it sends information encoded in individual photons, the fundamental particles of electromagnetic energy. In simple terms, single photons cannot be divided, so either a photon arrives at the legitimate user or it is detected by an eavesdropper. There is no way in which both these options can exist simultaneously.
In practice, information is encoded not just by the presence or absence of a photon, but by its phase. Phase provides additional security against the unlikely possibility of
some clever eavesdropper intercepting the message, reading it and then re-transmitting it. Quantum physics rule out the possibility of achieving this correctly more than 75% of the time. So the object of the latest research has been to devise a system that will transmit data accurately for substantially more than 75% of the time.
Quantum cryptography has been tried out
in the past, but only over links of a few centimetres. Absorption increases with distance, so some photons never get through to the other end. Of course information is only transmitted when a photon does actually get through. That essentially reduces the rate at which data can be sent. On the other hand because the key is only a few hundred bits, a low data rate is not a
serious drawback
At the moment the system is still experimental, but in recent tests, data of this sort was transmitted with 91% accuracy along a 10 km length of optical fibre at BT's laboratories. Ultimately the researchers think that it may be possibly to transmit data with complete security over 100 km fibre links.

Clear evidence of molecular rectification

Ateam of scientists at the University of Exeter and the Cranfield Institute of Technology says it has produced unequivocal evidence of rectification in an organic molecule. Their report (Phys Rev Lett, Vol 70, No 2) demonstrates one-way conduction of zwitterions - ions that carry both negative and positive charges, and opens the way to a whole range of new applications in sensors and molecular circuitry.
Ever since the mid 1970s, researchers have been trying to develop the molecular equivalent of a p-n semiconductor by depositing layers of suitable organic chemicals between pairs of metal electrodes. The method has been carried out many times and the rectifying properties have been attributed to resonant electron tunnelling between the electrodes and the charged parts of the organic molecules. The latest research, led by Roy Sambles of the Film and Interface Group in the Physics Department at Exeter, has shown that
rectification occurs within the zwitterion and can take place independently of the metal electrodes; in other words entirely within an organic substance.
The basic molecular rectifier is made by creating a Langmuir-Blodgett film of the molecule in question by floating it in a single layer on the surface of extremely pure water. One end of the molecule (the +ve end) consists of a paraffin grouping which is hydrophobic; the other negatively charged end consists of hydrophillic cyanide groups. A monomolecular layer of the compound consists, therefore, of an orderly array of molecules, all with their negatively charged ends facing downwards.
Sambles' group lifted this layer onto a silver-coated slide and then repeated the operation seven times to produce a layer seven molecules thick. They then fabricated a number of top electrodes with magnesium contacts.
To show that the rectifying action is completely independent of the electrodes,
the researchers did two further separate experiments. In the first case they introduced passive organic spacer layers consisting of omega-tricosenoic acid, a soap-like chemical. The resulting structure in which the zwitterionic compound has no contact with the metal electrodes and in which no Schottky barrier effects could occur - also shows rectifying properties
Finally, the team took the original sevenlayer molecular rectifier and chemically "bleached" the zwitterion by adding metallic ions. Bleaching of the active molecule instantly destroyed the rectifying action, leaving a device that was almost purely resistive.
The two contrasting pieces of evidence show unequivocally that the rectifier action can take place entirely within an organic molecule. The team now plan to investigate the possibilities of organic photodiode and transistor action

Single electron memory demonstrated

Hitachi Laboratory in Cambridge, in collaboration with the Microelectronics Research Centre at the Cavendish Laboratory, Cambridge University, have demonstrated the possibility of a single electron memory in which one bit of information can be stored by only one electron. The principle has been understood for many years, but this is the first time it has been demonstrated in practice (Electronics Letters, Vol 29, No 4)
In the new structure, one bit of information is defined by the precise number of electrons stored at a memory node. The ability to define the number of electrons precisely is made possible by the Coulomb blockade effect, which causes the movement of individual electrons to be controlled. If an isolated region of conductor is made sufficiently small, the change in stored energy due to the gain or loss of an individual electron results in a sufficiently large potential change stopping further electrons from entering and existing electrons from leaving.
Principle parts of the single electron memory cell are a gate capacitor and a multiple-tunnel junction (MTJ). The memory node is a small conducting region connected to an external circuit via the MTJ and subject to control by the gate capacitors. Electron transfer to or from the node is only possible through the MTJ, which itself consists of several tunnel junctions in series. The memory node voltage depends both on the number of electrons at the node and on the voltage applied to the gate electrode
To exploit the Coulomb blockade effect the structure must be reduced in size so increasing the electron charging energy. The researchers met this requirement by fabricating a new structure with side-gated channels in delta-doped gallium arsenide.
The electron channel is formed within a few atomic layers in an otherwise-insulating GaAs substrate. After adjustment of the side-gate voltage entrance and exit of one electron at a time can be controlled. Although further studies will be necessary to determine the mechanism, the team believe that dopants inside MTJs create tunnel barriers at intervals of several tens of nanometres.
The same fabrication process is used to implement a Coulomb blockade electrometer to detect the voltage on the

MTJ formed by side-gated structures in deltadoped GaAs material.

Scanning electron micrograph of single-electron memory element with electrometer.

A memory cell consists of one gate-capacitor and one multiple tunnel junction (MTJ).

memory node with minimum interference to the electrons on the node.
Several experimental devices have been constructed using electron beam lithography and they function very reliably. Haroon Ahmed, Professor of Microelectronics at Cambridge, says that at the moment they are still relatively large and may be switching ten to a hundred electrons at a time. He believes that if the line structures are fabricated on a scale of less than 5 nm , then they will meet their full theoretical expectations and work at room temperature, rather than 0.1 K as at present. To build
components on this scale might require manipulating individual atoms using a scanning tunnelling microprobe.
In spite of the enormous practical difficulties, Ahmed is confident that single electron memory chips will be available within another two decades or so. This would enable the creation of one terabit memories consuming a mere 0.1 W . Such a memory using conventional semiconductor technology would currently consume about. 10 kW !
Research Notes is written by John Wilson of the BBC World Service

M \& B RADIO (LEEDS) THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

OSCILLOSCOPES

TEETRONIX 2445 I ISOMHZ FOUR TRAC
TEKTRONIX 475 200MHZ OSCILLOSCOPES WITH PROBES
TEKTRONIX 4658100 MHZ WITH DIGITAL MULTIMETER (AS
NEW) TEKTRONIX 466100 MHZ STORAGE WITH DVM OPTION................... 45 IWATSU $5 S 6122100 \mathrm{MHZ} 4$ TRACE + CURSORS TEKTRONIX $5103 / 5 B 10$ T T.B. $2=5$ A20N DIFFERENTLAL
PLUGINS.
 TEKTRONIX TISM BALLANTINE IE22B ISMHZ DUAL TRACE BATA PORTABLE................ 19 TELEQUIPMENTT D32 DUAL TRACE BATT PORTABLE 135 HITACHI V 650 F 60 MHZ 3 TRACE... 2 HITACHI V222 20MHZ OUAL TRACE.. GOULD OS OS 4000 IOMHZ DUAL TRACE OIGITAL STORAGE
GOULD OS2508 ISMHZ OUAL TRACE COMPLETE WTH PROQE 419 MANUAL 142020 MHZ DIGITAL STORAGE OSCILLOSCOPE........... 2125 FARNEL DTCI2 12 MHZ DUAL TRACEICOMPONENT TESTER..... 195
FARNEL 19 DT $12-512 \mathrm{MHZ}$ DUAL TRACE HP ITITA 275MHZ STORAGE OSCILLOSCOPE \qquad
SIGNAL GENERATORS
MARCONI 2019A 10t0MHZ AMIFM
c1950
 MARCONI 2015 ITITI SYNCHRONIZER IOMHZ TO S2OMHZ AMFM/
CW SIGNAL GENERATOR
MARCON1 2016A 1OKHZ TO I20KHZ (RF TRIP) MARCON 2022 E 10 KHZ TO I GHZ MARCONI 200810 KHZ TO SIO MHZ INC KTT BOX .-.................. 1350 HP 864081024 MHZ OPT $001002003 \ldots$.......... 61350 ADRET 740 A 10 KHZ TO I.I GHZ SYNTHESIZEO.......................... 61750 RACAL DANA 9082
 FARNEL SSG1000 IOKHZ TO IGHZ SYNTHESIZED..............-- $\quad \$ 1500$
FARNEL FARNELL $\$ \$ 6520+$ TT\$520 MOBILE RADЮ TEST STATION
(PAIR) , 20230A IMHZ 5YNTHESIZED SOURCE ... 619
POLRAD $1106 E T$ I.8 TO $4.6 G \mathrm{HZ}$ COMPLETE WITH 550 MODULATOR \quad WAVETEK 19320 MHZ SWEEP FUNCTION GENERATOR .-........... 6295
GENERATOR
 \qquad ARNEL WDEBAND RF POWER AMPLFIER . 5 TO IOOOMHZ..... C750 FARNEL LAS20 RF AMPUFIER I.S TO 520MHZ............................ 175 FARNELL LFMA OSCILLATOR..... $C 200$
FARNELI TMB TRUE RMS SAMPUNG RF MILIVOLTMETER IGHZ C350 HP 89718 NOISE FIGURE TEST SET... 6955 RACAL DANA 9301A TRUE RMS VOLTMETER. HP 3400A TRUE RMS VOLTMETER HP 3403C TRUE RMS VOLTMETE
 ACAL 9921 3GHZ FREQUENCY COUNTER MARCONI 2432A S6OMHZ FREQUENCY COUNTER NARDA 3020 A BI DIRECTIONAL COUPLER 50 TO IGHZ NARDA $3001-30$ DIRECTIONAL COUPLER 460 TO 960 MHZ _..... 6250 JARDA 769/6 I50W 60 B HiGH POWER ATT (NEW) ... BIRD TENULUNE 8343 IOOW 6DB ATT.

\qquad . 6500 HP 355 A HIGH STABILITY VOLTMETER G HP 3478 A LCO DIGITAL MULTIMETER HP 5306 GPIB MUL MULTMMETER SIR D HP 8750 STORAGE SORMALIZER 53482A 225MHZ FREQUENCY COUNTE HP 6294 PSUO TO 60 VOLTS I AMP HP 42718 IMHZ DIGITAL LCR METER. TEKTRONIX 5214 PAR WA VECTORSCOPE..... EKTRONIX $141 A$ PAL TEST SIGNAL GEN ERATO OYMAR 2085 AF POWER METER
 MP 6518 TEST OSCILATOR. .225
6200 . 2305 MOD MLER. EFRATOM FRT ATOMIC FREQUENCY STANOARD
 WA YNE KERR 4世C AUDIO MEASURING SET... 1150 HP 745A AC CAUBRATOR... FL $8505 A$ VECTOR VOLTMETER + ACCESSORIES........-.......... 1000 BICCT IOSA FREQUENCY COMPARATOR COSSOR TA3IM CABLE TEST SET
 HP 4358 POWER METER $8482+300 B$ ATT (as new) 6915 MARCONI 6960 AF POWER METER 6912 HEAD 30 KHZ TO 4.2 GHZ 6920 HEAD IOMHZ TO 20GHZ -_ $\quad 1000$ HP 394A VARIABLE ATTENUATOR IGHZ TO 2GHZ..................... 125 AMWERSENSE LINE ANALYSER... 455^{2} RACAL DANA 6900 MICROPROCESSING DM RACAL DANA 9000 MICROPROCESSING TIMER COUNTER
SIOMHZ
HILIS PM2434 DC MICROVOLTMETER -……-.............................. 675 SICALDANA METER
DATA IIO 22 PROM PROGRAMMER.
EEEDBACK SSO 603 SINE SQUARE OSC
FEEDBACK 602 VARIABLE PHASE OSC..
FEEDBACK SFG 611 I2MHZ SWEEP FUNCTION GENERATOR
EEEDBACK TFA
FEEDBACK EW 604 ELECTRONIC WATTMETER
FARNELL LTJO-2 DUAL POWER SUPPLY.
ARNELL 130.5 DUAL POWER SUPPLY
ACAL ……- - - - - - 1200
RACAL 9301 A RF MILIVOLTMETER (AS NEW).
RACAL 9302 RF MILLUVOLTMETER
TEKTRONIX 1502 TDR.
SCOPADAPTOR 9060 (FFT).
OULK PURCHASE SPECIALS
HP IBO SOMHZ OSCILLOSCOPES TESTEO
MARCONI HOIRC OSCILLATOR 20CS TO 2OKCS.
AVO 8 MULTIMETENS CASE + BATTERY LEADS ….................. 4
ADCOLA 77 DESOLDERING STATION...
ADLKE
RADIO EOUIPMENT
RACAL RAIT92 HF RECEIVERS.. 1800

Communications Testing

SELF CONTAINED RADIOTELEPHONE TEST SETUP

FARNELL SSG520 10 TO 520 MHZ SYNTHESIZED SIGNAL GENERATOR 10HZ RESOLUTION AM/FM MODULATION 1KHZ AND 400 HZ ATTENUATION RANGE OF 119dB IN 1dB STEPS WITH OUTPUT CONTROL BETWEEN THE 1dB STEPS

TTS 520 TRANSMITTER TEST SET CONTAINS RF FREQ COUNTER; MODULATION METER; RF POWER METER; AF POWER METER; AF COUNTER;
AF VOLTMETER; AF SYNTHESIZER;
AF DISTORTION ANALYSER;
WEIGHTING FILTERS;
RF POWER/LOAD AND ATTENUATORS
UP TO 100 WATTS
IEEE 488/SG1GB-B

> ALL PRICES PLUS VAT AND CARRIAGE 86 Bishopsgate Street, Leeds LS I 4BB Tel: (0532) 435649 Fax: (0532) 42688 I

In the first of a three part series, Dmitry Malinovsky examines phase-locked loops from mathematics to the practical application of PLLs in frequency synthesis and other comms designs

(O)

Phase-locked loops, in common with almost any type of electronic system, are easiest to understand when presented as a collection of simpler units.
Most of these building blocks are universal and only form a PLL by virtue of the unique connection used. This article presents the most typical examples of such functionally independent bricks.
All the circuits have been tested by the
author while designing frequency synthesizers and other test equipment
Figure 1 shows a VCO circuit often used at about 300 MHz with a tuning range of a few hundred kilohertz. A VCO used in frequency synthesis must generate the lowest possible noise at its output and a fet is the easiest method of ensuring this performance.
The tuned circuit is connected to the fet gate via capacitor C_{3} from a tap on coil L, which
allows the high input impedance of the fet to be used, a fairly small value of C_{3} providing a loose connection between the tuned circuit and the fet and the high-gain transistor making it possible to tap from $1 / 4$ to $1 / 10$ of the coil. This gives good frequency stability, since the source capacitance is included in the circuit with a transformation factor less than 1. Elements $R_{l} D_{l}$ stabilise the transistor working point and therefore the output amplitude; the

BB 122
Fig. 1. Voltage-controlled oscillator using a fet for low-noise performance. Loose coupling via transformer tap and low-value capacitors assists frequency stability.

Fig. 2. Very simple, but linear oscillator, usable up to about 30 MHz .

Fig. 4. Dual VCO, giving an output frequency of 5 $\times 10^{-4} / C$ (where C is in farads) up to about 60 MHz . Tuning range is determined by voltage applied to pin 3.

Fig. 3. Transfer
characteristic of oscillator shown in Fig. 2 using differing values of C.

RC chain in the drain filters the supply voltage. Varicap D_{2} determines the tuning range of the VCO, which can be limited by the choice of the additional capacities $C_{1} C_{2}$.
The main merits of the IC multivibrator oscillator shown in Fig. 2 are very high linearity and almost maximum simplicity; it will work with all types of TTL. Figure 3 shows the relationship of control voltage to frequency for this oscillator using various values of capacitance. Tuning range depends on the
value of the series resistors - increasing resistance reduces the range.
Figure 4 is another IC VCO. A 74S124 contains two oscillators, their outputs being TTL compatible. Tuning range can also be altered here by changing control voltage 2 . The VCO is very linear and is used, as well as the design in Fig. 2, in frequency demodulators, which need a high control linearity.
Using no coils, the ECL VCO in Fig. 5 works at UHF. Here, the mosfet works as a

voltage-controlled resistance to set the tuning range, which is changeable by varying the applied gate voltage. Typical tuning range is shown in Figure 6. Such a VCO can be used in digital synchronisation systems, frequency demodulators and test oscillators, but has insufficient spectral purity for use in frequency synthesizers.
Control voltage applied to the crystal oscillator in Fig. 7 changes its frequency by a fraction of one per cent; in the absence of lock, the output frequency of such a VCO is still very stable. Such circuits are used in digital communication systems for the recovery of the carrier, and in frequency standards. In this case, the crystal is working at its fifth harmonic, but it will also work with the resonator on fundamental.

Phase detectors

If two inputs to a multiplier or mixer are $\mathrm{V}_{\text {in }}(\mathrm{t})$ $=\mathrm{A}_{1} \cos (\omega t+\phi)$ and $\mathrm{V}_{\mathrm{in} 2}(t)=\mathrm{A}_{2} \cos (\omega t)$, multiplying gives two signals $\mathrm{A}_{\text {out }} \cos (2 \omega t+\phi)$ and $\mathrm{A}_{\text {out }} \cos \phi$, which is at zero frequency and dependent on phase difference. A filter to remove the doubled input frequency completes the phase detector.
The phase detector shown in Fig. 8 - a dou-ble-balanced mixer - was designed more than forty years ago and has been in use ever since. Transformers T_{I} and T_{2} determine the impedance match.
This type of PD is now giving way to solidstate IC DBMs, of which the Siemens S042P shown in Fig. 9 is a typical representative, working in the frequency range $0-200 \mathrm{MHz}$ and having symmetrical inputs and outputs. Its

chief merit in comparison with the mixer of Fig. 8 is the balance facility to reduce breakthrough from input to output.

A logical exclusive-Or is a "digital analogue" of a double balanced mixer, a phase detector working in this way being shown in Fig. 10. The circuit works as an overloaded DBM with pulsed input signals and does not accept sinusoidal input, unlike the analogue variety.

All three types of PD shown above are "real" phase detectors; they do not work well when input frequencies are off tune by more than $10-20 \%$, which is why search systems were sometimes used in PLLs when there was considerable initial discrepancy between input and reference signals. The invention of fre-quency-phase detectors (FPD) made such search systems unnecessary. Figure 11 shows a TTL FPD, but cmos or ECL versions are
also made. The device works in the unlocked condition of the PLL as a frequency detector and in the locked state as a PD. Its main drawback is its sensitivity to input phase jitter, whereas a PD using the X-or circuit or the DBM works perfectly with a jitter up to $\pm 45^{\circ}$, which is why edge-sensing FPDs are used almost exclusively in frequency synthesizers with noise-free inputs. The cmos IC 4046 is commonly used; it contains a VCO and two

Phase-locked loop principles

A11 configurations of the practical phaselocked loop are describable by the typical block diagram of Fig. 1. Three of the blocks are to be found in all PLLs: the phase detector (PD), the loop filter (LF) and the voltage-controlled oscillator (VCO); elements sometimes absent are the frequency dividers (FD). In digital PLLs in which there is no evident VCO and LF, for example the $S N 74 L S 297$, one can single out the elements having the relevant transfer functions, but working in a digital or pulse regime. Analysis of a classical analogue PLL is therefore a good grounding for the analysis of a fully digital type.
To make a mathematical model of the system shown in Fig. I, first define transfer functions for each block and, since the system is primarily phase-centred, define them as functions of phase, in the s-plane to make life simpler:

input signal:	$\omega_{i n} \ldots$ input frequency;
	$\Phi_{i n} \ldots$ input phase;
frequency divider by $\mathrm{M}:$	$1 / \mathrm{M} ;$
frequency divider by $N:$	$1 / \mathrm{N} ;$
phase detector:	$K_{d}(s) ;$
loop filter:	$\mathrm{F}(s) ;$
voltage - controlled oscillator:	$K_{\text {vco }}(s)=K_{\text {tco }} / s ;$
output signal	$\omega_{\text {out }}-$ - output frequency;
	$\Phi_{\text {out }}-$ output phase

For simplicity, assume the regulating system to be linear and the system to be in a steady state. Using the expressions in Fig.I, derive input/output transforms for the blocks, starting with the phase detector. Since the frequency dividers not only divide in frequency, but decrease the input phase deviation N or M times, put down an expression for the voltage $\mathrm{V}_{\mathrm{pd}}(\mathrm{s})$ at the PD output.

$$
\begin{equation*}
V_{p d}(s)=K_{d}\left(\Phi_{i n}(s) / M-\Phi_{o u t}(s) / N\right) \tag{1}
\end{equation*}
$$

where $K_{d}\left(=K_{d}(s)\right)$ is the PD's transmission gain in volts/angle (it is usual to define K_{d} in terms of volts/radian, a radian being degrees $/ 2 \pi$). Signal now goes to the LF, whose main purpose is to form the transfer function and to filter HF components from the PD output. Voltage at the LF output is

$$
\begin{align*}
V_{\text {If }}(s) & =V_{\text {pd }}(s) F(s) \\
& =K_{d} F(s)\left(\Phi_{i n}(s) / M-\Phi_{i n}(s) / N\right) \tag{2}
\end{align*}
$$

This goes to the control input of the VCO, which has a transmission gain defined in units of radians/(second volts), i.e. the VCO output signal has the unit of frequency while we are analysing the phase-locked-loop. Phase Φ and frequency ω are related by the classical ratio $\omega=\mathrm{d} \Phi / \mathrm{dt}$, or in

Fig. II. Loop filter for second-order PLL.

Fig. III. Phase errors in response to stepped change of input phase (a) and frequency (b) for varying values of x.
phase detectors: one exclusive-Or type and an edge-sensing FPD. Frequency range is 0 1 MHz . Fast cmos extends frequency range to tens of MHz .
The PD in Fig. 12 is widely used in frequency synthesizers with very low output phase noise. In principle, this is just a sample-and-hold device in the form of an analogue switch, storage capacitor and high-impedance buffer. This circuit is indispensable when
switching noise at the output must be avoided; the S / H device copes well with this task, suppressing pulse noise by $46-60 \mathrm{~dB}$ even without a filter. Tandem connection of two such devices, with the small penalty of the need to arrange the control signals, allows a noise reduction of $80-90 \mathrm{~dB}$.

Loop filters

PLL theory shows that dynamic response is
determined by the filter between PD and VCO. Three types of loop filter are commonly used, their circuit diagram and frequency characteristics being shown in Fig. 13. It is much easier to optimise such parameters as dynamic error in transient processes in PLL systems with a lag-lead filter than with a lag filter. For maximum pulse suppression, the Cauer filter can be used with its trough corresponding to the comparison frequency.
the complex frequency (s) domain $\omega=\boldsymbol{s} \Phi$. For the phase of the VCO output signal, write down the
VCO transfer function $K_{v c o}(s)$ in the complex-
frequency domain:
$K_{\text {wo }}(s)=K_{\text {wo }} / s$
PLL output signal phase $\Phi_{\text {out }}(s)$ is given by
$\Phi_{\text {serf }}(s)=V_{V}(s) K_{\text {coo }} / s$,
or
$\Phi_{\text {owe }}(s)=\left(K_{d} K_{\text {wo }} F(s)\left(\Phi_{i s}(s) / M-\Phi_{\text {out }}(s) / N\right)\right) / s$.
Substiuting $\Phi_{\text {erm }}(s)$ for $\left(\Phi_{m}(s) / M-\Phi_{o u}(s) / N\right)$, the phase error between PLL input and output signals, then
$\Phi_{\text {ow }}(\mathrm{s})=K_{d} K_{v o} F(\mathrm{~s}) \Phi_{\text {cre }}(\mathrm{s}) / \mathrm{s}$.
Since the PLL transfer function $T_{P L}$ is
$\Phi_{\text {our }}(\mathrm{s}) / \Phi_{\text {in }}(\mathrm{s})$.
(7)
substituting (5) into (7) and omitting intermediate
calculations. the expression for $T_{P L}$ becomes

Conclusions

- According to (3), there is an integrator ($1 / s$) in the PLL that, in accordance with the theory of automatic control, results in zero error for the integrated parameter in the steady state. In this case, the parameter is the VCO frequency, which is why there is no frequency error between the signals at the PD inputs in the steady state; if there are no frequency dividers in the PLL, then $\omega_{i n}=$ $\omega_{\text {out }}$.
- There may be a phase error at the PD, decreasing when K_{d} is increasing.
- If the PD and VCO have no "inertia", the dynamic PLL response will be determined by the LF parameters and the coefficients M and N (the dividers work as a delay line). The dynamic responses, in this case, are speed of lock and tracking errors during transient processes caused by the input signal changing. Note that the presence of the inertial loop filter or the frequency dividers in the PLL slows down the loop reaction, which increases the duration of the transient processes. Therefore, one should avoid using large divider ratios in the PLL. Natural frequency ω n and damping factor ξ depend on the order of the filter, the second-order type shown in Fig. II being preferred. Figure III shows phase-error dependence for different values of the damping factor - (a) with stepped change of input phase and (b) with stepped change of input frequency. The error in Fig. III is expressed in percentage of the phase of $\Phi_{\text {our }}(s)$ - the VCO output signal in the steady state.

Equations already given determine the static response: steady-state frequency error in the PLL is zero (3); steady-state phase error is determined from (9).

- Figure III shows that, if damping factor ξ is less
than 0.707 , transient processes are oscillating and if more than 0.707 , transient processes are aperiodic, the PLL natural frequency ω exerting a direct influence on their duration.

It is not possible to point to a "right" solution for these values, since PLL characteristics depend on the application. For example, in a frequency modulator with carrier frequency stabilisation, the PLL must not respond to the lowest modulation frequency (in high-quality broadcasting about 30 Hz), so the LF is a low-pass filter with its cutoff frequency at about $2-5 \mathrm{~Hz}$, causing longduration transients.

On the other hand, the oscillating transients are extremely undesirable when a PLL is controlling motor speed, synchronising two videotape recorders, for example, and in this case one chooses ξ to provide aperiodic transient processes. - A PLL will reduce noise and disturbances in the VCO output only if their frequency lies within the noise bandwidth, this being $0.625 \xi \omega_{n}$ for a second-order filter.

Applications

Figure IV is the block diagram of a frequency divider based on a PLL but with additional elements: a mixer and a multiplier - the formulae give the functions of the separate blocks. This PLL is useful for measurement of SHF (over 10 GHz) signal source frequency (output 2 is used) and for frequency demodulation using output 1 . The purpose of the PLL in Fig. V is exactly the opposite: this is a frequency multiplier, having a frequency divider in the feedback loop to make the output frequency higher than the input frequency. In other words, the circuit is that of a frequency synthesizer.

Fig. IV. PLL in use as a frequency divider.

If PLL is locked, then ω out $=n \omega$ in
Fig. V. PLL frequency multiplier. At lock, output frequency is \boldsymbol{n} times input.

R163613223

Fig. 11. Phase and frequency detector in TTL.
The time diagram explains operation of a frequency-phase detector. When $Q_{1}=1$ and \bar{Q}_{2} (the inverted output of the trigger) =1 the capacitor is charging; when $Q_{2}=0$ the capcitor is discharging. The diagram shows the signals when the signal at input 1 passes ahead of the input 2 signal - and vice versa. The device works on the input pulse front. Duty cycle of the input signal is of no importance.

Fig. 12. Phase detection by sample-and-hold, providing good noise performance on both analogue and digital inputs. Capacitor must be a low-leakage type.

Below Fig. 13. Three types of filter used as loop filters in PLLs. Cauer type works well, but needs a coil.

Fig. 15. SO42P used as a mixer up to 200 MHz . Input frequency is rejected by 30 dB on the mixed output level.

Fig. 16. Mixer based on a dual-gate fet. Both inputs may be wideband if required.

Fig. 17. Diode mixer for up to 2 GHz input. Tuned amplifier reduces input-to-output signal feedthrough.

The only problem is the coil - not an attractive idea in microelectronic circuitry - so the compromise of a twin-T filter used after a lag-lead type is often used, as seen in Fig. 14. The twin-T is notable for the steepness of its trough, giving up to $46-53 \mathrm{~dB}$ rejection when 2% components are in use - enough, in most cases.
However, a twin-T can lead to objectionable effects, because of its phase performance: an increase of dynamic error in transient processing and an increase in loop locking time. It is always advisable to analyse the system dynamic response before using the filter in a PLL. In many cases, designers use an op-amp
lag-lead filter with $R_{2} \mathrm{C}$ in the feedback loop, which is the same as including an integrator in a PLL to improve dynamic characteristics. But the author always regards with caution the inclusion of active elements between PD and VCO, which is effectively imposing a noise source in the most noise-sensitive place in the PLL. If an op-amp is absolutely necessary, it should always be a low-noise type.

Mixers

The purpose of a mixer is to transfer the spectrum up or down in frequency. Theoretically, any non-linear device, with a filter on the output to select a given frequency, can be a
mixer; circuits shown in Figs 8 and 9 function as mixers when provided with filters. A DBM has an advantage over other types in that it can suppress input signals in the output spectrum by up to 60 dB at frequencies to 30 MHz and by up to 30 dB at $400-1000 \mathrm{MHz}$. Symmetrical inputs and outputs improve the suppression of input signals and sometimes simplifies matching of the mixer with signal sources.
Figure 15 shows a basic circuit using a S042P as a broadband DBM, in which transformers T_{1} and T_{2} determine the working frequency. At low frequencies where transformers are inconvenient, it is possible to use asymmetrical inputs as in Fig. 9.

In many cases it is convenient to use a dualgate mosfet as a mixer, as shown in Fig. 16, often using a lower-level signal on gate 1 because of its steeper characteristic. A resistive voltage divider in gate 2 and the source resistor set a working point, which must be optimized to obtain maximum conversion gain. Input 2 is shown as narrow-band but it can be wide-band as at input 1.
Diode mixers with high conversion gain are often used at UHF/SHF. A fet or mosfet used as a tuned amplifier on the output of such a mixer avoids loading the mixer diode and attenuates input breakthrough to the output, since the transistor amplifies at a lowish IF. In the circuit diagram in Fig. 17, a tuned circuit is included in the drain of the fet. This circuit is good for frequencies up to about 2.5 GHz ; at higher frequencies, microwave versions of the circuit are feasible.

Crystal oscillators

The crystal VCO shown earlier is quite good enough for use as a base oscillator or comparison frequency generator. Figure 18 shows such an oscillator with a crystal working on the fifth harmonic (compare the circuit diagram in Fig. 7 with this one). The collector circuit is tuned to $48 \times 5=240 \mathrm{MHz}$; transistor $T r_{I}$ works simultaneously as a crystal oscillator and a frequency multiplier by a factor of 5 . A narrow-band output filter with one or two 240 MHz sections will suppress unwanted harmonics, but must be shielded from the rest of the circuit.
Figure 19 shows a simple circuit that I have used many times at frequencies from 500 kHz to 22 MHz ; the loose capacitive coupling between the crystal and the buffer ensures high stability.
Crystal oscillators rarely produce a signal exactly the same as that specified by the manufacturer; there are manufacturing tolerances and circuit strays to take into account. For this
reason, most circuits include a means of frequency trimming, either inductive or capacitive. Temperature control is essential for extreme accuracy of the order of 0.5 to 0.05 parts per million; without it, 1 ppm is about the best obtainable.

Continued next month...

A PLL can acquire and track an input signal only if it remains within upper and lower frequency limits of the VCO. The expression "track" is relative. Where the frequency of the input signal varies rapidly ie faster than the time constant of the loop filter but within the capture range of the VCO, the result is frequency modulation of the output signal. This implies instantaneous phase excursions between input and output signals of more than 360°.

Where input signal excursions occur more slowly than the loop filter roll-off point and within the lock range, then phase modulation results $\left(<360^{\circ}\right)$.
The graph shows the progress of signal capture. At point t_{1}, the VCO output frequency begins to fall to meet the input frequency to the loop. After a period of overshoot between t_{1} and t_{2} (determined) by the loop damping factor, the system acquires lock and the signals track each other to t_{3} where the upper lock limit is reached. The output frequency then falls to its freerunning value at t_{4} after some overshoot. It holds this value until t_{5} where the input signal returns to within the lock range. The system maintains lock from t_{6} to t_{7} until the input signal goes outside the lower lock range causing the VCO output to return to its free-running value.

COMPUTER ICS
P8271 BBC DISC CONTHOLLER CHIP EX EOPT SAA5050 TELETEXT CHIP EX EQPT.
$2817 \mathrm{~A}-20$ (2K $\times 8$) EEPROM ex eqpt.
. 81.25
 27 S191 PROM $100+81$
$\cdots+22$
$-\quad 22$ IMS1400P-45 BOC31 MICRO P8749H MICRO D8751-8 NEW ….. 10 NEW 4164 -15 USED 41256-15 USED 4164-15 BBC VIDEO ULA 6845 CRT
AY3-1015D UART
$9 \times 41256-15$ SIMM
8×4164 SIP
2864 EPROM
-......................... £З 27128A 250ns EPROM USEO ... 86 FLOPPY DISC CONTROLLERCHIPS 1771 .. $£ 17.50$
FLOPPY DISC CONTROLLER CHIPS 1772 FLOPPY DISC CONTROLLER CHIPS 1772 .. 86 HD6384-8 ...
ALL USED EPROMS ERASED AND BL
CAN BE PROGRAMMED IF DESIRED

 1702 EPROM EX EQPT 2114 EX EQPT 50p 4116 EX EQPT
GR281 NON VOLATILE RAM EQUIV 6116 \qquad
TMS27PC 128-25 ONE SHOT 27 C128 £1 ев 100/£70
80387-16 CO-PROCESSOR (OK WITH 25MHZ 386) £40 $71263^{1 ⁄ 2} 2$ DIGIT LCD DRIVER CHIP
2816A-30 HOUSE MARKED

REGULATORS

LM338K
78H12ASC 12V 5A...
78M05 5V 0.5A ...
M M317T PLASTIC
C TO220 variable
7812 METAL 12V1A
 $7905 / 12 / 15 / 24$ plastic ….........................25p 25p 100+20p $1000+15 p$

CRYSTAL OSCILLATORS
1MO00 1M8432 4M000 10M000 16M000 18M432000 19M0500 20M0500 38M10000 56M6092 £1.50 each CRYSTALS
1M0 1M8432 2M000 2M304 2M4576 2M77 3M00 3M2768 3M579545 3M58564 3M93216 4M000 4M19304 4M433619 4M608 4M9152 5M000 5M0688 6M0000 6M400 8M000 8M488 9 M 8304 10M240 10M 245 10M70000 $11 \mathrm{MO} 00 \mathrm{I}^{2 \mathrm{M}} 000$ 13M000 13M270 14M000 14M381818 15M000 16MO00 16M5888 17M000 20M000 21M300 21M855 22M1 184 24M000 34M368 36 M 8187536 M 8312536 M 84375 38M 90049 M 50454 M 19166 54 M7416 57M75833 60M000 69M545 69M550

TRANSISTORS

BC107 BCY70 PREFORMED LEADS

BC308B
POWER TRANSISTORS
P POWER FET IRF9531 8A 60V
… + 3/£1 2SC1520 sim BF259 ...2/1 $100 / 22$ TIP $141 / 2$ £1 1 ea
TIP35B/TIP35C
SE9301 100V 1DA DARL SIM TIP121 PLASTIC 3055 OR 2955 equiv 50p 2 N 3773 N
2N3055H

TEXTOOL ZIF SOCKETS
28 WAY ZIF EX NEW EQUIPMENT
SINGLE IN LINE 32 WAY CAN BE GANGED FOR USE WITH ANY DUAL IN LINE DEVICES . . . COUPLING SUPPLIED

CAPACITORS COMPUTER GRADE
$24,000 \mu$ F 50 V
$10,000 \mu \mathrm{~F}$ 100V SPRAGUE/PHILIPS
$E 3(81.30)$
QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPEM312........... £1 ea HOLDERS 60 p ea NEW BITS
100 nF 63 V X 7 R PHILIPS SURFACE MOUNT 30K available

MISCELLANEOUS

ETHERNET 4 PAIR TRANSCEIVER CABLE. BELDEN TYPE SIM RS 361-018 Each palr foill screened + overall braided screen .. £300 for 305 metre drum + plus PVC outer sheath. ON 305 metre drums
$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ X2 AC RATED PHILIPS 60K
AVAILABLE... 100
22OR 2.5W WIREWOUND RESISTOR 60KAVAILABLE E20/100
KEYTRONICS
TEL. 0279-505543
FAX. 0279-757656
P O B0X 634
BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX

CMOS 555 TIMERS 20k available 2/乏1 £30/10 ICM7126CPL CMOS $31 / 2$ DIGIT LCD DRIVER CHIP......... 2ea 'SAFEBLOCKS' MADE BY RENDAR . . . MAINS 'RAT TRAP' 36 CO 36 CORE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREENED £50/100m PASSIVE INFRA RED SENSOR CHIP + MIRAOR + CIRCUIT E2 each
EUROCARD 21-SLOT BACK PLANE 96,90-WAY 225 ea "PROTONIC 24 VARIBUS" $16.7^{\prime \prime} \times 5^{\prime \prime}$ FIBREGLASS
MULTILAYER PRH PCB
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
£10 ea
"PROTONIC 24" c/w 2 SUPPORT ARMS/EJECTORS.
DIN 41612 96-WAY A/B/C SOCKET PCB RIGHT ANGLE $\mathbf{1 1 . 3 0}$ DIN 41612 96-WAY A/B/C SOCKET WIRE WRAP PINS $£ 1.30$ DIN 41612 64-WAY AC SOCKE WIRE WRAP PIN DIN 41612 64-WAY A/B SOCKET WIRE WRAP (2-ROW BOD BT PLUG +LEAD
13A MOULDED PLUG + 2 m lead
MIN. TOGGLE SWITCH 1 POLE c/oPCB type
LCD MODULE sim. LMO Pur needs 150 to 250 V AC for di...5/s 1
50 V AC for display TL431 2.5 to 36 V TO92 ADJ. SHUNT REG
6 -32 UNC $5 / 16$ POZ PAN SCREWS
NUTS
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS
25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS
STICKON................................ INMAC LIST PRICE $£ 30$
STICK ON CABINET FEET RS NO 543-327 30/£1
LCD DISPLAY sim Hitachi LM016L.
AMERICAN $2 / 3$ PIN CHASSIS SOCK
WIRE ENDED FUSES 0.25A
NEW ULTRASONIC TRANSDUCERS 32 kHz 1
Also avallable 28 slot vari-bus backplane same size +
Price...
3Y255 1300V 3
6A 100 V SIMILAR MR751
1A 600 V BRIDGE RECTIFIER
6A 100V BRIDGE
8A 200 V BRIDGE
10A 200V BRIDGE
25A 200 V BRIDGE E2
25A 400V BRIDGE E2.50
2KBP02 IN LINE 2A 200V BRIDGE REC $8 / \mathrm{E} / \mathrm{E}$

SCRS

PULSE TRANSFORMERS 1:1+1 $£ 1.25$
2P4M EQUIV C106D .../8 $100 / \varepsilon 15$ MEU21 PROG. UNIJUNCTION … ... $3 / \Sigma 1$

TRIACS

DIACS $4 / \Sigma 1$
NEC TRIAC ACO8F 8A 600V TO220 :................... 5/E2 100/E30
BTA 08-400 ISO TAB 400 V 5 mA GATE
2/21 100/235
TRAL 2230 D 30A 400 V ISOL ATED STUD
TRIAC 1 A 800 V TLC 381 T 16 k AVAILABLE
5 FOR \&1 £15/100

CONNECTORS

D25 IDC SOCKET FUJITSU

34-way card edge IDCCONNECTOR (disk drive type) CENTRONICS 36 WAY IDC PLUG $£ 2.50$ CENTRONICS 36 WAY IDC SKT. BEC TO CENTRONICS PRINTER LEAD 1.5M
CENTRONICS 36 WAY PLUG SOLDER TYPE
 84.00

PHOTO DEVICES

HI BRIGHTNESS LEDS CQX24 RED
SLOTTED OPTO-SWITCH OPCOA OPB815 2N5777.
TIL81 PHOTO TRANSISTOR
TLL38 INFRA RED LED
4N25, OP12252 OPTO ISOLATOR
MEL12 (PHOTO DARLINGTON BASE r/c)
..........
$\begin{array}{r}\text { E....... } 51 \\ -\quad 50 p \\ \hline\end{array}$
POWERFUL SMALL CYLINDRICAL MAGNETS .
MEL12 (PHOTODARLINGTON BASE nc)
LED's RED 3 or 5 mm 12 11 ... 100/E6
LED's GREEN OR YELLOW 10 21 100/E6 FLASHING RED OR GREEN LED 5 mm 50p 100/E40 995.

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K. G24 20K, G54 50K, G25 200 K RES $20^{\circ} \mathrm{C}$ DIRECTLY FS22BWNTC BEAD INSIDE END OF 1 GLASS PROBE RES A13 DIRECTLY HEATED BEAD THERMISTOR 1 k res. ideal for audio Wien Bridge Oscillator

CERMET MULTI TURN PRESETS $3 / 4 "$

10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K IC SOCKETS
 32-WAY TURNED PIN SKTS. 7 k available 3 for $£ 1$
SIMM SOCKET FOR 2×30-way SIMMS

SOLID STATE RELAYS
40A 250 V AC SOLID STATE RELAYS 810
POLYESTER/POLYCARE CAPS
330NF 10\% 250V AC X2 RATED PHILIPS TYPE 330 60K AVAILABLE ... $20 / 100$

 100 n 250 V radial 10 mm 100/56 (E1)

 $1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC $1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm} .1 \mu 022 \mathrm{~mm}$ 60 aa
$100 / 26$

RF BITS

XTAL FILTERS 21M4 55MO .. 2 ea
ALL TRIMMERS .. 3 for 50p
TRIMMERS larger type GREY 2-25pF YELOW 5-65p
VIOLET ... 5-105p
TRANSISTORS 2N4427, 2N3866, 2N5109........................ 80 . 80 p

SL610 74 MOTOROLA CELLULAR CAR PHONE O/P
 (BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL.....
P2N2222A PLASTIC
PLESSEYICS EX-STOCK
SL350G SL360G SL362C SL403D SL423A
SL521B SL523C SL541B SL850C SL1021A
SL521B SL523C SL541B SL850C SL1021A
MONOLITHIC CERAMIC CAPACITORS

10 n 50 V 2.5 mm	100/84.50
100 n 50 V 2.5 mm or 5 mm	.. 100/26
100 n ax short leads	100/E3
100 n ax long leads	100/E5
100 n 50 V dil package 0.3" rad	100/88
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$	£6/100

SLICK system simulation on the PC

System

 requirements
386 or 486 PC

2Mbyte of extended ram 1 Mbyte of hard disc space
Mouse
Windows 3

Fig. 1. There is a large variety of blocks to choose from, and each heading in the blocks drop-down menu leads to further choices.

VisSim by Visual Solutions MA, is a system simulation package that can be used not only for electronic engineering but also to great effect in simulating small scale industrial plants, biological processes and mechanical systems. Engineers who feel more comfortable in the analogue world might also feel at home with the it as VisSim seems to simulate analogue problems with greater ease than discrete digital systems.
The package itself is graphics intensive - working under Windows 3 - and includes dynamic data exchange (DDE) to enable the user to pass data between concurrent applications.
In the VisSim environment, each system component is represented as an icon (or block), accessed either from the dropdown menu or from one of the standard libraries. Blocks are wired together using the mouse - all in all quite a neat design.
There is a large variety of blocks to choose from, and each heading in the blocks drop-down menu leads to further choices (Fig. 1). Design structure is hierarchical, and blocks in a design may represent other sub-systems made up of other blocks, which in turn can represent further sub-systems. Structures are achieved with relative ease - provided the

The power packed into today's 386 s and 486 s means that system simulation is now possible on the PC. Allen Brown wires up VisSim.

inputs and outputs of each hierarchical level are defined. Custom blocks can be stored to disk, then integrated into the current design when requried.
A model of a Lorenz Attractor, a fashionable feature of Chaos theory, can be used to illustrate the feature (Fig. 2). By clicking the right hand button of the mouse on the Lorenz block, Fig. 3 appears, showing how the Lorenz equations can be implemented from standard VisSim blocks. Also shown in Fig. 2 is a characteristic plot of the results of the simulation. Again the plot feature is treated as a block with its respective inputs shown on the left hand side. Most blocks have control parameters, accessed by mouse clicking.

Transfer functions

In the design of any analogue control systems, transfer functions (TFs) are all important. VisSim can implement TFs but its method is somewhat unconventional. TFs are designed by stringing together integrators ($1 / \mathrm{S}$ blocks) with gain blocks. Figure 4 shows how a first order TF is designed and there is the nagging feeling that the method is a bit cumbersome. To add to the problem the explanation given in the user's manual is inadequate, and is not helped by sloppy use of mathematical notation which mixes Laplace s within the same equations. Far more comfortable ways of generating TFs exist, such as entering the coefficients directly.
Much emphasis in the package is on use of integrators, and in fact six algorithms can be chosen to perform the integration process ranging from the humble Euler method to the "Bulirsh-Stoer with Richardson extrapolation". Each algorithm improves with accuracy (and therefore stability) with an increase in computational load - though a speed penalty may not even be noticeable on a 486 PC. But it does sometimes have to be taken into account, such as when VisSim is

Manual

VisSim's gradual learning curve means that a working proficiency can be gained in a relatively short time. Familiarity is eased by the information supplied in the Help file, and the Help tutorial also provides useful hints on the operating scheme.

Learning is also aided by the Getting Started chapter in the user's manual which enables the new user to gain a confident working knowledge. There is even a chapter given over to mouse technique, and from this point of view the manual is certainly very user friendly. This is clearly demonstrated when wiring icons (blocks) together which is accomplished with total ease by a feature not found on all software packages which use icons for system design.
Overall, the user's manual is very readable, reflecting time and thought put into its layout.

Getting Started is supplemented with lots of useful diagrams, and each of the blocks is discussed in some detail.

The Manual is informative without being overcrammed with too much technical detail.
used in a real-time application. A user must have near total confidence in stability of a control algorithms.

Differential equations

VisSim has an interesting approach to solving differential equations. Based on the assumption that numerical integration is more stable than differentiation, each diferential equation is converted into a type of integral sequence.
Figure 5 demonstrates this, using simulation of a simple harmonic oscillator with damping whose equation of motion is

$$
\mathrm{x}^{\prime \prime}(\mathrm{t})=-1 / M\{-\mathrm{Kx}-\mathrm{Bx}(\mathrm{t})\}
$$

On the left of Fig. 5 can be seen the second derivative x '"(t) followed by an integrator ($1 / S$) to give $x^{\prime}(t)$, followed by the second integrator to produce $x(t)$. So the equation is implemented schematically, and is quite an impressive feature of VisSim, proving to be very useful especially in solving nonlinear differential equations. Not only can the solution be plotted in time but phase plots can also be generated with relative ease.

Library features

One of the attractive features of VisSim is the number of sample application files supplied. Samples are particularly useful to the first time user who is finding out the package's capabilities. Not only can the user browse through the varied selection of sample applications, but there is a set of additional libraries each containing ready-designed compound blocks. Six compound block libraries span:

- Controls - analogue and digital simulation blocks such as PID controllers;
- A signal generator - simulating a variety of waveforms;

Tools - a selection of calculation routines, such as average estimator, phase difference and RMS;
Tutsim - a choice of functions used in Z domain anlysis; analogue filters (Butterworth and Chebychev filter designs), and
Electro mechanical - A-to-Ds, three phase motor models and armature controlled DC motors.
The compound blocks can prove quite valuable, and once a user becomes familiar with what's available, they can be integrated into system design as and when they are needed.

Fig. 2. A model of a Lorenz Attractor used to illustrate VisSim's features.

Add-on (essentials?)

Irritatingly, a nalyser options from the menu command bar can only be used by purchasing the extra VisSim/Analyze package. The analyser option contains the tools required for frequency analysis and state space modelling (Boyd and Root Locus). Surely no engineer concerned with the stability of dynamic systems would consider these as optional extras.
The functions are essential and should not be marketed as separate add-ons. Some information about the Analyser is given in Help. But not even to mention it in the user's manual is quite an oversight.

VisSim can also be used real-time, when the appropriate expansion cards are inserted in the PC. This is now a standard feature with most software packages which perform data acquisition and processing operation. But with VisSim, the real-time feature requires an another optional extra (VisSim/RT).

Fig. 3. The screen result of clicking the right hand button of the mouse on the Lorenz block, showing how the Lorenz equations can be implemented from standard VisSim blocks.

Fig. 4. VisSim has an unusual way of implementing transfer functions and its method is somewhat unconventional.

Fig. 5. Based on the assumption that numerical integration is mone stable than differentiation, each diferential equation is converted into a type of integral sequence. On the left can be seen the second derivative $x^{\prime \prime}(t)$ followed by an integrator ($1 / \mathrm{S}$) to give $x^{\prime}(t)$, followed by the second integrator to produce x(t).

It would be useful to see these libraries updated by the manufacturer as more compound blocks become available from other users. VisSim will make a useful addition to a working suite of software design tools. It is well designed and remains stable (I have not experienced it falling over). Only two aspects of the package seem a little unattractive: the method of implementing transfer functions, and the lack of frequency analysis features - unless the add-on module is bought.

The transfer function aspect could be a matter of personal taste. But the analysis situation should be remedied with the issue of the VisSim/Analyze as standard, not as an extra.

These reservations apart, VisSim is undoubtedly a valuable design asset.

Supplier Details

Adept Scientific, 6 Business Centre West, Avenue One, Letchworth,
Herts. SG6 2HB. 0462 480055. Cost
Personal version, $£ 495$ (limited to 255 blocks), Full version $£ 1595$ plus VAT. Analyse option for personal version $£ 295$, for full version $£ 695$.

PROMulator

ROM Emulator Fast Flexible from only 2
\checkmark Emulates up to $4 \quad \checkmark$ Emulates 24, 28, 32, 1 Mblt EPROMs 40 and 42 pin devices via one standard printer port
\int Full screen editor
/ Other models avaliable up to 8 Megablts and with bl-directional communicatlons
\checkmark Accepts Intel Hex, Motorols S-Records and Binary flles

CALL FOR FULL DATA SHEET

Tel: 081.441 3890
Fax: 081-441 1843
()
CIRCLE NO. 111 ON REPLY CARD

Low cost dafa acquisition for IBM PCs \& compatibles

An end to spurious oscillations

> Oscillations are rife in analogue circuit design. Robert Pease looks at some of the ways in which problems can be solved. Serialised from his book Troubleshooting Analog Circuits

Oscillations are the ubiquitous bugaboos of analogue circuit design. Not only can you encounter oscillating op amps, as described last month, but also oscillating transistors, switching regulators, optoisolators, comparators, and buffers. If you think about it, latched-up circuits are just the opposite of oscillating ones, so I have included them here, too.
Although I obviously cannot tell how to solve every kind of oscillation problem, I will give some general principles and then notes on what can go wrong with various components, including comparators and buffers. This information, along with a few suggested procedures and recommended instruments, will provide a good start. Here are some of the types of oscillations that can pop up unexpectedly: - Oscillations at very high frequencies - hundreds of megahertz - because of a single oscillating transistor;

- Oscillations at dozens of megahertz arising from stray feedback around a comparator;
- Oscillations at hundreds of kilohertz because of an improperly damped op amp loop, an unhappy linear voltage-regulator IC, or inadequately bypassed power supplies.
- Moderate-frequency oscillations of a switching-regulator loop because of improper loop damping.
- Oscillations at " 50 Hz " or at " 100 Hz ," or similar line-related frequencies.
- Low-frequency oscillations coming from physical delays in electromechanical or thermal servo loops.

As these general descriptions indicate, the frequency of an oscillation is a good clue as to its source. An electric motor loop can't oscillate at 10 MHz , and a single transistor can't (normally) rattle at 100 Hz . So when an engineer complains of an oscillation, the first question is: "at what frequency?"

Even though the frequency is often a good
clue, engineers often fail even to notice what the frequency was. This omission tends to make troubleshooting by phone a challenge.
At very high frequencies, $20-1000 \mathrm{MHz}$, the layout of a circuit greatly affects the possibility of oscillation. One troubleshooting technique is to slide a finger around the circuit and see if at any point an oscillation improves or worsens. Remember, knowing how to make an oscillation stronger is not worthless knowledge - that information can provide clues about how to make the oscillation disappear.
I remember being very impressed when a colleague showed me that some of the earliest IC amplifiers had a tendency to self-oscillate at 98 MHz with certain levels of output voltage. Putting a grid-dip oscillator nearby caused increases or decreases in the problem, when its frequency was near 98 MHz . At that time I didn't have a 100 MHz scope, but I could see the rectified envelope of these high frequency oscillations on a 25 MHz scope.
So, if you see a circuit shift its DC level just because you move your finger near a transistor, you should become suspicious of high-frequency oscillations. Of course, you would never "slide your finger around" in a circuit with high or lethal voltages...
One of the easiest ways to inadvertently cause a very high frequency oscillation is to run an emitter-follower transistor (even a nice, docile type such as a 2 N3904) at an emitter current of 5 or 10 mA with the base grounded to RF. In such a case, you could easily get an oscillation at a few hundred megahertz.
Although a good 100 MHz scope cannot spot this kind of oscillation, the resulting radiated noise can make other circuits to go berserk and can cause an entire system to fail tests for radiated electromagnetic noise. For example, when the first personal computers were being designed, designers needed a reset function for their processor.

Fig. 1.This was a popular circuit for the reset function until engineers discovered how badly it oscillated.

Several designers decided (quite independently) to use the simplest, cheapest possible reset circuit, as shown in Fig. 1. When they had finished their designs they sent the prototype computers to be approved by the FCC; the designs all failed badly. Why? Because the little transistor would run at over 10 mA and, with a bypass capacitor at its base, the transistor would oscillate at a very high frequency.
The frequency was so high that none of the designers had noticed it, but as the transistor sprayed around a lot of RF energy up at a couple of hundred megahertz, the FCC examiners noticed it, causing the computers to fail the tests for radiated RFI. They all had to go back and fix it.
For such an emitter follower, a 50 or 100Ω carbon resistor directly in series with the base of the transistor (and not a couple of inches
away) can cure this tendency to oscillate. Sometimes a small ferrite bead is more suitable than a resistor because it will degrade the transistor's frequency response less.

Oscillations crop up

Not all problematic oscillations are high-frequency ones. An unstable switching regulator feedback loop can oscillate at low frequencies. For troubleshooting switching-regulator feedback loops, I first recommend a network analyzer to save troubleshooting time.
Optoisolators in switching regulators are another possible cause of oscillation trouble due to their wide range of DC gain and AC response. A switching-regulator IC, on the other hand, is not as likely to cause oscillations, because its response would normally be faster than the loop's frequency.
However, the IC is never absolved until proven blameless. For this reason, you should have an extra module with sockets installed just for evaluating these funny little problems with differing suppliers, variant device types, and marginal ICs. You might think that the sockets' stray capacitances and inductances would do more harm than good, but in practice, you can learn more than you lose.
The design of a slow servo mechanism, such as that in Fig. 2, can best be analysed with a strip-chart recorder because the response of the loop is so slow. (A storage scope might be OK, but a strip-chart recorder works better for me.) You might wish to analyze such a servo loop with a computer simulation, such as Spice, but the thermal response from the heater to the temperature sensor is
strictly a function of the mechanical and thermal mounting of those components. This relationship would hardly be amenable to computer modelling or analysis.

Comparators can misbehave

Saying that a comparator is just an op amp with all the damping capacitors left out is an over simplification. Comparators have a lot of voltage gain and quite a bit of phase shift at high frequencies; hence, oscillation is always a possibility. In fact, most comparator problems involve oscillation.
Slow comparators, such as the familiar LM339, are fairly well behaved. If you design a PC-board layout so that the comparator's outputs and all other large, fast, noisy signals are kept away from the comparator's inputs, you can often get a good clean output without oscillation. However, even at slow speeds, an LM339 can oscillate if you impress a slowly shifting voltage ramp on its differential inputs. Things can get even messier if the input signals' sources have a high impedance ($>10 \mathrm{k} \Omega$) or if the PC-board layout doesn't provide guarding.
In general, then, for every comparator application, you should provide a little hysteresis, or positive feedback, from the output back to the positive input. How much? I like to provide about two or three times as much hysteresis as the minimum amount it takes to prevent oscillation near the comparator's zero-crossing threshold. This excess amount of feedback defines a safety margin.
My suggestion for excess hysteresis is only a rule of thumb. Depending on your applica-

Fig. 3. This zero-crossing detector has no DC hysteresis but 50 mV of AC-coupled hysteresis.
tion, you might want to use even more hysteresis. For example, a comparator in an RC oscillator may operate with 1,2 or 5 V of hysteresis, which means you can always use more than my "minimum amount" of excess hysteresis. Also, if you have a signal with a few mV of noise riding on top of it, the comparator that senses the signal will often want to have a hysteresis range that is two or three times greater than the worst-case noise.

Just the right touch

Because you can drastically alter comparators' performance just by touching the circuit with your finger, you should be prepared for the probability that your safety margin will change, for better or worse, when you go from a breadboard to a printed-circuit layout. There's no way you can predict how much hysteresis you'll need when your layout changes, so you just have to re-evaluate the system after you change it.
For faster comparators, such as the LM31I, everything gets even touchier, and the layout is more critical. Yet, when several people accused the LM3// of being inherently oscillatory, I showed them that with a good layout, it is capable of amplifying any small signal, including its own input noise, without oscillating and without any requirement for positive feedback.
One special precaution with the LM31/ is tying the trim pins (5 and 6 , normally) together to prevent AC feedback from the output (pin 7, normally), because the trim pins can act as auxiliary inputs. The LM3// data sheet in the National Semiconductor Linear Databook has carried a proper set of advice and cautions since 1980, and I recommend tins advice for all comparators.
With comparators that are faster than an LM311, I find that depending on a perfect layout alone to prevent oscillation just isn't practical. For these comparators, you'll almost certainly need some hysteresis, and, if you are designing a sampled-data system, you should investigate the techniques of strobing or latching the comparator.
Using these techniques should ensure that there is no direct path from the output to the inputs that lasts for more than just a few nanoseconds. Therefore, oscillation may be avoided. Granted, heavy supply bypassing and a properly guarded PC-board layout, with walls to shield the output from the input, may
help. But you'll probably still need some hysteresis.
For some specialized applications, you can gain advantages by adding AC-coupled hysteresis in addition to or instead of the normal DC coupled hysteresis (see Fig. 3). For example, in a zero-crossing detector, if you select the feedback capacitor properly, you can get zero effective hysteresis at the zero-crossover point while retaining some hysteresis at other points on the waveform.
The trick is to let the capacitor's voltage decay to zero during one half-cycle of the waveform. But make sure that your comparator with AC-coupled hysteresis doesn't oscillate in an unacceptable way if the incoming signal stops.

Noisy comparators

Most data sheets don't talk about the noise of comparators (with the exception of the NSC LM612 and LM615 data sheets), but comparators do have noise. Depending on which unit you use, you may find that each comparator has an individual "noise band".
When a differential input signal enters this band slowly from either side, the output can get very noisy, sometimes rail-to-rail, because of amplified noise or oscillation. The oscillation can continue even if the input voltage goes back outside the range where the circuit started oscillating. Consequently, you could easily set up your own test in which your "data" for offset voltage, $V_{O S}$, doesn't agree
with the manufacturer's measured or guaranteed values. Indeed, it can be tricky to design a test that does agree.
For my tests of comparator $V_{O S}$, I usually set up a classic op-amp oscillator into which I build a specific amount of hysteresis and a definite amount of capacitance, so that the unit will oscillate at a moderate, controlled frequency.
Another way to avoid $V_{O S}$ trouble with comparators is to use a monolithic dual transistor as a differential-amplifier preamplifier stage ahead of the comparator. This preamp can add gain and precision while decreasing the stray feedback from the output to the input signal.

Oscillating buffered circuits

Any circuit that adds current gain can oscillate - even a buffer. Let's agree that a buffer is some kind of linear amplifier that has a lot of current gain. Some have a voltage gain around 0.90 or 0.95 . Others have gains as high as 10 or 20 because their outputs must swing 50 or $100 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ or more. Even emitter followers, which you wouldd expect to be very docile because their voltage gain is less than 1, have a tendency to "scream" or oscillate at high frequencies. So, whether you buy or make a buffer, watch out for tins problem.
Also, a buffer can have a high-frequency roll-off whose slope increases suddenly at 40 or 60 MHz , contributing phase shift to your loop, back down at 6 or 10 MHz . You can beat

ANALOGUE DESIGN

this problem, but you have to plan. A buffer can also add a little distortion, which the op amp cannot easily cancel out at moderate or high frequencies.
Since buffers don't usually have a spec on this distortion, beware. Also, if you're running the output's quiescent bias current as Class AB , you must be sure that the DC operating current is stable and not excessive. You must set it high enough so that you don't get distortion but not so high that power consumption becomes excessive.
One of my standard procedures for stabilising a unity-gain follower stage is to put feedback capacitance around just part of the loop (Fig. 4). This circuit tolerates capacitive loads, because the buffer decouples the load while the feedback capacitor around the op amp provides local stability.
Most unity-gain buffers, whether monolithic, hybrid, or discrete, are unstable with inductive sources, so keep the input leads short. A series resistor may help stability, as it does for the $L M 310$, but it will slow down the device's response. When your buffer provides a lot of extra voltage gain, you must make sure that the gain rolls off in a well-engineered way at high frequencies, or the loop will be unstable. If the buffer-amplifier has a positive gain, as in Fig. 4b, you can use capacitive feedback around the main amplifier. But when the buffer-amplifier has a gain of -10 (Fig. 4c), you may want to apply a feedback capacitor
from the input of the buffer-amplifier (the output of the opamp) to the non-inverting input of the op amp.
In some cases, you can achieve stability by putting a series RC damper from the noninverting input to ground to increase the noise gain, but this trick doesn't always work. Damping this loop is tricky, because there is so much gain stacked up in cascade. The feedback capacitor to the negative input makes this safe and easy, however.

Fail safes

If you have any doubt that your anti-oscillation fixes are working, try heating or cooling the suspected semiconductor device. In rare cases, passive components may be sufficiently temperature-sensitive to be at blame, so think about them, too. Even if a circuit doesn't get better when heated, it can get worse when cooled, so also take a peek at it while applying some freeze mist.
My point is that merely stopping an oscillation is not enough. You must apply a tough stimulus to the circuit and see whether your circuit is close to oscillation, or safely removed from any tendency to oscillate. This stricture applies not only to regulators but also to all other devices that need oscillation-curing procedures.
For example, if a 47Ω resistor in the base of a transistor cures an oscillation, but 24Ω doesn't, and 33Ω doesn't, and 39Ω still
doesn't, then 47Ω is a lot more marginal than it seems. Maybe a 75Ω resistor would be a better idea - just so long as 100 or 120 or 150Ω resistors are still safe.
In other words, even though wild guesses and dumb luck can sometimes cure an oscillation, you cannot cure oscillations safely and surely without some thoughtful procedures. And somebody who has an appreciation for the "old art" will probably have the best results.

I certainly do not want to say that technicians can't troubleshoot oscillations simply because they don't know the theory of why circuits oscillate - that's not my point at all. I will only argue that a green or insensitive person, whether a technician or an engineer, can fail to appreciate when a circuit is getting much too close to the edge of its safety margins for comfort

Conversely, everyone knows the tale of the old-time unschooled technician who saves the project by spotting a clue that leads to a solution when all the brightest engineers can't guess what the problem is.

References

1. Linear Brief LB-32, Microvolt Comparator, in NSC Linear Applications Book, 1980-1991

Troubleshooting Analog Circuits

In this book Bob Pease brings together many of the techniques he has developed over the years to expedite debugging and trouble-shooting analogue circuits.
Based on his popular series in the US's EDN magazine, the book also contains new and updated material. Pease's approach to problem identification and isolation makes the book a useful aid to any analogue or digital engineer whether experienced or not.

Available direct by postal application to Lorraine Spindler, EW + WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Cost $£ 21.45$ including postage and packing. Cheques made payable to Reed Business Publishing Ltd.

Published by Butterworth-Heinemann.

CREDIT CARD ORDERS ACCEPTED BY PHONE 0816523614

THE CHIPS ARE DOWN FOR CORDLESS PHONES

The digital cordless telephone, known as CT-2, has promised so much for so long without success that one might be forgiven for thinking it would never happen, at least not at a realistic price. But CT-2 may be about to supersede its aging ancestor, the analogue cordless telephone.
CT-2 designers now have access to low cost, highly integrated semiconductor components. A handset requires just two or three ICs and a handful of discrete components. The new, smaller CT-2's will use fewer batteries, but most importanily they will be far easier to make, and that will cut prices.
Japanese companies such as Sony and Panasonic have quickly seen the significance of the new cordless telephone chips, and stated their intention to produce digital cordless telephones by the million over the next few years.
Advanced Micro Devices is the first semiconductor house to combine all the baseband features for the CT- 2 on a single chip which it expects to sell for less than $\$ 25$. It developed the chip in collaboration with Sony who will use it in its first CT-2 product which will be on sale in the UK high street by 1994.
The Am79C410 CT-2 controller will be capable of replacing as many as five integrated circuits used in first generation
CT- 2 handsets. The device includes a speech coder based on the standard ADPCM (adaptive differential pulse code modulation) burst mode logic for the standard CT-2 common air interface (CAI) radio modulation protocol. In addition there is an audio interface with delta-sigma A/D converters and capable of driving a 16 -ohm loudspeaker, an 8-bit microcontroller and circuitry to drive a 6×6 key pad.

AMD's achievement is that it has combined the ADPCM codec and the burst mode logic with a microcontroller into a single 100 -pin package, smaller than the 386 microprocessor.

Small but how cheap? The semiconductor companies hope to build a chip set for $\$ 30$ by 1995 but the handsets will always be expensive in comparison to the wired variety - particularly if one considers that a similar set of ICs must be included in every base station.

The ADPCM speech codec creates a $32 \mathrm{Kbit} / \mathrm{s}$ time division multiple access (TDMA) channel to carry the call. The twoway call occupies a single channel frequency with transmit and receive signals interleaved in what is known as a ping-pong technique. There is also a control channel for signalling between handset and base station of up to $16 \mathrm{Kbit} / \mathrm{s}$.
AMD has trimmed the performance of the digital signal processing core used for the speech coding in order to squeeze in the 9000 gates of bursi mode logic and the bulky delta-sigma A/D converters. Noise suppression has been added to the ADPCM;
the company had no reservations about combining the inherently noisy delta-sigma A/D converters with the small signal speech coding circuits.
In place of a general purpose DSP running at 20 MHz , the optimised core runs at 10 MHz cutting the necessary instruction cycles and programme memory by over 60 per cent.
The benefit is a smaller design and lower power consumption. Working from a single 3 V supply its consumes typically 80 mW of power during a call and $900 \mu \mathrm{~W}$ between calls.
An on-chip 6ith order Bessel filter with a 14.4 kHz cut-off is used to convert the baseband data into the analogue Gaussian minimum shift key (GMSK) spectral output for the radio interface. And it is the RF circuits which are arguably the hardest part of the handset design to be compressed into one or two chips.

Chip layout of AMD's Am 79C410 telephone circuil

Sony assisted with the AM79C410 burst mode logic and has also developed a CT-2 RF section in three ICs. But Sony is confident that the design will fit into a single IC if demand justifies the cost of integration.
The RF chips comprise an up/down converter, demodulator and radio transceiver. An external SAW filter is used to generate the CT-2's 866 MHz carrier frequency. Sony has set itself a target price of less than $\$ 24$ for the three.
AMD is not the only chip maker to offer single chip digital cordless telephone designs. VLSI Technology will have, later this year, a two chip CT-2 handset design which uses a separate microcontroller.
VLSI is against embedding the microcontroller because it restricts the designer's freedom in choice of processor. The microcontroller controls the operation of the telephone and may be used to add features which will differentiate products in the market.
While AMD and Sony are attracted by the

The cordless connection

Cordless phone designers are helped by the technical similarities between what were once thought to be incompatible telephone design specifications adopted by different countries.
The first was the CT-2, pioneered in the UK as early as 1985, originally designed to replace the inferior analogue CT-1 in the home and office. It is also being used in low cost public mobile telephone services in Britain, Hong Kong, Singapore, France and Holland. CT-2 uses a highly spectrum efficient Gaussian modulation scheme and time division of the radio channel. It operates in 4 MHz around 866 MHz .
Earlier this year the Canadian authorities adopted a more sophisticated variant of the CT- 2 design, known as CT-2 Plus. This operates at a slightly higher frequency and has twice the number of radio channels used in the UK. CT-2 Plus is more suited to mobile communications because, unlike basic CT-2, it offers two-way communications in the street and call hand over so the caller does not need to be stationary to make a call.
A pan-European design called DECT - the European digital cordless telephone - was agreed last year. Operating at 1.8 GHz with more radio channel capacity and supporting data as well as voice traffic, DECT has been
designed for the office. But if handset costs are low enough DECT will also be used in the home.

Finally the Japanese have their own digital cordless telephone design operating at 1.6 GHz which is known as the personal handy phone (PHP).
All these designs operate at different radio frequencies, but essentially use the same method of digitally compressing the speech for transmission.
The voice compression coding scheme, which is known by the international standard G. 721 , is so efficient in encoding voice band signals for digital radio transmission that it has become almost universally adopted. It uses a technique known as adaptive differentiation pulse code modulation (ADPCM) which halves the channel bandwidth required by squeezing the standard telephony μ-law $64 \mathrm{Kbit} / \mathrm{s}$ bit stream into a $32 \mathrm{Kbit} / \mathrm{s}$ bit stream.
The G. 721 speech codec is only one element of the necessary baseband processing design required in the handset. In addition, there are some 9000 gates of burst mode logic, which formats the compressed data stream for radio transmission; clock recovery circuits and a delta-sigma analogue to digital converter between the digital codec and the audio interface, the mouthpiece and ear-piece.
low cost CT-2 handset market, other semiconductor makers have concentrated on single chip designs for the proposed European DECT cordless telephone standard. The effect of this is that affordable DECT products will be introduced between one and two years earlier than originally anticipated.
Sierra Semiconductor has implemented the

The operating blocks of a CT- 2 telephone handset. Chip designers had to resolve problems of mixing low level analogue signals with the electrically noisy digital signal processing when attempting to integrate all the non-radio functions onto a single chip.

more sophisticated DECT handset baseband design in two ICs - SC14400/1 - which it plans to sell at less than \$10. Like AMD, Sierra has trimmed the data processing functions to the bare minimum to achieve the integration.
It also uses a $0.6 \mu \mathrm{~m}$ cmos process. As a result the company claims the two chips occupy a third of the board space of anything currently available. Sierra also says the chips may be used for CT-2 designs.
Sierra is also collaborating with an RF specialist for the 1.8 GHz DECT radio transceiver. National Semiconductor which has as yet only succeeded in compressing the DECT RF section into six components, confidently predicts that total DECT handset component cost will fall to $\$ 30$ by 1995.

By the end of the year we will perhaps know whether this is achievable. Californian mixed-signal specialist Pacific Communications Sciences, recently bought by Cirrus Logic, claims to have a 1.8 GHz DECT design which will require only one baseband IC and three RF chips.

Richard Wilson, Electronics Weekly.

CIRCLE NO. 113 ON REPLY CARD

HF BASE STATIONS \& MOBILES

SMC can offer a complete range of HF and VHF communications equipment including towers, trailor mounted towers, antennas, cables, repeaters, mobiles, interconnect, etc. The company has over 30 years experience installing, supplying and OPERATING communications equipment. For all your requirements contact:

$$
\overline{S M C}
$$

SOUTH MIDLANDS COMMUNICATIONS LIMITED S M House, School Close, Chandlers Ford Ind Est. Eastleigh, Hampshire, SO5 3BY
Tel: (0703) 255111 Fax: (0703) 263507

6: Applications

In the final part of his series Philip Mattos describes the applications limits of the system and the fusion of GPS with other sensor technologies for vehicle navigation. We also invite readers to register for further details about a kit of parts using the transputer hardware featured in this series.

Fig. 1. Track of vehicle on raster scanned 50,000 scale map.
The car raster map at 50,000 scale only shows about three kilometres, but is perfect for arrival at a destination. The four off road track sections are caused by blockage/reflections(2), and unmarked roads(2)

The GPS system was developed by the American military, for military purposes in land, sea and air. However over its long development period, receiver technology has advanced so much in terms of accuracy, size, cost and power consumption that civilian use far outstrips military activity.
We recall that civil GPS is capable of 20 30 m accuracy in stand-alone mode, but that this is degraded to 100 metres by the American DoD to deny greater accuracy to the
enemy. In differential mode, with corrections from a reference receiver at a known location, it is capable of five metre accuracy while, with carrier phase tracking, this can be reduced to a centimetre.
In cost terms, GPS sets with antenna, keyboard and display can be bought for around $£ 500$, and bare board-sets for incorporation in larger systems for around $£ 200$ in volume. This makes the small black box position sensor a reality and may be fitted to anything that

moves... Or even as we shall see later, things that should not move, but do, like dams and continents.

At sea

The civilian user first met navigation systems, even navigation itself, at sea, so it was there that GPS established its civilian roots. However it had strong competition. The high volume American Loran systems can be bought for around $£ 200$, and in America they work fine. A GPS manufacturer has great problem competing with this, including distributor and retailer margins. Unfortunately too many manufacturers thought they could, and fighting for a finite market at a time of recession saw several companies fail.
Europe did not help. While not well covered for Loran, Europe's Decca stations were aging, and the long debate whether to expand Loran, update Decca or rely on GPS resulted in the devastation of the leisure marine market while consumers waited for the outcome. In the event, Decca won the first round led by the British, while the rest of Europe gave the second round to Loran. In a few years Europe will be covered by all three services.
The professional marine market, for fishing boats, ferries, and similar, though a smail market, is perfect for GPS. The sea offers an unobstructed horizon, there are no (high) reflections, and knowing one's altitude exactly allows positioning with fewer satellites. This last was important in the early days, when satellites were few and far between, but is not very relevant now. And there are reflections from the sea itself. These are a problem with a helix antenna and low satellites. A helix is necessary on a sailing vessel that may heel

Fig. 2. Track of vehicle on raster scanned 250,000 scale map.
At $\mathbf{2 5 0 , 0 0 0}$ scale, the detail is lost, but about 10 miles can be seen. Note the M5 drawn far straighter, and far wider, than the truth.
away from the satellites, but a power vessel can use a patch antenna and avoid the problems.
GPS works well with external computer systems so that navigation packages can provide chained routes of waypoints, with course to and from each, distance, expected time of arrival, and many other functions.
In confined channels, such as in the Baltic, ferries use differential GPS to keep them precisely in the channel, even on their own side of it. Production platforms use GPS to locate exactly over the well head left by the drilling platform... even oil prospecting is done under GPS.
Search and rescue operations are managed by GPS, but more dramatic is the automatic distress alert that reports the vessel position. This is an IMO requirement, and effectively means that all commercial vessels carry an INMARSAT-C data-communications satellite transceiver, and a GPS receiver.
The ultimate must be EPIRB... a float-free buoy that alerts low-flying COSPASSARSAT satellites, currently on 406 MHz . Historically, the satellite fixes on the EPIRB, to an accuracy of a few kilometres. The next generation reports the vessel position, loaded automatically from the vessel GPS, to geostationary satellites that are always there, rather than intermittent coverage from the low-orbiting ones.
The progress of the future is in ECDIS, or
electronic charts with radar information overlaid, and even ADS (automatic dependent surveillance), where vessels scanned by the radar report their name and their GPS position, for accurate display on the ECDIS.

In the air

Aircraft too have always had navigation systems. Decca and Loran do not work well at the speed of commercial jets, but are fine for propeller driven craft. Airliners use two major means of navigation: the autonomous Inertial Navigation System, essentially a set of gyros and accelerometers for positioning across oceans. When near land, they cease being autonomous and rely on radio beacons to give them both range and bearing (VOR/DME) operating in the VHF/UHF band, supplemented by radar control over the air traffic control voice links.
The problem with the INS is that it is an integrating system with no absolute reference, so it gradually drifts. One degree an hour is not unusual. By the end of a trans-Atlantic flight, the error is considerable, but easily corrected as the VHF beacons may be received 50 to 100 miles off shore.
The problem with the beacon system is that it creates lanes, or roads in the sky, causing congestion at each beacon, especially where routes cross.
GPS fixes this problem by allowing the creation of many more lanes, quite independent of the beacons. On land, any decent VOR/DME receiver can do this as it creates a position fix providing a range and bearing to another fictitious beacon. However it is only recently that real computers have been embedded in such equipment to do this.

SYSTEMS

Fig. 3. 50 km square drawn from vector database. Vector data allows selection while drawing to match scale. All small roads have been omitted from this map, and all villages. It covers 50 km .

Fig. 4. Detailed map drawn from vector database. Zooming in to display about 7 km , every road, every village, even the area of housing, can be shown.

Only GPS can provide this function over ocean and desert. Many more lanes may be created, and both the cross track and the along-track separations reduced. Satcomms via Inmarsat can report the aircraft positions to air-traffic control, allowing continuous changes of route as weather dictates.
Portable GPS sets will become indispensable for microlights, balloons and light aircraft.
There are snags, however. When GPS stops being an aid, but becomes an essential piece of the navigation equipment, lives begin to depend on it. We can cover for equipment failure on the aircraft by carrying two or even three separate receivers. We can detect a GPS space-segment catastrophic failure and operate with reduced performance. The problem we cannot handle today is the gradual build-up of an error in a spacecraft. Such an error, for example by drifting off orbit, or the clock frequency drifting, would result in a gradual increase in position error that would not be detected until two aircraft, using different constellations of satellites, collided.
The ICAO/FAA standard for such failures is that they be detected and the crew warned within 10s. GPS does not have a mechanism to support this. The control segment monitors satellites all the time, but sometimes cannot upload new data to them, for example to mark them unhealthy, until they are in range of a control station. As these are all near the equator or on mainland USA, satellites over the south pole, or Northern Russia are sometimes out of view for up to two hours.
The Block 2R satellites have the ability to communicate with their neighbours, alleviating this problem. However the GPS message format for the almanac means that while a satellite can report on the errant behaviour of a neighbour if so instructed from the ground, the message is 12.5 minutes long. Thus users, even if listening to it, would have to wait that long for the data.
Even if a satellite detected its own errors, the message frame for the ephemeris/clock data is repeated on a 30 s cycle, outside the 10 s spec.
There are two solutions at hand. One is to provide enough satellites such that the receiver can itself detect that one satellite is in error from the redundant solutions. If a receiver can receive five satellites at all times, then it can calculate five separate positions, leaving out one satellite each time. Four are wrong, one is right... but which?
If a receiver can always see six satellites, it can calculate some 30 different positions, and all will be correct - except those that use the bad satellite - enabling detection. This is in hand by the work being done on combined GPS/GLONASS receivers. GLONASS is the Russian equivalent of GPS.
This is a simplistic way of looking at it. In practice all six sateilites would be included in the Kalman filter solution for a single position, and the residual error of the bad satellite would be seen to soar way over the threshold.
This method is known as RAIM (receiver autonomous integrity monitoring) because the
receiver itself makes the decisions on bad satellites. Its easy and effective, but GPS alone will not have enough satellites to guarantee six in view all over the world all the time.
The second method is to monitor the satellite health on the ground, and transmit it up to the aircraft. This is much easier, as the ground station is fixed. If it appears to move, something is wrong. This needs a network of monitoring stations and a ground to ground and ground to air communication system. The commonality of requirements with WADGPS, wide area differential GPS, makes combining the two very effective. This is proposed by Inmarsat on their $F 3$ satellites to be launched in 1995, being tested now at very low power levels on current space vehicles. They will transmit data in GPS format, on GPS frequencies, so little modification is required to conventional GPS sets. The data will allow WADGPS, but will also give a health indication of every satellite in view every 6 s . This is achieved by transmitting the data far faster than the GPS 50 baud rate.
In cooperation with Bristol University and Inmarsat, I have a dish antenna set up to receive the test signals, and have shown that even 1 kb aud can be received once the receiver is locked on, but fast baud rates disturb the integrators used to lock on the code trackers during acquisition. This is, however, totally surmountable by using epoch-synchronous integration, so research continues.
Besides remote regions, GPS can be useful for precision approach and landing. Far cheaper than ILS or MLS systems, it travels with the plane, so to the equipped plane, every airport is available immediately. This is important in developing countries, where MLS may take decades to appear. Precision approach can be done using WADGPS for total absence of ground equipment, or using a local monitor for both health and corrections. Even pseudolites have been proposed, but these cause the near-far problem, where they drown out the true satellites.

On land

On land, GPS excels in three entirely separate domains. The first is surveying. The survey industry has developed the use of the GPS signal far beyond the dreams of the system designers, with millimetre accuracies over country-wide baselines. The theory behind this, using the phase of the carrier wave at both reference and mobile stations, was covered in an earlier article.
Such accuracy allows new applications previously undreamt of, such as monitoring the deformation of a dam under the pressure of water as the winter snows melt, monitoring fault lines for movement that might indicate an imminent earthquake, and even monitoring the plate tectonics of the earth. This last is the movement of the twenty or so plates that make up the crust of the earth. Coincidentally and unfortunately, Kwajalein in Indonesia, where one of the GPS control stations is located, is on the fastest moving plate on earth, at about six inches per year. Besides all these exciting

Constructional kit/Newsletter
t t is intended to offer a set of pre-assembled boards that the reader may use to make a GPS receiver. However the cost is unlikely to make this proposition appeal to everyone.
The boards combine to make a system that delivers position on, and is controlled from, an RS232 interface. This may be connected to a PC for testing, or taken in a car over a route, then taken back to the PC and the memory dumped to display the track covered. There would be no display in the car unless the user had a portable PC.
The software and radio described in this series of articles are available for licensing. However it is not a viable proposition to construct from component level at volumes below 10,000 units a year. At lower volumes, it is recommended that potential constructors purchase ready made modules to incorporate in their system.
At the time of writing, application engineering data and price information about the hardware mentioned in this series are still being finalised. We are inviting readers with an interest in building either private or commercial GPS systems to write in to the address below to register their interest. We will then put together a mailing list and send out further details as they become available.
We will also be publishing a book based on this series together with additional new material written by Philip Mattos. This will contain a more detailed study of the constructional aspects relating to the GPS system hardware. Further information about the forthcoming book will also be included in the newsletter.
We regret that we are unable to deal with queries relating to this series over the telephone.

GPS newsletter
Electronics World + Wireless World
Room L333
Quadrant House
The Quadrant
Sutton SM2 5AS
UK.
applications, surveyors also use GPS rather prosaically to survey building sites, roads with one man operation and no need for line of sight between survey points.
For the GPS manufacturer, however, surveying is not very interesting as the market is so small. The two major players are Ashtech and Trimble, both of the USA, with Wild of Switzerland offering a system based on a Magnavox receiver, and Novatel of Canada offering an OEM module with survey accuracy which uses a transputer!

The second market chronologically relates to position reporting for trucks, buses, trains, and in the future, even freight containers and individual railway wagons. This market is much larger than surveying, but slower to take off as it needs a communications infrastructure to get the position information back to the control centre. For worldwide use, this was pioneered by the combined Inmarsat-C and GPS set demonstrated for Inmarsat by an Inmos/Bristol University team in 1990. Such equipment is now available from at least five
manufacturers. However the cost of satcomms cannot be justified for local communications, and terrestrial infrastructures are taking time to appear.
For service vehicles, such as buses, police, electricity board etc, existing voice VHF networks may be used, and this is progressing well. There are also plans for emergency panic button systems for private cars emerging, but these are a special case because they normally generate no communications traffic until the emergency arises.
Progressing to containers and railway wagons will not happen until we can power the entire system from solar panels. This can be done now for self timed reporting. By self timed, we mean that the system turns on periodically on a local clock, rather than listening continuously for a polling message. In the polling case, the continuous power of the communications receiver cannot be supported.
The third area of application for land-based GPS is the consumer market, be it in a car or portable. There is no real justification for the portable because most land maps do not have Latitude and Longitude on them. At best they have the gridlines shown on the edges only, not overprinted as in the UK Ordnance Survey series.
However the lure of a new electronic gadget seems irresistible, and the portables sell like hot cakes. The first available (1989) were Magellan (USA) and Columbus (UK, transputer based). Now there are offerings from Trimble, and Garmin in the US, Streamline in the UK (transputer based), and JRC, Sony and Panasonic in Japan, the last being transputer based as well.
The biggest volume of all will be the car market. Already established in Japan, it can only run when detailed map data is available in electronic form, and legal impediments to screens in cars are dealt with.
In Japan, the former was handled by the "navigation alliance", where all the manufacturers got together to prepare one common map database, and the latter by sensible implementation... such as only trunk roads displayed if the vehicle is moving faster than walking pace.
In Europe, various half way approaches such as spoken directions or symbolic routes are being tried. Personally I believe these will alienate potential customers. Most want a map that looks like the familiar paper variety; this is what I have implemented. Other approaches are much harder to provide because the computer must understand the map.

Trial maps

Over the summer of 1992 I developed a complete map-display GPS system using either raster scanned maps as demonstrated in the panic system base station in the previous year, or it can use a vector map database. The reason for providing both was the availability of map data. Some 250 K data was available in vector form $-50,000: 1$ scale scanned for the purpose - though such raster images are now available commercially.

The hardware to perform GPS and display the maps was covered earlier in the series. The map work can share the CPU with the GPS because it is performed so rarely. The output from the transputer card is RGB or PAL video. The former is preferable, as it allows higher resolution monitors to be used. However the car market is very cost sensitive so probably only TV quality monitors will be possible.
If PC quality 640×480 monitors are used, then raster-scanned 50,000 scale maps are quite acceptable. A 150 dpi scan puts about four inches of paper map across the screen, about three miles or 5 km . However if lesser monitors are used, such as 320×200, then with less than three kilometres across the screen, the detailed display is only suitable for finding ones final destination on arrival. The solution, albeit costly on storage, is to offer two separate map scales.
Fig. 1 shows such a map for the area around the Inmos offices, north of Bristol, where the M4 and M5 motorways intersect. Fig. 2 shows the same area on a 250,000 map where about 15 km can be shown across the screen.
The white tracks show where the car was driven for a demonstration. They show both the best and worst of GPS: perfect tracking through the four-level intersection, and running on reflections when the direct path to the satellite is obstructed. Note that the first is a feature of my software tracker, because with separate code and carrier loops, the loss of carrier lock does not affect positioning.
The reflections can be seen on the M5 just south of junction 16, where we passed three trucks that blocked a satellite low to the west. The same satellite was blocked by a building on the oval industrial park, with about a hundred metre push out to the south-east. Note that the incursion inside the loop road, and the cut-off comer to the A38 north are not errors... we really drove the car inside the loop, on a service road, and there is a slip road to miss the roundabout that is not shown on the map.
Note also what is known as "cartographic generalisation". The map makers distort local features from their true positions to clarify information for the user. For example, the roundabouts are much larger than true size, the motorway far wider. Even the loop road in the industrial park is spread out to allow each building to be shown. Hence the GPS tracks consistently narrower than the loop drawn on the map. On the 250,000 scale map, one also notices that the motorway is drawn far straighter than the truth but then it is almost a mile wide. (A quarter of an inch at four miles to the inch.)
The limiting feature on adapting raster images to screens at different scales is the text size. Other features shrink easily. The simple solution is to use vector maps. Figs. 3 and 4 show first a 50 km square around Gloucester, then a 10 km square in the Forest of Dean to the west of Gloucester. These are drawn from the same database. The user can select any scale at the press of the zoom button. Depending on the scale in use, different fea-
tures are included or omitted. For example in the Gloucester map, all unclassified roads, and all villages, are omitted. In the detail map, the outline of the buildings of each village is shown, and also the edges of forested areas, and every village name. Text is still the limiting feature.
All this information for a 50 km square is stored in a 256 Kbyte flash eprom card. While production systems would use CD-rom, flash is more convenient for the prototype as it may be rewritten. The 3 in $\times 2$ in flash card plugs into the transputer board running the GPS system. A portable system would probably continue with plug-in cards, such as PCMIA, in production.
For anyone with a portable LCD television, I can demonstrate a portable map-display GPS today but it will only become a marketable product when LCD screens reach 4 in or 6 in diagonals. My demonstration version uses a 6in portable CRT screen. The monitor itself takes four amps so although I can carry the screen, I cannot carry the batteries.
While Japan has implemented the true map display, European car manufacturers are far less enthusiastic, preferring symbolic displays or even synthetic voice to direct the driver. How much this is biased by the non-availability of the map data will never be determined. Implementations such as the Bosch travel-pilot and the Philips Carin are navigation systems giving such driver support, with route planning and directions, but not necessarily themselves having any direct positioning ability. Position can be supplied externally from a GPS receiver, and/or dead-reckoning sensors as described below.
The Panic button or emergency system is a special case where there is no form of position display, map or otherwise, for the driver. The data is sent over a radio link to a control centre, and all the driver sees are the text messages that are returned, such as acknowledgement and ETA.

GPS in towns

Most vehicle navigation systems require some support for the GPS system, particularly to cover periods when the GPS signal is masked by tunnels or tall buildings. There are three major inputs available... distance, direction, and map-matching. In fact there are Japanese systems available that operate solely by these means, without any absolute position sensor.
Distance is the most easily derived signal. It simply counts the wheel revolutions, either at the gearbox, using signals intended for the speedometer, or at the wheels themselves, using signals intended for the anti-lock braking system.
Direction is more difficult to derive. Firstly there is no sensor already present in the car, so one must be added. The only economical absolute direction sensor is the fluxgate magnetic compass, but there are severe problems with distortions of the earth's magnetic field by trains, transformers etc that it is not ideal.
The piezoelectric rate gyro is very accurate, and intelligently integrated can give good
results but it is not absolute. One must integrate the output over all time to derive the change in heading so errors can accumulate.

Thirdly one can derive changes in heading from an ABS equipped vehicle by detecting the difference in distance travelled by the left and right wheels. This suffers from problems of wheel slip on acceleration and braking, and again, integration is required.

Thus direction can only be satisfactorily managed by integrating a poor absolute device, the compass, with a good relative device, such as the rate-gyro.
Both distance and direction sensors can be calibrated from the GPS position to allow for different wheel sizes, tyre wear etc, especially at speed on motorway, where the errors of Selective Availability on the GPS can be proportionally reduced by using a large calibration distance.
Given corrected heading and distance measurements, a dead reckoning position is very easy to calculate: the easting is $D \times \sin$ (heading), the northing is $D \times \cos$ (heading) for each elemental line segment making up the total track of the vehicle, and these can be remembered as a total delta-E, delta- N number pair until a new GPS position is available.
Map matching is the adjusiment of the sen-sor-derived position to match the computer record of the roads. That was extremely carefully worded because the map may be displayed or just internal to the computer, and the adjustment may be a correction, as in removing SA errors, or it may, for display purposes, be adjusting a correct position to match an erroneous map, so that the vehicle is displayed on the road. Note that paper maps frequently have deliberate positional alterations as discussed earlier (cartographic generalisation). These are carried through to raster maps, but should not be on vector maps. Unfortunately, on early vector maps, they are still present, because the maps were vectorised for the generation of paper maps, not for navigation.
Map matching is the perfect solution for position determination, but depends heavily on the availability of accurate map data, and on the algorithms used for sensor fusion. The latter, the merging of data from map, dead-reckoning and GPS, is an extremely complex subject, as all three inputs are inherently wrong, due to map distortion, drift and SA/reflections.
As the map is the master database the correct output is the one that visually matches the map. This is moderately simple to implement when the map data is available. Far more difficult is to integrate dead-reckoning and GPS without detailed maps in the computer, as switching between GPS and dead-reckoning tends to produce a combined system with the worst features of both. GPS gives its worst output just as it loses a satellite or mistracks to reflection, so the relative dead-reckoning system starts from an erroneous reference point and has an evens chance of drifting better or worse.

Equally difficult is to do map-matching from GPS without any distance or direction sensors on the car. As the GPS position accu-
racy is 100 metres without reflections, the correct junction can only be selected if they are atways at least 200 metres apart. This means that with an intelligent algorithm that can backtrack, this is feasible in the country, but not in town where the average block is less than 200 metres.
With the map data available to me (250,000 vector data) I have no town roads anyway, so the GPS/map matching combination was possible within its own limitations. The algorithm was extremely simple: find the nearest road line-segment to the current position, excluding those whose angle was more than 45° from the current track. Note the use of the word track since we had no heading sensor. Thus, if parked near a crossroads, the system would behave erratically until the vehicle moved to establish a track direction.
In town, working with much finer scale maps, the Japanese have perfected systems that run on map and dead-reckoning wihout absolute reference at all. However this fails on long straight roads, and also on motorways, as there are no corners to correct and calibrate the distance sensors. As a result, they are adding GPS to provide absolute position fixes.
The final solution is an intelligent sensor fusion of gyro and magnetic fluxgate compass, wheel sensor and GPS. The gyro compass is accurate, but a relative instrument that drifts. The magnetic compass suffers offsets due to location, and violent swings due to passing metallic objects like buses. Together, they work well, with GPS track calibrating the offsels, and also calibrating the distance sensor. There is no switching from sensor to sensor as satellites and buildings come and go.
This scheme allows the GPS position to be averaged over all time, just as it can be in the static surveying mode. This takes out almost all SA and reflections, providing the vehicle is moving through random obstructions, leaving ionospheric errors as the major ones, as their time-constant is too long to average. Thus we have a 20-30 metres accurate solution to feed to the map matcher when the data becomes available.

Non-positioning applications

It may seem unusual that a global positioning system could have uses other than positioning, but the closely associated functions of time and frequency standards are performed with excellence by an almost standard GPS receiver.
Positioning is done by measuring very precisely the propagation time of the signal from satellite to user. An error of $1 \mu \mathrm{~s}$ is worth 300 m in range, over a mile in position. Any standard GPS set has resolved time internally far better than that. Thus GPS time is used to synchronise systems across oceans, where variable cable delays would make it impossible terrestrially. The BBC time beeps, no longer generated from Greenwich, are timed by GPS receivers.
The modifications required are those to get the internal time out to the user. This is far more difficult than it seems. In fact it is almost impossible due to the delays in implementing

Fig. 5. Timing Receiver. A standard GPS receiver with an external clock generator and divider chain can equal any atomic clock in long term timing accuracy. Short term is degraded to tens of nanoseconds by Selective Availability.
an interrupt, let alone executing an instruction.
The solution is to generate a hypothetical timing signal in hardware, and feed it into the processor with the GPS signals. The processor then monitors the difference between the signals, and exerts control to pull both the phase and frequency of the external reference until it is perfect. This is normally done internally at 1 kHz , to match the GPS C/A code epoch, but the external interface is two electrical signals. On one, an edge every one second at the precise UTC second, and on the other an RS232 text string identifying the exact time.
Note that the GPS satellite message includes parameters which even warn of UTC leap seconds in advance. This is the ultimate equivalent of the RUGBY code clock, accurate to a few nanoseconds with the delay to the user's location accounted for. However, as the GPS signal, unlike 60 kHz , cannot pass through buildings, a roof top antenna is required. One must also account for the length of the coax and the delay through the radio since GPS time is that at the antenna.
Given that a perfect reference has been created, normally at 10 MHz , standard frequencies are also available from the divider chain used to create the 1 pps signal.
In this series we have covered the GPS receiver from antenna to map output and timing beeps. Although I have largely described the working of GPS in terms of my own design approach, I hope the discussion has been sufficiently wide that others can understand the wonders of a system that has been over twenty years in the creation, consuming untold billions of dollars, and finally reaching full coverage this year (1993). It has taken over my professional life for the last five years and there are still plenty of areas within it for me to explore.

Philip Mattos is a consultant engineer with Inmos/SGS-Thomson.

BARGAINS - Many New Ones This Month

SILENT EFFORTLESS MOVEMENT with our 14 mm ballrace complete with removable spindle. 4 for $£ 1$, Order Ref. 912.
6-12V AXIAL FAN is a Japanese-made 12v DC brushless axial fan, 93 mm square. Its optimum is 12 but it performs equally well at only 6 v and its current then is only 100 mA . £4. Order Ref. 4P65.
FM CORDLESS RADIO MIKE, hand-held battery-operated professional model, has usual shaped body and head and is tuneable to transmit and be picked up on the FM band of any radio. Yours for only $£ 8.50$, Order Ref. 8.5P1. 4 MORE SPEAKERS:
Order Ref. 1.5P11 is Japanese-made $61 / 2^{\prime \prime}, 80 \mathrm{hm}$, rated at 12 W max. This is a very fine reproducer. The makers are SANYO. Yours for $£ 1.50$ Order Ref. 900 is another Far East-made $61 / 2^{\prime \prime}$, 40hm, 12 W max speaker. Very nicely made, using Japanese Hitachi tools and technique, only $£ 1$.
Order Ref. 896 is $61 / 2^{\prime \prime}, 60 \mathrm{hm}, 10 \mathrm{~W}$, exceptionally good sounders and yours for only £1.
Order Ref. 897 is another 80 hm speaker rated at 5 W but its unusual feature is that it has a built-in weeter. Still only $£ 1$. PUSH BUTTON EDGE SWITCH gold-plated contacts, 1A 50 V . Top push counts up, bottom push counts down, BCD switching. Switches clip together. 2 for $£ 1$. Order Ref. 915.
POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc output is voltage regulated. Intended for high-class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are 212 V relays and a Piezo sounder. £3, Order Ref. 3P80B.
ULTRASONIC TRANSDUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref. 1.5P/4. 100W MAINS TRANSFORMER normal primary 20-0-20 at $2.5 A$, $£ 4$, Order Ref. 4 P 24.40 V at $2.5 \mathrm{~A}, \mathrm{£}$, Order Ref. 4P59. 50V at 2A, £4, Order Ref. 4P60 PHILIPS $9^{\prime \prime}$ HIGH RESOLUTION MONITOR black \& white in metal frame fo easy mounting, brand new, still in maker's packing, offered at less than price of tube alone, only $£ 15$, Order Ref. 15 P .
16-CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alpha-numeric LCD dot matrix module with integral microprocessor made by Epson, their Ref. 16027AR, £8, Order Ref. 8P48.
INSULATION TESTER WITH MULTIMETER internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges. $A C / D C$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom, but in very good condition, tested and guaranteed OK, probably cost at least £50 each, yours for only $£ 7.50$, with leads, carrying case £2 extra, Order Ref. 7.5P/4.
720K $31 / 2$ INFLOPPY DISK double sided by top maker (Epson), 4 for $£ 1$. Order Ref. 914.
MAINS 230V FAN best make "PAPST" $41 / 2^{\prime \prime}$ square, metal blades, £8, Order Ref. 8P8.
blades, £8, Order Ref. 8P8.
2MW LASER Helium Neon by PHILIPS, full spec. £30, Order Ref. 30P1. Power supply for this in kit form with case Is $£ 15$ Order Ref. 15P16, or in larger case to house tube as well $£ 18$, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube £69, Order Ret. 69P1. $1 / 3$ HP 12 V MOTOR - THE FAMOUS SINCLAIR C5 brand new, $£ 15$, Order Ref. 15P8.

SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in very

 neat plastic case, $£ 6$, Order Ref. 6P3.AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning UHF circuits, 4 for £1, Order Ref. 818 B
45A DOUBLE POLE MAINS SWITCH mounted on a $6 \times 31 / 2$ aluminium phate, beautifuly finished in gold and with pilot light. Top quality, made by MEM, £2. Order Ref. 2 P316.
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt upright mounting, £7.50, Order Ref. 7.5P/5 and a 250W version is $£ 10$, Order Ref. 10P79.
MINI MONO AMP on PCB. Size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 watts into 4 -ohm speaker using 12 V or 1 watt into 8 -ohm using 9 V . Brand new and perfect, only $£ 1$ each, Order Ref. 495.
AMSTRAD POWER UNIT 13.5 V at 1.9 A encased and with leads and output plug, normal mains input $£ 6$, Order Ref. 6 P23. DC VOLTAGE REDUCER 12V-6V @ 500 ma on quite small pcb with heat sink. £1. Order Ref. 916.
8OW MAINS TRANSFORMERS two available, good quality, both with normal primaries and upright mounting, one is 20 V 4A, Order Ref. 3P106, the other 40V 2A, Order Ref. 3P107. only £3 each.
PROJECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1} / 2^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled. Made for GPO so best quality, only $£ 3$ each, Order Ret. 3P74.
12V SOLENOID has good $1 / 2^{\prime \prime}$ pull or could push if modified, size approx $11 / 2^{\prime \prime}$ long by $1^{\prime \prime}$ square, $£ 1$, Order Ref. 232
15W 8-OHM 8" SPEAKER \& $3^{\prime \prime}$ TWEETER made for a discontinued high-quality music centre, gives real hi-fi, and only £4 per pair, Order Ref. 4P57.
$0-1$ MA FULL VISION PANEL METER $23 / 4^{\prime \prime}$ square, scaled 0100 but scale easily removed for re-writing. £1 each, Order Ref. 756.
PROJECT BOX a first-class, Japanese two-part moulding size $95 \times 66 \times$ 23 mm .
This is nicely finished and very substantial. You get 2 for $£ 1$, Order Ref. 876 . 12V 2A MAINS TRANSFORMER upright mounting with mounting clamp. Price £1.50, Order Ref. 1.5P8.
AM/FM RADIO CHASSIS with separate LCD module to display time and set off alarm. This is complete with loudspeaker but is not cased. Price $£ 3.50$. Order Ref. 3.5P5.
2, 3 AND 4-WAY TERMINAL BLOCKS the usual grub screw types. Parcel containing a mixture of the 3 types, giving you 100 ways for $£ 1$, Order Ref. 875. FULLY ENCLOSED MAINS TRANSFORMERS with 2 m 3 core lead terminating with a 13 A plug. Secondary rated at 6 v 4 A . Brought out on a well insulated 2 core
lead terminating with insulated push on tags. £3. Order Ref. 3P152. Ditto but 8A, £4. Order Ref. 4P69.
ILLUMINATION PANEL intended to illuminate imitation log effect fire. $16 \mathrm{6v}$ bulbs, coloured red and foil reflector panel. It should be quite easy to modify for almost any log effect fire. £2. Order Ref. 2P2317
SWITCHED BC CORD GRIP LAMPHOLDERS. Always useful. A good make, 3 for £1. Order Ref. 913.
2M 3-CORE LEAD terminating with flat pin instrument socket, $£ 1$, Order Ref. 879. Ditto but with plug on the other end so that you could use this to extend an instrument lead. $£ 1.50$, Order Ref. 1.5P10.
INFRA RED RECEIVER CONTROLLER, made by Thorn to channel switch their T.V. receivers. Mounted on panel with luminous channel indicator, mains on/off switch, leads and plugs all yours for $£ 2$, indicator, mains on
Order Ref. 2PITY. over through panel mounted by hexagonal nut. Complete with 2 keys. Regular price $£ 3$, our price $£ 1.50$, Order Ref. 1.5 P12. DIGITAL MULTI TESTER M3800, single switching covers 30 ranges including 20A ac and dc. 10 meg input impedence, $31 / 2$ LCD display. Currently advertised by many dealers at nearly £40, our price only £25, Order Ref. 25P14.
ANALOGUE TESTER, input impedence 2 K ohms per volt. It has 14 ranges, ac volts $0-500$, dc volts $0-500$, dc current 500 micro amps at 250 miliamp, resistance $0-1 \mathrm{meg}$-ohm, decibels $20 \pm 56 \mathrm{~dB}$. Fitted diode protection, overall size $90 \times 60 \times 30 \mathrm{~mm}$. Complete with test prod's, price £7.50, Order Ref. 7.5P8.
$\mathbf{2}^{\prime} \mathbf{5 0}$ OHM LOUDSPEAKER, replacement for pocket radio, baby alarm, etc. Also makes good pillow 'phone. 2 for $£ 1$, Order Ref. 905.
LCD CLOCK MODULE, 1.5 v battery-operated, fits nicely into our 50 p project box. Order Ref 876 . Only $£ 2$, Order Ref 2P307.
AMSTRAD KEYBOARD MODEL KB5, very comprehensive, has over 100 keys, £5, Order Rel. 5P202.
SENTINEL COMPONENT BOARD, amongst hundreds of other parts, this has 15 ICs, all plug in so don't need de-soldering. Cost well over $£ 100$, yours for $£ 4$, Order Ret. 4P67.
9V 2.1A POWER SUPPLY, made for Sinclair to operate their 128K Spectrum Plus 2. £3, Order Ref. 3P151.

100W
 AMPLIFIER KIT
 Uses Darlington power

 transistors. Sound quality is really good. Frequency response of 10 Hz to 45 kHz .£18, Order Ref. 18P6. 12 V 250 MILLIAMP SOLAR PANEL, could keep that 12 V battery charged where there is no access to the mains. $£ 15$, Order Ref. 15P47.
SCREWDRIVERS - pocket sized. Will save you having to worry where you left the last one! 10 for $£ 1$, Order Ret. 909. STEPPER MOTOR BARGAIN This is just a mini motor, 12v operated and 7.5° step angle. Offered at the very low price of only £1, Order Ref. 910 .
STANDARD CASSETTE MOTOR for $9 v$ recorder players. This is brushless and has internal electronics to facilitate speed changes and reverse. $£ 1.50$ each, Order Ref. 1.5P14.
changes and reverse. $£ 1.50$ each, Order Ret. 1.5 P14. etc. $£ 1$, Order Ref. 917.
THIS COULD SAVE YOU EXPENSIVE BATTERIES an in-car unit for operating 6 v radio, cassette player, etc. from car lighter socket. £2, Order Ref. 2 P318. READY BUILT .5W FM TRANSMITTER tested and working. Very compact unit, with electret microphone, $3 v$ operated. £6, Order Ref. 6P29. Will fit, with batteries, in our project box, Order Ret. 876.
METAL PROJECT CASE nickel plated, size $151 / 2 \times 5^{1 / 2} \times 2^{1 / 212}$, so ideal to take the Phillps laser with its power supply or just a power supply. Has instrument type mains input plug, output socket and built in on/off switch. $£ 7.50$, Order Ref. 7.5P9.

SUPER STRIPPER originally intended to be a power supply unit, this has many top class, easily removable, components including 2 power mosfets, power rectifiers, 2 HF transformers, a complete mains input fused and filtered, plus dozens of other top class components. Component value probably over $£ 50$, yours for only £5, Order Ref. 5P212.

JUST ARRIVED

Amstrad $3^{\prime \prime}$ disk drive. Standard replacement or, why not have an extra one? £20, Order Ref. 20P28.

WIRE WOUND RESISTORS mainly 5 and 6 W . Almost a complete range available with prices from 20p each for small quantities, to 10 p each for 100 of a value. Just order values required or send for list.
STOP THOSE PEAKS as they come through the mains, they can damage your equipment. 2A unit is a combination of cores and caps gives complete protection. £2, Order Ref. 2P315. INSULATION TAPE 5 rolls of assorted colours, only £1, Order Ref. 911.
GENERAL PURPOSE FAN KIT comprises beautifully made "Boxer" fan, transformer and switch to give dual speed and off from the mains. £6, Order Ref. 6P28.
DOUBLE HEADPHONE OUTLET A standard type stereo plug with 2 leads coming out, each terminating with a standard size stereo socket thus enabling 2 people to listen from the one outlet. Very well made. Price £2, Order Ref. 2P312.
12V POWER SUPPLY Plugs into 13A socket and gives 200 mA dc out. Price £2, Order Ref. 2P313.
ASTEC 135W PSU Mains input, 3 outputs: $+12 v$ at $4 A,+5 v$ at $16 A$ and $-12 v$ at $1 / 2 A$. In plated steel case, brand new, £9.50, Order Ref. 9.5P4.

Prices include VAT. Send cheque/postal order or ring and quote credit card number.
Add $£ 3$ post and packing. Orders over $£ 50$ post free.

M\&B ELECTRICAL SUPPLIES LTD.,

Pilgrim Works (Dept. WW), Stairbridge Lane, Bolney, Sussex RH17 5PA
Telephone or Fax: 0444881965

CD or NBG?

Ben Duncan's article "How clean is your audio op-amp?" ($E W+W W$, January), prompts me to ask if anyone has analysed just what digitising audio produces in the way of distortion products
I have been carrying out some quality checks on CDs and am appalled by some of my results.
I naturally expected to find performance far above cassettes, but found that, given a similar playback spectrum curve, on a blind test most people could not tell which was which.

I have no desire to stick my neck out, but it is plain that CDs have an inherent roughness which can only be due to the digital encoding.
It would be interesting to know the true figures. After reading about "dirty" op-amps, I wonder just what is going on and what we can expect from the dozen or so new marvels coming on the market.

1 suppose the truth is that the supplanting of vinyls by CDs must be due solely to their convenience. But you would never know it from the media.
Ronald G Young
Peacehaven
East Sussex

Optimum settings

I was interested to read John Cronk's article on the design of a 1.3 GHz tuner using a low noise GaAs fet front end ($E W+W W$, March).
The input circuit appears to make no attempt to set the input source impedance to the optimum. Noise figures for devices such as the ATF10736 (ex ATF20135) change very rapidly with this parameter and it is important to include a suitable filter section to set this condition. For example, at 1.3 GHz a noise figure of 0.8 dB is obtained for a source impedance of $67+\mathfrak{j} 179 \Omega$, but with a source matched to 50Ω the noise figure rises to 2.05 dB .

Construction of circuits at this low microwave frequency is easy using double sided epoxy-glass board. Tracks can be made by cutting and stripping. Capacitors must be surface mounted and coaxial connectors mounted directly onto the board. Ordinary wire-loaded capacitors are at best lossy inductors and it is cheaper to use a couple of turns of wire to give an open circuit.

Stripline design equations are readily available in the published literature and are sufficiently accurate for the design of low noise amplifier circuits.

WBW Alison

Great Yarmouth
Norfolk

Cable con trick cut by Occam's razor
 A dramatic difference to our

 listening, the adverts tell us, would be the result if we chucked away the old fashioned multi-strand flat pair speaker feeder cables and went over to the new silver or linear crystal oxygen free copper cables with added benefit of preferential conductivity.
Quizzing the appropriate

 manufacturers brought the comment "copper conductors aren't unidirectional". Indeed, the technical spokesman for one distributor, questioned about the need to connect the cables strictly as marked, talked about electrons jumping about, and of the conductor becoming fatigued if polarity was not observed, with the cable having a higher conductivity in one direction than the other.Pointing out that speakers were driven by alternating signals, so weren't we rectifying the signal, the confident reply was that they still sound better.
Duly convinced (of something) we obtained a set of cables and connected them to the switched parallel amplifier outputs.
Using the same speakers we did a blind test from various programme sources including test CDs. Each of us compared the virtually instantaneous switch over from one unknown cable to the other. The first results were crushingly disappointing. No immediate difference could be detected, nor any when a carefully conducted set of double-blind tests followed.
Our suspicions were aroused and it looked as though some theoretical work was necessary to put the apparently outrageous claims for these cables into perspective.
The only properties of a cable which could influence its suitability as a loudspeaker-amplifier link are its series impedance Z, its shunt admittance Y, and the change (if any) of these parameters with frequency. Furthermore, the cable

Not trivial

Malcolm Hawksford's acknowledgment (Letters, $E W+W W$. November 1992) of the value of R_{g} being a capacitor in aiding supply rejection is welcome. But his trivialisation: "After all, if $R_{g}=0$, there would be virtually no injection, and no signal either!", is unfortunate. Many power amplifiers of the form shown in his diagram (taken from his reference 3) are likely to use mosfet output stages with considerable input capacitance, highly dependent on output stage transconductance and loading.
Indeed, his own mooted concept of a pontoon buffer power amplifier would see the large voltage swing driver output being loaded by the capacitance of long interconnects to the remote buffer.

His equation for the ratio of output to input transfer functions for inputs V_{s} and $V_{i n}$,
$\delta=\left[1 / Z_{n t}+(1+\right.$
$\left.\left.r_{2} / Z_{n i}\right) / m Z_{n 2}\right] 1 / g_{m}$
while independent of Rg, clearly shows the benefit of cascading to raise ZnI and Zn 2 and aid supply rejection especially in low gm fet input stages, preferred for their audible transparency.
But, a serious omission is any mention of the substantial advantage to PSRR afforded by enclosing the amplifier in a nested loop with a high gain input stage as shown in the diagram.
Such an approach using a typical IC op amp powered from highly filtered supplies can improve PSRR by 100 dB at low to 60 dB at high audio frequencies and output stage adverse loading THD by similar amounts. At the same time it shifts the onus for performance in the areas of input device matching, DC drift, common mode, and differential linearity to a monolithically matched and performance defined device according to the error budget.
The considerable improvement in PSRR at low frequencies is invaluable when the large variations in supply voltage of an appropriately sized power transformer at power envelope frequencies are to be accommodated without intrusion.
Creg M Ball

Coolangatta

Australia

should, of course, be bilateral (having no tendency to conduct preferentially in one direction, rectifying). But all metallic conductors likely to be considered for this purpose are, by definition, bilateral.

Consider, as a basis for comparison, the well known and widely available 79 strand, twin core, PVC-insulated cable having cores of diameter 1.78 mm spaced 4 mm centre to centre. The resistance at low audio frequencies along the combined path length is about $0.0137 \Omega / \mathrm{m}$ and its loop inductance (calculated using standard formulas)
about $0.7 \mu \mathrm{H} / \mathrm{m}$. The resistance at high audio frequencies would he higher but for such a stranded conductor is difficult to calculate.
But the increase at, say 15 kHz , will be less than the 13% increase for a solid conductor of the same cross-section. The inductance will fall slightly as the frequency increases. The shunt admittance consists of capacitance approaching $77 \mathrm{pF} / \mathrm{m}$ (standard formulas) in parallel with conductance (measured) of about 2.2 $\times 10^{-11} \mathrm{~S} / \mathrm{m}$, ie entirely negligible.
The effect of these parameters on the frequency response of the

Multi-DEVICE

 PROGRAMMERontroductory offer
ond

\checkmark Fast Programming - Intelligent Algorlthms
\checkmark Connects direct to printer port
\checkmark On llne "HELP" System
, Easy to use menu driven software
\checkmark Supports a wide range of devices
All without adapters
Including:EPROMs E PROMs Flash EPROMs PLDs GALs PALCEs 8748 and 8051 famllies Including 876751
Contact SMART Communications for our full range of programmers including stand-alone programmers, gang programmers and our comprehenslve universal device programmer

Tel: 081.4413890 Fax: 081-441 1843

CIRCLE NO. 117 ON REPLY CARD

CIRCIE NO. 118 ON REPLY CARD

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

loudspeaker/cable combination depends on the loudspeaker impedance and this can vary widely over the frequency range. The worst case occurs at the minimum of the speaker impedance, where the impedance is predominantly resistive.

Assuming this lies (for many speakers) in the region 200 to 1000 Hz we have, at a frequency of say 500 Hz , a cable impedance, Z, of $0.0137+j 2.2 \times 10^{-3} \Omega / \mathrm{m}$ and the admittance, Y, is $j 0.241 \mu \mathrm{~S} / \mathrm{m}$. These values give $\mathrm{Z}_{0}=\sqrt{ }(\mathrm{Z} / \mathrm{Y})=(182.5$ $j 155.6) \Omega$ and v, the propagation constant,$=\sqrt{ }(\mathrm{ZY})=(0.0375+j 0.044)$ $\times 10^{-3} / \mathrm{m}$. So $\alpha=3.75 \times$ $10^{-5} \mathrm{Neper} / \mathrm{m}$ and $\beta=4.4 \mathrm{x}$ 10^{-5} radian/m.

Taking a speaker impedance of, say, $(8+j 4) \Omega$ and a cable length of 5 m , these figures give an attenuation (input to output of cable) of less than 0.04 dB and a phase shift of only 0.13° ! At higher and lower frequencies, the effect of the cable is likely to be much less. Speaker impedance increases as the parallel resonance is approached and it increases with increasing frequency (as the voice coil reactance increases) or as radiation and loading effects change the system compliance.
The ideal, of course, is zero attenuation and zero phase shift at all frequencies, but it is highly questionable whether such a slight advantage over the 79 strand cable justifies the high cost (several thousand pounds in some cases that have been advertised).

Some adjustment of the cable parameters could be made on a swings and roundabouts basis - for example, the increase in resistance at the highest frequency, while amounting to less than 13% for the 79 strand, could be reduced by insulating the separate strands, as reminiscent of some current speaker cables. But this would increase the loop inductance. If the go and return leads were intermingled in some way to try to avoid this, the shunt admittance would increase, but in view of the figures quoted above for the 79 strand, it does not seem worth it.

Little wonder then that we were unable to detect any improvement in our listening tests if the worst case example is shown to give an attenuation some 75 times less than the figure (3 dB) generally accepted as the smallest change detectable by the human ear.

There is nothing wrong in using the best cable possible but that doesn't mean the most expensive. LCOFC (4 or $6 \mathrm{~mm}^{2}$) cable should cost no more than $£ 2.50 / \mathrm{m}$, but household ring-main cable $\left(2.5 \mathrm{~mm}^{2}\right.$, 30A capacity) or, indeed, a 79 strand (hi-flex) would be just as good. As mentioned, stranded conductors do have a marginally lower high-
frequency resistance than solid conductors of the same CSA, but the effect is inconsequential.

In conclusion, for the domestic audio system with loudspeaker cables not exceeding, say, 25 m in length, no discernible improvement can be expected when perfectly good cheap, cables are replaced by lengths of supercable. Anyone gullible enough to purchase these cables on the basis of the unwarranted pseudo-scientific claims currently being made in the specialist audio magazines should consider Occam's Razor: "It is vain to do with more that which can be done with less".

Dr BC Blake-Coleman

Dr R Yorke

Bassett

Southampton

Second childhood with whiskers

As a child I enjoyed making crystal sets to listen to Daventry and the early BBC broadcasts. Now, in my second childhood at 84 , I am considering taking up the hobby again. From crystal sets I progressed to valves and some truly vast sets, though only of about three valves which were introduced and described in your pages.
Thanks for the memories, but 1 feel could hardly tackle the modern ones. So, I an writing to inquire first if FM broadcasts could be picked up by a crystal set and, if so, whether any readers know of some traditionalists/antiquarian who has such things as a crystal and catwhisker with which I can get started.
I would also like guidance as to the capacity of the tuning condenser (1 can't remember the modern term for it) and tuning coil.
Gerald Carr
London

Old tube

1 am trying to find out as much historical and technical information as possible about the old $V L S .492 A G$ electron tube made in England by Standard Telephones and Cables. Can any $E W+W W$ reader help?
It appears to be a tiny cathode-ray tube with the whole flat top being the phosphor-coated display. The tube is a straight cylinder 39.5 mm diameter and 167 mm long including socket, and is fitted with an ordinary octal base socket (like a PL36 but with all eight pins).
Deflection seems to be electrostatic with two pairs of plates at right angles (as usual). The heater seems to work at about 1 to $2 \mathrm{~V}, 1 \mathrm{~A}$.

There is also an additional partially erased marking on the glass: the peculiar three-finger duck

Analogue by any other name

The four phase product detector for SSB described by Nic Hamilton ($E W+W W$, April) has its counterpart in computer science based on pulsed signals and is protected in the UK by patent $2,199,976$, an invention for automatic pattern recognition. The principal feature of the patent specification is the use of "average frequency of occurrence" in place of the probability terms of conventional information theory. This results in an entirely automatic method of computation which may justifiably be called direct-in-binary.
In simple terms, this new methodology relies on simultaneous integration and differentiation in a bilinear diphasic arithmetic (ie, modulo four, base two) as geometrical place values rather than as magnitudes of numbers. Under this condition, the constant of integrations can only be zero or one, and a chain of integrations therefore generates a continuous bit string of 0 s and 1 s as a Turing memory which may be employed in subsequent chained differentiation. The methodology also relies on continuous signals which are reflected onto themselves in parallel loops. Under such a condition the conventional logic gates, such as and, nand, exor, and so on, acquire new functions and may then be employed in neural networks to detect new signal patterns and to ignore old patterns already present in the memory function.
It seems extraordinary that, although it has been known that all information has been encoded in a binary arithmetic since 1948, conventional computer science still requires the acquisition of data in decimal form, conversion to binary form for processing, and reconversion back to decimal for interpretation. Direct-in-binary systems (previously called analogue) offer the advantages of not requiring central processors, operating systems, or programming languages.
Brian Clement
Crikhowell
Powys
foot, "RM", "/F" and "CV???T" (it could have been CV1327 or CVI527). I read that CV1327 is equivalent to Pen 1340, but what is Pen 1340 ? Would I be wrong to think that this tube could have served the army?
Christian Steffans
Waterloo
Belgium

Variable Planck

With regard to D Di Mario's "Gravity and electric force link up in black hole?" ($E W+W W$, February), Planck's time, as given in the article, does not correspond with the value of $t_{p}=5.39 \times 10^{-44} \mathrm{~s}$ given in "The fundamental physical constants" by E Richard Cohen and Barry N Taylor published in Physics Today in 1990. The value used by Di Mario differs from this value by $\sqrt{ } 2 \pi$. He does not explain the difference.

Starting from a dimensional analysis approach, I derive the potential of the electron as

$$
V=\left(\frac{\lambda_{c} c}{4 \pi}\right)^{\frac{3}{2}}
$$

where λ_{0} is the Compton wavelength of the electron and c is the velocity of light. This equation predicts the ratio of the gravitational to the electric force of the electron as F_{g} / F_{0} $=2.40053(19) \times 10^{-49}$ using the value
of parameters as given by Cohen and Taylor.

This is the relationship that Di Mario refers to. As Di Mario indicates, the largest source of discrepancy in the equation is in the poor statistics of the best value for the Newtonian constant of gravitation. I am in communication with Dr Cohen to clarify the matter.

Immo Bock

Randburg
South Africa

War crimes

After reading "The nature of power" (Comment, $E W+W W$, March), I have to ask if you are serious?
Either I cannot detect your tongue in your cheek and am fooled, or I am justified in being shocked. Your recommendation: "only commit armed forces where there are clear economic goals" forgets that human beings have (non-economic) value in themselves. Economics by itself should not dictate the actions of people.

Do you only justify the National Health Service because it helps the economy? Please tell me you're not serious!

Andrew Gammie

Bath
I am serious in provoking
discussion on the reasons for fighting wars. Frank Ogden.

DESIGN BRIEF ACTIVE FILTERS

> Switched capacitor filters are flexible and easy to apply. Bashir Al-Hashimi* lays down the ground rules for effective design.

Antialiasing prior to A-to-D conversion is one of the most common uses of filters. Suitable filters may be realised in many ways, with those operating in the frequency range $0.1 \mathrm{~Hz}-100 \mathrm{kHz}$ usually built using discrete or hybrid active- $R C$ networks. But high performance switched-capacitor (SC) filters are now commercially available, offering the designer a combination of flexibility and ease of use, and giving the advantage of anability to vary the filter band width simply by changing the clock frequency.

The aim here is to show how commercially available SC devices are used to design sharp, frequency variable low pass filters.

SC filters operate on the principle that a capacitor and a switch can be made to simulate the function of a resistor, (see box "Switched-capacitor resistor"). They are often designed using the same methods and configurations as continuous-time active filters, including the state-variable circuits and simulation of LC filters ${ }^{1}$. Resistors in these designs are readily built using SC networks (capacitors and a number of switches), and since SC filters consist of op-amps, capacitors and switches, the approach allows a full filter implementation on a chip.
Recently, greatly improved SC filter IC devices have become available combining ease of use and variation of filter characteristics through changing the clock frequency. But
one of the drawbacks is that since the signal is periodically switched, the SC filter represents a sampling system. Aliasing and imaging must be considered - features that continuous-time filters do not possess.

Properties of sampled systems

Frequency spectrum of a continuous-time signal containing frequencies between DC and some frequency F_{c}, when sampled at rate F_{s}, will be modified to that shown in Fig. 1a. The spectrum now contains components, around the sampling frequency, F_{s}, called image frequencies, occurring at $\left(\mathrm{n} F_{s}-F_{c}\right)$ and ($\mathrm{n} F_{s}+F_{c}$), where $\mathrm{n}=1,2 \ldots$ Amplitude of the image component is given by

$$
\begin{equation*}
\frac{\sin \left[\frac{\pi\left(F_{s}-F_{i n}\right)}{F_{s}}\right]}{\frac{\pi\left(F_{s}-F_{i n}\right)}{F_{s}}} \tag{1}
\end{equation*}
$$

where F_{s} is the sampling frequency and $F_{i n}$ is the frequency of interest. For example, the 1 st pair of image components of a 5 kHz signal when sampled by an SC low pass filter with F_{s} of 1 MHz , occurs at 995 kHz and 1005 kHz . The image components appear at the SC filter output as spurious signals, and must be removed or reduced to an acceptable level achieved using a low pass smoothing post filter placed at the SC filter output. Complexity of the smoothing filter depends on the sampling frequency of the system. In general, the higher the sampling frequency, the less complex is the smoothing filter.

Clock frequency to cut-off frequency (commonly referred to as the corner frequency) of commercially available SC filters is typically $50: 1$ or $100: 1$. So the post filter could be either a simple $R C$ network or a 2 nd-order active- $R C$ filter such as Sallen and Key. Clearly, the cutoff frequency of the smoothing filter should be greater than that of the SC filter.
As a rule of thumb, the cut-off frequency of the post filter should be a factor of five higher than that of the SC filter with clock-to-corner frequency ratio of $100: 1$.

Fig. 1a. Frequency spectrum of continuous time signal sampled at Fs.

Fig. 1b. When frequencies above the Nyquist frequency are sampled, the sampled components "fold back" below the Nyquist frequency, generating unwanted alias signals in the pass band.

SC filters use transistors as switches and the parasitic capacitances between the transistor terminals allow part of the clock signal to appear at the filter output as noise - commonly known as clock feed-through. The amount of clock feed-through varies according to filter manufacturer, but it is typically of the order of 10 mV ($\mathrm{p}-\mathrm{p}$), and can be eliminated by the post filter.

All sampled data systems are prone to aliasing when input signals exceed the Nyquist frequency, (half the sampling frequency, $F_{s} / 2$). When frequencies above the Nyquist frequency are sampled, the sampled components "fold-back" below the Nyquist frequency (Fig. 1b). So signals beyond the Nyquist frequency generate unwanted signals within the pass band, called alias components. To prevent aliasing, a continuous-time low-pass filter is required before the sampled data SC device. Specification of this continuous-time antialiasing filter is similar to that of the post filter.

Several manufactures supply SC filters - eg National Semiconductor and Maxim ${ }^{2}$, and general purpose SC filters come in two types: universal and preconfigured.

Preconfigured and universal filters

Preconfigured filters implement a specific filter function - low pass, band pass, high pass

FREQUENCY

Fig. 2. Corner frequency of the elliptic filters is defined as the point where the filter output attenuation falls just below the pass band ripple.

Response

Filter order
DC gain (dB)
Frequency range
Passband ripple (dB)
Stop band attenuation (dB)
Transition ratio
Clock-to-corner frequency ratio
Elliptic
-0.1 (typ)
$0.1 \mathrm{~Hz}-25 \mathrm{kHz}$ 0.15 (typ)
>75
15
1.5

100:1
Table 1. Typical frequency specification of the Max293 device
or notch - in one of the classic filter responses; Butterworth, Chebyshev, elliptic, etc. They cover the frequency range of $0.1 \mathrm{~Hz}-150 \mathrm{kHz}$ and have a fixed clock-to-comer frequency ratio of either $50: 1$ or $100: 1$.
Preconfigured filters require no additional components and can come in packages as small as eight-pin dips. All they need to operate is a clock signal to set their frequency response. Most SC filter ICs have an on-chip oscillator which may be used to generate the clock signal. Good examples of preconfigured SC filters include a Butterworth filter with 90 dB attenuation at four times the 3 dB frequency point, and a notch filter with 30 dB depth.
If what is required in terms of filtering functions can not be found in a preconfigured SC filter, then universal IC filters often provide the solution. Universal filters usually contain one to four 2 nd-order section per packaged IC. The 2nd-order section is usually based on the state-variable configuration ${ }^{3}$, and the circuit
allows implementation of low pass, high pass, band pass, notch or all-pass filter functions. The realisation of filtering functions using universal SC filters requires external circuitry ranging from resistors alone to relatively complex microprocessor control systems - and the design of the external circuitry often proves to be a fairly involved operation. For this reason, SC filter manufacturers usually provide hardware and software design tools to simplify the design process.

Practical application

Antialiasing filters have many different forms and characteristics. But filters with elliptic responses are ubiquitous, chosen because they provide the sharpest attenuation in the transition band (needed to maximise bandwidth and minimise aliasing) with the minimum component count, when compared with other responses.

Consider a requirement for a 5 kHz sharp low-pass filter. A number of commercially available SC filters can be used, and one such is the preconfigured MAX293 device from Maxim (Table 1). One of the attractive features of this filter is the high attenuation ($>75 \mathrm{~dB}$) provided at 1.5 times the corner frequency. The corner frequency of elliptic filters is defined as the point where the filter output attenuation falls just below the pass band ripple (Fig. 2).

Amplitude response

The MAX293 filter covers the frequency range of $0.1 \mathrm{~Hz}-25 \mathrm{kHz}$, and has a clock-to-corner frequency ratio of 100:1. So to set the passband edge at 5 kHz, a 500 kHz clock signal is needed. The clock signal can be derived from the on-chip oscillator with an external capacitor (C) given by

$$
F_{o s c}(\mathrm{kHz})=10^{5} /(3 * \mathrm{C}(\mathrm{pF}))
$$

ACTIVE FILTERS

Analysis of the circuit shown below indicates this filter has a low pass response. It is commonly known as a multiple-loop

feedback filter ${ }^{5}$, because there are two feedback paths from the output of the amplifier to the $R C$ network. Design equations of the filter are:

$$
\begin{aligned}
C_{1} & =\frac{(0.474 Q)}{\left(w_{0} F_{0} R\right)} \\
C_{2} & =\frac{C_{1}}{\left(9 Q^{2}\right)} \\
\text { DCgain } & =\left(-\frac{R_{2}}{R_{1}}\right)
\end{aligned}
$$

where w_{0} is the normalised frequency and Q is the quality factor of the filter. Both these parameters may be obtained from Table 2 for various filter responses. Parameter F_{O} is the cut off frequency of the filter, while R is an arbitrary value of the filter resistor values ($R_{F}=R_{2}=R_{3}=R$) chosen to give practical values of capacitors. Note that this filter has an inverted output.

An example is the design of a 50 kHz Butterworth low pass filter ($w_{0}=1, Q=0.707$). Assuming that $R=20 \mathrm{k} \Omega$, the values of C_{1} and C_{2} are: $C_{1}=335 \mathrm{pF}$ and $C_{2}=74 \mathrm{pF}$

Fig. 3. 5 kHz SC filter amplitude response with the internal and an external oscillator.

REF LEVEL JDIV MARKER 100.000 Hz		
$-0.416 \sigma B$	$0.100 \sigma B$	MAG (UDF) $-0.291 \sigma B$

Fig. 4. Pass band ripple of the 5 kHz SC filter with external crystal clock.

Fig. 5. Simple crystal oscillator consisting of two inverters connected in a ring via a capacitor and a crystal.

To generate a 500 kHz clock signal, $C=67 \mathrm{pF}$. Performance of the 5 kHz low pass filter using the internal oscillator to provide the clock signal can be compared with the response of the same filter using an external crystal clock (Fig. 3). The filter driven by the internal clock has a premature roll-off, due to the tolerance ($\pm 15 \%$) of the internal oscillator frequency. Obtaining a well defined pass band would require a variable capacitor (C) and the filter would need adjustment on test.
The filter driven by the external crystal clock performs exactly as predicted, pass band ripple of the filter agrees (Fig. 4) with the specification given in Table 1 .
To achieve optimum results from the SC filter, an external stable clock must be used to ensure minimum drift. A simple crystal oscillator (Fig. 5) consists of two inverters connected via a capacitor and a crystal. Output from the oscillator is buffered through a another inverter.

The filter frequency spectrum around the clock frequency (500 kHz) is shown in Fig. 6 when a 3 kHz input signal is applied to the filter. Note that the clock feed-through signal level is about 5 mV , and the amplitude of the image frequencies agrees well with that predicted by Eq (1). Placing a simple $R C$ smooth-
ing filter with -3 dB frequency point of 50 kHz at the output of the filter reduces both clock and image components by about - 20 dB (Fig. 7).
The Max293 device has an uncommitted opamp which can be used to build an antialiasing or a smoothing filter. Generally, using this opamp to build an antialiasing filter rather than a smoothing filter is the more useful choice, since the op-amp experiences some clock feed through.
For the 5 kHz filter, a 2 nd-order antialiasing low pass filter that can be built with this uncommitted op-arnp is shown in Fig. 8. The filter has a Butterworth response and -3 dB point at 50 kHz (Design of the continuous time filter is discussed in box "Active Filters").

To vary the pass-band edge of the low pass filter, the clock frequency needs to be changed. Figure 9 shows the amplitude response of the MAX293 device at 5 kHz , 10 kHz and 20 kHz bandwidth.

Phase response

Phase response of elliptic filters is a non-linear function of frequency. Since the derivative of the phase function is a measure of the delay (or group delay) through the filter, a nonlinear phase response means that the delay will vary with frequency in a non-linear fashion. The group delay curve of the 5 kHz filter is exactly as would be expected from any realisation of an 8th-order elliptic lowpass filter. Figure 10 shows the effect of the non-linear delay versus frequency characteristics upon a square waveform $(500 \mathrm{~Hz})$. The output waveform has a considerable overshoot and ringing, due also to the filter truncation of the Fourier series of the square waveform.

Practical considerations

Some practical problems are encountered with IC switched-capacitor filters. They exist with all SC filters but, as before, they can be illustrated by the MAX293 device.

Fig. 8. 2nd order low pass antialiasing filter (F3dB=5kHz) that can be built with the Max293 uncommitted op amp

wo	Q	0.707
Butterworth	1	0.864
Chebyshev $\{0.5 \mathrm{~dB})$	1.231	0.957
1 dB	1.050	1.129
2 dB	0.907	1.307
3 dB	0.841	0.577

Table 2. ω_{0} and Q for various filter types.

Generally, SC filters have high output voltage offset - the MAX293 is typical at about 300 mV - and this is significantly higher than that encountered with op-amps. Offset adjustment is usually necessary.
Total harmonic distortion (THD) is important too, as a measure of unwanted harmonics produced at the filter output when a pure sine wave is applied to the filter input. THD arises from non-linearities within the filter and varies with filter type. Elliptic filters have the worst THD specification of all types because of their high Q-sections. Measured THD of the 5 kHz elliptic low pass SC filter is better than -70 dB . The test input signal has a frequency of 1 kHz and amplitude of 5 Vp -p sine wave, a 500 kHz clock frequency and $20 \mathrm{k} \Omega$ load. The measured wide band noise level of the 5 kHz filter

Fig. 6. SC filter frequency spectrum around the clock frequency (500 kHz), with a 3 kHz input signal applied to the filter.

nup Lever	JDIV	
.000de	10.000d?	

Fig. 7. Frequency spectrum of Fig. 6, after passing through a simple $R C$ circuit with cut off frequency of 50 kHz .

Fig. 9. Variable SC low pass filter response at 5 kHz , 10 kHz and 20 kHz .

Switched capacitor resistor

A circuit that simulates the function of a resistor is shown in Fig. A. The switch is initially in the left hand position and the capacitor is charged to the input voltage V_{l}. The switch is now thrown to the right-hand and the capacitor is discharged after a determined time to some new voltage, V_{2}. The charge transferred is

$$
Q=C_{1}\left(V_{l}-V_{2}\right)
$$

If the switch is thrown back and forth at a clock rate $F_{c l /}$, the average current flow is given by

$$
\mathrm{i}=C_{I}\left(V_{I}-V_{2}\right) F_{c l k}
$$

where $F_{c l k}$ is the switching rate or the clock frequency. From Ohm's law, the equivalent resistance of the switched capacitor is

$$
R_{e q}=\left(V_{1}-V_{2}\right) / i=1 /\left(C_{l} F_{c / k}\right)
$$

The switch is typically realised as mos switch
driven by a non-overlapping two-phase clock (Fig. B).
A useful building block in filter design is an integrator (Fig. C), and the $S C$ version of the integrator is shown in Fig. D.

Transfer function of the op-amp integrator is

$$
H(s)=-\frac{1}{s R C_{2}}
$$

Substituing for R from the above

$$
H(s)=-\frac{1}{s}\left(\frac{C_{1}}{C_{2}}\right) F_{c l k}
$$

The equation shows that the frequency response of the $S C$ integrator can be varied by altering the clock frequency, $F_{c l k}$.

SC pros and cons

Advantages of SC filters include:

- Tunability:
- readily available (preconfigured, universal);
- easy to use

SC drawbacks include:

- Need additional circuitry (antialiasing and smoothing filters);
- external stable clock desirable
- THD and noise slightly inferior to continuous-time active filters.

Fig. 10. Effect of non-linear delay versus frequency characteristics on a square waveform. Top trace, input 500 Hz square waveform; bottom trace, output 5 kHz elliptic filter $v(X=0.5 \mathrm{~ms}, Y=2 \mathrm{v})$.
is better than -70 dB over the bandwidth $10 \mathrm{~Hz}-100 \mathrm{kHz}$: continuous-time $R C$ active filters can achieve dynamic range and noise levels in excess of $-90 \mathrm{~dB}^{4}$.

Acknowledgment

Thanks to Alan Holden for his help in preparation of this article.

References

1. ME Van Valkenburg, Analogue Filter

Design, Holt-Saunders International,1982.
2. R Quinnell, "Switched-Capacitor Filter",

EDN, Jan 1990.
3. A Wilfiams, Electronic Filter Design handbook, McGraw-Hill Book Company, 1981.
4. R Markell, "Knowledge of Subtleties Aids Switched-Capacitor Filter Design", EDN, August 1990.
5. F W Stephenson, RC Active Filter Design Handbook, John Wiley \& Sons, 1987.

[^1]

MIGHTY FILTER POWER IN MINUSCULE PACKAGES

Using integrated filter packages has never been easier, Ian Hickman describes their application, and an audio circuit to test the response.

The Maxim devices MAX291-MAX297 are 8th order lowpass switched capacitor filters available in 8 -pin plastic dip, SO, cerdip and 16 pin wide SO packages, and even chip form. They cover a variety of filter types: Butterworth, Bessel, elliptic (min stopband attenuation $A_{s}=80 \mathrm{~dB}$ from a stopband frequency F_{s} of $1.5 \times$ the corner frequency F_{o}) and elliptic (A_{s} 60 dB at $1.2 \times F_{o}$).
The corresponding type numbers are MAX291/292/293/294 respectively, all at a ratio of clock to corner frequency of 100:1. The $1295 / 296 / 297$ are Butterworth, Bessel and elliptic ($A_{s} 80 \mathrm{~dB}$) types, but use a $50: 1$ clock ratio, extending the maximum F_{o} to 50 kHz against 25 kHz for the others. All will accept an external clock frequency input, enabling the corner frequency to be determined accurately and to be changed at will. They may also be driven from an internal clock oscillator, with the frequency determined by a single external capacitor.
Although typical frequency response curves are given in the data sheets, an audio swept frequency source and detector were used to measure the responses independently, in the form of Fig. 1a. Figure 1b shows the result of applying the swept output direct to the detector.
The low amplitude at low frequencies is due to two separate effects. The first is that at low frequencies the output impedance of the internal current sources and the input impedance of the internal simple Darlingion buffers in $I C_{2}$ are not infinitely large compared with the reactance of the 1.5 nF capacitors.
The second effect is the rate of change of frequency, which at the start of the ramp is comparable to the actual output frequency itself, allowing the individual cycles of the frequency ramp to be seen. For measuring the filter responses, a much slower ramp would clearly be necessary, enabling the detector to follow rapid downward changes in level. The second effect would not then apply although the first still would (irrelevant since the filters

Fig. 1b. Using a small value of C, the swept oscillator output was applied direct to the detector circuit. The detected output (lower trace) follows faithfully the peak amplitude of the sweeper output (upper trace) over the partial scan shown, covering about 30 Hz to 650 Hz .

Fig. 2a. The ramp-voltage applied to the swept frequency oscillator (upper trace) and the detected voltage output from the MAX291 Butterworth 8 pole filter, set to $F_{o}=1 \mathrm{kHz}$ (lower trace).'

Fig. 2b. As 2a, but using the MAX293 elliptic filter with its 1.5:1 ratio of F_{s} to F_{o}.

Fig. 2c. The manufacturer's frequency response data for the MAX293.

TIME BASE $=105$
CHE VIDIU $=50.5 V$

TIME RASE $=105$
CH2 VIDIV $=5.5$

The device's minimum stopband attenuation of 60 dB is maintained while providing an F_{s} to F_{o} ratio of only 1.2:1. This plot was taken with the smoothing capacitor in $I C_{4}$'s linear detector circuit reduced from 100 nF to 22 nF , enabling the detector to follow the very rapid cutoff of the filter at the given sweep speed. This means that increased ripple is observable on the detector output at low frequencies preceding the start of the sweep.
Figure 3b shows the same response with the original detector time-constant, demonstrating the distorted response caused by using an excessive post-detection filter time-constant - a point not lost upon anyone who used early spectrum analysers which did not incorporate interlocking of the sweep speed, span, IF bandwidth and post detector filter settings.
Of course an error-free measurement could have been taken using the original detector by reversing the polarity of the ramp to give a falling frequency test signal - at the expense of having a back-to-front frequency base.
Conversely, there would be no problem with the original arrangement when measuring a highpass filter, since the detector's response to increasing signals is very fast. The design of a detector with low output ripple but with fast response to both increasing and decreasing signal levels is an interesting exercise.
The maximally flat Butterworth response of Fig. 2a is of course peak free, but peaking can be expected in the elliptic responses. In Fig. 2 b it appears to be about 1% at F_{o}, corresponding to +0.086 dB . This is within the maker's tolerance, also measured at 1 kHz , which is 0.17 to +0.12 dB (typically +0.05 dB).

With the faster cut-off offered by the MAX294, somewhat larger peaking $(-0.1710+0.26)$ is to be expected. Figure 3a shows it. Note that measurement accuracy is limited by a variety of factors other than the detector time-constant mentioned above. For instance, the distortion of the sinewave test signal produced by $I C_{2}$, measured at 1 kHz , is as much as 0.6%. It consists almost entirely of third harmonic, which is thus only 44 dB down on the fundamental.
Even assuming the level of the latter is exactly constant over the sweep, using a peak detector circuit, a 0.05 dB change in level can be expected at 333 Hz , at which point the third harmonic sails out of the filter's passband. Thus a very clean, constant amplitude test signal indeed would be necessary to test the filter's passband ripple accurately. It would also be necessary for basic measurements on a highpass filter, where the harmonic(s) of the test signal would sweep into the filter's passband whilst the fundamental was still way down in the stopband. All the filters in the range offer very low total harmonic distortion (THD), around -70dB.

Consequently the elliptic filters lend themselves very nicely to the construction of a digitally controlled audio oscillator as shown in Fig. 4a.
The $L S 90$ will divide by ten whilst giving a $50 / 50$ mark/space ratio output. The $F_{\text {clock }} / 100$ output of the second $L S 90$, suitably level shified, was applied to the MAX294's signal input, pin 8, and the clock input itself to pin 1. The MAX 294 will operate on a single +5 V rail (in which case the signal input should be biased at +2.5 V) or, as here, on +5 V and -5 V rails.
Either way it will accept a standard 0 to +5 V cmos clock input at up to 2.5 MHz or, as it turns out in practice, a $74 L S X X$ input, though this is not stated in the data sheet. The $L S 90$ may be old hat, but it is nonetheless fast, so a clean clock drive and local decoupling were used to ensure no false counting due to glitches etc.
The attenuation of the MAX294 at $3 \mathrm{~F}_{\mathrm{o}}$ is around 60 dB . Given that the third harmonic component of the squarewave input to the device is 9.5 dB down on the fundamental, the squarewave should be filtered into a passable sinewave with all harmonics 70 dB or more down. This is comparable in level with the device's stated THD, so that although the MAX293 could equally well be used in this application, its greater stopband attenuation would not in fact be exploited. The Butterworth MAX29I also shows greater than 60 dB attenuation at $3 F_{o}$ relative to F_{o} : at $2 F_{o}$ it is only just over 40 dB relative, but of course the squarewave drive has no second harmonic. The MAX291/293/294 are all equally suitable in this application.

Figure 4 b shows a 1 kHz sinewave output from the Fig. 4 a circuit, lower trace; the 100 kHz steps forming the waveform are clearly visible. At first sight, it looks very like the waveform out of a DDS direct digital synthesizer but there are one or two subtle differences. From a time point of view, the quantisation is always exactly 100 steps per cycle, whereas in a DDS it can be any number times (clock frequency divided by maximum accumulator count), the latter being typically 2^{32}.

Considering amplitude, the waveform is simply just not quantised. It is an example of a true peak measuring system where each step can take exactly the appropriate value for that point in a continuous sine wave. Figure 4b

Fig. 3a. As Fig. 2a, but using the Max294 elliptic filter with its 1.2:1 F_{s} to F_{o} ratio, using a modified detector circuit.
Fig. 3b. As 3a, but the defector circuit as in Fig. 1.

Fig. 4b. The circuit's output at 1 kHz (lower trace) and the residual signal after filtering out the fundamental, representing the total harmonic distortion (upper trace).

Fig. 4a. Circuit of a digitally tuned sinewave audio oscillator using the Max294.

IC1.2 74LS90
IC1.3 MAX294

Pin Description

8-PIN	16-PIN	NAME	FUNCTION
	$\begin{array}{r} 1.2,7 \\ 8,9 \\ 10,15, \\ 16 \end{array}$	N.C.	No Connect
1	3	CLK	Clock Input. Use internal or external clock.
2	4	V-	Negative Supply pin. Dual supplies: -2.375 V to -5.500 V . Single supplies: $\mathrm{V}-=0 \mathrm{~V}$.
3	5	OP OUT	Uncommitted Op-Amp Output
4	6	OP $\mathrm{IN}^{\text {- }}$	Inverting Input to the uncommitted op amp. The noninverting oo amo is internally tied to ground.
5	11	OUT	Fitter Output
6	12	GND	Ground. In single-supply operation, GND must be biased to the mid-supply voltage level.
7	13	V+	Positive Supply pin. Dual supplies: +2.375 V to +5.500 V . Single supplies: +4.75 V to +11.0 V .
8	14	IN	Filter Input

Fig. 5a. THD + noise relative to the input signal amplitude for the MAX294

Fig. 5b. The MAX29X series filter structure emulates a passive eight pole lowpass filter. In the case of the elliptic types, this results in ripples in both the pass- and stopbands.

Fig. 5c. Passhand and stopband performance for the MAX294 with a 100 kHz clock $\left(F_{o}=1 \mathrm{kHz}\right)$.
also shows residual THD (upper trace); and the monitor output of a meter on the 0.1% FSD range. Measured THD is 0.036% or 69 dB down on the fundamental.
This agrees exactly with the manufacturer's data, Fig. 5a, which shows that the level of (THD + noise) relative to the signal is independent of the actual signal level over a quite a wide output range. The slight fuzziness of the THD trace is due to some 50 Hz getting in to the experimental lash-up, not (as might be supposed) residual clock hash. The latter was suppressed by switching in the THD meter's 20 kHz low pass filter, without this necessary precaution, the residual signal amounted to just over 1%.

Each of the MAX29X switched capacitor filters includes an uncommitted op amp which can be used for various purposes. It makes a handy anti-aliasing filter to precede the main switched capacitor section or can be used as a post-filter to reduce clock breakthrough in the output. Unfortunately, it cannot suppress it entirely, since it is part of the same very busy chip as the 8 pole switched capacitor filter section. Its use is illustrated in Fig. 5e.
Where a modest distortion figure of somewhere under 0.05% is adequate, an instrument based on the Fig. 4 a circuit has certain attractive features. It can cover 0.1 Hz to 25 kHz with a constant amplitude output and much the

Fig. 5d. Comparison of the pulse response of the Bessel and Butterworth filter types.

Fig. 5e. Use of the MAX29X's uncommitted op amp as an aliasing filter.

Table 1. Component values.

Corner frequency	R_{1}	R_{2}	R_{3}	C_{1}	C_{2}
$(\mathrm{~Hz})$	$(\mathrm{k} \Omega)$	$(\mathrm{k} \Omega)$	$(\mathrm{k} \Omega)$	(F)	(F)
100 k	10	10	10	68 p	330 p
50 k	20	20	20	68 p	330 p
25 k	20	20	20	150 p	680 p
10 k	22	22	22	330 p	$1.5 n$
1 k	22	22	22	3.3 p	$15 n$
100	22	22	22	$33 n$	150 n
10	22	22	22	330 n	1.5μ

Note: some approximations have been made in selecting preferred component values.

The passband error caused by a 2nd-order Butterworth can be calculated using the formula

$$
\text { Gain error }=-10 \log \left[1+\left(\frac{f}{f_{c}}\right)^{4}\right] \mathrm{dB}
$$

same THD over the whole range, given suitable post-filtering to suppress clock hash. The post filters need to be selected as appropriate, but with a clock frequency of 100 times the output frequency, each can cover a 20:1 frequency range or more. This means that only two or three are needed to cover the full 20 Hz to 20 kHz audio range, while four can cover the range 0.1 Hz to 25 kHz .
The clock can be fed to a counter with a 100 ms gate time, providing near instantaneous digital readout of the output frequency down to 20 Hz to a resolution of 0.1 Hz , a feature which would require a 10 s gate time in a conventional audio oscillator with digital read-out. If the clock is derived from a DDS chip, then the frequency can be set digitally, to crystal accuracy. The clock division ratio of 100 would reduce any phase-modulation spurs in the output of the DDS by 40 dB : a necessary feature with many DDS devices.
The usual arrangement in a multipole active filter is to cascade a number of individual sections, each of which is solely responsible for one pole pair of the overall response. This can lead to substantial departures from the desired response, due to component tolerances in the individual two-pole sections, particularly the highest Q section(s).
Interestingly, the MAX29X series filters employ a design which emulates a passive ladder filter, Fig. 5b, so that any individual component tolerance error marginally affects the shape of the whole filter, rather than being concentrated on a particular peak. Ideally, the passband peaks and troughs are all equal, as are the stopband peaks. The actual typical performance (for the MAX294) is shown in Fig. 5c.
The Butterworth filter (with simple pre- and post-fil-
ters) provides a powerful anti-aliasing function to precede the A-to-D converter of a DSP (digital signal processor) system. The elliptic versions enable operation even closer to the Nyquist rate (half A/D's sampling frequency). The MAX294 is suitable for 10 bit A-to-Ds and the max2 293 for 12 or 14 bit A-to-dDs. This assumes that the DSP system is interested only in the relative amplitudes of the frequency components of the input, and not in their relative phases. Where the latter is also important, to preserve the detailed shape of the input, the MAX292 filter with its Bessel response is needed. Aliasfree operation will then be possible only to a lower frequency; eg, one fifth of the Nyquist rate for a 10 bit system, since $A_{s}=60 \mathrm{~dB}$ occurs at $5 \mathrm{~F}_{0}$ for this device.
The Bessel filter with its constant group delay offers improved waveform fidelity over the Butterworth filter; this is graphically illustrated in Fig. 5d. The pulse response of the elliptic types would be even more horrendous than the Butterworth's.
The filtering function of a $M A X 29 X$ would require a much greater expenditure of board space, power, money and number of chips if performed in DSP. These devices provide mighty filter power from their minuscule packages.

References

1. Design Brief "Logamps for radar and other uses", EW + WW April 1993 pp.314-317.

Electronic Designs Right First Time?

From Schematic Capture -

EASY-PC Professional

Create your schematics quickly and efficiently on your PC using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using our PULSAR, ANALYSER III and Z-MATCH II simulation programs.
through Analogue and Digital Simulation -

PULSAR

ANALYSER III

Z-MATCH II

If the results of the simulations are not as expected, the configuration and component values of the circuit can be modified until the required performance is achieved.

to Printed Circuit Board Design!

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Affordable Electronics CAD		
EASY-PC: Low cost, entry level PCB and Schematic CAD.	\$196.00	¢98.00
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.	\$375.00	£195.00
PULSAR: Low cost Digital Circuit Simulator - 1500 gate capacity.	\$ 195.00	£98.00
PULSAR Professional: Digital Circuit Simulator ~ 50,000 gate capacity.	\$375.00	£195.00
ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 nodes.	\$ 195.00	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	\$375.00	£195.00
Z-MATCH II: Smith Chart program for RF Engineers - direct import from ANALYSER III.	\$375.00	£195.00
We operate a no penalty upgrade policy. You can upgrade at any time to the professional version of a program for the difference in price.	US\$ prices include Post and Packing	Sterling Prices exclude P\&P and VAT.

EASY-PC Professional
Number One Systems Ltd.
Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information: Please Write, Phone or Fax Tel: 0480461778 Fax: 0480494042 USA tel:011-44-480 461778 fax 011-44-480 494042 VISA, MasterCard, AMERICAN EXPRESS

CFA

RIP?

Has the debate over the crossed field antenna at last reached a conclusion? Colin

 Davis presents the results of scientific testing on this electrically small antenna system.Since the crossed-field-antenna (CFA) first appeared in 1989^{1} it has generated much debate about its performance claims and usefulness as an electrically small antenna. Now, following work carried specifically to investigate whether the CFA does operate as an efficient radiator as claimed, doubts about it seem overwhelming.
It is not possible to include all details of my year's work at Surrey University, studying the theory behind the antenna and the practical measurements made to support or refute the ideas. Nevertheless, my conclusion disputes the hypothesis behind the CFA and casts doubt on its performance claims.

Practical testing

Work was carried out on a crossed-fieldantenna constructed to approximately half the linear dimensions of Maurice Hately's antenna, together with two reference antennas, enabling comparisons to be made with the CFA in operation. The reference antennas
were simple half wave dipoles designed for use at 50 MHz .
But one problem had to be solved before practical testing of the antenna could begin power could not be successfully coupled to the CFA unless its input impedances were known so that suitable transformers could be designed to match to the 50Ω feeders being used. Little information is provided in available literature to indicate what the values might be. But a discussion with Mr Hately suggested that both CFA input impedances should be somewhere around 300Ω. Using this as a start point, $4: 1$ baluns were fitted to the CFA inputs to provide a reasonable match to the feeder cables and connected up a test rig. The phasing unit was of a similar design to Hately's and was used to provide the required transmitter signal

Transmit site antenna support at the
University of Surrey, with CFA horizontally polarised. The support stands approx 4 m high on the flat roof of a five storey building.

Barrel shaped cross-fieldantenna. The CFA hypothesis states that quadrature RF currents flowing in the plates and cylinders synthesise an EM wave directly at their point of

splitting and 90° phasing of the two equal power outputs. In practice an RF trombone had to be included to provide precise adjustment of phase angle, and attenuators were included to help with equalising the power in both the CFA feeders.
No evidence has been found in past articles to indicate what was taking place within the two feeds to the CFA. The only results offered seem to be from measurements made in the transmitter feeder, so this aspect was of great interest because it would give results directly related to efficiency of the CFA.
The literature is also not clear on to what the 90° phase shift requirement referred: was it the incident waves travelling towards the CFA down the feeders; or the resultant signal at the CFA terminals due to forward and reflected waves? To cover both possibilities, both values were measured. Forward waves were measured with directional couplers, using a vector

CFA theory of operation

A.n electromagnetic wave is comprised of two components, an electric field E and a magnetic field H, lying at right angles to each other and to the direction of propagation. Half the total power in the waves is said to exist in each of the components. The CFA aims to produce EM waves by synthesising the two fields in the correct orientation and phase from two distinct antenna structures, the E-plates and D-plates.

One form of the CFA, suggested by the inventors, is the barrel shaped device The two E-plates give rise to an electric field and the D-plates, which form a capacitor, generate a magnetic field around their circumference in accordance with Maxwell's wave equations. Vectors S denote the direction of wave propagation which should result if fields E and H coincide, in phase, in this vicinity. To obtain this in-phase condition, the signal applied to the D-plates must phase lag the E-plates feed by 90°. Also, to satisfy the condition that half the signal power is in each field component, the inventors suggest that half the signal power should be sent to the E-plates and half to the Dplates - the function of the phasing unit.
But the theory leads to an interesting observation: if the antenna is efficient and all the power sent to it is radiated when the above conditions are met, then the antenna inputs ought to appear purely resistive (since a perfect match would be made to the feeder cable); and if any phase change occurs between the signals incident on the antenna then some of the power will be reflected. So the input impedances will presumably appear reactive as well. In short, its characteristics should not necessarily be constant at a given frequency, as would be expected with a dipole for example.

Test CFA. The steel conductors were supported with insulating Perspex parts. The dimensions represent a $\mathbf{5 0 \%}$ scaling on the author's original figures..
voltmeter which could display both voltage and the relative phases of two inputs (Fig. 4), and the resultants at the CFA inputs were measured using two high impedance probes.

CFA test results

Measurements were made on the CFA with 4:1 baluns on the inputs, with equal power in the forward wave feed signals and with the required 90° phase shift between them. Results are shown in Table 1.
The phase angle was varied by $\pm 10^{\circ}$ around the 90° point to allow for measurement errors. Even if the baluns on the antenna feeds were not of the correct ratio, an increase in radiated power and a dip in VSWR ought to be expected in the feeders when the phase angle was correctly adjusted for crossed-field operation. No such dip occurred.
In fact the VSWR remained constant indicating that the power radiated was not critically dependent on phase angle as suggested

Table 1. Measurements made on the CFA.

	D-plates	E-plates
Forward power (dBm)	3.5	3.5
Backward power (dBm)	-2.5	3.5
VSWR on feeder	3	-

Table 2. Forward wave measurements.

	D-plates	E-plates
Forward power (dBm)	5.5	5.5
Backward power (dBm)	2	3
VSWR on feeder	5	7

by Hately. The signal at the end of the antenna test range, received by a dipole in the same polarisation as the CFA, was -63 dBm compared to -40 dBm when the CFA was replaced by another dipole; a difference of 23 dB . The figure means that the dipole was radiating 200 times as much power as the CFA, and clearly indicates that the CFA was not operating as an efficient antenna under these conditions, since that kind of difference is far too large to be accounted for by measurement errors.
For completeness, the resultant signals, measured by probes at the CFA inputs, were set up with equal amplitude $(0.5 \mathrm{~V})$ and at 90° to one another; the received signal this time was, -65 dBm . Again, sweeping the phase angle by $\pm 10^{\circ}$ did not improve the signal level.
The same tests were carried out on the CFA with a 1:1 balun fitted to the E-plates and a $4: 1$ balun on the D-plates. Forward wave measurement results are shown in Table 2.

Table 3. Tests conducted in the two feeders.

	D-plates	E-plates
Forward power (dBm)	12.5	7
Backward power (dBm)	10.5	8
VSWR on feeder	9	17

Once again, no dip occurred in the feeder VSWRs as the phase angle was swept.

Literature on the crossed-field-antenna and articles by the CFA inventors have presented Smith charts and measurements made in the single cable connecting the transmitter to the phasing unit. But these have omitted to explain - or may be even consider - what was happening between the phasing box and the antenna. From the graphs given, it is clear that a good match had been obtained to the transmitter. But was all the power actually being radiated by the antenna?
To check this, the attenuators and RF trombone were removed from the test circuit, and the phasing unit was adjusted to give the minimum VSWR possible in the single feeder from the transmitter. In other words, the situation normally existing when measuring VSWR for an antenna system. Adjustment is quite critical, indicating a high Q system. Nonetheless, with steady hands a VSWR of 1.13 was achieved. Tests were again conducted in the two feeders to the CFA, yielding the results in Table 3.
The received signal at the end of the test range this time was -63 dBm . Interestingly, more power returned from the E-plates than was incident, and it appears that energy was being coupled from the D-plates across to the E-plates. The results all suggest that most of the power from the transmitter was being dissipated by just heating up the antenna system.

Not all it is claimed

To sum up, the field strength measurements made at the receiver site showed that the CFA radiated signal levels were consistently 23 dB below those made using a dipole (or worse), clearly showing that the CFA was not operating efficiently. The required feed phase angle of 90° was arranged for both the forward wave signals and the resultant signal at the plate terminals. In each case, no signal improvement or dip in VSWR was observed when sweeping the phase angle around the

CFA phasing unit. The 50Ω resistors represent ideal input impedances of the CFA. If the CFA inputs are exactly 50Ω then the two phasing unit outputs can be set equal in amplitude together with a 90° phase shift.

Directional coupler design

Before work could begin in earnest on the crossed-field-antenna, directional couplers had to be constructed to monitor signals in the CFA feeders. The couplers were made of a small diecast box (dimensions $90 \times 35 \times 30 \mathrm{~mm}$) with BNC connectors for all the ports to enable quick and easy connection and disconnection when in use.

The main (through) transmission line of the coupler, was made of a piece of 0.5 in copper pipe, chosen because it gave an impedance of almost exactly 50Ω when soldered between the two BNC connectors at either end of the box.

To tap off some power from the main line, another transmission line was set up along the side of the diecast box, resembling a microstrip line similar to those used in high frequency printed circuit board designs. For this, a piece of thin brass strip was cut to a length slightly longer than the distance between the back two BNC connectors. Its width was about 6 mm .

By drilling one small hole at either end, the strip could be fitted over the "inner" terminals protruding from the back of the BNC sockets. Then, by sliding it in and out parallel to the side of the box, the characteristic impedance of the secondary line could be adjusted.

A network analyser was used to find a
position where the line impedance was 50Ω, after which the brass strip was fixed in place with solder. The amount of power coupled to the secondary line is dependent on the length, width and distance of the strip from the main copper line.

It so happens that these dimensions give a -40 dB coupling at the test frequency of 50 MHz . In other words, for a of 0 dBW going in at port 1 and out of port 2 , a signal of -40 dBW would appear at port 3. Coupling is ideally from port 1 to port 3 and from port 2 to port 4 . But if the characteristic impedances of the lines in the directional coupler are not exactly 50Ω then signal reflections will occur causing power to be coupled to and from the wrong ports. In practice, with standard measuring equipment, making directional couplers such as these work very well indeed is not difficult: one of the devices constructed achieved a directivity of 45 dB . The ability to construct such devices satisfactorily, reduces the cost of undertaking work on the crossed-field-antenna considerably.

Anyone wishing to make a coupler should be aware that although expensive test equipment was available to set up these devices, it was quite a luxury and the same result could equally well be achieved using a transmitter, dummy load and an accurate VSWR meter to measure reflections.

Directional coupler main line can be seen between the two BNC connectors at either end of the box.

90° point. The results demonstrated that the phase angle was unimportant to the operation of the antenna - at least under these conditions - contrary to Hately's suggestions.

Proving beyond any doubt that a theory is completely wrong, is extremely difficult. But it is possible to conduct experiments as scientifically and impartially as possible and to draw firm and well founded conclusions from them under the conditions tested. On this basis, the work conducted suggests the CFA is not all it claims to be - despite best efforts to make it work.
I rest my case.

References

1. Kabbery, Hately and Stewart. "Maxwell's Equations and the Crossed Field Antenna", EW +WW, March 1989
2. Bryan C Wells. "The Crossed Field Antenna in Practice", EW + WW, November 1989. 3. Bryan C Wells. "CFA Experiments". EW + WW, March 1990.
3. Hately, Kabbery \& Stewart. "CFA Working Assumption?", EW + WW, December 1990. 5. Hately and Kabbery. GB Patent No. 2,215,524 A. Published 20-09-1989,
Colin Davis conducted his study of the CFA at the University of Surry as his final year project, part of a degree course in Electronic \& Electrical Engineering. He graduated with a

R.s. LANGREX R.ST. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors,
transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CRO2OP.
Tel: 081-684 1166
Telex: 946708
Fax: 081-6843056

BoardMaker

Finally... an upgradeable PCB CAD system to suit any budget

BoardMakert - Entry level
 - PCB and schematic dratting

- Easy and intuftive to use
- Surface mount support
- $90^{\circ}, 45$ and curved track comers
- Ground plane fil
- Copper highlight and clearance checking

BoardMaker2 - Advanced Tevel

- All the features of BoardMaker1 plus
- Full neflist support - OrCad, Schema, Tango, CadStar
- Full-Design Rul Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generatof - Database ASCil, BOM
- Thermal power plane support with full DRC

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analegue support
- Full intarupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Pinters - 9 \& 24 pin Dot matrix, HPLaserjer and PostScript
- Penplotters - HP, Roland, Houston \& Graphtec
- Photoplotters. All Gerber 3×00 and 4×00
- NC Dril plus annotated drill drawings to HPGL, Gerber and DXF (BM2)

Quickroute for Windows ${ }^{\mathrm{mm}} 3 / 3.1$ and DOS

A New Generation of PCB and Schematic Design Software

Quickroute 2.0 for Windows 3/3.1
Supports over 150 printers/plotters

Quickroute 1.5 for DOS
Supports dot-matrix, LaserJet and HPGL

Easy to use and fast to learn !

Our first product - Quickroute 1.2 for DOS - was called 'exceptional value for money' by Everyday Electronics (Sep92) and EW\&WW (May92) said 'Cheap .. it may be. But .. Quickroutes performance puts it in an allogether much bigger league'. Now there are two new versions: Quickroute 2.0 for Windows, and Quickroute 1.5 for DOS, and they are even better!
With the new 'button bar' you get instant access to all the powerful object selection and improved editing features with a single mouse click. There's built in help, faster turbo draw for rapid zoom \& pan, a new filled polygon object type for earth planes, and with the Windows version - support for over 150 printers and plotters and a new simple schematic capture tool. Quickroute also comes with a simple auto-router tool, curved track capability, and schematic/PCB symbol libraries. Just fill in the coupon below, or phone, for more details on the new generation of Quickroute products.

Please send cheques payable to POWERware to: POWERware (Dept.EW), 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK. Phone 0614497101 Send me Quickroute 2.0 for Windows $3 / 3.1$ at $£ 59$
\square More Information
Quickroute 1.5 for DOS at $£ 39 \quad \square \quad$ Both versions for just $£ 79$
All prices inclusive. Please add $£ \mathcal{A}$ for $\mathrm{P}+\mathrm{P}$ outside the UK
Name
Disk Size \qquad
Address

INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

C HERE!

If you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

Send your circuit ideas to The Editor, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Overcurrent protector

P
laced between a power source and its load, this circuit protects the power source from excess current drain. It limits current surge at switch-on and acts as a circuit-breaker if a short or circuit malfunction causes current to exceed a preset limit in normal operation.
With the switch on, the series transistor $T r_{l}$ is biased on via R_{5} and the zener D_{l}, bias being set to give the required maximum output current of 100 mA or less. The load receives virtually the entire rail voltage.
Excess current flowing through R_{I} brings $T r_{2}$, and therefore $T r_{3}$, into conduction, diverting base current from $T r_{l}$ and limiting output current for a short time, as in a switch-on surge. If the high current persists, C_{1} charges up to the voltage of zener D_{2}, which connects $T r_{3}$ collector to $T r_{2}$ base and produces an avalanche effect. All the available bias current is now diverted from the output transistor and no output current passes.
The time to complete cut-off depends on the time constant $C_{l} R_{5}$.
NI Lavrantiev
Schiolkovo
Moscow Region Russia

Overcurrent protection circuit prevents power-supply damage caused by switch-on surges and acts as a circuit breaker in the presence of a short-circuit.

Function generator is digitally programmed

R^{y} means of a simple modification, the function generator put forward by R W J Barker in Circuit Ideas for June, 1991 becomes programmable from a digital input word.
Figure 1 shows the original circuit, which is a ring oscillator producing approximate square, triangular and sine waves at x, y and z respectively, its frequency being determined by $R_{l} C_{1}$. In Fig. 2, the resistance seen
between (a) and (b) is $R_{a b}=1 / g_{m}$, where $g_{m}=I_{A B C} / 2 V_{T}$, the transconductance of the two transconductance amplifiers, $I_{A B C}$ being the automatic bias control current and V_{T} the thermal voltage. Since the value of R_{I} controls the frequency of oscillation, replacing R_{I} with this circuit allows linear frequency control by variation of the input current.
Adding a digital-to-analogue converter, as

DO YOU HAVE A £100 CIRCUIT?
AS OF THE JULY ISSUE, EACH MONTH'S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL OTHER PUBLISHED IDEAS WILL BE WORTH £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN COMPONENTS

Voltage-to-period converter

As in traditional designs, this converter relies on a ramp technique, but in this case the flyback is initiated in a different manner and jitter significantly reduced.
The current source supplies charging current to C_{l}, which ramps linearly in a positive direction. As the ramp voltage reaches $V_{i j}$, the LM3 I I comparator output goes positive the edge being differentiated by $C_{2} R_{l}$. The resulting pulse turns Tr_{2} on, blocking the comparator at the strobe input and maintaining the output condition for a time determined by the time constant of the $C R$. It also turns on $T r_{l}$ to discharge C_{l}. Ramp time T is dependent only on the input voltage and the discharge time must only be long enough for full discharge of C_{l}.
The relationship between T and $V_{\text {in }}$ is adjusted by varying the value of C_{\mid}or current source output.

Viacheslav Shkarupin

Kiev
Ukraine

Fig. 1. Positive feedback from the comparator output to initiate flyback reduces jitter in this voltage-toperiod converter

Fig. 2. Slope of ramp is dependent on the value of $\mathrm{C1}$ and the current source. Period T bears a linear relationship to $V_{i n}$.

Simple, high-gain amplifier

Two extra transistors in a cascode amplifier produce a much higher gain, a greater bandwidth and a reduced output impedance.
The load R_{2} resistor of T_{4}, the input transistor, has virtually no voltage across it, because of its inclusion in the amplifier made up by $\operatorname{Tr}_{1,2,3}$; current through it is therefore practically zero. Equivalent load, and therefore gain, of Tr_{4} is accordingly extremely high.

Three transistors in the load circuit of Tr 4 produce high gain, wide band and low output impedance.

Since the $\operatorname{Tr}_{1,2,3}$ amplifier's frequency response is wide-band, the resulting amplifier exhibits a gain of over 60 dB over a bandwidth of 850 kHz into 50Ω, using BC182 and BCl79 transistors. Feedback through R_{2} gives an output impedance of only a few ohms. Capacitor C_{2} across the bias resistors for the input stage removes AC feedback
I have used the amplifier in the output of an IF amplifier, in which it gave a good match to a crystal detector.
G Mirsky
Akademtekh R\&D Centre
Moscow
Russia

Precise power output stage

 source and sink current, or if the standing current in an audio power output stage must be accurately set independently of temperature, then this circuit is one solution.
Since top and bottom circuits are identical, apart from polarity, the top half will be described. When quiescent, the current mirror $T r_{1,2}$ has a voltage between the emitters which depends on standing currents according to $V=V_{T} \ln I_{I} / I_{2}$, where V_{T} is the temperature voltage kT / q of 26 mV at room temperature. If $I_{I}=10 I_{2}, V=59 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ ambient and setting $R_{5,6}$ at 1Ω puts the standing current in Tr_{5} at 59 mA , independently of junction temperature, the values of $R_{5,6}$ and the ratio I_{1} / I_{2} being adjusted to suit one's needs.

If $R_{l}=R_{2}$, small-signal input impedance is
$R_{i n}=\frac{1}{2} \frac{g_{f e} R_{1} R_{L}}{1+g_{f e} R_{L}} \approx \frac{R_{1}}{2}$,
when $g_{f s} R_{L}>1$, where $g_{f f}$ is the transconduxctance of $T_{5,6}$, although replacing the resistors by current sources will increase that. Output impedance is $R_{7} / 2$. Match the mirror pairs to avoid errors and to prevent possible thermal runaway.
Terence S Finnegan
Carlisle

Current mirrors in this power output stage, which sources and sinks current, allow accurate setting of standing current,

Near-field probes for EMC testing

Before spending money on having a new product assessed for its EMC, it might be advisable to check roughly on its noisiness while still in development. The diagrams show two probes for near-field "sniffing": an electrostatic probe and an electromagnetic type.
The former is a thin plate of copper or tinned steel measuring about 16 by 25 mm and having a hoop of 20 swg wire soldered to it so that an oscilloscope probe can clip onto it. The plate is insulated with tape, since it is used near live circuits. A 25 mm length of wire carrying a $4 \mathrm{Vpk}-\mathrm{pk}, 31 \mathrm{kHz}$ square

Fig. 1. Near-field electrostatic probe allows lowcost testing of prototype equipment for electromagnetic compatibility.

Fast full-wave rectifier

oosely based on a design by Lidgey Land Toumazou (EW ${ }^{3}$, November 1987, p.1115), in which current mirrors sensed the supply current of op-amps, this circuit uses a MAX435 wide-band, differential-output transconductance amplifier to give full-wave rectification of signals up to 250 MHz . Output is $4 Z_{l} / V_{\text {in }}$ for the 435. You could also try the BurrBrown OPA660, which offers 700 MHz -plus operation. Peter May

An up-date on a design by Lidgey and Toumazou, using a MAX435 or a BurrBrown OPA660 for very high-speed rectification.

Fig.2. Electromagnetic probe.

source detector	20mA in loop	40 mm dia.	60 mm dia. decay time	
Tek. P6021 probe (open)				
	switch to $2 \mathrm{~mA} / \mathrm{mV}$	1.5 mV	1.0 mV	$5 \mu \mathrm{~s}$
	switch to $10 \mathrm{~mA} / \mathrm{mV}$	0.3 mV	0.2 mV	$25 \mu \mathrm{~s}$
10t on 20 mm dia with 100Ω	40 mV	25 mV	100 ns spike	

wave gave a 5 mV pk-pk oscilloscope deflection at a distance of 10 mm . Holding the plate edge-on to a PCB track gives the best signal.
As a less expensive alternative to the Tektronix Alternating Current Probe with the jaws open which, as the table shows, worked reasonably well, my solution is 10 turns of enamelled copper wire at 20 mm diameter. On signal transitions, this gives triangular spikes about 100 ns wide, which trigger most oscilloscopes; loop currents of
$2 \mathrm{~mA} \mathrm{pk}-\mathrm{pk}$ are visible at $5 \mathrm{mV} /$ div. The 100Ω resistor gives a slightly under-damped response and a larger signal than with 50Ω.
The table shows measurements made with the detector coil at the centre of the source loop. If a spectrum analyser or a fast, sensitive oscilloscope is used, the number of turns can be reduced to give a truer spectral response.
C J D Catto
Elsworth
Cambridgeshire

Independent $\mathrm{m}: \mathrm{s}$ adjustment for wide-band pulse gen

This circuit delivers square waves and rectangular waves with a mark:space ratio of $10-90 \%$ at frequencies from 1.2 kHz to 2.7 MHz
Frequency generation comes from the voltage-controlled oscillator $I C_{1}$ and associated components, the output of which is adjustable from 12 kHz to 27 MHz . by means of the potentiometer.

Johnson counter $/ C_{2}$ provides a Set pulse from the Q0 output to the SR flip-flop $I C_{3}$, the corresponding Reset pulse coming by way of the selector switch from outputs Q1Q9, output frequencies being $1 / 10$ of the input from $I C_{l}$, as is the square waveform from carry output C 0 .

W Dijkstra

Waalre, The Netherlands

Three ICs form a 1.2 kHz 2.7MHz pulse and square-wave generator having a mark-fospace ratio adjustable in 10\% steps from $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$.

Example shows waveforms for switch in position 3

Marconl TF2008 - AM.FM signal generator - Also sweeper - $\mathbf{1 0 \mathrm { Kc } / \mathrm { s } - 5 1 0 \mathrm { Mc } / \mathrm { s } \text { - from } £ 3 5 0 ~}$ tested to $£ 500$ as new with manual - probe kit in wooden carrying box. HP Frequency comb generator type 8406A - $£ 400$.
HP Sampling Voltmeter (Broadband) type 3406A - $£ 200$ HP Vector Voltmeter type 8405 A - $£ 400$ to $£ 600$ - old or new colour
HP Synthestser/signal generator type $8672 \mathrm{~A}-2$ to $18 \mathrm{GHz} £ 4000$. HP Synthestser/signal generator type $8672 \mathrm{~A}-2$ to $18 \mathrm{GHz} £ 4000$. HP Osclllographlc recorder type 7404A - 4 track - E 350 . HP Plotter type 9872B-4 pen - £300. HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also 18.40 GHz . P.O.R HP Network Analy ser type 8407A $+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$ HP Down Converter lype 11708-.01-11Mc/s- £450.
HP Modulator type 8403A - $£ 100-£ 200$.
HP Pin Modulators for above-many difterent frequencies - $£$ HP Counter type $5342 \mathrm{~A}-18 \mathrm{GHz}$ - LED readout - $£ 1500$ HP SIgnal Generator type 8640B-Opt001 + 003-.5.512MC/s AM/FM - 11000 . HP Amplifier type 8447A -. 1 -400Mc/s $£ 200-\mathrm{HP} 8447 \mathrm{~F} .1-1300 \mathrm{Mc} / \mathrm{s} £ 400$ HP Frequency Counter type 5340A - 18GHz £1000-rear output £800. HP 8410-A - B-C Network Analyser $110 \mathrm{Mc} / \mathrm{s}^{\text {s }}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set•up - 8411A -8412-8413-8414-8418-8740-8741-8742-8743 -8746-8650. From $£ 1000$
HP Signal Generator type $8660 \mathrm{C}-\mathbf{- 1 \cdot 2 6 0 0 \mathrm { Mc } / \mathrm { s } \text { . AMFM } - £ 3 0 0 0 . 1 3 0 0 \mathrm { Mc } / \mathrm { s } £ 2 0 0 0 .}$ HP Signal Generator type 8656A - 0.1-990Mc/s. AMFM - £2000. HP 8699B Sweep PI-0.1-4GHz £750-HP8690B Mainframe $£ 250$
Racal/Dana 9301A-9302 RF Milivoitmeter - $1.5-2 \mathrm{GHz}$ - $£ 250-£ 400$
Racal/Dana Counters 9915 M - 9916 - 9917-9921 - £150 to £450. Fitted FX standards. Racal/Dana Modulation Meter type 9009 - $8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - £250.
Racal - SG Brown Comprehensive Headset Tester (with artificial head) Z1A200/1 - £350. Marconl AF Power Meter type 8938- $£ 200$.
Marconi RCL Bridge type TF2700- $£ 150$.
Marconi/Saunders SIgnal Sources type-6058B-6070A-6055B-6059A -6057B-6056-$250-\mathrm{m}$
Marconl TF1245 Circuit magnification meter + 1246 \& 1247 Oscillators - £100-£300 Marconl microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18 \cdot 26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 0 GHz - 21000 or Plonly $£ 600$.
Marconi distortlon meter type TF2331- £150, TF2331A - $£ 200$
Mlcrowave Systems MOS $/ 3600$ Microwave frequency stabillzer -1 GHz to 40 GHz £1k.
Tektronlx Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-
S1 - S2 - S6 -S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508 - DD501 -
VR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - P.O.R.
Altech Stoddart recelver type 17/27A-.01-32MC/s - £2500
Altech Stoddart recelver type NM65T-1 to $10 \mathrm{GHz}-£ 1500$.
Gould J3B Test osclilator + manual - 2200 .
Infra-red BInoculars in fibre-glass carrying case - tested - £100. Infra-red AFV sights $£ 100$ ACL Fleld Intensity meter receiver type SR-209-6. Plugs-ins from $5 \mathrm{Mc} / \mathrm{s}$ to 4 GHz - P.O.R Tektronlx 491 spectrum analyser - $1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new - $£ 1000$ or $10 \mathrm{Mc} / \mathrm{s} 40 \mathrm{GHz}$. Tektronlx Mainframes - 7603-7623A - 7633-7704A - 7844-7904 - TM501 - TM503-TM506-7904-7834-7104.
Knott Polyskanner WM1001 + WM5001 + WM3002 + WM4001 - $£ 500$
Altech 136 Preciston test RX + 13505 head 2-4GHz - $£ 350$.
SE Lab Elght Four - FM 4 Channel recorder - $£ 200$.
Altech 757 Spectrum Analyser - 00122 GHz - Digital Storage + Readout - $£ 3000$ Dranetz 606 Power line disturbance analyser - $£ 250$.
Precision Anerold barometers- $900-1050 \mathrm{Mb}-$ mechanical diglt readout with electronic Indicato
-battery powered. Housed in polished wood carrying box-tested - $£ 100-£ 200-£ 250.1,2$ or 3. HP141T SPECTRUM ANALYSERS - ALL NEW COLOURS
TESTED WITH OPERATING MANUAL
HP141T+8552A or B IF-8553B RF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF - $£ 1300$ or $8 \mathrm{IF}-£ 1400$ HP141T+8552 or BIF.
 HP141T + 8552A of B IF-8556A RF - 20 Hz -300kHz-A IF-A HP8443A tracking generator/counter - $100 \mathrm{kHz-1} 10$
HP8445B tracking pre-selector DC-18GHz - $\mathbf{£ 7 5 0}$.
HP ANZ UNITS AVAILABLE SEPARATELY - NEW COLOURS - TESTED.
HP141T mainframe - $£ 550-8552 \mathrm{AF}$ - $£ 450-8552 \mathrm{BIF}-£ 550-8553 \mathrm{BRF}-1 \mathrm{kHz}=110 \mathrm{Mc} / \mathrm{s}-$ £550-8554B-RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 650-8555 \mathrm{~A}-\mathrm{RF}-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}-£ 1550$ HP 3580A LF-spectrum analyser - 5 kHz to 50 kHz - LED readout - digital storage - $£ 1600$ with instruction manual - Internal rechargeable battery.
Tektronlx 7 D 20 plug-In 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes -
£500-manual - $£ 50$.
Datron 1065 Auto Cal dighal multimeter with instruction manual - $£ 500$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}$ - internal NiCad battery - $£ 150$. Aerlal array on metal plate 9×9 containing 4 aeriais plus Narda detector $-.100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpt - $£ 100$.
EIP 451 microwave pulse counter $18 \mathrm{GHz}-\$ 1000$.
Marconl RF Power Amplifier TF2175-1.5Mc/s to $520 \mathrm{Mc} / \mathrm{s}$ with book - $£ 100$.
Marconl 6155A Signal Source - 1 to 2 GHz - LED readout - $\mathbf{\Sigma 6 0 0}$.
Schlumberger 2741 Programmable Mlcrowave Counter -10 Hz to 7.1 GHz - $£ 750$
Schlumberger 2720 Programmable Universal Counter 0 to $1250 \mathrm{Mc} / \mathrm{s}$ - 玉600.
HP 2225CR Thinkjet Printer - $£ 100$.
TEK 576 Callbratlon Fixture - 067-0597-99 - £250
HP 8006 A Word Generator - $£ 150$.
HP 1645A Data Error Analyser - £150.
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS- $550-£ 150$.
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS - £50- 150 .
HP 809C Slotted Line Carrlages - various frequencies to $18 \mathrm{GHZ}-£ 100$ to $£ 300$
HP 532-536-537 Frequency Meters - various frequencies - £150. $£ 250$.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$.
S.E. Lab SM215 Mk11 transfer standard voltmeter - 1000 volts.

Allech Stoddart P7 programmer - £200.
H.P. 6941 B multiprogrammer extender. £100.

Fluke Y2000 RTD selector + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD digital
thermometer + 9 probes. $£ 350$ all three items.
H.P. 6181 DC current source. $£ 150$.
H.P. 59501A - HP-IB isolated D/A/power supply programmer.
H.P. 3438 A digital multimeter.
H.P. 6177C DC current source. £150.
H.P. 6207 B DC power supply
H.P. $741 \mathrm{BAC/DC}$ differential voltmeter standard (old colour) $£ 100$
H.P. 6209 B DC power unit.

Fluke 80 high voltage divider.
Fluke 431 C high voftage $D C$ supply
TektronIX M2 gated delay calibration fixture. 067-0712-00.
Tektronix precIsIon DC divider calibration fixture. 067-0503-00.
Tektronix precision DC divider calibration fixture. 067-0503-00.
Tektronix overdrive recovery calibration fixture. 067-0608-00.
Avo VCM163 valve tester + book $£ 300$.
H.P. 5011 T logic trouble shooting kit. $£ 150$

Marconl TF2163S attenuator - 1GHz. £200.
PPM 8000 programmable scanner.
PPM 8000 programmable scanner.
Fluke 730A DC transfer standard.
B\&K 4815 calibrator head.

B\&K 4812 calibrator head.
Farnell power unit H60/50 - $£ 400$ tested
H.P. FX do ubler 938A or 940 A - $£ 300$.

Racal/Dana 9300 RMS voltmeter - $£ 250$.
H.P. sweeper plug.Ins $-86240 \mathrm{~A}-2-8.4 \mathrm{GHz}-86260 \mathrm{~A}-12.4-18 \mathrm{GHz}-86260 \mathrm{AH} 03-10-$ $15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz}$. $86245 \mathrm{~A} 5.9-12.4 \mathrm{GHz}$
elequipment CT71 curve tracer - $£ 200$
A.P. 461 A amplifier $-1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - old colour - $£ 100$
H.P. 8750 a storage normalizer.
ektronix oscilloscopes type 2215A - 60Mc/s - c/w book \& probe - $£ 400$.
ektronix monitor type 604 - $£ 100$.
Marcon TF2330 or TF2330A wave anatysers - £100- $£ 150$
HP5006A Slgnature Analyser £250 + book.
HP 3763A error detector. £250.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 800$.
Racal/Dana slgnal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 900$
Claude Lyons Compuline - line condition monitor - in case - LMP1 + LCM1 5500
Efratom Atomlc FX standard FRT - FRK - .1-1-5-10Mc/s. £3K tested.
Racal 4D recorder - £350 - £450 in carrying bag as new.
HP8350A sweep oscillator mainframe + HP11869A RF PI adaptor - $£ 1500$.
Altech - precision automatic noise figure indicator type 75-£250
Adret FX synthesizer 2230A-1 Mc/s. £250.
Tektronlx-7S12-7S14-7T11-7S11-S1-S52-S53.
Rotek 610 ACIDC calibrator. £2K + book.
Marconl TF2512 RF power meter - 10 or 30 watts - 50 ohms - $£ 80$.
MarconI multiplex tester type 2830.
Marconl digital simulator type 2828A
Marconl channel access switch type 2831.
Marconl automatic distortion meter type TF2337A - £150,
Marconl mod meters type TF2304- £250.
HP 5240 A counter -10 Hz to $12.4 \mathrm{GHz}-£ 400$.
HP 8016 A word detector.
HP 8016 A word generato
4P 489A micro-wave amp -1 -2GHz
AP 8565A spectrum analyser $-.01-22 \mathrm{GHz}-£ 4 \mathrm{k}$
HP 5065 A rubidium vapour FX standard - $£ 5 \mathrm{~K}$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $\varepsilon 1 \mathrm{k}$.
Takeda Riken TR4120 tracking scope + TR1604P digltal memory.
EG\&G Parc model 4001 indicator +4203 signal averager PI.
Systron Donner 6120 countertimer $A+B+C$ inputs $-18 G H z-£ 1 \mathrm{k}$
Racal/Dana 9083 signal source - two tone - £250.
Systron Donner signal generator 1702 - synthesized to 1 GHz - AM/FM.
Systron Donner microwave counter $6057-18 \mathrm{GHz}$ - Nixey tube - $£ 600$.
Racal/Dana synthesized signal generator 9081 - $520 \mathrm{Mc} / \mathrm{s}$ - AM-FM. £600.
Farnell SSG520 synthesized signal generator-520Mc/s - $£ 500$.
Farnell TTS520 test set - $£ 500$ - both $£ 900$.
Tektronix plug-ins - AM503 - PG501 - PG508 - PS503A.
Tektronix TM515 maintrame + TM5006 mainframe.
Cole power line monitor T1085- $£ 250$.
Claude Lyons LCM1P line condition monitor - $£ 250$.
Rhodes \& Schwarz power signal generator SLRD-280-2750Mc/s. £250- $£ 600$.
Rhodes \& Schwarz vector analyser - ZPV + E1 + E3 tuners - 3-2000 Mc/s.
Bell \& Howell TMA3000 tape motion analyser - £250.
Bail Efratom PTB-100 rubidium standard mounted in Tek PI
Bail Efratom rubidium standard PT2568-FRKL
Trend Data tester type $100-£ 150$.
arnell electronic load type RB1030-35
Falrchild interference analyser model EMC-25 - 14kC/s-1GHz
Fluke 1720A instrument controller + keyboard.
Racal/Dana counters - 9904 - 9905 - 9906 - $9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$ -
ع100- $£ 450$ - all fitted with FX standards.
B\&K 7003 tape recorder - $£ 300$.
B\&K 2425 voltmeter - $\Sigma 150$.
B\&K 4921+4149 outdoor microphone.
Wlitron sweeper mainframe $610 \mathrm{D}-£ 500$.
HP3200B VHF oscillator $-10-500 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP3747A selective level measuring set.
HP3586A selective level meter
HP5345A electronic counter
HP4815A RF vector impedance meter c/w probe. $5500-£ 600$.
Marconi TF2092 noise receiver. A, Bor C plus filters.
Marconi TF2091 noise generator. A, B or C plus filters.
Tektronix oscliloscope $485-350 \mathrm{Mc} / \mathrm{s}$ - $£ 500$.
HP180TR, HP182T maintrames $£ 300-£ 500$.
Bell \& Howell CSM2000B recorders.
HP5345A automatic frequency convertor $-.015-4 \mathrm{GHz}$.
Fluke 8506A thermal RMS digital multimeter.
HP3581A wave analyser.
Phillps panoramic receiver type PM7800-1 to 20 GHz .
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ 1o 2 GHz .
Wiltron scaler network analyser $560+3$ heads. $£ 1 \mathrm{k}$.
HP8558B spectrum ANZ PI-. $1-1500 \mathrm{Mc} / \mathrm{s}-0 / \mathrm{C}-\mathrm{£} 1000$. N/C - $£ 1500$ - To fit HP180 serles mainframe avallable - $£ 100$ to $£ 500$.
HP8505A network ANZ + 8503A S parameter test set + 8501A normalizer - £4k.
HP8505A network ANZ + 8502A test set - £3k
Racal/Dana 9087 signal generator $-1300 \mathrm{Mc} / \mathrm{s}-£ 2 \mathrm{k}$
Racal/Dana VLF frequency standard equipment. Tracor recelver type 900A + difference meter type 527E+rubldium standard type 9475- £2750.
Marconl $6960-6960 \mathrm{~A}$ power meters with 6910 heads $-10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ or $6912-30 \mathrm{kHz}$ $4.2 \mathrm{GHz}-£ 800-£ 1000$.
HP8444A-HP8444A opt 59 tracking generator $£ 1 \mathrm{k}-£ 2 \mathrm{k}$.
B8K dual recorder type 2308.
HP8755A scaler ANZ with heads $£ 1 \mathrm{k}$.
Tektronlx $475-200 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - £350 less attachments to $£ 500 \mathrm{c} / \mathrm{w}$ manual, prooes etc. HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A-435A or B-436A - power meters + powerheads - $10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}-£ 200-£ 280$ HP3730B down convertor - £200.
Bradley oscililoscope callbrator type 192-£600.
Spectrascope SD330A LF realtime ANZ - 20Hz-50kHz - LED readout - tested - $£ 500$
HP8620A or 8620C sweep generators - $£ 250$ to $£ 1 \mathrm{k}$ with IEEE
Barr \& Stroud variable fitter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$
coktron|x 7 L 12 analyser $-.1 \mathrm{Mc} / \mathrm{s}-1.8 \mathrm{GHz}-£ 1500-7 \mathrm{~L} 14$ ANZ $-£ 2 \mathrm{~K}$
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}$ - $\mathbf{£ 1 2 0 0 - £ 2 k}$
Marconi TF2370 spectrum ANZ + TK2373 FX extender $1250 \mathrm{Mc} / \mathrm{s}+$ trk gen - $£ 25 \mathrm{k}-\mathrm{£} 3 \mathrm{k}$
Racal recetvers - RA17L-RA1217-RA1218-RA1772-RA1792-P.O.R.
Systron Donner microwave counter 6057 - 18GHz - nixey tube - $£ 600$
HP8616A slgnal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$.

ITEMS BOUGHT FRDM HM GOYERNMENT BEING SURPLUS. PRICE IS EX WORKS. S. A.E. FOR ENQUIRIES. PHONE FOR APPOIMTMENT OR FOR OEMONSTRATION OF ANY ITEMS. AVALLABILITY OR PRICE CHANGE. YIT AND CARR., EXTRA ITEMS MARKED TESTEO HAVE 30 -DAY WARRANTY. WANTED: TEST EQPT - VALVES - PLUGS \& SOCKETS - SYNCROS - TRANSMITTING \& RECEIVING EQPT. ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 651160.

NEW PRODUCTS CLASSIFIED

ACTIVE

A-to-D \& D-to-A converters

Frugal A-to-D. Intended, in the main, for battery-powered, portable equipment, Analog's AD7883 12-bit, sampling analogue-to-digital converter is powered by a $3-3.6 \mathrm{~V}$ rall from which it uses 8 mW in normal operation; in its power-saving mode, power consumption is 1 mW .
Signal:noise ratio is a minimum of 69 dB and THD is -80 dB . No external components are needed to use the device as a complete 12 -bit data acquisition system when the reference is derived from the supply line. Analog Devices Ltd, 0932 232222.

Delta-sigma D-to-A. Crystal's CS4303 delta-sigma digital-toanalogue converter for digital audio implements eight times interpolation and 64 times oversampled delfasigma modulation to give a 107 dB dynamic range up to 20 kHz . The pass band is flat to within 0.0002 dB to 21.8 kHz and interchannel isolation is 115 dB . An evaluation board is available. Sequoia Technology Ltd, 0734311822.

Discrete active devices

Varactor diodes. Intended for use in voltage-controlled oscillators in mobile communications, the BBY51 from Siemens is designed for the 900 MHz band, while the BBY52 is meant to operate between 1.5 GHz and 2.5 GHz . Serles resistance of both is 0.5Ω at 1 V and 1 GHz . They are made as double diodes with a common cathode in SOT23 or as single diodes in SOD323. Siemens plc, 0932 752631

Digital signal processor

Viterbi decoder. Qualcomm's Viterbi digital decoders are now obtainable in the UK from Chronos. Q1601 decoders operate at $10 \mathrm{Mbit} / \mathrm{s}$ and are full custom Viterbi systems in one chip which allow Rate $1 / 2$ coding and 3 -bit soft decision symbol inputs with V35 data descrambling, channel bit error rate, QPSK and OQPSK modems with no external circuitry.

Coding gain is 5.2 dB . Chronos Technology Ltd, 098985471.

1GOPS on a PC board. Allowing the development of multiprocessor systems with a processing power of a thousand Mflops, Loughborough's QPC/C40 200Mflops board has sites for four Texas Instruments
TMS320C40 DSP chips. An LSI asic and hardware links allow the C40 modules to be interconnected in a number of topologies, including connection to other boards to form very large parallel processing systems. Loughborough Sound Images Ltd, 0509231843.

Histogram chip. The HSP48410 from Harris Semiconductor is a dedicated histogrammer and accumulating buffer. It has a 40 MHz clock rate a 10 -bit pixel resolution to analyse up to 1024 grey levels. Onchip memory is in 1 K by 24 bit form, with access by a 16 or 24 -bit, threestate bus. The chip generates a histogram of grey levels in images up to 4096 by 4096 pixels and calculates the number of occurrences of each level for analysis or enhancement. Macro Group, 0628604383.

Linear integrated circuits

Low-distortion op-amp. With a voltage noise of $0.9 \mathrm{nV} / \mathrm{NHz}$ at 1 kHz and total harmonic distortion of -120 dB , the $A D 797$ from Analog setties to 16 bit in $1.2 \mu \mathrm{~s}$. Maximum voltage offset is $60 \mu \mathrm{~V}$, drifting at $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum. Analog Devices Ltd, 0932232222.

15kV ESD protection. Replacing many dlscrete components, Harris's SP720AB/AP diode array IC uses high-speed SCR/diode structures to provide protection against 15 kV of electrostatic discharge and overvoltage protection for up to 14 pins. The diodes clamp to one diode drop above the supply or a diode drop below ground, depending on polarity of the overvoltage. Harris Semiconductor (UK), 0276686886.

Differential video amplifiers. Linear Technology has attacked the problem of obtaining a decent CMRR at high frequencies and introduced the LT1187/1189 video amplifiers, which offer 100dB typical and 40/48dB at 10 MHz . These DC-coupled devices offer a $50 / 35 \mathrm{MHz}$ bandwidth and slew at $165 / 220 \mathrm{~V} / \mu \mathrm{s}$. Input offset voltage of $2 / 1 \mathrm{mV}$, bias current of 200 nA and input resistance of $100 / 30 \mathrm{k} \Omega$ avoid the need for trimming in most
circuitry. Settling time to 0.1% is $100 \mathrm{~ns} / 1 \mu \mathrm{~s}$ and diff gain and phase are both very low. Linear Technology (UK) Ltd, 0276677676.

Low-noise op-amps.
MAX410/412/414 single/dual/quad op-amps combine low wide-band noise ($2.4 \mathrm{nV} / \mathrm{Hz}$), 28 MHz bandwidth and a current requirement of 2.5 mA per amplifier. Operating from supplies of $\pm 2.4 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$, slew rate is $4.5 \mathrm{~V} / \mu \mathrm{s}$ and minlmum open-loop gain is 115 dB . Maxim Integrated Products Ltd, 0734845255

Video sync separator. EL4581 from Elantec is a video sync. separator for NTSC and PAL systems and is a pincompatible, but improved replacenment for the LM1881. It extracts timing information, including composite and vertical sync, burst and back-porch timing and odd/even fiels data from standard negativegoing NTSC, pal and secam video at 0.5 to 2Vp-p. Precision 50% slicing reduces the effects of noise. Microelectronics Technology, 0844 278781.

1GHz amplifier/mixer. Philips says its NE/SA 600 low-noise amplifier and mixer IC Is the first single-chip 1.2 GHz amplifier/mixer IC. The preamplifier has a 2 dB noise figure at 900 MHz and 16 dB of gain, stabilised to within $\pm 0.5 \mathrm{~dB}$ over the -40 to $85^{\circ} \mathrm{C}$ temperature range. Input and output matching is carried out internally. Philips Semiconductors Ltd, 071436 4144.

TV chipset. TDA9160/8350 comprise a television chipset to decode pal, NTSC and secam and to drive the tube. It automatically identifies the television standard in use, extracts luminance and chrominance and generates all sync pulses for deflection, picture positioning and geometry. To decode all the pal, NTSC and secam standards, 3.6 MHz and 4.4 MHz crystals are needed, apart from which only a few passives and a baseband delay line are required. Either composite slgnals from television or recorder, or separate luminance and chrominance from an S-VHS recorder can be accepted. Philips Semiconductors, 0714364144.

Logic building blocks

Graphics LCD controller. The Seiko Epson SED 1335 Fmos graphic LCD controller generates all required signals and includes a character generator. It is configurable for the

Laser diodes. High outputpower density laser diodes in the SLD320 series from Sony Semiconductor Europe emit nominal wavelengths of 790830 nm . Output powers in the series range from 500 mW to $3 W$ and optical density is high for all devices; a 1 W component has a $100 \mu \mathrm{~m}$ emission aperture. Operating current at 1 W is 1.3 A . Sony (UK) Lid, 0784466660.

6800 or 8080 processor families and is meant for use with medium-scale dot-matrix displays. Supplies must be between 2.7 V and 5.5 V and the unit draws 5 mA when active, $0.05 \mu \mathrm{~A}$ when in standby. Hawke Components Ltd, 0256880800.

Mixed-signal ICs.

1.5 GHz synthesiser. SP8861 by GEC Plessey is a low-power singlechip synthesiser with high input sensitivity for professional radio use. Only a loop amplifier is needed to form a complete 1.5 GHz PLL synthesiser. It is programmable and has three independent buffers to store one reference divider word and two local-oscillator divider words for fast toggling. The reference source uses an external crystal. GEC Plessey Semiconductors, 0793518510.

Datacom controller. Hitachi's HD64570 serial communications adaptor with a built-in DMA controller provides full duplex operation at transfer rates of up to $12 \mathrm{Mb} / \mathrm{s}$. A twochannel multiprotocol serial communications interface supports a number of modes, including asynchronous, byte synchronous and bit synchronous modes such as HDLC and SDLC. Transmit and receive fifo buffers are each 32 -bit

Crystal oscillators.
Frequencies in the range 420 MHz are offered by HCD66 oven-controlled oscillators by HCD Research. They are intended for PCB mounting and measure 51 by 41 by 31 mm high in a 5 -pin case. AT or SC cut crystals can be fitte, characteristics with an SC type being ageing 10^{-10} per day, thermal stability 3 * 10^{-9} from $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and phase noise down to $-160 \mathrm{dBc} / \mathrm{JHz}$. HCD Research Ltd, 0444232967
deep. Hitachi Europe Ltd, 0628 585000.

Modem chipset. A low-power chipset for a data, fax and voice modem from RCS, the RC96V24AC, is complete with its controller firmware. The set contains a Rockwell 9600b/s V. 29 fullduplex data/fax/voice modem datapump and a C29microcontroller, together provlding enhanced AT, fax class 1 and 2 and voice commands. As a data modem, the set supports V.23, V. 22 bis, V.22A/B and V.21, plus Bell 103 and 212a standards. As fax, V.29, V.27ter and V. 21 cahnnel 2 recommendations are supported. Voice commands use ADPCM for compandlng. RCS Microsystems Ltd, 0819792204.

Optical devices

0.5W laser diode. Sony's SLD322XT near-infrared laser diode emits a recommended 0.4 W of optical power from a $50 \mu \mathrm{~m}$ aperture in the band $790-830 \mathrm{~nm}$. It draws 650 mA from 3 V , the threshold being 150 mA . Sony (UK) Ltd, 0784466660

Oscillators

Canny clock. At 32 kHz , current drawn by Harris's HA7210 oscillator
chip is $5 \mu \mathrm{~A}$ instead of the more usual $40 \mu A$. With the required crystal, the device will operate at frequencies between 10 kHz and 10 MHz , drawing $130 \mu \mathrm{~A}$ at 10 MHz . It can drive two cmos loads and has a disable mode Harris Semiconductor (UK) 0276 686886.

Programmable logic arrays

State-machine proms. Using proms as state lookup tables in large state machines has had the disadvantage that no feedback terms have been present. Cypress now offer the CY7C258/9 registered proms with internal state feedback of up to 2048 states and punning at 83 MHz
Bypassable i/o registers run from the same clock and add a plpelline feature. Ambar Components Ltd, 0844261144

Power semiconductors

Surge absorbers. Panasonics's ZNR type D transient and surge absorbers, in a wide range of voltages and currents are now obtainable from Abacus. Abacus Electronics Ltd, 0635 36222.

10A regulator. Solid State Devices has offers the SVR117AHV voltage regulator, which will supply 10A over a voltage range of $1.2-57 \mathrm{~V}$ at a maximum input:output differential of 60 V . It provides short-circuit and thermal protection. Britcomp Sales Ltd, 0372377779.

704 mosfet. Harris's Megafet RFP70N06 n-channel mosfet exhibits an on resistance of $14 \mathrm{~m} \Omega$ at 70 A and a 60 V breakdown voltage. The low resistance is obtained by arranging several million power-handling cells in parallel to a density of 2.3 million cells per square inch, this method also resulting in 125ns switching speeds. Harris Semiconductor (UK), 0276 686886.

PWM controller chipset. Unitrode's UCC3883 and 3885 provide primary and secondary PWM control for isolated switching regulators supplying light loads, such as in ISDN telecomms. UCC3883 provides inrush-current limiting, highimpedance start and protection for the primary-side power switch, while the 3885 gives accurate secondary control by providing feedback to the switch. Macro Group, 0628604383.

Audio power mosfets. Magnatec has a range of complementary lateral mosfet power transistors for use as high-power audio output devices. They are 8/16A, 160/200V device in single or double chip packages to give 125 W for the single type or 250W for the double chip design. Magnatec, 0455554711.

PASSIVE

Passive components

Electrolytic capacitors. RE2 and TE2 series electrolytics by Acal use improved aluminium foil to reduce size and increase reliability. In both radial and axial form, the components are guaranteed for 2000 hours at $85^{\circ} \mathrm{C}$. and can be immersed in cleaning fluid for up to five minutes. Values available are in the range $0.1 \mu \mathrm{~F}-22,000 \mu \mathrm{~F}$ at $6.3-450 \mathrm{~V}$. Aca Electronics Ltd, 0344727272.

Low-R chokes. Surface-mounted chokes in the TDKACC series pass a direct current of up to 3A and are wave-solderable for 10 s . The range includes components with an impedance from 8Ω at $10 \mathrm{MHz}(100 \Omega$ at 100 MHz$)$ to 370Ω at $10 \mathrm{MHz}(150 \Omega$ at 100 MHz), all with a resistance of 0.04Ω. Flint Distribution, 0530 510333

Miniature electrolytics. Nichicon's VS series of electrolytics covers the $0.1 \mu \mathrm{~F}-10,000 \mu \mathrm{~F}$ range at between 6.3 V and 400 V at temperatures from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Some of the 50 V or less components are only 9 mm long. Leakage is $3 \mu \mathrm{~A}$ and ripple current 1.7A maximum. Nichicon (Europe) Ltd, 0276685393.

7 mm electrolytics. Nichicon's SP series of non-polarised electrolytic capacitors are only 7 mm long, have a working voltage of $6.3-80 \mathrm{~V}$, a capacitance range of $0.1 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$, leakage current of $10 \mu \mathrm{~A}$ and 75 mA ripple. Operating temperature is -40 to $85^{\circ} \mathrm{C}$ and load life is 8000 hours. Nichicon (Europe) Ltd, 0276685393.

Connectors and cabling

2 mm connectors. In what 3M claims to be the widest range of 2 mm boardmounted sockets and headers, the series 15 includes right-angle and straight sockets, low-profile, through-board-entry sockets and pin strip headers in 2-60 positions. Bodies are of glass-filled polyester or liquidcrystal polymer for higher temperatures. 3M United Kingdom plc, 0344858000.

SCSI connectors. Connectors in Fujitsu's FCN230R/240R series are additions to the SCSI-II standard connector range. FCN230R is a family of pin contact connectors on a 1.27 mm pitch that includes 50 and 68 pin versions with provision for EMI shielding and positive latch coupling, in straight and right-angle form. Round cable plug connectors can be
used. FCN240R connectors are for flat ribbon cable and round cables. Fujitsu Microelectronics, 062876100

Mičro coax. connectors. Coaxial connectors in the Lynics MC series by the Japanese Emuden compan are 50% smaller than SMB connectors. They are rated up to 3 GHz and are 50Ω types. All have a brass body, beryllium copper contacts and PTFC insulation. Westside Supples Ltd, 0243542878.

Displays

LCDs. Three very slim, 200 g LCD modules offer a resolution of 320 by 240 pixels, or one quarter of a VGA display, and are meant for the handheld computer and instrument market. LMG691
ORPGR/1RPBC/2RPFC provide blue on grey, blue on white and black on white displays, two of them being fitted with a cold-cathode fluorescent lamp for back-lighting. Hitachi Europe Ltd, 0628585000.

LC displays. Toshiba's TLX5171C3M and TLX5171-C3B dot-matrix LCDs are balck and white (C3M) and blue (C3B) modules with cold-cathode fluorescent backlighting. They are 320 by 240 units, 14.5 mm thick and with a 121 mm by 92.2 mm viewing area. Toshiba Electronics (UK) Ltd 0276 694600.

Filters

Datacon filters. Filters in Matthey's OEM range, designed to satisfy CCIR requirements, are intended as antialiasing filters in video A-to-D and D-to-A converters. The range covers all CCIR 601 and Eureka 95 HDTV standards. Matthey Electronics, 0782 577588.

2 GHz delay line. Specified for operation to 2 GHz , the LDH family of delay lines are intended for opticalfibre interfaces, supercomputers and workstations. 21 models provide a choice from 0.1 ns to 10 ns , with tolerances of ± 50 ps at 0.5 ns and $\pm 0.2 \mathrm{~ns}$ for 10 ns devices. Murata Electronics (UK) Ltd, 0252811666

Hardware

Heatsinks. Heat "planes" by Enco are machined to register exactly with a PCB, using the same cad data as that used for the board itself, fed to CNC routers which also machine the bonding layer. Enco Industries Ltd, 050575151.

Solder mask. Loctite's Lite-Mask is a fast UV-radiation cured peelable mask to protect selected areas of PCBs in hot-air solder levelling, wave soldering and conformal coating. It cures in 20-30 seconds in uitraviolet light, has good adhesion and does not become brittle at elevated
temperatures. Since it is thermosetting, it does not reflow. Loctite UK Lid, 0707331277.

Instrumentation

Memory tester. Taking less than two seconds to verify a 1 Mbyte by 9bit simm, ABl's RamMaster compact offers high speed, flexibility and 100\% test of all cells. Its microprocessor configures custom silicon prior to the test, so that the tester appears to be hardwired logic to the device, which can be a simm, sip, dram, sram or a PS/2 module. It identifies problem bits and gives voltage sensitivity, access time anomalies, pattern and temperature-related faults, and intermittent faults are also trapped. ABI Electronics Ltd, 0226350145.

DSO plus. DataSys from Gould is a range of digital storage oscilloscopes with a number of extra features that turn it into a "data-acquisition and measurement" instrument. The basic oscilloscope usus a sampling rate of 100 Msample /s with a repetitive equivalent time sample rate of 2.5Gsample/s. A colour LCD screen has 1000 -times zoom facility, the

PCB repair. Circuit Works from RS Components is a pen-type dispenser to enable tracks to be drawn directly onto PCB material, including film and glass. A 1.3 mm tip emits a silver-loaded polymer about 0.08 mm thick, a smooth flow being enabled by a springloaded, non-clogging valve. The material dries in a few minutes and is heat-curable at $120-150^{\circ} \mathrm{C}$ to allow soldering and an increase in conductivity. RS Components Ltd, 0536 201234.
overview and detail traces being viewed simultaneously. Its features are far too numerous to mention here, but there is computer interfacing and a hard-copy output, with a floppy disk option. Gould Electronics, 081-500 1000.

RF measurements. H-P's HP4396A is a 1.8 GHz combined spectrum and vector network analyser with a built-in instrument controller as an option. Spectrum analysis accuracy is $\pm 1 \mathrm{~dB}$, the sweep oscillator being a synthesized type. Instrument control is by means of HP IBASIC, which is a subset of HP Basic, with an external keyboard. There is a built-in floppy disk drive and a 7.5 in colour screen. Hewlett-Packard Ltd, 0344362867.

Vector signal analyser. H-P's HP89410A and HP89440A are signal analysers for work with burst, transient or vector-modulated signals. The former has one or two baseband channels of zero to 10 MHz and the latter RF channels to 1.8 GHz with one input. Facilities include vector spectrum analysis; frequency, amplitude and phase analysis; digital modulation analysis; and time-gated spectrum analysis. Hewlett-Packard Ltd, 0344362867.

FFT analyser. From Hungary, the Pont PSA-100 audio spectrum analyser offers autocorrelation, cepstrum analysis and true RMS voltage measurement. Display amplitude accuracy is within 0.2 dB , the dynamic range being 80 dB to 25 kHz . Battery-backed memory stores up to seven spectra. Printer output is provided. Manor Technology, 0794 40923.pinsapr93

Digital thermometer. A portable digital LCD thermometer from Maplin has a stainless steel probe and provides maximum/minimum alarms.

Spectrum analysers. Advantest spectrum analysers R3265 and R3271, now marketed by Rohde \& Schwarz, have been provided with delayed-sweep triggering from an internal gate. Working from 100 Hz to 26.5 GHz between them, the instruments already possess external gated-sweep functions, but the new facility allows gate delay of between 300 ns and 100 ms to a resolution of 100 ns , only those spectral components occurring during the gate time being displayed. Rohde \& Schwarz Ltd, 0252811377.

Multimeters. Four hand-held digital multimeters available from Saje, the 180 series, start with a basic 3.5 -digit with data hold and AC, DC and resistance measurement, progresses through temperature, frequency and capacitance measurement with a bar graph, to a fully autoranging 4.5 -digit instrument with all the previous functions. Saje Electronics, 0223 425440.

Literature

DSP catalogue. Intelligent Instrumentation recently took over the ZP DSP cards and PC software from

Function generator. Three further outputs are provided by the Thurlby Thandar 8550 in addition to the function generator: linear and logarithmic sweeps and a phase-locked generator. The instrument is microprocessor-based for accuracy and gives autocalibration to within 1% on all functions and 0.1% continuous frequency accuracy. Sines, triangles and squares from the function generator cover the $0.01 \mathrm{~Hz}-50 \mathrm{MHz}$ range, output voltage being from 10 mV to 32 V into open circuit. A GPIB interface is provided and 32 non-volatile button arrangements can be stored. Thirlby Thandar Instruments, 0480412451.

Burr-Brown and have now produced a catalogue of those and their own existing products in the DSP field, including DSPlay XL, a software DSP development package. Intelligent instrumentation, 0923896989.

Murata catalogue. Murata's 1993 catalogue is now available and includes data on filters, sensors, microwave devices, piezoelectrics, ceramic resonators and passive components. Murata Electronics (UK) Ltd, 0252811666.

Data analysis. A brochure from National describes the analysis capabilities of LabView and LabWindows instrumentation software for the analysis of spectra, time, statistics and regression, digital filtering and numerical analysis National Instruments UK, 0635 523545.

Power supplies

15W DC-to-DC converters. Calex single-output converters in the XC series need no external components - not even heat sinks or cooling air. They are mosfet switchers with high
loop-gain current-mode control, working at 70 kHz ; efficiency is more than 80%. There is a built-in noise filter at input and output and RF radiation is "virtually eliminated" Transient and thermal limiting is incorporated. Calex Electronics Ltd, 0525373178.

DC-to-DC converters. Single and dual output $5 W$ converters from Conversion Devices, the 500UFR series, have a $4: 1$ input range, 75% efficiency, 500 V DC i/o isolation, stabilisation of $\pm 0.2 \%$ and regulation of $\pm 0.5 \%$. All models include continuous short-circuit protection with auto restart, reverse voltage protection and an input filter that is claimed to almost eliminate reflected ripple. Input ranges in the series are $9-36 \mathrm{~V}$ or $18-72 \mathrm{~V}$ and outputs are from 5 V to 15 V single and $\pm 12 \mathrm{~V} / \pm 15 \mathrm{~V}$ dual. Eurosource Electronics Ltd, 081977 1105.

Radio communications products

Moderate mixer. Needing a localoscillator input of only 1 dBm , the Starved LO mixer by Synergy comes in a range of styles, Including relay header, flatpack, TO and surfacemounting. Chronos Technolgy Ltd, 098985471.

RF switches. Alpha Industries GaAs fet MMIC switches and attenuators are surface-mounted devices in plastic SOIC packages and are meant for cellular telephone work.
ASOO2M2-12 is a single-pole, doublethrow switch working up to 2.5 GHz , with insertion loss 0.8 dB , isolation 35 dB and VSWR 1.3:1, all at 1 GHz . Impedance is 50Ω and power consumption $50 \mu \mathrm{~A}$ at -5 V . Other switch formats and attenuators are available. Cirkit Distribution Ltd, 0992 444111.

Transducers and

sensors

FLDT processor. Intended for PCB mounting, the SP100 signal processor board is for use with the Control Transducers family of fast linear displacement transducers. It has adjustable zero and span, with $0-20 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ output. It also has a temperature compensation circuit to reduce errors caused by variations at the transducer, so that the temperature range is increased to -50 to $125^{\circ} \mathrm{C}$. Accuracy is within $\pm 0.15 \%$, with $\pm 0.1 \%$ as an option. Control Transducers, 0234217704.

Industrial sensors. Honeywell's M18 ultrasonic proximity sensor allows position detection of almost any colour or material over a $130-500 \mathrm{~mm}$ range. Nolse immunity is afforded by the 215 kHz carrier frequency. The company's $L L$ series of high-
temperature liquid-level sensors use a led, which reflects all its output internally when no liquid is present and allows light to escape when liquid covers the dome. Detection is very fast and operating temperature is -40 to $125^{\circ} \mathrm{C}$. Verospeed, 0703644555 . own processor and memory, the AS$1 F$ is a high-speed analogue and digital input/output card for PCs that acquires and processes data in real time, while the PC performs other tasks, such as providing a GUI. Eight analogue inputs acquire data at up to 170 kHz using local ram with a recirculating DMA buffer. Four analogue and nine digital outputs are included, and six counter channels provide ADC sample timing and waveform generation. Data transfer is at $400 \mathrm{kbyte} / \mathrm{s}$. Pascal and C source code is supplied. Fairchild Ltd, 0703 559090.

A-to-D cards. With the Mbyte/s DMA transfer rate of EISA-bus computers, $A D$ series analogue-to-digital converter cards from Adtek achieve a sampling rate of $10 \mathrm{Msample/s}$ at 12bit resolution. Using the eightchannel, $2.6 \mathrm{Msample} / \mathrm{s}$ AD-830 card in a 33 MHz 486 EISA-bus computer, continuous data throughput onto disk is shown to be $1 \mathrm{Mbyte} / \mathrm{s}, 92 \%$ of the cpu processing power remaining available. Laplace Instruments Ltd, 0692500777.

Computer systems

Rack-mounted PCs. A range of $19-\mathrm{in}$ rack-mounted PCs from Sight Systems is available with a range of processors, memory and disk options, all in rugged units for industrial environments. Processors go from a 20 MHz 286 to a 33 MHz 486 , up to Mb of ram, one or two disk drives, a choice of monitor and up to 100 Mb hard disk. Prices start at $£ 1,118$. Sight Systems Ltd, 0273439959.

Development and
 evaluation

8031 ICE. NICE- 31 is a series of incircuit emulators for the 8031/51/552 family of microprocessors. The PC program supplied shows memory and register contents and lets the user set up memory mapping and define breakpoints. This latest version allows both assembler and C source debugging for IAR, Keil and Avocet C compilers. As an extra, a 16 K by 48 bit trace buffer can be used to set up a selection of pre- and post-trigger conditions. Computer Solutions Ltd, 0932352744.

80C186 ICE. Great Western has the CheckMate-C186, a pocket-sized incircuit emulator to integrate codeto an Intel 80C186/8xx-based target at up to 20 MHz . Features are PC AT or higher as host to a Paradigm Debug source-level debugger with high-

speed communications, overlay ram, hardware breakpoint and event system and trace memory. It will download a 256 Kbyte .EXE file in less than six seconds. Great Western Instruments Ltd, 0272860400.

Video for PCs. VideoBox from Iterated Systems is a low-cost fractal video system which decompresses and displays full-screen, full-motion video on a PC, no expansion cards being needed. It is to be available later this year as a software developers' toolkit and then in video databases and multimedia products. It decopresses and replays video at up to 30 frames per second in software alone. Iterated Systems Ltd, 0734 880261.

Low-cost ICE. The Raisonance
TINY-ICE is an in-circuit emulator for 8031 and 80C31 microprocessors, costing only $£ 300$. It plugs into a PC and runs at 12 MHz . An on-board monitor allows application development using up to 32 K code space and 64 K external data memory. Single-step and continuous emulation are supported and up to 800
breakpoints can be set in the code space in continuous emulation. Logicom Communications Ltd, 081 7561284.

HP 68000 emulator support. A set of development tools from Microtec are for use with the latest version of H-P's in-circuit emulator for Motorola's 68000 family. Microtec's XRAY/ICE combination now realises the potential of the integrated
debugger/emulator interface in the areas of C support and source-level access to real-time trace data. Microtec Research Ltd, 025657551.

Neural net starter kit. NT6000-series cards from Neural Technologies are entry-level network development cards for the PC. They are "plug-in-and-go" expansion cards with highspeed DSO, memory, digital/analogue i/o and software. Menu-driven software and a graphical display, together with an introductory book on. neural networks enables a system to be established in a few hours. Neural Technologies Ltd, 0730260256.

LabWindows C/C++/VBDOS libraries. National's LabWindows for DOS, version 2.2.1 instrumentaion software includes stand-alone libraries for Borland's C++ and Turbo C++ compilers and Microsoft's Visual Basic for dos compiler. LabWindows 2.2.1 makes over 260 instrument drivers avallable to users of VBDOS. National Instruments UK, 0635 523545.

Software

Neural nets for Windows. NeuDesk2 is a neural network development package from CRaG Systems, spreadsheet-driven and running under Windows 3.0 or higher.The software automatically selects the network topology and training method and, once developed, the network can be run from within NeuDesk or from another application using the NeuRun runtime module, available separately. Input data is either manually entered, obtained from a number of different file formats or cut and pasted from a spreadsheet or database. CRaG Systems, 0635 873670.

PC data acquisition. Master Link PCI-20369S-1 software libraries for dos and Windows allow the development of gap-free, multimegabyte data acquisition and analogue sampling at up to 1 MHz . Master Link software aupports C, C++, QuickBasic, Visual Basic and Turbo Pascal. Intelligent Instrumentation, 0923896989

PCB cad. Tsien's BoardMaker 2.5 cad package for printed-circuit board development generates thermal breakpoints for pads within power planes, and design-rule checks now ensure that nodes needing access to power planes have the necessary via for connection. It is also possible to examine the clearances of tracks and pads passing through a thermal plane. Speed gains in the new version include a three times improvement in the top-down modification process and a 12 -fold improvement in netlist entry. Tsien (UK) Ltd, 0223 277777. \quad

MICROWAVE CONTROL PANEL Mains operated, with touch switches. Complete mith 4 digit display, digital clock, and 2 felay outputs ons for power and one for pulsed power (programmable). Ideal tor all sors of precision timer applit
ref 4P151. Good experimenters board. ref 4P151. Good experimenters board.
FIBRE OPTIC CABLE. Stranded opi
FIBRE OP TIC CABLE. Strandec opfical fibres sheathed in black PVC. FIVe metre length $£ 7.00$ ref $7 P 29 R$ or $£ 2$ a met charging etc. 300 mm square. Our price $£ 15.00 \mathrm{rel}$ PASSIVE INFRA-RED MOTION SENSOR.
 Complete with deylight sensor, adjustable lights on timer (8 secs -15 mins). 50 range with a 90 deg
coverage. Manual overide fadiry. Complete with coverage. Manual overide facihty. Complete with
wallbrackets, bulb holders erc. Brand new and guaranteed. Now only $£ 19.00$ ret 19P29
Pack of two PAR38 bulbs for above unit $£ 12.00$-ef $12 P 43 R$ VIDEO SENDER UNT Transmit both audio and video signals from either a video camera, video recorder or computer to any 12v DC op. £15.00 rel 15P39R Suitable mains adaptor $£ 5.00$ ief 5P191R. Tum your camcorder into a cordless camera! 5P191R. Jum your camcorder into a cordiess camera!
FW TRANSNITERHoused in a standard working i (bug is mains dnven). E26.00 rof 26P2R Good range. (bug is mains dnven), \mathbf{W} WHATURE RADIO TRANSCEIVERS A par of walk talkes with a range of up to 2 kitometres, Units measure ing £30.00 ref 30 P 12 R
FM CORDLESS MICROPHONE. Small hand held unit with a 500° range! 2 transmit power levels. Reqs PP3 battery. Tunoable to any FM receiver. Our price $£ 15$ rof 15P42AR. 12 BAND COMMUNCATIONS RECEIVER. 9 sh bands, FM, AM and LW DXflocal switeh, runing 'eye' mans or Hipl banery. Complete with shoulder strap and mai is lead, $£ 19$ rel 19P14R. Ideal for listening all over the world
CAR STEREO AND FM RADIO.Low cost stereo system giving 5 watts per channel Signal to noise ratio better than
furter tess than $.35 \%$. Neg earth $£ 18.00$ ref 19P30 thutter less than .35\%. Neg eant . £19.00ref 19P30
LOW COST WALIKIE TAL KIES P LOW COST WALIKIE TALKIESP ar of battery operated Units with a range of about 200°. Our price 58.00 a pair
8PS5R. Ideal for garden use or as an educational toy. 7 CHANNEL GRAPHC EOUALIZERplus a 60 7 CHANNEL GRAPHC EOUALIZERplus a 60 watt power ampl 20-21KH2 4-8R 12-14v DC negafive earth, Cased. $£ 25$
ret $25 P 14 R$.
MICAD BATTERIES. Brand new top qualit. $4 \times$ AA's $£ 4.00$ ref
 $\$ 6.00$ ref 6 P35R Pack of 10 AAA, 4×1.00 ref $4 P 92 R$. TOWERS INTERNATHONAL TRANSISTOR SELECTOR GUIDE. The utimate equivalents book New ed. $£ 20.00$ ref 20P32R. GEIGER COUNTER KITComplete with tube, PCB and all components to build a batlery operated geiger counter. £39.00 ref 39P1R FM BUG KIT.New design with PCB embedded coil. Transmits to any FM radio. $9 v$ battery req'd. $£ 5.00$ ref 5P158R. 35 mm square.
FM BUG Built and tested superior $9 v$ operation $£ 14.00$ ref 14 P3A FM BUG Buin and tested superior 9 v operation $£ 14.00$ ref 14 P3A
COMPOSITE VIDEO KITS. These convert composite video Into COMPOSTIE VIDEO KITS. These convert composite video
separate H sync. V sync and video. $12 v$ DC. 28.00 ref $8 P 39 R$. SINCLAIR C5 MOTORS $12 v 294$ (ftll load) $3300 \mathrm{pmp} 6^{\prime \prime} \times 4^{\prime \prime} 1 / 4^{\text {" }}$ OPP shath, New. £20.00 ret 20P22R. Limited stocks. As above but with ftted 4 to 1 infine reduction box (800 pm) and
toothed nylon beth drive cog $£ 40.00$ ref 40PPR 800 rmm toothed nylon betl dive cog $£ 40.00$ ref 40 P8R 800 pm . ELECTRONHC SPEED CONTROL KITfor C5 motor. PCB and atl components to bulld a sped controiler ($0-95 \%$ of speed). Uses SOLAR woWERED NICAD CHARGER.Charemeter contro SOLAR POWERED MICAD CHARGER.Charges 4 AA nicads in 8 hours.
cell model $£ 6.00$. Cell model 16.00 . computer but suitable for others ALF503 Made for BBC compuler but suitabie for others. Includes mains adapter, leads and
book $£ 15.00$ ref $15 P 43$. VIDEO TAPES. Thre hour superior quality tapes made under
icence from the famous JVC company. Pack of 10 tapes Now low icence from the famous JVC company. Pack of 10 tapes Now low
price $£ 15.00$ ref J15PA PHIUPS LASER. 2MW HELUM NEON LASER TUBE. BRAND NEW FULL SPEC £ 40.00 REF 40 P10R. MAINS POWER SUPPLY KIT £20.00 REF 20 P33R READY BUILT AND TESTED LASER IN ONE CASE $£ 75.00$ REF $75 P 4 R$. 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but with a larger transformerit will handie 80 watts, Ba
kit $£ 1200$ ref 12P17R. Larger transtormer $£ 12.00$ ref 12P41R. 25 WATT STEREO AMP IFIER IC. STK043. With the addition of a handul of components you can build a 25 wall amplitier. $\mathbf{£ 4 . 0 0}$ ref 4P69R (Circuit dia included).
BARGAIN NCADS AAA SIZE 200MAH 1.2V PACK OF 10 £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P16R FRESNEL MAGNIFYNG LENS $83 \times 52 \mathrm{~mm} \varepsilon 1.00$ ret BD827R. 12V 19A TRANSFORMER Ex equipment £20 but OK. POWER SUPPLIES Made for the Spectrumplus 3 give +5 @ $2 A,+12 @ 700 \mathrm{~mA}$ \& 12 @ $50 \mathrm{~mA} \check{\text { ® ref O8P3 }}$ UANVERSAL BATTERY CHARGER.Takes AA's, C's. D's and PP3 nicads. Holds up to 5 batteries at once. New and cased, mains operated 86.00 ref 6P36R.
IN CAR POWER SUPPLY. Plugs into agar socket and gives 3.4.5,6,7.5,9, and $12 v$ outputs at 800 mA Complete with universal spider plug. E5.00 5P167R.
OUICK CUPPA? 12vimmersi
CUICK CUPPA? 12vimmersion heater with lead and cigar ighter
 IBM PRINTER LEAD. (D25 to centronics plug) 2 metre 88 P52 E5.00 rel 5P1 86 R. 3 metre version $\mathbf{\Sigma 6 . 0 0}$ ref 6P50.
COPPER CLAD STRIP BOARD $17{ }^{2} x 4^{4 \prime}$ of $1^{\prime \prime}$ pitch "vero" board. Y4.00 a sheat ref 4 P62R or 2 sheets for $£ 7.00$ ret 7P22R. C4.00 a sheet ref $4 P 62 R$ or 2 sheets for $\mathrm{C7} .00$ ret 7 P22
STRIP BOARD CUTTING TOOLE2 00 ref $2 P 352 R$. WINDUP SOLAR POWERED RADIOI FMAM radio takes rechargeable battenes. Complete with hand charger \& solar panel chargeable batenes. Complete mi hand
14P20R. Set of 2 AA nicads $£ 2$ ref $L P^{2} 9$
PC STYLE POWER SUPPLY Made by PC STYLE POWER SUPPLY Made by
AZTEC 110 vor 240 vinput $+5 @ 154,+12$ AZTEC 110 v or 240 v input $+5 @ 15 A,+12$
$@ 5 A-12 @ .5 A .-5 @ .3 A$. Fully cased with tan, on/ott switch, IEC infet and standard PC' Ityeads. £15.00 ret F15P4
TELEPHONE HANDSETS 10 brand new tand speaker only $£ 3.00$ for 10 ret 3P146.

BENCH POWER SUPPLIES Superbly mad fuly cased (metal) giving $12 v$ at 2 A phus a 6 V supply. Fused and short dircuit protected.
For sale at less than the cost of the casel Ouf price is $£ 4.00$ ref For sate at less than the cost of the casel Our price is $£ 4.00$ ref
4 P 103 R 4P103R
SPEAKER WIRE Brown twin core 100 feet tor 22.00 REF 2P79R $720 \mathrm{~K} 31 / 2$ " DISC DRIVE FOR זs complete whth tech info ust 59.00 h they have a metal tab instead of cable easily modified to 18 M stand ard. ref L9P? MONO VGA MONITORS $£ 59$ Standard IBM compatible monitor made by Amstrad. Ex display Our price just £59. Ref 59P 4 RB. CAR BATTERY CHARGER Brand new Units complete with panel meter and leads 6 or 12 voutput $£ 7.00$ ref JTP 2
CUSTOMER RETURNED SPECTRUM +2 Compiele bur sold as seen so may CUSTOMER RETURNED SPECTRUM +3
Compiete but sold as seen so may need atiention £25.00 ref J25P2
AMSTRAD 16400 D BASE UNITS
BRAND NEW AND CASED
TWO BUILT IN $51 / 4^{"}$ DRIVES
MOTHER BOARD WITH 64OK MEMORY
KEYBOARD, MOUSE \& MANUAL
OUR PRICE JUST

£79!!!!

SCART TO D TYPE LEADS
Standard Scart on one end, Hi density D type (standard VGA
Standard Scart on one end, Hi density D type (standard VGA
connector) on the other. Pack of ten leads ony $£ 7.00$ ref 7 P2R connector) on the other. Pack
OZONE FRIENDLY LATEX
$250 \mathrm{~m} /$ bottle of liquid nubber sets in 2 hours. Ideal for mounting PCB's fixing wires etc. $£ 2.00$ each
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with $1200 / 75$ builh in modem infra red remote controlled qwerty keyboard BT appproved
Prestel compatible, Centronics printer port RGB colour and compos. Presitel compatible, Centronics printer port (works with ordinary television) complete with power
ite supply and fully cased. Our price is only $£ 20.00$ ref 20P1R COMMODORE 64 COMPENDIUM Pack consising of a Commodore 64 computer, power supply, data recorder and sottware. All
for £69 rel O69P1. for £69 raf 069P1
PPC MODEM CARDS Made for the Amstrad PPC1640/1512 range these are plug in modules that operate at 2400 baud. No data Et5 ref Q15P5.
AMSTRAD LQ3500 PRINTER ASSEMBLIES Entire mechanical assembles including print head, platen, cables, stepper motors etcetc infact everything bart he electronics and case! Our price just AMSTRAD DM
AMSTRAD DMP4000 PRINTER ASSEMBUES Entire printer assemblies including print head, platen, cables, stepper motors etc.
Everything bar the electronics and case. Our price iust £zo ref Eventhin
O20P2.
TOROIDAL TRANSFORMER 146 VA with tappings at $8 \mathrm{v}, 10 \mathrm{w}$ and $32 v$ will give 50 V at $3 A$ or 32 at 4 A etc. Centre tapped primary. C 9 fef O9P2 Fixing kit is $£ 2$ rol O2P1.
AERIAL BRACKETS Wall plate 7.5° sq complete with rawl bolts, $10^{\prime \prime}$ stand off brackets with standard tube clamps. Will take up to $2^{\prime \prime}$
mast. Substantal bracket (would take body weight). $£ 7$ rof $07 P_{1}$ mast. Substantial bracket (would take body weight). E7 ref O7P1.
IV SOUND RECEIVERS Popular units that with the addition of a speaker act RECEIVERS Popular Units was a stand alone unin or for connecting into HI FII. £12 ref O12P4
2,000COMPONENTS FOR £3 Yes thats right ! ust send us $£ 3$ and you can have 1,000 resistors plus 1,000 capacitorsl Our choice of value. Order ref O3P1
ETRI FANS Mains 1
ETRI FANS Mains, 11 watt 80 mm diameter. £6. Ret O6P3. UGHTGUNS Originally made for the Spectrum +2 but may have other uses (good stripper). E2 Ref O2P3
GX4000 GAMES CONSOLES Complete with motor racing game PSU and joy stick £15 ref O15P3. Extra 4 games £12 ref Q12P2 set using the VCR remote control. Retail c99 ours C 39 Il set usng the VCR rembte control. Realiin99 ours $£ 39 / 11$ STEAM ENGINE Standard Mamod 1332 eng ne comp
ref 30 P 200
HANDHELD TONE DUALLERS Small units that are designed to hold
 send MF dialifing tones. Ideal for the remote control of answer machines.
AMAZNG TALKING COINBOXI
Fully programmable talking, lockable coinbox BT approved, ratail prios is E79 ours is just £29! ref J29P2.
ANSWER PHONES $£ 15 C$ tor
ANSWER PHONES $£ 15$ CUstomer refumed units with 2 faults one we tel you how to tix the ather you do your seiff $£ 18$ ref J 18 P 2 for $£ 60$ rel J60P3 BT approved (retail price $£ 79.9511$ each
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new dinves with cartidge and sotware 10
imes faster than tape machines works with any Commodere 64 fimes faster than tape machines works with any Commodore 64
setup. The orginal pnce for these was $£ 49.00$ but we can otter them setup. The orginal price for these w
to you at only £25.001 Ret 2SP IR

90 WATT MAINS MOTORS Ex equibment but ck Good gener pupose unit 59.00 ret F9P1
HI F SPEAKER BARGAIN Originally made for TV sets they
consist of a $4^{4} 10$ watt 4 R speaker and a ${ }^{\prime \prime} 140 \mathrm{R}$ iwerter Hy you consist of a 4" "10 watt4R speaker and ar" 140R imen
two of each plus 2 crossovers for $£ 5.00$ ret FSP2. two of each plys 2 crossovers for $£ 5.00$
EMERGENCY LIGHTING SYSTEM
Fully cased complete with 2 adjustabie flood lights. All you noed is a standard 6v head acid batery. Our prico is jusi $£ 10$ rof J10P29 AMS TRAD 464 COMPUTERSCUStomer retumed units complete with a montor for just $£ 35$! These units are fauly non rerumable. WOLSEY DMAC DECODERS
Made for Instaliation in hotels etc as the main sat recei ver no data but tully cased quality unit $£ 20$ rel K2OP1. Sultable psu $£ 8$ ref K8P3. REMOTE CONTROLS
Brand new infra red CONTROLS originally made for controlling WOLSEY satellite recoivers E2 ea ret K2P1 or 20 for E19 ref K19P1. DOS PACKSComplete set of PC discs with DOS 3.2, basic, gemdesktop 8 gem paint No mranuats, 51
CORDLESS TE CUP MMCROPHONE
transmits between 8e-108MHZ FM $5.2 \mathrm{~cm} \times 2 \mathrm{~cm}$, uses LR44 watch bathery. Complete with wire aerial 8 battery. $£ 16$ rel K16P 1 CHASSIS MOUNT TRANSFORMERS
240 v primary. 12 v secondary 20 VA E 2 ret K 2 P 2
240 V primary, 16 v secondary 10 A (spif winding). $£ 10$ ref L10P1 100 RED LED PACK (5MM) E5 REF K5P2
12 V STEPPER MOTOR ideal for models etc. 3 dia, $£ 2$ ref J2P14 CAPACITOR BARGAIN PACK 100 CERAMICS \sum REF J2P2. SPECTRUM JOYSTICKS TWO FOR 55 REF J5P2.
ANSTRAD PC CASE, POWER SUPPLY AND 720k FLOPPY DRIVE ALL THIS FOR $£ 30$ REFO30P15 USEFUL POWER SUPPUES. 18 v 900 mA dc cutput (rogulated)
tully cased with mains cable and DC qut eable. I6 ret K6P1. fully cased with mains cable and DC aut eable. $£ 6$ ref K $6 P 1$
UNCASED PC POWER SUPPUES. Standard PC PSU case, fan etc. Good for spare or tow cost PCl. £4 rel L4P6. case, tan etc. Good for spare or low cost
RADAR DETECTORS. Detects X and K bands (io speed traps). Not logat in the UK soonly avallable H y you intend to "export'tt. Es\% ref J59F 1 .
100 WATT MOSFET PAIR.Same spec as 2 Sk343 and 2 S.ja13 ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel and 1 P channel. £3 a pair ref J3PPe. LOW COST CAPS. 1,000 capaciors $£ 3$ ($33 u^{f}, 25 v$) ref J3P 10 .
VELCRO. 1 metre length 20 mm wo de, blue K 2 ref J2P16.
JUG KETTLE ELEMENTS. Good general purpose ment just £3 ea rel E3P8 or 5 for $£ 10$ rel J 10 P 3.
VERY BIG MOTOR. 200 v induction $1.1 \mathrm{kw} 1410 \mathrm{pm} 10^{\circ} \times \mathrm{F}$ GEC 1" keyed shatt. Brand new. $\check{1} 55$ ref J95P 1.
BIG MOTOR. $220-240 \mathrm{~V} 1425 \mathrm{pm} 28$ Sisth" kayed shath GEC 6.5° x 8 " comptete with mounting plate. $£ 38$ ref $J 3889$
SMALL MOTOR. Electrolux 160 watt 3,000 rpm. 220-240v 5/8 shaft precision buil $\mathrm{E18}$ ref J18P1
EPROMS 27C64 PACK OF 10 £7 REF M7P1. $27 C 256$ PK OF 10 £9 REF M9P1. 27 C 512 PK OF 10 \&10 REF M10P1.
MODEMS FOR \&1.25? These modems are suitable for stripping only hence they are only 4 for $£ 5$ ref JSP 3 .
SOLAR POWERED WOODEN MODELS. Complete with sol ar panel, motor and full instructions. \check{x} ref J9P2. 3 diff $£ 20$ ret J20P3.
SOUND OPERATED LIGHT, Clap your hands and light comes SOUND OPERATED LIGHT. Clap your hands and light comes on. Turns after preset delay. (4 AA 's req' ${ }^{\prime}$). $£ 2$ ret $\mathrm{J} 2 \mathrm{P}_{3} 3$
FERGUSON SRB1 REMOTE CONTROLS. Brand new units deal for a spare or have two remotesl E4 each.
$51 / 4$ 360K OISC DRIVE Made for AMS TRAD 1640/1512 ma

PC CORNER

PC CASES Desktop case +psu £51, 60 ret BPCC 1. Deruxe slimine case + psu $£ 60.00$ rel BPCC2. Minitower case + PSU $£ 51.60$ re BPCC3, Deluxe midi case tpsu 590.00 ref BPCC 4 .
MONITORS Mitac $14^{\prime \prime}$ SVGA .39DP £174 Fol BPCMO2, Mitac 14° SVGA 28 DP E202 ret BPCMO1.
MEMORY 256 K Simm $70 \mathrm{~ns} £ 8.40$ rol BPCMII, 1 MB Simm 70 ns £26.40 re1 BPCM12. 4MB Simm 70 ns 596 rat BPC MI3
MICE 2 button serial mouse with 3.5" sware. £8.40 ref BPCMI6 3button serial mouse with $3.5^{\prime \prime}$ siware $£ 9.60$ ret BPCMI7.
KEYBOARDS 102AT UK stand ard keyboand £18.60 ref BPCMI4 Deluxe keyboard 102 AT UK E26. 40 ret BPCMI5.
SOFTWARE MS DOS V5 OEM version, £39.60 rel BPCMI8, MS WINDOWS V3.1 OEM version. ©42 ral BPCMI9.
MOTHERBOARDS $286-16$ Headland chip
MOTHERBOARDS 286-15 Headiand chipsel 446.80 re BPCMB1. $386 S X-33$ Acer chipset $£ 8280$ ret BPCMB2, $386 S X-40$
UMC with 64 K cache $£ 110$ rel BPCMB3 486 SX- 25 UMC with 644 UMC with 64K cache £110 ref BPCMB3, 4865 X -25 UMC with 64h BPCMB5, 486 DX - 66 UMC with 256 k cache 5515 rof BPCMB 6. FLOPPY DRIVES $1.44 \mathrm{mb} 3.5^{\circ}$ dnve 532.34 ret BPCDDO5, 1.2 ME 5.25^{*} drive $£ 38.40 .3 .5^{-}$mounting kit $£ 5$ ret BPCDDO7.
HARD DRIVES 42 MB IDE 17 ms £ 99 ref BPCDDO1, 89 MB IDE 16 ms ref BPCODO2, 130 MB IDE 15 ms E215 rel BPCDOCO. 213MB IDE 14 ms EZ298 ret BPCDDOA.
VIDEO CARDS 256 C\&T 8 bit SVGA card $£ 19.20$ rel BPCVCO 512k Trident 900016 bit SVGA cand £31 20 ret BPCVC02. 1ME Tndent 890016 bit SVGA card $£ 45$ ref BPCVCO3, 1 MB Cirns AVGA3 16.7M colours 548 ret BPCVC04, 1MB Tseng mulamedia E82 80 ro BPCVCO5
ADD ONCARDS Mult $1 / O$ card 2 senal, 1 parratel, 1 game, 2 foppy 2 IDE hard drives $£ 11$ ref BPCAOC01. ADUB sound card whth EOPCAOCO3. EXAMPLES OF COMPLETE SYSTEMS
386SX-33 SYSTEM
386SX-33 boand at $£ 8280$, case $£ 51.60$, 2MB ram $£ 52.80$, 42 MB dive £99, 512SVGA eard £31 20 35° FDD $£ 3234$ mult io card E11 SVGA colour montor £174, 102 kboard, $£ 25$ build tee if required. Total $£ 579.34$
${ }^{86 \mathrm{Dx}-33}$ board $£ 378$, case $£ 51.60,2 \mathrm{MB}$ ram $£ 5280,89 \mathrm{MB}$ dive £166, 512 SVGA cand £31.20, 3.5" FDD £32 34, mull l/o cand £11 SVGA monitor £174, 102 kboard $£ 18.60$, $£ 25$ build tee if required Total 5939.84.
ALL PC PARTS AND SYSTEMS ARE GUARANTEED FOR YEAR PARTS AND LABOUR. 1993 CATALOGUE AVAILABLE WITH ALL ORDERS IF RE OUESTED OTHERWISE A4 SAE FOR FREE COPY
IN SUSSEX? CALL IN AND SEE US!

APPLICATIONS

Linear circuit active filters

isadvantages of discrete-component active filters are well known: component tolerance, drift and some sensitivity to layout. For a well defined response shape at higher orders, these drawbacks can be so severe that a continuous filter is not feasible and a switched type is used instead.
But even switched-capacitor filters suffer from a number of limitations, in that Nyquist bandwidth is curtailed, switching noise can amount to several millivolts at the switching frequency, there is the aliasing problem and higher distortion.
For applications in which switchedcapacitor filters are not to be used, Maxim has the MAX274/275 integrated linear filter building blocks, which contain four op-amps and some very accurate, low-drift capacitors. For a second-order section, the IC and four external resistors form the lowpass or band-pass filter, and Butterworth, Bessel or Tchebysheff all-pass filters can be made. Maxim's 1993 Applications publication describes the use of the devices. It also presents some plots of the results of individual F_{0} and Q errors of apparently

Fig.2. Digitally tunable band-pass filter with a centre frequency from 5 kHz to 20 kHz , depending 'on the digital input to the two D-to-A converters.

minor proportions in multiple-order filters; errors of $\pm 5 \%$ in the four sections of an eighth-order Tchebysheff filter produce excessive pass-band peaking.
Figure 1 shows an application that exploits the -89 dB sinad ratio of the MAX274/5 - a C-message filter, which simulates the response of the human ear and which is used in telecomms for audio noise measurement. One MAX274 does the job by cascading three second-order band-pass sections and a second-order low-pass section to produce the response shown. Operating from a 5 V rail, the filter generates $2.5 \mu \mathrm{Vrms}$ in-band noise, output swings of $5 \mathrm{Vpk}-\mathrm{pk}$ providing 117 dB of dynamic range.
Using a MAX7528 dual D-to-A converter and a MAX275, the fourth-order band-pass filter in Fig. 2 is digitally tunable from 5 kHz to 20 kHz with a constant 500 Hz bandwidth and constant gain. Centre frequency is proportional to the parallel code fed to the D-to-As and is $F_{\mathrm{c}}=\sqrt{ } \operatorname{code}(20) \mathrm{kHz}$, in which code is $16 / 256$ to $256 / 256$ - LSBs are not in use. For example, code $\mathrm{FF}(\mathrm{H})$ gives a centre frequency of 20 kHz with Q_{s} of 25.8 to give a cascaded Q of 40 .
On a similar theme, but rather simpler, is the circuit of Fig. 3, which uses a pair of switches to tune a fourth-order Butterworth low-pass anti-aliasing filter to cope with, for example, two conversion rates in a D-to-A converter. Resistor pairs $R_{3 a}, R_{4 a}, R_{3 b}$ and $R_{4 b}$ control the pole frequencies and Q of the two sections and are switched by a four-pole

analogue switch to give 10 kHz and 20 kHz cut-off frequencies.
The application note goes on to describe two methods of DC offset removal, as might well be needed at the output of a number of
cascaded amplifiers in a high-order filter.
Maxim Integrated Products (UK) Ltd, 21c Horseshoe Park, Pangbourne, Reading RG8 7JW. 0734845255.

Instrumentation amps are not always the best choice

Designers automatically choose the classic instrumentation amplifier to process sensor inputs, perhaps without considering that there might be a simpler and better way of going about it. Warren Schultz of Motorola discusses the subject in application note AN/325, beginning with the classic design and showing that there is indeed a simpler circuit that does a better job, in particular when the sensor is a pressure transducer.
An interface amplifier used for pressure sensors must provide gain from 100 to 250 or thereabouts, and convert the differential input to a single-ended input to the succeeding A-to-D converter if a microprocessor is involved. The half-supply common-mode voltage must also be translated to a DC of around 0.5 V at zero pressure, so that the output swing is 0.5 V 4.5 V to lie within an A-to-D's 5 V range.

Figure 1 is the classic design of instrumentation amplifier, in which gain, level shifting and differential-to-single conversion are taken care of, but singlesupply operation is not. Modifications in Fig. 2 provide this, $U I_{D}$ providing a buffered offset voltage via R_{3} to set up the voltage on the pot. wiper at the amplifier output for zero differential input. Choosing

R_{10} at 240Ω gives a gain of 125 , so that a 32 mV input produces 4 V at the output or, with offset at $0.75 \mathrm{~V}, 0.75 \mathrm{~V}-4.75 \mathrm{~V}$ to work directly to a microprocessor A-to-D converter input. This is all very well, but resistor matching might be a problem and
there is also the fact that there are two amplifiers in one feedback loop, which could lead to instability. In addition, the minimum output voltage of $U I_{D}$ forces the zero-pressure offset to 0.75 V instead of a more normal 0.5 V .

Figure 3 is a further step away from the traditional towards a simpler, but better interface amplifier, using one quad op-amp. Op-amp $U I_{A}$ in differential form is the gain element, $U I_{B}$ preventing feedback current through $R_{5,6}$ going into the sensor. Zeropressure output at pin 1 of $U I_{A}$ of 4 V is translated to the required zero-pressure voltage output by $U I_{C, D}$, zero being adjusted by R_{9}. Gain is $R_{6} / R_{5}\left(R_{l} / R_{2}+1\right)$, which gives 125 , so that with an input of 32 mV and the
offset at 0.5 V , the output swing is 0.5 V 4.5 V . This is a better design in that it is more stable, uses fewer resistors and will give a zero offset of 0.5 V , but there is still the resistor-matching problem.
To realise an interface amplifier that is considerably simpler, smaller and cheaper, but that performs the same function as the classic design in a rather more elegant manner, the circuit shown in Fig. 4 is the optimum; it uses one dual op-amp and a few
resistors. In this case, the zero-pressure output voltage is exactly equal to the output voltage of the divider $R_{3,5}$ (the application note explains why!) and is independent of the sensor's common-mode voltage if R_{l} / R_{2} $=R_{6} / R_{4}$, the value for R_{6} including the resistance of the divider. Gain is again 125 and adjustment of the divider values to produce 0.5 V again gives an output of 0.5 V 4.5 V .

It is pointed out that choosing 1% resistors

Fig. 3. This circuit is simpler, more stable and gives a 0.5 V zero-pressure output. Otherwise, it still has the matched resistors.

in place of the 5% type would probably mask any differences between the three circuits, all of them being capable of a pressure-to-voltage linearity to within $\pm 5 \%$
from zero to $50^{\circ} \mathrm{C}$,using theusing the Motorola MPX2000 series sensors and an MC33274 amplifier.

Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP.

Two op-amps better than one for DC and wide-band

Classical op-amps and current- feedback op-amps. each have their pros and cons, so it makes sense to let them do their own thing and combine the results. OR as BurrBrown says in its application bulletin AB007 A , obtain the best of both worlds.
A classical op-amp performs well when you need a fairly low gain bandwidth compared with the op-amp's gain bandwidth product, but increasing the closed-loop gain lowers the amount of loop gain left for error reduction; it rolls off at $20 \mathrm{~dB} /$ frequency decade anyway. At higher frequencies and greater required gains, therefore, errors accumulate.

On the other hand, current-feedback opamps are happy at both low and high gain, since feedback sets both closed-loop and open-loop gain so that loop gain and dynamic performance are more or less unaffected by the closed-loop gain demanded. The trouble is that input voltage offset, offset drift and common-mode rejection are not a patch on those found in

Table 1. Settling time of classical, single opamp, composite amplifier and cascaded type.

CONFIGURATION	SETTLING TIME TO 0.01%
Single Amplifier	$20 \mu \mathrm{~s}$
Composite Amplifier	$4.6 \mu \mathrm{~s}$
Cascaded Amplifier	$4.1^{1} \mu \mathrm{~s}$
Note: (1) For cascaded amplifer stages, the combined settling time is the square root of the sum of the squares of the individual setling times.	

classical op-amps.
Combining a classical type such as the OPA627 and a current-feedback OPA603, as shown in Fig. 1, gives a performance that improves on the individual characteristics of the two op-amps on their own.
Since the OPA627 does not drive the load, its inherently good act at $D C$ is preserved from the effects of thermal feedback when large loads are to be driven. Loads of 150Ω can be driven to $\pm 10 \mathrm{~V}$ with trouble from thermal feedback. As the OPA603 adds gain to the output of the OPA627, the latter's slew rate goes up by he increased gain. As an example, in the amplifier shown, using a gain of 100 , slew rate and full-power response of the OPA627 increase from $40 \mathrm{~V} / \mu \mathrm{s}, 600 \mathrm{kHz}$ to over $700 \mathrm{~V} / \mu \mathrm{s}, 11 \mathrm{MHz}$.
Settling time in the classical op-amp is retained at $T_{s}=n / 2 \pi b$, where b is amplifier unity-gain bandwidth and n is the number of time constants needed to settle to the required accuracy. Bandwidth of a classical op-amp increases with decreasing loop gain. Since, in the composite amplifier, the current-feedback device contributes a gain of 52 , the OPA627 is left to provide a gain of only two, so that its settling time is reduced to 330 ns from the 6.9μ s it would occupy were it to supply the gain of 100 alone. The only real point to watch is the bandwidth of the device chosen for A_{2}. If it is too small, phase shift could cause instability.
A dual op-amp is usable in this circuit if

Fig. 1. Composite amplifier is better than the sum of its parts. DC and high-frequency performace are both enhanced and relatively unaffected by gain setting.
the boost in slew rate is unnecessary, but bandwidth and settling-time improvements are needed. An OPA2107 dual type was chosen because the dynamic characteristics are well matched and the circuit's stability and transient response are best served by setting the gain of A_{1} to twice that of A_{2} and $R_{4} 10 \mathrm{k} \Omega$.

$$
R_{3}=\frac{R_{4}}{\sqrt{R_{2} /\left(2 R_{1}\right)-1}}
$$

Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hentfordshire WD1 8YX. Telephone 0923 33837.

INSTRUMENTS TO BuY

FREQUENCY COUNTERS

MX1010F and MX1100F are 8 -digit frequency counters offering a broad range of features.
MX1010F: 1 Hz to 100 MHz , sensitivity of 15 mV and resolution to 0.1 Hz , data auto set, 10:1 attenuator, high impedance input £129.00 plus VAT ($£ 151.58$).
MX1100F: 1 Hz to 1 GHz , features as MX1010F except ranges 70 MHz to 1 GHz and 50Ω impedance. £160.00 plus VAT ($£ 188.00$) SC-130 and SC-40 are full featured, microprocessor-based, hand held frequency counters providing portability and high performance. Both instruments provide measurement of frequency, period, count and RPM plus a view facility enabling min, max, av and difference readings.
SC-130: 5 Hz to $1.3 \mathrm{GHz}, 8$ digit readout, sensitivity typically 10 mV , high impedance input, battery condition indicator. $£ 109.00$ plus VAT (£128.08).
SC-40: As SC- 130 except 5 Hz to 400 MHz . $£ 89.00$ plus VAT (£104.58).

MULTIMETERS

The 180 series of high performance multimeters provide advanced features and are supplied complete with probes, battery and rubber holster. The case is dust and splash proof making it ideal in most environments. Designed to meet IEC348 Class II safety standard. 183: $3^{11 ⁄ 2}$ digit large LCD display, ACV, DCV, ACA, DCA, resistance, continuity buzzer, diode test, hold, basic accuracy 0.5%. £39.50 plus VAT ($£ 46.41$).
185: $3 \frac{1}{2}$ digit LCD, bar graph, ACV, DCV, ACA, DCA, resistance, continuity buzzer, diode test, hold, temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.1370^{\circ} \mathrm{C}\right)$, capacitance (1 pF to $40 \mu \mathrm{~F}$), frequency (1 Hz to 200 kHz), max min, edit, \%, compare, basic accuracy 0.3%. £74.50 plus VAT (£87.54) 187: As 185 except auto ranging. £99.50 plus VAT ($£ 116.91$). 285: As 185 except $41 / 2$ digit true rms, basic accuracy 0.05%. £109.50 plus VAT ($£ 128.66$).

MULTIMETERS (2)

The MX170B and MIC-6E offer low cost measurement yet retain a large number of features. Supplied complete with probes. MX170B: $3^{1 ⁄ 2}$ digit LCD, compact size, ACV, DCV, DCA, resistance, diode test, low voltage battery test. £24.00 plus VAT (£28.20).
MIC-6E: $3 \frac{112}{2}$ digit LCD, ACV, DCV, ACA, DCA, resistance, diode test, buzzer.
£33.50 plus VAT (£39.36).

20MHz 2-CH OSCILLOSCOPE

The CS4025 20 MHz dual trace oscilloscope offers a comprehensive range of facilities including a high sensitivity vertical amplifier providing from 1 mV to $5 \mathrm{~V} /$ div in CH 1 , ALT, CHOP, ADD, CH2 modes with inverse polarity on CH 2 . The horizontal timebase offers a sweep range of $0.5 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} /$ div plus $\times 10$ sweep expansion and $\mathrm{X}-\mathrm{Y}$ mode. Triggering can be auto or normal from vert, $\mathrm{CH} 1, \mathrm{CH} 2$, line or external sources with coupling provided for AC, TV-F and TV-L. The CS4025 is supplied complete with matching probes for £295.00 plus VAT (£346.62).

PROGRAMMABLE POWER SUPPLIES

The PPS series of GPIB programmable DC power supplies offer high performance yet are extremely competitively priced using a 16 $\times 2$ backlit LCD and 14 button keypad. All functions and conditions are easily selected and displayed. Overvoltage and overcurrent are selectable as is output enable/disable. Terminals for output and sense are provided on the front and rear to allow easy rack mounting PPS-1322: 0-32V 2A (GPIB) £375.00 plus VAT ($£ 440.63$) PPS-2322: Dual 0-32V 2A (GPIB) $£ 555.00$ plus VAT ($£ 652.13$)

FG 506 FG513

THE 180 SERIES

MX170B MIC-6E

2OMHz 2-CH OSCILLOSCOPE
ELECTRONICS WORLD + WIRELESS WORLD

PROGRAMMABLE POWER SUPPLIES

M×2020

FUNCTION GENERATOR

The MX2020 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ sweep function generator with LED digital display offers a broad range of features. Output waveforms include sine; square, triangle, skewed sine, pulse and TTL. Lin and log sweeps are standard as is symmetry, DC offset and switchable output impedance from 50Ω to 600Ω. The digital display provides readout of the generators' frequency or can operate as separate 10 MHz frequency counter. $£ 199.00$ plus VAT ($£ 233.83$).

LCR METER

The MIC-4070D LCD digital LCR meter provides capacitance, inductance, resistance and dissipation measurement. Capacitance ranges are from 0.1 pF to $20,000 \mu \mathrm{~F}$ plus dissipation. Inductance ranges from $0.1 \mu \mathrm{H}$ to 200 H plus a digital readout of dissipation. Resistance ranges from 1 ms 2 to $20 \mathrm{M} \Omega$. Housed in a rugged ABS case with integral stand it is supplied complete with battery and probes at $£ 85.00$ plus VAT ($£ 99.88$)

FOUR INSTRUMENTS IN ONE

The MX9000 combines four instruments to suit a broad range of applications in both education and industrial markets including development work stations where space is at a premium. The instruments include:

1. A triple output power supply with LCD display offering $0-50 \mathrm{~V}$ $0.5 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A}, 5 \mathrm{~V} 2 \mathrm{~A}$ with full overcurrent protection;
2. An 8 -digit LED display $1 \mathrm{~Hz}-100 \mathrm{MHz}$ frequency counter with gating rates of $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz providing resolution to 0.1 Hz plus attenuation inputs and data hold;
3. A 0.02 Hz to 2 MHz full featured sweep/function generator producing sine, square, triangle, skewed sine, pulse and a TTL output and linear or logarithmic sweep. Outputs of 50Ω and 600Ω impedance are standard features;
4. An auto/manual $3^{\frac{1}{2}}$ digit LCD multimeter reading DCV, DCA, ACV, ACA, resistance, and relative measurement with data hold functions.
The MX9000 represents exceptionally good value at only $£ 399.00$ plus VAT (£468.83).

FG SERIES FUNCTION GENERATORS

The FG500 series sweep/function generators provide two powerful instruments in one package, a 6 MHz or 13 MHz sweep/function generator and an intelligent 100 MHz frequency counter. The microprocessor based instruments offer sophisticated facilities yet remain extremely competitively priced. A menu driven display allows easy set up and operation. A 16 character by 2 -line LCD display provides clear and unambiguous readout of generator output and frequency measurement.
FG-506: 2 Hz to 6 MHz sweep/function with 100 MHz counter £325.00 plus VAT ($£ 381.88$)
FG-513: 2 Hz to 13 MHz sweep/function with 100 MHz counter £482.00 plus VAT (£566.35)

Credit card orders accepted by phone 0816523614

Buy top quality instruments direct from Electronics World + Wireless World and avoid disappointment. If you are not satisfied, return the goods and we will refund the purchase price*.

PRODUCTION/A.TE SECOND USER EQUIPMENT HUGE SAVINGS ${ }_{\text {PRICES }}^{\text {on }}$

ENVIRONMENTAL

 TESTACE F 5360 Test Chamber 360 Liere - 20 to 0 Q2,495
MONTFORD TSPK2ELM2 Thermal Shock 2,48 Chamber -70 to 200 C C2,475 GALLENKAMP OVR Humidity Oven $\mathbb{C 1 , 5 0 0}$ CCall

MISCELLANEOUS

MARCONI 2871 Data ANA $\mathbf{~} 1,750$ MARCONI 1938 af Power
KANE MAY 1000 "Iniratrace" inira-Red
The rmometer Oc to + $1000 \mathrm{C} \mathrm{C}_{\text {arr }}$ Case MODEL 201.13

VIBRATION
 TEST SYSTEM

Ling Dymamle. LDS 135 32KVA Amplifier, LDS Filed Power Supply, LDS Transiormer $15630 \quad$ Call for details

SOLDERING MACHINES

SOLBRAZE RD3" Solder Pot wich Solder

 ROTADIP RD6" Solder Pot with Solder KIRSTEN Jetwave Solder WELLER OSBol Desoldering Sation SOLDERABIUTY Rework Station 1000 ELECTROVERT EUROPAK 299 Lambda Wave Solder SOLTEC $412 W_{\text {ave }}$ Solder
WIREBONDERS

HUGHES
Condizion
Condition
KULUCKE \& SOFFA 1470.2 A
Aluminium or Gold Wire Wedge Bonder.
835-5.0 13 Eyeooint Pattern Recognition Sy
BRL Microscope.
2 Channel Ulirasonic Generator. \quad from $\mathbf{C 2 , 9 5 0}$
Lead Locator

TV TEST		
POA	TS613, TS616 PAL	63,500
POA	SYSTEMS VIDEO GENCODER 2461	CCall
POA	ABACUS ANTA 600	clall
POA	CAMERA \& LENS CTV	00
POA	Tektronlx SPG-271, Syne + TestpattemGenerator	
POA	Tektronix TSG-273, Digital D2/D3 Sync-	
POA	pattern-Generator +Audio-Generator	POA
POA	Gen.	POA
POA	Tektronix TSG-371, YUV. Syme + Testpatter	
\$611.	Gen.	POA

PCB ASSEMBLY

SIEMENS HSI80 Line High Speed Surface Mount Assembly Line
 SIEMENS MS\% Automatic Pick \& Place CC.all UNIVERSAL MULTIMOD 6772A (18,500 AMISTAR A16 448 Automatic Sequercer Axial Lead lnsercer
ROBIN AMBOTECH AxIaIDIL CCall CCall
Inserter
ASSEMBLY WORKFRAMES frome45 BLAKELL LS 100 Assembly Station $\mathbf{4 , 5 0 0}$ ELECTRONIC COUNTING SCALES ACS
COAX

COAXIAL CABLE/CUT \& STRIP Bench ${ }^{\text {Top }}$ AXIAL	AXIAL Lead Forming Machine
HELIE	
2955	

CLEANING PLANT

KERRY I $500 / 2$ HP Uitrasonic Cleaner with Automatic Hoist
KERRY $1500 / 4 \mathrm{HP}$ Four Stage Uitrasonic Cleaning
K8,500 System
KERRY 450/ HP CCall
C2.750

SIGNAL SOURCES

HP1325A Func Gen	
HP $1335 A$ Synth/Level Gen.	61,645
HP862A Sil. Gen.	63,450
HP3350A 86290 Sweep	69,750
	64,950

OSCILLOSCOPES

MP 54501 A Digitizing 62,450
6,695
TEK2201 Digut Storage
TEK222 IOMHZ DSO Qatt. Porcable TEK2336 100 MHz 6995
6975 TEK2245 150 MHz (1,350 TEKIUSA 350 MHz
PHILPS 3320 200MHz DSO 62,495
62,495

SPECTRUM ANALYSERS

HP 3582 A HP3585A

MARCONI 2380
POWER SUPPLIES

FARNELI TOPSI P
FARNELI G6-40A

660 645

FARNELL C $6-205$
FARNELL COUNTANT GPE 1000:12 035
235
635

ATE SYSTEMS
MARCON1 510 Configured to suit From $\mathbf{6 9 , 9 5 0}$
HP 3065 Configured to suit
From C13,000

COUNTERS

RACAL 9919 UHF

RACAL
FLUKE 8519 URF GPIO Multimeter
HP347EA HPIB Multimeter

C295

WANTED
If you have manufacturing equipment to sell, give us a call. We can turn vour under-utilised assets into cash.

Subscribe Now for Your FREE Copy

See latest issue of Buyors News for full fisting and Torms \& Conditions. Prices exclude VAT.
ALTERNATIVE DISTRIBUTION (UK) LTD
Tel: 071-284 4074 (UK) Fax: 071-267 7363 (UK) 146 Camden Street, London NW1 9PF

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs $24,28,32$ pin EPROMS, EEPROMS FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial E2, PALS, GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MOP ELECTRONICS Lid. Park Road Centre Malmesbury, Wiltshire. SN16 OBXX. UK TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK
GERMANY 089/4602071 NORWAY 071-17890 $\begin{array}{ll}\text { ITALY } & 0292103554 \\ \text { FRANCE } \\ \text { (1)69.4128.01 }\end{array}$ FRANCE (1)69.41.28.01
Also from VEROSPEED UK
CIRCLE NO. 129 ON REPLY CARD

CIRCLE NO. 128 ON REPLY CARD

Germany's imperial wireless system

Abstract

The Marconi company is normally credited with the technology for long distance communications. But the German Imperial Wireless system was at least as impressive in its complexity and effectiveness. By George Pickworth.

German Imperial Wireless System of 1914

Before the era of short wave beam systems, beginning around 1925, transoceanic radio communication was possible only with very long waves. Among the pioneers who developed their own particular techniques to establish successful commercial transoceanic radio links were Fessenden, Goldschmidt, Marconi, and Poulsen.
By the outbreak of the First World War, Germany was the only nation to have an imperial wireless system. Marconi's Ireland to Canada 1906 link had prompted the Italian govemment to commision the Marconi company to establish a very-long-wave link between Italy and its colonies in Africa, but Britain firmly rejected the idea of an empire wireless system until the Great War.
In 1906, when the German imperial system was conceived, radio communication was lim-
ited to a range of a few thousand kilometres. Greater range would have required relay stations. Germany had no territories in which to install such stations between its Pacific and Africa colonies, or German controlled stations in America.
As an imperial wireless system independant of submarine cables was not possible in 1906, so, the most cost effective approach was to estblish strategic medium range stations throughout German Africa and Pacific colonies and link these to Berlin via a submarine cable complex.
A German controlled station was established at Sayville in Long Island, USA, primarily for communication with ships in the North Atlantic, and a second station was established at Cartagena, Columbia, connected to the Pacific and Atlantic submarine cable complex. Radio frequency alternators were adopted

Cable links
Radio links

for the central transmitter at Nauen and principal overseas stations whilst Wien quenchedspark transmitters were used for feeder stations. These were basically the same as those used by Telefunken maritime relay stations.

Vulnerable cables

Imminence of war made the vulnerability of submarine cables a matter for concern for Germany. So the range of the central transmitter at Nauen, near Berlin, was increased to make the system less cable-dependant for outgoing messages. Meanwhile, the range of the Sayville transmitter was increased to allow direct communication with Berlin, and a powerful transmitter was constructed at Kamina, Togoland, ultimately linking the German Africa colonies with Berlin. At the same time the Pacific stations were developed to the stage whereby radio communication was possible between all the German colonies and the German garison at Tsinghau, China - though cables remained vital to link the area with Berlin. Countries and islands of the British empire, together with mandated territories, were close enough for the whole of the empire to have been linked by radio. But the cost would have been high, and is probably why it was rejected. So, except for the North Atlantic links operated by Marconi and Fessenden, communication with the British empire was by submarine cable.

8000km range by 1914

At the outbreak of war, the range of the 24 kHz Nauen transmitter had been increased to 8000 km , enabling signals to be received reliably at Sayville and Kamina. Cartagena in Columbia, Windhoek, South West Africa, and Tsinghau were still in fringe areas. But power of the Sayville station was increased to maintain radio communication with Berlin and

Circle showing the rapid increase in range of the

 Nauen transmitter during 1906 to 1918.relay signals extended southwards to Cartagena from where smaller medium/long wave relay stations, were augmented to South America.
In 1914, the Kamina station also maintained direct communication with Berlin and relayed messages to and from Windhoek. Under good conditions direct communication was possible between Windhoek and Nauen - the only radio link extending to Southern Africa at the time. Relay stations connected Kamina with Douala, Camerouns, Dar es Salaam, Tanganyika, and Monrovia, Liberia, from where a German submarine cable connected with South Anerica.
The principal German radio station in the Pacific was at Yap in the Caroline Islands, connected by submarine cable to Tsinghau and America and ultimately to Germany. The Pacific radio network extended northwest from Yap to Tsingtau and eastwards to Nauru Island and finally Apia in the Samoa Islands. Branches extended to Anguar in the Palau Islands, and Rabaul, New Britain, and feeder stations linked the numerous islands with the principal stations.
Tsinghau garison could possibly have received messages from Nauen and relayed these to German Pacific colonies, but direct radio communication over the 8000 km separting Nauen and Tsinghau does not seem to have been achieved (See map, first page of article).
Overseas signals were received at Geltow, near Berlin, which like Nauen, was connected to Berlin by land lines. Interestingly, the Lieben-Reisz valve, employed as a self excited RF oscillator, was used by Dr Meissner in 1913 to established an experimental radio telephony link between Berlin and Nauen.

At war

Britain's strategy to compensate for not having an empire radio link was to cut all German submarine cables immediately the First World War was declared. Allies then systematically destroyed the German colonial stations. Within the first year all had been captured. Kamina was of particular importance as it could relay messages to German ships in the South Atlantic and German agents in South America: it was blown up by the Germans before it could be captured. Shortly afterwards, Japanese troops captured the Tsingtau garison.

Nonetheless, radio communication was maintained between Berlin, Sayville in Long 1sland and Cartagena until 1916 when the US joined the allies in the war. From that year Nauen was Germany's only contact with the outside world. Britain belatedly established a chain of medium range relay stations extending to North America, the North and South Atlantic ocean, and, via the Indian Ocean, to Singapore without resorting to submarine cables. The system was completed in 1916.

Transmitters were typically 30 kW and the relay employed a mixture of Marconi-synchronised spark, Poulsen quenched-arc and thermionic valve sets. Reasoning was that under war-time conditions these were more readily available and easier to install than the one-off high-power transmitters used on north Atlantic service.
With Germany isolated, Nauen assumed a new and important role in broadcasting messages to German ships and agents - particularly in South America.
A massive new antenna was constructed which increased range to $12,000 \mathrm{~km}$. By 1918 , largely as the result of the development of active receivers, signals could be received virtually world-wide without large elaborate

Wave trains radiated by early spark sets decayed too quickly for receiver resonance to be effective. Moreover, the first wave could shock the tuner into oscillation at any frequency to which it happened to be tuned.
Trains radiated by Marconi's Clifden transmitter increased, and decreased in amplitude gently thus giving some degree of tuner resonance whilst at the same time modulating the transmission

With Marconi's timed spark transmitter, oscillations persisting in the antenna circuit were reinforced every 13.5 cycles to produce slightly undulating continuous waves

Radio frequency alternator type transmitters, of course, radiated continuous waves of constant amplitude.
Continuous waves, by virtue of resonance, progressively built up the amplitude of currents in the receiver tuner, so sensitivity was far greater than with wave trains. For example Fessenden's 1906 Brant Rock/Machrihanish link which employed alternators had less input power but longer range than Marconi's Clifden/Glace Bay link.
Moreover signalling speeds with CW could be much greater than with wave trains: there had to be sufficient trains present to make Morse characters identifiable.

(a) Early maritime spark transmitter 1.0 MHz

(b) Marconi's Clifden Transmitter 45 kHz

(c) Marconi's timed spark 21.4 kHz

Constant amplitude
(d) Alternators Nauen 24 kHz

Marconi increased the wavelength of his experimental transatlantic transmissions from a few hundred metres to a thousand metres, and obtained a proportional increase in range.
Signal strength and range was much greater over a night-time transmision path than a daylight path - the night effect - but this was a phenomenon that became progressively less pronounced as wavelength increased. With waves longer than about 6.0 km long (50 kHz), transatlantic communication was possible for virtually 24 hours a day.
In 1902, Sir J 1 Thomson attemped to explain Marconi's first transatlantic signals by resuscitating Tesla's concept of a conductive layer in the upper atmosphere. Tesla was granted a patent for transmission of electric power via rarefied gases of the stratosphere in 1890, with the earth serving as the return path. (The drawing below is an illustra-
tion from Tesla's 1890 patent.)
Heaviside and Kennelly also accepted that there was a conductive layer above the earth, but believed this to be caused by solar radiation - ultimately found to be correct.

Before 1925 there was no satisfactory explanation for night-effect. Now we know it is caused by the ionosphere's D-region absorbing medium length waves. It disappears at night to allow these waves to reach higher regions where ionisation persists after darkness and from where reflection occurs.
Maritime wavelengths, 300 and $600 \mathrm{~m}(500 \mathrm{kHz}$ to 1.0 MHz) were selected primarily because they allowed a quarter wave antenna to be suspended between the ship's masts. By the same token, German relay stations operated on shorter wavelengths because smaller antennas could be used, but range was influenced by the D-region.

antennas. Indeed, German agents often used frame antennas about 2.0 m square.

System technology

Transoceanic communication with early passive receivers was possible because waves longet than about $6000 \mathrm{~m}(50 \mathrm{kHz})$ propagated within the cavity between the earth and ionosphere - the earth/ionisphere waveguide with very little attenuation.
The effect is rather like sound pressure waves in a voice pipe, and the discovery brought about the era of the transoceanic very long wave 'Super Stations' (see box).

Frequency had to be less than about 50 kHz to take advantage of the earth/ionosphere waveguide. Antenna size limited the lowest frequency to about 20 kHz , so all transoceanic stations, were confined to a band about 30 kHz wide. To avoid mutual interference, a high degree of selectivity was essential and this was only attainable with continuous waves (CW). By virtue of their resonance, CWs progres-
sively built up the amplitude of the oscillatory current in the receiver tuner. Wave trains did not persist long enough for tuning by resonance to be effective.
Before the evolution of high power transmitter valves, there were three ways to generate high power CW: Poulsen's quenched arc, Marconi's timed spark and radio frequency alternators. The technology was not confined to radiation of CW but also extended to detectors. Most of those used for reception of wave trains were unsuitable for reception of CW.

Marconi's magnetic detector. Marconi's detector responded only to wave trains, but was rugged, reliable and - though less sensitive than some other detectors - not damaged by high voltages generated by the complementary, or nearby transmitter. So, it is understandable that Marconi continued to use the magnetic detector with his 1906 Clifden (Ireland/Glace Bay link, though this meant modifying bascially a CW quenched arc type

Alternator systems. Marconi concentrated on producing CW with spark systems. But other pioneers, including Alexanderson, Goldschmidt and AEG, directed their attention to overcoming problems inherent in RF alternators.
The most serious was that centrifugal force caused rotor windings to fly out of their slots. To attain a frequency of 100 kHz , early Alexanderson alternators had a rotor with 600 rotor pole pieces and a drive speed of $20,000 \mathrm{rev} / \mathrm{min}$. Unfortunately speeds of this order were unsustainable and the machines normally operated below $10,000 \mathrm{rev} / \mathrm{min}$. An improved design, running at a lower speed, was employed by Fessenden for his Brant Rock (USA) to Machrihanish (Scotland) link. - see box, Long wave super stations.

Goldschimdt employed a fairly low speed alternator and increased output frequency by resonance circuits across the rotor and stator. This was the method used by Goldschimdt with his 48 kHz link between Eilvese in

Germany and Tuckerton in the US.
Induction-type alternators eliminated rotor windings by having both field and armature windings on the stator. They were covered in French and German patents by M M CailHerner and Guy. Guy's method was eventually patented by AEG Berlin and employed at Nauen and principal German overseas stations.
A further innovation was to employ relatively low frequency alternators and quadruple the output frequency by frequency raisers and this was the approach adopted at Nauen. Frequency raisers were based on the non-linear saturation characteristics of the cores of a series of toroidal transformers, with a DC generator supplying the saturation current. At Nauen, the 6.0 kHz ouput frequency of the 200 kW alternators was increased to 24 kHz . Keying was by saturation of the core of an inductor.

Evolution of the Nauen antennas. Each increase in size improved the range possible with simple passive receivers. The advent of thermionic valves removed the need for these impassive systems.

 Waveform of antenna current 24 kHz

Umbrellas and inverted cones

Generating high power at frequencies less than 50 kHz was relatively easy. But it was exceedingly difficult to radiate this energy efficiently - even the largest practical antenna structures were only a fraction of a wavelength long, so resonance by virtue of standing waves was out of the question.
One solution was to design the antenna system as a giant inductor/capacitor-tuned circuit by arranging the antenna as an inverted cone or "umbrella". The umbrella and earth formed the two plates of the capacitor, and the antenna coupling coil provided the inductance. Advantage of the configuration was that only a single mast was required as the guy wires could be integrated into the actual antenna. Nonetheless, even with the largest practical structures, radiation efficiency fell to an unacceptable level with frequencies less than about 20 kHz .
Umbrella antennas were widely used with Telefunken medium wavelength maritime and

relay stations and it was from these that the Nauen very-long-wave antennas evolved. The original mast at Nauen was 100 m tall with a 400 m diameter umbrella. But in 1909, diameter was increased to 600 m , and in 1911, one side of the unbrella was lengthed to give an overall length of 1626 m , with the height of the main mast increased to 260 m .
In 1916, the umbrella was replaced by a Ttype antenna 1200 m long and consisting of ten parallel wires, so increasing the capacity with earth. Overall length of the antenna was 2484 m with - for some obscure reason about half its length consisted of supporting cables. The two main masts were 260 m tall.

Wave train receivers.

Wave trains effectively modulated the transmission, and so, except for the magnetic detector, rectifier type detectors were the norm. Resultant DC pulses produced a tone in the headphones that corresponded to the repetition rate of the trains, typically 500 to 1000 Hz
Galena crystal detectors, which conducted with a forward potential of only about 50 mV were widely used with Telefunken equipment.

Even so this potential was generally much greater than that of the RF current at the antenna terminals. Fortunately, damping of the tuned circuit was minimal. Headphones presented an impedance approaching 30kñ at 1.0 kHz , so tuner resonance and transformation resulted in some voltage gain.

But, as early as 1913, the Telefunken company began to employ the Lieben-Reisz valve as an audio frequency amplifier, though unlike the Flemming valve, its characteristic curve made it unsuitable as a rectifier type detector.

Continuous wave receivers

An early method of resolving CW was to rectify the RF current with a crystal and then randomly interrupt the resultant DC so as to produce a sound in the headphones. Later,

Poulsen and Pedserson eliminated the crystal, reducing the detector to a simple interrupter device known as the tikker; this was a fine wire lightly resting on a metal cylinder rotating at fairly high speed. Contact was intermittant so the RF current was chopped directly into on/off pulses.

Goldschimdt's "tone wheel" was essentially a commutator designed so that, at a certain speed, half wave rectification of RF current occured. But at that speed, the resultant DC gave no audible sound in the headphones. Speed was adjusted so that the tone wheel slipped in and out of synchronisation, alternately rectifying negative and positive going half waves. The tone corresponded to the rate at which the wheel slipped in and out of synchronisation.

Sensitivity of the tikker and the tone wheel was virtually the threshold of an audible sound produced by the headphones. For example, Baldwin's 4000Ω headphones were reported to gave an audible sound with a power input of $1.5 \times 10^{-10} \mathrm{~W}$. Nonetheless, the LiebenReisz valve could be used to boost audio output. Fessenden's heterodyne receiver, employing a variable frequency alternator as the local oscillator - was the most sensitive pre-triode receiver.

Triode valve regenerative and heterodyne receivers, which evolved during the First World War, could receive wave train or CW
signals. Moreover, their sensitivity was infinitely greater than anything previously attainable, and it was this, rather than greater input power that dramatically increased the range of the Nauen transmitter.
The triode valve could have made the German imperial system independant of submarine cables. Unfortunately, it came too late and, ironically, the best valves were the French type, some of which were captured by the Germans during the war and developed for their own receivers.

Further reading

Tesla Nikola, Colorado Springs Notes, 1899. Stanley Rupert, Text Book on Wireless Telegraphy Vols 1 \& 11, 1919.
Furst Artur, Im Bannkereis Von Nauen, 1922.
Vyvyan R N, Wireless over Thirty Years ,1933
Baker W J, A History of the Marconi Company, 1970
Constable A, Early Wireless, 1980

Thanks are expressed for the relevant literature provided by Deutsches Museum, Munchen

Layol is priced at $£ 99$ up to $£ 999$ (ex. carriage \& VAT) which includes: Layol Schematics, 90 days FREE updates and technical support.

What more do you need than a practical, easy to use and fast program to design your electronics in your own way? Layol is the ideal solution to do just that. Just ask the thousands of satisfied users!

Layo1
> Netlist import via Project Manager from Layol Schematics
> Also for OrCAD/SDT, Schema III, Tango etc.
$>$ Forward Annotation
> Graphics netlist entry
> Manual-, Interactive and Auto Routing
> Design Rule Checking
> SMD Support
> Extensive component library
> User definable Macro's
Powerfull output drivers for:
$>$ Gerber photoplotters
> Excellon, Sieb\&Meyer and HPGL drillingmachines
$>$ HPGL, DMPL compatible penplotters (with open pads)
$>$ Adobe 2.0 Postscript (with open pads and 10 greyscales)
$>$ HP-Laserjet, Deskjet and Epson compatible printers

[^2]International headquarters
Baas Electronics bv Rijksstraatweg 42
3281 LW Numansdorp The Netherlands
Phone: (+31) 18654211 Fax: (+31) 18653480

WHIT

Too good not to be true

In the development lab of a company (that shall remain nameless to save red faces), the engineers were sweating over the RF power output spec of a small portable transmitter. The spec demanded 3 dBW , but try as they might, with the devices available, they couldn't raise more than 1 W .

The product launch was looming, and the marketing manager, who was aware of the 3dBW spec, insisted on knowing just how much they were actually getting "right now". On being told it was 0 dBW , he exploded. Clearly in his eyes "zero" dBW was total failure - they hadn't even started.

Restrictive practices

nput sub-octave filters in a new HF communications receiver, already overdue for delivery to customers, were causing a problem. The lower filters were all OK, but the top two, particularly the 22 to 30 MHz filter, were too narrow and far too lossy. Valuable time had already been'spent investigating without success, though it was obviously a design problem as all the production models showed the same symptoms.
Hot Carrier's instructions were to take a look at the situation and not to spend more than a week on it at the outside.
Checks showed there was nothing wrong - with either the design of the filters (straight out of Simplified Modern Filter Design by Geffe), components used or the PCBs.
The problem was that the filters saw a

Renascence of Wireless

66Glamorous" digital technology has been swamping analogue circuitry, especially in electronics degree courses. But wireless communications are back in the headlines and we are seeing a severe shortage of skilled RF engineers.
In wireless lans, European regulators are planning to define pan-continental standards for high capacity wireless local area networks. These will use short range radio links to connect PCs and workstations with fixed hard-wired data highways such as Ethernet. The frequency bands used are likely to be different from those in the US, owing to differences in prior allocations between the two continents.

Unfortunately, even limited standardisation does not seem possible in the case of microwave radio links used to implement the whole or part of a local subscriber's loop between the telephone and

Knowing he was the sort of manager to make ructions at board level, the chief engineer decided to repackage his plans accordingly.
At the all-important product review, the marketing manager complained bitterly that the lab had missed the target completely. However, the meeting congratulated the chief engineer warmly on being so close to the goal. Against the spec figure of $63 \mathrm{~dB} \mu \mathrm{~W}$, his engineers were currently achieving no less than 60 dBuW .
Presentation, they say, is everything.
fixed 1.4 MHz highpass filter on one side, and I forget exactly what on the other. All of them were interconnected via banks of bandselect relays and miles of PCB track. This meant the end capacitances of the filters were greatly in excess of the proper values. Reducing them - or in the case of the highest filter, removing them entirely solved the problem completely: "Filter" problems often turn out to be problems with the termination).
Half way through the first afternoon, I passed on the good news to the manager, prompting a "Oh well, it can't have been very difficult then, can it?".
Had he been left to stew for the best part of a week before coming up with the answer I would have been the hero of the hour. So remember, don't work too hard.
its local exchange. Operators in the deregulated market would naturally like an early pan-European standard to provide equipment manufacturers with economies of scale and thus bring equipment prices down. But organising a Europe-wide standard takes time, and the DTI is reluctant to go it alone in the meantime as happened with CT2. Of course, the cable TV companies with telephone franchises are not affected, they have an underground cable drop to each of their subs. But other operators such as British Rail Telecommunications - who are planning to use microwave radio tails for residential phone connections - would benefit from a standard that ensured fully compatible equipment, capable of interworking with kit from other manufacturers.
Where are the RF engineers who are going to sort out the mess?

Free software.

apan's Miti (Ministry of International Trrade and Industry), Tokyo, has announced sponsorship of a ten year collaborative programme between government and industry - the Real World computing project. Aim of the programme is to develop massively parallel computers, neural networks and optoelectronics. But this new initiative is planned to be an international effort, unlike the ill-fated allJapanese Fifth Generation computer project. Less than a month earlier, MITI announced officially that it had closed the books on that particular project, admitting that its ten-year long research effort had failed to overtake the USA's lead. MITI says that Japan will make all the software resulting from the $\$ 400$ million project available to all for free. Applications, presumably, direct to MITI.

Royal secret

Pould electronics have saved the Queen the annoyance of reading her Christmas message in the papers before it had been broadcast? Bandwidth of the audio channel on the video tapes distributed to TV stations beforehand is doubtless adequate to support a digitised version of the speech - certainly this is the case if a Nicam facility is included. So audio could be digitised and an encrypted version recorded along with the video. The key could be distributed to authorised recipients such as broadcasting stations, by phone, telex or fax after the last pre-Christmas editions of the papers had gone to press. Only one trusted person need know the key. Indeed in a two key system, one key could be retained by the Queen herself. It would only remain to ensure that personnel at the recording session were frisked for concealed mini-dictation machines, oh and of course to sweep the room for radio-mike bugs: you can't trust anyone nowadays.

Balance of power

ussia's Ministry of Atomic Energy is reported to have had discussions with the US Dept of Energy about selling tonnes of uranium available since decommissioning its nuclear arms. The USA has 110 nuclear power stations, needing partial refuelling every year or so.

Curious. Surely the USA should have ample ex-weapon uranium stocks of its own.

Could low cost DSP signal the end for analogue audio?

New digital signal A part from CD, Nicam and a little dat, domestic audio is still entirely analogue. But a recent drop in the cost of processing digital audio will shortly eliminate most analogue elements. Digitally driven loudspeakers, where a DSP chip directly controls the position of the cone, have already appeared (Philips) and a fully digital power amp could well be on the market within 12 to 15 months.
Motorola's DSP56004 was recently launched specifically for domestic use. Based on the company's 24 -bit DSP architecture first appearing in 1987, the chip is tailored to meet emerging demands in interfacing and performance required for high-volume, high-performance but low-cost consumer audio. Currently it costs around $£ 22$ in 1000 -off quantities but this price will eventually fall to around $£ 17$, and lower still for larger quantities.

Obviously a device operating at tens of mips needs a high clock frequency. But fast square waves running around a circuit board create unwanted noise. To overcome this problem, Motorola has designed an on-chip low-jitter PLL for the DSP56004 that allows slow-edge clock inputs as low as 9.8 kHz to drive the chip at its rated 20 mips . Future devices will have an even higher throughput.
To encourage as many people as possible to use the device, Motorola has incorporated onchip emulation technology, allowing programming in situ at low cost. A complete hardware/software development system is currently around $\$ 3000$, a price which although not at enthusiast level is nevertheless accessible to small companies. Competent engineers should be able to design their own development system provided they have the full interface specifications - we could well see the odd home produced DSP audio system. Passing of data to and from the host involves only a simple serial interface, Fig. 1.
Peripherals tailored to audio signal processing are built into the chip. An external memory interface can access static or dynamic ram with flexible address generation circuitry that accommodates nibble or byte-wide memories. Memory limits are 256 K byte for sram or 4Mbyte for dram in single or multiple blocks. Data transfers to and from the core are in 24bit words. For accessing delay line taps in a reverberation algorithm, special addressing modes have been added to simplify the implementation.
The DSP56004 has a built-in serial audio interface capable of receiving two stereo channels and transmitting three stereo channels via major data communication protocols, among them $I^{2} S, I^{2} \mathrm{X}$, Sony and Matsushita. For professional and semi-professional applications, Motorola has also recently launched an AESEBU transmitter/receiver (see box) that can

Fig. 1. Implementing the audio DSP chip is not as difficult as might be expected. The system shown represents components not directly related to audio processing such as video circuits.
combine with the DSP56004 to provide studio performánce at relatively low cost.
So that the processor is free to carry out its task without having to handle general operations such as control-signal decoding and updating, a serial host interface takes care of communication with microcontrollers through Motorola SPI or Philips I ${ }^{2} \mathrm{C}$ protocols. Up to four DSP56004s can be pin-programmed to respond to different addresses from the host, allowing them to be used on the same bus without contention.

TV and video

Use of Nicam and cinematic techniques such as Dolby Surround on video tapes and broadcast transmissions is prompting more and more consumers to demand high quality audio sound from their TVs. Figure 2 shows how the processor might fit into a TV/video system to handle Nicam and produce four-channel surround sound plus monologue channel in high-quality audio. In conjunction with Motorola, Dolby Laboratories has produced an implementation of the Dolby Pro Logic surround-sound decoder in software for the DSP56004.

New receiver/transmitter for digital audio

Until now, transmitting and receiving digital audio in AES-EBU format has needed chip sets. But by concentrating on reducing data recovery PLL jitter, Motorola has managed to produce the first highperformance single-chip solution. It has independently-clocked transmitter and receiver sections together with four on-chip oscillators and on-chip PLL frequency and phase detectors.
The device, the DSP56401, is based on the same DSP technology as the 56004 but is intended for studio-type environments. But it could also find applications in topend audio since it handles the simpler audio-only EIAJ-CP340 digital transmission standard used in CD players and rdat recorders. Besides audio, the device could also be used in conjunction with rdat recorders for mass storage for data.
The processor converts data in both directions between another dedicated DSP chip or serial audio data converter and one of the digital transmission standards. It has various levels of use from a simple interface for audio-only data to a professional system manipulating nonaudio data in real time.
Although the chip is not yet priced for consumer applications, interesting applications arise for it in optical lan areas. in the automotive field for example it could act as a controller for an optical lan. The lan could not only route data around the car but also feed the rear loudspeakers, freeing them from the constraints of wire losses and distortions experienced in the electrically noisy environment. Even further in the future, devices like it could act as controllers for optical lans in the home.

Automotive

Improving the quality of in-car audio has long been a goal for manufacturers. The $D S P 56004$ allows automotive audio to be improved significantly while remaining part of the mass market. High-quality surround sound, acoustic equalisation and adaptive volume control are examples. Using adaptive volume control, output from the sound system is adjusted automatically to cater for changes in vehicle speed and passenger compartment noise.
Figure 3 illustrates how the DSP56004 might be implemented. An important feature in this application area and for portable audio is physical size. The device is housed in 80 pin quad flat pack and small enough to fit easily into the confined space of a car radio.

Fig. 3. In automotive applications, DSP can not only improve sound quality but also offer features like automatic level adjustment and surround sound at low cost.

In the home

While not yet obsolete, traditional stereo amplifiers will eventually be replaced by audio-visual high quality amplifiers and homeentertainment switching centres.
Additionally, amplifiers capable of driving up to six speakers are appearing on the market to accommodate surround sound. With a DSP system (Fig. 4) the listener will not only be able to set the sound to emulate a predetermined venue but also to customise the

Audio converter with 107 dB dynamic range

US semiconductor manufacturer Crystal has achieved a remarkably wide dynamic range of 107 dB and a passband ripple of $\pm 0.0002 \mathrm{~dB}$ for its new D-to-A converter for professional digital audio.
The CS4303 incorporates an 8 x interpolation filter together with a $64 x$ oversampled delta-sigma modulator that outputs a single-bit signal to an external low-pass filter. Input serial port is configurable providing four interface formats, and its master clock can be either 256 or 384 times the input word rate to accommodate various audio environments. Data at standard audio frequencies of $48,44.1$ or 32 kHz is accepted.
Delta-sigma modulation avoids the linearity limitations of laser-trimmed resistive D-to-As and is now becoming universally accepted for high-quality audio. Its advantages include ideal differential linearity, no distortion mechanisms due to resistor mismatches
response of each individual output to suit their own tastes.
The highly integrated, high-performance solutions which can now be achieved at significantly lower costs mean we can look forward to the benefits of greatly improved audio reproduction quality and sound effects in the near future.
and no linearity drift over time and temperature due to variations in resistor values.
Digital interpolation filter increases the sample rate by eight times to eliminate images of the baseband audio signal existing at multiples of the input sample
rate. This reduces the complexity of analogue filtering since it can be based on out-of-band noise attenuation requirements rather than anti-image filtering.
A complementary device for receiving and decoding AES-EBU and S/PDIF data formats, the CS8412, already exists.

Phil Atherton is an applications engineer with Motorola.

CLASSIFIED

ARTICLES FOR SALE

VALVES AND C.R.T.S
 (also Magnetrons, Klystrons, 4CX250/350) Minimum order charge of 550 + VAT

WAREHOUSE CLEARANCE OF CATHODE RAY TUBES
CRT's for monitors, scopes, radars etc, (not domestic television). BIG discounts available for orders of 10 or more pieces. Offers considered. Enquires from Trade/Export most welcome. We have large quantities of the following types, plus 400 other types In smaller quantities. Updated March 1993 Catalogue available on request.

2J3DP1	$£ 12.00$	CV3946	$£ 12.00$	F31-12LD	$£ 88.00$
3RP1A	P.O.A.	CV8897	$£ 46.00$	LD708	$£ 41.00$
3JP1	$£ 12.00$	D10-210GH	$£ 53.00$	LD729	$£ 41.00$
3WP1	$£ 12.00$	D13-611GH	$£ 53.00$	M7-120W	$£ 1.50$
5AP7	P.O.A.	D13-611GM	$£ 53.00$	M14-100GH	$£ 12.00$
7ABP33A	$£ 12.00$	D13-630GM	$£ 53.00$	M14-100LC	$£ 23.00$
12CSP4	$£ 18.00$	D14-150GH	$£ 53.00$	M17-151GVR	$£ 112.00$
89L	$£ 18.00$	D14-173GM	$£ 53.00$	M23-112GV	$£ 41.00$
190CB4	$£ 29.00$	D14-173GR	$£ 53.00$	M31-182V	$£ 41.00$
1074H	$£ 29.00$	D14-181GM	$£ 53.00$	M31-184W	$£ 41.00$
1396P	$£ 29.00$	D14-200GM	$£ 53.00$	M31-190GR	$£ 41.00$
1424AG1	$£ 29.00$	D14-270GH/50	$£ 53.00$	M31-191GW	$£ 41.00$
95447GM	P.O.A.	D16-100GH/67	$£ 53.00$	M31-271W	$£ 41.00$
CME1431W	$£ 14.00$	D15-100GH/97	$£ 53.00$	M31-325GH	$£ 29.00$
CME1523W	$£ 18.00$	DG7-5	$£ 53.00$	M36-141W	$£ 41.00$
CME2024W	$£ 14.00$	DG7-6	$£ 41.00$	M40-120W	$£ 41.00$
CME3132GH	$£ 21.00$	DG7-32	$£ 24.00$	M44-120LC	$£ 41.00$
CRE1400	$£ 18.00$	DG7-36	$£ 12.00$	MV6-5	$£ 47.00$
CV1587	$£ 29.00$	E442-B-9	$£ 29.00$	SE32BP31	$£ 41.00$
CV1976	$£ 47.00$	F28-130LDS	$£ 100.00$	SE5FP31	$£ 41.00$
CV2302	$£ 53.00$	F16-101GM	$£ 41.00$	SEJP31	$£ 23.00$
CV2472	$£ 41.00$	F21-130GR	$£ 41.00$		

Please add \&3 P\&P In UK and 171/2\% VAT. For overseas P\&P please enquire. 10,000 pleces in stock. 400 types. Please enqulre for any type not listed above. We also have In stock: camera tubes, image intensifiers, magnatrons, vidicons and audlo valves. We wish to purchase the following valve types KT66, KT88, PX4, PX25, DA100. MINIMUM ORDER $£ 50.00$ UK. $£ 100.00$ EXPORT. CALLERS STRICTLY BY APPOINTMENT ONLY

BILLINGTON EXPORT Ltd

Unit 1E. Gillmans Industrial Estate. Billingshurst. Sussex RH14 9EZ. Callers by appointment only.
Telephone: 0403784961 Fax: 0403783519
Min. UK order $\mathbf{\Sigma 5 0}+$ VAT. Min. Export order $\mathbf{£ 5 0}+$ Carriage.

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settlement.
We also welcome the opportunity to quote for complete factory clearance.

Contact
COLES-HARDING \& CO. 103 South Brink WIsbech, Cambs PE14 ORJ
ESTABLISHED OVER 15 YEARS
Buyers of Surplus Inventory
Tel: 0945584188 Fax: 0945475216

GOLLEDGE

CRYSTALS OLECTRONICS - FILTERS Comprehensive stocks of standard items. Ov 650 stock lines. Specials made to order. OEM support: design advice, prototype quantiand
Personal and export orders welcome.位 for our latest product information sheets.

GOLLEDGE ELECTRONICS LTD
Merriott. Somerset. TA16 5NS
Tel: 046073718 Fax: 046076340

CBLLULAR TELEPHONE MODIFICATION HANDBOOK

How are hackers making cellular phone calls for free?

- How to have two phones with the same number
- Techniques for decoding \& changing cellular phones' NAMS
- Descriptions of cellular phones's vulnerabilities!
- Cellular phone manufacturers ESN codes

Complete Manual only £ 50
SPY Supply, 108 New Bond Street
London W1Y 9AA
(US) 617-327.7272
Sold for educational purposes onlv

0

 Cooke International

 Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME. SEND S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS. SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

ELECTRONIC TEST \& MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB
Tel: (+44) $0243545111 / 2 \quad$ Fax: $(+44) 0243542457$

* COMMUNICATIONS EQUIPMENT PURCHASED *

ARIICLES WANTED

WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid.
Please send or fax your offer to: HTB ELEKTRONLK
Ahter Apeler Weg 5, 2858 Schiffdorf, West Germany
TEL: 0104947067044
FAX: 0104947067049

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity

Prompt service and cash M \& B RADIO
86 Bishopgate Street
Leeds LS1 4BB
Tel: 0532435649
Fax: 0532426881

STEWART OF READING 110 WYKEHAM ROAD READING, RG6 1PL TEL: 073468041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED VALVES, especially KT66, KT88, PX4, PX25 (also transistors, IC's, capacitors, valve radios $/ \mathrm{hi}$-fi). If possible send written list for offer by return to Billington Export, 1E Gillmans Ind Est, Billingshurst, Sussex, RH14 9EZ. Tel: 0403784961 . Fax: 0403783519

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

■ WANTED - WANTED - WANTED ■ PROFESSIONAL TEST \& MEASUREMENT EQUIPMENT

Spectrum analysers, signal generators, comms tests sets, arc.

- ralfe \bullet electronics -

Please call 081-422 3593 or fax us on 081-423 4009

FREE CLASSIFIED

ELECTRONIC COMPONENTS Bargain bags. New capacitors, resistors, IC's, connectors, stepper motors, PSU's, \& scrap PCB's SAE to; Ian Stirling, Cottaracre Star Of Markinch, Glenrothes KY7 6LA.
PHILLIPS ENGINEERING DEVELOPMENT System. Full specification printer, emulation pods, debugger etc. Box's of emulation pods, debugger etc. Box's of
software, assemblers compliers unix software, assemblers comp
updates $£ 250.0516524324$.

MINITAB STATISTICS Software release 8 for Apple Mac. New sealed unreg $£ 100$ only. Tel 0625875687.
WANTED $7 / 10 \mathrm{KV}$ Variable capacitors $1000 / 2000 \mathrm{pf}$. Also high impendance phones sant, 56 Honadu Close, Redhill, Hereford. 0432268889.
WANTED PRE-WAR Television price paid. Can collect. Jac Janssen, Hoge Ham 117D, 5104 JD, Dongen, Netherlands 010-31 162318158.

ARTICLES FOR SALE

LABORATORY CLOSURE Test equipment, working scopes D.V.H.'s etc 0252 871048 .

```
ADVERTISERS PIEASE NOTE
    For all your future enquiries
on advertising rates, please contact
    Pat Bunce on:
    Tel: 081-652 8339
    Fax: 081-6528931
```

BIG BUYERS' BARGAINS ${ }^{12}{ }^{12}$ y Brushless fan, Japanese-made FM Band Radio Mike
FM Band Radio Mike
12 v Mini Stepper Motor
Philips Laser.............
12v 2 A Power Supply
VERY MANY MORE LIST AVAILABLE Minimum order $£ 200$. but can be mixed J8N Factors Pilgrim Works. Stairbridge Lane.
Bolney, Sussex RH17 SPA Bolney, Sussex RH1175PA.
Tel or Fax (0444) 881965

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	30	

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $\mathbf{£ 2 . 5 0}$ per word.

Special rates:

6 insertions $\mathbf{f 2 . 1 5}$ per word/issue (Advertisement can appear every month or every other month only). 12 insertions $£ 1.80$ per word/issue (Advertisement to run every month only).
WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow
Extras:
Spot Colour 20%
Box number service $£ 22.00$

EXAMPLE SIZE

$3 \mathrm{~cm} \times 1$ column
For 1 insertion cost is: $£ 60.00$
For 6 insertions costs are: 551.00 per issue For 12 insertions costs are: $£ 42.00$ per issue

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT:
All major credit cards accepted
Please debit my card a total of $£$

Expiry Date

Please ensure that address given is where your credit card statement goes to. NAME ADDRESS
TEL NO \qquad SIGNATURE
All advertisements must be received five weeks prior to publication date. All cancellations must be received by eight weeks prior to publication date. After that no advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Pat Bunce on 081-652 8339.

ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

PC Based Logic
Analysers
from only
£1150
Full features - up to 200 MHz . Disassemblers for 8/16 Bit Processors!

For more information including demodisk, contact:

ICE TECHNOLOGY LTD
Tel: 0226767404
Fax: 0226370434
CIRCLE NO. 134 ON REPLY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884
Fax: 0818852496
CIRCLE NO. 135 ON REPLY CARD

DATAUPDATE is

Electronics Weekly's section for advertisers to market their product information. From catalogues to newsletters Data Update is designed to present your product information in a clear and attractive manner, whilst our colour coded enquiry numbers help readers to obtain the information they need fast.
CIRCLE NO. 136 ON REPLY CARD

2nd EDITION TOKO RF

 catalogueCirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.
The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Lid, Park Lane, Broxbourne, Herts, EN107NQ
Tel: (0992) 441306
Fax: (0992) 441306 CIRCLE NO. 138 ON REPLY CARD

ELECTRONICS MVDD + WIRRIESS WORLD

ELECTRONIC UPDATE is

Electronic World and Wireless World's section for advertisers to market their product information. From catalogues to newsletters, Data Update is designed to present your product information in a clear and attractive manner while our "CIRCLE NUMBERS" help readers to obtain the information they need fast.

CIRCLE NO. 139 ON REPLY CARD

High Speed EPROM \& FLASH Programming from your PC

- Programs EPROMs to 4 Mbits/ 32-pins
- Superfast 8,16 \& 32-blt programming
- Approved algorithms
\square Menu driven software included
\square Sophisticated edilor functions
\square Easy file management
\square FREE demo disk avallable
Stag Programmers Limited Martinfield Welwyn Garden City, Herfordshire, AL7 IJT UK
Tel: (0707) 332148
Fax: (0707) 371503

CIRCLE NO. 140 ON REPLY CARD

matmos

ASTEST MATMOS IBM COMPATIBLE AVAILABLE 66 MHz VESA 32 BIT LOCAL BUS 486 DX

 VESA 32 bit VGA card using Tseng Llas. Ae
parailel ports 1.44 .5 heh dnve and mouse
parailel ports. 1.
Peroominc:
Lendomark: well in excess of 200 Core sest: Access 0.1 insec Transter 17.5 M1/sec 30 benc hmark: 45.6 cI995
486 CAD/DTP SYSTEM WITH 1280×1024 MONITOR

480 BY 1024 WINDOWS GRAPHICS WORKSTATION

RAM and 8 MIPS processor. Hitachi is inch uitra hist resolution monitor co display I
486 NOVELL FILE SERVER
 TOP SPEC. 486 SYSTEMS

Phone for lowest price quote on 14 complete system to your requirements.
386 LAPSTOPS/486 NOTEBOOKS

$$
\text { MATMOS } 25 / 33 \text { MHz } 386 \text { SYSTEMS }
$$

 PRINTERS

All Hewlet Packard and C_{3} nnon Later and inkiet printery mailble - please call
FLOPPY DISK DRIVES

1.2 Mbyte 5.15 .inch Pannzonk half heoghe 139.95 (arr 44).

HARD DISK DRIVES
MFM: 10 Mbrte NEC 51245.25 -inct C2S
SCSI: Seagace 330 Meg ST4376 659

 FUJITSU PROFESSIONAL MARD DRIVES Top builid quality, rewits in drwes of ourstanding relibbithy and periormance

DISK DRIVE CONTROLLER CARDS (carr. ©2.50)

 IBM COMP ATIBLE AT MOTHERBOARDS, CARDS etc.

 I/O CARDS
 NETWORK PRODUCTS
Ethernet card Novell NE-2000 comparible 16-bit C75 (carr C2). All network cabies and connectors in stock AT/XT CASES WITH PSU

 MONO MERCULES 12 -inch high res dapiay, 49 (car

 interlaced) (car a 10). CAD COLOUR
 VGA CARDS AND WINDOWS ACCELERATORS
Mono grephics card.
16-bit VGA card. 256 K
16-bit VGA card. 256 K , all emulations, up to 800×600. with sotware w run all mapor packages. Oakk chip see. Smutctable for use in
IL-bit 1024×768 super VGA card Verd high resolution with IMbyte and drivers for Windows. Acad. VP etc. Full manuals aro disks
Latest versoon of the nidustry standard Trident chip see © 49 .

 Labs accelerator C179. MICROFFLELO TO 1280 by 1024 non interliced 64 bit 8 MIPS video processor 2 Mbre Ram drwers for A LloCad 9. 10.11 and 12 and Windows 31 with 15 thech non miterlaced Hitachi colour monitor 2299 . Please ring for other video cards including Local Bus options, (carr. on card 2200).

MODEM AND FAX/MODEM CARDS
 Modem, Fax card 9600 BPS fax card with 4800 BPS Hayes compat. modem with all soft ware [99 (new model) $9600 / 9600$ BPS model
C139.

Astec BMI 40 IBM XT/AT compacible $150 \mathrm{~W},+5 \mathrm{~V}$ at ISA. +12 V at $5 \mathrm{~A},-5 \mathrm{~V}$ at $0.3 \mathrm{~A},-12 \mathrm{~V}$ at 0.5 A ; fan cooled, rear peel switch
good value at (19.50 (car. (4) SOFTWARE AND DISKS

[^3]
INDEX TO ADVERTISERS

PAGEPAGEPAGE
Keytronics 373
Pico Technology 376 Ultimate Technology 354
Alternative
Distribution (UK) Ltd 426
Anchor Surplus 398
Baas Electronics BV 432
Bull Electrical 419
Citadel Products Ltd IFC
Dataman Designs IBC
Display ElectronicsLtd359
IPK Broadcast Systems 392
Johns Radio 414

Lab Centre
Langrex Supplies Ltd 360

Ralfe Electronics 408408Research Communications
M\&B ElectricalSupplies390
M\&B Radio (Leeds) 364MQP Electronics426Matmos Ltd440 Stewart of Reading376392
Maplin Electronic OBC 383
Number One Systems426
Surrey Electronics Ltd 408
404 Telnet Ltd 383Powerware409 Tsien Ltd409
OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008.
United States of America: Jay Fenman, Reed Business Ltd., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827.
Printed in Great Britain by BPCC Magazines (Carlisle) Ltd, and typeset by Marlin Graphics, Sidcup, Kent DA14 5DT, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. © Reed Publishing Ltd 1992. Electronics and Wireless World can be obtained from the following: AUSTRALIA and NE W ZEALAND: Gordon \& Gotch Ltd, INDIA: A.H. Wheeler \& Co, CANADA: The Wm Dawson Subscription Service Ltd; Gordon \& Gotch Lid, SOUTH AFRICA: Central News Agency Ltd; William Dawson \& Sons (S.A.) Ltd; UNITED STATES: Worldwide Media Services Inc., 115 East 23rd Street, NEW YORK, N.Y, 10010. USA. Electronics \& Wireless World \$5.95 (74513).

Dataman's new S4 programmer costs £495 You could have one tomorrow on approval*
 If you've been waiting for S4 we have
 Your microprocessor can write to S4

some good news. It's available now. S4 is the 1992 successor to Dataman's S3 programmer, which was launched in 1987. The range goes back through S2, in 1982, to the original Softy created in 1978. Like its predecessors. Softy4 is a practical and versatile tool with emulation and product development features. S 4 is portable, powerful and self-contained. Design and manufacture are State of the Art. S4 holds a huge library of EPROMS, EEPROMS FLASH and One Time Programmables. Software upgrades to the Library are free for the life of the product, and may be installed from a PROM by pressing a key. $S 4$ makes other programmers seem oversized, slow and outdated. S4 is now the preferred tool for engineers working on microsystem development.

Battery Powered

S4 has a rechargeable NICAD battery. On average, you can do a week's work without recharging. On a single charge, up to a thousand PROMS can be programmed - and charging is fast: it only takes an hour. Normal operation can continue during the charging process.

Continuous Memory

Continuous Memory means never losing your Data, Configuration or Device Library. You can pick up S4 and carry on where you left off, even after a year on the shelf. If the NICAD battery loses all of its charge, RAM contents are preserved by the LITHIUM backup battery.

Remote Control

S4 can be operated via it's RS232 Serial Port. The standard D25 socket connects to your computer. Using batch files or a terminal program, all functions are available from your PC keyboard and screen.

Free Terminal Program

You could use any communications software to talk to S4. But the
Terminal Driver program, which we include free, is the best choice. It has Help Screens to explain S4's functions and it sends and receives at up to 115200 baud - that's twelve times as fast as 9600 baud. At this speed a 64 kilobyte file downloads in 9 seconds. There is a memory resident (TSR) option too, which uses only 6k of your precious memory, and lets you "hot key" a file to S4. Standard upload and
as well as read. If you put your variables and stack in S4's memory space, you can inspect and edit them. You can write a short monitor program to show your internal registers.
S4's memory emulation is an inexpensive alternative to a full MDS and it works with any microprocessor. Many engineers prefer it because their prototype runs the same code that their product will run in the real world.

Dimensions \& Options

S4 measures $18 \times 11 \times 4 \mathrm{~cm}$ and weighs 520 grams. $128 \mathrm{k} \times 8(1 \mathrm{MB})$ of user memory is standard, but upgrading to
$512 \mathrm{k} \times 8$ is as easy as plugging in a 4 MB low-power static CMOS RAM. The stated price includes Charger, EMUlead, Write Lead, Library ROM, Terminal Driver Software with Utilities and carriage in U.K. but not VAT.
*Money-back Guarantee
We want you to buy an S4 and use it for up to 30 days. If it doesn't meet with your complete approval you will get your money back, immediately, no questions asked.

Call us with your credit card details.
Stock permitting, we are willing send goods on 30 days sale-or-return to established U.K. companies on sight of a legitimate order.

Customer Support

Dataman's customer list reads like Who's Who In Electronics. Dataman provides support, information interchange, utilities and latest software for S4, S3, Omni-Pro and SDE Editor-Assembler on our Bulletin Board which can be reached at any time, day or night.

 Co
 PROGRAMMERS LTD

| Station Road MAIDEN NEWTON | |
| :--- | :--- | :--- |
| Dorset | DT2 0AE United Kingdom |
| Phone | $0300-20719$ |
| Fax | $0300-21012$ |
| Telex | $\mathbf{4 1 8 4 4 2}$ |
| BBS | $\mathbf{0 3 0 0 - 2 1 0 9 5}$ |
| Modem | $12 / 24 / 96$ V32 HST N,8,1 |

Dorset DT2 0AE United Kingdom
Phone 0300-20719
Fax 0300-21012
Telex 418442
BBS 0300-21095
Modem 12/24/96 V32 HST N, 8,1

serious souni serionis savine HIGH QUALITY PROFESSIONAL 100W POWER AMPLIFIER KIT－SAVE £30

＊Ideal for Instrument Amplification＊Stage Foldback＊Small Venue P．A．＊Studio Monitor Amplifier HMAMMA

his superb amplifier kit brings together five of the best and most popular＇Audio Building Blocks＇，to produce an amplifier of unrivalled sound quality at the price．The Power Output Stage is an excellent 150W MOSFET design which is currently Maplin＇s Best Selling Audio Kit．it is complemented by the excellent performance of the SSM2016 Differential Preamplifier which has also featured in Maplin＇s＇Top 20＇kits．The superb audio stages are supported by a High Quality Power Supply Unit，sophisticated Monitoring Circuitry and a Thermal Protection System．Housed in a rugged 19 in ．rack mounting case，this outstanding amplifier is designed for longevity， purity of sound reproduction and ease of integration with other professional equipment．
The kit contains everything you need to build this superb amplifier and is supplied complete with comprehensive constructional information．

For a friendly welcome and the best of service，visit your local Maplin store：BIRMINGHAM；Sutton New Road，Erdington．BRIGHTON； 65 London Road．BRISTOL； 302 Gloucester Road．CARDIFF； 29－31 City Road．CHATHAM； 2 Luton Road．COVENTRY； 12 Bishop Street．EDINBURGH； 126 Dalry Road．GLASGOW；264－266 Great Western Road．ILFORD；302－304 Green Lane．LEEDS；Carpe World Building， 3 Regent Street．LEICESTTER；Otfice World Building，Burton Street．LONDON； World Building， 3 Regent Street．LEICESTER；Ottice Worla Builoing，Burts Silreet．LOND． Hammersmith．MANCHESTER；8 Oxford Road．NEWCASTLE－UPON－TYNE；Unit 4，Allison Court， The Metro Centre，Gateshead．NOTTINGHAM；86－88 Lower Parliament Street．PORTSMOUTH； The Metro Centre，Gateshead．NOTHNGHAM；86－88 Lower Parlament Street．PORTSMad Hillsborough SOUTHAMPTON；46－48 Bevois Valley Road．SOUTHEND－ON－SEA；282－284 London Hillsborough．SOUTHAMPTON；46－48 Bevois Valley Road．SOUTHEND－ON－SEA；282－284 Londo
Road，Westcliff．Plus a NEW STORE opening soon in MIDDLESBROUGH．Phone 0702552911 for further details．Subject to availability．Price subject to change．Price inclusive of VAT．［⿴囗十⺝丶 indicates a further details，Subject to
carriage charge of $£ 5.50$ ．

CIRCLE NO． 103 ON REPLY CARD

Features：

\star Standard 19in．2U Rack Mounting Case ＊100W RMS Power Output
＊Balanced Line Input
＊Loudspeaker Protection
\star Switch－on Mute
＊Thermal Protection
Typical Specification：
Rated Load Impedance： 4 to 8Ω
Maximum Power Output：
4Ω
8Ω
THD＠75W（1kHz）：
IOSW RMS
90W RMS
Frequency Response：
10 Hz to $40 \mathrm{kHz},-1 \mathrm{~dB}$

CREDITCARD HOTLINE 0702554161
Mail Order to：P．O．Box 3，Rayleigh，Essex SS6 8LR

[^0]: Schumann Resonance models show how low frequency $(7-50 \mathrm{~Hz})$ standing waves exist in a global circuit bounded by the Earth and the ionosphere.

[^1]: *Dr Al-Hashimi is a design engineer working for Matthey Electronics.

[^2]: UK Distributor
 Pentagram Electronic Designs
 6, Pasture Close, Clayton, Bradford BD14 6 LY
 Phone: (0274) 882609 Fax: (0274) 882295

[^3]: * VAT and carriage must be added to all items (quotes for carriage overseas).
 * Everything new, and guaranteed one year unless stated; ex-dem. products guaranteed 6 montlis. Access and Visa relephone service
 MATMOS LTD., UNIT II THE ENTERPRISE PARK, LEWES ROAD, LINDFIELD, WEST SUSSEX RH16 2LX. 0444482091 and 0444483830 (Fax 0444 484258).
 Matmos Ltd has been trading successfully since 1976

