ELECTRONICS
 Denmark DKr. 70.00

WORLD

 Germany DM 15.00 Greece Dra. 760 Hollond DFI. 14 Italy L. 7300 IR $\mathbf{5 3 . 3 0}$ Spain Pts. 780
MARCH 1993
 $£ 1.95$

APPLCATIONS

Intelligent

charging for NiCds

RF DESICN

ATV receiver for 23 cm

SYSTEMS

Radio circuitry for GPS systems

SICNAL

PROCESSING Experimenting with DSP

REVIEW

Dadisp-the clumsy alternative?

READER $0-F=R$

Ian Hickman's new book
Analogue Electronics for just $£ 22.40^{*}$
*Overseas $£ 27.40$. This month only. Normal price $£ 34.90$ ($£ 39.90$)

THE WORLDS No. 1 BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM.

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, OFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL $74 / 54$ series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichi zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU 's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 \& 68HC11

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card cable, software and manual only
£395
Please add $£ 7$ carriage (by overnight courier) for UK orders, $\mathbf{£ 2 0}$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

FEATURES

COVER: STARTING OUT WITH DSP 188

To be considered competent, an electronic designer must be at. 1 apply the basics of DSP. JeanJacques Dauchot's experimenter's kit allows anyone to try - and see.

DADISP REVISION WITH

 RESERVATIONS 198DADISP is one of the most flexible signal data processing packages on the market. But Allen Brown wonders if Version 3.0 had been better left in the box.

GRAPHICAL DEMONSTRATION

 OF SCIENTIFIC POWER .200If you want to convert your PC into a scientific calculator with powerful graphing at minimum cost. Don Bradbury shows why CC4 is the program to consider.

GPS: RADIO ARCHITECTURE 210
Traditional GPS radio architectures require access to asic technology for the hardware processing chamels and suffer from long acquisition times. Philip Mattos describes a high performance radio system, based on direct conversion. and outlines Plessey's single chip GPS implementation.

MULTI-MEDIA - THE PERFECT MARRIAGE 224

Is it a television? Is it a computer"? Multimedia is blurring the distinstion. Julia King reports on progress to the all-inone entertainment/information system..

PICKING UP A CLEARER PICTURE

OF AMATEUR TV

.................
Amateur television is no longer just for the dedicated enthusiass. John Cronk explains how widespread repeaters combined with off-air heacon signals and receiver designs - such as his own - make ameur TV accessible to a much wider audience.

PROFESSIONAL JERVICES OFFER Analogue Electronics by lan Hickman
 Save $£ 12.50$
 on the 300 page hardback edition with this issue of $E W+W W$ (see reader reply card betweer pp. 232-233)

ELECTRONICS AFLOAT

240
Greater GPS accuracy and a compact satellite voice
telephone were among the electronic innovations unveiled at this year's London boat show.

OP AMPS IN PICTURES.
Bryan Ilat describes a graphical technique for describing feedback amplifiers that reveals fundamental operating characteristics.

REGULARS

COMMENT
The nature of power
UPDATE
Government bans unbuggable phones. Virtual reality set to boldly go, DTI launches campaign to kill waves that kill. Trio plans to halve mmic costs, 40 GHz GaAs line gives UK lead in Europe.

RESEARCH NOTES

184Sound reasons for short term memory, Every which way but not loose. Wired up head gasket reveals combustion picture. Making chips at home (all you need is an SEM). Pushing back the limits on optic fibre comms.

CIRCUIT IDEAS

Automatic monitor sync polarity, Programmable timer, LC square-wave generator. Fast small-signal rectifier.
Adjustable accurate stepper controller

IDENTIFYING AND AVOIDING

TRANSISTOR PROBLEMS.
Transistors - both bipolars and mosfets - are immune to many problems, but they can still give trouble. Robert Pease shows how robust design methods and proper assumptions about performance characteristics are the keys to avoiding pit-falls.

LETTERS235

Filter tips, Speed kills theory, Where is the low region?,
Under the brolly. Some mac comeback. Happiness is an engineer, Particle poppycock, Rationalising peace. Beatles in the ground. Crash response.

NEW PRODUCTS.

 .247$E W+W W$'s round up of all that's new in electronics and engineering software.
\qquad
Fast - and safe - charging of NiCds with DSP, Filtering reference voltages. Programmed delays.

DESIGN ERIEF
258
Negative characteristic components may not be called for every day, but Jan Hickman shows why they should be regarded as a standard tool for the professional circuit designer.

In next month's issue: There is currently much interest in direct conversicn SSB radio systems because of their ease of inegration onto silicon. N C Hamilton describes an SSB HF receiver using quadrature direct conversion for use with either analogue or DSP design techniques.
APRIL ISSUE IS ON SALE MARCH 25

FROM CONCEPT TO ARTWORK IN I DAY

Your dessign ideas are quickly captured using :he ULTIcap schematic dêsign Tool. ULTIcapp usês REAL-IME checks to prevent logic errors. Schematic editing is painless; simply click your start andrend points and ULTIcaprautomatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensuce-jour netlist is complete, thereby relieving you of tedious netlist checking.

ULTIshell, the integrated user interface, makes sure aill
your design information is transferred correctly from your design information is transferred correctly from
ULTIcap to ULTIboard. Good manual placement tools are vital to the progress of your design, therefore ULTIDoard gives you a powertul suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawiess. Blind and buried vias and surface mount designs are fully supported.

It you need partial ground planes, then with the Dos extended boaid systems you can automatically create copper polygons simply by drawing the outline. The polygor is then filled with copper of the desired net: all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.
ULTIboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrixlaser or posiscript prints and custom drill files. CIRCLE NO. 105 ON REPLY CARD

ULTIboard PCB Design/ULTIcap

Schematic Design Systems are available
in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.

The nature of power

EDITOR

Frank Ogden
081-6523128

DEPUTY EDITOR

Jonathan Campbell
081-652 8638
CONSULTANT
Derek Rowe

DESIGN \& PRODUCTION

Alan Kerr
EDITORIAL ADMINISTRATION
Lorraine Spindler
081-652 3614
SALES MANAGER
Patrick Irwin
$081-6523732$

SALES EXECUTIVES

Pat Bunce
081-6528339
ADVERTISING PRODUCTION
Shirley Lawrence
081-6528659
PUBLISHER
Susan Downey

EDITORIAL FACSIMILE

081-6528956
CLASSIFIED FACSIMILE
081-6528931

SUBSCRIPTION HOTLINE

0622721666
Quote ref INJ

SUBSCRIPTION QUERIES

0444445566

NEWSTRADE ENQUIRIES

Darelle Whitehead 0712615451

ABalkan war involving UK and European troops will undermine European and UK electronics industry interests: shooting wars are expensive, distracting and usuatly serve no economic purpose. A vicious little war on our doorstep might safeguard a few defence industry jobs in the short term but it is really no substitute for economic policy.
The stupidity of some politicians is breathtaking. They actually contemplate committing further armed forces to this and a number of other trouble spots around the world without seeming to consider the reasons for doing it.
Politics is about power. Wars are a way of projecting raw power. A thinking politician would only commit armed forces where there are clear economic goals. The Gulf war was a sensible one in this respect. The Balkan tribes have been knocking eight varieties of God out of each other for several thousand years and there is every reason to decline the invitation to their party.
I recently attended a rather different gathering, a celebration to mark the opening of GEC Plessey's 3 in GaAs wafer fab line at its Caswell research facility. It represented to me the real war that we should be fighting. Routinely writing half micron lines on a brittle piece of III/V semiconductor with a dice yield of up to 80 per cent
was not nearly as impressive as the fact that just 40 per cent of production will be sold into military applications. The plant's management anticipates that the bulk of its output will find civil use, some of which you don't yet know that you need.
For instance, the back of the average office computer is a mess of wires. Devices made at the new GP semi plant incorporate all the difficult bits of a 2.5 GHz microwave modem as a single chip for a price which we will be happy to pay.
Another example would be low cost electro-optical devices for superhet data transmission systems. These devices will power the revolution that information technologists have been promising us for so long.
The sort of development typified by the new production facilities at Caswell ought to be regarded as a heavy weapon in an economic war that we should be willing to fight.
There is no constructive value in a seat on the UN Security Council; if there had been, it would have long been occupied by Japan or Germany. Both of these countries profess institutionalised pacifism. In reality, they have come to the sensible conclusion that there is more to be gained from economic rather than shooting wars. We should do the same.

Frank Ogden.

[^0]
Government bans sale of unbuggable phones

The DTI is blocking exports of the GSM digital cellphone system because it believes the encryption used is too powerful. High level sources say this is because the security services in the UK and US fear they will no longer be able to monitor telephone calls. These sources want the matter, and the DTI's handling of it, debated in public.

Industry chiefs say the DTI has woken to the problem five years too late, creating a muddle which is crippling trade.

In January the technology desk of the DTI's press office said it was aware of the problem, and knew that the DTI stood accused of fouling the market. But internal politics obliged the technology desk to refer enquiries to the trade desk where a spokeswoman, who knew nothing of GSM. took note of questions on the DTI's export block and the source of the encryption algorithm.

Though she was given the names of the DTI officials responsible for GSM, after 24 hours she still refused to arrange a conference call with anyone inside the DTI who could discuss the matter sensibly. Finally she passed the matter back to the technical desk where someone who did understand the question tried unsuccessfillly to get BT to talk about its work.

This experience tallies with the pantomime that four of the firms trying to sell GSM equipment (Motorola, Ericsson, Nokia and AT\&T) have described.

They were all in Bahrain at the end of January for a conference on Arabic communications, and their frustration was running over.
GSM was developed in the mid 1980s by the Groupe Special Mobile, now part of the European Telecommunications Standards Institute, ETSI. European manufacturers and
telecommunications authorities shared the work. The technology was officially blessed by European Commission Directives in 1987 and the standard has been agreed in a Memorandum of Understanding (MoU) signed by 27 operators in 18 European countries.
The EC's plan and MoU promised a panEuropean GSM service by 1991. This would allow business travellers to roam, using the same portable phone anywhere in Europe with calls billed back home. This is impossible with existing cellphone services because different countries use different analogue technology.

GSM has been slow to take off in Europe because the existing analogue services are 100 successful, so manufacturers have been looking to export. The name was changed in 1990, to Global System for Mobile Communications, to make this easier.

Virtual reality set to boldly go

Virtual reality is viewed either as the stuff science fiction is made of, or as a set of games devised by hippy programmers for those who want to go one step beyond Nintendo and become part of the action. But VR tools are creeping into such diverse and arcane areas as molecular modelling, medical imaging, architectural design, and the offshore energy industry.

While some of the VR acolytes have claimed year after year that its rise to dominance is imminent, the next couple of years could see their wildest dreams cone true.

By the middle of the 1990s, synthetic realities will be commonplace tools in the engineering and scientific fields. The rapid pace of processor and software developments, along with falling prices with

regard to power, will lay the foundations for a completely different computing model. Moore's Law for processors, which stipulates that transistor density on a device should double every 18 months. is one example of such momentum on the hardware front. This Law is being realised through increasingly powerful products, like the Alpha and Pentium chips, coming out at regular intervals.
It can cost little more than $£ 10.000$ today for a workstation that can run the best 3D visualisation and design packages. As the cost of systems able to generate VR falls to affordable levels, its use will become more widespread. This process will be aided by the parallel growth of multimedia and advanced 3D computer-aided design.

VR is a computer-generated environment in which the user is immersed and can interact directly with objects contained in the so-called virtual world. This would allow an architect to walk through a virtual building - based on actual plans - long before it is built. Similarly, chemists can

[^1]In November 199() the Commission of the European Communities warned of the need "1o work towards the lifting of any obstacles concerning the export of GSM technology".
But it took until 1992 for the DTI to raise its objection on encryption. This followed a decision by the US government to reject GSM and use the D-Amps system, which has weaker encryption.

Whereas all existing cellular phone systems transmit speech as analogue waves, GSM (and PCN) converts speech into digital code running at a low data rate ($13 \mathrm{~Kb} / \mathrm{s}$) Although existing scanner radios, as used to cavesdrop on analogue cellular calls, cannot decode digital speech, no-one doubts that Far Eastern manufacturers will soon start selling scanners that can.

With this in mind the GSM designers. including BT, built encryption into the standard. The system is called A5, and is similar to the US govermment's Data Encryption Standard. The US government has always been very worried about the export of any system which relies on DES When software company Norton included DES encryption of text in its Utilities package, the feature had to be removed for sale outside the US.

Either DES or A5 encryption would bar eavesdropping in real time. This is what alarmed the FBl, which wants to listen in to mobile phones. It also alarmed GCHQ in Chehtenham, which monitors all radio traffic round the world.

With its close involvement in Gulf politics
and special relationship with the US, and BT's input on A5, the UK is spearheading the push to block exports of GSM technology without special licence. It has asked for revision of the GSM standard. either by watering down of A5 to A5X. or by omission of encryption altogether.

This means GSM equipment makers must re-design their microchips. But they cannot start until the A.5X standard is set by ETSI: the earliest hope is for May. Any change will inevitably split the standard and this will rob GSM of its major selling point, freedom to roam between counti ies with the same phone. Manufacturing costs will rise too as mass production benefits are lost.
Although Middle Eastern states are hungry to buy GSM, manufacturers dare not sell without clearance from the DTI. They all have manulacturing ties with the UK and fear blach listing by the US and UK governments.
Middle Eastern states all want to use Europe's GSM technology. As market research company EMC in the UK notes, all the countries have state-run telecommunications authorities and all are oil rich and can afford to buy what they like. Qatar and the UAE want to be first with GSM in the Gulf, with Bahrain next. But the firms making GSM equipment cannot sell it This creates the risk that the market will be lost to rival digital systems from the US and Japan.

In Bahrain. Motorola, Nokia, AT\&T and Ericsson ald told the same story. They do not
know which countries outside Europe they are allowed to sell A5 GSM to, and cannot get inswers from the DTI.

Nokia, tendering for the Bahrain GSM contract, says, "There is no logic. We don't know what is happening or why. How can we sell a global system which is not global?"*

Nokia says it "hears rumours" that sale to the UAE has been cleared, but cannot get confirmation.
Ericsson says it "thinks that Hong Kong and Singapore and Austratia have been cleated too". and says there is "some indication" that NATO countries may be approved. "But it is always difficult to get anything in writing."

AT\&T claims to have clearance from the DTI to sell in the UAE and expects to sign a contract "imminently".
Motorola, which has already won an order from Qatar, says it has to contend with a "double whanmy" because it must get clearance from the US and UK governments.
Motorola says: "It's rumoursville. The whole industry is running on rumours. If you find out what is happening, we'd like to know. Well we tried to find out from the DTI Gosh how we tried, without any success. Perhaps the oxygen of some unfiavourable publicity will wake the DTI to the harsh reality of hard business."

Barry Fox
render their molecular compounds in ways which allow them to see complex mathematical relationships and even give the equations a tactile quality.
The means of interaction and the level of immersion are variable. They range from the full head-mounted display (HMD) and data glove as a pointing device combination, to using an electronic wand or other pointing device to manipulate images on a television or computer screen. The goggles usually contain two liquid crystal displays presenting an optimised perspective for each eye. The gloves have sensors which replicate hand movements as actions in the artificial reality seen by the user.

But here lies the present cost penalty incurred through using advanced virtual worlds. Getting the user totally immersed in a synthetic environment is expensive and graphics hardware and software will have to improve substantially in performance as well. It takes a vast amount of memory and processing power to convert gestures into real-time action in VR, apart from the demands of creating the environment in the first place. A good quality HMD can still cost up to $£ 1$ million, but again the price will fall.

VR is starting to appear as a hybrid
technology, combining visualisation with a higher degree of interaction. At last year`s Siggraph graphics event in the US, Sun Microsystems demonstrated a holographic workstation. Eyuipped with 3D goggles and a mouse, the Sun machine lets the user do things like machining on a virtual lathe. The mouse moves the cutter onto the edge of a cylinder and this action is accompanied by relevant sounds from the workstation's built-in audio hardware. This system is available on the market, with third party hardware. It is being used for geographical information systems, such as road waththroughs to see how a planned development could be improved.

Such hybrid applications do rot necessarily need high quality rendered graphics, but they are delivering workable VR in some form today. Rolls-Royce is using VR to improve servicing and Nuclear Electric is simulating robot work in a similar way. And the aircraft simulation business, which spawned the first VR systems, is now using the technology to create synthetic air traffic control situations, helicopter cockpits and the view through a tank periscope.

The computer industry will have to be convinced it can make a profit from VR before it is embraced wholesale. VR attracts
the standing joke among industry executives that it is the world's fastest growing zero billion dollar business. Silicon Graphics. a workstation and leading graphics software ventor, is another company to believe in the value of non-immersive - and therefore cheaper - VR. The company attributes a fifth of its $\$ 2$ billion turnover to desktop VR systems in one form or another. This reveals the value of the underlying VR business happening today.
One of the most significant boosts to the growth of VR should occur this year. Autodest, the US company famous for its AutsCad design program, was also one of the first to get into VR and created an environment called Cyberspace. This will become available as a development kit later this year, as Autodesk bids to set the $d e$ facto standard for future VR systems. The kit will come out in the US initially and will not be available in the UK until at least next yeat.

VR for the home might be slightly longer in coming. Yet Sega promised a virtual garne in 1992 which has yet to appear and Nintendo is known to have a top-secret VR project. This particular seam of gold has not been mined yet, but the digging has started.

Dom Pancucci

40GHz GaAs line gives UK lead in Europe

The UK`s first high volume gallium arsenide chip making plant has come on stream with the opening of a new facility at GEC-Plessey`s Caswell research facility.

The $£ 20$ million wafer line provides almost totally automated handling of GaAs 3in wafers resulting in a production cost of around $\$ 2$ to $\$ 3$ per mm^{2} of chip area. The process includes direct electron beam writing on chip which can build $0.25 \mu \mathrm{~m}$ gates, small enough to produce transistors
operating up to 40 GHz . This, together with robotic cassette handling of the fragile wafers, makes the Caswell facility the most advanced of its kind in Europe and on a par with the best US and Japanese plants.
GEC Plessey expects to process only analogue microwave and optical functions in its new wafer fab: it has established a reputation for manufacturing advanced RF functions such as DBS amplifiers and downconverters, phased array radar

functions and discrete microwave devices made with class III/V semiconductor However, it doesn't expect to make pure logic except possibly as a foundry exercise for another vendor.
The Caswell process includes a couple of features which make it particularly suited to monolithic microwave IC manufacture. Two layers of passivation are available. The first, silicon nitride, allows high quality dielectric capacitors to be created on chip and a layer of metal interconnect. A second polyamide plastic polymer layer can be metalised with a further layer of device feature interconnect.
Caswell can also drill micro holes right through the die which may then be metalised to provide a third layer of metal interconnect on the back of the wafer. Production device yields are said to be in the region from 20 to 80 per cent.
According to plant manager Dr Fred Myers, the bulk of Caswell's production will be for civil and commercial applications such as its wireless lan transceiver chip which allows office computers to communicate by 2.4 GHz radio link at up to $700 \mathrm{~kb} / \mathrm{s}$.

Frank Ogden

GEC Plessey's Caswell GaAs wafer production line for high volume microwave devices. Plant manager Fred Myers claims device yields up to 80 per cent on its 3in wafers. The picture shows molecular beam epitaxy equipment used to grow further semiconductor layers on the GaAs wafers.

DTI launches campaign to kill the waves that kill

Manufacturers of almost every product with electrical or electronic components will have to meet strict limits on levels of electrical interference by the end of 1995.
This follows an EC directive on electromagnetic compatibility which became UK law in October 1992.
In the meantime, companies must either meet the regulations for each country with which they trade, or adopt the new directive in full and be able to trade freely throughout the EC.
The D'TI has launched an awareness campaign to help companies get to grips with the new standards.
Edward Leigh, trade and technology minister. said at the launch of the campaign: "EMC is an environmental issue. The airwaves are rapidly becoming polluted with the spurious electromagnetic output proliferating from various electrical and electronics devices. The aim of the directive is to reduce this electromagnetic smog to a level which is acceptable so that the various
communications, broadcast, and electronic control systems can co-exist and thereby not interfere with each other"s legitimate operation."
He gave examples of incidences where spurious signals had caused death. danger. and destruction.
In the UK interference caused a computer controlled crane to drop its load killing a worker. And in Japan interference caused robots to go out of control causing two deathes.
Other incidences include a portable radio causing a semi-submersible oil platform to move, mobile radios activating car locking systems. electric trains causing computers 5 km away to malfunction, and cars travelling at $70 \mathrm{mile} / \mathrm{h}$ having their antilocking braking systems come on due to a radio transmitter five miles away.

The awareness campaign includes an EMC helpline (061-954 0954). special journals and reports, a workbook for seminars and tutorials, and EMC clubs.

Trio plans to halve MMIC costs

The University of Kent. Philips Microwave. and Barnard Systems have joined forces to develop computer-based design tools to halve development costs of very high frequency GaAs MMICs.

The DTI is putting $£ 1,437,000$ into the project which plans to create a package including accurate models of MMIC components and all the elements needed in the design process, all built into a single workstation.

Adam Jastrzebski, a senior lecturer at Kent University, said: "At present, the combination of process speed and insufficient accuracy of computer simulation often makes it necessary to repeat the design loop two or even three times before the chip is constructed. The partners in the project want to develop the software tools which would guarantee the correct design right first time."

£125 8051 'C' COMPILER £125

- Preprocessor, compiler, optimiser
- Integer implementation
- Inline assembler
- Single chip to fully expanded memory
- Micro-C is not a re-worked small C
- Other code generators available: $68 \mathrm{HC} 11,6809$, 8085/8086/8096
- Low cost cross assembler available: 8031/8051. 6800)/(01/03/05/09/11, 8085/8096/8086

£99 8051 BASIC COMPILER £99

- Integer BASIC compiler
- Supports single chip mode
- 8051 cross assembler included
- High level debugger runs on PC
- Standard Basic commands supported
- Specific functions to access 8051 SFRs and internal memory
- Line editor included, accepts text files
- Generates INTEL hex format output
- Output suitable for 87C751

8051 ICE (ICE51 ${ }^{\text {TM }}$)

- Low cost 8051 In-Circuit Emulator
- Low power, 5 volt operation
- Plugs directly into the 8051 processor socket on target hardware
- 32 K Bytes of battery-backed RAM for program/data
- Single stepping and break points
- Assign memory and SFRs
- Upload/download INTEL hex files
- PC host software communicates via serial port
- Monitor file supplied in assembly form
- On-screen disassembly of code
- $\quad \mathrm{I}^{2} \mathrm{C}$ drivers available
- Real time clock version available

TM ICESI is a trademark of Intel Corp.
87C751 ICE (ICE751)

- Low cost 87C751 In-Circuit Emulator
- Emulation cable plugs into the 87C751 processor socket on target hardware
- On-board programmer for DIL devices
- PLCC adaptor available for 87 C 751
- Programs 87C752 DIL and PLCC devices through optional adaptors
- Monitor uses only 48 bytes of program memory
- Upload/download INTEL hex files
- Assign memory and SFRs
- Set break points
- $\mathrm{I}^{2} \mathrm{C}$ drivers available
- On-screen disassembly of code
- PC host software communicates via serial port

8051 BOOK

Architecture, Programming and Applications (£49.95). This book includes a free assembler and simulator for personal or educational use

PEB552

The Philips evaluation board for the 80C552 processor variant, a monitor and programming adaptor are available for this product

$\mathbf{I}^{2} \mathrm{C}$

Quick Basic development tools available which includes $\mathrm{I}^{2} \mathrm{C}$ monitor program, $I^{2} C$ connector/cable assembly and parallel I/O demo board

MACH 1

An RTX2000/1 PC based evaluation board featuring the RTX2001 RISC Forth processor capable of sustaining up to 12 MIPS

ICC2000

An 8 channel intelligent communications card using the RTX2001 RISC Forth processor capable of sustaining up to 12 MIPS

FORTH + +

A low cost RTX200/1 compiler optimised for use on the IBM PC based MACH1 development board but can be interfaced to other boards

The 8051: An Introductory Course

This is a one day course aimed at customers who need to become familiar with the MCS51 (8051) microcontroller family, and designed to give a detailed lock at the generic 8051 processor facilities.

RESEARCH NOTES

Pushing back the limits on optic fibre comms

Anovel method for generating clean millimetre wave signals from optical sources, has been developed by a team from the University of Wales in Bangor and the Alcatel-SEL Research Center in Stutgart (Electromics Letters, Vol 28, No 25). The advantage is that it becomes possible to send light long distances through glass libres something that can not be done directly with millimetre waves!
Traditionally, delivery of RF signals to remote locations has been by amplitude
locked So, even with the best narrow linewidth lasers, the resulting RF signal has a line-width of several tens of kHz .
The ingenious solution developed by the Welsh and German group makes use of a single laser to generate the two optical components. A lithium niobate MachZehnder modulator - carefully biased to suppress the basic laser frequency - is fed with an RF sine wave at 18 GHz , generating two optical carriers, each offset by 18 GHz . When these optical signals are recombined

at a distant point in a pin diode detector they generate a clean RF signal at 36 GHz .

Secret of success lies in the fact that the two optical components are generated by the same laser and so have correlated noise components. When the beams are mixed together, these components cancel out leaving an RF signal, the line-width of which is no greater than that of the original RF signal used to drive the modulator. Standard DFB lasers can therefore be used, even if their intrinsic line-widths extend over a several MHz .
Benefits of the technique do not stop there. Amplification of the optical signals in an crbium-doped fibre amplifier (EDFA) make it possible to regenerate a millimetrewave RF signal at a relatively long distance from its source. The experimenters tried sending the optical components along 8 km . of fibre with no noticeable degradation to the line-width of the reconstituted RF.
In their recent paper, the group says that the system should find ready application in future picocellular radio systems or anywhere where it is necessary to generate small amounts of millimetre wave RF in awkward places.

Electrical spectrum observed after the EDFA and the 8 km of fibre.

Apparatus used at Bangor for experimenting with optical generation of mm waves. Left to right is the 18 GHz signal source, a light-wave component analyser used for the DFB laser source, spectrum analyser use to monitor the output signal of the fast PIN diode. At the extreme right is the 8 km drum of fibre, next to the erbium doped fibre amplifier.
modulating a CW laser with the RF signal. Demodulation at the far end then reconstitutes the RF. Unfortunately, bandwidth of available modulators places an upper limit on the frequenc" that can be regencrated in this way.
An alternative mechod, in theory. would be to send two coherent CW laser beams along the same optic fibre and then mix them at the far end to obtain millimetrewave RF by heterodyning: the necessary stability can certainly be achieved by frequency-locking the two lasers to the required frequency separation.
Unfortunately the phase noise can not be

RF MODULAR EQUIPMENT

LOW NOISE GASFET PREAMPLIFIERS

Iwo-stage Gastet preampliliers High Q fitters Masthead or local use TYPE 9006 Tuned to your specifled frequency in the range $5-250 \mathrm{MHz}$ NF 06 dE Gain 10 -

WIDEBAND AMPLIFIERS

Monolithic microwave integrated circuits in a fully packaged microstrip format Full-wave shotky drode protected inputs Temperature compensated bias circuitry internai voltage requlation
TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$ NF 2 dB at 500 MHz Gain 30 dB Power output +12.5 dBm ,
18 mW
£165
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$ NF 2 dB at 500 MHz Gaın 30 dB Power outpul +125 dBm 18 mW
TYPE 9008 Gastet $10 \mathrm{MHz}-2 \mathrm{GHz}$ NF $\ddot{2} 5 \mathrm{~dB}$ at 1 GHz Gaın 10 dB Power output +18 dBm ,

100 mW
 £185

PHASE LOCKED LOOP FREQUENCY CONVERTER

TYPE 9115 Converts your specified input channels in the range 201000 MHz to your specified output channels in the range $20-1000 \mathrm{MHz}$ Minimum input to output separation AGC controlled Gain 60dB adjustable -30 dB Wil drive transmiting amplifers directly

PHASE LOCKED SIGNAL SOURCES

TYPE 8034 Frequency as spec fied in the range $20-250 \mathrm{MHz}$ Output 10 mW §194 TYPE 9036 Frequency as specified in the range $250-1500 \mathrm{MHz}$ Output 10 mW

FM/FSK EXCITERS
TYPE 9282 Frequency as specifled in the range $30-1500 \mathrm{MHz}$ Output 10 mW Deviation up $10 \pm 75 \mathrm{kHz}$
TELEVISION TRANSMITTER
TYPE 9550 Single channel Bands I. III, IV or V PAL B, G or I 50 W output iV composite
video input. Output protection Power meter Integral cooling and power supply £4950

RF LINEAR POWER AMPLIFIERS
Tuned to yout specifted frequency in the range $20-250 \mathrm{MHz}$ of your speciffed channels in bands 1 or $1 /$
TYPE 9105 Cmw input 1 watts output. . ${ }^{2} 275$
TYPE 9155 50mW input, 10 watts output
YPE 9 Sin 5 Integral forced air cooling and output transistor

Trotection	£ watts input. 50 wats outpus-

UHF LINEAR POWER AMPLIFIERS
uned to your specilled frequency in the range $250-470 \mathrm{MHz}$
YPE 9123 3c.0mW input, 3 watts output

TELEVISION EXCITER
TYPE 9269 Phase locked loop vestigial sideband minaturised television modulator with sound channe| RF output 10 mW on your specified frequency in the range $40-1000 \mathrm{MHz}$ or channel in bands I. III IV or V

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands N or V
YYPE 925210 mW input 500 mW output
TYPE 9259 500mW input, 3 watts outpu:
TYPE 9262500 mW input, 10 watts output
 protection

WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 93061 CMHz -1GHz Gain 15dB Output 1 wat ${ }^{1}$

Prices exclude p\&p charges and VAT

Layol is priced at $£ 99$ up to $£ 999$ (ex. carriage \& VAT) which includes:
Layol Schematics, 90 days FREE updates and technical support.

What more do you need than a practical, easy to use and fast program to design your electronics in your own way? Layol is the ideal solution to do just that. Just ask the thousands of satisfied users!

Layol
> Netlist import via Project Manager from Layol Schematics
$>$ Also for OrCAD/SDT, Schema III, Tango etc.
$>$ Forward Annotation
$>$ Graphics netlist entry
$>$ Manual-, Interactive and Auto Routing
$>$ Design Rule Checking
> SMD Support
$>$ Extensive component library
> User definable Macro"s
Powerfull output drivers for:
$>$ Gerber photoplotters
> Excellon, Sieb\&Meyer and HPGL drillingmachines
$>$ HPGL, DMPL compatible penplotters (with open pads)
> Adobe 2.0 Postscript (with open pads and 10 greyscales)
$>$ HP-Laserjet, Deskjet and Epson compatible printers

UK Distributor
Pentagram Electronic Designs
6, Pasture Close, Clayton, Bradford BD14 6 LY
Phone: (0274) 882609 Fax: (0274) 882295

International headquarters
Baas Electronics bv Rijksstraatweg 42
3281 LW Numansdorp The Netherlands
Phone: (+31) 18654211 Fax: (+31) 18653480

Wired up head gasket reveals combustion picture

An instrumented head gasket for testing combustion in production engines has been developed at Sandia National Laboratories' Combustion Research Facility in Livernore. Californiat. Its purpose is to provide detailed information that could lead to ways of improving the combustion process. reducing engine knock (spontancous pre-ignition) and lowering the emission of unburnt hydrocarbons.
Sandia`s gasket consists of a multi-layer printed circuit board whose wiring pattern is a circular array of ionisation probes. The probes detect the instant the flame front -

Sandia's ion probe flame detector gasket has been successfully tested at General Motors test facilities, Michigan, and is now in manufacture on a small scale.

the area of burning gases in the engine passes. Although ionisation probes have been routinely used in combustion research for many years, this is the first non-intrusive system that requires no access through specially machined ports - allowing it to be used on production engines.
So fir it has been successfully tested at the General Motors V-6 Powertrain Division test facilities in Flint, Michigan and is now being manufactured privately on a small scale.
The board comprising the gasket is made of a temperature-resistant glass-reinforced polyimide material that remains rigid up to $270^{\circ} \mathrm{C}$. Wiring is etched using standard primed circuit technology.

Combustion in an engine cylinder. beginning with the spark, evolves as a burning flame surface that propagates radially outwards. The high temperatures ionise the gases which. because of their electrical conductivity, clearly mark the edge of the advancing flame front.
Ionisation probes built into the instrumented gasket are merely exposed conductors carrying a voltage. As soon as a flame contacts the probe, a distinct signal is produced.
Information obtained is critical in
optimising factors such as position of the spark plug, design of the intake port and shape of the combustion chamber. It can also determine the direction and magnitude of the "swirl" motion of the gases. The motion is important in enhancing combustion rates, but is hard to observe without special viewing ports in the cylinder.
The Sandia researchers say their new device will provide information on the latest bogey of the environmental movement unburnt hydrocarbons. One of the major reasons why unburnt fuel is expelled from an engine is that it gets lodged in the crevice between the piston and the cylinder wall where it is shielded from the advancing flame. Experiments using multipoint ignition at the perimeter of the combustion chamber appear almost to have eliminated the problem of unburnt hydrocarbons.
Perhaps the most technically ingenious use of the new instrumented gasket is to tocate the source of engine knock. Knock occurs when unburnt gases self-ignite ahead of the main flame-front, often trigyered by some local hotspot in the combustion chamber. If designers can discover precisely where this takes place, they can set about improving cooling of the head in the retevant area. The new instrumented gasket, hecause it contains numerous sensors, can actually triangulate the source of engine knock by comparing the timing of the pressure oscillations alcompanying knocking.

Making chips at home (all you need is an SEM)

Researchers have demonstrated a simple room-temperature Rprocedure for making a phototransistor, obviating some of the normal fabrication processes that require high temperatures or high energies. The technique, developed at the Weizmann Institute in Rehovot, Israel, requires a powerful electric field to be applied across a homogeneous piece of semiconductor. The result is permanent distortion or change in the crystal lattice giving the affected parts conventional semiconductor properties. No doping or heat-curing stages are needed, avoiding the usual complexities and dangers of contamination or overheating the wafer.
So far the method has only been applied to copper indium selenide, and to the creation of a two-terminal phototransistor. But applications to silicon are planned though the technique has not yet been refined enough to be used to create micron-sized

components. The team caution that even if it does prove practical for commercial devices, many years of research lie ahead.
Using electric fizlds to manipulate charges in semiconductors is not a new idea. But no-one has previously suspected that by applying such fields at room temperature, sufficiently localised. sharply defined and stable charge distributions demonstrating transistor action could be demonstrated. The detailed physical mechanisms underlying this unusual low-temperature charge reorganisation are currently being investigated.
Normally, semiconductors are made by using chemical doping to tailor the electronic properties of components. The dopants are added by a variety of high temperature processes involving diffusion, ion implantation or layer-by-layer vacuum deposition. Dr David Cahen and his colleagues in Israel have used electric fields to break down the uniform space distribution of semiconductor iors and hence avoid the need to introduce foreign dopant ions. Stable charge distributions formed in the material resemble those obtained with normal doping techniques in which unbalanced positive and negative charges exist in close proximity.
The team believe the charge reorganisation effect may be due to a combination of ion migration and the formation of physical crystal defects res .lting either from the transient high voltages used to create the alectric fields or localised heating. A P-type or N -type semiconductor is the result. The hope now is that the initial results will stimulate interdisciplinary investigations needed to clarify the effect of large electric fields on semiconductors.
Researchers at Weizmann Institute of Science, Department of Materials and Interfaces, have demonstrated a simple room-temperature procedure for making a phototransistor.

Every which way - but not loose

N/hat, according to the University of Michigan: "moves forwards, backwards, sideways, spins on a dime, never gets lost, and looks like a coffeetable on wheels?" As you might guess it's a robotic velicle, and inventor Johann Borenstein claims it is more manoeuvrable, more stable and more reliable than its competitors.

The robot has been designed to carry materials or conduct inspections in hostile environments, such as inside nuclear reactors, and can negotiate tight turns more easily than traditional mobile robots with limited degrees of freedom.

Multi-degree-of-freedom (mdof) vehicles are notoriously difficult to control

- Borenstein describes it as trying to control a car with four steerable wheels. The moment the steering loses coordination, wheels begin to slip and control is lost.

Main problem is that because mechanical components can not react as fast as the computer commands, it is impossible to eliminate all errors in speed and direction. Any practical motor system will always undershoot or overshoot the desired movement.

But accurate motion is vital where a robot is exploring and mapping an unknown area. So far this has only been achievable if a human is watching the vehicle from a remote location and applying the necessary correction.
To solve the slippage problem. Borenstein has developed a technology which he calls "compliant linkage". It uses two movable chassis, each of which has a set of wheels and sensors linked to a central computer. Whenever the distance between the two chassis deviates from a preset value, the second chassis compensates immediately by sliding forwards or backwards on a track beneath the vehicle. Feedback sensors detect this movement and the computer then directs corrective action.

Compliant linkage makes it possible to design mdof robots with the levels of slippage found in conventional robots that have only limited manocuvrability. Borenstein believes that a development of this technique will make it poss ble to eliminate slippage completely for extended operation.
The dual chassis system also means that the robot should be able to rescue itself if

A dual chassis system keeps a tight leash on any wandering robot.
it gets struck or if a component fails while manoeuvring in some hostile environment, such as a nuclear waste dump.

Sound reasons for short term memory

New York University scientists have announced that they have located the area in the brain that stores short-term memory of sounds. In a recent paper they describe how superconducting detectors have made it possible to monitor the extremely weak external magnetic fields that accompany the firing of nerve cells neurons - in particular parts of the brain. The team has also established, for the lirst time, a direct relationship between brain activity and the way these memories decay. In principle, the studies could help locate the source of memories for touch or sight, and the work has made it possible to measure. objectively, the lifetime of auditory memory. Initial indications are that the length of short-term auditory menory differs greatly from one person to another. In a recent paper. (Scicence, Vol 258. 1669), Zhong-Lin Lu. Samuel J Williamson and Lloyd Kaufman describe an experiment in which each subject"s judgement of the loudness of a "memory" tone. heard in a series of tones, was found over the course of a few seconds to decay from its correct value to the average loudness of all the tones recently heard. Auditory memory for the loudness of a specific tone appears to decay
exponentially from its true value to the average of other sounds heard in context.
What is particularly interesting about this latest finding is that the researehers have correlated their practical observations about auditory memory with diree physical measurements of the relevant brain activity. Their technique, called magnetoencephalography, allows the team to monitor rain activity as the subjects responded to the musical tones.

What these magnetic measurements have revealed is that specific auditory memory -and its decay time - are all contained within the primary cortex areal of the brain. about five centimetres above each car.

Psychologists have long knowa that the brain retain: information on the physical characteristics of stimuli for only a few seconds. For hearing and sight these are known respectively as "echoic" and "iconic" memories. Such temporary buffer-type menories form the basis for subsequent processing and longer term storage. What is new is that the New York researchers have, for the first time, measured brain activity associated with very short-term memory.

Volunteers participated in experiments to determine how accurately they could recall
the loudness of a tone by comparing their memory of it with a "probe" fone played a second or more later. The subjects pressed one computer key if the probe tone seemed louder than the memory tone and another key if it seemed softer. Many thousands of measurements were made in to obtain meaningful statistics.

The most remarkable finding of all was that echoic menory seems to vary from less than one second in some subjects to more than three seconds in the case of others. This is an extrenely wide spread compared with most other physiological variables. such as. say, caction time. It is not easy, though, to determine whether wide variation in echoic menory has any practical significance. Sensory memories, in general, are lost very quickly, after which we draw on a longerterm global experience that recalls only average levels in relation to other ambient factors. That is one reason why we don"t generally notice the effects of an andio compressor that operates slowly and gently. Or why tuming up the volume does not greatly change the character of a voice.

Research Notes is written by John Wilson of the BBC World Service

SIGNAL PROCESSING

> Anyone who claims competence as an electronic designer must be able to apply the design basics of digital signal processing.

As with all things the way to learn is to try it and see. Jean-Jacques Dauchot puts together an experimenter's kit for DSP

The main DSP developer board must be interfaced to an analogue board via a 64-way back-plane.

The dominant development in electronics during the 1970 s was the microprocessor chip. It revolutionised microelectronics. It quickly replaced circuits which used hard wired digital logic and before long. low cost development systems became available.
As the analogue world was transtomed into the digital domain, a new type of microprocessor was introduced, the digital signal processor. DSP chips are microprocessors which use special instruction sets specially geared to signal processing.
DSP chips have now invaded modems. radios, medical instruments. music instruments and many other products. DSP sales in 1991 exceeded two billion pounds yet DSP technology still seems a mystery to many engincers.

The greatest hurdle to many engineers is the perceived difficulty of using DSPs. One way of getting grips in the use of DSP is 10 obtain a DSP chip set and try to use it. Another way is to obtain a DSP development system and software tools from the intended manufacturer, but they are very expensive.
DSP applies complicated mathematical methods such as filter functions to achieve the processing of the signal. It requires high degree of mathematical knowledge to be able to convert a filter transfer function to a set of instructions for the DSP chip to process. DSP manufacturers are now trying to redress this situation by providing substantive software and hardware support to encourage engineers to develop systems using DSP.

Software packages are available which generate DSP assembler code from a given set of filter parameters. One such package is the Atlanta Signal Processors Inc. DFDP (Digital

Filter Design Program). There are also numerous third party text books describing digital signal processing.

The developer

The developer is based on the TMS320C/0 running at 20 MHz . An $80 \mathrm{C} 3 /$ microcontroller is used as a master processor to the DSP; its serial port is used to connect to an IBM PC. A software package on the PC communicates to the DSP developer which allows DSP programs to be download to the DSP program menory.
The TMS.320C/6 is a first generation DSP chip which was introduced in 1983 by TI. It is an old design but for the purpose of this exercise, the device is perfectly adequate for a demonstration of what DSP can be used for. and it is easy to use.
The DSP developer is constructed on a extended single eurocard with all the ClO data, control and input/output signals connected to the 64-way DIN connector. The decision to construct the DSP developer on a eurocard system is to allow easy access to examine waveform and signals with the use of an oscilloscope.
No ADC/DAC circuitry is available on the main DSP board. This allows various type of analogue interface boards to be connected to the DSP developer via a backplane. The board also includes a three channel timer chip controlled by the $8(0) \mathrm{C} 3 / \mathrm{CPU}$ which can be used for anti-aliasing, sampling rate, and reconstruction filtering. The three timer channel outputs are connected to the DIN connector. A backplane is available to connect the DSP board to analogue/digital interface cards complete with 64 -way DIN connectors.

This figure shows the main simulator screen.
The large window across the middle of the screen is the memory window. The light blue
horizontal cursor shows the location of the program counter. The green cursor is used to set breakpoints. In this example, a tracepoint has forced the simulator to halt.

There ane three timer channels, wider the control of the $8 \pm C 31 \mathrm{CPU}$, available on the developer to provide sampling rate, anti- aliasing and r aconstruction fitering. DEVCOA1MS provides the facility b set, start and stop any of the timers.

The block diagram of the developer shows that low cost DSP development system can be acheived with minimal chip count. The use of the 80C31 microcontroller as the master controller provides high intergration and interfac ing to the PC via a serial link allows user flexibly to experiment without the risk of damage to the PC.

poxe	\cdots
vovo	18
now	\bigcirc
bon	814
pop	ats
-013	28
wout	117
now	± 18

The TMS320c10 program memory access is control by the 80C31. The address lines and control lines of both processors are switched via quad 2-input multiplexers ics. The control of the memory is accomplished by toggling the P0.7 port line of the 80C31. When the 80C31 has control of the memory, it also places the TMS320c10 in the reset state which places its data line in tri-state mode.

Circuit description

The 320 C 10 and the address/control multiplexers (U_{17}, U_{16}, U_{15} and $U_{I 9}$) are controlled by setting port P1.5 of the 80 C 3 l high or low. When high, the reset line of the Cl0 and pin 1 of the four multiplexer ic's are held low via the inverter $\mathrm{U}_{\text {lob }}$. In this state, the ClO is in its reset mode, its data lines are tristated and the DSP program memory address lines are placed under the control of the 80 C 31 processor.
The 80 C 31 has full access to the DSP program memory which can be loaded with a program or contents read. When PI. 5 is set low, the TMS320C10 reset line goes high and the control of the address/control lines is returned to the DSP. The DSP then starts running its program from address 0).
Data is written/read to the DSP program memory in byte size via the two bi-directional buffers (U_{6} and U_{7}). Port P1.7 and the inverter $\left(\mathrm{IC}_{6}\right)$ controls which byte of the word is accessed. When P1.7 is set high, the MSB can be accessed, when set low the LSB can be accessed.
The TMS320C10 can address up to 4 K words of external program memory. The circuit utilises $8 \mathrm{~K} \times 8$ memory ics. The 80 C 31 port Pl 1.6 is connected to A 12 pin of U_{8} and U_{9} which allows two DSP programs to be loaded at any one time. Toggling PI. 6 allows switching between the 4 K word pages determining which program the DSP should run.

The TMS320Cl0 can be replaced with a TMS320C15 DSP; P1.4 port is programmed to set pin 3 of the DSP chip to run either in microcontroller or microprocessor modes.
The 82C53 timer clock is derived from the 5 MHz clock from the 320 Cl 10 CLKOUT pin. PI.O to Pl. 2 output ports of the 80 C 31 controls the timer outputs.

Input/output

The $320 \mathrm{Cl0}$ has two instructions which perform input and output operations and can read and write to eight port addresses. The IN instruction reads data from a peripheral port and places it in data memory and the OUT instruction transfers data from data memory to an external peripheral port
Examining the timing diagrams for the OUT instruction and TBLW instruction, which writes data to program memory, the NWR line is attive during data transfer while the /MEM line remains high. If i/o addressing is not fully decoded, any OUT instruction could write over the first eight program memory locations. Any TBLW instructions would also activate the WR line on the i/o address ports.
The circuit comprising of U_{13}, U_{14} and U_{10} fully decodes i / o addressing. It prevents TBLW instruction activating the i/o ports and MWR line while addressing program memory from location eight onwards. It also blocks the NR line to the program memory while executing the OUT instruction. The only restriction here is that no TBLW instructions should be attempted which involve the first eight locations of program memory, it will overwrite the program instructions at those locations.
Normally, prom would be used as program memory so that the problem of writing to program memory while executing OUT instructions would not exist. Examples of TI's own circuits uses 2 K of prom for the lower part of pregram memory and 2 K sram for the upper part. However, full i/o decoding must still be used to prevent write access to the ports.
The output of $U_{14 D}$. /IOSEL signal, goes low when address lines DA03 to DAll go low. This signal must be used together with PA0PA2 signals to decode i/o on any boards plugged onto the bus.
Note that no buffering is used on the DSP data and control lines' main board, therefore suitable buffering on the interface board must be employed to prevent any damage to the DSP developer.

The software

The developer comes with two software packages, the IBM PC DEVCOMMS developer interface and a real time prototcol engine in an eprom plugged into the DSP developer board.
The PC Developer interface software is a set of windows and pop down menus which allows the user to control the developer via the serial interface using simple commands. The command set allows TMS320C10 programs to be downloaded to the developer, contents of DSP program memory to be uploaded to the PC to be examined, setting timer frequencies, etc.

The run time kernel monitors the activity of the DSP developer and update a status window showing various states of the developer.

Software development tools

The software package used to develop the programs for the TMS32C10 is the Hippo Solutions TMS320IX development tools. Together with the Developer, it offers a complete and low cost development system for the processor chip.
The software system consists of a compiler, assembler, linker and simulator. Broadly speaking, the compiler translates C language subset source into assembly language, these
sources are combined with other assembly language sources, assembled and linked into a single executable image which can be either split into high and low byte images with the provided utility UIX or loaded into the simulator or downloaded into the DSP Developer to be run.
The compiler allows code to be developed in a high-level-language, an integer only subset of the C language, which takes a lot of the pain out of DSP code development. Special provision is made for particular number representations with the availability of Q15 and Q14 multiply operations from high level source. In addition to this, the compiler allows
a very close machine interface with the provision of NAND, NOR and XNOR operators.
The output of the compiler and associated optimiser is assembly source. The input to the assembler, whether from the compiler, user supplied assembly source or from one of the applications examples, must adhere to the format in the manual which regrettably makes it incompatible with the TI convention in some ways. Hopefully however, these deviations should not prove prohibitive to useful application of the provided tools.
The compiler and the assembler produce object files which are combined with the supplied linker to produce a single executable

The output current of the DAC-800 is converted to a voltage by U2. The voltage is feed into a MAX292 8th order low pass switchedcapacitor filter ic. The internal op amp of the MAX292 is used to provided a 2nd order low pass filter to remove the clocking frequency used to clock the filter.

image. In addition. the linker can produce a file containing all the symbols which are extematly detined within the link. This file can be used by the simulator to give symbolic debug information.
The output of the linker consists mainly of a COD file which can be used in one of four ways. Firstly it can be used to directly program a TMS320E15. Secondly it can be used with the supplied utility U1X to program two banks of eproms for the target system. Thirdly, the code file can be downloaded into the ISSP Developer. Finally, the code and symbol files can be loaded into the simulator for program timing and verificalion.
The simulator is the thagship of the available software support. Because the DSP Developer provides no run time execution debug facilities, the user is recommended to make full use
of the simulator's debug potential. Using the simulator it is possible to set breakpoints, set global trace points, examine memory in a variety of formats, mark regions of memory as being out of bounds, assign files to processor input and output streams, simulate activity on processor interrupt and BIO pins and many other features too numerous to mention.

The simulator has a generalised user interface which means that anywhere numeric input is required, the user can enter complex C language type expressions using any operators except struct/union and post/pre increment/decrement operators. One of the most powerful facilities of the simulator is its graphic capability. It is possible to display up to four traces as graphic information where a trace nay be either a port input stream, a port output stream, an area of program memory or an area of data memory. In all cases, graphs have a start address, a length, they may be signed or unsigned, they may be presented as either straight line graphs or bar graphs and they may be in either linear or log representation. Clearly, since signal processing tashs are concerned with the relationship between input and output in the majority of cases. the simulator`s graphic capabilities are a formidable step in the direction towards simplifying DSP development.

Experimenting with the developer

On its own, the DSP developer board can do little. A suitable i / o board must be connected to the developer via the 64 -way back plane. An eight bit ADC/DAC circuit is shown below. It uses the popular I $A C B O 0$ dac chip and the $A D C 7575$ ADC chip.
Anti-aliasing filtering is accomplished with a 2 nd order low pass filter and an 8 th order clock tunable low pass filter using a $M A X 291$ chip from Maxim. The cloching frequency for the filter is provided by the $\$ 2 C 53$ timer channel 0 under the control of the $80(3 /$ controller. The sloching frequency must be a hundred times that of the highest frequency being

F

HARDWARE/SOFTWARE SUPPLIER DETAILS

The TMS3201X software tools mentioned in this article can be obtained from: John Mackinnon, Hippo Solutions Ltd, 7 West Preston St, Edinburgh EH8 9PX. Phone 0316684701 . Total cost is about $£ 150$.

The DSP Developer can be obtained from: Tycho Designs 38, Playfields Drive, Branksome, Poole, Dorset BH1 2 2EQ. Phone 0202-736791. 12-bit and 16-bit ADC/DAC boards are at present being developed and will be available shortly from the same source. The compete hardware cost is also about $£ 100$.

Readers requiring further information should apply directly to the addresses above. The magazine has provided these vendor details in good faith but we have not inspected any of the products on offer directly. Readers should assure themselves that any software or hardware relating to this article will work in their intended application before purchase.
sampled. Sampling is initiated by reading the ADC which loads the contents of the previous sample and starts the next sampling process. The tevice has a built in sample and hold circuit. The sampling period can be determined by the use of the 320 Cl 0 's BI() pin connected to the output of the monostable. The 82 C 53 limer 3 is programmed to trigger the monostable.

The output of the dac is connected to another $M A X 29 /$ filter eircuit which reconstructs the signal and filters out the sampling frequency. The conventional 2 nd order filter circuit removes any residue clocking signal. the 82653 timer () provides the cloch for the switching capacitor filter.

A simple test of a complete system can be done by loading the following program to the DSP developer.

A MAX292 8th order low pass switched-capacitor filter ic together with a 2nd order low pass filter using the internal op amp of the MAX292 provides the anti-aliasing of the A / D converter. The output of the filter is feed into the $U 7$ op amp circuit which convert bi-polar signals to uni-polar signals. The monostable circuit U18 provides the necessary signal to provide the sampling frequency.

It waits for the BIO pin to go low, then reads the $A D C$ and delivers it to the dac. The timer outputs must be programmed to deliver suitable square waves to drive the tunable filter and to provide the sampling frequency. Use the menu option to enter the counter divider values. Timer 1 and 2 should be set to $2(2.5 \mathrm{MHz})$ and timer 3 to 113 (approximately 44 kHz . . Connect a signal generator to the input of the analogue board and an oscilloscope to the output. Set the generator to deliver a sinewave of less than 20 kHz , IV p-p. You should see a reconstructed sinewave on the oscilloscope. By changing the timer values, serious cases of aliasing can be demonstrated.

TMS32010 digital filtering

One of the most common applications of DSP microprocessors is that of digital filtering. There are a number of important advantages which digital filters have over their more familiar analogue counter parts. For instance the filter response is independent of component tolerances, temperature instabilities and
ageing, ensuring the filter response is exactly reproducible from one system to another.
It can be guaranteed that a filter has a phase response which is linear. This means that the filter output is not distorted due to unequal phase delays for the different frequency components which make up the input signal. Also the filter passband flatness and roll-off characteristics can be far superior than any realisable analogue filter.

The FIR filter

There are a number of algorithms which can be used to implement filter functions. Of these the finite impulse response filter guarantees linear phase, is generally the easiest to design, and is the most robust with regard to numerical stability.
The FIR filter has the form shown below. It comprises a digital delay line through which successive samples from the input source (eg. $\mathrm{ADC})$ are shifted. At each delay stage a multiplier weights the delayed sample by some factor and the sum of all the scaled past signal samples are accumulated (summed) to pro-

Finite Impulse Response (FIR) filter is commonly use to implement digital filter. The filter response is determined by the values of the coefficient $a(0) \ldots a(n-1)$. High pass, low pass and band pass filters can be all implemented using structure shown. $x(k) . . x(k-n)$ are samples of the input signal, which for each output sample $y(k)$ are multiplied by the coefficient $a(0) . . a(n-1)$ and summed.

A differentiator finds the gradient of the input signal at each sample point. For example, if the input signal is a triangular wave, the output of the differentiator will be a square wave. A differentiator can be implemented by a FIR filter with coefficients (1,-1). This approximate the gradient at the sample point as the gradient of a line connecting successive points in the input signal.
duce the filter output. All DSP processors are designed specifically 10 implement this mul-tiply-accumulate operation as fast and as efficiently as possible since it is a common requirement of a number of signal processing algorithms.

In this filter type, the output signal is only dependent on the past samples of the input signal. If an impulse signal is applied at the filter input (an impulse is a signal comprising a single sample of value I and all other samples zero) after an initial transient of N samples the output signal will also become zero, thus its impulse response has a finite duration. By taking the spectrum of this impulse response the frequency characteristic of the filter can be determined.

To design a given filter it is necessary to determine both the appropriate order N for the filter and the values of the multiplier coefficients for each delay stage. For a linear phase filter these must be symmetrical about either side of the $N / 2$ multiplier coefficient. A number of filter design techniques and programs are available to tackle this problem. Most of these methods involve a process of iteration from an initial filter specification to an acceptable compromised filter response. In general however the larger the filter order the less the compromise but the greater the computation.

A differentiator

The output from a differentiator is the gradient of the input signal. In the sampled data domain this gradient can be calculated from the input signal samples by assuming that at the given sample rate the gradient can be approximated as the gradient of a straight line connecting successive samples. For this simple differentiator the coefficients would be [I , - I $]_{3}$. Using 16 -bit fractional two's complement integer representation, the coefficients would be [32767, -32767] ie $2^{15}-1$. The scaling by f_{S} would be accomplished by amplifying the dac output appropriately if required. Better differentiators can be designed using more sophisticated techniques but this will suffice for this example.
Using these coefficients and 16 -bit arithmetic the filter output could overflow causing distortion of the output signal as the accumulated results wrap around the full scale number representation - 32678 and 32767 in this case. There are a number of approaches which can be taken to this problem:

1. Assume that the input sequence which could cause overflow is improbable and make no allowance for its occurrence
2. Ensure that overflow will never occur by scaling all the coefficients by a fixed factor. For 16 -bit arithmetic this factor S can be determined from $S=32767 / \mathrm{sum}$ from $i=0$ to NAbs(a(i))
3. Use the overflow mode of the DSP processor (SOVM in the TMS32010) such that, if an overtlow does occur, instead of wrapping around the arithmetic will saturate to its max-

TMS 32010 FIR Filter Code

imum of minimum value depending on the sign of the result.

FIR Implementation

The kernel code for the implementation of a TMS3210 fir filter is shown.
The data memory is organised so that the delayed sample array appears as the first elements, so that auxiliary register $A R 0$ can perform two roles, a decrementing counter and to access data samples from memory. Auxiliary register $A R /$ is used to reference the coefficient array memory locations.
Both registers are initialised to start at the end of their respective arrays at the oldest filter sample.
The accumulator is cleared ready for all the partial products from each of the multiplies to be summed. The last partial product is calculated first and its result left in the product register.
The Itd instruction is paramount to the efficient calculation of the fir filter on the $C 10$. This one instruction causes the pending previous result in the product register in added into the accumulator: the T-register is loaded with the next sample delay line value: this current delay line value is copied into the next highest data memory location. (see also the DMOV instruction) This effectively clocks the delay line by slifting everything by one sample as the filter calculation proceeds.
The sample delay line value is multiplied by its corresponding filter coefficient and the result left pending in the product register for the next execution of the loop and ltd instruction.
The banz instruction branches if the curtent auxiliary register is not zero and decrements its value by one. This is a common method of implementing a counting loop in the TMS32010.
Note the final apac instruction adds the last remaining pending product from the P -register, since when the loop breaks, the tid instruction will not be executed again to perform this task. The final filter output value now resides in the accumulator and can be output to a dac. etc.

Direct digital synthesis on the

 TMS32010Traditionally sinewaves are generated by analogue techniques. It is now possible to generates low distortion sinewaves digitally with frequency stability and accuracy derived from a crystal oscillator. This technique is known as direct digital synthesis. There are available, a number of special purpose DDS chips and modules. However, they are expensive and are still confined to professional and military equipnent.
The systern described here is a low cost route to DDS. The software will run on the

DSP Developer with the corresponding ADCiDAC card for analogue output. DDS in software. even on a DSP micro, will never compete with dedicated hardware in terms of speed. The system described below will generate sinewaves from 5 mHz to 50 kHz in steps of 5 mHz .
The direct table lookup nethod is the simple and quick. Readers wanting a fuller exposition of the theory are directed to Tierney, 1971. The method requires that one stores a number of unfformly spaced samples from one cycle of a sinewave in a lookup table. If we now step sequentially through this lookup table reading out successive samples to a DAC at a constant output rate then we get one cycle of a sinewave. At the end of the table it folds back to the start and continues to generate a sinewave indefinitely.One can calculate the maximum frequency from the generator if the time raken to go round the software loop once is known. Assuming you have a 20 MHz crystal in your TMS32010 board then, using the code supplied with the kit, the maximum frequency is 50 kHz . The corresponding minimum frequency is 5 mHz . Such low frequencies are difficult to generate by analogue means.

I would like to thank Dr James Dripps and Dr. Keith Manning for contributing to the article.

Direct Digital Synthesis of Sinewaves program

	-SEG		
M1	DATA	\#07FF	; Mask confines addresses to table
STEPL	DATA	\# 30C2	; Poke phase acc. fractional l6-bits
STEPH	DATA	\#0008	; Poke phase acc. integer 16-bits
	COPY	'SINE.ASM'	; 2 k data table
	TEND		
	PSEG		
SINA	LQU	0	
MASK	EQU	1	; Mask to confine addresses to table
OFSET	EQU	2	; Start address of sine table
DELTAH	Equ	3	; Integer part phase step
DELTAL	EQU	4	; Fracional part phase step
ALPHAH	EQU	5	; Phase accumulator integer part
ALPHAL	EQU	6	; Phase accumulator fractional part
; Initialise generator			
; Initi START	-DPK	0	
	-ACK	M1	
	TBLR	MASK	; Table 2 k address mask to data memory
	-ACK	SINE	
	SACL	OFSET	; Start of sine table to data memory
	ZAC		
	SACH	AL, PHAH	; Initialise starting phase to zero
	SACL	ALPHAL	
	LACK	STEPL	; Phase accumulator fractional l6-bits
	IRLR	DELTAL	
	LACK	STEPH	; Phase accumulator integer l6-bits
	IBLR	DELTAH	
; Wait for hardware timer			
WAIT	BIOZ	SWAVEl	
	B	WAIT;	
$\begin{aligned} & \text { : Infin } \\ & \text { SWAVE1 } \end{aligned}$	ite Lo	to output	
	zALS	ALPHAH	; New phase integer part for masking
	AND	MASK	; Mask to ensure wraparound in 2 k table
	SACL	ALPHAH	; Save wrapped value
	ADD	OFSET	; Add Dffset to start of 2 k table
	TBLR	SINA	; Next sample from table to data memory
	OUT	SINA, PAO	; Output this sample to the DAC
	ZALH	ALPHAH	; Load 32 bit phase accumulator
	ADDS	ALPHAL	
	ADDH	DELTAH	; Add next phase step - (don't worry
	ADDS	DELTAL	; about overrunning end of $2 k$ table)
	SACH	ALPHAH	; Save new phase value for next sample
	SACL	ALPHAL	
	B	WAIT	
	PEND		

WARNING!

THIS TAX COULD SERIOUSLY DAMAGE THE HEALTH OF YOUR BUSINESS

I"t is strongly rumoured the government Lwill impose VAT on magazines and newspapers. Not just daily and Sunday newspapers, but magazines like this one. Magazines providing information designed to help you in work, to run your business. Specialist information which can only be obtained from specialist magazines.
For publications bought by you or your company it will mean an increase in cover price. It is also possible that magazines you received free will be subject to an imputed cover price, forced to pay a non-refundable tax on income they can't earn, money they haven't got. Your favourite most jobuseful magazine could be closed down.

VAT on specialist business magazines would be a tax on information, a tax which would drastically reduce the range and quality of information that helps businesses grow, compete, increase efficiency and market their products. Information which only the specialist business press provides.

Public opinion can change government policy. If the information provided by the business press is important to you, if you disagree with a tax on information, fill in the form below and send it freepost to lan Locks at the Periodical Publishers Association.

In addition, a letter to your MP would be very helpful.

> Published by Electronics and Wireless World in the interest of preserving a most useful source of business information.

[^2]Name:

Job Title:

BARGAINS - Many New Ones This Wonth

ANOTHER SNIP Extra lightweight stereo headphones. Adjustable headband Suitable for use with all types of cassette players and radios, only $£ 1$ per pair Order Ref. 898.
6-12V AXIAL FAN is a Japanese-made 12 v DC brushless axial fan, 93 mm square. Its optimum is 12 but it performs equally well at only 6 v and its current then is only 100 mA
FM CORDLESS RADIO MIKE, hand-held battery-operated professiomal model, has usual shaped body and head and is tuneable to transmit and be picked up on the FM-band-of-any-radiq Yours for only £8.50, Order Ref. 8.5P1 4 MORE SPEAKERS:
Orter Ref. 1.5 P 11 is Japanese-made $61 / 2,80 h m$, rated at 12 W max. This is very fine reproducer. The makers are SANYO. Yours for $\mathbf{£ 1 . 5 0}$ Order Ref. 900 is another Far East-made $61 / 2^{\prime \prime}$, 40hm 12 W max speaker. Very nicely made, using Japanese Hitachi tools and technique, only $£ 1$.
Order Ref. 896 is $61 / 2^{\prime \prime}, 60 \mathrm{hm}, 10 \mathrm{~W}$, exceptionally good sounder and yours for only $£ 1$.
Order Ref. 897 is another 8ohm speaker rated at 5 W butits unusual feature is that it has a built-in tweeter. Still only $£ 1$. SAFETY LEADS curly coil so they contract but don't hang down. Could easily save a child from being scaldeg, 2 -core, 5A extends to $3 \mathrm{~m}, \mathrm{\Sigma 1}$, Order Ref. 846, 2-core, 13A. Extends to 1 m £1 eack Order Ref. 847, 3-core, 13A, extonds to 3 m , £2 each POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc output is voltage regulated. Intended for high-class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are 2 12 V relays and a Piezo sounder. £3, Order Ref. 3P80B ULTRASONIC TRANSDUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref. $1.5 \mathrm{P} / 4$ 100W MAINS TRANSFORMER normal primary 20-0-20 at 2.5A, £4, Order Ref 4P24. 40V at 2.5A, £4, Order Ref. 4P59. 50V at 2A, £4, Order Ref. 4P60. PHILIPS 9" HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new, still in maker's packing, offered at less than price of tube alone, only £15. Order Ref. 15P1.
16-CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alpha-numeric LCD dot matrix module with integral microprocessor made by Epson, their Ref 16027AR, £8. Order Ref. 8P48. INSULATION TESTER WITH MULTIMETER internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges. $A C / D C$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom, but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$, with leads, carrying case $£ 2$ extra, Order Ref. $7.5 \mathrm{P} / 4$.
MAINS 230V FAN best make "PAPST" $41 / 2$ " square, metal blades, £8, Order Ref. 8P8.
2MW LASER Helium Neon by PHILIPS, full spec. £30, Order Ref. 30P1. Power supply for this in kit form with case is $£ 15$ Order Ref. 15P16, or in larger case to house tube as well £18, Order Ref. 18P2 The larger unit, made up, tested and ready to use, complete with laser tube $\mathbf{£ 6 9}$ Order Ref. 69P1.
$1 / 3$ HP 12 V MOTOR - THE FAMOUS SINCLAIR C5 brand new, $£ 15$, Order Ref. 15P8.
SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in very neat plastic case, £6, Order Ref. 6P3
AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning UHF circuits, 4 for £1. Order Ref. 818B.
FIELD TELEPHONES just right for building sites, rallies, horse shows, etc., just join two by twin wire and you have two-way calling and talking and you can join into regular phone lines if you want to. Ex British Telecom in very good condition powered by batteries (not included) complete with shoulder-slung carrying case, £9.50, Order Ref. 9.5P/2
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt upright mounting, £7.50, Order Ref. $7.5 \mathrm{P} / 5$ and a 250 W version is $£ 10$, Order Ref. 10P79.
MINI MONO AMP on PCB. Size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 watts into 4 -ohm speaker using 12 V or 1 watt into 8 -ohm using $9 V$. Brand new and perfect, only $£ 1$ each, Order Ref. 495.
AMSTRAD POWER UNIT 13.5 V at 1.9 A encased and with leads and output plug, normal mains input £6, Order Ref. 6P23. ATARI 64XE COMPUTER at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only £19.50, Order Ref. 19.5P/5B.
80W MAINS TRANSFORMERS two available, good quality, both with normal primaries and upright mounting, one is 20 V 4A Order Ref. 3P106, the other 40V 2A. Order Ref. 3P107 only 53 each PROJECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled. Made for GPO so best quality, only $£ 3$ each Order Ref. 3P74
12V SOLENOID has good $1 / 2^{\prime \prime}$ pull or could push if modified, size approx $1 / 2^{\prime \prime}$ long by $1^{\prime \prime}$ square, $£ 1$, Order Ref. 232.
15W 8-OHM 8" SPEAKER \& $3^{\prime \prime}$-TWEETER made for a discontinued righ-quality music centré, gives real hi-fi, and only £4 pèr-pair, Order Ref. 4P57. $0-1$ MA FULL VISION PANEL METER $23 / 4^{" 1}$ square, scaled 0100 but scale easily removed for re-writing. $£ 1$ each, Order Ref. 756 .
RROJECT BOX a first-class, Japanese two-pant mauding-ize- $95-\times-86$ - \times 23 mm .
This is nicely finished and very substantial. You get 2 for £1, Order Ref. 876 12V 2A MAINS TRANSFORMER upright mounting with mounting clamp. Price £1.50, Order Ref. 1.5P8.
AM/FM RADIO CHASSIS with separate LCD module to display time and set off alarm. This is complete with loudspeaker but is not cased. Price $\mathbf{£ 3 . 5 0}$. Order Ref. 3.5P5.
2, 3 AND 4-WAY TERMINAL BLOCKS the usual grub screw types. Parce containing a mixture of the 3 types, giving you 100 ways for $£ 1$. Order Ref. 875 $12 / 24 \mathrm{~V}$ DC SOLENOID constructed so that it will push or pull, plunger is a combined rod and piston. With 24 V is terrifically powerful but is still very good

EPSON USER PACKS

Fully user documented and including software. MS-DOS 3.20, £5, Order Ref. 5P207: MS-DOS 3.3, £5, Order Ref. 5P208: MS-DOS 4.01, £10,

Order Ref. 10P99.
at 12 V and, of course, with ariy intermediate voltage with increasing or decreasing power. It has all the normal uses of a solenoid and an extra one, if wired in series with a make and break, this could be a scribing tool for marking plastics and soft metals. We welsome other ideas and will give a $£ 25$ credit voucher for any used. Price E1, Order Ref. 877.
2M 3-CORE LEAD terminating with flat pin instrument socket, $\mathbf{\Sigma 1}$. Order Ref 879. Ditro but with plug on the other end so that you could use this to extend an instrument lead. $£ 1.50$ Order Ref 1.5 P 10 .
INFRA RED RECEIVER CONTROLLER, made by Thorn to channel switch their T.V. receivers. Mounted en panel with luminous channel indicator, mains on/off switch, leads and plugs all your's for £2, Order Ref. 2P304.

HIGH QUALITY KEY SWITCH, single pole on/off or changeover through panel mounted by hexagonal nut. Complete with 2 keys. Regular price £3, our price $£ 1.50$, Order Ref. 1.5P12. DIGITAL MULTI TESTER M3800, single switching covers 30 ranges ircluding 20A ac and dc. 10 meg input impedence, $31 / 2$ LCD display. Currently advertised by many dealers at nearly £40, our price only $\mathbf{\Sigma 2 5}$, Order Ref. 25P 14.
ANALOGUE TESTER, input impedence 2 K ohms per volt. It has 14 ranges, ac volts $0-500$, dc volts $0-500$, dc current 500 micro amps at 250 miliamp, resistance 0.1 meg-ohm, decibels $20 \pm 56 \mathrm{~dB}$. Fitted diode protection, overall size $90 \times 60 \times 30 \mathrm{~mm}$ Complete with test prod's, price £7.50. Order Ref. 7.5 P 8 . $2^{\prime \prime} 50$ OHM LOUDSPEAKER, replacement for pocket radio baby alarm, etc. Also makes good pillow 'phone. 2 for £1. Order Ref. 905. 13A SWITCHED SOCKETS, on standard switch plates but coloured. Ideal in workshop, cellar, etc. British mace. Twin switched, £1.50, Order Ref. 1.5P13, single switched, 75p, Order Ref .75P1.
LCD CLOCK MODULE, 1.5 v battery-operated, fits nicely into our 50 p project box. Order Ref 876. Orly £2, Crder Ref 2P307.
AMSTRAD KEYBOARD MODEL KB5, very comprehensive, has over 100 keys, E5, Order Ref. 5F202.
SENTINEL COMPONENT BOARD, amongst hundreds of other parts, this has 15 ICs, all plug in so don't need de-soldering. Cost well over $£ 100$, yours for $£ 4$ Order Ref. 4P67.
9V 2.1A POWER SUPPLY, made for Sinclair to operate their 128 K Spectrum Plus 2. £3, Order Ref. 3P151.

LINEAR HEATING TUBES, Quartz glass. 360W 110 V so you need 2 ir series which would give you 720W. 2 for $£ 1$, Order Ref. 907.
12V 250 MILLIAMP SOLAR PANEL, could keep that 12 V battery charged where there is no access to the mains. $£ 15$, Order Ref 15P47
SCREWDRIVERS' - pocket sized. Will save you having to worry where you left the last one! 10 for $£ 1$, Order Ref. 909 NTERESTED IM STARS \& PLANETS? If so, here is your opportunity to acquire a very comprehensive set of parts which will enatble you to make several models of astronomical elescopes as well as terrestrial telescopes. The kit comes complete with a "8 page manual. Price $£ 15$, Order Ref. 15P48. STEPPER MOTOR BARGAIN This is just a mini motor, 12 v operated and 7.5° step angle. Offered at the very low price of only £1, Order Ref. 910. STANDARD CASSETTE MOTOR for $9 v$ recorder players. This is brushless and Order Ret 15P14
MINI CASSETTE MOTOR but will operate from iv upwards as it is so well made. Speed, of course, increases with voltage and is speed regulated at 9 v . made. Speed, of cou
£1. Order Ref. 540.
STOP THOSE PEAKS as they come through the mains, they can damage your equipment. $2 A$ unit is a combination of cores and caps gives complete protection. \&2, Order Ref. 2P315
SOLAR KIT BARGAIN A recerr: lucky purchase enables us to offer 2 solar models at approximately half price. The Aeroplane kit comprises all the parts to make a model aeroplane, solar cell and solar motor to drive its propeltor. The kit was $£ 7.50$ but can be yours for only $£ 3.75$, Order Ref. 3.75P1. The seoond one is :he Vintage Gremaphone Again, all the parts to make the model, the

JUST

ARRIVED
35 mm Ballrace, complete with spindle but this can be removed. 4 for £1, Order Ref. 912. She kit which erivesthe module which plays the tune. Again, the kit was $£ 7.50$, now only $£ 3.75$, Orter Ret. 9.75 Rz ...
INSULATION TAPE 5 rolls of assorted colours, Ref. 911.
GENERAL PURPOSE FAN KIT comprises beautifity made "Boxer-fan-tfafeformer and switch to give durat speed and of from the mains. Complete with perforated front panel which, if bent, could make a suitable stand for a desk fan, etc. Or, it could be used as a general purpose blower or for fume extraction in cooker hood, etc. Complete kit $£ 6$, Order Ref. 6P28.
DOUBLE HEADPHONE OUTLET A standard type stereo plug stereo socket thus enthe 2 pize stereo socket thus enabling 2 people to listen from the one outlet. Very well made. Price $£ 2$, Order Ref. 2P312.
12V POWER SUPPLY Plugs into 13A socket and gives 200 mA dc out. Price £2, Order Ref. 2P313.
ASTEC 135W PSU Mains input, 3 outputs:- +12 v at $4 \mathrm{~A},+5 \mathrm{v}$ at 16 A and -12 v at $1 / 2 \mathrm{~A}$. In plated steel case, brand new, £9.50, Order Ret. 9.5P4. DIMMER SWITCH on standard electrical plate to replace normal wall switch. 500W, slightly coloured but takes emulsion. Only £2, Order Ref. 2P309.

Prices include VAT. Send cheque/postal order or ring and quote credit card number
Add $£ 3$ post and packing. Orders over $£ 50$ post free.

M\&B ELECTRICAL SUPPLIES LTD.,

Pilgrim Works (Dept. WW), Stairbridge Lane, Bolney, Sussex RH17 5PA
Telephone or Fax: 0444881965

DADISP revision with reservations

System

requirements
286,386 or 486 PC Maths coprocessor
(optional)
3 Mbyte ram
3 Mbyte hard disc space Microsoft mouse VGA or EGA graphics

DADiSP's spreadsheet
format uses graphs as elements, as opposed to
rows and columns of numbers.

Signal processing software package DADiSP works like a spread sheet, except that the rows and columns of numbers are replaced by an array of graphs which can be interdependent. A change made to one graph (or data set) causes a corresponding ripple through the whole set of graphs.
Application areas span all of engineering, and since the package has been designed for the needs of data processing and representation, the range of options within the package is immense - appreciating its full capability is quite daunting. Version 3.0 adds some major extensions to the package. But it is not all good news. The inclusion of a parallel port dongle is a real pain, there because of massive copyright infringements. In one Mediterranean country the software became one of the most popular signal processing packages, yet only a handful of legitimate copies of Version 2 were sold there.
The dongle is not the only sticking point. Users accustomed to running their PC with Windows 3.1 will find a conflict with the memory managers. In effect DADiSP and Windows 3.1 are incompatible (Now solved - see Update box). In fact the user manual devotes an entire appendix to likely problem areas - a not very reassuring move for the third version of a well known product.
The VGA standard is supported but alas not Super-VGA which is replacing its predecessor. Mouse operation is a wel-

> DADiSP is one of the most flexible and comprehensive signal data processing packages on the market. But Allen Brown wonders if Version 3.0 had been better left in the box.

come addition of Version 3, though its use is very limited. For example, the easy way to alter the colour of a graph display would be for all the colour options to appear under mouse control. But DADiSP's approach is a clumsy alternative, requiring prior knowledge of numbers assigned to colours. Although the mouse does generate a series of dropdown menus, practice is required to appreciate the range of options which can be accessed by it. The user manual is not always helpful in this respect either.

More facilities

The range of functions has been greatly expanded over earlier versions ${ }^{\prime}$ and more control is now possible on each graphical display. Axis labelling, scaling and grid features are all improved, and 3-D plots are supported and generated. Once a 3-D plot has been created a contour plot of it can also be generated in another window. Another attractive feature is the ability to create $\mathrm{X}-\mathrm{Y}$ (or polar) plots. Data can be displayed in a table format and edited at will, and can be imported from a traditional spread sheet and then subjected to the impressive range of statistical tools available. As in previous releases, Version 3.0 macro helps automate repetitive operations (whether standard or user defined) by compiling them into an executable array (a macro). In this way a user can customise DADiSP to perform a sequence of specific tasks. A demo program supplied with the package is in effect a macro and illustrates many of the options available in the product.
Matrix operations options, for processing arrays, of data are included with Version 3.0, some accessed through the pull-down menus. Matrices can be displayed in a number of ways, for example, as density plots where the matrix ele-
ments are given different colours: or represented by a 3-D or contour display.
Two macros supplied have lots of additional matrix operations sometimes encountered in matrix maths (column and row statistics, extracting triangular areas). Although many may never be used, they do illustrate the comprehensive design of DADiSP.

Data acquisition

In addition to data and signal processing, a package such a DADiSP could not be complete without data acquisition. Strangely, the IEEE-488 control and expansion board control are options, and since neither was supplied for review. I can only guess at their capabilities.
DADiSP-488 option allows control of IEEE-488 based instruments through the commands contained in the IEEE standard. The data acquisition option apparently allows DADiSP to read data directed through recognised, commercial expansion cards into a graphic display for further processing. So DADiSP can take on the role of an oscilloscope with several channels.

A-version

Documentation can be described in a single word - poor. The reference manual is written like a dictionary, and though it might be useful to old hands, it will leave the first time user none the wiser. The user manual is slightly more illuminating - but not much. It serves as a useful introduction to the package, but not a lot more.
No mention is made of data acquisition or the IEEE-488 options which is rather strange since these features will be of great importance to many users. Overall, the earlier versions of DADiSP were excellent products, and the enhancements found in Version 3.0 do not seem 10 add greatly to its functionality.
That said. DADiSP still remains one of the most flexible and comprehensive signal data processing packages on the market.

References

1. DSP Design with DADiSP, EW + WW. Dee 1989. pl 151

Supplier details update

A new version has been released to tackle some of the package's previous shortcomings, particularly the Windows incompatibility problem. DADiSP/PRO-32 conforms to the VCPI and DPMI standards and now operates under Windows 3.0 and 3.1.
Up to 64 MBy Be of extended memory can be addressed. Hardcopy has been improved, says Adept, and now includes higher resolution and better quality. On screen the speed of image display is said to be much faster. Rotation of 3D plots is now mouse driven.

DADiSP/32 is $£ 1295$ ex VAT. Adept Scientific, 6 Business Centre, West Avenue One, Letchworth, Hertfordshire. Tel: 0462-480055

Imaginary image processing

Image processing is mentioned as an application for the software. But 1 find it difficult to believe that DADiSP Version 3.0 could possibly serve as a suitable platform for performing image processing tasks. It does not recognise standard image file formats and has no wellknown image processing operations within it array of menus. Until these two deficiencies are addressed DADiSP is not a viable image processing tool.

Application areas of DADiSP span the whole of engineering.

Pull down menus reveal matrix operation options

3-D, contour and X-Y plots can be generated.

Graphical demonstration of scientific power

Extensive software is available to help tap into the power of a PC's mathematical functions - the ubiquitous spreadsheet comes readily to mind. But packages are largely commercially oriented. Programs designed for the needs of scientists are not only more difficult to find but often expensive.

> If you want to convert your PC into a scientific calculator with powerful graphing at minimum cost, Don Bradbury shows why CC4 is the program to consider.

So it is pleasing to discover the powerful CC 4 package, targeted specifically at scientists and engineers, which transforms the PC into an excellent scientific calculator, with good graphing options and comprehensive programming facilities.

Files can be output to disk or graphic screens to a printer, and all functions are entered as they are written. with other custom procedures created in a Pascallike environment. The considerable power derives mainly from the enormous range of
commands that can be used to program not only the calculator but embellish its graphical output.

The calculator presents

A basic tince window environment is presented to the user. for information, data entry and manipulation, and output. At the top of the screen is a summary of function key assignments, and the screen is vertically divided by the input and output windows.
Expressions are entered into the input screen, as are additional commands needed for text enhancement of graphic control, and any amount of extra explanatory text. The beginning of each text line is marked with ' $/ /$ ' to indicate that the calculator should not attempt to evaluate the remainder of the line, though an expression on the same line, placed before the marker, can be processed.

The output window is used to report the computed result of expressions submitted to the calculator. If syntax of an entcred expression is incorrect. CC4 puts up an explanation box, removable with the esc kcy, calling for another attempt. The program's default insert mode can be switched to overwrite, and there are facilitics for editing programming and explanatory text by marking, inserting lines and so on. At the bottom of the screen a rolling tally shows current memory available as well as the last result and the last graph held in memory.
Editing facilities include cut and paste for moving or duplicating entries, using F3 to mark the text and F4 to add text from the buffer to the cursor position - repeatedly if necessary. The entire entry at the cursor can be selected so that pressing enter or del cither selects, or cuts and selects, the entry.
Ten buffers may be used for saving text, with the latest selection recalled by_Al.T-1. Each time a new selection is made, the previous selections are promoted through the
buffers and can be recalled using ALT-1 to ALT-9. It's a nice touch - provided you can remember the order. Memory consumed by the buffers can be regained using_shirt-r-4.
Amongst the default assumptions, radians are used rather than degrees - unlcss specified otherwise with the DEGREE command - and the current mode is indicated as a reminder in the top window. Various line styles, thicknesses, and colours can be summoned as alternatives to the default settings. and the location of the help file and also the last graph file and printer type can be set in a contiguration file.
Where more than one printer is on a system, it is best to let the program throw up a
 prompt cach time for the printer type in use. Simply enter E for an Epson compatible. I for an IBM printer, If for HP laser, or Nor "None of These". The configuration file can save time if hardware is fixed.

Entering data

Numeric values are entered into the calculator"s input window in the usual way. Scientific notation can be used, and functions for SQRT. ABS, RANDOM, INT, FRAC, ROOT, LVGAMMA, BINOM all have the usual meanings. π can be entered as either PI or ALT-P. and trigonometrical functions require the argument to be enclosed in brackets. Brackets can also be used to determine calculation precedence.
Extensive notes on entering the logarithmic base, integers and non-integers (the former can be combined bit-wise). hyperbolic functions. hex or binary notation, with inter-conversion functions can be found in the help file. Complex numbers can be used and any of the program's functions which are mathematically defined for complex values, such as $\sin (x)$ or $\exp (x)$, will accept complex arguments. Huge numbers are indicated by the pretix " $\&$ ".
To store an exact fraction, two exact parts can be input; for example $\& 2 / \& 3$ is stored as the fraction and not 0.666666667 . Again, detailed help notes indicate the way these numbers. and matrices involving them, are handled.

Editing, and controlling input

A carriage return will force CC4 to compute an expression while the cursor is on any part of the appropriate line, or an entry may be left for Jater activation by using the up/down cursor keys.
Formulas already evaluated are displayed as normal text, while unevaluated expressions, including the one currently being entered, are displayed in bold or in a chosen colour. Complex expressions are not limited by line length as the entry can just flow to subsequent lines.
Any existing expression can be run repeatedly, so the effect of modifications can readily be seen, without the need for re-entry. In addtition. the calculator is not like a spreadsheet where the spatial order is significant. Output depends on the order expressions are used and not their entry order.
CRTL/ENTER opens up as many blank lines as required for additional entrics at the cursor position. so compiling a program of entries is quite easy. To control precision of a callculation, PRECISION(N) can be used, where (n) is a number between 1 and 9 . Using (0) causes the result to be displayed
in scientific notation.
Results of expressions can be stored in case-insensitive variable names up to twelve characters long, and variables are all conveniently listed in the output window which, when full. can be scrolled with function keys 55 and F 6 .
A defined variable can be reused in another expression, and variables can be redefined at any point. Useful for recovering the memory assigned to a variable is FORGET(X) which destroys the variable X in memory. Greek letters can be used as variables by making appropriate ali/letter entries in the usual way.

Custom procedures and subroutine functions can use all standard control structures with value and function name parameters. Subroutines can call one another - whatever the order of input. and recursion is fully supported.

Shareware strategy

Calculus Calcu-lator CC4, is the lates in a line of development versions of a programmable calculator fom David Meredith of the Department of Mathematics a: San Fransiscc State University. Its predecessor, CC3, is a standard commercial prod c , now published by Prentice Hall and called "CC - The Calculus Calculatcr". The version reviewed here is for the time being, offered as shareware - a try-before-buy category of software, available from specialist libraries for practically nothing. In this case registering your copy of CC4 for support and updates is also completely free, though the commercial progtam, probably more extensively debugged and costing $\$ 30$, comes complete with a 200 page manual.

Additions to previous versions, such as matrices and infinite precision arithmetic, are all summar sed in an UPDATE.CC file on the shareware distributicn disk as well as in the ex-ellent on-line help file that comes with the program. This effectively replaces a user manual.

Extensive facilifies

CC4 can ceal with basic aritt-metic, logarithmic, trigonomic and exponential functions, real and complex number handling, polynomials, Eoolean expressiors, hexadecimal and binarr numbers, exact fractions and huge integers, s:ring handling, calculus, rratrices, vectors, differentiation and integration, and statistical operations.
Eigenva ues and Eigenvectors are also offered as well as equation solving, polar and para netric curve fiting, 2) graphing and 3D surface plotting, and a huge range of options for p of presentation and enhancement.

PC ENGINEERING

On-line help

On-line help is comprehensive, freely interposing pseudo-hypertexted references to subordinate information and explanations, avoiding the tedium of too much detailed help.
Under broad headings such as "Capabilities of CC", Help for individual commands", "Function keys and other special keys", "Printing", and "Disk and memory management", the help file fully describes the program. Its 84 k is well-used disk space, but it can be omitted to operate from the much slower and not really recommended floppy disk. The exe file itself is 210 k but an overlay file of 242 k is used to reduce the PC memory overhead to 512 K .

Supplier details

CC4 shareware can be obtained for a disk copying fee of $£ 4.65$ from The Public Domain Software Library, Winscombe House, Beacon Road, Crowborough, Sussex TN6 1UL. Tel:08926 63298. No registration fee is requested by the author for this version

Mid resolution of a 3D image.

A 3D image in high resolution mode.
of expressions can be made in a window defined by WIN$\operatorname{DOW}(A, B, C, D)$ where a, b, c and d are real numbers. Optional axes can be injected into the plot, and all the figures in a window can be deleted without rescaling the window, using the ERASE command. The four extremities of a window may be returned by specific commands - which is useful for programming.
The ability to include multiple graphs in a plot, controlling line colour and thickness, graphing selected points, varying the orientation of added text labels, size and type, point marking and unmarking, box and line drawing, selected fill with shading, variable axis colour all add to better presentation of plots. Point graphing commands include DOTGRAPH, QUICKG, and SKETCH for increasing the speed of screen drawing by selecting spaced points for inclusion.

Good control over the extent of a plot includes coordinate specification, as well as zoom and unzoom to particular locations. Automatic colour difterentiation between the plots is assisted by KEEPLINE and varyline commands.
One other option worth a mention, is the crosshairs facility in 2D graphing. The crosshairs can be moved under cursor control, with a choice of two speeds and tineness of placement, and the current coordinates are shown in the window. They are useful for locating the intersection of curves or points where plots cross axes.
Crossx and crossy return the last X and Y coordinates of the crosshairs, so if for example the function $\mathrm{y}=\mathrm{f}(x)$ has been graphed, equation $f(x)=0$ can be solved by using the crosshairs to find the point where the plot crosses the X axis. Returning to the input window and entering $\operatorname{solve}(f(x)=0$, $x=\operatorname{CROSSX}$) will give a good estimate of the desired root.

Crosshairs can also be used to specify a zoom range. Any part of a plot can be outlined and subjected to a full screen redraw. CR11/U will undo a zoom, and plots can be magnified or reduced in stages. Screen redraw is quite rapid, even on hardware of modest power.

3D graphing

Three dimensional graphing brings its own extensive range of commands. Broadly they are as in 2D graphing but without the crosshairs and zoom facilities. A 3D plot can be rotated on the screen about any of the three axes to view it from different angles. Entering the three axis letters x, y, and z rotates the image in one direction - repeated keystrokes will produce multiple jumps - and the corresponding capital letters reverse the direction of rotation. The image movement is not fast enough to be described as real time. But it is rapid, and can be made it significantly faster. Four elements of shading, which determine the effective resolution of the plot and therefore the time to redraw on screen, can be summoned with keys 1 to 4 . 1 is the default setting for a high res image, while 4 is the simplest plot and the fastest to redraw. 4 also produces transparency.
Returning to the package in general, CC4 has a whole host of other facilities

Interactive data analyses can be created by subroutines to develop dynamic presentations or interactive mathematical lessons. Where a user needs, for example, to set crosshairs in the graphical mode or to await some input routines can be paused.

Impressive graphics

Graphical modes are impressive. Two-dimensional graphing
and functions that are far too many to mention here. Of course it may not be perfect, but any deficiencies can be forgiven in view of the author's generous marketing stance. The current shareware version is said to be a beta copy, and the author expects to publish "next year" so it might not be available for too much longer.

Buy while the going is good, and if you don't like it, it will have cost you only the disk copying fee of $£ 4.65$.

Surplus always

256k RAM - expandable to 640 k 4.7 Mhz speed 360k 5-1/4" floppy 2 serial \& 1 parallel ports Factory burnt-in Standard 84 key 12" green screen MS-DOS 4.01

Optional FITTED extras: 640K RAM £39. 12' CGA colour monitor with card £39. 2nd 5-1/4* 360K floppy £29.95. 20

only£99.00

FLOPPY DISK DRIVES
 51/4" from £22.95-31/2" from £21.95! Massive purchases of standard $51 / 4^{\prime \prime}$ and $31 / 2^{\prime}$ drives enables us to present prime product at industry beating low prices! All units (unless stated) are removed from often brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of sta ard size. All are IBM-PC compatible (if $31 / 2^{\prime \prime}$ supported). 3.5" Panasonic JU363/4 720K or equivalent E29.95(B) 3.5" Mitsubishi MF355C-L. 1.4 Meg . Laptops only* $£ 29.95(\mathrm{~B})$ 3.5" Mitsubishi MF355C-D. 5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B
 360K. Absolutely standard fits most computers £22.95(B) Data cable included in price.
 Shugart 800/801 SS refurbished \& tested
 $\begin{array}{ll}\text { Shugart } 800 / 801 \text { SS refubished \& tested } & \text { \&175.00(E) } \\ \text { Shugart } 851 \text { double sided refurbished \& tested } & \text { E275.00(E) }\end{array}$ Mitsubishi M2894-63 double sided switchable hard or soft sectors. BRAND NEW hard or soft sectors. BRAND NEW
 Dual 8 " drlves with \quad E250.00(E)

 with built in power supplyl Ideal as exterior drives! $£ 499.00(F)$ End of ine purchase scoopl Brand new NEC D2246 8' 85 megabyte of hard disk storagel Full CPU control and industry standard SMD interiface. Ultra hi speed transter and access time leaves the good old ST506 interface standing. In mint conditionand comes complete with manual. Only

THE AMAZING TELEBOX!

Converts your colour monitor into a

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders,
allowing reception of TV channels not normally receivable allowing reception of TV channels not normally receivable on
most television receivers (TELEBOX MB). Push button controls most television receivers (TELEBOX MB). Push button controls
on the front panel allow reception of 8 fully tuneable 'oft air' on the front panel allow reception of 8 fully tuneable off air' UHF
colour television or video channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard

for composite video input monitors

$£ 32.95$
Telebox ST for composite video input mon
Telebox STL as ST but with integral speak
£32.95
Telebox MB as ST with Multiband tuner VHF-UHF-Cable. \& hyperband For overseas PAL versions stat 5.5 or 6 mhz sound specification. $\quad \mathbf{E 6 9 . 9 5}$ Telebox RGB for analogue RGB monitors (15khz) $\quad \mathbf{6} 6.95$ Shipping code on all Teleboxes is (B)
RGB Telebox also suitable for IBM multisync monitors with RGB

No Break Uninterruptable PSU's

Brand new and boxed 230 volts uninterruptable power supplies from Densei. Model MUK 0565-AUAF is 0.5 kva and MUD 1085-AHBH is 1 kva . Both have sealed lead acid batteries. MUK are internal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with full
operatıon manuals..........MUK.......249 (F) MUD......£525 (G)

640k RAM expandable - 2 serial \& 1 parallel with standaird SIMMS ports
12 Mhz Landmark speed • MS-DOS 4.01 20 meg hard disk
1.2 meg 5-1/4" floppy 1.4 meg 3-1/2" floppy socket Enhanced 102 key keyboard

EGA driver on board
 Clock \& calendar with

onvy249.00

The Philips 9CM073 is suggested for the PC286 and the CM8873 for the PC386. Either may use the SVGA MTS-9600 If a suitable card is installed. We can fit this
for the PC286 and £39.00 for the PC386.

POWER SUPPLIES

frame giving +5 w 200-5200P 200 watt (250 w peak).Semi open +24 v 4 a (6 a peak). All outputs fully regulated with over voltage protection on the $+5 v$ output. AC input selectable for 110/240 Power One SPL130. 130 watts. Selectable for $12 v$ (4A) $\mathbf{~ (B)}$ (2A). $5 v @ 20 A . \pm 12 v @ 1.5 A$. Switch mode. New. \quad E59.95(B) Astec AC-8151 40 watts. Switch mode. +5ve $2.5 \mathrm{a} .+12 \mathrm{v}$ (Greendale 19ab0E 60 watts switch mode.+5v $6 \mathrm{a},+12 \mathrm{v} @$ $1 \mathrm{a},+15 \mathrm{v}$ © 1a. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $£ 24.95$ (C) Conver AC130. 130 watt hi-grade VDE spec. Switch mode. +5 V (9) $15 \mathrm{a},-5 \mathrm{v}$ (1a, $\pm 12 \mathrm{v}$ © $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{~cm} \mathrm{~ms}$. New. $£ 49.95$ (C) Boshert 13090. Switch mode. Ideal for drives \& system. $+5 v$ (6) 6 a , $+12 v$ © 2.5a, -12 v \& $0.5 \mathrm{a},-5 \mathrm{v}$ © 0.5a.
Famell G6/40A. Switch mode. 5 v © 40 a . Encased £ 29.95 (B)
$\varepsilon 95.00$ (C) Famell G24/5S. As above but $24 v$ © 5 . $£ 65.00$ (C

BBC Model B APM Board

£100 CASH FOR THE MOST NOVEL DEMONSTRATABLE APPLICATION!

BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics system on large networked systerns the architecture of the BBC board has so many similarites to the regular BBC model B that we are sure applications will be found for this toardll it is supplied useful applications wil be found for this coardit it is supplied complete with a connector panel which brings all the I/O to ' D and BNC type connectors - all you have to do is provide +5 and
$\pm 12 \mathrm{v}$ DC. The APM consists of a single PCB with most major ic's socketed. The ic's are too numerous to list but include 6502. RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating system on which we have no data, On application of DC power the system boots and provides diagnostic information on the vidso output. On board enable the four extra EPROM select the ECONET address and dims: main board $13^{\prime \prime} \times 10^{\circ}$. VO board $14^{\circ} \times 3^{\prime \prime}$. Supptied tested Only $£ 29.95{ }_{\circ}{ }^{\circ} 2_{\text {or }} £ 53_{8}$

SPECIAL INTEREST

Fujitsu M3041 600 LPM band print
DEC LS/02 CPU board
Rhode \& Sctiwarz SBUF TV test transmitter
Calcomp 103 . Complete wTh SBTF2 Modulato
Calcomp 1036 large drum 3 pen plotter
Thurlby LA 150B logic analyser
Anton Pillar 400 Hz 3 phasce
Anton
Nikon PL-2 Projection lens meter/scope
Sekonic SD ${ }^{150 H} 18$ channel Hybrid recorder
HP 7580AA1 8 pen high speed drum plotter
corder
oter
Kenwood DA-3501 CD tester, laser pickup simulator

BRAND NEW PRINTERS

Microline 183. NLQ 17×17 dot matrix. Full width. 139 (D) Hyundai HDP-920. NLQ 24×18 dot matrix full width. £149 (D) Qume LetterPro 20 daisy. Qume QS-3 interface. $£ 39.95$ (D) Centronics 152-2 9×7 dot matrix. Full width. $£ 149$ (D)

2 meg RAM expanded by slôts
20 Mhz with 32 k cache Expandable to $64 k$ 40 meg hard disk 1.2 meg 5-1/4" floppy VGA card installed BRAND NEW AND BOXED! only£425.00

MONTORS

 14" Forefront Model MTS-9600 SVGA multisync with resolution of $1024 \times 768.0 .28$ pitch. "Text switch for word processing etc. 386 or PC-286 with SVGA card added. Also compatibe with BBC, Amiga, Atari (including the monochrome high resolution mode), Archimedres etc. In good used condition (possible minor screen bums) 90 day guarantee. $15^{\prime} \times 14^{\circ} \times 12^{\circ}$. Only............ $£ 159(\mathrm{E})$ with 640×480 resolution. CGA, EGA or $V G A$, digitaV/analog, switch selectable Sound with volume control. There is also a special "Text' switch for word processing, spreadsheets and the like. Compatible with IBM PC's, Amiga, Atari (excluding the rchimedes etc. Good used condition (possible minor screen bums) 30 day guarantee. 15" x 14" x 12". Only $139(E)$ Philips 9CM073 similar (not identical) to above for EGACGA amber or green amber or green screen selection. $1^{\prime} \times 12 \times 13-1$
KME $10^{\prime \prime}$ high definition colour monitors. Nice modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Alari, Commodore Amiga, Acom Archimedes \& BBC. Measures only $13.5^{\circ} \times 12^{\circ} \times 11^{\prime}$. Also works as quality TV win our HGB Teleboz. Good used condition. 90 day guarantee. Only..£125 (E)
KME as above for PC EGA standard...................... 145 (E) at a lower than ever price! Completely CGA equivalent. Hi-res ansubshi 0.42 dot pitch giving 669×507 pixels. Big 28 Mh 2 0 day guarantee. Only
quality ex-equipment fully tested with a 90
day guarantee. In an attractive two tone
bbed grey plastic case measuring $15^{\circ} \mathrm{L} \times$
een removed front cosmetic bezel has

On

20", 22 " and $26^{\prime \prime}$ AV SPECIALS
upertly made UK manufacture. PIL all solid state colour ive teak style case. Perfect for Schools, Shops, Disco, Clubs. with flll 90 day guarantee
20"....£135 22".....£155 26"....£185 (ค) E1850 LL FOR PRICING on NTSC VERSIONSI
Superb Quality 6 foot 40u

19" Rack Cabinets

 Massive ReductionsVirtually New, Ultra Smart! Massive Reductions
Virtually New, Ultra Smart! Less Than Half Price!
Top quality 19^{\prime} rack cabinets made in UK
by Optima Enclosures Ltd. Units feature by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front
door, full height lockable half louvered back door, full height lockable half louvered back
door and removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting plus ready mourted integral 12 way 13 amp socket switched mains distribuver sold. Racks may be stacked side by side and therefore equire only two side panels or stand singly. Overall dimensions re $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\prime} \mathrm{D} \times 22^{\prime} \mathrm{W}$. Order as:
Hack 1 Complete with removable side panels

Superb Quality

 ع6500 \& 650 | \& 375 |
| :--- |
| ε | POA ع750 E750 0

ack 2 Less side panels.

1992 WInter Issue of Display News now available - send large SAE - PACKED wlth bargalnsi

10 81 Fax-081.670-1027

Automatic generators for VGA sync

ow-priced colour computer monitors -often seen on the surplus market accept negative-going line syne, which makes them incompatible with the VGA standard used
by many PCs. This circuil produces. negative-going sync. whatever the polarity of the input.
Dividing the 5 V line in the R_{7}, R_{5} potential

Programmable timer

Three seconds 10 nearly six hours is the range of this srystal-controlled timer. at a resolution of Is. In comparison with D Ibrahim's design in September 1990 Circuit Ideas. the time range is increased by a factor of 200, accuracy is better and fewer ICs are needed.
Four thumb-wheel switches set the time interval. lnitially, the counter $/ C_{2}$ is inhibited and preset, inputs to Katb.c being low. A start signal from the switch sets the D-type flip-flop $/ C_{\text {; }}$ and the counter begins to count, the Q output of $/ C_{2}$ resetting the flip-flop at time-out. During the count cycle, the led illuminates and the relay is on
The CD40I3 generates 1 Hz pulses at crystal accuracy, but any other type of pulse generator would be suitable.

V B Oleinik

Kaliningrad Moscow Region Russia

divider to 2.5 V eliminates the need to amplify the input signal. A CR network $R_{1} C_{l}$ on the input of an exclusive-Nor holds pin 2 high when a negative sync is applied. the pulses being too narrow for C_{1} to discharge below the gate threshold: the syncs are therefore not inverted. If the input is positive-going. pin 2 is not allowed to rise and the input is inverted.
A bulfer, an inverter and a $B C .337$ current amplifier prepare the signal for combining with the vertical synes.

Tom Sheppard

Swaythling
Southampton

Automatic sync plunger produces negative sync. regardless of the input polarity.

LC square-wave generator

A^{s} an alternative to the usual $R C$ arrangement, an LC circuit offers better frequency stability. This Colpitts oscillator circuit provides a square wave, using an op-amp as the active element.

Any of the standard op-amps will work reasonably well at audio frequencies, trace (a) being the output of a 741 at 6 kHz ; trace (b) is an LM6361 at the same frequency. The third trace is an LM6361 at 1.3 MHz . Output frequency is $1 /(2 \pi \sqrt{ }(L C / 2)$, the two capacitors being effectively in series.
Michael A Covington
Athens
Georgia
USA

Oscilloscope traces of square-wave oscillator using an LC circuit for stability. Top two are at 6 kHz , using a 741 (top) and an LM6361. Bottom is an LM6361 at 1.3 MHz .

THETNTH

LIST OF TEST EQUIPMENT AVAILABLE
OSCLLLOSCOPES

 OULD OS4200 DIGTTAL STORAGE SCOPE DIJAL THEOUTPMENT DM64-SOMH2 DUAL TRACE TELEOUPMENT DM64-SOMHZ DUAL TRACE
 TEK'RRONLX 7313-100MHz 4 CHANNEL ANALOGUE
STORAGE SCOPE

OR ABOVE SCOPES_CHEAP

 POWER SUPPLERS BY SOL - 207481,
 DIGITAL MULTIMETERS FLUKE E

From 525 to 112 FREOUENCY COUNTERS RACAL

9520.9903/9905 From 575 to 123
ADVANCE TCIITA

METROHM POLARECOD ADVANCE TCIIA METROHN VA-TIMER GZ1) METROMN VA STAND (FOR PLARGRAPHIC AND
VOLTAMMETRIC ANLLYSES) OERTLING R4O SCALSS
OERTLNNG 40 SCALES
 PROIECTINA CH9435 PHOTOME THCRCKESS TESTER E25 CI ELECTRONICS MICROFOFCE BALANCE MKZ GRYANS SOUECONTRN SEATES UNTT 400 IT BRYANS SOUTHERN SERIES 4000 ULTRA VIOLET
OSCILOGRAPH. CKN ELECTRACAL TYP T 700 SERIIIS 3 - COORDINATE E 230 MARKINGOUT TABLE (KY MOVING MICHOSCOPE) £25 WPA LONG SCALE GALVONOMETER. PYE SCALAMP FLUXMETER.
CORNING MEM UNGALVO
CORNING EML UNCALVO
MEECO INST RUMENTS ELECTROLYTIC W STER BRYANS 2900 A3 XY RECORDER GRYANS 2900 AJXY RECORDER BENTHAM 223 AND 217 LOCK IN AMPLFIER AND
CURRENT AMPLFER
FTSCEER THROUCH HOLE PLATING MEASUREMENT FISCHERSCOPE BETA 2040 COATING THICESNESS
FITCMER WPR24D-HAND PRESS
FISCHER F--12 PRESS
all a bove can be purchased as foblot
ALL EQUIPMENT IS USED, WITH 30 DAYS GUARANTEE
CARRIAGE CAN BE ARRANGED - VAT TO BE ADDED TO BEFORE ORDERINC
,
TELNET UNIT 8, CAVANS WAY BINLEY INDUSTRIAL ESTATE COVENTRY CV3 2SF
Telephone: 0203-650702 Fax: 0203-650773

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$
scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact

ELLMAX ELECTRONICS LTD.
Unit 29, Leyton Business Centre, Etloe Road, Levton, London, E10 7BT. Telephone: (081) 5390136 ELLMAX ELECTRONICS

CIRCIENO. 112 ON REPIY CARD

Maker

Finally... an upgradeable PCB CAD system to suit any budget

Fast, small-signal rectifier

For the rectification of signals of less than about 100 mV at frequencies above 100 kHz , the common op-amp and two diode circuit suffers from distortion and low bandwidth. This circuit overcomes the problem. Here, the comparator detects signal polarity and connects $\operatorname{Vin}(t)$ in either normal or inverted form, via the Maxim IH5141 switch, to the output. With a TLO72 as the op-amp, and an LM360 as the comparator, bandwidth is zero to 500 kHz with signals of $50 \mathrm{mV}-5 \mathrm{~V}$. A high-speed inverter would increase the operating frequency to 1 MHz , since rise and fall times are less than 100 ns .
B Jacobs, G Seehausen
Warner MM, Europe
Alsdorf
Germany

Fast rectifier for small signals avoids distortion and lack of bandwidth in usual op-amp with two feedback diodes.

Fromexternal control circuit or PC

Fig. 1. Digital input controls stepping motors needing up to 200 mA , accurately and reversibly.

Adjustable, accurate stepper controller

In addition to providing precision, variable drive for a small stepping motor by means of a digital input, this circuit allows direction reversal.
In Fig. 1, the input from a microcontroller or other digital source is taken to the 4059 divide-by-n counter driven by a crystal clock, which forms the pulse sequence. The 14516 up/down counter also takes its input from the digital source and feeds a binary output in the forward or reverse sequence dictated by $I C_{2}$ and the direction input to the counter to the 4028 binary-todecimal decoder, which drives the output transistors. Eight 2 N3706's handle motors needing up to 200 mA and the circuit in Fig. 1 will control motors with eight phase windings; for those with four, use the circuit in Fig. 2.

V B Oleinik

Kaliningrad
Russia

Fig. 2. If the motor is an 4-phase type, modify the drive circuit like this.

M \& B RADIO (LEEDS)

 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER}

$\angle 1950$
$C 8250$
$C 250$
61950
<2250
<250 1550
61950
$C 325$
$C 195$

6195 6245 6250

1500
6500

$\begin{array}{r}6900 \\ \\ \hline 1950\end{array}$

4195
6550

FARNELL ESGS 20 S2OMHZ SYNTHESIZED PCRT ABLE GENERATOF
PHILIPS 5324 OOKHZ TO I IOMHZ AMMFMSWEEF KALAMUS WIDEBAND RF POWER AMPUFIEF STO 1000 MHZ FARNELL LADO RF AMPLIFIER 1,5 TO 520 MHE
FARNELL LFM 2 SINE SQUARE WAVE OSCILLAT.)R
ARNELL LFF 1 OSCILLATOR
RACAL DANE 9301 I TRUE RMS VOLTMETE
HP 3400A TRUE RMS VOLTMETER
HP 3403 C TRUE RMS VOLTMETER
HP 3403C TRUE RMS VOLTMETER
RACAL DANL 1998 FREQUENCY COUNTER RACAL 98413 3HZ FREQUENCY COUNTER

NARDA 30202 . BIDIRECTIONAL COUPLER ST TO IGHZ
NARD A 3001 I 30 DIRECTIONAL COUPLER 46 TO 960 MHZ
 NARDA $769 / 6$ / 50 W 6DB HIGH POWER ATT NE N). BIRD TENULINE 8343100 W GDB ATT BIRD TERMAUNE 820150 OHM 500 W COMFUTER ISO TOUCH SCREEN PR NTER HP $345 S A$ HIG + STABBLITY VOLTMETER GPIB HP 3478 A LCC DIGITAL MULTIMETER HP 3468 D DIG TAL MULTIMMTER SIT DIGT HP 8750 A STCRAGE NORMALIZER HP 53482 A 22 2 MHZ FREOUENCY COUNTER HP 461 A AMPLIFIER IKHZ 150 MHZ HP 6294 PSUOTO 60 VOLTS I AMP
HP 4271 B IMF Z DIGITAL LCR METER.
TEKTRONIX 221 A PAL VECTORSCOPE
TEKTRONIX 1481 IR WAVEFORM MONTTOR TEKTRONIX 1414 PAL TEST SIGNAL GENEFATJR RACAL NANA SOO WIDEBAND LEVELL ME ER
RACAL DANA 903 TRUE RMS RF LEVELL MI TE 2. SPECTRUM ANALYSERS
TEKTRONIX 496P I BGHZ PROGRAMMABLE
H/P A558B 1.555 HH I 182 TMAIN FRAME
H/P I41T 85528 IF 85548 1250MHZ +85538 I 10 MHZ COMPLE H/P AS5SB IBGHZ PLUGIN (NEW BOXED) OHDE/SCHW ARZ ZAM 52 20GHZ SCALAZ NE TWORK ANRITSU MS3 401 A 10 KHZ TO 30 MHZ NETWORK ANALYSER WAYNE KERR RA200/ADSI/ALM2 FREQUENCY RESPONSE
.6295 625
600
61000 6.95
6.800
1600
6750
6 $\begin{array}{r}1750 \\ -175 \\ \hline\end{array}$ $\begin{array}{r}6185 \\ 185 \\ \hline 900\end{array}$ 1250
6450
645 MARCONI 2955 COMMUNICATIONS TEST SET MARCONI 295S COMMUNICATIONS TEST SET
MARCON 2950 MOBILE RADЮ TEST SET..... MARCON 2950 MOBILE RADЮ
MARCONI TF 2331 DISTORTION FACTOR METER
HP 45 IB TEST OSCILLATOR.
HP s33A DISTORTION METER.
MARCONI 2305 MODULATION METER.
EFREATOM FRT ATOMIC FREQUENCY STANDARD
FLUXE 540 O THERMAL TRANSFER STANDARD
BRADLEY 232 AC CALIBRATION SOURCE
BRADLEY 156 OSCILLOSCOPE CALIBRATOR
WA PASA AC CAUBRA TOR MEASURING SE
HP HOSA VECTOR VOLTMETER - ACCESSORIES
FLUKE IOJA FREQUENCY COMPARATOR
BICETEST T TAIM CABLE TEST SET
COISOR 437 CABLE LOGGER
HP 435 A POWER METER 8482 + 30DB ATT (as new)

	$C 95$
MARCO NI 6960 RF POWER METER 6912 HEAD 30KHZ TO	650

6 720 HEAD 10 MHZ TO 20 GHZ .
HP 194 A VARIABLE ATENUATOR IGHZ TO 2GHZ $\quad . \quad . \quad . \quad . \quad 125$
LEADER LCT9IOA CRT TESTER/REJUVENATOR
AMBER $4400 A$ MULTIPURPOSE AUDIO TEST SET
FEFROGRAPH RTS2/ATUI TAPE RECORDER TEST SET
RACAL DANA 9000 MICROPROCESSING TMER COUNTER
SIOMHZ
PHILIPS PM2434 DC MICROVOLTMETER
ACAL D ANA 488 IEE STD 488 BUS ANAIYSER
INADDER 3 METER
ULLK PURCHASE SPECIALS
HP I8O SOMHZ OSCILLOSCOPES TESTED
MARCONI 1101 RC OSCIILATOR 2OCS TO 2OK
M Y B MULTMETERS CASE + BATTERY UES
UNAOHM EPS94 TV FIELD STRENGTH METER 48 TO 860 MHZ
FLUKE B000A HIGH GRADE DIGTAL MULTIMETER
RADIO EQUIPMENT
RACAL RAI 792 HF RECEIVERS
RACAL RA1 792 HF RECEIVERS
RA:AL RA2309B + RA2295 90 TO 400 MHZ
EDOY STONE 770 U 150 TO 500 MHZ
EDOYSTONE 9905250 TO 850 MHZ .
EDDYSTONE 990 S 250 TO $850 M H Z$
PHILIPS B8MHZ IO $108 M H Z$ BROADCAST TX

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopsgate Street, Leeds LS I 4BB Tel: (0532) $\mathbf{4 3 5 6 4 9}$ Fax: (0532) 42688 I

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Rd, Borehamwood, Herts. WD6 1AA. 081-953 6009; Fax: 081-207 6375
$3.5^{\prime \prime}$ floppy disk drıve Chinon BBC compatible, new $£ 35$ c/p $£ 4.00$.
$3.5^{\prime \prime}$ floppy disk drive NEC IBM compatible. Full height unit. $£ 39.95$ new \& boxed. 16 Mb . $/ \mathrm{p} £ 3.0$.
Switch mode power supplies 240 V AC input 5 V DC 40 amp £29, 12 V DC $10 \mathrm{amp} £ 46$ $5 V D C 40 \mathrm{amp}-12 \mathrm{~V}$ DC $4 \mathrm{amp}+15 \mathrm{~V}$ DC 11 amp £ 48
Western Digital $3.5^{\prime \prime}$ hard disk drive new 40 MD RLL ST506 $£ 85 \mathrm{C} / \mathrm{p}$ £6.00
NEC new \& boxed $525^{\prime \prime}$ floppy disk drive model
NEC new \& boxed $5.25^{\prime \prime}$ floppy disk drive model FD1055-311 BBC compat. $1 / 2$ height £ 48 c/p $£ 600$.
Plantronics (Auralite) type headsets very lightweight new BT approved ideal for
comms $£ 15.95 \mathrm{Cl}$. comms $£ 15.95$ c/p $£ 3.00$
Farnell fan-cooled PSU 240 V AC input +12 V DC $4 \mathrm{amp}-12 \mathrm{VDC}+\mathrm{amp}+5 \mathrm{VDC}$
$10 \mathrm{~A}-5 \mathrm{~V}$ DC $5 \mathrm{amp} £ 16 \mathrm{c} / \mathrm{p} 5700$ 10A-5V DC $5 \mathrm{amp} £ 16 \mathrm{c} / \mathrm{p} £ 7.00$
Wyse compatible terminals by Falco $c /$ with keyboards. Swivel \& tilt monitor $£ 135$.
Wyse 50 terminal new \& boxed . Wyse 50 terminal new \& boxed c/with keyboard. Swivel \& tilt monitor (115 vac) $£ 200$. Monitor Mover. Rotates 360°. Hold up to 25 kgs . Weight space for keyboard. Clamps to desk £39 c/p $£ 875$.
16 bit serial card with 8 serial outlets, inc leads $£ 100 \mathrm{c} / \mathrm{p} £ 5.00$
286-10AT motherboards complete with bios (various types) Intel processor chip no
RAM (DIL) 8 slots Size 220×330 Sold with no guarantee $£ 19.95 \mathrm{c} / \mathrm{p} £ 6.50$
102 key at keyboard (membrane) type 5 pin din plug connector $£ 15.00 \mathrm{cfp} £ 500$ 102 key at keyboard (click) type: 5 pin din plug connector: long cable $£ 25.00 \mathrm{c} / \mathrm{p} £ 5.00$ Philips IBM compatible mouse: 2 button new $£ 12.95 \mathrm{c} / \mathrm{p} £ 2.00$
Farnell stabillsed B30/20 power supply 0-30V 20A linear £295
Farnell DT $12 / 5$ 12MHz o'scope $£ 175$
Hewlett Packard 3490A muttimeter $£ 27$
Hewlett Packard 3490A multimeter $£ 275$
Hewlet Packard 180 C o'scope $\mathrm{m} /$ frame $\mathrm{c} / \mathrm{with} 1804 \mathrm{~A} 4 \mathrm{chn}$. vert. amp 50 MHz 1821A time base delay gen. $£ 375$
Hewlett Packard 221 A square wave gen. $1 \mathrm{~Hz} / 10 \mathrm{MHz} £ 55$
Hewlett Packard 3400A RMS voltmeter $£ 250$
Hewlett Packard 7015A X-Y recorder £225
AVO universal bridge $8150 £ 125$
Black Star Jupiter 500 function gen new \& boxed $£ 105$.
Thandar TG105 5HZ-5MHz pulse gen. new \& boxed $£ 115$
Wavetec waveform gen. $159 £ 250$
Trend data distortion gen. £165.
Schlumberger 4900 RF-AF measuring unit $£ 290$
Tektronix 7623 A o'scope $\mathrm{m} /$ /frame $£ 395$
Tektronix 454 o'scope $£ 325$
Tektronix 454 o'scope $£ 325$
Tektronix 191 constant amplitude sig. gen $£ 150$
Dolch Atlas 9600 logic analyser c/with software P.O.A
Datel tester 10A. Data link tester (modems atc
Datel tester 10A. Data link tester (modems etc) £175.
Schlumberger 4000 precision signal gen. $£ 350$
Wandel Gottermann, measuring sel for group deiay \& attenuation recelver LDE- 2 £350 All above prices $+17 \frac{1}{2} \%$ VAT. Please ring for c / p rates.

crc

 Chelmer Valve Gompany

 Chelmer Valve Gompany}
Worldwide supplier with 30 year's experience

- Electron tubes: Transmitting,

 Industrial, Microwave, Audio, Receiving, Display, etc, etc.- For Maintenance, Spares or Production.
- Semiconductors: Transistors, Thyristors, Diodes, RF, Power I/C's, etc.
- We have one of the largest stocks in the U.K.
\star TRY US! \star

FAX, PHONE, POST OR TELEX YOUR REQUIREMENTS
I 3C NEW LONDON ROAD, CHELMSFORD, ESSEX CM2 ORG, ENGLAND
Telephone: (0245)355296/265865
Telex: 995398 SEEVEEG Fax: (0245)490064

Analog Electronics

lan Hickman

Good all-round electronics designers are hard to find, according to the recruitment specialists. There are either bad all-rounders or good specialist for example, microwave, power supply, microprocessors specialists). Many young designers have been lured away from the tundamentals of electronic design to more 'glamorous' digital work. yet there are many simple pieces of electronic equipment for which a purely analogue realisation is still cheaper, more reliable and more appropriate than a microprocessor-based solution. Analogue staff are in desperately short supply, and in many fields - telecommunications for example - analogue skills are very much in demand. lan Hickman's latest book includes many examples from his large collection of circuits (built up over thirty years in commercial, professional and defence electronics), selected for their usefulness in a wide range of applications. Hardback 300pages. Price $£ 32-40$

Circuit Designers Companion

Tim Williams

This compendium of practical wisdom concerning the real-world aspects of electronic circuit design will be invaluable for linear and digital designers alike. The subjects covered include grounding, printed circuit design and layout, linear ICs, logic circuits and their interfaces, power supplies, electromagnetic compatibility, safety and thermal management. How to design to production and to cost restraints is stressed throughout. The style is direct, lucid and non-academic, aimed at the practising designer who needs straightforward.easy-to-follow advice. Hardback 320pages.
Price $\mathbf{1 2 6 - 5 0}^{2}$

Electronic Alarm Circuits Manua

 R M MarstonOne hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating principle of each one is explained in concise but comprehensive terms, and brief construction notes are given where necessary Aimed at the practical design engineer, technidian and experimenter, as well as the electronics student and amateur. Paperback 144pages
Price 1 13-95

Filter Handbock

Stephan Niewiadomski
A guide to electronic filter design and
implementation. clearly written and without the enormols amount of mathematics usually found in books on this subject. Especially of interest for electroniss engineers and technicians, students, enthusiasts and also radio amateurs. Hardback 208pages.
Price E2E-50 2

Modern Electronic Test Equipment

Keith Srindley

Describes in a down-to-earth manner how the main categories of test equipment work, allowing the reader to compare available instruments, make an informed choice and then to use the equipment to the best advantage. Any engineer, technician, scientist, student or teacher who reads the book will have a better understanding of the equipment and get better service from his instruments. Paperback 224 pages.
Price $£ 15-95$
Servicing Personal Computers

Michael Tosley

This book sets out the principles and practice of personal computer servicing in a handy reference manual. It contains a wealth of information, including a large number of circuit and block diagrams. Various sottware diagnostic routines have been included together with listings and, where appropriate, actual screen dumps. Numerous photographs show typical adjustments and alignment ptints. It is for anyone concerned with the maintenance of personal computer equipment or peripherals, whether professional service technician, student or enthusiast. Hardback 256pages.
Price £27-00
Newnes Radio and Electronics Engineer's

Pocket Book

Keith Briad'ey

A compendium of facts, figures and formulae for the designer, student, service engineer and all those interested in radio and electronics. Paperback 328 pages.
Price $£ 10,95$
Newnes Electronic Assembly Book Keith Brindiey. Hardback 304pages. Price $£ 11.95$

Newnes Z8C Pocket Book
Chris Roberts
Aimed at practising electronic and software engineers and technicians involved with the design, manufacture, testing of maintenance of $Z 80$ type microprocessors based equipment. It is also aimed at students following courses in microprocessor related subjects. Contents include packages, pinouts and specifications; processor operation and signal timing; internal architecture; the flags; instruction address modes; instruction set; interrupt response; pragramming techniques and support chips. Hardback 185pages.
Price £13-95

Please send me the following books

I enclose a cheque/postal order/eurocheque to the value of $£$.
.....................made payable to Reed Business Publishing Ltd or Please debit my Access/Visa/American Express/Diners Club with £.......................Card Number.

Signature
Card
expiry date
Date
Name
Address.

seen" - John Spackman, former Director, Computing and Information Services, British Telecom. Paperback 184pages
Price E13-95

Audio IC Circuits Manual

R M Marston

Contents include: audio and pre-amp circuits, dual audio pre-amp circuits, audio power amplifier circuits, high-power audio circuits, LED bar-graph displays and CCD audio delay-line circuits Paperback 176 pages.
Price 113-95

Analog Circuit Design

Art, science and personalities
Edited by Jim Williams
Thirty well known contributors share some of their insights, knowledge, and perspectives on analogue design. Taken as a whole, these authors demonstrate that analogue design is less a set of techniques and methods to be rigorously followed than a way of thinking about things. This book isn't a text book, nor is it really a 'tutorial' in conventional sense of the term. Instead, its primary goal is to help the reader think in an analogue way. It is the latest title in the 'EDN series for Design Engineers' Hardback 390pages.
Price £32-00

Troubleshooting Analog Circuits

Robert A Pease

Troubleshooting Analog Circuits is based on a series of articles that became one of EDN's most successful and well-read, and found an enthusiastic audience among electronic engineers and technicians.
Contents: Introduction; Troubleshooting linear circuits - the beginning; Choosing the right equipment; Getting down to the component level; Solving capacitor-based troubles; Preventing material and assembly problems; Solving activecomponent problems; Identifying transistor troubles; Operational amplifiers - the supreme activators Quashing spurious oscillations; The analogue-digital boundary; Dealing with power components; Roundup of loose ends; Floobydust; Letters to Bob; Troubleshooting charts; Appendices. Hardback 220 pages.
Price $\mathbf{£ 2 1 - 4 5}$
Newnes Electric Circuits Pocket Book
Linear IC

Ray Marston

Newnes Electronic Circuits Pocket book is aimed directly at those engineers, technicians, students and competent experimenters who can build a design directly from a circuit diagram, and if necessary modify it to suit individual needs. Hardback 336pages.
Price E13-95

Microprocessor System Design

A Practical Introduction

Michael Spinks

An introduction to essential concepts and techniques underlying the design of usefu electronic circuits, especially microprocessor bcards and their peripherals.
No previous knowledge of electronics is assumed new terms and ideas are explained as they arise,
maths and jargon are kept to a minimum. After an introduction to the groundwork of electronic circlits digital and analog component:s, op amps and PALS - the reader goes on to discover how microprocessors work and how they are used in bus-based systems. Michael spinks uses real industrial circuits as examples - inctuding some with specialized applications - and includes a chapter on practical problems such as debugging, and a comprehensive glossary. Paperback 247 pages. Price £21-95

Communication Services Via Satellite

G.E. Lewis

Satellite communication systems are capable of carrying not only all existing telecommunications services to reach previously inaccessible areas, but also new services which were not teasible before the advent of satellites. Satellite communications systems create a series of new technical problems, requiring new solutions, for the engineers involved in communications and television services equipment. Such engineers will firid this book an invaluable guide to how the system signal is coded, modulated, demodulated and processed, and they will obtain a good understanding of the way in which the system functions. Several actual systems are described and a number of analyses and design rules are included. This book is aimed at systems design engineers involved in the commissioning, design and installation of commurications and television services equipment. Service engineers and technicians will also find it valuable reading. Paperback 386 pages.
Price £27-00

The Chaos Cookbook

A Practical Programming Guide with type-in-and-go LIstings
Joe Pritchard
It is rare for mathematics to capture popular imagination but chaos has done so. Chaos sets ultimate limits on what science can predict. It is mathematics theory about prediction, a model that describes the relationship between past and future, explaining how natural and man-made systems behave. Equations defining chaatic systems are often very simple but give rise to exceedingly complex and, if the behaviour is converted into a computer graphics display, beautiful results. The Chaos Cookbook examines chaos theory in a much
mone practical way than
o her books. Chaos is not just a way of gererating computer graphics, or a mathematica curiosity. It has relevance to the real world and tee easest way to explore and visualize chaos is threugh the computer screen. The book uses the cormputer as a tool and provides programs to run tha demonstrate the concepts, including type in ard go istings, which even the initiated will appreciat as they are absent from other books. Paperback $36 E$ pages.
Prize £19-95

ORAMP Circuits Manua

R. И. Marston

The operational amplifier (op-amp) is a directcol pled high-gain differential amplifier that can readily be used as the basis of a variety of ac or dc amslifiers, instrumentation circuits, oscillators, tane gemerators and sensing circuits etc. It is one of the mest popular and versatile 'building blocks' usec ir modern electronic circuit design and is available in three basic forms: the 'standard' (741, etc.) type the 'Norton' (LM3900, etc.) type and the OTA (CA3C80 and LM13600, etc.) types. This manual explains how each of these devices works and shows how to use them in practical applications. The manual presents a total of over 300 practical circuits, diagrams and tables, and is specifically aimed at the practical design engineer, technician and
experimenter. Easy-to-read, down-to-earth, normathematical but a very comprehensive manual. Paperback 211 pages
Price £13-95

Power Control Circuits Manua

R. M. Marston

Electronic power control circuits can be used to control (either manually or automatically) the brilliance of lamps, the speed of motors, the temperature of heating devices such as electric fires or radiators, or the loudness of audio signals, etc. This control can be achieved using electromechanical switches or relays, or electronie components such as transistors, SRCs, TRIAC:s, or power ICs, etc. This book takes an in-depth look at the whole subject of electronic power control, and presents the reader with a vast range of useful circuits and diagrams. Contents: Basic principles Switch and relay circuits; CMOS
switches/selectors; AC power control circuits; DC power control circuits; DC motor control circuits; Audio power control circuits; DC power supply circuits. Paperback 198 pages
Price $£ 13.95$

Practical Electronics Handbook

Ian Sinclair
Ian Sinclair has completely update and revised this popular title. It still contains a carefully selected collection of standard circuits, rules-of-thumb, ane design data for professional engineers, students and enthusiasts involved in radio and electronics but is now over one hundred pages bigger. The book covers many areas not available elsewhere in such a handy volume, and this new edition now iricludes chapters on microprocessors and microprocessor systems, digital-analogue conversions, computer aids in electronics plus hardware components and practical work.
Faperback 338 pages.
Price E15-95
Books published by Butterworth-Heinemann .

Microprocessor Archilectures and Sys ems
RISC, CISC \& DSP
Steve Heath
A guide to microproces sor architectures explaining the differerices, advantages and disadvantaces, and design implications. With most semiconductor manufarturees supplying only one tyre of architecture, processors becoming nore complex than mainfram ϵ computers, and design cycles shortenirg from two years \square six montes, it is vital for designers to choose the right processor. Steve Heath is processor technology specialist fcr Mo'orola. Hardback 300pages.

Normal Price £ $36-50$ Now onty £19.95 to EW + WW Readers

4: radio architecture

Traditional GPS radio architectures require access to asic technology for the hardware processing channels, but also suffer from long acquisition times. Philip Mattos describes a high performance radio system based on direct conversion techniques, and also outlines Plessey's single chip GPS implementation.

In 1988 when my original GPS designs were published in an IEE paper there was not, at that time, a need for a new ratio architecture as the market price for GPS receivers was alstronomic. However between 1990 and 1992 the market price fell from $£ 2500$ to $£ 600$ for the leisure marine GPS set. and with the manufacturer only getting a small fraction of this retail price, and with the ratio section now the dominant cost element, something had to be done. The large GPS companies invested heavily in radio-frequency asics or mmics. Having done so, they were not likely to release their chips onto the open market.
The merchant market for radio chips did not respond for several years, prohably waiting until GPS developed a mass market. Thus. after seeing the problems met by several new start-up companies in GPS, I decided to design my own radio from discrete components. Part of this article is dedicated to that design. However during 1992, both Plessey and Avantek released information on single chip products.

Quad-helix antennas come close to the ideal gain of 3 dBiC over the entire hemisphere. The patch is cheaper and its +7 dBiC overhead makes it useful on land where low angle satellites can be blocked by trees.
The Avantek $R O C$ - receiver on a chip - is not yet available, just vague details in sales presentations. but I have tested the Plessey GPIOIO single chip GPS radio so this will be discussed here along side my own design.
The hardware differences between my design and the conventional fall into two areas. In the radio. a direct down conversion approach is used. from L -band to baseband. Besides requiring only one local oscillator signal, and one miser, it additionally means there are no image problems to overcome. and thus no sparious responses. Local oscillator filtering can he done with standard GPS frequency filters available of the shelf.

Additionally, the radio was simplified by omitting the synthesiser entirely; for a fixed frequency there are cheaper ways of generat-
The GPS radio is about 50 mm square. Production version (left) has its own screening can, while the same circuit in a die-cast box (centre) is released to licensees to enable them to access the signal path while debugging their own versions. (Top right) radio without screening; (bottom right) low-noise amp normally built into the base of the antenna.
ing the local oscillator signal even at 1.5 GHz . In the hardware processing. simplicity in the extreme is achieved by processing everything in sofiware
Conventional hardware is replaced by a shift register, counter and link adapter that pack the samples from the radio and send them up the transputer`s serial link where a DMA engine puts them into memory without CPU involvement. This four chip i/o solution can be replaced with two pals if required, much cheaper but using more power. In the computer side of the hardware, ultimate simplicity is achieved by using a $T 8() 5$ transputer.
It needs just two address latches to interface with eprom and sram, I/O for keyboard and screen can be done on a two wire serial link as was the radio data. This provides a computer of up to 30 mips . 256 KBytes , with on-chip 64bit floating point unit in just 11 chips. If the FPU is not required, a version of the transputer is available in high-volume for under 20 dollars, and is being used in several volume GPS equipments world-wide.
As explained in an earlier article, a dual down conversion recejver is difficult because of problems with the image filtering: there is no correct first IF. Despite this, it has been the industry standard. A single down conversion usually has problems with the RF image, and a triple has excessive complexity and cost. My design tackles the problem by using a direet conversion to baseband. Requiring discrete components, complexity has to be avoided at all costs. The Plessey design goes the opposite direction since, being all on silicon, complexity comes free. It therefore uses triple downconversion to 4.3 MHz , not baseband. which means there is a fourth conversion performed later. Both radio modules are about 50 mm square on single sided board with groundplane. Both consume about 700 mW .

Discrete design

Component selection was aimed at volume products intended for satellite TV and the cellular telephone market. The main supplier for my radio design is Avantek, now part of Hewlett-Packard. It offers gain blocks, essentially self-biassed transistors, with 50Ω input and output impedance and unconditionally stable.
Running from a 5 V supply, these provide 15 dB gain at 15 mA with a $4-5 \mathrm{~dB}$ noise figure. (MSA()6 family). Another version offers 23 dB noise figure, and 25 dB gain, and still takes 15 mA .(INA03I family). This would appear wonderful, but its layout demands conflict with the requirement for a low-cost board. so it is only used in the LNA.
The signal path needs some 120 dB of gain. in order to bring the -114 dBm thermal noise up to 0dBm (equivalent to about 0.6 V p-p across 50)2), allowing for losses in filters etc. To maximise stability, this should be evenly split between RF and baseband, but as baseband gain is less expensive. and consumes less power, there may be some bias in that direction. The LNA provides about 40 dB gross. which after filter and cable losses yields about

Fig. 1. New radio architecture: direct down conversion allows a very simple radio architecture, and makes the local oscillator at signal frequency where low-cost filters are available.

Fig. 2. A simple, robust INA can precede the filter, and shows a better noise figure than a complex GaAsfet circuit placed after the filter.

33 dB measured. The mixer provides about 10 dB of conversion gain. Thus there remains $120-43$, or 77 dB to provide, and this is split with 60 dB at baseband, and 30 dB gross at RF
The bloch diagram Fig. 1 shows the gain block line-up.
The 60 dB of gain is maintained in the baseband circuit, but the 30 dB at RF loses 3 dB in the L-band filter, and 10 dB in dieleetric losses in the circuit board, due to the low-cost board used. Besides intellectual challenge, the other reason for keeping the physical size so small is to minimise these losses.

Designing with the Avantek MSAO6 family is simple. They offer $50 \Omega 2$ connections so all that is required is to select the bias resistor to suit the supply voltage in use, and select input and output coupling capacitors. The bias resistor is chosen to operate the device at the correct current, usually around 15 mA but bear in mind that a temperature dependent 3.5 V is developed across the device. At 8 V and $300 \Omega 2$ resistive collector load, the design checks out correctly for both MSA and INA devices. However at 5 V , the $M S A$ is satisfactory, but the INA could be dangerously overrun if it were at the low end of the device voltage, so an alternative approach is required.

Instead of the resistor, a constant current feed is used via a PNP transistor, itself decoupled at RF, and isolated by an inductor. As the bias resistor is effectively in parallel with the output for signal purposes, it reduces the gain considerably at this low value. This is solved by adding an inductor in series to keep the RIF out of the bias path.
At 1.5 GHz both discrete and stripline construction are possible: the latter may be too large, but discrete wired components do not behave normally. A wound inductor exhibits capacitance and has a self-resonant frequency above which it actually looks capacitive. This frequency is below 1.5 GHz for all but the lowest value surface mount inductors. A similar problem arises with coupling capacitors which behave inductively. Thus low value capacitors are chosen, and generally avoided
where possible. Ceramic filters bloch DC. so help considerably.

Front end

The LNA consists of one $/ N A(03 /$, a filter, and one $M S A(0)$, with circuitry to allow power feeding up the coax, and in the 5 V version, to statilise the feed to the INA031. The power feed consists of an inductor to isolate 1.5 GHz , decoupling, then an inductor to isolate lower frequencies that may have been picked up on the coax, and more decoupling. The general form is shown in Fig. 2.

The INAOSI is placed before the filter to yield a more stable amplifier with a noise figure not degraded by filter losses. This saves 3 d from the noise equation. Disadvantage is that powerful local transmissions may saturate the front end device, or even burn it out... the latter only likely with badly sited aerials for radar or satcomms on the same boat.

Also, two strong transmissions with a sum or difference frequency of 1.5 GHz could mix to cause interference, which would not have occurred if the filter were first. Indeed, overpowering intermod products at 1575 MHz can originate in a broadband front end from transmitter pairs operating at frequencies far below the GPS slot. Products follow the general formula $f_{\text {internod }}=m f_{1} \pm n f_{2}$ where f_{1} and f_{2}

Fig. 3. Feeding the LNA up the coax is common practice, but not easy at these frrquencies. A cascaded pair of inductors dees the job, but to be safe against short circuit, should really be fed from a current limiting transistor. A resistor is not adequate, due to variation in current between different LNAs and lack of voltage headroom.

Fig. 4. The self oscillating two-port mixer is extremely simple, but the feedback path length is critical, and not easily managed in production.

Fig. 5. External LO 2-port mixer: The 2-port mixer works well with an external oscillator, but this simple circuit is not suitable for direct downconversion due to poor input matching at baseband.

Fig. 6. Mixer internal circuit: Note that the base bias is derived from the collector, without decoupling, so the bias resistors determine both bias, and via feedback, the gain and input impedance.

Fig. 7. Mixer matching circuits. To match the mixer to both 1.5 GHz and 10 kHz at both input and output, considerable complexity is required... a baseband match blocked to RF at the input, and an RF match blocked to baseband at the output.
are interfering transmitters and m and n are integers generally in the range 1 to 5 .
In this design. I retain the low-noise version. and depend on the selectivity of the patch antenna to reject such interference, both in frequency and in response angle since it possesses a high degree of out-of-band rejection.

A yuad helix antenna would be better suited with the filter first.

The main RF gain sections are a further two MSAOO stages, preceded by another ceramic filter, both to give further stop band rejection. and to reject any interference picked up on the coax. Two MSA stages are used rather than one $/ N A(03 /$, despite the 15 mA penalty, both because of the cost (2 at $£ 1$ versus one all $£ 4$). and because it is very dillicult to keep the /NAOZ/ stable on the thick low-cost board. Avantek recommend multiple vias under each ground pin on ultra-thin board, and although feasible in production, this was not feasible for protolype boards.

The reason for the criticality is that the /NAOSI is a two stage device, and if there is any inductance in the ground lead. it caluses unwanted coupling back from the output stage to the imput, causing oscillation. The only other complication is the power feed up the coal to the LNA with signal and DC isolated by inductors.

Mixer

I could write an entire article on the mixer, so long did it take to get it right. The original plan was 10 use the Avantek MSF86 two port mixer in self oseillating mode, locked to a tow level injected signal. (Fig. 4).
A prototype was built using this system, but was found to be easily pulled off frequency by signals from the signal path: being a two port mixer. RF and LO are on the same pin.
Also, on the thick low-cost board used, the length of the feedback path making up the I80 degree phase shift required adjusting on each radio, depending on tolerances of aligning the other surface mount components.
As one of the design requirements was an absence of trimming, this was not acceptable. The second approach was to drive the mixer from an external I.O. ie no longer self oscillating. (Fig. 5).
This worked fine, and a very good radio was demonstrated although the gain was below plan. Then four copies were built, and not one of them behaved satisfactorily.

Two months later, after a lot of blind alleys. always blaming the mixer, the problem was found. not quite in the mixer, but in its input coupling capacitor and in the gain stage following the mixer. The cirenit of the mixer is shown in Fig. 6.

As can be seen, the collector voltage, both bias and signal, is divided by R_{1} and R_{2} to give the voltage on the base of T_{l}. The division ratio is $R_{2} /\left(R_{1}+R_{2}\right)$ for the bias, with equilibrium being maintained with about 1.4 V on the base and 3.5 V at the collectors. The division ratio for the signal however, is different... as the $50 \Omega 2$ source impedance of the previous stage appears across R_{2}, as the input coupling
capacitor blocks DC. but is transparent to the signal. This ratio determines the gain of the stage, and also the sets the input impedance to 50Q. The problem is, when the mixer has done its job, and mixed two L-band signals to create one at a few kilohertz, that audio signal must also be treated as signal by the input capacitor, or the negative feedback will try to cancel the mixing product. Nomally, this is not a problem. as a capacitor can be found that will behave adequately for both signals.

However a capacitor suitable for a 10 kHz signal in a 50Ω system is $0.5 \mu \mathrm{~F}$ or so, not compatible with a $1.5 \mathrm{GH} /$ signal even if a 50 p c capacitor, or other "reasonable" value, were placed in paratlel. The problem comes from the extreme diversity of the RF and IF freguencies, particularly the true baseband nature of the IF. There is a solution, and it is shown in Fig. 7.

A separate path is provided for baseband signals. into a 47Ω resistor, DC blocked by a large capacitor to avoid upsetting the bias, and blocked from the RF signal by a small value. high frequency inductor. With any IF, there is a need to terminate the mixer output correctly. To feed a low frequency amplifier for the baschand chain, a 5 pF capacitor and 47Ω resistor shunt the 1.5 GHz RF and LO signals. and also the $3 \mathrm{GH} \%$ sum product. This meant that there were some five components needed above those in the signal path, and still more in the baseband filter covered later, so another approach was tried.

During development, a low cost plastic three port mixer became available, Fig. 8.

This vastly simplified the circuit, as being a three-port, balanced mixer with buffered IF and L.O ports, almost no external circuitry was reyuired. The resistive T previously used to couple the LO into the signal path could go. resulting in 6 dB more signal, and 6 dB more LO. with three less components.

The input and output matching circuits described above could also be removed, and the bascband filter no longer had high power LO and RF breakthrough to remove, as the mixer is balanced. So much better was the performance with this mixer that one stage of baseband gain had to be removed.

The baseband filter

The baseband filter has two functions... to remove $R F$ and $L O$ signals from the path, and to set the desired bandwidth. With the MSF86 mixer. RF and LO at OdBm was present after the mixer, necessitating serious filtering.

As shown in Fig. 9, a small inductor blochs 1.5GHz from reaching the second inductor, as that one could not operate at such high frequencies. The second inductor/capacitor pair then operate from lifty ohms into several kiloohms to set a cut off point of a few MHz . As there is a considerable phase change at the cutoff frequency, this is sel much higher than required, allowing the unavoidable low-pass characteristics of the op-amps to complete the job. With the three port mixer, the $1.5 \mathrm{GH}_{7}$ level is about -35 dBm . so no longer presents a major problem.

The mixer also includes an output bulfer. so is tolerant to mismatch on the output. Thus the baseband filter becomes a simple L-C pair. The other problem in the four production radios related to noise generated in the first op-amp.

After measurements indicated this was not a problem. four op-amp stages were used. However. as is obvious with hindsight. the measurement was erroneous because it was done with the input open circuit. Connecting the input to ground created more noise, which was attributed to poor decoupling of the nidrail amalogue ground.

In truth, the noise was the first op-amp, and with the op-amp input open-circuit, the closed loop gain became the open loop gain allowing the amplifier to cancel all its own noise.
Subsequently all the op-amps were replaced by three transistor stages. ats this is both cheaper and uses less board area. The op-amps or the transistor design need to give level gain from almost $D C$ to at least $500 \mathrm{KH} L$. after which a gentle rolloff is acceptable. However. the phase response is important: it must not disperse the signal. so a linear amplitude response out to $1 \mathrm{MH} / \mathrm{z}$ results.
Signetics 5534 (single) and 5532 (dual) opamps were used, which have a gain bandwidth product of 10 MH Iz. This allows a gain of 10 out to 1 MHz as required. and no low-pass components have to be added. Thus three stages give x 1000 voltage gain. or 60 dB . (Fig. $10)$.
The same can be achieved with three transistor stages, in common emitter, with an emitter resistor to control the gain. These however yield a frequency response out to tens of MHz, so a large slugging capacitor is added across the second stage.

The $5532 / 4$ op-amps clip cleanly when overdriven, so there is some 60 dB of overdrive capability in that design. The transistors are similar, due to the transition from high to low input impedance as the stage saturates. which reduces the gain of the previous stage.

However the op-amps cannot drive a 50 S 2 coax from rail to rail, and the transistors limit asymmetrically. Thus despite the fact that the only concern is the timing of the zero crossings, we must handle the overdriven state correctly. Both asymmetry and slew rate limiting distort the timing of the zero crossing. the former by creating a $D C$ bias that moves the effective switching point, the latter by delaying steep zero crossings. but not shallow ones. Thus both designs use an emitter follower driver stage before the coax, and diode clippers to limit the output swing symmetrically to 1.2V p-p. Driving into $50 \Omega 2$ would require an unmanageable bias current in the emitter follower without the elipper.

Oscillator chain

The oscillator chain has also passed through many iterations before arriving at a design that performed well without sacriticing simplicity. The initial concept was to use a self oscillating two port mixer injection locked to a subharmonic. The second version wats to use an
injection-locked oscillator separately, at $525 \mathrm{MH} z$. extracting the third harmonic passively for use as the LO signal. The 525 MHz oscillator was locked to a 105 MHz 5 th overtone crystal oscillator. This version worked perfectly, and used only two stages in total for the oscillator chain, as by feeding the LO into the signal path not at the mixer, but one stage earlier: the LO signal could be boosted in the RF path. However the move from a two port to a three port mixer removed this possibility, and some of the capacitor values were not suitable for production. For example there was a phase shift network with two 0.5 pF capacitors.

Also, the separation of the 525 MHz harmonic without cither pulling the 105 MHz . oscillator out of lock, or saturating the next stage with bleed through of $105 \mathrm{MH} \not \subset$. meant very delicate coupling of the two stages.

Fig. 12 shows the full circuit. The tinal version extracts the 15 th harmonic of the $105 \mathrm{MH} /$ signal directly using a GPS frequency ceramic resonator. This is not so much filtering out the existing 15 th harmonic, rather hitting the high-Q filter hard and allowing it to ring for five cycles. This presents a high impedance :o the fundamental, so does not disturb the oscillator. It provides very good coupling at 1.575 MHz . As a result it was possible to generate -3 dBm of LO with just two stages, meeting the requirement of no manual tuning or select-on-test components. In fact the only frequency determining components other than the 105 MHz crystal are the feedback phase-shift network that sellects the correct overtone.

The smallest capacitor used is now 5 pF , and there is about 20% tolerance in the circuit. Conveniently, the phase shift network can never quite achieve 180° to compensate for the 180° shift in the amplifier stage. so the crystal must provide the rest.

Thus the oscillator frequency is always about 5 hHz low, resulting in a LO signal some 80 $\mathrm{kH} /$ below nominal which is exactly what is required. Note that the reference frequency does not need to be precise.

While the software does not like a rapid change in frequency, the absolute value is immaterial. Thus calibration of the GPS receiver consists of placing the antenna near a known signal source and running the self-test software

The nominal centre frequency is then stored in non-volatile menory, rather than the reverse operation where the centre frequency is moved. For the professional surveying GPS receiver, where the sampling cloch and the LO must be coherent, a different approach is used. Rather than 105 MHz (GPS $L / / 15$), either $L / / I 4=112 \mathrm{MHz}$. or $L / / 22=71.6 \mathrm{MH} z$ are used. The oscillator is then locked to the sampling oscillator (10.23 MHz), where it is the eleventh or seventh harmonic respectively.

The former case is better as it generates more L-band output amplitude, but the latter has the advantage that by using off-the-shelf $70 \mathrm{MH} /$ lilters as used in microwave receiver IF strips, it can be ensured that the 10.23 MHz

IAM 81008
Fig. 8: The 3-port active mixer has only RF at the RF port, only $L O$ at the $1 O$ port, and only IF at the IF port. It also tolerates output mismatch.

Fig. 9. Baseband filter. The baseband filter must exclude 1.5 GHz type signals, but also 3 MHz and up. Two inductors, the first to block high frequencies from the second, serve the purpose.

fig. 10. Op-amp constructed baseband section. Four op-amp stages give 80 dB of gain from 0 to 1 MHz , with clean roll-off above that and good phase response out to the required 500 kHz of the folded GPS signal. However the noise of the first opamp was excessive, and with the later mixer design, only 60 dB was required.
sidebands do not pass through to the LO. If they did, the L-band filter would not be able to reject them, while if the nearest undesired harmonics are 70 or $112 \mathrm{MH} /$ away, the 1575 resonator rejects them.

Performance

The resulting radio performance can be measured in two ways. The first is a comparative measure of recovered satellite power using the same software on many different radio sys-

Fig. 11. Discrete version baseband section. Four transistor stages - three for voltage gain, the last for driving the $50 \Omega 2$ coax when the radio is remote from the CPU, replaced the op-amp design.

Fig. 12. Full 105/525/1575 Oscillator chain. The first successful oscillator chain used a 105 MHz crystal, driving a $\times 5 \mathrm{multiplier}$ stage at 525 MHz , which drove a ceramic filter which picked off the 1575 MHz signal passively.

Fig. 13. GEC-Plessey GP1010 single chip GPS radio. The GP1010 has a triple down-conversion, complexity that costs little because it is on-chip. It includes the synthesiser, including VCO and dividers, and even the A-D converter and sampling latches, in this case two-bits wide.
tems, in a benign enviromment. The second is to consider the effects of hostile environments.

On a recovered power basis, the radio is about IdB better than any other I have tested. Unfortunately I do not currently have the software to convert this into a carrier-to-noise measurement, so there is no absolute criteria. This simply means that the radio works... It is

GEC-Plessey's GP1010 sample board provides everything except the LNA.
not adding to the problems of the system.
The noise in the system is, and should be. defined by the first stage of the LNA at the antenna. The other element that does add to the loss is using a single-bit A / D converter. This costs about 2 dB versus an ideal system. about 1 dB versus other realisable schemes, but in return allows the software spread-spectrum processing, and removes the need for an AGC in the radio.
The added flexibility of software acquisition processing more than recovers this 2 dB loss. as it is acquisition that defines the minimum received power threshold. The new radio design has no image frequency to reject. and as the GPS military band is 20 MHz wide, and the commercial 2 MHz at its centre, the combination of tuned patch antenna and ceramic resonator filters means that there are few problems at RF. The interference power equation runs like this. The radio hats some 50 dB of RF gain, with a maximum permissable power of +10 dBm in the amplifier, so -40 dBm is the maximum tolerated from the antenna. The two RF filters provide 6()dB of attenuation to the nearest interferers, and the patch antenna another 20dB. so an interferer of up to $+4(1 \mathrm{dBm}$ (10 W) incident (not transmitted) power, nould be needed to upset the radio.
Such power could only possibly occur as pulse power from a radar, and if applied con-
tinuously would certainly destroy the LNA.
If this radio has a weak point. it is breakthrough of unwanted signals through coax cables, power supply, and chassis shielding. Because there are only two frequencies. RF and Baseband. the gain, and hence sensitivity of each has to be high.

The RF circuitry is very well protected, provided good quality coax is used between LNA and radio. However the baseband circuitry has some 60 dB of gain all $0-1 \mathrm{MHz}$. and it is extremely hard to prevent long and medium wave broadcast stations drowning the set if installed in a car driving beside the transmitter. The development prototypes have avoided this problem by construction in diecast aluminium boxes, and this is fine for professional applications.
However with the target price for car use being so low. a combination of power line filters and plasticised metal casing is needed.

Single chip radio version

The GEC-Plessey GPIOIO provides all the active circuitry required for the GPS radio except the ILNA. This is ideal, partly because the LNA may need to be remote, and partly because it thus allows the choice of silicon or GaAslet L.NA. with the bi-polar radio chip offering the lowest cost and highest density. Its architecture is a triple downoonversion io
4.3 MHz , with the synthesiser for the three local oscillators provided on chip.
The system designer must provide the LNA as discussed, a frequency reference at 10 MHz , the sampling clock of his choice and all but the last IF filter. A block diagram is shown in Fig. 13.

Signal path

The IFs are $175 \mathrm{MHz}, 35 \mathrm{MHZ}$ AND 4.3 MHZ . The 175 MHz filter is built from discrete components and is not critical in design, as its main function is to reject the image frequency at 105 MHz . While care must be taken to shield the board from local VHF transmitters, especially by decoupling the power rails, there should not be any hostile signals here. If there were, they would have been at 1505 MHz , nasty terrestrial microwave links, but these can be taken out by the ceramic 1575 MHz resonator, or two if a wideband helical antenna is used.
The main band shaping is done at 35 MHz in a saw filter. This allows very sharp edges to the passband, with minimal ripple and phase distortion. While a dedicated filter is available, it is very similar to those used in the IF channels of colour televisions, so is not expensive.
The final filter at 4.3 MHz cannot shape the band effectively, as a 2 MHz bandwidth here is such a high percentage. It is thus allowed to be wider, as its purpose is simply to remove noise outside the band that would otherwise alias about the sampling clock onto the signal.

At this frequency, it can be provided on chip... a feature that angered me greatly initially, as it locked me into GEC-Plessey's frequency plan, and 4.3 MHz is too high for my software processing. A circuit diagram of the external circuitry, excluding power rail decoupling is shown in Fig. 14.

Power rail decoupling is $3.3 \mu \mathrm{H}$ in series and $1 \mathrm{nF}+47 \mathrm{pF}$ to ground for each of the four power pins. While the IF output is available, this is intended for test use only. A plot from a spectrum analyser is shown in Fig. 15. The large signal shows the effect of the AGC , as the system shuts down to maintain the correct ratio on the magnitude output bit.

The GP/010 has a 9 dB noise spec. This can be deduced from the small signal curve as the analyser is on 300 kHz resolution bandwidth, when thermal noise would be -109 dBm . (KTB after Boltzman). The noise trace is 15 dB below the -100 dBm signal, implying -115 dBm for the noise, leaving 6 dB for the first stage amplifier noise figure. Thus this sample is well within spec. The chip also includes a 2 -bit A-D converter with sampling latches. The system designer must apply an appropriate sampling clock externally.

Aliasing tricks

However there are tricks that can be played by deliberate aliasing with the sampling clock. If the sampling clock were put at 2.0 MHz , the signal in the computer would appear centred at 300 kHz , ideal for the processing developed for my own radio described earlier. 2.0 MHz is easily derived from the 10 MHz reference. If

Board screening ring is $50 x$ 47 mm , with the power supply, RF and output connectors outside. Two dual op-amps used for baseband gain (left of board) and L-band filters for the GPS frequency (right) are shown. The low cost gainblocks - selfbiased transistors - are used in the RF path, the mixer and local oscillator generation.

synchronous operation is required. 2.046 MHz would be generated separately, yielding 254 kHz as the perceived carrier, but losing the benefits of coherence. Synchronous and coherent operation can be achieved simultaneously from the same reference using a circuit we developed for a GPS-specific transputer prototyped during 1991 .

It used a 20 MHz reference, the transputer clock, and divides this into two non-overlapping clocks A and B at 10 MHz . In general, stream A is used. but if the phase of the tracker has to be delayed, one pulse is deleted from the A stream.

If the tracker has to be advanced, one pulse from the B stream is gated into the A stream between its own pulses. If one pulse is inserted for every 87 pulses of the 20 MHz reference, the modified A stream becomes 10.229885 MHz or 11 ppm below 10.23 MHz . This is perfect, as even in synchrenous operation a drift rate is required in order to give vernier style measurement.

The software implementation of this is discussed in a later article. The division of the 20 MHz reference to give 10 and 2.046 MHz can be done in three TTL chips, or in two 1618 GALs, but even this complexity can be avoided with some sneaky software that clocks the simulated code-generator asynchronously.... so my implementation of the $G P 1010$ radio uses the on-chip oscillator at 10 MHz with an external $74 H C 390$ dual decade counter that generates 2 MHz for the sampling clock, 5 MHz for the processor clock, and 256 k Hz for the byte i/o clock.

The on-chip synthesiser.

The clever part of this chip is a $14(0) \mathrm{MHz}$ VCO. Once this is included on chip, all other frequencies can be derived from it, while it itself is locked back to the 10 MHz reference. Another clever feature is the choice of 1400 MHz . This means that the same design can be used for the military GPS L2 frequency, at 1226 MHz . However it also means that

Fig. 14. Radio based on GP1010. All the radio designer has to add, besides clean power rails to each stage, is a reterence oscillator and two filters, the first at $: 75 \mathrm{MHz}$, the second at 35 MHz . The VCO loop time-constant components are also off-chip.

there can be no transmissions on the image frequency, as it is reserved for GPS down links and these are below the noise.
The 1400 MHz is divided by 1 en to give 140 MHz as the second LO signal, and by 45 to generate 31.1 MHz as the third LO. It is also divided by 140 to lock to the reference, and by

35 to generate a 40 MHz clock, used by a future partner chip.

Frequency reference

The frequency reference itself merits some discussion. The GP/010 provides a gain stage to maintain oscillation, but a TCXO is rec-

Fig. 15. Test signal through GP1010 based radio. The three curves show the noise response bandwidth, the small signal response
$(-100 \mathrm{dBm})$, and the large signal response (-65 dBm). The small signal is equivalent to GPS via an INA, but can be seen as it is CW. GPS would be spread across the band almost indistinguishably from the first curve.
onmended. A TCXO is far too expensive for automotive use, but on the other hand, while the software can absorb carrier shift casily. it is less tolerant of sampler rate change. This is the main reason for the change from 2.046 MHz synchronous operation to 2.000 MHz asynchronous, as to maintain the 2.046 at the required 10 ppm tolerance requires temperature compensation, while the asynchronous operation can tolerate 250 ppm tolerance without problem, up or down. The 250 ppm limit relates to requiring an integer number of bytes ol samples in each millisecond, as i/o is handled in bytes.

Acknowledgement

1 am grateful for the assistance of GEC-Plessey Semiconductors at Swindon for access to their early GP1010 application board, and for the information contained in their Application Note AN-139.

Philip Mattos is a consultant engineer working for Inmos.

Next month: DSP soltware to extract the GPS signal oul of the noise.

EASY FAST \& POWERFUL CAD SOFTWARE THAT GIVES YOU THE EDGE

ISIS - SCHEMATIC CAPTURE

Easy to use yet extremely powerful schematic entry system with all the features you need to create input for ARES or other CAD software. Now available in a super-fast 32 bit version capable of hand ling huge designs even on AO-sized sheets.

- Graphical User Interface gives exceptional ease of use - two mouse clicks will place \& route a wire.
- Automatic wire routing, dot placement, label generation.
- 2D drawing capability with symbol library.
- Comprehensive device libraries
- Heterogeneous devices (e.g. relay and coil) allowed in different places on the schematic.
- Special support for connector pins put each pin just where you want it.
- Output to printers, plotters,

Postscript.

- Export designs to DTP and WP packages.
- Netlist formats for most popular PCB \& simulation software.
- Bill of Materials and Electrical Rules Check reports.
- Multi-sheet and hierarchical design support.
- Automatic annotation/packaging
- ASCII data import database facility

ARES - PCB DESIGN

Advanced netlist based PCB layout software newly updated to version 2.5. Major new features include SMT library, real time snap (for those tricky SMT spacings), thermal relief power planes and enhanced autorouting.

- Graphical User Interface Real time snap.
- Auto track necking
- Curved, 45/90 or any angle tracks
- Extensive through hole and SMT package libraries as standard
- 2D erawing capability with symbol library.
- Connectivity highlight.
- Output to printers, plotters Postscript, Gerber and NC drill
- Gerber View facility.
- Graphics export for DTP etc
- Advanced netlist management with forward design modification.
- Component renumber and back-annotate to ISIS.
- Full physical and electrical design rule checks.
- Autorouter handles single, double or multi-layer boards.
- Power plane generator
- Strategy \& DRC information loadable from ISIS
- Gerber import utility available

from

from

$\square \rightarrow \infty$

Call us today on 0274542868 or tax 0274481078 for a demo pack. Cambination, multi-copy and educational discounts available. Prices exc P\&P and VAT.

IDENTIFYING and avoiding transistor PROBLEMS

Transistors - both bipolars and mosfets are immune to many problems, but they can still give trouble. Robert Pease shows how robust design methods and proper assumptions about performance characteristics are the keys to avoiding problems.
Serialised from his book Troubleshooting Analog Circuits.

Transistors are so powerful and versatile that just a handful are needed to build almost any kind of high-performance circuit: a fast op amp, a video buffer, or a unique logic circuit. They are also uniquely adept at causing trouble. For example, a simple amplifier will probably not survive if the input is shorted to the power supplies or the output to ground. Fortunately, most op amps include forgiving features, so that they can survive these conditions. When the $\mu A 741$ and LMIO1 op amps were designed, they included extra transistors to ensure that their inputs and outputs would survive such abuse. But an individual transistor is vulnerable to damage by excessive forward or reverse current at its input, and almost every transistor is capable of melting. So transistor circuits should be designed so that the transistors do not to blow up, and circuits must be analysed if they do.
A simple problem is to instal the transistor correctly: three terminals mean the possibility of a wrong connection is considerably greater than with a mere diode. Small-signal transistors are often installed so close to a printedcircuit board that it is not clear whether or not if the leads are crossed or shorted to a transistor's can or to a PC trace.
Next to proper installation comes correct design, and unless they are completely protected from the rest of the world, transistors require input protection. Most transistors can withstand dozens of milliamperes of forward base current but will die with "only a few
volts" of forward bias. Military standard MIL-HDBK-2171 states that a circuit's reliability decreases when components are added. Yet when resistors or transistors are added to protect an amplifier's input or output, the circuit's reliability actually improves.
Similarly, pumping current out of the base of a transistor will cause the base-emitter junction to break down or "zener." This reverse current - even if it is as low as nanoamperes or very brief in duration - tends to degrade the low-current beta of the transistor, at least on a temporary basis. So in cases where accuracy is important, find a way to avoid reverse-biasing the inputs.
Transistors are also susceptible to ESD electrostatic discharge. Charge yourself up to a few thousand volts by walking across a rug on a dry day, then touch your finger to an NPN's base. It will probably survive because a forward-biased junction can survive a pulse of a few amperes for a small part of a microsecond. But pulling up the emitter of a grounded-base NPN stage, or the base of a PNP, risks reverse-biasing the base-emitter junction. The reverse bias can cause significant damage to the base-emitter junction and might even destroy a small transistor.
When designing an IC, sensible designers add clamp diodes, so that any pin can survive a minimum of + and -2000 V of ESD. Many IC pins can typically survive two to three times this amount. These ESD-survival design goals are based on the "human-body" model,

in which the impedance equals about 100 pF in series with 1500)2. With discrete transistors. whose junctions are considerably larger than the small geometries found in ICs, ESD damage may not be as severe. But in some cases. damage can still happen.
Delicate RF transistors such as 2 N 918 s . 2 N 4275 s, and 2 N 2369 s sometimes seem to blow up when they are little more than are just looked at because their junctions are so small.
Other transistor-related problems arise when engineers make design assumptions.
Every beginner learns that the $V_{B E}$ of a transistor decreases by about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and increases by about $60 \mathrm{mV} /$ decade of current, and this should not be forgotten or misapplied in extreme temperatures.
Sloppy assumptions about $V_{B E}$ should not be made cither. For instance, it is not fair to ask a pair of transistors to have well-matched $V_{B E}$ if they are located more than 0.l in apart and there are heat sources, power sources, cold drafts, or hot breezes in the neighbourhood. Matched pairs of transistors should be glued together to improve results. For best results, monolithic dual transistors like the LM394 give the closest match.
It is fair to assume that two matched transistors with the same $V_{B E}$ at the same small current will have about the same temperature cocfficient of $V_{B E}$. But make no rash assumptions if the two transistors are from different manufacturers or from the same manufacturer at different times
Similarly, transistors from different manufacturers will have different characteristics when going into and coming out of saturation, especially when being driven at high speeds. A components engineer is a very valuable person to have around and can save a lot of grief by preventing unqualified components from confusing circuit performance.
Another assumption engineers make concerns a transistor's failure mode. It is often said that a transistor, like a diode, fails as a short circuit or in a low-impedance mode. But unlike a diode, the transistor is normally connected to its leads with relatively small leadbond wires. So if there is a lot of energy in the power supply, the short circuit will cause large currents to flow, vaporising the lead bonds. As the lead bonds fail, the transistor will ultimately fail as an open circuit.

Beta better?

The h-parameter, $h_{r \text { か }}$. is equal to $\Delta V_{B E} / \Delta V_{C B}$ with the base grounded. Many engineers have learned that as beta rises, so does $h_{r b}$. As beta rises and $h_{r b}$ rises, the transistor's output impedance decreases: its Early voltage falls; its voltage gain decreases; and its commonenitter breakdown voltage, $B V_{\text {CEO }}$, may also decrease. (Early voltage of a transistor is the amount of $V_{C E}$ that causes the collector current to increase to around double its low-volt age value, assuming a constant base drive $\mathrm{V}_{\text {Early }}$ is approximately equal to $26 \mathrm{mV} \times$ $\left.\left(1 / h_{r b}\right)\right)$. So. in many circuits there is a point where higher beta simply makes the gain lower, not higher.

Mosfet ICs are static sensitive even though the inputs are diode protected. Cmos logic subjected to static damage may not fail, but develop a fault at some time in the future producing obscure effects.

Another way 10 increase effective "beta" is to use the Darlington connection, though this may degrade voltage gain and noise, make the response a little flaky, and decrease the base current only slightly. I keep learning more and more reasons not to use Darlingtons or cascaded followers, and for many years, it's been more important (in most circuits) to have matched betas than to have sky-high betas. You can match betas yourself, or can buy monolithic dual matched transistors like the LM394. Or you can buy four or five matched transistors on one monolithic substrate, such as an LM3045 or LM3086 monolithic transistor array.

One of the attractions of bipolar transistors is that their transconductance. g_{m} is quite predictable. At room temperature, $g_{m}=38.6 \times I_{c}$ - much more consistent than the forward conductance of diodes. Since voltage gain is defined as $A_{V}=g_{m} \times Z_{L}$ computing it is often a trivial task. This simple equation may have to be adjustea in certain cases: for instance if an emitter-degeneration resistor R_{c} is included. the effective transconductance falls to $\mathrm{I} /\left(R_{e}+\right.$ $\left.g_{m}-1\right)$. A_{V} is also influenced by temperature changes, bias shifts in the emitter current. hidden impedances in parallel with the load, and the finite output impedance of the transistor.

Higher beta devices can have much worse output impedance than normal.

Also, although the transconductance of a well-biased bipolar transistor is quite predictable, beta usually has a wide range and is not nearly as predictable. Adverse shifts in performance can result if the beta gets too low or too high and causes shifts in operating points and biases.

Field effect transistors

For a given operating current, field-effect transistors normally have much poorer g_{m} than bipolar transistors - measure devices to see how much lower. Additionally, the $V_{G ; S}$ of fets can cover a very wide range, thus making them harder to bias than bipolars

Jfets (junction field-effect transistors) became popular 20 years ago because they could be used to make analogue switches with resistances of $.30 \Omega$ and lower. Jfets also help make good op amps with lower input currents
than bipolar devices, at least at moderate or cool temperatures.
The National Semiconductor bifet process made it feasible to make jfets along with bipolars on a monolithic circuit. It is true that characteristic of the best Bifet inputs are still slightly inferior to the hest bipolar ones in terms of $V_{O S}$ temperature coefficient. longterm stability, and voltage noise.
But these Bifet characteristics keep improving because of improved processing and innovative circuit design. As a result. Bifets are better than bipolar transistors in terms of voltage accuracy, and offer the advantage of low input currents, at room temperature.
Jfets can have a larger gate current when current flows through the source than when no current flows - called $I_{\text {g.ss }}$. This looks to be caused by impact ionisation, or "hot carriers." Either way, the gate current has a tendency to increase as a linear function of source current, with an exponential dependence on high drain-source voltages.
For the design of hybrids, make sure the substrate of a chip is conneeted to the correct DC level. The bottom of a fet chip is usually tied to the gate. but the connection may be through a large and unspecified impedance.
The substrate of a discrete bipolar transistor's die is the collector. Most linear and digital IC substrates are tied to the negative supply. Exceptions include the LMII7 and similar adjustable positive regulators - their substrates are tied to Vout. The LMI96 voltage regulator's substrate is tied to the positive supply voltage, +1 's. as are the substrates of the MM74HCOO family of chips, the NSC LMC600 and LPC660 family, and most of the dielectrically isolated op amps from Harris. So, be aware of an IC's substrate connection. If an LMIOIAH op amp's metal can should happen to bump against ground or $+{ }_{s}$, there will be a problem. Similarly, the case of an HA2525 should not be allowed to bump against ground or $-V_{S}$.

Advartages of mosfets

Mosfets, widely used in digital ICs, are also very useful in analogue circuits such as analogue switches. Quad switches - eg (D) $1(1) 16$ and $C P+(1) 66$ - are popular because of their

COLLECTOR CONNECTIONS

(a)

(b)

The characteristics of power transistors depend on their fabrication structure. The epitaxial-base structure (a) takes advantage of the properties of several different epitaxial layers to achieve good beta, good speed, low saturation, small size and low cost. This structure involves mesa etching which accounts for the slopes at the die edges. Planar power transistors (b) can achieve very small geometries, small base-widths, and high-frequency responses, but they are less rugged than epitaxial-base types, in terms of forward-biased SOA.
low (typical) leakages and low price. Op amps with mosfet inputs are starting to do well in the general-purpose op-amp market. They used to have a bad reputation for excessive noise, but new IC devices, such as the LMC662 dual op amp, demonstrate that clean processing can cure the problem, making mosfets competitive with Bifets. Their advantage
is a $1000: 1$ improvement in input current. decreased from 10 pA down to 10 fA - just be careful not to let ESD near the inputs.
Most mosfet-input linear ICs do have protection diodes and may be able to withstand 600 V , though they can not usually survive 2000 V . When working with unprotected mosfets, such as the 3 N160, keep the pins securely shorted until the device is soldered into its PC board in which the protection diodes are already installed. I do all of that and wash the transistor package with both an organic solvent and soap and water. I also keep the sensitive gate circuits entirely off the PC board by pulling the gate pin up in the air and using point-to-point wiring. Air, which is a superior dielectric, is also a good insulator ${ }^{2}$. So far, I haven't had any blown inputs or bad leakages
at least nothing as bad as 10 fA .
On the other hand, when using cmos digital ICs, always plug them into live sockets, never use conductive foam, and never wear a ground strap on the wrist.
Be wary of any devices that manufacturers claim are safe from ESD.
In some cases cmos ICs abused with ESD may not fail instantly, but may become unreliable and fail at a later time. So beware of latent unreliability problems. If you must toubleshoot cmos ICs while not grounded. or plug them in while the power buses are hot, remember that the result could be long-lasting harm to an occasional IC.

Power transistors may hog current

The temptation when building bipolar transistors bigger and bigger is to go to extremes and make a huge power transistor. But there are practical limitations. Soon, the circuit capacitances cause oppressive drive requirements, and removing the heat is difficult. But the most serious limitation is secondary breakdown. when a transistor is driven outside its "safe operating area." At very high currents and low voltages. the distributed emitter resistance of the device - which includes the resistance of the emitter metal and the inherent emitter resistivity - can cause enough $I \times R$ drop to force the entire emitter and its periphery to share the current.
But half the current and double the voltage: dissipation is the same, but the $I \times R$ drop is cut in half. Now continue to halve the current

In the old single-diffused structure, n-type dopants were diffused simultaneously into the front and back of a thin p type wafer. This structure produced rugged transistors with wider safe operating areas than the more modern epitaxialbase transistor types, in terms of forward-biased SOA. But this fabrication has been made obsolete.
and double the voltage to a point where the ballasting will not be sufficient, and a hot spot will develop at a high-power point along the emitter. The inherent decrease of $V_{B E}$ will cause an increase of current in one small area.
Unless current is turned off promptly, it will continue to increase unchecked, "current hogging" that will cause local overheating, and may cause the area to melt or crater - secondary breakdown, exceeding the secondary breakdown of the device. Designers of linear ICs use ballasting, cellular layouts, and ther-mal-limiting techniques, all of which can prevent harm in these cases ${ }^{3}$. Some discrete transistors are beginning to include these features.
Fortunately, many manufacturer data sheets include permitted safe-area curves at various voltages and for various effective pulsewidths. So. it is possible to design reliable power circuits with ordinary power transistors. Probability of an unreliable design increases as the power level increases: as the voltage rises: as the adequacy of the heat sink decreases. and as the safety margins shrink. For example, it the bolts on a heat sink are not tightened enough, the thermal path degrades and the part can run excessively hot.
High temperature per se does not cause a power transistor to fail. But, if the drive circuitry was designed to turn a transistor on and only a base-emitter resistor is available to turn it off, then at a very high temperature, the transistor will turn itself on and there will be no adequate way to turn it off. Then it may go into secondary breakdown and overheat and fail.
Overheating does not by itself cause failure. But good practice is to stop your power transistors heating up. and to have a base drive that can pull the base off if they do.
Problems may also result if the screws on the heat sink are too tight, or if the heat sink under the device is warped: or if it has bumps or burrs or foreign matter on it. Tightening the bolt too much will overstress and warp the tab and die attach, and may cause the die to pop right off the tab. The insulating washer under the power transistor can crack due to overstress or may fail after days or weeks - or months. Even without an insulating washer, overtorqueing the bolts of plastic-packaged power transistors is one of the few ways a user can mistreat and kill these devices.

Apply the 5 s rule

A finger is a pretty good heat detector - just be careful not to burn it with high voltages or very hot devices. A good "rule of thumb" is the 5 s guide: if you can hold your finger on a hot device for 5 s , the heat sink is about right. and the case temperature is about $85^{\circ} \mathrm{C}$. For components hotter than that - too hot to touch - dot the finger with saliva and apply it to the hot object for just a fraction of a second. If the moisture dries quickly, the case is probably around $100^{\circ} \mathrm{C}$; if it sizzles instantaneously, the case may be as hot as $140{ }^{\circ} \mathrm{C}$. Alternatively, buy an infrared imaging detector for a price of several thousand dollars. You won't burn your fingers and will get beautiful
colour images on the TV screen, and contour maps of isothermal areas. You will learn a lot from those pictures. About twice a year. I wish I could borrow one.
One other point about using bipolar power transistors is that there are two major fabrication structures: the epitaxial base, and the planar structure pioncered by Fairchild Scmiconductor ${ }^{4}$
Transistors fabricated with the epi-base structure are usually more rugged and have a wider safe-operating area. while planar devices feature faster switching speeds and higher frequency response. but aren't as rugged. Comparing data sheets for the Motorola 2N377l and the Harris 2N5039. shows that the 2 N 5039 planar device has a current-gain bandwidth ten times greater than the $2 N 3771$ epi-base device. The $2 N 5039$ also has a switching speed faster than the 2 N 3771 when used as a saturated switch, but the 2N3771 has a considerably larger safe area if used for switching inductive loads. So select the characteristics preferred and order the type needed.
But be careful: breadboard with one type and build in production with the other and you might suddenly find that the bandwidth of the transistor has changed by a factor of ten (or a factor of 0.1) or that the safe area does not match that of the prototypes.
Also be aware that the planar devices, like the familiar 2 N 2222 and 2 N 3904 , are quite capable of oscillating at high frequencies in the dozens of megahertz when operated in the linear region. So plan to use beads in the base and/or the emitter, to quash oscillation. The slower epi-base devices don't need that help very often.
There is one tricky problem. Originally the old 2 N 3771 was a single-diffused part. If you wanted to buy an epi-base part. that was the M.3771. But now ordering a $2 N 3771$, will bring the epi-base part. which does meet and exceed the Jedec $2 N 377 I$ specs. But it exceeds them a lot more than might be expected - eg the current-gain-bandwidth is 10 or 20 times higher. So, when replacing an old 2 N 3771 with a new 2 N 377 I , bear in mind that they are probably not very similar at all.

Expert power circuits

For many power circuits, transistor choice may not be as clear-cut as in the previous examples, and there are many tricky problems that can challenge even the most experienced designers. For example, adding small ballasting resistors to ensure current sharing between several transistors may still require some transistor matching, which is not easy. Operating conditions need to be considered; decisions made on which parameters, such as beta and $V_{B E}$. need to be matched: and a way found to avoid the mix-and-match of different manufacturers' devices. Such design questions are not trivial. When the performance or reliability of a power circuit is poor, it is probably not the fault of a bad transistor, but quite possibly the fault of a bad or marginal driver circuit or an inadequate heat sink.

A possible scenario goes something like this. Build ten prototypes, and they seem to work: build 100 more, and half do not. But did they ever work? The circuit design may have been a marginal one and perhaps the prototypes did not really work all that well. If they are still around, it would be useful to check to see if they had any margin to spare. If the ten prototypes had a gain of 22000 , but the current crop of circuits has gains of 18000 and fails the minimum spec of $20(0)$, the new units should not be called failures. It is just that expectations were unrealistic.

Mosfets avoid secondary breakdown

When it comes to power transistors, mosfets have certain advantages.
Mosfetsswitch faster than bipolar transistors. with smalle: drive requirements, and mosfets are inherently stable against secondary breakdown and current hogging hecause the temperature coefficient of $I_{D S}$ vs $V_{C S}$ is inherently stable at high current densities. If one area of the power device overheats, it tends to carry less current and thus has an inherent mechanism to avoid running away - a self-ballasting characteristic that is a major reason for the popularity of mosfets over bipolar transistors. But recent criticism points out that running a mosfet at high-enough voltages and low current means the current density gets very small, the temperature coefficient of $I_{D S}$ vs $V_{G S}$, reverses, and the device's inherent freedom from current hogging may be lost ${ }^{5}$. So at high voltages and low current densities, watch out for this possibility.
At high enough $V_{D S}$, mosfets can exhibit current hogging and "secondary breakdown" similar to that of bipolars, though newer power mosfets are considerably more reliable and less expensive than older devices. Even though a lot of transient milliamps may be needed to turn the gate on or off quickly, unlike with a bipolar transistor, a lot of amps are no required to hold it on. The newer devices can be turned off quicker, too, if enough transient gate drive current is available.
But mosfets are not without their problem areas. Too many watts into a moslet will melt it just as with a bipolar device. If not overheating, the easiest way to cause a problem is to forget to insert a few dozen or hundred ohms of resistance (or a ferrite bead) right at the gate lead of the device. Otherwise, these devices have such high bandwidths that they can oscillate at much higher frequencies than bipolar transistors.
As with bipolar transistors, mosfets are very reliable if their voltage, current, and temperature ratings are not exceeding. Dissatisfaction with a device's reliability or performance usually stems from the drivers or the related circuitry. Most mosfets have a maximum $V_{G S}$ rating of just 20 or 25 V . They may temporarily survive operation with 30 or 50 V on the gate. but it is not safe to run it up there forever. Applying excessive gate voltage may produce gradual gain or threshold degradation.
Also, power mosfets are not quite as rugged
as bipolars when it comes to surviving ESD transients. A common precaution is to add a little decoupling, clamping, or current-limiting circuitry, so that terminals accessible to the outside world can withstand ESD.

Drnos fets are so easy to apply that it is easy to forget about the parasitic bipolar transistor lurking in parallel with them. If $\mathrm{d} V / \mathrm{dt}$ is 100 large at the drain, or the drain junction is avalanched at too high a current and voltage, or the transistor overheats, the bipolar device turns on and dies an instant death due to current hogging or an excursion from its safe operating area.
I'm accustomed to linear ICs, which have protection transistors built right in, so the user rarely has a problem. (But most of the transistor troubles are left to the IC designer). Discrete designs are appropriate and costeffective for many applications, but the availability of linear ICs - especially op amps can simplify a design task considerably, while improving reliability.

References

1. Leonard, Charles. "Is reliability prediction methodology for the hirds?" Poner Conversion and Intelligent Motion, November 1988, p. 4. 2. Pease, Robert A., "Picoammeter/calibrator system eases low-current measurements." $E D N$, March 31, 1982, p. 143
2. "A 150W IC Op Amp Simplifies Design of Power Circuits." R. J. Widlar and M. Yamatake. AN-446, National Semiconductor Corp. Santa Clara, CA.
3. Applications Engineering Staff. PowerTech Inc. 'Speed-up inductor increases switching speed of high current power transistors," Power Electronics, May 1989, p. 78.
4. Passafiume. Samuel J, and William J Nicholas.
"Determining a mosfet's real FBSOA,"
Powertechnics Magazine, June 1989, p. 48.

CREDIT CARD ORDERS ACCEPTED BY PHONE 0816523614

Troubleshooting Analog Circuits

In this book Bob Pease brings together many of the techniques he has developed over the years to expedite debugging and trouble-shooting analogue circuits.
Based on his popular series in the US's EDN magazine, the book also contains new and updated material. Pease's approach to problem identification and isolation makes the book a useful aid to any analogue or digital engineer - whether experienced or not.

Available direct by postal application to Lorraine Spindler, $E W+W W$, Quadrant House, The
Quadrant, Sutton, Surrey SM2 5AS. Cost $£ 21.45$ including postage and packing. Cheques made payable to Reed Business Publishing Ltd.

Published by ButterworthHeinemann.

Marconi TF2008-AM-FM signal generator-Also sweeper-10Kc/s-510Mc/s-from $£ 350$ tested to $£ 500$ as new with manual - probe kit in wooden carrying box HP Frequency comb generator type 8406A - $£ 400$.
HP Sampling Voltmeter (Broadband) type 3406A - £200
HP Vector Voltmeter type 8405 A - $£ 400$ to $£ 600$ - old or new colour
HP Synthesiser/signal generator type 86 A -2 to 18 GHz
HP Oscillograp hic recorder type $7404 \mathrm{~A}-4$ track - $£ 350$
HP Oscillograp hic recorder type 730.
HP Plotter type $9872 \mathrm{~B}-4$ pen - $£ 300$.
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $1 \mathrm{~B}-40 \mathrm{GHz}$. P.O.R HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{KC} / \mathrm{s}-110 \mathrm{MC} / \mathrm{s}-£ 500-£ 1000$ HP Down Converter type 11710B-01-11Mc/s - £450 HP Pulse Modulator type 11720A-2-18GHz - £1000. HP Modulator type 8403A - $£ 100-£ 200$
HP Pin Modulators for above-many different frequencies - $£ 150$ HP Counter type $5342 \mathrm{~A}-18 \mathrm{GHz}$ - LED readout - $£ 1500$. HP Signal Generator type 8640B - Opt001 + 003-. $5-512 \mathrm{Mc} / \mathrm{s}$ AM/FM - $£ 100 \mathrm{C}$ HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP $8447 \mathrm{~F} .1-1300 \mathrm{Mc} / \mathrm{S} £ 400$ HP Frequency Counter type 5340A- $18 \mathrm{GHz} £ 1000$-rear output $£ 800$ HP $8410-A-B-C$ Network Analyser $110 \mathrm{Mc} /$ s to 12 GHz or 18 GHz - plus most other units and displays used in this set-up-8411A-8412-8413-8414-8418-8740-8741-8742-8743 HP Signal Generator type
HP Signal Generator type $8660 \mathrm{C}-1-2600 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 3000$. $1300 \mathrm{Mc} / \mathrm{s} £ 2200$ HP SIgnal Generator type 8656A-0.1-990MC/S. AM/FM- E_{2000}
HP 86998 Sweep PI-0.1.4GHz £750-HP8690B Maintrame $£ 250$.
Racal/Dana Counters 9915 M - $9916-9917-9921-£ 150$ to $£ 450$. Fitted FX standards Raca/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal-SG Brown Comprehensive Headset Tester (with artificial head) Z1A2C0/1 - §350 Marconl AF Power Meter type 893B - £200
Marconi RCL Bridge type TF2700- $£ 150$
Marconi/Saunders Signal Sources type-6058B-6070A-6055B-6059A-6057B-6056 £250-£350. 400 Me/s to 18 GHz
Marconi TF1245 Circuit magnificatıon meter + 1246 \& 1247 Oscillators - £100-£300. Marconi microwave 6600A sweep osc. mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or PI only $£ 600$
Marconi distortion meter type TF2331-£150, TF2331A - $£ 200$.
Microwave Systems MOS/3600 Microwave trequ
Micro wave Systems MOS/3600 Microwave frequency stabilizer - 1 GHz to 40 GHz £ 1 k Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12 S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501
WR501-DM501A-FG501A-TG501-PG502-DC505A-FG504-POR WR50 - DM501A FG501A-TG501-PG502-DG505A-FG504-P.O.R
Ailtech Stoddart receiver type 17/27A-01-32Mc/s - $£ 2500$.
Altech Stoddart receiver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{S}-£ 2500$.
Gould J3B Test oscillator + manual - £200.
Infra-red Binoculars in fibre-glass carrying case - tested- $£ 100$. Infra-red AFV sights $£ 100$. ACL Field intensity meter receiver type SR-209-6. Plugs-ins from $5 \mathrm{MC} / \mathrm{s}$ to $4 \mathrm{Gi} \mathrm{Hz}-\mathrm{POR}$ Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new $-£ 1000$ or $10 \mathrm{Mc} / 540 \mathrm{GHz}$ Tektronix Mainframes - 7603-7623A - 7633-7704A-7844-7904-TM501-TM503-TM506-7904-7834-7104
Knot1 Polyskanner WM1001 + WM5001 + WM3002 + WM4001 - 5500
Ailtech 136 Preclslon test RX +13505 head $2-4 \mathrm{GHz}$ - $£ 350$
SE Lab Eight Four - FM 4 Channel recorder - $£ 200$.
 Dranetz 606 Power line disturbance analyser - $£ 250$.
Precision Aneroid barometers- $900-1050 \mathrm{Mb}$ - mechanical digit readout with electronic indicator - battery powered. Housed in polished wood carrying box-tested - $£ 100-£ 200-£ 250,1,2$ or 3 TESTED WITH OPERATING MANUAL TESTED WITH OPERATING MANUAL
 $\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~A}$ or $\mathrm{B}|\mathrm{F}-8554 \mathrm{~B} \mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}| \mathrm{F}-£ 1400$ or $\mathrm{B} \mid \mathrm{F}-£ 1500$
$H P 141 \mathrm{~T}+8552 \mathrm{~A}$ HP 141T + 8552A or B IF-8555A RF-10MC/s-18GHz-A IF- £2400 or B IF - 2250 E . HP141T + 8552A or B IF-8556A RF - $20 \mathrm{~Hz}-\mathbf{3 0 0} \mathrm{kHz}-\mathrm{A}$ IF-A IF - $£ 1200$ or B IF $-£ \uparrow 300$ RP8443A tracking generator/counter $-100 \mathrm{kHz}-110$
HP8445B tracking pre-selector DC-18GHz $-£ 750$.
HP ANZ UNITS AVAIL ABLE SEPARATELY - NEW COLOURS - TESTED.
 E550-8554B-RF-100kHz-1250Mc/s- $5650-8555 A-R F-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}-\mathrm{I} 1550$ HP 3580A LF-spectrum analyser - 5 kHz to 50 kHz - LED readout - digital storage - $£ 1600$ with instruction manual - internal rechargeable battery
Tektronix 7 D 20 plug-In 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes -£500-manual - $£ 50$.
Datron 1065 Auto Cal digital multimeter with instruction manual - $\mathbf{£ 5 0 0}$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}_{-1} 1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}-$ internal NiCad battery - $£ 150$. Aerial array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector $-100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpt - $£ 100$.
EIP 451 microwave pulse counter $\& 8 \mathrm{GHz}-£ 1000$
EIP
Marconl 6155A SIgnal Source -1 to $2 \mathrm{GHz}-$ LED readout $-£ 600$.
Marconl $6155 A$ Signal Source - 1 to 2 GHz - LED readout - £600.
Schlumberger 2741 Programmable Microwave Counter - 10 Hz to 7.1 GHz - £750.
Schlumberger 2720 Programmable Universal Counter 0 to $1250 \mathrm{Mc} / \mathrm{s}-£ 600$
HP 2225CR Thinkjet Printer - $£ 100$.
TEK 576 Calibration Fixture - 067.0597-99-£250
HP 8006A Word Generator - $£ 150$
HP 1645 A Data Error Analyser - $£ 150$
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS - $550-£ 150$
HP 809C Slotted Line Carriages - various frequencies to $18 G H Z-£ 100$ to $£ 300$.
HP 532-536-537 Frequency Meters - various trequencies - $£ 150-£ 250$
Barr \& Stroud varlable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ + high pass + low pass - $£ 150$.
S. L. Lab SM215 Mk1 transfer standard vaitmeter - 1000 volts
S.E. Lab SM215 Mk11 transter standard voitmeter - 1000 volts

Alltech Stoddart P7 programmer - $£ 200$.
Fi.P. 694 B multiprogrammer extender. £100.
Fluke Y2000 RTD selector + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD-digital thermometer +9 probes. £350 all three items.
H.P. 6181 DC current source. $£ 150$
H.P. $59501 \mathrm{~A}-\mathrm{HP} \cdot 1 \mathrm{~B}$ isolated D/A/power supply programmer
H.P. 3438 A digital multimeter.
H.P. 6177C DC current source. £150.
H.P. 6207 BDC power supply.
H.P. $741 \mathrm{BAC/DC}$ differential voltmeter standard (old colour) $£ 100$
H.P. 6209 B DC power unit.

Fluke 431 C high voltage $D C$ supply
Tektronix M2 gated delay calibration fixture 067-0712-00
Tektronix prectsIon DC divider calibration fixture. 067-0503-00
Tektronix overdrive recovery cal bration fixture 067-0608-00.
Avo VCM163 valve tester - book $£ 300$.
H.P. 5011 T logic trouble shooting kit. $£ 150$.

Marconi TF2163S attenuator - 1 GHz . £200
PPM 8000 programmable scaner
PPM 8000 programmable scanner.
B\&K 4815 calibrator head.

3\&K 4812 calibrator head

Farnell power unit H60/50- $\mathbf{E 4 0 0}$ tested
H.P. FX doubler 938A or 940A - $£ 300$.
Racal/Dana 9300 RMS voltmeter - $£ 250$
H.P. sweeper plug-Ins -86240A-2-84 4 GHz - 86260A - $124-18 \mathrm{GHz}$-86260AH03-10-
H.P. sweeper plug-Ins - $86240 \mathrm{~A}-2-84 \mathrm{GHz}-86260 \mathrm{~A}$
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz} .86245 \mathrm{~A} 5.9-12.4 \mathrm{GHz}$

Telequipment CT/1 curve tracer- $£ 200$.
H.P. 461 A amplifier $-1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - old colour - $£ 100$
H.P. B750A storage normalizer.

Tektronix oscilioscopes type 2215A - $60 \mathrm{Mc} / \mathrm{s}$ - c/w book \& probe - $£ 400$
Tektronix monttor type 604 - $£ 100$.
Marconi TF2330 or TF2330A wave analysers - $£ 100-£ 150$.
HP5006A Signature Analyser $£ 250$ + book.
HP10783A numeric display $£ 150$.
HP 3763A error detector. £250.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 800$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathbf{5 9 0 0}$
Claude Lyons Compuline - line condition monitor - in case - LMP 1 + LCM 1 §500.
Efratom Atomic FX standard FRT - FRK - $1-1-5-10 \mathrm{Mc} / \mathrm{s}$. $£ 3 \mathrm{~K}$ tested
Racal 4D recorder - £350 - £450 in carrying bag as new.
AP8350A sweep oscilator mainfame + HP1860 RF 7 adaptor - $£ 1500$
Ailtech - precision automatic noise figure indicator type $75-£ 250$.
Adreltolx-7S12-7S14-7T11-7S11-S1-S52
Tektronix-7S12-7514-7T11-7S11-S1-S52-S53
Rotek 610 AC/DC calibrator. $£ 2 \mathrm{~K}$ + book
arconi TF2512 RF power meter- 10 or 30 watts - 50 ohms - $£ 80$
Marconi multiplex tester type 2830 .
Marconi channel access switch type 2831
Marconi automatic distortion meter type TF2337A - $£ 150$
Marconi mod meters type TF2304 - $\mathbb{2} 50$.
HP 5240 A counter - 10 Hz to 12.4 GHz - $£ 400$.
HP 3763A error detector.
HP 8016A word generator.
HP 489 A micro-wave amp - $1-2 \mathrm{GHz}$.
HP 8565A spectrum analyser-01-22GHz- $\mathbf{~ 4} \mathbf{4 k}$.
HP 5065 A rubidium vapour FX standard - $£ 5 \mathrm{k}$.
Fluke 893A differential meters - $£ 100$ ea
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Takeda RIken TR4 120 trackıng scope + TR1604P digital memory
EG\&G Parc model 4001 indicator +4203 signal averager Pi
systron Donner 6120 counter/timer $A+B+C$ nputs $-18 \mathrm{GHz}-£ 1 \mathrm{k}$.
Racal/Oana 9083 signal source - two tone - £250.
Systron Donner signal generator 1702 - synithesized to 1 GHz - AM/FM
Racal/Dana synthesized signal generator 9081 - $520 \mathrm{Mc} / \mathrm{s}$ - AM - FM. $£ 600$
Farnell SSG520 synthesized signal generator - $520 \mathrm{Mc} / \mathrm{s}-5500$.
Farnell TTS520 test set - $£ 500$ - both $£ 900$.
Tektronix plug-ins - AM503 - PG501 - PG508 - PS503A
Tektronix TM515 mainframe + TM5006 mainframe
Cole power line monitor T1085- £250.
Claude Lyons LCM1P line condition monitor - $£ 250$
Rhodes \& Schwarz power signal generator SLRD-280-2750MC/s. £250-£600
Rhodes \& Schwarz vector analyser - ZPV + E1 + E3 tuners - $3-2000 \mathrm{Mc} / \mathrm{s}$.
Bell \& Howell TMA3000 tape motion analyser - £250.
Ball Efratom PTB-100 rubidium standard mounted in Tek PI.
Ball Efratom rubidium standard PT2568-FRKL
Trend Data tester type 100- $£ 150$.
Fairchlid interference analyser model
Fairchild interference analyser model EMC-25-14kC/s-1GHz
Marconi 2442 - microwave counter - 265 5
Racal/Dana counters-9904-9905-9906-9915-9916-9917-9921-50Mc/s-3GHz
£100-£450 - all fitted with FX standards.
B\&K 7003 tape recorder - $£ 300$
B\&K 2425 voltmeter - $£ 150$.
B\&K $4921+4149$ outdoor microphone.
Wiltron sweeper mainframe 6100- 5500
HP 3200 B VHF oscllator $-10-500 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP3747A selective level measuring set.
HP3586A selectlve level meter
HP5345A electronic counter.
HP4815A RF vector impedance meter c/w probe. $5500-£ 600$
Marconl TF2092 noise receiver. A, B or C plus filters.
Marconl TF2091 noise generator. A. B or C plus filters.
Marconi $1 F 2091$ noise generator, A, B or C plus filters
HP180TR HP182T maintrames c300 - 5500
Bell \& Howell CSM2000B recorders.
HP5345A automatic frequency convertor $-015-4 \mathrm{GHz}$
Fluke B506A thermal RMS digital multimeter.
HP3581 A wave analyser
Philips panoramic recelver type PM7800-1 to 20GHz
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ to 2 GHz .
Wlltron scaler network analyser $560+3$ heads. $£ 1 \mathrm{k}$.
R\&S signal generator SMS $-0.4-1040 \mathrm{Mc} / \mathrm{s}-£ 1500$
HP8558B spectrum ANZ PI-. $1-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{o} / \mathrm{C}-£ 1000$. N/C $-£ 1500$ - To fit HP180 serles mainframe available - $£ 100$ to $£ 500$.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - $£ 4 k$.
HP8505A network ANZ + 8502A test set - $£ 3$.
Racal/Dana 9087 signal generator $-1300 \mathrm{Mc} / \mathrm{s}-£ 2 \mathrm{k}$
Racal/Dana VLF frequency standard equlpment. Tracor recelver type 900A + difference neter type 527 E rubidium standard type $9475-£ 2750$.
Marconl 6960-6960A power meters with 6910 heads - $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ or $6912-30 \mathrm{kHz}$ -
42 GHz - $£ 800-\mathrm{E} 1000$
rracking generator $£ \mathbf{k}-£ 2 \mathbf{k}$
B\&K dual recorder type 2308.
Tektronlx $475-200 \mathrm{Mc} /$ s oscilloscopes - $£ 350$ less attachments to $£ 500 \mathrm{c} / \mathrm{w}$ manual, probes etc HP slgnal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$
HP 432A-435A or B-436A - power meters + powerheads - $10 \mathrm{Mc} / 5-40 \mathrm{GHz}-£ 200-£ 280$ HP3730B down convertor - $£ 200$.
Bradley oscllloscope callbrator type 192 - $\mathbf{£ 6 0 0}$.
Spectrascope SD330A LF realtime ANZ $20 \mathrm{~Hz}-50 \mathrm{kHz}$-LED readout - tested- $\mathbf{£ 5 0 0}$. HP8620A or 8620C sweep generators - $£ 250$ to $£ 1 \mathrm{k}$ with IEEE.
Earr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - E 150
Tektronlx 7 L 12 analyser $-.1 \mathrm{Mc} / \mathrm{s}-1.8 \mathrm{GHz}-£ 1500-7 \mathrm{~L} 14 \mathrm{ANZ}-£ 2 \mathrm{k}$.
Marconi TF2370 spectrum ANZ-110MC/S-£1200-£2k
Marconi TF2370 spectrum ANZ + TK2373 FX extender 1250Mc/s + trk gen - £2.5k-£3k
Racal recelvers - RA17L-RA1217-RA1218-RA1772-RA1792-P.O.R
Systron Donner microwave counter
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$

ITEMS BOUGHT FROW HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. S.A.E. FOR EMQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS. AVAILABILITY OR PRICE CHANGE. VAT AND CARR., EXTRA. ITEMS MARKED TESTED HAVE 30 -dAY WARRAMTY. WANTED: TEST EQPT - VALYES - PLUGS \& SOCKETS - SYMCROS - TRAMSMITTIMG \& RECEIVING EQPT. ETC.

B\&K EQUIPMENT IN STOCK NOW

Electronic Voltmeter - Type 2409 Electronic Voltmeter - 2425 Oty 2 oise Generator - Type 1405 Measuring Amplifier - Type $2607-2-200000 \mathrm{~Hz}$ - As new Excitor Control - Type 1047-As new.
Digital Frequency Analyser - Type 2131 - As new.
ound Intensity Analyser - Type 2134 - As new
Tracking Filter - Type 1623 -Qty 2
Level Recorder - Type 2307-New \& Used
Tape Recorder - Type 7003.
Audio Freqency Spectrometer - Type 2113
Autoranging Electronic Voltmeter - Type 2426
Stroboscope - Type 4910.
Two Channel Level Recorder - 2309
Sound Level Meter-2209
HEWLETT PACKARD
HP 5316B Universal Counte
HP 78341 D Monity Monito
P 37201 A HPIB
HP 15055 A +7821 C 號
HP 15055A + 78231C Monito
P 11713 A Atenuato
HP 59313A ADD Converto
HP 1930A P.R. Binarys Sequence Generator - $£ 50$
HP 1901A Pulse Generator + 1930A + 1930A + 1917A - £250
HP 3747A Selective Level Measuring Set
HP 3336B Synthesised Level Generator.
HP 3777A Channel Selector
HP 5345A Electronic Counte
HP 3437A System Voltmeter
HP 5423A Structural Dynamics Analyser.
HP 54470A +54410A Digital Filter Converto
HP 8170A Logic Pattern Generator
HP 3438 A Digital Multimeter.
HP 8092A Delay Generator/Frequency Divider
PP 310A Wave Analyser
P3717A 70Mc Modulat
P3714A
PP 374
HP 3725 Amplitude/Delay Distortion Analyser
HP 7225A Plotte
HP 7044 BXY Recorder
HP 8503A S Parameter Test Set
HP 8502A 500Khz-1.3GHz Test Se
HP 7470 Plotter.
HP 3785A Jitter Generator and Receiver
P 3586A-B-C Selective Level Meters
HP 9872S Plotter
AP 8954A Transcelver Interface
HP 8903A K85 Switching Module
HP 59306A Relay Actuator.
HP 59309 A HP-IB Digital Clock
HP 11721 A Frequency Doubler $100-2600 \mathrm{Mc} / \mathrm{s}$
HP 8442A $20 \mathrm{Mc} / \mathrm{s}$ Crystal Filt
P 3200 B UhF Oscilato
Noise Measuring Set
emo VBF/3/1 1 Hz

Tektronlx P6022 Current Probe + Kit Fin Bor
Tekironix P6022 Current Probe + Kit in Box.
Bell \& Howell CMS 2000B Tape Recorders.
Fluke 893A AC-DC Differential Voltmeters.
Pegelmesser/Siems D2108 Level Meter 200Hz-30Mc/s Liquid Xtel readout
Wavetek 802 50MC/S Pulse Generato
Wayne Kerr Frequency Response ANZ RA200+ADS1 Display Store
Fluke 3330 B Programmable Current Voltage Calibrator
Adret 3100 B Generator/S $1 \mathrm{~W}-.01 \mathrm{~Hz}$-200 Khz
Fluke Trendar 3010A Logic Tester.
Constant Voltage + isolation Transformers $240-240$ volts or 240-110 volts $-50-5.500$ watts EAVY DUTY POWER UNITS
Sorenson Raytheon DCR-300-9B-400V-10amps - Voltage \& Current Controts - V. 11 \& Amp Meters.
orenson Raytheon DCR80-20B.0-100V-30Amps-Voltage \& Current Controls - Volt \& Amp
Meter
Sorenson Raytheon DCR80-18A.0-100V-30Amps-Voltage \& Current Controls - Vilt \& Amp
Meters.
arnell H30/100.0-30V-100Amps - Voltage \& Current Controls - Volt \& Amp Meters.
KSM SCT-0.30Volt - 120 Amps.
R267B. O-40V-10Amps - Voliage \& Current Controls - Twin Meters.
Farnell E350 0-350V-100M/A
Powerten 0-40V-0-10Amps - Twin Meters - Voltage \& Current Control - Input 115 Vac Powerline - Digital-0-60V-10Amps
Farneil TSV70-10Amp-35 Volts - Current Limit - Very Heavy.
Systron Donner Type 6054D-N Type input. 0.8-18Ghzs - LED
Systron Donner Type 6120 Counter Timer-.1-18Ghzs - LED - N Type
P1P A Co Coup
EIP Type 578 Source Locking Microwave Counter 10H LED.

IRD DUMMY LOADS-OIL FILLED
889050 Ohms - 2500 Watts
694-50 Ohrs : 1000 Watts - Meter-2-30MCs
8201-50 Ohms - 500 Watts
8325 - 50 Ohns -500 Watts - 30 DB Att
8327-50 Ohms - 1000 Watts - 30DB At
8329 - 50 Ohms -2000 Watts -30 DB At
8135 - 50 Ohms - 150 Watts.
Bendix $636 \mathrm{~N} \cdot 500$ Ohms $-600 \mathrm{Watts}-0-3000 \mathrm{Mc} / \mathrm{s}$
Tektronix A6092 isolator
Tektronlx 7844-7M13-7S12-S53-S54-S2
Solartron Schlumberger 4922 Radio Code Analyser
Sencor SC6 \dagger Waveform Analyser
Laser Units 5 MW or 10 Milliwatt
Marconi TF2000.
AVORM 215-L/2 AC DC Leakage lonisatior Tester
Rhodes \& Schwartz Video Analyser UVF
Collins Recelver Type 651S-1.30MC/s. Fitted out AM FM. CW ISB
Racal Receivers RA17L-RA117-RA121/-RA1218-RA1772-RA1792
Plessey HF Recelvers Type PR2
Systron Donner 1618 AM FM Microwave Sunthesiser
Anritsu Analyser ME4536 Transmitter
Wavetek 1018 L Loo-Lin RF Peak Power Meter
Wandel \& Geltermann Test Sets - PS12-RE5-REB56 - WZ61-EPM1-OPW7-SPM14 -SG3-PSS14-PS14-PS7-OPS7-R1-P-OPD7-OD600-PM7-WZ6-SG1-PSM5-LDS2 -LDE2 - RS5 - Band Stop Filters Etc. EPM1-PM161 - PM05 - SG1 - SGE10 - SGE3 - PSM5 -OPW7-SG3-AZD 1
Slemens Test Sets G2006 Control Generator - G2074 - D2021 - W2074 - D2074 - B2003 W2021 - W2. 72 - D2201 -D2005 - K2020 - G2021 - D2008 - D2072 - D2010
Racal MA1072 RX Remote Contrio
Sivers Lab FM 7800 Panoramic Receiver $1-20 \mathrm{Ghz}$
Solatron 70 75 Digital Voltmete
Solatron Schlumberger 7065 Microprocessor Voltmeter
Racal Recelver Control Unit Type MA1075
Racal Recelver Scan Control MA1 107
NIcolet FFT Computing LF Analyser.
Microtel SG811 Swept Signal Generator 2-18Ghz - AM FM CW
Microtel MSR 903 Microwave Receiver 1-18Ghz
Tektronix 24654350 Mc s Oscilloscope
Tektronix $2246100 \mathrm{Mc} / \mathrm{s}$ Oschioscope
Tektronix $222550 \mathrm{Mc} / \mathrm{s}$ Oscilloscope
Tektronix $2235100 \mathrm{Mc} / \mathrm{s}$ Oscillos 200 .
Tektronix 833 Datra Comm Tester
Racal/Dana 9104 Powermeter-3-300 Watts - 50 Ohms
Marconi TF2091B-C Noise Generator
Marconi TF2092B-C Noise RX
Marconi TK2087 Fiter Unit.
Marconi TK2085 Control Unit
Magnetic AB Noise Figure Meter Type 117 + 117A
Marconi TF2304 Modulation Meter
Wavetek Programmable Waveform Synthesiser 157
Tektronlx $7 \mathbf{L 1 2}$ Spectrum Anz Piug-in.
Texscan VS-90B Sweep Genera:or 5-235CMC/s
Hughes Travelling Wave Tubes - Amplifiers 1177H-S Band 2-4Ghz-117H-KU Band. 12.4-18Ghz
1177H-X Band 8-12.4Ghz-117H-C Band, 4-8Ghz
Dynamic Sclences Tempest Recelver R-12S
Tektronix SC501-S
Tektronix 1502 B Tdr. Receiver 373A-10-5-10MO/s-10-30MC/s - AM - FM - CW
Receiver R.S $111-18-40$ - Pan Adaptor in unit $30-60,60-300,235-500,490-1000 \mathrm{Mc} / \mathrm{s}$ - AM - FM - CW Watkins Johnson 340A-4 VLF Receiver $1-900 \mathrm{Khz}$

TEKTRONIX 7000 SERIES OSCILLOSCOPES

We can supply all variations of Mainframes and Plug-Ins for this range from stock up to 500MC/S $-£ 300$ to $£ 1000$.
All items in this advert are in stock at time of printing, most items are held in quantity at both our warehouses which is probably the largest stock of electronic surplus in the UK.
Bulk and trade buyers from UK and abroad are welcome by appointment to bring own transport for quick purchasing and loading of listed and non-listed items.

MULTIMEDIA the perfect marriage?

Abstract

Is it a television? Is it a computer? Julia King reports how the advent of multimedia is blurring the distinction between the two as the prospect of an all-inone entertainment and information system moves inexorably towards a reality.

Multimedia unites all the current screenbased technologies, harnesses them to a computer storage mechanism such as a CD-rom and adds in superior sound quality So is it the ultimate realisation of all consumer trends: or is it just marketing hype? The answer may well pivot on whether users can cope with an even greater barrage of information than they are being fed at the moment?
The ultimate multimedia aim is for a workstation or PC to form the central component of a system, providing a source of information and a means of entertainment which can be tailored to meet a particular lield of interest.
Users will be able to view and/or listen selectively, instead of being limited to watching whatever is being broadcast by television or radio stations or loading a prerecorded video that happens to be on the shelves. The emphasis is on greater choice

for entertainment and education.
Perhaps the best way to understand the structure of a multimedia system is to think of it as a layered database - at any point, the user can interrogate the system to delve deeper into a particular layer or subject
A subject might be represented as a tree. with the trunk forming the main structure and different areas represented by branches which then sub-divide again and again until the leaves are reached. The whole structure is not static but is growing continually, updated remotely - perhaps via a satellite link or over a network.

"Pasting" moving images

The concept still has a long way to go. But one company that has advanced to quite a degree with its thinking is Digithurst. The Royston-based company began in the image analysis business around ten years ago and now produces PC-compatible image capture, processing and compression cards. It also markets the Window's 3-based multimedia authoring package, PictureBook, designed to enable electronic books to be created by combining objects that contain text, graphics and images (either still or moving) into pages. Text and graphics can be imported from other applications because the system is Windows-based, and artificial intelligence is used to form a linking mechanism where the software looks for similar combinations of words and matches them. The package is typical of those being produced by software houses, with products and operating systems encouraging the use of multimedia

Microsoft’s Gillian Kent sees another use of multimedia in "kiosk-type" applications. For instance, a visitor to a show may be seeking information on a particular type of product. The system installed in a booth or kiosk can be interrogated about the product's location in the show and graphics or still or moving images can be brought up to help give the visitor the information required.

DSP becomes the slave

The move towards multimedia has created a shake up in the digital signal processing industry. In PCs most signal processing has been carried out by the host CPU without a separate DSP chip. But as the requirements of multimedia increase, these host CPUs are finding it harder to cope and a need has arisen for dedicated CPU chips.
One firm that has already gone down this road is Olivelti which is using an Analog Devices DSP to compress digitised audio signals on one of its machines.

Julian Hayes from AD said: "This is much more efficient at doing audio signal processing than using the host CPU."

Until now, most applications for DSP circuits have seen the DSP as the master of a logic system. Put the DSP in a computer and there already is a master - the CPU).

This has forced the DSP designers to develop special operating systems and system managers for their DSP chips, such as Texas Instruments and IBM's Mwave.

Jay Reimer from TI said: "In a multinedia PC there is already a master CPU. The DSP cannot be the master. It has to cooperate with the existing CPU. The operating system needs to comprehend that environment."

He added: "It also has to be an operating system that's tailored to the real time scheduling needs of DSP tasks. It has to support dynamic welding and scheduling of tasks. This is new to the DSP world."
Also, the nature of multimedia means there is a need for multichannel I/O of different types, and of multifunctional channels. This I/O needs to be integrated onto the chip in an upgradeable way.
Reimer said: "I want to provide different types of functions in different ways. I want an appropriate number of serial ports on the same chip as the DSP CPU is on. We have already seen this, and we will see more of this."
One problem has been the conservative nature of large computer companies in adding anything new to their machines. It is one thing for a user to buy a DSP board to plug in the back. It is another for it to be included as standard in a cost conscious market.

Hayes said: "When you put the boards in as a standard fitting every penny counts. You have to reduce the hardware costs and provide the right software support. Compression and recognition algorithms are very complex. The challenge for us is to make the algorithms available bundled with the DSP."
Price is moving in the right direction. In 1986 AD introduced a 16 bit fixed point DSP for more than $\$ 100$. A similar chip, the ADSP2105, released this year costs less than $\$ 10$ in volume
Fixed point is suitable for most multinedia applications such as audio and datacommunications, but there is a possibility that video may go to floating point and some algorithms for this have already been developed. The problem is that most video applications are being done quite well in software and it is not yet clear whether a DSP will be needed.

Steve Rogerson

Over at Digithurst Peter Kruger is looking forward to the newspaper of the future, when the w-itten word will no longer be sufficient and newspapers will be readercompiled, with the user selecting only stories of interest.
The concept is an interesting cone, conjuring us images of commuters with their notebcook PCs busily reading the day's news from their screens. But perhaps more usefully, an electronic newspaper is being launched for the blind in March by a company called Etna. Royal National Institute for the Blind, The Guardian. Aptech and Intelligent Research have between then produced a systen that enables the blind reader to selec: stories. The newspaper stransmitted overnight to the reader's $P C$, via the channels normally used to transmit :eletext, and can be cown-loaded via a Braille reader, a voice synthesiser, or a special large print screen.

Initially the reader will be limited to The Guardian, though it is hoped that other newspapers and magazines will be available in the future.
The system is not yet able to transmit pictures, but it is notable as marcing the harnessing of the written word with computer storage and database-like access techniques.

City applications

Kruger is k zen to exploit teletext as an informatior source. Digithurst's TV1 card can capture text while its infra red remote controller could be used to switch between different TV channels or to control a video recorder. Tie TV2 card replaces the remote controller with a tuner module allowing it to decode TV signals.

Teletext cards are primarily being used in City applications, according to Kruger:
"Because they are cheaper than the Reuters feed. Peoplz are starting to look at teletext for the dissemination of information".

The recerved teletext image is stored in a database - eleased on user request - and the system zan be programmed oy the user to search for particular areas. Those pages will be updated automatically as the teletext screens are changed, saving the normal wait to access a teletext page.
"Teletext is a massive media tool that is already set up", says Justin Howard, one of Digithurst'; engineers. "You want a teletext receiver that is capable of special software control."

Apple`s Pamela Schure agree; that multimedia is more suitable for business than domestic applications - at least for the moment. "At home you have to ask, what do people need. and how do you explain it to them? You also have to think how can we get the cosi down?"

Even in business, she is not convinced that there is aluays a need for video: "It has to be appropr:ate", she says, with training or demonstrating products being two suitable uses.

Multimedia architecture

Back in October, Apple launched a new vers on of its multimedia architecture for the Mac. QuickTime 1.5 - now bundled with upgrade products for the System 7.1 operating system - supports Kodak's Photo $C D$ technology and allows photos digitised onto a CD rom to be imported into applications and altered as required. It can also handle full-screen full video motion at frarre rates of up to 30 frames $/ \mathrm{s}$.
Schure stresses the differences between the 'Mac's architecture and that of dos-based platforms, which have "no real architecture for r andling timebase data". The Mac operating system does not require special drivers to be written. For example, a video card broadcasts its potential which is recognised by the operating system.
Macs use ADPCM (adaptive pulse code modulation) techniques for interleaving sour d and video. The run time of any video is maintained: if a video is intended to last ten seconds, it will last ten seconds. Sound is interleaved automatically and if there is any protlem, video frames are dropped, not sourd.
Apple has developed its processes to the stage at which users can cut, copy and paste movies. QuickTime offers support for Word and WordPerfect, allowing movies be opened from either. "We are changing the dynamics of the broadcast industry", says Schare.

A ready Apple is viewing CD rom as the distribution mechanism for multimedia, a development Schure describes as "vital". Apple has saved itself thousands of pounds on postage by disseminating information internally on CD roms. Now, apart from the most basic model, almost every Mac sold has $\pm C D$ rom facility built into the CPU.
A though the cost of $C D$ rom is dropping (bought separately, an Apple CD rom drive will cost $£ 275$), Schure believes it is still not low enough to encourage home use of mul-imedia. A lot more work and thought needs to put in before multimedia is truly wor cable as a concept. The evolutionary process is underway, but the market will take a long time to be educated.

CONTACT NUMBERS

Digithurst 0763242955
Microsoft 0734270001
f.pple Computer (081-569) 1199

Electronic Designs Right First Time?

From Schematic Capture -

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using ANALYSER III and PULSAR, our analogue and digital simulation programs.

through Analogue and Digital Simulation -

If the results of the simulations are not as expected, the configuration and component values of the circuit can be modified until the required performance is achieved.

to Printed Circuit Board Design!

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Affordable ElectronicS CAD		
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.	\$375.00	£195.00
PULSAR: Low cost Digital Circuit Simulator ~ 1500 gate capacity	\$195.00	$£ 98.00$
PULSAR Professional: Digital Circuit Simulator ~ 50,000 gate capacity.	\$375.00	£195.00
ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 nodes.	\$195.00	$£ 98.00$
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes	\$375.00	£195.00
EASY-PC: Low cost, entry level PCB and Schematic CAD.	\$195.00	$£ 98.00$
We operate a no penalty upgrade policy. You can upgrade at any time to the professional version of a program for the difference in price.	US\$ prices include Post and Packing	Sterling Prices exclude P\&P and VAT.

Number One Systems Ltd.
 Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
 For Full Information: Please Write, Phone or Fax.
 Tel: 048061778
 Fax: 0480494042
 USA tel:011-44-480 61778 fax 011-44-480 494042

Amateur television is no longer just for the dedicated enthusiast. John Cronk explains how widespread repeaters combined with off-air beacon signals and receiver designs - such as his own - make amateur TV accessible to a much wider audience.

Picking up a clearer picture of amateur TV

nterest in amateur television has increased
steadily following the licensiag of the first
1.3 GHz repeater in 1984 . There are now 18
repeaters around the country and hundreds of
amateur stations equipped to send and receive
amateur television.

In the past. the popularity of amateur television was inhibited by the fact that the chance of finding a transmission at random was low. How likely was it to be aiming in the right direction on the right frequency at the right time? As a result. ATV contacts usually had to be arranged beforehand.

But development of repeater stations with their channelised frequency. omni-directional antennae and good locations means there are now much better opportunities for enthusiast. to view some ATV.
When not aclively repeating. most repeaters transmit a beacon signal 10 ad receiver adjusiment, reminiscent of G9AED. There is also a recommended simplex frequency of $1255 \mathrm{MH} / 2$.

A range of about 30 km can be expected from 24 cm TV repeaters. but contacts in excess of 150 km have been reported. Receiving antennats need to he as high as possibls. as propagation is generally line of sight at this frequency. but freak conditions are frequent and signals from the continent are possible from good locations.
Due 10 low atmospheric noise at this frequency, there is scope for using low-noise mast-head amplifiers and high gain antennas. but a modest wide-band $10, \mathrm{~dB}$ gain Yagi fed

Tuner module construction

Fig. 3. Tuner layout shows compartments conveniently screened using PCB. Microstrip is lengths of PCB of set width positioned using adhesive.

with high-quality low-loss coaxial cable can perform well within the service area of most repeaters.

Video standards conform to the UK broadcast standard. CCIR system I, and comprise 625 line pal colour with 6 MHz intercarrier sound. Repeaters however use frequency modulation. Usually, peah deviation is 3.5 MHz . where pre-emphasis is used, requiring a bandwidth of 18 MHz . All stations use horizontally polarised antemas.

At a first glance satellite luners may seem ideal for receiving ATV since most operate between 750 and 1500 MILz . They do work but because they are intended to be used with much higher deviation, they perform poorly. Their bandwidth is excessive and the demodulated video output is low.
Being simply tuners. satellite TV receivers need a preamplifier to provide useful sensitivity. Most will not tune the 6MHz intercarrier sound. Their wide bandwidth also makes them susceptible to radar interference, which is widespread on 1.3 GHz from air traffic control systems.
The design that follows is a receiver that tunes to ATV between 1248 and 1308 MHZ and is easy 10 construce at low cost. As a bonus it can be made portable, operating from 12V. and feed a $75 \Omega 2$ monitor with 1 V composite video.
Microwave equipment is difficult to create. but the $50 \Omega 2$ devices used here simplify the design and implementation. The outcome is a practical design that is typical of current amateur 24 cm ATV receivers. Fig. 1.
Initially I used automatic gain control but the final circuit has manual gain control. Due to the internal limiter in the NE56t demodulator, adjustment is not eritical on normal strength signats, but the control can improve sigmal-1o-noise ratio on very weak signals. It also increases the range of the signal strength meter. The meter can be left out, but it is useful for adjusting antennas as quite considerable changes in signal strength are not always

Amateur TV repeaters and frequencies			
Callsign	Channel	Location	Status, April '92
GB3CT	RT2	Crawley, East Sussex	Operational
GB3ET	RMT2	Emiley Moor, Yorkshire	Operational
GB3GT	RT2	Bellahouston, Glasgow	Temp. U/S
GB3GV	RT2	Leicester	Temp. Low Power
GB3HV	RMT3	High Wycombe, Bucks.	Temp. U/S
GB3LO	RT2R	Lowestoft, Suffolk	Temp. Low Power
GB3NV	RT2R	Nottingham	Operational
GB3PV	RMT2	Cambridge	Operational
GB3RT	RT2	Rugby	Operational
GB3TG	RT103 (10 GHz)	Milton Keynes	Linked to GB3TV
GB3TN	RT2R	Fakenham	Operational
GB3TT	RT2R	Chesterfield	Operational
GB3TV	RMT2	Dunstable Downs	Operational
GB3UD	RT2	Nr Stoke-on-Trent	Operational
GB3UT	RT1	Bath, Avon	Operational
GB3VI	RMT1	Hastings	Operational
GB3VR	RT2	Brighton	Operational
GB3ZZ	RT2	Bristol	Operational
Channel	Input frequency	Output frequency	Notes
RMT1/RT1	1276.5 MHz	1311.5 MHz	FM or AM Input
RMT2/RT2	1249.0 MHz	1318.5 MHz	FM Onl ${ }^{\text {a }}$
RMT3/RT3	1248.0 MHz	1308.0 MHz	FM Only
RT2R	1249.0 MHz	1316.0 MHz	FM Only
RT103	1025.0 MHz	10150.0 MHz	FM Only
Repeaters are Northampton	also under consider	on for E. Sussex, E. Kent, B	gham, Goole, Anglese

apparent on an FM modulated TV picture.
1 compared the performance of this receiver with a leading commercially manufactured ATV receiver. A 10 mW beacon transmitter with a fom quarter-wave ground plane antenna mounted indoors was used to send a test signal across town. This very weak signal reported as "just identified" was found clearer and less noisy on the receiver described lere. Incidentally, a IW transmitter and small outdoor antenna over this path give perfect colour pictures with impressively low noise - better than many AM broadcasi pictures.

Being modular. the design allows each section to be tested and set up separately. Since
this is primarily a design article, precise alignment details are not included but anyone with experience of similar circuitry should have few problems.

GaAsfet tuner module

At the heart of the RI amplifier front end is an incexpensive Avantek 20135 GaAsfet. Fig. 2. According to the fet data sheet a noise figure of 0.9 dB at 2 GHz is obtainable with a drain current of 20 mA .
To keep losses low, the input tuned circuit consists of an air-spaced adjustable line. This circuit is heavily loaded and as a result quite broadly tuned. but in addition to matching the

IF Module construction

Side view

Top view
Fig. 5. Layout details of the IF amplifier with bandpass filter. Again, PCB is used for screening but here, one side of a double-sided screen conveniently carries components.
antenna it provides some rejection to out-ofband signals.

A small choke and resistor form a non-resonant load that couples the fet to the MSA 0685 Modamp. This is an unconditionally stable gain block with 50Ω input and output impedance that requires 16 mA for about 17 dB gain at 1 GHz . When the supply current is correct, the monolithic microwave IC will have 3.5 V across it.

For this circuit the off-the-shelf double-balanced mixer shown is perfect. but it is expensive. Costs are minimised by using the 1 GHz version. The double-balanced nixer used is an $H C 2$ by $W \& G$ instruments but according to reports ${ }^{1}$ the well known $S B L I-X$, also rated at 1 GHz , has proved satisfactory at $1.3 \mathrm{GH} \%$.
For the first IF amplifier another MMIC feeds through a 5002 low-pass pi filter broadly luned to 40 MH , providing a low impedance to ground for the signal and localoscillator frequencies.

Oscillator power of at least 7 dBm is required for the balanced mixer so local oscillator circuitry must be well screened from the rest of the circuit. The circuit shown provides even more output, allowing an attenuator to be added. This improves the matching needed to
take full advantage of the mixer characteristics. All the stages are connected through 50Ω microstrip.

A 10 V supply is obtained using a readily available 5 V regulator but a 10 V type would reduce component count. Battery operation necessitates protection but if the differential between battery voltage and the necessary 10 V is low, the series diode shown can be replaced with a parallel fuse-shorting diode.

Layout details

The module was built in a timed metal enclosure with a ground plane of double sided PC soldered near the centre to fom two screened compartments. Figure 3 provides mechancial details.

The $50 \Omega 2$ microstrip is made from 1.6 mm thick glass-libre single sided PC (G10, .062in thick, dielectric constant 4.5) cut into 2.54 mm wide strips. Cuts are made in the copper for the coupling capacitors and wider slots are cut for the MMICs. Apart from the oscillator line, L_{3}, which together with the other components determines the local oscillator frequency, the lengths have no electrical significance.

The only holes through the ground plane are for a feed through capacitor, the oscillator out-

11 Turns 22SWG

Double sided PCB screen
put, the pins of the balanced mixer and a mounting screw for the regulator.

The balanced mixer is in the oscillator compartment, its case soldered to the ground plane. All micro strip lines are glued to the ground plane with cyanacrylate based glue.

Clearance holes for the microstrip should be as small as possible and the two screens should be soldered all round.

These screens form two unwanted high Q cavities containing the input and output circuits of the RF amplifier. Unless their Q is reduced either by not using a lid or lining the lid with an RF loss-causing material, instability can result. Special microwave lossy materials are available but the conductive foam used to pack static sensitive semiconductors may suffice.
Undesignated RF chokes are made by winding about three turns of the tail of the associated resistor with a 1.6 mm inside diameter. Capacitors in the local oscillator must have especially short leads. Commissioning the local oscillator is made casier if a frequency
counter is available. Small adjustments may be needed to make the oscillator tune the range 1278 to 1208 MHz .
Since microwave transistors are delicate, static sensitive devices, their installation is best left until last. A useful tip is to tin the points where the device is to sit, and temporarily link them to ground with fine wire. Earth the soldering iron to the enclosure too. Keeping one hand in contact with the module, unpack the device and position it, using one finger to hold it in place. Next disconnect the soldering iron, even if it is a low voltage one, and using its residual heat, solder the transistor into place and remove the grounding wires.
Check the current through the gasfet is about 18 mA by measuring the voltage across the 47Ω source resistor. Final tuning adjustment of the input matching can only be made when the other modules are completed.

IF module

As Fig. 4 shows, this module has a Butterworth 50Ω band-pass filter with adjustable gain centred on 40 MHz . Its theoretical values are shown in brackets. As the filter is easy to align by adjusting the coils, the more common capacitor values shown were used in the prototype. The 47 pF and 100Ω components correct the filter's source and termination independence.
At 40 MHz the Modamps have high gain and as their power is current sourced, a series resistor can be used to control their gain very smoothly. The selectivity curve has the typical FM shape factor, Fig. 6. Strong signals, due to the amplitude insensitivity of the FM detector, will appear to have greater bandwidth.

Layout details

This module is the same size as the tuner, but the ground plane is single sided and soldered at the bottom of the module, in Fig. 5.
An inter-stage shield can be made from dou-ble-sided PC, one side of which has its copper divided with some saw cuts as shown to mount the series filter components. Left intact.

the other side acts as the shielding.
The Modamps are mounted on 50Ω microstrip as in the tuner. Being self supporting, the induetors can be adjusted by stretching the turns. An actual response curve is shown in Fig. 6.

Demodulator

In the demodulator of Fig. 7, the first stage is a common base connected $B F Y 90$ that accepts low-impedance output from the IF module. It has a broad-band collector load that further attenuates out-of-band noise. Still containing amplitude information, the signal feeds a rectifier and the phase-locked-loop demodulator. Resulting rectified DC can be used to feed a signal-strength meter or for alignment.
As shown, the Signetics NE564 PLL demodulator circuit is a well tried configuration and particularly recommended. Output feeds an emitter follower whose lowimpedance output feeds a passive 75Ω de-

Fig. 7. At the heart of the demodulator section is a proven NE564 PLL configuration feeding a de-emphasis network for correcting video to CCIR 405-1 standard.
emphasis network that corrects video for the CCIR 405-1 characteristic.
The signetics NE592 variable-gain video amplifier can be adjusted to 2 V of video for feeding an emitter follower output stage. Video polarity can be made selectable. Although transmission is usually positive, i.e. peak white is a higher carrier frequency, the modulation sense of the video can be inverted in the receiver if the local oscillator is on the other side of the IF circuit.
Video gain control does not need to be controlled via the front panel as the level of demodulated video only changes if the transmitter deviation is altered.
The output is intended to feed a colour or moncchrome monitor with IV composite video when terminated with 75Ω.

Layout details

For this section, a double sided PC with its top side forming a ground plane is the best technique. Most of the resistors are mounted vertically, and the ICs are soldered directly, without bases to the board.
As the board need only be about 50 by 90 mm , the components are close together so

Fig. 8. In the sound section, a single IC converts 6 MHz FM from the demodulator into 1.5 W of audio power.

Top: Layout of oscillator components (left) and the IF module.

Below: RF side of tuner module.

physically small capacitor types should be chosen. All parts are mounted on the ground plane side of the board except for the lnF capacitor between pins 3 and II of the NE564 which is mounted on the track side.

Sound stages

For the audio, an SGS TDA//902 forms a complete TV sound channel capable of delivering 1.5 W into an 8Ω load, Fig. 8.
Pin 12 forms both a low-level audio output and an input to the AF amplifier. With capacitive decoupling to output from the signalstrength meter, it could also be used as an aid to antenna alignment via noise level monitoring. Power to this section need not be stabilised.

It is possible to fit this unit on a circuit board of similarsize to that of the video circuit. Used for long periods at high power levels, the IC might need additional heat-sinking but for average use, the ground plane of a doublesided PC should be adequate.
In the prototype, the detector coil between pins 4 and 5 was a Toko product but a cus-tom-built coil is adequate. Note that the Toko coil specified has a built in parallel capacitor so there is no need to fit the external one shown.

Commissioning

How the receiver is aligned depends on the equipment available. Obviously, a wobbulator is the ideal tool for the IF circuits, but a signal generator and a multimeter on the signalstrength meter connection can be used to set up the IF filter. The coils can be squeezed or stretched. and the trimmer adjusted to achieve a symmetrical response.

Applying a 6 MHz signal to the output of the NE564 detector allows the sound carrier trap at the de-emphasis network output to be checked via an oscilloscope or video monitor The trimmer between pins 12 and 13 of the $N E 504$ is best set when receiving a weak F:M television signal.

Gain of the NE592 should be set for IV of video at the output socket when receiving a

Propagation

Microwave propagation is an area where experience complements the textbook. Radio amateurs often refer to "getting the feel of the band".
Most UHF and microwave propagating modes require visibility. lonospheric reflection, common on the short wave bands, is unlikely, but reflection from buildings, gas holders and even trees is possible.
Refraction - bending due to the troposphere - is frequent. Waves can be bent and lost or refracted to follow the curvature of the earth. Temperature, pressure and moisture content affect the refractive index of air, so weather conditions can have a significant effect on signals. Widespread warm, dry, high pressure conditions during the daytime can result in layers of air with different densities forming at evening time. Signals can be ducted between these layers with low losses over remarkable distances.
Signals can also reach the other side of large obstructions such as hills or mountains if the angle is shallow by means of an effect called edge diffraction.
Heavy rain showers can obstruct a normally good path. Scatter from a rain shower however may open a new path elsewhere. While it is broadly true that signal paths on 1.3 GHz are limited to line of sight, this should not be read too literally -1600 km contacts have been reported under favourable conditions.
correctly modulated signal and terminated in 75Ω. The coil on pin $4-5$ of the TDAl 1902 sound IC is simply adjusted for best quality sound while recciving a suitable signal.

Finally, a weak signal or a modulated noise generator could be used to adjust the antenna input circuit. The series capacitor, its tapping point, and the effective length of the input line are adjusted for the best signal-to-noise ratio. As the input circuit is loaded by the antenna it is not at all sharply tuned.

References

1. ARRL Handbook 1987, Ch. 32, p. 28, UHF and Microwave Equipment

Further information

For more information on amateur television contact British Amateur Television Club's membership secretary, Mr D I.awton, at "Greenhurst", Pinewood Road, High Wycombe, Buckinghamshire, HP12 4DD or ring 049428899.

Specialist microwave component suppliers Bonex Ltd., 12 Elder Way, Langley Business Park, Slough, Berkshire, SL3 6EP. Tel: 0753 49502
Mainline Electronics, PO Box 235, Leicester, LE2 9SH. Tel: 0533777648.
Piper Communications, 4 Severn Road,
Chilton, Didcot, Oxon, OX 11 0PW. Tel: 0235 834328.

COMPUTER ICS
SA271 BBC DISC CONTROLLER CHIP EX EQPT 28174.20 TELETEXT CHIP EX EQP
$80 \mathrm{CB8A}-2$ used
27C64-25 used/wiped
IMS 1400 P-45
80 C 31 MICRO
P8749H MICRO
D8751.8NEW £10 USED + WIPED …
D $41257 \mathrm{C}-15(256 \mathrm{~K} \times 1$ DRAM)
\&1 ea
$\varepsilon 1$
NEW 4164 -15
USED 41256-15
BBC VIDEO ULA
6845 CRT
$\therefore \quad \varepsilon 1$
$\therefore \quad 60 \mathrm{p}$
6522 PIA

$£ 5$
$\mathbf{~} .53$
$£ 2.50$

AY3-1015D UART
9×41256.15 SIMM
8×4164 SP MOD
2864 EPROM
271284250 N EPROMUSED £2 NEW £2.3
FLOPPY DISG CONTROLLER CHIPS 1771
FLOPPY DISC CONTROLLER CHIPS 1772
68000-8 PROCESSORNEW
HD6384-8.
EPROMS ERASED AND BLANK CHECKED
CAN BE PROGRAMMED IF DESIRED
2716-45USED £2 100 ¢1
2764-30 USED £2 100£1.60
27C256-30 USED
27C512 USED
-.... $£ 2$
1702 EPROM EXEQPT
2114 EXEQPT 50p 4116 EX EQPT
6264-15 8k STATIC RAM
GR281 NON VOLATILE RAM EQUIV 6116
TMS27PC 128-25 ONE SHOT 27C128
80387-16 CO-PROCESSOR (OK WITH 25 MHZ £1 ea $100 / £ 70$
$712631 / 2$ DIGIT LCD DRIVER CHIP
2816A-30 HOUSE MARKED
£2 each QUANTITY AVAILABLE
REGULATORS
SANKEN STR 451 USED IN AMSTRAD MONITORS
78 H 12 ASC 12 V 5 A
LM317H TO5 CAN.
LM317T PLASTIC TO220 varable
LM317 METAL ...
7812 METAL 12V 1 A.

 L3875v 1/2A WITH RESET OUTPUT £1ea £50/100
CRYSTAL OSCILLATORS
1M000 1M8432 4M000 10M000 16M000 18M432000 19M0500

CRYSTALS

1M0 1M8432 2M000 2M304 2M4576 2M77 3M00 3M2768 3M579545 3M58564 3M93216 4M000 4M 19304 4M433619
4M608 4M9152 5M000 5M0688 6M0000 6M400 8M000 8M488 9 M 8304 10M240 10M245 10 M 7000011 MO 0012 MO 0013 M 000 13 M 27014 M 00014 M 38181815 M 00016 M 00016 M 5888 17 M 00020 M 00021 M 30021 M 855
36 M 75625 M 118424 M 00034 M 368
36867536 M 7812536 M 79375
36 M 80625 36 M 8187536 M 8312536 M 8437538 M 90049 M 50454 M 54M7416 57M7583360M000 69M545 69M550
TRANSISTORS
BC107 BCY70 PREFORMED LEADS
full spec .. $£ 1$ £4/100 $£ 30 / 1000$ 2N3819 FETS short leads ...50100

POWER TRANSISTORS

P POWER FET IRF9531 8A 60 V

TEXTOOL ZIF SOCKETS

28 WAY ZIF EX NEW EQUIPMENT
SINGLEIN LINE 32 WAY CAN BE GANGED FOR USE WITH ANY DUAL INLINE DEVICES . . COUPLING SUPPLIED

CAPACITORS COMPUTER GRADE

QUARTZ HALOGEN LAMPS

12V 50watt LAMP TYPE M312.......... £1 ea HOLDERS 60p ea
$24 V 150$ WATTS LAMP TYPE A1/215............... £2.50 each NEW BITS
ETHERNET 4 PAIR TRANSCEIVER CABLE. BELDEN TYPE SIM RS 361.0 is Each pair foll screened + overall braided d. 300 for 305 metre drum + plus PVC outer sheath. ON 305 metre drums 1 OnF $63 V \times 7$ R PHILIPS SURFACE MOUNT 160 $330 \mathrm{nF} 10 \% 250 \mathrm{~V} \times 2$ AC RATED PHILIT..
£30/4000 box AVAILABLE £20/100 220R 2.5W WIREWOUND RESISTOR 60 K AVAILABLE

MISCELLANEOUS

CMOS 555 TMERS 20k available 2 £1 £30/100 SAFEBCPL CMOS $31 / 2$ DIGITLCD DAIVER CHIP....... \&2ea USED 36 CORE $7,02 \mathrm{~mm}$ OVERALL SCREENED $£ 50 / 100 \mathrm{~m}$ PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT §2 each
EUROCARD 21.SLOT BACK PLANE 96/96-WAY .. £25ea "PROTONIC 24 VARIBUS" $16.7^{\prime \prime} \times 5^{\prime \prime}$ FIBREGLASS MULTILAYER PRH PCB
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
"PROTONIC 24 " c/w 2 SUPPORT ARMS/EJECTORS DIN 41612 96-WAY AB/C SOCKET PCB RIGHT ANGLE $£ 1.30$ DIN 41612 64-WAY A'C SOCKET WIRE WRAP PINS $£ 1$ DIN 41612 64. WAY AC PLUG PCB RIGHT ANGLE DIN 41612 64-WAY AIB SOCKET WIRE WRAP (2-ROW BODY)
BTPLUG + LEAD

KO)
$3 / \Sigma 1$
3A MOULDED PLUG + 2m lead
c/o PCB type
$\begin{array}{r}\text { r } \\ \text { 5/ } \\ \hline 1\end{array}$
LCD MODULE sIm. LM018 but needs 150 to 250 V AC for display 40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$.
LL431 2.5 to 36V TO92 ADJ. SHUNT REG 2 § 11
6 -32 UNC $5 / 16$ POZIPAN SCREWS 6-32 UNC 5/16 POZI PAN SCREWS . . $\begin{array}{r}1 / 100 \\ \hline\end{array}$ NUTS 1.25/100 RS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEETLONG 15 PINS WIRED BRAID. \therefore. 5.90 ea ($£ 1.30$ INMAC LIST PRICE $£ 30$ STICK ON CABINET FEET RS NO 543-327 CD DISPLAY sim Hitachi LMO 16 L AMERICAN 23 PIN CHASSIS SOCKE
HUMIDITY SWITCH ADJUSTABLE. .
\qquad
\qquad $\begin{array}{r}30 . \mathrm{F} \\ \mathbf{8} .50 \\ \hline\end{array}$

NEW ULTRASONIC TRANSDUCERS 32 kHz Also avalable 28 slot var-bus backplane same size

PIICE WERFUL SMALLCYLINDRICAL MAGNETS BNC 50OHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIODES AE1 OC1026A 180VOLT T WATT ZENERS atso $12 \mathrm{~V} \& 75 \mathrm{~V}$. $\mathrm{W} . .$. VN $10 L \mathrm{M} 60 \mathrm{~V} 1 / 2 A 5$ Ohm TO-92 mostet $4 £ 1100 / \varepsilon 20$ REL AY 5V 2-pole changeover looks like RS 355-741 marked STC 47WBost \qquad MINIATURE CO-AX FREEPLUG RS 456-071... 2 2 $£ 1$ MINIATURE CO-AX FREE SKT RS $456-273$ CB WITH 2N2646 UNIJUNCTION WITH 12 V 4.POLE RELAAY 400 m 0.5 W thick film resistors (yes tour hundred megohms) STRAIN GAUGES 40 ohm Foil type polyester backed balco grid | alloy ... $£ 1.50$ ea $10+£ 1$ |
| :--- |
| ELECTRETMOPHON INSERT.... |
| 0.90 | Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-267 HALL E ËFECT IC̈ UGS 3040 + magnet 1×10 OSCILLOSCOPE PROBE SWITCHED pole 12 -way rotary switch AUDIO ICS LM380 LM386 TDA 2003 555 TIMERS £1 741 OP A

ZN414 AM RADIO CHIP. OAAX PLUGS nice one
COAX BACK TO BACK JOINERS 4×4 MEMBRANE KEYBOARD
NDUCTOR $20 \mu \mathrm{H} 1.5 \mathrm{~A}$.
1.25" PANEL FUSEHOLDERS

CHROMED STEEL HINGES $14.5 \times 1^{\prime \prime}$ OPEN
2 V 1.2 W Small w/
12V 1.2 W small w/e lamps fit most modern cars
MONO CASS. HEAD $£ 1$ ERASE HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$
TRANSISTOR MOUNTING PADS TO-5,TO-18 TO-3 TRANSISTOR COVERS. TO- PINS FITO 1" VERO O-220 micas + bushes TFE min screened cabl Large heat shrink sleeving pack EChassis plug filier 10A £2 OTS SHORT SPINDLES $2 K 510 K 25 K$ 1M 2 M 5 40 k U/S TRANSDUCERSEX-EQPT NO DATA M234Z CONST CURRENTI...... BNC TO 4MM BINDING POST SIM GI2 961. BUT TON CELLS SIM. AG10/AG12
MIN PCB POWER RELAY 12 V COIL.................... 6 V CONTACTS $2 \mathrm{C} / \mathrm{E}$ AVEL-LINDBERGMOULDED TRANSFORMERTYPEOB10 10 15+15V 10VA QTY. AVAILABLE £2 ea
BANDOLIERED COMPONENTS ASSORTED Rs, Cs, ZENERS CD MODULE 16 CHAA. X 1 LINE (SIMILAR TOHITACHI 1000 LCDM
KM10)
KYNAR WIRE WRAP WIRE .. £1/REEL OPI1264A 10KV OPTO ISOLATOR $£ 1.35$ ea $100+£ 1$ ea 'LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM Telephone cable clips with hardened pins.......................... £1 ea $500 / \mathrm{E} 2$

DIODES AND RECTIFIERS A115M 3 A GOOV FAST RECOVERYDFDE
 \section*{A115M 3A 600V FA 1N5407 3A 1000 V

}V
N4148
N4004 SO4 1A 300 V
NA 158 A A 400 V ta
BY 127 1200V 1.2A
BY254 800V 3A
BY255 1300V 3 A

6A 100 V SIMIL AR MR751
1A 600V BRIDGE RECTIFIER
4 A 100 V BRIDGE
6A 100V BRIDGE
$.2 / 21$
2
8 A 200 V BRIDGE
$2 £ 1.35$
10A 200V BRIDGE
25A $200 \vee$ BRIDGE $£ 2$.
2KBPO2.IN LINE 2A 200 V BRIDGE RE

SCRS

ULSE TRANSFORMERS $11+1$ £1.25
2P4M EQUIV C106D 00/215 MEU21 PROG. UNIJUNCTION .. $3 / \Sigma 1$
TRIACS \ldots NEA............................ DIACS $4 / £ 1$
NEC TRAAC ACO8F 8A 600V TO220 5/£2 100/£ $2 £ 1$ 100/£
TXAL.225 8A 500 V 5 mA GATE
BTA $08-100 \mathrm{ISO}$ TAB 400 V 5 mA GATE TRIAC โA 800 V TLC381T 16 k AVAILABIE

5 FOR £1 $£ 15 / 100$

CONNECTORS

D25 IDC SOCKE FUJITSU ... $£ 2$

34 -way eard edge IDCCONNECTOR (disk drive type) | |
| :---: |
| CENTRONICS 36 WAY IDC PLUG | . 25

CENTRONICS 36 WAY IDC PLUG £2.50
CENTRGNICS 36 WAY IDC SKT
BBCTO CENTRONICS PRINTER LEAD 1.5 M
BBC TO CENTRONICS PRINTER LEAD 1.5 M USED CENTRONICS $36 W$ PLUG + SKT

PHOTODEVICES

HI BRIGHTNESS LEDS COX24 RED 5/ 2N5777.
TIL81 PHOTO TRANSISTOR
TIL38 INFRA RED LED
4N25, OP12252 OPTOISOLATOR
PHOTODIODE 50P
MELI2 (PHOTODARLINGTON BASE n / C)
LED's GREEN OR YELLOW 10/£1.............. 100/£6 FLASHING RED OR GREEN LED 5 mm 50p 100/£40 HIGH SPEED MEDIUM AREA PHOTODIODE RS651-
995 995.

STC NTC BEAD THERMISTORS
RES $20{ }^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE 6450 K , G25 200K, RES22BW/ NTC BEAD INSIDE END OF 1"GLASS PROBERES $20^{\circ} \mathrm{C}$ 204R audio Wen Bridge Oscillator
CERMET MULTI TURN PRESETS $3 / 4{ }^{\prime \prime}$
10R 20F 100 R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K 100 K 200 K 500 K 2 M
IC SOCKETS
14/16/18.20/24/28 40-WAY DIL SKTS …........... £1 per TUBE
8-WAY [IL SKITS
3 -WAY E-IL SKITS 3 -
2 per TUBE SIMM SOCKET FOR 2×30-way SIMMS ..

3 for $£ 1$
SOLID STATE RELAYS
POLYESTER/POLYCARB CAPS

1n/3n3/5n6/8n2/10n $1 \% 63 V 10 \mathrm{~mm}$. 100/C5 $10 \mathrm{n} / 15 \mathrm{n} 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad} .100 / \mathrm{I} 3.50$ $100 \mathrm{n} 60 \rightarrow \mathrm{~V}$ Spraque axial $10 / \mathrm{c} 1$ $00 / \mathrm{C6}$ (£1)
 $2 \mu 2160 \mathrm{Vrad} 22 \mathrm{~mm}, 2 \mu 2100 \mathrm{rad} 15 \mathrm{~m}$ $1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC
$1 \mu 0100 \mathrm{v}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm}$ rad. 50p ea RF BITS

XTAL FIL_TERS 21M4 55M0	£2 ea
ALL TRIMMERS	3 for 50p
TRIMMERS larger type GREY 2-25pF	YELLOW 5-65pF
VIOLET	5-105pF

VIOLET
3 FOR 50p £10/100
SMALL MULLARD 2 to 22pF 3 FOR 50p $£ 10 / 100$
TRANSISTORS 2N4427, 2N3866, 2N5109 80 p
CERAMIC FILTERS $4 \mathrm{M} 5 / 6 \mathrm{M} / 9 \mathrm{M} / 10 \mathrm{M} 7$ 60 ea ea
10 c 1 FEED $\begin{array}{r}10 \\ \text { ¢1 } \\ \hline\end{array}$
74N16MOTOROL A CELLULAR CAR PHONE O/P
 (BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL
5/E1
P2N2223A PLASTIC
10 \&1

PLESSEYICS EX-STOCK

SL521B SL523C SL541B SL850C SL1021A
SP8655 SP87190G

MONOLITHIC CERAMIC CAPACITORS

$100 \mathrm{n} 50 甘 2.5 \mathrm{~mm}$ or 5 mm
100 m . 100 n ax short leads
$100 \mathrm{n} 50 \%$ dil package $3^{\prime \prime}$ rad
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$
$100 / 56$ 100/と6 $100 / \mathrm{c} 3$
$100 / \mathrm{c5}$ $100 / 58$
£6/100

SEND \&1 STAMPS FOR CURRENT IC + SEMI STOCK LIST - ALSO \&VAILABLE ON

MAIL ORDER ONLY

MIN. CASH ORDER 5500 OFFICIAL ORDERS WELCOME
UNIVERSITIES/COLLEGES/SCHOOLS/GOVT. OEPARTMENTS P\&P AS SHOWN IN BRACKETS (HEAVY ITEMS) OTHERWISE 95p ADD $17 \frac{1}{2} \%$ VAT TO TOTAL

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

- Circuit Schematic
 - Circuit Capture
 - PCB Design
 - Host Of Outputs All-In-One Design System $£ 100$

Fully Integrated Auto Router $\delta 50$

Ask Us About Trade-In Deals Call Now For Demo Disk on 0705591037

Seetrax CAE • Hinton Daubnay House
Broadway Lane • Lovedean • Hants • PO8 0SG Tel: 0705591037 • Fax: 0705599036

REDUCED PRICE!

Filter tips

In his article ("Building bricks into brick wall filters", $E W^{+}+W W$, June pp.461-464) Bashir Al-Hashimi lists four steps in the design procedure of the FDNR filter.
On the first step, forming the LC prototype filter, data for this is available as indicated in the article. But the books are expensive around $£ 100$ for Saal`s Handbook (ref 2) and not found in many libraries -- and these may well put off the novice designer faced with hundreds of pages of tables. Low cost computer programs are available to carry out this part of the design and require only the minimum of information to give the same results as in Fig 2. You reviewed one of my BBC computer programs in August 1989 which did exactly this.
Step two, transforming a filter to its dual circuit, is extremely easy. Values are the same as the minimum inductor prototype. All that has to be done is allocate them to different components. for example shunt C becomes series L. Most books of filter tables lave this included.
The new design method for scaling that Al-Hashimi puts forward is virtually identical to that used by Williams in his "Electronic filter design handbook". I realise this is always the problem when the word new is used. Using FIDNR implementation of steep cut-off lowpass filters has some practical problems not mentioned in the article. Parlicularly with elliptic filters. the Q factors of the zeros in the transfer function are fairly high. This causes a significant reduction

Frequency response at the op-amp outputs at each stop. See Filter tips.
in signal headroom.
For the example in the article I have ploted frequency response at the op-imp outputs in each stage. Amplifiers A $3 / 4$ have the highest peak at 12 dB . This means that with a typical upper limit of +10 V outpul swing ($\pm 15 \mathrm{~V}$ supplics) the input musi be restricted to 1.7 V RMS sinewave, or 1.9 V peak square wave. A good trap for the novice.

As the introduction to the article

$\operatorname{Sin}(x) / x$ loss correction circuit. Sampling frequency is 8 kHz . With values shown resultant error is $<0.1 d B$.
gave a lypical use as anti-alias filtering you might be interested in a circuit I have used to correct or the $\operatorname{Sin}(x) / x$ sampling loss. It corrects for this loss to within 0.1 dB up to $4 \mathrm{kH} / F, 2$ for 8 hHz sampling and is ceasily scaled.

David Markie

Ascot
Berkshire

Speed kills theory

J uas interested in D Di Marios article "Gravity and electric force link up in black hole? " $E W+W H$. February 1993).

He creates an ingenious theory to explain the near equality in numerical value between Planck's time of $2.395 \times 10^{-43} \mathrm{~s}$, and the ratio of gravitational force to electric force of 2.4×10^{-43}.

However, there is one point that he has fated to consider - if the speed of rotation of the earth had been different from its present value by, say, 10%, the length of the second would be different, and there would the no eoincidence to explain.

Hence any theory to explain the coincidence must be able to predicl
the rate of rotation of the earth. This
D Di Mario has failed to do.

IS Linfoot

Oxford

Where is the low region?

I was anxious 10 read Anthony Hopwood"s article "Natural radiation focused by power lines" ($E W+W W$. November l992) on a new link for power line cancer deaths.
I have been periplerally involved in the power line health effects issue for some while. As part of my work I have led a group that has made a number of libre eptic measurement systems over the last few years. particularly for the isolated measurement of electric and magnetic fields, both AC and DC . A ware of the small magnitude of the fields at or near ground level near power lines, we lave been following the reports of the various attempts to link power lines to health effects.
The article suggests an interesting possibility but leaves me with a few questions.

PRODUGION/A.TE. SECONDUSERERUIPMENT HUGE SAVINGS ${ }_{\text {pances }}^{\text {on }}$

\author{
ATESYSTEM
 MARCONI MIDATA 510
 comprising:
 64 Way Backplane
 $2 \times$ NEC FDI036A Floppy Drives
 CPU, IVC, SCSI, COMBO: Controller Cards
 DTUC Digital Control Card
 $8 \times$ DTUSR, $2 \times$ GPR(W), UCT, $2 \times$ ICR2, RCC3, CLZ, DVS
 Plus: Keyboard, Printer, Colour Monitor, Manuals,
 Cables and Test Fixture, Software/Firmware upgraded to latest issue
 PRICE $£ 9,995+$ VAT ex/works

SPECIAL OFFERS

Stock Clearance Sale

HP 9845 B Computer/Monitor/Keyboard	6150
HP9836 Computer/Monitor/Keyboard	¢95
HP 2671 G Printer	¢75
STAG Various Adaptor Modules	each 65
STAG SE $100 T$ PROM Eraser	645
ERASER COAX-3 Coaxial Cable Cut/Strip	$\Varangle 995$
HP 8405A Vector Voltmeter	¢195
HP 8412 A Phase Magnitude Display	\&100
HP 8412 l Phase Magnitude Display	f125
HP 8410 B Network Analyser	£295
HP 8418A Auxiliary Display Holder	695
HP 8414A Polar Display	8100
KERRY USC450/2RF Ultrasonic Cleaner	63955
SOLBRAZE RD3/RD6 Solder Pot	from 1295
WEIGHDATA AC5 Electronic Counting Scales	¢ 235
DEK 250 Screen Printer	$¢ 1495$
ELITE FORMAT Axial Lead Form Machine	6495
486 DX33 P.C. W/Monitor Brand New	from $\mathbf{5 9 0 0}$
386 DX40 P.C. W/Monitor Brand New	from $\mathbf{6 7 5 0}$
CABINETS 19"Rack with Power Distribution	695
PCB Assembly "Flip Over" Work Frames	from $£ 40$
Many other items available. Plea	

Many other items available. Please call for full listing.

DO YOU HAVE SURPLUS PRODUCTION/A.T.E. EQUIPMENT?

Bring your surplus assets to the expanding European marketplace through Buyers News - read by 20,000 key buyers in High Tech industries

 Conditions Prices exdude Vä Beyers Premium not induded

PICO TECHNOLOGY LTD
Broadway House, 149 - I51 SP Neots Road, Hardwick, Cambridge (B3 70)

VISA TEL: 0954-211716 FAX: 0954-211880

CIRCLE NO. 127 ÔN REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD

\approx All items guaranteed to manufacturers' spec.
is Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
EPROMS			STATIC RAMS		
2764A-250	1.80	1.70	62256LP-100	3.00	2.50
27C64-150	1.80	1.70	62256LP-70	3.30	2.80
27C128-150	1.85	1.65	6264LP-100	1.50	1.40
27128A-200	1.65	1.50	6264LP-70	1.70	1.55
27256-250	1.85	1.70	6116ALP-100	0.85	0.70
27C256-200	1.98	1.80	628128LP-80	10.50	10.00
27C512-150	2.50	2.00	Z80A CTC	1.00	0.75
27C010-150	3.30	2.80	Z80A P10	1.00	0.75
ICL8211	0.90	0.65	Z80A DART	1.50	1.16
MM58274CN	4.40	3.60	Z80A S10/0	1.80	1.40
PAL22V10	4.00	3.80	Z80B CTC	1.20	0.82
6522P	2.40	1.80	Z8530 (4 meg)	1.40	0.80

74LS, $74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available Phone for full price list

All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-668 4190.

One is the idea that the power lines concentrate "the biologically most destructive lower energy particles". Presumably the term lower is relative: lou compared to the particles normatly of interest to cosmic ray researchers, but still high enough to be biologically damaging. Some numbers would be useful. indicating the range of energies normally measured, the range now being measured, and the range known to be biologically hazardous.
The author proposes the idea that the alternating fields associated with the power lines are somehou averaged because the particles travel so fast they respond only to the instantaneous fields. The average value of the alternating electric field is zero. The same holds for the magnetic field. The average focusing effect of either the electric or magnetic fields of the power line must therefore also be zero. Are we to understand that the concentrating effect is due to the energy flow of the tine (the average value of which
is clearly not \%ero) or must we assume a nonlinear interaction of some sort?
Some measured results are presented (Fig. 2) and apparently show that there is an increase of up to a factor of two in the paticle count to one side of the power line

The graph seems to be labelled incorrectly. The minimum count is shown as 100% "above" normal rather than "of" normal. I assume that the figure is meant to show hatf a symmetrical distribution, but perhaps not.

Does not this increased count represent additional particles, rather than additional energy per particle? Where do these additional particles come from? I visualise the proposed effect as a concentratior of particles descending as a more or less uniform flux from the high altitude radiation belt, The motion of these particles 1 imagine to be affected only within a lew metres of the power line a scale that s in keeping with Fig. 2. This amoums to a
conservation of particles law, so should there not be a region of decreased count somewhere?

If there is a region of decreased count on the other side of the line (the side not shown in Fig. 2), a symmetry argument might support the idea that the concentration elfect is due to power rather than the electric or magnetic fields.

Yet the article points to the line current as the significant parameter And while it is suggested that. from the shy radiation point of view, the best place to be is right under the wires, the graph shows the courat to be normal. hut not decreased, there.

It is known that solar activity can affect the operation of power systems. The fields and ons associated with flare act vity can induce slou ly varying currents in tong lines. particularly in the nearpolar regions where auroras are seen. These currents may result in asymmetrical transformer saturation either in power transformers or measurement transformers. Sol

Under the brolly

To a retired agriculturist now a wireless historian. looking objectively at crossed field antennas - "CFA - no tricks" (EW + WW. Letters. December 1992), and previous letters and articles - it is an enigma.
Consider an clectron disturbance propagating along a linear conductor represented by Fig. 1. The magnetic field lines are concentric, and the electric field lines parallel to the conductor, that is the fields are crossed. Conventional theory is that aceeleration of the electrons causes energy to be radiated as em waves.

The pioneers reasoned that for maximum radiation, the negative and positive-going electron disturbances propagating along the antenna. which to all intents are half a wavelength. must be able to extend linearly to their full lengith.

But carly transoccanic signalling was by VI.F. and the largest practical antenna structures were only a fraction of wavelength long. So, in order to cause RF current to How in a short open ended conductor. the antema structure wats arranged as a huge LC tuned circuit. often as an umbrella supported by a mast typically 0.02λ tall. This is represented by Fig. 2

The umbrella and carth-screen formed a capacitor brought into resonance by a varioneter, which in some installations was placed under the carth screen to minimise interaction with the magnetic field around the mast. Electric field lines connected the umbrella and earth screen, while the magnetic fied lines were concentric with the mast. that is crossed fields.

Greater capacity allowed greater current in the mast. but available data indicates that this in itself did not increase radiation. which was very was poor, presumably because the electron disturbances were confined largely within the variometer. But the umbrelta antema did work, and by definition was a CFA.

Consider now a scaled down version of an umbrella antenna with the linear element replaced by a solenoid (Fig. 3): the philosophy being to reduce the physical size of the radiator. The plates create the electric field and the solenoid the magnetic field. but this is doughnut shaped. If em waves are radiated, can it be reconciled with established theory that concentric magnetic field lines are vital. or is there a new esoteric theory unhnown to the pioneers:?

The evolution of linear antennas from inductors and
air sapacitors (elevated plates or spheres) was the result of an enormous number of empirical experiments. Yet. for VLF communication, the umbrella prevaled and indeed with modifications still prevails. Moreover, if the arrangement shown in Fig. 3 worked, surely it would have been used for ULF signsilling instead of Sangume type antennas with linear elements 160 km long.
George Pickworth
Kettering

Fig. 1. Electric and magnetic fields surrounding an electron disturbance propagating along a travelling wave antenna

Fig. 2. Representation of umbrella type antenna incicating concentric magnetic field lines.

Fig. 3. Effect of substituting a solenoid in place of the linear conductor.

Some mac comeback

In your comment "Unacceptable standards" (January EW + WW) you ask why anyone should insist on the fitment of decoders (D2mac) for which there are presently no programmes and virtually no prospect of there ever being any?

You seem to less than well informed. Presently there are the following satellites/channels transmitting in D2mac:
Eutelsat II-F3 TV Plus Tele-X NRK (Norway actually D-mac)
InteIsat 512 SVT TV2 (Sweden, D-mac) SVT TVI (Sweden, D-mac)
TV-sat/TDF/Olympus MCM Euromusique RTL plus Sat 1 Arte (German)
3Sat
France2
ARD
Raisat
Ragner Otterstad
Hostterkobvej 10
Denmark

Happiness is an engineer

Against all odds I find myself in full agreement with your editorial "Paying for the arts" ($E W+W W$, November 1992).

With perhaps the exception of modern art, that has been sadly commercialised. I like art in all its forms but at best it is a relaxation and does not contribute to the general well being of mankind. Our only hope for a high standard of living for all people lies in the hands of engineers who must be given all the assistance they need to produce the devices and systems to feed, clothe. shelter. educate, keep healthy, and keep happy the world's population.
The technical societies, such as the IEE, bemoan the fact that engineers are not accorded the same level of social standing as people in other professions, and this is no doubt true. Such societies are too busy with a worship for academic qualifications, which deservedly do not impress the public at large, instead of reminding the public that the standard of their whole future is dependent on the skills of engineers and associated scientists.

Much as I hate to say it, it must be obvious to intelligent people that much of the money spent on art would be better directed to the wide field of engineering and used for the development of systems for the general good of all people.

FG Clifford

Wetton

South Africa

R.S. LANGREX R.S. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons. All from major UK \& USA manufacturers. Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
 1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 081-684 1166
 Telex: 946708
 Fax: 081-6843056

CIRCIE NO. 132 ON REPLY CARD

FRFE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one ward). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Pat Bunce on 0816528339
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondance with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, 11 th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
would not rule out the possibility of other interactions between power lines and solar activity. On the other hand. I am not convinced by the Hopwood article.
Much of what Hopwood suggests should be capable of rather straight forward empirical study. Some of the line research facilities of the power industry are set up to measure line protiles of. saly, audible noise. It might not be too difficult or expensive to add Geiger counters to the parameters being measured, and obtain data from test lines in which the current and voltage can be separately controlled.
I therefore support your sentiment ($E W+W W$. December 1992) that the suspicion of a link between power lines and health effects will not go away until this is done.

Harold Kirkham

Sunland

California
USA

Particle poppycock

With regards to "Natural radiation focused by power lines: New evidence" $(E W+W W$. November 1992). I am considerably dismayed that an article containing so many scientific misconceptions should be published in what has always been considered a responsible and technically accurate publication.
For 25 years I have been doing engineering work for a group studying ionising radiation with origins external to the earth. by making direet measurements at locations from the surface out to the Jupiter radiation belts.
It is unfortunate that you should give prominence to an article containing so persuative a message for the general reader, as there are persons only too willing to join the anti-powerline campaign.

1 agree that there does seem to be evidence of association of power line corridors with childhood leukaemia: it very doubtful indeed that this could be due to enhancement of naturally occurring ionising radiation by electric or magnetic fields caused by power transmission lines. These fields are orders of magnitude too weak to provide local focusing or enhancement background radiation. and they also vary in magnitude and sign.
The particle most casily deflected. the electron. for energies which would allow it to be focused, has a range in air of only a few centimetres. I do not doubt Anthony Hopwood's diligence but his lack of knowledge of charged particle physics is evident to anyone who works in this field.
Whatever he has been observing. it is not charged particle focusing.

The problem needs further investigation, as he says. There may be some reason to suspect (in North America) the former use of herbicides and defoliants for control of scrub growth along the powerline corridors as a cause of increased childhood leukatma.

John Firth

Ottawa

Rationalising peace

The Scientists for Global
Responsibility (SGR) organisation not only warns about the irresponsible uses of science and technology. but allso supports their constructive uses. The successtul Science for the Earth forum. organised jointly with Scientists for the Earth, in Cambridge in October 1992 is an example.
SGR was formed carly last year and incorporated bodies include Scientists Against Nuclear Arms. Psychologists for Peace. and Electronics \& Computing for Peace (ECP).

ECP intends to concentrate on two projects during this year. One is continuing support for Alasdair Philips" research on health effects of electromagnetic fields, especially from electric power lines. The other is to have a presence at this year's Milcomp (military computing) exhibition.

ECP is also adding the experience of its Ethics at Work group to that of SGR's Science and Ethics group. I believe this will become one example of several in which the whole is more than the sum of the parts.
Alan Cottey
Scientists for Clobal
Responsibility
London

Beatles in the ground

Andrew Ainger's letter. "Keeping an ear to the ground" ($E H+W W$. December 1992). concerning communication through the ground using earth currents reminded me of my own experiments in this area.

In the late 1960 s, when I was about 16 years old, it was suggested to me by my father I might try earth current transmission. I set up a transmitter of about 20W output at audio frecuencies feeding two aluminium stakes about 0.6 m long driven into the ground about 10 m apart.

It was recognised that the aluminium would oxidise with time but this was all that was available.

A matching transformer was employed and as I recall the resistance was around $100 S 2$ and
varied with the water content of the soil. The tappings were changec according to the weather.
From this 1 progressed to using a heavily stressed pair of 807 valves which gave some 75W output. A friend and I patrolled the area with an amplifier and a pair of metal rods which we would drive a few centimetres into the ground sone 1 m apart at various sites. This mobile apparatus reprofuced a signal at about 300 m . My friend also hat a 20 W transmitter and 1 still have a recording of the Beatles "Long and winding road" transmitted the 200 m from his house to mine.
This means of communication is definitely not new. Louis Mculstce in his article "Earth current signalling" quotes Samuel Morse as the first to achieve electrical signalling without wires. On the December 16 1842 Morse used direct current telegraphy across a 27 m wide canal in Washington. The same article gives great detail of the telegraphy signalling sets used in World War I by the British signalling service and similar devices used by the Frencin and German forces.
These devices used an alternating current interrupted by the Morse key and generated by a mechanical vibrator. The note of the buzzer was heard at the receiving station directly in a telephone earpiece It is reported that British power buzzers gave ranges of 1000 to 5000 m .

While I always had ideas of comb filters to reduce mains interference or better still the use of an FM carrier. I never tried these techniques. One phenomenon I do remember is a background noise which occurred randomly lasting one or two seconds and best described as sounding like paper slowly torn.

With ranges for base band audio not exceeding 1000 m the hopes of starting an net by using this technique must, unfortunately, be small.

Rod Brown
 Nottingham

Crash response

With reference to the letter "Crash solution" ($E W+W W$ '. Noventrer 1992) asking for clarification of $C_{\underline{L}}$ and C_{y} capacitors and flux cancelling inductors.
\underline{Y} class capacitors are defined in BS2135 and their use defined in BS613. In simple terms only, they should be connected from a live mains line to earth, on equipment connected via a plug and lead, that is most equipment. Their value is limited to less than $5 n F$ to limio the earth leakage current which could flow via the equipment user if the earth connection was faulty.

They are made with robust dielectric and voltage prooted to 2250 V to ensure a minimal risk of breakdown, again for safety reasons.
X class capacitors are connected from live to neutral. As the leakage camot flow to earth (or a victim) larger values can be used, say $0.1 \mu \mathrm{~F}$. and thinner dielectric is acceptable as a failure would only bring out a fuse. with little risk to an equipment user. Note there are various grades of X class capacitors $X 1, X 2, X 3$ designed to meet various specifications on spikes and so on.

The obvious problem with inductors used in a filter is possible saturation of the iron material due to the load current. Using low permeability ferrite or gapped cores is OK but many turns are needed to produce the large value of inductors required to give good filter performance al low frequency.

An alternative solution is to use a high perm material toroid with two windings passing the live current through one and the neutral current bach ilrough the second. The flux then cancels, the core is not saturated, and we have a cheap, high value inductor. typically $2(\mathrm{mH}$. This logether with the Y class capacitors gives good attenuation for any common mode (asymmetric mode) interference, that is a spike that appears on live and neutral together. Of course any differential or symmetric mode interference that is on line and neutral but opposite polarity produced between the lines will suffer the same flux cancelling as the main current, that is only a small inductance will be seen. typically 0.1 mll . The small inductance together with the larger X capacitor should give equally good attenuation to a different spike.

The values quoted would give a low pass filter providing useful attenation right across the broadcast radio frequency bands. But such a filter provides little protection from audio and sub-audio clicks and spikes (from Mike Whittaker's freezer. toaster, and vacuum cleaner for example). Altogether larger and more expensive filters are required incorporating voltage dependant resistors to clip spikes and larger values of inductors and capacitors. BS6 13 allows up to $2 \mu \mathrm{~F}$ on permanently connected household apparatus.

John Foster

Entield

Integration at the helm: Self-contained instruments, linked together to talk to each other are the basis of Brookes \& Gatehouse's Network system. The pod contains, from left: VHF; Quad (speed, log, timer, depth); wind; GPS; autopilot. Instruments can be easily switched as new facilities - perhaps DGPS become available.

Greater GPS accuracy and a compact satellite voice telephone were among the electronic innovations unveiled at this year's London Boat Show. By Peter Willis

ELECTRONICS AFLOAT

Boating continues to be pushed to new heights of high-tech intricacy. Messing about these days usually means unravelling skeins of cabling, connecting meters for speed, wind, depth, plus radar, GPS. VHF, to the chart table, cockpit, autopilot or to each other.

Integrated instrumentation has gone a long way to sort out this complexity - such as the Network system being shown at this year's boat show by Brookes \& Gatehouse but even the B \& G display panel does not handle one big electronics feature of the show: Differential GPS.

DGPS is designed 10 improve accuracy of the positioning system from 100 m to $5-10 \mathrm{~m}$. Some manufacturers are still arguing that small boats do not really need it. But in a restricted seaway, in fog, knowing precisely where you are could make a difference. A fix to the nearest hundred metres is, potentially, much less safe.

Untortunately, the irritation for yachters and other civilian users of GPS, is that the satellite-based location network is technically quite capable of delivering pinpoint accuracy - as are the receivers they can be bought for a few hundred pounds. Indeed it was because the commercial receivers proved so unexpectedly precise that the US Defence Department, which developed the system, deliberately degrated the signals in case they proved useful to enemy forces. As a result, interlerence, known as Selective Availability, reduces accuracy 10100 m .

To restore the accuracy, some organisations (US coastguards. initially) retransmit the signals from ground stations. whose known location can be used to identify and eliminate the SA-induced
errors, restoring the possibility of a $5-10 \mathrm{~m}$ fix. The comparatively local nature of the beacons. limited to 400 miles, is something the Pentagon can learn to tolerate.

The first DGPS-ready receivers at this year's show - including a hand-held unit from Magellan (Na, 500D) at $£ 899$, teamed with a $£ 499$ differential beacon receiver were perhaps a little premature.

UK waters are at present covered by two privately-operated systems, Scorpio and Seamate, with subscriptions of around $£ 600$ a year. protected by smart-cards in leased receivers. Present customers are chiefly commercial shipping and fishing fleets (location of lobster pots is enormously simplified). But, some European countries plan to introduce state-run, free DGPS services in the near future.
DGPS exhibitor Trimble Navigation. is first in the field with a CD-based chant system, using a $7 \times$ bin LCD display. It costs about wice as much as the romcartridge/green CRT type, but can play audio CDs as well. Trimble clearly appreciates what most yachting is about.

Satellite comms

Inmarsat-M is a new service, bringing direct-dial speech telephony to smaller boats - 40ft or under - by using digital voice coding. Recpuired bandwidth is reduced from 25 kHz 10 under 10 kHz with a corresponding reduction in antenna size and weight: the 1.2 m antema and 120 kg all-up weight of the big-boat Inmarsat-A sysiem is cut down to 50 cm and 20 kg . Equipment costs still remain high though, at around $\$ 20.000$. Launched at the show was one of the first systems, the Magnatvox MX $3+100$.

One rethink in satellite boal technology is

LCD display (640×480 pixels) for Trimble's NavGraphic XLGPS. Positions can be plotted direct to screen on the CD-sourced charts, while instrument readings are displayed on the bottom of the screen.
scrapping of its plans for live video links with boats in the Whitbread Round the World Race, starting in September. The belated discovery that yachts roll, and are thus likely to suffer loss of contact between their Inmarsat-A dishes and the satellite, has forced the rethink.

Instead, BT is perfecting the store-and forward "videoclip" technology - digitising piclure and sound at $384 \mathrm{kbit} / \mathrm{s}$ in a video codec (coder/decoder) and then feeding it out at 64 k bit/s, thus taking 12 min to transmit a 2 min clip. Picture quality is satid to be no worse than S-VHS.
Loss of contact during transmission affects this process 100 - producing a mosaic the picture - so BT is now working on errorcorrection capability.

Development deadline bas been put back from January to May, this year.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM:
Programs 24,28,32 pin EPROMS, EEPROMS FLASH and Emulators as standard, quickly, reliably and at low cost.

Expandable to cover virtually any programmable part including serial E2, PALS, GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MOP ELECTRONICS Ltd.
Park Road Centre Malmesbury, Wiltshire. SN16 OBX UK
TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK

GERMANY 089/4602071 NORWAY 071.17890 ITALY 0292103554 FRANCE (1)69.41.28.01
Also from VEROSPEED UK

Multi-DEVICE PROGRAMMER

EPROMs - EEPROMs - FLASH - Micros - PLDs - GALs
Introductory Offer only $£ 299.00$
\checkmark Fast Programming - Intelligent Algorithms
\checkmark Connects to Computer Port
\checkmark On Line "HELP" System
\checkmark Easy to Use Menu Driven Software
\checkmark Supports a Wide Range of Devices without Adapters. Including:-

EPROMs E ${ }^{2}$ PROMs Flash EPROMs
PLDs GALs PALCEs - 16V8, 20V10, 22 V 10
8748 and 8051 families including $87 C 751$

Contact SMART Communlcations for our full range of programmere Including stand-alone programmers, gang programmers and our comprehensive universal device programmer

2 Field End, Arkley, Barret, Herts EN5 3EZ Telephone: 081-441 3890

Bryan Hart describes a graphical technique for describing feedback amplifiers that reveals fundamental operating characteristics.

Op amps in pictures

Pictorial display of the characteristic features of an electrical system cenn often provide an insight not inîmediately apparent from a bare mathematical study. Well-known examples are the reflection chart used to keep track of pulse reflections on lines and cables; the Smith chart for solving problems (eg stub matching) with transmission lines driven by sinusoidal signals: and the Karnaugh map, used to minimise Boolean expressions in digital logic.
But it is also possible to use pictorial display to clarify the operating principle of a negative feedback amplifier, of especial interest to those who prefer diagrams to lengthy algebra. The technique is easily applied to amplifiers with low-frequency open-loop voltage gain. not necessarily large, and a frequency response dominated by a single -3 dB roll-off frequency. Application in the case where open-loop gain is large, offers a deeper understanding of the virtual-earth principle employed in the analysis of operational amplifier circuits.
The approach - which includes novel features such as graphical determination of the DC/low-frequency closed-loop gain - might best be described as the "Method of gangedphasor".

Basic amplifier

In the basic amplifier configuration of Fig. 1 amplifier A is assumed to be linear and to have, initially, a frequency independent voltage gain \boldsymbol{A}_{0}. The sinusoidal input, error and output voltages are represented by the phasor quantities V_{i}, ε and V_{o} respectively. Phasor symbols are sometimes shown in bold face in texts on circuit theory, but there is no advantage to that convention here, although the pha-
sors themselves will be shown as bold lines on diagrams.
R_{I} and R_{2} comprise a summing network. Regarding this as a potential divider with one end held at a potential and the other at $V_{\text {a }}$ gives.

$$
\varepsilon=\frac{\left(V_{1}-V_{i}\right) R_{2}}{R_{l}+R_{2}}+V_{i}^{\prime}
$$

reducing 10

$$
\varepsilon=a l_{1}+b v_{o}
$$

where. by definition

$$
\begin{aligned}
& a=\frac{R_{2}}{R_{l}+R_{2}} \\
& b=\frac{R_{l}}{R_{i}+R_{2}}
\end{aligned}
$$

However the amplifier gives

$$
I_{n}=-A_{0} \varepsilon
$$

so by combining equations

$$
a V_{1}+b v_{i}=\varepsilon=-\frac{V_{b}}{A_{0}}
$$

Let $V_{0}=-V$ and we obtain

$$
a V_{i}-b V^{\prime}=\frac{+V}{A_{0}}
$$

The construction producing the first pictorial display is based on a graphical interpretation of the above equations. Crucial to construction is determination of the inpul for an assumed output - not usually the approach adopted in texts on circuit analysis but typical of the design process. For a power amplitier the sensible procedure is to design the output stage required to deliver a specified power to a load
and then work backwards to the input available from a transducer.
The general procedure is:

- Draw three horizontal axes i, ii and iii (Fig. 2a).
Line i at $\mathrm{y}=0$ is intended for the display of l_{i}, ii at $\mathrm{y}=-R_{/}$for ε and iii at $\mathrm{y}=-\left(R_{1}+R_{2}\right)$ for I_{o}. The vertical scale in $\mathrm{k} \Omega / \mathrm{cm}$ is chosen for casy scaling with the resistor values used in a particular problem.
- Construct a vertical line, iv, to define the zero voltage axis and mark its points of intersection $H . J . K$ with i , ii and iii.

Fig. 1. Basic amplifier configuration

- Marh point L at $V_{0}=-V$ on iii, point M at l / A_{0} on ii and construct v, the diagonal $L M$. This cuts iv at N and, when extended, intersects i at P. The numerical value used for 1 (in mV or V) is one of practical convenience.
- Construct iv, the diagonal $P K$, and mark point Q where this cuts ii.
- Draw vii, the diagonal $H L$. and mark S where this cuts ii.
Diagram lettering starts at H, rather than A. avoiding some of the letters already associated with electrical parameters. For this reason R is also omitted: 0 is missing because it could
be contused with cero or an origin.
The geometry of the diagram (Fig. 2a) gives the following relationslips:

$$
\begin{aligned}
& J Q / / I P=R_{2} /\left(R_{1}+R_{2}\right)=a \\
& J S / K L=Q M / K L=R_{l} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=h
\end{aligned}
$$

Thus. the phasor interpretation of the horizontal line sections is $K L \equiv V_{i}(=-V)$: $/ S=$ $Q M=h \prime_{\circ}^{\prime}(=-b V): J M=\varepsilon: H P=V_{i}$ and $I Q=$ ${ }^{\prime}{ }^{\prime}$

These phasors are shown more clearly in Fig. 2 b (lig. 2 a redrawn but with the line letlering omitted). The phasors are spatially separated but geometrically linked. If one changes all the others change in a related way. analogous to the mechanical linkage or "ganging" of electronic components, eg capaciors. used in variable frequency oscillators - henee.the suggested name "ganged-phasors". Figure 2a offers some insight into circuit operation, an aspect pursued later. but the diagram need not be drawn in full
if the problem is merely graphical determination of $\left.A_{(7 .}(0)\right)$, magnitude of the $D C$ and low frequency closed-loop gain.

An example is calculation of $A_{C L}(0) \mid$ for the case $R_{l}=10 \mathrm{~K} \Omega, R_{2}=20 \mathrm{k} \Omega, A_{0}=10$. Figure 3, not to scale indicates, the method. Construct i , i and ii with a vertical scale $5 \mathrm{k} \Omega$ $\equiv \mathrm{lcm}$. The choice $V=50 \mathrm{mV}$ gives an integral value (5 mV) for ε. On a horizontal scale of $1 \mathrm{mV} \equiv 1 \mathrm{~mm}$, mark points l, and M. construct $L M$ and extend it to P. Measured length of $H P$ will be 32.5 mm , and $\left|A_{C l}(0)\right|=50 / 32.5$ $=1.54-$ whieh agrees with the value ohtained by a purely algebraic calculation.
Suppose V_{0} had been equal to -30 mV instead of -50 mV . The modified construction line $L_{l} M_{l} P_{l}$ shown doted in Fig. 3. also passes through N. In fact. from the geometry of the figure, the location of N on $H K$ is independent of the value of V, resulting in two practical consequences. $L M$ need not be extended to P. If preferred we could measure $H N$ and $N K$ and make use of the alternative relationship $\left|A_{C l}(0)\right|=N K / H N$.
Secondly. the output for a given input is casily found once the location of N is known. Construction of Fig. 4 tahes this further, following Fig. 3 up to the marking of points M and N. Now to find V_{0} for $V_{i}=10 \mathrm{mV}$. say. then mark P_{2}, draw $P_{2} N$ and extend it to L_{2} and measure the resulting output voltage $K L_{2}$.
Point N coukd be described as an "apparent earth" since it appears to be at earth potential though is not connected to chassis earth. There is no physical location for N in the circuit, as it stands. But if R_{2} were to be made up of a series combination of resistors of suitably chosen values then N could be located at the junction point of two resistors in that chain.

Ideal and practical op-amp

Introductions to the op-amp inverter circuit. Fig. 1. often show $\varepsilon=0$. corresponding to $A_{0}=$ ∞. with the advantage of simplifying circuit calculations. But some beginners find the infi-nite-gain (or "ideal" op-amp) approximation

(a)

(b)

hard to swallow. The zero and infinity of theoretical argument need some interpretation in practical eiectronics.
So how large must A_{0} be (or, how small must ε be) for ε to be taken as zero without significant error in the calculation of $1 A_{C L}$ (0)l?' A purely algebraic analysis will give an answer, but it can divert attention away from an appreciation of the basic operation of the circuit. This is where the pictorial approach comes into its. providing some physical insight into the mechanism.

In Fig. $5 . / M(\varepsilon)$ is the phasor sum of two
components: $I Q\left(=a j_{j}\right)$, the signal fed in from V_{i}, with $V_{0}=0$: and $Q M\left(=b V_{c}=-b V\right)$. the signal fed back from V_{0} for $I_{i}^{\prime}=0 . \varepsilon$ must be insignificant in comparison with the magnitude of each of its component parts for it to be neglected. As \rightarrow is (marginally) the smaller of the two components the condition is aluays met if $\varepsilon\left(=V / A_{0}\right) \ll b V^{\prime}$, or $A_{0} b \gg 1$. This condition is independent of magnitude of the input signal amplitude and relates to the amplifier configuration as a whole, ie, A plus resistor network, and not just A by itself. Hence. the inequality $\mathrm{A} \gg 1-$ a plausible

Fig. 5. $L P^{\prime}$ and $K P^{\prime}$ refer to the ideal case where $A 0 b=\infty$.

prior assumption - is a necessary but not a sufficient condition.
For most practical op amps with $A_{O}>$ 100.000 , the condition for ε to be neglected reduces to $b \gg 10^{-5}$. In such cases, point M in Fig. 5 is close to point I. The junction point of R_{l} and R_{2} is frequently referred to as a virthal earth but in can never be precisely zero for an amplifier with finite gain.

The dotted construction lines $L P$ and $K P^{\cdot}$ refer to the ideal or limit case $A_{(} b=\infty$. For that case.$/, M$ and N coincide. Then, $a l_{i}+b V_{0}$ $=0$)
$\left|A_{C L}(0)\right|=\left(\left|\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}\right|\right.$ for $\left.A_{0} h=\infty\right)=$
$b / a=R_{2}|R|$
$b / a=R_{2} / R /$
The fractional error in $\mid A_{C Z}$ (0)) \mid, made in assuming $A_{0} b$ is infinite when it is finite (though perhaps large), is given by.

$$
\frac{\left|\Delta A_{(L}(0)\right|}{\left|A_{(L}(0)\right|}=\frac{J M}{J Q} \approx \frac{I M}{M Q}=\frac{1}{A_{t,} b}
$$

In practice the near-equality in magnitude of the two opposing components $a V_{i}^{\prime}$ and $b V_{0}^{\prime}$ has an interesting parallel in solid-state physical electronics. For a forward-biased PN junction
the drift and diffusion tendencies within the junction region almost balance. The observed junction current is very small compared with either drift or diffusion current taken alone.

Frequency response

So thar all discussion has been based on a frequency-independent voltage gain A_{0}. But for the frequently-encountered case of an op amp with a linite DC gain and a single-pole frequency response, dependence of gain $A(I f)$ on frequency (f) is:

$$
A(j f)=\frac{A_{0}}{1+j\left(\frac{f}{f_{i}}\right)}
$$

in which $A_{\theta}=\mathrm{DC}$ gain and f_{l} is the -3 dB roll-off frequency. A Bode gain plot of this equation is shown in Fig. 6. If $|A(i f)|=1$ (0 dB) at $f=f_{T}\left(\gg f_{i}\right)$ it follows that $f_{T}=\mathrm{A}_{0} f$

Substituting in carlier equations to obtain a basis for a modified construction gives:

$$
a l_{i}^{\prime}+b_{n}=\varepsilon=-\frac{i_{i}\left(1+j \frac{f}{f_{1}}\right)}{A_{1}}
$$

Using $f_{1}=A_{n} f_{1}$ and $V_{n}^{\prime}=-1$

$$
c V_{1}-w_{n}=\varepsilon=\frac{1}{A_{0}}+j \frac{f}{l_{1}}
$$

Interpreting this graphically calls for a j axis for the quadrature component of ε. This can be drawn perpendicular to the plane of the page.
with the positive direction of j pointing upwards. Phasors for V_{i}, ε and V_{o}, can then be shown on planes erected, respectively, at $y=$ $0 . y=-R_{1}$ and $y=-\left(R_{1}+R_{2}\right)$.

Looking first at the phasor plot drawn on a plane at $y=-R_{I}$ (Fig. 7a) , $\left(V_{i}\right.$ is the component of V, required to maintain $b V_{0}^{\prime}$ constant at $-b V$ as f varies. Relocating phasor ε produces Fig. 7b which simplifies discussion.
θ and ψ are the frequency-dependent phase shifts due to A and the leedback amplifier as a whole. Clearly. $\psi \ll \theta$ if $b \gg\left(1 / A_{0}\right)$. illustrating the benefit of phase shift reduction with negative feedback

The -3 dB roll-off frequency. fi \cdot, for closedloop gain occurs when $\psi=45^{\circ}$. From Fig. 7b the condition $b \gg 1 / A_{0}$ gives:

$$
\frac{f_{i}}{f_{i}}=h
$$

Now

$$
n=\frac{R_{1}}{R_{1}+R_{2}}=\frac{1}{1+\left|A_{(1}(0)\right|}
$$

So for $\left|A_{i f}(0)\right|_{n} \gg 1$

$$
f_{1}^{\prime}\left|A_{1}(0)\right|_{\infty}=f_{1}=\text { constant }
$$

This is the gain-bandwidth product rule. Figure 8 is the three-dimensional equivalent of Fig. 2a for the case of lrequency-dependent gain. In addition to the plane erected at $y=-R_{/}$ there is a plane at $y=0$ for the display of V_{i}^{\prime}. A line, rather than a plane, is sulficient at $y=$
$-\left(R_{l}+R_{-}\right)$because V_{0}^{\prime} is fixed along the horiLontal axis as f changes.
Just as the locus of T is a perpendicular erected at Q. so the locus of W° is a perpendicular erected at $P . H W$ is parallel to JT and the points K, T and W lie on a straight line

Once the general significance of Fig. 8 is appreciated, it can be redrawn as the twodimensional (x, y) diagram resulting if the vertical plames are imagined pushed back flat on to the page. Then the y direction is used, as in Fig. 2a. For the display of R and also - though the scale is completely unrelated - for the quadrature components of the phasors.

Enhanced understanding

A pictosial approach can help in the introductory study of negative feedback amplifiers.. The graphical technique helps - particularly with op-amp circuits - mphasise the basic phesor balancing process inherem in the virtual-earth concept and enables some of the benefins of negative feedback to be deduced hy visua inspection. Certainly. drawing Fig. 2a 10 scale for commonly available op-amps will soon convince the most doubting of students of the essential validity of intinite-gain approximation in practice.

Readers with some knowledge of circuia theory might like to refleet that in choosing to plot frequency-dependent input for a fixed output we have effectively converted an output pole into an input zero.

Fig. 8. Three-dimensional equivalent of Fig 2a.

Acknowledgement
Thanks to R H Pearson for perceprive comments.

Micro-Controller Development Systems 8748/9 Series and 8751 Series

KARE 48 8748/9 System. Recommended for beginners Includes Single Board Computer Using 8749 OTP Micro with built in Monitor'Down loader prog Allows downloading of assembled progs to non-volatile 2 K memory Edit individual bytes and examine memory Switch to external memory to run loaded program Comes complete with Shareware Editor, As sembler and Comms package RS232 inter- connect lead All IC
 and a $5 v$ power supply. Software avalable on $31 / 20$ 51/4.
Please note no charge is made for software, and will require registration for continued use. $\mathbf{£ 7 6 . 0 0} \mathrm{inc}$ KARE 518751 System As above, but using 8751 OTP Micro with Monitor Downloader Program. $£ 89.00$ inc 68 HC 11 Dev Kit available soon

Replacement OTP Micros with Downlbader/Monitor avalable, should you have an acc dert
(Strictly replacement only) Strictly replacement only)
Programming service available fol $878 / 9$ and 8751 ring for detals
Recommended Literature
Intels Embedded Controller \& Micopracessor Handbook Includes details of 48 \& 51 series mico's 2 vol's $£ 24.00$ plus $£ 4.00$ p $£ \mathrm{p}$
Intels Embedded Controi Applications Handbook. Useful information on application a and soft and hardware techniques. £24.00 plus £400 p\&p
68 HC 11 Manual
Fully describes structure and operaticm. Covers all HC1I family of devices $£ 10.00$ plus $£ 2.00$ p $£ p$

PC EPROM PROCPAMMER

Internal Card for PC, XT, AT, 386, 486 or Compatible
\star Affordable
\star Easy to instal, just plug in

* Programs E(E)proms and flash memory
* Supports 2716 through 27C2001 EPROMS
* Reads, programs, verifies and saves to disk
* Accepts Intel hex, Motorola S, and binary format
* Requires 8 -bit bus slot of MS-DOS PC with 512 K ram.
* Supplied with software and 60 page handbock
$\star 1$ year warranty
* MICRO ADAPTORS AVAILABLE

STAND-ALONE PROGRAMMERS also available Call us today for further information and DEMO DISK

KARE ELECTRONICS

32 Pear Tree Avenue, Ditton, Aylesford Kent ME20 6EB Tel: 0732844633

.P. ThoA Dual.Tace 100 MH L Delay Smeep

 Gaviloos 1100 Dual frace 30 MHz

This is uist a sampli e many others avallable
 0.1חH2-SOMH2 IEEE-488. AS new

 KELTHMEY 224 Progian miable Current iource

\qquad

NEWEQUIPWENT

 HMMEG OSCILLOSCOPE HMEO3 7 Dual Tice 2OMHz Componenn Tester E362

apolo 10-100MHz Courte Tines Ratio Period Time interval etc
 METEOR 600 RREQUENCY CUMTER 600 MHz

 Al ortel Jlazk Star Equipment avalable OSCILLOSCOPE PRBBES Syitciable $\times 1 \times 10$ (P8P f3)

CIRCLE NO. 1.3.3 ON REPLY CARD

MICROWAVE CONTROL PANEL Mains operated, with touch svatches. Cornplete with 4 digit display, digital clock, and 2 relay outputs one for power and one for pulsed power (programmable). ideal tor all sorts of precision timer applic
ref 4P151. Good experimenters board.
FIBRE OPTC CABL.E. Stranded optical fibres sheathed in black PVC. Five metre length $£ 7.00$ ref 7P29R or $£ 2$ a metre 12V SOLAR CELL. 200 mA output ideal for thekle charging etc. 300 mm square. Our price $£ 15.00$ ref PASSIVE INFRA-RED MOTION SENSOR. Complete with dayhght sensor, adjustable lights on timer (8 secs -15 mins), 50 range with a 90 deg coverage. Manual overide facility Complete with
wallbrackets, bulbholders etc. Brand newand guarwallbrackets, bulb holders etc. Brand
anteed. Now only $£ 19.00$ ref $19 P 29$
Pack of two PAR 38 bulbs for above unit $£ 1200$ ref 12 P $43 R$
VIDEO SENDER VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, udeo recorder or computer to any standard TV set within a 100 range! (fune TV to a spare channel).
$12 v D C$ op $£ 1500$ ret 15 P39R Suitabie mains adaptor $£ 5.00$ ref 5P191R Turn your camcorder into a cordless camera! 5P 191R. Turn your camcorder into a cordless camera! (ourg is mains driven). £26 in a ref 26P2R Good range adapter device. talkies with a range of up to 2 ki lometres. Units measure tin ? $22 \times 52 \times 155 \mathrm{~mm}$. Co
$£ 30.00$ ref 30 P : 2 R
FM CORDLESS MICROPHONE.Small hand held unit with a 500^{\prime} range! 2 transmit power levels Reqs PP3 battery. Tu neable to any FM receiver Our price $£ 15$ ref 15 P42AR
12 BAND COMMUNICATIONS RECEIVER. 9 shon WI bands, FM, AM and LW DX'local switch, tuning 'eye' mains or o.e. battery. Complete with shoulder strap and mains lead. S19 ref 19P14R !deal for tstening all over the world
CAR STEREO AND FM RADIO CAR STEREO AND FM RADIO.Low cost stereo system giving 5 watts per channet. Signal to noise ratio better than 45 db ,
wow and futter less than 35% Neg earth $£ 19.00$ ret 19 P 30 WOW and tutter less than 33% Neg earth \& 19.00 ret $19 P 30$
LOW COST WALIKIE TALKIESP air of battery operated units with a range of about 200' Our price $£ 8.00$ a pair ref ${ }^{\text {m }}$. units w th a range of about 200' Our price E8.0.
8P50R Ideal tor garden use or as an educational toy
7 CHANNEL GRAPHIC EQUALIZERplus a 60 watt power amp!

 £600 ref 6P35R Pack of 10 AAA,s $£ 4.00$ ret 4 Pger TOWERS INTERNATHNAL TRANSISTOR SELECTOR GUIDE. The ultmate equivalents book Newed. $£ 20.00$ rel 20P $32 R$ GEIGER COUNTER KIT.Complete with tube, PCB and ali components to build a battery operated geiger counter £39.00 ref 39 P 1 R
FM BUG KIT.New design with 9 CB embedded coil Transmits to any FM radio 9v battery req'd $£ 500$ ref 5 P 158 R . 35 mm square FM BUG Built and tested superior 9 v operation $£ 1400$ ref 14P3R COMPOSITE VIDEO KITS. These convert composite video into separate H sync, V sync and video 12v DC. 18.00 ref 8P39R. SINCLAIR C5 MOTORS $12 v 29 A$ (full ioad) $3300 \mathrm{rpm} 6^{\prime \prime} \times 4^{\prime \prime} 1 / 4$ OPP shath New $£ 20.00$ ref 20P22R. Limited stocks
As above but with firted 4 to 1 inline reduction box (800 pm) and toothed nyion belt dive cog $£ 40.00$ ret 40 P 8 R 800 rpm .
ELECTRONIC SPEED CONTROL KIT ELECTRONIC SPEED CONTROL KIT tor C5 motor. PCB and all components to build a speed controller ($0-95 \%$ of speed). Uses
pulse width modulation. $£ 17.00$ ref 17 P3R Potentiometer control pulse width modulation. £17.00 ref 17P3R Potentiometer co
SOLAR POWERED NICAD CHARGER.Charges 4 AA nicads in 8 hours. Brand new and cased $£ 6.00$ ref 6 P3R. $2 \times \mathrm{C}$ cell model E6. 0
ACORN DATA RECORDER ALF503 Made for BBC

computer but suitable for others includes mains adapter, leads and book $£ 1500$ ref 15 P 43 R

 book £1500 ref 15P 43Rhicence from the famous JVC company Pack of 10 tapes New low price £15.00 ref J15P4 PHILPS LASER. 2MW HELUUM NEON LASER TUBE. BRAND NEW FULL SPEC £40.00 REF 40P10R. MAINS POWER SUPPLY KIT £20.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE $£ 75.00$ REF 75P4R. 12 TO 220 V iNVERIER KITAs suppled it will handle up to about $\mathrm{kH} \Sigma 1200$ ref 12P17R. Larger transformer $£ 12.00$ ref 12P4iR. VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing projects on etc. Complete with tools, wire and reusable board Now low bargaln price only $£ 2.00$ ret $\mathrm{B} 2 \mathrm{P}_{1}$
25 WATT STEREO AMPLIFIER IC STK043 With the addition of a handtul of components you can build a 25 watt amplifier $£ 400$ ret 4P69R (Cirevit dia included).
BARGAIN NICADS AAA SIZE 200 MAH 1.2 V PACK OF
I4.00 REF 4P92R, PACK OF 100 E 30.00 REF 30 P 16 R £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL. MAGNIFYNG LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ret BD827R. 12V 19A TRANSFORMER Ex equipment $£ 20$ but OK. ULTRASONIC ALARM SYSTEM. Once again in stock these unite consiat of a detector that plugs into a 13 A cocket in the area to
protect The receiver plugs into a 13 A socket anywhere else on the same supoly. Ideal for protecting garages, sheds otc Complete system now onty $£ 18$!!!
POWER SUPPLES M
$2 A .+12 @ 700 \mathrm{~mA} \&-12 @ 50 \mathrm{~mA}$. $£ 8$ ref $08 P 3$ plus 3 give $+5 @$ $2 A .+12 @ 700 \mathrm{~mA} \&-12 @ 50 \mathrm{~mA}$. $£ 8$ ref Q8P3
UNVERSAL BATTERY CHARGER
UNQVERSAL BATTERY CHARGER. Takes AA's. C's, D's and
PP3 nicads. Holds up to 5 batteries at once. New and cased, mains operated $£ 6.00$ ref 6 P36R IN CAR POWER SUPPLY. Plugs into digar socket and gives 3.4.5,6.7.5.9. and 12 V outputs
spider ptug E5 00 ref SP167R

RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal film. 55.00 ref $5 P_{1} 170 R$.
QUICK CUPPA
QUICK CUPPA? 12 vimmersion heater with lead and cigar inghter phig £300 ref 3P92R. Ideal for tea on the move! LED PACK . 50 red, 50 green, 50 yellow all 5 mm E8 00 ref 8 P52 IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. £5.00 rel SP $186 R$. 3 metre version $£ 6.00$ ref 6 P50
COPPER CLAD STRIP BOARD $17 " \times 4^{\prime \prime} 1{ }^{10}$ COPPER CLAD STRIP BOARD 17 " $\times 4^{4}$ of 1 " pitch "vero" board. §4.00 a sheet ref 4 P 62 R or 2 sheets for $\$ 7.00$ ref 7P22R
STRIP BOARD CUTTING TOOL. 5200 ret 2 P 352 R .

WINDUP SOLAR POWERED RADIOI FM/AM radio takes ro chargeable batteries. Complete with hand
14P200R. Set of 2 AA nicads E2 ref L2P9 14 P200R. Set of 2 AA nicads E 2 ref L2P9
PC STYLE POWER SUPPLY Made by PC STYLE POWER SUPPLY Made by
AZTEC 110vor 240 vin put. +5 @ $15 \mathrm{~A}+12 @$ AZTEC 110vor 240vinput. 5 @ 15A.+12@
5A.-12@ 5A,-5@ 3A. Fully cased with fan, 5A.-12@ 5A,-5@ 3A. Fully cased with fan,
on/off switch, IEC inlet and standard PC fly on/off switch, IEC inler and
leads. $£ 15.00$ ref F15P4
TELEPHONE HANDSETS 0 brand speaker only $£ 3$ R SUPPLIES Supe
BENCH POWER
giving 12vat 2A pus a 6V supply Fupertly made fully cased (metal) giving $12 v a t 2 A$ phs a $6 V$ supply. Fused and short circult protected
For sale at less than the cost of the case! Our pnce is $£ 400$ re For saie at less than the cost of the casel Our pnce is $£ 400$ ref
4P103R
SPEAKER WIRE Brown twin core 100 feet for $£ 2.00$ REF 2P79R MICROSCOPE 1200X MAGNIFICATION
Brand new complete with shimp hatchery, shrimps, prepared slides, light etc. £29.00 ref J29P4.
LGHT ALARM SYSTEM
Small cased alarms that monitor a narrow beam area for sudden changes in light level. Complete whth siren that sounds for a preset to me when unit is trggered. $£ 7.00$ ret J7P1
$720 \mathrm{~K} 31 / \mathbf{2}^{\prime \prime}$ DISC DRIVE FOR 89 rand
720K 3 1/2" DISC DRIVE FOR £\$rand new units made by JVC complete with tech into just $£ 9$. 0 !! they have a metal tab instead o a button and you may want to fit an led. Combined power and data cable easily modified to IBM standard. ret L9P2
MONO VGA MONITORS $£ 59$ Standard IBM compatible monitor
made by Amstrad. New Our orice ust $£ 59$ Ref $58 P 4$ RB made by Amstrad. New Our pric
CAR BATTERY CHARGER
Brand new unts complete with panel meter and leads 6 or 12 v Brand new unts comp
output $£ 7.00$ ref J7P2.
CUSTOMER RETURNED SPECTRUM +2
Complete but sold as seen so may need attention $£ 2500$ ref J25P1 or 2 for $£ 40.00$ ref J 40 P 4
CUSTOMER RETURNED SPECTRUM +3
or 2 fer $£$ but sol as seen so may need attention $£ 2500$ ref J25Pr or 2 for $£ 40.00$ ret J40PS

> AMSTRAD 1640DD BASE UNITS BRAND NEW AND CASED TWO BULLT IN 5 1/4" DRIVES MOTHER BOARD WITH 640K MEMORY KEYBOARD, MOUSE \& MANUAL. OUR PRICE JUST

£79!!!!

SGART TO D TYPE LEADS

Standard Scart on one end. Hi density D rype (standard VGA
connector) on the other Pack of ten connector) on the other. Pack of ten leads only $£ 700$ ref 7 P2R
OZONE FRIENDLY LATEX OZONE FRIENDL.Y LATEX
250 ml botte of liquid rubber sets in 2 hours. Ideal for mounting PCB's fixng wires etc $£ 2.00$ each ref $2 P 379 R$
VIEWDATA SYSTEMS
Brand new units made by TANDATA complere with $1200 / 75$ built in modem infra red remote controlled qwerty keyboard BT appproved ite output (works with ordinany ter port RGB colcur and compossupply and fully cased Our price is only $£ 20.00$ fet 20P1R supply and tuly cased Our phice is oniy $£ 20.00$ ret 20 P 1 R
COMMODORE 64 COMPENDIUM Pack consisting of a Com modore 64 computer, power supply, data recorder and software All for 569 ref Q69P 1.
PPC MODEM CARDS Made for the Amstrad PPC1640/1512 range these are plug in modules that operate at 2400 baud No data
£15 ref O15P5 £15 rof Q15P5
AMSTRAD LQ3500 PRINTER ASSEMBLIES Entire mechanical assembles including pnnt head, platen, cables, stepper motors etc etc. infact everything bar the electronics and case! Our price just AMSIRAD D
AMSIRAD DMP4000 PRINTER ASSEMBLES Entire printer assemblies including print head, platen, cables, stepper motors etc. Everything bar the electronics and case Our price just $£ 20$ re TOROID
32 v will give 50 vat 3 A or 32 at 4 A ot . with tapp ings at $8 \mathrm{v}, 10 \mathrm{v}$ and 32v will give 50 vat 3 A or 32 at 4 A etc Centre tapped primary. $£ 9$ ref QSP2. Fixing kit is $E 2$ ref Q2P1
AERIAL BRACKEIS Wall plate $7.5^{\text {s }}$ sq complete with tawl bolts, mast Substantial bracket (would take body weight). £7 ref OTP 1 TV SOUND RECEIVERS Popuiar Units that with the addition of speaker act as a ty sound receiver tdeal as a stand abne unit or for connecting into H: FI! §12 ret O12P4
2,000 COMPONENTS FOR \&3 Yes thats right just send us $£ 3$ and you can have 1,000 resistors plus 1,000 capacitors! Our choice of value. Order rof O3P1.
ETRI FANS Mains, 11
ETRI FANS Mains, 11 watt 80 mm diameter $\varepsilon 6$ Ref $06 \mathrm{P}_{3}$
UGHTGUNS Oniginally made for the Spectrum+2 but may have other uses (good stnpper) £2 Ret O2P3
GX4000 GAMES CONSOLES Comple
pSu and GAstick. $£ 15$ ref Q15P3 E Extrate with motor racing game psu and joystick. £15 ref Q15P3. Extra 4 games $£ 12$ ref Q12P̌
VCR RABBIT SYSTEM Lets you control your VCR from a second set using the VCR remote control. Retail ©99 ours £39!!!

BULL ELECTRICAL 250 PORT $4 N D$ ROAD HOYE SUSSEX BN3 SQT TELEPHONE 0273203500 MAL RODEF TERMS CASHPPOR CHEOUE with order plus ciso post tlusvat.

PLEASE ALLOW 1 - 10 DAYS FOR DELIVERY

FAX 0273323077

OAMERAS Customer feturned units. 3 for
STEAM ENGINE Standard Mamod 1332
engine co plete with boiler piston etc $£ 30$ ref 30P200
TALKING CLOCK
CD display, alarm, battery operated crock will announce the meno at push of a button and when the
alarm is due. The alarm is swithate from voice to a cock crowing'乏14.
HANDHELD TONE DALLERS
HANDHELD TONE DIALLERS
Smail units that are designed to hold over the mouth prece of a elephone to send MF dialling tones. Ideal for the semote control of AMATMachines. 2500 ref 5P209R
Fully programmatis taking, lockable coinbox BT approved, retail price is $£ 79$ ours is just $£ 291$ ref J29P2
ANSWER PHONES $£ 15$
Customer returned units with 2 faulis one we tell you how to fix the other you do your self! £18 ref Ji8P2 or 4 for $£ 60$ ref J60P3 BT approved (retail price $£ 7995!$ each
COMMODORE 64 MICRODRIVE
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new dives with cartidge and software 10 times faster than tape machines works with any Commodore 64 to you at onty £25.001 Ret 25P1R 90 WATT MAINS MOTORS
90 WATT MAN
HI FI SPEAKER BARG
Hi FI SPEAKER BARGAIN Orignally made for TV sets they two of each plus 2 of our crossovers you can have the lot for $£ 5.00$ fl FSP2
EMERGENCY LIGHTING SYSTEM
Fully cased complete with 2 adjustable flood lights. All you need is a standard 6v lead acid battery. Our price is just £10 ref J10P29 AMS TRAD 464 COMPUTERS
Customer returned units complete with a monitor for just $£ 35$! These units are sold as fautity and are not returnable
WOLSEY DMAC DECODERS
Made for instaliation in hotels etc as the main sat receiver no data but
fully cased quality unit $£ 20$ ref K20P1. Sustable pSu $£ 8$ ref K8P3.
REMOTE CONTROLS REMOTE CONTROLS
Brand new infra red CONTROLS orginally made for controling WOLSEY satellite receivers. $£ 2$ ea ref K2P1 or 20 for $£ 19$ ref K19P1.
TELEPHONES 386 TOWER SYSTEMS
386 TOWER SYSTEMS
Tower case $52 \mathrm{~cm} \times 40 \mathrm{~cm} \times 20 \mathrm{~cm} 2$ fans, speaker, 275 w psu, IEC I/L Tower case $52 \mathrm{~cm} \times 40 \mathrm{~cm} \times 20 \mathrm{~cm} 2$ fans, speaker 275 w psu , ECI/L
and O OL 386 mb bard with onboard disc controlier, ethernet, display diver, paraliel and serial ports. There are several IG's missing from the miboard plus no data! $£ 79$ ref K79P1.

DOS PACKS

Complete set of PC discs with MS DOS 3.2. Locomotive basic, gemdesktopand gem paint. No manuals, 5
CORDLESS TIE CLIP MICROPHONE
transmits between $88-108 \mathrm{MHZ}$ FM $5.2 \mathrm{~cm} \times 2 \mathrm{~cm}$, uses LR 44 watch battery. Complete with wire aerial \& battery. £16 ref K16P1 CHASSIS MOUNT TRANSFORMERS
240 v prmary, 12 v secondary 20 VA E 2 ref K 2 P 2
240 v primary 16 V secondary 10 A (spit winding). \& 10 ref L10P1
100 RED LED PACK (5 MMA) \&5 REF K5P2 100 RED LED PACK (5MM) \&5 REF K5P2
12 S STEPPER MOTOR ideal tor models etc. $3^{\text {n }}$ dia. $£ 2$ ref J2P14. INFRA RED BEAM SWITCH $24 \mathrm{~V} D \mathrm{CC} 5 \mathrm{~m}$ range soufce \& sensor housed in plastic case. £12 ral J12P1.
CAPACITOR BARGAIN PACK 100 CERAMICS $£ 2$ REF J2P2. SPECTRUM JOYSTICKS TWO FOR E5 REF J5P2.
AMSTRAD PG CASE, POWER SUPPLY AND 720k FLOPPY
DRIVE ALL THIS FOR £30 REFQ30P15 DRIVE ALL THIS FOR £30 REFQ30P15
BUMPER PACK NO 110 of our popular $£ 1$ packs for just $£ 5$ our choce of contents
BUMPER PACK
BUMPER PACK NO 225 of our popular §1 packs for just $£ 12$. Our choce of contents.
LCD 1×32 DISPL
CDis of data for a similar display. E3 ref L3P 1
fully cased with UNCASED PC POWER SUPPLIES Stand 66 ref K 6 P
case, fan etc. Good for spare or tow cost PCl $£ 4$ ref L 4 P 6
RADAR DE TECTORS. Detects X and K bands (ie speed traps). Not legal in the UK so only avallable if you intend to export'tt. 559 100 WATT MOSFET PAIR.Same spec as 2 Sk 343 and 2SJ4 43 ($8 \mathrm{~A}, 140 \mathrm{v}, 100 \mathrm{~W}$) 1 N channel and i P channel. £3 a pair ref $J 3 \mathrm{P9}$ LOW COST CAPS. 1,000 capacitors $£ 3(33 u f, 25 \mathrm{v})$ ref J3P10. VEL. CRO. I metre length 20 mm wde, blue $£ 2$ ref J2P 16 JUG KETTLE ELEMENTS. Good general purpose heating element just £3 ea rer £3P8 or 5 for £to ret J1OP3.
VERY BIG MOTOR. 200v induction $1.1 \mathrm{kw} 1410 \mathrm{pmm} 10 " \times 7$ GEC 4" keyed shatt Brand new. £95 ref J95P1.
BIG MOTOR. $220-240 \mathrm{~V} 1425 \mathrm{pm} 2.845 / 8 \mathrm{th}$ " keyed shaft GEC $6.5^{\prime \prime}$ $\times 8^{\prime \prime}$ complete with mounting piate. £38 ref J38p 1
SMALL MOTOR. Electrokix 160 watt 3,000 rem
SMALL. MOTOR. Electrohux 160 watt $3,000 \mathrm{rpm} .220-240 \mathrm{~V} 5 / 8^{\prime \prime}$ shate procision built $£ 18$ ref J 18 P .
PROMS 27 C25 PACK OF 10 REF MTP1
EPROMS 27 C 256 PACK Of 10 £ 9 REF M9P1
EPROMS 27C512 PACK OF 10 £10 REF M10P1
MODEMS FOR £1.25? These modems are suitable for stripping SOH AR POWERED WOODEN MOD 3
SOLAR POWERED WOODEN MODEL.S. Complete with solar panel, motor and full instructions. $£ 9$ ref J 9 P 2.3 diff $£ 20$ ref J 20 P 3
SOUND OPERATED LIGHT. Clap your hands and on. Turns after preset delay (4 AA 's req'd). £2 ref JZP3
FERGUSON SRB1 REMOTE CONTROLS. Brand new units $51 / 4^{*} 360 \mathrm{~K}$ DISC DRIVE Made for AMSTRAD 1640/1512 ma chines. White front. Our price just $£ 9$ ref OSP-1
1993 CATALOGUE AVAII.ABLE WITH ALL ORDERS IF RE QUESTED OTHERWISE A4 SAE FOR FREE COPY.

IN SUSSEX? CALL IN AND SEE US!

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

200MHz FPGAs. AT\&T's ATT3000 series of field-programmable gate arrays now run at 200 MHz - a performance attributed to the use of the company's 0.6 micron salicided cmos process. Devices toggling at 230 MHz are expected in production early in 1993. AT\&T Microelectronics, 0344865927.

Asic libraries. The Liberty series of physical layout libraries and compilers from Compass allows a designer to choose the foundry and cmos process for production. As well as working with the Compass Navigator system, the series supports a variety of design tools such as Mentor Graphics, GenRad and Zycad. The library includes gate array and standard cells, ram and multiplier compilers and the Compass Datapath compiler. Compass Design Automation, 0908 661729.
0.8 -micron gate arrays. Four new devices have joined Hitachi's HG62G gate array family. Gate counts now reach 54200,51100 and 70500 , with i/o of 264,288 and 336 . The fourth device is for smaller applications and contains 10000 gates with 136 i/o pads. The HG62G family offers subnanosecond operation (0.3 ns for a 2 input power Nand) and operates from 2.7 V to 5.5 V rails. Hitachi Europe Ltd. 0628585000.

Discrete active devices

Fast-recovery mostets. ABB-IXYS HiPerFET mosfets allow the use of the $A B B-I X Y S$ intrinsic diode in freewheeling applicationns due to its fast reverse recovery, which is 60% faster than standard mosfets with no increase in on resistance. The one intrinsic diode eliminates the series schottky and parallel diodes. The range includes $75 \mathrm{~A} / 100 \mathrm{Z} / 0.0252$ up to 12A/1000V/1.05s2 types all with reverse recovery time of less than 250ns. Kudos Thame Ltd, 0734 351010.

Digital signal processor
Histogrammer. Harris's HSP48410 is described as a
histogrammer/accumulating buffer and is designed for extremely accurate histogram calculation and image contrast enhancement in machine vision systems, target recognition and medical imaging. It will evaluate contrast in images of up to 4096 by 4096 pixels and generate a histogram of input gray levels for manipulation or analysis, the data being used to modify or en'rance the image. Harris Semiconductor (UK) Lid. 0276686886.

Linear integrated circuits

Video amplifier. Comlinear's CLC411 is a 200 MHz video op-amp intended for HDTV. composite video line driving and D-to-A output buffering. Slew rate is $2300 \mathrm{~V} / \mu \mathrm{s}$ with a settling time to 0.1% of 15 ns . To 30 MHz , gain varies less than 0.05 dB and diff. gain and phase are within 0.02% and 0.03% respectively. The device has fast, break-before-make enable and disable. Joseph Electronics Ltd, 0216436999

Zero-drift op-amp. Linear claims its new LTC1250 chopper-stabilised opamp to be the lowest-noise device of its type available. From 0.1 Hz to 10 Hz . noise is $0.65 \mu \mathrm{~V}$ pk-pk in the presence of a 4.2 V output swing into $1 \mathrm{k} s 2$. Sample-and-hold capacitors are on the chip. Particularly useful for bridge transducers, there is only $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ offset drift and maximum offset is $10 \mu \mathrm{~V}$. Linear Technology (UK) Ltd, 0276677676

Dual/quad op-amps. LT1112/4 dual and quad op-amps from Micro Call are claimed to exhibit the lowest offset voltage of any such nonchopper stabilised amplifier available. Typical and maximum figures are $20 \mu \mathrm{~V}$ and $70 \mu \mathrm{~V}$, both with a maximum drift of $0.5 \mu \mathrm{~V} / \mathrm{deg}$.C. Input bias and offset currents are both 250pA. Noise performance of both devices between 0.1 Hz and 10 Hz is $0.32 \mu \mathrm{Vpk}-\mathrm{pk}$ and slew rate is $0.3 \mathrm{~V} / \mu \mathrm{s}$. Micro Call Ltd, 0844261939

Triple video amplifier. Elantec's EL4390 consists of three 50 MHz current feedback amplifiers each with a DC-restore amplifier activated by a common TTL/cmos-compatible control signal and each having a separate restore reference. Response is flat to within 0.1 dB to 10 MHz and slew rate is $900 \mathrm{~V} / \mu \mathrm{s}$. Microelectronics Technology, 0844 27878.

Video distribution. A low-cost video distribution amplifier, the EL2099 from

Optical devices
Bright, blue leds. Sharp's GL5BX43 silicon carbide lightemitting diode has a luminous intensity of 16 mCd at 20 mA , emitting at a wavelength of 470 rm and a bandwidth of 70 nm . Sharp points out that RGE displays using leds are now possible. Sharp Electronics (Eurppe), 010494023 76-a.

Elantec. will drive up to six double terminated cables at a -3 dB bandwidth of 60 MHz and a gain of 2 , giving $\pm 11 \mathrm{~V}$ into 25 s 2 and slewirg at $900 \mathrm{~V} / \mathrm{us}$. Output current is 500 mA and differntial phase and gain are said to be low. Microelectronics Technology. 0844278781.

FN pager receiver. Phiips clams its UAA2080 to be the most advanced single-chip direct-conversion FM receiver for pagers. When used with the PCF5001T decoder the result is a two-chip wide-area beep-only pager or a hign-performance display pager front end. The chip receives and demodulates FM NRZ FSK data, operating at up to 512 MHz with a sensitivity of -124 dBm for a biterror rate of less than $3 / 100$. Active and standby currents are 2.7 mA and $3 \mu \mathrm{~A}$. Philıps Semiconductors Ltd. 071436 4144.

Complementary mosfet arrays.

 Complementary mosfet pairs in the same package from Ze:ex feature a 60 V maximum drain/source volatge and a peak current rating of 3A. The ZVC2016E handles 280 mA continuously and has a gate/sourcethreshold of 3.5 V at 1 mA , with an on resistance of 5 sz at 10 V and 500 mA . Zetex plc, 0616274963.

Logic building blocks

Character display. Two ICs from Philips, the PCA8510 and PCA8516, are designed to generate on-screen characters for television displays and camcorders, being the first to incorporate software half-tone colour control to enhance readability. They will show a full screen of up to 13 or 40 lines of 36 or 40,12 by 18 characters, depending on the television standard. Philips Semiconductors Ltd, 0714364144.

Memory chips

4Mbit eproms. AMD has announced the Am27C4096 and Am27C400 devices, the former being organised as a 256 K by 16 bit type and the latter a rom-compatible cmos device userconfigured as 512 K by 8 bit or 256 K by 16 bit eprom. Both are in 0.85μ cmos and possess an access time of 120ns. Advance Micro Devices UK Ltd, 0483740440.

4 Mbit word-wide drams. Hitachi's second generation of devices, the HM514260A 256K by 16 -bit type and the HM514280A256 by 18 -bit unit are dynamic rams in $0.7 \mu \mathrm{cmos}$, with access times down to 70 ns . The 60A uses only 825 mW when active. reducing to 1.1 mW from 5 V on standby. Hitachi Europe Ltd. 0628 585000.

Mixed-signal ICs.
Electronic digital pot. From Dallas, the

2kW linear amplifier. A 2000 W linear amplifier by Apex, the PA30, produces up to 8 kW pulse output and the 2 kW continuous from zero to 40 kHz . Output current is 50 A continuous (100 Apk) on rail-torail supplies of up to 200 V . Power mosfet outputs avoid secondary breakdown and onchip sensors provide thermal protection. The package measures 2.8 by 2.2 by 0.4 in Microelectronics Technology 0844278781.

Dallastat DS1668/1669 is a digital intewrface and non-volatile memory, forming an alternative to mechanical potentiometers. DS1668 has a manual interface and the 1669 is configurable for two-button opeartion, both types being digitally controlled by means of the interface. The memory retains last setting when power is removed. Values are in three ranges up to $10 \mathrm{k} \Omega 2,50 \mathrm{k} \Omega$ and $100 \mathrm{kS} \Omega$. Joseph Electronics Ltd, 0216436999.

Distance sensor. The GP2D02 distane sensor by Sharp contains an infra-red led, a position sensor and signal-processing to measure distances between 4 cm and 30 cm or $10 \mathrm{~cm}-80 \mathrm{~cm}$, depending on the version. Output is in the form of an 8 bit code. Current consumption is 7 ma or 4.5 mA , dropping to $2 \mu \mathrm{~A}$ in the absence of a reflective object. Sharp Electronics (Europe), 010494023 76-0.

Power semiconductors

Power mosfets. Hitachi's fourth generation of power mosfets, the DIVL series, are smaller in size and exhibits smaller conduction and switching losses. On resistance is now down to 18 ms for a 60 V device and fall time has been reduced by
30%. Reverse recovery time is typically 125 ns . The range includes more than 20 types of n and p channel devices at 60 V and lower breakdown. Hitachi Europe L.td, 0628 585000.

Switching regulator. Two 200 kHz current-mode off-line switching regulators by Linear provide 1\% regulation and stabilisation with no opto-coupler for feedback, power transmission and secondary sensing being done via the transformer. LT1105 has a totem-pole output to drive an external fet, while LT1103 has its own fet output, the former being designed for 50 W -250W output and the latter for $10 \mathrm{~W}-100 \mathrm{~W}$ operation. Linear Technology (UK) Lid, 0276677676.

Power mosfets. APT10050JN is an n-channel 1 kV power mosfet from APT, rated at 520W dissipation and packaged in SOT-227. The single die is rated at 20A, with a drain/source on-stae resistance of 0.5Ω, meeting 2.5 kV RMS isolation. Microelectronics Technology, 0844278781.

Regulators. Sharp's $P Q$ series of voltage regulators drops only 0.5 V from input to output, reducing power loss and therefore the need for large heat sinks. Output current is up to 2 A ; regulation is 0.2% for a 2000 -fold load current increase and stabilisation gives a 0.4% output voltage change for a two-fold input change. Sharp Electronics (Europe), 010494023 76-0.

DIP power. Power+Logic is a new range of Tl peripheral drivers in dip packages - the first to combine power transistors and cmos logic on the same substrate. TPIC6259 is an 8-bit addressable latch; TPIC6273 an octal D-type latch; and TPIC6595 an 8 -bit shift register, all working in the range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Texas Instruments Lid, 0234223252.

PASSIVE

Passive components

Tantalum chip capacitors.
Capacitors in Murata's 227 range measure 1.2 mm in height and have a range of values from $0.1 \mu \mathrm{~F}$ to $6.8 \mu \mathrm{~F}$ in voltage ratings of $4-20 \mathrm{~V}$ DC Leakage current is less than $0.4 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$. Murata Electronics (UK) Ltd 0252811666.

Connectors and cabling

2 mm IDC connectors. Cambion has the 2630 series of insulationdisplacement sockets and headers in straight and right-angle form for termination of 1 mm 28 awg ribbon cable. Current capacity is 1A per line. These tuning-fork contact sockets with a barb to retain the cover come in 12 to 50 -way versions and offer a contact resistance of 20 ms 2 and insulation resistance of 1 GS . Interconnection Products Lid, 0433 21555.

Tough microwave cable. Internally strengthened microwave cables from Gore are small in diameter, low in weight and flexible, but withstand $175 \mathrm{lb} /$ /inear inch, which means they will take the weight of a forklift truck, should the occasion arise. The cables have Gore-Tex expanded PTFE dielectric, giving a temperature range from $-200^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. A range of connectors is available. WL Gore \& Associates (UK) L.td, 0382561511.

Filters

Chip EMI filter. Murata's NFM51/52REM1 filters offer 100dB/decade damping and are intended for use with digital circuitry, eliminating noise from clock and video RGB circuits or that from DSP and image processing equipment. Four cut-offs are available: 50 MHz $100 \mathrm{MHz}, 200 \mathrm{MHz}$ and 500 MHz suppression at 5 GHz still being about -40 dB . Murata Electronics (UK) L.td, 0252811666.

Hardware

Rectangular feedthrough C .
Possibly the first mass-produced rectangular feedthrough capacitor is produced by Beck. It measures 4.9 by 4 by 2.7 mm and was designed to fit over the rectangular 30A pin of a car component. Values of the ceramic capacitors is 1000 pF at 100 VDC . Beck Electronics Ltd, 0493856282.

Product labels. Into-mark and Appliance-mark by Donprint are label-
printing devices, using on-screen design and 300dot/in printing on material capable of withstanding temperatures up to $380^{\circ} \mathrm{C}$ and a variety of cleaning materials including petrol,detergents and some fairly hostile chemicals. Donprint Label Systems Ltd, 0355249191.

RF seals. Conductive, elastomeric materials for Anti-EMI sealing from Dunlop have been tested to US military spec. MIL-G-83528A. The new materials are based on silicone and fluorosilicone rubber with metallic or metal-coated fillers and reinforcements such as metallised fabric, which offers a $0.001 \Omega / \mathrm{cm}$ resistivity. These materials will attenuate frequencies up to 18 GHz by up to 100 dB . Dunlop Precision Rubber, 0509502151.

Infra-red pocket boxes. Hand-held boxes designed to hold IR circuitry for signalling or remote control by OKW are said to be the only ones available with IP65 sealing and battery compartments. They are made in polycarbonate and ABS in three sizes and a belt clip is an option, as is machining and silk screening to order. OKW Enclosures Lid, 0489583858.

EMC shielding. Econoshield is RFI Shielding's new material for the commercial sector where low compreesion force is needed round doors, for example. Shielding is effective between 30 MHz and 1 GHz , providing around 30 dB attenuation. The material consists of polyurethane foam covered by a layer of Monel wire, available in a variety of crosssections, most being available with a pressure-sensitive adhesive backing RFI Shielding Ltd, 0376342626.

Instrumentation

Measuring receiver. ITT's VX600S
TV measuring receiver copes with satellite and FM ranges, meeting European standards for ality monitor, video modulation and video/sound separation. As video and sound quality monitor, it reproduces on screen a zoomable picture, with the input signal and line trigger. It will also operate as a spectrum analyser. Feedback Instruments Ltd, 0892 653322.

EMC components. Global introduce a range of EMC antennas and custom made chokes and filters. Antennas cover the $20 \mathrm{MHz}-1 \mathrm{GHz}$ frequency range in biconical and log. periodic form and are supported by most automated EMC software. Global Specialities, 0978853920.

Wider-range sig gen. HewlettPackard has expanded the frequency range of its HPTO340A modular signal generator with the addition of a new module, the HP70341A 10MHz-1GHz unit. Modulation is $60 \mathrm{~dB} \log$. AM,

10 MHz peak FM deviation and pulse modulation with less than 10ns rise and fall times. Frequency resolution is 1 kHz , or 1 Hz as an option. HewlettPackard Ltd, 0344362867

Digital multimeter. Saje's 7130 bench multimeter is programmed via RS232 or, as an option, IEEE488, to measure alternating and direct voltage and current, frequency and power in VA. Mathematical facilities offered are percentage, compare, difference, maximum/minimum and relative, these being intended to ease production batch testing. Saje Electronics, 0223425440.

Multi-function measurements.

Scopemaster from Thurlby-Thandar is a combined oscilloscope, countertimer, data analyser and multimeter in one case, the whole costing $£ 450$. The dual-channel digital storage oscilloscope has a 20 MHz bandwidth, sampling at $20 \mathrm{Msample} / \mathrm{s}$, with a repetitive mode to 2.5 ns resolution. There are ten waveform stores and a printer output. All the separate instruments use the oscilloscope's 3 in LC screen and the wholething is battery-powered. Thurlby-Thandar Instruments, 0480412451.

TV signal-level meter. Leader's model 952 multichannel television and satellite signal-level meter is programmed to cover VHF/UHF television and CATV as well as satellite channels. It can cover up to 128 channels simultaneously, with a bargraph dispaly automatically scaling to respond to both snallest and largest signals in a group. Both sound and vision carriers are displayed and the instrument stores in nonvolatile memory four sets of eight channels, channels from any band being shown together. Thurlby-Thandar Ltd, 0480412451.

Literature

Sensor handbook. Piezoresistive
silicon pressure sensors and transmitters, with application notes on signal conditioning and interfacing, are all described in a new handbook from Sensortechnics in Puchheim, Germany. Sensortechnics GmbH, 010 49 89-80 0830.

Materials

Ceramic HV capacitors. A range of capacitors from the Cera-Mite Corp. handle up to 13 kV RMS at 60 Hz , using a new ceramic material. Capacitance values are 400pF to 4700 pF working at $10 \mathrm{kV} \mathrm{DC/4kV}$ RMS at 60 Hz to 40 kV DC/ 13 kV RMS at 60 Hz . The material in the KT series confers improved reliability and stability, tighter tolerances and low dissipation. Acal Electronics Ltd, 0344 727272.

Power supplies
Programmable PSU. Thurlby Thandar offer the TSP3222, a dual programmable power supply intended as both bench unit and as jart of an ATE system. Outputs are both $0-32 \mathrm{~V}$, $0-2 \mathrm{~A}$, independent and isolated to 300 V . Both operate in constant-I or constant-V mode with automatic crossover and switching of the display from current to voltage. A GPIB interface is fitted and a LabWindows device is an option. Feedback Instruments Ltd, 0892653322

Memory protection. Double-layer capacitors from Surtech are small and light alternatives to the batteries usually used for memory frotection, offering a reduced backup time and reduced board space. Th $\in A C 300$ or Ace Caps work in the $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range. Surtech Interconnection Ltd, 025651221.

Battery protection. TI has the $4 M M$ - a bimetallic protector fcr rechargeable batteries. It guards against both thermal overload and short circuits, replacing the two devices normally used. Texas Instruments, 023422325°.

Radio communications

 productsLinear amplifier. AML's new APO1501640 1.5-1.6GHz linear power amplifier provides a 10 W output with a gain of 22 dB , flat to within $\pm 0.2 \mathrm{~dB}$. A feature is gatecurrent monitoring to achieve enhanced reliability. Eurcpean Microwave Components, 0376 515200.

Telemetry RX module. SILRX-418-A is a sil-outline UHF radio telemetry receiver module made by Radiometrix. It is meant for use with the TXM-418-A transmitter module in low data-rate paging applications and is a PCB-mounted 418 MHz receiver, needing only an antenna. The doubleconversion FM superhet and data slicer driven by the AF output will drive a digital decoder for secure links. Maximum active-mode current is $15 \mathrm{~mA}-130 \mu \mathrm{~A}$ when on standby. Quantelec Ltd, 0993776488.

Switches and relays

Low-noise relay. CRX-12X from BLP is a relay designed for the car industry, having a low level of acoustic noise (60 dBA) so that intermittent windscreen wipers, tor example, do not cause too much of a racket. It has silver alloy contacts and operate and release times of 6 ms and 2 ms respectively. BLP Components Ltd, 0638665161.

Miniature RF relay. A 12 V miniature PCB-mounted RF coaxial relay marketed by Cirkit will switch up to $50 W$ CW at 1 GHz , with a maximum insertion loss of 0.3 dB at 1.8 GHz and an SWR of $1: 1.3$ at 1.8 GHz . Line impedance is 50Ω and contact form is single-pole changeover. Cirkit Distribution Ltd, 0992444111.

PCB connector. A surface-mounting dual-row inverse connector from Methode has an off-the-board height of 7.1 mm . It comes in two forms: one with vertical holes and the other with horizontal holes for insertin from either side, both having from two to forty positions on each row at 01 in pitch. Contacts handle up to 3A. Methode Electronics Ltd, 0535 603282.

PCB switches. A new family of subminiature switches by Elma, thr Type 09, are meant for PCB mounting or for through-panel use. Either toggle or push-button variants are made the toggle type with two or three pcsitions and the button type in latching or momentary contact form, with the option of illumination. Padiatron Components Ltd, 081-891 1221

Transducers and

sensors

Miniature gyro. Murata's ENC-05S

Radio data link. A range of UHF communiactions equipment by Wood \& Douglas is intended for remote outdoor use. The SurTel data link provides simplex or semi-duplex communication over a 20 km line-of-sight range, interna modems transferring data at 1200 and 2400 baud. The required supply is either $12 \mathrm{~V} D C$ or mains and a standby circuit maintains only the oscillator in operation, thereby ensuring minimum frequency drift with a short power-up delay. Wood \& Douglas, 0734811444.

Gyrostar is a miniature version of the company's triangular piezoelectric vibratory instrument, which uses a prism to increase sensitivity by 100 times compared with a tuning-fork type. The triangular structure overcomes the vulnerability to vibration suffered by earlier designs. Bandwidth is 50 Hz , the maximum angular velocity of $\pm 90^{\circ} / \mathrm{s}$ producing a 72 mV DC variation about the 2.5 V reference. Murata Electronics (UK) Ltd, 0252811666.

Position transducer. Rayelco miniature position transducers by Magnetek use the extension of a spring-loaded cable to drive the fixed sensor, the cable being capable of mounting in variable directions. Five models in the range cover 0 -2in to 0 20 in at $\pm 0.15 \%$ of full scale maximum error, while withstanding 20 g and 0 $200^{\circ} \mathrm{C}$. Powertronic International Ltd, 0438759377.

COMPUTER

Computer board level products

Data acquisition. Two boards freom Amplicon, the C10-AD16ir/ir-AT, are for use with PC XT/AT and compatibles and are 100% compatible with the DAS16G board One is a half-length 140 mm board taking 300 mA from the computer and having 16 single-ended or eight diff. analogue inputs, the $3 \mu \mathrm{~s}$ converter acquiring and transterring at up to 100 kHz . The ${ }^{* * * j r-A T}$ is three times faster and is able to use the Repeat Input String for $286+$ computers for data transter at up to 330 kHz . Amplicon Liveline Ltd, (Free)0800 525 335.

Software

Mathematical modelling

 VisSim from Adept Scientific is an interactive, intuitive maths modelling program, running under Windows, for work on animated simulation, real-time control and dynamic analysis. It require no knowledge of programming and is entirely graphic in presentation, including over 70 linear and non-linear function blocks to be "wired" together on screen to form graphical equations defining the process, at which point a mouse click run s the simulation. Adept Scientific Microsystems, 0462480055.STEbus processor board. Arcom's new SCIM486SLC is a highperformance embedded computer based on the Cyrix Cx486SLC processor. It is the first 486SLC to run on STEbus and is wholly contained on a 100 by 160 mm Eurocard. The processor has a 32-bit internal data path and 1 K of on-chip cache to allow risc-like single-cycle execution. A 16bit hardware multiplier performs integer multiplication up to eight times faster than in a 386 to improve video performance by 100%. The unit runs at 25 MHz and, with an SVGA adaptor fitted, is effectively a PC AT. Arcom Control Systems Ltd, 0223411200.

Analogue, digital and timing i/o. Three multifunction boards from National for the PC offer analogue, digital and timing i/o data acquisition. AT-MIO-64F-5 has 64 single-ended analogue inputs to 12 bits, eight TTL digital i/o lines, three counter timers and 16 -bit DMA, all at 200 kHz . AT-MIO-16X has similar facilities, with a 16 -bit sampling ADC and AT-MIO16D a 12-bit ADC. National also has the Lab-PC+, an improved version of the Lab-PC providing differential inputs a no increase in cost. National Instruments UK Ltd, 0800289877.

Card memories. Triangle point out that the demand for card memories for notebooks has greatly reduced the price and that they are therefore worth considering for industrial use The company offers the TDS 20200 based computer module and TMB-200-03 or TMB-55-03 card memory readers, which attach to a PC and appear as another disk drive to the computer, reading data in the sameway as from a dos file. Triangle Digital Services Ltd. 081-539 0285.

Development and

 evaluationPIC16CXX emulator. Running on PC 286 upwards, Microchip's Picmaster universal in-circuit emulator now handles the company's PIC16CXX

range of microcontrollers. the industry's only 8-bit risc family. It will support different family members by means of a probe card change. Arizona Microchip Technology, 0628 850303

Universal programmer. BP-1200 from BP Microsystems Inc. is claimed to be the first programmer capable of programming and testing up to 240 pins in DIP, PLCC, LCC, QFP, PGA, SOIC and TSOP packages. Attention has been paid to the rescction of ground bounce, so that tre units cope with fast cmos PLDs and FPGAs. Direct Insight Ltd, 0455558854.

Image compression. The JPEG image-compression board for PCs by C-Cube Microsystems is now available in Europe. It is $\hat{\varepsilon} \mathrm{n}$ ISA halfcard running at 10 MHz ar d supporting grey scale, YLV (4:2:2 and 4:4:4), CMYK and 24-bit RGB. Data compression rate is more than $1 \mathrm{Mbyte} / \mathrm{s}$, allowing the un to compress or decompress a 24 -bit, 640 by 480 image in 0.7 s on a 386SX. The still-image development kit includes schematics, PAL equations, .BMP-compatible link library source and full documentation. Kudos Thame Ltd. 0734351010.

Eprom emulator. Optorom from Raisonance will emulate 8 -bit eproms from the 27 (C) 16 to the 27 (C) 080 with no hardware upgrading, and handles eproms in 16 and 32 -bit mode up to 4 by 4 Mbit using an add-on board. Data can be down-loaded from from the serial port of a PC at 115 Kbaud in binary, Intel-hex, Tektronix and Motorola formats over a high-speed opto-isolated RS232 link. Logicom Communications Ltd, 0817561284.

Turbo C debugger. ChipView-51 is Nohau's new C source-level turbo C debugger for the company's range of EMUL51-PC in-circuit emulators, compatible with the Borland Turbo Debugger. The unit provides up to 16 K source lines using the standard trace board with a mix of detailed functions. Breakpoints can be to stop

16-bit GPIB controller. Amplicon's INES-ATIEEE 488.2 GPIB controller board performs all the IEEE talker, listener and controller functions to make an AT PC either the bus controller or appear as a listener. DMA transfer mode is automatic and transfer rate is $1 \mathrm{Mbyte} / \mathrm{s}$. A command interpreter supplied allows calls of the IEEE routines from any programming language and Windows 3 and above is supported by dynamic link libraries, languages included are most of the Basics, Pascal, Forth, Fortran and C in their various quick and turbo guises. Amplicon Liveline Ltd, (Free)0800 525335.
at the breakpoint, rather than at one op-code after it, as is usual. Ove 150 K of context-sensitive help is provided. Nohau UK Ltd. 0962 733140.

Computer peripherals

Paradise upgraded. Western Digital's improved software drivers for its Paradise accelerator card for Windows delivers performance gains of up to 77% over the previous version 1.0. Utilities include drivers for Lotus 3.1. Microstation 4.03 and VersaCad 6.0. Current Paradise users will be able to obtain the drivers free. Western Digital (UK) Ltd, 0372 742955.

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM
 NG2 3GY
 TEL: (0602) 864902 \& 864041 FAX: (0602) 864667

FARNELL RB1030-35 Electronic Loads 30V at 35A Capability. 3.5 DigitLED Readout of Volts and Amps£199
FARNELL TM8 Automatic Sampling RF Millivoltmeters $£ 179$
RACAL RF Millivoltmeters 9301 £99 9302 £115
RACAL 9009 Modulation Meters $£ 99$
SAYROSA 252 Automatic Modulation Meters $£ 99$
MARCONI TF 2022 Signal Generators AM FM l0Khz to 1000Mhz £1100
Farnell SSG520 Synthesised Signal Gens 10Mhz-520Mhz $£ 499$
Farnell TTS520 Transmitter Test Sets 10Mhz-520Mhz $£ 649$
Farnell LA520 Wide Band Amplifiers (27db) for SSG520 $£ 75$
HP182C Scope +1601 Logic Analyser Plug In - One Only to Clear £99
HP 1600A + 1607A Logic Analysers - One Pair Only to Clear £125
TEK 191 Constant Amplitude Signal generators £65
BIRD 43 RF Power Meters £90
Inserts for 43 Power Meters - Please Phone for Current StockBIRD DUMMY LOADS 50W..........£35 150W..........£80 500W........... 595
OSCILLOSCOPES 34 Models in Stock ... These are just a selection
FARNELL DTV 12-14 12Mhz Dual Trace £150
FARNELL DTCl2 12Mhz with Component Tester £175
LAST FEW Gould OS300 20Mhz Dual Trace £165
TEK/Telequipment D755 50Mhz Dual Trace and Timebase £245
TEK/Telequipment D83 Dual Trace and Timebase £275
PHILIPS PM3217 50Mhz Dual Trace and Timebase $£ 325$
GOULD OS3600 + DM3010 100Mhz Dual Trace and TB + DVM £375
TEK 475 200Mhz Dual Trace and Timebase £475
HP1740A Dual Trace and Timebase 100Mhz $£ 575$
TEK 2215 60Mhz Dual Trace and Timebase £575
HP1741A 100Mhz Dual Trace and Timebase + Storage $£ 675$
All prices excluding VAT \& carriage.

APPLICATIONS

Fast - and safe - charging of NiCds with DSP

Cellular telephones and faxes, laptop computers, camcorders and similar fashion-accessories are lumped together in a note from Integrated Circuit Systems as "nomadic products" - a term worth a note in its own right. However, the piece is all about rapid NiCd charging without blowing up the NiCds in the process.
The company offers the ICSI700 rapid charge controller, which is an IC designed to charge batteries intelligently, using the Christie Electric Reflex principle to charge batteries in $20 \mathrm{~min}-1 \mathrm{~h}$ instead of many hours.
Conventionally, NiCds makers say their cells should be charged at the 10 h rate, which means that 14 h is usual. to take account of losses. Faster charging allows too little time for hydrogen/oxygen recombination and increases gas pressure to the point where the vent opens and electrolyte is lost. Some expensive batteries are around that will take a charge in about five hours. Memory effects, caused by
partial discharging and full recharging reduces capacity. But it is restorable by several decp discharge/recharge cycles.
Several methods of rapid charging have been put forward, but most have drawbacks, mainly concerned with difficulties in determining the end-of-charge point.
In the Reflex method, a high charging current is interrupted once a second by negative current pulses, which strip accumulated oxygen bubbles from the plates and assist recombination. It has been shown that a high rate of charge increases charge acceptance, which reduces heat generation. which increases charge acceptance, and so on. In a paper referred to in the note, it is said that the Reflex principle allows rapid charging to full capacity at an efficiency of over 95% with low cell heating.
The IC decides when to stop charging in eight different ways, none of which depends on the battery being overcharged. Chief among these is inflexion-point

measurement, which stops charging when overcharge is starting and before internal pressure rises.
Voltage is measured during the quict period after the short discharge pulse. This accurately represents true charge state and, since there is no current flowing. is not distorted by internal resistance drops or plate surface charge. An infinite impulseresponse filter eliminates random system noise and a linear regression algorithm obtains the best fit for the voltage samples. Cut-off can then be determined by comparing the first derivative with a reference slope. The algorithm is stored in the chip's microcode rom.
In the event that unmatched cells are under charge, the inflexion point may be indeterminate, in which case the negative derivative termination stops charging at the maximum point of the charge curve.
When fully charged. rested batteries that have lost surface charge are put under charge and there is a rapid initial rise in voltage, which is detected, and charging stopped. If they have not rested long enough to lose the surface charge, they can produce a negative slope initially, which again is detected and charging stopped.
If a battery is of high impedance, or its contacts not making properly, this is also detected, charging stopped and a fault signal generated.
A consistent low charging voltage denotes a shorted cell or contacts. Charge stops and a fault signal produced.
Additionally, a timer and a thermal switch are present to stop charging after a preset time or in an over-temperature condition.
After normal charging is complete, a maintenance mode takes over, the same regime applying an equivalent average maintenance current to keep the battery free from dendritic formation and the plates in correct crystalline structure.

Amega Electronics Ltd, Armstrong Road, Daneshill East, Basingstoke, Hampshire RG24 OPF. Telephone 0256843166.

Programmed delays

For applications such as multiple signal path de-skewing, programmable oscillators and pulse generators, delay detection and setting-time measurement, the Analog Devices AD9501 offers 10ps resolution at delays between 2.5 ns . up to $50 \mathrm{MH} \nsim$. Figure 1 is its internal block diagram. A positive-going input pulse triggers the ramp generator, whoseoutput is compared with the output of a D-to-A converter, the inputs of which are sat by the user: timing diagram Fig. 2. shows what happens. Ramp slope is set by external RC. which governs maximum available delay. actual delay being the total of two circuit delays - trigger and ramp delays - and that programmed by the user. The ramp resets itself. returns past the zero reference and setules before a neweycle can start, the time between the comparator's being triggered
and reset being the output pulse width. Data is held whiee Latch is high: when this pin is low, the D-to-A follows theinputs if the relevant timing is observed.
De-skewing is accomplished by the circuit of Fig. 3. When signal paths in parallel carry high-speed data. delay matching must be precise, but can be difficult to achieve with varying lead lengths and impedance changes. The skew is removed by this circuit. in which one stimulus is applied to
all $A D 950 / \mathrm{s}$ in use. delays for each path measured and adjusted by the digital inputs. An oscillator with programmed frequency and duty cycle is made as in Fig. 4. Changing programmed delay in each AD950/ changes frequency and duty cycle. frequency being $\left.f=1 / 21_{P D}+t_{P 1}+t_{D 2}\right), t_{D 1.2}$ being the two programmed delays and tPD the minmum propagation delay.
The random pulse generator of Fig. 5 agan uses two AD9501s, triggered together

Fig. 2

Fig. 1

Fig. 3

Fig. 6
and driving an RS flip-flop. If the microprocessor bus varies the digital from clock to clock, a pulse train with varying duty cycle and pulse width, is produced.
To measure an unknown delay, use the circuit of Fig. 6. which is a little like a
successive-approximation A-to-D converter, except that the flip-flop is used instead of theA-to-D's comparator. In calibration, short out the uknown delay with clock at both $A D 950 / \mathrm{s}$, the top one being programmed for a delay longer than the zero-set programmed
delay of the lower one, which is done by incrementing the data into the top delay generator until the SAR outputs 02H or more. Delay through the top generator is now a little longer than through the other, so that the SAR output is the reference for measuring when it is reinstsated. All this compensates for stray delays and setup times.

Analog Devices Ltd, Station Avenue, Walton-on Thames, Surrey KT12 1PF. Tel: 09322232222

Filtering reference voltages

Athough the Burr-Brown REF102 buried-zener 10 V reference lays claim to better stability and five times lower noise than a bandgap reference, noise is still around $600 \mu \mathrm{~V}$ pk-pk at a noise bandwidth of 1 MHz . As is pointed out in Application Bulletin $A B-003$, Vol.1, filters and buffers go some way towards reducing noise and its bandwidth, but not far enouth in manyapplications.
Figure 1 shows the usual sort of thing -- a single-pole filter and an op-amp buffer. One problem with this is that capacitor leakage current goes through R_{l} and is variable with temperature, particularly in large capacitors needed for this job. You then have a DC
error, which will drift. Then, again, the buffer puts its penn'orth of noise in, over its full unity-gain bandwidth, so even if the filter output is silent as the grave.
unacceptable noise still appears at the circuit output.
To solve both problems at a stroke, use the circuit of Fig. 2. The filter is now at the output of the buffer, where its -3 dB point is $2 T C R_{/} C_{l}$ (reducing noise bandwidth by, say, 100 reduces noise by 10). The $R_{2} D_{2}$ arrangement maintains stability and $R_{2} D_{2}$ should equal $2 R_{l} C_{l}$ to escape amplifier noise gain peaks. Resistor R_{2} should be kept fairly low, since it takes bias current and could cause DC error and noise; R_{l} should
also be low, since it takes load current, its volts drop increasing the required output swing. It should drop less than IV full load. Since the filter is now in the feedback loop, leakage current volts drop across $R_{/}$is divided by the loop gain, the DC output impedance is very low and the voltage across C_{2} is almost nothing, giving rise to negligible leakage current. When driving large capactiive loads, $\left(C_{I O A D}+C_{1}\right) R_{1}$ must be less than $0.5 R_{2} C_{2}$

Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hertfordshire, WD1 8YX Telephone 0923233837

Fig. 1."Obvious" reference voltage filters has its drawbacks - DC error that varies with temperature and noise from the buffer.

Fig. 2. Improved filter avoids both problems of Fig. 1. Filter reduces noise both from reference and op-amp and output impedance is low over most of frequency range. Leakage current from C_{2} is no longer a problem. Peak in output impedance near filter pole frequency of about 35 reduced by reducing R_{1} and increasing C_{1} - peak is $0.7 R_{1}$.

INTERFACING WITH C

by
HOWARD HUTCHINGS
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrev SM5 2AS.
Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 25.50$ + VAT. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

INSTRUMENTS Iosur

FREQUENCY COUNTERS

MX1010F and MX1100F are 8 －dig treq＿ercy col ters offering a broad range c－features．
MX1010F： 1 Hz to 100 MHz ，sensi－is ty o 15 mV and resolution to 0.1 Hz ，data alto set，10：1 attenuater，hith impedexe input－ £129．00 plus ©AT（ $£ 151.58$ ）．
MX1100F： 1 H to to 1 GHz ，features as M＞1010F exzepl ranges 70 MHz to 1 GH z and 50Ω impeda ce．£ 3300 plus VAT（ $£ 188.00$ ）．
 7eld frequenc；counters providing zortaslit／and h of performance． Both instruments provide measurement af fequency，period，count and RPM plus a view facility enablrg m n ，max，av and difference －eadings．
SC－130： 5 Hz bo 1.3 GHz ， 8 digit resdout，sensitivity typ cally 10 mV ， ligh impedance input，battery corcizion ndeator．$£ 1 C 9.00$ plus VAT － 128.08 ）．
SC－40：As SC－130 except 5 Hz to \pm COMHz 889.00 clus VAT － 104.58 ）．

VULTIMETERS

The $\mathbf{1 8 0}$ series of high performanss mult maters pricide advanced teatures and are supplied complete with probes，batery and rubber holster．The case is dust and splas rprco making ii iceal in most environments．Jesigned to meet I三C34E Llass II sa ety standard． 83： $31 / 2$ digit large LCD display，$A=V$ ，CCV，ACA，CCA，resis－ tance，continuty buzzer，diode test רold bzsic accurasy 0.5% ． £39．50 plus VAT（ $£ 46.41$ ）．
－85： $3^{11 / 2}$ digit LCD，bar graph，AC4，DC\％，FCA，DJA resistance， continuity buzzzer，diode test，hold，temperat re（ -4$)^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$ ）， capacitance（ 1 pF to $40 \mu \mathrm{~F}$ ），freque cy （ $1-\mathrm{z}^{\circ} \circ 200 \mathrm{k}-\mathrm{z}$ ）max min， edit，\％，compare，basic accuracy $0 \mathbf{3} \%$ ． $\mathbf{~} 74.50$ plus VAT（ $£ 87.54$ ） 187：As 185 e＞＞ept auto ranging． $\mathbf{\Sigma 3} .50$ plus VAT Σ^{-}I6．91）． 285：As 185 ersept 41／2 digit true Irs，tasic accurecy 3.05% ． £109．50 plus VAT（ $£ 128.66$ ）．

IMULTIMETERS（2）

The MX170B and MIC－6E offer low cost measurem 37：yet retain a large number c features．Supplied somp ete with puctes． MX170B： $3^{11 / 2}$ digit LCD，compact s ze, ACV DCV，工CA，resis－ tance，diode teat，low voltage battery test £é4．00 ples IAT （ 328.20 ）．
MIC－6E： $3^{1 / 2} 2$ disit LCD，ACV，DCV ACA．JGA，res s ance，diode test，buzzer．
£33．50 plus VAT（ $£ 39.36$ ）．

20MHz 2－CH OSCILLOSCOPE

The CS 402520 MHz dual trace osci loscepe offers a somprehen－ s ve range of facilities including a hige se sit vity vert cel amplifier providing from 1 mV to $5 \mathrm{~V} / \mathrm{div}$ in $\mathrm{CH}^{-} \mathrm{AL}^{-}$CHOP， $\mathrm{ADI}^{-1}, \mathrm{CH} 2$ modes with inverse polarity on CH 2 Therorizontal lir ebase offers a sweep range of $0.5 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{d}$－ ， $\operatorname{lus}>10$ sweep $₹$－pansion and $X-Y$ mode．Trig§ering can be auto o－normal from ver， $\mathrm{CH} 1, \mathrm{CH} 2$ ， line or external sources with couplin3 prev ded for A．，TV－F and TV－L．The CS4C25 is supplied comelete w th matching probes for £295．00 plus VRTT（£346．62）．

PROGRAMMABLE POWER SUPPLIES

The PPS series of GPIB programm＝ble DC fower sip3lies offer high performance yet are extremely 20 mpet t vely preec using a 16 $\times 2$ backlit LCD and 14 button keyp \equiv ．All turctions and conditions are easily selected and displayed．Overvclage and ore－current are selectable as is jutput enable／disatste．Te－minals for cl．put and sense are provi＝ed on the front anc rear te a low easy rack mounting． PJS－1322：0－32d 2A（GPIB）£375．0๊ plus VAT（ $£ 442.63$ ） PコS－2322：Dual 0－32V 2A（GPIB）E555．（1）plus VAT 5652.13 ）

FG 506 FG513

MX17C． 3 MIC－6E

20MHZ $3-\mathrm{CH}$ CSC：LLC：SCOPE
ELECTRINICS WORLD＋WIRELESS WORLD

PROGRAMMABLE POWER SUPPLIES

MX2020

Please send me the following instruments．

I enclose a cheque／postal order／eurocheque to the value of $£$. made payable to Reed
Business Publishing Ltd or Please debit my Access／Nisa／American Express／Diners Club with
Buy top quality instruments direct from Electronics World＋Wireless World and avoid disappointment．If you are not satisfied，return the goods and we will refund the ourchase price＊

FUNCTION GENERATOR

The MX2020 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ sweec funclion generator with LED digital display offers a broad range of features．Output waveforms include sine，square，triangle，skewed sine，julse and TTL．Lin and log sweeps are standard as is symmetry，DC offset and switchable output impedance from 50Ω to $600 .$. ．The d gital display provides readout of the generators＇frequenc or can operate as separate 10 MHz frequency counter．£199．0C olus VAT（£233．83）．

LCR METER

The MIC－4070D LCD digital LCR rreter provides capacitance， inductance，resistance and dissipation measurement．Capacitance ranges are from 0.1 pF to $20,000 \mu \mathrm{~F}$ ว lus dissipation．Inductance ranges from $0.1 \mu \mathrm{H}$ to 200 H plus a d gital readout of dissipation． Resistance ranges from $1 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ ．Housed in a rugged $A B S$ case with integral stand it is supplied complete with battery and probes at $£ 85.00$ plus VAT（ $£ 99.88$

FOUR INSTRUMENTS IN ONE

The MX9000 combines four instrurnants to suit a broad range of applications in joth education and ndustrial markets including development work stations where space is at a premium．
The instruments include：
1．A triple output power supply with $-C D$ disslay offering $0-50 \mathrm{~V}$ $0.5 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A}, 5 \mathrm{~V} 2 \mathrm{~A}$ with full overcarrent protection；
2．An 8 －digit LED display $1 \mathrm{~Hz}-10 \mathrm{MHz}$ frecuency counter with gating rates of $3.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ anj 100 Hz providing resolution to 0.1 Hz plus attenuation inputs and cata hold；

3．A 0.02 Hz to 2 MHz full featured sweepifurction generator pro－ ducing sine，square，triangle，skewed sine，pulse and a TTL output and linear or logarithmic sweep．OL puts of 50Ω and 600Ω impedance are standard features；
4．An auto／marual $31 / 2$ digit LCD m．ltimeter reading DCV，DCA， ACV，ACA，res stance，and relative measurement with data hold functions．
The MX9000 represents exceptionaly good value at only $£ 399.00$ plus VAT（£466．83）．

FG SERIES FUNCTION CENERATORS

The FG500 series sweep／function generato＇s provide two powerful instruments in one package，a $6 \mathrm{MH}-$ z or 13 NHz sweep／function generator and an intelligent 100MHE frequency counter．The micro－ processor based instruments offer s．phislicated facilities yet remain extremely competitively priced．A menu driven display allows easy sel up and operation．F． 16 character by 2 －line LCD display provides clear and unambiguous readout of generator out－ put and frequency measurement．
FG－506： 2 Hz tc 6 MHz sweep／functicn with 100 MHz counter $£ 325.00$ plus VAT（ $£ 381.88$ ）
FG－513： 2 Hz tc 13 MHz sweep／funct on with 100 MHz counter £482．00 plus VAT（ $£ 566.35$ ）

Credit card orders accepted by phone 0816523614
£．．．．．．．．．．．．．．．．．．．．．．．．Card Number．
Card expiry date． \qquad
\qquad Signature \qquad Date

Name．．．

Phone 5AS．Please allow 21 days for delivery．

NEGATVE approach to POSIITVE thinking

Negative characteristic components may not be called for every day, but lan Hickman shows why they should be regarded as a standard tool for the professional circuit designer.

Fig. 1a). A parallel tuned circuit used as a rejector. The notch depth is set by the ratio of the tuned circuit's dynamic resistance R_{d} and the load resistance R_{i}. At F_{o} the tuner circuit is equivalent to a resistance $R_{d}=Q \omega L$ (Q of capacitor assumed much larger). $F_{0}=$ $1 / 2 \pi \sqrt{ } L C$.
b) The circuit modified to provide a deep notch, tuned frequency unchanged. Coil series
losses $r=\omega L / Q=R_{d} / Q^{2}$
c) As b), but with the star network transformed to the equivalent delta network.
$Z_{S}=(-j / \omega C)-1 /\left(4 \omega^{2} C^{2} R\right)$. So $C^{\prime}=C$ and $R^{\prime}=$ $-1 / 4 \omega^{2} C^{2} R$, and if $R^{\prime}=-r=$ $-R d / Q^{2}$ then $R=R_{d} / 4$ $Z_{p}=(i / 2 \omega C)+\left(R_{d} / 2\right)$

T-here is often felt to be something odd about negative components. The circuit designer in the development labs of a large firm knows there will be no obstacle to going along to stores to draw a dozen 100k resistors or half a dozen $10 \mu \mathrm{~F}$ tantalums for example. But however handy it would be, drawing a -4.7 k resistor would be a different problem.
Yet negative resistors would be so useful; for example when using mismatch pads to bridge the interfaces between two systems with different characteristic impedances. Even when the difference is not very great, eg testing a 75Ω bandpass filter using a 50Ω network analyser, the loss associated with each pad is around 6 dB , immediately cutting 12 dB off measurements into the stopband. But a few negative resistors from the junk box could make a pair of mismatch pads with OdB insertion loss each.
In circuit design, negative component values do turn up from time to time and the experienced designer knows when to accommodate them, and when to redesign to avoid them. For example, a filter may call for a -3 pF capacitor, say, added between nodes X and Y. Provided that an earlier stage of the computation has resulted in a capacitance of more than this value appearing between those nodes, there is no problem; it is simply reduced by 3 pF to give the final value. But where
the final value is still negative, redesign may be necessary to avoid the problem, particularly at UHF and above. Lower frequencies allow the option of using a "real" negative capacitor (or something that behaves exactly like one), casily implemented with an ordinary (positive) capacitor and an op-amp or two, as are negative resistors and inductors.
But before looking at negative components using active devices, they can be implemented in entirely passive circuits - if you know how.
I first came across this some time ago. Figure 1a shows a parallel tuned circuit in series with a signal path - to act as a trap, notch or rejector circuit. Clearly it only works well if the load resistance R_{l} is low compared with the tuned circuit's dynamic impedance R_{d}. If R_{L} is near infinite, the trap makes no difference, so R_{d} should be much greater than R_{l}. Indeed the ideal would be to make R_{d} infinite by using an inductor (and capacitor) with infinite Q. An equally effective ploy would be to connect a resistance of $-R_{d}$ in parallel with the capacitor, exactly cancelling out the coil's loss and effectively raising Q to infinity. This is quite casily done, as in Fig. 1b. where the capacitor has been split in two, and the tuned circuit's dynamic resistance $R_{d}\left(R_{d}=Q \omega L\right.$. assuming the capacitor is perfect) replaced by an equivalent series loss component r associated with the coil $(r=\omega L / Q)$. From

(a)

(b)

(c)

$$
\begin{aligned}
& Z_{s}=\frac{-j}{\omega C}-\frac{1}{4 \omega^{2} C^{2} R} \text { so } C^{\prime}=C \\
& \text { and } R^{\prime}=\frac{-1}{4 \omega^{2} C^{2} R}, \text { and if } R^{\prime}=-r=\frac{-R_{d}}{Q^{2}} \\
& \text { then } R=\frac{R_{d}}{4} \\
& Z_{p}=\frac{j}{2 \omega C}+\frac{R_{d}}{2}=\sum_{2}^{\frac{R_{d}}{2}}
\end{aligned}
$$

the junction of the two capacitors, a resistor R has been connected to ground. This forms a star network with the two capacitors, and nust be transformed to a delta network using the star-delta equivalence formulae. The result is as in Fig. 1c and the circuit can now provide a deep notch even if R_{l}, is infinite. owing to the presence of the shunt impedance Z_{n} across the output, if the right value is chosen for R. So. let $R^{\prime}=-r$. making the resistive component of Z_{3} (in parallel form) equal to $-R_{d}$. Now R^{\prime} turns out to be $-1 /(+\omega C R)$ and equating this to $-r$ gives $R=R_{d} / 4$.

Negative inductor

Now for a negative inductor - and all entirely passive. not an op-amp in sight. Figure 2 a shows a section of a constant-K lowpass filter acting as a lumped passive delay line. It provides a group delay $\mathrm{dB} / \mathrm{d}(1)$ of $\sqrt{ }(L C)$ seconds per section. Fig. 2b. at DC and low frequencies. maintained fairly constant over much of the pass band of the filter.
A constant grout) delay (also known as envelope delay) means that all frequency components passing through the delay line (or through a filter of any sort) emerge at the same time as each other at the far end, implying that the phase delay $B=\omega \sqrt{ }(\mathrm{LC})$ radians per section is proportional to frequency. Thus a complex waveform such as an AM signal with 100% modulation will emerge unscathed, with its envelope delayed but otherwise preserved unchanged. Similarly, a squarewave will be undistorted provided all the significant harmonics lie within the range of frequencies for which a filter exhibits a constant group delay. Constant group delay is thus particularly important for an IF bandpass filter handling phase modulated signals.
Connecting an inductance L^{\prime} (of suitable value) in series with each of the shunt capacitors, will cause the line to become an " m-derived" low pass filter instead of a constant- K filter. The result is that the increase of attenuation beyond the cut-off frequency is much more rapid. But that is of no great benefit in this application. A delay line is desired above all to provide a constant group delay over a given bandwidth and the variation in group delay of an m-derived filter is much worse even than that of a constant- K type.
L. may not be a separate physical component at alt. It could be due to mutual coupling between adjacent sections of series inductance, often wound one after the other, between tapping points on a cylindrical former in one long continuous winding. If the presence of shunt inductive components L^{\prime} makes matters worse than the constant- K case, addition of negative L ' improves matters. This is easily arranged. Fig. c. simply by winding each series section of inductance in the opposite sense to the previous one.

Real pictures

To picture negative components that may seem more "real" implemented using active circuitry. imagine conneeting the output of an adjustable power supply to a 18 resistor whose other end. like that of the supply's return lead, is connected to ground. Then for every volt positive (or negative) applied to the resistor. I A will Bou into (or out of) it. Without changing the supply's connections, arrange that the previously earthy end of the resistor is automatically jacked up to twice the power supply output voltage - whatever that happens to be. The voltage across the resistor is always equal to the power supply output voltage, but of the opposite polarity. So when, previously, current flowed into the resistor. it now supplies an output current, and vice versa. With

Fig. 2a). Basic delay line b) providing a delay of $\checkmark(L C)$ seconds per section at $D C$ and low frequencies. c) Connection of negative inductance in the shunt arms to linearise the group delay over a larger proportion of the filter's passband. Not a physical component, it is implemented by negative mutual inductance (bucking coupling) between sections of series inductance.

Fig. 3a) Unbalanced negative capacitor (one end grounded). b). Balanced, centre grounded negative capacitor. c). Floating negative capacitor.

(a)

(c)

the current always of the wrong sign, Ohm's law will still hold if the value of the resistor is labelled as -IS2. Figure 3 a shows the scheme, this time put to use to provide a capacitance of $-C \mu \mathrm{~F}$. and cicarly substituting L for C will give a negative inductance.
For a constant applied $A C$ voltage, a negative inductance will draw a current leading by 90° like a capacitor. rather than lagging like a positive inductor. But like a positive inductor, its impedance will still rise with frequency. Figure 3 also shows how a negative component can be balanced. or even floating. Clearly, if in Fig. 3a. C is 99 pF and the circuit is connected in parallel with a 100 pF capacitor, 99% of the current that would have been drawn from an AC source in parallel with the $10)_{p} F$ capacitor will now be supplied by the op-amp via C, leaving the source "secing" only 1 pF . Equally, if the circuit is connected in parallel with an impedance which. at some frequency, is higher than the reactance of C. the circuit will oscillate: the circuit is "short circuit stable".

Negative capacitance

A negative capacitance can be used to exterminate an unwanted positive capacitance - useful in applications
where stray capacitance is deleterious to performance yet unavoidable. A good example is the N-path (commutating) bandpass filter. Far from being an academic curiosity as some suppose, this has been used both in commercial applications, such as FSK modems for the HF band, and in military applications.
One of its disadvantages is that the output waveform is a farly crude, N-step approximation to the input, N being typically 4 , requiring a good post filter to clean things up. But on the other hand, it offers exceptional values of Q. Figure 4 a illustrates the basic scheme. using a first-order section.
Apply at Γ_{i} a sinusoidal input at exactly a quarter of the clock frequency (Fig. 4a), so that the right hand switch closes for a guarter of a cycle, spanning the negative peak of the input, and the switch second from left acting similarly on the positive peak.
The capacitors will charge up so that V_{o}^{\prime} is a stepwise approximation to a sinewave, as in Fig. $\mathbf{4 b}$. bottom left. The time-constant will be not $C R$ but $4 C R$, since each capacitor is connected via the resistor to the input for only 5% of the time. If the frequency of the input sinewave differs from $F_{\text {ctock }} / 4$ (either above or below)

by an amount less than $1 /(\pi 4 C R)$, the filter will be abic to pass it. But if the frequency offset is greater, then the output will be attenuated, as shown in Fig. 4a. Depending on the devices used to implement the filter, particularly the switches, $F_{\text {clock }}$ could be as high as tens of $\mathrm{kH} \nsucc$, whereas C and R could be as large as $10 \mu \mathrm{~F}$ and $10 \mathrm{M} \Omega$, giving (in principle) a Q of over ten million.

Kundert filter

The same scheme can be applied to a Kundert filter section, giving a four pole bandpass (two pole LPE - low pass equivalent) section, Figs 4 c and 4 d . Figure 5 a shows the response of a five pole LPE 0.5 dB ripple Chebychev N-path filter based on a Salen and Key lowpass prototype, with a 100 Hz bandwidth centred on 5 kHz .

The 6 to 60 dB shape factor is under $3: 1$ with an ultimate rejection of well over 80 dB . However, the weak point in this type of filter is stray capacitance across each group of switched capacitors. The stray causes "smearing" of charge from one capacitor into the next. In high Q second order sections this has the effect of slightly lowering the frequency of the two peaks and also of unbalancing their amplitude. The higher the centre frequency, smaller the value of switched capacitors, narrower the bandwidth or higher the section Q, the more pronounced is the effect. The result is a crowding together of the peaks of the response at the higher frequency side of the passband and a spreading of them further apart on the lower, producing a slope up across the passband (Fig. 5a), amounting in this case to 1 dB . Increasing the clock frequency to a 20 kHz centre frequency results in a severcly degraded passband shape. due to the this effect.
Changing the second order stage to the Kundert circuit. Fig. 5b, improves matters by permitting the use of larger capacitors; C can be as large as C_{1} in the Kundert circuit whereas in the Salen and Key circuit, the ratio is defined by the desired stage Q. With this modification, the filter's response is as in Fig. 5 b.
The modification restores the correct response of the high Q pole output section, but the downward shift of the peaks provided by the three-pole input section results in a downward overall passband slope with increasing
frequency. Note the absence of any pip in the centre of the passband due to switching frequency breakthrough. If the charge injection via each of the switches was identical, there would be no centre frequency component, only a component at four times the centre frequency, ie at the switching frequency. Special measures, not described here, are available to reduce the switching frequency breakthrough. Without these. the usable dynamic range of an N-path filter may be limited to as little as 40 dB or less.
With them the breakthrough is reduced to -90 dBV . Figure 5b was recorded after the adjustment had been made. The slope across the passband is shown in greater detail in Fig. 5c (lower trace), recorded before the adjustment, the centre frequency breakthrough providing a convenient "birdie marker" indicating the exact centre of the passband. Upper trace shows the result ef connecting -39 pF to ground from point C of Fig. 5b, correcting the slope. Figure 5d shows the corrected passband (upper trace) and the effect of increasing the negative capacitance to -100 pF (lower trace), resulting in overcompensation. These, and other examples which could be cited, show the usefulness of negative components to the professional circuit designer. While they may not be called for every day, they should certainly be regarded as a standard part of an armoury of useful techniques.

Acknowledgments

Figures 2a, 2b, 3 and 4 reproduced with permission from Analog Electronics, Ian Hickman, Heinemann Newnes, 1990 ISBN 043490735

Optoisolator correction

In the Design Brief "Bringing the optoisolator into line" (EW + WW December 1992 pp. 1050-105), Fig. 6a) also appeared in error in place of Figs. 4 and 8. The correct Fig. 4 was rather similar to Fig. 3 except that the residual contained a substantial component at the fundamental in addition to the second harmonic content. Figure 8 was also rather similar to Fig. 3 except that the residual was larger and distinctly more triangular in form.

Fig. 5a). The response of a five pole IFE 0.5 dB ripple Chebychev N-path filter based on a Salen and Key lowpass prototype, with a 100 Hz bandwidth centred on $5 \mathrm{kHz}, 10 \mathrm{~dB} /$ div vertical, 50 Hz and $100 \mathrm{~Hz} /$ div horizontal. (At a 20 kHz centre frequency, its performance was grossly degraded.)
b). A five-pole LPE

Chebychev N-path filter with a 100 Hz bandwidth centred on 20 kHz , using the Kundert circuit for the two pole stage, and its
response (10 dB and
$1 \mathrm{~dB} /$ div vertical, $50 \mathrm{~Hz} /$ div horizontal).
c). The passband of b) in more detail, with (upper trace) and without -39 pF to ground from point C. $1 d B /$ div vertical; $20 \mathrm{~Hz} /$ div horizontal. Note: the gain was unchanged; the traces have been separated vertically for clarity. d). The passband of b) in more detail, with $-39 p F$ (upper trace) and with -100 pF to ground from point C; over compensation reverses the slope.

CLASSIFIED

ARTICLES FOR SALE

VALVES AND C.R.T.S
 (also Magnetrons, Klystrons, 4CX250/350)
 Minimum order charge of $£ 50+$ VAT

One million valves in stock. Obsolete types a speciality! Fax or phone for quote.
Special prices for wholesale quantities
Orders from government departments, overseas etc. most welcome
Many other types in stock. Please enquire re any type not listed.
CATHODE RAY TUBES
400 different types in stock
Please enquire if your requirements are not listed below.

$3 \mathrm{JP1}$	POA	D 13.611 GH	E59.00	F28-130LDS		M31.182GV	£45.00
$12 \mathrm{CSP4}$	E35.00	D13.830GH	c59.00	F31.12LD	[75.00	M31.184W	¢55.00
1074H	¢45.00	D14.200GM	[75.00	LD708	E75.00	M31.190GR	£45.00
1396P	POA	D16.100GH97.	£65.00	M7.120W	\$19.50	M31.191W	¢55.00
8931 (W.H)	POA	DG7-5	¢45.00	M14.100GM	1...... $£ 33.00$	M31.325GH	¢35.00
CME822W	87.00	DG7-6	£45.00	M17.151GVP	/9 $£ 175.00$	M38.100W	POA
CME:523W	29.50	DG7-32	E55.00	M23.112GV $£ 45.00$	M40.120W	¢59.00
CRE1400	c29.50	DG7-38	E55.00	M24.121GH	H	MV6-5 (Mul)	¢50.00
D9.109H	¢45.00	D+3-91	¢50.00	M24.122WA	A	SE5FP31	£45.00
CME1431W	POA	E723 (EEV)	POA	M28.13LG	¢45.00	VLS429AG	
$4 \mathrm{CX2508}$ IT	but fult	thy tested			c20+VAT D	Discounts io	repca

BILLINGTON EXPORT Ltd

Unit 1E. Gillmans Industrial Estate. Billingshurst. Sussex RH14 9EZ. Callers by appointment only.
Telephone: 0403 784961 Fax: 0403783519
Min. UK order $\mathbf{8 5 0}+$ VAT. Min. Export order $\mathrm{C50}+$ Carriage.

Doublestream Ltd Communications

- Used/ex demo test gear for sale, fully tested, all in very good condition Signal generators Adret $7100 \mathrm{~d} 650 \mathrm{Mhz} £ 850$. Racal 9081 £ 450 . Alrmec 304 A 150 . Level/ counters 9919 1GHz £225, 9917560 MHz $£ 175$, also countertmers, scopes, power amps, and meters. LCR databridges. GP1B PSUs etc etc Plaase phone for full list
Tel: 0703-613051
Fax: 0703-614128

FREE CLASSIFIED

WANTED Ex-RAF morse key type 'D' reference number 7373 with bakelite cover if possible. Jack 061-483 7250. WANTED HEWLETT PACKARD Manuals scope main frame 184a, plug-ins DT AMP 1805A, T.B. 1825A. Mawson 280, Abbcydalc Road, Shefficld 0742 552125.

WANTED Secondhand CAE software PSpice, Micro Cap, MathCad, VisSim, Orcad or similar. Phone Peter 0329 841374.

CELLULAR TELEPHONE MODIFICATION HANDBOOK

How are hackers making cellular phone calls for free?

- How to have two phones with the same number
- Techniques for decoding \& changing cellular phones' NAMS
- Descriptions of cellular phones's vulnerabilities!
- Cellular phone manufacturers ESN codes

Complete Manual only £50
SPY Supply, 108 New Bond Street London W1Y 9AA (US) 617-327-7272
Sold for educational purposes only

\square

VISA

Cooke International

SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC
ALWAYS AVAILABLE
ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME. SEND S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS.
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS. SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44) $0243545111 / 2 \quad$ Fax: $(+44) 0243542457$

> TURN YOUR SURPLUS
> TRANSISTORS, ICS ETC, INTO CASH Immediate settlement.
> We also welcome the opportunity to quote for complete factory clearance Contact
> COLES-HARDING \& CO. 103 South Brink Wisbech, Cambs PE14 ORJ.
> ESTABLISHED OVER 15 YEARS
> Buyers of Surplus Inventory
> Tel: 0945584188 Fex: 0945475216

GOLLEDGE

CRYSTALS OSCILLATORS FILTERS Comprehensive stocks of standard items. Over OEM support: desi ties, production schedules.
SAE forsonal and export orders welcome. for our latest product information shee GOLLEDGE ELECTRONICS LTO Tel: 046073718 Fax: 046076340

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact Pat Bunce on:
Tel: 081-652 8339
Fax: 081-652 8931

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M \& B RADIO
86 Bishopgate Street, Leeds LS 1 4BB
Tel: 0532435649 Fax: 0532426881

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

STEWART OF READING

 110 WYKEHAM ROAD, READING, RG6 1PL. TEL: 073468041 FAX: 0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.U.K. ELECTRICAL/ELECTRONICS Supplier wanted for Malta agent. Write to P.O. Box 18, Cospicoa, Malta. WANTED: VALVES, TRANSISTORS, I.C.'s (especially types KT66, KT88, PX4, PX25). Also capacitors, antique radios, shop clearance considered. If possible, send written list for offer by return. Billington Export Limited, Unit return. Billington Export Limited, Unit
1, Gilmans Ind Est, Billingshurst, West Sussex RH14 9EY. Phone 0403-784961. Fax 0403-783519.

WFNTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid.
Please send or fax your offer to HTB ELEKTRONIK
Alter Apeler Weg 5, 2858 Schiffdorf, West Germany TEL: $010494706^{7} 044$ FAX: 010494706 F049

SERVICES

Understanding

 \& Installing Home Systems- How To Automate Your Home

The best practical guide to date for the DIY automator

$£ 22.95$ inc post

Part of a remarkable range of home automation components from

SMART HOUSE SYSTEMS

3 Buchanan Street,
Largs, Ayrshire, K430 8PP Tel: 047567589

FREE CLASSIFIED

BOARDMAKER 2 Complete package £150, Nascom IMP printer 120 , phone for workshop clearance list. Contact Ian 0204 26475 evenings.
FOR SALE Electronics And Wireless World. 1988 to 1991. Offers, buyer collects. Tel (0276) 63311. Weekdays Mr Beckley.
NATIONAL USA NC77X valve Communication Receiver 0.5 to 30 MHz . Good condition f55. Tel 0702522929. SPECTRUM 48K Small quantity bus splitter, PCBs and connectors, must clear! Only $£ 2.50$ pair unassembled inc P\&P (Europe). (010-353-67220.
WANTED Circuit ITT IMR 5000 radio.
Mike Nicholas $0202-43250 \%$.

ARTICLES FOR SALE

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

CLASSIFIED ADVERTISEMIENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next month's issue and it will cost, Lineage advertisements under $£ 50$ have to be pre-paid by credit card
for a single insertion, only $£ 2.50$ per word.

Special rates:

6 insertions E 2.15 per word/issue (Advertisement can appear every month or every other month only). 12 insertions E 1.80 per word/issue (Advertisement to run every month only).
WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow
Extras:
Spot Colour 20%
Box number service $£ 22.00$

EXAMPLE SIZE

$3 \mathrm{~cm} \times 1$ column
For 1 insertion cost is: $£ 60.00$
For 6 insertions costs are: 551.00 per issue For 12 insertions costs are: $\mathbf{£ 4 2 . 0 0}$ per issue

[^3] or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT:
All major credit cards accepted

FASTEST MATMOS IBM COMPATIBLE AVAILABLE 66 MHz VESA 32 BIT LOCALBUS 486 DX
 VESA 32 brt VGA card using Tseng Labs Accelerator up ro 1280 by 1024. Desktop case and 102 keyboard, 2 serial I game and parallel pors. 14435 inch drive and mouse
Performance: 486 CAD'DTP SYSTEM WITH $1280 \cdot 1024$ MONITOR
 RAM and 8 MiPS processor H Lach, is inch ultra thgh resolution montor to display 1280×1024 non-interlaced
 for colour leallet' or quate for machine to your spec based around chis stumming graphics card

Matmos 486 .40 combines the high speed of the hard drwe cache controller with the 1280 by 1024 resolution of Microfield graphics
card Ideal for DTPFGGraphics work 4 Meg Ramm (Up to 32 MB on soard max). 150 Meg hard drive. Desktop case and 102 keybeard. 2

 TOP SPEC 486 SYSTEMS
 EISA 66 MHz 486 DX system 6999 VESA local bus $40 / 50$ or 66 MHz POA
Phane tor lowest price equote on a complete system io your recuriremen
Carriage on systems 10 See beiow for add-nis and oxher stock lems
386 LAPSTOPS/486 NOTEBOOKS
3ab-20 OLIVETII laptop with 2 MByte Ram, 65 Mbyte hard dive. VGA LCD screen, charger. serialparailelivga ports one 16 bit

ports and case 11299
MATMOS $25 / 33 \mathrm{MHz} 386$ SYSTEMS

PRINTERS
OOT MATRIX: Samsung 300 CPS 9 pin with III Epson cormpatuluty Very fast ad
1.44 Mbyte 3.5 -inch Citizen OSDA 39 C third-height drive for ATs. grey berel 63995 (carr (44)
1.2 Mbyte 5.25 -inch Panasonic hal height $(39995$ (carre (4)
Kit to fir

IBM standard floppy disk drive cable of

HARD DISKDRIVES

MFM: TO Mbyte NEC 5121.25 meh $£ 25$

machines

 (1209 in madines). $\mathbf{3 3 0}$ Mbyte Micropolis 1574 full height
$\mathrm{n} \times \mathrm{M}$ full heght Relabie Wren 6 drive f 699 (6645 in machines)
FUUITSU PROFESSIONAL HARD DRUVES Top Buld quality results in drwes of oussanding relabilicy and performance
Recommended for crtical data high speed applications all drives are 3.5 ninch and come with, 5 year warranty Carrier delvery 6850 .

Muit 5 SSS card lor harpone. CD . WORM : apa
 IBM COMPATIBLE AT MOTHERBOARDS, CARDS etc

 The new standard EISA 486 top spec EISA systems now in stock please nig for a quote for a syssem VESA local bus is proving to be

 NETWORKPRODUCTS
Ethernet card Noveli NE-2000 compatible 16-bir $Q \mathbf{7 5}$ (carr $£ 2$) All network cabies and connectors in rock
De sktop with 3 < 525 -nch and 1×35-ninch bers
 INTEL 387 CO-PROCESSOR
MONO HERCUIES MONITORS

CAD COLOUR
15.inch fixed frequency 64 kHz Hitich, HM4115 with Mierofield Grapies T8 driver card ior Aucad and Windows 3/31

VGA CARDS AND WINDOWS ACCELERATORS
Mono graphics card c9 95 (all carr (2)

 MODEM CARDS
Hayes Compatible 2400BPS internal modem fuliy compatble with MNP S error correction Auto dalanswer and speed sensing
Works with Windows 3. Procom. Crostalk etce 669 (car (4)
Modem Fax card 9600 BPS fax card with 2400 BPS Hayes compat. modem with all software c109 (new model) POWER SUPPLY
Astec BMI40 IBM XT/AT comparble $150 \mathrm{~W},+5 \mathrm{~V}$ at $15 \mathrm{~A}_{\mathrm{a}}+12 \mathrm{~V}$ at $5 \mathrm{~A}_{\text {, }}-5 \mathrm{~V}$ at 0 3A. -12 V at 05 SA . fan cooled. rear panel switch
sood value at ©19 50 (carr 64)
SOFTWARE AND DISKS
DR DOS 6 E3295 MS DOS 563995 (carr E4) Windows $31 /$ MSDOS 5 Latest verıion from Mkrosoft on 35 inch disks 67495 (kart Mbyte preformatted (995 (carr (2)

* VAT and carriage must be added to all items (quotes for carriage overseas).
*Everything new, and guaranteed one year unless stated; ex-dem. products guaranteed 6 months. * Access and Visa telephone service

MATMOS LTD., UNIT II THE ENTERPRISE PARK, LEWES ROAD, LINDFIELD, WEST SUSSEX RHI6 $2 \mathrm{~L} X$. 044448209 t and 0444483830 (Fax 0444484258).
Matmos Ltd has been trading successfully since 1976

INDEX TO ADVERTISERS		
PAGE	PAGE	PAGE
Anchor Surplus 251	Kare Electronics 245	Pico Technology 236
Baas Electronics BV 185	Kestral Electronic	Ralfe Electronics 216
Bull Electrical 246	Components Ltd 236	Research Communications
Buyers News 236	Keytronics 233	Ltd 185
Chelmer Valve Company 207	Labcentre Electronics ... 217	Seetrax Ltd 234
Citadel Products Ltd IFC	Langrex Supplies Ltd 238	Smart Communications 241
Dataman Designs IBC	M\&B Electrical 197	
Display Electronics Ltd 203	M\&B Radio (Leeds) 207	SMC Ltd 234
Ellmax Electronics 205	MQP Electronics 241	Stewart of Reading 245
Field Electric Ltd 207	Maplin Electronics OBC	Surrey Electronics Ltd .. 241
Halcyon Electronics Ltd 234	Matmos Ltd 264	Telnet 205
IPK Broadcast Systems 238	Micro Amps Ltd 183	Tsien Ltd 205
Johns Radio 222-223	Number One Systems Ltd 226	Ultimate Technology 178

some good news. It's available now. S4 is the 1992 successor to Dataman's S3 programmer, which was launched in 1987 The range goes back through S2, in 1982, to the original Softy created in 1978. Like its predecessors Softy 4 is a practical and versatile tool with emulation and product development features. S4 is portable, powerful and self-contained.
Design and manufacture are State of the Art. S4 holds a huge library of EPROMS, EEPROMS, FLASH and One Time
Programmables. Software upgrades to the Library are free for the life of the product, and may be installed from a PROM by pressing a key. S4 makes other programmers seem oversized, slow and outdated. S4 is now the preferred tool for engineers working on microsystem development.

Battery Powered

S4 has a rechargeable NICAD battery. On average, you can do a week's work without recharging. On a single charge, up to a thousand PROMS can be programmed - and charging is fast: it only takes an hour. Normal operation can continue during the charging process.

Continuous Memory

Continuous Memory means never losing your Data, Configuration or Device Library. You can pick up S4 and carry on where you left off. even after a year on the shelf. If the NICAD battery loses all of its charge. RAM contents are preserved by the LITHIUM backup battery.

Remote Control

S4 can be operated via it's RS232 Serial Port. The standard D25 socket connects to your computer. Using batch files or a terminal program, all functions are available from your PC keyboard and screen.

Free Terminal Program

You could use any communications software to talk to S4. But the
Terminal Driver program, which we include free, is the best choice. It has Help Screens to explain S4's functions and it sends and receives at up to 115200 baud - that's twelve times as fast as 9600 baud. At this speed a 64 kilobyte file downloads in 9 seconds. There is a memory resident (TSR) option too, which uses only 6 k of your precious memory, and lets you "hot key" a file to S4. Standard upload and

Dataman's new S4 programmer costs £495 You could have one tomorrow on approval*
 If you've been waiting for S 4 we have
 Your microprocessor can write to S4

 as well as read. If you put your variables and stack in S4's memory space, you can inspect and edit them. You can write a short monitor program to show your internal registers.
S4's memory emulation is an inexpensive alternative to a full MDS and it works with any microprocessor. Many engineers prefer it because their prototype runs the same code that their product will run in the real world.

Dimensions \& Options

S4 measures $18 \times 11 \times 4 \mathrm{~cm}$ and weighs 520 grams. $128 \mathrm{k} \times 8(1 \mathrm{MB})$ of user memory is standard, but upgrading to
$512 \mathrm{k} \times 8$ is as easy as plugging in a 4MB low-power static CMOS RAM. The stated price includes Charger. EMUlead, Write Lead, Library ROM, Terminal Driver Software with Utilities and carriage in U.K. but not VAT.

*Money-back Guarantee

We want you to buy an S4 and use it for up to 30 days. If it doesn't meet with your complete approval you will get your money back, immediately, no questions asked.

Call us with your credit card details. Stock permitting, we are willing send goods on 30 days sale-or-return to established U.K. companies on sight of a legitimate order.

Customer Support

Dataman's customer list reads like Who's Who In Electronics. Dataman provides support, information interchange, utilities and latest software for S4, S3. Omni-Pro and SDE Editor-Assembler on our Bulletin Board which can be reached at any time, day or night.

Station Road MAIDEN NEWTON	
Dorset	DT2 0AE United Kingdom
Phone	$0300-20719$
Fax	$0300-21012$
Telex	$\mathbf{4 1 8 4 4 2}$
BBS	$0300-21095$
Modem	$\mathbf{1 2 / 2 4 / 9 6}$ V32 HST N,8,1

BUYER'S CUIDE TO ELEGTRONIC COMPONENTS 1998

Over 700 product packed pages with hundreds of brand new products.

On sale now, only $£ 2.95$

[^0]: Electronics World + Wireless World is published monthly By post, current issue $£ 2.25$, back'issues (if available) $£ 2.50$ Orders, payments and general correspondence to L333. Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton. Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
 Newstrade: IPC Marketforce, 071 261-6745.
 Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymaunt Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notify a change of address. Subscription rates 1 year (normal rate) $£ 30$ UK and $£ 35$ outside UK.
 USA: $\$ 116.00$ airmail. Reed Business Publishing (USA). Subscriptions office, 205 E. 42 nd Street, NY 10117.
 Overseas advertising agents; France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd. 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

 USA mailing agents: Mercury Airfreight International Ltd Inc, 10 (b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Lid. Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR
 Typeset by Marlin Graphics 2-4 Powerscroft Foad, Sidcup, Kent DA14 5CT
 ©Reed Business Fublishing Ltd 1992 ISSN 09598330

[^1]: Welcome to Cyberspace: Computer aided design will never be the same again as Autodesk redefines the traditional interface between human and computer.

[^2]: TO:
 Ian Locks, Chief Executive, Periodical Publishers Association, Freepost, WC2B 6UN
 I disagree with any government proposal to tax information, by imposing VAT on specialist business magazines.

[^3]: Box number service £22.00

