MAY 1992 £1.95

AUDIO

Professional microphone amplifier

DESICN

New filter offers zero phase shift

CIRCUTTRY

The inverted
world of gyrators

PC REVIEW

Shareware
design on the PC Plugging into DSP power

DATACOMMS:

MODES AND MODEMS

IC PROGRAMMING TESTING \& ERASING SOLUTIONS

UNIVERSAL PROGRAMMER. The complete designer's kit. This will program EPROMS, FLASH EPROMS, EEROMS, BPROMS, PALS, GALS, EPLD's, and large range of microcontrollers. A unique feature is the testing of any TTL/CMOS logic chip, DRAM \&

SRAM.

TTL, CMOS, DRAM \& SRAM TESTING

PC82 can test and verify any TTL/CMOS logic chip, DRAM \& SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

DEVICE GUIDE

Over 1500 types are now covered, with many more to be added shortly. Some require an adapter.
EPROM - Full range of $8 / 16$ bit wide types from 16 k to 16 mBit .2716 to THA 16 P 0100. FLASH EPROM - Full range of AMD \& Intel types. 28 FXX ranges.
EEPROM - 17 manufacturers' full range of types from AMD to Xicor. 2816 etc. SERIAL EEPROM - 12 manufacturers' full range of types. 9306/46 etc. BPROM 32×8 to 4096×8, incl. $63 \mathrm{~S} 080,7 \mathrm{C} 28 \mathrm{X}, 29 \mathrm{X}$ etc.
PAL - 18 manufacturers including Altera, Amd, AMI, Atmel, etc.
GAL $16 \mathrm{~V} 8,18 \mathrm{P} 8,20 \mathrm{~V} 8,20 \mathrm{RA} 10,22 \mathrm{~V} 10,26 \mathrm{~V} 12,26 \mathrm{CV} 12,6001$.
EPLD 20G10, 22V10, EP310/320/600/610/900/910, 5C031/32/60/90.
CMOS EPAL C16L8/R8/R6/R4, C18V8, C20G10/L8/R8/R6/R4, C22V10.
MPU Z8, 8741/44/49/50/51/95/96/97/98, C51, C52/54/58/75/196/252/451/521/528/552/, 528/652/654/751/752, 63705, 68701/705, 68HC705/711, 4074008 series, 77P008/25/, 108/116, PSD301, PIC16C54/55/56/57.

ADAPTERS FOR PC82

A range of plug-in adapters to expand the capability of the PC82. Various PLCC convertors \& 4-gang 28/32/40-pin Eprom, Gal \& Pal. Popular CPU types include PIC16C54/5/6/7, 8796/7, 68705, 87C751/ 2, \& TMS320E25.
FEATURES ALL MODELS
For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips.

EASY'TO INSTALL

The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

SUITS ALL PC's

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPAQ the programmers will work. The software is text only monographic so is compatible with any machine.

SOFTWARE DRIVEN

All software for the programmer is supplied on $51 / 4^{\prime \prime}$ low-density disks. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu-driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically.
Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled. Device blank check, checksum, program, verify, read and modify are all standard features. Hex to bin file conversions included for popular file formats including Intel Motorola etc. 2 ways $/ 4$ ways bin file splitter for $16 / 32$-bit file data. Selection of speed algorithm for FAST, FLASH, INTELLIGENT, INTEL. Free software updates available for new devices.

PC86 HANDY POCKET TESTER £99
Tests all popular TTL 74/54, CMOS 40/ 45 \& DRAM types, can search and display type number of unknown/house marked types. Simple operation. 9 volt battery operated with LCD display.

M1 FASTERASER £99

NO MORE WAITING FOR EPROMs TO ERASE. New advanced UV source gives under 2 minute erasure time on most types of modern EPROM. Digital down counter \& display plus added features for simple operation in use. Large capacity e.g. 13×28 pin devices. Small footprint. Designed for heavy industrial/workshop use. UK design \& manufacture.

PC84 EPROM PROGRAMMERS 1-GANG £139, 4-GANG £199 \&

8-GANG £299

PC84 -1, -4, -8 Eprom programmers only. The variant is only gang size. The - 4 and -8 gang will program multiple EPROMs simultaneously. Device are from 2716 to 271000 both C and NMOS \& EEPROM from 2816 to 2864. ZIF (zero insertion force) sockets are used on all models

ORDER INFORMATION

Please include $£ 7$ for carriage by courier, plus VAT on all UK orders. ($£ 20$ for exports.) All pricing for programmers includes software, interface card, socket box and full instructions. (Prices do not include VAT or carriage). ACCESS, VISA or CWO. Official orders welcome from Government bodies \& local authorities.

CITADEL PRODUCTS LTD
Dept. WW, 50 High St, Edgware, Middx. HA8'7EP Tel: 081-951 1848

CONTENTS

FEATURES

COVER: SENDING DATA

 TO THE OUTER LIMITS...... ... 364At last, technology may allow standard analogue speech circlits to reach the predicted limits for data transfer down telephone lines. B y Julia King and Simon Taylor.

DIALLING UP A DISASTER. .. 369 Videophones, no longer science fiction, now account for a sizeable slice of electrenizs company budgets. But Richard Wilson asks if tec.anical standards and high prices could blur the picture.

KNOWING WHEN TO SAY NODE

E.

\qquad
How will the demise of the command line interface effect office networking and software houses? Dam Pancuccci has the answers.

SHAREWARE TOOL GIVES

INDIVIDUAL PERFORMANCE
Shareware it may be, but Martin Cummings finds
Quickroute's performance puts it in the big league.

PLUGGING-IN TO DSP POWER.
382
Stand-alone real-time data acquisition or very fast processing, Allen Brown plugs in two cards that pack the punch of the DSP96002 into a PC.

CIRCUIT DESIGN WITH THE

INTERACTIVE TOUCH \qquad
Impressive simulation, control of device characteristics and ideal companion to Pspice: Allen Brown finds why LogicWorks is such a powerful aid for digital designers.

STRUCTURED ANALOGUE DESIGN
BUILDS PERFECT FILTERS \qquad 894
Simple, highly structured building blocks can produce brick wall filtering performance allied with zero phase shift. David Grundy explains a topology that works completely in the analogue domain.

PUTTING MIC AMPLIFIERS

ON THE LINE 402
High-quality low-noise mic signal amps must cope with a wide range of demands. Tim McCormick discusses suitable devices and circuit topologies, and describes a practical circuit.

THE INVERTED WORLD

OF GYRATORS
\qquad
Dr C O Anazia shows how gyrator circuit components can mimic tunable inductorless analogue filters derived from their LC passive counterparts.

PURSUING A LOST COURSE 424
In 1939 we turned down a navigation system so accurate it might have cut short the war. Philip Darrington recounts the sorry tale of an idea forty years ahead of its time.

REGULARS

UPDATE \qquad
A 486 core inside a 386 processor package doubles the speed of a PC. Intel says it will sue the inventors.

RESEARCH NOTES . \qquad 360
How non-volatile is brainpower? Grow your own microwiring, Transparently better conductor with write potential, Brewing quantum chips, Sculpted silicon with a humid feel.

DESIGN BRIEF \qquad399

Ian Hickman argues that performance of the $L T 1193$ and LT1194 video difference amplifiers could prompt a reevaluation of bridge circuits.

LETTERS .406
Distorted truth, ALL our own idea, Disabled system design, A mathematician challenges, Class struggle, Digital disk alternative, Early radar love.

APPLICATIONS
Car electronics with Super E-line, Accurate gain switching, IGBT audio amplifier.

CIRCUIT IDEAS.
420
Use a printer port for general i / o, Diode probe thermometer, Power for car audio, Simultaneous insertion and return loss plots, Slow ramp generator, Rechargeable battery tester.

CIRCUITS, SYSTEMS \& DESIGNS. \qquad
Op amp provides phase-locked loop, Jfet serves as lowpower logic translator, Replace exclusive Ors with resistors.

NEW PRODUCTS. $4: 3$
$E W+W W$'s round-up of all that's new in electronics and engineering software.

In next month's issue. Special feature' on audio design inx luders details of a $200 \mathrm{~W} /$ channel amplifier a single ch p proesrammable sine wave generator, a design study fer brick-wall alias filtering. *us much meore.

THE JUNE ISSUE IS ON SALE FROM MAY 28

CIRCLENO. 104 ON REPLY CARD

Oscilloscopes - The essential tool of the professional engineer.

CIRCLE NO. 105 ON REPLY CARD

Competing against the State

EDTHOR
Frank Ogden
081-6523128

DI:I T TY EDTTOR
Jonalhan Campbell
081-652 86.38
IEDTIORIAL, NJMIINISTRATION
Lorraine Spindler
081-6.52.3614
ADV :RTISIEMIENI MANACBIER
Jan Thorpe
081-6523130
SALESMANACER
Shona Finnic
(081-652 8640)
CLASSIFII:I)SALISS [:XIC(LTIVE
Paı Bunce
$081-6.528 .3 .39$
ADVERTISIN(; ADMINISTR, XTION
Kathy Lambart
081-6523139
NDUERIISIN(; PRO日)UCTION
Shirley Lawrence
081-6528659
P (BLISIIER
Robert Marcus
I- MCSIMIII:
081-65289956
(1) ASSIFIEI) IFACSIMILII: 081-652 89.31

ARE WE HARD TO GET?
Just one phone call to our Circulation Actionline brings instant assistance. Some reacers have experienced problems in finding zopies of $E W+W W$ on newstrade shelves - s) we've decided to do something about it. If you have any difficulty purchasing your copy, call our Circulation Actionline We will follow up your complaint and, more importantly, make sure you can obtain your copy.
Call Kathy Lambart on 081-652 3139 and let us tacke your supply problems

By the time this magazine appears, the UK will have a new government and the election promises which put it there will be largely forgotten.
The incoming administration should be continually reminded that the UK clectronics undustry is worth $\mathfrak{f 4 0 0 0}$ million in turnover: it resides at the centre of economic recovery and at our luture as a successful industrialised country.
There is no corner of industry which it doesn"! touch: the car mahers use it, the plane makers couldn"t lly without it the utilities need its telemetry, the transport sector requires it for signalling and the finance sector depends on it for computing. etc. To say that it has strategic significance is an understatement.
The Japanese recognise this and organise their government departments accordingly. MITI - Ministry of International Trade and Industry - develops its services in response to the needs of Japanese industry, for instance in co-ordination of complementary activities among competing companies lowards strategic goals. Its officials are well schooled in promoting the image of Japanese technology abroad; we seldom read about that country's failures even though they occur just as frequently as ours.
By contrast, the British DTI employs a gaggle of well meaning civil servants, very few of whom will have enjoyed a science based education or any form of industrial experience. who we expect to act competently on behalf of technology based companies. With the best will in the world they would find it difficult to fulfil the kind of co-ordinating role which their Japanese counterparts provide. The best that the DTI can manage is a prescriptive, rigid service which takes little account of the subject in hand.
UK industry suffers greatly from a generally dimissive attitude towards engineering and seience. For instance. a
telling situation existed in the last parliament whereby the House was unable to find the six MPs necessary to sit on a partiamentary subcommittee dealing with the subject. By contras 1 committees dealing with accounts, defence and legislation are well subscribed
This lack of understanding ahout technology-based industries profoundly affects the way in which they are financed. The free market operates entirely through return upon investment. This leads 10 a siluation where publicly cuoted companies thave to provide shareholder dividends even when the earnings aren't there to support them. inevitably a frequent occurrence during a deep recession. The alternative is 10 rish a collapse of the share price with its attendant takeover rishs. Companies will cut R \& D to the bone to maintain dividend... there are even instances of borrowing 10 pay the shareholders. The electronics industry lives by research and development: short lerm cuts will jeopardise future UK hased growth across a whole range of related activities.
A demand driven economy also generates its own imperatives. When the City can carn higher interest with greater security by buying into gilts then why should it invest in industry? This leads to an interesting situation. The government issues gilt stock to raise money to support government borrowing. Eventually. it will have to pay back the money plus interest. It usually does this by further borrowing. It sets interest rates and conditions which ensure that gilt issues are fully subseribed placing the govermment in direct competition with industry for investment capital in a totally unfair contest.
Until the new government acts to reverse this unequal conflict, there can never be substantial industrial renewal together with its possibilities of genuine wealth and opportunity creation.

Frank Ogden

[^0]
REGULARS

UPDATE

Non-Intel 386 claims 486 performance

$\mathrm{A}_{\mathrm{a}}^{\mathrm{T}}$Texan chip company has come up with a 25 MHz 486 type of processor which claims to provide up to twice the performance of the 386 SX and 386 SL at equal clock frequencies yet retains bus and pin-out compatibility with the original 386 part.
Cyrix, a recent entry to the semiconductor industry, claims its Cx486SLC offers notebook manufacturers an instant upgrade to 486 performance for less than a quarter of the price of an Intel 486 - Cyrix is quoting volume pricing at $\$ 119$. With its 87 SLC coprocessor, Cyrix claims a footprint four times smaller than for the Intel 486SX LP/487SX LP combination
Intel has taken the threat to its business seriously; it has initiated proceedings against Cyrix for patent infringement.
The chip supports 8, 16 and 32-bit data types and operates in real, virtual 8086 and protected modes. Its performance comes from a variable length pipeline combined with a risc-like single cycle execution unit, an on-chip hardware multiplier and integrated instruction and data cache.
Cyrix says that the multi-instruction-per-
cycle processor's combination of pipelined execution unit. 16×16 hardware multiplier (claimed to be faster than the 486 multiplier) and local cache give the chip its 486 -like performance.

Pipelined architecture

The Cx486SLC execution path consists of four pipelined stages designed with hardware interlocks to permit successive instruction overlap. They are: code fetch; instruction decode; microcode rom access; execution; memory/register file write-back. The 16 -byte instruction prefetch queue fetches code in advance and prepares it for decode, helping to minimise overall execution time. The instruction decoder then decodes four bytes of instructions per clock eliminating the need for a queue of decoded instructions.

Sequential instructions are decoded and provided to the microcode rom. Nonsequential operations do not have to wait for a queue of decoded instructions to be flushed and refilled before exccution continues. As a result both sequential and
non-sequential instruction execution times are minimised.
The chip's write-back stage provides single cycle 32-bit access to the on-chip cache and posts all writes to the cache and system bus using a two-deep write buffer. Posted writes allow the execution unit to proceed with program execution while the bus interface unit actually completes the write cycle.
External memory access takes a minimum of two clock cycles (zero wait states). For cache hits, the Cx486SLC eliminates these two clock cycles by overlapping cache accesses with normal execution pipeline activity. Additional bus bandwidth is gained by presenting instructions and data to the execution pipeline up to 32 bits at a time compared to 16 bits per cycle for an external memory access
The on-chip cache is a 1 Kbyte writethrough unified instruction, and data cache and lines are allocated only during memory read cycles. The cache can be configured as direct-mapped or as two-way set associative. The direct-mapped organisation is a single set of 256 four-byte lines.

Virtual reality accident

Police forces could soon be using virtual reality computer programs to help reconstruct road accidents. Events which led up to the incident can be modelled and then viewed from the perspective of a chosen observer, whether a bystander or the driver of any of the vehicles involved.
Buildings and vehicles can be created from scratch or summoned from a library of objects The system, which runs on a 486 PC, was developed by Aldermaston based Dimension International.

When configured as Iwo-way set associative, the cache organisation consists of two sets of 128 four-byte lines and uses a Least Recently Used replacement algorithm.
Support chips are planned by Oak Technology. One, called Oak Note, includes system controller, peripheral controller and VGA controller supporting true colour for photographic-quality images. The other, the Oak486SLC includes system, peripheral and LCD VGA controllers which provide integrated power management.
In suspend mode the Cx486SLC typically draws less than 0.8mA and operates from 5 V or 3 V power supply. Operating with 3 V uses only 30 per cent of the power used when operating with 5 V .
Intel has sued Cyrix for four alleged patent inlringements. Cyrix clams that by using SGS-Thomson as its foundry - which has a cross-license agreement on the 386 and 486 with Intel - it is fully protected from legal action.

David Manners, Electronics Weekly.

386 pin-compatible Cyrix architecture speeds up a PC by a factor of two over a 386 powered machine run at the same clock speed. Extensive use of pipelining accounts for the boost.

Full-motion CD-I moves into the picture

Itn mid-March. Philips gave the firss demonstrations of a CD-I player, decoding full sereen. full motion video direct from a 12 m disc, using chips designed to the new MPEG standard (Moving Picture Experts Group of the International Standards Organization). These demonstrations are already creating shock-waves through the industry.
Until the demonstration, few people believed that MPEG full motion could, as Philips had claimed. deliver pieture quality as good or better than VIIS, and sound quality subjectively as good as 16 bit CD audio. The demonstration, given during the Multimedia and CD-rom Conference in San Francisco, proved that the MPEG standard really can live up to the promises.
Philips had double-sourced chips from Motorola and US company C-Cube as an insurance policy. In the event, both companies delivered on time and Gaston Bastiaens, Director of Philips interactive media systems, now promises CD-I players with MPEG chips in time for Chrismas. But Philips has now adopted a dual marketing strategy. Some players will be sold with MPEG chips. and others (like those currently on sale in the US and due in the UK this spring) will be sans-FMV but upgradeable with a plug-in 100 pin cartridge containing the MPEG chips. full motioncapable players and upgrade cartridges are promised in time for Christmas sales, along with the first software to exploit the technology.
Previously Philips had said that CD-I would be launched in Europe only when MPEG chips were ready, and that all European CD-I players would play full
motion discs from day one. Adoption of the new dual marketing strategy follows from successful work done at the Philips Intcractive Media of America Production Centre in Los Angeles, a joint venture between Polygram and Philips which was set up in 1986 to develop interactive software for CD-I. The new lechnique so skilfully blends partial screen moving video with a static or animated background, that the seams do not show. Pima believes that many multimedia programmes will be just as effective with partial screen video, so the added cost of full motion production is not justified.

The high production costs of full motion material follow from the fact that although the MPEG decoding chips in the player operate to a lixed standard, the encoding proeess relies on operator skill. Already a new craft is emerging. conversion of video or tilm material to MPEG full motion format. Skilled encoding delivers VHS quality. Unskilled, or automated, encoding delivers pictures of very poor quality. There is smear on motion, and break-up into mosaicing after scene change and during sequences where the screen is full of action and there are quite simply not enough digital bits in the data stream to go round.
Prior to the San Francisco conference all demonstrations of the MPEG standard had been sourced from computer simulations, and did not match VHS quality. Demonstrations of MPEG video given by Sony at San Francisco prior to Philips. scheduled showing were very poor. Philips used a video projector to beam excerpts from the Three Tenors operatic video recording and the James Bond film Licence
to Kilt onto a large sereen. Picture quality was better than VHS and the sound mateled CD. This completely re-writes the rules of home video entertainment.
Says Gaston Bastiaens: "I am convineed that 12 cm CD-I is the ideal carrier for music videos.". Currently record companies must pay $\$ 8$ to press a 30 cm analogue laser video dise and around $\$ 3$ to duplicate a VHS video tape. But they can press a $12 \mathrm{~cm} C D$ for 60 US cents. With MPEG coding this can now store over an hour of digital video and audio. Like a CD audio dise the MPEG video disc will play back in any country. regardless of local TV standard. Picture sequences on the disc can be indexed for rapid access, like music tracks from an audio CD. Bastiaens also predicts that film companies will release interactive versions of secions from feature films. for instance a version of Back to the Fulure which lets the

Red faces

Despite the April cover date of the last issue, a couple of errorscrept in which were not intentional. Allen Brown's assessment of the Analog Devices ADSP- 21020 floating point signal processor was marred by the absence of an architectural diagram. Some unrelated screen shots found their way into the magazine in its place. Anatog Devices will be pleased to supply the missing details on 0932232222. Sincere apologies are due to Allen and anyone else who was confused.

Alasdair Philips' design for a low frequency dosimeter was also flawed. The sensor amplifier diagram on p282 should state Cl as 100 nF , and R1 as 180 kS . Also the captions on the two diagrams were unintentionally transposed.

FO
user select times and places to visit by time travel.
It normally requires a data stream of over $200 \mathrm{Mbit} / \mathrm{s}$ to convert analogue TV pictures into digital code without any loss of quality.
The existing standards for CD audio and CD-I set a rotational speed for the disc which limits the useable data rate available to around $1.5 \mathrm{Mbit} / \mathrm{s}$. So far the CD-I system has only been able to display low resolution. jerky moving video in a window one tenth the size of the screen, with the remainder of the screen displaying a still picture. The action is less jerky if the moving picture is in black-and-white only. The MPEG standard defines a method of digital data compression which reduces the video data rate for a full sereen moving colour video display to around $1.2 \mathrm{Mbit} / \mathrm{s}$ and the stereo sound to around 0.3Mbit/s.

Looking for the difference

Last year the MPEG committec bravely threw out all its previous work on audio coding and set a standard which works in the same way as the Eureka system for digital audio broadcasting and Philips ' digital compact cassette. The sound is divided into many narrow frequency bands and the content of each band analysed, to register where loud sounds will mask the perception of quieter sounds of similar frequency. Each band is then coded with only as many digital bits as are necessary to register audible sounds. This reduces the number of bits per second needed for CD quality stereo to around $300 \mathrm{kbit} / \mathrm{s}$, one fifth the data rate for conventional audio CD.
The video coder analyses cach of the 25 or 30 picture frames a second (25 for Europe. 30 for the US and Japan) and detects where the image content changes from frame 10 frame. The coder then registers only the differences. This reduces the bit rate by a factor of 200 , from over $200 \mathrm{Mbit} / \mathrm{s}$ to $1.2 \mathrm{Mbi} / \mathrm{s}$. To cope with scene changes, where a close-up switches abruptly 10 a long distance view, the decoder has a memory which stores all incoming frames and compares past, present and future information on picture content.

There are three types of coded picture frame on the disc. Intra or key frames are fully coded to give reference information on the general content of a scene. Predictive and interpolated frames compare the intra frame with one frame backward and one frame forward. These frames contain only difference information. The coded signal coming from the dise interleaves predictive and interpolated frames with one intra reference frame every 15 frames. The decoder stores a series of incoming frames in memory to reconstruct full pictures.

Although the decoding process is fixed, the coding process is flexible and governs the quality of the pictures seen on sereen. The coding engineer must run a sequence several times, judging how best to cope with rapid cuts and scenes which contain a lot of action. The trick is to "steal" digital bits from some parts of the pieture sequence which are stationary and do not need them. using the freed bits for other parts of the sequence with rapidly changing picture content.

Despite the impressive demonstration at San Francisco, Gaston Bastiaens believes that there is still room for some further improvement in quality at the data rate of 1.2Mbit/s. He argues strongly against waiting for the second MPEG standard. MPEG 2, which will define coding at 6Mbit/s. MPEG 2, still under discussion, relies on a completely new CD standard. with guadrupled recording density. This, in turn. relies on new optics in the player. with incompatibility between new and old dises and players.
The decision to sell two types of CD-I player, with and without MPEG chips. follows Philips success with another development. This lets an existing CD-I player. without MPEG chips, display what appears to be moving video. The trick here is for the production engineer to gralt moving video sequences into natural still picture or animated graphics backgrounds, with no visible window round the motion. This is done with a modification of the technology, called Chroma-key, which is already used to blend film or video action

Georgia Tech researchers Victor Tripp and Johnson Wang examine a new type of microstrip antenna. The spiral flat-plate provides bandwidths of up to $9: 1$ in the $2-18 \mathrm{GHz}$ frequency range. The circular polarisation makes it suitable for applications such as GPS, wireless lans and direct broadcast satellites. The planar nature of the system makes it eminently suitable for vehicle based use as does its small size - typically 5 to 12 cm diameter.

Digital audio broadcasting "most important"

Digital audio broadcasting will be the most important development in broadcasting during the 1990 s claims the BBC's Philip Laven. He says that the interference resistant system is "well matched to the public needs while offering significant benefits to broadcasters, the electronics industry and spectrum managers."
The recent Warc conference held at Torremolinos allocated a dab band at 1.5 GHz although this will not becone available until 2007. In the meantime, broadcasters are looking at the possibilities of using a 7 MHz wide channel in band III for four nationwide services; the dab system with its immunity to multipath fades allows national networking using just a single frequency. A conventional FM network requires multiple frequencies for complete coverage to avoid the effects of time delay.

Dab radio receivers will be very different to the traditional analogue counterparts: Europe's semiconductor makers are cooperating under the Jessi programme to develop a two-chip receiver system for the service which the EBU hopes will commence broadcasting by 1995.
with different backgrounds eg to let Superman fly over a city
An action sequence. for instance a haseball pitcher, samurai warrior, card dealer's hands or animated puppet, is filmed against a background of pure blue or green. The sequence is then superimposed on a scene which contains no colour that matches the originat background. With skill the two sequences blend together seamlessly. Without shill the edges of the moving object shimmer. The Philips Interactive Media of America Production Centre in Los Angeles has now developed a technique of disguising this "aliasing effect". The edges are slightly fudged by imposing a range of colour dots which bridges the gap between background and foreground.

The moving vidco only occupies one tenth of the sereen hut skilful production grafts the moving foreground into the stationary background, so that the viewer is unaware that the picture is a composite image. The effect is enhanced when the live action actors speak and their words are synchronised with their lip movements.
Gordon Stulberg of PIMA describes this as "putting the video into video games"

Barry Fox

RF MODULAR EQUIPMENT

LOW NOISE GASFET PREAMPLIFIERS
Two-stage Gasfet preampliters High Q inters Masthead or local use
TYPE 9006 Tuned to your specitied frequency in the range $5-250 \mathrm{MHz}$ NF 06 JB Gain U-40dB variable 50 ohms
TYPE 9006 FM As above Band $\| 88-108 \mathrm{MHz} .75 \mathrm{hms}$
TYPE 9002 Tuned to your specited channels in ban . 994
adjustable 75 ohms
TYPE 9004 Aligned to your specified frequency in the range $250-1000 \mathrm{MHz}$ NF 07 PB
Gain 25 dB adjustable 50 ohms
TYPE 9035 Mains power supply for above amplifiers
TYPE 9010 Masthead weatherproof unit for above amplifiers

WIDEBAND AMPLIFIERS

Monolithic microwave integrated circuits in a fully packaged microstrip format Full-wave shottky diode protected inputs Temperature compensated bias circuitry internal voltage regulation
TYPE $9301100 \mathrm{kHz}-500 \mathrm{MHz}$ NF 2 dB at 500 MHz Gain 30dB. Power output +125 dBm ,
18 mW 165
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$ NF 2 dB at 500 MHz Gan 30 dB Power output +125 dBm

TYPE 9008 Gasfet $10 \mathrm{MHz}-2 \mathrm{GHz}$ NF 25 dB at 1 GHz Gan 10 dB Power output +18 dBm
TYPE 9009 Gasfet $10 \mathrm{MHz}-2 \mathrm{GHz}$ NF 3.8 dB at $\ddot{\mathrm{GH} z}$ Gain 20 dB Power output +20 dBm ,
PHASE LOCKED LOOP FREQUENCY CONVERTER
TYPE 9115 Converts your specified input channels in the range $20-1000 \mathrm{MHz}$ to your TYPE 9115 Converts your specified input channels ine range $20-1000 \mathrm{MHz}$ lo your specitied output channels the range 20 cm . AGC controlled Gan 60 dB adustable -30 dB will drive transmiting ampliters drectly.

PHASE LOCKED SIGNAL SOURCES
TYPE 8034 Frequency as specifed in the range $20-250 \mathrm{MHz}$ Output $10 \mathrm{~mW} \quad £ 154$ TYPE 9036 Frequency as specifled in the range $250-1500 \mathrm{MHz}$ Output 10 mW

FM/FSK EXCITERS
TYPE 9282 Frequency as specified in the range $20-1500 \mathrm{MHz}$. Output 10 mW Deviation
PLEASE CONTACT US FOR FURTHER TECHNICAL INFORMATION. COMPLETE SYSTEMS AVAILABLE. Prices exclude p\&p and VAT

RF LINEAF POWER AMPLIFIERS
Tuned to your spechled requency in the range $20-250 \mathrm{MHz}$ or your specifted channels in
bands or $1 / 20 V+$ DC supply
TYPE 910510 mW input. 3 watts output $£ 275$
TYPE 9106500 mW input, 10 watts output
£341
TYPE 91553 watts input, 30 watts output $£ 460$
TYPE 94585 watts input 50 watts output Integral forced air cooling and output transistor
protection
$£ 750$
UHF LINEAR POWER AMPLIFIERS
Tuned to your spectfed trequency in the range $250-470 \mathrm{MHz} 28 \mathrm{~V}+$ DC supply.
TYPE 921330 cimw input 3 watts output
£350
TYPE 9124 2-玉 watts input, 25 watts output
£484

TELEVISION EXCITER

TYPE 9269 Phase locked loop vestigial sideband minaturised television modulator with sound channel RF output 10 mW an your specitied frequency in the range $40-1000 \mathrm{MHz}$ or channel in bands I IH, IV or V

TELEVISION LINEAR POWER AMPLIFIERS

runed to your specilied channels in bands IV or V $28 \mathrm{~V}+$ DC suppiy
TYPE 9252 10mW input. 500 mW cutput
TYPE 9259 50umW input 3 watts output.
TYPE 926250 GmW input, 10 watte output

is wats output

LINEAR PCWER AMPLIFIERS $800-1000 \mathrm{MHz}$
Tuned to your specitied trequency in the range $800-1000 \mathrm{MHz}$
TYPE 926550 CmW input, 10 watts output
WIDEBAND LINEAR POWER AMPLIFIERS
TYPE $930610 \mathrm{MHz}-1 \mathrm{GHz}$ Gain 15dB Outrut +30 dBm , 1 watt

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel:0303893631 Fax:0303893838

 LPKF offers a complete solution:
 Professional periphery for every CAD System.

Time spec sheet of a 4 layer multilayer milling inner layer: 45 min pressing:
drilling:
120 min
through plating:
10 min
milling outer laye
60 min
operating time: 5 hrs. 40 min

For prototype production LPKF Mill/Drilling Request info material or call: machines have proven its merits in thousands of installations all over the world. CAD data can be downloaded from any CAD system and prototypes are manufactured automatically either through the mill/drilling machine or by means of our latest laser technology.
The CONTAC through plating system and the MULTIPRESS completes the system. Suitable for any CAD system!

ALL-MODE WIDE-BAND IC-R7100 RECEIVER

THE IC-R7 100 FEATURES

- 25 to 2000 MHz continuous coverage allowing you to receive VHF, UHF, amateur marine. CB. utility bands. FM and TV broadcasts
- All-mode capability.
- 900 memory channels in 9 banks.
- 20 Scan edge memory channels.
- Dual scar with over 40
combinations
- High sensitivity and reliable
frequency stability
- 0.1. 1, 5, 10, 12.5,20, 25, 100 kHz and 1 MHz tuning steps available - Built-in 24-hour system clock with 5 ON/OFF timers
- Effective 20 dB attenuator for
(strong signals.

- Automatic recording so important programmes can be caught when away from receiver.
- Dial lock function
- Noise blanker circuit for eliminating pulse noise.
- Noise squelch and S-meter squelch
Cl-V system for computer control through an optional CT-17.
- Frequency announcement in English with an optional UT-36.
- Large function display with selectable LCD backlighting brightness.
- Easy-to-read S-meter plus FM centre indicators.
- AC and DC power operation

Post to: Icom (UK) Lid. Dept WW Sea Street Herne Bay Kent CT6 8LD Tel:0227 741741 (24hr). Fax: 0227360155
iname/address/postcode

Call sign:
Tel:

\qquad

REGULARS

RESEARCH NOTES

How non-volatile is brainpower?

EEducation is a vitally important subject: so Emuch so that most of us spend a quarter of our lives consuming it. But does it really matter whether we sharpen our mental skills on Latin verbs or differential calculus, and how much do we retain? To judge from recent research conducted on Open University students, while we may not remember every single fact, we do remember a great deal for a very long time. especially the important general principles a point companies might ponder before consigning middle-ages wrinklies to the scrap-heap.

Studies of how we remember - or perhaps how we forget - were undertaken on 373 OU graduates, aged between 25 and 72 . They were drawn from the 97% of psychology graduates who chose not to work in psychology. and who would therefore have been less likely to top up their mental fact-files. Time from graduation ranged from 3 months to 11 years.

Experiments involved asking questions to reveal deficiencies in different types of memory, for example memory for specific facts, memory for scientific methodology. memory for concepts and principles, etc and tests were designed, as far as possible. to eliminate guesswork.

When all the results were analysed and set against a range of other factors such as the students" ages, grades of degree and levels of interest in the subject, some very
interesting conchusions emerged. Results published in The Psychologist ($\mathrm{Vol} 2 \mathrm{No}_{2}$ 1992) show that even very recent graduates can rarely remember more than about 70% of the factual data they were tanght. This. say the researchers, reflects a mixture of knowledge never gained and knowledge quichly lost.
In the case of concepts and general principles, recall is somewhat higher (about 80%) inmediately after graduating. Performance is thouglat to be better because general principles are harder to learn and so are better remembered.

By contrast, individual facts can be learned by rote or swotted up just before an exam, making then more volatile. Exam results, incidentally. are far poorer as predictors of long-term retention than pertormance on course work - a point for educationalists to note!
What happens in the years after graduating is particularly interesting. Measurements on the OU students show that with virtually all types of memory, the subsequent decline is far from linear. Nearly all the significant memory loss occurs during the first three to six years, after which the curve levels of
These experimental results obviously have considerable significance when it comes to selection procedures for jobs. Does it, for example, matter what class of degree an applicant gets if memory for what has been learned is more-or-less the same after three
years? Is a graduate of three years necessarily a better bet than one of eleven or more?
The dreaded subject of ageism is also addressed. very favourably. by his OU study. Although there have been many studies showing that raw IQ declines with age, results of OU degree courses show no age-related performance changes. The researchers conclude that older people, well into their 70 s . can often outperform younger students if they are allowed to work at their own pace. The reason seems to be that elderly students are generally more intelligent to start with, as well as being more highly motivated. (There is independent evidence that highly intelligent people retain their intelligence longer. They probably "crystallise" their knowledge and unconsciously develop new mental algorithms to compensate for decreasing processing speed).
The personal characteristics that seem to stand out head-and-shoulders above all other predictive factors for both performance and memory retention over long periods are interest and motivation. So. employers, if you want good long term value from your recruits. ignore degree grades and ignore any sor of examination. especially if conducted within three years of studying. All they may reveal is a candidate's ability 10 swor. Look instead for evidence of real interest and enthusiasm for the work.

Grow your own micro-wiring

Last November when a Japanese group were investigating the strange footballshaped molecules of carbon now nicknamed "buckyballs", they chanced upon an even stranger form of carbon consisting of microscopic tubes. These "buckytubes"cylinders of carbon atoms only a few nanometres in diameter are now thought likely to conduct electricity, as well as metals.
Since their discovery in 1985, buckyballs, or fullerenes to give them their formal name, have sparked off a lot of research leading to discoveries of other similar molecules with 76 or more carbon atoms. Chemists and physicists investigating buckyballs soon found, moreover, that it was not just the molecular structure that was different from ordinary forms of carbon such as graphite and diamond. Under certain circumstances, and with the addition of suitable dopants, fullerenes can be made to behave as superconductors and semiconductors.
The recent discovery of "buckytubes" by the Japanese scientist Sumio Lijima of the company NEC was the fortuitous outcome of an attempt to take pictures of buckyballs with an electron microscope. Lijima had been making buckyballs using an electric arc, and was initially disappointed when the

atoms arranged in hexagonal patterns, just as they are in graphite. The difference is that with graphite the sheets are flat, whereas the new structures - the buckytubes - are more like hollow, open-ended cylinders.

So far the properties of these new carbon molecules are purely speculative because of the difficulty of conducting laboratory experiments on structures so tiny. But with the dimensions of some of the observed structures in mind, Dr John Mintmire and his colleagues at the Naval Research Laboratory in Washington, DC, have been attempting (Phys Rev' Lett Vol 68 No5) to predict some
high intensity of the electron beam destroyed any trace of them. But as he began to examine the negative electrode of the are under the electron microscope, Lijima soon discovered something far more interesting: tiny needles of carbon about a micron long and between 4 and 30 nanometres in diameter.
Further investigation revealed that these needles were actually a wholly new form of carbon, consisting of rolled up sheets of
of the electrical properties of buckytubes.

Mintmire's calculations suggest that buck ytubes will exhibit quantum effects because of the physical dimensions of the structure. His group has calculated. for example, that a buckytube consisting of rings of ten carbon atoms will be an almost perfect conductor of electricity, as good as

Transparently better conductor with write potential

Transparent materials are nearly always electrical insulators because transparency dependends on electrons being relatively immobile. So when transparency and conductivity have to be combined, engineers resort to complicated and often expensive techniques such as ionic liquids or extremely thin metallic films - as in the case of liquid crystal displays.

Coating a metal conductor onto a glass surfaces is certainly useful, but it is not without severe disadvantages. It will not, for example, permit the passage of more than a few milliamps of current, nor will it allow current to flow through the transparent substrate.

But a group from AT\&T Bell
Laboratories, Murray Hill, NJ and AT\&T
Technologies in Omaha have now published details (Science, Vol 225 p. 446) of a new way of building conductivity into the bulk structure of a transparent material

Structure of the transparent conductor

- in this case a special silicone mix. Their ingenious approach involves mixing into the liquid silicone approximately 1% of microscopic nickel spheres coated with gold or silver. The mixture is then placed in a powerful magnetic field which naturally lines up all the spheres in vertical columns.

Magnetisation of the individual spheres ensures they are attracted to one another with opposite poles in contact - the same phenomenon that enables a string of ballbearings to be picked with a bar magnet.
In the case of the nickel micro-spheres the various columns repel one another, leaving regular spaces in between.

The result, once the silicone material has set hard, is a sheet of material containg rows of spheres acting like insulated wires linking opposite faces of the sheet. Because the rows appear end-on to the surface, they intercept virtually no light.

The AT\&T researchers say that if the particle content is kept below 0.75%, a $150 \mu \mathrm{~m}$ thick layer of the material will transmit about 90% of light falling on its surface - almost as good as a sheet of window glass. Electrical conductivity takes place in the same direction as light transmission, normal to the surface of the sheet.

Such conductivity, through a transparent material, offers enormous scope in imaging and optoelectrical devices.

Using the new medium as write pad
But an even more interesting property has been reported by the group. If a layer of the cured silicone containing the nickel micro-spheres is overlaid with a $5 \mu \mathrm{~m}$ barrier layer of plain silicone, conductivity - as expected - becomes negligible. But if the measuring electrode is pressed a little harder, the conductivity suddenly rises.

The researchers say that the underlying mechanism for this reversible switchability is not clearly understood, though what probably happens is that the columns of spheres act like needles and puncture the barrier layer of silicone.

AT\&T says that if this sandwich were to be incorporated into a structure with two indium-tin oxide layers and a protective mylar cover it could form the basis of an excellent write-pad device.
the best metals. What is more, unlike many non-metallic conductors such as polyacetylene, the buckytube is expected to possess a zero bandgap at room temperature A buckytube 1 nm in diameter is expected to have a density of charge carriers of between 10^{22} and 10^{23} per cm^{3} giving it essentially metallic properties in terms of conductivity. Different sized structures would, needless to say, have different propertics
None of these theoretical predictions has yet been tested in practice. Nor has there been any evidence for the existence of buckytubes longer than one micron. Nevertheless the prospects look interesting, especially if they can be synthesised casily and with predictable dimensions. There is obviously the possibility that they could be synthesised like long-chain polymer molecules. They might also be synthesised biologically, in a manner similar to the creation of DNA. the double helix of the genetic code.
Speculative this may be, but success would open up some intriguing possibilities such as the creation of "micro-wire" for connecting up active elements in sub-micron technology. There might also be the possibility of making tiny biologically inert sensors for monitoring what's going on inside individual cells of the body

Research Notes is written by John Wilson of the BBC World Service.

Brewing quantum chips

Small-particle semiconductor physics is a relatively new field, exploiting quantum effects that occur on the scale of a few nanometres. Particles this small exhibit electronic properties different from either bulk materials or crystalline molecules and in this respect represent a whole new class of materials.
Such quantum semiconductors - they can be created with a wide range of bandgaps have potential applications in optics, optoelectronics and in chemical catalysis. But there's only one snag: if the material is to have consistent properties, it must be made with particles of precisely uniform size.
Hitherto there have been many attempts to synthesise quantum semiconductor crystallites chemically, usually by restraining the reaction in some way. Not only is it virtually impossible to produce particles of adequate uniformity, it's also difficult to stop subsequent growth by a phenomenon known as Ostwald ripening.
A new way of overcoming these problems and creating precisely uniform crystallites was announced by P Williams and E Keshavarz-Moore (Production of quantum semiconductors by microorganisms, 1992 IChemE Research Event)
involving a process not dissimilar to brewing, using a yeast called Schizosaccharomyces pombe.
If this yeast is grown in the presence of cadmium salts, it reacts - like any living organism - to the toxic effects of cadmium. But instead of curling up and dying, the yeast cells wrap up cadmium particles in a coating of a peptide which isolates the cadmium. Not only does this isolate the cadmium metal, it adds sulphide ions in such a way as to create cadmium sulphide crystallites of almost perfect uniformity. Moreover the size of the crystallites can be "tuned" by controlling the growth conditions of the yeast and are naturally resistant to growth by accretion.

Quantum semiconductors could be useful for a whole range of standard semiconductor applications.

Paul Williams is planning to take advantage of the natural peptide coating to tag the semiconductor particles with molecules that would react with specific biochemicals. In this way it might be possible to create cheap and highly accurate biosensors for use in medicine and in the burgeoning new biotechnology industries.

Sculpted silicon with a humid feel

S
andia National Laboratories of Albuquerque NM has developed a new process for etching silicon to create miniature parts used in micromechanical devices.
Single crystal silicon has of course long been used to produce integrated circuits. But its exceptional strength also makes it an ideal material for fabricating miniature sensors, motors, accelerometers, and similar devices. The sculpting of these tiny operating structures, measured in microns and often having complex threedimensional geometries, is still a relatively new field of activity.
Silicon removal techniques for crafting ordinary silicon wafers involve photolithography and chemical etching. With these techniques, the area to be removed is defined by a patterned mask and the material to be removed is dissolved in hydroxide baths at elevated temperatures. But for three dimensional structures these techniques are less satisfactory. Etch rate is dependent upon the temperature and bath composition, so it is difficult to control precisely the amount of silicon to be removed. Chemical etching also tends to give the etched area a matt finish rather than the preferred mirror finish.

The Sandia process uses electrolysis of silicon in hydrofluoric acid to make porous a very thin layer of silicon on the top of a silicon wafer. Since etching rate is directly proportional to the current passed in the electrochemical cell, the depth of the porous silicon can be easily regulated by controlling the charge passed through the electrochemical cell. The wafer is then removed from the cell, and the porous silicon is etched by immersing it in a
hydroxide solution at room temperature Because the pore depths are so uniform, the resultant etch finish is mirror rather than matt.

A patent application has been filed for a humidity sensor fabricated by the new process, intended to measure humidity inside microelectronic packages and similar environments.

Selective electrochemical thining of a silicon wafer

The safe route to silicon.

A product can always benefit from being smaller, faster, cheaper or simply more efficient. But the route to these improvements is often through new technology.

What worries engineers is the amount they have to invest on the way before their new design passes the test.

So we turned the tables by developing the Falcon Programme with its guarantee of tast yet low-cost ASIC development.

It works like this:
Firstly, we provide you with a software package. It allows you to design analog/digital arrays using 5 or 2 micron digital, or 3 micron mixed technologies, and, most important, lets you verify the design/performance yourself.

Additionally, we can help you design at a functional level by providing you with a range of

Micro Circuit Engineering
components for breaclboarding critical analog functions
As a result, you'll end up with a high degree of confidence that your design is going to work before you take the step of committing yourseli to a prototype.

When you are at last satisfied and send us your prototyping brief, we again keep costs down by manufacturing in batches with many customers sharing the expense.

Your prototyping is then returned to you in as little as 28 days.
Finally, once the design is proven, we can provide you with production parts in any valume whatsoever, from very low to very high. We can also ensure that they meet any screening level under BS9450 approval.

So if you want it guaranteed right first time, make sure you talk to Mike Goodwin this time.

A Smiths Industries Company

Four or five years ago, unless an extortionate price was paid, most modems were capable only of data transmission at a rate of 1200 or $2400 \mathrm{bits} / \mathrm{s}$. The alternative for users with a need to transmit data at high speed was a leased line.
In the meantime, there have been improvements in terms of modulation technology, the analogue encoding of a digital signal. Borrowing widely from other areas of data transmission and storage, compression algorithms can increase the speed at which data is transmitted; they also bring with them enhanced error correction and detection.
The standard last ratified by the CCITT,
V.32bis, is based around a transmission speed of $14,400 \mathrm{bits} / \mathrm{s}$ full duplex. It incorporates techniques such as auto-adaption (automatic sensing of the line speed being used by a transmitting modem) and retraining (the modem automatically drops down to accommodate reductions in line quality and will train back up again as they improve). The V.32bis renegotiation sequence means that retraining, which used to take around 20 seconds, can now be performed in under one second.
Training is achieved by looking at some parameter, generally residual equaliser error, as a means of establishing line conditions.
Fast retraining is also an important feature

> Claud Shannon always knew that the telephone could do more than set up a chat line. Now, fifty years later, modem technology may allow standard analogue speech circuits to reach his predicted limits. By Julia King and Simon Taylor

for modems used to transmit data over radio. Radio links are half duplex, meaning that training has to be very fast to get decent throughput. The $9600 \mathrm{bit} / \mathrm{s}$ half duplex V. 29 standard needs 270 ms to train before any data is sent. This is equivalent to about 40 characters of information at $1200 \mathrm{bits} / \mathrm{s}$. The amount of data sent also has to be of reasonable size to benefit from the higher data rate after training, since the larger the packet size, the greater the advantage.

Putting on the squeeze

While modem designers are reaching the limit of higher data speeds, modems have been given a new lease of life with the incorporation of compression techniques. The most successful of these, defined in the CCITT's V.42bis standard, offers an improvement in throughput of between three and four times by using a combination of compression protocols, procedures and algorithms developed by different companies. For instance, V. 42 bis is based on the data compression model developed by Lempel and Zif, an algorithm widely used for file compression in computing applications.
All of these enhancements mean an increasingly heavy load is being placed on the microprocessor at the heart of the modem. "The processor is running out of steam. People are finding that with the combination of V. 32 and V.42bis compression, they're not getting the throughput they should", says Gerry O'Prey, technical director of Dataflex Design. This has resulted in a migration from 8-bit devices generally used for the modem engine to a 16 -bit processor.
Hayes' technical director, Bill Pechey, says that the load on the processor will increase still further: "V.fast modems will take about three times as much processing power as V. 32 modems". The bulk of the processing is tied up with decoding the encoded modulation, generally using the Viterbi algorithm.

According to Pechey, a recent study of phone lines in Europe and the US has established that performance is better than expected. On the whole, lines have a bandwidth of 3600 Hz and a signal to noise ratio of between 30 and 35 dB . This means that they are technically able to accommodate transmission rates of $28.800 \mathrm{kbit} / \mathrm{s}$ - twice the limit laid down in V.32bis.
Although there have been great technical advances in data transmission, the modem remains the domain of the technically aware, to a large extent. The standard way of controlling them remains the AT command set, developed by Hayes, which first appeared some 11 years ago - not the most approachable user interface ever designed.
O'Prey believes that this year will see the emergence of a number of packages designed to ease the user's interface to his modem, just as Windows did for uneasy dos users. A Windows-based interface will hide the vagaries of the AT command set from the user.
Another recent development concerns the ability to incorporate send and receive fax functions. This has been made possible by resolution of the EIA TR29 class 1 and 2 standard, which has provided a common means of sending fax commands from PC-based comms packages to the modem. Until a year ago, the
process had to be managed using proprictary packages
Manuficturers are now switching their attention !o new issues. As notebook computers increase in popularity, there has been a distinct problem in standardisation of internal card slots. The US PC MCIA (PC memory cards international association) and Japanese Jeida packaging association have now produced a joint standard that accommodates modems and lan and SCSI adapters. The modem will be a credit card sized device: Dataflex has worked closely with Intel and has just launched the UK's first MCIA-conforming modem.

Digital to digital

While modems on analogue lines have reached the data rate limit, ISDN is an entirely different ball park. Obviously no modula-

Block diagram of Rockwell International's

RC9696AC modem sub-assembly. Providing V32 and iower operating modes together with the on-baard error compression and detection of V42, this system makes extensive use of local processing power.
It comprises a microcontroller unit, a
communications controller coupled up to a modem data pump, the heart of the system. It uses 32 K of ram, 64 K of rom and 2 K of nonvolatile ram.
tion is required because the line is already digital; however, adapters need to perform functions such as taking AT commands and converting them into messages that can be understood by the ISDN line`s D-channel.
The limitation with ISDN lies not in the line speed but in the PC's serial port, which is not designed to transfer data at the ISDN rate of $64 \mathrm{kbit} / \mathrm{s}$. "Standard comms packages cannot be rum at full speed", says O'Prey. This has meant that vendors of ISDN adapters have had to develop their own proprictary APIs (applications program interfaces). Dataflex is overcoming this limitation by launching a package that takes advantage of the comms port's ability to run at $115 \mathrm{kbit} / \mathrm{s}$: the signal will then be modulated down to $64 \mathrm{kbit} / \mathrm{s}$.
Cellular radio presents modem users with its own problems: of these the greatest is caused by variation in the signal quality and strength, requiring that error correction be truly robust. In the UK, the two cellular operators have chosen different routes for dealing with the problem. Vodafone went the proprietary route, opting to use the BT-developed CDLC protocol, where Cellnet stuck with Microcom's MNP.

Microcom's latest issue, MNP10, a protocol
CONTINUED ON PAGE 368

Microprocessor Development Tools

EMULATORS - SIMULATORS - COMPILERS - ASSEMBLERS - PROGRAMMERS
77 C 828085 Z 86800080513201068 HC 116301650287 C 7516805 Z 8068098096740 Series 7720 MIPS R2000 etc . .

\checkmark New Version 4
 \checkmark Pascal, C and Modula2 Compilers

\downarrow Simulator, Cross-Assembler, Linker and Editor
\checkmark Hardware Debug options
\checkmark Multitasking Support
\checkmark Integrated environment - or command line
\checkmark IEEE Floating Point Support
\checkmark Supports ALL 8051 variants

- including 80751, 80552 etc...

SMUAG UNTVZBSAB ASSEMBLTR
\checkmark Relocatable - tast assembly

- Caters for ALL Microprocessors and Controllers
- Instruction sets for many microprocessors included
- from Z80 to RISC 2000
- or add your own
\checkmark Iteritive macros,
\checkmark Intelligent jump facilities
」 Linker and MAKE facility

HOMyRAW HVIULATOP mon $£ 99$

- $\quad \checkmark \quad$ ROM sizes from 16 kbit to 64 Mbit!!! Full bi-directional communications \checkmark Emulates all 24, 28, 32 \& 40 pln devices \checkmark Fast download - loads 1 Meg In under 5 seconds Split and shuffle and paged ROM capability
ONTVERBAL PROMRAVTVIT
Extensive device support
- PALs, GALs, PEELS, FPGAs atc...
- Sorial PROMs, BPROMs, (E)EPROMs
- and microcontrollers
\checkmark DIL, QFP and PLCC packages
- TI and NatSemi approved

Gang adapters avallable
STMULLAETBE

- $\quad \checkmark \quad$ Debug microprocessor and controller software on your pc
Break points and trace
Free run or single step

2 Field End, Arkey, Banct, Herts, EN5 3EZ Telephone : 081-441 3890

YOUR PERSONAL

UNIVERSAL PROGRAMMER

Superpro is a low cost programmer which can easily be attached to your PC for use in $R \& D$. It comes with its own half card for high speed communication so you can still use your parallel port.
Superpro comes from California so you can be sure the latest devices will be supported. In fact the software is updated on an almost monthly basis. The extensive device list covers most popular logic and memory families such as Amd's Mach series as well as the popular Altera range EP310 to EP1810. Support is also included for popular gals such as 16 V 8 and 20V8 from a variety of manufacturers. Standard 24 , 28,32 and 40 pin e (e) proms are also catered for in the 40 pin universal ZIF socket. An added bonus is the ability to program a range of microcontrollers. PLCC devices can be programmed with special adaptors.

So before spending thousands of pounds on a new stand alone programmer why not have a look at Superpro for a ten day trial period?

The specifically infelligenf circuif

Mr/Ms . Company
Position . Department
Address
Post Code 41111111 Town
Country . Telephone
Please send me LU invitation card(s) 〕 The conference programme

DAAACOMMS

Useful words to use when talking about modems

Jargon	English
bits	bits per second
baud	Period of the encoding frame - the actual data rate may be up to four times the baud rate
Full-duplex (FD)	Transmission in both directions at the same time
Half-duplex (HD)	Transmission in one direction at a time
Pseudo full-duplex	Uses half-duplex transmission, but use of a protocol makes it look like fullduplex
FSK	Frequency shift keying: a frequency defines either a transmitted one or a zero
PSK	Phase shift keying: phase changes define the transmitted bits
QAM	Quadrature amplitude modulation - a derivative of PSK, but also uses amplitude changes.
Leased-line	Usually a 4 -wire system that is hired from BT
PSTN	Public switched telephone network (the normal telephone network)
CCITT	An international standards-setting committee. Often other standards appear when the CCITT is slow to react
Hayes	A de-facto standard command set used to control modems (also known as the 'AT' command set)
V. 25	An alternative standard defined by the CCITT
V. 21	300bits FD (FSK)
V. 23	1200bits one way; 75bit/s the other (slower speeds can also be used) (FSK)
V. 22	1200bits FD (PSK)
V.22bis	2400 bits FD (PSK)
V. 27	4800 bit /s FD on leased-line systems, HD on PSTN
V. 29	9600 bit /s FD on leased-line systems, HD on PSTN
V. 32	9600 bits FD (PSK)
V.32bis	14400bit/s FD (PSK)
LAP-M	Link Access Procedure for Modem - an error correcting protocol
MNP4	Microcom Networking Protocol level 4, an error-correction system
MNP5	MNP level 5, adds compression at about 2:1, and includes level 4
MNP6	implements universal link negotiation allowing operation at speeds of 300 to 9600 bit/s and statistical duplexing allowing simulation of full duplex service on a half duplex V. 29 connection
MNP7	More efficient data compression than class 5
MNP9	Streamlines message acknowledgement and error retransmission
MNP10	Optimises performance with poor line conditions
V. 42	The 'alternative' to MNP4, which includes LAP-M and MNP4
V.42bis	The latest ratified system, accepted as a universal standard, which includes MNP5, LAP-M and BTL-Z (British Telecom Lempel-Ziv) algorithm, giving a data compression of 3:1
RS-232	A system for the physical interconnection of equipment
V. 24	One of the best known 'standards' commonly known as RS-232; few proper implementations exist
DTE	Data terminal equipment (usually your computer)
DCE	Data connection equipment (usually a peripheral device, modem, printer etc.)

which looks like the X. 25 packet handshake, has a high tolerance of poor line conditions. It makes multiple attempts to set up links, it adapts packet size to accommodate varying levels of interference, it negotiates shifts in transmission speed to achieve the maximum acceptable line speed and it shifts dynamically to the modem speed best suited to the line conditions.

Microcom's David Free says that the primary advantage that MNP10 offers over training standards such as V.32bis and V. 29 is that it not only trains down as line quality deteriorates but also trains back up again. Data throughput is thus optimised. Microcom also claims that, at signal to noise ratios of 11 dB or less, only a class 10 modem is capable of maintaining a communications link.

The baseband
signal is modulated
in both amplitude
and phase; specific
combinations
correspond to the
value - either one
or zero - of a
particular bit in
the bitstream. This
diagram represents
a signal space map
of trellis coded
modulation at
9600 bits/s, V. 32
standard. Derived
from a $1200 H z$
tone, it sounds like
a hiss to the ear.

The binary numbers denote $\mathrm{Y} 1_{n} \mathrm{Y} 2_{n} \mathrm{Q} 3_{n} \mathrm{Q} 4_{n}$

The theory

Nyquist, a theoretician stated that the maximum symbol rate (i.e. the baud rate) on a given transmission medium is half the available bandwidth. Telephone lines have a bandwidth of 3000 Hz , so this gives a theoretical maximum data rate of $1500 \mathrm{bit} / \mathrm{s}$. This is true for FSK modems where different frequencies are used to represent transmitted ones and zeros. But for all other modes, different methods are employed to achieve the higher data rates.
For V.21, the frequencies used are 1180 Hz and 980 Hz for the transmitting channel, and 1180 Hz and 1650 Hz for the receiving channel. PSK uses a different method, ie: phase shift keying. This uses a fixed frequency carrier $(1200 \mathrm{~Hz}$ and 2400 Hz for V.22bis), and encodes phase changes onto these baseband carriers to transmit the data. If four phase changes are encoded at each sample time, eg: $45^{\circ}, 135^{\circ} 225^{\circ}$ and 315°, two bits per sample time can be encoded:

45°	00
135°	01
225°	10
315°	11

Sampling at a baud rate of 1200 samples per second with quadrature phase modulation results in a transmission rate of 2400 bits per second. 45° phase changes can be added enabling four bits to be encoded per sample time, giving a transmission rate of 4800 bits per second form the original 1200 baud carrier.

0°	000
45°	001
90°	010
135°	011
180°	100
225°	101
270°	110
315°	111

Noise

Noise is basically interference on the transmitted signal, and comes in different forms: phase jitter, amplitude distortion and noise. All of these can introduce errors into the received data if the noise introduced causes the received point to cross into the zone of another point.

Error correction

Error detection and correction can be used to avoid errors in the signal affecting the received data. Systems such as MNP-4 send data in 'packets' and are acknowledged one at a time as they are sent. Each packet of data has a checksum or CRC which allows the remote modem to detect if any errors have occurred in the transmission process. Error correction may be carried out either by retransmission of the affected packet, or in some cases by back-tracking of the CRC, enabling the afflicted bit (or bits) to be replaced.

Protocols

To download a file from a bulletin board or some other system, a protocol needs to be used. Protocols are essentially a further 'packetisation` of the data and will operate on top of any existing error correction and compression scheme in use.
In effect this means that two protocols are running at the same time. which is hardly efficient. However. no standards have been set within V.42bis or MNP to enable file transfer to take place; this is still the only way to perform this type of transfer. The modems may have improved but the protocols most people use are still optimised for use with non-error correcting modems. "There are protocols designed for links with error control. such as Y modem G"., says Pechey.

V.fast

The latest proposal, generally known as V.fast and currently under scrutiny by standards authorities, defines a transmission speed of $19.200 \mathrm{bit} / \mathrm{s}$. V.fast is thought by most to represent the technical limit for data transmission; indeed, some doubt whether it is achievable. For these reasons, V.fast has already carned itself the nickname of V.last.
Hayes’ Bill Pechey, says that V.fast

modems will establish initial line speed conditions and so transmission speed by sending a probing signal at the beginning of the handshaking sequence. The modem will then categorise the line into one of several pre-ordained categories before resorting to more traditional training methods.
"The bulk of equalisation will be done in the transmitter", says Pechey. Normally it is done at the receiver. "This will improve the signal to noise performance of the overall system."
Pechey says that if the V.fast moden comes

Abzolute channel capacity. As channel capacity increases, so does the requirement for improved signal to noise ratio. V.fast requires at least 10 dB more headroom to operate than circuits using V. 32.
out using the techniques proposed, it will offer performance that falls within 1.5 dB of the theoretical limit proposed by Shannon in his capacity theory in the mid-4()s. This calculated that the phone line was theoretically capable of accommodating a transmission rate of between 25.000 and 35.000 (bit/s.

Dialling up a disaster?

> Videophones, once great fun in science fiction films, are now accounting for a sizeable slice of electronics company research budgets. In spite of the futuristic appeal, prosaic arguments over technical standards and the eventual price tag make this a high risk strategy. By Richard Wilson

Recent developments in digital video compression technology and the capability to build reliable flat panel displays may put the first videophones in offices and homes before the end of the year. But we must be careful, much is still fantasy in today's plans for videotelephony
Companies now believe that they can make videophones with acceptable picture quality at prices a consumer would pay.
Earlier this year AT\&T, the US telecommunications giant, demonstrated a videophone which it plans to sell at $\$ 1500$ ($£ 800$). That product presents grainy colour images on a 9 cm screen which scans at between two and 10 frames a second.
British consumer electronics company Amstrad, which ten years ago took the business personal computer into the high street, is competing with BT to put a $£ 500$ videophone in the shops before Christmas.

Amstrad’s chairman, Alan Sugar maintains that the videophone could become the next great consumer electronics product. He may be right, but it will be another year or more before he finds out whether consumers rush to buy a videophone which will hardly resolve mouth or eye movenments. By then more sophisticated videophones with far improved sound and picture quality will b: appearing on office desks.
Business videophones currently cost over $\$ 5000$ but offer better picture quality: they use larger screens and provide improved definition. and motion through the improved bandwidtr: of digital telephone lines which are becoming available with the introduction of ISDN business services.
Their design is based on an internationally agreed videotelephony standard and, as a resuit, a large number of manufacturers will be introducing products this year. A dozen or

Europe's first consumer video phones will be in British shops before Christmas according to British Telecom. The instrument is claimed to work on the UK's 22 million analogue telephone lines and will be sold for under £500, or at a discount price of $£ 799$ for two so that you can give one to friend.

However, technical doubts remain about both the quality of the picture and, more importantly unless you can lip read, the intelligibility of the audio.

THE NEED TO LIP READ

Poor audio quality is likely to be as much of a problem as poor picture quality as videophone data rates tumble. A digital coding scheme called adaptive pulse code modulation (ADPCM) is used to squeeze a 7 kHz audio bandwidth into the $16 \mathrm{kbit} / \mathrm{s}$ speech channel. This is twice the bandwidth of standard telephones, but still falls well short of the speech quality offered in higher cost video conferencing systems with a $48 \mathrm{kbit} / \mathrm{s}$ speech channel. Such a system requires a dual ISDN connection or $128 \mathrm{kbit} / \mathrm{s}$
more business videophones were to be seen at last year's international telecommunications exhibition in Geneva.
The main issue with videotelephony is how much picture information can be transmitted over the telephone line. Data compression ratios of around 100 : 1 - that is only one in every hundred bits of picture information is transmitted - are required to squecze a broadcast quality video picture onto a $128 \mathrm{kbit} / \mathrm{s}$ telephone connection, allowing at least $16 \mathrm{kbi} / \mathrm{s}$ for the speech channel. This is the equivalent of two $64 \mathrm{kbit} / \mathrm{s}$ ISDN lines.
Specially designed digital signal processing chips, called video codecs. are used to reduce the amount of data transmitted without cuting picture and audio quality to unacceptable levels. Most systems use an algorithm defined by the international standard known as H. 261 .
A data reduction ratio greater than 100 to one is achieved by transmitting the information which records when elements, or pixels. of the picture change. In this way the picture is not continually redrawn only modified to accommodate movement.

The H. 261 standard defines a number of

The CCD imager in the camera unit is a light sensitive two-dimensional array which integrates the optical information falling on it so that an image can be read electrically. The electrical signal is proportional to the incident light on each CCD in the array.

An alternative being developed by Texas Instruments uses a cmos memory array which stores the charge generated by light falling on an array of photosensitive cells.
According to TI the memory array offers improved camera resolution because less optical information is lost compared to CCDs: charge is held in a logic circuit and is read without serial transfer. It also makes it easier to integrate other camera functions such as sweep generators onto a single chip.
An alternative colour camera technology developed by researchers at Edinburgh University uses an array of 84,000 photodiodes and charge sense amplifiers fabricated on the one piece of silicon a few millimetres square.

Flat Panel Displays.

The cost of colour liquid crystal displays has limited videophone screen sizes to 7.5 cm . With
total channel capacity.
Videophones which work over analogue telephone lines allow only $5.6 \mathrm{kbit} / \mathrm{s}$ for the speech channel. It is important to remember that these videophones will be telephone handsets with a separate visual image of the caller. It will be some time before products will be able to offer fully integrated sound and vision as we are used to with television and video. In the meanwhile, the expression "watch my lips" could take on a new significance.
compression ratios covering a range of picture qualities. A 352 pixel $\times 288$ lines picture format can be transmitted at data rates from $2 \mathrm{Mbit} / \mathrm{s}$ for high quality down to $64 \mathrm{kbit} / \mathrm{s}$ which is a signal ISDN telephony channel. The standard specifies a minimum transmission rate of $46.4 \mathrm{kbit} / \mathrm{s}$ for the video and an audio channel of $16 \mathrm{kbit} / \mathrm{s}$.

Videophones benetit from small screens compared to more sophisticated video conferencing systems. Compact systems must use flat panel displays and the current high cost of colour liquid crystal displays is restricting sereen sizes to less than 15 cm .

According to Martin Redstall, head of BT's videophone group: "A videophone uses a small screen, up to 15 cm diagenals, so there is no point in going overboard on the resolution. The important thing is that the angle subtended to the eye should be kept small."
The problem facing companies developing consumer videophones is that scale of compression achieved in H. 261 systems is not sufficient to enable acceptable picture quality when transmitted over existing analogue telephone lines. According to BT's Redstall it is
possible to compress a videophone picture for transmission over analogue lines at between 8 and $16 \mathrm{kbit} / \mathrm{s}$ using the H. 261 algorithm, but picture quality will be poor.

GEC Marconi is adapting sophisticated data compression and CCD camera technology, originally developed for military hardware, into a videophone which will work over analogue telephone lines. This is the product Amstrad will sell for $£ 500$. European telephone companies BT and Deutsche Bundespost Telekom are also said to be interested in it.

Marconi’s product compresses both full colour video and telephone quality speech into a $14.4 \mathrm{kbit} / \mathrm{s}$ data channel using a non-standard algorithm. Cost constraints dictate that it uses a sofiware implementation on standard DSP chips. Marconi has a head start on European rivals and it hopes to create a standard product before the inevitable barrage of consumer products from Japan.
BT along with other European telephone operators are promoting the vidcophone primarily as a business tool. They believe the use of the H .261 standard and digital telephone lines will ensure acceptable picture quality but it is also seen as a new service which will promote the introduction of ISDN services.
Graham Mills. of BT's vidcophone marketing group, does not discount the possibility of consumer priced products. "With Japanese companies offering low cost manufacture it could easily becone a consumer market."
But the telephone operators are not the only people pinning their hopes on the success of the videophone. PC makers are keen to extend the use of desktop computers outside of the office. and a PC which doubles as a videophone may be the answer.

IBM and Apple are both planning to introduce video compression extension cards and add-on cameras to enable users to turn their

TECHNOLOGY IN THE PICTURE

a price tag of some $£ 100$ to $£ 200$ per panel there is little incentive to increase screen sizes. Active matrix colour LCD is still far from being a mature technology and manufacturing costs soon become prohibitive. One Japanese supplier says that a 22 cm colour display still costs around $\$ 1500$ to produce.

H. 261 Video compression standard.

H. 261 specifies the coding and decoding of video signals for video communications services on the public telephone network. It enables video signals to be transmitted over a range of data rates from $566 \mathrm{kbit} / \mathrm{s}$ up to 1900kbit/s.

The frame structure and synchronisation for video channels from $64 \mathrm{kbit} / \mathrm{s}$ to $1.92 \mathrm{MBit} / \mathrm{s}$ is defined in H. 221 and H.230. There is a wideband interface standard for digital channels up to $2 \mathrm{MBit} / \mathrm{s} \mathrm{H} .242$; and the equivalent narrowband interface H. 320 .

ISDN Integrated services digital network.
End to end digital telephone connections over the public network. An internationally agreed standard interface consists of two $64 \mathrm{kbit} / \mathrm{s}$ dig-
ital channels which can be used independently or together.
Many of the first digital videophones make use of the combined $128 \mathrm{kbit} / \mathrm{s}$ ISDN bandwidth which offers best picture and audio quality but at higher service cost. Most manufacturers are now developing $64 \mathrm{kbit} / \mathrm{s}$ systems.

Video telephony or video conferencing?

Video telephony will offer person to person communications over the public telephone network and so relies on the widest availability of low cost and compatible terminals. Price will be just as important as picture and sound quality.
The video conferencing systems available today are used by companies for group communications with a number of distributed locations. This requires large screens, high video and audio quality and $128 \mathrm{kbit} / \mathrm{s}$ digital telephone connections.
As a result the cheapest video conferencing systems, at $£ 20,000$, are still five times more expensive than the most costly videophones.

Microprocessor Develofment Systems

ROM Emulators

敂 128 Kbytes and 1 Mbytes
䀭 Fastest download on the market－over 500 Kbits per second
Whain capability for increased capacity
㯰 Supports 8／16／32 bit applications
瓯 Battery backed for full portability
堛 Parallel connection simplifies interfacing

TEA Total Environment Assemblers
 microprocessors
 facilities
－On－screen monitor，trace and source level debugging

SEND for free software EVALUATION PACK

Ask about our Loan \＆ Try－Before－You－Buy SCHEMES

21st Century Electronics 56b Milton Park，Abingdon Oxon OX14 4RX
Telephone： 0235832939 Fax： $0235 \mathbf{8 6 1 0 3 9}$

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communica tions receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter per formance as well as being suited to communications use and news gathering from international short wave stations The modifications include four additional circuit boards providing ＊Rechargeable memory and clock back－up＊Balanced Audio line output＊Reduced AM distortion＊Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope＊Mains safety improvements
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained．The new AM system achieves exceptionally low distortion：THD ，2001－z－6kHz at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$（originally $-20 \mathrm{~dB}, 10 \%$ ） ＊Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$＊PPM10 In－vision PPM and chart recorder＊Twin Twin PPM Rack and Box Units ＊Stabilizers and Fixed Shift Circuit Boards for howl reduction ＊10 Outlet Distribution Amplifier 4 ＊Stereo Variable Emphasis Limiter 3 ＊Stereo Disc Amplifier＊Peak Deviation Meter＊PPM5 hybrid，PPM9 microprocessor and PPM8 IEC／DIN－50／＋6dB drives and movements＊Broadcast Stereo Coders＊Philips DC777 Short Wave Car Combination：discount $£ 215+$ VAT．

SURREY ELECTRONICS LTD

The Forge，Lucks Green，Cranleigh，
Surrey GU6 7BG．Tel： 0483 275997．Fax： 276477

All you need to do the job

Feedback OS9020A

A BASIC＇no frills＇ 20 MHz scope that provides all the facilities you need at a price that won＇t strain your budget． $£ 255$ plus VAT

Just one of

 The Feedback Selection of Down－to－Earth laboratory test equipment at Down－ to－Earth prices．For further information on the OS9020A or other equipment in the Feedback

or write to：－

2－2eedback
 Feedback Instruments Limited

Park Road，Crowborough，East Sussex，TN6 2QR，England Tel： 0892 653322．Fax： 0892 663719．Telex： 95255 FEEDBK G．

EVE-2 European Videophone Experiment.

Public telephone operators in six European countries, including the UK, France and Germany, are attempting to make sure that videophones launched in each country will work together
The aim to create a standard service based on the H. 261 technical interface standard and digital telephone connections. The hope is that it will encourage manufacturers to introduce new low cost products. By the end of the year 50 videophone terminals in six countries will be connected together using public telephone lines.

PCs into videophones. They have enlisted the help of Californian video compression specialists: IBM is working with PictureTel and Apple with Compression Laboratories Incorporated (CLI) which is also working with AT\&T on a consumer product. PC videophones and consumer products could offer the right technology and the right product enormous commercial rewards. There is intense pressure to push the technology: video compression, display and camera, as hard as possible.
Designing a custom video codec is expensive, but prices are falling. H. 261 codecs which a year ago were restricted to use in $\$ 30,0(0)$ video conferencing systems could. according to Dataquest. fall to around $\$ 7000$ by the end of the year.
One result is that a number of US companies continue to develop their own video compression algorithms. They believe the H. 261 standard is too restrictive because the hest achievable picture quality is sacrificed in faveur of low data transmission rates.
Everyone accepts videophone technology must be based on a worldwide standard. "H. 261 may not be the best technology but it is the best common technology." says John Tyson, president of CLI.
Improving compression so that video pictures can be transmitted on analogue telephone lines is only the first step. Video telephony must also keep pace with developments in radio communications.
Scientists at BT's research laboratories are already looking at the possibility of handheld videophones which could be used on digital radio communications networks like GSM digital cellular or future personal communications networks (PCNs).
Video telephones may prove to be embarrassing in the home as well as amoying in the office, hut inevitably they still carry with them an air of fantasy. The marketing men believe the videophone could have as big an impact on our lives as the TV or PC but then they would say that, wouldn't they?

Richard Wilson is communications editor of Electromics W eckly

KNOWING WHEN TO SAY NODE

The passing of the sullen grey command line interface from the world's desktop computer screens will have a profound effect on both office networking and the companies that supply the software. Dom Pancucci reports

The business of networking personal computers is undergoing a quiet revolution. Where complexity has become the main constraint to the further development of office data communications, suppliers are now seeking ways to simplify the whole process. This will involve downsizing from mainframes to PC networks in the first instance and then making it easy to mix operating systems and applications.
On a hardware level, the role of crucial elements such as hubs will change and inevitably the indusiry will have 10 find a common graphical user interface (GUI) to get to the data held across a network. And this will probably signal the emergence of Microsoft's Windows GUl as the front-end most users will encounter on their network in the future.
Downsizing mainframe applications into the PC network is a vital next step required by the network user. Using the client-server model with a famity of PCs served by a more powerful controlling computer - provides a better basis for fast data exchange around an organisation.

Network of operating systems

Compalibility between different operating systems on a network has also become a hot issuc. With so many 32 -bit operating systems coming out this year - IBM`s OS/2 2.0 to Windows New Technology from Microsoft and not forgetting all the different versions ot Unix being prepared for the desktop - common threads have to be devised to make them all work together. These will take the form of application programming interfaces (APIs), allowing different software to share data on a network. The APIs will run as sub-sets of operating software held on servers.
The new craze of solving compatibility barriers with APIs has also extended to older technology.
Electronic mail has often been cited as one of three main reasons - along with mainframe connectivity and printer sharing - why networks are installed in the first place. Yet Email's acceptance as anything more than a
corporate toy has been hindered by the obstinate proprietary tendencies of the suppliers. which have mostly failed to supply mutually compatible E-mail packages.
This problem will soon disappear, because four of the largest Email suppliers - Apple Computer, Lotus Development, Borland Intemational and Novell - have co-developed a standard programming interface called Vendor Independent Messaging. The group of four will soon be expanded when IBM joins later in the year and talks are going on with Microsoft to form a bridge with VIM through its own mail API called MAPI, which will be carried in Windows 3.1. Microsoft claims that MAPI will work with most E-mail products anyway through a server. The problen with Email in the past has been the need to initial each address with a distinctive code. Unless your E-mail package knows this initial, it cannot get into the mail box.

Developments such as VIM and MAPI will elevate the role of Email into a key means of accessing corporate data and sending it in a useful form around the organisation. This will be even more important because of the plans afoot to develop integrated relational databases for the now available Windows 3.1 and later versions, which will put all networked information into a central repository and will lead to the concept which Microsoft calls Information At Your Fingertips.

At a more mundane level, the network suppliers are trying to ease bottlenecks in the data traffic by focusing on fewer protocols and miniaturising equipment like network hubs. A report from the 3 Com company last year highlighted the cost/complexity problems in expanding existing networks and suggested that simpler cabling arrangements and fewer protocols, among other changes, would go a long way towards easing network growth. 3 Com commissioned an independent research firm to do the ground work which went into The Complexity Crisis report and the stark message for vendors was to let go of their proprictary technology and adopt an approach based on standards.

Careless talk costs

The cost and inconvenience of making two networked systems talk together when both are based on incompatible architectures or software is simply too great for the enlightened user to tolerate. Although PCs can almost be counted as a standards-based computing environment in their own right - following the continued dominance of the Intel-IBM-Microsoft axis which got the whole thing going in the first place - the servers they are linked to do not always share common technology.
Intel, which identified a PC connectivity crisis itself last summer, has responded to the challenge by developing the Hub Management Interface (HMI) with Novell; the first add-on board product for servers based on this specification is imminent. This will literally bring the hub out of the closet - the central cabling node for a network has up to now been hidden away in a cupboard in a building's basement, or concealed within the risers between floors. In the past a problem with the hub brought the whole network to a halt, possibly for days. Such a catastrophe with HMI-based boards would last only as long as it took to replace the faulty part. HMI products will also raise the throughput of a network, because more of the server's processing power can be hamessed.
Similar board-level products are being rushed out by Intel and IBM, among others, to cope with other aspects of networking and

"...Windows could be on at least half the desktops in the world by 1995"

many include built-in management and monitoring software. The aim is to give the user fast access to intelligible information about what is happening on a network. The benefits of HMI's emergence to users is two-fold support for future hubs based on the specification will be simpler and it could lead to a de facto standard.

Window on the network

Probably the most striking aspect of office datacomms in the near future will be the proliferation of Windows 3.I as the GUI which is used to navigate networks. Software vendors are vying to develop applications which use Windows better than Microsoft's own products; companies like Novell, which has around 70 per cent of the network operating system business at present, will not want to give up its share. The only way to survive is to develop as many technological plugs into other systems as possible. And Windows could be on at least half the desktops in the world by 1995.
Windows NT itself will be a multi-tasking operating system for the multi-user network. It

FILLING IN THE WINDOWS

T
he release of Windows 3.1 marks a turning point in personal computer software technology. Not only will the latest version of Microsoft's graphical user interface become the front end of the company's forthcoming 32-bit operating system called NT, but it will also provide the programmer with an array of tools to tune Windows applications much more sweetly to their real tasks.
Windows 3.1 itself has several improvements over its immediate predecessor. Apart from improved performance, 3.1 includes an advanced scalable fonts technology called TrueType, the file manager has been redesigned and network connectivity has been enhanced. A version of Windows for penbased and notepad computers has also been announced by Microsoft, which will open the way for better development of the still immature pen computing business.
Microsoft has dominated PC software just like the IBM model has become a standard for hardware. With such a rich release of development tools and operating system potential surrounding Windows 3.1 and NT, the company has set the scene for its continued preeminence. Windows is therefore becoming the standard way for the user to get to information held on a PC.
To ease third party product development in the run up to NT's full launch - late this year at the earliest - Microsoft has made available an early application programming interface (API) code for writing to the 32 -bit operating system. Called Win 32 S , it is a sub-set of the full API specification to be included with NT. But it will allow developers to start on applications which will run under the operating system. Older 16-bit software written for the dos operating system will also work with products created using Win 32 S and the full
will come out around the year end. Within that framework Microsoft is planning a suite of connectivity options. Little of this strategy has come out yet in hard specs, but one thing is clear - Information At Your Fingertips will rely on a database which has relational qualities and deals largely in objects. This means being able to match information contained in different computer files and applacations and then moving it around in separate chunks which can be manipulated in any way desired.
The issue of databases is one of Microsoft's most closely guarded secrets. Because it has such an importance to the company's future, very few facts have come out about the database project - codename Cirrus - which Microsoft has been working on sunce at least last year. What has emerged is that Cirrus will work much like a mainframe's database, which is closely linked with the operating system. All applications then write to the database - but with the difference that data stored in separate applications will be accessible by any of the others. The user will retain the benefits of the browsing features of what

Win32. Eventually all Windows applications will become 32-bit and future versions of dos will support this migration.
New Windows applications written under Win32 will have distinct advantages over their older 16-bit cousins. They will be capable of preemptive multitasking and will be more closely threaded together.
From the programmer's point of view, toolkits such as Visual•Basic and Object Linking and Embedding (OLE) present some of the more interesting possibilities surrounding Windows 3.1. Both tools, along with Microsoft's $\mathrm{C} / \mathrm{C}^{++}$version seven development system, provide the means of creating objectoriented Windows applications. Upgrades to Visual Basic in particular will see the toolkit shift from its partial involvement with objects to becoming a full-blown object-based system. To that extent it is important that programmers used to procedural software writing methods get ta know Visual Basic in its present form the leap to full object orientation will be mind-blowing for many. The high-performance object technology (HOT) contained in $\mathrm{C} / \mathrm{C}^{++}$version seven will be the basis Microsoft itself will use to develop future Windows systems.
A new version of OLE is also scheduled and its future role in Microsoft development activities remains vague until then. At present OLE is used to transier objects between applications (hence the linking and embedding), but it could also turn out to the successor to the discrete instructions Microsoft called dynamic dala exchange (DDE). Windows applications currently carry DDE messages to allow applications to converse.
In times to come OLE may become the hidden agent allowing the whole object-oriented show to roll on.
the industry calls flat file databases if desired.
Microsoft is not alone in seeking this Holy Grail of databases and it will have dramatic effects on networked computing. Borland is also planning a similar suite of integrated databases, running from the desktop to the server, all covered by an object-oriented architecture which will work with Windows. Borland has in fact been beating Microsoft in this game, which has only recently seen the light on object-oriented computing and joined the industry's initiative called the Object Management Group. Other smaller companies will be pitching in as well. And with Windows databases currently claiming only four per cent of the overall database market, it is clear that people are waiting to see what technology will come from the big companies before making a move.

Once the smart databases have become established, the trend towards downsizing will accelerate considerably. By then users will be able to get the storage capacity of the older, big machines with the flexibility of desktop computing.

TESLA PC Bleck Diagram Simulator Analogd Digital System Sinulation

Nonllinear RE Time Simullation Spectrum Analysis OrCAD Graphical Entry Runs on any IBM PCC Clone
"It's amazins how quiek"s we got up to speed saved is a lot गf asseavetiozin -d. . Ottawa, Canada
"Your package is verg wel written Im amazed at how easy it is to use.' --ID.S. Atlente, USA

Call or fex for demo disk (US) 404 -751-9785 Fax404-66 58817 EASY TO ORDER: ust ax or zal. TESDFT ships direatly to anywere in the free World. We acceot WISA, NasterCard and companz pücrase o-cers (due upor reze pt). Eelivery te your door via UFS n-ctays. TESLA s mulator $£ 395$, Symbrils for OrCAD $£ 110$. MODGEN madel generator $£ 280$, Shippin̄ $£ 34$. Free 1 -zear fax/phene supgont. Prices valid for 6 C -days. MODGE \downarrow requires N icroso ForTRAN 4.1 or later.
TESOFT Inc. PO Bכx 305. Roswel, GA 30077 USA CIRCIENO. TIS ONREFYCAAD

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Road, Borehamwood, Herts. WD6 1AA. Fax: 081-207 6375, 0836640328
Tandon half-height 10 mb hard disk drive IBM compatible. Sold with no guarantee. £17.00 c/p $£ 4.50$.
3.5" floppy disk drive Chinon BBC compatible, new $£ 35 \mathrm{c} / \mathrm{p} £ 4.00$

Astrolux Headset with boom mic $£ 19.95 \mathrm{c} / \mathrm{p} £ 3.50$
Tektronix 7403 N Maintrame only $\mathbf{£ 8 0}$
$3.5^{\prime \prime}$ floppy disk drive NEC IBM compatible. Full height unit $£ 39.95$ new \& boxed, $1.6 \mathrm{Mb}, \mathrm{c} / \mathrm{p} £ 3.00$
Switch mode power supplies 240 V AC input 5 V DC 40amp £29; 12 V DC 10 amp £46: $5 \mathrm{VDC} 40 \mathrm{amp}-12 \mathrm{~V} D \mathrm{DC} 4 \mathrm{amp}+15 \mathrm{VDC} 11 \mathrm{amp} £ 48$.
Western Digital $3.5^{\prime \prime}$ hard disk drive new 40 Mb RLL ST506 £120 c/p $£ 600$.
H.P. 4328A millohmmeter $£ 450 \mathrm{c} / \mathrm{p} £ 11.00$
H.P. 3400 A RMS voltmeter $£ 225 \mathrm{c} / \mathrm{p} £ 11.00$.
H.P. 3400A RMS voltmeter $£ 225 \mathrm{c} / \mathrm{p} £ 11.00$.
NEC new $\&$ boxed $5.25^{\prime \prime}$ floppy disk drive model FD $1055-311$ BBC compat. $1 / 2$ height £48c/p 56.00 .
Tektronix 191 constant amplitude sig gen. £175 c/p £12.00.
Tektronix 067-502 standard amplitude calibrator $£ 120 \mathrm{c} / \mathrm{p} £ 12.00$
Plantronics (Auralite) type headsets very lightweight new BT approved ideal for comms: £25 c/p £3.00.
$12^{\prime \prime}$ colour VGA monitors on swivel \& tilt base
Farnell fan-cooled PiSU 240 V AC input +12 V DC $4 \mathrm{amp}-12 \mathrm{VDC} 1 \mathrm{amp}+5 \mathrm{~V}$ DC
$10 A-5 V$ DC 5 amp $£ 16 \mathrm{C} / \mathrm{p} £ 7.00$
SVGA card 16 -bit Realtek 256 K new $\&$ boxed with software etc. $£ 37.50 \mathrm{c} / \mathrm{p} £ 3.50$
Lambda power supply model LMG12 OVRV 12V DC 56A linear £200.00
KSM power supply model SCT 200-15 0-240V 0-15A E160.00
Hewlett Packard 618B SHF signal generator £75.00
Hewlett Packard 606B signal generator $\mathbf{£ 7 5 . 0 0}$.
Hewlett Packard 612A UHF signal generator $£ 75.00$.
Hewlett Packard 86A personal computer new £95.00
Hewlett Packard 5000A logic state analyser £60.00.
Hewlett Packard 5000A logic slate analyser $£ 60.00$.
Hewlett Packard 3450 B multi-function meter $£ 65.00$
Hewlett Packard 3450B multi-function meter $£ 65.00$
Hewlett Packard 693D sweep oscillator $£ 175.00$.
Hewlett Packard 693D sweep oscillator $£ .00$
Hewlett Packard 651B test oscillator $£ 75.00$
Hewlett Packard 451 Bewlett Packard 9868 I/O expander $£ 55.00$
Iswatsu SS5705 40 MHz O'scope £295.
Kikusui COS 504C 40MHz O'Scope Calto 1-92 £350.
Hameg HM605 60 MHz O'Scope $£ 400$.
Hitachi V 21220 MHz O scope $£ 230$.
Hitachi V202F 20 MHz O'scope Calto 1-92 £230
Hitachi V 50950 MHz O'Scope $£ 400$
Tektronix 455 O'scope $£ 350$.
Tektronix 7 B70 time base plug-in $£ 100.00$
Tektronix $7 \mathrm{DO1}$ logic analyser plug-in $£ 100.00$.
Singer spectrum analyser 20 Hz to $35 \mathrm{kHz} £ 275.00$
Singer Alfred o'scope c/with sweep network analyser 7051 £175.00
Paratronics Model 532 logic state analyser 32chn £165.00
All above prices $+171 / 2 \%$ VAT. Please ring for c / p rates

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact:

ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 7BT
Telephone: (08i) 5390136

CIRCLENO. It6 ON RLPIY(ARI)

SHAREWARE LAYOUT TOOL GIVES INDIVIDUAL PERFORMANCE

Cheap shareware it may be. But Martin Cummings finds Quickroute's performance puts it in an altogether much bigger league.

Quickroute is a fully functional PCB layout tool that can also be used for drawing schematics. As such it is aimed at a particularly crowded sector of the market, with packages covering most capabilities and budgets. But what immediately sets it apart is that it is on offer as shareware, and at $£ 30$ it will undoubtedly interest many designers who have not before had access to such software.
The shareware version starts up with several "marketing screens" showing large text encouraging users to register - it is almost worth paying the $£ 30$ to avoid these.
Once through these, the screen layout is a familiar combination of pulldown menus, a bank of point and click icons down the right and a status bar along the bottom.
Cursor keys and function keys can be used to operate the program, but a Microsoft-compatible mouse is supported with the left-button click used to select from the icon bank and the right button pulling down menus. It sounds simple but in practice the arrangement proves surprisingly, and unnecessarily, confusing.

Using the package

Probably the most important screen manipulation commands are pan and
zoom, and a choice of methods is offered to handle each of them.
Clicking on one of the four arrows on the right pans the screen but a much more attractive method is to press a num ber from 1 to 8 : the screen is redrawn with the current cursor position as centre and with the zoom level heing defined by the number. Zoom can also be controlled from a menu and it is not limited to the preset factors, adequate though they are.

The range of predefined IC pactages proves surprisingly adequate.

PC ENGINEERING

The two silk screen layers and eight copper layers avail able may be less than that offered by some otter packages but they are more than adequate lor most applications. The current working layer is displayed on the status bar and layers can be tumed on and off in any combination. Solder resist layers are automatically generated from the pad pattern.
Like most PCB layout software. commands are simple and within minutes you can be placing components on the blank board: first select the object to be placed from the icon bank of tracks, pads, integrated circuits of other components, then

In the registered version, a library of what the manual calls icons (bit images) can be created and built up to include. tor examplc, unusual text characters. arrow heads, target or alignment marks. or any other small but detailed image. The icons are created on a 40×40 matrix by deciding which pixels to turn on and olf. Unfortunately on CGA or Herculcs

CONTINUED OVER PACE

GoldStar

 QUALITY, PROFESSIONAL PC's

 QUALITY, PROFESSIONAL PC's AT AFFORDABLE PRICES

 AT AFFORDABLE PRICES}

EVERY PC COMES WITH

1 YEAR ON-SITE WARRANTY

 VGA GRAPHICS AS STANDARD FREE UK DELIVERYGoldStar is a key division of the Lucky GoldStar Group, one of the world's largest international corporations, employing over 100,000 people with a turnover approaching $£ 14$ billion. GoldStar, with their unrivalled resources and technical ability, have manufactured and labelled computers for many of the world's leading computer companies for over 30 years! In fact, other PCs you may have been considering, because they have a different brand "name" on the outside, may well be a GoldStar on the inside!
Silica Systems, an official GoldStar appointed dealer, are pleased to recommend this comprehensive range which combines the very latest technology with years of manufacturing experience. GoldStar's quality and reliability coupled with the Silica Systems service, provide you with the perfect PC solution for the home, business or education. From an entry level 286 desktop workstation to a powerful 486 EISA tower system, Silica and GoldStar have the answer, at an affordable price!

1Mb RAM (4 Mb max on Motherboand) 2Mb RAM on Plus Series
EMS (LIM 4.0)
31/2" or 5\%" Floppy Disk Drive 3 Expansion Slots
VGA farndise-7w Graphics - 256K RAM
12 Montis On ste Malntenanco
OOS 4.01 DOS Shell, GW BASIC,
EMS 4.0 \& Utilty Software
PLUS SFRIES (from f599), Includes Duar hoppr disk Dives

- Prlce - $£ 399+$ Vht without Hard Crive

WITH 42 MP
HARD DRIVE

+ £100 for VGA Mono Monitor $+£ 200$ for VGA Colour Monitor

	PRoC	${ }_{\text {RAM }}^{\text {Ram }}$				
		$\begin{array}{\|l} \text { ló } \\ \text { Mb } \\ \hline \end{array}$	мb			MHz
		2	8		5	
		$\overline{\mathrm{Mb}}$	mb	-	5	25
		Mb	$\begin{aligned} & 10 \\ & \text { mb } \end{aligned}$	-	8	M Hz
		4	8	-	5	$\begin{aligned} & 40 \\ & \text { MHz } \end{aligned}$
	$386 \mathrm{ox} 33_{\mathrm{mux}}$ TOWER SYSTEM - 64K CACHE	$\begin{array}{\|l\|} \hline 8 \\ \hline \end{array}$	16	-	8	MHz
		8	16		8	114

PLUS SERIES

14" VGA MONITORS

MODEL			31.56Hz		${ }_{\text {cke }}^{\text {EVGA }}$	On,	mal		
GS 1405	movo	N/A	$640 \times$	800×600			-	s100	E1175
GS 1125	colour	39mm	640×480					2200	¢235
GS 1330	coulur	.31mm	641×480					0	
GS 1460		. 28 mm		800x600					

OPTIONS

deschiption	ExC vat	Inc vat
$1 \mathrm{Mb} \mathrm{\times 9bin} \mathrm{SIMM}$	550	¢58.75
287 -RMHz Malhs Co.Processor - for GT 112	1100	£117.50
	c85	£9988
	ع100	

OPTIONS

OESCPIPTION	Exc vat	inc vat
387dx-20MH2 Maths Co.Procassor - For GS 320	¢150	£176.25
387dx-25MHz Maths Co.Processor - For GS 347	¢1s0	$£ 176.25$
387dx.33MHz Maths Co.Processor - For GS 335	ع 160	£188.00
377mb SCSI Hard Oilsk Drlve - 10.7ms Aicess	8999	£117383

SILICA SYSTEMS OFFER YOU

- free overnight delivery: On all hardware orders shipped in the UK mainland - TECHNICAL SUPPORT HELPLINE: Team of technical experts at your service. - PRICE MATCH: We normally match competitors on a "Same product - Same price - ESTABLISHED 12 YEARS: Proven track record in professional computer sales.
- BUSINESS + EDUCATION + GOVERNMENT: Volume discounts available for large ord
- SHOWROOMS: Demonstration and training facilities at our London \& Sidcup branches
- FREE CATALOGUES: Will be mailed to you with offers and sotware/perin
- FREE CATALOGUES: WIII be maled to you with offers and software/peripheral details. - PAYMENT: By cash, cheque, all major credit cards, or extended payment plan.

Before you decide when to buy your new GoldStar PC, we suggest you think very carefully about whERE
you buy it. Consider what It will be like a few months etter you have made you buy it. Consider what It will be like a few months atter you have made your purchase, when you may require additional peripherals or software, or help and advice. And, will the company you buy irom
contact you with details of new products? Ai Silica Systems, we ensure that you will have nothing contact you with details of new producis? At Silica Systems, we ensure that you will have nothing to
worry about. We have been estabished for over 12 years and, with our unrivalled experience and expertise, we can now claim to meet our customers recuirements with an understanding which is second literature and don't just take our word for it. Complete and return the coupon now for our latest Free (O) MAIL ORDER HOTLINE
\square

WITH DUAL FLOPPY, WINDOWS 3 \& MOUSE | 42 Mb HD | 130 Mb HD | 210 Mb HD |
| :--- | :--- | :--- |

 £599 $£ 799^{\circ}$ £1099 £799 £999 £1299 £899 £1099 £1399 £899 £1099 £1399 £1399 £1599 £1899 £2099 £2399 £3499 £3799

MAIL ORDER

 LONOON SHOP: Selfridges (ist Flowi), Oxford Street, London, W1A 1AB Tel: 071.6291234 SIDCUP SHOF: $\quad 1.4$ The Mews, Hatherley Rd, SIdcup, Kent, DA14 4DX Tel: 081-302 8811

To: Silica Systems. Dept EWWO-0592-66, 1-4 The Mews, Hatherley Rd, Sidcup. Kent. DA14 40X
PLEASE SEND ME A GOLDSTAR CATALOGUE
\square

Symbols can be created, edited and saved in libraries.
graphics screen the images can be plotted but not printed, a rather curious and inexplicable limitation.

Positioning problems

Placing components for the first lime is straightforward, but trying to adjust their position is certainly bat for the blood pressure. Adjusment sounds casy enough; select block NOLE then define the opposite corners of a rectangle containing the objects to move. Press ACCEPT and the objects are poised ready to move

But then comes a subte problem. The rectangle outline now disappears so alhough you know where you want to go, it is no longer obvious which part of the rectangle will end up there, making it too casy to slightly misplace the part.

As a result, several attempts may have to be made to locate the ohject in the right place, causing severe annoyance. Fortunately there is a way around the problem, by always defining the rectangle a known XY distance from the object to be moved. Moving the objects in real time with the mouse, may swe many users from an carly grave.
By contras, drawing tracks is easy. Track sizc can he selected from a choice of 24 . or alternative widths typed in, down to a minimum of (0.005in. Tracks can be constructed Preely from point to point or constrained to multiples of 45°. As they are drawn. they rubber-band with the cursor, and track width is clearly displayed - a great help when space is tight.
Components initially placed do not come with lext such as identifiers. values or part numbers. But any text can be added in a frechand way. Surings of up to 20 characters can be typed in, inverted, retlected or rotated, and placed on the board. Four text sizes are available but only in upper case.
Text is drawn using the current track size; so forget 10 sclect a narrow width and your label can look like something written with a badly worn fell tip marker.
Once a design has been created in will usually need editing, by deleting, moving and adding a lew parts here and there. The delete command works well if you know exaclly where to clich on the offending item, though it is usually much easier to delete a block by delining a rectangle then obliterating it. Areas of the design that may be of use on oher layous can be extracted and saved to file using the GRAB comnand.

Autorouting capability

Almost unbelievably, at this price, Quickroute comes with an autorcuter. To make use of it, first tell the program which two points to comnect by cliching with the mouse on the approoriate pads. As each point-lo-point connection is enterex, a straight line linking them is drawn so building up a rat \because nest on the screen. Up to 99 links can be entered at a time although some users maty wish to enter and route on a one-by-one basis. Pressing the lefi mouse-button detines the links. Unfortunately in the middle of the process it is all to easy in press the right mouse button by mistake, terminating the defining mode and prematurely unleashing the autorouter.

The autorouter defaults to a track width of 0.0125 in which is alse the largest width it can deal with. Bul width can be modilied down to 0.005 in if needed. Quickroute's algorithm attempts to routc within a rectangle defined by the connection points, and on any of the layers that are selected to be displayed. Layers are tried one by one, but a via-hole is not used to move layers within a route.

I put the autorouter though its paces with a simple test to route ten trachs on a fairly spacious array of ICs with no

CONTINUED OVER PAGE

Micro AMPS

$£ 99$
 8051 'C' COMPILER

* Preprocessor, compiler, optimser
* Integer implementation
* Inline assembler
* Assembler level simulator and monitor
* Includes 8086 compiler for the PC
* Single chip to fully expanded memory
* Micro-C is not a re-worked small C
* Other code generators available $68 \mathrm{HC} 11,6809,8085 / \mathrm{Z} 80$
* Low cost cross assembler available: 6800/01/03/05/09/11 8031/8051 8085/Z80 8086/96
* Over 350 pages of documentation on disk
* Integer BASIC compiler
* Supports single chip mode
* 8051 cross assembler included
* High level debugger runs on PC
* Standard Basic commands supported
* Specific functions to access 8051 SFRs and internal memory
* Line editor included, accepts text files
* Generates INTEL hex format output
* Output suitable for 87C751
* 8052AH-B ASIC compatible compiler available

8051 ICE (ICE51 ${ }^{\text {TM }}$)

* Low cost 8051 In-Circuit Emulator
* Low power, 5 volt operation
* Plugs directly into the 8051 processor socket
* 32k bytes RAM for program/data
* Single step and break points
* Assign memory and SFRs
* Upload/download INTEL hex files
* $\mathrm{I}^{2} \mathrm{C}$ drivers available
* Real time clock version available
* PC host software communicates via serial port

87C751 ICE (ICE751)

* Low cost 87C751 In-Circuit Emulator
* Plugs into the target 87 C 751 socket
* On-board programmer, PLCC adapter available
* Monitor uses only 48 bytes of program memory
* Upload/download INTEL hex files
* Assign memory and SFRs
* Break points
* $I^{2} \mathrm{C}$ drivers available
* PC host software communicates via serial port

The 8051, An Introductory Course

* 1 Day course aimed at introducing the User to the 8051 microcontroller
* Discussion of the 8051 Architecture and instruction set
* Use of I/O, Timers, SFR's and Memory
* Each User will have the use of a PC and ICE51 to carry out the Workshop exercises
* Course run every month with a maximum attendance of 8 people
* Fee includes the 8051 Book described opposite
* A voucher worth $£ 50$ to spend on any of our 8051 products

OTHER PRODUCTS

* 8051 BOOK - The 8051 Architecture, Programming and Applications (£49.95). This book includes a free assembler and simulator for personal or educational use
* PEB552 - The Philips evaluation board for the 80 C 552 processor variant, a monitor and programming adapter are available for this product
* MACH1 - An RTX200/1 PC based evaluation board
* ICC200-An 8 channel 10MIPS PC based intelligent communications card using the RTX2001 processor
* FORTH + + - A low cost RTX2000/1 compiler

SHAREWARE

$S^{\text {b }}$hareware can be copied and distributed at will, so that potential users have the chance to try software before purchase. Those that continue to use it are required to pay the fee to the author and in return get documentation and an up-to-date version of the package.
In the shareware version of
Quickroute, all you get is a disk and a text file giving brief instructions, sufficient for most people to explore Quickroute.

Registration brings a manual - over 40 pages of A4 - providing more detailed instructions. The registered
software also comes with additional output drivers to support HPGL plotters and Laserjet printers, but is otherwise identical to the shareware version.

Quickroute's manual gallops through the features, explaining exactly what to do, how to get the best from the program and any limitations to be kept in mind. It is a little short on diagrams and would benefit from an index and contents page. However Quickroute is easy to pick up and explore so the manual is only occasionally used.
other existing trachs to get in the way. It managed to complete a rather disappointing four routes successfully, but must be given credit for being optimistic because it reported $" 45 \%$ of routes completed".
A designer would try to keep tracks predominantly horifontal on one layer and vertical on another. The QR autorouter does not apply this strategy so would be more rouble than it is worth on reasonably dense digital boards. though may have appeal in less critical applications.

Hard copy

Eventually all layouts need a hard copy, cither for checking or as final artwork. The shareware version comes with drivers for Epson or IBM-compatible nine-pin printers. After registration the full version comes w ith drivers for $2 t$-pin Epson-compatibles. IIPGL plotters and Laserje printers.

Layers selected to be displayed on the sereen determine those that will appear on the hard copy so layers can he printed separately or in any combination. The screen soom factor also inflamees sime of oupput.

Where artwork turns out to be larger than the printer or plotter, it can be created in several strips to be married logether later by hand.
Even cheap and cheerful dot matrix printers have a resolution of around 240 dots/in - nigh on 4 thou - and while this may not be adequate for designing, say, $80+86$ motherboards. for most people it will he adequate. Laser printers and plotters will do better.
Overall scaling can be adjusted using the zoom lactor, and it is also possible to make fine tuning adjustments to the Y axis scaling - useful for compensating for printer wear. paper stretch or slip around rollers. The ploter driver allows adjustment of pen width and velocity.
Once all the menu selections have been made and a printout requested the screen goes blank so that while the printer is in action. all that is shown is a small thashing cursor. The rather unfortunate impression is that the system is having to think hard to carry out printing. But the results are excellent, even on a nine-pin dot matrix printer. and a most professional result can be obtained with a laser Quality of the finished artwork depends not on the program, but on the output device used and the medium on which it is printed.

Drawing schematics

The manal introduces the possibility of using Quichronte for drawing schematics as well ats PCB layout almost as an alferthought. But the capability almost doubles the potential uses of the package.

All that is necessary is to load in a library of circuit symbols which can be placed and connected in the same wily as their physical comnterpats. A library of symbols included has 41 dillerent circuil elements from switches and fuses through to transistors and gates.

Inevitably more circuit symbols will need to be created but this can easily be done by cither constracting from primitives or in most cases by using the bit image editor provided with the full version. Unfortunately the problem that makes com-ponent-moving such an imprecise art is even more evident when draughting schematics. For example, it is quite usual to want to place a transistor such that its hase connects to an existing resistor. Use of a grid gives a fighting chance, but a more user-friendly Move command is high on my wish list.

Big league performance

Shareware is generally the hargain basement of the software market, but such generalisations are always dangerous. Quickroute started life as a standard commercial product and was recently brought into the shareware market to broaden its availability and no doube increase cash flow to the author.

Because of this, it has many more features than its price and place in the markel might suggest.

Those with an occasional need for high-quality artwork who perlaps previously could not justify the investment will now find that the cost of the soltware is insignificant compared with that of the hardware to support it.

In higher education Quichroute could be used not only 10 generate artwork but also to introduce students to cad techniques. Even schools that have Acorn computers such as the A 3000 or $\mathrm{A} 50(0)$ and a PC emulator should be able to run the package and its price makes it similar in cost to al lof of educational sofiware.

The autorouter may only be a token gesture but if it can illustrate the prineiple it may sow the sceds of a future career for students exposed to it. There is also the hope expressed in the manual that if sufficientpeople register, the program can be enhanced to provide a more elaborate atorouter, bills of materials. net-lists and that important step in automation linking sehematic capture to the layout process.

In-depth professional users will inevitably come up against the package's limitations in performance, but this is not the market in which Quickroute is expected to tlourish. In fact it is tempting though wrong to compare it with soltware on the market for hundreds or even thousands of pounds.

So, though many will lind that the user interface could be improved. there are plenty of features to compensate. If you are prepared to persevere, almost any feature can be put on artwork. one way or another. Finally. Quickroute can be a no rish investment hecause as shareware you can sample it hefore you buy

BRIEF SPECIFICATIONS

Eight copper layers
Two silk screens
Solder resist generation
PCBs up to 37 in square
Min track width 5 thou
Simple autorouter
Flexible zoom and pan
Component libraries

PROGRAMMING FLEXIBILITY FOR PROFESSIONALS

HARDWARE FEATURES

PC.BASED PROGRAMMERS
UK DESIGN MANUFACTURE AND SUPPORT NO MESSY INTERNAL CARD
PLUGS DIRECTLY INTO PARALIEE PORT (IPTI-3) EASLLY TRANSPORTABLE BETWEEN MACHINES WORKS WITH XT, AT, 386, \& 486 EVEN LAPTOPS! INCREDIBLY FASI PROGRAMMING TIMES FIEXIBLE DESIGN MEANS NO ADAPTORS NEEDED FOR MOST DIP PACKAGES
UPGRADES BY FIOPPY

SOFTWARE FEATURES

MENU DRIVEN
FLEXIBLE FILE LOADING (HEX, BINARY, JEDEC) READS, VERIFIES, BLANK CHECKS, BIT TESTS, OVER-PROGRANMES AND AUIO PROGRAMMES CAN MODIFY PARAMETERS OF EXISITING MEMORY DEVICES AND STORE IN USER DATABASE HANDLES SECURITY FEATURES OF ALL DEVICES AUTOMATIC PAL IO GAI CONVERSIONS FULL BUFFER EDITING CAPABILITIES TEST VECTOR SUPPORT

SPEEDMASTER 1000
LOW COST UNIVERSAL PROGRAMMER EPROMS, EEPROMS, FLASH EPROMS, NVRAMS SERIAL EEPROMS, PALS, GALS, PEELS, EPLDS SUPER FAST PROGRAMMING e g 27C256 32kx8) IN 4.5 Seconds
IEDEC TEST VECTOR SUPPORT FOR PAIS NCLUDES PAL DEVEIOPMENT SOFTWARE UP TO 40 PIN DIPS WITHOUT ADAPTOR

M/CROMASTER 1000
ALL FUNCTIONS OF SPEEDMASTER 1000 AICROCONTROLIERS FROM TI. (including 'MS370 SERIES, TMST/C82), INTEL, ZIIOG, AICROCHIP (PICS), MOTOROLA, PHILIPS AND OTHERS

$£ 575$

SPEEDMASTER 8000

- W WAY GANG/SEI PROGRAMMER

MASTER SOCKET
EPROMS, EEPROMS, FLASH EPROMS UP TO 32 PIN
PC OR STAND ALONE MODE
SUPER FASI PROGRAYMING e g $8 \times 27<256$
(332K×8) IN 6 Seconds

ICE TECHNOLOGY LTD UNIT 4, PENISTONE COURT, STATION BUILDINGS, PENISTONE, SOUTH YORKSHIRE S30 GHG TEL $i+44) 0226767404$ FAX $(+44) 0226370434$

Custom metaluork - oood e and mulck!

Plus a wide range of stock products including:

- Nine sizes of standard 19 " rack cases
- New "clam" case in any depth
- Eight-card 1U Eurocard case
- Audio, video and data patch panels
- Rack blanking and ventilation panels

All use the unique IPK extrusion, giving strength and rigidity with no visible fixing screws.
Rack mounting strips, cable trays etc. from stock

ipl
IPK Broadcast Systems
3 Darwin Close Reading 3erks RG2 OTB Tel: (0734) 311030 Fax: $(0734) 313836$

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear printers, power supplies, communications, disk drives multimeters, oscilloscopes, scientific instruments, connec tors, component bridges, frequency counters, signa generators, computers.

CANON ZOJM LENS C:MOUNT V $6 \times 1717-102 \mathrm{~mm}$ ᄃ95 AVO CZ457/5 LCR COMPOAENT COMPARATOR SOA HV TOTOP COLOUR CAMERA VINTAGE RPDIOS RING FOR DE-AILS MARCON MARINE KESTREL 3 WIRELESS WORLD CIRCARDS SER 1-25 cased CONSTANT VOLTAGE TRANSF'S 50VA-2KV TEK 545B, ;85, 535A, 541A. etc
TEK 540 SERIES PUUGINS IEK PO AEOID PALETTE CGA COMMLNICATIONS RECEIVERS, WARIOUS H.P. 1340A X-Y CRT DISPLAYS HP 1610A 11615 LOGIC ANALHERS VALRADIO $=$ CBB230:200 50 Hz TO 60 Hz 200 W VALRADIO -CB230.200 50Hz TO COHZ 200W GAUGE BLI)CKS (SLIP GAUGES) VARIOUS

Visit our bargain corner in shop. Valvetoter Many valuable items at knock-down prices.
$\begin{aligned} & \text { SCR LEAD PTFE 19/15 SILVER P-TD 50YD REELS } £ 2 \text { KINGSHILL NS } 1540 \text { 15V 40A PSU CASED } \\ & \text { WAYNE KE } 3 R \text { RA200-ADS1 DISP STORE }\end{aligned}$
HONEYWELL 612 HLMIDITYTEMP RECORDERS 995 TEKTRONIX 7403N. DF1. 7D01 LOGIC ANAL
TEK $5 L 4 N$ OOKHZ SPECT. ANAL 5110 MF , ETC $£ 750$ OSCILLOSCOPES DUAL TRACE S STATE
SIEMENS $ッ$ TC1012 2PEN CHART RECORDEh £ 395 MARCON TF2303 AMFM MOD METER 520 MHz £ 24
RUSH RT2 EN CU WISTRIPPER Z®-45AWG §195 ROBIN 4112 PHASE EARTH LOOP TESTER
RUSH DCF + VAR SPEED CONT -29AWG £95 ROBIN 5402 DIGITAL RCCB (ELCB) TESTER
DATALAB [L912 TRANSIENT RECORDER
BC-B \& MASTER COMPUTERS
FARNELL E350 PSU'S 0.350 V 100 MA . 6.3 V s
MARCON - F2300 FMAM MODUL LTION 6.3 V STI $£ 69$ STAG PP 41 EPROM PROGRAMMER
TEKTRONIF 834 PROG DATACL
VARIABLE JUTPUT PSU'S HV \& LV TESTE $\}$ E395 COHU 301 O-500V DC VOLTAGE STD. INT REF
TEKTRONN: 520521 A PAL VISCOPES From 475 SIGNAL GENERATORS AF TO 21 GHz

[^1]
PLUGGING-IN TO DSP POWER

Stand-alone real-time data acquisition or very fast processing, Allen Brown plugs in two cards that really pack the punch of the DSP96002.

The DSP96002, furnished with floating point capabilitics to the IEEE-754 standard, represents one of the most powerful lloating point digital signal processors (FPDSPs) currently on the market. Motorola launched the FPDSP in 1990, and its ten 96 -bit general purpose registers (accumulators) indicate the level of complexity. Now the processor has been incorporated on a number of expansion cards for both VME and PC systems. Two of them are the DSP96002 system board from Loughborough Sound Images and the MM-96 from Ariel of New Jersey (distributed in the UK by Datal3).

Direct comparison of the Loughborough Sound Images (LSI) product and the MM-96 is inappropriate since their individual functions are somewhat different. The LSI board is designed as a stand-alone real-time data acquisition and processing card while the MM- 96 is very much a processing card. carrying two DSP96002s - though auxiliary cards are available for providing data acquisition on the MM-96.

Real time data acquisition

LSI. one of the merket leaders in the manufacture of expan-
sion cards hosting DSP chips. released its system card featuring the Motorola DSP96002 processor in 1991.
In a slight departure from its conventional design. LSI has incorporated a motorway parallel expansion connector which allows daughter boards hosting other DSP96002 processors to be conligured into a multiprocessor system.
In the LSI system board the DSP96002's own memory is augmented with board static ram (sram) which can be equally divided between the two expansion ports on the processor.
Standard memory is $320 \mathrm{k} \times 32$-bit words - expandable to 5 Mbyte - and one of the clever design features is the option of mapping its P, X or Y memory between the expansion ports A and B.
LSI allows the sram to be allocated in one of two ways: the tirst is the non-overlay mode where half the sram is given over to P memory and the other half divided between Y and X memory. External memory is contiguous with the onboard memory of the processor (P Y and X).
In overlay mode all the external memory is assigned to one bus and is contiguous with the respective memory on the processor. Selection is performed through the operating mode

In the LSI system board the DSP96002's own memory is augmented with board sram which can be equally divided between the two expansion ports on the processor.

register (OMR) and the port select register (PSR). Sram can be augmented to a maximum of 5 Mbyte and for cost consideration purposes wait states cam be included in the DSP96002 memory access timing.
8k-words of dual-port memory (dpram) case communication between host PC and the DSP96002 expansion card. and in effect this is used as a data dumping cache to enable two-way communication without compromising operational performance. The dpram is in fact memory mapped into the PC memory map and is used in conjunction with the processor's DMA controfler to effect data transler.

As with the other expansion boards the DSPYG()02 system hoard comes complete with two analogue channels (two separate A -to-Ds and two separate $\mathrm{D}-\mathrm{to}$-As). The $\mathrm{A}-10$-Ds are in fact Motorolats own 16-bit DSP56ADC I 6 s and are based on Sigma-Delta technology. Maximum sampling rate is 400 hHz (For 12-bits), though this can be reduced through software down to $32 \mathrm{hH} /$

For 16 -bit conversions, the maximum conversion rate is 100 kHz and minimum 8kHz. The D-to-As are Burr Browns PCM56 16 -bit devices and are matched with two fourthorder Butterworth filters which act as reconstruction fillers. The D-to-As and the A-to-Ds are interfaced to the DSPOG(0)2 via an asie which enables them to be memory mapped into the two separate address spaces (X and Y). This allows simultaneous operation of the two analogue channels (A and B).

The asic is also responsible for cloching the analogue devices and setting the clocking period for them.

I.

Software support tools

On-chip emulation (once), in itself an innevation, is used to great effect to implement debugging operations. One of the principal software support tools provided by LSI is the Mon96 monitor which uses part of the dpram to allow the processor to operate unhindered. All the usual features expected of a processor monitor are here - for example single step, hreak points, memory and register display - and the extensive range of commands can be viewed by evoking the help instruction. Unlortunately though the monitor is a useful debugging aid it lacks the normal screen refresh display

View96 partitions each window into several subwindows.

A wealth of internal buses serve the DSP96002.

DSP96002 architecture

In the DSP96002, the various functional melements are serviced by a wealth of internal buses. Dual nature is key to the chip's design philosophy and encompasses data memory spaces, the address arithmetic units and an
on-board dual channel direct memary access controller. The two ram areas (X and Y) can be accessed concurrently. An abundance of internal 32-bit data buses allows a high degree of parallelism: for data transfer
purposes, there are two local bidirectional data buses (YDB) and (XDB), program data bus ($\mathrm{P}[\mathrm{BB}$), global data bus (GDB) and the DMA data bus (DDB). These buses support the normal register-to-register and register to

PC ENGINEERNG

Fractal plot completed in less than 7s on the MM96 board.
facilities expected these days. But LSI has now introduced a Windows compatible debugging facility, View96, employing the Microsoft graphics user interface (GUI). When a 386 PC is operated with several $960(2)$ system boards for multiprocessing purposes, a View 96 window can be dedicated to each
board. Hence each processor can be monitored during program exccution.
View96 partitions cach window in several sub-windows. Each sub-window can display a particular aspect of the DSP96002, for example the disassembly of code or the contents of a data memory. The contents of the sub-windows are refreshed after a monitor event has caused data values to have changed. Once View 96 has been evoked, the full range of facilities become available from the drop-down menus View96 offers many of the features of Mon96 except that access and display is a little more modern.

Exceptional number cruncher

Ariel Corporation (represented in the UK by Dataß) supplies an expansion card for the PC with two DSP96002 floating point processors: computational power of the board is quite exceptional. For example only 7 s is needed to perform a Mardelbrot fractal plot consisting of 640×480 pixels. The MM-96 is rated as a 100 Mflops (IEEE-754 single extended precision) system when the dual processors are used in par allel (clock speed of 33 MHz). Its three banks of zero waitstate memory can be increased to 16 M words.
To ensure rapid data throughput the board has DT-Connect the standard video/graphics interface, DSPnet the multimaster parallel interface and dual expansion ports for interconnecting multiple boards on the HyperBus standard.
memory dual 32-bit transfer or can be combined to transfer a 64 -bit word (the GDB is employed in i/o operations).

For address purposes, there are three internal address buses; for the Y ram (YAB), the $X \operatorname{ram}(X A B)$ and for the program ram P (PAB). The 32-bit buses may gain access to the outside via the external address multiplexer.

Memory spaces

The DSP96002's three separate memory spaces, X data memory, Y data memory and program data memory each has a range of 4Giga locations. Most of the memory area is located externally and is addressed, via a multiplexer, by the three 32 -bit address buses ($Y A B, X A B$ and $P A B$).

Allocation of program memory area is

determined by the MA, MB and MC bits (Fig. 2) found in the operating mode register (OMR).

The 32-bit X data memory can be configured in one of two ways depending of the setting of the DE bit in the OMR. When $D E=1$, the on-board ram occupies 512 locations with the address range $0-1 \mathrm{FF}$ (hexi. On-board rom occupies 1024 locations, given over to a cosine coefficient table. The remaining address locations are taken up with external X-data memory, apart from 128 addresses at the end of the address range dedicated to the various on-board peripherals. When $D E=0$, the internal X-rom is not

Allocation of program memory area is determined by the MA, MB and MC bits.
available and the remaining address range is given over to the external X-data area. Y-data memory is configured in the same way as the X-data memory when $D E=1$ except the 128 locations at the end of the address range are dedicated to external peripherals. Address range 400-7FF hex is taken up with a sine coefficient table.
External peripherals can be accessed by using the assembly language instruction MOVEP for byte transfer. When DE=0 the on-board Y data rom is not available and that space is taken up by the external Y-data memory.

Program memory (pram) consists of 1024 locations of internal 32 -bit ram with the remaining address range external to the processor. Pram can be configured in one of eight ways depending on the mode setting. The M flags in the OMR (MC, MB and MA) allow eight modes to be realised. The first 512 pram locations are taken up with interrupt vectors leaving the other 512 locations available for cache memory. This is possible since the code in the pram may be changed under program control using the DMA - a type of overlay mechanism. Boot rom can be loaded from slow external memory.
In addition, a system stack (a separate onboard ram area, 64 -bits wide with a depth of 15 , operating first-in/last-out) acts like a normal microprocessor to effect context switching. It is also used to achieve zero overhead looping (DO instructions) and for this purpose has the following features: - For nesting loops, the current loop counter and loop address register can be stored on the stack;
-The loop counter and loop address register
CONTINUED OVER PACE

SPICE• AGE Non-Linear Analogue Circuit Simulator £245 complete

Those Engineers have a reputation for supplying the best value-for-money in ricrocom-puter-based circuit simulation software. Just look at what the latest fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-of-use, performance, and facilities:
SPICE \bullet AGE performs four types of analys is simply, speedily, and accurately

- Module 1 - Frequency response Module 3-Transient analysis
- Module 2-DC quiescent analysis Module 4 - Fourier analysis

Impedance sweep

2 DC Ouiescent analysis SPICE AGE analyses DC any network and is useful, for ex mite, to setting transistor bias, Aog tinpar components such as transistors and aiodes ane catered for fthe disk Vibiarm o me work models cont ins many commorly-used component - see below . This type of analysis is ideal for dontimning bias conditions ard estabhshing clipping margin prior to perforliting a transient analysis. Tabular results are given for each node; the reterence node is user-selectable

1 Frequency response

SPICE AGE provides a clever hidden benefit. It first solves for circuit quiescence and only when the operatirg point is established does it release the correct small-signal results. This essential concept is featured in all Those Engineers; software. Numerical and graphical (log \& (in) impedance, gain and phase resurts can be generated. A 'probe fode' eature allows the output nodes to se changed Output may be either of of rols: we zero dB referenceresn he de the din six diterentways

DC conditions within amplifier circuit

Latest V4.nnn manual now available.
'Phone us for trade back scheme.

WE HAVE MOVED TO
LTD Tel: 081-906 0155 • Fax: 081-906 0969

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749

rs. LANGREX SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors,
transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved custc ners. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP.
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

PC ENGINEERING

The board has three banks of zero wait-state sram (banks 2, 3 and 4) and one bank of dynamic ram (dram).. Processors have exclusive use of one bank each (bank-3 for DSPA and bank-4 for DSPB) and access is through the respective processor"s outer port. Each outer port is also linked to the processor's respective ItyperBus port.
The third bank of sram is shared by the two processors and is accessed through the inner port. Inner ports of both processors are also connected to the IBM industry standard interface (ISA - the PC bus).

Standard allocation of memory 10 each sram bank is 16 kwords but this can be upgraded to 64 hwords. The MM-96 also has a fast page-mode dynamic ram area (bank-1) with a standard size of 256 kwords. but this can be upgraded to 16Mwords
Page-mode access is the fastest use of dram due to the dual row and column addressing needed. The MM-96 is designed with the dram contiguous with the DSP96())2's own memory and the appropriate signals are generated to enable fast page sram read/write. By this means only one wait state need be inserted for a read, and two wait states for a write for 60 ns access time dram.
Normal random aceess would require six wait states.

Signal processing

For performing signal processing tasks the MM-96 makes very effective use of the DSP960)(2`s port select register (PSR) which determines theusage of its ports
Dynamic allocation of memory is an important requirement when performing differing types of operations. Three distinet needs have been identified and the memory can be configured accordingly: scalar processing - simultancous access of program memory and data memory (Harvard memory design: vectorial data processing - the data memory is partitioned into X and Y which can be accessed simultaneously: and double precision floating point recursive arithmetic - the memory can be used to store 64-bit floating point numbers
In design of complex microprocessors. manufacturers have recognised the difficulties in emending sottware errors Motorola addressed this problem with its on chip emulation facility and full access to this is included in the MM-96, achieved through once ports A and B . connected to two Dtype connectors (one for each processor) on the back-face of the expansion card.

Inadequate user manual

Software supplied with the MM-96 provides a number of interesting facilities and demo programs.
are initialised for the new loop.
-The address of the first instruction in the program loop and the current status register are transferred onto the system stack.

- The loop flag in the status register is set. When the new loop is expired, the virtual state of the previous loop is restored from the system stack and continues as normal. As expected, there is a limit on the number of loops which can be nested depending on how much information is stored on each loop call.

Data arithmetic logic unit

The data ALU (Fig. 3) is responsible for performing mathematical operations in several
formats ranging from fixed point to floating point manipulation with various rounding modes. The data ALU has the following features;

- A file with ten 96-bit general purpose egisters
-32-bit barrel shifter
- 32×32-bit parallel multiplier
-32-bit adder
-Format converter
- Divide and square root unit
- Controller and arbitrator

The ten 96 -bit registers in the data ALU (DOD9) are serviced by the XDB and the YDB, both providing either 32 -bit or 64 -bit

C COMPILERS

> One of the C compilers for the DSP96002 is produced by a third party company, Intermetrics Microsystems Software. The C compiler is part of the InterTools package consisting of an integrated suit of software development tools for the DSP96002. It includes a compiler, an optimser, a run time library, an assembler, a linker, a formatter, a librarian, a symbol utility and a source level debugger.
> The InterTools package is available for all commercial computer systems and for the PC it comes on six high density discs.
> The large number of switches makes it look as though almost every option has been covered.
operands. In fact the register file acts like ten separate accumulators with the restriction that D8 and D9 are not used as destination for data ALU operations.
With 96 -bits registers, data can be stored as double precision floating point numbers and as numbers are loaded into the registers, a format converter can act to change the representation to a desired format (IEEE-754 for example).

Strength of the data ALU is its ability to perform complete mathematical operations in a single machine cycle - a standard feature for DSPs. For example in 60 ns it can perform a 32 $\times 32$-bit floating point multiplication, floating point addition and format conversion.
Floating point operations always give rise to 96 -bit results whereas fixed point operations will give either 32 -bit or 64 -bit results.
Floating point operation conforms to the IEEE-754 standard for 44-bit single extended precision. The four IEE-754 rounding modes are implemented (round to zero, round to the nearest, round to plus infinity and round to minus infinity). The flush-to-zero mode is also supported, causing an underflow calculation to generate a zero.

Communication between the PC host and the MM-96 is quite a complex affair involving numerous interrupts and data buffers. A library of C language call routines for implementing the communication is included - but this where the product lalls short. Although the user manual is detailed, it has a typical dictionary format - definition of function, what it does but no example of how 10 use it. So new users are presented with a massive amount of information and no guide.
For example in chapter six there is a section entitled "driver function summary". But it is only after working with the product for a long time that we learn that the functions refer to the "Jamus" monitor.
The user is presented with a long list of F finctions with no description of where they come from or how 10 use them.
What is so often forgoten by writers of manuals is that their documents are read by users wanting to learn how 10 use the product, and the most efficient way of learning is through example. In an otherwise superb product the number of learning examples really is inadequate.

Full access to the DSP96002

Both boards are well engineered pieces of hardware, giving users access to the full potential of the DSP96002
The MM-96 is a very high performance systems boad, capable of some impressive number crunching. and its dual DSP96002 processor design makes it suitable for parallel processing applications. For investigating the capabilities of the DSPO6(0)2 as a high performance processor the MM-96 is eminently suitable as a hardware platform and is quite excellent in its design.
But it is quite conceivable that many potential applications will be coded in C and not in assembly language to any great

SUPPLIER DETAILS

LSI DSP96002 board $£ 3795$ + VAT Loughborough Sound Images, TheTechnology Centre, Epinal Way, Loughborough, Leics LE11 OQE (0509231843)

Ariel MM-96£4901) + VAT. Data Beta Ltd. Unit 7, Chiltern Enterprise Centre, Theale, Berkshire. RG7 4AA (0734-303631)
extent: there should be more examples to assist this requirement.
My main reservations concern the lack of an appropriate high-level-language user-interface for users who wish to program exclusively in C. and the steep learning curve, not helped by the absence of short illustrative examples in the user manual.
The LSI DSP9600) 2 board is also a top quality product. lending itself particularly well to real-time processing with its integral A-to-D/D-to-A facility. It is, ideally suited for applications where high speed signal processing is required. and for this the DSP9600)2 would be programmed in assembler: View 96 software is a great bonus for monitoring the processor board.
Many examples throughout the accompanying manuals provide valuable insights into operation of the board, enabling users to gain a fast working knowledge of the product.

The complete LSI package is a very pleasing product to work with and is highly recommended as a DSP96002 processing development platform.

The Complete Programmable Function Generator

£1,295!

THURLBY
 THANDAR

The new TG1304 from Thurlby-Thandar is a high performance 13 MHz function generator with full programmability including GPIB as standard. The TG1304 has a full dual generator architecture An auxiliary 5 mHz to 50 kHz generator provides programmable AM, FM and Sweep tacilities or can be used independently. A further gating generator provides for programmable burst or gated waveforms independently of $A M / F M$ modulations.
Non-volatile storage of up to 50 front panel settings is possible. All functions are remotely controllable from a GPIB interface conforming to IEEE.488.2
For full technical details which demonstrate how the TG1304 has no competition at the price; contact:

Thurlby-Thandar Ltd.
Glebe Rd., Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451 Fax: (0480) 450409

KESTREL ELECTRONIC COMPONENTS LTD

ψ All items guaranteed to manufacturers' spec. ش Many other items available.
'Exclusive of V.A.T. and post and package

	$1+$	$100+$		1	$100+$
EPROMS			STATIC RAMS		
2764A-250	1.60	1.20	62256LP-100	3.60	2.15
27C64-150	1.65	1.25	62256LP-70	4.20	2.45
27C128-150	1.85	1.55	6264LP-100	1.80	1.35
27128A-200	1.65	1.25	$6116 \mathrm{LP}-100$	1.00	0.65
27256-250	1.75	1.30	628128LP-80	12.60	11.50
27-256-200	1.85	1.45			
27C512-150	2.50	1.90	DRAM		
27C010-150	3.10	2.35	4164-10	1.00	0.81
			41256-100	1.05	0.85
MODULES/SIMMS			511000-100	3.40	2.85
$256 \mathrm{~K} \times 9$-70ns	11.60	8.30	44256-80	3.50	2.95
$1 \mathrm{M} \times 9-70$					
(3 chip)	27.60	23.60			
	74LS, $74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available				
All memory prices are fluctuating daily, please phone to confirm prices					
178 Brighton Road,					
Purley, Surrey CR8 4HA					
Tel: 081-668 7522. Fax: 081-6684190.					

WE HAVE THE WIDEST CHOICE OF USED OSCILLOSCOPES IN THE COUNTRY	 IEEE-488 only $£ 300$ THURLBY PL320T GP Bench PSU 0 -30v 2 amp Twicf with
	HANDHEID MULTIMETEPS 3 3/2 digl
Tiktronix 485 Dual Trace 350 MH D Delay Sweep	
TEKIRINIX 475 Dual Trace 200Mtiz Delay Swery E550	
SCHLUMBERGLR 5218 Ihree Tlace 270 MHz Delay Smeep with Triger	
	MARCON 244020 CH M Mcrowave Counter $\mathrm{El500}$
TEkIRonn 2225 Dual Trace 50M	MARCON TF2610 True RMS Voimmer
TEKLRONX 465 Dual Trace IOOMHz Melay Sweep $£ 45 \mathrm{D}$	
PHILIPS PM3217 Oual laace 50MHİ Delay Sween E400	RACAL 199813 CH F Freg Countel will IEEt
TELEQUPP	
S2a. E 200	
	MARCONI DIGITAL FREQUENCY MEIERS
	Me 2930A ${ }^{10 \mathrm{MMHz}} 810 \mathrm{MHz}$
COULD OS3500 Dual fraep 6uMhlz Deay Sweep weth omma E350	
	MARCONI UNIVERSAL COUNIER TIMERS
GOULD OS: 100 Dual lace 30MHz E180	
FARNELL DTI2 5 Dual liace [2MHz E125	Oe 29337 OC 100MHz E175
ihis is mifia sampie miny others avallabie	
ELECTRON MICROSCOPES	FARNELL PSUH H60 25 60V /5A
Iransmissio	TEITOUPMENT CT/l Curve Itreer
15.1. Super 11:A-Scanring	
	MANME SMAN TAily Pry 3 KY Plorter RS232 E100
WAYNE MRRR LCR Meter 4210 E600	AVO MULTIMETERS
	8 Mk6 with Carryng Case All Meters supphed with Batteries \& Leads $£ 120$
MARCON1 1 I2016 Am/m 10 HHz L20MHz with If 2173	
MARCON TFP016 *ithoul Synchionser IF2173	
	Large range of Bf NCH POWER SUPPLII $\$$ avalable X-Y PLOIIERS VarIous models
	NEW EOUIPWENT
RaCal instrumentation Recoideis Store AD and Stors 70 from $£ 500$ KLITHLE Y 224 Programmedry. Cureni Source E1000	
	Hameg oscilloscopt hmi.005 Tuple Trace 100MHz Delay
FERRUGRAPY RTS22 Recordel lest Set hiom E150	
FARNELL SSG520 Syith utied Sig Gen $10-520 \mathrm{MH}$? Counter RE Mod Mele. Pr Power Mmer As Wigur Distantion Meter AF Synthesiset Sold as a par for ONLY \& 1000	HAMEG OSCHLDSCOPE HMGI4 Dual Trace 60 MHz Delay Sweep HAMLG OSCll LOSCOPE HM203 7 Duel Trace 20MH? Conporient
	lester HAMEG OSCILLOSCOPE HM2O5 3 OLel Trace 20MH2 Digital
SPECTRUM ANALYSERS	black Star Falipment tpg' all units E5) APOLLO 10100 MHz Ratio Period time niteryal etc
	MEIEOR LOUO RE QUENCY COUNTIR IGHz El7
	All other Black Star Equipment aval zblif
	OSCLLLOSCOPE PROBES Sweth hed X:X'0 iPdP [3) E11
Used Equipment With 30 days guarantee Manuals supplied if possible This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability bofore ordering. CARRIAGE: all units £16. VAT to be added to Total of Goods and Carriage.	
STEWART 110 WYKEHAM ROAD, R Tel: 0734268041 Callers welcome 9am to 530	OF READING ADING, BERKS RG6 1PL Fax: 0734351696 mon Mon-Fri (until 8pmithurs)

CIRCIENO. 127 ON REPIY (ARI)

CIRCUIT DESIGN WITH THE INTERACTIVE TOUCH

Impressive simulation, control of device characteristics and an ideal companion to Pspice: Allen Brown finds out why LogicWorks could be such a powerful aid for digital designers.

Capilano Computing of Canada has launched an MSDos version of LogicWorks. its logic design and simulation package originally issued for the Apple Mac. Many features common to the Mac graphics enviromment are retained so that the new version is a comprehensive windows-based, digital design facility, fully user-interacive. The now well-known graphics user interface (GUI) underlies the package and allows the user to interact with the PC through mouse clicking and dragging.
In use, caill circuit is allocated a window (Fig. 1). and several windows/circuits can be operational at any one time - complexity is only limited by extended memory available in the PC.
Size and shapes of each window can be adjusted by using the mouse click and drag and each circuit window is allocated a simulation strip chart, or timing diagram. for the circuit.
Options are accessed through the right button on the mouse. generating a sequence of dialogue boxes allowing the appropriate selection to be made. Circuit components are chosen from the parts library, accessed through the window located on the tep right of the screen (Fig. I).

Fig. 1. Each circuit is allocated a window and components are selected from a dialogue box.

Fig. 2. Mouse settings, printer options and keyboard responses are adjusted by contral panel.

Libraries - and eye strain?
At the base of each circuit window there are ten icons and these control the speed of simulation and the general schematic control over the component entrics such as labelling and device orientation. When the mouse is clicked on one of the icons it assumes its identity - a useful facility for editing circuits and a good example of the powerful interactive aspects of the package.

For example, if a simulation of a node is required, piching up the pen tcon allows a label to be attached to the node and neatly generates the same label in the simulation timing diagram

Several groupings are included in the libraries. But as yet
the 74 series library is rather thin with many notable holes the 74.373 octal lateh and 74245 octal transceiver to name just two.
How many logic designs do not contain 373s? Before LogicWorks can become really useful for design this library must be improved, though Capilano does promise that libraries are frequently updated.

The Gates library on the other hand offers a large selection of logic gates which are referred to as primitives.

But an irritating feature common to all the libraries is the difficulty experienced in trying to retrieve a component. A double click on the mouse is required and usuatly a couple of

SYSTEM

RECIUIREMENTS
1BM (clone) AT 386 or 4.36 PC 4Mkyte extended menory
VGf. monitor
Misıosoft mouse

EASY-PC, SCHEMATIC and PCB CAD

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility $£ 98$.

- At last! A full featured Digital Circuit Simulator for less than £1000!
- PULSAR allows you to test your designs without the need for expensive test equipment.
- Catch glitches down to a pico second per week!
- Includes 4000 Series CMOS and 74LS Libraries. 74HC/HCT libraries only $£ 48.00$ each
- Runs on PC/XT/AT/286/386/486 with EGA or VGA.

ANALOGU SIMULATION	$£ 195$

- NEW powerful ANALYSER III has full graphical output.
- Handles R's,L's,C's, Bipolar Transistors, FET's, OP-amp's, Tapped and Untapped Transformers, and Microstrip and Co-axial Transmission Lines.
- Plots Input / Output Impedance, Gain, Phase \& Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - For PC/XT/AT/286/386/486 with EGA or VGA.
- Very fast computation.

SMITH CHART CAD £195

- Z-MATCH II simplifies RF matching and includes many more features than the standard Smith Chart.
- Handles transmission line transformers, stubs, discrete components, S Parameters etc.
- Supplied with many worked examples.
- Superbly easy to learn and use.
- Runs on IBM PC/XT/AT/386/486,

CGA,EGA,VGA.

- Ideal for Education and Industry.

For full info Phone, Fax, or use enquiry card!
Number One Systems Ltd. I

- TECHNICAL SUPPORT FREE FOR LIFE!
- PROGRAMS NOT COPY PROTECTED. -SPECIAL PRICES FOR EDUCATION.

REF: WW, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR.
Telephone: 048061778 (7 lines) Fax: 0480494042
International: +44-480-61778, Fax: +44-480-494042 ACCESS, AMEX, MASTERCARD, VISA Welcome.
attempts need to be made before the device is captured. Fortunately the problem can be alleviated to some extent by adjusting the timings on the mouse in the control panel (Fig. 2).

Once a device has been captured, any number of copies can be implanted in the drawing area. But the optimum mouse speed must be found as the wrong mouse setting can cause difficulties when making connections between contacts on devices.
One of the few problems of using a PC with LogicWorks for circuit design is the limitation of the 14 in monitor screen. After a while it can seem a strain on the cyes, though this is part of the price that must be paid for running graphically intensive application programs on economy PCs. Even so. LogicWorks circuit diagrams can be stored as image files for desk top publishing packages.
For hard copies, four families of printers are supported. PostScript, Epson, LaserJet and HP DeskJet.

Impressive simulation

One of the strong features of LogicWorks is simulation. coming in the form of the timing diagran at the base of the screen. Each labelled node will have an automatic entry in the simulation diagram and a particular strength of the product is the ability to adjust the propagation delay of each gate or device.
A timing diagram in itself is not particularly novel. But the opportunity to vary the gate propagation delays is very welcome. By highlighting a gate (a single mouse click) and accessing the SET params in the options menu (Fig. 3), the propagation delay dialogue box is reached. Fig. 4.
The results of adjusting the propagation delays appear in the circuit timing diagram. Or the clock skew can be adjusted, again via a dialogue box, and the results can be seen at the bottom half of the screen. Fig. 5. There is also the opportunity to change, interactively, any signal level in the timing diagram, with the overall effect instantly showing up on the other timing waveforms directly affected. Added together the capabilities make simulation an impressive part of the LogicWorks package.
When a hard copy of the timing diagram is require the print option is evoked and quite a respectable print-out is produced even from a 9 -pin matrix printer.

Spice netlist

Spice has become the defacto standard for analogue simulation. So it is good to see Logic Works" facility for creating Spice netlists. Analogue circuits can be created by schematic entry on LogicWorks (Fig. 6) and the devices required for their construction can be found in the DISCRETE library (Fig. 7). Discrete really is a full list components; if only the other libraries were so well stocked.
Each device in a Spice netlist requires a set of component parameters, defined by highlighting the device with a mouse click and then opening up dialogue box where the device attributes or parameters can be entered. The technique is simple and takes very little learning by anyone familiar with a Spice. The report option allows a created text field to be rendered suitable for importing directly into a Spice package (Pspice for example).
For the creative designer, LogicWorks' device editor - a complete object-oriented environment with a set of standard

Fig. 3. LogicWorks options menu.

Fig. 4. Propagation delays can be adjusted in highlighted components.

Fig. 5. Simulation diagram showing designer clock skew.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUREMENTS WHICH MAY BE IN STOCK

Tektronix 475 - 200MC/s oscilloscopes - tested from $£ 400$ less attachments to $\mathbb{S} 500 \mathrm{C} / \mathrm{W}$ manua
probes.
Marconi TF2008-AM-FM signal generator - Also sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 350$
Marconi TF2008 - AM-FM signal generator - Also sweeper - $10 \mathrm{Kc} / \mathrm{s}$
HP DC Current source type 6177C-£200.
HP Frequency como generator type 8406 A - $£ 400$
HP Sampling Voltmeter (Broadband) type 3406A - £200
HP Vector Voltmeter type 8405 A - $£ 400$ to $£ 600$
HP Synthesiser/signal generator type 8672A - 2 to 18 GHzS old or new colour $£ 4000$
HP Oscillographic recorder type 7404A - 4 track - £350
HP Plotter type 9872 - 4 pen- E300
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O. HP SIgnal Generators type 612-614-618-620-628-frequency from 450Mc/s to 21GHz HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$. HP 432A-435A or B Power Meters + Powerheads - $10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}-£ 200-£ 650$
HP Down Converter type $11710 \mathrm{~B}-.01-11 \mathrm{Mc} / \mathrm{s}-£ 450$
HP Pulse Modulator type $11720 \mathrm{~A}-2-18 \mathrm{GHz}-£ 1000$
HP Modulator type 8403A - $£ 100$ - $£ 200$.
HP Pin Modulators for above-many different frequencies - $£ 150$,
HP Counter type 5342A-18GHz - LED readout - $£ 1500$
HP Signal Generator type 8640B-Opt001 + 003-.5-512Mc/s AM/FM - £1200 HP Spectrum Display type 3720A £200-HP Correalator type 3721A £150. HP $37555+3756 \mathrm{~A}-90 \mathrm{Mc} / \mathrm{s}$ Switch - $£ 500$ HP Amplifier type 8447A-.1-400Mc/s £400-HP8447F 1-1300Mc/s £800 HP Frequency Counter type 5340A - 18GHz £1000-rear output $£ 800$
HP 8410-A - B - C Network Analyser 110MC/'s to 12 GHz or 18 GHz - plus most other units and displays used in this set-up - 8411A-8412-8413-8414-8418-8740-8741-8742-8743 - 8746 - 8650 . From $£ 1000$

HP Signal Generator type $8660 \mathrm{C}-.1-2600 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 3000.1300 \mathrm{Mc} / \mathrm{s} £ 2000$
HP Signal Generator type 8656A-0 1-990Mc/s. AM/FM - £2250.
HP 3730B Mainframe $£ 200$
HP 8699B Sweep PI-0.1-4GHz £750-HP8690B Mainframe £250.
HP Digital Voltmeter type 3456A- $£ 900$.
Racal/Dana digital multimeter type 5001 - $£ 250$.
Racal/Dana Interface type $9932-£ 150$
Racal/Dana GPIB Interface type 9934A - $£ 100$.
Racal/Dana 9301 A- 9303 RF Millivoltmeter - $15-2 \mathrm{GHz}$ - £350-£750.
Racal/Dana Counters 9915 M - 9916 - 9917 - 9921 - £ 150 to £450. Fitted FX standards
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal-SG Brown Comprehensive Headset Tester (with artificial head) Z1A200/1-£450 EIN 310L. RF Power Amp-250KHz-110Mc/s-50Dbs- $£ 250$.
Marconi AF Power Meter type 893B- $£ 300$
Marconi Bridge type TF2700- 150 .
Marconi/Saunders Signal Sources type-6058B-6070A-6055B-6059A-6057B-6056 P.O.R. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .

Marconi TF1245 Circuit magnification meter + 1246 \& 1247 Oscillators - § 100 -£300
Marconl microwave 6600A sweep osc,, mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - $£ 1000$ or Pl only $£ 600$.
Marconi distortion meter type TF2331- $£ 150$. TF2331A- $£ 200$.
Thurlby convertor 19 -GP-IEEE-488- $£ 150$
Philips Iogic multimeter type PM2544- $£ 100$
Philips logic multimeter type PM2544-£100.
Microwave Systems MOS/3600 Microwave freq
Microwave Systems MOS/3600 Microwave frequ
$£ 1000$.
Bradley Oscilloscope calibrator type $156-£ 150$. Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501S1 - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503-
WR50 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - P. OR
WR50 - DM501A - FG501A - TG501 - PG502 - DC505A - F
Ailtech Stoddart receiver type 17/27A - .01-32MC/s - £2500.
Ailtech Stoddart receiver type $17 / 27 \mathrm{~A}-.01-32 \mathrm{MC} / \mathrm{s}-£ 2500$.
Ailtech Stoddart receiver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{s}-£ 2500$
Ailtech Stoddart receiver type NM65T-1 to $10 \mathrm{GHz}-£ 1500$
Gould J3B Test oscillator + manual - $\mathbf{\Sigma 2 0 0}$.
Image Intensifiers - ex MOD - fripod fitting for long range night viewing - as new - $1500-£ 2000$ Don 10 Telephone Cable- $1 / 2$ mile canvas containers or wooden drum-new-Mk2-3 or 4 . Infra-red Binoculars in tibre-glass carrying case - tested- $£ 100$ Infra-red AFV sights $£ 100$. ACL Field intensity meter receiver type SR - $209-6$. Plugs-ins from $5 \mathrm{MC} / \mathrm{s}$ to 4 GHz -P OR Systron Donner Counter Model 6057 - 18GHz - £800
Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}-$ as new $-£ 1200$ or $10 \mathrm{Mc} / \mathrm{s} 40 \mathrm{GHz}$ Tektronix Mainframes - 7603-7623A-7633-7704A - 7844-7904-TM501 - TM503 TM506-7904-7834-7104.
Knott Polyskanner WM $1001+$ WM5001 + WM3002 + WM4001 - £500
Ailtech 136 Precision test RX +13505 head $2-4 \mathrm{GHz}-£ 350$
SE Lab Eight Four - FM 4 Channel recorder - £200
Altech 757 Spectrum Analyser - 001 22GHz - Digital Storage + Readout - $£ 5000$. Dranetz 606 Power line disturbance analyser - $£ 250$
Precision Aneroid barometers $900-1050 \mathrm{Mb}$ - mechanical digit readout with electronic indicato -battery powered. Housed in polished wood carrying box-tested - $£ 100-£ 200-£ 250 \quad 1,2$ or 3 . B \& K Sound Level Meter type 2206-small-lightweight - precision - $1 / 2$ microphone - in foam protected filled briet type carrying case with windshield \& battery + books + pistol grip handle tested-£170. Carr. £8. - B \& K 2206 Meter + Mike + Book - less carrying case etc. - 145 . Carr £8. DISCOUNT ON QUANTITY
HP 141T Spectrum Analysers. All new colours suppled with instruction manuals.
HP $141 \mathrm{~T}-8552 \mathrm{~B}-8556 \mathrm{~A}-20 \mathrm{~Hz}$ to 300 kHz . £2000
HP 141T-8552B-8553B-1kHz to $110 \mathrm{Mc} / \mathrm{s}$. $£ 1750$.
HP $141 \mathrm{~T}-8552 \mathrm{~B}-8554 \mathrm{~B}-100 \mathrm{kHz}$ to $1250 \mathrm{Mc} / \mathrm{s}$. $£ 2250$
HP $141 \mathrm{~T}-8552 \mathrm{~B}-8555 \mathrm{~A}-10 \mathrm{MC} /$ so 18 GHz E 3000
HP $141 \mathrm{~T}-8552 \mathrm{~B}-8555 \mathrm{~A}-10 \mathrm{Mc} /$ s to 18 GH z. $£ 3000$.
HP 141T-old colour maintrame $+8552 \mathrm{~A} ; 8553 \mathrm{~B}-\mathrm{kHz}$ to $110 \mathrm{Mc} / \mathrm{s}$. Instruction manuals -E 1250 or 8552 B £ 1500
HP 3580A LF-spectrum analyser - 5 kHz to $50 \mathrm{kHz}-$ LED readout - digital storage $-£ 1600$ with instruction manual - internal rechargeable battery
Spectrascope 11 SD335 (S.A.) realtime LF analyser - 20 Hz to 50 kHz - LED readout with manual - £500 tested

Tektronix 7 D20 plug-in 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes §500-manual - $£ 50$
Datron 1065 Auto Cal digital multimeter with instruction manual - $£ 500$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}-$ internal NiCad battery - $£ 150$ Tektronix TR503 tracking generator $-10 \mathrm{Mc} / \mathrm{s}$ to $1800 \mathrm{Mc} / \mathrm{s}+$ manual $-£ 1500$
Aerial array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector $-.100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpt - $£ 100$
EIP 451 microwave pulse counter $18 \mathrm{GHz}-£ 1500$
Marconi RF Power Amplifier TF2175-1.5Mc/s to $520 \mathrm{Mc} / \mathrm{s}$ with book - $£ 100$.
HP 8614A Signal Generator $800 \mathrm{Mc} / \mathrm{s}$ to 24 GHz - old colour - $£ 300$. New colour - $£ 600$
HP 8616A Signal Generator 1.8 GHz to 4.5 GHz - old colour - $£ 200$. New colour - $£ 400$. HP 8620A or 8620C Sweep Generators - $£ 400$ or $£ 900$
Marconi $6155 A$ Signal Source - to 2 GHz - LED readout - $£ 600$.
Schlumberger 2741 Programmable Microwave Counter - 10 Hz to $7.1 \mathrm{GHz}-£ 750$.
Schlumberger 2720 Programmable Universal Counter 0 to 1250Mcis - $£ 600$
HP 37203A HP-IB Extender - $£ 150$.
PPM 411F Current Reference - $£ 150$

HP 5363B Time Interval Probes - $£ 150$
HP 8900B Peak Power Calibrator - 5100
HP 59313A AD Convertor - $£ 150$
HP 59313 A AD Convertor - $£ 150$
HP 2225CR Thinkjet Printer - $£ 100$
TEK 178 Linear IC Test Fixture - $£ 150$
TEK 576 Callbration Fixture - 067-0597-99- $£ 250$
HP 4437A 600 Ohm Attenuator - $£ 100$.
HP 8006A Word Generator - $£ 150$.
HP 1645A Data Error Analyser - $£ 150$
Texs can Rotary Attenuators - BNC/SMA 0-10-60-100DBS - $550-5150$
HP 809C Slotted Line Carriages - various trequencies to 18 GHZ - $£ 100$ to $£ 300$.
HP 532-536-537 Frequency Meters - various frequencies - $£ 150-£ 250$
HP 3200 B VHF Oscillator $-10 \mathrm{MC} / \mathrm{S}-500 \mathrm{MC} / \mathrm{S}-£ 200$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ + high pass + low pass - mains - battery
150.

Krohn-hite Model 3202R filter-low pass, high pass.
Krohn-Hite 4100 oscillator
Krohn-Hite 4141 R oscillator - $1 \mathrm{Hzz}-10,000 \mathrm{kHz}$
Krohn-Hite 6880 programmable disiortion ANZ-EEEE-488
Parametron D150 variable active filter, low pass - high pass - $15 \mathrm{~Hz}-10 \mathrm{kHz}$ £ 100
S.E. Lab SM215 Mk 11 transfer standard voltmeter - 1000 volts.

Fluke 4210A programmabie zoltage source.
Ailtech Stoddart P7 programmer - $£ 200$.
Fluke 8500A digital multimeter
H.P. 3490A multimeter
H.P. 6941 B multiprogrammer extender. $£ 100$.

Fluke Y2000 RTD selector + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD digital thermometer +9 probes. $£ 350$ all three items.
H.P. 6181 DC current source. $£ 150$
H.P. 59501A - HP.|B isolated D/A/power supply programmer
H.P. 3438 A digital multimeter
H.P. 61775 DC current source
H.P. 6207 B DC power supply
H.P. $741 \mathrm{BAC/DC}$ differential voltmeter standard (old colour) $£ 100$
H.P. 6209 BC power unit.

Fluke 80 high voltage divider
Fluke 887 AB AC+DC differential voltmeter
Fluke 431C high voltage DC supply
H.P. 1104 A trigger countdown unit

Tektronix M2 gated delay calbration fixture 067-0712-00
Tektronix precision DC divider calibration fixture. 067-0503-00
Tektronix overdrive recovery calibration fixture. 067-0608-00.
Avo VCM 163 valve tester + book $£ 300$.
H.P. 5011T logic trouble shooting kit. £150.

Marconi TF2163S attenuator-1GHz §200
PPM 8000 programmable scanner.
H.P. 9133 disk drive $+7907 \mathrm{~A}+912$ t twin disk

Fluke 730A DC transfer standlard
B\&K levelrecorder 2307 - $\mathbf{E S O O}_{0}$
B\&K 2113 audio frequency spectrometer - $£ 150$
B\&K 4815 calibrator head.
B\&K 4142 microphone calibrator - $£ 100$
B\&K 1022 band FX oscillator -E 100
B\&K 1612 band pass filter set - $£ 150$
B\&K 2107 frau pass mer sel- 1 f150
B\&K 1013 BFO - $£ 100$
B\&K 1014 BFO
B\&K 4712 FX response tracer - $£ 250$
B\&K 2603 microphone amp - $£ 150$
B\&K 2604 microphone amp- $\mathbf{\Sigma 2 0 0}$
B\&K 2019 analyser - £350
Farnell power unit $\mathrm{H} 60 / 50-£ 400$ tested
H.P. FX doubler 938A, also $940 \mathrm{~A}-£ 300$
A. B. noise figure meter $117 \mathrm{E}-£ 400$.

Aittech $360011+3601+360$: FX synthesizer $1 \mathrm{Mc} / \mathrm{s}-2000 \mathrm{Mc} / \mathrm{s} . £ 500$
H.P. sweeper plug-ins - $86240 \mathrm{~A}-2-8.4 \mathrm{GHz}-86260 \mathrm{~A}-12.4-18 \mathrm{GHz}-86260 \mathrm{AH03}-10-$
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz} .86245 \mathrm{~A} 5.9-12.4 \mathrm{GHz}$
Telequipment CT71 curve tracer - £200
H.P. 461A amplifier - $1 \mathrm{kc}-15(\mathrm{Mc} / \mathrm{s}$ - old colour - $£ 100$
H.P. 8750A storage normalizer

Tektronix oscilloscopes type $2215 \mathrm{~A}-60 \mathrm{Mc} / \mathrm{s}$ - c/w book \& probe - $£ 400$
Tektronix monitor type $604-\Sigma_{100}$
Wiltron 560 network scaler +2 heads + book - $£ 1000$
Marconi TF2330 or TF2330A wave analysers - $£ 100-£ 150$
HP5006A Signature Analyser $£ 250+$ book
HP10783A numeric display E150
HP239A oscillator - £250
Ailtech 7009 hot-cold standaid noise generator
HP 3763A error detector. £250.
Cushman CE-15 spectrum aralyser - LED Readout - $1000 \mathrm{Mc} / \mathrm{s} £ 650$.
Tektronix $5 \mathrm{~L}-4 \mathrm{~N}$ spectrum analyser $-0-100 \mathrm{kc} / \mathrm{s} £ 500$.
HP1742A $100 \mathrm{Mc} / \mathrm{s}$ oscilloscope $£ 250$
HP1741 A $100 \mathrm{Mc} / \mathrm{s}$ oscilloscope. £250
Tektronix 7104-7A29-7A24-7B15-7B10- 22 K
Racal/Dana signal generator $9082-15-520 \mathrm{MC} / \mathrm{s}-£ 800$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 900$
Claude Lyons Compuline - line condition monitor - in case - LMP1 + LCM1 £500
HP1815B T D.R. sampler +1817 A head - 1104A trigger +1106 B TD mount $£ 500$.
Texscan AL-51A spectrum analyser - $4-1000 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 750$
Efratom Al
Muirhead fax receivers K649 - TR4 - solid state - speed - 60-90-120-240-auto - IC 288-576 - auto. $£ 250$ with book.

HP8350A sweep oscilloscope mainframe + HP11869A RF PI adaptor - $£ 25 \mathrm{~K}$
Ailtech - precision automatic noise figure indicator type $75-£ 250$
Adret FX synthesizer $2230 \mathrm{~A}-1 \mathrm{Mc} / \mathrm{s}$. $£ 250$
Tektronix - 7S12-7S14-7T11-7S11-S1-S52-S53
Rotek $610 \mathrm{AC} / \mathrm{DC}$ calibrator $£ 2 \mathrm{~K}+$ book
Tektronix 7 L 12 analyser - $1 \mathrm{Mc} / \mathrm{s}-1.8 \mathrm{GHz}$. $£ 1500$
Clark Scam Heavy Duty 40^{\prime} Telescopic Pneumatic Masts - retracted $7^{\prime \prime} 8^{\prime \prime}$ - head load 401 bs
with or without supporting legs \& erection kit - in bag + handbook - $£ 200$ - $£ 500$.
Clark Scam Heavy Duty 70° Telescopic Pneumatic Masts - retracted $13^{\prime} 5^{\prime \prime}$ - head toad 901bs
with or without legs + erection kit + handbook - $£ 500-£ 800$.
cad drawing tools - enables schematic symbols to be constructed. Symbols can be used with great effect in constructing devices for analogue circuit design, and, by using the report generator, the appropriate parameters can be attached to devices.

PLA and prom power

The facility to allow design of PLAs and proms is another very attractive feature of LogicWorks. Starting point is definition by the user of the number of inputs, outputs and the respective truth table. The new prom or PLA option can then be entered in a dialogue box, specifying the number of device inputs, outputs and device propagation delay. By clicking the SPECIFY OUTPUTS box another box opens to enable entering of the contents truth table.
LogicWorks can also read in device data liles derived from logic minimisation programs (Palasm lor example). Bul a dedicated library of standard PLA devices in which the PLA design could be implemented would be a bonus. The PLA design option is certainly useful but does require an external minimisation software product to renderer it totally effective.

Report generation

If a text file needs to be attached to any circuit or simulation LogicWorks' report generator can be used (Fig. 8). At the top of the dialogue box there are four buttons: Signals will produce a netlist file contaning all the information on the signal sources in the diagram; DEVICES produces a file listing all devices in the circuit, sorted by name followed by device lype name as it appears in the DEvices menu: TYPE allows the user to generate a file, listing the type name (parts list) and quantity used in the design - a useful feature for costing the design; SPICE, as previously mentioned, produces a netlist lile suitable for a Spice package. Users can choose to omit an item from a lile list by clicking on the option in the SET PARAMS command.

Well designed partner for Pspice

On the whole, Logic Works is well designed and a useful tool for designers, with many attractive features and a comfortable feel. Otten, when using a package of this complexity, there is a strait-jacket feeling, the software imposing its restrictions on the user. But with LogicWorks there is no sense of this restriction and the package can honestly be described as user friendly.

Its level of simulation combined with the option to change device characteristics makes it a powerful working aid for digital designers. In many respects it is an ideal companion to work alongside Pspice - LogicWorks creating the circuit diagrams and netlists, and Pspice providing analogue simulation. Relatively low cost of the package will widen its appeal to users. and once the libraries are stocked up I would have no hesitation in recommending it as a serious design tool.

SUPPLIER DETAILS

Calandown Ltd, 96 High Road, Byfleet, Surrey. KT14
7QT 0932-342137 Cost $£ 300$.

Fig. 6. Analogue circuits can be created by Logic Works.

Fig. 7. Device library is well stocked and should provide a model for Logic Works' other libraries.

Fig. 8. Four options for file formats, produced by the report generator.

USER MANUAL THAT YOU CAN REALLY USE

A reasonable amount of effort has been spent in design of the wire-spine usermanual. Not only has Capilano capitalised on DTP techniques to highlight product features but it has also provided good, clear descriptions throughout the manual. Illustrations are generous, with many screen displays, and the text is obviously written with the end-user in mind. Capilano has practised the golden rule manual writing - learn by example. There are lots of examples complete with the all-important "getting started" section.

Chapter three launches the user into a lutorial, with step by step working examples - ideal for establishing a new user's confidence in the product.
All in all the LogicWorks manual is a credit to Capilano.

STRUCTURED analogue DESIGN BUILDS PERFECT FILTERS

> Every so often, an entirely novel idea in electronics emerges. A filter based on simple, highly structured building blocks can produce brick wall filtering performance allied with zero phase shift. The principles for doing this digitally are well known. Professor David Grundy's topology works completely in the analogue domain.

The November 1991 edition of Electronies World carried an article on the principles of structured analogue electronics. It described a system which could perform temperature independent mathematical operations such as multiplication, division and raising to a power. This article applies the technique to producing a new type of filter which, in addition to being highly geared to design by CAD tools also offers improved performance, particularly in terms of a dramatic reduction in the number of reactive components. Furthermore, there is no phase slift through the filter.

Filtering state of the art

Monolithic filters can be broadly classified into one of three types: active filters based upon operational amplifiers which are obviously analogue in nature and are classified into types such as Butterworth Chebyshev and Bessel. ${ }^{1}$ The choice of filter employed from the options depends upon such factors as the degree of ripple tolerable in the passband, allowable phase shift and transient response.

As always a compromise in performance is inevitable. A characteristic of this type of filter is that the higher the order, the larger the number of reactive components required which for monolithic filters clearly means capacitors. If inductors are required then one can turn to gyrators which effectively invert the frequency dependent reactance of a capacitor to provide a component similar to an inductor, ie its reactance increases with frequency. There are other circuit tricks such as negative impedance converters which can also transform the reactive behaviour of a capacitor; for reasons of sensitivity they seem 10 have declined in popularity. Whatever the filter configuration chosen, designing a filter of this type proceeds at the component level and most commonly uses standard forms.
The second type of filter is that based upon the principles of switched capacitors ${ }^{2}$. This principle arose as a result of the components available to the designer in mos technology i.e. no resistors but good quality well matehed capacitors and transistors which act as switches. A combination of switches and capacitors
can be made 10 behave like a resistor and hence accurate time constants can be produced from which tïlter networks maly be assembled.
This type of lilter is usually the firse choice for telecomms.
Digital filters implemented with DSP are the third type. In this situation the analogue signat is tirst converted into digital form by a combination of sample/hold limetion and A to D converter. Following this samples of the signal are baken at discrete and aniformly spaced intervals.
A sequence of algorithms such as convolution are then applied; these involve multiplying successive samples by weighted coelficients: adding and hen aceumulating the result. The resulting liltering profile is determined by the values of the weighting coeflicients. Before being of value to the real world this digital processing procedure must be followed by digital to analogue conversion.

Reviewing analogue action

Aclive lilters based upon operational amplifiers are simple and as such do not sulfer from ellects such ats aliasing distortion. On the negative side they suffer from phase distortion which. while of litte significance for most speceh applications, is of great importance in data processing where severe signal distortion can oceur as a result of variations in delay seen by different frequencies passing through the filter. Additionally, higher order filters are dilficull through sheer quantity of reactive elements required.
Switched capacior lypes have the advantade of low current consumption although their design is highly specialised. They also suffer from aliasing distortion. This means that if the input signal has any components bear to the clock freguency iley will be aliased down into the pass band.
Digital filters in theory have greatest flexibility since they do not rely upon the properties ol electrical networhs and will carry out any processing procedure delined by the installed algorithms. Design can be dillicula however and sometimes it is necessary to translate known analogue lifters into their digital equivalent using a procedure hnown as pre-waping. Again DSP design skills are scarce athough becoming more widespread as the technology gains momentum. As for switched capacitor, signal components ncar 10 cloch frequencies can produce aliasing disforbon since digital filters are not time continuons by nature. Digital filters require a relatively massive chip area due to their complexity and this has cost implications..

Structured analogue filters

The underlying principle of SAE states that all analogue processing problems can be solved with a shore set of basic instructions similar to those associated with digital computers. The design process then becomes one of establishing equations for the desired system function then solving these with the functional building blochs of SAE. While there are many possibilities for the instruction repertoire.

Logarithms: do it with diodes

Analogue designers generally struggle to remove distortion caused by the non-linear transfer characteristics of active devices. The first step is to bias the device into its most linear region and the second - usually - is to apply negative feedback. If instead of using negative feedback, etc, to linearise junction characteristics, we take a closer look at the fundamental properties, then a few surprises are in store.

The basic relationship for current and voltage, associated with any semiconductor junction is given by:

$$
I=I_{\| k} \exp \frac{q V}{n k T} \text { or } V=\frac{n k T}{q} \ln \frac{I}{l_{0}}
$$

where $I=$ forward conduction current, \gg $I_{0} ; I_{0}=$ reverse saturation current $; q=$ charge on electron; $V=$ voltage across the junction; $n=$ a constant near unity; $k=$ Boltzmann's constant; $T=$ absolute temperature. This equation holds true for all semiconductor junctions whatever the technolagy, be it bipolar, cmos or bicmos and also for all materials, silicon, germanium or gallium arsenide.
A further important attribute is its remarkable consistency, that is at least for silicon. This is due in part to the fantastic amount of effort and money that has been spent on bringing silicon to its present state of refinement. A long lasting experience of this diode equation and information gathered from other sources has shown that the equation shown above is typically accurate to 1% over at least eight decades of current.

Further to this, junctions in n-p-n transistors with high values of hfe connected as diodes $\left(V_{d}\right)=(O V)$ have been seen operating down to 10^{14} amps. The log diode equation can thus be used confidently
experience has resulted in the establishment of the following:

1 ADC	Addition
2 NOT	Inversion
3 LOG	Logarithm
4 ALOG	Antilogarithm
5 AMP	Amplify
6 DIFF	Differentiation
7 INT	Integration

These seven instructions will solve a very wide range of analogue design problens ranging from precision voltage reference sources to high performance filters. Turning now specilicafly to lilters, designing with SAE always starls with an equation. The role of a filter is ol course to deline the manner in which the transter function of a system varies with respect to Prequency. The Butterworth lilter to which we referred to carlier is characterised by the equation:

$$
E_{n, n} / E_{m}=\frac{1}{\sqrt{1+\left(f / f_{i}\right)^{2 n}}}
$$

(a) Logarithmic amplifier with junction conmected into negative feedback loop; (b) antilog amplifier.
in predictable analogue design
The basic logarithmic behaviour of semiconductor junctions (when not being linearised) is currently used in multipliers, AGC circuits, etc. However, it is not applied consistently and often the wheel is reinvented with each new application. Also, the division capabilities of p -n junctions are often not fully appreciated.

SAE involves the extensive use of logarithms. If instead of linearising the exponential hehaviour of a p-n junction, one simely converts signals into logarithmic form by use of this fundamental and consistent characteristic, then a great number of problems disappear. Multiplication for example can be achieved simply by addition of logarithms, division by subtraction and raising to a power by multiplication of the logarithm by the required exponent.

If we are to attach the problem as and equation solving exercise and forged about the traditional bottom up methot - where one seeks to lind an electrical network/amplifier combination with the required behaviour with respeet 10 frequency - then it is necessary to isolate the liequency terms out of the signal equation. Having done this they can then be placed in an equation along with other terms to deline the prescribed liller behaviour: $S A E$ echniques may then be applied to implement this equalion.

Let's start with a basic simusoiclal signal given by:
$r=E_{1,} \sin \omega t$
If we dillerentiate this once (instruction 6) we obtain:
$\mathrm{d} c / \mathrm{d} t=E_{1}, \cos \theta t$
If we dillerentiate a second time (insatuction 6 agan) then we obtain:
$\mathrm{d}^{2} c / \mathrm{dt} t^{2}=-\omega^{2} E_{1}, \sin \omega t$
If this is now inverted (instration 2) then we obtain:
$-\mathrm{t}^{2} c / \mathrm{d} t^{2}=\omega^{2} E_{0}, \sin \omega t$

 pass. band pass. motch or indeed ant contienration which can be mathematically described.
F"irs or all a very general form of low pass filler (nom referred to as lype l) can be čpresmed as:

$$
1_{(m, l} / L_{t / \prime}=\frac{1}{(1+(1))^{\prime \prime}}
$$

It will make things calsier to implemen if we allow (1) to become squated

$$
1_{1,+1 t} / I_{m}=\frac{1}{\left(1+(1)^{2}\right)^{\prime \prime}}
$$

This is nol a matriction simee we are loohing for higher orkers bliler anyway. Once again. for case of implementation, this cyataion can be rewriternals:

$$
I_{\prime+H}=\frac{1_{i m}}{\left(1+\omega^{2}\right)^{\prime \prime}}
$$

This maty weem to be laborious and pedantic but it will be seen that wolving antalege signal
 requite that the atre set up in an appropriate form. The procedare is somewhat ahim to the mamipulative processes in calculas lo facilitake interatation or inded on the similar lechniguen in laking inverse laplace ranshome fien looh up tables. The reason for substuting (0) ${ }^{-}$ for (1) is that the inverted double differemtiation procedure hat. provided un with (1) inkomation in llis lorm.
A flat maponse in the pase batnd is proveded by the unity lem in the denominator and this latume mas obvionsly be incorporated into our filter equation. Since the (a) term hats for its cocliciom the original inpul sionat.
 coslicicon lor the unty kem which alvo providen us with the lollowing denominator: $L_{1, r} \sin (0)\left(1+(1)^{2}\right)$
If this kerm is now ratised to the power of "t our denomimator is subutantially complete cacept that in addition to raising ($1+(0)^{-}$) 10 the "t we have also rabed $/$ a, sintet to the n which is quite delimitely mot required. Unfortumatels this in mavoidable and the way around it is to make de denominator also
 $(1 /+1)$. The final equation then becomes:

Thin signal is of course our original signal but is now mullipliced by ω^{2} and is suitable for inpul to the SAE equation. An important point to note is that for real bife signals conatining many itu sinewaves, there is no relative phase shif amonest them in passing through this procedure: all freguencies rotac through one full circle of $3(x) 0^{\circ}$.

The nexa point to consider is how to efrect the actual filtering operation. The tirst example depieso al lon pasis liller bul

Which is of contse a manipulatcd lomol ol

$$
1 .=\frac{l a n n t}{(1+w)}
$$

While we have sed how ba generate the freyucney dependent terms. it is atho clear that synthesis of the eguation also requires the mathematical procese of division.

In general division seems 10 be avoded in amaloger cles

Ironics but when acturate logarithmic procedures are available (insuraction 3) then the procences of multiplicalion and division are greatI! simpliticed. Mulliplication consish simply of adding logarithma and division insoles their vubuaction. larther. masing to a power can be lacilitated by malliplication of the logarilom.

The means of symbesising the filler equation is now varting to hecome apparent. If firso of all we tate the logatilnom of the numerator. multiply it by $(1 /+1)$ and also tahe the logat rithon of the denominalor. multiply this hy n and sublace it from the mumerator, and finalIy tathe amblogs (instruction t) the result is a low pase tiller. A diagram migh mathe this clearer and is shown in Fig. 1
First of all the input signal is fed smoltameously into the double differentiator which is parl of the denominator, and also into a logarithmic converter 10 form the nomerator. Oupur from the inverted double diflementiator is added to the original input vignal which forms the main ubvance of the denominator: thin is also lid to a logatilhmic comserter.
Since the denominator must obviously be divided into the numbater. the logarithom must be inverted betore adding to the logarithon of the numerator. Before the addition however the mumerator low is multiplied by $(m+1)$ which can be eflected lor simplicity with an amplifier (instruction 5) of fixed gatin $(1)+1$. Similarly the logarithon of the denominator can be followed by amplifier of lixed gain 12. Followine addition of these kerms comes the ambloge operation (instruction t). The ulaimate ouput in the original signal which has now been ubbected oo low pass lillering.
Aplot of the performation of this spe of litter with $n=5$ is shown in Fig. 2 alongside a comventionad Bumerworth sth order bilter. It can be seen that the Bunteruorth lifter is very much thater in the passband and this is due to the fate that in denominator changes much more rapidly with feguency after the heak frepuency has occumed. The relevant Bulterworh term is rool of $\left(1+\left(6^{2 \prime \prime}\right)\right.$ compared with ($1+\left({ }^{2}\right)^{\prime \prime}$ for the SAE design. The addition of I to the ar em berore masing to the n in the case of the latter has catused this - ignificame diflerence.

This lom of equation ans compared a ith the comventional Bullerworth was chosen to simplify the hatedware embodiment of the filler. If al liatter passband is required then this can be achieved by increasine the order n of the $S A E$ milter. A plot bor $n=20$ is shown on the same asis and this is seen to ofler a much thater passound and much closer to the bilth order Bulternorth. Increatsing the order of an SAE filter coste nothing: it simply means multiplying the apropriate logatriboms by a later number. Eventally there could be problems tith componcont tolerances but since we are dealing wilh ration of compenem adoc within a monolithic enviromment this sould not be ageneral problem.
If an even choser fït or indeed improved response when compared with the Butlerworth filter is required, then this can be achieved at the experace of more complen hardware by

Fig. 3 (above). Achieving best SAE performance requires more complex hardware. Fig. 4. Low pass filter output can be combined with the input to invert the form into a high pass filter.
changing the lorm of the denominator in the SAE lifler eifuation. If insead of $\left.1+\omega^{2}\right)^{\prime \prime}$ we had used $f+(0)^{-\prime \prime}$ then the amplitude response of the SAE filter would be superior of that of the Butterworth of the same order. A plot of thas function (now refered to a type 2) is abo , woun in Fige. 2. As commented this means an increase in the harduate comple 19 which is shown in is revised form in Fig. 3. It can be xcen that instad of adding Exinom
 the two terms are now cich mained to the power n spatately. The ultimate equation becomes:

$$
\mathrm{E}_{1,1,11} / \mathrm{E}_{111}=\frac{1}{\left(1+\omega^{2 / \prime}\right)}
$$

This is simatar to the traditional Butlerworth except that the spuate roon bign has diapppeared whish gives a seeper slope without compromise of passband performance. Of tal greater importance however is that the $\mathrm{S} A \mathrm{~A}$: filter has no phase shilt compared with the highly nom-lincar phase propertien at the traditional Bu!terworth.
If high pass. hand pass noted or incleed any other form of lilter chatateristic is required then, providing that this can be mathematically delined, a similar procedure of synthetic manipulation can be followed as for the low pass devign.
There in however a shont coll for many filters that are likely to be encountered. This possibility is cue to the sero phase shift asoociated with this sype of filter.

The partivelar algorithm: atopoted demand that the numerator and denominator are aborlutely in phatse and this, kature turns out to have bencitis other than sero phase distortion. In particular for evample the output from the low pass filter can be combined in simple algehaic manner with the input vignal to invert the form of the low pas filter into a high pass. This is shown in Fig. 4 where the
oupun from the low pass and an inverted (instruction 2) form of the input are simply addeal (insaruction 1) to produce the high pais form of our low pase filler The brach frequency is the same for cach sersion.
Hasing produced both low and high pias forms. it is redatively simple of prodece band paso by cascading a high pas and low pas device as shown in lig. t. The corner fie yuencien may be programmed entirely epat rately for cach: the wirl profile can be vymmetric. asymmetric or whatever.

While discussing programming of biler chatacteristics it is probably worthubile to digren lo sec just what is involved. Retaming 10 la hasic low pass equation:

$$
E_{w, m} / E_{i / \prime}=\frac{1}{\left(1+w^{2}\right)^{\prime \prime}}
$$

It will be recalled that the as term wan produced by a prosess al double dillerentiation: if this hat been preceded or indeed suceeeded by wome gain saty $A_{\text {, then }}$, tre basic cymation would have laken the form of:

$$
E_{1, \ldots} / U_{n}=\frac{1}{\left(1+1_{1,} \omega^{2}\right)^{\prime \prime}}
$$

By changine jun one paramerer (the gat lactor A, , the break lrequency of the filter can be proeramined yuite arbitrarily and totally independent of anything che. $\begin{gathered}\text { a } \\ \text { bether important }\end{gathered}$ parameter which will need to be varied is of course the order of the tiller a. This is where the structured approath has one of its mose signilicant advantages. The order of the tom pass filler and indeed the high pass. band pase or ary other band upon the same principles is adined simply by the coetficient of the logarithmic lerms in momerator and demominator. It will be recalled that mutiplication of a logariblom by a number revuls in that momber being raised of that poser. Thus Io obtain a
tenth order filter. one simply multiplies the logarithms involved by 5 since the ω term has been raised to second order by double differentiation. This results in tenth order behaviour in total. If the logarithms had been multiplied by 50 this would have resulted in a filter of order 100. Establishment of filter order is seen to be completely independent of break frequency and without a proportionate number of ractive components. The only reactive components required as might be expected are in the differentiating networks and there are only two of these whatever the order of filter: even for very low frequencies they can be small in value due to the use of the amplification factor A_{0}, which multiplies their effective value.

Silicon Technology Considerations

The techniques of SAE are applicable to bipolar, emos or bicmos. Over and above an obvious requirement for basic transistors there is a need for voltage to current converters whieh. in hipolar or biemos technology. would be provided by linear resistors formed by diffusion or implantation. Although technicpues are available to linearise voltage to current sources in cmoss, these are not essential. Non-linear devices can be used providing that their characteristics are predictable and consistent: for instance the square law hehaviour of a mos transistor in its unsaturated region.
In addition to voltage to current conversion a logarithmic device is also required and this
is needed for the logarithmic and anti-logarithmic instructions. In bipolar and biemos technology this can be provided by a bipolar transistor with its collector connected to base. As mentioned in the first artiele on structured amalogue electronics the consistency of logatrithmic behaviour extends beyond eight decades ol current range. Whilst PN junctions are not necessarily accessible in basic emos technology an alternative is to operate the basic transistor in its sub-threshold region where a logarithmic relationship between drain cument and gate voltage exists. Highly complex systems would clearly favour cmos for example whilehighest frequency applications would favour straight bipolar or biemos. Cells providing the basic instruction repertwire can be designed to perform at 1 Hz or foo MHz : it is simply a matter of providing sulficient current to achieve the required performance, particularly in tems of slewing rate for the logarithmic and associated functions.

Cad for SAE

White filters created with SAE techniques ate of great interest it should be remembered that the driving force w as the desire to tathe the blach art out of designing analogue cirenits with computer design tools. Adopting a highly structured approach such as that shown with the low pass filter example means that the application of cad technique is suddenly very much casier.

Current design is very much at the component level and the cad tools available are therefore limited to Spice and its derivatives. SAE switches to a much higher level ol abstraction and thus lacilitates massive increases in speed. A repertoive of just seven instructions has been proposed with which it is believed that the design of any analogue sytem can be undertaken. The low pass lilter example shown here requires six of the set of seven. In designing other analogue functions from voltage eferences to radio receivers it is thought that the basie set of seven is suffieient and indeed there is possibly some redundaney but this resulas in the simplification of hatelware. The amplifier insuruction is such a case in point. In its hasic form the application of cad to the design of SAE is very straightforward. SAE application software is now under development which will run on IBM compatibles and greatly simplifies the design procedure. SAF works al such a high level of abstraction the speed up factor over component level design is staggering.

References:

1 The Art of Electronics. Horowit/ and Itill. published by Cambridge 1 niversity Preas pp 26.3-28. 2. 2 Interlacing with C. Howard Hukhings. A collected series of articles firsis published in Electromies World + Wirclen World from April 1990 to May 1991. Published by Reed Business Publishing Group

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER
GENERAL TEST EQUIPMENT
Amber 4400A Multipurpose Audio Test Set Datalab DL 1080 Programmable Transient Recorder
Genrad 1658 RLC Digibridge
EMT422 Audio Threshold Montor
Systron Donner Dual PSU 0 to 40 volts 1 amp Comatk Insulation Meter
Gravitron HD05/5S Digital Scales
Schaffner NSG430 Static Discharge Simulator Woelke ME 104C Wow and Flutter Meter
Telonic TSM2 Rho Meter
Texscan CS76 460 to 960 Hz Sweep Generator Tektronix 521 A PAL Vectorscopes Tektronix 1485 Video Waveform Monitor HP 5340 A 10 Hz to 18 GHz Freq Counter HP 5345A Timer Counter HP 538180 MHz Freq Counter I watsu SC7104 1 GHz Freq Counter Tektronix DC508 1 GHz Counter Racal 9904 M Counter Timer Racal 99081.1 GHz Freq Counte Racal 9009 Mod Meters Rayrosa 252 Automatic Mod Sayrosa 252 Automatic Mod Meter 2 GHz Bird 8201 Termaline 500 Watt
Farnell Amm Auto Mod Meter
Marconi 2950 RT Test Set
HP 5306 GPIB Multmeter/Counter HP 3465A DVM
HP 3478A LCD Digital Multimeter HP 3455A Hi Stability Digital Voltmeter GPIB HP 3400A True RMS Voltmeter
HP 400E Voltmeters
Gay Milano Fast Transient Recorder HP 461A Amplifiers HP 432A Power Meter with Mount

Tektronix 576 Curve Tracer/172 Programmer Rank Kalee 1742 Wow Flutter Meter RFL 5950A Crystal Impedance Meter HP 3556A Posphometer
HP 8750A Storage Normalizer
HP 6294 A PSU 0 to 60 Volts 1 Amp HP $6453 A$ PSU 0 to 15 Volts 200 Amps Racal Dana 211 Logic Analyser Racal/Dana Wide Band Level Meter 5002 Racal/Dana True RMS RF Level Meter 9303

SIGNAL GENERATORS

Farnell SSG 100010 Hz to 1 GHz Synthesised Farnell SSG 200010 Hz to 2 GHz Syntnesised Farnell SSG 520 Synthesized 520 MHz generator Farnell TTS 520 Transmitter Test Set Farnell TTS 1000 Transmitter Test Set Marconi TF1015/-2171 Syncronizer 10 to 520 MHz Marconi TF2016A 10 kHz to 110 to 520 MHz £3 Marconi TF2002B/2170B Digital Synchronizer 10 Hz to Marconi TF2002B/2170B Digital Synchronizer 10 Hz to 88 MHz
HP 8640 BM 5224 Philips PM 5224110 MHz AM/FM + SWEEP Philips 6456 FM Stereo Generator Radiometer SMGI Stereo Generator HP 8350B Sweep Generator main frame £ 150 -

SPECTRUM ANALYSERS

HP 182T 8558 B 1 to 1500 MHz (as new)
£2300
HP 141 T Complete with 8554 B 1250 MHz Analyser 8553 B 1 kHz to 110 MHz Analyser and 8552B IF Section (as new condition)

Gould OS 30020 MHz Dual Trace \quad £ 185
Kikusui 100 MHz Four Trace $\quad £ 450$
Telequipment D8350 MHz Dual Trace $\quad £ 200$
$\begin{array}{ll}\text { Telequipment D8350 MHz Dual Trace } & £ 200 \\ \text { Telequipment D755 50 MHz Dual Trace } & \text { £250 }\end{array}$
$\begin{array}{ll}\text { Telequipment } \\ \text { HP } 1707 \mathrm{~B} 35 \mathrm{MHz} \text { Batt Portable Oscilloscope } & £ 250 \\ & \text { £ } 300\end{array}$
$\begin{array}{ll}\text { HP 1707B } 35 \mathrm{MHz} \text { Batt Portable Oscilloscope } & £ 300 \\ \text { HP 1703A Dual Channel Storage } & £ 195\end{array}$
$\begin{array}{ll}\text { HP 1703A Dual Channel Storage } & £ 195 \\ \text { HP 1727A } 275 \mathrm{MHz} \text { Storage } & £ 400\end{array}$
HP 1727 A 275 MHz Storage
Nicolet 4094 Digital Oscilloscope £1500 Farnell DTS12 Digital Storage Oscilloscope $£ 350$ Tektronix 647100 MHz Dual Trace $£ 100$ HP 180 with 50 MHz Plug-ins $£ 250$
Scopex 14D 1010 MHz E 140

SPECIAL OFFERS

Cossor CDU 15035 MHz Dual Trace Scopes £135 Western Towers 75 ft Radio Mast with Fittings E 350 19^{\prime} Racks $4 \mathrm{ft}, 5 \mathrm{ft}, 6 \mathrm{ft}$ as new with doors and sides from

BRAND NEW AND BOXED

Gould OS 30020 MHz Oscilloscopes with Probes and Manual E250
£1500 HP 3582A Dynamic Signal Analyser £195 Marconi TF2371/1 110 MHz Spectrum Analyser £150 Wayne Kerr RA200 Audio Response Analyser Wayne Kerr RA200 Audio Response Analys
Wayne Kerr 240A Audio Response Tracer

OSCILLOSCOPES

Tektronix 2455250 MHz Portable Four Channel £1600

Tektronix 454 A 150 MHz Dual Trace (as new condition)
Tektronix 466 Storage Oscilloscope $£ 325$
Philips 3244 Four Channel
Philips 321750 MHz Oscilloscope
Gould OS 350060 MHz Dual Channel \quad £295
and Manual

DESIGN BRIEF

Four op-amp inputs are better than two

Performance of the LT1193 and LT1194 video difference amplifiers prompted Ian Hickman to reconsider bridge circuits.

Back in the 1970s when the RCA CA.3130) bimos op-amp became available, its very high input impedance compared to the existing bipolar types meant it was clearly the answer to an engineer's prayer.
1 decided it was just the thing for the detector in a bridge circuit, but there was a snag. A bridge detector needs not only a high differential input impedance, but also both inputs must present a high impedance to ground, to simulate the conventional floating detector circuil.

With gain defining resistors fitted this is no longer the case. But the amplifier cannot be used without them since the open-loop-gain times the offset-voltage could result in the output being driven to one of the rails. Of course a high impedance for both inputs could be
supplied with the usual instrumentation amplifier set-up of Fig. 1a. But why use three opamps if you can get away with less?

Circuit Fig. 1b uses only two. But I was unaware of that particular arrangement at the time and in my circuit (Fig. 2) an NFB loop around the amplifier is closed via one of the offset null terminals, leaving both the -ve and +ve (inverting and non-invering) input terminals free to float.

With the offset null trimmed out, the circuil made a fine detector for a $D C$ excited resistance bridge - the CA3/30)s 90 dB typical CMRR (common mode rejection ratio) resulting in negligible error with change in bridge ratios.
But the circuit also made a fine inductance bridge, the values in Fig. 2 giving a $100 \mu \mathrm{H}$
full scale range. R_{s} was switchable to $1 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ giving 1 and 10 mH ranges, and then switching C_{s} to 100 nF gave $0.1, \mathrm{I}$ and 10 H ranges.

The op-amp's input stage is outside the NFB loop, so its gain will vary somewhat with temperature. But for a bridge detector that is not important. In any case a wide range of gain control was needed to cope with the different bridge ratios and this was supplied by the $100 \mathrm{~K} \log$ sensitivity pot.

CMRR of the CA3/30 at $1592 \mathrm{~Hz}(\omega=$ $10^{4} \mathrm{rad} / \mathrm{s}$) is not stated in the data but seemed adequate for the purpose, and the resultant simple RCL bridge served me well for many years.

Video differences

Recently the LTI193 and LTII94 video difference amplifiers came onto the market ${ }^{1}$, available in the UK from manufacturer Linear Technology Corporation.

They are part of the $L T / 19 x$ family of lowcost high-speed fast-settling op-amps, which

Fig. 1. Instrumentation amplifiers, floating high-impedance input. Circuits using (a) three op-amps or (b) two op amps.

Fig. 2. Inductance bridge with a 50Ω source providing a DC path to ground.

Fig. 3a. Cable sense amplifier for loop through connections with DC adjust.

Fig. 3b. Recovered signal from common mode noise.

200 kHz SINE WAVE WITH V $\mathrm{V}_{\text {CONTROL }}=-5 \mathrm{~V} .-4 \mathrm{~V},-3 \mathrm{~V},-2 \mathrm{~V}$
Fig. 3d. Sine wave reduced by limiting the LT1194.
includes devices with gain-bandwidth products up to 350 MHz . All have a $450 \mathrm{~V} / \mu \mathrm{s}$ slew rate and with this sort of performance, you won't be surprised to learn that the parts use bipolar technology.

The LT1193 and LT1194 video difference amplifiers differ from other members of the family in that they have two pairs of differential input terminals, so that the gain-defining NFB loop can be closed around one pair, leaving the other pair floating free. Input impedance of the LTII93 is typically 100 K in parallel with 2 pF at either the -ve or the +ve input. Figure 3a shows the device used as an $80 \mathrm{MHz}(-3 \mathrm{~dB})$ bridging-amplifier, tapped across a 75Ω coaxial video distribution system.

The arrangement is clearly much more economical than the usual termination of the incoming signal in a video repeater amplifier housed in a distribution box. It also provides a fan-out of several outputs, for local use and for the continuing run to the next distribution box.
The signal in the cable is nominally unbalanced (ie ground referenced), but in practice there are ground loops between pieces of equipment, and high frequency common mode noise is often induced in the cable. So the bridging amplifier at each tap location requires a high CMRR at high frequency. Figure 3b shows a 5 MHz signal recovered from an input with severe common mode noise, illustrating that the CMRR is maintained at high frequencies.

My floating input CA.3/30 circuit's gain was not well defined, the input stage being outside the gain defining NFB loop, but the LT 1193 does not suffer from this disadvantage. Its two input stages are provided with identical emitter to emitter degeneration resistors, Fig. 3c, so that the gain at the $-v e$ and $+v e$ inputs (pins 2 and 3) is the same as that defined at the reference and feedback inputs, pins 1 and 8.
Gain error is typically 0.1% while the differential gain and phase errors at 3.58 MHz are 0.2% and $0.08^{\circ} \mathrm{pk}-\mathrm{pk}$ respectively. While excellent as double-terminated 75Ω cable drivers, the LT1 193/4 are capable of stably driving 30 pF or more of load capacitance with
minimal ringing.

Unique power conserve

The LTll93 features a unique facility, accessed by pin five, that enables the amplifier to be shut-down to conserve power, or to multiplex several amplifiers onto a single cable.

Pin 5 is left open circuit for normal operation, but pulling it to the negative supply rail gates the output off within 200 ns leaving the output tri-stated and typically reducing the dissipation from 350 mW (with +5 V and -5 V rails) to 15 mW . The $L T / 194$ - gain internally set at $\times 10$ - has a different party trick, made possible by bringing out the emitters of the input stage's constant current tail transistors. The design enables the input stage's current to be reduced by degrees, limiting the available output swing, Fig. 3d, extremely quickly.

Bridge application

Application of the fully floating input stage of the LTll 193 to my old bridge circuits seemed an obvious move, and with the device's CMRR still in excess of 55 dB at 1.592 MHz , Fig. 4a, the bridge could clearly be run at $\omega=$ 10^{7}, enabling much lower values of inductance to be measured. The result was a hasty building and testing of a new circuit (Fig. 4b).
With the values shown, inductances up to 200 nH can be measured. The circuit was tried out using a "Coilcraft" 2 five and a half turn air-cored inductor of 154 nH , type 144-05J 12 (less slug). I have not yet succeeded in finding a non-inductive 20Ω potentiometer for R_{v}, so balance was achieved by selecting resistors on a trial and error basis. The bridge balanced with R_{v} equal to 15Ω in parallel with 220Ω, and with a 180 pF capacitor as the tan delta "control". These values give the inductance as 145 nH and the Q as 5.5 .
Measured value of inductance is a little adrift, but that is not surprising, given the bird's nest construction. Indeed, a quick check by connecting both inputs to the same side of the bridge showed that I was only getting 47 dB CMRR - after removing the 100 nF capacitor decoupling the negative rail which

Fig. 3c. LT1193 simplified schematic.

Fig. 4a. Common mode rejection ratio vs frequency for the IT1193.

Fig. 4b. The "hastily constructed" circuit using the LT1193 in a bridge application
should have made things worse, not better. But perhaps such oddities should be expected by anyone rash enough to use experimenter's plug board construction.

Manufacturer figure for Q is 1.54 minimum at 40 MHz . If we assume that Q is proportional to frequency, the "measured" Q is 138. But the manufacturer's figure of 1.54 is with the slug fitted, at mid range, giving an inductance of 207 nH . At 154 nH , without the slug, a lower value of Q is only to be expected. In fact, results from the bird's-nest test bed are so
encouraging that the circuit will probably now be rebuilt - properly!

References:

1. "Linear Technology", Vol I, No 2, October 1991. 2. Coilcraft. 1102 Silver Lake Rd., Cary. IL 60013 USA (312) 639-6400. Also in the UK, at 21 Napier Place, Wardpark North, Cumbernauld. Glasgow G68 0LL

INTERESTED IN DATA ACQUISITION3

Then look out for the dune issues of ELECTRONICS WORLD + WIRELESS WORLD which will carry a special application feature on the world's first single chip, single supply data acquisition system from National Semiconductor.

EW+WW in conjunction with NatSemi will be offering a data pack complete with free semple of the amazing LM12458. Simply send off the coupon within the June issue. To make sure that you don't miss out, place your order for the world's most useful electronics magazine with your newsagent now!

(20)

High-quality low-noise microphone signal
amplifiers must cope with a wide range of demands. Tim McCormick discusses suitable devices and circuit topologies, and describes a practical

Microphone amplifiers must be capable of dealing with a great varicty of situations, but when looking at design it perhaps makes sense to consider the worst possible case first. Lowest outputs of all microphones are experienced with the ribbon mic and, as a result, these demand not only considerable amplification but also excellent common mode rejection (CMR) so that outside interference picked up by microphone lines is efficiently rejected.
In a typical classical recording session, a ribbon mic will deliver about lmV down a balanced line of perhaps 50 m in length, from a source impedance of 200Ω. So units designed to amplify the signal up to line level without adding significant noise should comfortably be able to handle higher output mics and closer working distances through variable gain. This allows optimising of output levels and overload margins.

Sources of noise

Noise in a dynamic microphone comes from thermal excitation of the charge carriers in the resistive elements - the coil, ribbon, transformer and windings.
A standard 200Ω output impedance is low enough for up to 100 m of screened (ic capacitive) cable to be driven without loss of signal below $20,000 \mathrm{~Hz}$. At the same time the level is high enough to allow the microphone designer to use sufficient windings on the voice coil and/or a sufficient step-up ratio in the microphone transformer to achieve a useful voltage output.

The absolute noise level emerging from a 200Ω source is about 256 nV at room temperature in a 20 kHz bandwidth. A microphone's "equivalent self noise" relates volage output level to absolute noise level, for a standard SPL of $94 \mathrm{~dB}-\mathrm{a}$ decent-quality ribbon mic like the Beyer M1.30 gives 1 mV from a 200Ω
source in a 94 dB sound field.
lts signal to noise ratio is therefore $20 \log (1 \mathrm{mV} / 0.0000256 \mathrm{mV}) \approx 72 \mathrm{~dB}$ and its equiv alent self noise level is obtained by subtracting this from 94, giving a figure 22 dB . That means that in complete silence the mic will deliver a noise output equivalent to what it would produce if 22 dB of sound were present.
But this is not quite the whole story. A level of 22 dB is very quict indced, a quiet living room being around 35 dB or so. Unfortunately microphone (and electronic) noise tends to be "hissy", and so is more noticeable than the simple dB level suggests.
Capacitor microphones have considerably larger absolute noise outputs than ribbons. But output levels are correspondingly higher; so resulting S / N ratio tends to be around 76 dB or better with an equivalent self noise being around 18 dB , A-weighted.
A-weighting the above-quoted 22 dB for the M1.30 improves it by a couple of dB, but very low noise microphone amplifiers are mandatory for the ribbon if noise level is not to become unacceptable.

Microphone self noise values in the low twenties are on the borderline of acceptability for recording speech and the quieter types of classical music. So the equivalent input noise of a microphone amplifier needs to be as low as possible (input noise $=$ output noise + gain).

For example, output noise from a "noiseless" amplifier would simply be that due to the amplified source noise. The standard source resistance is 200Ω and output noise is related to the standard line level of () $\mathrm{dBu}=775 \mathrm{mV}$, to give the dB ratio.
The equivalent input noise of a noiseless amplifier terminated with a 200Ω source is -129.6 dBu . obtained by expressing the 775 mV line level, and the 256 nV noise level of the source, as a dB ratio: $20 \log (775 \mathrm{mV} /$ $0.000256 \mathrm{mV}) \approx 129.6 \mathrm{~dB}$. If the amplifier has a gain of 60 dB , then its output signal to noise ratio is $129.6-60=69.6 \mathrm{~dB}$, about the same as a cassette deck with Dolby C. or good FM sterco.

Good professional microphone amplifiers achieve -128 dBu , the theoretical maximum being -129.6 dBu .

But care is needed when comparing specs: three factors in particular must be borne in mind: 20 kHz bandwidth unweighted (watch for smaller bandwidths and weighting flattering the figure): 200Ω source (some companies now quote for a $150 \Omega 2$ source which is quieter); and a reference level of $0 \mathrm{dBu}=775 \mathrm{mV}$ (some quote for $0 \mathrm{dBV}=1000 \mathrm{mV}$, which again flatters the result).

Choosing components

One or two manufacturers are using the Analoguc Devices AD845 IC as a microphone amplifier, capable of a genuine -129 dBu equivalent input noise - given the right circuit design. But a discrete design does have the advantage of freedom of choice in parameters such as maximum available gain without compromising noise.
We need to choose a transistor with the lonest possible noise bearing in mind that the principal noise generator is the base spreading resistance. t_{b}-b. This is a "real" resistance which exists between the base lead of the transistor and the actual base inside the transistor itself. As a noise source. it appears in series with the microphone or otler device feeding it producing. in effect. a higher source impedance and therefore higher noise.
Occasionally you can persuade semiconductor mannufacturers to admit that $\mathrm{r}_{\mathrm{b}} \mathrm{-h}$ exists. but l've never been able to extract actual values. (Table 1 gives a list, ohtained by measuring at least five samples of each in a test circuit).
The trend is that PNPs have a consistently lower r_{b-b} - the "low noise audio" $B C / 1 / 1$ is in fact one of the noisiest.
$B C \not 6 /$ was designed as a high-voltage driver transistor in a T039 package, but turns out to be just what is required if its relatively low input impedance due to its low $\mathrm{h}_{\text {FI: }}$ (and high collector current) can be handed.
Professional 200Ω microphones like to work into an impedance of around lkse or greater. so the $B C+61$ is suitable and there are no messy paralled arrays to worry about in achicving low noise. A pair of $B C 46 / \mathrm{s}$ in a differential configuration adds $40 \Omega 2$ to the $200 \Omega 2$ source resistance, indicating that an equivalent input noise of -129 dBu is possible. only 0.6 dB noisier than theoretical perfection.
For a given source resistance, if the transistor is to deliver minimum noise. there is an optimum collector current: $I_{C}=\sqrt{h_{F E}} / 4(1) R$, The relationship tends to break dow when 1_{c} 's of greater than about min for the $B C+6 /$ are used. The value of 0.84 mA was found to be suitable for the circuil design while not compromising noise performance.

Circuit topology

Having chosen the transistors and their operating points, the circuit topology must be con-
Table 1. List of various $r_{b^{\prime}-b}$, obtained by measuring at least five samples of each in a test circuit.

NPN	rb'-b	PNP
BC108	300	
BC104, BC168	250	
BC107	170	BC213L
BC547	150	
	140	
	100	BCY71, BC557,
		BC179
	85	BC212L, BC213B
	70	BCY70
BD131	65	2N4403
BD139, BC441	40	2N4402
	30	BD140
	20	BC461, BC143

Fig. 1. The long tailed pair is popular for differentia! or "balanced" signals.
sidered. The long tailed pair is popular for differemtial or "balanced" signals (Fig. 1) and is the basis of the instrumentation IC. The constant current source feeding the transistor emitters sets collector currents and improves common mode rejection since one tramsistor can only conduct more current if the other transistor conducts correspondingly less current. Simuttimeously altering the current tlowing through both requires that the current flowing through the constant curent source must also ehange. By detinition. the latter will not allow this so the two transistors are prevented from responding to an exactly-similar input signal and CMR is excellent.

Careful matching of the pair is essemtial as is a carefully optimised current source, and though IC fabrication achieves this comfortably. in a discrete design it is not so casy. A particular transistor likes to sente m to its own value of collector current, the value depending on its exact base-mitter quiesent volage and design of the circuit. Thermal tracking betueen two discrete transistors is poor unless both are mathed and thermally coupled in some way A constant current source tends to impose itselt on the transistors, so after developing and using such circuits for a time I
decided to abandon the technique, fearing that the transistors were not finding their true operating points despite careful matching.

CMR without the current source proved to be fine - providing that transistors were carefully matched and that the impedance of each input leg could be adjusted and made exactly cqual.
Figure 2 shows the basic input topology. Tr and $T_{r_{2}}$ are the input long tailed pair.

Assume gain is set to maximum, and R_{3} and R_{+}are in effect a parallel pair, shared by both transistors. T_{3} and $T r_{+}$adt as $D C$ servos for $T r_{l}$ and $T_{r_{2}}$ respectively, but do not appear in the audio path. C_{l} and C_{2} prevent any AC leedback.
In every discrete balanced microphone amplifier that I have seen the long-tailed-pair works directly into a differential IC or similar arrangement, and their emitters call not be directly coupled. Fig. 3. But remove C_{1} and replace it with a wire link and each transistor now shares the same resistor path to +1 ce. Proper DC biasing will not he set up due to the inevitable differences in thermal conditions between T_{i} and $T r$. Fach transistor needs to lind its own operating point. Even a constant current source can not guarantee equal current through both devices in a discrete design and we have thermal instability.
C_{1}. a large-value electrolytic capacitor, is imserled to prevent this. It has no DC bias across it, is arbitrarily oriented, and is in the local feedback path.
Furthermore, at full gain its high impedance at low frequencies causes feedback, and attenuation of the low frequencies. The way round the attenuation is usually to insert a resistor of
Fig. 2 Basic input topology. Tr_{1} and $T r_{2}$ are the input long tailed pair and R_{3} and R_{4} are in effect a parallel pair, shared by both transistors. Tr_{3} and Tr_{4} act as $D \dot{C}$ servos for $T r_{1}$ and $T r_{2}$ respectively. C_{1} and C_{2} prevent any AC feedback.

Fig. 3. In discrete balanced microphone amplifiers the long-tailed-pair works directly into a differential IC or similar arrangement, and emitters cannot be directly coupled. Remove C_{1} and replace it with a wire link and each transistor now shares the same resistor path to $+V c c$.
around 47Ω or more in serics with the capacitor to swamp its LF impedance. But this gencrates noise and compromises performance. The effect on sound quality of this uncharged large-value capacitor can be demonstrated by inserting one in series with the gain-control in the final design: clarity of the circuit is reduced. $T_{r_{3}}$ and $T_{r_{+}}$in Fig. 2 provide independent biasing for the long-tailed pair, and a capacitor is not necessary.

When gain is at maximum the combined noise from R_{3} and R_{+}is amplified equally by $T r_{l}$ and $T_{r_{2}}$, and so cancels out at $/ C_{3}$'s dif-

Fig. 4. Test circuit for the BC461
ferential input. As a result there is no "emitter degradation" noise, and the only significant noise is from the 200Ω source itself, plus a litthe from $T r_{l}$ and $T r_{2}$. These are sel to give almost all of the gain in the circuit, so the signal level is high at the collectors and noise from R_{i}, R_{2} and the ICs is rendered insignificant.
The gain of $T r_{j}$ and $T r_{2}$ is given by $40 \mathrm{R}_{\mathrm{L}} \mathrm{I}_{C}$ $=40 \times 30 \mathrm{k} \times\left(0.84 \times 10^{-3}\right)=1008$ though in practice it is a little lower.
Reducing the gain by adding resistance between the emitters of Tr_{l} and Tr_{2}, gives

Fig. 5. Test circuit for the 2 N 4402 .
local feedbach and is a source of noise because its thermal noise output appears in mutually opposite phase to the two transistors, so is summed, not cancelled, at $/ C_{3}$.

Practical design

In the practical design, putting a 24()Ω resistor here - giving 3 dB of noise degradation of a 20082 source plus input transistors - brings about a 12 dB reduction in gain. Output noise falls much more rapidly through gain reduction than it rises due to emitter degradation. At high gain settings, where noise would cause most problems. emitter degradation is minimum.
Complete lack of negative feetback at full gain means the circuit gives relatively high distortion, but it is almost purely second harmonic, and subjectively innocuous. At the full 60 dB gain setting. and with a 2 mV input giving 2 V of output. distortion is about 0.08% across the audio band, reducing to 0.015% below the 50 dB gain setting.
Subjectively assessing the circuit at full gain with a $60 d B$ attenuator placed at the input with the whole unit in a tape loop. I found it difficult to tell when it was in circuit and when it was not.

For a stereo unit. all four input transistors need to be carefully matched, as do all lour servo transistors. Figure 4 shows a test circuit for the $B C+(6)$ and Fig. 5 for the $2 N+t(0) 2$. Measurements of I_{B} produced four matching specimens of each from samples of about thirty of each. I_{B} of the $B C+6 /$ s was $6.8 \mu \mathrm{~A}$, with $3.8 \mu \mathrm{~A}$ for the $2 N 4+() 2$. The latter could be replaced by alternatives such as $B C Y 71$. $B C 179 \mathrm{ec}$.

Table 2. Wafer resistor values to achieve gain steps of $2 d B$ across a $40 d B$ range.

Target gain dB	Measured gain		added resistance
60	L	R	
58	60.98	60.98	0
56	59.04	59.1	20
54	57.04	57.1	27
52	55.1	55.16	33
50	53.0	53.03	47
48	51.0	51.04	56
46	49.1	49.16	68
44	47.2	47.3	82
42	45.1	45.2	120
40	43.05	43.2	150
38	41.1	41.26	180
36	39.3	39.4	220
34	37.1	37.24	330
32	35.16	35.3	390
30	33.2	33.4	470
28	31.15	31.3	680
26	29.2	29.36	820
24	27.3	27.5	1 k
22	25.2	25.4	1 k 5
20	22.98	23.18	2 k 2
	20.96	21.18	2 k 7

The practical circuit. Fig. 6, has provision for phantom power. The $5 k$ preset leading from the emitter of Tr : is trimmed, with the gain wafer disconnected, to give zero voltage gradient across the emitters of $T_{1} 1$ and $T_{r_{2}}$. matching their operating points. Ih preset trims input impedances to sharpen up CMRR in conjunction with the 5 h preset at $/ C_{3}$

Good common mode rejection is most needed at high audio frequencies and maximum
gain. so a loh Hz signal of about 500 mV is applied to both input legs in phase, with a full gatin setting. The two presets are adjusted to give negligible output, and greater than 80 dB CMR can easily be achieved.
Some capacitor mics (for example some AK (is) draw a lot of current, producing large voltage drops across $R_{/} / R_{2}$. C_{1} and C_{2} can then be reverse-polarised. so need to be nonpolar. C_{3} and C_{6} give protection against RF^{*} interference. The idea behind using $/ C$, and $/ C_{2}$ is to provide a very light load for the collectors of T_{i} and T_{2}. Also , the impedances of the $+v e$ and -ve inputs of $/ C_{3}$ are different in nature. and are best fed by $/ C_{I}$ ard C_{2} rather than the tramsistors.
DC offiset at the unbalaneed output is dealt with by C_{y} and C_{10}. correctly DC biased by R_{22}. The balanced output circuit is configured so that grounding the -ve output to feed an unbalanced input automatically causes the voltage of the +ve outpul to double. preserving full output voltage.
IC_{1} and IC_{2} are $T L_{0} 072 \mathrm{~s}$, of fering very high input impedances and having an easy load to drive. ICs 3, 4, 5 and 6 are duall NE5532s which are unity gain stable and can deliver +20 dBu into 6000 . The resistors at the outputs of the ICs protect them from instability when driving capacitive loads.
Table 2 gives wafer resistor values to achieve gain steps of 2 dB across a 40 dB range. Measured values for both shamels are

Comparing sensitivities

Microphones are low output devices; in the recording of classical music signals from them can be expected to be in the millivolt range.
Mic sensitivity is often specified in $\mathrm{mV} / \mu B$. One $\mu \mathrm{B}$ (microbar) is equivalent to 74 dB SPL, and fairly loud speech at a distance of one metre gives a good idea of what this level means in practice. Capacitor microphones deliver around ImV of output for this SPL, and so an electrical gain of $x 775$ or $\approx 58 \mathrm{~dB}$ will be required from a microphone amplifier to raise the signal up to the standare OdBu "line" level of 775 mV .
Moving coil and ribbon microphones give output levels as much as 20 dB lower, so correspondingly greater amplification is needed.
given, together with each successive resistor value along the wafer. The totit resistance at the 20 dB setting is just over Il . A 10 k reverse log pot is too inaceurate for good channel matching and fine control.

Impressive gain match between channels throughout the whole $f(0 \mathrm{~dB}$ range was achieved using matched transistors as described. 1% resistors throughout. and no further tweaking. The large +78 V rail endows the cireuit with impressive overload margins, and permits very large R_{7} / R_{s} values for to allow a 40 dB gain range without resorting to global feedback

Many Radio Amateurs and SWL's are puzzled. Just what are all those strange signals you can hear but not identify on the Short Wave Bands? A few of them such as CW, RTTY, Packet and Amtor you'll know - but what about the many other signals?

Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading etc., but then there is CODE3 from Hoka Electronics! It's up to you to make the choice - but it will be easy once you know more about Code3. Code3 works on any IBM-compatible computer with MS-DOS 2.0 or later and having at least 640k of RAM. The Code3 hardware includes a digital FSK Convertor unit with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code3 is the most sophisticated decoder available and the best news of all is that it only costs $£ 299$!

- Morse - Manual/Auto speed follow. On screen WPM indicator RTTV/Baudot/Murray/TTA2/CCITT2 plus all bit inversions - Sitor - CCIR 625/476-4, ARO SBRS/CBRS FEC, NAVTEX et - AX25 Packet with selective callaign monitoring, 300 Baud - Facsimile, all RPM/IOC (up to 16 shades at 1024×768 pixels) - Autospec - Mk's I and II with all known interleaves DUP-ARO Artrac - 125 Baud Simplex ARO - Twinplex - 100 Baud F7BC Simplex ARO
- ASCII - CCITT 5, variable character lengths/parity
- ARO6-90/98 - 200 Baud Simplex ARO
- SI-ARO/ARQ-S - ARO 1000 simplex - SWED-ARQ/ARQ-SWE - CCIR 518 varian - ARO-E/ARQ100C Duplex
- ARO-N - ARQ1000 Duplex variant - ARQ-E3 - CCIR 519 variant
- POL-ARO - 100 baud Duplex ARO
- TDM242/ARC-242 - CCIR 242 with 1/2/4 channels
- TDM342/ARO-M2/4 - CCIR $342-2$ with $1 / 2 / 4$ channels

FEC-A - FEC 100A/FEC101

- FEC-S - FEC1000 Simplex
- Press DPA - 300 Baud ASCII F7BC
- Wirtschaftdienst - 300 Baud ASCI F7BC

Wirtschaftdienst - 300 Baud ASCII F

- Sports info. - 300 Baud ASCI
- Sitor RAW - (Normal Sitor but
without synchronisation)
F7BBN - 2 channel FDM RTTY

All the above modes are preset with the most commonly seen baudrate setting and number of channels which can be easily changed at will whilst decoding. Multi-channel systems display ALL channels on screen at the same time. Split screen with one window continually displaying channel control signal status e.g. Idle Alpnas/Beta/RQ's etc., along with all system parameter settings e.g. Unshift on space, Shift on Space, multiple carriage returns inhibit, auto receiver drift compensation, printer on, system sub-mode. Any transmitted error correction information is used to minimise received errors. Baudot and Sitor both react correctly to third shift signals (e.g. Cyrillic) to generate ungarbled text unlike some other decoders which get 'stuck' in figures mode! Six Options are currently available extra to the above standard specification as follows: 1) Oscilloscope. Displays frequency against time. Split screen storage/real time. Great for tuning and analysis. £29. 2) Piccolo Mk 6. British multi-tone system that only we can decode with a PCI £59. 3) Ascii Storage. Save to disc anv decoded ascii text for later processing. £29. 4) Coquelet - French multitone system, again only on offer from Hoka! £59. 5) 4 Special ARQ and FEC systems i.e. TORG-10/11, ROU-FEC/RUM-FEC, HC-ARQ (ICRC) and HNG-FEC. £69. 6) Auto-classification. Why not let the PC tell YOU what the keying system is? $£ 59$.

NEW VERSION 4.00 JUST RELEASED - Now with improved user interface and even more features!
Please add $£ 5$ to the above prices for Carriage by fully insured First Class postal delivery (default mode).
Call or write for our comprehensive information leaflet - there is just not enough room here to tell you everything about Code3!
Professional users - please ask about our new CODE30 DSP unit available soon! (Piccolo down to - 12 dB S/N!!) Prices start from $£ 1250$

REGULARS

LETIERS

Distorted truth

Malcolm Hawksford seems to have lost the plot with his comments (Letters, $E W+W W$, March 91) regarding my artide "Distorting power supplies' ($E W+W W$, December 90). Having since obtained copies of his refs I and 9 (ref 2 proving more elusive) I acknowledge that Prof Cherry's article also begins with an identification of the half wave rectified supply currents, and their harmonic analysis - which can be found in any elementary text on Fourier analysis - my only reference for the article.

From this fundamental point on, our directions diverge. My aim was to expose the emphasis on the generated harmonics arising from inductive supply impedance. Also, upon injection into the amplifier proper through its declining, at typically 6 dB /octave, high frequency PSRR, significant levels of generated harmonics can result in response to a pure tone sinewave input. This can act to mask the spatial and timbral detail in a complex audio design.
Far from being "Distorted History," this (along with poor layout and lead stress induced proximity interactions) is probably THE most important mechanism responsible for the anomalous behaviour of many "audiophile" class AB power amplifiers. The approach has led to absurd overbuilding of power supplies, continued use of class A - despite the ready availability of high speed devices such as mosfets - and use of fully regulated power suppliers at great size, weight and cost penalty
Flick through the pages of any of the "authoritative" audio publications to witness a "golden eared" reviewer drooling over some vastly over-built power supply as though it were a design attribute rather than the naive, resourcewasteful band-aid that it is. Commercial examples abound of power amplifiers designed with little or no regard for PSRR, being operated with massively over-built power supplies and/or a high level of class A operation to retrieve some sonic virtues. Invariably such ampifiers sound "hard" once the class A to class B threshold is
exceeded as the fundamental problem re-emerges - poor design. Such amplifiers also miss out on the advantages of dynamic head-room present in designs with "soft" supplies which better provide for the dynanic/transient demands of music.

The trend towards DC-coupled power amplifiers has exacerbated the problem as the servo chips used are often poorly decoupled derivatives of the main supplies and have rather poor and wide tolerance PSRR as they have more likely been selected on input impedance criteria so that a long RC time constant can be achieved. Their output is usually fed directly to the amplifier input through an appropriate resistor rather than subjected to any level of output filtering.

Virtually all audio lC op amps operate a class AB output stage and tests performed on 14 popular types showed THD on the supplies of between $2 \%(A D 845)$ and around 40% (LF356, OP77, LT/ 1057) at only 1 mA output. Some of the most popular chips, often used as D-to-A interface and filter chips are not even specified for PSRR vs f, so it is not difficult to see why budget CD has such a "detached" sound, and supply improvements and premium chips are a popular and effective tweak.

Malcolm Hawksford's suggestion that any power supply induced distortion appears/disappears as a common mode signal on the outputs of a bridged amplifier sharing a common supply is certainly true - in theory.

However I doubt he is recommending the doubled complexity, and cost, as a commercially viable fix.

In practice, every commercially available bridgeable amplifier I have auditioned has a noticeably "heavier" and "darker" sound, lacking in detail in comparison with its normal operation in single ended stereo mode. This can be attributed to the fact that most are configured as in Fig. 6 of my original article.

Both channels do not share all the inductive components of supply wiring as a result of the need for physical separation for best performance in stereo mode. The heavier loading of (say) 8Ω bridging, acts to double supply

ALL our own idea

In February's EDN Design Spotlight (EW + WW, Feb. 1992), Ian Hickman expresses'surprise at the idea of an amplitude-locked loop (ALL). In fact to our knowledge, the idea was first conceived by AM Pettigrew and further developed by AM Pettigrew and TJ Moir in 1989 The diagram shows a simplified ALL consisting of a linear multiplier, precision modulus detector and integrator. (Note the difference between this circuit and the one published in the feature).

The ALL is a high bandwidth servo system and is the perfect dual of the phase-locked loop (PLL): In place of the VCO in a PLL is the linear ${ }_{2}$ multiplier and in place of the phase detector is the modulus detector.

For a carrier based signal $\mathrm{V}_{\mathrm{in}}(\mathrm{t})$ at the multiplier input with amplitude z. variations, two outputs are generated by the ALL. The signal $\mathrm{V}_{l}(\mathrm{t})$ is the ${ }_{2}$ recovered carrier with amplitude variation removed. 4

Signal $1+V_{2}(t)$ is the reciprocal of the envelope of $V_{i n}(t)$. The circuit - has numerous applications when used in assorciation with other circuitry. In particular the theory and application of a noise cancellation system for FM transmission has been developed ${ }^{1}$. The noise cancellation system gives up to 6 dB in threshold extension at low carrier to noise ratios.

Other applications include the application to DSSC and AM *
demodulation. Patents were filed in January 1990^{2}

T J Moir and A M Pettigrew

Renfrewshire.

1. AM Pettigrew and TJ Moir. "Reduction of the FM threshold effect by inbañ "noise cancelling". Electronics Letters, 6th June 1991, Vol 27, No 12, pp. 1082-1084. 4. Amplitude Locked Loop Circuits, British patent application No. PCT91/00101, Ampsys Ltd.

currents and exacerbate output stage distortions - the main source of distortion in most power amplifiers. This is particularly so under the low impedance and reactive loading of many modern esoteric loudspeakers.

Finally, comparison of high feedback vs low feedback was considered beyond the scope of the article. But I might add that the use of global (and nested) feedback is a useful tool for suppressing injection following the input stage. It should not be discounted when compared with the complexities necessary to isolate each and every stage of a low feedback multi-stage design, and is
very effective in addressing output stage nonlinearity.
The analysis, in the appendix of Maicolm Hawksford's own ref 3, was unable to establish a case for low feedback, except to suggest that as R_{g} tends to infinity, the distortion is processed completely by the feedback loop

While I would never suggest that such injected distortion be permitted to dominate the open loop nonlinearity of the amplifier, the argument is flawed and I suggest Malcolm Hawksford considers the situation where R_{g} is instead a capacitor and the dominant pole of the nested loop in a high feedback

Low Cost Programming - from Stag

ORBIT: Palm Top Programmer - £595

Orbit is an advanced battery/portable programmer incorporating all of the features usually found in expensive 'desk-bound' programmers.
Careful attention to detail has resulted in a compact and portable unit which is also fast and easy to use.

Features:

- Totally portable, battery/mains powered programmer
- Programs EPROMs to 32 -pins and to 4 Mbit, EEPROMs and FLASH
- Optionally programs 40 -pin EPROMs (16-bit) and 'Intel style' micros
- Small enough to be hand held - only $236 \mathrm{~mm} \times 145 \mathrm{~mm} \times 56 \mathrm{~mm}-$ weighs only 0.85 kg
- Fast programming - uses latest algorithms
- Approved by major silicon vendors including Intel and Texas Instruments
- Integral EPROM emulator - can be connected directly to target system to speed up development
- Powerful on-board data editor
- Tactile rubber hexadecimal, cursor and function keys
- 2 line $\times 40$ character LCD for data and 'soft keys'
- NOW 2 MBITS AS STANDARD

Communications:

- Serial port to 19 K 2 and parallel port supports label printing
\square Remote control as standard
\square Supports 16 popular interface formats including Motorola S-record, TekHex, binary, DEC binary, Intel hex and Hex ASCII
Power Supply
- Optional mains operation from supplied adaptor/charger unit: available for 110 or 240 volts
\square Up to 35 hours use from one charge (edit mode)
\square Fast boost charge in just 3 hours - with safety cut-off
」 User defined shut-down to conserve power
L Low-power detect with auto shut-down to protect valuable data
- Operating parameters and data stored in RAM at power-down for immediate auto-recall

STRATOS 2: PC-based Programmer - $£ 295$

SE2T: EPROM Eraser - £195

- A PCTM based programmer for 24 to 32-pin DIP EPROMs to 4 Mbit \& FLASH
$\square 8,16$ and 32 -bit programming modes
- Supports more than 250 devices from 26 of the World's major silicon vendors
\square High-speed manufacturers' algorithms are used to make Stratos 2 one of the World's fastest EPROM programmers

- Dedicated interface card and

PC, XT, AT ${ }^{T M}$ or compatible; PC-DOS/MS-DOSTM2.0 or later; floppy drive; hard disk; 512 K bytes or more of RAM; one spare half or full expansion slot; any nonitor.
connecting cable provide rapid data
intercharge and leave valuable ports
intercharge and leave valuable ports free for printer, mouse, etc
\square Menu driven software included for ease of operation. Provides user prompts and online help
\square System requirements:

- Low profile styling - robust construction
- Preset electronic timer to provide correct erasure period
- Removable device carrier allows rapid 'tube to tube' handling and permits erasure of devices on boards
\square Fully shielded and safety interlocked to prevent accidental exposure to U-V light

amplifier.
Such is the approach I took in the design of the Australian-made Eidetic GB2b power amplifier with over 90dB of (nested) loop NFB at 10 kHz and acclaimed for its outstanding sonic performance, achieved very cost-effectively.
Greg Ball
Coolangatta
Australia

Disabled system design

Your Comment on ergonomics of design - or rather the lack of it ("For humans... by design," February) was of particular interest to me, as harmonising electronic systems really matters in my lield of aids for disabled people.

My interest in this field was sparked off by seeing. some years ago, a Possum communicator in use in a special school for spastic childen. It was so clumsy and ineffective that I became angry, and resolved to do something better

Now older and wiser, I realise that the sociology of such aids is important. An aid that is really useful for a spastic child may seem troublesome and expensive to carers. Designs must be aimed at a particular client group and at a particular set of interests. But the trouble is that, in general, it is the carers of disabled people who buy equipment. Any new aid also has to find its niche in the market for aids already in use by disabled people who may themselves have a fear of new technology.

In fact new technology is not universally welcome, and I feel that too many manufacturers in my field are interested in gimmicks rather than addressing the real problems.
Alan Campbell
Newcastle

I am a Zambian and a holder of a certificate in information technology and programming, and wish to pursue further studies in computing at Buckingham University, beginning January 1993. I have been offered a place on the two year degree programme in computer science with business studies but cannot bear the costs myself.

Efforts to secure financial aid from local and international agencies have all been to no avail, and no university offers computer science here

Can the readers of $E W+W W$ help me find a way to continue my studies?
Jerome Ghabuka Kawesha
PO Box 71596
Ndola
Zambia

A mathematician challenges

$E W+W W$ readers may be interested in this resistor puzzle, which I discovered during a study of cyclic resistor networks - at the very least, the puzzle demonstrates what an engineer working in mathematics makes of resistors.

On my desktop stands an arrangement of approximately 1000 resistors, assembled in a diamond lattice. In the infinite resistor network shown, all resistors are equal and have value R . Try to answer the following questions:
Question 1: What resistance, R_{7}, do you measure between the two points marked with an x and how do you ustify your answer. (The question is easy to answer and no mathematics is needed.) Question 2: What resistance, R_{2}, do you measure between the two points marked with a black square and how do you justify your answer (A harder question to answer and you will probably need some
mathematics.)
Martin Ohsmann
Lehrstuhl If.
Mathematik
Germany
No prizes for guessing, but
if you want a copy of Martin
Ohsmann's full solutions send an
SAE to: Lorraine Spindler, EW + WW,
L333, Quadrant House, The Quadrant, Sutton Surrey SM2 5AS.

Class struggle

Unlike the classification system for blood groups, the $A / A B / B$ label applied to amplifier topologies would appear to have outlived its usefulness, judging from the regular trickle of letters on this point. Different push-pull topologies running with non-zero standing currents behave differently on being called to deliver load current - as any seasoned amplifier designer will have discovered.
To use a single classification which ignores the internal transfer function of the amplifier, let alone the relationship between the static current and the load resistance (if the load is even resistive) leads to the perpetuation of much of the misleading "wisdom" abounding in the popular audio press.
If we agree that class A amplifiers are those where the load current is insignificant, and class B amplifiers are those where the standing current is insignificant, then presumably class AB encompasses the rest.

I would hazard a guess that nearly every sensible commercial amplifier fatls into this last category. considering the typical current dynamic range requirement in a modern audio system.

Proliferation of "non-switching" techniques - of which the work by Blomley was an early and valuable example - only serves to make the labelling problem harder.

The generalised non-switching amplifier has an "idle side"
behaviour with current flowing in the half of the output stage not delivering current ino the load. This has a functional relationship with the load current, and output voltage if desired, which can be controlled by the designer. Countless variations are possible, allowing considerable control over such parameters as variation of device bandwidth, total dissipation, and output stage linearity as a function of load conditions.

I have never built an amplifier to Blomley's designs, but my own research into non-switching techniques has produced production amplifiers with highly satisfactory open loop linearity figures and no trace of typical class change transfer function slope anomalies - all with quiescent currents considered routine by modern mosfet standards. The work has never been published because in my youth I felt that there might be some money to be made from it!
I have no doubt that most designers from time to time come up with a circuit design which they consider patentable. But $E W+$ WW's correspondence files must be littered with letters squabbling about who invented what first.
Doug Self is undoubtedly correct when he observes thal the patenting of the Blomley circuit effectively killed it off. Not an evolutionarily successful strategy, then!

Kendall Castor-Perry

Beckenham
Kent

Digital disk alternative

In your Comment on interactive video (Learning from the future March 1992) you refer throughout to CD-I. But this is just one manufacturer`s product. Everything you say - including the comments on current software - applies equally to CDTV, and there will surely be other interactive disk formats from other companies, such as Apple.

There is no reason why interactive software should be confined to optical disks. It is only a software data structure and you could prepare a very neat interactive lecture on organic chemistry (for example) on a 20Mbyte magnetic floppy disk. such as are now available. The mastering costs would be much lower, and a college lecturer could prepare the material with any of dozens of available authoring programs on his or her own hard disk.

I do not own shares in
Commodore, nor do I own a CDTV.
But I am puzzled as to how you have seemingly been brainwashed by Philips into thinking that their unavailable product is the only one on the market.
Even the normally accurate Barry Fox (Shooting hots up in the video wars. pp. 201-204) has forgotten that digital video disks have been on sale for nearly a year now in CDTV format.
Don Cox
Don Cox Computer Productions Cleveland

Early radar love

Thank you for the delightful
"Birthday challenge" (December 1991 EW + WW, p. 1021). I realise I am too late to enter the contest but I have published on this subject before: in the November 1989 issue of The Old Timers Bulletin of the (US) Antique Wireless Association, as well as editing an early radar newsletter from time to time. called RadarHist.

I would like to extend thanks to you and Rod Burman of Pascall for conceiving and executing this slice of electronic history.
I would also like to correspond with anyone interested in early radar.

Don Helgeson

RadarHist News Letter
9200 Bennet
Evanston
Illinois 60203
USA

COLOURIET 182 COLOUR INK JET PRINTER

Compatible with:IBM pc
Archimedes
Nimbus
BBC Micro
Amiga
Apple Mac (serial version)

LOW COST

LIST PRICE from 8579 + VAT

EMULATES OTHER COLOUR PRINTERS EG. IBM 3852, Canon PJ1080A, Quadjet PRINTS OVERHEAD TRANSPARENCIES

EDUCATIONAL DISCOUNTS AVALIABLE
INTEGREX LTD., CHURCH GRESLEY, SWADLINCOTE
DERBYS. DE11 9PT
Tel (0283) 551551
Fax (0283) 550325
T/x 341727 INTEGX

INTERFACING WITH C

by
HOWARD HUTCHINGS
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2 AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614. A disk containing all the example listings used in this book is available at $£ 25.50$ + VAT. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C ?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

REGULARS

Car electronics with Super E-line

F-line and Super E-line Iransistors from EZetex are designed to handle higher temperatures at higher power dissipations than similar types in TO92, TO237 and $T O 220$ metal housings, even when the latter are provided with heat sinks. The Zetex devices are in silicone plastic, coping well with the $85^{\circ} \mathrm{C}$ interior and up to $120^{\circ} \mathrm{C}$ under-bonnet temperatures in a car. Junction temperatures up to $200^{\circ} \mathrm{C}$ are allowed.
In Application Note AN78, Zetex describes the trials and tribulations encountered by the average transistor carning its living in the hostile surroundings of a car. Reversed-battery connection, transients caused by load dumps and battery disconnection up to 500 V or lower voltages at up to 50 joule, mistreatment during maintenance and short-circuits caused by cleaning connectors with a screwdriver are all part of the torture.
Figure 1 shows two ways of protecting a lamp-driver against a reversed battery. With no protection, current would flow through the collector/base junction and into the control IC, leaving devastation in its path. The diode in series with the supply is one solution which works well at the expense of a perhaps inconvenient 0.7 V diode drop. To avoid this, the diode across the transistor shorts fault current to ground with no drop, but may possibly interlere with transient protection.
Several types of transient can appear in a car, needing different countermeasures. To overcome the 80 V load-dump transient, caused by battery disconnection while the alternator is charging, one can either use a transistor that will handle the 80 V or use a clamp; Figure 2 shows the clamp. This allows the use of a low-voltage transistor,

Fig. 1. Two ways of preventing a back-connected battery blowing up the control logic.

Fig.2. Parallel zener clamps 80 V load-dump transient. The other way is to use a highvoltage transistor.

Fig.3. As a protection against shorts, this circuit imposes a current limit. The zener provides a clamp against transients.

APPLICATIONS

but the zener clamp has to take a current that is several times higher than in normal use, so is mainly used in low-current drivers. The high-voltage transistor option eliminates the need for a clamp for the 80 V transient, but since 500 V transients do appear. some type of clamp is still needed, albcit of much lower power since these high-voltage transients are of relatively low encrgy.
To protect the transistor against accidental shorts (the screwdriver in the socket). the circuit in Fig. 3 imposes a current limit for a short time.

It is pointed out in the application note that lamps and relays can take up to 1 A surge, so that the control IC, which uses low-current mos or cmos, must drive either an interface or high-gain transistors. Zetex says its mosfets, such as the ZVN4206, and darlingtons will replace the $2 T X 449$ in Fig. 2 to allow the use of low-current logic. Figure 4 shows ZTX600 darlingtons driving a fourphase stepper motor directly from a cmos microprocessor.

Zetex plc, Fields New Road, Chadderton, Oldham OL9 8NP. Telephone 061527 5476.

Fig.4. Low-current cmos logic driving a fourphase stepper via $Z T X 600$ high-gain darlingtons.

Accurate gain switching

$t \mathrm{t}$ is convenient to use an analogue multiplexer to switch the gain of an instrumentation amplifier to accommodate varying signals. The multiplexer allows gain settings to be selected digitally. In ordinary use, the arrangement provides mediocre gain accuracy, since the on resistance R_{ON} of the multiplexer is added to the value of the gain-setting resistor.
On resistances can vary between 50Ω and $5 \mathrm{k} \Omega$, even the lower value being enough to cause trouble.
Burr-Brown's INA/20 instrumentation amplifier does not suffer from this particular problem. This diagram, taken from the B-B Applications Newsletter Vol 2 no 1, shows that gain-sense connections preserve accuracy when gain-switching circuitry is being used, internal gain-set and feedback resistors always being in series with no parasitic resistance in the loop. Multiplexer

| GAIN | SELECT CODE
 A1 | | AO |
| :---: | :---: | :---: | :---: | | MEASURED GAIN |
| :---: |
| ERROR (\%) |

resistance is in series with the INAI20 high-impedance inputs and does not affect gain. The table shows the gain for a given input code; gain error will not exceed 1% over a full range of temperatures.
Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hertfordshire WD1 8YX. Telephone 923 33837.

IGBT audio amplifier

Insulated-gate bipolar transistors occupy a - niche between bipolar and mosfet power transistors in that the on resistance is smaller than in mosfets and the transition frequency is higher than in bipolars. They have not yet made much of a mark in audio output stages. the mosfet being the "in" device, but Toshiba's Application Note X3504 gives full details of amplifier design using these devices.

To be fair, there is one drawback which is simple to avoid. In the design of IGBTs, an n-p-n parasitic transistor is formed. shown dotted in Fig. 1, which will cause latch-up if the collector current of the p-n-p bipolar output is allowed to exceed a given value.

If there is enough current through the pbase, the n-p-n transistor can be forwardbiased and, with the p-n-p device, become a

Fig. 1. Effective structure of insulated-gate bipolar transistor (IGBI) and its symbol.
Parasitic transistor shown dotted can cause latch-up without protection circuit.
permanently conducting thyristor. A solution is the input n-p-n connection shown in Fig. 2, where the n-p-n base lurns on if lGBT current exceeds a set amount and limits current to 16 A pk , in case shown. The $G T 20 D 101$ is rated at 20 A .
Toshiba's application note presents circuits by John Linsley Hood, in which bipolar. mos and insulated-gate bipolar transistors are used to give 40-80W at less than 0.05% THD. It is pointed out that, apart from the latch-up already mentioned, IGBTs are more robust than bipolars and not susceptible to the gate/source breakdown found in mosfets. Higher peah currents from IGBTs are of help when driving speakers with low impedance in parts of the audio band, since the need for secondary breakdown protection in bipolars and the fairly low current from mosfets can cause clipping.
Figure 3 is the circuit of a $40-80 \mathrm{~W}$ amplifier using lGBTs. The note gives an analysis of the circuit design and a

Fig.2. l.atch-up protection. Input n-p-n transistor turns on if output current exceeds set limit.
suggested printed-board pattern. Performance on a square-wave signal at 10 kHz into a $2 \mu \mathrm{~F}$ load is shown in Fig. 4 .

Toshiba Electronics (UK) Ltd, Riverside Way, Camberley, Surrey GU15 3YA. Telepione 0276694600 .

Fig.4. Square-wave outpuf at 10 kHz into $8 \mu \mathrm{~F}$ load.

THE INVERTED WORLD OF GYRATORS

There is a weath of material available for the design of passive LC filters. In theory these have lower sensitivity to component variations than do the active filter elements. Thus, if the inductors in in LC filter are replaced with gyrator circuits, the insensitivity to component changes in LC coupled filters may not be affected. so long as the gyrator model chosen adds no dissipative elements to the LC filter circuit.
Methods have been developed for the implementation of LC filters using active filter circuits like the biquad, state-variable or universal active filters. All of these approaches involve using the state equations to describe a second order transfer function. Higher order filters synthesised by using a cascade of bi-quadratic filter sections are sensitive to changes in the component variations in the bi-quadratic filter stages ${ }^{1}$.

One innovative method adopted by designers to reduce the effect of component variation is the so-called leap frog design approach. This synthesises the LC filter directly from the state variable equations developed for the particular LC filter requirements.

The implementation is normally accomplished with integrators, summing amplifiers or analogue computers. Such filter implementations normally have the same low sensitivity to component variations as the corresponding LC passive filter. However, the leap frog circuit can become very complex for high order filters ${ }^{1}$.

Operational amplifier gyrator circuits have been extensively described in the literature ${ }^{2.3}$. These gyrator circuit models can be used to simulate inductors when properly terminated. However, some of the gyrator models suffer from certain drawbacks such as instability, poor control of loss, sensitivity to component matching and complex circuit configuration that limits their practicality.
This paper describes a preferred gyrator

> Dr C O Anazia shows how gyrator circuit components can mimic tunable inductorless analogue filters derived from their LC passive counterparts.

circuit for simulating inductors and shows how it can be used in designing active filters from their LC passive filter prototypes. The preferred realisation tends to maintain the strong points of LC filter sections, unlike the componentsin active filter design.

Gyrator circuit models.

Many forms of gyrator circuits are available in the literature ${ }^{1,3.4}$. Some of these circuit models have one. two or even three operational amplifiers in the circuit realisation. Fig. 1 shows three versions of a gyrator realisation, using operational amplifiers'. ${ }^{4}$.

Looking at node I of Fig. 1a, the input impedance can be derived as shown in equations 1-3.

At noode I:
$I_{1}=\frac{1}{R_{1}}\left(V_{1}-V_{3}\right)$
At node 2:
$\frac{\left(R_{2}+R_{3}\right) V_{1}}{R_{2} R_{3}}-\frac{V_{2}}{R_{2}}-\frac{V_{3}}{R_{3}}=0$
A1 node 3:
$\frac{V_{1}}{R_{4}}+S C\left(V_{1}-V_{2}\right)=0$

(b)

(c)

Fig. 1. Three realisations of a gyrator circuit using an op amp.

Solving equations 1,2 and 310 get the input impedance, we have:
$Z_{\text {II }}=\frac{V_{1}}{I_{1}}=\frac{R_{1} R_{2} R_{4} S C}{R_{3}}$ where S is the complex frequency
The input impedance of the preferred gyra-
tor realisation shown in Fig. 1b can be derived in a similar manner (see equations 4-8).

Hence, at node 1 :
$\mathrm{I}_{1}=\frac{V_{1}-V_{2}}{R_{1}} \quad \ldots 4$
At node 2:
$\frac{\left(R_{2}+R_{3}\right) V_{1}}{R_{2} R_{4}}-\left(\frac{V_{2}}{R_{2}}\right)-\left(\frac{V_{3}}{R_{3}}\right)=0 \quad \ldots 5$
At node 3:
$V_{1}\left(1+\mathrm{SCR}_{4}\right)-V_{2} \mathrm{SCR}_{4}=0 \quad \ldots 6$
Substituting [6] into [5], we have:
$\frac{V_{2}}{R_{2}}=\frac{V_{1}\left(R_{2}+R_{3}\right)}{R_{2} R_{3}}-\frac{V\left(1+\mathrm{SCR}_{4}\right)}{\mathrm{SCR}_{3} \mathrm{R}_{4}}$
$V_{2}=\frac{V_{1}\left(R_{2}+R_{3}\right)}{R_{3}}-\frac{V_{1} R_{2}\left(1+\mathrm{SCR}_{4}\right)}{\mathrm{SCR}_{7} \mathrm{R}_{4}}$
Substiuting [7] into |4] to get:
$I_{1} R_{1}=V_{1}\left(\frac{R_{2}}{\mathrm{SCR}_{3} \mathrm{R}_{4}}\right)$
gives
$Z_{\text {in }}=\frac{V_{1}}{I_{1}}=\frac{S C R_{1} R_{3} R_{4}}{R_{2}} \ldots 8$
The input impedance for the case of Fig. 1c has been shown ${ }^{4}$ to be:
$Z_{\text {in }}=S C_{1} R_{l} R_{2}$, provided that $R_{2} « R_{2}$ and $C_{1}>C_{2}>C_{3}$.

Unity gain operation amplifiers which are also stable may be good enough.

Gyrators for grounded/floating inductors In LC filter synthesis, inductors appear either floating or grounded. Grounded inductors can be simulated easily using the models of Fig. 1, particularly the preferred gyrator model of Fig. 1b. However, simulation of floating inductors requires two of each of the gyrator circuit models of Fig. 1 to be connected back-to-back ${ }^{5}$.
In any case, for back-to-back configuration to yield stable results, the effective inductances of the two simulated inductors must be exactly equal, otherwise any unbalance would appear as a positive inductance to ground ${ }^{5}$. In practice, this requirement is not easy to achieve and may be impossible.

Alternatively. simulation of floating inductors can be achieved in another way. The realisation of Fig. 1b is preferred since it can easily be redrawn as shown in Fig. 2.

Fig. 2 FDNR circuit model realised by substituting a capacitor for R_{1} in Fig. 1 b and by interchanging the component locations of C and R_{3}.

This is obtained simply by replacing $R /$ with a capacitor and by interchanging the component locations of C and R_{3} in Fig Ib.

The input impedance of Fig. 2 can be obtained from equation 8 . That is, making the following substitution in equation 8 :

$$
\begin{align*}
& \text { We let } R_{1}=\frac{1}{C_{1} S} ; R_{2}=R_{1}: R_{4}=R_{3} ; R_{7}=\frac{1}{C_{2} S} \\
& \text { and } \frac{1}{S C}=R_{2} \\
& \text { then } Z_{\mathrm{m}}=\frac{R_{3}}{S^{2} R_{1} R_{2} C_{1} C_{2}} \ldots 9 \mathrm{a} \\
& \text { If we let } S=j w \\
& \text { then } Z_{\text {in }}=-\frac{R_{3}}{W^{2} R_{1} R_{2} C_{1} C_{2}} \quad \ldots 9 \mathrm{~b}
\end{align*}
$$

Equation 9b has the same characteristics as the impedance function, the so-called fre-quency-dependent negative resistance (FDNR). This has been derived in the literature ${ }^{[2.0 \mid}$ using other forms of gyrator circuit models for inductance simulation.

It follows that floating inductors can be simulated by employing the circuit of Fig. 2. This means that, in order to implement floating inductors in a passive LC filter realisation, we would first divide the impedance functions of all the filter elements by S, the complex variable, and then replace all the elements that have $/ / S_{2}$ factor terms with Fig. 2.

Hence, resistors transform to capacitors. inductors to resistors and the circuit diagram of Fig. 2 replaces the capacitors. We can then state that grounded inductors can be simulated using Fig. 1b, which can be modified easily to simulate floating inductors.

Applying preferred gyrator circuit model Two filter prototypes have been used to illustrate the procedure for simulating inductors. In one case, grounded inductors are predominant in the passive filter prototype employed; in another case, floating inductors predominate. It is assumed that a passive filter already exists to meet the design requirements.

Bandpass filter

An analogue bandpass filter, applicable to telephone channels, is to be designed. The specification for such a coupled resonator filter, shown in Fig. 3, are as follows:

Fig. 3 Prototype of a coupled resonator bandpass filter.

Midband gain	$=G d B$
The high cutoff frequency	$=f_{H} H z$
The low cutoff frequency	$=f_{L} H z$
The passband ripple	$=\alpha d B$
The input terminating resistor	$=r_{1} \Omega$
The output terminating resistor	$=r_{2} \Omega$

From the literature ${ }^{7}$ we can deduce a number of expressions, necessary for calculating the design parameters (see box):
$u_{o}^{\prime}=\frac{f_{s}}{f_{i}}$ where
$f_{\text {, }}$, the geometric centre frequency $=\left(f_{H} f_{L}\right)^{\frac{1}{2}} \mathrm{~Hz}$
f_{c}, the bandwidth at the cut-off frequencies $=\left(f_{H}-f_{t}\right) \mathrm{Hz}$.
Let $r=\frac{r_{1}}{r_{2}}$
$h=\frac{1}{10^{\alpha / 21}} \ldots 10 \mathrm{a}$
$k=2\left(1-h^{2}\right)^{\frac{1}{2}} \quad \ldots 10 \mathrm{~b}$
$p=\left[\frac{n^{2}+k n+1}{n(2-k)}\right]^{\frac{1}{2}} \quad \ldots 10 \mathrm{c}$
$A=\left[k\left(1+p^{2}\right)\right]^{\frac{1}{2}} \quad \ldots 10 \mathrm{~d}$
Then $G=20 \log \left[\frac{1}{n^{\frac{1}{2}}} \frac{p}{1+p^{2}}\right] \quad \ldots 10 \mathrm{e}$

From the procedure available in the literature ${ }^{7}$, the design parameters in Fig. 3 can now be determined (see equations 11-16).

$$
\begin{array}{ll}
\text { Thus } r_{1}=n r_{2} & \ldots 11 \\
C_{1}=\frac{w_{0} A}{w_{1} r_{1} n^{\frac{1}{2}}} & \ldots 12 \\
C_{2}=\frac{w_{0} A}{w_{3} r_{2} n^{\frac{1}{2}}} & \ldots 13 \\
L_{1}=\frac{n^{\frac{1}{2}} r_{2}}{\left(r_{1} w_{1}^{2} n^{\frac{1}{2}} r_{2}-w_{1} P\right.} & \ldots 14 \\
L_{2}=\frac{\left(r_{1} r_{2}\right)^{\frac{1}{2}}}{u_{1} P} & \ldots 15 \\
L_{3}=\frac{\left(r_{1} r_{2}\right)^{\frac{1}{2}}}{C_{2} w_{1}^{2} n^{\frac{1}{2}} r_{2}-w_{5}^{\prime} P} & \ldots 16
\end{array}
$$

The Pi-network of inductors in Fig. 3 can be realised with two gyrator models of Fig. 1b. This realisation is shown in Fig. 4. For optimum gyrator performance, the amplifiers should be closely matched. Quad-type packaged amplifiers may be used so as to maintain the same amplifier environmental characternstics. Design parameters in Fig. 4 can be obtained by using the results derived earlier for Fig. 1b.

In particular, if $r_{l}=r_{2}$, all the capacitors in Fig. 4 may be assigned a convenient value (see equations $17 \mathrm{a}-18 \mathrm{c}$).

$$
C_{3}=C_{2}=C_{3}=C_{4}=C
$$

Hence, using equation 13:

$$
c=\frac{w_{0} A}{w_{r} r_{2}} \quad \ldots 17 \mathrm{~b}
$$

From equation 8 , derived using Fig 1 b .
$L_{1}=\frac{C R_{1} R_{3} R_{4}}{R_{2}} \quad \ldots 17 \mathrm{c}$
Hence, $R_{4}=\frac{R_{2} L_{1}}{C R_{1} R_{3}} \quad \ldots 18 \mathrm{a}$
If we chose $R_{1}=R_{2}=R_{3}=R$
then $R_{4}=\frac{L_{1}}{C R}$
...18b
The value of R should be large enough to minimise amplifier loading. Similarly:

$$
R_{\mathrm{r}}=\frac{L_{3} R_{\mathrm{g}}}{C R_{7} R_{y}}
$$

R_{5} in Fig. 4 is a coupling resistor and can be chosen to be of a variable resistance so as to be tuned to balance the amplifier sectors. Since the coupling in the circuit of Fig. 3 is a function of ratio $L_{2} / L_{1}, R_{5}$ can be varied such that

$$
\frac{R_{5}}{R_{4}}=\frac{L_{2}}{L_{1}}
$$

Then, using equation 18 b , the order of magnitude of R_{5} can be established.

Thus

$$
R_{5}=\frac{L_{2}}{C R}
$$

It may be equally desirable to make $R_{/}$a variable resistor, in which case R_{I} is chosen so that $R_{l} \pi R$. Tuning the filter to achieve resonance at the design centre frequency can be achieved by tuning R_{l}. Determination of the design parameters in Fig. 4 is now complete.

Passive low-pass filter

Figure 5 is a 5 -stage Tchebycheff low-pass filter prototype. This prototype has a cut-off frequency, a terminating resistance and passband ripple characteristics. The component values have been chosen so that the filter would have a cut-off frequency of 1 Hz , a terminating resistance of 1Ω and a reflection coefficient of 20%, corresponding to a passband ripple of 0.177 dB .
To convert the normalised parameter values of Fig. 5 to their actual values, we simply multiply all the capacitors by

$$
\frac{1}{R_{C}^{w}}
$$

and the inductors by

$$
\frac{R}{w_{i}}
$$

where R in Ohms is the terminating resistance, and w_{c} in rad/s is the cut-off frequency ${ }^{8}$.

It is obvious from Fig. 5 that the inductors are floating; as such the simulation of the inductors can be accomplished by using the gyrator circuit model of Fig. 2. The resultant realisation is shown in Fig. 6a and the symbolic representation is shown in Fig. 6b. Here, all the inductors are now resistors, the terminating resistor becomes a capacitor and

Fig. 4 Gyrator realisation of bandpass filter from Fig. 1 b .
the capacitors are FDNRs, designated G_{l} and G_{2}. Note that we obtain Fig. 6 by dividing the impedance functions of all the elements of Fig. 5 by the complex frequency variable S and then replace all the
$\frac{1}{S^{2}}$
terms with the FDNR of Fig. 2.
The transfer function of the passive filter in Fig. 5 can easily be derived (see equations 20a to 20g).

$$
H(s)=\frac{V_{a}}{V_{1}}=\frac{S C_{1}}{S_{v_{0}}^{\gamma_{0}}+S_{1_{4}}^{5}+S_{v_{1}}^{4}+S_{v_{1}}^{3}+S_{v_{2}}^{2}+S y_{1}} .2
$$

where

$$
\begin{aligned}
& y_{6}=L_{1} C_{1}^{2} \frac{\left(C_{2} L_{2} L_{3}\right)}{R} \quad \ldots 20 \mathrm{~b} \\
& y_{5}=c_{1}^{2} c_{2} L_{1} L_{2} \quad \ldots 20 \mathrm{c} \\
& y_{4}=\left[L_{1} C_{1}\left(C_{1} L_{3}+C_{1} L_{2}+C_{2} L_{3}\right)+C_{1} C_{2} L_{2} L_{3}\right] / R \\
& y_{3}=C_{1}\left[L_{1}\left(C_{1}+C_{2}\right)+C_{2} L_{2}\right] \quad \ldots 20 \mathrm{e} \\
& y_{2}=C_{1} \frac{\left(L_{1}+L_{2}+L_{3}\right)}{R} \ldots 20 \mathrm{f} \\
& y_{1}=C_{1} \quad \ldots 20 \mathrm{~g}
\end{aligned}
$$

In deriving the transfer function for Fig.
6 , equations 21 a to 21 c can be written.

$$
\begin{aligned}
& V_{t}=f_{1} R_{1}+G_{1}\left(f_{1}-f_{2}\right) \ldots 21 \mathrm{a} \\
& f_{1}=\frac{f_{2}\left(G_{1}+R_{2}\right)+G_{2}\left(f_{2}-V_{v}^{w}\right)}{G_{1}} \ldots 21 \mathrm{~b} \\
& f_{2}=\frac{V_{a}\left[1+s c\left(G_{2}+R_{3}\right)\right]}{G_{2}} \quad \ldots 21 \mathrm{c}
\end{aligned}
$$

The expressions for G_{l} and G_{2} are of the form shown in equation 9 . Using the subscripts in Fig. 6, we obtain:

$$
\begin{align*}
G_{1} & =\frac{R_{6}}{S^{2} R_{4} R_{5} C_{1} C_{2}} \\
G_{2} & =\frac{R_{7}}{S^{2} R_{8} R_{y} C_{3} C_{4}}
\end{align*}
$$

$$
\ldots 22 a
$$

Fig. 5 Prototype of a five-stage lowpass Tchebycheff filter. The circuit's inductors are floating.

Fig. 6. Gyrator circuit model derived from the circuit of Fig. 2. Fig.6a is the realisation that results; fig. $6 b$ is the symbolic representation.

Substituting equation 22 into equation 21 , we obtain, after some computation, the expression for the transfer function as follows:

$$
\begin{align*}
& H(s)=\frac{K}{S^{5} y_{\mathrm{n}}+S^{4} y_{4}+S^{3} y_{4}+S^{2} y_{3}+S_{y_{2}}+K} \quad \ldots 23 \mathrm{a} \\
& \text { where } y_{6}=R_{1} R_{2} R_{3} \quad \ldots 23 \mathrm{~b} \\
& y_{5}=R_{1} R_{2} \ldots 23 \mathrm{c} \\
& y_{4}=\frac{C R_{3} R_{6}\left(R_{1}+R_{2}\right)}{y}+\frac{C R_{1} R_{7}\left(R_{2}+R_{3}\right)}{y_{1}} \quad \ldots 23 \mathrm{~d} \\
& y_{7}=\frac{R_{6}\left(R_{4}+R_{2}\right)}{y}+\frac{R_{\mathrm{i}} R_{7}}{y_{1}} \quad \ldots 23 \mathrm{e} \\
& y_{2}=\frac{C R_{6} R_{7}}{y_{7}}\left(R_{1}+R_{2}+R_{3}\right) \quad \ldots 23 \mathrm{f} \\
& y_{1}=R_{\mathrm{x}} R_{4} C_{3} C_{4} \quad \ldots 23 \mathrm{~g} \\
& y=R_{4} R_{5} C_{1} C_{2} \\
& k=\frac{R_{6} R_{7}}{Y_{y_{1}}} \ldots 23 \mathrm{i}
\end{align*}
$$

Simulation

Computer simulation runs were carried out on the passive filter in Fig. 5 and the gyrator implementation of Fig. 6. For the computer simulation of Fig. 6, we choose

$$
C_{1}=C_{2}=C_{3}=C_{4}=C=0.01 \mu \mathrm{~F} .
$$

If the component values in Fig. 5 have been normalised to the desired cut-off frequency and terminating resistance, then we can define the FDNR-gyrator impedance values
G_{1}^{*} and G_{2}^{*}
Thus
G_{1}^{*} and G_{2}^{*}
represent FDNR impedance values obtained by multiplying the normalised capacitance values in Fig. 5 by the chosen value in the gyrator model. The normalised inductance values in Fig. 5 are equally divided by the chosen valuc of capacitance, which for this simulation is $0.01 \mu \mathrm{~F}$.
Since

$$
G_{1}^{*}=G_{2}^{*}
$$

we may choose
$\mathrm{R} 4=\mathrm{R} 5=\mathrm{R} 8=\mathrm{R} 9=1.5 \mathrm{k} \Omega$
Then the following resistance values in Fig. 6 can be related thus:

$$
\begin{aligned}
& R_{t}=\frac{y}{G_{1}^{*}} \quad \ldots 24 \mathrm{a} \\
& R_{7}=\frac{y_{1}}{G_{2}^{*}} \quad \ldots 24 \mathrm{~b}
\end{aligned}
$$

where y and $y_{/}$are defined in equation 23.
In general, gyrator resistance R_{\neq}is chosen equal to R_{5}. These gyrator resistances are chosen so that their values are much less than the specified input impedance of the operational amplifiers employed. Resistances R_{8} and R_{9} are similarly chosen. Also the gyrator capacitance values are chosen so as to provide high input impedance as derived in equation 9 at all frequencies of interest.
Figures 7 and 8 show (respectively) the magnitude and the phase performance char-
acteristics that result from the simulation of the two filter circuits of Fig. 5 and 6 , taking 15 kHz as the cut-off frequency. Here, cutoff frequency is the terminal frequency of the ripple channel and the conventional 3 dB cut-off point. The results are seen to agree favourably. In fact, their differences have been exaggerated somewhat for clarity. Table 1 shows the extent of similarity between the simulated prototype filter and the gyrator model for a cut-off frequency of 150 kHz . The passband ripple obtained is 0.1774153 dB as opposed to the assumed value of 0.177 dB .

It is important to note that varying the gyrator resistances by about 20% docs not significantly affect the results. This means that the resistors used in the gyrator circuit model can have wider tolerances. Hence, resistors are less worrisome which could be a useful feature for an integrated circuit fabrication of the gyrator circuit model.

The same statement cannot be made for the capacitors in the gyrator circuit, however. It is observed during the computer simulation runs that a $5-10 \%$ change in the capacitor value changes the characteristic of the realised gyrator filter model compared with the prototype filter when the gyrator capacitance is changed by 5%.
Electrostatic capacitors are generally regarded as "true" pasive components. This means that to maintain the capacitors' tolerance range of the capacitors used in the gyrator realisation, clectrostatic capacitors (eg, ceramic), which exhibit low temperature coefficients, are preferable to electrolytic capacitors. Hence, the capacitors used in the gyrator circuit model should have low percentage tolerance in addition to having low temperature coefficient behaviour.

Circuit sensitivity to capacitance variation can be reduced by other means. For example, a resistor may be selected that has temperature coefficient equal, but opposite in sign, to that of the capacitor, so that the RC product exhibits a temperature coefficient that is approximately zero.

References

1. Sedra, A.S and Espinoza, I.L.. Sensitivity and Frequency Limitations of Biquadratic Active Filters, IEEE Trans. Circuits and Systems, Vol CAS-22. No.2. Feb 1975. pp.122-130.
2. Antonian, A and Naidu, K.S., Mocteling of a gyrator circuit, IEEE Trans.Circuit Theory, Vol CT-20. No.5. Sept 1973, pp.553-540.
3. Bruton. L.T.RC-active Circuits: Theory and Design. Prentice-Hall First Edition. 1980. Chapter 9.
4. Technical Staff, Spectal Functions Data beok. National Semiconductor Corporation. Sunnyvale, California, c.1981, pp.14-114-123.
5. Moni, R.S. Rao and Reddy, Analysis of aHigh Quantity Gyratur filter, IEEE Trans. on Circuits and Systems. Vol.CAS-28. No.4. April 1981, pp. 352-5.
6. Massara, R.E. and Al-Najjar, A.R., FDNR realisation of ali-pole low pass filter. IEE Proc.Vol. 128 No.4. August 1981, pp.195-7.

Fig. 7. Magnitude characteristics and Fig. 8 (below) phase characteristics, of a simulated filter derived from the simulation of the circuits in figs. 5 and 6.15 kHz has been taken as the cut-off frequency.

Fig. 9. Phase characteristics of the gyrator filter model compared with the prototype filter when capacitance is changed by 5%.
7. Orchard. H.J. and Sheahan. D.F.Inductorless Bandpass Filters. IEEE J.Solid-State Circuits. Vol SC-5, June 1970, pp.108-118.
8.Hansell. G.E. Filtor Design and Evaluation. Van Nostrand Reinhold Co.2nd ed.. Chapler 2.

ACK ISSUES

BACK ISSUES BACK IS:

If you calissec out on back
Issyos of Elcceromics
World they are availaible
for 32050 each UIK

Most of the 1001 liscues
aमe out of scock So
phone Kathy Lambart
0816523139
avainabity
of the fissue is ount of
BEock we cam supply
phocto-cippies of the
fostuure you reguine

AMSTRAD PORTABLE PC'S FROM 5149 (PPC1512SD). £179 (PPC1512DD) โ179 (PPC1640SD). £209 PSU.

HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each. 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ wooter $2^{\prime \prime}$ mid range and 1 "weeter.1deat o work with the amplifier described above. Pnce per 2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a spare for a microwave oven etc. 250 V AC input. Now only £4.00 ref 4P 157 switches Complete with 4 digit display, digital clock, and 2 relay switches Complete with digit cosplay, digtal clock, and 2 relay Ideal for all sorts of precision timer applications etc. Now only $£ 4.00$ ref 4P151.
FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC Five metre length $£ 7.00$ rel 7P29R
12V SOLAR CELL. 200 mA output ideal for trickle
charging etc. 300 mm square Our price $\{1500 \mathrm{re}$
PASSIVE INFRA-RED MOTION SENSOR
Complete with daylight sensor, adjustable lights
on timer (8 secs -15 mins), 50 range with a 90 deg coverage Manual overide facility. Comdeg coverage Manual overide facility. Com-
plete with wall brackets, bulb hoidersetc Brand new and guaranteed Now only $£ 19.00$ ref 19 P 29
Pack of two PAR38 bulbs for above unit ؟ 12.00 ref 12 P 43 R VIDEO SENDER UNIT Transmit both audio and video signals standard TV set within a 100 rangel (tune TV to a spare channel) $12 v$ DC ap. $£ 15.00$ ret 15P39R Sutable mains adaptor $£ 500$ ref 5P191R
FM TRANSMITTER housed in a standard working 13A adapter (bug is mains driven) $£ 2600$ ref 26 P 2 R MINATURE RADIO TRANSCEIVERS A walkie takies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Compite with cases $£ 30.00$ ref 30 P 12 R
FM CORDLESS MICROPHONE.Small hand held unit with a 500^{\prime} rangel 2 transmit power levels reqs PP3 battery. Tuneable to any FM 12 BAND COMMUNICATIONS RECEIVER. 9 shor bands, FM, AM and LWDX'local switch, tuning 'eye' mains $e \cdot 0$ 플 of battery Complete with shoulder strap and mains lead
NOW ONLY £19.00!! REF 19P14R.
CAR STEREO AND FM RADIOLow cost stereo system giving wow and flutter less than 35%. Neg eath $£ 19.00$ tof 19P30
LOW COST WALIKIE TALKIES.Pair of battery op wo erated units with a range of about 200' Our price $£ 8.00$ a parr ref 8P50R
7 CHANNEL GRAPHIC EQUALIZEPp us a 60 watt power amp! 20-21KHZ 4-8R 12-14VDC negative earth Cased £25 ref 25P14R NICAD BATTERIES. Brand new top qualty $4 \times$ AA's $£ 400$ re 4P44R. $2 \times$ C's $£ 4.00$ ref 4P73R, $4 \times$ D's $£ 9.00$ ref 9P12R, $1 \times$ PP3 TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ulumate equivalents book Latest edition $£ 20.00$ re CABLE
CABLE TIES. $142 \mathrm{~mm} \times 32 \mathrm{~mm}$ white nylon pack of $100 £ 3.00 \mathrm{ref}$ 3P104R Bumper pack of 1,000 tes $£ 1400$ ref 14P6R

NEW 80 PAGE FULL COLOUR LEISURE CATALOGUE 2,500 NEW LINES FREE WITH ORDER ON REQUEST OR SEND £1.00
GEIGER COUNTER KIT.Complete with tube, PCB and all components to build a battery operated geiger counter. $£ 39.00$ ref 39P1R FM BUG KIT. New design with PCB embedded coil. Transmits to any FM radio, $9 v$ battery req'd $£ 5.00$ rel 5P158R FM BUG Bult and tested superior $9 v$ operation $£ 1400$ ref 14 P 3 R
COMPOSITE VIDEO KITS. These COMPOSITE VIDEO KITS. These convert composite video into separate H sync, V sync and video $12 v$ DC 88.00 ref $8 P 39 R$ SINCLAIR C5 MOTORS 12v 29A (tull load) $3300 \mathrm{pmm} 6^{\prime \prime} \times 4^{\prime \prime} 1 / 4$ O/P shatt. New £20.00 ret 20P22R
As above but with fitted 4 to 1 inline reduction box $(800 \mathrm{rpm})$ and toothed nyton be it drive cog $£ 40.00$ ref 40P8R
SINCLAIR C5 WHEELS 13 " or $16^{\prime \prime}$ dia includ
SINCLAIR C5 WHEELS 13 " or 16 " dia including treaded tyre and innertube Wheels are black spoked one plece poly carbonate $13^{\prime \prime}$
wheel $\Sigma 600$ ref 6P20R $16^{\prime \prime}$ wheel $£ 600$ ret 6P21R

ELECTRONIC SPEED CONTROL KITTor $\operatorname{e5}$ motor PCB and ait components to build a speed controller ($0-95 \%$ of speed). Uses
pulse width modulation $£ 1700$ ref 17 P 3 R
SOLAR POWERED NICAD CHARGER.Charges 4

AA nic $6 P 3 R$
 \section*{6 P3R}

12 VOLT BRUSHLESS FAN\& $1 / 2$ " square brand new ideal for boat, car caravan etc. $£ 500$ ref $5 P 206$.
ACORN DATA RECORDER ALF50
ACORN DATA RECORDER ALF503 Made for BBC computer but suitable for others includes mains adapter, leads and book £15 00 re! 15P43R
VIDEO TAPES
VIDEO TAPES. Three hour superior quality tapes made under
Hcence from the famkus JVC company. Pack of 5 tapes New low PHILIPS LASER
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC £ 40.00 REF 40P1OR. MAINS POWER SUPPLY KIT £20.00 REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE E 75.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 wat 220 vbut with a largertransformerit will handle 80 watts Basic kit $£ 12.00$ ref $12 P 17 R$. Larger transformer $\sum 1200$ ref 12P4tR VERO EASI WIRE PROTOTYPING SYSTEMIdeal tor designing projects on etc. Complete with tools, wire and reusable board
New low bargain price only $£ 2.00$ ref $\mathbf{B 2 P 1}$ New low bargain price only $£ 2.00$ ref $\mathrm{B2P} 1$
HIGH RESOLUTION $12^{\prime \prime}$ AMBER MONIT
HIGH RESOLUTION 12 "AMBER MONITOR12v 1.5 A Hercules compatible (TTL input) new and cased $£ 22.00$ ref 22P2R

VGA PAPER WHITE MONO monitors new and cased 240 V AC. 559.00 ref 59P4R
25 WATT STEREO AMPLIFIERC STKO43 With the addition of a handiul of components you can build a 25 watt amplifier $£ 4.00$ ref 4P69R (Cracuit dia included).
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF 1 £4.00 REF 4P92R, PACK OF 100 £ 30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £+.00$ ref BD827R ALARM TRANSMITTERS. No data avaliable tut nicely made complex radio transmutters 9 V operation. $£ 400$ each ref 4 P81R. 12V 19A TRANSFORMER. Ex equipment but othermse ok Our price 82000
GX4000 COMPUTERS. Customer rewrned gates machines complete with plug in game, pysticks and power supply. Retail price is almost $£ 100$ Ours is $£ 1200$ ref B12P1
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a $13 A$ socket in the area to unis consist of a detector that plugs into a $13 A$ sockst in the area to
protect. The recelver plugs into a $13 A$ socket anywhere else on the same supply. Ideal tor protecting garages, sheds etc. Complete same supply. deal for protecting garages, sheds etc. Complete
system $£ 2500$ ref Bz 5 P1 additional detectors $£ 11.00$ ref B11P1 IBM XT KEYBOARDS. Brand new 86 key keyboards $£ 5.00$ ref SP612 IBM AT KEYBOARDSBrand new 86 key keyboards $£ 1500$ ref IBM AT
$15 P 612$
386 MOTHER BOARDS. Customer returned units without a cpu fitted. $£ 2200$ ret A22P1

BSB SATELLITE SYSTEMS BRAND NEW REMOTE CONTROL

 £49.00 REF F49P1286 MOTHER BOARDS. Brand now but custome teturns so may need attention Complete with technical manual $£ 20.00$ ref A20P2 technical manual. ミ49.00 ref A49P1 UNIVERSAL BATTERY CHARCER
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP 3 nicads. Holds up 105 batteries at once. New and cased, mains
operated $£ 6.00$ ret 6 P $36 R$. N CAR POWER SUPPL
IN CAR POWER SUPPLY. Plugs into agar sacket and gives 3,4.5,6,75.9, and $12 v$ outputs at 800 mA . Complete with universal RESISTOR PACK 10×50 v
ReSIS
metal film $£ 500$ ref 5 P1 70 R

MIRACOM WS 4000 MODEMS

V21/23

at COMAND SET

AUTODIAL/AUTOANSWER

FULL SOFTWARE CONTROL
TONE AND PULSE DIALLING

$£ 29$

BM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. £5.00 :ef 5P186R
COPPER CLAD STRIP BOARD 17 " $\times 4^{4}$ of 4 " pitch "vero" board §4.00 a sheet ref 4P62R or 2 sheets for $£ 7.00$ ref 7P22R STRIP BOARD CUTTING TOOL. $£ 2.00$ ef $2 P 352 R$ 50 METRES OF MAINS CABLE $£ 3.002$ core black precut in convenient 2 m iengths ideal for repairs and projects ref 3P91R
4 CORE SCREENED AUDIO CABLE 24 METRES 52.00 Precut into convenient 1.2 m lengths. Ref 29365 F
TWEETERS $21 / 4^{\prime \prime}$ DIA 8 ohm mounted on a smart metal plate for easy fixing $£ 200$ ref 2P366R
COMPUTER MICE Orignally made for Future PC's but can be adapted for other T achines Swiss made $£ 8.00$ ret BP57R. Atari ST conversion kit $£ 200$ ref 2P362R
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Built in tweeter 4 hhm $\hat{5} 500$ ret 5P205R
WINDUP SOLAR POWERED RADIO! FM/AM radio takes rechargeable battenes complete with hand charger and solar panel 14P200R

PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 v input +5@15A,+12@5A,-12@.5A,-5@ 3A. Fully cased with fan, ALARM PIR SENSORS Standard 12 v alarm type sensor will interiace to most aiarm paneis. $£ 1600$ rel 16P200
ALARM PANELS 2 zone cased keypad entry entry exit time delay
BULL ELECTRICAL 250 PORTL AND ROAD HOVE SUSSEX BN3 5QT TELEPHONE 0273203500 MAIL ORDER TERMS: CASHPO OR CHEQUE WITH ORDERPLUS \&3.00 POST PLUS VAT,

PLEASE ALLOW 7 - 10 DAYS FOR OELIVERY
NEXT DAY DELIVERY Ra,00
FAX 027323077
etc. $£ 18.00$ ref 18P200
MODEM'S FOR THREE POUNDS!!
Fully cased UK modems designed for
or info but only $£ 3.00$ ref 3 P145R
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with mic and speaker only E3.00 ref 3P146R
BARGAIN STRIPPERS
Computer keyboards. Loads of switches and components excellent
value at $\xi_{1} 1.00$ ref CD40R
DATA RECORDERS
Customer returned mans battery units built in mic ideal for Compute or general purpose audio use Price is $£ 4,00$ ref 4 P 100 R SPECTRUM JOYSTICK INTERFACE
Plugs into 48 K Spectrum to provide a standard Atan type joystick port Our price $£ 400$ ref 4 P101R
ATARI JOYSTICKS
Ok for use with the above interface. our price $£ 4.00$ ref 49102R BENCH POWER SUPPLIES
Superbly made fully cased (metal) giving 12 v at 2 A plus a 6 V supply Fused and shon arcuit protected. For sale at less than the cost of the case! Our price is $£ 4.00$ raf 4P103R
SPEAKER WIRE
Brown tuin core insulated cable 100 feet for $\mathbf{\Sigma 2 . 0 0}$ REF 2P79R
MAINS FANS
MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\prime \prime}$ complete with mounting plate quite powe fuil and quite. Out price $£ 1.00$ ret CD41R
DISC DRIVES
DISC DRIVES
Customer returned units mixed capacities (up to 1.44M) We have not sorted these so you just get the next one on the shelf. Price is only ET 00 ref 7P1R (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
PROJECT BOX PROJECT BOX
51/2" $\times 31 / 2 " \times 1 "$ black ABS with screw on lid. $£ 1.00$ ref CD43R
SCART TO SCART LEADS SCART TO SCART LEADS
Bargain price leads at 2 to $£ 3.00$ ref 3P147R
SCART TO D TYPE LEADS
Standare Scart on one end. Hi density D type on the other Pack of ten leads only 87.00 ref 7P2R
OZONE FRIENDLY LATEX
250 mibortie of liquid nubber setsin 2 hours. Ideal for mounting PCB's fixing wires etc. $£ 200$ each ref 2P379R
Qulick SHOTS
QUICK SHOTS
Standare: Atari compatible hand controller (same as joysticks) our price is 2^{2} for $£ 2.00$ ref 2P380R
VIEWDATA SYSTEAS
Brand new units made by TANDATA compiete with $1200 / 75$ built in modem intra red remote controlled qwerty keyboazd BT appproved Prestel compatible, Centronics printer port RGB colour and composIte output (works with ordinary television) complete with power supply and futly cased Our price is only $£ 20.00$ ref 20P1R
AC STE:PDOWN CONVERTOR AC STEPDOWN CONVERTOR
Cased units that convert 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2 \mathrm{z}$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our price $£ 2.00$ ref $2 P 381 R$
SPECTRUM + 2 LIGHT GUN PACK
completz with software and instrucions 2800 ref 8P58R/2
CURLY CABLE CURLY CABLE
Exientsors to 6 feet: Dconnector on one end, spade connectors on the cther ideal for joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPITER JOYSTICK BARGAIN
Pack of 2 joysticks only $£ 2.00$ ref 2P382R BUGGING TAPE RECORDER
Smali hand held cassette recorders that only operate when there is sound then wrn off 6 seconds atter so you could leave it in a room all day and just record any thing that was said. Price is $£ 20.00$ ret 20P3R IEC MAINS LEADS
Complere with 13 A plug our price is only $£ 3.00$ for TWO! ref 3 P148R NEW SOLAR ENERGY KIT
Contains 8 solar celis, motor, toots, fan etcplus educational booklet Ideal for the budding enthusiast! Pnce is $£ 12.00$ ref $1292 R$

286 AT PC

286 MGTHER BOARD WITH SAOK RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUP PLY £ 139 REF 139P1 (no io cards or drives included) Some

35MM CAMERAS Customer returned uniis with builh in flash and 28 mm lens 2 for $£ 8.00$ ref $8 P 200$
STEA* ENGINE Standard Mamod 1332
engine =om
ref 30 Pzoo
TALKING CLOCK
LCD displiay, alarm, battery operated Clock will announce the time at the
push a a button and when the
alarm is due The alarm is switchable
HAND VELD TONE DIALLERS
HAND HELD TONE DIALLERS 4 P200R
Small units that are designed to hold over the mouth piece of a telephone to send MF dialling tones. Ideal for the remote control of answer machines 24 MICRODR
COMNODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with cartidge and software 10 times faster than tape machines works with any Commodore 64 setup. The orginal pnce for these was $£ 49.00$ but we can offer them ATAR 2600 GAMES COMPUT
ATAR 2600 CAMES COMPUTER Brand new with joystick and 32 garre cartridge (plugs into TV) $£ 29.00$ ref F29P1 also some with 1 game at E19 00 for
BEER PUMPS Mans operated with fluid detector and elect
timer standard connections Ex equpment: $£ \leqslant 8$ ref F18P1 timer standard connections Ex equipment. £ 88 Col F1881
90 WATT MAINS MOTORS Ex equipment but ok (as fitted to 90 WATT MAINS MOTORS Ex equipment but ok (a
above pump) Good general pupose unit $£ 900$ sef $\mathrm{FgP1}$ HI FI SPEAKER BARGAIN Originally made for TV sets the consist of a 4" 10 watt $4 R$ speaker and a 2" 140 R tweeter If you wan two of aach plus 2 of our crossovers you can have the tot for $£ 500$ ref F5F:2
VIDEO TAPES E180 FIFTY TAPES FOR 570,00 REF F70P1 360K $51 / 4$ "Brand new drives white front $£ 20.00$ Ref F2OP 1

IN SUSSEX? CALL IN AND SEE US!

REGULARS

CIRCUIT IDEAS

Use a printer port for general i/o

Drinter ports on IBM PCs and look-alikes are Centronics paraliel interface standard and can be used to read byte-wide data from an external source.

Fig.1. PC printer port used for external data reads. This 8255 PPI handles data transfer under control of micro.

0378H	output (data port) pins $2-9$
0379H	input five lines (D3-D7) pins 15,13,12,10 and 11
037AH	output four lines (D0-D3) pins 1,14,16 and 17. D4 enables
IRQ7	
037AH	input four lines (D0-D3) bidirectional
0378H	input; pins 2-9 can only read data on data port.

Assuming a base address 0378 H for the set of five ports in the standard. the table gives address and direction.
Input and output lines of 0.37A share the same pins. Output lines of 037A are buffered by open-collector gates and may be kept off by setting 04 on this port. In this condition. these four lines and the five at port 0379 H can be used for the external data, with one line available for direction testing.
Input data is read at two ports and possibly in one 16 -bit read operation. Bits are compiled to organise the input data byte: in some cases inverters are needed. Figure 1 shows an interface using a programmable peripheral interface 8255 controlled by a microprocessor to handle data transfer. The PC tests direction by sensing the ERR line.
Flow charts for both PC and host are at Figs. 2 and 3.

R \sim Misra

Physical Research Laboratory Navrangpura
Ahmedabad India

Diode probe thermometer

I
have based this design on that by
Henderson (Wireless World. June 1981, p.
50) to exploit the low drift and low current needs of the Texas TLC series op-amps. It uses an inexpensive 3.5 -digit. 200 mV display to give a stable $0.1^{\circ} \mathrm{C}$ resolution reading of temperature from $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Op-amps A and B compose a constantcurrent source for the probe, defined by the 8069 bandgap reference and $1.2 \mathrm{k} \Omega 2$ resistor, B also providing the positive meter input by way of the calibration pot. Op-amp C buffers the 0 V rail to the circuit, keeping it at 2.8 V below battery voltage as determine by pin nine of the DPM (if other DPMs are used. this voltage may need to be obtained by other means). Zeroing is via op-amp D.
1 used cermet multi-turn pots and 1% metal-film resistors. If a silicon probe diode is used. the pot chains may need modification. Calibrate the instrument at freezing and boiling points of distilled water: the zero pot adjusts the freezing point reading, to be set first, and then the

Diode probe thermometer with digital readout measures from $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C} 5$
calibration pot for the boiling point.
The diode cathode goes to the probe tip for quick response. A length of thin-walled 3 mm OD tube (an old telescopic aerial)
forms the probe shaft with a length of 36SWG wire soldered inside to pass through the tip with the diode for the cathode connection. The other end takes a 2.5 mm phone jack.
H Maidment
Salisbury
Wiltshire

Power for car audio

Separating signal and power supply grounds in car audio equipment can present a problem, a frequent solution to which is to provide a kind of floating supply by means of a switching PSU. The circuit shown has a true floating output which is used to supply 700 mA at 5 V to a portable CD player.
Voltage feedback from the flyback converter output is taken by way of an opto-coupler, the values of R_{I} and R_{2} being chosen to suit the NEC PS202I device. The BC457 open-collector stage signals power on in the CD player to switch the audio path with no loss of efficiency, since it monitors oscillator duty cycle. Capacitor C_{l} may be increased to work with other toroids at lower frequencies.

A prototype oscillates at $40-65 \mathrm{kHz}$, depending on the load: regulation and stabilisation are better than 5% and efficiency is about 70%.

Paolo Palazzi

Cervignano
Italy

Flyback converter with opto-coupled feedback gives floating power supply for car audio equipment.

Simultaneous insertion and return loss plots

Using an analogue simulator to plot branch currents and node voltages of a network can provide a plot of insertion loss or gain as a function of frequency. To obtain the driving-point impedance and therefore reflection coefficient p and return loss $20 \log \geq \rho \geq$ needs more computation. It is, however, a simple matter to model a return-loss bridge at the relevant port, the bridge acting as a generator to plot insertion loss and return loss at the same time.

Figure 1 shows the model. In this form of Wheatstone bridge, voltage across the horizontal V_{32} is in proportion to the
reflection coefficient relative to R_{o} at Z_{x} : $V_{32}=\left[\left(Z_{x}-R_{o}\right) /\left(Z_{x}+R_{o}\right)\right]\left(V_{o} / 8\right)=$ $\rho V_{o} / 8$.
The network sees the bridge as a voltage source $V_{o} / 2$ and R_{o}, corresponding to the ideal return loss bridge with 6 dB insertion loss. To plot insertion loss, there must be a source of 2 V instead of $V_{o} / 2$, so $V_{o}=4$ and $V_{32}=\rho / 2$. Adding a voltage-gain source with a gain of 2 , feeding it with V_{32} and taking it to an unconnected node gives a voltage equal to ρ; a decibel plot of this node voltage gives return loss.

C J Hall

Giubiasco Switzerland

Slow ramp generator

Ramp times of more than a few seconds have a tendency towards variability of time constant, since the capacitors used are electrolytic and therefore relatively variable. To make a ramp with a period of 16384/clock frequency, when a five-bit resolution is acceptable, use the circuit shown here. All the resistors specified can be had in 1% tolerance to give a linearity to within 1 LSB.

Since the 4020 is a 14 -bit ripple counter, switching glitches are evident and are smoothed by the 10 nF feedback capacitor, which may be larger if required to eliminate the steps in the output. Ramp amplitude is controlled by the $5 \mathrm{k} \Omega$ variable resistor. If you need the ramp to drive a comparator,
you can leave out the amplifier altogether and simply put a smoothing capacitor on the comparator input.
As shown, the output is a negative-going ramp, which may be inverted by using inverted 4020 outputs; and to further exploit the circuit, the counter could be replaced by an up-down counter to give sawteeth or triangles.
A H Millar
Witney
Oxfordshire

Simple circuit to give slow ramps, in cases where an electrolytic timing capacitor would be on the vague side. The 4020 is a 14 -bit updown ripple counter.

Rechargeable battery tester

As a nicad rechargeable battery ages, its capacity decreases and its time to recharge increases. This circuit tests the capacity of a battery.

Fully charged, new $9 \mathrm{~V}, A A A, A A, C$ and D batteries have capacities of $0.1,0.18,0.5$, 2.2 and 4 AH respectively; the switch selects the appropriate resistor to discharge any of these types at the one-hour rate. The 4060 is a 14 -stage binary counter with a
built-in oscillator whose frequency is determined by R_{11} and C_{1}, adjusted so that Q_{17} emits a pulse every 12 minutes to the 4017 decade counter. At the same time, Q_{4} supplies a 1.4 Hz signal to the led D_{2}, which shows that the circuit is in operation. Oscillation is under the control of the battery voltage; if that is higher than 0.9 V , $T r_{I}$ saturates and holds D_{I} off - if it is low enough to cut off $\operatorname{Tr}_{1}, D_{1}$ comes on and

Modelling a return-loss bridge at the relevant port allows plot of insertion loss and, without further computation, returnloss plot simultaneously.

sumbinu smand THE ORIGINAL SURPLUS WONDERLAND!

BBC Model B APM Board

£ 100 CASH FOR THE MOST NOVEL
DEMONSTRATABLE APPLICATION!

BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC omputer at a parts only price. Used as a front end graphics system on large networked systems the architecture of the BBC board has so many similaritles to the regular BBC model B that
we are sure that with a blt of experimentaton and Ingenuity many usetul applications will be found for this boardil It Is suppiled complete with a connector panel which brings all the VO to 'D and BNC type connectors - all you have to do is provide +5 and c's socketed. The Ic's are too numerous to list but inciude a 6502, RAM and an SAA5050 teletext chip. Three 27128 EPROMS contaln the custom operating system on which we have no data, On applcatton of DC power the system boots and provides dlagnostic Informatlon on the video output. On board DIP switches and jumpers select the ECONEI address and enable the four extra EPROM sockets for user software. Appx $\times 10$. VO board 14×3. Suppled tested

Only $£ 29.95_{\text {or }} 2$ for $£ 53_{\text {(8) }}$

MONITORS

MONOCHROME MONITORS

THIS MONTH'S SPECIALI

There has nevar been a deal like this one
Brand spanking new \& boxed monltors from NEC, nomally selling at about $£ 140$ These are over-engineered for ultr rellability. 9^{4} green screen composite Inpu with eiched non-glare screen plus swich
able high/low Impedance Input and outpu tor dalsy-chaining. 3 tront controls and 6 at rear. Standard BNC sockets. Beauttul high contrast screen and attractlve case wit quantity usersi $£ 39.95$ each (D) or 5 for $£ 185$ (G)

CALL FOR DISCOUNTS ON HIGHER QUANTIIES! COLOUR MONTTORS
Decca $16^{n} 80$ budget range colour monitor. Features a PIL tube beautiful teak style case and guaranteed 80 column resolution features usually seen only on colour monitors costing 3 ilme 75Ω composite input with Integral audlo amp \& speaker. Fully lested surplus, sold In 11 tile or hardly used condition with 90 day full RTB guarantee. Ideal tor use with video recorder or ou

20", $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manufacture. PH all solid state colour monitors, complete with composite video \& sound Inputs. Attrac In EXCELLENT little used condition with full 90 day guarantee.
$20^{\prime \prime} \ldots \mathrm{E} 135$ 22"...£155 26"...£185 (F)
CALL FOR PRICING ON NTSC VERSIONSI HI-DEFNITION COLOUR MONITORS Brand new $12^{\prime \prime}$ mutlinput high definition colour monitors by Mlcrovitek. Nice tight $0.31^{\prime \prime}$ dot pitch tor superb clanty and from any 15.625 khz sync RGB video source, with elther Individual $\mathrm{H} \& \mathrm{~V}$ syncs such as CGA IBM PC's or RGB analog
 ch as Atari, Com $12^{\prime \prime}$ square. Free data sheet Including connection Informatio will also function as queet Including connection Information

onit £145

Brand new Centronic 14" monitor for IBM PC and compatbles Mitsubustii 0.42 dot pltch giving 669×507 pixels. Blg 28 Mhz bandwidth A cuper monitor in attractlve style moulded case.Full 90 day guarantee. Only
£129 (E)
NEC CGA IBM-PC compatible. High quality ex-equipment fully ested with a 90 day guarantee. In an attractlve two tone ribbed grey plasilc case measuring $15^{\prime \prime} \mathrm{L} \times 13^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{H}$. A tern
purchase enables us to pass these on at only.... E 79 (E)

V22 1200 BAUD MODEMS

Master Systems $2 / 12$ microprocessor controlled V22 tull duplex
1200 baud modem. Fully BT approved unit, provides standare 1200 baud modem. Fully BT approved unit, provides standard phone bill and connect tme by a slaggening 75% Ultra sllm 45 mm high. Full teatured with LED status Indicators and remote error diagnostics. Sync or Async use; speech or data switching; built In 240 v malns supply and 2 wire connection to BT. Units are In used but good condition. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask fo and at this pricell

IBMKEYBOARD DEALS

replacement or backup keyboard, switchable for IBM PC C-X 4 keard layout M Absolutely standard. Brand new \& boxed with manual and key template for user slogans on the function keys. Attractlve beige,grey and cream finish, with the usual retractable legs underneath. A generous length of curly cord, terminating in the tandard 5 pin DIN plug. A beautitul clean plece of manufac turers surplus. What a deall
E39 (B) $5 / \Sigma 175$ (D) Brand new and boxed 84 key PC/XT type keyboards in standard BM grey with very attractive mottled finish and "clicky" solld fee keys. 10 function keys on side. Englshlayout and $£$ sgn. Green
LEDs for Caps, Scroll $\&$ Num locks. \quad E29.95 (B) $5 / \mathrm{E} 135$ (D) CALL FOR DISCOUNTS ON HIGHER QUANHIIES!

FLOPPY DISK DRIVES BARGANS GALORE !

NEW 51/4 Inch from E29.95I

Massive purchases of standard $51 / 4$ drives enables us to present prime product at indusiry beating low pricesl All units (unless stated) are removed from often brand new equlpmen and are fully tested,algned and shipped to you with a 90 day guarantee and operate from $+5 \&+12 \mathrm{vdc}$, and accept the standard 34 way connector.
TANDON TMIO0-2A IBM compatible DS TANDON TMH100-2A IBM compatible DS E39.95(C CANON, TEC etc.DS half helght.State 40 or 80T $\begin{aligned} & \text { E79.00(C) } \\ & \text { TEAC FD-55-F. } 40-80 \text { DS hatf helght. BRAND NEW }\end{aligned}$ ع79.00(C) TEAC FD-55-F.40-80 DS haff helght. BRAND NEW E79.00(C)
TEAC FD-55 halt holgt series In your
TEAC FD-s hail helght senes in your cholce of 40 track double slded 360 k or 80 track double sided 720k. Ex-equlpment fully tested In excellent condition with 90 day warranty.
Order TE-36 for 360 k E 29.95 (C) or TE-72 for 720 K E 39.95 (C)

CHOOSE YOUR 8 INCH
Shugart 800/801 SS returbished \& tested
Shugart 851 double sided refurbshed switchable
hard or soft sectors- BRAND NEW
SPECAAL OFFERSI!

Dual $8^{\prime \prime}$ drives with 2 megab ye capadity housed in a

with built In power supplyl Only £499.00 (F)
End of line purchase scoop! Brand new NEC D2246 8" 85 megabyte of hard disk storagel Full CPU comtrol and Industry standard SMD Interface. Uitra hi sperd transfer and acoess time leaves the good old ST506 Interface standing. In mirt condition
AFFORDABLE 10 Mb WINCHESTERS
A fantastic deal - 10 mb (formatted) Wnchester for £39.95 hard dive on your present driver card or as a starter Into Winchester land - see the driver card lisled below. In excellent used conditlon, guaranteed for 90 days
.. 539.95 (C

Hard disk driver card, complete with cables ready to plug into your PC or compatble. Supports two Winchesters......E29.95(A

No Break Uninterruptable PSU's
Brand new and boxed 230 volts uninterruptable power supplies rom Densel. Model MUK 0565-AUAF is 6.5 kva and MUD 1085-AHBH Is 1 kva. Both have sealed lead acid batteries. MUK are Internal, MUD has them In a matching case. Times from Interrupt are 5 and 15 minutes respectively. Complete with full

RECHARGEABLE BATTERIES LEAD ACID
Maintenance free seated long life. Type A300. 12 volts 12 volts 3 amphours
$\mathbf{E} 13.95(\mathrm{~A})$ 6 volts 6 volts 3 amp/hours
12 volts Centre tapped 1.8 amp hours. RFE. E $5.95(\mathrm{~A})$ 12 volts 12 volts 38 amp hours. $7-1 / 2^{\prime \prime} \mathrm{L} \times 6^{\circ} \mathrm{S}$. RFE $£ 35.00(\mathrm{~B}$ EXTRA HI-CAPACITY NICKEL CADMIUM

 banks of 10 cells per readily avallable Potassium Hydroxide. In measures $8^{\prime \prime} \mathrm{H} \times 1.75^{\circ} \mathrm{L} \times 4^{\prime \prime} \mathrm{D}$. Can be easily separated. Idea or all standby power applications. Ex MoD, like new..E49.95 (E) STVNE SPECIAL INTEREST Newton Derby frequency changer 3 phase 50 hz to 3 phase 400 hz .15 kva outpu1. As new. Trio 0-18 vde bench PSU. 30 amps. New Fujltsu M3041 600 LPMDEC LS/02 CPU boand
Rhode \& Schwarz SBUF TV test transmitter 25-1000mhz. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter Thuriby LA 160 B logic analyse
1.5 kw 115 v 60 hz power source

Tektronix R140 NTSC TV test signal standard. Sony KTX 1000 Videotex system - brand new ADDS 2020 VDU terminals - brand new
Sekonic SD 150H 18 channel Hybrid recorcer
Trend 1-9-1 Data transmission test set

Superb Quality 6 foot 40 u 19" Rack Cabinets

Massive Reductions Virtually New, Ultra Smart Less Than Half Price! Top quality $19^{\prime \prime}$ rack cablnets made in UK by Optima Enclosures LId. Units feature designer, smoked acryilc lockable front
door, full helght lockable half louvered back door, full helght lockable half louvered back dust able removable side panels. Fully adpunched for any conflguration of equipment mountIng pius ready mounted integral 12 way 13 amp sockel switched mains distribution strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and theretore
require anly two side panels or stand singly. Overall dimensions are $77-1 / 2^{*} \mathrm{H} \times 32-1 / 2^{2} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as:
Rack 1 Complete with removable side panels...... 5275.00 (G)

POWER SUPPLIES

frame giving $+5 v 35 a-5 v 15 a+12 v 4 a$ (8 a peak), $-12 v 1.5 a$
$+24 v 4 a$ (6 a peak). All outputs fully regulated with over voltage protection on the $+5 v$ output. AC Input selectable for $110 / 240$ vac. Dims $13^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime \prime}$. Fully guaranteed RFE. $\quad £ 85.00$ (B) Power One SPL130. 130 watts. Selectable for $12 v(4 A)$ or $24 v$ (2A). 5v@20A.士 12v@ 1.5A. Switch mode. New. E59.95(B) Astec AC-8151 40 watts. Switch mode. $+5 v @ 2.5 \mathrm{a} .+12 \mathrm{v} @$
$2 \mathrm{a} .-12 \mathrm{e} @ 0.1 \mathrm{a}, 6-1 / 4^{*} \times 4^{\text {" }} \times 1-3 / 4^{\text {" N New }}$ Greenctale 19ABOE 60 watts switch mode. $+5 v$ @ $6 a, \pm 12 v @$ $\mathrm{a},+15 \mathrm{v} @ 1 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. £24.95(C) Conver AC130. 130 watt hi-grade VDE spec. Switch mode +5 v @ $15 \mathrm{a},-5 \mathrm{v} @ 1 \mathrm{a}, \pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New. E49.95(C)
Bosher 13090. Switch mode. Ideal tor drives \& system. $+5 \mathrm{v} @ 6 \mathrm{a}$,

+12v@ $2.5 \mathrm{a},-12 \mathrm{v} @ 0.5 \mathrm{a},-5 \mathrm{v} @ 0.5 \mathrm{a}$.
Farnell $\mathrm{G} 6 / 40 \mathrm{~A}$. Switch mode. 5 v @ 40 a . Encased $\mathrm{E} 95.95(\mathrm{~B})$

COOLINCFANS

3 inch AC. 112^{-1} thick 240 vots for AC fans.
$31 / 2$ inch $A C$ ETRI slimilne. Only $1^{\prime \prime}$ thick.
$31 / 2$ inch $A C 230$ v 8 watts. Only $3 / 4^{* *}$ thick
41 inch
10 inch
10 inch
60 mm
60 mm
80 mm
92 mm
4 Inch
4 Inch

THE AMAZING TELEBOX!

Converts your colour monitor into a

Brand new high quality, fully cased, 7 channel UHF PAL TV tuner video monitor fuming same Into a fabulous colour TV. Dont worty video monitor fuming same Into a fabulous colour TV. Dont worty Integrau audio amp for driving a speaker plus an auxillary output for Headphones or HI F system etc. Many other teatures: LED BS satety specs. Many other uses for TV sound or video etc. Suppled BRAND NEW with fuh 1 year guarantee. elebox ST for composite videa input monitors elebox STI as ST but with integral speaker53295(B) elebox RGB tor analogue RGB manitors................ $868.95(\mathrm{~B})$ RGB Telebox also suitable for IBM multisyinc monitors with RGB

BRAND NEW PRINTERS

or its rellability. Diablo type print mechanism gives super registration and quality. On board mincroprocessor gives ful hands'iake. Bidirectlonal 25 cPs , switchable 10 or 12 pitch, 13 £ 2900 cpl in Pica, 163 in Elle. Friction or tractor feed. Full Asc E2950 DED DPG21 miniature ball point pen printer plotter mechanism E 150 with tull 40 characters per line. Complete with data sheet which £6500 Centronics 150 eries. Always known for their rellabily (B) ع 650 continuous use - real workhorses In any environment. Fast 15 $\varepsilon 375 \mathrm{cps}$ whth 4 fonts and choice of interfaces at a fantastic prical

 £ 525 VSIT OUR SHOP FOR BAREANS

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI
UEL

ALL ENQUIRIES
-ELECTRONITES:
俍

Area bombing of Germany during World War II has been called into question constanly since peace broke out in 1945. Sir Arthur "Bomber" Harris has been vilified because he concentrated on centres of population instead of "surgically" destroying military targets. The proposed erection ot his statue next to that of "Stuffy" Dowding is opposed by those who consider the destruction of German cities a crime.

But did he have a choice? Bomber Command slarted the war with its ravigation in such a state that, if creus managed to get to within about ten miles of the target, they were doing reasonably well. Gee and Oboc came and, when the Germans jammed them, went, athough each lasted many months. Even the carly Pathtinder Force had its problems, losing six of the twelve aircrafi on its first sortie and not even finding the target. Any thought of precision bombing was impossible; there was desperate need of an accurate, unjaminable navigation aid

Abstract

In 1939, the UK government was offered a design for what appeared to be an accurate, foolproof air navigation system which The RAF desperately needed. It was turned down. Phillip Darrington narrates a story of an unsung inventor's brilliance and the official indifference to an electronic navigation electronic navigation system which might have saved many allied airmens' lives.

Yet at least one neglected piece of development would. if it had been seriously considered, almost certainly have saved civilian and service lives and possibly cut short the war. A lone inventor, with no formal engineering or science cducation, came up with an innovative navigation system hut was turned down flat, only to see his work taken up much later and developed by commercial concerns to the point where it now earns millions of pounds a year - too late to save lives and far too late to alfect the course of the war. The rejection also now means that this country pays royatites to American companies for equipment that could have been produced here many years betore anyone else was able to.
In December 1939 Heinz Lipschutz, who was working for the Department of Civil Aviation at Lydda Airport. Palestine, in meteorology and flight control, offered the British government a design for automatic positionfinding equipment for use in aircrafi. He was 20 at the time and unskilled in either English (he was born in Germany) or in formal specification writing, describing only one of several variants of his system and omitting le:itures and requirements that seemed to him obvious. The outcome was a total failure by the examiner at Marconi, to whom the matter hat been passed, to understind that "obvious" parts of the design had not been described in detail. He seized on these "omissions" and concluded that they invalidated the whole thing. even though alternatives were included which rendered his remarks irrele vant.
A letter from Marconi to the Director of Civil Aviation at Lydda (Lipschutz was not accorded the simple courtesy of a personal reply) is on record and quotes the examiner's opinion: "...there are a number of other solutions of the same problem, none of which, so
far as I know, have reached a practical stage. I therefore do not consider the invention to be of any value to us." Evidently, if none of the others was any good, then neither was this one.
According to Lipschutz, who later became an airline captain with Cambrian Airways after being co-founder of Kol Israel, the Israeli national broadcasting station: "I only offered them one of the ideas - the one using radio. It was just a trial balloon. If they ${ }^{\text {d }}$ been at all keen, I would have given them an inertial navigation system.
Such systems are now in widespread use, but he was dissuaded from offering that. too. by Max Offner, engineer in charge of the Palestine Broadcasting Service, on the grounds that it was "...too revolutionary.... might fall into the wrong hands or not be appreciated." On the available evidence, he was probably justified on that last point.
Lipschutz tried his hardest to provide such a system and even built a simplified prototype while confidently awaiting an assessment of his trial system from London. "By that time, I was working with the RAF and was saddened to see those lads flying off on raids with no real method of finding their target... such a

SIMPLE CONCEPT

Drection finding by means of a loop aerial is simple - at least in theory. Its polar diagram shows that a signal from a transmitter in the direction of a null will almost completely vanish, the direction thereby being easily determined. Fairly obviously, however, there are two nulls in opposite directions, so that there would be no means of discovering whether the transmitter was north-east or south-west.
The solution is to use a co-sited omnidirectional aerial with a polar diagram of equal phase and magnitude and sum the two responses. Since the phases of the two halves of the loop

Combined omni and loop polar diagram, showing heart-shaped field. Cardioid null is not quite as sharp as from loop alone and is usually used merely to show which way to turn loop for correct null. This is unnecessary in Lipschufz's design. Signal from omni must be exactly the same in magnitude and phase as that from the loop.
(Left). Loop aerial exhibits a figure-of-eight field diagram. Signals coming from directions of each minimum effectively vanish.
waste of lives. And even if they did find the target, they still had to get home again, sometimes injured and with a badly shot-up aircratt".
In essence, Lipschutz's first, trial system was a development of the common directionfinding loop aerial. At that time, RAF navigators had to rotate a loop aerial manually, while listening to the transmitter on headphones. At one point in a revolution (actually two, but the correct one is normally indicated by using a non-directional aerial to add its signals on one side and cancel on the other) the signal vanishes to give a definite indication that the aerial is pointing broadside to the transmitter, the direction of which is thereby located. Repeating the performance with another transmitter gives two known directions and therefore a position.
In theory, this is perfect; in practice, in the
presence of ionospheric reflection, interference, aircraft engine noise and often a lack of familiarity with the equipment, it was less than ideal. An inaccuracy of anything up to five degrees was normal. After 400 miles. a fivedegree error would put the aircraft about 35 miles off track, although further readings would reduce that distance.
Lipschutz not only autonated the process and realised its potential accuracy, but went on to provide such a display of which navigators could only dream: a moving point of light or two crossed light beams on a map which gave an instant position, with no calculation or operational effort. Further, by providing the correct maps for the whole of a trip and plotting the required course on the map in a thickish line, the appearance of the light on one side of the line or the other would indicate drift. This information could have been detect-
ed by photocells and used by an autopilot for hands-off flying. Alternatively, the amount of drift could be used to obtain true wind-speed. "All the techniques, apart from a couple, were known and there was no reason it could not have been fairly easily produced."
Apparently, the objections raised by Marconi's were that no one else had been able to do it and that changing the maps along the track would cost too much. One can think of no fitting reply to the first and Lipschutz points out that his method of avoiding the cost of map-changing and other adjustments as the aircraft progressed (a "rolling map" was proposed) had been ignored. This simple scheme was completely compatible with the method of automatic navigation that Lipschutz was to describe to the authorities when they had examined his simpler system. It was to use inertial input from acceleroneters to form

are different, summing gives a heart-shaped or cardioid polar diagram. There is now only one null, although not as sharp as that of the loop alone. In manually operated systems, this means that the cardioid effect can only be used to indicate the direction in which to turn the loop to obtain the correct null. But in the Lipschutz device it can be used as the direction-finding null. There was, in fact, provision made to switch out the sense aerial once the correct null was identified and use the sharper loop-aerial null, but this was not found to be necessary.
An Adcock aerial was also proposed with a view to reducing polarisation error.
Lipschutz started by addressing the problem of turning the loop and detecting a null automatically. The loop and omni aerial signals were summed to give the required polar diagram, amplified and used to drive an incandescent bulb mounted on an arm which revolved horizontally at the same speed as a the loop aerial.
Current from the power amplifier was controlled by the signal-amplifier AGC voltage and was therefore in the opposite sense to the aerial signal voltage; the bulb lit only when the aerial null was pointing at the transmitter.
Encircling the arm was a scale on which Lipschutz had marked degrees, so that each time the aerial pointed at the transmitter, the bulb lit and indicated the direction to that
transmitter. Since the aerial and arm were both spinning 25 times per minute, direction indication was effectively continuous.
Switching of the light on and off was not instantaneous, so that the spot of light as the arm revolved was broadened, but the centre of the spot was still easy to determine, since it was at its brightest at the centre. It was for this reason that the relative lack of sharpness in the aerial null was unimportant.
Going on from this, Lipschutz arranged the spinning arm under a translucent map with its axis under a known transmitter. He inclined the beam of light from the bulb slightly upwards and focused it into a thin line on the map. The result of this was a map of the relevant area with a line of light pointing to the transmitter (in fact, the reciprocal was taken, so that the light beam came from the transmitter). Two such arrangements, with the signal from the aerial commutated to feed each once per revolution and with each having its centre below the position on the map of a transmitter produced two light beams which crossed at the position of the aircraft. The slides from which the maps were projected were so arranged that two relevant transmitters were always at the corners of one side of the map display, to avoid having to change the arm centres.

Version submitted to government

In the version Lipschutz sent for consideration by the government in December 1939, the effect was identical to that described above, but now there were means for avoiding the effects of interference and short signal breaks. Two separate "resolvers" were used: one to indicate direction as before and another to act as a servo to move a "rolling map", removing the need to change maps en route.
In the direction indicator, the signal amplifier produced a high-power pulse at the aerial null, the pulse being taken to a distributor, which fed the current pulse to a solenoid on the end of a counterbalanced arm rotating at the speed of the aerial.
Above the arm was a ring of 360 soft-iron pole-pieces, so that as the aerial revolved, the pole-piece corresponding to the null direction became magnetised. A counterbalanced, metallic arm above the ring, free to rotate about the centre of the system, was attracted to the magnetised pole-piece and, since the arm carried a lamp and mirror, indicated direction by a line of light, as before.
A commutator switched between distributors and a second light-arm produced the second beam to give the position of the aircraft. The centre of the field always corresponded to
what was effectively a modern inertial navigation system (INS), now widely used by all large aircraft, but in 1939. The system never left the drawing board except as a prototype for presentation to the authorities in the event of his trial radio system being accepted. It was never heard of by the government of the day and can only be seen in the lilty-year-old sketches in Lipschutz's notebooks.
Both systems had been worked out in minute detail. Techniques such as magnetic recording and magnetic levitation. both now common, were needed for stability and frictionless response, and were used and described - all this in 1939. Capt. Lipschut\% has only recently felt able to mention all this to anyone, as he says he has no wish to find himself pigeonholed with all the world's eccentrics.
This tale of missed opportunity and leaden-
headed failure to seize on a chance of satving lives is not uncommon, but there is a difference. Capt. Lipschutz has no challue of making any money out of a filty-year-old invention, now used widely. Nor is he at all interested in making his name: he is now 72 and has hat a successful and fullilling career in other fiedds. He says he is simp y satdened by the fact that his deeply frustrating and baffling experience of rejection at such a time is still such a familiar story.
As a politizian in the recent election campaign pointed out, a huge number of modern innovations are British - integrated circuits. holography, body scanners. liquid-erystal displays and a mass of other technologies in everyday use - but are manufactured somewhere clse. The argument then was superficially about sustained funding for research and a Minister for Science, but the fault is deeper.

Clearly, nothing would be gained if the outcone of such research were to be further innovation - but ignored in Britain and exploited to the full abroatl. The cure. if one is possible. lies itr a total change in attitude and a willingness to accept that the mamiliar is not neeessarily the unworkable.

Meanwhite. Heimz Lipschut/ is getting on with building a light aircrati. He has already spent 34 years trying to persuade our naval experts that his design for a radically different type of submarine - the ('plane. a smatlhulled. heavier tham water eralt which "flies" through the water on hydrofoils - should at least be investigated. only to see his ideas taken up by Americans, Russians and, ironically. Germans. who are believed to have a prototype.

Nothing, it appears, changes.
the signal minimum and therefore the sharpness of the null was still unimportant. The magnetic field lasted for two revolutions of the arm, so that in the event of a signal loss, the arm would still take up and maintain its previous position.
Each pole-piece could be demagnetised, in the event that pole pieces having the ideal hysteresis characteristic were not available, by an RF coil mounted on the arm in time for a new pole-piece to be magnetised on each second revolution. A compass-controlled differential gearing mechanism was intended to compensate for turns made by the aircraft, so that the indication would be independent of the aircraft heading.
A further enhancement was the rolling map. In this variant, the ring of pole-pieces was replaced by a ring of 360 coils with their terminals protruding beneath. Instead of the coil on the revolving arm, contacts conducted current from the power amplifier to each coil in turn and magnetised the coil corresponding to the direction of the transmitter. Here, the increased magnetic field of the system was powerful enough to move metallic arms connected together by loosely fitting sleeves, so that both arms were free to move relative to each other, the crossing point being effectively the aircraft position. But, although a vertical light beam from the crossing point would then give the position, the movement of the sleeves was intended mainly to provide information to a servo on the position of the aircraft over the map and to move the continuous map on rollers along the route, thereby avoiding any possible problems with map changing and matching with
transmitter positions. Additionally, the information would provide ground-speed and drift data directly. This point was fully covered in the submission, but totally ignored by the examiner.
This forward and backwards movement of the map and sideways movement of the arm crossing-point would have made it a simple matter to inmplement an inertial system by feeding the outputs of accelerometers to each servo, the light at the crossing point still indicating position. Such a system would either supplement the radio system in conditions of interference or loss of signal or could be drift-corrected by means of the radio system. Such a system was indeed the original impetus for the design of the equipment, the radio version being submitted as less of a shock to the governmental system and more likelv to be understood and considered. A prototype was well advancet when Lipschutz was told that his work was not wanted.
Many other points were put forward - far too numerous to go into here - but the fact remains that this was a workable design, requiring no new technology and capable of quantity production.
What was new was the "magnetic recording" aspect of the device, for that was exactly the principle used in centring the light arm. Also, there was the suspension of the mechanical (self-integrating inertial) accelerometers by magnetic levitation, as was the intended use of magnetic bearings for the spinning gyros, before its time by a matter of twenty years or more.

Circuits, Systems \& Standards

First published in the US magazine EDN and edited here by lan Hickman.

Op amp provides phase-locked loop

Equalling the performance of a classical phase-locked Lloop in some applications, this oscillator is frequencymodulated directly by the input signal's phase relation to the oscillator output, obviating the usual separate phase comparator, integrator and linear voltage-controlled oscillator.
To picture this "loop," first consider operation of the basic oscillator (Fig. 1). Op-amp output is a square wave formed by R_{F} charging C_{F} to the hysteresis voltage at the non-inverting input. When the inverting input crosses this non-inverting input, the output changes state accordingly: R_{F} must now charge C_{F}. in the opposite direction
When the outputs state changes, the voltage at the non-inverting input moves in the same direction - it takes time for the voltage on C_{F} to cross it again. The time for two such crossings constitutes one eycle period.

Fig. 1. Oscillator circuit, frequency modulated by the phase relation of its input signal to its output signal.

Fig. 2. An input signal of the same frequency (a) as the oscillator's frequency aligns the phase relationships so that the net effect is zero; (b) decreasing the input frequency hinders CF's charging, causing a decrease in the oscillator's frequency.

Applying an input signal equal to the oscillator's freerunning (centre) frequency at R_{N} (Fig. 2a) aligns the output's phase relation so that the input's influence on the charging of C_{F} half aids the output (in phase) and half hinders it (out of phase). The net effect is zero.
If the input frequency decreases, the input tends to lag the centre-frequency phase (Fig. 2b), hindering the charging and resulting in a corresponding decrease in outpul frequency. With an increase in input frequency. the phase tends to lead. pulling the output frequency with it. A 90° input lead or lag exerts the maximum influence: beyond 90° the intluence cannot hold phase lock.
Phase loch occurs within one cycle and has no overshoot. The phase settles to equilibrium with a time constant inversely proportional to lock range. The lock range equals the capture range and is proportional to input amplitude: it varies as an inverse function of R_{1}
Response to odd harmonics in this circuit is the same as to the fundamental, but response to odd sub-harmonics drops off in lock range in proportion to the square of the lirequency:
Response to waveforms other than a square wave is similar, but generally weaker. For a given frequency and lock range, the normalised settling time constant is I for square waves, 1.5 for sine waves and 2 for triangle waves.
Temperature stability, from -30 to $+70^{\circ} \mathrm{C}$. is beter than 0.2% of F_{0}, for film resistors, a ceramic C_{F} and a (A.3/30) op amp. This variation can be largely compensated by a diode network in place of R_{1} or R_{F}.

Ralph Wilbur. Vega Electronics, El Monte, CA

Electronic Circuits, Systems \& Standards

Edited by lan Hickman, published by Butterworth Heinemann Newnes. ISBN 0 75060068 3. price $£ 20$.

Since its appearance in 1956 the USbased EDN has established itself as a leader in controlled circulation electronics magazines. Now this "best" of EDN - with useful information on components, equipment, circuits, systems and standards is available in a 216 page hardback publication

Available from bookshops, or direct by postal application to EW +WW, Quadrant House, The Quadrant, Sutton Surrey SM2 5AS. Cost £20 plus £1.50 post and packing. Cheques payable to Reed Business Publishing

Jfet serves as lowpower logic translator

The figure shows a simple methol for translating a 5 V Iogic signal to the 12 or 15 V level reguired by certain cmos ICs. Transistor Q, is an n-channel jrea operating in the common-gate morle. A source boltage above 1 or 2 V pinches the jeets channel off and allows R, to pull the drain voltage to 5^{\prime}, A source voltage near (IV turns the channel on. which places the drain near () \downarrow as well.
$R_{\text {, determines the circuit's speed and power }}$ conumption. Values from 1000 kS 2 to 1 MS draw approximately 150 to $15 \mu \mathrm{~A}$ and set a practieal pulse-rate limit of about 1 MHz . This circuit consumes less power than one based on a hipolar transistor, and it does away with one part (the base resistor).

Jimothy R Wolf, Microwave Systems, Lancaster, P'A

Simple noninverting logic level translator

A bipolar

 transistor makes a fine logic level translator, but is inverting. This translator is not and uses fewer components.IH

The jeft, operating in the commongate mode, provides lowpower translation of a $5 \vee$ logic signal to higher-voltage levels.

Replace exclusive Ors with resistors

Designers commonly need a signal that indicates when counter outputs are identical. You could employ exclusive-Or gates to provide this indication: however, a more economical solution requires only two cmos counters, such as the 404012 -bit binary devices shown in the figure. Tie the respective outputs together via resistors; a transistor emitter-base junction supplies power to the counters and monitors current consumption.

When the outputs of both counters are identical, no current flows in the resistors. Because cmos circuits, inherently consume only $\mu \mathrm{A}$, the transistor lacks base drive and turns off, producing a negative-going pulse.

George Breindel, Custom Chronograph Co, Tonasket. WA.

No current flows through the resistors when the counter's
outputs are identical.

Simple twelve-bit comparator
[DN readers have tertile imaginations. and here is another circuit gem. If one of the counts is fixed or can be presettable. then that counter can be replaced by hardwired straps or DIL switches. $\frac{\mathrm{IW}}{\mathrm{IH}}$

COMPUTER ICS

$2817 \mathrm{~A}-20(2 \mathrm{~K} \times 8)$ EEPROM ex eqpt.
80C88A-2 used
27S191 PROM
IMS1400P-45
$80 C 31$ MICRO
P8749H MICRO
D8751H USED
NEW 4164-15
USED 41256-15
USED $4164-15$.
BBC VIDEO UL
6845 CRT
6522PIA
AY3-1015D UART,
HD 146818 CLOCK IC .. 82
2864 EPROM
27128A 250ns EPROM USED ..
FLOPPY DISC CONTROLLER CHIPS 1771 $£ 10$
FLOPPY DISC CONTROLLER CHIPS 1772 17.50 $68000-8$ PROCESSOR NEW
HD6384-8
ALL USED EPROMS ERASED AND BLANK CHECKED...
CAN BE PROGRAMMED IF DESIRED
2716-45 USED
£2 100/£1
2732-45 USED
ᄃ2 $100 / \Sigma 1.60$
2764-30 USED …... 22 100/£1.60
$27 \mathrm{C} 256-30$ USED
27 C 512 USED
1702 EPROM EX EQPT
2144 EX EQPT 50p 4116 EXEOPT
SN76489AN
GR281 NON VOLATILE RAM EQUIV 6116
Z80A SIO-O ... £1. 25
TMS27PC256-25 ONE SHOT 27C256 \&1 ea 100/\&70
REGULATORS
78 H 12 ASC 12 V 5 A.
78 M 055 V 05 A
$78 \mathrm{M} 05 \mathrm{5V} 0.5 \mathrm{~A}$
LM317H T05 CAN
LM317T PLASTIC TO220 variable
7812 METAL $12 V$
$7805 / 12 / 15 / 24 \mathrm{~V}$ plastic 25p $100+20 \mathrm{p} 1000+15 p$ CA3085 TO99 variab
LM3385A VARIABLE 1 . $2-30 \mathrm{~V}$
$13875 \mathrm{v} 1 / 2$ A WITH RESET OUTPUT $£ 1$ ea $£ 50 / 100$
CRYSTAL OSCILLATORS
1M000 1M8432 1M000 4M000 10M000 16M000
18M432000 20 M 50056 M 6092 $£ 1.50$ each
CRYSTALS
1MO 2M77 4M000 4M4336 4M9152 5M0688 6M0000 8M0000 12M000 14M31818 15M000 16M000 16M5888

TRANSISTORS
BC107BCY70 PREFORMED LEADS
full spec
POWERTRANSISTORS
P POWER FET IRF9531 8A 60V
 TIP35B'TIP35C
SE9301 100V 1DA DARL SIM TIP 121
PLASTIC 3055 OR 2955 equv 50 . 2N3773 NPN 25A 160 V £1.60 2N3773 N
2N3055H

2N3055H

EXTOOL ZIF SOCKETS

40 WAY ZIF EX
.. 5
WITH ANY DUAL IN IINE CANBE GANGED FOR USE
SUPPLIED
CAPACITORS COMPUTER GRADE
$2200 \mu \mathrm{~F} 160 \mathrm{~V}$ SIC SAFCO FELSIC CO38 $£ 4$ ($£ 1.20$) $10,000 \mu \mathrm{~F}$ 100V SPRAGUEIPHILIPS

QUARTZ HALOGEN LAMPS

12V 50watt LAMP TYPE M312.... £1 ea HOLDERS 60p ea NEW BITS
LCD MODULE 16 CHAR. $\times 1$ LINE (SIMILAR TO HITACHI LM10)
LCDMODULE 40 CHAR. \times 1 LI... (SIMILAR TO FARNELL 175-676) Sil 12 REGULATOR 12V 5A T03 TRIAC 1A 800V TLC 381 T 16k AVAILABLE - … $\Sigma 5$

LITHIUM CELL 1/2 AA SIZE 2 FOR 51 KYNAR WIRE PER REEL PASSIVE INFRARED SENSOR CHIP + MIRROR + CIRCUIT \&2 each

80 p
201 180 VOLT 1WATT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V} \ldots20 \mathrm{E}$
PLASTIC EQUIPMENT CASE $9 \times 6 \times 1.25$ WITH FRONT PLASTIC EQUIPMENT CASE $9 \times 6 \times 1.25$ WITH FRONT AND REAR PANELS CONTAINING PCB WITH EPRON $2764-30$ AND ICS 7417 LS30 LS32 LS367 7805 REG, $9-$
WAY D PLUG, PUSH BUTTON SWITCH, DIN SOCKET
WAY D PLUG, PUSH BUTTON SWITCH, DIN SOCKET..
VN 10LM 60V 1/2A 5 Ohm TO-92 mostet 4/£1 100/£20 RELAY 5V 2-pole changeover looks like RS 355.741
 MINIATURE CO-AX FREE SKT RS 456-273 $\quad 2 / \mathbf{2 1 . 5 0}$ DIL REED RELAY 2 POLE n/o CONTACTS PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY
400 m 0.5 W thick film resistors (yes four hundred megohms)

LE
.... $4 / \Sigma 1$ STRAIN GAUGES 40 ohm Foil type polyester backed balco grid alloy ... 10.90
ELECTRET MICROPHONE INSERT Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-
 HALL EFFECT IC UGS3040 + magnet $\ldots . ~$
OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10$
 1 póle Tz-way rotary switch
AUDIO ICS LM380 LM3 86 TDA 2003 11 ea
555 TIMERS £ 1741 OP AMP
ZN414 AM RAIDO CHIP
P $6 . £ 1$
.80 p COAX BACK TO BACK JOINERS .. 31 4×4 MEMBRANE KEYBOARD £1.50 1.25" PANEL FUSEHOLDERS .. 3. $^{5} 1$ CHROMED STEEL HINGES 14.5×1 "OPEN £1 each
12 V 1.2 W small wire ended lamps fit Audi VW Saab Volvo 12 V 1.2 W small wire ended lamps fit Audi VW Saab Volvo
STEREO CASSETTE HEAD
MONO CASS. HEAD $£ 1$ ERASE HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$ THERMALFUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V}$ 15A 51 ea JO-3 TRANSISTOR COVERS .. $10 / \varepsilon 1$ TO-220 micas + bushes .. $15 / \mathrm{q}$
TO-3 micas + bushes
PTFE min screened cable
Large heat shrink sleeving pa
IEC chassis plug filter 10 A
pack
…........ $10 \mathrm{~m} / \mathrm{\Sigma}$
Potentiometers short spindles values 2 k 510 k 25 k 1 m 2 m $\ln \ldots$

40 kHz ULTRASONIC TRANSDUCERS EX-EQPT NO DATA
LM335Z 10MV/degree C
LM234Z CONST. CURRENTI.C
PAPST 18 -24V FAN $120 M M$ WORKS OK ON $12 V$
BNC TO 4MM BINDING POST SIM RS 455-96
BUTTON CELLS/WATCH BATTERIES SIM AG10/AG12 12

MIN PCB POWER RELAY 12 V COIL 6 V CONTACTS 2 P
C/O
1.25

AVEL LINDBERD MOULDED TRANSFORMER TYPE
$0 \mathrm{~B} 1015+15 \mathrm{~V} 10 \mathrm{VA}$ QTY. AVAIL ABLE $£ 2$ ea
BANDOLIERED COMPONENTS ASSORTED Rs, Cs,
ZENERS
DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE 4/£.
1N54073A 1000V 1N4148
1N4004 SD4 TA 300 V
1N5401 3A 100V
BA158 1 A 400 V fast recover..10/£1
BY 127 1200V 1.2A ...covery 100/£3
BY254 800V 3A .. 8/\&1
BY255 1300V 3 A

6 6 100V SIMILAR MR751	4/21
1 A 600 V BRIDGE RECTIFIER	. 4/E1
4A 100V BRIDGE	3/51
6 A 100V BRIDGE	2/1
8A 200V BRIDGE	2£1.35
10A 200V BRIDGE	£1.50
25A 200 V BRIDGE £2	10/518
25A 400V BRIDGE £2.50	10/£22
SCRS	

SCRS
PULSE TRANSFORMERS $1: 1+1$.............................. $£ 1.25$
2P4M EQUIV C106D 3/E15

TRIACS
DIACS $4 / \Sigma 1$
NEC TRIAC ACO8F 8A 600V TO220 …........ 5/£2 100/£30 TXAL225 8A 500V 5mA GATE 2 £ 1 100/ 235 BTA 08-400 ISO TAB 400 V 5mA GAIE 90 p

CONNECTORS

D25 IDC SOCKET FUJITSU ... £2
34-way card edge IDCCONNECTOR (disk drive type)
CENTRONICS 36 WAY IDC PLUG
BBC TO CENTRONICS PRINTER LEAD 1.5M £4.00
CENTRONICS 36 WAY PLUG SOLDER TYPE \&4
PHOTO DEVICES
HI BRIGHTNESS LEDS CQX24 RED $5 / \mathbf{~} \mathbf{\Sigma} 1$
SLOTTED OPTO-SWITCH OPCOA OPB815 2N5777 ... 50p TIL38 INFRA RED LED 4N25, OP12252 OPTO ISOLATOR PHOTO DIODE 50P $5 / \Sigma 1$
50 p - $6 / \Sigma 2$ LED's (PED 3 DARLINGTON BASE n / c) 50p LED's GREEN OR YELLOW 10/\&1 100/£6 FLASHING RED OR GREEN LED 5 mm 50p 100/£40 HIGH SPEED MEDIUM AREA PHOTODIODE RS651-
995 STC NTC BEAD THERMISTORS
G22 220R, G13 1K, G23 2K, G24 20K, G54 50K. G25 200K, RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE …........ $£ 1$ ea FS22BW NTC BEAD INSIDE END OF 1 " GLASS PROBE A13 DIRECTLY HEATED BEAD THERMISTOR ik res. ideal for audio Wien Bridge Oscillator £2 ea
CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$ 10R 20R 100 R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K 100 K 200 K 500 K 2 M

IC SOCKETS

32-WAY TURNED PIN SOCKETS 7K AVAILABLE, $\quad 3 / \Sigma 1$ $6224 / 28$ pin $4 / \Sigma 14030$ p
SIMM SOCKET TAKES 2×30 WAY SIMMS $£ 1$

SOLID STATE RELAYS
40A 250V AC SOLID STATE RELAYS £10
POLYESTER/ROLYCARB CAPS

TOS-REL AY 2 pole changeover 5 v coil
CONHE $\times 500 \mathrm{hm}$ PCB RIGHT ANGLE PLUG
ITT/SEALECTRO $051053902922-0$ 4K AVAILABLE

ALL TRIMMERS .. 3 for 50p
TRIMMERS larger type GREY 2-25pF YELLOW 5-65pF
VIOLET
SMALL 5pF 2 pin mounting 5 mm centres 3 FOR 50p £10/100
SMALL MULLARD 2 to 22pF 3 FOR 50p £10/100
TRANSIS TORS 2N4427, 2N3866 70 p
TRANSISTORS 2N4427, 2N3866
FEED THRU'CERAMIC CAPS 1000p SL610
MINIATURE RELAYS Suitable for RF
5 volt coil 1 pole changeover
5 volt coll 2 pole changeover
£1
\&1
MONOLITHIC CERAMIC
CAPACITORS

100 n ax 2.5 mor 5 mm
100/Y6
100 ax ax long
100/E3
100 n 50 V dil package 0.3" rad ... 100/2. 8
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$
£6/100

STEPPER MOTORS

2 CENTRE-TAPPED 9 VOLT WINDINGS 7.5° STEPS £4

TEL. 0279-505543
FAX. 0279-757656 POBOX 634 BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX

SEND £I STAMPS FORCURRENTIC + SEMI STOCK LIST - ALSO AVAILABLE ON

$3^{1 / 2} 2^{\prime \prime}$ FLOPPY DISK

MAIL ORDER ONLY

MIN CASH ORDER E3.00 OFFICIAL OROERS WELCOME
UNIVERSITIES'COLLEGES/SCHOOLS/GOVT. DEPARTMENTS MIN. ACCOUNT ORDER $£ 1000$ P\&P AS SHOWN IN BRACKETS (HEAVY ITEMS) OTHERWISE 65p

ADD 17½\% VAT TO TOTAL

ELECTRONIC COMPONENTS
BOUGHT FOR CASH

ACTIVE

A-to-D \& D-to-A converters

Video A-to-D converter. CXD1175AM/AP by Hakuto is an 8 -bit converter using a two-step parallel system for low-power working. In a conventional flash converter, 256 comparators are used, consuming up to 400 mW at 20 MHz ; this one uses 32 comparators and takes 60 mW . A reference voltage for self bias and sample-and-hold facilities are built in. Hakuto International (UK) Ltd, 0992 769090.

Linear integrated circuits

Low-EMI line receiver. Common mode rejection of 90 dB at 60 Hz (85dB at 20 kHz) provides a high degree of immunity from interference in the SSM-2143 differential amplifier from Analog Devices. It complements the SSM-2142 balanced line driver recently introduced for audio and industrial use. Slew rate is $10 \mathrm{~V} / \mu \mathrm{s}$, THD 0.006 and gain either -6 dB or 6 dB , the selection being by reversing input and output reference connections. Analog Devices, 0932 232222.

60 MHz op-amp. Elantec's EL2044 is a 60 MHz bandwidth, $325 \mathrm{~V} / \mu \mathrm{s}$ op-amp having an output swing of $\pm 13.6 \mathrm{~V}$ on a $\pm 15 \mathrm{~V}$ supply. Output current is 75 mA . Voltage feedback is used to maintain stable working in the presence of capacitive loads or feedback components. It is claimed to be suitable as an up-graded replacement for the Analog Devices AD847 or the National Semiconductor LM6361. Kudos Thame Ltd, 0734 351010.

PWM modulators. Five pulse-width modulators from Linear Technology, the LT1241/2/3/4/5 family, are intended for use in 500 kHz off-line power supplies, being pin-compatible with the standard UC1842 devices. All the usual circuitry is incorporated and there is a high-current totem-pole output to drive power mosfets. Current sense delay is down to 50 ns and start-up current is less than $250 \mu \mathrm{~A}$. The 500 kHz operation is made possible by the elimination of cross-conduction current spikes, and blanking on the current-sense comparator eliminates a filter by
preventing the leading-edge spike from tripping the comparator. Micro Call Ltd, 0844261939.

Bi-cmos video switch/amp. CA3256 consists of five analogue switcnes, a 2-to-4 decoder and a buffer amplifier and is meant for general-purpose video signal control. Four channel switches are digitally controlled, led output drivers allowing for indication of the On channel, while the independent fifth channel may be used for other purposes or to monitor the other channels. Feed-through of the switches is typically -66dB at 5 MHz , and insertion loss of the Onswitch is 0.8 dB . Gain is externally adjustable and unity-gain bandwidth is 25 MHz . Thame Components Ltd, 0844261188.

Logic building blocks

Datacomms controller. HD64570 serial communications adaptor from Hitachi is a $7.1 \mathrm{Mbit} / \mathrm{s}$, low-power and low-cost device. It possesses a twochannel multiprotocol serial comms interface to Support modes such as asynchronous, byte synchronous and bit synchronous modes such as HDLC and SDLC. Fifo buffers are 32 bytes deep and allow high throughput when coupled with the DMA
controller, which supports chain transfers in bit-synchronous mode for auto buffer switching. Hitachi Europe Ltd, 0628585000.

Memory chips

Static rams. Goldstar Electron GM76C256L 32K by 8 SRAMs are meant for low-power use, taking a mere $2 n A$, and have access times of 85 ns . Chip select and output enable are provided. The units are in SO-28 surface-mounting packages. Flint Distribution Ltd, 0530510333
$I^{2} \mathrm{C} 8 \mathrm{~K}$ eeprom. National
Semiconductor's new family of eeproms includes an 8 K device for the first time in this technology. The NM24C** devices are cmos types for use in battery-powered equipment. Organised in four pages, the eeproms have standard, two-wire serial interfaces for simplicity and, using a bidirectional data transfer protocol in 16-byte page-write mode, operate a 5 ms self-timed write cycle. Jermyn Distribution, 0732740100.

Video ram. Samples of Micron's 2M2 (256 K by 8 -bit) video ram, the MT42C8255, are now available. Serial access time is $22 n s$ and the

Optical devices

Printer laser diode. A visible-light laser diode from Hitachi, the HL6713G AlGaINP device, is meart particularly for laser printers and operates ar 675 nm , with ar output variation ween pulse-driven of less. than 10. The Metal Organic: Chemiæal Deposition process used not only improves image quality in printers, but avoids the use additional b as current due to the ow "droop" characteristi. Astigmatism is down to $5 \mu \mathrm{~m}$. Hitachi Europe Ltc, 0628585000.
unit supports split-read transfer, Ser al output, non-persistent mask \exists write block write and fast-page mode. The units are for use in graphics and imaging systems and also in SuperVGA displays. Micron Technology (UK) Ltd, 344360055

9-bit fifos.

MU9C0591/1902/2903/4904 are cmos first-in-first-out memories by Music Semiconductors, and are arranged as 512/1024/2048/4096 by 9 for use in systems in which a parity bit is employed. Access time is 20 ns , cycle time 30 ns and the units offer simultaneous and asynchronous Read and Write port operation. Expansion in width or depth requires no external logic and there is no performance penalty. Flags indicate full, empty and half-full. Mogul Electronics, 0732741841.

Microprocessors and controllers

Single-chip PC. Two devices from Sharp, which it calls "embedded engines", are effectively IBMcompatible PC XTs one one chip. LH72001 has seven of the important interface circuits, including dos in rom, and the unit is based on a NES V20 microcomputer. Also built in are keyboard, printer and memory-card interfaces and a memory gontroller for drans, srams and pseudo-rams. External memory capacity is 1 Mbyte rom and 16Mbyte ram. It works at 8 MHz . LH72/73 embedded engines use the NEC V20 and V30 respectively and also contain a channel-less gate array with up to 50,000 raw gates for macroce integration Sharp Electronics (Europe)GmbH 01049 40/23 76-0

Mixed-signal ICs.

Motor drive. Two full-bridge PWM motor drivers, the UDN2953B and

UDN2954W, are available from Allegro, formerly part of Sprague Technologies. They provide bidirectional control of DC or stepper motors at up to 2A output current and peak start-up of up to 3.5 A on supply voltages of 50 V . Full protection is included, and when the reference voltage falls to below 0.8 V , a braking condition is provided. Allegro Microsystems, 0932253355.

Single-chip fax modem. All the features of a fax modem are contained in the HD81900CPR1 from Hitachi. It satisfies relevant CCITT recommendations and needs only a 5 V single-ended supply, consuming 350 mW . Applications lie in Groups il and lil and in low-speed facsimile transmission, also being used in addon fax boxes connected to PCs via RS232. Hitachi Europe Ltd, 0628 585000.

CCD linear sensor. Reduction-type, high-sensitivity sensor from Sony, the ILX503, is meant for use in image scanners, tax machines and code readers. A single-side readout makes the DC difference zero and the 2048 pixel array enables documents up to B4 size to be read at a 400DPI resolution and at 5 MHz . Timing generator and clock are on board and the units are compatible with 5 V logic Sony Components, 0784466660.

Oscillators

Crystal oscillator. Instead of the several ICs usually needed to produoe a digitally compensated crystal oscillator, Murata's DC2200 series uses an asic. Stability is ± 0.2 parts per million over -40 to $85^{\circ} \mathrm{C}$, which is comparable with much larger
and more power-hungry ovencontrolled circuits (10W against the 50 mW of these devices). Two types are on offer: a TTL-output oscillator covering $100 \mathrm{kHz}-22 \mathrm{MHz}$ and a cmos variety operating at $10 \mathrm{MHz}-25 \mathrm{MHz}$. Murata Electronics (UK) Ltd, 0252 811666.

Programmable logic arrays
 Field-programmable arrays.

Expected later this year, Actel's ACT 3 field-programmable gate arrays (FPGAs) will contain up to 10000 gates, 16 -bit counters running at 125 MHz . Pin-to-gate ratio is said to be the highest available with over 200. Cmos 0.8 micron technology is used, as is the Actel PLICE antifuse architecture. ACT 3 is one result of the technology and licensing agreeemnt between Actel and Hewlett-Packard. Actel Corporation, 0818393033

Synchronous PLD. A new BiCMOS PLD from Cypress Semiconductor, the CY7B333, is similar to the existing PAL22V 10, but with higher density. Process is 0.8 micron BiCMOS, with a clock-to-output time of 8 ns , a combinatorial delay of 10 ns and a setup time of 8 ns . There are $16 \mathrm{i} / \mathrm{o}$ macrocells in two banks of eight, each bank having separate clock inputs. Each macrocell has five programmable fuses to allow selection of function. Ambar Components Ltd, 0844261144

Fast 22 V 10 PLD. A 100 MHz cmos 22V10-compatible programmablelogic device, the 85 C 22 V 10 from intel, exhibits a 10 ns propagation delay. Further, it consumes 40 less power than bipolar devices, which mean greater reliability and smaller power requirements. Design is aided by a new upgrade to the PLDshell software, PLDshell Plus, which is available free. Intel Corporation (UK) Ltd, 0793696000.

Power semiconductors

Logic-level triacs. BT134W triacs from Philips are guaranteed to trigger with gate currents down to 5 mA , and can be driven directly by cmos outputs. Combined with the elimination of special drive circuitry, the SOT-223 surface-mounted pack allows the use of the devices in a very small space. Trigger threshold for the BT 134W is 5 mA ; that forthe BT 134W$\mathrm{E}, 10 \mathrm{~mA}$. Continuous current rating is 1 A RMS, peak repetitive current 10 A and surge 10 A for 10 ms . Devices in the range include some with blocking voltages of up to 600V. Philips Semiconductors, 0714364144

PASSIVE

Miniature capacitors. Class 1 and 2 miniature ceramic-plate capacitors from Philips are claimed to have a failure rate of better than 5ppm. Class 1 types cover 0.47-560pF; class 2 $0.47-47000 \mathrm{pF}$ at rated voltages of from 63 V to 500 V . Insulation resistance is up to $10,000 \mathrm{M} \Omega$. Gothic Crellon Ltd, 0734788878

Delay lines. Precision lines by Bishop Instruments are marketed here by Lyons. NDL types cover the range up to 5 ns with a resolution of 2 ps or 2.5 ns and 1 ps resolution up to 5 GHz . PDL versions go up to 250ps at 0.1 ps resolution and $0-7 \mathrm{GHz}$ bandwidth. Lyons Instruments Ltd, 0992467161.

Feedthrough filters. Miniature filters designed with 1993 RFI standards in mind are introduced by Steatite. The range includes low series-inductance types in values from 1.5 pF to 5 nF , with resonant frequencies of over 200 MHz . High-temperature components are also offered, working inthe range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Steatite Insulations, 0216436888

Connectors and cabling

Socket and pin strips. The Cart range of strips from ODU come in 1 to 60 ways for high stacking density. Two pin cross sections are on offer, in one or two rows and in different grid spacings. The strips are also offered in customers' own configuration. ODU UK Ltd, 0653600489

Displays

Dot-matrix displays. HewlettPackard's aluminium gallium arsenide 5 by 8 alphanumeric displays with a character height of 58.4 mm arenow supplied by Celdis. The HDSP. P10X/P15X series are expandable, XY stackable and have a wide viewing angle. -P10X types are diffused to give an even appearance to the light, with a loss of intensity, while the -P15X devices are less diffused for greater brightness. Power consumed by each dot is 36 mW and current is 11 mA average. Celdis, 0734585171

Hardware

Microstrip tuning. Standardised tuning tabs made from low-loss Ceramox ceramic by Oxley are for the matching of microwave devices to microstrip lines below 7.5GHz and over 13 GHz . The DDT series is available with dielectric constants of 10,100 and 160 , with drifts of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-7$ to +3 , and ± 20 respectively. Bulk resistivity of all three types is 60Gs 2 mm . Oxley

Development Company Ltd, 0229 52621.

RF shielding. Shapeo RF shielding, the Bradyshield, allows designers to concentrate shielding in small areas rather than to adopt the expensive approach of shielding an entire piece of equipment with metal or conductive paint. The shields are
aluminium/polyester laminates, which are stable and bond easily to most surfaces. W H Brady Co. Ltd, 0295 271291.

Instrumentation

FFT analyser. Bruel \& Kjaer's Type 2034 dual-channel FFT analyser has been reduced in price to $£ 9400$, which the company think will put it into the educational field. The instrument operates up to 25.6 kHz , resolving down to 2 mHz anywhere in the range. Control is menu-based, transducers are connected directly and generators are built into the instrument. Bruel \& Kjaer (UK) Ltd, 0819542366.

Geiger-Muller counter. Offered in kit form, the K2645 counter from ECW gives an audible indication of radiation level and exhibits high sensitivity to gamma and high-energy beta rays. Battery life is more than two months continuous. Complete cunter kit with assembled board costs £92.24. ECW instruments, 0376 517413

Transducer driver. SP300A is a stand-alone instrument generating a 112 kHz signal to drive fast linear displacement transducers. Its 4 -digit display is scaleable to read a variety of units and transducers are available to measure displacements up to 150 mm to within 0.1
. Aconditioned analogue output is provided for data loggers. Control Transducers, 0234217704.

Function generator. Although primarily meant for the educational market, Wavetek's Model 192 MHz
sweep and function generator
includes sine/triangle/square outputs, DC offset, variable symmetry and a log/linear sweep generator. An LCD display provides frequency, amplitude and offset information and further outputs give a cmos/TTL pulse and a 6 V ramp following the sweep. Datron/Wavetek, 0603404824.

L/C/Z meter. Keithley's new Model 3330 component tester measures inductance, capacitance, resistance, impedance magnitude (|Z|), Q, dissipation factor, ESR, conductance, reactance, phase, volatge and current. Test signals can be made low enough to test active devices. It is GPIB or front-panel programmable, sorts and bins and provides 0.1 basic accuracy from 40 Hz to 100 kHz . Keithley Instruments Ltd, 0734 575666.

RF millivoltmeter. Millivac's MV1023A millivoltmeter measures volts, dBm and watts in the $10 \mathrm{kHz}-1.5 \mathrm{GHz}$ band of frequencies, ranges being $200 \mu \mathrm{~V}$ to $300 \mathrm{~V},-60 \mathrm{dBm}$ to +63 dBm and 1.8 nW to 2 W . The instrument is microprocessor-controlled and has, in addition to the four-digit led readout, a backit LCD panel for messages on ineasurement instructions, staus and errors. The millivoltmetert is
compatible with IEEE 488.2 and uses SCPI language for remote programming. Lyons Instruments Ltd, 0992467161.

Electrostatic voltmeter. The Trek model 366 is claimed to be the world's fastest non-contact voltmeter. tracking voltages on any surface at frequencies up to 15 kHz and at slew rates of up to $12 \mathrm{~V} / \mu \mathrm{s}$. Its probe has two vibrating electrodes which are brought near to a charged surface, whereupon the electrode movement causes a voltage to be induced on them. Amplification and feedback nulls the PD between probe and surface, the required feedback voltage being a measure of the surface voltage. Range is $\pm 2 \mathrm{kV}$ with ± 0.05 resolution. Optilas Ltd, 0908 221123

Spectrum analyser. With a
bandwidth of $9 \mathrm{kHz}-1.8 \mathrm{GHz}$ and
careful front-panel design, the 2711 is

Balun transformers. These Toko transformers, which are either PCB or surface-mounted, come in three configurations: doublebalanced mixer, distributor and directional coupler. They are bifilar wound to give good balance and the cores are selected for the $6-600 \mathrm{MHz}$ band, with some designs for 1.3 GHz . Each type is available in a range of turns ratios. Cirkit Distribution Lid, 0992 444111.

usable in a variety of fields by both experienced and new users. Sensitivity is -129 dBm , there is 80 dB of display range, spans down to $10 \mathrm{kHz} / \mathrm{division}$ and selectable resolution bandwidth filters from 3 kHz to 5 MHz . There is a choice between true analogue display and digital storage, in which up to four runs can be compared. A menu offers carrier-to noise, occupied bandwidth,
normalised bandwidth, signal search and FM deviation and one can store five antenna-correction tables. GPIB or RS-232C interfaces are available. Tektronix UK Ltd 0628474799

RF power amplifier. Frequency range of the Wessex RC1002-20 broad-band amplifier is 800 kHz to 1000 MHz , minimum gain being 43 dB , with a maximum variation of $\pm 0.75 \mathrm{~dB}$. Output power is 20 W minimum over the band. Power needs are 95-132V or $187-265 \mathrm{~V}$ AC from 47 to 440 Hz ; a version using a DC supply is available. Wessex Electronics Ltd, 0272571404

Interfaces

Sounder. A piezoelectric sounder. the AI-256K from Project Unlimited, is only 9.8 mm high and takes 9 mA at 12 V to provide an output of 30 dB at 30 cm . A high-temperature version operates between $-20^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Alan Butcher Components, 0258 840011.

Literature

Batteries. Standard and special batteries in lithium sulphur dioxide, lithium thionyl chloride, lithium polycarbonmonofluoride, alkaline manganese and zinc carbon technologies are detailed in a brochure from Crompton, whose products are chiefly intended for computer and marine use, as well as general electronics application. The company offers a free battery design service for special types. Crompton Eternacell Lid, 0914561451

Monitoring and control. Led and LCD panel meters, printers, process monitors and calibrators are described in Datel's industrial monitoring and control handbook, which also includes a summary of the company's data acquisition boards, DC-to-DC converters and other data conversion equipment. Datel (UK) Ltd, 0256469085.

Ceramic components. Murata's new catalogue includes full technical descriptions of the complete range of EMI suppreion filters, microwave devices, sensors, piezoelectric buzzers and capacitors. Data sheets for each product are also available. Murata Electronics (UK) Lid, 0252811666.

Instrument catalogue. Philips's new

Production equipment
Short finder. ABl's Boardrr aster 4000 board fault diagostic system now includes the facility to pinpoint short circuits on populated ${ }^{P} \mathrm{CBs}$, instead of simply indicating that a short exists somewhere. Resistance between two shorted points is measured and displayed by bar graph, whose height is a measure of the resistance. Users of the Boardmaster 4000 or the DDS-40XP can upgrade to this new facility. ABI Electronics Ltd, 0226350145.

T\&M catalogue covers a range of instruments from both Philips and Fluke. Among the new equipment described are the ScopeMeters, new standards equipment and some digital board-test instruments. Philips Test \& Measurement, 0923240511.

Metal-foil resistors. New catalogue from Alpha Electronics is concerned with very high-precision metal-foil resistors having a nominal temperature coefficient of $0.4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The components come in various forms, including face and wire-bonded chips, transter-moulded and conformally coated types, networks.

Power/volt meter. Level Meter URV from R \& S measures voltage and power to high precision and displays the result on both moving-coil meter and LCD, in the same panel aperture. The instrument is menucontrolled and, using a range of measuring heads, covers $100 \mu \mathrm{~V}$ 1000 V or $400 \mathrm{pW}-500 \mathrm{~mW}$ foom DC and 9 kHz to 26.5 GHz . Considerable shielding renders the readings invulnerable to interference even in the eear field of antennas. Rohde \& Schwarz UK Ltd, 0252811377.

hermeticlly sealed and a new zero-iC type. Rhopoint Components Ltd, 0883 717988

Materials

Metallised aluminium nitride. As an alternative to berylia, aluminium nitride possesses several advantages, among which is its environmental safety. Oxley have now perfected a method of chemical bonding metallisation patterns to the substrate - previously a problem. The material has high thermal conductivity, low dielectric constant and high insulation resistance. It al=o has a coeff cient of thermal expans on that closely matches that of silicon, a propenty that reduces stres.s with power diss pation; with its cther properties il is therefore well suited to power semconductor and multi-chio applications. Oxley Development Company Ltd, 022952621

Magnet chargers. Trilec capacitor discharge magnet chargers from Omitec previde up to $28,0 \mathrm{CO}$ joules magnetising energy in the tormof current pulses. A digital incication of puise voltaje and current is provid $\rightarrow \mathrm{d}$ and a "low-pulse" indicator gives a

warning if the pulse falls below a preset level. Also in the range are computer-controlled magnet processors, in which software is written to suit the application and to give a staistical analysis of production and reject levels. Omitec Instrumentation Ltd, 0380729256.

Stereo inspection. VS7 stereo scanning inspection system from Vision Engineering allows the user to examine devices with pitches down to 4 mil for solder quality and joint soundness. VS7 provides a colour high-resolution stereo display of the component without the use of a binocular eyepiece. System magnification is 60 times direct and 40 times oblique, with a working distance of 28 mm . Vision Engineering Ltd, 0483223417

Power supplies

Switchers. Tamura Hinchley's FEM series of switched-mode power supplies now come in 30 W versions. which can be connected to any supply from 85 to 265 V AC at 50 Hz or 60 Hz . Outputs are $\pm 5 \mathrm{~V}$ and $\pm 12 \mathrm{~V} ; \pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V} ; \pm 5 \mathrm{~V}$ and 12 V . Power trading between outputs is available on all models. A 50W version. the FEM-50 is also available. Safety Power Group, 0932336025.

Mosfet switcher. With a power-factor correction of more than 0.99, the HC1010 switching power supply from HC Power provides 1000 W at a THD of less than 5 - in line with the European IEC555-2 standard. Input range is $90-264 \mathrm{~V}$ AC with limited inrush current. MTBF is 250,000 hours minimum. XP plc. 0734 845515.

Radio communications products

RF \& microwave couplers. A range of couplers including 3 dB coaxial hybrids, directional and dual
directional and 3 dB card couplers is announced by European Microwave Components. 3 dB card couplers cover $30 \mathrm{MHz}-6.4 \mathrm{GHz}$, handling 50 100 W , while the coaxial couplers allow $3,6,10,20$ and 30 dB coupling up to 14.5 GHz at $2-50 \mathrm{~W}$. European Microwave Components, 0376 515200.

RF modules. A number of "Cell Packs" from Toshiba are available. These are HF circuits in modular form, consisting of amplifiers for narrow and wide band working, mixers and oscillators for operation at up to 2.5 GHz and 28 dB gain. SOT-23-sized packs are used. Toshiba Electronics (UK) Ltd, 0276694600.

Miniature UHF transceiver. A UHF radio transceiver for use in portable data capture units, the TCV450, has a 10 ms T/R switch for rapid data exchange when taking data from intelligent outstations. Receive current is less than 15 mA and it puts out either 500 mW or an adjustable low power of 1.50 mW for battery economy. To improve T/Rswitching time further, a "hot standby" mode allows the transmitter to be enabled in less than 1 ms . Operating band is 400 470 MHz , with 25,20 and 12.5 kHz spacing. Wood and Douglas, 0734 811444.

Switches and relays

Sealed miniature switches. Very small toggle switches from Caro are claimed to be proof against dust and water. Units in the 200 series are designed for PCB mounting and come in 3 or 6-pole versions, with five different functions, with either metal or plastic levers and in five terminal arrangements. They are rated at 0.4 VA with voltages of $28 \mathrm{mV}-28 \mathrm{~V}$ and insulation resistance is 500 VDC at $1000 \mathrm{M} \Omega$. P Caro \& Associates Ltd, 0217421328.

Transducers and sensors

Rotary sensor. Contactless rotary sensors in the Bluepot range by Midori have an electrical function angle of $\pm 45^{\circ}$ at an output sensitivity of 1.5 of the input (12 V DC) per 10° rotation. Independent linearity is ± 2 of full scale and the input impedance is $12 k \Omega \pm 30$. Kynmore Engineering Co. Ltd, 0714056060

Piezo positioners. NTK, a Japanese company, have introduced a range of piezoelectric actuators for fastresponse, large displacements. The devices use the piezoceramic bimorph principle in reverse, so that applying a voltage causes a deformation. Position control to a resolution of $0.01 \mu \mathrm{~m}$ is obtainable in a feedback circuit. Piezostack modules contain a number of the elements which can provide a constant high pressure outside the range of solenoids. Quantelec Ltd, 0993 776488.

COMPUTER

Computer board level products

Input scanner. As an alternative to annunciator panels, the ISI64 scanner is an interface to Amplicon's message displays and allows 64 single-contact inputs to call programmed fault, alarm or instruction messages. Master/slave operation allows up to 256 inputs and the unit will work with alphanumeric message panels, with AC or DC power supplies. Amplicon Liveline Ltd, 0273608331.

96 -channel i/o. An extension to the Blue Chip range of programmable i/o cards is the PIO-96, a generalpurpose interface card having 96 digital lines that can be programmed as inputs, outputs or a combination. Signals in and out are at TTL levels. 50 -way IDC connectors terminate the 96 i/o and two common lines and allow a screw-terminal block to be attached. The board works with PC XT/ATand the true look-alikes. Blue Chip Technology, 0244520222

60Mflops with analogue i/o. DBI96 from Data Beta is a PC extension card for video and audio processing providing 60Mflops of peak
processing power and 16 -bit analogue i / o, together with 64 Mbyte of dram. It uses the Motorola DSP96002 signal processor and the extensively expandable Hyperbus mezzanine bus for communication between boards without overloading the PC. DT-Connect, for the support of co-processors, custom i/o and access to frame-grabber outputs is also included. The BUG-96 code debugger is supplied and an option is development software including SPOX operating system and a C compiler. Data Beta Ltd, 0734 303631.

Four-channel analogue input. Datel's PC-414A analogue input board samples four channels simultaneously by means of four sample-and-hold amplifiers, multiplexed to a $1.5 \mathrm{MHz}, 12$-bit A-toD converter. It is intended for phased sonar arrays, receiver correlation and de-skewing of multiple signals. Data is continuously streamed, with no

Teletext de-chaffer. MicroEye TV1 from Digithurst goes between a teletext source - a television - and a PC, with a view to sorting the selected wheat from the broadcast chaff. The software that comes with the card looks through the received pages and alerts the user when some of the wheat is found, importing it into Windows for formatting and subsequent printing. To further relieve the user of possible fatigue, the unit will learn the codes used by a video recorder's handset and use them via its own handset to switch the video on when something of interest appears. Digithurst Ltd, 0763242955.
loss, to PC AT memory, via an onboard 4 K Fifo register. A parallel port allows the board to be used as a front end for array processors or other systems. Datel (UK) Ltd, 0256 469085.

AT processor card. A half-length ATcompatible processor card, the SC286 from Fairchild, p'ugs into a standard AT passive backplane to give the functions of a 16 MHz motherboard, two serial ports, a printer port, floppy interface, IDE hard-disk interface and keyboard connector. Lack of sensitivity to noisy surroundings and a built-in watchdog timer that resets the CPU if the system hangs means an easy mind if the unit is used in critical or unattended conditions. The card is available in one of a range of PC chassis or as an OEM component. Fairchild Ltd, 0703559090.

DSP on a PC. EPC166 from Hitex is co-processor card for the PC, which turns the computer into a real-time data acquisition and processing instrument. Using the Siemens RISC 80C166 microcontroller, the combination provides 12 -channel A-to-D, 64 digital i/o lines, 16 PWMs, 16 capture and compare channels, two uarts, 256 Kb static ram, a digital PLL and 10 MIPs at 40 MHz - all making the system very suitaole for DSP or complex real-time pracess control. Programming is in either C or assembler. Hitex (UKI Ltd, 0203 692066.

Faster neural nets in Windows. A plug-in accelerator card for PC ATs and the like gives more than 100 times increase in the speed of the Neural Desk neural network package running in Windows 3 The speed increase comes from an ability to speed up the training procedure, but the card also improves the performance and response time of installed programs; it will go into any expansion slot. Neural Computer Sciences, 0703667775

Industrial i/o. To interface bus-based and single-board microcomputers to the world of industrial wiring, RX101 by Syntel is a 16 -channel module having eight digital outputs to switch up to $30 \mathrm{~V} D \mathrm{C}$ at 2 A arid eight digital inputs reading from 1 1́c to 24 V DC. I/o
lines are opto-isolated to 2.5 kV and and are reverse-polarity protected, leds indicating their status. Debouncing is incorporated for each input. Syntel Microsystems, 0484 535101.

Development and evaluation

H8/330 evaluation board. Hitachi now have the LEV8330, which is an evaluation board for the H8/330 family of microcomputers. This s a single board, with built-in firmware to provide monitoring and debugging, which works with a PC via the supplied serial interface and software. It contains PIAs and uarts to replace i/o used by the system. Hitachi Europe Ltd, 0628585000.

16-way gang programmer. Up to 16 memory cards may be programmed by this device, which is intended to copy data for distribution to point-ofsale terminals, for example. It is available as a stand-alone instrument or as an extension to the ITT Cannon PCMEM PC-based memory card development system, in which the programmer enables DOS file transter and editing to be used to customise each card in the unit. A novel copying procedure makes for high-speed copying. ITT Cannon, 0256473171.

Computer peripherals

Rewritable optical disk drive.
Optistore 650 is claimed by DPL tobe the fastest in the world, having an access time of 37 ms . It uses 5.25 in disks and has a formatted capacity of 652 Mbyte , supported by a 256 Kbyte buffer. The unit will interface to a range of host computers, including Apple Mac, Sun and the IBM PC and supports synchronous or asynchronous SCSI transfer at 4 Mbyte /s and 2Mbyte/s respectively. Data Peripherals (UK) Ltd, 0785 57050.

SCSI interface. Rimfire 5500 is a SCSI peripheral interface for transparent integration into PC AT systems. It possesses its own 80186 processor, performing DMA transfers at up to $10 \mathrm{Mbyte} / \mathrm{s}$. An on-board BIOS eprom allows the system to be booted from SCSI disks, configuration changes being performed by means of standard software. Unix, Netware OS/2 and MSDOS SCSI subsystem software avoids the need for operating-system changes. AT floppydisk drives are supported, as are SCSI-2 devices. Diamond Point Intl Ltd, 0634722390.

Oscillating between decametric and millimetric waves

Oscillators. even in this digital cra. remain at the heart of RF electronics. Novel ideas, new active devices for an ever-wider frequency range and the adoption of guasi-optical techniques akin to those of the gas laser all contimue to merit attention. So it was surprising that only 30 people attended the IEE collopuium "Characterisation of oscillators - design and measurement" - particularly as the papers reported important new developments in oscillators. Devices spanned 5 MHz to 100 GHz , ranged in output powers from a few milliwatts to a few kilowatts, and covered everything from vacuum tubes to helerojunction bipolar transistors (HBT). aninal tagging devices to industrial RF heaters.

Better DDS

RF continuous-wave oscillators are inherently analogue devices. But significant progress is being made in reducing the phase

AW Dearn reported an RF-on-wafer MMICbased dielectric resonator oscillator within a single-chip low-noise downconverter (INC). Prototype chips have an IF output between 0.9 .5 to 1.3 GHz .
noise of direct digital symbesisers (DDS). As costs steadily reduce and more suitable devices appear, DDSs seem set to replace phase-locked-loop synthesisers for many of the more demanding applications in communications and radar.
M Bozic (University of Bradford) who. with Professor JG Gardiner, has been carrying our work sponsored by GEC Plessey Semiconductors, has achieved excellent phase noise characteristios with DDS using 100 MHz ECL.. IIs synthesiser hats a close-to-zarrier phase noise profile comparable to the very best non-synthesised oscillators: $-120 \mathrm{dBc} / \mathrm{Hz}$ at 10 Hz offect from a $5.8 .5 \mathrm{ML} / \mathrm{c}$ carrier.

Phase noise performance is ol paramount interest in such critical areas as Doppler radar. Also, output from a DDS often needs frequency tramsation to microwave frecpuencies through use of direct analogue synthesisers or phase locked loops. so phase noise characteristics of devices neel to be accurately determined.

Bozic has found that DDS used with the correct clock source produces a close-tocarrier phase noise profile comparable to free ruming oscillators and so is suitable for demanding applications. Phatse noise floor will depend largely on the logic family and the specilic properties of the D-to-A converter. Bozic's measured results show a relationship between the phase novise profile of the synthesised waveform and the phase noise profile al the clock source.

Consumer electronics

An interesting consumer electronics development was reported by AW Dearn (GEC-Marconi Materials Technology I.td. Caswell) in a project partly funded under the Espirit 5018 Cosmic programme. He deseribed an RF-on-wafer (RFOW) MMICbased dielectric resomator oncillator (DRO) within a single-chip low-noise down-

Building blocks of the direct digital synthesizer.
converter (LNC). The device is said to be suitable for reception of DBS signals between 10 and 11.5 GHz (noise figure about $1.2(\mathrm{~B})$ and prototype chips have an IF output between 0.95 to 1.3 GHz .

A single negative-resistance circuit (NRC) included on chip allows use with an extermally-stabilised dielectric resonator (puck and tuning screw). To cover the fult range from 10 to 11.5 GHz DR pucks for $10.8 \mathrm{GH} / \mathrm{z}$ are used. In a novel feature, test pads are included on all three ports. The facility makes possible RFOW testing of the LNC - a highly desirable facility from a cost viewpoint since it allows pre-selection of RF-good devices before dicing, sorting. package assembly and bonding.

Peter Topham (GEC-Marconi Materials Technology) together with Dearn and G Parkinson reported on use of the GaAs heterojuction bipolar transistor (HBT) as a low-phase-noise oscillator of wide tuning range. Frequencies range up to $20 \mathrm{GH} /$ and the device includes. for the first time, a yigtuned HBT oscillator. The work has underlined the phase-noise advantages of HBT"s compared with mesfet devices and also breaks new ground in several ways.

Topham reported the widest electronic runing range yet achieved for an HBT oscillator (1.8 to 1), and by using a yigresonator as the tuning element, satid he has achieved the lowest phase noise so far reported for a variable-frequency HBT oscillator ($-110 \mathrm{dBc} / \mathrm{Hz}$ at 100 hHz offset). The varactor-tuned oscillators achieve a tuning range of 1.3 to 1 and phase noise of $-100 \mathrm{dBc} / \mathrm{Hz}$ at 100 kHz offsel - comparing favourably with silicon BJT oscillators and some 25-30dB quieter than GaAs mesfet oscillators.

All this makes the HBT an attractive device for microwave sources al higher frequencies. By taking advantage of the semi-insulating substrate, monolithic

DDS design

A DDS comprises four main components: a phase accumulator; a phase-to-amplitude converter; a digital-to-analogue converter; and a low-pass filter (LPF). The phase accumulator counts through the memory look-up table storing a digitised sine wave at a rate proportional to the required frequency setting. The memory converts the phase information into amplitude information as a N -bit approximation of a sine wave. The DAC translates this into staircase form. The L.PF removes unwanted high-frequency sampling components.

RF CONNECTIONS

integration of complete oscillators should be possible.

Still more to learn

Turning to valves, it might be thought that during the past cighty years. designers would have discovered all they need to know about power oscillators based on this well-established technology. But PM Sawyer (EEV) reports he has been achieving more consistent power efficiency than normatly found in industrial RF heaters used on the lower-frequency ISM bands. Working with a $R R / 162$ valve in a $10 \mathrm{MH} / 2$ groundedgrid high-power oscillator, he has shown that the high efficiency extends to a wide frequency range and depends critically on feedback impedance. The usual fall off in efficiency at lower frequencies arises from the effect of the phase angle on the anode volage swing. To avoid a significant reduction in efficiency, the reactive impedance in the input circuit needs to be low compared with the resistive impedance.
P G Frayne (Royal Holloway \& Bedford College) was one of several speakers describing work connected with quasioptical millimetre-wave oscillators. He noted that at these frequencies it is possible to construet an oscillator very similar in principle to the gas laser, though with some essential differences; amplification is

Lower power tagging

Electronic tagging applications need a reduction in drain on the battery. G B Morgan (University of Wales) reported work carried out by KF Tsang (City Polytechnic of Hong Kong) on high-efficiency 800 MHz oscillators based on an improved version of the procedure developed in Poland by Marian Kazimierczuk. An output power of 26 dBm with an efficiency of better than 54% and a noise of $-80 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz offset has been achieved, with stability relatively insensitive to collector-voltage variations though careful measurement is required on individual transistors used.
Ian | Dilworth (university of Essex) has also been working to reduce power consumption of sub-miniature VHF crystal-controlled
through a surface rather than a volume distribution of negative resistance; and frequency is determined by natural frequency of the gain element and the resonance condition for the Gaussian beam mode excited within the quasi-optical cavity. Frayne"s work includes a self-oscillating CW power-combiner achieving near 100% efficiency with small numbers of printed microstrip Gunn-diode sources.

Pat Hawker
G Frayne described construction of an oscillator very similar in principle to the gas laser.
animal and fish tracking devices, but by pulsing the oscillator rather than increasing inherent efficiency. For this application he showed that conventional third overtone ATcut crystals, despite the need for frequency multipliers, tend to prove superior to the newer chemically-etched VHF crystals which have a higher average ESR.

Oscillators and multipliers providing a few milliwatts of power output at spot frequencies in the range $200-800 \mathrm{MHz}$ have been developed with surface-mount components and are capable of operating down to a 1 V supply. The most efficient power source is a zinc-air battery, but this cannot be used for fish tagging (such as salmon in fresh water) and a silver-oxide battery is used instead.

FREF TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form as this free offer applies to subscribers only. Your ad will be placed in the first available issue.
This offer only applies to private sales of electrical and electronic equipment.
Trade advertisers should call Pat Bunce on 0816528339
All adverts will be placed as soon as possible However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondance with readers using this service, we also reserve the right to rejectadverts which do not fulfil the terms of this offer.

[^2]
LOW COST RANGER1 PCB

 DESIGN FROM SEETRAX
 \section*{- Circuit Schematic
 \section*{- Circuit Schematic

 - Circuit Capture

 - Circuit Capture

 - PCB Design

 - PCB Design

 - Host Of Outputs

 - Host Of Outputs

 All-In-One Design System

 All-In-One Design System $£ 100$ $£ 100$

 Fully Integrated Auto Router

 Fully Integrated Auto Router $£ 50$} $£ 50$}Ask Us About Trade-In Deals Call Now For Demo Disk on 0705591037

Seetrax CAE • Hinton Daubnay House Broadway Lane • Lovedean • Hants • PO8 0SG Tel: 0705591037 • Fax: 0705599036

Finally... an upgradeable PCB CAD system to suit any budget

BoardMaker 1

BPCB and schematic slatting
Easy and intuitive to use

- ' Surface mount support
- 90,45 degrree and curved track corners
- Ground plane fill
- Mechanical clearance crecking

Pay by Visa or Access

CLASSIFIED

APPONTIWENIS

Design Engineers

Celertec is an electronics design consultancy, within a PLC group. specialising in innovative radio data communication projects.
To find real solutions to novel problems, we are currently seeking two bright creative design engineers, with several of these skills

VIIF or UlIF radio

- Analogue and digital logic
- Microcontroller and HLL
software
- Custom chip design
- Use of electronics CAD tools Graduates with + years' experience are ideal but innovators with more or less experience should apply too. Starting salaries will match experience and qualifications.
This is the opportunity for talented engineers to get to the foretront of advancements in the industry

Please send your CV to Brian Philpotts at: Celertec, RAMAR House, 22 Napier Road. Croydon CR2 6HG. Tel. 181680 1010.

ARIICIES FORSALE

VALVES AND C.R.T.S
(also Magnetrons, Klystrons, 4CX250/350)
Minimum order charge of $\varepsilon 50+$ vAT

One million valves in stock. Obsolete types a speciality! Fax or phone for quote.					
Special prices for wholesale quantities.					
Orders from government departments, overseas etc. most welcome.					
hode ray tubies					
Please enquire if					
		${ }_{\text {E55 }}^{5}$.00 M24 41215 HH			
CME1431W POA DH3-91 E50.00 M24 122WA E55					
		Maqnerons			
CVTYPES Many					
			${ }_{\substack{4 C \times 2503 C}}^{4 C \times 350 A}$		
Cvatia	EGY3)				
${ }_{\text {cxilic }}$					
$\xrightarrow[\text { DFF91 }]{\text { E80L }}$					
special quality - Military'CV, Iow micropho					
BILLINGTON EXPORT					
Unit F2, Oakendene Industrial Estate, Near Horsham, Sussex RH13 8AZ. Callers by appointment only. Telephone: 0403865105 Fax: 0403865106 Min. UK order £50 + VAT. Min. Export order \&50 + Carriage.					

ARTICLES FOR SAIL

FOR SALE

A large number of professional HF communications equipments consisting of Racal TA1816 500W transmitters, Plessey PR2250 receivers with PV2277 mode select units, Harris/Redifon RFS11 Preselectors, Sayrosa 607 synthesizers, Racal LA1117 Piccolo modems and HCD 1 MHz frequency standards. In addition there are significant numbers of Siemens T100 teleprinters. Further details on request, viewing by appointment.

Contact: E.B. Turner,
Foreign \& Commonwealth Office, Hanslope Park, Hanslope, Milton Keynes MK19 7BH
Telephone: Milton Keynes (0908) 510444 ext. 5862

Classified
Advertisers
please note
The June issue of
EIECTRONICS WORID

+ WRETESSWORTD
will close for press on Wednesday 6th May 1992
To reserve your
space telephone
Pat Bunce on 081-652 8339

PRINTED CIRCUITS

PROTOTYPE CONVENTIONAL
SAME DAY DISPATCH PROTOTYPE P.T.H. - 5-7 DAYS PRODUCTION CONVENTIONALCNC DRILLING AND ROUTING FULLY TOOLED REALISTIC PRICES
CALMARK (Technical Services) LTD TIPTREE, ESSEX
0621-818267 Fax No. 0621819105

SECOND HAND

"Belling Lee"
$8 \mathrm{ft} \times 8 \mathrm{ft}$ Shielded
enclosure in very good condition.
Price $£ 4,950$ ex. London.
Further details call "Buyers News" 0712844074

To advertise in the Articles for Sale section Call Pat Bunce on 081-652 8339

ARTICLES WAMTIED

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860214302 . Fax: 0438812387

WANTED: VALVES, TRANSISTORS I.Cs (especially types K T66. KT88. PX4. PX25). Also capacitors, antique radios. shop clearance considered. If possible. shop clearance considered. It possible.
send written list for offer by return. Billington Valves, phone 0403865105. Fax: 0403865106 . See adjoining advert.

ARTICLES WANTED - 10 advertise in this section costs start at only $£ 2.50$ per word + VAT. Call Pat Bunce on 081652
8339.

STEWART OF READING
110 WYKEHAM ROAD READING, RG6 1PL. TEL: 07346804 i FAX: 0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M\&BRADIO
86 Bishopgate Street, Leeds LS1 4BB.
Tel: 0532435649
Fax: 0532426881

is the only magazine in Britain that provides zomprehensive up-to-date coverage of video and TV technology for both the amateur enthusiast and the professional engineer. So cell our subscriptions hotline today for your copy on $\mathbf{0 7 8 9} \mathbf{2 0 0} \mathbf{2 5 5}$ - remembering to quote ref no. TV1.
SERVICING•VIDEO SATELLITE • DEVELOPMENTS

CLASSTFIED ADVERTISEMENT ORDERFORM					
1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next months issue and it will cost, for a single insertion, only $\mathbf{£ 2 . 5 0}$ per word

Special rates:

6 insertion $\mathbf{£ 2 . 1 5}$ per word/issue. (Advertisement can appear every month or every other month onlyl 12 insertions $£ 1.80$ per word/ issue. (Advertisement to run every month only).
WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow
ExtraS:
Epot Colour .. 20%
Box number service....................................22.00

Lineage advertisements under $\mathbf{£ 5 0}$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT: All major credit cards accepted Please debit my card a total of f

Expiry Date:
Please ensure that adoress given is where your credit card statement goes to. NAME...
ADDRESS. \qquad
TEL NO

TEL NO .. SIGNATURE .
All advertisements must be received 5 weeks prior to publication date.
All cancellations must be received by 8 weeks prior to publication date after that. No advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, Room L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Pat Bunce on 081-652 8339.

matmos

TATUNG TCS8000 386 COMPUTER SYSTEM at $£ 359$

```
Full 386Dx system complete with 102 keyboard and manual. Includes 210 watt PSU , ,/O card, hard and flopp
contsoller !please state MFM. RLL. IDE or SCSI.), 12 or 1.4 Mbyte floppy drive, 1 Mbyte RAM uegradabe
```



```
MATMOS HIGH PERFORMANCE 286 SYSTEM at £299
```



``` TOP SPEC. 386 AND 486 SYSTEMS hard drive L399
TOP SPEC. 386 AND 486 SYSTEMS
40 MHz 386 system, 64 K Cache RAM, 1 Mbyte RAM, 1.44 Mbyte floppy drive, \(1 / 0\) card etc. E579
33 MHz 486 system, 64 K cache RAM, with 2 Mbytes RAM E779, 50 MHz 486 system f979. 33 MHz 486 system, 64 K cache RAM, with 2 Mbytes RAM E779, 50 MHz 486 systern 9979 ,
Phone for detalis. carflage on systems \(£ 15\) See below for add ons and other stock items 486 CAD/DTP SYSTEM WITH \(1280 \times 1024\) MONITOR
48633 MHz cache system with 91 Mbyte Seagate hard drive. 3.5 -nch 144 floppy, 4 megs RAM (upgradeable to
32 Megs), tower cose. 102 keyboard, 2 serial 1 parallel ports, OPTi chioset, AMI bys, Microtietd Grantros T8 colour graphics controller with 2 Mbytes video RAM and \& MIPS processor, Hitachi 15 inch ultra high resolution monitor to display \(1280 \times 1024\) non-1nterlaced Will drive Windows 3, ACAD etc Cancelled detence order limited stocks \(£ 1695\)
Ask for colour leaflet' or quote for machine to your spee A86-20 CAD system, with 2 Mbytes RAM, \(1024 \times 768\) colour monitor, 62 Mbytes hard drive, co processor, will drive
Wtndows 3 , ACAD etc \(£ 999\). phone tor details and colour leatlet. HIGH SPEED FLATBED SCANNER
AVR- 302 high-resolution flatbed scanner Linear CCO element scans 300 DPI with 32 grey shade dithering Supplied
complete with Megascan high-speed card with 1.3 Mbyte of RAM on board and sorn
software. Will output to page Maker. Venture etc or provide OCR function \(£ 299\) (original cost over \(£ 1500\) ) (carr E9.501.
```


FLOPPY DISK DRIVES

```
360 K 5.25 ineh IBM standard half helght drive E 29.95 (carr E3 50 )
720 K 3.5-inch Citizen OSD third-height drive for XT
```


HARD DISK DRIVES

```
DE: 20 Mbyte Western Digital WD93028AD 3.5 inch half-herght 669
MFM. 10 Mbyte NEC 51245.25 -mch E39, 20.62 Mbyte Micropols
MFM. 10 Mbyte NEC 1275.25 -nch \(\mathrm{E} 39,620,62\) Mbyte Micropolis 1324 A 525 fuil height \(£ 129\) - E 100 in systems
SCSI- 20 Mbyte Miniscribe \(8225 S ~ 3.5\) inch 66995 , 91 Mbyte Seagateflmprim
spl: all with 16 bu height ta09.
SDI: ail with 16 -bth high speed controllers - 94 Mbyte Seagateflmpr mus ST2100 525.3 Mcropolis 3555,25 -nch full height \(£ 239,180 \mathrm{Mbyte}\) Micropolis 525 -nch half height f299, 330 Mbyte Mich \(£ 219\), 141 Mbyt TAPE STREAMER
With two tape cartriges filis.
Tape cartridge type DC600, new, 66
DISK DRIVE CONTROLLER CARDS (carr \(£ 2.50\) )
T MFM [37.50, \(x\)
SOI (Cache) E49
Muln SCSI card for hard dive, CD, WORM, tape etc Future Domain firmware E 59
High transfer rate intelligent SCSI card; supports all devices under MSDOS, Unix, OS/2 and Netware flas
As above with SCSI and IOE intertaces on one card f179
```

IBM COMPATIBLE AT MOTHERBOARDS, CARDS etc
33 MHz 486 Very latest 80486 , baby size motherboard with extra 64 K cache Floating point co-processor bult into
CPU Eight expansion slots, OPTI WB chipset, £ 569 (carr 551.50 MHz version 256 K cache C 799 (carr $\mathrm{E5}$).
40 MHz 386 motherboard. $80336-40 \mathrm{cpu}$ up to 32 Mbytes SIMMS RAM $£ 299$ (carr $£ 3.50$)
20 MHz 386 motherboard, accien
1 Mbyte RAM for $386 / 486$ E34
12 MHz 286 motherboard, 8 slets, AMII BIOS, 80287 socket, Landmark 16 MHz , up to 4 Mbyte of SIPPS RAM on board, 16 MHz 286 vers
AT MULTI I/O card with 1 parilel (carr $£ 3.501 .20 \mathrm{MHz}$ E125.
AT I/O card, paraliel, 2 serial, game $£ 14.95$
Mono graphics card $£ 1295$,
Mono graphics card $£ 129$ (al: carf © 2)
Mouse Microsot comple
Mouse microsot compatible, serial with all sottware $£ 19.95$ (carr f4).
Keyboard 102 key UK. top quality click action $£ 2$.
NETWORK PRODUCTS
and connectors in stock

AT/XT CASES WITH PSU

Desktop with $3 \times 525-\mathrm{nch}$ and 1×35 inch bays, latest styling, $£ 3495$ With 200 W pSu E 69 icarr E 650
Luxury desktop as above, with psu, but to accept full size motherboard, small footprint, $£ 89$, mini tower $£ 89$ (car ${ }_{\text {E }} \mathrm{f} 0$) Full size tower with 6×525 inch bays. 230 W psu, digital speed display, sults all motherboards inc 486 E129 (carr
(10)

INTEL 386 PROCESSOR AND 387 CO-PROCESSOR

MONITORS
MONO HERCULES 14. nch antber screen, high res. display, 559.95 (carr E6.50)
MONO VGA 12 or 14 inch paper white high resolution f99 (care $\mathrm{f6} 50$:
MONO SVGA A4 Screen 1024 ly 768 with card and drivers fint
COLOUR SUPER VGA 14 meh Hyundal 1024 by 768 mutisync, 0.28 dot pitch, high quality display, f 239 (carr f 10) CAD COLOUR
20 -inch fixed frequency monitors (1024 by 768 and 1280 by 1024 - - phone for current stocks

to run from VGA card. Brand nsw but sold wifho non interlaced, very high res top quality monitor, requires mod
16-bit VGA card, 256 K , all errulations, up to 800×600 CARDS
Swutchable for use in $\times T$'s 53750
16 -bit 1024×768 super VGA card
manuals and disks Latest version of ¢2 00)
high resolution with 512 K and drivers for Windows 3, Acad. VP etc Full
the industry standard Trident chip set. $£ 59$. 1 Mbyte version $\mathrm{E79}$ (carr on cards MODEM
Hayes Compatible 2400BPS internal modem fully compatible with MBP error corraction Auto dialianswer and speed
sensing Works with
sensing Works POWER SUPPLY
POWER SUPPLY
Astec BM140 IBM XT/AT compatble 150W:
panel switch, good value at f 19.50 (carr E 4 : DIGITISERS

SOFTWARE AND DISKS
DR DOS 6 L.atest operating system from Oigital Research with many extra features including file compression and

WINDOWS 3 Latest vers ton from Microsoft on 35 .nch disks E69.95
3.5-INCH DISKS Box of ten 1.44 Mbyte preformatted $£ 9.95$ (carr $£ 2$)
NB * VAT and carriage must be added to all tems (quotes tor carriage overseas).

INDEX TO ADVERTISERS

OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Pierre Mussard, 18-20 Place de la Madeleıne, Parıs 75008.
United States of America: Jay Fenman, Reed Business Ltd., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827

[^3]
UNAOHM

RANGE OF TV FIELD STRENGTH METERS WIDENS UP WITH

Omni-Pro II - The Next Generation

When you get a new product, what are your main concerns? Freedom from frustration is certainly one important consideration, for your time is valuable. You will want a product which is reliable and sophisticated, yet simple to use, with clearly written documentation. You will be looking for a high standard of technical support and regular upgrades for the product.
We at Dataman recognise how difficult it can be to choose between programmers which look and cost much the same. So, instead, why not concentrate your effort into choosing a reliable vendor. Dataman has been the leading vendor of low-cost programmers for as long as the
market
has existed.
Any of our customers will
tell you that
Dataman has always
supplied excellent
well-supported products.
That's why we're still here! We take technical support seriously. We give you your money back, if you're not satisfied. These are important points to consider. But now let's take a look at some of the special benefits of owning Omni-Pro II.

What Benefits?

Well, for instance, the interface is not via the computer's parallel port, which is speed-limited, and probably connected to your printer. A dedicated plug-in half card performs fast data transfers.
The software is a professional package in full colour that will run in only 400 K of RAM. What's more it will run on any $\mathrm{PC} / \mathrm{AT}$ or compatible - even the latest 486 machines. That's because Omni-Pro II has its own independent clock - some programmers rely on the computer for timing, and won't work with faster machines.
Ground pins are connected by relays not by logic outputs. Some vendors won't approve programmers which don't ground pins in this way.
The 40 -pin Textool socket can be changed without even having to remove the cover. A complete range of PLCC adapters is available.

Truly Universal

Omni-Pro II has universal pin-drivers which will accommodate a very wide selection of parts. You can program BIPOLARS, PROMS, E/EEPROMS, PALS, GALS, FPLAS, PEELS, E/EEPLDS and MICROCONTROLLERS. The latest FLASH EPROMS are supported too. The list has 1250 devices already and substantial numbers of new devices will be added FREE every quarter. We have optimised programming speeds, using algorithms like Quickpulse, Flashrite and TI Snap and have already gained parts approval from TI, NS and ICT. We provide fast downloading of files in any standard format: Intel Hex, Motorola, Tek Hex, HP64000ABS or Binary. You can also send JEDEC files from all popular PLD compilers and JEDEC standard vector testing is supported: a full array of test condition codes can be generated.

> Remember - you get a 30 day money-back guarantee, FREE quarterly software updates and
> FREE technical support - as much as you need. Phone now for a free Demo Disk and up-to-date Device-List

Omni-Pro II comes with a FREE copy of NS's superb Open Programmable Architecture Language - OPAL Junior.

Omni-Pro II - complete

\qquad $£ 495$

Gang-of-eight Programmer...... £395

 This production programmer from Dataman can handle all 25 and 27 pin EPROMs up to 512 K bits. Programs eight copies from a master EPROM, or from an object file. The G8 offers fast programming methods and three, user-selectable programming voltages. G8 is clearly designed for the busy workshop being supplied, as standard, in a high quality steel case.CIRCLE NO. 102 ON REPLY CARD

Software Development from £195

Dataman's Software Development Environment, SDE, comprises a two-window Editor, Macro Assembler, Linker, Librarian, Serial Comms and intelligent Make facility. The latter reassembles selectively just those files you have edited, links them and downloads the object-code to your Emulator or Programmer. It's quick and painless. If the assembler finds a mistake it puts you back in the Editor at the right place to fix it.
The Multi-Processor version supports all common micros - please ask for list. The Disassembler makes source files out of object code - from a ROM, for example. SDE is not copy-protected.
SDE Multi-processors \& Disassemblers.......... $£ 695$ SDE Multi-processors (includes 82 micros) ... $£ 395$ SDE Single-processor.
£195
OPAL from NS £297
Are you looking for a PLD design tool? Then OPAL could be just what you need. It supports state machine, truth table and Boolean equation entry, also optimisation, verification and implementation, for a great many PLDs.

Erase an EPROM in ten seconds!

Simply hold the gun right over the EPROM's window and squeeze the trigger. The strobe eraser puts out intense UV light at the right wavelength $(253.7 \mathrm{~nm})$. Erase EPROMS on the bench, in the PCB or in the programmer.

Strobe Eraser
 £175

UK customers please add VAT. Major credit cards accepted. UK delivery available next working day.

TdTACdn 气o

Station Road, MAIDEN NEWTON, Dorset DT2 0AE, England
Phone0300-20719
Fax... $.0300-21012$
Telex
.418442
Bulletin Board
$.0300-21095$
(300/1200/2400/9600 V. 32)

[^0]: Electronics World + Wireless Worid is published monthly By post, current issue £2.25, back issues (If available) £2.50. Orders, payments and general correspondence to L333. Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group
 Newstrade: IPC Markettorce, 071 261-6745
 Subscriptions Duヨdrant Subscription Services, Oakfteld House, Perrymount Road, Haywards Heath, Sussex RH 16 3DH Telephone 0444441212 . Please notify a chance of address. Subscription rates 1 year (normal rate) $£ 30$ UK and $£ 35$ outside Telep
 UK. UK.
 USA: $\$ 11600$ arm.all. Reed Business Publishing (USA), Subscriptions office. 205 E. 42nd Street, NY 10117.
 Overseas advertising agents: France and Belgium. Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Busıness Publishing Ltd. 205 E. 42 ר d Street. NY 10117.Telephone (212) 867-2080. Telex 23827.

 USA mailing agents: Mercury Arfretght International Lid Inc, 10(b) Englehard Ave, Avenel NJ 07001 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above
 ©Reed Business Publishing Lid 1992 ISSN 09598330

[^1]: QUALITY ELECTRONIC EQUIP VENT BOUGHT. ALL PRICES EXC OF P\&P AND VA

[^2]: Please send your completed forms to:
 Free Classified Offer: Electronics World, L333 Quadrant House, The Quadrant, Sutton Surrey SM2 5AS

[^3]: Printed in Great Britain by Riverside Press, Gillingham, Kent, and typeset by Marlin Graphics, Sidcup, Kent DA14 5DT, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. (O Reed Publishing Litd 1992. Electrontes and Wireless World can be obtained from the following: AUSTRALIA and NEW ZEALAND: Dawson \& Sons (S.A) Ltd.: UNITED STATES: Worldwide Media Services lac Subscription Service Ltd, Gordon \& Gotch Ltd., SOUTH AFRICA: Central News Agency Ltd.; William

