ELECTRONICS

 WORLD

 WORLD
 Denmark DKr. 70.00 Germans DM 15.00 Greece Dra. 760 Holland Dil i4

JANUARY 1992 £1.95

ISTORY

Marconi's first experiments

POTLIGHT

The perfect micropower op amp?

EVIEW
PC based speaker testing

MULATION
Working with PSpice

2EE SOFTWARE* PSpice 4.05
Zetex transistor models circulation only. See p6 for de-ails.

Omni-Pro II - The Next Generation

When you get a new product, what are your main concerns? Freedom from frustration is certainly one important consideration, for your time is valuable. You will want a product which is reliable and sophisticated, yet simple to use, with clearly written documentation. You will be looking for a high standard of technical support and regular upgrades for the product.
We at Dataman recognise how difficult it can be to choose between programmers which look and cost much the same. So, instead, why not concentrate your effort into choosing a reliable vendor. Dataman has been thẹ leading vendor of low-cost programmers for as long as the
market has existed. Any of our customers will tell you that Dataman has always supplied excellent well-supported products.
That's why we're still here! We take technical support seriously. We give you your money back, if you're not satisfied. These are important points to consider. But now let's take a look at some of the special benefits of owning Omni-Pro II.

What Benefits?

Well, for instance, the interface is not via the computer's parallel port, which is speed-limited, and probably connected to your printer. A dedicated plug-in half card performs fast data transfers.
The software is a professional package in full colour that will run in only 400 K of RAM. What's more it will run on any PC/AT or compatible - even the latest 486 machines. That's because Omni-Pro II has its own independent clock - some programmers rely on the computer for timing, and won't work with faster machines.
Ground pins are connected by relays not by logic outputs. Some vendors won't approve programmers which don't ground pins in this way.
The $40-\mathrm{pin}$ Textool socket can be changed without even having to remove the cover. A complete range of PLCC adapters is available.

Truly Universal

Omni-Pro II has universal pin-drivers which will accommodate a very wide selection of parts. You can program BIPOLARS, PROMS, E/EEPROMS, PALS, GALS, FPLAS, PEELS, E/EEPLDS and MICROCONTROLLERS. The latest FLASH EPROMS are supported too. The list has 1250 devices already and substantial numbers of new devices will be added

FREE every quarter. We have optimised programming speeds, using algorithms like Quickpulse, Flashrite and TI Snap and have al ready gained parts approval from TI, NS and ICT. We provide fast downloading of files in any standard format: Intel Hex, Motorola, Tek Hex, HP64000ABS or Binary. You can also send JEDEC files from all popular PLD compilers and JEDEC standard vector testing is supported: a full array of test condition codes can be generated.

> Remember - you get a 30 day money-back guarantee, FREE quarterly software updates and
> FREE technical support - as much as you need. Phone now for a free Demo Disk and up-to-date Device-List.

> Omni-Pro II comes with a FREE copy of NS's superb Open Programmable Architecture Language - OPAL Junior.

Omni-Pro II - complete
£495
Gang-of-eight Programmer.....£395 This production programmer from Dataman can handle all 25 and 27 pin EPROMs up to 512 K bits. Programs eight copies from a master EPROM, or from an object file. The G8 offers fast programming methods and three, user-selectable programming voltages. G8 is clearly designed for the busy workshop being supplied, as standard, in a high quality steel case.

Software Development from $£ 195$

Dataman's Software Development Environment, SDE, comprises a two-window Editor, Macro Assembler, Linker, Librarian, Serial Comms and intelligent Make facility. The latter reassembles selectively just those files you have edited, links them and downloads the object-code to your Emulator or Programmer. It's quick and painless. If the assembler finds a mistake it puts you back in the Editor at the right place to fix it.
The Multi-Processor version supports all common micros - please ask for list. The Disassembler makes source files out of object code - from a ROM, for example. SDE is not copy-protected.
SDE Multi-processors \& Disassemblers......... 5695 SDE Multi-processors (includes 82 micros) .. $£ 395$ SDE Single-processor.

OPAL from NS

 £297Are you looking for a PLD design tool? Then OPAL could be just what you need. It supports state machine, truth table and Boolean equation entry, also optimisation, verification and implementation, for a great many PLDs.

Erase an EPROM in ten seconds!

Simply hold the gun right over the EPROM's window and squeeze the trigger. The strobe eraser puts out intense UV light at the right wavelength (253.7 nm). Erase EPROMS on the bench, in the PCB or in the programmer.

Strobe Eraser . L 175

UK customers please add VAT. Major credit cards accepted. UK delivery available next working day.

DdTAMAn ©

Station Road, MAIDEN NEWTON, Dorset DT2 0AE, England
Phone 0300-20719
Fax.. $.0300-21012$
Telex . .418442

Bulletin Board.................0300-21095
(300/1200/2400/9600 V. 32)

CONTENTS

COVER: ELECTRONIC

FLUXGATE COMPASS............... 1
Technology for a direct reading compass or the sensing heart of an autopilot. The system ćould alsc be adapted to provide directional information for deaf people. By Richard Noble.

BUYERS' MARKET SHAPES

ELECTRONICS CAD SECTOR
Supplier companies pulling out of cad and suicidal price cutting point to a sector in crisis? Yet the choice of packages is still wide. Steve Rogerson explores.

MLSSA BRINGS SPEAKER

DESIGN IN FROM THE COLD26

Dave Berriman reports on a PC card which may help acoustic engineers forgo the open air or anechoic chamber for those critical loudspeaker measurements.

CRUNCH MARKET FOR DSP CARDS \qquad31

DSP power need no longer be limited to signal processing applications - if a new C compiler proves its worth. Allen Brown sums up XCX.

ADDING SPICE TO TECHNOLOGY .33
$£ 30$ and an IBM PC are enough to allow anyone to experiment with a wide range of electronic devices without having to connect even a single wire. Paul Stewart explains how to set about it.

IC CREATIVITY 40
lan Hickman experiments with the unusual SMM-2044 audio IC.

SCRATCHING THE SURFACE
 OF E-M THEORY 50
 Julian Miller continues the second part of his kinetic theory of electromagneticism.
 IMPROVED HF RECEIVING LOOP
 Small loops are easy to tune but relatively insensitive. Large loops deliver more signal but at the expense of tuning range and omnidirectional lobe shape. Aerial loops based on parallel clover leaves may overcome these limitations says Ronald Salter.

UPDATE SPECIAL . .82
Memory systems made out of stacks of atoms at one time seemed inconceivable. But Shaz Horner reports results on a project which shows such storage may at last be possible.

COMMENT

\qquad
Raising the national interest
UPDATE \qquad 4

Spacecraft antenna put to the test, Eastern Europe open for business - sometimes, UK particle detector for US, Writing on the wall for domestic teletext?

RESEARCH NOTES ... 8
High power laser lenses - not just a mirage?, Solid state outshines gas lasers, Sunk without a trace... of radioactivity, Shock horror model probe...

APPLICATIONS .
TrimDAC - an electronic pot, Versatile AM IF amp and detector, Protecting RF power transistors.

LETTERS
Cause of illness, Absorbing facts about ions, Damming argument, BT parity line, ABC of amplifiers, Active response, Less loss, Fluke details, Criticism reviewed...

CIRCUIT IDEAS
Four channels on a single-channel oscilloscope, Accurate astable multivibrator timing, Millihertz multivibrator, Variable M:S op-amp oscillator, Parallel to RS232-C.

NEW PRODUCTS
$E W+W W$'s round-up of all that's new in electronics.

CIRCUITS, SYSTEMS AND LEESIGNS .69 Micropower op amp offers simplicity and versatility.

PICTURES FROM THE PAST

\qquad
Marconi's early experiments with radio transmission began in 1894. In the next eight years. technology progressed from primitive table-top apparatus to the massive, highpowered installation at Poldhu.

RF CONNECTIONS . .84
Pat Hawker reports on innovation in low-cost synchronous detection.

In next months issue: Receiving teletext on the PC. Laurence Cook describes in detail the hardware/software mix tc download teletext pages onto a PC. The age of the electronic newspaper has arrived.

> FREE ${ }_{\text {software }+}^{\text {PSPIC V. }}$ Zetex transistor models See p6 for details...

EDITOR
Frank Ogden
081-661 3128

DEPUTY EDITOR

Jonathan Campbell 081-661 8638

DESIGN \& PRODUCTION Alan Kert

EDITORIAL ADMINISTRATION 081-661 3614

ADVERTISEMENT MANAGER
Jan Thorpe
081-661 3130
SALES MANAGER
Shona Finnie
081-661 8640
ADVERTISING ADMINISTRATION
Kathy Lambart
081-661 3139
ADVERTISING PRODUCTION
Neil Thompson
081-661 8675
CLASSIFIED SALES EXECUTIVE
Pat Bunce
081-661 8339
PUBLISHER
Rob Marcus
081-661 3930
FACSIMILE
081-661 8956

ARE WE HARD TO GET?

Just one phone call to our Circulation
Actionline brings instant assistance. Some readers have experienced problems in finding copies of $E W+W W$ on newstrade shelves - so we've decided to do something about it. If you have any difficulty purchasing your copy, call our Circulation Actionline. We will follow up your complaint and, more importantly, make sure you can obtain your copy.
Call Olive Kahn on 081-661 8620 and let us tackle your supply problems.

Raising the national interest

A
$\$ 1$ sit here writing this the Maastricht summit approaches. By the time this gets read, the meeting of European heads of state will be largely forgotten. But there are some things which deeply affect industries dependent on long term investment, particularly electronics.
The Government tells us that we must not lose control of our currency, that economic and monetary union would place a straightjacket on the UK treasury, that we would no longer be in control of our own destiny. For instance, the Government expresses concern that subjugation to a European treasury would restrict its freedom to use interest rates as an instrument of economic control.
I submit that the Government has already relinquished control of UK monetary policies, a factual observation without any particular political bias. Mrs Thatcher came into office determined to free the UK from the strictures of a command economy, the notorious stop-go polices of previous conservative and labour chancellors alike. Her crystal clear view of the world determined that everything would find its own level and purpose if it could be freed from the dead hand of bureaucratic control.
She applied this to the economy with a vengeance. In 1981, the Treasury lifted all foreign exchange controls. International Money could come and go as it pleased. It could walk across national borders, it could dictate its own terms to the helpless local development authorities crying out for inwards investment, it could play whole countries off against each other for its favour.
Most countries responded with visible and invisible barriers. For instance the French telecommunications industry put together a careful procurement policy which effectively ruled out the purchase of anything which wasn't designed and built in France. The Japanese hid their industries
behind impenetrable local standards for imported goods while at the same time orchestrating their outward investments to largely exclude leading technology transfer.
The freewheeling Reaganomics of the US in the eighties embodied much of Mrs Thatcher's vision of a totally free market. Its application very nearly killed the US semiconductor industry. It actually succeeded in the destruction of a US owned consumer manufacturing base.
The relaxation of credit controls has been equally damaging to the UK: when International Money packs its bags to live overseas, the Treasury can do no more than rack up the interest rates to entice it back. For instance, an engincering company needing cash for investment has to guarantee returns to International Money which match those on offer from the Treasury - why should Money spend its time on short term holiday in the electronics industry when it can get a better return from the banks? Although interest rates have come down some four points since their peak, they are still around eight points above the inflation rate, an historic high.
Mrs Thatcher's vision of a deregulated economy has placed our national industries in direct competition with the Treasury for investment funds, a truly extraordinary situation. After all, it would seen logical that our companies should compete against their foreign counterparts rather than the banks.
The loss of money controls with the exception of the interest rate is the same problem which has successively bedeviled chancellors Howe. Lawson. Major and Lamont. Going for a single curo-currency is simply recognition that a UK chancellor is now powerless.
Why not hand over the keys of office to Brussels? It currently stands more chance than we do of bringing International Money to heel. Frank Ogden.

[^0]
REGULARS

UPDATE

Spacecraft antenna put to the test

Queen Mary \& Westfield College, part of the University of London, has opened a millimetre-wave compact antenna test range (CATR) allowing radiation characteristics of spacecraft antennas to be measured at frequencies up to 200 GHz in a clean room environment.
The facility will allow RF testing of AMSU-B (advanced microwave sounding unit), a satellite-borne microwave radiometer funded by the UK Meteorological Office. The instrument is being developed by British Aerospace to fly on future NOAA series weather satellites and the European and US Polar platforms.
Funding for the laboratory has been provided mainly by the UK Science \& Engincering Research Council (Serc) under a rolling grant system.
The CATR consists of special reflector panels, a custom-built transparent tenting and air conditioning system, and a railmounted positioning system and turntable all housed in an anechoic chamber.
Computer controlled test and measurement equipment includes an HP 9000 model 310 desk-top computer and a 375 Unix workstation connected to an Ethernet lan for pattern processing and file transfer.

PC on a chip

A single chip ms-dos computer is now a bit nearer with the relcase of a single device which integrates an 80 C 86 processor, systems logic, CGA graphics and a serial port.
Produced by US semiconductor company Chips and Technologies, the 8680 also features power management, memory controller and device emulation capabilities within a low cost 160 pin VLSI package.
The CPU has the complete instruction set of the 80 C 86 together with a few new ones to extend the operating environment. The fully static device runs up to 14 MHz . realising three mips performance.

CATR control room at Queen Mary \& Westfield College overlooking the range's test chamber.

Eastern Europe open

The fall of the Berlin wall and the opening up of Eastern Europe to Western style capitalism is prompting a number of initiatives and potential big money contracts for western companies. But the unsteady political climate is still hitting military expenditure.
In Britain, the Royal Society is pushing for closer scientific relationships between the UK and the USSR and other Eastern Bloc countries by encouraging young posidoctoral scientists from those countries to make visits to the UK to acquire new scientific skills.
It has already signed agreements with Hungary, Poland and Czechoslovakia which will allow 12 postdoctoral fellowships from each country to be made available annually for visits to the UK.
Support for the Hungarian programme has been provided by the Foreign and Commonwealth Office (FCO) and the Soros Foundation and the first 12 fellows have come to the UK.
The Royal Society has also received a grant from the Wolfson Foundation plus extra support from the FCO to start the Polish and Czechoslovakian programmes.

A separate programme for the USSR has been developed with financial support from the FCO and the Society's Parliamentary Grant-in-aid.
In the US, the National Association of Broadcasters (NAB) is trying to establish sister station agreements between broadcast stations in the US and USSR. The initiative will involve the support of the US Information Agency which is responsible for the Voice of America.
Edward Fritts, NAB president, says the programme's objective will be to strengthen the cultural, educational, economic, and professional ties between participating US and USSR stations.
Cable \& Wireless has signed its first joint venture agreement with Russian partner Comincom to establish and operate digital overlay networks in Nakhodka and Sakhalin in eastern Russia.
These will use international telephone, fax and data communications from C\&W subsidiary Hong Kong Telecom. Each network will use 34Mbit/s microwave links interconnecting the earth stations and exchanges. Initially radio links will connect customers in Nakhodka and cable

UK particle detector for US

An advanced particle detector, designed and built at the Science and Engineering Rescarch Council's Rutherford Appleton Laboratory is ready for shipment to the Stanford Linear Accelerator Centre. When installed in the accelerator it will detect and measure particles containing charm and beauly quarks from high energy reactions at the SLAC Linear Collider.
Quarks decay rapidly - lasting only about a million millionth of a second.To detect these particles and record their very short flight paths prior to decay, the design incorporates 480 charge coupled devices in a mosaic. Each CCD consists of a matrix of charge storage elements: in all there are 120million. This is the first time that so many CCDs have been used together in a single detector, giving a unique tracking precision of 0.005 mm

Emergency call: Police forces have been turning to electronics to improve their response to emergencies. For example, a version of Walton Radar Systems' air traffic control digital voice recorder, Hindsight-DVR, can be used to allow 999 distress calls to be replayed rapidly allowing crash sites to be identified with pin-point accuracy within minutes of an incident. Avon \& Somerset constabulary is having a RacalDatacom data and voice communications network installed across 56 police stations in the area. Another division of the firm, Racal Recorders, is installing its Callmaster voice processing system at Hampshire Police headquarters in Winchester. The force is only the second customer for Callmaster; the first was Tomy Toys.

The recorder, planned for 1993. will be able to play analogue and digital Betacam SP recordings. BTS plan to push for this format to become a worldwide production standard.
Pieter van Dalen. BTS president, says that because Betacam has proven itself to be a durable tape stancard over the last ten years. BTS believes it is the best solution for the multiple needs of this industry.

for business - sometimes

distribution links in Sakhalin.
Lord Young of Graffham, C\&W's executive chair, says: "We have worked with Comincom and our other Russian partners throughout the recent developments in Russia. We are aware that these two joint ventures are just a start."
Comincom was established to build up and operate separate digital overlay networks in the USSR and its main activities are to provide commercial international telecommunications services and establish and operate international telecommunications centres and local networks to connect customers to them.
A Kozhanov, director general of Comincom, said he thought that such projects "will make our countries still more friendly and help Russia become closer to the world community."

Military upset

These closer links have, not surprisingly, hit into military budgets and have upset a number of western companies. The attitudes of these countries were summed up by a recent report from market watchers Frost \& Sullivan.

The report commented: "Although democracy's return to fashion has turned the tide in terms of European security, it has prompted many politicians to make defence cuts instead of recognising that changes such as these require more defence rather than less."
This followed the research group's prediction that the European market for military electro-optic products is forecast to grow only marginally from US $\$ 1.17$ billion in 1991 to US $\$ 1.35$ billion by the end of 1996.

The report goes on to say that "military electro-optics are, for the most part, a highly defensive activity, and so Europe could spend a great deal more on electrooptic systems without breaking treaties or inviting aggression. It is self-justifying in that an electro-optic technique generally calls for development of a counter measure. and a counter measure requires development of a new electro-optic technique, and so on."
With attitudes such as these, it is clear to see why the military merry-go-round goes on, perhaps more slowly, but not as yet in reverse.

Joint venture for $0.7 \mu \mathrm{~m}$ asic design

A $0.7 \mu \mathrm{~m}$ cmos asic manufacturing process has been developed as part of the Jessi Logic and Esprit Acces projects. Several million ecu of investment have been committed for a new waler stepper, metal sputters and etchers.
Until now $0.7 \mu \mathrm{~m}$ has only been available internally in semiconductor companies where the production of a new standard part. such as a cram. will typically involve adjustments to the fabrication process and equipment to improve yields. This is not suitable for asic customers who need a stable process with short turnaround times.
The new process. called ECPDO7. was jointly developed by ES2 and Philips and has already been instatled by ES2 where, compared with the firm's existing $1 \mu \mathrm{~m}$ process. it results in an area shrinhage to 64% from a previous size: speed improvement is 50%.

The ECPDOT $0.7 \mu \mathrm{~m}$ process resulted from a joint venture

Writing on the wall for domestic teletext?

The government's sale of teletext capacity on the commercial TV channels to big business is coming under heavy criticism for robbing the existing public service of 40% of its capacity.
The move has been made by the Home Office to increase the capacity available for commercial services sixfold. Capacity will now be sold off to the highest acceptable bidders, with the cash payable to the Treasury. Critics point out that money from the sale goes straight to the government, but the seven million people who have already bought teletext sets, and are buying at a rate of 0.1 million a month, will get a reduced service after the end of next year.
Behind the scenes the Independent Television Commission has fought hard to protect consumers who could have lost the entire service.
In fact the business capacity generated by the public cuts is so large that the ITC has had to split it into three packages for auction. National Transcommunications Lid, recently sold by the Home Office to Mercury Asset Management, wins too, because NTL has a monopoly on carrying commercial services until 1996. The general public will have no access to these new services because they will be encrypted with decoders available only to closed user groups.

The ITC is also auctioning off the public service - to the highest bidder - with the Treasury getting the money. But the capacity for this service is so reduced that the ITC will offer only one franchise, with capacity spread over the two channels, ITV (soon to be called Channel 3) and Channel 4.
Although the consumer issues are clouded by a tangle of complicated technical facts and difficult comparisons, the 40% cut in public teletext capacity means a clear loss to the viewer. Viewers will either find fewer pages of text information from which to choose; or will have to switch channels to find them. Or it will take longer for selected pages to appear on screen. The only way viewers will be able to compensate for the
capacity loss is to buy a new TV set which contains a large digital memory capable of storing pages in anticipation of use. These sets will be far more expensive than conventional sets.

The European teletext system slots digital data, running at a speed of around 7 MHz . into the spare picture lines, or vertical blanking interval, which make up the black borders at the top and bottom of the screen.

will cover both ITV/Channel 3 and Channel 4. Although the single licence creates a pool of 15 lines, viewers will have to switch channels if the service operator puts different text information on each channel.
ITC describes this as a 30% reduction, but the figure is misleading because it is based on the situation in the spring, when broadcasters were using fewer lines. The real reduction, from 12 to 7.5 , is nearly 40%. Putting on a brave official face, the ITC reassures viewers that future technical developments will give the appearance of faster access from fewer lines - enabling technology is extra memory in the TV set.
Each page of text needs I Kbyte. Most teletext sets have only a one page store. If extra kilobytes of memory are added, the receiver can store extra pages in anticipation of selection. But as the TV set has no way of knowing what pages the viewer will select, this is a hit and miss approach.
The ultimate solution - enough memory to store all pages - is prohibitively expensive. Manufacturers already add around

Teletext TV sets decode and display this data as pages of information.
There are 25 VBI lines, but the maximum number available for teletext, without risk of interference to non-teletext TV sets, is 12. Currently Channel 4 uses all 12 whereas ITV sells off one line for commercial closed group business services. Two years ago the Home Office proposed that all the available lines should be auctioned off to the highest bidder, either private or commercial. The Independent Broadcasting Authority, now the ITC, feared that the highest bidders would be business users and there would be no public teletext on commercial TV. The IBA and ITC pushed the Home Office to a guarantee of 6 lines for public teletext and then 7.5 lines.
The ITC will now grant just one licence to run for ten years from January 1 1993. This
$£ 70$ to the price of a TV set for a decoder and single page store which costs less than $£ 5$ to fit.
By restricting public teletext, the government has released three lines per channel for commercial services. Under the Broadcasting Act 1990, these can be used for closed user group business information, such as chain-store stock control and banking transactions. This gives a total of six lines, a six-fold increase on the current business capacity.
The ITC has split these into three franchises. One will get two lines on Channel 3 , another will get two lines on Channel 4 and the third will get one line each on Channels 3 and 4. The auction has begun, without public consultation. Fourteen businesses have already expressed interest in bidding.

Barry Fox

FREE PSPICE OFFER TOKEN

GET YOUR FREE COPY of PSpice

 v4.05 evaluation package - with the compliments of ARS Microsystems and Electronics World.[^1][^2]
RF MODULAR EQUIPMENT

LOW NOISE GASFET PREAMPLIFIERS
Two stage Gasiet preamplifers High O Witers Masthead or local use
TYPE 5006 Tuned to your specifled frequency in the range $5-250 \mathrm{MHz} \mathrm{NF} 06 \mathrm{~dB}$ Gain $10-40$ dB variable 50 ohms
TYPE 9006FM As Above Band II 88-108 MHz 75 ohms
TYPE 9002 Tuned to your specified channets in bands M or V NF 07 d日 194
adjustable 75 ohms
TYPE 9004 Aligned to your specified frequency in the range $250-1000 \mathrm{MHz}$ NF 07 dB Gain 25 dB adjusiable 50 ohns
TYPE 9035 Mans power supply for above

WIDEBAND AMPLIFIERS
Monolithic microwave integrated circuits in a fully packaged microstrip format Full-wave shotlky diode protected inputs Temperature compensated bias cilcultry internal voltage regulation
TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$ Ní 2 dB at 500 MHz Gain 30 dB Power output + $125 \mathrm{dBm}, 18$ mW
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$ NF 2 dB at 500 MHz Gan 30 dB Power output +125 dBm , 185 MW
TYPE 9008 Gasfet $10 \mathrm{MHz}-2 \mathrm{GHz}$ NF 25 dB at 1 GHz Gan 10 dB Power output $+{ }^{\circ} 8 \mathrm{dBm}, ~$ 65 mW §165 TYPE 9009 Gasfet $10 \mathrm{MHz}-2 \mathrm{GHz}$ NF 38 dB at 1 GHz Gain 20 dB Power output +20 dBm , $\begin{aligned} & \mathrm{E} \text {, } 165 \\ & 100 \mathrm{~mW}\end{aligned}$

PHASE LOCKED LOOP FREQUENCY CONVERTER

TYPE 9115 Converts your specified intput channels in the range $20-1000 \mathrm{MHz}$ to your specified output channels in the range $20-1000 \mathrm{MHz}$ Minimum input to output separation 10 controlled Gain 60 dB adjustable- 30 dB Will drive transmitting ampifiers directly . £495

PHASE LOCKED SIGNAL SOURCES
TYPE 8034 Frequency as specitied in the range $20-250 \mathrm{MHz}$ Output 10 mW
. $£ 154$ TYPE 9036 Frequency as specitied in the range $250-1500 \mathrm{MHz}$ Output 10 mW
. 291
FM/FSK EXCITERS
TYPE 9282 Frequency as specified in the range $20-1500 \mathrm{MHz}$ Output 10 mW Deviation up to
PLEASE CONTACT US FOR FURTHER TECHNICAL INFORMATION
COMPLETE SYSTEMS AVAILABLE. Prices exclude p\&p and VAT

RF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency m the range $20-250 \mathrm{MHz}$ or your specified channelin bands lof III. $28 \mathrm{~V}+$ DC supply
TYPE 910510 mW input, 3 watts output
TYPE 9106500 mW input, 10 watts outpu
TYPE 91553 watts input, 30 watts output
TYPE 9458 5 watts input, 50 watts output Integral forced ant cooling and output $£ 460$
UHF LINEAR POWER AMPLIFIERS
Tuned to your specified trequency in the range $250-470 \mathrm{MHz} 28 \mathrm{~V}+$ DC supply
TYPE 9124 2-3 watts input 25 watts outpu
TELEVISION EXCITER
TYPE 9269 Phase locked loop vesigial sideband minialurised television modulator with sound channel AF output 10 mW on your specified 'frequency in the range $40-1000 \mathrm{MHz}$ or channel in bands I, III, IV or V
TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specilied channels in bands IV or V $28 \mathrm{~V}+\mathrm{DC}$ supply
TYPE 925210 mW input. 500 mW output
TYPE 9259500 mW input, 3 walts output
TYPE 9262500 mW input, 10 watts output
TYPE $92632-3$ watts input, 15 watts output
TYPE 926610 watts input, 50 watts output Integral forced air cooling and output transisto
protection
£1919
LINEAR POWER AMPLIFIERS 800-1000 MHz
Iuned to your specified frequency in the range $800-1000 \mathrm{MHz}$
TYPE 9264 watts input. 25 waits outpul
WIDEBAND LINEAR POWER AMPLIFIERS
TYPE $930610 \mathrm{MHz}^{2} 1 \mathrm{GHz}$ Gain 15 dB Dutput + 30 dBm .
TYPE 92461 watt output $100 \mathrm{KHz}-175 \mathrm{MHz} \quad 13 \mathrm{~dB}$ gain
TYPE 92474 watts output $1-50 \mathrm{MHz} 13 \mathrm{~dB}$ gain
TYPE 90514 watts output $20-200 \mathrm{MHz} 13 \mathrm{~dB}$ gain
TYPE 91774 watls output $20-200 \mathrm{MHz} 26$ of gain
TYPE 917320 watts output $1-50 \mathrm{MHz} \quad 10 \mathrm{~dB}$ gain
TYPE 917420 watts oulput $10-160 \mathrm{MHz} 10 \mathrm{~dB}$ gain
TYPE 927140 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain
TYPE 917240 watts output $10-160 \mathrm{MHz} 10 \mathrm{~dB}$ gain
£275
$£ 341$
$£ 460$
5750

$$
750
$$

$\varepsilon 350$

484

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel: 0303893631

32 Ronge $31 / 2$ diglt mm 12 mm Disploy
FEATURES 5 Capocilonce rangos
6 -resisforce ionges to 20 M otm

 buzzue Wini
instuctions

HENRYS

EXCITING SPECIAL OFFERS! BG,BC SAVIICS Hund Hositis

19 range $31 / 2 \mathrm{~d}$ lgit mm FEATURES Pockel DMm With
12 mm disploy ACDC yoits 6 ronges DC current to 10 cmps . resistioncos rongess Diode lest
With leods. botiery ond Wim leods. b
instructions owlr $£ 10.95$
£23.95
 Alwoys special ofters for collers.

HEARY'S

AUPIO ELECTRONICS

Prodek ducation
(Willen Request)

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives multimeters, oscilloscopes, scientific instruments, connec tors, component bridges, frequency counters, signal generators, computers.
WAYNE KERR RA2OO +ADSI DISP STORE EO95 VACUUM PUMPS TVP 1OOMBAR (ZBLMMN HONE WELL B12 RUMIDITYTEMP RECOROERS 195 ROHDE $\$$ SCHWARZ PZN PHASE METE TEK 5L UN 100KRZ SANAL. ST1OWF. ETC GEMENS XICNI2 ZPEN CHART RECORDER GOUD BRUSN 260 GCH CHART RECOROER USH RI2 EN CUP WIRIPER 20-45AWG BKK 1013 BFO WOS LEVEL PECOROER BKK 1013 BF, ZSO LEVEL RECORDER DATALAB MLST TARSIENT RECORDER BBCB \& MASTER COMPUIERS MARCON TF2337A AUTO DISTN METER MRCONI TF2331 DISTN FACTOR METER LIGHT BOXES 230V 10×12 area DECADE RCN BOXES CAYE DEE PNEUMO UV EXP UNIT $390 \times 260 \mathrm{~m}$ 1750 RBS SOR UHF SIG GEN 290-1020MHZ
E395 RBS SCR UHF SIG GEN $950-1900 \mathrm{MH}$ Hz E395 RBS SMLM POWER SIG GEN $30-3000 \mathrm{HH}$
205 RSS SMLR POWER SIG GEN . $1-300 \mathrm{~Hz}$
E195 PAS ZBK ADMITTANCE BRIDGE $15-30 \mathrm{MHz}$

FROM 1339 COSSOR CRUS11 SNOR ADON SIG GEN
ci95 7.5KVA ISOL 1201240 in 120240 OUT
175 MICROWAVE 1-20GHz ATTENUATOAS, DHECTIOML
SU9 DETECTOAS COUPLEAS NOISE SOURCE SIGNAL
FROM IINGSHLL NSI540 15 V 404 PSU CASED

Visit our bargain corner in shop.
Many valuable items at knock-down prices.

RECHARGEAB_E SEALED LEAD ACID BATTS GV 10AH LONG LIFE, EX NEW EOUIPT WMEG HM4OS 40 H2 DIGITA STORAGE SCOHE 23.50 TEKTRONIX 7403N. DFI, 7001 LOGIC AMAL TRACE WITH HM8148-2 GRAPHIC PRINTER EDDYSTONE RECEIVERS From £ 49 to 1295 MARCONI TFZ 203 AMFM MOD METER S2OM OTHER COMMS RECENERS From to 22 ROBIN 4122 PHASE EARTH LOOP TESTER FARNEL E350 PSU's $0-350 \mathrm{~V} 6.3 \mathrm{~V}$ s From Lis to RS ROBIN 5402 DIGITAL RCCB (ELCB) TESTER MARCONI TF2300 FWAM MODULATION METER E195 B8T LAB OVENS $12 \times 13 \times 14$ INIERNA 2523 EK 54545460 595 535A 551.5354 . EKTRONIX 844 PROG DATACOWHS TESTER FTOM EUS REDPOINT 6E-1 HSINKS $15{ }^{\circ} \mathrm{CN}$. QT ARIABIE OUTPUT PSU' TEKTRONX 520 521A PAL VISCOPES WAYNE KERR CTA92 UNIV LCR BRIDGES AACAL DANA 9341 DIGITAL LCR BRDGE

From 235 MARCONI TF2330 WAVE ANAI SER
From 1495 WOH
E45 COHU 301 O-500V DC VOLTAGE STD INT REF
[55 LEADER LBO-9C ALIGNMENT SCOOE
UST AVALLABE BUT 1000
OUALITY ELECTRONIC EOUIPMENT BOUGHT ALL PRICE EXC OF P\&P ANO
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383

REGULARS

High power laser lenses - not just a mirage?

W/hy is the respected science magazine Nature (Vol 353. No 6344) carrying on its front cover a hazy picture of a water tower looking as though it were taken with either a pinhole camera or some battered old box brownic? The remarkable answer is that the 5 km -distant tower was photographed through a lens consisting of nothing more than heated air!
Max Michaclis of the University of Natal in South Africa, who took the photograph. explains that the idea of exploiting the change of refractive index with temperature is far from new. Bell Labs experimented with gas lenses for focusing laser beams
way back in the 1960s. but found difficulty in overcoming the effects of air turbulence on the image sharpness.
The basic gas lens consists of a heated pipe through which air is passed. The air nearest the pipe wall becomes hotter than that flowing down the middle and as a result has a lower refractive index. The whole aperture of the pipe thus behaves like a lens - or as Max Michaelis describes it - a "rolled up mirage".
What Michaclis and his colleagues (Drs Cunningham. Notcutt, Waltham and research workers Prause and Dempers) have now published are details of a relatively

Top, Air passes through a heated pipe so that air nearest the pipe wall becomes hotter than that near the middle, has a lower refractive index and so produces a "rolled up mirage".

Bottom, Spinning the tube looks to overcome the problems of asymmetry caused by gravity and turbulence.
simple way of overcoming the problems of asymmetry caused by gravity and turbulence. The solution is to spin the tube at 30 Hz , allowing creation of reasonably good lenses of up to 5 cm diameter - much larger than the 8 mm stationary gas lenses.
But why go to all this trouble when you can make a far more accurate lens from a few pence worth of glass or plastic? The answer is that gas lenses are virtually indestructible and can tolerate optical power levels that would vaporise a glass lens almost instantly.
Michaelis and his group have used gas lenses to focus carbon dioxide laser beams to drill holes in 1 mm sheet steel.They also point to the prospects of using highly focused laser beams for

[^3]

A product can always benefit from being smaller, faster, cheaper or simply more efficient.

But the route to these improvements is often through new technology.

What worries engineers is the fact that the route can easily turn into a vicious circle over which they feel they have no control.

That's why we developed the Falcon Programme which allows you to test before you invest.

This is how it works:
Firstly, we provide you with a software package. It allows you to design analog/digital arrays using 5 or 2 micron digital, or 3 micron mixed technologies, and, most important, verify the design/performance yourself.

Micro Circuit Engineerıng

Additionally, we can help you with a range of components for bread boarding critical analog functions.

As a result, you'll end up with a high degree of confidence that your design is going to work before you commit yourself to a prototype.

When you are satisfied and send us your prototyping brief, we again keep costs down by manufacturing in batches with many customers sharing the expense.

Your prototype is then returned to you within 28 days.
Finally, once the design is proven, we can provide you with production parts in any volume from very low to very high and to any screening level under BS9450 approval.

So if you want to get it right first time, make sure you talk to Mike Goodwin this time.

A Smiths Industries Company

Gas telescope image of a water tower at a distance of 5 km .
satellite propulsion. Such beams could be used either to nudge satellites already in orbit or even to help place them in orbit Suggestions have long been around for lifting a satellite to about 10 km by balloon and then raising it further with a laser beam. No conventional lens or mirror could handle anything like the required power.
In their paper, Michaelis et al say the damage threshold intensity for shor optical pulses through glass or germanium lenses is around $1 \mathrm{GW} / \mathrm{cm}^{2}$ Gas lenses, by comparison, can handle intensities a hundred times greater.
For a more down-to-earth application of gas lenses. there is the prospect of laserinduced fusion power. Such lenses could focus the very powerful lasers needed to make atoms of hydrogen fuse together and release their energy. Michaelis says that the pulses required for the process are equivalent to about a tonne of TNT, adding
with some mild understatement, that a tonne of TNT would do an awful lot of damage to glass components.
Beyond these rather awe-inspiring applications, there are also simpler gas lenses that can be made by exploiting the difference in refractive index between any gas and a vacuum. Quite recently it has been suggested that the problems of the ill-fated Hubble space telescope could be solved by using a transparent bag of helium as a sort of giant contact lens!
Max Michaelis is confident that, though few people take seriously the idea of all-gas telescopes in space, the whole subject is still very much in its infancy. Given more research, gas lenses could one day outperform solid lens or mirrors. They would have very low transmission losses and would not suffer from distortions arising from their mass. Perhaps one day we will see the all-inflatable space telescope ...propelled cheaply into orbit by gasfocused laser?

Sunk without a trace... of radioactivity

A_{a}few years before the birth of Christ, not-very remarkable event took place. A Roman freighter of the class nawis oneraria sank off the coast of Sardinia carrying a heavy cargo of lead. Around 1500 latl-marked ingots weighing a total of $50 t$ were probably on their way to some ancient building site, to be made into water pipes or stone clamps. Since that rather unmemorable incident all the ingots have lain untouched in about 30 m of water - until now when they have become the subject of excited interest to modern physicists.
The reason, or part of $i t$, is that the cargo has been largely shielded from contamination. So this special ancient lead is extremely low in radioactivity. Modern lead, by contrast, is almost universally contaminated with minute traces of radioactive lead- 210 , bismuth210 and polonium-210.

For most normal purposes such contamination is so insignificant that it can be ignored; but not when it comes to shielding detectors searching for the radioactive signatures of rare natural processes such as theinteractions of solar neutrinos.
Discovery of this cargo led to an interesting collaboration earlier this year between physicists at the Instituto Nazionale
di Fisica Nucleare (INFN) and archaeologists representing the Italian authorities for artistic and historic heritage. According to a report (Cern Courier, Vol 31, No 7), this collaboration will give INFN access to a priceless material for use in the underground Gran Sasso Laboratory in exchange for support for the archaeologists in setting up a database of all the recovered artefacts.

One of the lead ingots found in a Roman ship
sunk near Sardinia showing the sunk near Sardinia showing the manufacturer's mark.

Collaboration will also extend to use of trace element and isotope analysis to identify the precise origin of the lead ingots. It would be intriguing indeed if the same oto could tell us about the history of the Roman Empire and also about the radioactive processes in the Sun which have played an even more fundamental role in our past.

Protected from environmental radiation by some 30 m of water, the lead will provide valuable low-background shielding for precision physics experiments.

THE NEW PANASONIC PROGRAMMABLE DAT. JUST LOOK WHAT YOU CAN GET OUT OF IT.

ES-Bus and P2 interface. 9 pin D-sub connectors. RS-422 interface, balanced AES/EBU. No its not Mission Control, tt's the back of Panasonic's new SV-3900 DAT machine. A remarkable new DAT recorder that boasts an unprecedented array of remote control possibilities plus superb sound quality.

ES-BUS AND SERIAL CONTROL PROTOCOLS.
such is the versatilty of the SV-3900, it can be used equally successfully to record music or as a scientific research tool. You can, for example, interface it with a wide variety of digital devices - CD players, workstations, recorders. Or, alternatively, it can be networked with up to 31 other SV-3900 DAT machines. (To achieve this you can use ether the RS-422 industry standard computer interface, or the optional SH-MK390 remote controller)

Communication on ES-bus and P2 interface is two-way. All tape and transport modes and functions can be controlled by computer, which in turn can receive and act upon technical and diagnostic information imparted by the SV-3900. Absolute/program times, counter number, error rates and the sampling frequency setting can all be read by the control computer.

With suitable software, the potential aoplications are almost limitless

You could for example comple an overnight radıo broadcast by using pre-recorded material from one machine, library selections from another

Other less obvious applications include soprısticated telephone call management, data capture and satellie radio broadcasting. And because any scrt of digital information presented in IEC II or AES/EBU format can be handled, the SV3900 can even be used as a data recorder for remote applications such as monitoring oil flow in pipelines. (Information could be downloaded over the phone, or other network.)

Analogue data logging is of course possible using balanced inputs between -14 dBu and +26 dBu with $>92 \mathrm{~dB}$ dynamic range.
ONE-BIT ADCs.

Naturally the S'V-3900 also offers stunning audio performance. One-bit ADCs linked to 64X oversampling ant-aliasing filters mean a complete absence of zero - cross distortion, and ensure total transparency and lucid detall at both high and low levels.
Similarly, the high resolution 4DAC system ensures low distortion and enhanced linearity at low levels on playback. Oiher useful touches include an error rate display (on-machine or output to the control computer) ta keera you informed on the condition of tape and heads. A new tape transport system that allows access to any point on a two hour tape within 27 seconds And, as you'd expect, sampling rates can be switched between 32, 44.1 and 48Khz.

The list of features packec into this machine is truly remarkable. But go down to your Panasonic and then patch into netw
news broadcasts at the appropriate times. (It goes without saying of course that tradtional eight track cartridges are a thing of the past.)

Solid state outshines gas lasers

Solid-state lasers have many advantages over older gas-laser tubes such as robustness, low voltage operation and potential for a very long life. They are also at least two orders of magnitude more compact. But there have been technical problems with generating high powers and/or shorter wavelengths of light in the solid state devices.
However in the last few months several papers have been published indicating these limitations may soon be overcome, enabling solid-state lasers to occupy an increasing slice of the territory formerly occupied by the gas laser.
A group from the University of Illinois at Urbana-Champaign and EG\&G
Optoelectronics in Vaudreuil, Quebec, have reported (Electronics Letters, Vol 27, No 21) development of a solid-state roomtemperature infra-red laser capable of producing a 5 W CW output at a wavelength of 1064 nm . Such high power output from a single $100 \mu \mathrm{~m}$ stripe represents an order of magnitude improvement on previous quantum well laser diodes operating at 1064 nm .
The laser structure consists principally of a $70 \AA$ InGaAs quantum well surrounded by $1000 \AA$ GaAs barriers and optically confined in AlGaAs cladding layers. The whole assembly, together with facet coating, is mounted on a metallised diamond heat-sink for CW operation.
Room-temperature light vs current characteristic shows a rise to 5.25 W at 9 A before catastrophic facet damage occurs. Under pulsed conditions (200 ns and 1 kHz) 25 W output can be achieved at a current of 40A.
The team are confident that where high coherence and high wavelength stability are not critical factors, solid-state devices could well replace Nd:yag lasers for many applications. Unlike the latter they would be cheap, small and easier to modulate.

8.5W visible from monolithic array

Producing shorter wavelength visible light is one further constraint on the designer of solid-state lasers. Without incorporation of quantum well active layers, designers would still be restricted to IR wavelengths and impossibly high lasing threshold currents.

In the same issue of Electronics Letters, a group from Spectra Diode Laboratories in San José, California, report development of a 680 nm (red) laser diode that will generate IW CW from a single $100 \mu \mathrm{~m}$-wide active layer based on a GaInP quantum well. As with the IR device above, it is bonded p-side down to its heat-sink. Minimum threshold current is $350 \mathrm{~A} / \mathrm{cm}^{2}$ and efficiency is 38%.
The same team have taken this approach a stage further and fabricated sixteen $50 \mu \mathrm{~m}$ emitters across an 8 mm bar. This monolithic assembly, with emitters spaced every $500 \mu \mathrm{~m}$ is capable of 8.5 W output, limited principally by thermal considerations. The only other consequence of this multi-emitter approach is that the spectral band-width is broadened from the 2 nm of a single emitter to around 4 nm .

Into the blue

Applied Physics Letters, September 9 reports how Michael Haase and his colleagues at 3M in St Paul, Minneapolis have managed to create a solid-state laser capable of emitting light at 490 nm . The blue-green emission is believed to be the shortest wavelength radiation ever generated by a solid-state laser.

The blue-green laser diode is based on zinc selenide which has the necessary band gap to generate light in the blue-green part of the spectrum. There have, however, been enormous practical difficulties in the making of a functioning laser, not least the problem of fabricating the now-inevitable quantum well. The figure shows the structure of the prototype, capable of producing pulsed emissions at 490 nm when held at liquid nitrogen temperatures. At room temperature the colour of the light becomes a little greener at 500 nm .
But a convenient, efficient, blue solid-state laser is still many years away. The 3M device has a high lasing threshold and, being relatively inefficient, generates large amounts of potentially self-destructive heat. Nevertheless, observing all the work currently going on - as well as the insatiable demand for high capacity transmission links and data storage - it seems we will not have to wait long before solid-state lasers replace low to medium power gas devices for virtually all industrial applications.

Research Notes is written by John Wilson of

Fig. 1. Light output as a function of input current for 8 mm monolithic array of $50 \mathrm{\mu m}$ emitters on 500 um centres.

Fig. 2. Cross section of the blue-green laser diode.

HALF PRICE MEMORIES . . . GUARANTEED
 . . . Recycled, quality i.c's for next day delivery WHY PAY MORE?

ALL DEVICES SUPPLIED ARE
\star Ultrasonically cleaned
\star UV erased and tested

* Handled in accordance with BS5783
* Packed in antistatic tubes or boxes
\star Original OEM brands
We are maior suppliers to colleges Universities RRD Departments and OEMis who recognise our commitment to quality. Export orders welcome.
UK Orders please add $£ 2$ Carriage and VAT to total.

3 WAYS TO ORDER

1By'phone 0480891119
(8am-7pm Mon-Fri) All major Credit Cards accepted

By Post - send cheque or Bonker's Draft to: Abracadabra Electroniss Lid, 25 High Street, Ellington, HUNTINGDON, Combs. PE18 OAB
By Fax: Officiol orders to 0480899980
24-Hour Service)

EXTENSIVE STOCKS			
$\begin{aligned} & \text { *DRAMS } \\ & 41256-10 \\ & 4164-15 \end{aligned}$	1-25 $25+100+$		
	\{0.95	0.80	0.70
	\{0.55	0.45	0.35
*SRAMS			
62256LP-10	$£ 1.90$	1.70	1.50
6264LP-15	¢0.79	0.69	0.59
6116 LP-15	¢0.55	0.45	0.39
*EPROMS			
27C100C-15	¢3.50	3.10	2.90
27C512-15	¢2.20	1.99	1.80
27C256-25	£1. 20	1.10	1.00
27128-25	¢1.00	0.90	0.80
2764-25	£0.90	0.80	0.70
2732-25	¢0.80	0.70	0.60
2532-5v	£2.50	2.40	2.30
2716-45	¢0.80	0.70	0.60

Many other items in stock, for FREE List use reader enquiry service or 'phone now.

The fluxgate magnetic sensing head is an extremely sensitive detector of magnetic fields. These cover from tiny field probes, no larger than 0.03 inches in diameter, through current probes, impurity detectors, compasses, metal locators, prospecting equipment, even to submarine detectors. Granted, not many people will wish to detect submarines but how many underwater diving enthusiasts would love to have a "diveable" hand-held wreckfinder?
The compass designs presented here, though carried out in detail and mostly tested, are primarily intended as illustrations of the technique and suggestions for experimentation. Considerable scope exists for variation and final presentation or even use of the basic signals made available.
An earlier article ($E W$ \& $W W$ September 91) entitled A Simple Magnetometer described the principle and use of a fluxgate sensor to produce an earth field measuring device sensitive enough to detect the influence of solar flares on the ionosphere.
It determined the magnitude of two horizontal field components at right angles to one another. Given that information, it is obvious that one can calculate the direction of the principal horizontal component, which is precisely what we ask a compass to tell us.
The magnetometer, however, needed to detect very small variations in the field to fulfil its proper function and consequently needed a high signal to noise ratio. A compass makes no such demands, happily coping with a much lower signal to noise ratio and allowing the circuitry to be even simpler than before. Three common integrated circuits suffice for the sensor conditioning and in the simplest case, the output indicator need be no more than a centre-zero meter.
The simplest systems could well be regarded as the poor man's autopilot since if the pilot is considered to be the device closing the feedback loop, that is exactly what it is. If you are steering a boat or tlying an aeroplane, all you really need are steady-as-you-go turn left/turn right instructions to maintain a heading.
The technique has much to recommend it as the equipment is minimal and hopefully therefore more reliable and the steer-

The technology described here lends itself to nautical and aeronautical navigation either as a direct reading compass or the sensing heart of an autopilot. The system could equally well be adapted to providing directional information for deaf people. By Richard Noble.
 ELECTRONIC fluxgate compass
ing arrangements il properly arranged are non-confusing, hey elements in safe navigation.

Sensor circuits

The presence of an external magnetic field passing through a toroidal core produces an asymmetry in the magnetic induction waveform in the core. The previous design exploited the subily changing widths of the less noisy pulses produced by induction in a sense winding over the two legs of the core.

This design is less fussy and simply extracts the even harmonics produced by the asymmetry and, in particular. the second harmonic of the switching frequency. A rather crude resonance with the sense winding also enhances the size of the signal being sought.
The core, as before, is a tape wound toroid of HCR alloy. designed by Telcon Metals for magnetic control systems. This is wound with approximately 170 turns of 0.5 mm enamelled wire to provide a switching primary winding. The drive circuit, shown in

Fig. 1. The driver circuit used in all version

Fig.1, is provided by two of the operational amplifiers in an LM324 yuad package working in a push-pull configuration. The input is a square-wave at the fundamental frequency of approximately 110 Hz . This is provided by a 4060 cmos oscillator and divider chain which also supplies the second harmonic switching pulse for the phase detector from an appropriate tapping. This is needed because, although the second harmonic sensor signal varies as the external field, there is an abrupt change of 180° in the phase as the field reverses through zero, calling for a synchronous phase detector to preserve polarity correctly.
Returning to the drive system, the squarewave input does not produce a square-wave output voltage across the primary. Before the flux in the core reaches saturation, the primary core has inductance but at saturation the inductance collapses to ecro and at this point the output voltage also disappears.
producing an output waveform like that shown in Fig 2a. This does tend to warm the integrated circuit chip, but is within the short circuit protection capability of the device and makes the circuit delightfully simple. The frequency of the oscillator is adjusted to make the output waveform as symmetric as possible so as to avoid the transformer coupling even harmonics into the pickup winding. Figure 3 shows the detector circuit.
The pickup winding is a single 500 turn winding of 0.2 mm wire over the outside of the core. roughly resonated with the $10 \mu \mathrm{~F}$ paper capacitor and fed to a unity gain amplifier which can have its phase reversed by 180°. The phase reversal is controlled by the analogue switch which either shorts the non-inverting input to ground or does nothing depending on its control voltage. When it is shorting to ground the circuit becomes a unity gain inverting amplifier. When it is open. the amplifier has a gain of -1 from the

Fig. 2. Idealised fluxgate waveforms

inverting input and +2 from the non-inverting input. The net result is a gain of +1 .
When the control is switched at the second harmonic frequency and in the appropriate phase, the amplifier neatly rectifies the signal and correctly converts the 180° phase change into a polarity change. In this way the DC output is a proper 4-quadrant vector component with a one-to-one correspondence to the equivalent earth field component. Two windings at right angles to each other will allow the reconstruction of an electric vector simulating the horizontal magnetic vector.
Idealised waveforms illustrating this process are shown in Fig. 2. All that remains is to amplify and smooth the rectified half sinusoids in an integrating circuit, the time constants chosen allowing some control over the damping of the instrument output. An oscilloscope will not show waveforms like the illustration because the signal is small and swamped by the interfering unbalanced signals. However if the externa! magnetic field is increased considerably then something much more like the idealised version can be seen. This is easy to do with a small bar magnet, held close to the sensor core, giving an increase in field strength of several orders of magnitude.
Fortunately the interfering signals which spoil an oscilloscope image have no effect on the final output and a large voltage swing is obtained for the tiny 0.18 gauss horizontal component of the earth's field.

The output from this single channel device is fed to a centre-zero meter. When the axis of the sense winding is at right angles to the earth's field the meter reading is zero. Any departure from this orientation will make the meter deflection positive or negative, providing a heading error indication. The sense of the correction can be chosen to provide a steer left/steer right type of display. By rotating the sensor to the desired angle relative to the vehicle, the instructions to steer, if followed, will eventually bring the vehicle on to the correct heading as the meter reading approaches zero. Maintaining the zero reading will maintain the vehicle heading.

Heading-set mechanism

The following is a suggested design requiring no special tools and may obviously be imptoved upon by those with special facilities.

Fig. 4 (on pl8) shows an exploded diagram of the parts and their method of assembly as made by the author.

Setting and calibration

he more observant reader may be wondering about what looks like an anomaly at the octant boundaries. The analogue x or y value barely changes as the octant code switches suggesting that the two different outputs correspond incorrectly to the same angle. However this is no different to what happens at any other threshold. In reality there are a number of lamps all spaced equally around a circle and only one is ever showing at any time; it is only necessary to point that one in the right direction. In fact the sensor can be placed in any orientation as long as the dial is fixed to the indicator in the right place.
This is most noticeable in the simple 8-point compass. No one really wants a compass that indicates NNE, ENE, ESE, SSE, etc. The sequence $N, N E, E, S E, S$, etc is much more acceptable and in boxing the compass the adjustor will naturally make this happen. What he actually does is offset the zero octant boundary by around 22° so as to make north appear in the middle of the lamp's "on" range. In the same way the 72 -point compass will be offset by 2.5° and the 360 point version by 0.5°, though the latter is almost certainly masked by the precision limits of the system.
A reasonable target to aim for would be $\pm 1^{\circ}$ though this may not be achievable without considerable care. Certainly the second pickup winding on the sensor will have to be wound over a separate card or plastic sleeve to allow for some small adjustment during calibration. After the best position has been found it can be glued or varnished into place. The best position is that for which the zero-crossing points of the x and y signals are genuinely at right angles to one another.
Prior to checking this the amplifier zero offsets must have been set to ensure that the maximum excursions of the x and y signals are symmetrically disposed about zero volts. Some iteration of these adjustments may be necessary as they are interactive.
All of the above should be carried out while keeping the core in the horizontal plane though this need not be more complicated than temporarily securing it to a circle of card with blue-tack. If the card is first nlarked with a set of 15° protractor type markings and rotated over a cross marked on a flat surface the results can be reasonably accurate.
Subsequently the channel gains should be adjusted to match exactly the input span of the bar driver or A / D converter, whereupon the compass display should read correctly. Final tweaking may be beneficial while rotating the card over the cross to check the readings at 15° intervals. Once installed, careful checking in the usual manner is essential as navigation is sometimes a life-and-death matter and at this stage no effort is too great to ensure accuracy and reliability. Unless a good location can be found for the sensor the use of a deviation chart is recommended.

The final fitting is left to the ingenuity of the installer. but should be such that the sensor is horimontal in the normal cruising attitude of the vehicle and reasonably removed

Fig. 5. Twin sensor circuit
from the influence of ferrous metal. In the case of a sailing boal. the first requirement means at least a fore and aft gimbal pivot to counter the vessel's heel. With an acroplane, gimballing is pointless as apparent gravity can be markedly non-vertical in manoeuvres and a fixed mounting is all that is required. The usual "northerly turning error" will be present but. unlike a normal compass, no violent swinging results and the indicated reading becomes smoothly stable as levelling oceurs.

Direct reading remote compass

At the cost of some additional circuitry, the sensor can be mounted remotely in an iron-free area and the display fitted in any convenient position. The sensor electronics need an extra LM324 operational

Fig. 3. Detector circuit for "steer-on-heading"

amplifier chip to provide a second channel as shown in Fig, 5.
The sensor is wound, like the magnetometer version, with a second 500 turn pickup winding at right angles to the first. The electronics then provides two output signals, for convenience referred to as x and y, which represent the vector components of the horizontal magnetic field. From this point many different options are available to convert the signals into a display, with the usual tradeoff between precision, cost and complexity.
Before going into detail, however, it is instructive to examine the basic properties of the signal information the sensor system provides. The first obvious and familiar one is that the angle the magnetic vector makes to the axes is the arctangent of the ratio of x to y . One approach therefore would be to convert the analogue signals to digital and feed them to a single board computer. An eprom stored program written in assembler or a higher level language such as compiled Basic or Forth could solve for the arctangent and send the output to a port fitted with a three digit liquid crystal display. Using a chip such as the Motorola 68705R3 it could even be a single chip computer. To those with the ability to put together such a combination and program it, this is probably the most straightforward solution and can have additional options incorporated such as stored way-point lists for a flight plan or sailing pattern.
For a more subte solution, a close look at the basic properties suggests some intriguing alternatives. At the very lowest levels. the signals range through both polarities and a glance at Fig. 6a reveals that the polarity combinations are a code for the quadrant the vector resides in, ++ for 0 to $90^{\circ},+-$ for 90 (6) 180° and so on.

Another simple property is that the abso-

Fig. 6. Mapping out the octants with translation to Gray code equivalent
lute magnitude of x is either greater than that of y or vice versa. most of the time. Fig 6b reveals that this binary feature provides a third coded contribution increasing the resolution from quadrants to octants, $x<y$ implying 0 to 45° for example in the first quadrant. All of which makes good sense as three bits exactly codes eight states.
Additionally it should also be noted that in one of those delightful accidents of nature the code developed this way falls into the class known as Gray codes, namely sequences in which the state transitions are marked by single bit changes. Our encoded output never gives false or ambiguous readings as the values change, simply because there is only ever a single bit changing at any time. All this, without any deliberate design effort!
The underlying idea is also very easy to implement electronically. Two more LM324 amplifiers will provide comparators delivering the first two sign dependent bits. The absolute magnitude circuits are just two more again, with a handful of identical resistors and some diodes. The outputs go to yet another comparator which outputs the third bit and the job is done. The greatest cost is probably the circuit board which the parts are soldered to.

Simple 8-point compass

At this point the first somewhat crude compass display is possible as in Fig. 7. The three coded bits are used as the address inputs to a 4051, 3-to-8 line analogue switch and the outputs are connected to eight leds arranged in a circle (in the straight numeric order to decode the Gray code, of course). The result gives a heading indication of eight directions with a precision of $\pm 22.5^{\circ}$. This may not seem very good, but is entirely adequate for a road vehicle, to give one that comforting feeling of definitely heading in the right sort of direction when more or less lost. It should also be remembered that so far the analogue properties of the x and y signals have not even been considered. This gives a strong feeling that taking even a little notice of the analogue features should permit a major step forward.
One last convenient accident remains to be exploited. Between 0 and 45° the sine function is almost linear. A best fit line can be found for the ten points al 5° spacing by linear regression and this linear function used instead of the sine. The worst angular error
is 1.3° at the 45° position and all the others are less than 1°, averaging about 0.6°.
Over this angular range the analogue x signal is theoretically a sine function of the angle being sought after, so a linear interpretation of its analogue value will give a lowerror solution. Over the range 45 to 90°, the y signal is theoretically a cosine function of the angle, which is just the sine of 90° minus the angle and therefore has the same convenient linear properties. The electronic implementation is obviously to transform the x and y signals into the first quadrant and use an analogue-to-digital converter to create the increased resolution. The first part needs no components, because it already exists in the shape of the absolute magnitude circuits introduced earlier. Two alternatives exist for the second part. one for the analogue enthusiast, the other for those who like digital displays.

Analogue 72-point compass

The analogue version. Fig. 8, uses an LM3914 led bargraph driver in dot mode to drive nine led cathode lines, the anode lines being multiplexed as eight common anode lines, one for each octant. These octant switches are provided by a 4051 1-pole 8 way analogue switch decoding the 3-bit octant code derived carlier. The input to this A/D converter system needs to be switched between the x and y signals at the octant
boundaries, but again no components are required because there is still one amplifier and two analogue switches left over in previously used chips and the driving signal is just the third bit of the already available octant code. This economically consumes all of the remaining spare parts.
The leds are arranged in a circle at 5° intervals and result in a display with $\pm 2.5^{\circ}$ precision and a worst error of about half that. Admittedly 72 leds are required, but bulk buying reduces the cost to no more than that of the digital version and some traditionalists just hate digital displays anyway.

Fig. 7. A simple octant compass display

Digital 360-point compass

To make a digital version, the bar code driver is replaced with a CA 33066 -bit A/D flash converter. all earlier circuitry remaining the same. This divides the 45° octant into 64 levels providing the opportunity to correct for the slight non-linearity of the sine function, while providing even higher resolution. The technique is to use the six output bits as address bits for an eprom, together with the three octant bits, which are used to segment the EPROM into eight regions. In this way

each combination of nine bits corresponds to a unique angle with a unique address. which can be programmed to output that angle to a display. Unfortunately the three digits needed for a compass display require twelve bits to code in BCD form and most eproms are only cight bits wide.
The solution is to give each digit an address of its own and multiplex them continuously to an appropriate display by providing two more address bits from a slowly cycting two bit counter. The same two bits are fed to the multiplexing address lines of the display driver to synchronise the eprom output to the digit position. A suitable display driver is the four-digit 7211 M and the two bit counter needs no components as it already exists as the bottom end of the 4060 divider used in the sensor electronics. Bits 12 and 1.3 of this divider switch at approximately 7 and 3.5 Hz , respectively. giving a display update rate of about once per second.
Regrettably the serendipity of tinding free parts just when they are needed does not extend to the $2 \mathrm{MH} /$ elock needed by the A/D converter. An EXO-3 crystal divider chip can be programmed to provide this. The 64 eprom locations in each octant are programmed to deliver the nearest integer degree value to the exact value predicted by the sine function. The nineteen duplicated values scattered through the 45° range automatically provide the linearisation to give a 1° resolution.
There is no reason why the digital display cannot be inserted into the centre of the analogue compass rose.

Fig. 4. Head/sensor assembly as made by the author.

The Telcon 7a cores mentioned in this article are available directly from the author price $£ 10.50$. PCBs for driver and sensor circuitry are also available price $£ 12$ for the pair. Contact R \& W Noble, Penbidwal House, Pandy, Abergavenny, Gwent NP7 8EA. Phone 0878-890367.

B. BAMBERELECTRONICSManufacturers Surplus Stocks

Farnell SSG520 synthesized Generator $520 \mathrm{Mhz} \quad \mathbf{£ 6 5 0}$ Telequipment Oscilloscope Type D83, 50Mhz Dual Trace
Racal 9081 Synthesized Signal Generator 520 Mhz
Ando Spectrum Analyser Type AC8211, 2Ghz $£ \mathbf{1 6 0 0}$ Telequipment Curve Tracer Type CT71 £200 H.P. Storage Oscilloscope Type 1741A, $100 \mathrm{Mhz} \mathbf{£ 4 0 0}$ Sayrosa Automatic Mod. Meter Model 252, 2Ghz $£ 120$ H.P. Spectrum Analyser Type 3582A, $0.02 \mathrm{~Hz}-$
$25.5 \mathrm{Khz} \quad \mathbf{£ 1 6 0 0}$
H.P. Oscilloscope Model 1707B, Mains/Battery $£ 200$ Tektronix Oscilloscope Model 5103N, 5A15N, 5A18, 5B10
Avo Meters Model 8 with leads $\quad \mathbf{£ 6 5}$
Marconi A.F. Power Meters Type TF893A £35

> ALL PRICES EXCLUDE V.A.T. OPEN MON-FRI 9am-5pm

WANTED

Electronic Components, Test Gear, Factory Clearance TOP PRICES PAID

5 STATION ROAD, LITTLEPORT, CAMBS CB6 10E
5STATION ROAD, LE
PHONE: ELY (0353) 860185
CIRCLE NO. 132 ON REPLY CARD

Total Environment Assemblers
and Emulators to suit all rom's
AND MICROPROCESSORS
■ Assemblers available for over 100 microprocessors

- Integral Editor, Linker and intelligent MAKE facility
- On-screen monitor, trace and source level debugging
■ ROM Emulator up to 128 Kbytes or 1024 Kbytes as standard
- Add on Comms board
- Fully portable battery backed units
\square Operating speed better than 100 ns

Send for free software evaluation PACK

21st Century Electronics 56b Milton Park, Abingdon Oxon OX14 4RX

Telephone: 0235832939
Fax: 0235861039

Microprocessor Development Tools

EMULATORS - SIMULATORS - COMPILERS - ASSEMBLERS - PROGRAMMERS $77 \mathrm{C} 828085 \mathrm{Z8} 6800080513201068 \mathrm{HC} 116301650287 \mathrm{C} 7516805 \mathrm{Z80} 68098096740$ Serles 7720 MIPS R2000 etc

Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by integrating sophisticated graphical editors and CAM outputs at an affordable price

NEW VERSIGN

In the new version V2.40, full consideration has been given to allow designers to continue using their existing schematic capture package as a front end to BoardMaker. Even powerful facilities such as Top Down Modification, Component renumber and Back Annotation have been accomodated to provide overall design integrity between your schematic package and BoardMaker. Equally, powerful features are included to ensure that users who do not have schematic capture software can still take full advantage of BoardMaker's net capabilities.
BoardMaker V 2.40 is a remarkable $£ 295.00$ (ex. carriage \& VAT) and includes 3 months FREE software updates and full telephone technical support.

AUTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specity the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you would route it yourself manually.
This ability allows you to autoroute mixed technology designs (SMD, analogue, digital, power switching etc)in ONE PASS while respecting ALL design rules.

MRFIESESS FOUTITM

No worrying about whether tracks will fit between pins. If the track widths and clearances allow. BoardRouter will automatically place 1,2 or even 3 tracks between pins.

FUEKREEENTRANK

You can freely pre-route any tracks manually using BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes placed, interrupt it, manually modify the layout and resume autorouting.
BoardRouter is priced at $£ 295.00$, which includes 3 months FREE software updates and full telephone technical support. BoardMaker and BoardRouter can be bought together for only £495.00. (ex. carriage \& VAT)

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ UK
Tel 0223277777
tsien
Fax 0223277747

Full analogue, digital and SM support - ground and power planes - 45 degree, arced and any angle tracks with full net-based Design Rule Checking.

Optimized placement by displaying ratsnest per component. Lines indicate the unrouted nets.

HIGHLIGHTS

- Net list import from OrCAD, Schema etc.
- Graphical and manual netlist entry
- Top down modification for ECOs
- Forward and back annotation
- Component renumber
- Effortless manual routing
- Fully re-entrant gridless autorouting
- Simultaneously routes up to eight layers
- Powerful component placement tools
- Copper fill
- Curved tracks
- Extensive Design Rule Checking
- Full complement of CAM outputs
- Support and update service
- Reports generator
- Gerber, PostScript \& DXF output
- Full SMD support

Don't just take our word for it. Call us today for a FREE Evaluation Pack and judge for yourself.

> Supplier companies pulling out of cad and suicidal price cutting point to a sector in crisis? Yet the choice of packages is still wide. Steve Rogerson explores.

n the teeth of a recession there can be few areas in electronics and computing that are feeling the pinch worse than computer aided design. What was once the glamour sector of the market is today marked skirmishes that are ripping the industry to sloreds.
But the range of packages available is still very wide, even in this "sector within a sector" of cad for electronics (though including universal design packages such as Autocad).

The design process splits naturally into two main functional areas; the first consists of electronics designers looking to arrange the various components to perform the required functions for a parlicular circuit. Next the components must be arranged on a PCB in a logical and cost-effective way, usually aiming to take up as little space as possible.

Electronic simulation is a middle stage belween these iwo, laking the original design and running it like a real package to see if it works. Simulation is something of a side issuc. especially for low-end PCB design where it is often too expensive. But for large system design it is essential. Typical packages include Susie and PSpice.
At the bottom of the market, costing between $£ 100$ and $£ 200$, are the straightforward drawing packinges with restricted intelligence. They do serve a function, but there is usually no upgrade path and they can only be treated as a short term solution.
To buy something of real use. with intelligence in the pachage. tends to cost $£ 1000$ to $£ 3000$. Products in this band take informalion in the circuit diagram and use it to help design the PCB .

Users can make certain that all the tracks are ansociated with the right connections.
At the moment most designers of PCBs will be satisfied with this level of package, typified by products such as Pads-PCB. There are, however, many packages available - all with their own quirks and benefits and users should shop around to find which are the best lits for their applications.
Upwards from here are the fully featured packages that can cost up to $£ 10.000$ or even more. In general, the more you pay the more facilities you get.
Peter Chidzey from Cad Services explains the developing cad market: "Traditionally you had the drawing office with professional $P C B$ design engineers. These are being replaced with electronics engineers who design the circuit and use the expensive pachages to design the PCB.

	\%				42Mb ho			
\#286 12.	4	17		E399	8499	8599	£799'	£10
286.	$8 \cdot 5$	${ }^{21}$		¢599	8699	E799	¢999	
[083	$8 \cdot 5$	25		$\underline{699}$	£799	$\check{899}$	£1099	£139
	$110 \cdot 8$	25				$\underline{699}$	109	
	$8 \cdot 5$	${ }^{40}$		-	-	£1399	¢1599	
\% 38880 ox 33	${ }^{16}$						$£ 2099$	
800x	${ }_{6}^{16} \cdot 8$	${ }_{114}^{114}$						

14" VGA MONITORS

$\begin{gathered} \text { MODEL } \\ \mathrm{NO}^{\circ} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \text { MONO1 } \\ \text { COLOUR } \end{array}$	$\begin{aligned} & \text { DOT } \\ & \text { PITCH } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{VGA} \\ & 315 \mathrm{KHz} \end{aligned}$	$\begin{gathered} \text { S.VGA } \\ 35.2 \mathrm{KHz} \end{gathered}$	$\begin{aligned} & \text { EVGA } \\ & 35.5 \mathrm{KHz} \end{aligned}$	$\begin{array}{\|cc\|} \hline & Y_{r} \\ 0 & S_{i} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{l} 117 t \\ \text { senve } \end{array} \\ \hline \end{array}$	EXC VAT	INC VAT
GS 1405	MONO	N/A	640×480	800×600	-	-	-	5100	17
GS 1425	colour	39 mm	640×480	-	-	-	-	5200	35.0
GS 1430	coloun	31 mm	640×48	-	-	-	-	5230	£2712
GS 1460	COLOU	28 mm	640×48	800×600	1024×7	-		5230	£29.3

OPTIONS

oescription	EXC mat	INC vat
Imbx9.bil Simm Momory Board	530	£58.7
285 -12MHz Malths Co-Procersor - for 01212	5100	£117.
3¢7a-16MHz Maths Co-Processor - for Go 316	Ess	¢99.85
3 3n-20MHz Maths Co.Procestor - For GS 318	E100	£117.

OPTIONS

description	EXC Vat	InC VAT
367xr-20MHz Maths Co-Processor - For GS 320	c130	¢178 25
3874 s -25MHz Maths Co-Processor - for GS 347	\$130	£176. 25
387 dr .33 MHz Maths Co-Processer - For GS 335	E160	£188.00
37mmb scsi Mard Disk Dive - 10.7ms Actess	s999	£1173.83

SILICA SYSTEMS OFFER YOU

- FREE OVERNIGHT DELIVERY: On all hardwate orders shipped in the UK mainland
- TECHNICAL SUPPORT HELPLINE: Team of technical experts at your service
- PRICE MATCH: We normally match competitors on a "Same product-Same price" basis
- ESTABLISHED 12 YEARS: Proven track record in professional computer sales.
- BUSINESS + EDUCATION + GOVERNMENT: Volume discounts avalable for lar
- BUSINESS + EDUCATION + GOVERNMENT: Volume discounts avalable for large orders.
- SHOWROOMS: Demonstration and training facillties at our London \& Sidcup branches
- THE FULL STOCK RANGE: All of your requirements from one supplier.
- FREE CATALOGUES: Will be mailed to you with offers and softwareperipheral details.
- PAYMENT: By cash, cheque, all major credit cards, or extended payment plan.

Betore you decide when to buy your now GoldStar PC, we suggest you think very caretully about WHERE you buy It. Conslder what tit will be like a few months ather you have made your purchase, when you may require additional peripherals or sotware, or help and advice. And, will the company you buy from
contact you with details of new products? At Silica Systems, we ensure that you will have nothing to contact you with details of new products? At Silica Systems, we ensure that you will have nothing to worry about. We have been established for over 12 years and, with our univalled experience and ex-
pert se, we can now claim to meet our customers recuirements with an understanding which is second pertise, we can now claim to meet our customers requirements with an understanding which is second to none. But don't just take our word for it Complete and return
literature and begin to experience the "Silica Systems Service".

MAIL OROER: Order Lines Open:	1-4 The Mews. Hatherley Rd, Sidcup, Kent, DA14 4DX Tol: 081-309 1111 Mon-Sat $9.00 \mathrm{mm-a} 00 \mathrm{pm}$ No Lata Nkght Opening Fax No: 0813080608			
LONDON SHOP: Oponing Hours:		ourt Road, London, W1P OBA No Late Night Opening	Fa	Tol: $071.580 \overline{0} 40 \overline{0}$ No. 071.3234737
LONDON SHOP: Oponing Hours	Selfridges (1st Floor). Mon-Sat $930 \mathrm{~mm}-800 \mathrm{pm}$	Oxtord Street, London, W1A Late Night: Thurradey until apm		$\begin{aligned} & \text { Tol: } 071-6291234 \\ & \text { ans: } 3914 \end{aligned}$
SIDCUP SHOP: Opening Hourt	1.4 The Mews. Hathe Mon Sat $9.00 \mathrm{~mm}-530 \mathrm{pm}$	rley Rd, Sidcup, Kemt, DA14 Lato Night: Friday until 7pm		$\begin{aligned} & \text { Tal: } 081.3028811 \\ & \text { No: } 081.3090017 \end{aligned}$

To: Silica Systems, Dept EWWO-0192-66. 1-4 The Mews. Hatherley Rd. Sidcup. Keni, DA14 4D PLEASE SEND ME A GOLDSTAR CATALOGUE

Mr/Mrs/Ms Address:

I

Susie PC-based logic simulation program simplifies digital design.

Integration of the various stages in the process is also very much the trend.
"People are going for more integration of packages from silicon design right the way through", says Chris Stevens from Computer Solutions. "They want the best simulator right through to the best autorouter. But the wise person buys it all from the same manufacturer rather than trying to do it themselves."

Price war

The cad industry, as mentioned earlier, is in something of a crisis. It has been hit hard by the recession and individual dealers have launched a price war that is lowering profit margins and driving some firms to the wall.
Others, like Lloyd Doyle, have pulled out of the market to concentrate on other areas.
In March this year Lloyd Doyle described itself in the Cadcam 199/ catalogue as "the

UK's major distributor of the Pads suite of cad packages for PCB design.
Six months later and that segment of business has been contined to the -what we used to do" inle.

There is a fear in parts of the industry that the cad business is not professionally handled, perhaps even being a litle "cowboyish". Some believe that the way the business is organised from above encourages competitiveness among distributors, while there is not sufficient control over territories and price. A result is the worry that there is " 100 much " cut pricing going on.

Chidzey agrees: "At the moment the market is pretty flat. There are a lot of people chasing a small amount of business and most people are suffering. There are very few companies in the last year who have made money out of PC cad. It has become very cut throat."

Vutrax equivalent logic of boolean equation for 4 bit presetable binary up-countrr.

Or one hand many potential buyers are probably rubbing their hands with glee. Everybody likes a bargain and if prices are low the cheque books should start coming out. But Chidzey believes this is a shortsighted attitude.
"There are firms who are culting prices ridiculously just to stay in business," he says. "The customer suffers because the firms do not have the profit level to develop future sysiems."
Nevertheless there are still many packages around and a wide choice of sources. The following survey does not attempt to be comprehensive, but rather to give some idea of the types of packages around and some of the people who supply them.

PRODUCT SUMMARY

ALS-View II
ALS-View II is a menu driven tool for eliminating PCB replots. It lets designers read in any Gerber file for viewing. editing and printing check plots on various primers including standard $300 \mathrm{dot} / \mathrm{in}$ laser primters. It runs on $\mathbf{3 8 6}$ or compatible PCs. Suppliers: ALS Design: ARS Microsystems.

Analyser 111

Analyser III is a linear circuit analysis program that is suitable for analysing fillers, amplifiers, crossover networks. wideband amplitiers, aerial matching networks. radio and TV IF amplifiers. chroma tilters. and linear ICs. It runs on 386 and 486 PCs.
Suppliers: Number One Systems.

Ares

The Ares range of PCB design software comprises PCB II. Ares and Ares Autoroute all of which use a layout editor and the same graphical user interface as Isis.
Suppliers: Labcenter Electronics

Autocad

AutoCad is a 2D and 3D professional computeraided drafting and design package. It is the most widely used cad system in the world with more than 400.000 installations. In the electronics field it can be used for designing enclosures and can run on PCs and workstations.
Suppliers: Data Technology: Hawke Systems; KGB Micros: Option Circuits; SSI Microcad.

Analyser III linear circuit analyser runs on 386 and 486 machines.

Autotrax

Working from a net list. Autotrax automatically places components and routes tracks in conformance with user-definable design rules. Board layout can also be manually edited. Blocks of components can be defined, moved, rolated. flipped or copied while connectivity is maintained.
Suppliers: IAl Electromics: Protel Technology.

Bitspice

Bitspice is a smaller version ol the I.CAI logic simulator program. Schematic input is available as an optional extra.
Suppliers: Those Engineers.

BoardMaker

BoardMaker is a PCB cad system with mouse driven pop-up menus and windows to make it casier to use. Features include schematic capture, graphical and manual netlist entry, design on the fly, components placement, routing, design rule checking. top down modifications, and symbol libraries. Suppliers: Tsion.

Cadstar

Cadstar is a suite of programs that includes schematic capture. PCB layout and routing, and advanced routing. The library has more than $5(0) 0)$ digital and discrete parts including ansi and IEEE standard schematic symbols. It works on PC
based platforms.
Suppliers: Option Circuits: Racal-Redac.

Cam-Bridge

Cam-Bridge is PC-based cam software for linking PCB design and fabrication. It allows prototyping without replots, uncovers design and house-keeping errors. and ensures correct preparation of artwork.
Suppliers: ARS Microsystems: ALS Design.

Codas

Codas runs on a PC and is a tool for designing control systems. It is aimed at single-input and single-output systems; for example position controllers such as those used on large telescopes. Basically, it controls the use of servo motors. Suppliers: Golten \& Verwer.

Colorcam

Colorcam is a flexible PCB design package with a systems resolution of 0.001 mm . It can accommodate any component - from SMD to conventional - with any pitch. There is no restriction on the number of components, pad shapes or track widths. It is supplied with a library and comes either as a manual design package or in modules including schematic capture and autorouting using the $\mathrm{F} / \mathrm{l}+\mathrm{transp}$ ter.
Suppliers: LPKF : Tracks.

Dazix SDE

Dazix SDE is a synthesis design environment for the capture and synthesis of asies including PLDs, FPGAs, and ECLs. Designs can be described using any combination of entry methods including Boolean equations, truth tables, state machines, bubble diagrams, VHDL and schematics. Suppliers: Dazix Intergraph.

Design Framework 11

Design Framework II is a composition of a number of tools that provide complete design flows for IC, PCB and asic designers. Front end tools for design capture and simulation are the same for each technology. but physical layout programs are specific to the target technology.
Suppliers: Cadence Design Systems.

Easy PC

Easy PC, winner of a 1989 British Design award, is PCB design and schematic drafting cad software of which more than 7500 packages are in use around the world. Circuit diagrams and PCBs can be produced from the same package. It is aimed at 286 and 386 machines, but will also run on slower 8086 PCs.
Suppliers: Number One Systems

Easytrax

Easytrax is a PCB design system that can run on PCs or Macs and includes pen plot. Gerber photoplot. N/C drill and PostScript capabilities. It is an entry level package.
Suppliers: Jav Electronics: Protel Technology.

ECA2

ECA2 is for analogue circuit analysis. It has a lot
of power, but people who want the flexibility on smaller circuits may be better off with its little sister Spiceage. Both will handle digital circuits but not as quickly as LCAI and Bitspice from the same family. Schematic input is available as an optional extra.
Suppliers: Those Engineers.

Ecad Plus

Ecad Plus is software for simplifying and speeding up the development of electrical, electrotechnical and electromechanical drawings and projects. Using the package, a user can develop on a PC a multi-sheet project including drawing phase and related literature.
Suppliers: ARS Microsystems; Microdata System.

EEDesigner

EEDesigner is an electronics design package that does schematics, simulation and PCB layout. It runs on the PC and is a fully integrated package for electronics, cad and cae. Powerful integration between the component parts is a feature of the package which works with the Maxroute autorouter package. Suppliers: Betronex

Elcad

Also known as RDS40. Elcad is a database oriented cad/cae system for the documentation of circuit and control diagrams. The database is automatically loaded with data from the electrics. electronics, hydraulics and pneumatic fields. Current path diagrams are drawn up graphically in interactive dialogue. It runs on 286 and 386 machines. Suppliers: Rotring: SS/ Microrud.

EPlan

EPlan is an electrical design package for the automotive industry and can be used for, say, running robots on a production line. It will run on
Compay computers.
Suppliers: Auto Mervix.

Flotherm

Flotherm is a thermal analysis cad package that uses computational fluid dynamics to predict the 3D air tlow and heat transfer in an electronics system. It can simulate a complete set up from component to system level to help the designer work out the best ventilation methods.
Suppliers: Flomerics.

Fourier Perspective III

Fourier Perspective III is a complete digital signal processing environment with true menu selection. Applications include noise and vibration analysis, digital filter design, and financial analysis.
Suppliers: Laplace Instruments.

FutureNet-5

FutureNet-5 is a schematic designer for PC and Sun workstations. It includes a scripting language, layered database and help system. Other features include design rule checker, PCB translators, and back annotators.
Suppliers: Data IIO: Instrumatic; Option Circuits.

CONTINUED ON PAGE 43

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREWENTS WHICH MAY BE IN STOCK

Tektro
 probes

Marconi TF2008 - AM-FM signal generator - Also sweeeer - $10 \mathrm{KC/S}$ - $510 \mathrm{Mc} / \mathrm{s}$ - trom £350 tested to $£ 500$ as new with manual - probe kit in wooden carrying box - $£ 50$ HP DC Current source type 6177C - £200
HP Frequency comb generator type 8406A - $£ 400$
HP Sampling Voltmeter (Broadband) type 3406A- £200
HP Vector Voltmeter type B405A - $£ 400$ to $£ 600$
HP Synthesiser/signal generator type 8672A - 2 to 18GHzS - §6000
HP 8640A signal generator - OPT 001 - 002 - $5 \mathrm{MC} / \mathrm{s}-1024 \mathrm{Mc} / \mathrm{s}-£ 1000$ HP Plotter type 98728-4 pen - $£ 300$.
HP Plotter type $98728-4$ pen - $£ 300$
HP Sweep Oscillators type 8690 A B B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18 \cdot 40 \mathrm{GHz}$. P.O.R HP Signal Generators type 612-614-618-620-628-fequency from $450 \mathrm{Mc} / \mathrm{s} 1021 \mathrm{GHz}$ HP Signal Generators type $612-614-618-620-628$ - trequency from $450 \mathrm{MC} / \mathrm{S}$
HP Nelwork Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{KC} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 1000$
HP Neiwork Analyser type $8407 \mathrm{~A}+841 \mathrm{~A}+861 \mathrm{~A}-10 \mathrm{KCS}-10 \mathrm{MOS}-2100$
HP Down Converter 4 Hpe $11710 \mathrm{~B}-01-11 \mathrm{Mc} / \mathrm{s}-£ 450$ -
HP Pulse Modulator type $11720 \mathrm{~A}-2-18 \mathrm{GHz}-\Sigma 1000$
HP Pulse Modulator type 1720A-2-1
HP Modulator type 8403A - $£ 100-£ 200$
HP Pin Modulators for above many ditterent frequencies - $£ 150$
HP Power Meter type 435A (no head) - $£ 150$.
HP Counter type 5342A - 18GHz - LED readout - $£ 1500$.
HP Signal Generator type 8640B-Opt001 + 003-.5.512MC/S AM/FM - §1200
HP Spectrum Dlsplay type 3720 A $£ 200$ - HP Correalator type 3721 A $£ 150$
HP 37555 - 3756A -90MC/s Switch - 5500
HP Amplifier type 8447A - 1-400 MC/S £400-HP8447F 1-1300 Mc/s $£ 800$
HP Frequency Counter type 5340 A - $18 \mathrm{GHz} £ 1000$ - rear output $£ 800$
HP Programmable pulse generator type $8161 \mathrm{~A}-£ 1500$.
HP 8410-A - B-C Network Analyser $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up-8411A-8412-8413-8414-8418-8740-8741-8742-8743
-8746-8650. P.O.R
HP Signal Generator type 8660C - 1-2600MC/s. AMFM- $£ 3000$
HP Signal Generator type 8656A-0.1-990Mc/s. AMFM - £2250
HP 3730 B Mainframe $£ 200$
HP 8699B Sweep PI - 0.1-4GHz $£ 750-$ HP8690B Mainframe $£ 250$
HP Digital Voltmeter type 3456A - £900
Racal/Dana digital multimeter type 5001 - $£ 250$
Racal/Dana Interface type 9932 - §150.
Racal/Dana GPIB Intertace 'ype 9934A - $£ 100$
RacaVDana Timer/counter type 9500 (9515 OPT42) - 1250MC/s - £450
Racal Dana 9301A-9303 RF Milluvoltmeter - $1.5-2 \mathrm{GHz}-£ 350-£ 750$
RacalVana Counters 9915 M - 9916 - 9917 - 9921 - $£ 150$ to $£ 450$. Fitted FX standards
RacalVDana Modulation Meter type $9009-8 \mathrm{MC} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal-SG Brown Comprehensive Headset Tester (with artificial head) 21A200/1 - £450 EIN 310 L . RF Power Amp $-250 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-50 \mathrm{Dbs}-£ 250$
Marcont AF Power Meter type 893B - $£ 300$
Marconi Brldge lype TF2700- $£ 150$
MarconvSaunders Signal Sources type - 6058B - 6070A - 6055B - 6059A - 400 to 18GHzS P.O.R.

Marconi TF2015 Sígnal Generators - 10MHz - 520MCs - AM/FM - £250
Marconi TF1245 Circult magnification meter $+1246 \& 1247$ Oscillators - $£ 100-£ 300$
Marconi microwave 6600A sweep OSC. mainframe with $6650 \mathrm{PI}-18 \cdot 26.5 \mathrm{GHz}$ or $6651 \mathrm{Pl}-26.5$ 40 GHz - $£ 1000$ or Pl only $£ 600$
Marconi distortion meter type TF2331- £150, TF2331A - £200
Marconi 6700B sweep manframe - $£ 200$.
Thurlby convertor 19 - GP - IEEE - 488 - $£ 150$
Phillps logic multimeter type PM2544- $£ 100$.
Microwave Systems MOS/3600 Microwave frequency stabilizer - 110 18GHzs \& 181040 GHzs § 1000
Bradley Oscilloscope cailbrator type 156-£150
Bradley Oscilloscope calibrator type $192-\$ 500$
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S 12 S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501 WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - P.O.R.
Altech Stoddart receiver type 17/27A-.01-32Mc/s - $£ 5000$
Alltech Stoddart receiver type $37 / 57-30 \cdot 1000 \mathrm{Mc} / \mathrm{s}-£ 5000$
Alltech Stoddart receiver type NM65T - 1 to 10 GHz - $£ 3000$
Gould J3B Test oscillator + manual - $£ 200$.
Image Intensifiers - ex MOD - tripod fitting for long range night viewing - as new - $£ 1500 \cdot$ E2000 Don 10 Telephone Cable - $1 / 2$ mile canvas conlainers or wooden drum - new - Mk 2-3 or d. P.O.R

Infra-red BInoculars in fibre-glass carrying case - tested $-£ 100 e a$ also Intra-red AFV síghts £100ea,
ACL Field intensity meter receiver type SR-209-6. Plugs-ins from $5 \mathrm{MC} / \mathrm{s}$ to 4 GHz - P.O.R Systron Donner Counter Model 6057 -18Ghz - 1800
Clark Air Masts - Heavy Duly - Type Scam - 4OH or 70 ft - $£ 200$ - $£ 600$
Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz} \cdot 40 \mathrm{GHz}$ - as new $-£ 1200$ + manual
Tektronix Maintrames - 7603-7623A - 7633-7704A - 7844 - 7904 - TM501 - TM503
TM506
Knotl Polyskanner WM 1001 + WM5001 + WM3002 + WM4001 - £1000
Altech 136 Precision test $R X+13505$ head $2-4 \mathrm{GHz}-£ 350$.
Ailtab 757 Spour Malyser 001 deO - 2200
Ailtech 757 Spectrum Analyser - 00122 GHz - Digital Storage + Readout - $£ 5000$
Dranetz 606 Power line disturbanco
Precision Anerold barometers- $900-1050 \mathrm{Mb}-$ mechanical digit readout with electronuc indicator - b \& K Sound Level Meter type 2206- small - lightweigh-tested - £100-£200-£250. MK1, 2 or 3 protected filled brief type carrying case with windshield \& baltery + books + pistol grip handle tested- $£ 170$. Carr: $£ 8 .-8 \&$ K 2206 Meler + Mike + Book - less carrying case etc. $-£ 145$. Carr E8. DISCOUNT ON QUANTITY
HP 141 T Spectrum Analysers. All new colours suppled with instruction manuals.
HP 141T-8552A or B-8556A-20Hz 10300 kHz £ $20000 \mathrm{~A}-£ 2200 \mathrm{~B}$.
HP $141 \mathrm{~T}-8552 \mathrm{~A}$ or $\mathrm{B}-8553 \mathrm{~B}-1 \mathrm{kHz}$ to $110 \mathrm{MC} / \mathrm{s}$. £ $1800 \mathrm{~A}-£ 2000 \mathrm{~B}$
HP 141T-8552A or B-8554B-100kHz 10 1250Mc/s. E2050 A - E2250 B
HP $141 \mathrm{~T}-8552 \mathrm{~A}$ or $\mathrm{B}-8555 \mathrm{~A}-10 \mathrm{Me} / \mathrm{s}$ to 18 GHz . $£ 3250 \mathrm{~A}-£ 3450 \mathrm{~B}$
HP 141 T -old colour mainframe $+8552 \mathrm{~A} ; 8553 \mathrm{~B}-1 \mathrm{kHz}$ to $110 \mathrm{Mc} / \mathrm{s}$. Instruction manuals
HP 3580A LF-spectrum analyser -5 kHz to 50 kHz - LED readout - digital storage $-£ 1600 \mathrm{w}$ ith insiruction manual or $£ 1750$ with internal rechargeable battery
HP5352B - 40GHz counter - Liquid crystal readout with instruction manual - $£ 5000$
Spectrascope 11 SD335 (S. A.) realt:me LF analyser -20 Hz to 50 kHz - LED readout with manual - £850

Tektronix 7020 plug-in 2-channel programmable digitizer - 70 Mc/s - for 7000 mainframes
£500-manual-£50
Datron 1065 Auto Cal digital multimeter with instruction manual - $£ 750$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}$ - $1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}$ - internal NiCad battery - with manual. £150.
Tektronlx 2235100 Mc s oscilloscope + two probes + manual. $\mathbf{E 8 0 0}$
Tektronix $2465300 \mathrm{Mc} / \mathrm{s}$ oscilloscope + two prubes + manual. $£ 1600$
tektronix $485350 \mathrm{Mc} / \mathrm{s}$ oscilloscope + iwo probes + manual 5500
Tektronix TR503 tracking generator $-10 \mathrm{Mv} / \mathrm{s}$ to $1800 \mathrm{Mc} / \mathrm{s}+$ manual $-£ 1500$
Aerlal array on metal plate $9^{-\times 9}$ containing 4 aerials plus Narda detector $-.100-11 \mathrm{GHz}$. Using N type and SMA plugs $\&$ sockets - ex eqpt $-£ 100$
N
Marconi RF Power Amplifier TF2175-1.5Mc/s to $520 \mathrm{Mc} / \mathrm{s}$ with book - $£ 100$
HP 8614A Signal Generator $800 \mathrm{Mc} / \mathrm{s}$ to 2.4 GHz - old colour - $£ 300$. New colour - $£ 600$
P8616A Signal Generaio
Marconisis5a Slgnal Source - 1 2 GHz-LED
Schlumberger 2741 Programmable Microwave Counter - 10 Hz to $71 \mathrm{GHz}-£ 750$
Schlumberger 2720 Programmable Universal Counter 0 to 1250 MC/s - $£ 600$.
HP 37203 A HP-IB Extender - $£ 150$.
PPM411F Current Reterence 5150
HP 5363 Time interval Probes 5150
Marconi bos78 Signal Source - 5010

P 593134 ADCor
P9 59306 A Relay Actuator $\mathbf{~} 150$
HP 2225 CR Thinkiet Printer - $£ 150$
TEK 178 Linear IC Test FIxture
TEK 576 Callbration Fixture - $067.0597-99-£ 250$
HP 4437A 600 Ohm Altenuator - $£ 100$.
Marconi Signal Source 6059A - $12.18 \mathrm{GH} 2-£ 400$
HP 8006 A Word Generator - $£ 150$
HP 1645 A Data Error Analyser - $£ 150$
Texscan Rotary Attenuators-BNCISMA 0-10-60-100DBS - £50-£150
HP 809C Stotted Line Carriages - various finquencles to $18 \mathrm{GHZ}-£ 100$ to $£ 300$
HP 532-536-537 Frequency Meters - vanous frequencies - $£ 150-£ 250$
HP 3200 V VF Oscillator- $10 \mathrm{MC/S}-500 \mathrm{MC}$ S $-£ 200$.
VAL Radio Invertors - 200 -watt 12 V to $115 / 230 \mathrm{~V}$ AC $50 \mathrm{C} / \mathrm{s}$. $£ 100$
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ - high pass + low pass - mains - battery £150
Krohn-Hite Model 3343 hiter - low pass, high pass, 0.1 Hz - $100 \mathrm{kc} / \mathrm{s}$ - mans - battery
Krohn-Hite 4100 oscillator
Krohn-Hite 4141R oscillator - $1 \mathrm{~Hz}-10.000 \mathrm{kHz}$
Krohn-Hite 6880 programmable distortion ANZ-IEEE-488
Krohn-Hite 3750 fitter, low pass, high pass -. $22 \mathrm{~Hz}-20 \mathrm{kHz}$
Parametron D150 variable active firer, low pass - high pass - $15 \mathrm{~Hz}-10 \mathrm{kHz}$. £100
S.E. Lab SM215 Mk11 transter standard voltmeter - 1000 volis.

Fluke 4210 A programmable voltage source
Ailtech Stoddart P7 programmer - 200
Fluke 8500A digital multimeter
H.P. 3490 A mullimeter
H.P. 69418 mulliprogrammer extenser $£ 100$

Fluke Y2000 RTD selector + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD digital
inermometer + 9 probes. £350 ail three liems
H.P. 6181 DC current source $£ 150$
H.P. 59501 A - HP.|B isolated D/ANower supply programmer
H.P. 3438A digiral mullimeter
H.P. 61775 DC current source
H.P. 62078 DC power supply.
H.P. 741 B ACDC differential voltmeter standard (old colour) $£ 100$.
H.P. 62098 DC power unt.

Fluke 80 high voltage divide
Fluke 887AB AC + DC differential vollmeter
Fluke 43 1C high voltage $D C$ supply
H.P. 1104 A trigger countdown unit.

Tektronix M2 gated delay callbration fixture. 067.0712 .00
Tektronix precision DC divider callbration fixture. 067-0503-00
Tektronix overdrive recovery calibration fixture. 067-0608-00.
Schwarzbeck EMC H.F. Interterence measuting RX's. FSME 15t5-85k $/ \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ + FSME $1514-85 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}+15141+15142$-locp aerials $-£ 500$ Vume 1520A VHF-UHF 25$1000 \mathrm{Mc} / \mathrm{s}-\mathrm{S} 500$.
Avo VC 163 valve tester + book £301
Gould 60000 XYT recorder. £250
H.P. 5011 Tlogic rouble shooting kit $£ 150$ -

Marconi TF2 163S attenuator - $1 \mathrm{GHz} . £ 200$.
PPM 8000 programmable scanner

Fluke 730A DC transter standard
B\&K level recorder $2307+2010$ heterodyne analyser -in rack - $\mathbf{£ 1 0 0 0}$.
B8K 2971 phase meter - $£ 150$
B8K 2112 audio trequency spectrometer - $£ 100$
B8K 4815 calibrator head
B\&K 48142 calibrator head
BKK 4122 microphone calibrator - $£ 100$
B8K 1022 band FX oscillator - $\$ 100$
B8K 1612 band pass filter set - $£ 150$
$88 K 2107$ trequency analyser $-£ 150$
B8K 1013 BFO- $\mathbb{C} 100$
B\&K 4712 FX response tracer - $\mathbf{£ 2 5 0}$
B\&K 2603 microphone amp $-£ 150$
B\&K 2604 microphone amp- $£ 200$
B\&K 2804 microphone power supply - ©200
B8K 2019 analyser - $£ 350$.
Farnell power unit H60/50- $£ 250$
H.P. FX doubler 938A, also 940A- $£ 300$.

RacalDana 9300 AMS vollmeter - E250.
A.B. nolse figure meter $117 \mathrm{~B}-£ 400$

Allech 360D $11+3601+3602$ FX synthesizer $1 \mathrm{MCs}-2000 \mathrm{MCs}$. $£ 500$
H.P. sweeper plug-ins - 86240A -2-8.4GHz-86260A - 12.4 -18GHz-86260AH03-10$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz}$
Telequipment CT71 curve tracer - $£ 200$
H.P. 461 A amplifier - $1 \mathrm{kc}-150 \mathrm{Mc}$ - - old colour - $\mathbf{\Sigma 1 5 0}$
N.P. 8750A storage normalizer

Tektronix oscilloscopes type 2215 A - $60 \mathrm{Mc} / \mathrm{s}$ - C/w book \& probe - $£ 400$
Tektronix monitor type $604-£ 100$.

SPECIAL END OF LINE OFFER

Marconi TF2008 Signal Generators $10 \mathrm{KC} / \mathrm{S}$ to 5 t0MC/S - AM.FM - oft the pile - tested working - $£ 300$. Not working or part-working - $£ 200$. Kit box of attachments $-£ 25$. All supplled with manual, quick lest only given, working or non-working - fair looking condition - 300 only available. As new ones still available as normal, fully tested with box of attachments - $£ 400-£ 500$. Clark Scam Heavy Duty 40 Telescopic Pneumatic Masts - retracted 7"8" - head load 40lbs with or withour supporting legs \& erection kit - in bag + handbook - £200-£500 Clark Scam Heavy Duty 70 Telescopic Pneumatic Masts - retracted $13^{\prime} 5^{\prime \prime}$ - head load 90 lbs with or without legs + erection kit + handbook - $£ 500-\Sigma 8 \mathrm{CO}$.
items bought from hm government behmg surplus. price is ex works. sere for mquiries. phone for appointment or for oemonstration of any items. avalability or paice change vat ano tarr., extra

MLSSA brings speaker design in from the cold

Dave Berriman reports on a PC card which may help acoustic engineers dispense with open air or anechoic chambers for those critical loudspeaker measurements.

Traditionally, acoustics engineers - and in particular loudspeaker designers - have relied on anechoic rooms or the open air to eliminate sound reflections and achieve accurate sound pressure level measurements. But swept frequency response test equipment is expensive, and anechoic rooms are costly to hire and inaccurate at low frequencies (below about 150 Hz , except for the very largest rooms).
However elimination of reflections can also be achieved using fast FFT, and DRA Laboratories' MLSSA (pronounced Melissa) plug-in audio FFT analyser card and associated software will enable that complex analysis to handled by the PC.

Reflections on measurements

Multiple reflections from room surfaces mean attempts to achieve accurate swept-frequency responses in ordinary rooms are fraught with danger. Bringing the microphone very close to the loudspeaker makes the direct sound dominant and allows quite accurate low-frequency tests to be made. But positioning the microphone at the traditional one metre measuring distance produces a response that can be all over the place.

A frequency-modulated "warble tone" can prevent build up of some of the standing waves and can smoothout the more obvious dips and peaks, but this is more of a cosmetic than a real cure. Bringing the microphone closer makes investigation of crossovers feasible. But in this kind of work, where phase relationships and relative driv-er-to-microphone time delays are critical, careful interpretation of results is required.
Elimination of reflections is the only real answer. Tone-burst gating systems, such as Bruel and Kjaer's, achieve this by gating a sine-wave signal on and off and cutting off the measurement before reflections are received. Fast fourier analysis techniques can achieve the same ends, either using noise or transient impulses, such as square, or raised \sin or cosine waveforms.
The Fast FFT for audio design was pioneered by Kef in the 1970s, who did a lot of work on measuring loudspeakers with impulses. Computing the FFT of the impulse from the speaker, and comparing this with the FFT of the loudspeaker's input pulse, produces phase and frequency responses. By cutting off reflections, these can be eliminated.

Kef plotted a series of frequency responses against a third axis (time) to create a waterfall graph showing output decay over a range of frequencies.
Computers then were expensive and bulky. Now packages such as Melissa bring that power to the PC.

Quite a card

Melissa is a maximum length sequence system analyser card for PCs.
The card will operate with quite small PCs, but if lengthy computations and file management are to be avoided a 286,386 or 486 machine with co-processor and a hard disk, are really essential. The more powerful machines also give other advantages, especially if applications include comparing memory-hungry, high-resolution, low-frequency responses or lengthy time/energy
curves. For these tasks, the improved memory-management available with 386 s and 486 s is invaluable.
A-to-D converter, programmable filters, signal generator and any additional hardware required are included on the Melissa board. All that is needed for a complete measuring system is a microphone, microphone amplifier and power amplifier. One disadvantage is that this makes for a cumbersome set-up, particularly when compared with the compact self-contained Neutrik 3300 sine-wave plotter - my design mainstay up until now.
But Melissa is a much more capable unit in many other ways. Unlike a conventional FFT analyser using random noise or generating a series of identical impulses, Melissa generates a kind of pseudo-random noise signal called the maximum length sequence. It sounds a little like throbbing, filtered white noise but is cyclic, not random.
Designers DRA Laboratories claims that as long as the analyser samples the complete sequence, there will be no truncation error. This contrasts with conventional FFT analysers which introduce a truncation error when the measurement is cut off. As a result, DRA says Melissa can achieve 1 Hz resolution with a 10 kHz bandwidth: or 1 kHz bandwidth with 0.125 Hz resolution if the whole sample is used.
Using fewer samples (by setting the acquisition length, chosen when the measurement is made) simply reduces frequency resolution. After data has been captured, it is converted from its noise-like origins, to display a conventional impulse response, similar to an ordinary FFT.
For a loudspeaker being measured in a room, the screen will clearly show loudspeaker output and decay plus any reflections. All reflections occurring after a certain time can be cut out by reducing frequency resolution to $1 / \mathrm{t}$, where t is the cut-of time. So the whole time-domain response can be subjected to FFT, giving the complete frequency and phase responses over the measured bandwidth, and resolution is limited only by the chosen acquisition length. Or an initial part of the time response can be selected, with a further reduction in resolution. Because the original MLS maximum length sequence is a "known" quantity, the analyser compares the MLS from the microphone to the original, and does not need to measure loudspeaker input. Thus, unlike a normal two-channel FFT analyser, Melissa requires only one measuring input.

Acoustics speciality

Features have been designed with acoustics work firmly in mind. Of particular interest to acoustics engineers is the package's ability to cut short the analysed waveform. eliminating reflections from floors, ceiling and walls, creating a pseudo-anechoic response. The effect is achieved by moving the cursor and zooming in on the wanted section.
The result of executing the FFT on this time-slice is equal to a true anechoic measurement at high frequencies, but - as mentioned above - resolution will be reduced to $1 / 1$, where t is the time duration of the sample taken. For example, a cut off at 5 ms to eliminate a ceiling reflection would result in a resolution of 200 Hz , giving points on the curve at $200 \mathrm{~Hz}, 400 \mathrm{~Hz}, 600 \mathrm{~Hz} \ldots$ and so on.
Below 200 Hz there is nothing. Melissa displays a curve between the points, and also plots a spurious line below 200 Hz - which should be ignored. This is not so much a limitation as something which must be acknowledged when interpreting measurements.
A full catalogue of the package's abilities and their use in practice would need a very lengthy article (see box). But the great thing about Melissa is that just one measurement, or "acquisition" is required. Everything else is

L.S. in roon at in while B19Z pt. PFT untrocothed

7-11-91 7:58 PH
HISSA: Prequency Domaln
post-processing and can be carried out later, at a different location and even on a different computer. So measurements could be made using a small monochrome machine, with processing carried out on a much more powerful colour computer for faster graph generation and a better display.

Melissa in practice

So much for the theory, what is Melissa like to set up and use?

Munro Associates, who distribute the package, normally recommend one of the Toshiba laptop computers (with 286 or 386 processor and co-processor) for portable systems, because they take the full-length card. Many laptops only take a half-length card. or none at all.
But for me, Munro located a Samsung $\mathbf{S 5 2 0 0}$ - which also takes a full-length card and was available at a somewhat lower price. Munro also installed the board and was extremely helpful with subsequent queries.
Once installed, Melissa works like a dream. Users must first find their way around the various menus and sort out the many functions. But that done the package really is easy to use, though you must read the manual before starting as the large choice of facilities and options available can cause confusion. However it is that range of facilities that gives Melissa such versatility.
For instance, after capturing the step-response "impulse", use cursors to decide which part is needed. zoom in then just press F followed by E (FFT EXECUTE). After a few seconds the FFT appears, viewed as it comes, or smoothed to whatever fraction of an octave is desired.
Press W and Melissa constructs a waterfall. On the

The whole 8192 point FFT of 8192 acquisition samples of a loudspeaker in an ordinary domestic living room. The curve is unsmoothed and clearly shows the effects of reflections which cause many peaks and dips.
Resolution is 7.4 Hz .

The whole 8192 point FFT of 8192 samples, but this time smoothed into 1/3 octave. Major dips and peaks are ironed out to show general response trend.

L.S. In Foom at in B19Z mut FPT swoothed

7-11-91 8:84 7m
HLSSA: Prequency Domaln

Samsung 286 machine a full-bandwidth waterfall takes fractionally over a minute due to the large number of computations required. But this can hardly be thought of as lengthy.
Time-domain responses and frequency-domain responses can both be stored. To avoid building up large lists of files I found it convenient to save just the whole time-domain response - from which all the other curves and measurements are derived - and perhaps one fre-quency-domain curve.

FFT of first of impulse with all room reflections removed. Frequency resolution is 330 Hz , so low frequencies have been excluded from graph, printed as zoomed by
cursors. This is the
pseudo-anechoic response and is not smoothed in any
way.

Bode plot of woofer unit showing amplitude and phase against frequency. Note the inaccuracy at low frequencies due to insufficient samples being taken at acquisition.

At a later date the time response can be recalled from memory and the various responses, phase plots, etc recomputed.
Macros allow measurements to be achieved automatically - particularly handy for repeated and tedious operations, such as polar response measurements, or perhaps measurements of vibration at different points on a loudspeaker panel.
For acousticians, Melissa's room measuring facilities will prove invaluable. By filtering Schroeder sound decay curves at various frequencies and selecting portions of the decay curves with the cursor, the RT 60 figures and early decay times can be presented. The only tedious aspect is the repetition. but it must still be quicker than any other way.

Even so if the effort proves too much, a macro can action the computations for different octave bands and print the results for you. Whichever way is chosen, just one acoustic measurement is required, with the rest of the work left to Melissa.

Keep an eye on printing

Once successfully up and running, I had no significant problems. First version of the software, 5.26, worked

Promise of Version 7

Version 7 is now on the way and is expected to include several refinements.

Of particular interest to loudspeaker designers is inclusion of Thiel Small parameter measurements using a complex curve fit algorithm. Because the algorithm does not rely on just three points on the impedance curve, it is claimed to be much more accurave than traditional techniques.
Version 7 should allow greater flexibility with overlays and provide an increased range of mathematical functions.
Double integration should allow acceleration, velocity and displacement to be viewed from an accelerometer input and there will also be enhancements to printer, file management and file exporting. To improve the available ram on 386 and 386SX computers, 386 MAX will be bundled with version 7.
fine, though sometimes the display would "throw a wobbler", indicating unfamiliar numbers which would clear at the next command. Latest version 6 software, which includes useful features like sound pressure level measurements, was perfect from the outset and has caused no problems. The only minor niggle occurs when I occasionally try to print while the printer has run out of paper or is off line - the system locks up completely and refuses to respond to commands until the printer is brought on-line.

The reason is apparently because version 6 does not sense that the printer is not ready and just keeps on trying to print - a little foible which is to be cured in version 7. I am told (see box).

For printing I use the excellent little Kodak Diconix 150-plus portable ink-jet printer with the Samsung. It is light and compact and has a quite sharp print quality (curves in this feature have all been printed on ordinary paper on the 150 -plus).

I have also used an HP Laserjet III without problems, apart from the time it takes to construct the image for the graphs; printing is much quicker on a dot-matrix or inkjet printer.

Melissa is also compatible with the HPGL graphics interface.

Invaluable for Ioudspeaker design

I found Melissa to be a powerful tool for loudspeaker design work. It is especially useful for investigating hard-to-trace problems such as frequency response irregularities from tweeter horn resonances and tracking down effects due to grille frames and cabinet diffraction.

High-frequency mid-range-to-tweeter crossover work is also much easier without the clutter introduced by the room and this means that the microphone can be positioned at one metre, or further away, with Melissa still able to show how the loudspeaker is behaving.

The waterfalls are useful for indicating possible sources of audible coloration, though they need careful interpretation.

Where Melissa is not markedly better in an ordinary room than swept sine-wave techniques is at low frequencies. Here, because it is not possible to cut out reflections and have fine resolution, close microphone placement is still required to reduce the effect of the room (using Melissa in an anechoic room is a possible solution and I know of at least one manufacturer who does this).

A narrow acquisition bandwidth (say 5 kHz) and a large FFT (4096 points) is required for an accurate low-frequency curve $(3.66 \mathrm{~Hz}$ resolution). Processing might be
expected to take longer than the wide-bandwidth curves, but Melissa produces a frequency-response curve in just under a minute.

Pre-averaging can usefully be applied in these low frequency tests, helping the package to ignore any low-frequency background noise which can introduce inaccuracies. With pre-averaging and fine resolution, the Melissa curve is actually less cluttered by background noise than in-room sine-wave curves and in my view easier to interpret - provided the operator sets the acquisition length so as to achieve a narrow resolution.

With all measurements, the best approach is to set the acquisition to the same number of samples as the FFT. That way the set-up screen shows precisely the resolution that can be expected.
Version 6 has proved invaluable to me in loudspeaker design. But one more important feature is the upgradeability of new software. As a result I am now eagerly awaiting version 7 with a particular eye on its Thiel Small parameter measuring abilities.

Bibliography

1. D Rife and J Vanderkooy. "Transfer-Function Measurement with Maximum-Length Sequences" JAES. Vol. 37. No. 6, pp 419-443, 1989, June.
2. SP Lipshitz. TC Scotl and J Vanderkooy. "Increasing the Audio Measurement Capability of FFT analysers by Microcomputer Post-Processing". JAES, Vol 33, pp. 626-648. 1985. September.
3. MR Schroeder. "New method on measuring reverberation time". Journal of the Acoustical Society of America, Vol. 38, pp. 329-361, 1965, and Vol. 40, pp. 549-551, 1966.
4. JM Berman and LR Fincham. "The application of Digital Techniques to the Measurement of Loudspeakers". JAES, Vol.25, pp. 370-382, 1977, June.
5. LR Fincham. "Refinements in the Impulse Testing of

Melissa capabilities

Melissa can display the step response, frequency response, phase response, Bode and Nyquist plots, energy time curves, Schroeder reverberant decay curves and cumulative energy. It can measure impedance (both modulus and phase) and generate 3-D waterfalls, otherwise known as cumulative spectral decay graphs (there is also a variation on this known as the Wigner distribution). Early/late reflection ratios and reverb/direct ratio can be measured for acoustics work, and another function, known as coherence, allows errors introduced by the loudspeaker to be quantified. The function is a form of highly analytical distortion plot taken over a full bandwidth. But to make use of this facility the loudspeaker must be measured in an anechoic room - or well away from reflections which ruin the measurement.

Melissa can also measure accurate sound pressure level by referring to a library of microphone sensitivities, entered by the user.

A reference curve can be stored and compared to others, computing a difference curve, so that small changes introduced in, say, a crossover, can be accurately measured. It can also over-lay several curves on one screen for visual comparison. There are also numerous statistical computations which can be applied to the test results.

During system set-up, any inaccuracies introduced by the power amplifier etc, can be taken into account by storing the frequency and phase information about the amplifier link as a reference, which is subsequently automatically subtracted from the measurements. Also measurable are minimum and excess phase. The STI and RASTI speech intelligibility tests are also included. Programmable filters are included and these can be used to isolate reverberant decay within any octave or $1 / 3$ octave band. Harmonic distortion can be measured

Low-frequency resposne taken with 5 kHz bandwidth and 4096 points acquisition, giving a resolution of 3.66 Hz . This was tasen with the microphone at 12 cm from the woofer and shows the response clearly down to about 10 Hz .

Group delay for woofer in room with microphone at 12 cm .

Cumulative decay spectra of loudspeaker in sealed box, showing the decay in sound output after the "stimulus" has stopped. Plotted with a linear frequency axis.
Loudspeakers"., IAES, Vol, 33. No 3, pp. 133-140, 1985. March. 6. JD Bunton and RH Small. "Cumulative Spectra, Tone Bursts and Aperiodisation". JAES, Vol. 30, No 6. pp. 386-395, 1982, June.
7. CP Janse and AJM. Kaiser. "Time-Frequency Distributions of Loudspeakers: The Application of the Winger Distribution". JAES, Vol. 31, No 4, pp. 198-223, 1983, April.
8. T Houtgast and HJM. Steeneken. "Speech Intelligibility in Auditoria", Acoustica. Vol. 54. pp. 186-199. 1984.
9. JS Bradey and RE Haliwell, National Research Council of Canada. "Making Auditorium Acoustics More Quantitative". Sound and Vibration, February 1989.
10. H Moller and C Thompson. "Electroacoustic Free-Field Measurements in Ordinary Rooms. Using Gating Techniques". Bruel and Kjaer Application Notes, 15-107.

SUPPLIER DETAILS

 MLSSA Distributors: Munro Associates, 13-16 Embankment Gardens, London SW3 4LW Tel: 071 3528100 Fax: 071 3510396 Price of plug-in card and software (inc one year guarantee on hardware) is $£ 2490$ + VAT.
T alent
 Computers

Custom Built Computers

High Quality Computers
 Built To Your Specification

Prices Start From	
286	$£ 500$
386 sx	$£ 610$
386 dx	$£ 730$
486 dx	$£ 1100$

All systems come with one-year warranty with the exception of
hard disks which come with a minimum of 2 years warranty.

Tel 0533-376909 Fax 0533-376770

CIRCIE NO. 107 ON REPLY CARD

R.S. LANGREX R.ST. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers. Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 081-684 1166

Telex: 946708
Fax: 081-6843056

CIRCLE NO. 109 ON REPI CARD

THE CRUNCH FOR DSP CARDS?

DSP power need no longer be limited to signal processing applications - if a new C compiler proves its worth. Allen Brown sums up XCX.

Principal platform for hosting digital signal processor chips is the PC expansion card. Originally the PC was seen as a low cost development system for DSP chips with software tools (C compiler, a cross assembler. linker and simulator) running under mis-dos.
Compiled code was down-loaded to the expansion card to run in real-time if necessary. So the role of the PC was limited to a development platform only, but represented an attractive entry-level alternative to chip-specific development systems.
Many manufacturers produce expansion cards hosting DSP chips, with applications largely confined (or limited) to signal processing needs - an annoying restriction considering the computational power of DSP chips.
But it was inevitable. recognising that DSP chips are potent number crunchers, that moves would be made to make expansion cards with DSP chips more accessible to non-signal processing requirements.
Now Rich Software (distributed in the UK by Bores Signal Processing) has issued XCX extended C compiler. The sofiware package enables \mathbf{C} source code with standard I/O and graphics instructions to be compited and executed on expansion cards with an AT\&T DSP32(C) chip.
By linking run-time libraries to the compiled C code, Rich has enabled the DSP32(C) to perform computational aspects of the code, with I/O data exchanged with
the PC's CPU, accessing the PC's bios. Computational code written for Microsofi C. Quick C or Borland C compilers can be compiled for the DSP 3 ? (C) chip, targeting the DSP32(C) and not to the PC's CPU.
A marked upgrade in performance results. To demonstrate the improvement a short routine written in C for calculating a million square roots was compiled using XCX and down-loaded to a DSP32C on an LSI expansion card. It took seven seconds to complete.
The same piece of code, compiled with Microsoft Quick C. running on the PC's 20 MH 80386 with 80387 coprocessor, took 70) to complete - an order of magnitude slower.
The engineer or scientist who frequently refers to C Numerical Recipes (Cambridge University Press 1988) will find XCX a real joy as it also contains additional C instructions for manipulating matrices - an area where ansi C is particularly weak.
Manufacturers (Table 1) of expansion cards with the AT\&T DSP32 (C) may find a new customer base for their products providing they can produce cards with adequate memory and fast data transfer without the clutter of analogue $1 / O$.

- Rich Software also produces a similar Pascal compiler. though effort may have been better spent if attention had been focused on C compilers for other floating point DSP chips such as the TMS320)C30.

System

Requirements
Expansion Card with either AT\&T DSP32 or DSP32C chip.
PC with expansion bus which matches card.
AT\&T DSP32 C
compiler, cross assembler and linker.

Availability

The XCX compiler ($£ 300$) and expansion cards listed in Table 1 are available from Bores Signal Processing, 39 Hawkswell Close, Woking, Surrey, GU21 3RS. Tel: 0483740138.

Table 1. PC Expansion Card Hosting the AT\&T DSP32(C).

Product code	Memory (bytes)	Analogue Io	Price	Maker
ZPB32	64K (DSP32)	DSPlay seriaL i/f	£980	BB
XN1-AO	64 K (DSP32	buffered seriaL if	$£ 700$	CAC
ZPB32-HS	64K (DSP32)	DSPlay seriaL i/f	£1470	BB
XN1-BO	64K (DSP32)	8 bit, 8 kHz codec	£650	CAC
XC4-ax	$64 \mathrm{~K}-256 \mathrm{~K}$	buffered serial i/f	£800-1000	CAC
PC-32C	$64 \mathrm{~K}-256 \mathrm{~K}$ zero w/s	DSPport interface	£1200-1500	Ariel
ZPB34	64K-576K	DSPLay seriaL i/f	£1960-4900	BB
	two w/s			
AC5-ax	$\begin{aligned} & 64 \mathrm{~K} \cdot 256 \mathrm{~K} \\ & \text { zero w/s } \end{aligned}$	CAC daughter boards	£1000-1200	CAC
PC/DSP32C 1.2		DSPLink interface	§1400	LSI
	two /s			
V32C/256	$128 \mathrm{~K}-256 \mathrm{~K}$ one w/s	DSPLink interface	£1400-1700	SMIS
PC-32M	$\begin{aligned} & 256 \mathrm{~K}-1.25 \mathrm{M} \\ & \text { zero } \mathrm{w} / \mathrm{s} \end{aligned}$	DSPport interface	£1800-3300	Ariel
AC5-ax-by 64K-1.25M	none one u/s	£1500-2200	CAC	
V32C/85	1.25M-8.25M seven w/s	DSPLink interface	§3200-4400	SMIS
DT2878	2-4M seven w/s	DT-Connect interface	£5000-6500	DT
ARIEL $32 \mathrm{C} 64 \mathrm{~K}-256 \mathrm{~K}$	16 bit stereo 100 kH zero w/s	£2700-3000	Ariel	
AC5-ax-J	64K-1.25M one w/s	16 bit stereo 50 kHz	£1800-3500	CAC
PCS/DSP32C	192K two w/s	16 bit stereo 200 kHz	£2000	LSI

SPICE• AGE
 Non-Linear Analogue Circuit Simulator £245 complete

or 170 per Module

Those Engineers have a reputation for supplying the best value-for-money in microcom-puter-based circuit simulation sottware. Just look at what the latest fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-cf-use, performance and lacilities:
SPICE - AGE performs four types of analysis simply, speedily, and accurately

- Module 1 - Frequency response Module 3-Transient analysis
- Module 2 - DC quiescent analysis Module 4 - Fourier analysis

Impedance sweep

2 DC Quiescent analysis
SPICE*AGE analyses DC voltages in any network and is useful, for example, for selting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components - see below). This type of analysis is ideal for contirming bias conditions and establishing clipping margin prior to performing a transient analysis Tabular results are given for each node the reterence node is user-selectable

1 Frequency response
SPICE AGE provides a clever hioden benefit. It tirst solves for circuit quiescence and only when the operating point is established does it release the correct small-signal results. This essential concept is featured in all Those Englneers' software. Numerical and graphical (log \& lin) impedance, gain and phase results can be generated. A "probe node" feature allows the output noxjes to be changed Output may be either dB or volts; the zero dB reference can be defined in six differ ent ways.

DC conditions within amplifier circuit

NEW VERSION 3.00 JUST RELEASED
FEATURES: New manual with introductory text on Fourier analysis, Fourier Zoom window. UPGRADES $£ 65$.

Square wave synthesis (transient analy sis)

4 Founer analy

SPICEAAGE performs fourier transforms on transient analysis data. This allows users to examine transient analysis waveforms for the most prevalent frequency components (amplitude is plotted against trequency). Functions as a simple spectrum analyser for snapshot of transients. Automatically interpolates from transient analysis data and handies up to 512 data values. Allows examination of waveform through different windows. Powertul analytical function is extremely easy to use.

3 Tranalent anabyels

Tre transient response arising from a wide range of inputs can be examined. 7 types of excitation are offered (impulse. sine wave, step, triangle, ramp, square and pulse train); the parameters of each are user-definable. Reactive compo nents may be pre-charged to steady state condition. Up to 13 voltage generators and current generators may be connected. Sweep time is adjustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results.

Spectrum of synthesised square wave (Fourier analysis)

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software
A good range of properly supported and proven programs is available and our expert staff are at your service
Telephone: Charles Clarke on 071-435 2771
for a demonstration disk.

KESTREL ELECTRONIC COMPONENTS LTD

it All items guaranteed to manufacturers' spec.
\& Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	100+
Z80A CPU	1.00	0.65	62256LP-100	3.40	2.32
Z80A CTC	0.60	0.30	6264LP-100	1.70	1.30
Z80A P1O	0.60	0.40	6264LP-120	1.50	1.10
Z80A SIO/O	1.20	0.90	6116LP-120	1.10	0.65
Z80A DMA	0.90	0.65	2764A-25	1.60	1.20
Z80A (CMOS) CPU	1.20	0.90	27C64-15	1.65	1.35
2808 (CMOS) CTC	0.70	0.45	27C128-25	1.75	1.45
1488	0.14	0.12	27128A-20	1.65	1.30
1489	0.14	0.12	27256-25	1.80	1.40
ILO-74	1.20	0.85	27C256-200	1.90	1.55
ULN2803A	0.50	0.35	27C512-150	2.50	2.00
6502 AP	2.20	1.50	41256-100	1.30	0.95
6522 AP	2.20	1.50	41C1000AP-80	4.10	3.25
6551	2.00	1.40	74LS04	0.10	0.07
65C21P2	2.80	2.40	74LS138	0.17	0.12
8031	1.90	1.40	74LS273	0.21	0.16
8251A	1.10	0.75	74LS368	0.14	0.10
8255.5	1.20	0.90	7415373	0.20	0.14
8259AC	1.00	0.70	74LS374	0.20	0.14
D8742	10.50	9.40	74HC244	0.18	0.12
74LS00	0.10	0.07	74 HC 374	0.18	0.12
74LS02	0.10	0.07	74 HCT 373	0.18	0.12

All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road,
 Purley, Surrey CR8 4HA

Tel: 081-668 7522. Fax: 081-66B 4190.

Electronics Workbench
 The electronics lab in a computer!

A simple, intuitive and very powerful teaching tool,
Electronics Workbench" lets students design and test both analog and digital electronic circuits, without the delays and expense of a laboratory.
Available in three pactiages:
Projessional: Full functionality, unlimited numbers of components in a circuit, with colour coding for circult tracing EGAVGA

graphic support.

Personal Plus: Full fuactionality, unlimited number of components in a circulth, with monochrome graphics support.
Personal: Full fuactionality, 20
components or less in a circuit, with monochrome graphics support.

Electronies Workbanch" is produced by Internctive Image Technologies Lad Electromics Wortbench ${ }^{\text {T}}$ is available now through:

LJ Technical

 Systems Ltd.Francis Way, Bowthorpe Industrial Estate, Norwich NR59JA.
Telephone: (0603) 748001.
Fax: (0603) 746340.

> £30 and an IBM PC are enough to allow anyone to experiment with a wide range of electronic devices without having to connect even a single wire. Paul Stewart explains
how to set
about it.

APC version of Spice (Microsim's simulation program with integrated circuit emphasis) now provides the user with a hands-off means of experimentation. Helped by a book called "Spice, a guide to circuit simulation \& analysis using Pspice" by P.W.Tuinenga and published by Prentice Hall, he can gain access to a variety of electronic devices - from resistors and coils to transmission lines and quartz crystals - without so much as the need to connect a wire. The response of circuits to a variety of programmed stimuli can be monitored using a simulated oscilloscope.
This minimalist approach is aimed at the student: Microsim also offers evaluation and production versions. The evaluation package offers menu-driven software and comes with a complete 450 page document describing in much greater detail than Tuinenga's book all

of the routines, parameters and options of the full Pspice package. Both this and the student version have a small library of device parameters or characteristics. The more expensive full production version has an extensive library of devices, including over 3000 analogue and 1200 digital devices.
Although only a rather small volume of device data is available in the student version. Tuinenga shows in his book how model parameters can be included for devices not covered by the library (see also the book by Antognietti and Massabrosi).
One important thing to remember with a software circuit simulator is that you cannot blow up a device: the computer will still give answers even if you try to drive a 100 mA transistor with 10 A . Make sure then that, before building your simulated circuit

Analogue simulation waveforms using the PSpice analogue simulator from ARS Microsystems.

with real components, each of the various components is working within its power limit.

Pspice capabilities

Any competent engineer will be able to calculate mathematically the frequency at which an oscillator circuit will oscillate, provided that the amplitudes of the voltages of the waveforms generated are small in every part of the circuit. He may also be able to estimate the output voltages of such a circuit and even, with extreme difficulty, to assess the true frequency of oscillation, allowing for the existence of largeamplitude swings.

In a complex circuit, the mathematics
becomes too complicated; over the last thirty years engineers have therefore resorted to the use of the computer, even for circuits

Component types

Any electrical circuit may be described in terms of nodes or points of connection between the two different types of component from which it is made up. Passive devices such as resistors, capacitors and coils are components that passively transfer or dissipate energy without themselves being the source of it. Active devices such as diodes and transistors may have external bias energy applied. Part of this energy is used actively to increase the energy or modify the nature of a required signal.

In general, passive devices are rather easier to deal with because there is a simple one-to-one correspondence between the current flowing through them and the voltage developed across them. For example, the current through a resistor will double if the voltage applied to it is doubled, although this is not true for diodes and transistors, which are nonlinear. This non-linear behaviour of active devices is what makes them so difficult to analyse and where a software package like Pspice comes into its own.
consisting entirely of passive components for example, filters with twenty components. Although Pspice can cope with all this. it must be said that there can be no substitute for good design and flashes of inspiration!
The Pspice software simulator is controlled by a simple language with instructions in two broad categories: control statements and devices. Control statements instruct the computer to perform various
types of analysis and produce output data in different formats: graphical and tabular. The devices section of the language is used to describe the types of device in a circuit and the connections made between them. The many control statements include instructions to calculate the DC voltages in a circuit, its frequency response and transient response to a variety of applied voltages such as sine. pulse and FM.
The following examples demonstrate some of the package's many facilities and give a better appreciation of the way in which the computer is instructed to perform various tasks.

DC calculations

At the simplest level of any circuit calculation is the determination of the currents and voltages resulting from the application of steady DC voltages.
In a simple circuit consisting of two series resistors of 1 and 3Ω connected across a IV DC supply. the following table shows the input file which describes the circuit in Pspice language.
potential divider circuit
V1 10 1V
R1 12 1s
R2 20 3s
.end

The first line of any Pspice program must be a string of symbols which serves to title the program; it has no significance as an instruction. The second line indicates that a steady voltage source of IV is connected between points labelled I and 0 with node I at $+I V$, relative to node 0 . Every Pspice program must be terminated with an .end. Any line of a Pspice program that starts with an asterisk is ignored. It resembles an REM statement in Basic, and is used to insert remarks that make the program more readable.

If this program of instructions is held in a file called exampte.cIr, when the instruction pspice EXample.cIR is typed into the com-
puter the program will be executed. After a short time another file. EXAMPLE.OLT, will be produced. part of which will look like this:

NODE VOLTAGE	NODE	VOLTAGE
1)	1.0000	2)
.750		

This table gives the voltages at various nodes relative to the () reference node; hence there is IV between node I and 0 as one might expect since that is the voltage applied to the circuit. The other two figures indicate that between nodes 2 and 0 there is a voltage of 0.750 V .
In fact this circuit is nothing more than a potential divider with $3 / 4$ of the total series resistance between terminals 2 and 0 . This trivial example serves to show the basic structure of a program.
One point that should be noted is that computers fail if any attempt is made to divide a number by zero. This has certain implications for the execution of pspice in DC analysis of circuits with inductors and capacitors.

AC calculations

In circuit analysis, the frequency response of a circuit such as a filter or amplifier often needs to be determined. Figure 1 shows a 50825 -element low-pass filter with a design cut-off frequency of 1 MHz . It consists of two inductors. I, and I_{2}, with values $10.73 \mu \mathrm{H}$ and connected between nodes l and 2 and 2

Fig. 1. 1MHz lowpass filter network

The left hand plot shows the frequency response of the filter network with the associated passband ripple indicated on the right

and 3 : the capacitors C_{1}, C_{3} and C_{5} are connected between ground, node 0 . and nodes l. 2 and 3 . respectively with $C_{1}=C_{5}=3000 \mathrm{pF}$ and $C_{3}=5600 \mathrm{pF}$. The filter is terminated with its characteristic impedance of $R_{5}=50 \Omega$ and fed by a signal generator V, with a source impedance that is also 50Ω. The corresponding Pspice program is shown below:

```
f low-pass filter
150 ac
15150\Omega2
c1103000pF
1212 10.73\muH
c3 205600pF
4 2 3 10.73\muH
c5303000pF
r5 3050\Omega2
ac dec 20.1e6hz 100e6hz
.probe.end
```

Only three of these lines require explanation: line 2: 1,50 ac $/$ I indicates that an AC voltage of nominally IV is applied between nodes 5 and 0 ; line 10: ac dee 20 . lebhz 100 eohz indicates that the voltage source v applied to the filter is to be swept through 20 different frequencies in decades from 0.1 to 100 MHz ; the symbol en is used to indicate $10^{\text {h }}$ as a multiplying factor (the symbol Meg may also be used): line 11: probe instructs the computer to store all current and voltage values at and through each node in a file called probe. Dat.

When the program ends, you should type . PROBE into the computer. A menu will appear, offering you a variety of choices of graphical presentation of the computed data. As the name implies, the action of probe is to simulate an oscilloscope probe, providing a graphical view of the voltages and currents at any point in the circuit.
In Pspice talk, this se type of analysis gives what is called the small-signal steadystate response to the input: the number 1 at the end of line 2 does not mean IV but is simply all arbitrary defining constant for 1 . The analysis assumes that the input signal is very small so that, if components such as transistors are included, they are not driven far from the DC bias conditions.

Of course. the filter circuit described above does not contain non-linear devices. Small-signal analysis is appropriate when the frequency response of an input RF receiver amplifier is being determined, but not for the response of an RF power amplifier of a transmitter where the input signal levels are very high; for example in class C mode.
Considerably higher volumes of data may be accessed through the use of PROBE than is discussed here. including the delay of a pulse of CW through the circuit and the phase of the output sine wave relative to that of the input.

Transient analysis

Transient analysis mode is particularly interesting. All electronic circuits are subject to Iransient behaviour, but whether this is important depends on the time the circuit
takes to stahilise compared with the period over which it is handling a signal. For example, if a short burst of audio tone is passed through a high Q band-pass audio filter, the output of the filter may have an unacceptable ring which can be so long as to run into the next burst of tone; this is a wellknown problem in CW filtering of high speed Morse signals.
The transient analysis mode in Pspice has another important feature: it allows the effects of large signals in a circuit containing non-linear elements like diodes and transistors to be determined. As we all know,over-driving an RF power amplifier produces harmonics. One simple example of transient analysis using Pspice (outlined below) forms the basis of Time Domain Reflectometry.
Figure.2a shows a transmission line of $50 \Omega 2$ impedance: to the input of the line is connected a $50 \Omega 2 / 1 \mathrm{~V}$ pulse generator: the other end of the transmission line is shorted. If the pulse generator voltage "vpulse" rises from 0 V to IV at a time 10 ns from the time origin 0 and is then held at that voltage indefinitely, what is the voltage at the input terminal to the transmission line at different limes?

In fact what happens is that the pulse takes 10 ns to travel down the line to the short, where it is inverted and reflected back

Fig. 2a. Short-circuited transmission line model
towards the pulse generator. This cancels the on-coming IV from the generator, leaving 0 V in its wake. 20 ns after switch-on, the reflected signal cancels the on-coming wave completely at the input to the transmission line: from then on, there is no voltage across the line's input terminals although the IV is sustained at the input to the $50 \Omega 2$ resistor.
This circuit is simulated using the Pspice program below:

pulsed transmission line

t1 2030 Z0=50s 2 td $=10$ nsec
rgen 12 50s
rterm 30.0001 s 2
v1 10 pulsetOv 1v 5 nsec Onsec Onsec $50 n s e c$ $500 \mathrm{nsec})$
tran .05nsec 30nsec
probe

.end

Fig. 2b. Transmission line model. The capacitance in the middle represents the effect of a drawing pin compressing the cable

Four of these lines need some explanation: line 2: $t, 2030 Z_{0}=50 \Omega 2 \mathrm{td}=10 \mathrm{nsec}$. Any device beginning with a t indicates a transmission line: the input is connected between nodes 2 and 0 and the output appears between nodes 3 and $0 ; Z_{0}=5() S 2$ refers to the line's characteristic impedance and $t d=10$ onsec is the delay length: 10 units of ns ($\mathrm{Ins}=10-9 \mathrm{~s}$).
Line 4: rterm $30.0001 \Omega 2$. The very low value of rterm (.0001S2) has been given a value close to zero without actually making it zero since computers fail to compute with zeros: this simulates a short circuit at the output end of the line t,
Line 5: v, 10 pulse(0) ir 5nsec Onsec Onsec 50 m.sec 500 nsec' This statement sets the voltage source r, to a pulse of 1 V which switches from OV at time $=0$ to IV at time $=5 \mathrm{~ns}$, with rise and fall times of 0) and has a 500 ns period with the voltage being developed across nodes $/$ and $0 ;$ Line 6: tran .05nsec 30nsec: This line instructs the computer to calculate the voltages and currents in the circuit over a 30 ns period and to record them at .05 ns intervals.
Addition of the .PROBE statement produces a file probe.dat which, after the execution of the above program, can be accessed by typing probe as before.
Now consider two minor modifications to this circuit. Place a 5 pF capacitor half way along the transmission line and across it and replace the short with a 5052 resistor at the end of the line. This simulates the effect on a matched coaxial line which is fixed too hard into a wall with a U-shaped pin that compresses the cable, thereby increasing its capacitance locally. The circuit is shown in

Fig. 2b.

If we apply the same pulse to the line and ask for the transient response, the Pspice program becomes:
defective transmission line pulsed
$112030 \mathrm{ZO}=5012 \mathrm{td}=5 \mathrm{nsec}$
rgen 1250Ω
cmid 305 pF
23040 ZO=50s2 $\mathrm{t} \mathrm{d}=5 \mathrm{nsec}$
rterm 4050 s 2
v1 10 pulse(Ov iv 5 nsec Onsec Onsec $50 n s e c$ 500nsec)
Iran .05nsec 30nsec
.probe
.end
The PROBE_facility can again be invoked to inspect the line voltages. With the line voltages displayed by probe in low time resolution tsee Fig.2c), because the input voltage pulse $\mathrm{V}(1)$ takes 5 ns to reach the capacitor. the effect of the capacitor is not felt until after that time.

Fig. 2c. Transmission line voltages vs time (low resolution)

When the leading edge of the pulse strikes the capacitor, the sudden change in the capacitor potential makes the capacitor behave momentarily like a short circuit; the capacitor then proceeds to charge up to a steady voltage with a time constant of 0.125 ns . This is half the time constant formed by 50Ω and a capacitor of 5 pF . 10 ns after the pulse has switched on at the input end, the information is received at the far end.
What of the signal reflected back to the generator? There are two possible reflections, one from the capacitor and the other from the termination at the end of the line t_{2}. The latter does not occur because, of course, the line is perfectly matched to the load.
The voltage that appears at the input end, node 2 , is then the effect of the input voltage from the pulse generator and the signal reflectedfrom the capacitor. 10 ns after the pulse is switched on, the signal which is reflected back from the capacitor has had time to make its effect felt on the input, node 2. In the first instance it produces an effective short similar to the previous example, so that the voltage drops to zero; this effect decays gradually to produce a steady distribution of voltages throughout the line with the input and output voltages both becoming 0.5 V . Figure. 2 d shows the voltages at various points with a finer time resolution.

Fig. 2d. Transmission line voltages vs time (high resolution)

Other Pspice features

Since the 1987 student version was written, the codes of the evaluation and production versions have been updated. These two versions now include a powerful digital option that - amongst other features - enables TTL and discrete components to be interconnected. The PROBE may be invoked to give analogue voltages and a logic analyser display in terms of the 0 s and 1 s of various logic states as a function of time.
This facility necessitates the modelling of the I/O interfaces of TTL, cmos and ECL chips in analogue form as well as the various propagation delays from all of the internal components between the interfaces. Such models may be constructed either by the user or by invoking a digital library using a .LIB command, although this is not included in the student version.
Two other features available in evaluation and production versions are described under the heading Analogue Behavioural Modelling. It is possible, for example, to give the voltage current relation for a device in terms of a numerical table; such a facility is useful in modelling say a tunnel diode. Another aspect of this feature is its ability to write, in the form of a table, the frequency response of a filter which you wish to include in a larger circuit.

Fig. 3a (top) Transistor tripler model.
Fig. 36 (right) shows variations of the output voltage, $v(2)$ the collector current ic(q1) together with that of the intput voltage $v(4)$ for the last oscillation of the input voltage.

Fig. 3c displays the amplitudes of the various harmonics in the output voltage $v(2)$ at the collector, the largest of which is the third as required

As a final example of Pspice, consider the tripler circuit of Fig. 3. We shall apply a 2 MHz sine wave of amplitude 0.8 V between the base and emitter of a 2 N 2222 transistor. A 10 V supply feeds the transistor via a parallel coil and capacitor - the latter two components being chosen to resonate at the third harmonic of 2 MHz . The program simulating the transient reponse follows.

```
transistor frequency tripler
    .options it15=0
.lib
q1210Q2N2222
vsupply 5010v
rb }10\mathrm{ 1kohms
1c 53 10e-6
rc 32 7.5ohms
cc 5 2 70pF
cb411nF
vin 40 sin(0.8v 2meg 0 sec 0)
.tran .1e-6 4e-6 0.01e-6
four 2e6v(2)
probe
end
```

The resistor re is chosen to give the $10 \mu \mathrm{H}$ coil Ic a realistic Q of 50 at 6 MHz . The device $q 1$ is a transistor with nodes 2, 1, and 0 as collector, base and emitter respectively. The model type " 2 N 2222 " has parameters held in the library and invoded by the .lib

Software

Evaluation and production versions are available from ARS Microsystems, Doman Road, Camberley, Surrey, GU15 3DF.

The evaluation version includes Tuinenga's book, a 450 page manual covering a complete list of routines plus two 1.2 MB high density disks. The software for both the student and evaluation versions may be freely copied; this is encouraged by Microsim Corporation.

command on the second line.
In this program, the transient analysis proceeds for about four microseconds with data recorded every $0.1 \mu \mathrm{~s}$. The purpose of the instruction "four..." is to perform a harmonic analysis on the output voltage of the tripler during last $0.5 \mu \mathrm{~s}(=1 / 2 \mathrm{MHz})$ of the transient analysis when, hopefully, a steady state has been reached. Fig. 3b shows variations of the output voltage, $v(2)$ the collector current $\mathrm{ic}(\mathrm{q} 1)$ together with that of the intput voltage $v(4)$ for the last oscillation of the input voltage.
Fig. 3c displays the amplitudes of the various harmonics in the output voltage $v(2)$ at the collector, the largest of which is the third as required.

Computer system requirements

The student version of Pspice will run on an IBM compatible PC or PS/2 based on the 8088,80286 and 80386 microprocessors; it will also run on a Macintosh, but you should specify which. Both monochrome and colour monitors are supported.
While the student and evaluation versions will work without a maths co-processor, both will run about ten times faster if one is installed; the full production version does, however, require a co-processor. Software is supplied on two 5 in double-density doublesided disks for the student version and two high density disks for the evaluation version.
Pspice runs under MS-DOS $2.0+$ with at least 512 kB of RAM. The production version will also run on a variety of workstations. Apart from the production version, the capacity is limited to about 10 transistors or

25 nodes; the full version however is limited by the available RAM and has a typical capacity of 1000 resistors or about 100 transistors per 500 kB of memory.

Which version?

This article has concentrated on the student version of Spice prepared by Microsim for the obvious reason that it is cheap, supported by a reasonably priced book and usable on a cheap computer. Apart from the other more elaborate versions mentioned, there are a number of other versions of Spice. Among these are Spice-Plus by Analogue Tools, Dspice by Daisy Systems, AllSpice by Intusoft, Z-Spice by Z-Tech and Spice-Age by Those Engineers.

Acknowledgements

The author would like to thank Prentice-Hall and ARS Microsystems for providing access to their software products and for clarifying a number of details.

References

Semiconductor Device Modelling with SPICE. ed. P. Antognetti \& G. Massobrio. pub. McGraw-Hill Book Co. (ISBN 0-07-002107-4). 1988.

> See p6 for details on obtaining your free evaluation copy of Pspice...

AMSTRAD PORTABLE PC'S FROM $£ 149$ (PPC1512SD). £179 (PPC1512DD). £179 (PPC1640SD). £209 (PPC1640DD). MODEMS 530 EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo pair output 100 weach 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ woofer $2^{\prime \prime}$ mid range and parr $£ 3000$ Order fel 30 P7R . 2KV 500 WATT TRANSFORMERS Suitable for high voltage £ 10.00 ref 10P93R MICROWAVE CONTROL PANEL. Mains operated, with touch switches Complete with 4 digit display. digital clock. and 2 relay outputs one for power and one for pulsed power (programmable). FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC Five metre length 57.00 rel 7P29R
12V SOLAR CELL. 200 mA output ideal for trickle
15P42R
PASSIVE INFRA-RED MOTION SENSOR.
Complete with daylight sensor, adjustable lights on timer (8 secs -15 mins). 50° range with a 90
deg coverage. Manual overide facifly Complete with wall brackets, bulb holders etc. Brand plete with wall brackets, bulb holders etc.

Pack of iwo PAR38 bulbs for above unit $£ 12.00$

ref 12P43R
VIDEO SENDER UNIT Transmit both audio and video signals from elther a video camera, video recorder or computer to any standard TV set within a 100 ' rangel (fune TV to a spare channel)
12 v DC op $£ 1500$ ref 15P39R Surtabie mains adaptor $£ 500$ re 5P191R
FM TRANSPMITTER noused in a standard working 13A adapter

(bug is mains driven). $£ 26.00$ ref 26P2R
 MINATURE RADIO TRANSCEIVERS

walkie takes with a range of up to 2 kilomerres. Units hit measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. $\mathbf{£ 3 0} 000$, है ref 30P 12R
FM CORDLESS MICROPHONE.Small hand held unit with a 500 ' rangel 2 transmit power levels reqs PP3 battery Tun *abie to any FM recelver Our price £15 ref 15P42AR
12 BAND COMAMUNICATIONS RECEIVER 9 shor
or battery. Complete with shoulder strap and mains lead meen NOW ONLY £19.00!! REF 19P14R.
WHISPER 2000 LISTENING AID.Enables you to hear sounds that would otherwise be inaudibie! Complete with headphones Cased 55.00 ref 5P179R. CAR STEREO AND FM RADIOL ow cost stereo system giving 5 watts per channel Signal to noise ratio better than 45 db . wow and LOW COST WALIKIE TALKIESParr of battery LOW COST WALIKIE TALKIESP Par of battery operated units with a range of about 200 . Our price $£ 8.00$ a
parr rel $8 P 50 R$
7 CHANNEL GRAPHIC EQUALIZER 7 CHANNEL GRAPHIC EQUALIZERplus a 60 watt
power ampl 20.21 KHZ 48 R 12.14v DC negafive earth. Cased. I 25 power ampl 2 .
NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ rel 4 P44R $2 \times$ C's $£ 400$ ret 4P73R, $4 \times$ D's $£ 9.00$ ref 9 P12R, $1 \times$ PP 3 TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ulumate equivalents book. Latest edition $£ 20.00$ ref OP32R
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nyion pach of $100 £ 3.00$ ret 3P104R. Bumper pack of 1,000 ties $£ 14.00$ ref 14P6R

1992 CATALOGUE AVAILABLE NOW

IF YOU DO NOT HAVE A COPY PLEASE REQUEST ON WHEN ORDERING OR SEND US A $6^{\prime \prime} \times 9^{\prime \prime}$ SAE FOR A FREE COPY.
GEIGER COUNTER KIL.COMplete wuth whe PCB and all components to buld a battery operated geiger counter. ©39.00 ref 39P1R any FM radio 90 battery req'd $£ 500$ eal 5P158R
 COMPOSITE VIDEO KITS. These conven composite video into separate H sync. V sync and video. $12 v$ DC. E8.00 ret 8 P39R
SINCLAIR C5 MOTORS $12 v 294$ (tull load) 3300 rom $6^{\prime \prime} \times 4^{-1} 1 / 4^{*}$ SINCLAIR C5 MOTORS $12 v 294$ (full load) $3300 \mathrm{rpm} 6^{\prime \prime} \times 4^{-1} 1 / 4^{*}$ Op shah Now $£ 2000$ ref 20P22R
As above but with htted 4 to 1 inhne reduction box ($800 \mathrm{rpm} \mathrm{)} \mathrm{and}$ loothed nylon belt drive $\operatorname{cog} £ 4000$ ref 40P8R
SINCLAIR C5 WHEELS 13° or $16^{\prime \prime}$ dia including treaded tyre and inner tube. Wheels are black. spoked one piece poly carbonate. 13^{*} wheel $£ 600$ ref 6P20R. 16 wheel $£ 600$ rel 6P21R
ELECTRONIC SPEED CONTROL KITtor c5 motor. PCB and all components to buld a speed controller $(0.95 \%$ of speed). Uses pulse width modulation $£ 17.00$ ref 17P3R.
SOLAR POWERED NICAD CHARGER.Charges AA nicad
6P3R

12 VOLT BRUSHLESS FAN4 $1 / 2^{\prime \prime}$ square brand new ideal for boat. car, caravan etc. $£ 500$ rel SP206
ACORN DATA RECORDER ALF503 Made for BEC computer but sultable for others Includes mains adapter, mads and book. £ 15.00 ref 15P43R
VIDEO TAPES.
cence frome fam haur supenor quality tapes made under
2PP20R -
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE, BRAND NEW FULL SPEC 540.00 REF 4OP10R. MAINS POWER SUPPLY KIT 520.00 REF 20P33R READY BUIL ANO TESTED LASER IN ONE CASE 575.00 REF 75 P4R. $6 \mathrm{~V} 10 A$ H LEAD ACIDsealed battery by yuasha ex equipment but in excellent conditon now only 2 for $\mathbb{1 0 . 0 0}$ ref 10P95R.
12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 wat 220 vout wh a larger transformerit will handle 80 watts. Basic kit $£ 1200$ ref 12P17R Larger transformer $£ 12.00$ ref 12P41R

VERO EASI WIRE PROTOTYPING SYSTEMIdeal for design. ing projects on etc Complete with tools. wire and reusable board. Our phce $£ 6.00$ rel 6 P33R
MICROWAVE TURNTABLE MOTORS. Ideal for window dis. plays etc $£ 5,00$ rel 5P 165R
STC SWHTCHED MODE POWER SUPPLY 220 V or 110 v input giving $5 v$ at $2 A,+24 v$ at $0.23 A,+12 v$ at $015 A$ and 7 SSuat $04 A 56.00 Y$ HIGH RESOLUTION 12 " ABER MONITORT $2 v$ 1.5A Hercu les compatible (TTL input) new and cased $£ 22.00$ ref 22P2R VGA PAPER WHITE MONO monitors new and cased 240v AC. §59.00 ref 59P4R
25 WATT STEREO AMPLIFIERc. STK043 With the addition of handful of components you can build a 25 watt amplifier. 4400 rof LINE (Circuit dia included)
at 1 A 12 POWER SUPPLY Brand new 220 v input +5 at MINI RADIO MODULE OnIl 2 "square with territe a rial and Supertel. Req's PP3 battery. $£ 1.00$ ref BD716R
BARGAIN NICADS AAA SIZE 2OOMAH 1.2 V PACK OF £4.00 REF 4P92R, PACK OF 100 [30.00 REF 30 P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ef BD827R ALARM TRANSMITTERS. No data avaliable but/nicely made ALARM TRANSMITTERS. No data avaliable but/nicely complex transmiters $9 v$ cperation $£ 400$ each ret
UNIVERSAL BATTERY CHARGER.Takes AA's. C's, D's and UNIVERSAL BATTERY CHARGER.Takes AA's. C's, D's and
PP3 nicads Holds up to 5 batteries at once. New and cased, mains PP3 nicads holds up to 5 batteries at once. New and cased, mains
operated $£ 600$ ref 6P36R.
COLOUR MONITORS
AMSTRAD CTM644
RGB INPUT
[75.00 REF A75P1

RESISTOR PACK. 10×50

metal film 55.00 ref 5P170R
CAPACITOR PACK 1.100 assorted non dectrolytic capaci:ors £2.00 ref 2P286R
CAPACITOR PACK 2. 40 assoned electrolytic capacitors $£ 2.00$ ret 2P287R.
QUICK CUPPA? 12 vimmersion heater mith lead and cigar ligtter plug $£ 3.00$ rel 3P92R.
LED PACK . 50 red leds. 50 green leds and 50 yellow leds all 5 mm §. 8.00 ref 8P52R
FERRARI TESTAROSSA. A true 2 charnel radio controlled car with forward, reverse. 2 gears plus turth. Working headlights.

MIRACOM WS 4000 MODEMS

V21/23
 AT COMAND SET

AUTODIAL/AUTOANSWER FULL SOFTWARE CONTROL TONE AND PULSEDIALLING

£29

PIR LIGHT SWITCH Replaces a standard light smith in seconds fight operales when anybody comes with) detecton range (4m) and stays on for an adjustable time (15 secs 1015 mins). Complete with dayight sensor. Unit also tunctions as a dimmer switch! 200 watt max. Not sultabie tor flourescents. $£ 14$ po ref 14P10R
CUSTOMER RETURNED 2 ehannel ull function radio contro led
WINDUP SOLAR POWERED RACIO! FMAM radio takes re. chargeable batrenes complete with hand charger and solar panel ${ }_{14}$ AR200R
240 WATT RMS AMP KIT Stereo 30 0-30 psu required $£ 40.00$ ref 40P200R
300 WATT RMS MONO AMP KIT L55.00 PSU required ret 55P200
ALARM PIR SENSORS Standard yev alarm
tace to most alarm panels. $£ 16.00$ re 16 P 200
tace to most alarm panels. $\{16.00$ re 16 P200
ALARM PANELS 2 zone cased keppad entry, entry exit time delay Atc $£ 1800$ ref 18 P 200 MODEMS FOR THREE POUNDS!
Fully cased UK modems designed tor dialup sy stem (PSTN) no data TELEPHONE HANDSETS
BELEPHONE HANDSETS
Bargan pack of 10 brand new haddosets with mic and speaker only BARGAIN SIAHPPERS
Compuer heyporits. Loads of spuiches and compenents excellent CPOWER SUPPLES
Th POWER SUPPLES

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 5OT TELEPHONE 0273203500
MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS £2.50 POST PLUS VAT. PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY

NEXT DAY DELIVERY 58.00
 FAX 027323077

Input plug disc ofive and motier board fly leads. Our price i 155.00 (iloss than y 1 fan alone would cosk
HGGH VO TIAGE CAPACITORS
Apack of 20 Sogef vow weproctor idealfor ionizers TV repairs and high voltage expenments etc. Price is $£ 2.00$ ref 2P378R
DATA RECORDERS

DATA RECORDERS

oustomer refurned mains battery unis built in mic ideal for
SPECTRUM JOYSTICK INTERFACE
plugs into 48 K Spectrum to provide a standard Alari type joystick port. Our price $£ 400$ ref $4 P 1018$
ATARIJOYSTICKS
EO use with ne above internace, our price $£ 4.00$ rel 4 RTO2R BENCH POWER SUPPLES
Supertly made fully cased (metal) giving $12 v$ at 2 A plus a 6 V supply. Fused and short arcuit protected. For saie at less than the cost of the casel Our price is $£ 4.00$ ret 4P103R
SPEAKER WIRE
Brown win core insulated cable 100 toot tor $£ 2.00$ REF 2P79R MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\text {" }}$ complete with mounting plate quite powertull and quile. Our price $£ 1.00$ ref CD41R
DISC DRIVES
Customer returned units mixed capacities (up to 1.44 M) We have not sonted these so you just get the next one on the shell. Price is only 7.00 Pel 7P1R (worth it even as a stripper)

HEX KEYBOARDS
Brand now units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1,00$ each tef CD42R
PROJECT BOX
$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}$ black ABS with screw on lid. $£ 9.00$ ref CD43R SCART TO SCART LEADS
Bargain price leads a: 2 for £3.00 ref 3P147R
SCART TO D TYPE LEADS
Standard Scaft on one end. Hi density D type on the other. Pack of ten leads only $\Sigma 7.00$ ref 7P2R
250 ml bottle of liquid nubber sets in 2 hours. Ideal for mounting PCB's frxing wires efc. $£ 2.00$ each ref 2P379R
QUICK SHOTS
Standard Atari compatible hand controller (same as joysticks) our once is 2 for $\{2.00$ ref 2P380R
VIEWDATA SYSTEMS
Brand new units made by TANDATA compiete with 1200/75 built in nodem infra red remole controlled qwenty keyboard ET appproved Prestel compatible, Centronics printer port RGB coloup and compossupply and fully cased. Our price is only $£ 20.00$ pef 20P1R 3 INCH DISCS
ideal for A mstrad PCW and Spectrum +3 machines pack of 10 discs is $£ 12.00$ ref 12P1R

AC STEPDOWN CONVERTOR

Cased units that conven 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our pnce $£ 2.00$ ref 2P381R
SPECTRUM +3 LIGHT GUN PACK
CURLY CABLE
Extendsfrom 8 " to 6 teet O connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joy stichs only 2200 ref 2P382R
MINI MONO AMPLIFIER PACK
4 amplifiers for $£ 20013$ watt units $9-12 \mathrm{v}$ operation ideal for expen ments etc 22.00 ref 2P383R
BUGGING TAPE RECORDER
Small hand held cassette recorders that only operate when there is sound then turn off 6 seconds after so you could leave it in a room all day and just record any thing that was said. Pnceis $£ 20.00$ ret 20P3R IEC MAINS LEADS
Complete with 13A plug our price is only $£ 300$ for TWOI ref 3P148R COMPUTER SOFTWARE BARGAIN
10 cassettes with games for commodore 64. Spectrum etc. Our bargain price one pound! ref CD44R
NEW SOLAR ENERGY KIT
booklet
Ideal for the oudding enthusiast! Price is $£ 12.00$ ref 12 P 2 R
FUSE PACK NO 1
Fifty fuses 1 1/4" Iong (glass) quick blow 10 popular values $£ 2.00$ ref FUSE PACK NO2
Fifty tuses 20 mm long (giass) quick blow 10 popular vaiues $£ 2.00$ ref POTENTIOMETER PACK NO
30 pots for E 3001 ideal for propects etc Ref CD45R
286 AT PC
286 MOTHER BOARO WITH 640K RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUPLY £139 REF 139P1 (no //o cards or drives included)

35 MM CAMERAS Customer retu STEAM ENGINE Standard Mamod 1332
endine comp
TALKING CLOCK
LCD display, alarm, battery operated
push of a button and when the

alapm is due. The alarm is switchable from voice to a cock crowingif 14.00 , 14 P 200 ,
HANDHELD TONE DIALLERS
Small units that are designed to hoid over the mouth piece of a telephone to send MF dialing tones
answer machines $£ 5.00$ ret 5P209
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new dnves with dise and sof ware 10 fimes faster than tape machines works with any Commodore 64 setup The org nal pnce for these was $£ 49.00$ but we can offer them to you at only $£ 25.00$! Rel 25P1R
USED SCART PLUGS
Packof 10 plugs sultable for making up leads only $\mathbf{\Sigma} 5.00$ ret 5P209R C CELL SOLAR CHARGER
Same style as our $4 \times$ AA charger but holds $2 C$ cells. Fully cased with

INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lindsey Gardner, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-661 3614 (mornings only, please). A disk containing all the example listings used in the book is available at $£ 25.50$ + VAT. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A -to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

DESIGN

INTEGRATED CREATIVITY

Ian Hickman experiments with the unusual SMM-2044 audio IC

Adding a component or two for which you have no immediate use to the end of your order is not as profligate as it might sound. Often the extra items can be used to avoid a "small order" surcharge, and so arrive, if not for free, then at least with a useful discount.
The resultant uncommitted stock items can come in very handy in an unforeseen application.
Sometimes an end-of-order component stays in stock for some time - until curiosity gets the better of me and I can't resist playing with it to find out what it can do. So it was with an SMM-2044, described by manufacturer PMI as a four-pole volt-age-controlled filter/oscillator.
The device comes in a 16 pin plastic DIL package (Fig. 1). Input is applied to an npn longtailed pair (LTP) whose standing currem is set by the frequency control input, \dot{V}_{fc}, applied to pin 13. Output of the LTP is applied to a series of four single pole low-pass stages. Cut-off frequency of each is controlled by the current called up by the exponentially controlled taitcurrent generator (common to all four stages) and the capacitor that is associated with the particular slage; eg between pins 12 and 14 .
Output from the fourth volt-age-controlled filter stage (VCF) drives a current output
stage - terminated to ground through (1ypically) a 3 K 3 resistor to give a voltage output or, if a larger low impedance outpur is desired, applied directly to the virtual earth of an inverting op-amp stage. Additionally, output from the fourth stage feeds another npn LTP whose standing current is also adjustable. A feedback loop is introduced by injecting a current into the Q control pin, pin 2, and has the effeet of applying a replica of

the output back to the input of the first LTP.
Clearly Fig. 1 is somewhat diagrammatic, since it appears that the feedback is positive at $D C$ - at least if there is no net inversion through the four VCFs - whereas the second LTP applies DC negative feedback (NFB). But what happens when no current is injected into pin 2, so that the second LTP is effectively non-existent and there is no feedback? Assume for the moment that all four VCF capacitors have the same value, then at some frequency each VCF slage will contribute a 45° phase lag and an associated 3 dB of attenuation. The result is a gradual transition from a flat frequency response at low frequencies; through -12 dB at the cut-off frequency of this very non-optimum low-pass filter; to a stop-bund attenuation increasing at 24 dB per octave (Fig 2a). As the second LTP is progressively powered up by Q control, the NFB reduces gain through the device at low frequencies
But at the frequency where each VFC stage comributes a 45°

Fig. 2a (left). Gradual transition in frequency response at low trequencies, through $-12 d B$ at cut-off irequency, to a stop-band attenuation increasing at $24 d B / o c t a v e$.
Fig. $2 b$ (centre). Pole diagram. Fourth-order transter iunction $Q=0 \mathrm{~V}$.
Fig. 2c (right). Transter function as Q increases.

$I_{0}=0 \mu \mathrm{~A}$

$I_{0}=100 \mu \mathrm{~A}$

$\mathrm{I}_{\mathrm{o}}=300 \mu \mathrm{~A}$

$I_{0}=500 \mu A$ IOSCILLATION:

Fig. 3. Effect of applying a square wave to the circuit for different values of I_{Q}.
phase lag, total phase shift is 180°. The feedback has become positive and so the gain through the device will be enhanced. The four coincident poles (Fig. 2b) then migrate outwards (Fig. 2c).
If transconductance of the second LTP is increased then eventually the loop gain will exceed unity and oscillation will result, as two of the poles reach the $j \omega$ axis. A square wave applied to the circuit for various val-
ues of I_{Q} slows a reduction in amplitude of the square wave as Q is increased (Figs. 3ad), lop to botiom.

An interesting - and as far as I was concerned totally unforeseen - result appears when the Q control is set just short of oscillation. When frequency of the square wave is such that one of its harmonics coincides with the resonant frequency of the circuit, Fig. 3d results. At other frequencies waveforms such as Figs. 4 a and 4 h are seen; on one half cycle of the square wave, a harmonic is pretly well in phase with the natural frequency of the filter while on the other it is trying (and failing) to fit in an odd number of half cycles of the harmonic.
This explanation is rather simplistic but perhaps a knowledgeable reader will write in with a more exact description - preferably one not involving 100 much of the higher mathematics.
Possibly the effect is due to an unequal
Fig. 4. In one half-cycle of the square wave, harmonics are in phase with the natural frequency of the filter while on the other there is a tailure to fit in an odd number of half cycles of the harmonic.

Uncommitted logic

Creating a stock of uncommitted c.omponents through adding the ocd item to component orders can give a definite flexibility to problem solving.
A typical example arose recently when I was developing a small $12.24^{\prime} / D C$ to 240 VAC inverter. The devices driv n; the transformer were the familiar TIP1215, driven straight from the ouputs of a $j \mathrm{~V}$ cnos source of 50 Hz pulses dærived from a 32768 Hz crystal.
But they were groaning somew hat with the exertion, especially on a 12V' supply where their saturation voltage was contributing embarrassingly tc the circuit's poor regulation.
At that point I remembered I had bought in, on the end of an order, sone $B \cup \geq 10$ mosfets. Their drain saturation resistence of coly 0.08Ω cured the regulation proslem at a stroke. They accepted the cmos dr ve directly, and even had a pin-out mat.ing them drop in replacements for the TP121s! Froblem solved - without any delay in frocuring components.
IH .

FILTER RESONANT FREQUENCY: 3071 Hz

mark/space ratio of the square wave, though I measured this as being a very respectable 49.5/50.5. The effect is still there even though the filter is not picking out a very high harmonic (Fig. 4).

Striking musical effects

Providing as it does independent control of Q and resonant frequency, the device can produce striking effects when applied to programme material such as music. A sample of the audio signal can be passed through the filter, modified, and then recombined with the original signal, either in phase or in antiphase.
Sweeping the resonant frequency of the filter up or down at different rates and Q settings can present novel effects, either manually or under program control from a computer, using D-to-A outputs from the latter to control both the centre frequency and Q .
A further possibility is to make filter parameters vary in sympathy with some aspect of the programme material itself, making envelope amplitude control the centre frequency or Q , for example.
But this versatile chip is not limited to filtering applications. By increasing Q up to the point of oscillation, it becomes a programmable tone generator.

Programmable tone generator

For application as a programmable tone generator, I used the recommended typical connection for breadboarding, Fig. 5. Note that one of the four capacitors is reduced to 820 pF , leaving three coincident poles (Fig. 2b), but pushing the fourth one out by a factor of 12 along the $-\sigma$ axis. Oscillation sets in with around $500 \mu \mathrm{~A}$ injected at pin 2, agreeing with the figure in the electrical characteristics Table of the data sheet, so I surmise that those figures apply to the cir-

Fig. 5. Typical connection for breadboarding purposes, used as the basis for a programmable tone generator.
cuit of Fig. 5, whereas Figs. 2, 3 and 4 apply to the case of four equal capacitors.
With +13.5 V applied to the 15 K Q control resistor at pin 2, output from the op-amp is 8 V pk-pk, varying by less than IdB over a tuning range of 3 Hz to 45 kHz . At 1 kHz total harmonic distortion (THD) is 0.75% - hardly suitable as a low distortion oscillator when making THD measurements on other equipment, but more than adequate as a general purpose programmable tone generator Reducing current into pin 2 gives 6 V pk-pk output and distortion falls to 0.3%. But output at 45 kHz is 3 dB down - you can't have everything at once.
Distortion looks distinctly second-ish, whereas the limiting mechanism is clipping in the balanced second long-tailed pair. This should be a symmetrical phenomenon and only produce odd-order distortion products.
The base terminals are internal to the circuit and so inaccessible, but not so the first LTP. Suspecting offsets in the long-tailed pairs, I added a 100 k pot across the +15 and -15 V supply rails with a 150 K resistor from the wiper to pin 15.
Adjusting the pot, the distortion is reduced from 0.3% to 0.2%, nearly all third harmonic as expected. Reducing current into pin 2 further to give an output of 2 V pk-pk produces a distortion at 1 kHz of less than 0.08%. But at this low output level, the Q drive current needs readjusting at each frequency.

Idea waiting for a use

The SMM-2044 is undoubtedly a versatile and interesting IC. I am sure that one day I shall find it just the solution for some job or other, along with some of its stable-mates
from the PMI Audio Handbook Volume 1,the SSM-2/20 dynamic range processor, the SSM-2 $100 \log /$ antilog amplifier, etc.
Just one point worth noting; I found it useful to add $10 \mu \mathrm{~F}$ decoupling capacitors, not shown in the recommended circuit diagram, from the $\mathrm{V}+$ and V - supply rails to ground. This cured a tendency for a low-level 6 MHz oscillation to appear at high Q settings.

WITH C
 IMPORTANT ANNOUNCEMENT.

Many readers have been disappointed that Howard Hutchings'
practical guide to real-time programming and use of the C programming language for electronics engineers sold out so quickly.

As a result of this popular demand, we are reprinting "Interfacing with $C^{\prime \prime}$ and new copies will be available from the beginning of December.

To order, send a cheque for $£ 14.95$ to Lindsey Gardner, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Make cheques payable to Reed Business Publishing Group or, for immediate response, you can telephone your order quoting your credit card number on 0816613614 (mornings only please).

The extensive source listings from the book are also available on disc af $£ 25.50$ + VAT from the above address.

Graftool

Graftool is a 3D graphics pachage with features including: linear and nonlinear curve fitting: unlimited zoom and rotation; multiple axes in linear, log or probability scales: more than 268 million data points; scientific spreadsheet that can directly read Lotus and ascii files; unrestricted placement of graphs and text: and compatibility with Microsoft Word and WordPerfect.
Suppliers: Adept Scientific:

HiWire II

HiWire II is schematic capture and PCB layout software package for use on IBM PCs and compatibles. It is based on a menu-driven interface which simplifies common operations such as extracting a net list. creating a bill of materials. producing check plots, and plotting final artwork. Suppliers: Riva; Wintek.

Isis

The Isis range of schematic capture software has three products - Supersketch, Designer and Designert. All have a graphical user interface and an intelligent diagram editor. They run on PC compatible hardware and can interface to other cad packages.
Suppliers: Labcenter Electronics.

LCA1

LCAI is a logic simulator program for running on PCs and compatible computers. A less powerful version of the package is called Bitspice. Suppliers: Those Engineers.

LM-2

LM-2 is a logic synthesis program that can create Boolean algehraic expressions from a truth table. It will also handle state logic so flip-flop devices can be incorporated. The package is particularly applicable to dealing with programmable logic devices. Results can be ported to LCAI so that the timing can be checked before building the circuit. Suppliers: Those Engineers.

Mathcad

Mathcad is a mathematics package. The user types equations and they are automatically for-
matted into mA notation. The screen can be used as a blank piece of paper to let the user lay out the equations along with pictures, plots and text. Mathead is designed to run on PC, Macintosh and Unix systems.
Suppliers: Adent Scientific.

Maxi/PC

Maxi/PC is a PC-based PCB design tool with features such as schematic capture, component placement. automatic and interactive routing, and manufacturing outputs for complex PCB systems, It is compatible with Cadstar.
Suppliers: Option Circuits, Racal-Redac.

MaxRoute

MaxRoute is a PCB autorouting package that interfaces with most of the popular cad systems. It uses push and shove technology to emulate the way a manual designer works and also contains a complete suite of interactive design tools. Runs on a PC.
Suppliers: GDS PCB Design.

Micrologic 2

Micrologic 2 is for simulating logic gates and includes a library of components for Boolean functions etc.
Suppliers: Data Technology.

OrCad

There are more than 50,000 users of OrCad electronic design automation tools. In release IV the schematic parts library has been increased to more than 20,000) parts. the digital simulation process has been speeded up. the PCB layout package offers autoplacement and autorouting at no extra charge, and there is expanded memery support. It works on PCs or Sparc workstations.
Suppliers: ARS Microsystems: OrCad.

Pads-2000

Pads-20(0) was the first cad system designed to run exclusively on 386 and 486 based PCs, and the first to run 32 bit code with virtual memory, It provides all the tools needed to design a PCB including automatic component placement, 100% rip up and retry autorouting of traces, on-line

DRC, and automatic engineering change verification.
Suppliers: Cad Services; Cad Software: Cavendish Automation.

Pads-PCB

Version 4.0 of Pads-PCB adds a complete new graphics and user interface to this popular PCB design package. Other extras include the use of pop-up menus, a user definable macro language. and support for high resolution VGA graphics cards. There are more than 500 Pads-PCB packages installed in Great Britain. Suppliers: Cad Services; Cad Software; Cavendish Auromation.

Pads-Logic

Version 2.0 of Pads-Logic shares the new graphics interface, plotter outputs and library capabilities of Pads-PCB 4.0. This schematic capture sys tem was introduced in 1990 and more than 2000 systems are in use world wide.
Suppliers: Cad Services; Cad Software.
Cavendish Automation.

P-Cad Master Designer

More than 18,000 PCB designers use P-Cad Master Designer. The suite of products include schematic capture, symbol library, digital and analague simulation tools, placement tools, routers, and design rule checking. Suppliers: Cadam. KGB Micros.

PCB II

PCB II is a PCB design package available either stand alone or as part of an Ares or Isis package. Features include GUI, topological route editor, 2D drawing capability, and package library.
Suppliers: Labcenter Electronics.

PCS

PCS stands for process control simulation. This package is a training tool to show how to tune three-term controllers used in the process industry. It runs on a PC.
Suppliers: Golten \& Veruer.

PSpice

The PSpice family includes circuit analysis and circuit synthesis packages and can run analogue and digital packages concurrently under dos. It has virtual memory capacity, filter synthesis and an optimiser for arbitrary transfer functions. Suppliers: ARS Microsystems; MicroSim: Riva; others

Pulsar

Pulsar is a digital logic circuit simulator program for testing designs rather than going through time consuming breadboarding. Simulation speed is more than 1000 gate state changes a second. It runs on 386 or 486 machines.
Suppliers: Number One Systems.

Quick Plot

Quick Plot is a memory resident program for producing a graphics screen dump from a 286 or 386 PC on to an HPGL or compatible pen plotter. Suppliers: Number One Systems.

Satcam

Satcam is used for PCB design and runs on a PC. Facilities include schematic capture. PCB layout, design rule checking, and autorouting. It has a library of stored components with about 25,000 entries and can carry out functions like photoplotting. It can interface with AutoCad. Satchem schematic capture package is available separately. Suppliers: Data Technology.

Schema

Schema is a schematic capture PCB pachage for use on IBM PC or contpatible computers.
Supplieis: Auro Metrix.

Spiceage

Spiceage is a simulator for small analogue circuits. See ECA2 for more details.
Suppliers: Those Engineers.

Supermax

Supermax is an extension of IPL soltware and offers schematic circuit lavout. circuit simulation. schematic capture. automatic placement, and thermal analysis. It can run under Unix or on 386 and 486 PCs.
Suppliers: Cadniques.

Susie

Susie is the world's best selling PC-based logic simulation program that simplifies digital design by getting rid of the breadboarding stage. It uses advanced logic simulation sofiware to create a working model of hardware design.
Suppliers: Aldec; Computer Sohutons: Opmion Circuirs.

Tango PLD

The Tango PLD design language is a development tool for programmable logic devices. It allows data entry either as schematics or using a version of C. A schematic diagram input approach allows a logic diagram or net list to be used to describe
the components required.
Suppliers: Accel Technologies: Computer Solutions.

Traxstar

Traxular is a grid based costed maze autorouter with full rip up and reroute capability. It works on 3×6 machines and incorporates a user definable cost structure that allows separate cost structures for the route, rip-up and smoothing packages. Suppliers: JaV Electronics: Protel Technology.

Traxview

Traxview is an RS274 Gerber format file viewer and editor. It lets users view files by zooming and panning. There are full editing facilities including placing. deleting, moving and editing of thashes and strokes. It also has bloch commands and a panelisation program that lets users place multiple Gerter filles on the same fïm. Runs on 386 PCs. Suppliers: IAI Electronics: Protel Technology.

VHDL 2000

The VHDI. 2000 simulator is a full featured VHDL 1076 design analy sis environment that supports comprehensive debugging facilities. It uses a simulation kernel optimised around the VHDL paradigm and is writen in $\mathrm{C}++$ will an object orientated database.
Suppliers: Racal-Redac.

Visula HPE

The Visulat HPE suite of tools analyses the impact
of physical layout on the integrity of the electronic design of systems on boards. It can directly control the physical layout process from design rules which govern factors such as path delays. reflection and crosstalk limits.
Suppliers: Racal-Redac

V-System

V-Systen is a complete VHDI development enviromment including an IEEE 1076 compliant compiler. simulator and debugger for either the Windows environment on a PC or on a Sun SparcStation.
Sippliers: Instrumatic.

Vutrax

The Vurax schematic capture software is a stand alone hierarchical schematic drawing package with features for comection validation.
Documentation can be produced including net lists. part lists, wiring schedules. engineering cross-reference tables, and check lists. It is for 286 and 386 PCs.
Suppliers: Computumation Systoms: Those Engineers.

Z-Match II

Z-Match II is a software implementation of the Smith charl analysis tool for RF engineers. It keeps all the graphical advantages of the original chatt hut has features that eliminate repetitive calculations and make the chart more accessible to the occasional user.
Suppliers: Numher One Systems.

DIRECTORY

Accel Technologies, 6825 Flanders Drive, Son Diego, CA92121, USA.

Adept Scientific, 6 Business Centre West, Avenue One, Letchworth, Herts SG6 2HB. 0462480055.

Aldec, 3525 Old Conejo Road, \#111 Newbury Park, CA91320, USA. +1805 4996867.

ALS Design, 38 Rue Fessart, 92100 Boulonge, France. +33 146043047 .
ARS Microsystems, Herriard Business
Centre, Alton Rood, Herriard, Basingstoke RG25 2PN. 0256381400.

Auto Metrix, Fordbrook Business
Centre, Morlborough Rood, Pewsey,
Wiltshire SN9 5NU. 067263650.
Betronex, Wells Yord, High Street, Ware, Herts SG 12 9AS. 0920469131

Cad Services, Glanty House, The Causeway, Egham, Surrey TW20 9AH. 0784434394.

Cad Software, 119 Russell Street, Littleton, Massachusetts 01 460, USA. +1 5084868929.

Cadam, 2 Buckingham Place, Bellfield Rood, High Wycombe, Buckinghomshire HPI 3 5HW. 0494459500.

Cadence Design Systems,

Foundation Park, Roxburgh Woy,
Maidenheod, Berkshire SL6 3WD. 0628 826821.

Cadniques, 3 Cutbush Court, Danehill, Lower Earley, Reoding, Berkshire RG6 4UW. 0734755007.

Cavendish Automation, Oak Park, Barford Road, St Neots, Cambs PE 19 2SJ. 0480219457.

Computamation Systems, 40 Lake Street, Leighton Buzzard, Bedfordshire LU7 8RX. 0525378939.

Computer Solutions, Canada Road, Bytleet, Surrey KT14 7HQ. 0932 352744.

Data I/O, 10525 Willows Road NE, PO Box 97046, Richmond, WA9809746, USA +12068816444.

Data Technology Datech, Sidcup Technology Centre, Maidstone Road, Sidcup, Kent DA14 5HU. $081-308$ 1800.

Dazix Intergraph, 2600 First Avenue, Newbury Business Park, Newbury. Berkshire RG13 2PZ. 0635550455.

Flomerics, Kingsgate Business Centre, 12 Kingsgare Rood, Kingston-uponThomes, Surrey KT2 5AA. 081-547 3373.

GDS PCB Design, 131 Cardiff Road, Reading, Berkshire RGI 8ES. 0734 589898.

Golten \& Verwer, 33 Mosely Road, Cheadle Hulme, Cheshire SK8 5HJ. 061. 4855435.

Hawke Systems, Newlonds Drive, Poyle, Slough, Berkshire SL3 4DX. 0753 686676.

Instrumatic, First A venue, Globe Park, Marlowe, Buckinghomshire SL7 IYA. 0628476741.

JAV Electronics, Unit 12a, Heaton Street, Denton, Manchester M34 3RG. $061-3207210$.

KGB Micras, Lords Court, Sit Leonards Road, Windsor SL4 3DE. 0753696069

Labcenter Electronics, 14 Mariner's Drive, Bradford BD9 4JT. 0274542868.

Laplace Instruments, Tudor House, Grammar School Rood, Narth Walsham, Norfolk NR289JH. 0692500777.

LPKF Cad/Cam Systeme,

Scheffelstrabe 17, PO box 3829, D. 3000 Hannover 1, Germany. +49 511 708390.

Microdata System, Via Provinciale 45, 19030 Romito Magra-La Spezio, Itoly. +39187988460 .

MicroSim 20 Fairbanks, IIvine, CA92718, USA. +1714 7703022.

Number One Systems, Harding
Way, Somershom Road, Si lves,
Huntingdon, Cambs PE17 4WR. 0480 61778.

Option Circuits, Carrs Industrial Estate, Haslingden, Lancashire BB4 5HR. 0706 218023.

OrCad, 3175 NW Aloclek Drive Oregon 9712 A-7135, USA. +1503 6909881.

Protel Technology, GPO Box 204 Tochnopark, Dowsings Point, Hobart, Australio. +8102730100 .

Racal Redac, Redac House, 62 Sulton Park Avenue, Reading, Berashire RG6 1AZ. 0734782158.

Riva, 3 Bentley Industrial Estate, Bentley, Farnham GUIO 5NJ. 042022666.

Rotring, Strathcona Road, Wembley,
Middlesex HA9 8QP. 081.908 2577.
SSI Microcad, Fordbrook Business Centre, Marlborough Road, Pewsey, Wilts. 0672830000.

Those Engineers, 106A Fortune Green Road, West Hampstead, London NWO IDS. 071.4352771.

Tracks, Meadows, Coppid Beoch Lane, Wokinghom, Berks RG 11 5PJ. 0344 55046.

Tsjen, Cambridge Research
Laboratories, H untingdon Rood,
Cambridge CB3 ODJ. 0223277777.
Wintek, 1801 South Street
lafoyette, Indiono 47904, USA. + 1 3174481903.

REGULARS

TrimDAC - an electronic pot

Analog Devices's TrimDAC is a multichannel D-to-A converter meant to eliminate mechanical potentiometers for circuit adjustment. Setting circuit parameters becomes a matter of software control and the benefits of hands-off control, accuracy and a high level of reliability not to mention the eight controls in one skinny-dip package, are offered. The main impetus for development of the device is cost reduction in manufacture, calibration and field adjustment.
An example is the factory adjustment of CRT displays, in which convergence and colour purity must be set. In a 1000 -line display, up to eight pot settings have to be made - an expensive business in highvolume production, robot-controlled screwdrivers being the usual method of adjustment. This can take several minutes to complete, whereas the TrimDAC will do it in seconds.
First-generation TrimDACs, DAC-8800s, are cmos devices intended for DC control and contain eight unbuffered voltage-output

D-to-A converters whose outputs are independently set. Figure 1 shows the layout; eight DAC registers receive their contents from a TTL-compatible, three-wire serial interface, a CLR input allowing zerosetting for system power-up. An 11-bit word into the serial shift register is decoded and used to determine which DAC register is to receive the eight data bits, all eight being loaded in about $14 \mu \mathrm{~s}$. External voltage references determine the voltage output range, but DAC-8800 is primarily meant for fixed-reference $D C$ voltage control.
Figure 2 is the block diagram of a secondgeneration TrimDAC, the DAC-8840, which extends the capability to the control of alternating voltages in, for example, audio volume control, video displays. modems, oscilloscopes and many other applications.
This device contains eight four-quadrant multiplying D-to-A converters. Each has a 1 MHz bandwidth for $\pm 3 \mathrm{~V}$ input levels; THD is 0.01% and slewing rate is $2.5 \mathrm{~V} / \mu$ s and, since the output amplifiers are of the differencing type, gain can be anything from
full-scale positive to full-scale negative under the control of the input binary word.
A typical application of the 8840 is in the adjustment of video deflection waveforms, as shown in Fig. 3. The four-quadrant multipliers adjust the sawtooth waveforms, reference bias voltages and the parabolic waveforms, the three being summed to drive verical and horizontal deflection coils.
There are two slight drawbacks to the use of TrimDACs in place of pots, both of which are reducible: one is the fact that a pot "remembers" its last setting, even without power, and the other is the presence of the "zipper" noise when an audio volume control is adjusted that results from the digital nature of the device. The first is avoidable by using system memory to reload set points at power-up and the second mintimised by capacitive smoothing of the voltage-controlled amplifier controlled by the TrimDAC.
Analog Devices Ltd, Station Avenue, Walton-on-Thames, Surrey KT1 2 1PF. Telephone 0932232222

Fig. 1. Internal layout of Analog Devices's DAC-8800 TrimDAC for the replacement of mechanical potentiometers in the adjustment of direct voltages.

Fig. 3. One application of the 8840 is the combining of deflection-correction waveforms for CRT displays.

Fig. 2. DAC-8840
second-
generation
TrimDAC for AC control, which uses multiplying D-to-A converters for the combining of inputs.

Versatile AM IF amp and detector

Plessey`s SL6700 is an IF/det IC using single or double conversion, originally intended for use in low-power AM SSB receivers. It usually accepts an IF of 10.7 MHz or 21.4 MHz , the mixer converling to 455 kHz ; a detector is included, as are an AGC generator and monostable noise blanker. Both IF amplifiers will operate at 455 kHz , which extends the use of the device to AM broadcast working. At 6 V . the IC draws only 8 mA .
Figure 1 is the block diagram of the SL6700. In its designed application, shown in Fig. 2, IF at 10.7 MHz is amplified by both amplifiers and converted 10455 kHz by the double balanced mixer, after which comes a ceramic filter and the full-wave detector. AGC is carrier-derived and has adjustable delay. Sensitivity is $5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~s}: \mathrm{n}$.
AM detection in the SL6700, seen in
Fig. 3, takes input to one side of an emittercoupled pair with common collectors, inverted input going to the other half. These two behave as a full-wave rectifier and provide output at the common emitter point. which also contains modulation. filtered externally. Detection is linear, an increase in AF output for an increase in modulation of 2.67 times ($30-80 \%$) being 8 dB against a theoretical 8.52 dB .
This linearity renders the device very suitable for use in AM broadcast reception, the low external component count giving

Fig. 1. Internal block diagram of Plessey's SL6700 AM radio IF and detector IC, intended for double-conversion SSB reception, but capable of filling a variety of roles.

Fig. 3. Use of SL6700 in broadcast receiver takes advantage of detector linearity. Low supply needs are convenient in portables.
minimum size and cost. Figure 3 shows an example of this application, in which the oscillator Tr_{r} can be almost any of the small-signal $n-p-n$ devices available. Inductor L_{1} is the ferrite rod aerial and $\mathrm{C}_{1} \mathrm{~L}_{1} / \mathrm{C}_{2} \mathrm{~L}_{2}$ track, values being determined by reference to a book such as KR Sturley's Radio Receiver Design. If it is acceptable to reduce selectivity, filter F_{2} can be replaced by a 100 pF capacitor; AGC^{2} is left unused in this case.
Figure 4 is another "non-professional"

Fig. 4. 27 MHz model-control receiver, which will operate on 4.5 V with quite small circuit changes.
application - a model-control receiver for 27 MHz working. A supply of 9 V is a little high, particularly for aircraft, but the SL6700) is flexible enough not to need extensive modification for lower supply voltages. In this instance, only the oscillator will need changing to work at, say, 4.5 V . To reduce component count. omit R_{1} and the network on pin 18, which can be replaced by a Murata SFE 27MA4 ceramic filter. This receiver takes 5 mA at 4.5 V .
The application note, taken from the 1991 Professional Products IC Handbook, goes on 10 describe an AM/SSB/CW IF strip and. using an SL6700 in conjunction with an SL.627(), an SSB generator.
GEC Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. 0793518000.

Protecting RF power transistors

Load mismatching can cause a high current in RF output transistors and increase power dissipation to the point of failure. Moreover, with temperature time constants in the region of 0.5 to 1 ms , any attempt to counteract the effect does not have much time in which to operate.
Commonly, a reflectometer VSWR sensor between output and load produces a voltage dependent on output mismatch, which is used in earlier stages to decrease power or shut down completely. Motorola's application note AR510/D describes such a method.

Figure 1 shows the principle, which is usable at VHF and UHF with lumpedconstant design and up to the microwave region using stripline methods. In the former realisation, current in the amplifier output line is passed through a pickup coil, the two forming a tightly coupled transformer. The voltage from the pickup coil secondary is proportional to the output current and is compared with a voltage from the output line appearing at the junction of capacitive divider $\mathrm{C}_{1} \mathrm{C}_{2}$. When the load is matched, the two voltages are 180° out of phase, C_{2} being adjusted until the potential divider voltage is zero.
Output from the MC3407! will operate as seen in Fig. 2, in which it turns off the bias voltage of a mosfet, either controlling the existing bias voltage or forming the bias source itself, as in the centre diagram. The only problem with this arrangement is that, while it is fine for a fast shutdown $(2 \mu s)$, linear operation is not possible, since a steady idle current is needed. For linear working, the layout in the right-hand
diagram is used, in which sensor output is used to control a low-level PIN-diode attenuator.

Motorola Ltd, European Literature

 Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Telephone 0908614614.Fig 1. Protection circuit against load mismatching for RF power transistors. VSWR sensor goes between amplifier output and load, mismatch causing op-amp output to control or shut down RF output.

Fig. 2. Three possible methods of using VSWR sensor to control RF gain of amplifier. First two vary bias on mosfet and are useful for complete, fast shutdowns. Third method gives gain reduction for linear amplifier.

It TAKES LESS THAN A WEEK TO FALL IN LOVE

op quality test and instrumentation equipment is just a phone call away. Buy direct from Electronics World + Wireless

 World and we know that you won't be disappointed. And in the unlikely event that you are, simply return the goods and we will refund the purchase price.*1021 general purpose oscilloscope from Leader Electronics

SC110A miniature portable oscilloscope

SCI 10A miniature portable oscilloscope

The SC110A from Thurlby-Thandar is a full feature, single trace analogue oscilloscope packaged into the size of a benchtop multimeter. Fitted with a $32 \mathrm{~mm} \times 26 \mathrm{~mm}$ screen miniature CRT, the bright, sharp image provides resolution and detail associated with much larger instruments. UK designed and built, the internal switch mode power supply draws just 195 mA from four C sized batteries (not supplied). The instrument will operate from 4 to 10 V DC.

The specification includes a Y bandwidth of $D C$ to $10 \mathrm{MHz}, 10 \mathrm{mV} /$ div sensitivity and an adjustable brightline trigger with AC/DC/TV coupling from both internal and external sources. The X timebase is adjustable from $500 \mathrm{~ms} / \mathrm{div}$ to $100 \mathrm{~ns} / \mathrm{div}$ in 24 steps. The case measures $25 \times 5 \times 15 \mathrm{~cm}$ and the instrument weighs about 1 kg . SC110A £249+VAT (£292.58).

1021 general pưrpose 20 MHz oscilloscope

The Model 1021 general purpose oscilloscope from Japanese instrument maker Leader Electronics more than meets its published specification and is of exceptional build quality. Features include 20 MHz dual channel operation, $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area, $5 \mathrm{mV} / \mathrm{div} \mathrm{Y} 1 / \mathrm{Y} 2$ sensitivity at $20 \mathrm{MHz}, \mathrm{DC}$ to 500 kHz X-amplifier response, variable trigger response, multiple sync conditioning and an overall accuracy better than 3\%. $1021 £ 299+$ VAT ($£ 351.33$)

[^4]

PL320K laboratory triple power supply

\square

PL320K laboratory triple power supply

This power supply from Thurlby-Thandar combines three, totally independent power supplies within a single unit: $0-30 \mathrm{~V}$ at $2 \mathrm{~A}, 0-30 \mathrm{~V}$ at 1 A and $4-6 \mathrm{~V}$ at 7 A for logic supply. The 30 V supplies will operate in a bipolar tracking mode for $\pm 30 \mathrm{~V}$ operation or in a series mode to provide 0 to 60 V output. Both supplies incorporate independent remote sensing and independent precision voltage/over-voltage/current-limit preset. Three $33 / 4$ digit led panel meters indicate current and voltage to an accuracy of 0.05% fsd. Output stability is typically 0.01% for 90% load change. PL320K $£ 359+$ VAT ($£ 421.83$).

TD201 digital storage adaptor

The TD201 digital storage adaptor from Thurlby-Thandar is a low power, single channel digital storage unit which adds digital storage capability to ordinary analogue oscilloscopes. The maximum sampling rate of 200 kHz permits fast transients to be captured while the lowest rate can extend the sampling period to over an hour. The unit stores over a thousand points on the X axis with 256 levels in the Y axis. The internal batteries (not supplied) allow data retention for up to four years. Other features

TS3022S laboratory dual power supply

\square TS3022S laboratory dual power supply

This laboratory quality power supply from ThurlbyThandar provides two fully floating $0-30 \mathrm{~V} 2 \mathrm{~A}$ outputs for parallel, series or independent operation. Each supply has its own metering of voltage and current by LCD display; with the output switch to off, the display can be used to preset the voltage and current limits prior to connection of the load. Coarse and fine controls permit output voltage adjustment to within 5 mV of a predetermined value. The current limit control employs a log law for precise adjustment down to 1 mA . Load regulation is typically within 0.01%. Both supplies incorporate remote sensing. TS3022S £299+VAT (£351.33).

TD201 digital storage adaptor
 include an AC/DC sensitivity down to 5 mV , selectable pre-trigger, roll and refresh modes and a plot mode. The case measures $25 \times 5 \times 15 \mathrm{~cm}$ and the unit weighs about 1 kg . The TD201 provides the ideal solution for those wanting a well specified and easy-touse DSO at the lowest possible cost. TD201 £195+VAT (£229.13)

How to order

To order equipment with your credit card, phone Lindsey Gardner on 081 661 3128. Alternatively, to order by post, fill in the coupon on the right. and send to, L333, Electronics World, Quadrant House, The Quadrant,Sutton, Surrey, SM2 5AS. All prices include postage, packing and delivery but exclude VAT. Inclusive price in brackets.

ORDER FORM

Please send model number(s)..
Total order price £. Debit my credit card
(please include VAT)
Expiry date
 VISA/MASTERCHARGE/AMEX/DINERS CLUB or enclose cheque/PO made out for the total order price

Name (with initials)
\qquad
\qquad

Signature
Contact phone number (if possible)

TThe analysis of electromagnetism presented last month does not take into account one of its most obvious characteristics: the enduring nature of permanent magnet fields.
It is hard to believe that permanent magnets are constantly emitting phaeons in the same kind of way as electrostatically charged objects. In contrast to the case of charged objects where the charge leaks away unless it is kept in a perfectly dry atmosphere and not heated or vibraled, permanent magnets can retain their magnetic fields for many years unless subjected to extreme stress, for example by being subjected to a larger opposing field from an electromagnet.
Another compelling feature of magnetic fields is their sense of being in some kind of continuous circulation. This can be illustrated by the importance of the vector curl function in magnetic fields, and in that the divergence vector of a magnetic field is always zero. Thus there is no source of a magnetic field in the sense of a charged object being a source for an electric field. Magnetic flux always forms a continuous loop.
We can expand the relativistic explanation of the origins of electromagnetism to account for these two properties (stability and circularity) of magnetic fields. However, it must be said that the analysis becomes extremely speculative at this point and leads to rather extraordinary conclusions.
From the discussion of the Lorentz transform given last month, we know that the linear separation of the atoms of the lattice of a wire appears to become smaller relative to the spacing of moving electrons when viewed from an electron in another conductor moving in the same direction as the electrons. We can define the direction that both sets of electrons are moving in as the positive z-axis. Think of the lattice of atoms of the metal as forming a series of x y planes or plates across the wire. From the view of the electron in the second conductor, we can say that the trajectories of electrons in the first wire are compressed towards the $\mathrm{x}-\mathrm{y}$ plane(s).
A fundamental part of the kinetic model

Scratching the surface of electromagnetism

is that an electron must rotate as it moves linearly through space. We can think of it in fact like a small gyroscope moving along the line of its spin axis. The relativislic compression of the electron trajectories towards the x y plane can be thought of as a tilt in the electron trajectories towards this plane. We know that when we tilt a spinning gyro

Part two of Scratching the surface

postulates new

 theories for photons and protonsscope about its spin axis a new force is generated acting at right angles to both the axis of spin and the applied force. (A good example of this force in action is seen when a cyclist leans sideways at a corner; the tilt of the wheels generates a sideways force which helps him turn the corner.)
The relativistic tilt of the electron trajectory within the ball produces a similar turning force on the electron. This force will be perpendicular the tilt direction and the initial trajectory of the electron. This force will tend to curve the trajectory of the election about the z-axis, and while the z-axis motion is maintained, the trajectory will continue to be curved. (Fig.10).
Furthermore, since this turning force will be always proportional to the forward component of electron velocity in the $x-y$ plane. we can predict that the projection of the new trajectory on to the $x-y$ plane will be the are of a circle. Also, regardless of the initial direction of the component of electron motion in the $x-y$ plane, the turning force
and hence direction of curvature will always be in the same direction about the z-axis for positive z-axis displacements.

We have already discussed the idea that when the electron is retlected from the imer surface of a surface the ricochet effect will twist the emitted phaeons and the reflected electron out of the plane formed by the line of incidence and the normal to the surface.

Now. just as the effects of relativistic changes will compress all initial electron trajectories towards the $x-y$ plane, so the reflected trajectories will also be compressed into this plane. This compression tilts the trajectory of the electrons during the reflection process (tilts the ricochet) and we may conclude that an extra component of momentum needs to be losi (emitted) during the reflection process.

This extra momentum will be about the z axis. and so the phacon(s) emitted will have a component of rotation or spin about the z axis. This raises a fundamental point: what is going to be the trajectory in space of a phacon with angular momentum in iwo axes? Newton's Laws of motion tell us that a body musi move in a straight line unless acted on by some external force. However the phateon is like a gyroscope rotating in two axes at once. and therefore constantly tilting about the spin axis; and we know that a tilted gyroscope generates a reactive force at right angles to both the tilting force and the spin axis. We tentatively conclude that in this case Newton's Law does not hold, and that the trajectory of the phaeon as seen from the distant moving electron is, like the election's. curved.

The curvature of the phaeon trajectories, however small. produces a fundamental change in the nature of the phaeon flux. We argue that the phacons' trajectories are circular, and so the phacons will eventually return to the wire from which they were emilled. Now. suppose we have a very large number of circular trajectories of differet radii. To simplify matters we can just consider trajectories in the $x-y$ plane as in Fig. Ila
We can see that no matter how large the radius of curvature of the trajectories. if we
analyse the flux at any small region of space there will be as many phacons returning towards the source as there are leaving it. Thus the net radial flux through an arbitrary region (eg that marhed "alpha" in the figure) will be \%ero. The only non-zero component of momentum will be one tangential to circles around the emitting wire. This tangential momentum will have the same direction at all points around the wire. We call describe this effect as a circular "momentum flux": around the wire (Fig. 11b).
To sum up, we know from relativistic arguments that when electrons move through the lattice of a metallic conducting wire, there is at relativistic compression of the tattice as seen from electrons in another wire travelling in the same direction as the initial set. We have argued that because of the rotation of the electrons. this relativistic

Fig. 10. Relativistic curvature of electron trajectories. Left: With no relativistic distortion the electrode trajectory is a straight line. The trajectory has a component in the z-axis and in the $x-y$ plane. Right: The relativistic
compression of the proton lattice as seen from another moving electron is equivalent to compression of the electron trajectory in the z axis. This compression generates a turning moment which curves the trajectory about the z axis.

Fig. 11a. Relativistic curvature of phaeon trajectories. Because phaeons are emitted in all directions and thus return from all directions, the net radial flux through any arbilrary region of space such as that marked "Alpha" will be zero. The only non-zero component of momentum will be a component tangential to circles drawn around the conductor.
Fig. 11b. Net "Momentum Flux" around current-carrying conductor as seen from another moving electron.
C. Re-reversal of driving potential

Local n-phaeon efflux from increased electron bombardment of sufface atthis end of wre.

B: Reversal of driving potential

Local p-phaeon efflux from increased hole bombarament of sufface at this end of wre.

Local n-phaeon eftiux from increased electron bombardment of sufface at this end of wire.

Local p-phaeon efflux
from increased hole
bombaroment of suface
at this end of wre.
Fig. 12. Phaeon emission from an alternating current in a linear conductor.
compression acts to produce a curvature in their trajectories as seen from the electrons in the other wire. and when the electrons reflect at the surface of the wire, there is also a curvature induced into the trajectory of the emitted phacons (assuming that such a particle exists - ed . This curvature in the phaeon trajectory changes the net phaeon "momentum flux" from a radial to a circular form.

The interaction of the changed flux and the curvature of the electron trajectories produces an imbalance in the surface forces on the sides of the conductors and a net force between the wires. The foree is attractive if the electron flow is in the same direction. repulsive if the flow is in opposite directions.

We can now thus explain why permanent magnets do not "run down". The phaeons are constantly circulating, exchanging momentum with the electrons in the magnet: indeed, in one sense, we can think of the phaeon trajectories as a kind of extension of electron orbitals: an electron may lose momentum at one point by reflection but regain it all another point by atbsorbtion of

Fig. 13. Phaeon emissions from a conductor subject to an alternating voltage. Each observer sees a sequence of phaeon "dipoles" enitted from the conductor; with the polarity of the dipole reversing with each cycle of the applied voltage. (Dashed lines are p-phaeons, solid lines are n-phaeons.)
the same or a similar phaeon to that which it emitted.

Electromagnetic radiation

The reason electrons will move along a wire conductor will normally be the existence of an applied electric field. We can translate this into a "phacon barrage". The electrons are "pushed" from one end by the impact of n-phaeons and "pulled" from the other end by the impact of p-phaeons. Under the influence of a steady potential, as we have seen in the previous section, electrons migrate one way through the conductor, and holes the other way, each colliding with the walls of the conductor as they move and emitting phaeons perpendicular to the current (Fig. 12A.)

Of course, in different conductors the proportion of the current carried by holes and electrons may vary enormously. In some semiconductors the current is carried almost exclusively by holes and in others almost exclusively by electrons.

Suppose that the direction of the steady applied field is then suddenly reversed (Fig. 12B). The electrons have finite inertia and so their direction of movement cannol be instantaneously reversed. Electrons will accumulate at the newly negative end of the wire - the electrons will effectively be transiently compressed in this region. Similarly holes will transiently accumulate at the newly positive end of the wire. We can visualise that the n-phacon emission from the newly negative end of the wire where the electrons are compressed will be greatly increased, and similarly the p-phaeon emission from the newly positive end will be likewise increased. Thus the phaeon emission will become polarised; one end of the wire will emit excess n-phacons and the other will emil excess p-phaeons.
Eventually of course equilibrium will be
re-established and the normal electron and hole migration will be re-established in a reverse direction. If the potential is now rereversed (Fig. 12c) the compression process occurs in reverse, with the region of the wire that first emitted n-phacons now emitting pphacons, and vice-versa. We can see that the result of a relatively low frequency of an alternating field being applied to the wire is a sequence of simultaneous emissions of n and p phaeons from the two ends of the wire. If the applied frequency is high relative to the length of the wire, we might get harmonics formed, with several sites of emission of each type of phaeon from "nodes" where electrons or holes are momentarily compressed.

We assume that the phaeons travel at the speed of light. To an observer at some distance from the wire looking at it from the side, the emission of the bursis of n and p phaeons from the two ends of the wire will be detected simultaneously. We can think of a large number of $n-p$ "phaeon dipoles" being emitted with each cycle of the applied field (Fig. 13).

The axes of these dipoles will be parallel to the wire and perpendicular to the axis of propagation of the phaeons. The dipoles will reverse direction each time the field applied to the wire reverses. What will happen when these phaeon dipoles meet electrons in recipient atons or molecules? The linear momenfum components of the n and p phaeons will cancel out, but the angular momentum com-

Fig. 14. Electric and magnetic fields associated with phaeon dipoles.
ponents could act to give recipient electrons some kind of increase in vibrational or rotalional energy.
The ability of an electron in an atomic or molecular orbital to absorb the phaeons might well depend on the frequency of reversal of the dipoles; there might need to be resonance between the vibrational frequency of the electron orbital and the dipole oscillation frequency. The dipoles can be considered as the origin of an electric field oriented perpendicular to the direction of propagation of the phateons. This field will reverse with each reversal of the dipole. Note that the rotation of the n and p phacons is complementary and so there will be a net angular momentum associated with the phaeon dipole (Fig. 14).
The direction of this angular momentum vector will be perpendicular to the electric field vector and to the direction of propagation; like the electric field vector, it will reverse direction with each reversal of the dipole. This resultant vector we can tentatively identify with a magnetic field vector as in Fig 14B.

Both electric and magnetic vectors will of course reverse with each reversal of the dipole. We can now see that the phaeon pairs have the characteristics of the photons that carry electromagnetic radiation. Furthermore we have an explanation for the fact that a particle, the photon, has a frequency associated with it. We argue that photons are in fact phaeon dipoles, oriented perpendicular to the direction of propagation of the electromagnetic energy, which reverse in orientation with each radiation cycle

High energy photons are phaeon pairs which reverse at high frequencies, low frequency photons are phaeon pairs which reverse at low frequencies. When electromagnetic radiation is coherent, simultaneous emission of spatially separated n and p phaeons occurs. When spatially random simultancous emission occurs, as from the conductor carrying a steady current. the phaeons can be detected in the form of heat energy.
In summary, we have generated a model of the photon which suggests that the photon is made up of two phacons organised as a "phaeon dipole" which is perpendicular to the direction of propagation. The frequency of the photon is the frequency at which the dipole reverses its orientation.

The role of protons

According to the present model, all electrical and magnetic forces are due to the interactions of electrons and holes. Holes are virtual electrons, that is vacant orbitals around atoms that electrons could occupy but don't.
The movement of holes can be thought of as a time-reversed movement of electrons. Thus ultimately all electromagnetic interactions are due to electrons, and the phaeons they emit when changing momentum.
The role of the proton can be seen as somehow deforming space so as to provide a set of "orbital spaces" at different energy levels around it. In one sense, a proton
defines and creates a hole: but does not define the energy of the hole. According to this model a proton is not itself charged in the sense that it acts at a distance on other charged objects. However, if a proton does not have charge, we need to explain the observation that a free proton is acted on by electric and magnetic fields. This is because in a solid object, the protons are fixed in the lattice and the holes are formed by the loss of local electrons. However, if a proton is free to move in an electric or magnetic field it acts like a mobile hole in a lattice, with one important difference.
The "inertia" of a hole in a lattice is the same magnitude as the inertia of an electron, as migration of a hole is a time-reversal migration of an electron. The inertia of the hole around a free proton is in contrast much higher as it will be the inertia of the proton itself. Thus we can predict that a free proton will move in a complementary way to a free electron in a magnetic or electric field, but with different velocity because of its different inertia.

Conclusions

There is not room in this article to discuss all aspects of a "kinetic theory" of electromagnetism. If there are aspects of electromagnetism that the model is completely incompatible with, the model will have to be discarded. Even if it is wrong, the model leaves attractive images behind: the idea of a
photon as an alternating "phacon dipole" neatly explains how photons, which have neither charge nor magnetic dipole, do in fact combine both, but in a form which alternates at the frequency of the radiation. Conduction via holes is usually left in the hands of semiconductor engineers: the current model emphasises the essential symmetry between holes and electrons in the origins of charge and magnetism.
The puzzle of the identical magnitude of charge on protons and electrons is dealt with simply; positive charge is an expression of a lack of electrons, not some special property separate from the electron. The explanation of electrostatic forces emphasises the importance of surface forces and charge. Relativistic arguments are used to explain the link between charge and magnetism, but in an unusual way that also explains the importance of the curl of magnetic fields.

Perhaps the most radical aspect of the current model is the postulated role of the proton. If it does not indeed act at a distance as a source of positive charge but only acts locally to define a hole, much of our current analysis of intra-atomic forces may need revision.

My thanks go to T.G. Barnett who constantly urged me into print.

Dr Julian Millar is a medical physiologist at Queen Mary and Westfield College, University of London.

> IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749

REGULARS

LETIERS

Cause of illness

The article "Power lines, cancer and cyclotron resonance" by H Aspden (EW + WW September 1991) suggests that "a possible link between cancer and electromagnetic radiation from power lines... can be traced. experimentally, to a resonance effect known in physics as cyclotron resonance." The author goes on to suggest that the frequency of power generation and transmission should be changed from 50 Hz to 100 Hz to eliminate the supposed hazard.
We wish to state that there are no grounds whatsoever for believing that cyclotron resonance induced by the earth's magnetic field and a
50 Hz electromagnetic field can exist in living organisms, or indeed in any electrolyte at normal densities.

It is not sufficient just to note, as Aspden has done, that the cyclotron frequency of the OH^{-}ion, or of other ions present in the body, is close to 50 Hz in the geomagnetic field (about 50 $\mu \mathrm{T}$).
For a significant transfer of energy to occur even when the frequencies are exactly matched, the circular orbits of the ions must not be disrupted by collisions with other molecules or jons, so that they can be accelerated to large velocities. The average time between one collision and the next in an aqueous solution is about 10^{-11} seconds (this follows from simple estimates of the molecular density and thermal velocity).
Hence one orbit must be completed in rather less than this time to observe the resonance. In other words, the frequency must be above 1000 GHz . The frequency of power-line fields is too small by a factor of over a thousand million!
Since the proposed cyclotron resonance effect requires only the presence of ions in the body, any remaining doubts about its absence at 50 Hz should be dispelled by looking at existing measurements of electromagnetic absorption in aqueous electrolytes at low frequencies.

However. measurements have also been carried out on bone and tissue. and they too show no sign of any resonant increase in absorption near $50 \mathrm{~Hz}^{1}$. The AC conductivity, which can be extracted from the absorption data by an application of Maxwell‘s
equations, typically shows no frequency dependence
below 100 kHz , above which motion of polar molecules causes dispersion.

Incidentally, there is also no justification for a frequency-pulling effect even if cyclotron resonance were operative. since the ionic concentrations are low and the AC magnetic field is weak; magnetic fields generated by the resonating ions are negligible.
We do not wish to imply that, because cyclotron resonance absorption is not a player, that there are no adverse effects resulting from long-term exposure to lowfrequency electromagnetic radiation, whether at 50 or 100 Hz . The recent CRC handbook on the biological effects of EM fields ${ }^{1}$ documents many such effects on particular tissues and cells as well as on whole animals.
A useful summary of possible mechanisms has been given by Straub ${ }^{2}$. An informed appreciation of current scientific knowledge in this area is an essential ingredient in the environmental debate concerning power lines, and this debate is illserved by the article published in your magazine.
TC Choy, DR Hutton and DA Smith
Monash University
Clayton
Australia

1. Polk C and Postow E, "Handbook of biological effects of electromagnetic fields", CRC Press (1986)
2. Environmental Health Criteria $\times 16$,
"Radiofrequency and microwaves", World Health Organisation (1981)

Damming argument

A cyclotron uses a pumping system to produce a high vacuum in the space in which the jons are accelerated. This is because if an ion spiralling in a magnetic field is to pick up a significant amount of energy from an oscillating clectric field it must be able to traverse several turns of its spiral path at resonance (usually one turn per cycle of the oscillating field) without being significantly deflected by collisions with other ions. atonns. or molecules. However Harold

BT parity line

Following the recent article and correspondence on the BT Phonebase service and its use of V23 data-rate, I should like to point out another problem that has so far been overlooked.
It should indeed be convenient for Phonebase to use the same V23 data-rate as provided by the mini-terminals universally used by European videotext services (Prestel, Télétel, Btx). But there is also the vital question of number of bits per word and parity bit protocol.
Prestel and Télétel use seven-bit/even parity, as did the original experimental Phonebase service.
That meant I could use Phonebase via a simple cheap interactive terminal connected to the phone which I also used to call Prestel and Télétel services.
But when Phonebase was relaunched, one of the giant intellects behind it decided that it would be a good idea to move further towards the ascii VT-terminal standard by changing to eight-bit, no parity - pity they didn't think to tell the writer of the Phonebase manuals - and bang goes my useful little terminal, which can't be changed from the sevenbit/even standard of V23 videotext.
In fact very few terminals (as opposed to PCs) on the market can operate V23 in eight-bit/odd mode; almost all offer V23 seven-bit/even and, sometimes, V21 eight-bit/odd (300 baud).
So here we have an excellent up-to-date computerised database, wanted by almost everyone, owned by the largest and wealthiest communications technology company in the country, but coupled to an unbelievably amateurish access system.
No one could describe it as a large or complicated task to set up reliable, multi-speed access to such a database. There are hundreds of part-time enthusiasts running free bulletin boards across the globe that achieve infinitely superior performance, flexibility and complexity of interface.
I would be most interested to see if those directly responsible for the service could be persuade to comment on this truly pathetic situation.
Alex Gray
BBC
Milton Keynes

Aspden`s hydroxyl and hydronium ions ("Power lines. cancer and cyclotron resonance". $E W+W W$. September, and Noveniber and Decemter letters) are immersed in tissue or body fluids. so that they undergo many thousands of such collisions during each mains frequency cycle. and wo cyclotron resonance can develop.

Shareholders in National Power and PowerGen may therefore breathe freely once again.

In November letlers DT Moore extolled the green virtues of hydroelectric power, but this brings its own hazards. It is known that filling the deep reservoirs behind some high dams in mountainous country markedly increases the frequency of earth tremors. and in one case has triggered a landslide. The resulting water surge breached the dam. In seismically active regions dam structures - because of the large hydrostatic stresses
imposed on then - are very vulnerable. and so are the people living downstrean.
CF Coleman
Oxtordshire

Absorbing facts about ions

When Harold Aspden suggests cyclotron resonance as a means by which electromagnetic fields might produce biological effects (Power lines, cancer and cyclotron resonance. $E W+W W$. September. pp. 774-775); he overlooks a very important flaw in his argument.
During cyclotron resonance the ion's orbit is in phase with the electric field, such that it is only accelerated and never decelerated. over many orbits. So if the absorption of energy is to be any different from that of the simpler case of an oscillating ion in an AC
electric field, it must complete at least one orbit before it is significantly scattered.
A sodium ion, with average thermal kinetic energy ($3 \mathrm{kT} / 2$), will have a speed of $500 \mathrm{~m} / \mathrm{s}$, and if it is to make 50 orbits/s then the circumference of the orbit will be 10 m . In reality an ion will be scaltered within nanometres. An alternative way of looking at this, is that the resonance has a Q of, of the order of, a trillionth.
Harold Aspden might take note of the corollary that when there is no scattering in a simple cyclotron; there is still a limit to the energy: which is predicted by. and only by. relativity.
Robert Woolley
Imperial College of Science and Technology
London

Active response

In his active filters article ($E W+$ WW. October, pp. 812-818) John Linsley Hood correctly states that circuit details about active filter systems are not easily found, but then proceeds to introduce a curious hotch-potch of active and passive filter designs with. I feel, too little information to be useful, and at the same time containing a number of errors and misleading statements.
The circuit in Fig. 3 will not produce a flat or near-flat response with 1 kHz cutoff; the LCR section as shown has a Q of 31.6 giving a 30 dB response peak at 199 Hz !
The terms Chebyshev, Butterworth and Bessel do not refer "broadly to filter types" as Mr Linsley Hood states. On the contrary, they precisely describe standard filter responses. The Bessel response gives maximally flat group delay (linear change of phase with frequency) but slow amplitude rolloff: the Butterworth response gives a maximally flat passband response, but with a peak in the group delay, and faster amplitude roll-off; the Chebyshev response gives still faster amplitude roll-off at the expense of ripples in the passband, and ripples and large peak in the group delay.
The pole positions for the lowpass versions of these, and other standard responses are quite often tabulated in filter design textbooks, typically for up to ten poles, though nowadays they are easy to calculate
on a PC. or even a pocket calculator.
Turning now to the filter circuits. the article shows a tuneable notch filter requiring a pair of ganged capacitors for Iuning. This seems a perverse choice given that there are at least two simple notch filter designs using single resistor frequency control, which have appeared in $E W+W W$.
Figure 13 is described as an "active integrator with overall loop negative feedback that gives a flat Butterworth-style response ..." This circuit is usually known as the single-amplifier multi-feedback filter. and the two-pole low-pass version shown in Figure 13 can give any two-pole low-pass response, including Chebyshev. Butterworth. Bessel etc. This emphasises the point that these are response shapes. not filter circuit types.
Next take Fig. 14, the bridged-T: this is correctly described as a thirdorder type (because it has three reactive elements) but then the article goes on to claim that the third CR circuit gives a further 6 dB per octave roll-off. This is only partly true: the extra pole provided by the third CR circuit is actually needed to cancel the parasitic zero that the bridged-T introduces. The extra pole is typically made to coincide with and cancel the zero, so that an accurate two-pole response results. The pole can be moved down to a lower frequency if the Q is set >1 so that at low frequencies, a three-pole response is obtained. However, above the cut-off frequency. the zero still affects the response, and it becomes two-pole again.
This same problem afflicts the bootstrap circuit (Fig. 16) for the same reason; the circuit values shown for the low-pass circuit give a 1.5 dB passband ripple three-pole Chebyshev response up to and beyond the -3 dB cut-off frequency. but the parasitic zero has cut this to a two-pole 12 dB per octave response by about 2.5 to 3 times the cut-off frequency. A true three-pole response would continue to attenuate at 18 dB per octave above the cut-off frequency.

The Sallen and Key layout is described by Linsley Hood as "able to give high-pass and low-pass Butterworth filters". Again, this circuit gives a two-pole response. and can therefore provide any twopole response characteristic. Besides

Sporadic - E or spirit world?

I have recently come across a group of people who claim to have received images from beyond the grave on television sets. The phenomenon, known as TVEVP (television electronic voice phenomenon) is promoted by a group originating in Luxembourg, (CETL, BP 02/Hesperange, Luxembourg) who claim to have a "hot line" to a spirit guide known as "Technician".
They appear to be surprised that many of the images seen are of famous German people, including National Socialists. One viewer is known to have been shocked that such evil people have gone to heaven. Another image received was of Hannah Buschbeck a famous ESP (extra sensory perception) personality who died aged 84 . However her image was when she was 30 "because she did not wish to project herself as an 84 year old". It is claimed that the image has been identified with photographs of her taken when she was 30 .
The idea of intermittent long distance TV reception of films and documentaries does not seem to have occurred to the group, and they doggedly persist in sending out videos, newsletters and so on. One individual claims that there is a world-wide cover up, sponsored by govemments and the churches who apparently don't want the populace to receive the "proof" that there is life after death and that contact can be made with the dead. The alleged motivation for this cover up is not known to me.
There is a story going round that in 1955 or 1956 a Mr H Reeves who lived on the south coast on a hill, appeared on British television, possibly on the evening news magazine Highlight. He related how he received a spirit message on his television from Technician and a group called Timestream. He was later confused with Mr Alec Reeves, the inventor of PCM who was also interested in ESP.

If any reader has a recollection of this broadcast about Mr H Reeves' activities, I would be grateful to have details, because as someone who knew Alec Reeves I am asked about this.
I would also be interested to hear from anyone who knows of a television play or film broadcast in the mid 1950s - snatches of which may have been received by Mr H Reeves by sporadic E or meteor scatter - that contained a character called Technician and a group called Timestream. It could have been an early regional ITV play.
Best of alI, of course, is the possibility that Mr H Reeves is still alive and reads $E W+W W$ and is willing to contact the group.
John de Rivaz
Porthtowan
Cornwall
low-pass and high-pass, it can also give a bandpass response as can. incidentally the multi-feedback and bridged-T layouts (but not the bootstrap).
The all-pass filter construction shown in Fig. 23 (labelled "The" allpass filter) is not very useful since it has a fixed Q or zero (single-pole response). The function of the adjustable resistor is not clear, since the all-pass response is only available at the junction of the C and the end of the variable resistor. The all-pass response (but with adjustable Q) is the means by which a filter with the required amplitude response, but not phase response can be made to have the required phase
response as well.
Lastly. Fig. 22 shows how a flat bandpass response can be obtained by cascaded HP and LP sections. While this will work, it will give poorer slopes near the pass-band edges for the same number of stages as the more conventional approach of using cascaded bandpass sections.

Brian / Pollard

Watford

Herts

Less loss

Mr Linsley Hood's article on active filters ($E W+W W$. October, pp. 812818) was most interesting. Your readers should, however, be aware
that the low-pass and high-pass second order responses given by the bridged-T feedback configuration and by its variant, the "bootstrap" circuit, have an ultimate attenuation band fall-off rate which is
theoretically $20 \mathrm{~dB} /$ decade less than that which would be obtained by designing the filters to make use of Sallen and Key (or equivalent) second order sections. In multi-pole filters, the loss in ultimate fall-off rate will approach $20 \mathrm{~dB} /$ decade for each such section.

A Kraicer

Edgware
Middlesex

Dab hand

The entertainment industry is to be congratulated for pioneering FM, TV and now dab. FM is used for much more than broadcasting today: TV is used in medicine, teaching. astronomy, etc; and now dab will revolutionise mobile radio communications, fixed multiplex links, telecommunications in general
and our lives in particular.
Your dab review article (All systems go for dab?, $E W+W W$. October, pp. 880-882) raises the following thoughts. If one block of 1.5 MHz of radio spectrum can carry some 12 (six stereo) channels of 15 kHz audio information this is the equivalent of 180 kHz of analogue bandwidth with a dynamic range of more than 100 db . That is roughly equivalent to 60 mobile radio channels using a 25 kHz RF bandwidth.
Restricting the frequency response of each channel to the audio range of $300-3000 \mathrm{~Hz}$ and the dynamic range to 60 db the RF bandwidth requirement can surely be reduced to well below the 25 kHz (FM) often in use today for mobiles. Using trunking techniques, Eureka style dab with its mutual interference cutting characteristics and low RF power requirements will allow implementation of mobile radio schemes with a lavishness that lack of RF spectrum has denied all these years.
After a decade of resistance on the

ABC of amplifiers

The amplifier circuit suggested by WO Richards in Circuit Ideas, EW $+W W$. October 91 seems to be a neat up-date of the design approach described twenty years ago by Peter Blomley (New Approach to Class-B Amplifier Design, WW, Feb-Mar 1971). In that design, crossover distortion was avoided completely by transferring the switching function from output to an earlier stage which divided the signal into "top" and "bottom" unidirectional halves. With the output stage biased just into conduction, the signal halves drove their respective output stage halves like class-B but without entering the cut-off area, and united in the load in the usual way. An amplifier using the system had a performance that may not be bettered today.
Why then, did it not sweep class-B off the market? One reason might be the patent application mentioned with the article. Blomley himself considered his design wasted on the transducers of the time. Many music-lovers are quite happy with their class-B equipment. Nevertheless, ears do twitch at cross-over distortion and the excellence of CD and (some) broadcasts bring a desire for amplifiers worthy of them. So anyone who tries the Blomley system simply for own interest may become quite pleased. (Yes, there are still plenty of audio hams - ask the firms who supply parts and kits). It would be helpful if Mr Richards would supply some performance details. Capacitive coupling may upset some purists. I am more concerned by the different total values in the two halves of the amplifier.

Finally, is it class-A or B? It operates in the class-A area but does not require a standing current large enough to meet the heaviest likely demand. Like class-B it draws current proportional to drive but operates clear of the cross-over area. Class-AB is what many circuits are already. What about class-BA?

W Groome
 Wolverley

Worcestershire
part of the BBC to non-compatible FM stereo radio broadcasting it is good to see that at last the old lady has seen the light. A pity indeed that the price is that BBC researchers are so little involved, since dab is really what their business is all about.

Peter Hirschmann

Haifa Israel

Fluke details

The Fluke 80 series multimeters feature an ultrasonic data output facility for which, for some obscure reason, Philips is resolutely unwilling to provide details.
I would like to ask whether any $E W+W W$ readers have successfully built an interface to the multimeter using this interface and have been able to decipher the data protocol. 1 would be very grateful for the advice and can be contacted on 0272741918 .

Paul /ohnsonn

Clifton

Bristol

Criticism reviewed

It is apparent that the reviewer of my book CTG Capacitance Theory of Gravity, failed to grasp the concept of a voltage tcaygradient field in dimensions of volts per daraf through capacitance-dominated space, which is much like a volts per ohm field through resistancedominated space. These fields were explained in pages 23-36 and in Appendix D. Volts/daraf equates in MKS (R) dimensions to coulombs, just as volts/ohm equates in MKS(R) dimensions to amperes. The dimensions remain balanced and true when converted and equated with MKS(NR), CGS, ESU, and EMU. The force, Q-times-the-volts-per-daraf, which is not in "newtons" (as explained on page 36 but misinterpreted by the reviewer), was therefore designated with new amplitude-equivalent-for-MKS called "gravits". Then 1 gravit $=A$ newtons, where A is equal to one newton/gravit, or I daraf/m. When the F_{g} gravity force and A dimensions are both converted to other dimensional systems, no errors occur in either amplitude or dimensional balance.

In the CTG book, instead of A. amplitude-equivalence vertical brackets were used throughout the book to designate "gravit" force equivalence to "newton" force, as

MKS units were used exclusively.
As far as demonstraling that electric field coulomb law forces disappear in the CTG theory. this was explained on pages 27 through 29. Electric fields from myriads of closely spaced plus and minus poles of dipoles with random orientation cancel at any point in space. hence no coulomb law forces.
1 do hope that readers of $E W+$ W W' are not sufficiently persuaded by the negative review to make no judgement for themselves and will take a look at this new concept. Other reviews have been more comprehensive and more positive.

Morton F Spears

Spears Associates Inc
Norwood
Massachusetts
USA

Thanks... for the memories

A while ago I wrote asking for your help in looking up old issues of Wireless World to find data on the RAF receiver R1155. The response has been remarkable. Complete strangers have put themselves to all sorts of trouble on my behalf out of sheer good nature and, one can infer, some nostalgia. Your help has been invaluable. Thank you indeed.
But much wants more - my R1155 is my second priority request - my first is to obtain another exgovernment receiver for long waves only. $15-200 \mathrm{KC}$. Two receivers were made - one. code B28
(Marconi R1OO) was a general coverage one; the other, similar in appearance, code B29, covered the VLF spectrum. I have tried in vain in every waly open to me to find one. True they are likely to be scarce, but they were on the disposals market in 1960 and there may be one tucked away somewhere. Can anyone
help?
Douglas Barry
Ward of Turin
Rescobie
By Forfar
Angus

Vintage stuff

Can you help me to find a home for some 1940s equipment which I should like to donate to a good cause. The collection includes a TF144G, TF517F. Type 13 'scope. RAIB communications receiver and an ARR-3 sonobuoy receiver.
The items were on offer to the

Communications \& Electronics Muscum Trust at Bristol, but this now seems to have disappeared through a hole in the ground. I have tried to find other museums or collections of vintage electronic gear to which I could give these bits, but so far no one has been able to help. Of course I have heard of the Vintage Wireless Company, but that is a commercial operation, generally more concerned with the cosmetic details than with the gear per se.

Michael Hawkins

65 Osborne Road
Farnborough
Hants
GUI $+6 A P$

RDS voids

With reference to Philip
Darrington's "RDS on the road" (EW + WW. November. pp. 973974), his statement that RDS data "is now carried on all FM Transmitters in the UK" is blatantly not true. Even if the statement referred to the BBC only. it would still be incorrect.
The BBC has many transmitters. mostly in Scotland which do not carry RDS data: eg some sites bordering the A9 from Perth to Inverness, sites in the Western Isle and also sites on the north west coast of Scotland carrying mono transmissions only. The BBC did admit to this, when pressed, at the Motorfair in L.ondon recently.
National Transconmmunication Lid (NTL) formerly the IBA have many local independent stations not carrying RDS data: eg Beacon Radio (Wolverhampton). Fox FM (Oxford) and Moray Firth Radio (Inverness) to name a few
In addition. NTL have stations with dual sites and frequencies which do not carry AF listing, and so RDS radios will not retune as signal strengths vary: eg Radio 210 FM (Reading) has 102.9 MHz from Hannington and 97.0 MHz from Reading with neither carrying AF listing. As an extensive RDS user (both in UK and Europe) I find the UK well below average on operational techniques employed. My main frustration is the manual operation of the TA override command from studios. European Stations have automatic switching when the traffic announcement jingle tape is inserted and so drivers hear all the Traffic Announcement. UK stations employ manual switching and unless studio
operators switch the TA on during the jingle tape, the start of the announcement will be lost.
I understand take up of RDS in the UK is very slow, but until the system is fully operational and studio operators are correctly trained, take up will continue to be well below our European partners.

Terry Parrott.

Hampshire

Tuner kit

The article "RDS on the road" (EW + WW, November 1991) prompts me to wonder whether any manufacturer produces a unit, or kit, which can be connected to a conventional FM tuner to give an RDS display. Can any reader or manufacturer help?

Allan C Jones

Newport Pagnell
Buckinghamshire

Relatively
 satisfactory

It is true that critics have perceived tlaws in the theories of relativity, but it is still the case that relativity does provide a good explanation of observable phenomena. Ove Tedenstig states (Letters. November) that Einstein's theories should be relegated to the "lumber room of failed scientific ideas". But why. when no one has produced a better hypothesis?.
Critics of relativity must address themselves to some common observations that are not readily explained by Newtonian physics. For example the motion of Mercury. and the behaviour of high-speed electrons in discharge tubes. If relativity is not the (whole) answer then can we have another hypothesis?.
Some people have genuile and well-argued reasons to suspect that relativity is not the whole story, but I suspect that the majority of people who dismiss relativity just cannot cope with what. on the face of it. goes against everyday experience. I am reminded of the occasion where the church refused to believe in the moons of Jupiter.
The establishment may well be represented by some people with narrow-minded. blinkered views. but the tone of Tedenstig's letter suggests that there are such people in both camps.

David Gibson

Leed

Who has the problem?

It is with interest that I read your editorial "History is bunk?" (EW + WW, November). I note the cbange of title from Wireless World, but I also note the RF techniques are essential to accurate design of even humble circuits, and in particular the 32 bit systems with which I am currently involved, are very sensitive to electromagnetic design transmission line parameters, for example.
I would even assert that a humble bipolar transistor is a radiationoperated device when it has to be modelled to full accuracy, at least conceptually, as a quantum field device. This is essential for the proper understanding of p-type semiconductor material as containing not holes, but virtual positrons. I am not convinced that I have seen a fully satisfactory analysis of why base stopper resistors work - if anyone remembers the concepts of pre-integrated circuit days. While I appreciate the preference of your magazine for practice and experiment over high-flown theory, I am not convinced by totalitarian relativism, and I suspect that it is a matter of time before Einstein's fundamentals go the way of Newton's principia, that is into history. Allan Campbell

Travelling in the mind

Taking up the challenge thrown down by Alan Boswell (Letters. October), I would like to join the debate on time machines by asking at question:

Does the unfolding process of the material system depend on the mediation of some kind of agent corresponding to the notion of time as under relativity theory. or does this unfolding merely express the inherent dynamic characteristics of matter itself?
This question. raised over the nature of time as it may be inferred from relativity theory, stands in relation to the alternative hypothesis which posits time as an element of the mental domain. the indispensable concept for any mental comprehension of experience.
Should this hypothesis prevail, it follows from the exclusion of time from the physical domatin, that timing operations would be admissible only as actions of the mind, when comparisons are made between stages of various physical processes.

Any process adopted as a standard for comparison derives its value from confidence in the qualities of the system undergoing it. to provide a repetition of stages which is regular.
The clock is such a system which the mind uses as a basis for recording the various series of events along an abstract dimension.
but is merely represented as a spatial extension and has no location in the physical universe.
The timing standard has validity across the entire universe and cannot be affected by physical action such as mobility of objects. There are various practical problems in establishing simultaneity, including the finding of data-transmission delays between the site of an event and at timing-station registering it. These difficulties have no bearing on the concept of simultaneity, as Einstein asserted they did. What is measured with clocks is not time. but the synchronisation between processes.
The proposition I ampulting is consistent with the Cartesian dectrine of duality: the physical and mental domains are recognised as having their autonomous existences. but their processes are mediated through the action of the neural complexes of living organisms. At this interface is defined the boundary between physics and metaphysics. the boundary which relativity theory vainly seeks to breach.
AmI a kill-joy for trying to undermine the basis for fun with time-machine fantasies and the like?
Possibly Mr Boswell would care to lend his incisiveness, or venture a little crankiness. in a "respectable" debate over the place of time in the universe.

C Francksen

Farnborough
Hants

REGULARS

CIRCUIIIDEAS

Four channels on a single-channel oscilloscope

OIn a single-chamel oscilloscope. this circuit, using only four ICs, multiplexes four signal channels for, effectively. simultaneous display.
The differential 40.52 multiplexer works with two sets of four inputs: pins $11,12,14$ and 15 carty the y signal, while pins $1,2,4$ and 5 take DC potentials from the fous potentiometers to determine the y position on the screen (a DC-coupled oscilloscope is assumed)
Clock pulses variable up to 2 MHz are generated by the 4047 astable and drive the 2-bit Johnson counter, which produces A and B select waveforms for the multiplexer High switching rates multiplex the y inputs at a higher rate than the oscilloscope sweep to give a virtually continuous display.
Output to the single input of the oscilloscope comes from an LM318 variable-gain op-amp.

\checkmark Lakshminarayanan

Centre for Development of Telematics Bangalore, India

Accurate astable multivibrator timing

In the free-running multivibrator of Fig. 1 the period is theoretically given by $T=$ $2 \mathrm{CR}_{1} \ln \left(1+2 \mathrm{R}_{2} / \mathrm{R}_{3}\right)$. positive and negative excursions being exactly equal.
Symmetry of the output waveform suffers in practice when the differential input voltage exceeds the specified value and, in some types of op-amp, causes an avalanche input current. This usually happens as a

Fig.1. Commonly used multivibrator circuit may give asymmetrical output if inverting input avalanches.
result of excceding input threshold protection or when long-tailed pair base/emitter zener action occurs.
Figure 2 shows an improved circuit, in which the unity-gain buffer $I C_{2}$ isolates the timing circuit from the inverting input of

Fig. 2. Modified circuit isolates timing components from inverting input to preserve symmetry.
IC_{1}, incidentally affording increased speed. Alternatively, the potential divider R_{23} may be varied to give a lower differential input swing, but in this case the op-amp offset voltage cannot be neglected. Dmitri Danyuk and George Pilko Kiev, USSR

FRESH IDEAS

While we are not short of Circuit Ideas to publish, it would be agreeable to see some fresh input from the vast, untapped bank of talent that our thousands of readers represent. We pay a moderate fee for all ideas published. So send them to Circuit Ideas, EW+WW,Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
We will be happy to consider them.

Millihertz multivibrator

W/hen accurate and repeatable longperiod timing is needed, a CD4053 analogue multiplexer and a CD4020 14stage counter will form an astable multivibrator with independent setting of mark and space from seconds to minutes. No expensive large-value, low-leakage capacitors are needed and there is no initial
pulse error, often present in analogue timing circuits.
Analogue switches B and C of the 4053 are arranged as inverter gates, inputs and outputs therefore being complementary. Capacitor C_{1} and resistors $\mathrm{R}_{\mathrm{A}, \mathrm{B} . \mathrm{C}}$ form an oscillator round the gates.
Pulses from the oscillator are counted by

the 4020 , its Q_{14} output changing state after every 8192 pulses at the input and controlling. by way of gate A, which of the two timing resistors R_{A} or R_{B} is in the oscillator circuit. The frequency of the oscillator is so decided by the value of R_{A} when Q_{14} is low and by R_{B} when it is high, Q_{14} being taken as the output.
With the component values shown in the diagram, on and off times are variable between 10 s and 70 min . Leakage in the off channel of gate A causes negligible change in the timing of each period when the timing resistor of the other period is varied.
If the preset feature of the 4020 is not needed, a 4045 21-stage counter can be used to give longer periods.

M S Nagaraj

ISRO Satellite Centre
Bangalore
India
Low-power counter and multiplexer give independent control of on and off periods of multivibrator from 10 s to 70 min , using no expensive capacitors. Timing is much more accurate and repeatable than in analogue timers.

Variable M:S op-amp oscillator

Needing a low-frequency oscillator to give a rough idea of the level of a control voltage. I considered the obvious 555 but, having a spare op-amp. developed this variation of a common design.
Op-amp oscillators commonly take the form shown in Fig.1. in which R_{1} and R_{2} provide positive feedback and the reference voltage. Capacitor C charges through R_{3} to
the reference level, whereupon the output goes low and C then discharges to the new level. When C reaches it, the output again goes high and the cycle repeats. With equal supplies, the mark:space ratio is $50: 50$.
In Fig.2, a single supply is used and the low inpedance of the control voltage source enables it to be used to vary charge and discharge times by changing the switching
point of the op-amp to alter the M:S ratio.
Values given provide a led flashing rate of 3Hz, assuming a low-leakage C, and $M: S$ ratio is variable from $3: 1$ to $1: 3$ for a control voltage swing of +2 V to +10 V . I used a lowcurrert led to 0 V , but a higher-current device could be driven by a transistor.

Martin / Barratt

Reading, Berkshire

Fig. 1. Common form of op-amp oscillator, providing 50:50 mark:space ratio with equal supplies. Feedback resistors determine reference voltage.

Fig. 2. New circuit with single supply. Control voltage to be monitored varies mark space ratio of waveform driving led indicator

Parallel-to-RS232-C conversion

TThe circuit shown in Fig. 1 converts parallel 8 -bit data at the inputs of the uart IC 2 (pins 26-33) to RS232-C serial data format for transmission at any of fourteen of the commonly used transmission rates as in Table 1. Data is entered either by means of switches DWSI-DWS8 or from an external source.
Transmission is initiated by applying a positive or negative edge to the trigger signal input of the multiple monostable IC_{3}. an HEF4528: selection of trigger polarity is by switches TS 1-4. Serial data from pin 25 of the IM6402 uart is inverted and converted to RS232-C levels by the Max232 driver.
I_{4}, appearing on pin 14. The uart inserts a start bit and either one or two stop bits and odd. even or no parity bits, selected by switches CW 1-5 as in Table 2. Figure 2(a) shows the data format and Fig. 2(b) the timing.
If data is to come from an external source (for example. from the motion detector published in EW + WW. July. pp. 571 . Circuit Ideas), the switch/resistor network on pins $26-33$ of the uart is omitted. In this case, valid data must be present at least 50 ns before and 7 (ns after the trailing edge of the negative pulse at pin 23 of the uart.

K Kumaran

University of Keele
fig. 1. Parallel-to-RS232-C converter for external data or for switched-input selting.
(a)

Fig. 2. Serial data format and levels at output of RS232-C driver (a). Number of stop bits is optional, as is inclusion of odd or even parity bit. Timing of circuit is at (b). Point A is first negative edge of clock, at least $T / 2+175 n s$ after positive edge of $\overline{T B R L} ; B$ is start bit time, $T / 2+300 n s$ after A.

PROGRAMMING FLEXIBILITY FOR PROFESSIONALS

HARDWARE FEATURES
PC-BASED PROGRAWMERS
UK DESIGN, MANUFACTURE AND SUPPORT NO MESSY INTERNAI CARD
PLUGS DIRECTIY INTO PARALIEL PORT (LPT)-3) EASIIY TRANSPORTABLE BETWEEN MACHINES WORKS WTH XT, AT, 386, \& 486. EVEN LAPTOPSI INCREDIBIY FAST PROGRAMWING TMMES FLEXIBLE DESIGN MEANS NO ADAPTORS NEEDED FOR MOST DIP PACKAGES UPGRADES BY FIOPPY

SOFTWARE FEATURES

MENU DRIVEN
FIEXIBLE FILE LOADING (HEX, BINARY, JEDEC) READS, VERIFIES, BLANK CHECKS, BIT TESTS OVER-PROGRAWMES AND AUIO-PROGRAMMES CAN MODIFY PARAMETERS OF EXISITING MEMORY DEVICES AND STORE IN USER DATABASE handies Security features of all devices AUTOMATIC PAL TO GAL CONVERSIONS FUIL BUFFER EDITING CAPABILITIES TEST VECTOR SUPPORT

ICE TECHNOLOGY LTD UNIT 4, PENISTONE COURT, STATION BUILDINGS, PENISTCNE, SOUTH YORKSHIRE S30 6 HG TEL $i+44!0226767404$ FAX $(+44) 0226370434$

SPEEDMASTER 1000

- LOW COST, UNIVERSAL PROGRAWMER EPROMS, EEPROMS, FLASH EPROMS, NVRAMS SERIAL EEPROMS, PAIS, GAIS, PEELS, EPIDS SUPER FAST PROGRAMMING e.g 27C256 (32kx8) IN 4.5 Seconds
JEDEC TEST VECTOR SUPPORT FOR PALS INCIUDES PAI DEVELOPMENT SOFTWARE - UP TO 40 PIN DIPS WITHOUT ADAPTORS

$£ 395$

MICROMASTER 1000

- ALI FUNCTIONS OF SPEEDMASTER 1000 MKCROCONTROLLERS FROM T. 1 lincluding TMS370 SERIES, TMS77C82), INTEL, ZILOG, MICROCHIP (PICS), MOTOROLA, PHILIPS

£550

 AND OTHERSSPEEDMASTER 8000 8 WAY GANG/SET PROGRAMMER - MASTER SOCKET

EPROMS, EEPROMS, FLASH EPROMS UP TO 32 PIN
PC OR STAND ALONE MODE SUPER FAST PROGRAWMING e.g. 8×27 c256 $(32 \mathrm{Kx8})$ IN 6 Seconds

CRICKLEWOOD ELECTRONI
LONDON NW2 3ET. TEL 081450 0995, 0814520161 FAX 0812081441

COMMERCIAL QUALITY VHF/UHF RECEIVER

The IC-R7000, advanced technology, continuous coverage communications receiver has 99 programmable memories covering aircraft, marine, FM broadcast, Amateur radio, television and weather satellite bands. For sımplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by tuning the main tuning knob FM wide/FM narrow/AM upper and lower SSB modes with 6 tuning speeds: $0.1,1.0,5,10,12.5$ and 25 kHz . A sophisticated scanning system provides instont access to the rnost used frequencies. By depressing the Auto-M switch the IC-R7000 autamatically memorises frequencies in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. Readout is cleorly shown on a dual-colour fluorescent display. Options include the RC-12 infra-red remote controller, voice synthesizer and HP-2 headphones.

Post to: Icom (UK) Ltd. Dept WW Sea Street Herne Bay Kent CT6 8LD Tel:0227 741741 (24 hr). Fax: 0227360155
\qquad
Call sign:
Tel: Dept: WW

BBC Model B APM Board

wiv $8 \operatorname{cof}^{\circ}$

£100 CASH FOR THE MOST NOVEL DEMONSTRATABLE APPLICATION!
BBC Model B type computer on a board. A major purchase aliows us to offer you the PROFESSIONAL version of the BBC computer at a patts oniy price. Used as a front end graphics syslem on large networked systems the architecture of the BBC we are sure that with a blt of experimentation and ingenuity many usetul applications will be found for this boardll it is supplled and BNC type connectors - all you have brings all the VO to ' D $\pm 12 \mathrm{v}$ DC. The APM consists of a single PCB with most major ic's socketed. The Ic's are 100 numerous to llst but Indude a 6502, RAM and an SAA5050 teletext chip. Three 27128 EPROMS comtaln the custom operating system on which we rovidata, On appicabon of DC power the system boots and DiP swithegnostic information on the video output. On board enable the four jumpers select the ECONET address and dims: maln board $13^{\prime \prime} \times 10^{\circ}$. VO board $14^{\prime \prime} \times 3^{\prime \prime}$. Supplied tesled

Only $£ 29.95$ or 2 for $£ 53_{\text {Bi }}$

 MONITORS
MONOCHROME MONTORS

THIS MONTH'S SPECIALI

$\sqrt{2}$Brand spanking new a boxed montiors from NEC, nomally seiling at about $£ 1401$ These are over-engineered for ulira with eiched non-glare screen plus switch able high/low impedance Input and output for dalsy-chalning. 3 front controls and 6 at rear. Standard BNC sockets. Beautul high comrasi screen and atracuve case with quantity userst $£ 39.95$ each (D) or 5 for $£ 185$ (G) CALL FOR DISCOUNTS OW HIGHER QUANTIIES! COLOUR MONTTORS
beautitul teak style case and olour monitor. Features a PIL tube, features usually seen only on colour monitors costling 3 times our pricel Ready to connect to mosi computers or video outputs. tested surplus, sold In little or hardly used condition with 90 day full RTB guarantee. Ideal for use with video recorder or our
Telebox ST, and other audio visual uses. $\operatorname{cge(E)} 3 / E 275$ (G) 20", $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video \& soundinputs. Attra in EXCELLENT littie used condition with tull 90 day guarantee. $20^{\prime \prime} \ldots . .135$ 22**... 155 26**... 185 (F) CALL FOR PRICING ON NTSC VERSIONS! HL-DEFINITION COLOUR MONITORS Brand new $12^{\prime \prime}$ mutillnput high definitlon colour monitors by Microvitek. Nice tight
0.31° dot pitch for supert clanty and modem metal black box styling. Operates from any 15.625 khz sync RGB video souroe, with either Individual H\& V syncs such as CGA IBM PC's or RGB analog
 modore Amiga, Acom Archimedes 8 BBC. Measures only $14^{\circ} \times$ Will also square. Free data sheet Including connection Information. Will also function as qually TV with our RGB Telebox.
Only
Brand new Centronic 14° monitor for IBM PC and compatbld at a lower than ever pricel Completely CGC and compabbles Mitsubushi 0.42 dot plich giving 669×507 plxels. Big 28 Mhz bandwidth. A super monitor In attractive style moulded case. Full 90 day guarantee. \qquad E129 (E) NEC CGA IBM-PC compatlbie. High qually ex-equipment fully tested with a 90 day guarantee. In an attractive two tone ribbed purchase enables us to pass these on at only.... £79 (E)
V22 1200 BAUD MODEMS

Master Systems $2 / 12$ microprocessor controlled V22 full duplex

 1200 baud modem. Fully BT epproved unit, provides standard V22 high speed data comm, which at 120 cps , can save your phone bill and connect time by a staggering 75% I Ultra sllm 45mm high. Full featured with LED status Indicators and remote error diagnostics. Sync of Async use; speech or data switching bulit in 240 v malns supply and 2 wire connection to BT. Units are in used but good condition. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask for and at this pricell

IBM KEYBOARD DEALS

A replaoement or backup keyboard, switchable for IBM PC, 84 keyboard layout. Made by NCR for the Engilish 8 US Sandets. Absoiutely standard. Brand NCR or the Engilish template for user slogans on the functlon keys. Altractive beige,grey and cream finish, with the usual relractable legs underneath. A generous lengith of curly cord, terminatling in the standard 5 pln DIN plug. A beautiul clean piece of manutac-
turers surplus. What a deal Brand new and boxed 84 key PCXXT type keyboards in standard IBM grey with very attractive motted finish and "dicky" solid feel keys, 10 tunction keys on side. English iayout and § sign. Green LEDs for Caps, Scroll 8 Num locks. $\quad 20.95$ (B) $5 / \Sigma 135$ (D)

CALL FOR DUSCOUNTS ON HIGMER QUANTIIES!

FLOPPY DISK DRIVES BARGAINS GALORE !

 NEW 51⁄4 Inch from £29.95!Massive purchases of standard $51 / 4$ drives enables us (unless stated) are removed from oflen brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from $+58+12 \mathrm{vdc}$, are of slandard size and accept the standard 34 way connector.
TANDON TMH100-2A IBM compatible DS

TEAC FD-55-F.40-80 DS half height. BRAND NEW E79.00(C

* Specialsl

TEAC FD-55 halt height series in your choice of 40 track double sided 360 k or 80 track double sided 720k. Ex-equipment fully tested in excellent conditlon with 90 day warranty.
Order TE- 36 for 360 k E 29.95 (C) or TE- 72 for 720 k c 39 .

CHOOSE YOUR 8 INCHI

Shugert 800/801 SS refurtished \& tested
Shugart 851 double sided refurtished \& te sted Mitsubishl M2894-63 double sided switchable S- BRAND NEW SPECAAL OFFERSII

Dual 8° drives with 2 megabyte capadiy hou

with bullt in power supply
 esil

Only £499.00 (F)
End of line purchose scoop! Brand new NEC D2246 8" 85
megabyte of hard disk storagel Full CPU control and Industry standard SMD Intertace. Ultra hil speed transfer and access itme leaves the good old ST506 Interface standing. In mint condition

AFFORDABLE 10 Mb WINCHESTERS

 A rantastic deal - 10 mb (formatted) Wnchester for $£ 39.951$ hard drive on your present driver card or as a starter Into Winchester land - see the driver card llsted below. used conditlon, guaranteed for 90 days
Hard disk diliver card, complete with cables read

No Break Uninterruptable PSU's

Brand new and boxed 230 volts uni memptable power supplies from Densel. Model MUK 0565-AUAF is 0.5 kva and MUD 1085-AHBH Is 1 kva. Both have sealed lead acid batteries. MUK are Imtemal, MUD has them In a matching case. TImes from interrupt are 5 and 15 minutes respectively. Complete with full

RECHARCEABLE BATTERIES LEAD ACID
Maintenance free seebed long life. Type A300.
12 volts 12 volts 3 amphours 6 volta 6 volts 3 amphours

ع $9.95(\mathrm{~A}$

12 volis Centre tapped 1.8 amp hours. RFE.	
12 volts	
12 volts 38 amp hours. $7-1 / 2^{\circ} \mathrm{L}$	
$\times 6^{\circ} \mathrm{S}$. RFE	E 35.05 (A

Neperthat Super high capacity Chioride Alcad 12
 Its renlilable type XL1.5. Electrolyte readlly avallable Potasslum Hydroxide. I measures $8^{\circ \prime} \mathrm{H} \times 175^{-} \mathrm{L} \times 4^{\circ} \mathrm{D}$. Can be easily separated. Ideal for all standby power appilcations. ExMoD, llke new..E49.95 (E)

SPECIAL INTEREST

Newton Derby frequency changer 3 ph
3 phase 400 hz .15 ka output. As new.
3 phase 400 hz . 15 kva output. As new.
Tro $0-18$ vdc bench PSU. 30 amps. Now
Fujitsu M3041 600 LPM band primer
Fujtsu M3041 6U boand
Rhode a Schwerz SBUF TV test transmitter
$25-1000 \mathrm{mhz}$. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter Thuriby LA 160 B logic analyser
1.5kw 115 v 60 hz power source

Tektronix R140 NTSC TV test signal standard Sony KTX 1000 Videotex system - br and nem ADDS 2020 VDU terminals - brand new Sekonic SD 150H 18 channel Hybrid recorder
Trend 1-1 Data transmission test set
£150.00(E)
$225.00(\mathrm{E})$
E250.00(E) $E 2900$

Superb Quality 6 foot 40 u 19" Rack Cabinets Massive Reductions Virtually New, Ulira Smart Less Than Half Price! Top quality 19° " rack cabinets made in UK by Optima Enclosures Lid. Units feature designer, smoked acryilc lockable front door, fuli height lockabie half louvered back door and removable side panels. Fully ad|ustable internal lixing struts, ready punched for any conflguration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched majns distribu-俍 requlre only two side panels or stand singly. Overall dimensions are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as
Rack 1 Complete with removable side panels...... 5275.00 (G)

POWER SUPPLIES

200-520P 200 wan (250 w peak)-semi open $+24 v 4 a(6 a$ peak). Al outputs fully regulated with over voltage, protection on the $+5 v$ output. AC Input selectable for $110 / 240$ vac. Dims $13^{\circ} \times 5^{\circ} \times 2.5^{\prime \prime}$. Fully guaranteed RFE. $\quad \mathbf{E 8 5 . 0 0}$ (B) Power One SPL130. 130 watts. Selectable for $12 \mathrm{~V}(4 \mathrm{~A})$ or 24 v
(2A). $5 \mathrm{v} @ 20 \mathrm{~A} . \pm 12 \mathrm{v} @ 1.5 \mathrm{~A}$. Switch mode. New. $£ 50.95(\mathrm{~B})$ (2A). $5 v @ 20 A . \pm 12 v @ 1.5 A$. Switch mode. New. $£ 50.95(B)$
Astec AC-8151 40 watts. Swltch mode. $+5 v$ @ $2.5 \mathrm{a} .+12 \mathrm{v} @$ $2 \mathrm{a} .12 \mathrm{v} @ 0.1 \mathrm{a} .6-1 / 4^{*} \times 4^{\circ} \times 1-3 / 4^{*}$. New $\mathrm{E} 19.95(\mathrm{~B})$ $1 \mathrm{a}+\mathrm{+} 15 \mathrm{v}$ @ 1a. RFE and fulty tested. $11 \times 20 \times 5 \mathrm{~s}$ @ $6 \mathrm{a}, \pm 12 \mathrm{v} @$ Conver AC130. 130 wall hi-grade VDE spec. Switch made +5 V @ $15 \mathrm{a},-5 \mathrm{v}$ @ $1 \mathrm{a}, \pm 12 \mathrm{v}$ @ $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New Boshert 13090 . Switch mode. Ideal for dives \& system. $+5 \mathrm{v@C} 6 \mathrm{a}$ +12v@ 2.5a, 12v@ 0.5a, $-5 v @ 0.5 a$.
Farnell G6/40A. Switch mode. $5 v @ 40.95(\mathrm{~B})$

COOLING FANS

3 inch	AC. 11/2' thick	[8.50 (B)
3 V 2 linch	AC ETRI sliminne. Only $1^{\prime \prime}$ thick.	E 9.95 (B)
31/2 inch	AC $230 \vee 8$ watts. Only 3/4" thick	E1295(A)
4 inch	AC 110/240v $11 / 2^{-1}$ thick.	E10.95 (B)
10 Inch	AC round. 31/2 thick. Rotron 110 V	E10.95(B)
10 Inch	As above but 230 volts	E24.95(B)
60 mm	DC $1^{\prime \prime}$ thick. No. 812 for 6/12v. 814 24v.	E15.95(A)
80 mm	DC 5 v. Paps1 8105G 4w. 38mm. RFE.	E19.95(A)
92 mm	DC 12v. 18 mm thick.	E14.95(A)
4 Inch	DC 12v. 12w 1120* thick	E1250(B)
Hinch	DC 24v 8w. $1^{\prime \prime}$ thick.	E14.50(B)
THE AMMAINCTELEBOX!		

Brand new high quality, fully cased, 7 channel UHF PAL TV luner vdeo monitor tuming same into a fabulous colour TV. Dont worry in your monlifor does'nt have sound, the TELEBOX even has an or Headphones or HI Fi system etc. Many other features: LED Status indicator. Smart moulded case, Malns powered, Bullt to Supplied BRAND NEW with full 1 year guarantee.
eebox ST for composlite video Input monitors..........E32.95(B) Telebox STL as ST but with Integral speaker...............56.50(B) RGB Tel ebox also suitable for IBM multisylnc monitors with RGB analog and composite syme. Overseas versions VHF \& UHF call.

BRAND NEW PRINTERS

TEC Starwiter Model FP1500-25 dalsywheel printer renowned registration and quality. On board microprocessor gives full Diablo/Qume command capabillty. Serial RS-232C with tull 470 Including $\&$ sign. Font Elite. Fnction or tractor feed. Fuil ASCH E2950 DED DPG21 miniature ball point pen printer plotier mechanism Includes drcult diagrams for simple driver electronics Centronics 150 gerles. Aways known for their reliabilty in continuous use - real workhorses in any environment. Fast 150 cps with 4 lonts and choice of interfaces at a fantastic prioel $150-4$ Senal up to 9.5 paper, fan told tractor............... 99.00 (E) $150-4$ Se nal up to 9.5° paper, tractor, roll or s/sheet..... $£ 129.00(\mathrm{E})$
$152-2$ parallet up to 14.5° paper, tractor or s/sheet.... $£ 149.00(\mathrm{E})$ CALL FOR THE MANY OTHERS IN STOCK VISIT OUR SHOP FOR BARGAINS

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI

Defmt
-ELELIRONITE5:

ALL ENQUIIIIES
081-679-4414
Fax-081-679-1927
Telex-894502

REGULARS

ACTIVE

Asic

Gate array asics. The CE31 series of gate-array asics has a complexity of up to 200,000 gates. They are cmos embedded gate arrays using a $0.8 \mu \mathrm{~m}$ sea of gates array and $8 \mu \mathrm{~m}$ standard cell series; both methods are used on the chip. Applications include system integration of microprocessors and peripherals in industrial environments, telecommunications products, and data processing. Compilable circuits can be configured and verified as hard macros using module compilers. Fujitsu Microelectronics, 062876100

Triple-metal masters. Two triplemetal masters have been added to the TC160G series of gate arrays. These achieve maximum usable gate counts of 210,000 using $0.8 \mu \mathrm{~m}$ hc^{2} mos technology. The usable gate figure is based on 70% gate utilisation compared with 40% for double-layer metal masters. The arrays are supported by a library of about 1000 macrocells as well as megacells for ram and rom. Toshiba Electronics, 0276694600.

A-to-D \& D-to-A converters

10bit. The SPT7820 and SPT7824 monolithic 10bit converters have sampling rates of 20 and 40Msample/s respectively. They are suited to medical and industrial imaging and have TTL compatible inputs and outputs. There is a fully integrated track and hold on the same monolithic die whereby input signals of up to 10 MHz can be sampled. Ambar Cascom, 0296434141.

I2bit. The AD7233 and AD7243 12bit converters are for process control, calibration circuits, DSP based systems, and general I/O subsystems. With an internally connected 5 V reference, twoscomplement data format, and single output range of $\pm 5 \mathrm{~V}$, the AD7233 is suitable for bipolar zero-centred process control applications. It can have internal or external reference connections, offset binary or twoscomplement data format. Analog Devices, 0932232222.

8bit. The DAC8840 and DAC8841 TrimDacs are 8bit octal multiplying D to-A converters for replacing mechanical potentiometers for automatic microprocessor adjustments of $A C$ and $D C$ voltage gain. Eight independent channels of
digitally programmable signal-level attenuation provides 256 values of unipolar or bipolar gain (two or four quadrant multiplications) for DC to 1 MHz analogue signal inputs. Each buffered channel can provide a minimum 5 mA of output drive current. Analog Devices, 0932232222.

12bit. The HI5800 is a $3 \mathrm{Msample/s}$ 330 ns 3 MHz monolithic 12 bit A-to-D converter. The 10,000-transistor chip has an on-chip voltage reference and sample and hold that samples below $1 \mu \mathrm{~s}$ and converts above 1 MHz . Distortion is 72 dB . It contains a buffered sample and hold arnplifier, precision temperature and curvature corrected bandgap voltage reference (2.5 V ratio metric), two-step subranging A-to-D with 7bit tlash and 7bit D-to-A with digital error correction, control logic, and timing generator. It can also be driven by a 2.5 V external reference. Harris Semiconductor, 0276686886.

Linear integrated circuits

Battery back-up. Battery back-up IC S8420 has been added to the Seiko range of low power linear ICs. It is for switching circuits of main and back-up power supplies in hand-held or battery powered equipment, and consists of a voltage regulator, three voltage detectors, a power alteration switch, and a control circuit. Amega Electronics, 0256843166.

Audio preamp. SSM2017 integrated microphone preamplifier replaces discrete solutions made from up to 20 passive components, four transistors and an op amp. It is housed in an 8 pin minidip and needs a resistor for setting gains between unity and 1000 Input noise is specified at 950 pVVHz at 1 kHz . Total harmonic distortion is typically 0.01% from 20 Hz to 20 kHz at 100 gain. Output signals of 100 V RMS can be driven into low load impedance without significant degradation of performance. Analog Devices, 9932232222.

Bipolar op amps. OPA177 and OPA77 precision bipolar op amps have laser trimmed offset, drift and input bias current. Input offset voltage is $4 \mu \mathrm{~V}$ typical, $10 \mu \mathrm{~V}$ maximum, at $25^{\circ} \mathrm{C}$, with minimum drift specified at $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ across the -40 to $+85^{\circ} \mathrm{C}$ range. Typical unloaded power consumption is 40 mW and typica input bias current 0.3 nA . Open loop gain is 134 dB minimum and common mode rejection ratio is at least 130 dB Noise voltage is $85 n$ V RMS referred to the input, and closed loop unitygain bandwidth is typically 600 kHz The inputs are protected against up to
$\pm 30 \mathrm{~V}$ differential inputs by 500 s 2 series inp.t resistors and diode clamps. Burr-Brown International, 092333837.

Feedback amp. A precision voltage feedback amplifier, the EL2075, has a 2GHz gain-bandwidth product, settling time of 13 ns to 0.1%, and a minimum of 50 mA output drive current over temperature. It is gain-often stable with a -3 dB bandwidth of 400 MHz at an Av of +10 . Input offset voltage is $200 \mu \mathrm{~V}$ and input bias current $2 \mu \mathrm{~A}$. It is available in 8 -pin dip, eight-lead SO, and 8 -pin military cerdip. Elantec, 071-482 4596.

Monolithic amp. EL2044 is a monolithic amplifier, operating from a single 2.5 V supply. It is designed to drive low impedance loads where it can drive a 6 V peak-to-peak signal into a 150Ω load. It can also drive unlimited load capacitances and, because of its conventional voltage feedback topology, can be used with reactive or nonlinear elements in its feedback network. It is unity gain stable and has a $325 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 60 MHz gain-bandwidth product. Elantec, 071-482 4596

Supervisory circuit. A

microprocessor supervisory circuit includes a conditional battery back-up feature for ram data and has a guaranteed reset assertion down to IV, preventing microprocessor malfunction at low supply voltages Chip enabie gating on the LTC1235 is 35 ns maximum and supply current is
1.5 mA maximum. It is supplied in a

16-pin SO or dil package. Linear Technology, 0932765688

Battery-charger IC. U2400B offers three programmable charging times of $30 \mathrm{~min}, 1 \mathrm{~h}$ or 12 h with subsequent automatic trickle charging. It also provides an automatic predischarge facility for NiCd cells to ensure complete discharge before recharging. Two independent charging interrupts protect batteries from damage due to overvoltage and over-temperature conditions. An integral PWM comparator ensures batteries of different capacities can be accommocated. Telefunken Electronic, 063530905.

Memory chips

2Mbit sram. 8F8259C 2Mbit cmus sram is organised as 256 K by 8 bit. It is based on two 256 K by 4bit srams mounted on a multi-layered epoxy laminate FR4 substrate and has access times from 20 to 55 ns. The 32 -pin 0.6 in DIP pinout adheres to the Jedec standard. All inputs and outputs are TL compatible and

In the hand: Harris' laser diode and photodiode.
operate from a single 5 V supply. Electronic Designs, 027672637.

32Kbit fifo. PDSP16540 fifo, configured as 1 K by 32 bit , is designed to extend capabilities of the PDSP16510 FFT. It can be used as a flexible data reservoir in any OSP system. Up to 40 MHz data read and 16 MHz data write rates can be sustained. Words, read as a complete block, can be programmed in multiples of 32 up to a maximum of 1024. GEC Plessey Semiconductors, 0793518000

128bit eeprom. X24C00 is a 128 bit cmos serial eeprom organised as 16 by 8 bit and made by Xicor using textured poly floating gate technology. It has a serial interface and software protocol allowing operation on a twowire bus at a 1 MHz clock rate. Available in an eight-pin minidip or SOIC package at commercial and industrial temperature ranges. Micro Call, 0844261939.

1 Mbit dram. The MT4C4256H is a 3.3V low-power extended refresh dram in a 256 K by 4 bit configuration. It is aimed at the 3.3 V flat-panel controllers used in low-voltage laptop and notebook computers. Typical standby current is 0.1 mW and typical active current is 100 mW . Refresh rate specification is extended from 8 to 64 ms . Low battery back-up current has a maximum specification of $90 \mu \mathrm{~A}$ Micron Technology, 0344360055.

16Kbit fram. Ramtron FM1408

ferroelectric ram, organised as 2 K by 8bit, gives equal read and write cycle times with 150 ns maximum read
access. From a single 5 V supply it consumes 44 mW operating and $55 \mu \mathrm{~W}$ standby. All input and output pins are cmos/TTL compatible. Standard 28 -pin package. Pin one switches between dynamic and nonvolatile modes. Mogul Electronics, 0732741841.

1Mbit sram. Three families of 1 Mbit srams including versions with 12 ns access times are based on $0.7 \mu \mathrm{~m}$ microlithographic technology and have a bicmos structure. They are available in single-outline J-lead and DIP packages. TC55B4257 is a 32 pin 256K by 4bit unit; TC55B4256 is a 28 -pin 256 K by 4 bit unit, and the TC55B812 is a 32 -pin 128K by 8 bit unit. Toshiba Electronics, 0276 694600

Microprocessors and controllers

280 Microcontroller. FEM180

 microcontroller, incorporating the Z80180 CPU, offers an interface providing 48 digital I/O lines and three serial ports, 32K sram and 32K eprom. It comes with a firmware monitor for program development using a PC or dumb terminal. FES 180 support card has PSU, 24 8 mA drivers, six 5 mA drivers, DPCC relay, and space for two extra cards. RS232, RS485 and 20mA current loop interface circuits provide communications. Fernwood Electronics, 049178898.8bit microcontroller. OLMS65K single-chip 8 bit microcontroller has internal rom capacities from 4 to 64 Kbyte and external memory capability of 64 Kbyte . Instruction cycles are 400 ns with 10 MHz clocks and current consumption is typically less than 25 mA . Most devices in the family have 16 bit capture and compare registers for high precision timer measurements and one device has an 8bit eight-channel A-to-D converter. Highland Electronics, 0444 236000.

Optical devices

Laser and photo diodes

HL1325CF laser diode and HR1105CR photodiode operating temperature range is -20 to $+70^{\circ} \mathrm{C}$
The laser diode consists of a $1.3 \mu \mathrm{~m}$ Fabry-Perot diode in a miniature coaxial package with a single-mode fibre pigtail. It gives a kink free optical output of 0.3 mW at ambient $70^{\circ} \mathrm{C}$. Photodiode is an InGaAs pin unit in a miniature coaxial package with a multimode fibre pigtail. Photosensitive aperture is $80 \mu \mathrm{~m}$. Optical sensitivity is 0.78 AW at $1.3 \mu \mathrm{~m}$. Hitachi Europe, 0628585000.

SM led. A high brightness surfacemount led, called Topled, based on the Tantal-B capacitor package. incorporates an internal reflector to

In the rocks: OIMS65K 8bit microcontroller from Highland Technology.
increase the on-axis brightness to a level comparable with standard leaded leds. Colours are standard red, orange, yellow, green and hyper red. Versions are also produced using single and double heterojunction GaAlAs die giving high brightness red leds with typical on-axis intensity of 20 mcd at 10 mA , emission half angle of $\pm 60^{\circ}$. Siemens, 0932752323 .

Laser diode. SLD1301XT visible laser diode has an optical output of 100 mW and a nominal wavelength of 670 nm . It comes with a thermoelectric cooler and thermistor housed in a 20 by 33 mm flat package. 2.5 V drawing 600 mA under typical operating conditions. Typical threshold current is 450 mA . Temperature range from $1010+30^{\circ} \mathrm{C}$. Sony Components \& Computer, 0784466660.

Programmable logic arrays

PLA pair. Two programmable logic array devices are claimed to match the speed of the fastest PAL chips without the architectural limitations of current PAL parts. With propagation delays of 10ns, the Plus 153-10 and 173-10 are for high speed I/O and memory address decode functions in PCs and workstatiors as well as memory and address mapping applications, specialised arithmetic functions, code conversions, and data manipulation. Signetics, 0101408 9912000.

Power semiconductors

SCSI regulator. LT1117-2.85 is a 2.85 V low drop out regulator for use in active terminations for the SCSI standard. It provides a regulated output of $2.85 \mathrm{~V} \pm 1 \%$ from the SCSI termpower supply. Output current is 800mA. It comes in a SOT223 package and operates down to 1 V drop out voltage. Quiescent current is 10 mA maximum. It handles fault conditions with short-circuit current limiting, thermal shutdown, and onchip ESD protection. Linear Technology, 0932765688.

Quad drivers. Two quad RS485 drivers have maximum supply currents 300 times lower than earlier RS485 drivers. The LTC486 is a pincompatible replacement for the SN75172, DS96172 and 96F172. And the LTC487 replaces the SN75174, DS9G174 and DS96F 174. They draw a maximum $200 \mu \mathrm{~A}$ of supply current and support data transmission rates up to 10 Mbaud . They operate from a single 5 V supply and can handle -7 to +12 V common mode range on the bus. Linear Technology, 0932 765688.

Power IC. The TPIC2801 is a monolithic intelligent power IC with eight 1 A 30 V outputs each configured as a low side switch. The eight switches are controlled from a single input by an 8 bit serial word. Each of the eight drivers in the 30 V device has a 40 mJ rating and can drive up to a 30 V 1 A load. The presence of a 35 V collector base clamp on each switch eliminates the need for external clamp diodes when switching inductive loads. Texas Instruments, 0234223252.

Quad driver. The TPIC2404 is a monolithic quad 1A low side driver for switching peripheral loads such as relays, motors, solenoids, and other loads requiring up to 45 V supply voltage. Each of its four 1A power outputs has overvoltage, overtemperature, and current limiting protection. It comes in a 15 -pin 25 W sip and is specified for the -40 to $+125^{\circ} \mathrm{C}$ range. Texas instruments, 0234223252.

Quad mosfet. The TPIC2406 quadruple mosfet latch is for high power load applications and contains four self-protecting low-side switches with output clamp diodes for inductive transient protection. Each open drain output can drive a continuous output current of 700 mA while operating from voltages as high as 60V. Pulsed current outputs up to 3A per channel are possible because of the 0.5s driver output resistance. It can also be cascaded to deliver a peak output current of 12A. Texas Instruments, 0234223252.

PASSIVE

Passive components

Ceramic caps. The Capax parallel plate ceramic microwave capacitors are designed for minimum insertion loss at frequencies up to 40 GHz They range in size from 0.01 by 0.01 in to 0.1 by 0.1 in with a thickness of 0.005 in for 50 V and 0.007 in for 100 V DC specification. There are 14standard dielectrics available and capacitances range from 0.05 to 1500 pF . They work from -55 to $+125^{\circ} \mathrm{C}$. Anglia Microwaves, 0277 630000.

Voltage suppressors. Ten passive devices, with maximum continuous voltage ratings from 3.5 to 69 V DC. have been added to the ML multilayer series of surface mount transient voltage suppressors. Applications include logic protection (3.5 to 5.5 V), automotive (14 to 18 V), computer communications such as RS232 $(26 \mathrm{~V})$, and telecom line cards using high voltage DC analogue (33 to 68 V). As well as being fully bidirectional, they are up to six times smaller than Zeners and need no derating for operation at $125^{\circ} \mathrm{C}$. Harris Semiconductor, 0276686886.

Electrolytic caps. For use in switching power supplies, the PO series of electrolytic capacitors has a load life of $160,000 \mathrm{~h}$ at $55^{\circ} \mathrm{C}$. impedance is 0.16Ω minimum and temperature range is from -55 to $+105^{\circ} \mathrm{C}$. Working voltage range is 6.3 to 50 V DC and capacitance range from 0.47 to $390 \mu \mathrm{~F}, \pm 20 \%$ tolerance. Allowable ripple is 460 mA maximum and leakage current $4 \mu \mathrm{~A}$. The radial lead units range in size from 5 by 1 mm to 8 by 11.5 mm . Nichicon, 0276 685393.

Electrolytic caps. For Hi-Rel and high ripple current (2.1 to 30.5A) applications, the NR series of electrolytic capacitors has a load life of $40,000 \mathrm{~h}$ at $55^{\circ} \mathrm{C}$. The screw terminal units have can sizes from 35 by 80 mm to 90 by 190 mm , operating temperatures from -40 to $+85^{\circ} \mathrm{C}(16$ to 100 V) and -25 to $+85^{\circ} \mathrm{C}(160$ to 450 V), capacitances from 470 to $470,000 \mu \mathrm{~F}$, tolerance 20%, and leakage current 5 mA . Nichicon, 0276 685393.

Current limiters. Added to the NTC surge protector range are 13 mm diameter metal oxide in-rush curren limiters. They are available with cold resistances of 5 to 16s2 and with steady state currents of 3 to 5A Applications include halogen lamps and transformers. Power Development, 0823335200.

Connectors and cabling

IDC connectors. The UL approved Harting SEK 18 series of IDC flat cable connectors have from 6 to 64 contacts. The male headers have angle and straight pins in lengths of $2.9,4.5$ and 15 mm . Grid pattern for the male connector is 2.54 mm and for the female 1.27 mm . Current rating is 1 A , contact resistance $20 \mathrm{~m} \Omega$, and operating temperature -55 to $125^{\circ} \mathrm{C}$. Gothic Crellon, 0734788878.

Zit connector. A compact zero insertion force connector is totally self contained with no manual actuation mechanism. Called DL Drawer, it uses the movement of the drawer or subassembly to mate and unmate the connector halves. It has been tested to withstand 100,000 mating cycles and comes with crimp contacts, wire wrap or solder tails. It can be used for PCB, cable or flat-flex terminations and uses gold over nickel plated copper alloy contacts. ITT Cannon, 0256473171.

Displays

Plasma display. The
FPF8050HRUC-001 is a 10 in AC gas discharge plasma display with a 640 by 400 pixel resolution matrix with dots of 0.33 mm pitch. Typical brightness is $150 \mathrm{~cd} / \mathrm{m}^{2}$, contrast ratio exceeds 20:1, and viewing angle is 160° Service life without reduction in brightness is $50,000 \mathrm{~h}$. It can be used as a flat-screen CRT replacement or in infra-red touch sensitive screen overlay systems. Fujitsu
Microelectronics, 062876100.

Hardware

PC chassis. The Armagard Prochassis lets custom computer

In the rush: NTC inrush current limiters from Power Development.

systems be built using IBM PC compatible motherboards and backplanes. It comprises an outer enclosure, front and rear card supports, shock-proof card clamps, and ventilated disc drive housings for 3.5 and 5.25 in drives. Minor panel work will allow ticket printers, keypads and screens to be incorporated. It can be desk or 19 in rack mounted. Intek Electronics, 035285603.

Fan. The Shicoh $0410 \mathrm{~N}-1240$ by 40 fan is 10 mm deep and delivers 4.24 cfm at a noise level of 26 dB . It has UL approval for flame resistance and class E insulation. The DC brushless axial fan also has full protection against burn-out and shortterm polarity reversal. It works from a 12V DC supply, consumes 1.08 W , and has a $30,000 \mathrm{~h}$ life span. Key Electronic Components, 0734 351546.

Instrumentation

Analogue multimeter. The
Circuitmate AM12 analogue multimeter uses fet technology to prevent loading the circuit under test thus giving error free readings. It incorporates a 115 mm mirror scale for parallax-free readings and RMS, peak-to-peak and dB scales are provided for AC voltages. A centrezero scale and adjustment is provided for $A C$ and $D C$ voltage
measurements. $A C$ and $D C$ current and voltage measurements are to 12A and 1.2kV. Beckman Industrial, 0384442394.

RF wattmeters. The Thruline range of 2 to 1000 MHz 250 W to 250 kW $\pm 5 \%$ wattmeters are rectangular 4 by 4.5in multiscale glass plate meters with 50s 2 line section and 10 ft of shielded interconnect cable. The carrying case provides storage sockets for extra plug-in items. They are also available as panel meters for 19in rack mounting. Bird Electronic, 01012162481200

50 MHz scope. The 50 MHz V525 and VC6024 are combined real-time and digital storage oscilloscopes. The portable V525 is mains operated with DC offset and alternative magnifier functions. Stable triggering is possible on both channels even if the channel frequencies differ. The VC6024 has a repetitive signal sampling rate of $20 \mathrm{Msample} / \mathrm{s}$, two channel alternate, or 100Ksample/s, two channel chopping. Memory capacity is 2 Kword on both channels at $50 \mu \mathrm{~s} / \mathrm{dv}$ to $50 \mathrm{~s} /$ div and 1 Kword at $50 \mathrm{~ns} /$ div to $2 \mu \mathrm{~s} /$ div. Hitachi Denshi, 08--202 4311.

200 MHz scope. The 200 MHz
100Msample/s (four channels simultaneously, memory capacity 8kW/channel) VC9140 digital storage oscilloscope incorporates a PC which is FDD compatible with PC-Dos. The

In the slot: Armagard Pro-chassis from Intek.
gin gas plasma flat display has PC equivalent menus and submenus that are displayed at all times. Up to 17 waveform parameters can be observed with plus, minus and multiplication operation between waveforms, waveform inversion and absolute value operations. Special trigger facilities are provided. Hitachi Denshi, c81-202 4311

RMS/peak voltmeter. The URE3 RMS/peak voltmeter is designed for taking measurements in environments that are subject to severe interference and high electromagnetic fields. It is also suitable for use in EMC laboratories and for materials testing. It has passed IEC and VDE tests with only minimal problems ard all the disturbances visible during operation disappeared as soon as the source of the interference was removed. Neither the instrument set-ups nor the readouts underwent lasting change. Rohde \& Schwarz, 0252811377.

GPIB scope. The 31000 digital storage oscilloscope from Leader is controllable via a GPIB interface. It can sample at $40 \mathrm{Msample} / \mathrm{s}$ with storage of waveforms up to 100 MHz . Vertical resolution is 8 bit, 256 points, and horizontal 11 bit, 2048 points Each channel has a separate reference memory allowing the storage of up to four waveforms. A summation facility allows 256 acquisitions to be averaged. ThurlbyThandar, 0480412451.

Literature IC selector gulde

Motorola has revised its linear and interface ICs selector guide and cross reference-SG96/D revision 4. The 112-page guide includes switching regulator control circuits, RF communication circuits and surface mount devices as well as a variely of the previous standard devices. Motorola, 0908614614.

Production equipment

Soldering irons. A range of antistatic soldering irons has been designed for hand soldering static sensitive devices without damaging the components. Any charge built up on the tip is earthed through the handle and lead. The lead is made of a carbon loaded silicone rubber compound and the handle a carbon fibre-reinforced thermoplastic material. The 240 V AC model has a tip temperature of $410^{\circ} \mathrm{C}$ and comes with 2 m cable and standard 4.8 mm diameter chisel bit and hook. The 24 V AC model can have tip temperatures from 350 to $500^{\circ} \mathrm{C}$ and comes with 1.25 m cable and 2.4 mm iron-plated bit. RS Components, 0536201234

Power supplies

1 kW switcher. The 9 C series of 1 kW switching power supplies has 5,12 , $15,24,28$ and 48 V single outputs and is approved to IEC950, UL1950 and CSA22.2 requirements. Built-in features include an EMI filter to FCENDE level A, soft start inrush current limiting, single-wire parallel current sharing, input power fail and output good signals, remote adjustment and margining, and overvoltage and thermal shutdown protection. It measures 5 by 5 by 10in. Astec Standard Power, 0246 455946.

1kW supply. With universal 90 to 264 V AC input range, 0.99 active power factor correction to meet IEC555-2, and better than 75\% efficiency, the BVM10000 1 kW power supply has four output configurations in a 305 by 203 by 86 mm ventilated case. Power density is more than $3 W / c u$ in. Outputs of $5 \mathrm{~V} / 150 \mathrm{~A}$, $+12 \mathrm{~V} / 20 \mathrm{~A}$ and $\cdot 12 \mathrm{~V} / 10 \mathrm{~A}$ are common to all models. The fourth output can be $3.3 \mathrm{~V} / 10 \mathrm{~A}, 5 \mathrm{~V} / 10 \mathrm{~A}, 12 \mathrm{~V} / 10 \mathrm{~A}$ or $24 \mathrm{~V} / 5 \mathrm{~A}$. Input surge current is limited
to 30A. Operating range is 0 to $70^{\circ} \mathrm{C}$ with full power derating linearly to 50% from $50^{\circ} \mathrm{C}$. BICC-Vero Electronics, 0489780078.

DC-DC converters. A series of PCB mounting low-profile DC-DC converters comprises isolated modules for use in decentralised power systems. Called PKE, these units are rated from 25 to 30 W and are aimed at the telecomms and data communications industries. They can operate continually with natural convection cooling and run directly from 48 or 60 V battery systems. There are five models in single, dual and triple output versions, and all have a 10.7 mm profile and a 3 by 3in footprint. Ericsson Components, 0203553647.

Uninterruptible supply. The Accupower Gold UPS from Emerson complies with IEE555-2 and is aimed at PC lans, multi-user systems, printers, phone systems, laboratory equipment, epos, and process control. Two ratings are available $1 \mathrm{kVA}(\mathrm{AU1000})$ and 1.5 kVA (AU1500). Gardners Transformers, 0202482284.

Triple supply. The Model 1300 bench power supply has triple floating outputs and short circuit protection. The first output is 5 V variable from 0 to 1 A with current limiting and displayed on an analogue meter with a $\pm 5 \%$ accuracy. Regulation on line is 0.2%, load 1% and maximum ripple 10 mV . The second and third outputs are variable from 0 to 20 V with a maximum current of 0.25 A .
Regulation is 0.05% for line and 0.1% for load. Ripple is again 10 mV

In the light: 386SX processor board from Arcom.

maximum. Global Specialties, 0978 853920.

Uninterruptible power. The Delta series of uninterruptible power supplies are rated from 3 to 17.5 kVA and are fitted with an interface that can automatically initiate an orderly shutdown of a computer system before the UPS batteries are exhausted during a mains failure. They are compatible with IBM AS/400 and several other mini and mainframe computers as well as major network systems. They support crest factors of 5:1 without derating and offer back-up times from 30 min . Victron, 0455 618666.

DC-DC converter. The NFC20 from Computer Products is a 20 W output DC-DC converter housed in a 2 by 1.6 by 0.4 in package. It has input voitage ranges of 18 to 36 V and 36 to 72 V , five output voltage variations, and an MTBF of one million hours. With no heatsink required and no derating up to $60^{\circ} \mathrm{C}$, it uses a switching frequency of 200 kHz and offers a 2:1 input voltage range, remote on/off control, and overvoltage protection. XP, 0734845515.

Radio communications products

Spectrum analysers. Two microwave analysers for digital mobile radio are designed to handle the fast rise time characteristics associated with GSM and PCN. Made by Advantest, the R3265 and R3271 respectively cover the ranges 100 Hz to 8 GHz and 100 Hz to 26.5 GHz .
Frequency span covers 200 Hz to full span with an accuracy of $\pm 3 \%$ for spans greater than 25 MHz . In zero span, sweep times range from $50 \mu \mathrm{~s}$ to 1000 s. Plug-in data memory cards are standard on each unit. Chase Electronics, 0818787747.

Data receiver. The SL6649-1 is a compact direct conversion FSK data receiver for the radio paging market and contains a low noise RF amplifier for signals up to 200 MHz . The signal is split into I and Q channels, following a direct conversion architecture, then into mixers, such that with an external LO they can be mixed down to baseband for on-chip processing. It contains on-chip capacitors for channel filtering and requires the minimum amount of external components to become a single chip receiver, handling RF at one end and providing data at its output up to the maximum paging rate of 1200 baud. GEC Plessey Semiconductors, 0793518000.

Switches and relays
Pushbuttons. A range of PCB or panel-mount alternate-action maintained lighted miniature pushbutton switches is called the LVP/LHP series. Rather than being just back-lit, the whole actuator lights
up. They use silver plated contacts rated at $24 \mathrm{~V} D C, 50 \mathrm{~mA}$, and tin/lead plated terminals. Life expectancy is one million cycles at rated load Solder heat resistance is $260^{\circ} \mathrm{C} / 5 \mathrm{~s}$. Six versions are available including front-panel mounted, vertical PCB (round and square), and horizontal PCB in normally open or closed options. Augat, 0952670281.

Encoder switches. Grayhill has introduced a range of ostically encoded rotary encoder switches for the audio-visual, aerospace and medical markets. As well as the rotary function, there is a pushbutton element activated via the switch shaft to let a digital code be set and entered. They meet MIL202 for vibration, shock and humidity. All provide quadrature 2bit code output and devices are available with 16 and 32 detent positions. Highland Electronics, 0444236000.

PCB switches. A family of

 pushbutton and toggle switches, the Elma Type 09, are for PCB mounting and through panel applications. Either latching or momentary options can be selected for the pushbutton options each offering two n/o contacts switching up to 42 V DC and 200 mA , 2.5VA switching capacity. The toggle switches can be two or three position. The standard 2.54 mm PCB pinout conforms to DIN41494. Radiatron Components, 081-891 1221.
Television components

AV switch. The TA8628N is a monolithic AV switch with electronic volume control. Housed in a 24 -pin shrink dip, it can be used in various tv applications such as Scart switches and switching between, say, tv and video recorder. The video section has two inputs and produces monitor and iv outputs. The parallel sound section has left and right sound inputs for the Iv and external signals, producing separate tv and audio left and right outputs. Also included are a mute function and sound voiume controls for left and right channels. It runs from a 12 V DC supply and works from -20 to $+70^{\circ} \mathrm{C}$. Toshiba Electronics, 0276 694600.

Transducers and

sensors

Load indicators. A collection of load indicator and controller systems comprises load cells or load washers and various 3.5 and 4.5 digit LED indicator controllers. Load cells range from 30 g to 200 tonne. They can be supplied scaled in any variety of engineering units including tonnes, kN and volume capacity. Accuracy varies from 0.1 to 0.5%. Control Transducers, 0234217704.

Infra-red sensors. Pyroelectric infrared sensor modules from Seikosha have a low current drain design which includes an amplifier, comparator and
timer on a single circuit board. They are for surface mounting. A lightdependent resistor is incorporated to prevent daylight operation. Minimum operating current is 1 mA (3 mA maximum) and operating voltage is 5.5V DC. Masking time is 1.2 s , circuit stabilising time is 12 s typical, sensor rise time is 10 s , and operating temperature range is -10 to $+50^{\circ} \mathrm{C}$. Without a lens, the detection range is 1.5 to 2m. ESD Mercator, 0493 844911.

Pressure transducer. The Autotran700 transducer has its lowest range at 25 Pa (0.25 mbar) and can tolerate 100 kPa over-pressure. Models from 25 Pa to 1.25 kPa come as standard. Double ranges are available, for example $\pm 250 \mathrm{~Pa}$. Compensated for temperature variations from 5 to $60^{\circ} \mathrm{C}$ and 1% repeatability standard, the long term drift is not more than 1% a year. EuroSensor, 0714056060.

COMPUTER

Computer board level products

Notebook subsystem. OakNote is a
notebook PC subsystem with
operating system independent power management control that lets makers of notebook and hand-held PCs design a full $25 \mathrm{MHz} 286 / 386 \mathrm{SX}$ PC motherboard using only three chips. Using OakNote, a $386 S \times$ motherboard needs only 34 sq in. The three chip subsystem comprises the OTIO4 1 system controller, the OT1042 peripheral controller and the OTIO43 flat paneI VGA controller. Ambar Components, 0844261144.

386SX board. The PC386SX is an AT compatible 16 or $20 \mathrm{MHz} 386 S X$ bus-based processor board for embedded applications. It is aimed at engineers building systems for industrial use. The ScatSX chipset is used and there are 16 memory sites allowing the board to be supplied with up to 8 Mbyte of dram expandable to 16Mbyte via a local expansion bus port accepting a plug-on module. Further hardware includes three Flash compatible eprom sockets, 128 K byte sram, maths coprocessor socket, SVGA controller with 0.5 Mbyte of video ram, and a feature control facility for the display of video pictures. Arcom Control Systems, 0223411200.

Data Acquisition. The PC74 data acquisition board from UEI is for use with PC/XT/AT and PS/2 models 20 and 30 . There are 16 analogue inputs accurate to 12 bit and a built-in programmable gain amplifier with differential inputs. Either a low or high
gain set of programming gains is available so the user can mix high and low level signals without externa signal conditioning. Citadel Products, 081-951 1848.

ADC card. The DB140A is a 12bit 10MHz A-to-D card for use with VME DSP boards based on Motorola and Texas Instruments processors. It integrates all of the components necessary to form a complete data acquisition system on a single 3 U VME card. It uses the dBex mezzanine bus for transfers of acquired data, and includes sample rate generation via an on-board 20 MHz clock and a fifo up to 4 Kword deep for output data storage. Inputs can be from 108 mV to 1.024 V . Data Beta, 0734303631

Single board computer. A 386 based single board computer for PCbus systems from l-Bus uses the 40MHz Am386DX 32bit processor with 128 Kbyte of on-board cache. Called 1386/40, it is configured as a standard format 16bit AT/ISA card and can support up to 32Mbyte of onboard dram. It is supplied with an IDE hard disc interface and floppy disc controller. Two serial ports and one parallel port are provided as well as a socket for a 40 MHz Cyrix CX83087 40 maths coprocessor. Dean Microsystems, 0734845155.

Test instruments. A Blue Chip Technology plug-in PCB board offers the facilities of four test instruments pulse generator, customised waveform generator, universal counter/timer, and function generato together with IEEE interfaces. The VIP-Gen occupies a single slot of any BM compatible PC making the PC screen emulate a typical instrument front-panel layout. Test parameters and waveforms can be saved to disc. ESD Instrument Services, 0279 641641.

A-to-D card. By using the 33Mbyte/s DMA transfer rate of EISA computers, AD-Series A-to-D converter cards from Adtek achieve sustained sampling rates of 10Msample/s at 12bit resolution. Cards in the range go from a single channel 10 MHz 12 bit resolution to eight channel 200 kHz
18bit which is expandable to 32 channels. All have separate converters for each channel simultaneous sampling of inputs, triggering from a software programmable threshold detector or an external trigger, and an on-board fifo buffer that provides pre and post triggering facilities. Laplace Instruments, 0692500777.

Computer systems

Notebook computer. The B330SX is a 386SX-based notebook computer using the AMD Am386SXL 25 MHz microprocessor. It has a 2.5 in 60 Mbyte hard disc, 2 Mbyte ram expandable to 5 Mbyte , triple
supertwist VGA screen with 64 grey shades, 3.5 in 1.44 Mbyte floppy drive 80387SX maths coprocessor socket, and optional internal 2400bps modem. Bondwell, 081-365 1993.

Programming hardware

Device programmer. The Tribal Microsystems TUP300 universal device programmer can program pals, gals, peels, FPGAs, serial proms bipolar proms, e(e)proms, and microcontrollers. The device list supports thousands of devices including the AMD Mach, Altera Max and Signetics 42VA12 series. A facility is also included to test and identify TTL74 and 4000 series logic Optional gang adapters let it be used as a production tool. Smart Communications, 081-441 3890.

Software

Bus analysis. A software package has been developed to let the Model 4811 bus analyser be remotely controlled from a Macintosh or PC The analyser performs the functions of a bus monitor, device simulator, bus controller, pattern generator, and bus signal waveform recorcer. The use of a computer allows expanded data analysis on a larger screen and the reconstruction of the bus signal waveform. The control panel is displayed on the computer monitor and a mouse can be used to activale the command functions. Amplicon Liveline, 0273608331.

Asic for risc. Solo 1400 version 3.1 .5 is a fully integrated asic design package for Sun SparcStations and Sun 4 workstations. It provides a user-friendly schematic capture program, HDL, multi-level analogue and digital simulator, and automatic place and route program. The Synthesise logic synthesis tool is incorporated to let complex logic functions be designed at a high level. ES2, 0344525252.

Serial communications. The Comio V1.0 serial communications software, supplied as a C and 8086 source function library, is for simplitying the development of C programs to provide interrupt driven data communications with the IBM PC com port. There are read/write functions for single-byte, string and blocked data transiers. All l/O functions operate in no-wait mode. The interrupt driver and I/O buffers are only resident during program execution. Micro SciTech, 0252 625439.

Comprehensive standard range of high quality toroidal transformers. Competitive price and ex-stock delivery.

In-house core manufacture allows fast and competitive custom design service for non-standard requirements —up to 3kVA.

Low noise designs available for the most demanding audio applications.

- Triple insulation to IEC 742 on all standard transformers and where specified on custom designs.

All types of toroid power transformers supplied —low profile, potted centres, cased, auto transformers, control gear, lighting and others.

UK and overseas distributorships are available Telephone or fax for details

COTTON ROAD • WINCHEAP CANTERBURY • KENT CT1 3RB

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

Pay by Visa or Access

Fully Integrated Anto Router $£ 50$

Ask Us About Trade-In Deals Call Now For Demo Disk on 0705591037

Seetrax CAE • Hinton Daubnay House Broadway Lane • Lovedean • Hants • PO8 0SG Tel: 0705591037 • Fax: 0705599036

CIRCLE NO. 139 ON REPLY CARD

MOP ELECTRONICS SYSTEM 200 UNIVERSAL DEVICE PROGRAMMING SYSTEM

System 200 is one of the most versatile programming systems available. At the heart of the system is the award-winning Model 200A programmer. Designed to quickly connect to the serial or parallel port of any PC compatible, the Model 200A is controlled by PROMDRIVER, widely acclaimed as the best driver software available for any programmer.

- EPROMs, EEPROMs and FLASH memories up to 4Mbit and beyond
- Microcontrollers from most manufacturers including
- 8748 Family
- 8751 Family (including 87C751/2 and 87C552)
- 28 Family
- PIC16C5X Family
- Emulators

8-pin Serial EEPROMs

- PALs, GALs, EPLDs etc

Bipolar PROMs

Write or phone today for Free Information Pack:

 Phone: (0666) 825146 Fax: (0666) 825141

MOP ELECTRONICS LTD, PARK ROAD CENTRE, MALMESBURY WILTSHIRE SN16 OBX UK
European Distributors: Digitron, Norway Tel 071-17 B90
Synatron, Germany Tel 089/4602071; Logtek, Sweden Tel 087701470

Micro AMPS

ICE 751 An emulator/programmer for the Philips 24pin skinny DIP 8051; the 87C751. The ICE751 provides the cheapest way to emulate and program these devices.
ICE51 ${ }^{\text {TM }} \quad$ A low-cost emulator for the industry standard 8051 . This product is also available in kit form.
PEB552
The official Philips 80C552 evaluation board for this highly integrated 8051 variant. Optional debug monitor and 87C552 programming adapter are available.
BASIC A PC-based cross-compiler that enables code COMPILER written for the 8052AH-BASIC processor to be compiled for the standard 8051 or 8052 . Interpreted Basic is also available on the ICE51.
8051
BOOK
8051 Architecture, Programming and Applications. A recommended book for readers who require a text on the 8051 and interfacing techniques. This book is supplied with a PC-based cross-assembler and simulator for personal or educational use only.
OTHER
Contact us for information on these and many other related products such as ' C ' compilers. $\mathrm{I}^{2} \mathrm{C}$ tools and drivers.

ICE51 is a trademark of Intel.
Micro AMPS Ltd
66 Smithbrook Kilns, Cranleigh,
Surrey, GU6 8JJ
Tel: $+44(0) 483-268999$ Fax: $+44(0) 483-268397$

Circuits, Systems \& Standards

First published in the US magazine EDN and edited here by lan Hickman.

Micropower op amp offers simplicity and versatility

Linear circuits intended to meet the stringent demands of medical and industrial instrumentation, remote data acquisition, and portable equipment must deliver precision at low voltages. A low-power, battery-operated op amp, for instance, requires precision DC characteristics to process low-level signals from high source impedances. low supply current to conserve power, and wide bandwidth to process audio-Irequency signals. Because low-volage applications produce low signal levels, the op amp should have a wide dynamic range at the input and output. Moreover, both it and its external circuit should fiunction properly at the end-of-life battery voltage.
The NE5230 op amp is suited to such requirements. It operates from a supply voltage of 1.81015 V and performs well in systems powered by single 5 V supplies. The op amp not only offers precision DC characteristics: its common-mode voltage can swing within 100 mV of

Table 1. Salient specs for the NE5230 ($\left.\mathrm{V}^{+}=1.8 \mathrm{~V} ; \mathrm{V}-=\mathrm{gnd}\right)$.

Single/dual supply voltage	Bias current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
	-1.	8 to 15 V or ± 0.9 to $\pm 7.5 \mathrm{~V}$	
Supply current	low	$110 \mu \mathrm{~A}$	250رA max
	high	$600 \mu \mathrm{~A}$	800 μ A max
Output swing	any	1.6 V	1.4 V min
$V_{\text {os }}$	any	0.4 mV	4 mV max
I_{B}	low	$20 n A$	150nA max
	high	40nA	200nA max
Avo	low	$150 \mathrm{~V} / \mathrm{mV}$	$50 \mathrm{~V} / \mathrm{mV}$ min
	high	$200 \mathrm{~V} / \mathrm{mV}$	$100 \mathrm{~V} / \mathrm{mV}$ min
CMRR	any	95 dB	80 dB min
Output source current	high	5 mA	4 mA (typ) at low bias
current			5mA (typ) at low bias
Slew rate	low	$90 \mathrm{~V} / \mathrm{ms}$	$90 \mathrm{~V} / \mathrm{ms}$
	high	$250 \mathrm{~V} / \mathrm{ms}$	250 Vms
bandwidth	low	250 kHz	-
	high	600 kHz	

*Note. THE NE 5230 operates at low bias current if the bias adjust pin (pin 5) is left open. Shorting the NE5230's pin 5 to V - provides maximum bias current. Connecting a variable resistor between pin 5 and V . lets you adjust the amplifier's bias current and high-frequency characteristics.

Abstract

A little nearer the ideal op amp As every analogue engineer knows, the ideal op amp would have zero input offset voltage and tempco, zero bias current, rail-to-rail input common mode range, infinite CMRR and PSRR, zero upen loop output impedance with rail-to-rail swing and wide bandwidth with high slew rate: they also know that it will not be available in their lifetime, if ever. However, the common mode input range of a few op amps includes the positive rail and in many more (with the popularity of single rail applications) the negative rail. Here is an op amp which includes both and offers a rail-to-rail output swing to boot. IH

either supply rail - a characteristic matched by few other commercially available op amps.
Furthermore, the bias-adjust terminal lets you adjust the op amp's slew rate from $9(0) 250 \mathrm{~V} / \mathrm{ms}$ by varying the op amp's internal bias currents. The device also offers decent performance in two other parameters of concern in low-power applications - noise and output-current drive. The $N E 5230^{\circ}$ s input voltage noise is $22 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 1 kHz . and it can source and sink 5 and 11 mA . respectively. when operating from a 1.8 V supply at $25^{\circ} \mathrm{C}$.

Other key specifications are listed in Table 1. These attributes allow you to use the op amp in battery-powered applications such as half-wave and full-wave rectifiers. window detectors with rail-to-rail input ranges. temperature-linit alarms. sound-activated intrusion detectors. and supply-voltage splitters. An equally important application involves signal-conditioning circuits for bridge transducers - eircuits that require no reference voltage or instrumentation amplifier.

Rectify signals without diodes

To keep costs low, battery-operated circuits for consumer applications should have a minimum component count. Fewer components also bestow the bonus of higher reliability. These considerations lead to the half-waverectifier circuits of Fig 1.

Neither circuit uses diodes. Because the op amp's input common-mode range extends beyond the supply rails. you catn simply ground the non-inverting terminal and thereby configure the amplifier as an inverter. You should also short the bias-adjust terminal (pin 5) to \vee to

Fig. 1. These positive (a) and negative (b) half-wave-rectifier circuits accomplish their job without the use of diodes. The resistors give you the option of gains other than unity.

Fig. 2. Requiring no external components, these op amp circuits perform (a) positive and (b) negative half-wave rectification for ground referenced AC signals.

provide a maximum slew rate.
The amplifier behaves as a unity-gain inverter for negative inputs: positive inputs drive the output into saturation (Fig. 1a). But the NE5230॰ ${ }^{\circ}$ internal detectors prohibit the hard saturation that would occur in most op amps. Recovery from saturation is relatively fast. Operating from a 3 V supply. the circuit can rectify signal amplitudes as high as $\pm 2.85 \mathrm{~V}$ at frequencies well above 10kHz. If the input signal has a reference level between () V and V^{+}. you can simply reference the amplifier's noninverting input to the same level. If required. resistors $\mathrm{R}_{\text {, }}$ and R_{2} can provide a gain other than unity.

To öbtain a negative-polarity half-wave-rectified signal using a conventional op amp. you have to provide dual (bipolar) power supplies. The NE5230's rail-to-rail input range and near rail-to-rail output range. however. let you achieve this function using a single supply. Simply connect the supply"s positive terminal and the amplifier"s V^{+}terminal to ground. and connect the supply's negative terminal to the amplifier's V terminal (Fig. 1b).

The amplifier's common-mode range lets you reference the input signal to the positive rail (ground) by tying the

Fig. 3. This absolutevalue circuit (a) achieves full-wave rectification by clamping IC ${ }_{2}$'s noninverting input to
$0 V$ when $V_{I N}$ is
negative, and
removing the clamp
when $V_{I N}$ is positive.
Thus I_{2} alternates
between an inverter
and a follower every half cycle. Photo (b) shows circuit performance at $400 \mathrm{~Hz}_{z}$ for a 5.7 V pk-pk input signal. The vertical scale is $2 \mathrm{~V} / \mathrm{div}$, and the horizontal scale is
$0.5 \mathrm{~ms} / \mathrm{div}$.
non-inverting and V^{+}terminals together. (You cannot do this with most op amps. and most op amps" output voltage must remain at least one V_{BE} voltage below the positive rail). In short. you can use the amplifier with a single negative supply to condition the signal output from a variety of ground-referenced sensors. Again. if the input-signal reference is a voltage between 0 V and V instead of ground, you should connect the amplitier's non-inverting input to the same potential.

Overdriving most op amps (beyond the supply rail. for instance) saturates the input stage. calusing a phase reversal within the amplitier that can reverse the leedback signal's polarity. Circuitry within the NES230 prevents phase reversal for inputs as large as 2 V beyond the supply rail. This feature allows the amplifiers of Fig. 2 to produce half-wave rectification without external components for input signals referenced to 0 V .

In Fig. 2a. the amplifier output follows the input signal above 0 V and goes into negative saturation for inputs below (OV . the output clamps near 0 V for negative inputs. The circuit as shown can rectify signals of $\pm 2 \mathrm{~V}$ at frequencies above $10 \mathrm{kH} /$. Inputs below -2 V will cause internal phase reversal, however, allowing the output voltage to rise. You can prevent this situation by adding a large resistor in series with the amplifier's input. To obtain a negative-polarity half-wave rectifier. simply reverse Fig 2a"s supply-voltage connections (Fig. 2b). Again. this circuit can rectify (V-referenced signal amplitudes to $\pm 2 \mathrm{~V}$ at frequencies above 10 kHz .

Figure 3° s circuit performs full-wave rectitication using a single positive power supply. When a negative input voltage causes $I C$, to clamp $I C$, 's non-inverting input to $0 \mathrm{~V}, I C$, delivers current through D, and R_{3} to the signal source. $I C_{2}$ acts as an inverting amplitier for negative input sigaals.

Positive input signals produce a differential voltage between the $/ C_{l}$ inputs and create reverse-bias across D_{l} placing $I C$, s output in negative saturation. This condition removes the 0 V clamp at $/ C$,'s inverting input by breaking $I C$, s feedback loop. Consequently. $I C$, behaves as a follower during positive excursions of the input voltage.

Although $D_{/}$is reverse-biased, clamp diodes at $/ C$, is inverting input turn on and draw current through R_{3}. Accordingly. R_{3} s value should be 50) 2 or less to atvoid a significant offset due to this parasitic current flow. (R, and R_{2}, can be large-valued resistors). Figure $\mathbf{3 b}$ shows the circuit operating with a 5.7 V pk-pk signal at 400 Hz .

Similar to the way it rectified the half-wave circuits. the NE52.30 performs negative full-wave rectification in Fig. 4 using a single negative power supply. The same precautions apply as for Fig. 3.

You can also use the NE5230 to monitor a signal and to detect fault conditions in which the signal is shorted to either supply voltage. The window-detector circuit of Fig.

5 must have the same supply voltage as that of the remote signal source. Power supply currents through R_{1} and R_{2} create small offsets essential to the circuit's operation.
Both op amp outputs remain in positive saturation for $\mathrm{V}_{\text {IN }}$ values between approximately 0 and 3 V , which keeps the led off. If $\mathrm{V}_{\text {IN }}$ shorts to V^{+}however, $I C$, saturates negatively (at O V), turning on the led.
Similarly, $I C_{2}$ turns on the led by saturating negatively when $\mathrm{V}_{\text {IN }}$ shortis to ground. As you can see. the op amp inputs' series resistors and clamp diodes limit the current drawn from the V_{IN} source. Normally, building a twolimit temperature alarm requires a temperature sensor and two op amps. The NE5230 itself becomes a temperature sensor, however, if you make use of the PTAT (proportional to absolute temperature) voltage at pin 5 . This voltage is independent of the supply voltage and measures 14 mV at $27^{\circ} \mathrm{C}$. What is more, it changes predictably at a rate of $46.667 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. For instance, at +85 and $-15^{\circ} \mathrm{C}$, the pin 5 PTAT voltage is 16.7 and 12.04 mV , respectively.
The alarm circuit (Fig. 6) uses these trip points to activate a buzzer when the ambient temperature moves outside the -15 to $+85^{\circ} \mathrm{C}$ window. The R_{l} / R_{2}-divider voltage sets the upper temperature limit and the $R_{3} / R_{4^{-}}$ divider voltage sets the lower one. When the ambient temperature exceeds $85^{\circ} \mathrm{C}, I C$, sinverting-input voltage is more positive than that at the non-inverting input, and the resulting saturated output (0 V) causes the buzzer to sound. Conversely, $/ C_{2}$'s output sounds the buzzer when the ambient temperature drops below $-15^{\circ} \mathrm{C}$, again by going into negative saturation.
The resistors that you use in the voltage dividers should have similar temperature coefficients to prevent a shift in threshold voltage as the temperature changes. On the other hand, the op amp's input-offset voltage ($V_{O S}$) has a greater effect on the circuit's accuracy. Because $V_{O S}$ is a significant percentage of the small PTAT voltage, you must set the temperature limits far apart to reduce error. The typical $400 \mu \mathrm{~V} V_{O S}$ and $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} V_{O S}$ drift can introduce an uncertainty of $\pm 15^{\circ} \mathrm{C}$ or more. Although Fig. 6 isn't intended for precision applications, you can improve its accuracy by selecting NE5230s with low $V_{O S}$
The battery-operated intrusion detector of Fig. 7 illustrates another type of alarm circuit possible with the NE5230 op amp. Using an electret-microphone sensor. the circuit activates a buzzer when the ambient sound exceeds a user-specified threshold. Resistor R_{3} biases the microphone and capacitor C, blocks the microphone's DC signal component. $I C$, is connected as an inverting amplifier with adjustable gain. The amplifier cannot respond to positive inputs because the V terminal is grounded. and without sound the amplifier's input and output are near 0 V . The outpul drives an RS (reset-set) flip-flop formed by the cross-coupled emos Nor gates. Therefore, in the absence of sound the flip-flop's $\mathrm{Q} \backslash$ output is high, and the buzzer is off. $/ C_{2}$'s negligible standby current and the low quiescent current of the microphone and op amp ensure long battery life.

Sound detector has adjustable threshold

Sound causes the microphone to produce an AC signal whose reference is ground on the other side of C_{r}. (The capacitor you choose should have low leakage current). This signal's negative excursions produce positive excursions at the flip-flop's S input. If the amplifier's gain (set by R_{f}) is sufficient, the signal at S will cross the gate's switching threshold and latch the /Q output low, activating the buzzer. The buzzer will remain on until you reset the lateh by momentarily pressing S_{l}. Remember that high closed-loop gain settings will reduce the

Fig. 4. This circuit (obtained by reversing the power supply connections in Fig. 3) performs negative full-wave rectification using a single supply voltage.

Fig. 6. The op amp's
bias-adjust pin (pin
5) is the PTAT
(proportional to absolute
temperature)
voltage, which lets
you use the amplifier
as a temperature
sensor. This circuit activates the buzzer when the
temperature exceeds a user-specified limit.

Fig. 7. Ambient sound above a userdetermined threshold activates this intrusion detector.
Once triggered, the alarm will sound until you momentarily press the switch (S_{1}).
Fig. 5. This window detector's rail-to-rail input range allows the circuit to detect faults in which the input signal becomes shorted to either rail.

circuit's sensitivity to high-pitched sound by lowering the amplifier's -3 dB bandwidth. If you need more sensitivity, you can cascade two op amps and split the required gain between them.
Circuits that process ground-referenced signals of ten require dual power supplies, but dual-voltage battery supplies can increase a system's size and cost. You can avoid this extra hardware in some cases by converting a single 3 V lithium-battery output into a $\pm 1.5 \mathrm{~V}$ output (Fig.

Electronic Circuits, Systems \& Standards
Edited by lan Hickman, published by Butterworth Heinemann Newnes. ISBN 0750600683. price £20.

Since its appearance in 1956 the US-based EDN has established itself as a leader in controlled circulation electronics magazines. Now this "best" of EDN - with useful information on components, equipment, circuits, systems and standards is available in a 216 page hardback publication

Available from bookshops, or direct by postal application to EW +WW, Quadrant House, The Quadrant, Sutton Surrey SM2 5AS. Cost £20 plus $£ 1.50$ post and packing. Cheques payable to Reed Business Publishing Group.

8a). The R_{l} / R_{2} divider splits the $3 V$ supply, and the op amp's 40nA input-bias current offers a minimal load to the divider. The amplifier's output becomes the common terminal for all ground-referenced loads and signals.

The $N E 5230$'s low output impedance minimises any offee voltage created by the connection of loads between

Fig. 8. The circuit in (a) converts a 3 V cell into a $\pm 1.5 \mathrm{~V}$ dual tracking supply. By connecting two amplifiers in parallel (b), you can nearly double the circuit's loadcarrying capability.

Fig. 9. This bridge transducer interface circuil conditions the bridge's output signal for ratiometric operation and eliminates the need for a reference voltage and an instrumentation amplifier.

the amplifier's output and V^{\prime} or V^{+}. Moreover, the dual voltages track in magnitude as the battery cell discharges - a feature useful in applications that must maintain a precise voltage null despite tluctuations in the supply voltages. Figure 8a circuit sources and sinks 15 and 24 mA , respectively.
To obtain higher load currents, you can connect two NE5230s in parallel (Fig. 8b). The difference in offset voltages ($\Delta \mathrm{V}_{() S}$) appears across R_{3} and R_{4}. The standby current in one op amp increases by $\Delta \mathrm{V}_{\mathrm{os}}\left(R_{3}+R_{\downarrow}\right)$ but current in the other op amp decreases by the same amount. so the sum of the supply current through the two op amps remains constant.
Large load currents divide equally between the two op amps. and you would expect this circuit 10 provide twice the output current of Fig. 8a. but the load-current capability is generally less because of mismateh in the op amp's output resistances and mismatch between R_{3} and R_{f}. The Fig. 8 b circuit sources and sinks 24 and 35 mA . respectively, when operating from a 3 V supply.
Bridge transducers for precision applications usually require an accurate low-drift voltage reference and a precision instrumentation amplifier (see box "What you

should know about bridge circuits"). The Fig. 9 circuit. however, acquires and displays the bridge transducer's output without using a voltage reference or an instrumentation amplifier.
Op amp $I C$, buffers the fixed arm of the bridge and provides a reference potential for all ground-referred loads. Choosing this node as the reference potential converts the bridge's differential output signal to asingleended signal referred to ground. This reference remains halfway between V^{+}and V^{-}even if the battery discharges. The reference potential is thus a floating ground, often called an active guard.

Converting the bridge's differential signal to a groundreferred signal eliminates the bridge output's commonmode voltage, which also eliminates the need for common-mode rejection, usually obtained by adding an instrumentation amplifier. $/ C_{2}$ amplifies the bridge's output signal, and R_{ς} lets you adjust the circuit's full scale output level.
The $I C_{2}$ output $V_{\text {OUT }}$ will change as the batteries discharge, but the $V_{\text {out }} / V^{+}$ratio will remain fixed. This relationship lets you remove the effect of battery discharge by operating the panel meters A-to-D converter in the ratiometric mode. Connect the wiper of
R_{6} to the converter's reference input to ensure that the signal and reference remain in proportion as the supply voltage changes. Finally, note that $I C_{2}$ amplifies its own input-offset voltage. You should null this effect by first balancing the bridge, and then adjusting R_{6} for an allzeros output at the panel meter.

Zahid Rahim, Signetics Corp

References

1. Huijsing, Johan H, and Linebarger, Danied. "Low-voltage operational amplifier with rail-to-rail input and output ranges". IEEE Journal of Solid-State Circuits, Vol SC-20, December 1985. pp. 1144-1150.
2. Huijsing. Johan H. "Multistage amplifier with capacitive nesting for frequency compensation". US Patent Application Serial No 602.234 , filed April 19,1984
3. Blauschild, Robert. "Differential amplifier with rail-to-rail capability". US Patent Application Serial No 525.181. filed August 23.1983.

What you should know about bridge circuits

A bridge circuit, often known as a Wheatstone bridge. consists of a pair of series-connected resistors connected in parallel with a similar pair of resistors (Fig. A). Bridge circuits are widely found in precision-null applications because the differential voltage $\left(1,-V_{2}\right)$ across the bridge is 0 V when the bridge is balanced.
What's more. this balanced condition is unaffected by voltage drops across line resistances or shifts in the reference voltage $I_{R^{*}}$. You can use such a balanced bridge to measure capacitance, inductance, or its own frequency of excitation (when applied in place of V_{R}).

A more common application for a bridge circuit is as a bridge transducer for converting physical parameters such as temperature or pressure into electrical signals. Normally, the resistance in one arm of the bridge varies with the measured parameter as resistances in the other three arms remain constant. This type of application usually includes a differential amplitier to amplify the bridge's differential output voltage.

The amplifier's output indicates any change in the measured parameter with respect to a reference level corresponding to the condition of a balanced bridge. You do need a fixed reference voltage: shifts in V_{R} will change the amplitier's output voltage unless the bridge happens to be balanced. The bridge's output
signal usually consists of several millivolts riding on a much larger common-mode signal.

Accordingly, you should choose a bridge amplifier that minimises inaccuracies through high commonmode rejection (CMR). low inputoffset voltage ($V_{o s}$) and low $V_{o s}$. drift with temperature. The amplifier should have high open loop gain to ensure a linear transfer function and low input-bias current to avoid loading the bridge. An instrumentation amplifier meets all these requirements and is designed specifically for conditioning the output of bridge transducers.
Note that even an ideal bridge amplitier will have a non-linear response because the bridge itself is inherently non-linear. The following derivation shows why:

$$
\begin{aligned}
V_{01} & =A_{11}\left(V_{1}-V_{2}\right) \\
& =A_{11}\left[\frac{V_{R}}{2}-\frac{V_{R}(R+\Delta R)}{R+R+\Delta R}\right] \\
& =-\frac{A_{\sigma 1} V_{R}}{4}\left(\frac{\Delta R / R}{1+\Delta R / 2 R}\right)
\end{aligned}
$$

$A_{C l}$ is the amplifier's closed-loop gain. The bridge's output signal is non-linear because both the numerator and the denominator contain the transducer-deviation term ΔV. The signal is approximately linear over a small range of amplitudes, however. Such signals are held to low amplitude for that reason.

Fig. A. In a conventional transducer bridge, the parameter of interest causes a variation (ΔV) in the bridge's output. The amplifier senses the resulting small differential signal and also rejects the bridge's relatively large common-mode voltage.

MARCONI BEGINNINGS

Marconi in 1896 wit. some of his appanates: the spark-generator s on the left, and e norse key to the sigh".

The first aerial (facias
page, top left) was at elevated irch Jlat attached to the gant gap. Another plate had to be buried in tee ground, the lead $f=$ which can be seer ties to the left-hard "able leg. This 8.995 apparatus achieven 3 tenfold incmease in transmission distance from 100 m to 1 kr

Progress leading up to Marconi's 1901 bridging of the Atlantic with wireless signals $(E W+W W$,
December) had seen a development, in only eight years. from primitive table-top apparatus to the massive. high-powered (20 kW equivalent input) instaltation at Poldhu.
Marconi's early experiments with radio transmission had begun in 1894, when he was 20. In 1895, while using slabs of sheet-iron to increase the transmitter spark's wavelength, he placed one on the ground, and held the other in the air. This, in effect the first aerial, produced a large increase in the signal strength, and in the range from about 100 ml to km .
Marconi's transmitter consisted of a spark-gap between two metal spheres, attached to metal plates - one elevated, one buried in the ground.
The receiver used an identical aerial arrangement, attached to a coherer - an evacuated glass tube containing fine metal filings and closed by an electrode in each end. When a signat was received, the filings "cohered", their resistance dropped and a relay circuit was completed, enabling operation of a tapper and a morse inker.
Marconi took out his first wireless patent in 1896. In September that year he conducted a demonstration on Salisbury Plain. for the benefit of the War Office and the

Post Office, at which a range of t .75 min es was recorded.
Next year saw the bridging of the Bristol Channel. a distance of more than eight miles, and communication between the Royal Needles Hotel at Alum Bay on the Isle of Wight and a house in Bournemouth, which was almost twice as far.
In 1898, Lord Kelvin used the Alum Bay transmitter to send the first wireless-transmitted paid telegram. It read: "Tell Blyth this is transmitted commercially through ether from Alum Bay to Bournemouth and by postal telegraph thence to Glasgow".
Kelvin's insistence on paying Marconi to send the message, and referring to it in the text, was intended as a challenge to the Post Office's monopoly on paid messages - a challenge it chose at the time to ignore.

Wireless distress

The Kelvin telegram was something of a stum, but the first genuine use, as distinct from demonstration, of wireless telegraphy was not long in coming.
In 1899, the East Goodwin lightship, which had been rigged as a demonstration station, suffered storm damage and used its transmitter to send out distress signals.
Later the same year, it was struck by a ship and again used the transmitter, this time triggering the first sea

By 1899, signal range had increased sufficiently to cross the English Channel, between Wimereux, near Boulogne (above), and the South Foreland. The photo left shows a message being received at
Wimereux. On the left is George Kemp, Marconi's personal assistant for over 30 years.

HISTORY

rescue in response to a wireless diştress signal
By 1899, transmission range had increased sufficiently to cross the English Channel, between Wimereux, near Boulogne, and the South Foreland. The signal proved strong enough to be picked up at Marconi's HQ in Chelmslord, 130 km away.

By the lurn of the century wireless was begimning to establish itself as a tool of communication, and in 1900 the Marconi International Marine Communication Company was set up.

Wineless was already being put to use in a variety of ways by 1900. Picture below shows the Mitcham Lane Fire Station, London, around 1900, with Station inspector Preston despatching a message. The sparkgenesator near his right hand and the Morse printer in the foreground can both be clearly seen.

The East Goodwin lightship, rigged for demonstrations, sent the first wireless distress signals in 1899

£1 BARGAIN PACKS

In tact, cheaper than $£ 1$ because if you buy 10 you can choose one other and receive it tree.
513 A spurs provide a fused outlet to a ring maln where devices such as a clock must not be switched off. Order Ret 4 In flex switches with neon on/oft lights, saves leaving things switched on Order Ref. 7
2 6V IA manns transformers upright mounting with fxxing clamps. Order Ref. 9
$161 / 2$ in speaker cabinet ideal for exten sions, takes our $61 / 2 n$ speaker. Order Ret. 11.
1230 watt reed switches. It's surprising what you can make with these - burglar alarms, secret switches, relay, etc. Order Ref. 13. 225 watt loudspeakers two unt crossovers. Order Ref. 22. 2 Micad constant current chargers adapt to charge almost any nicad battery. Order Ret. 30.
2 Humudity switches, as the an becomes damper the membrane stretches and operates a microswitch. Order Ref. 32
513 A rocker switch three tags so.an/oft, or change over with cen年e of Order Ret. 42
24 hr time switch, ex-Electrictity Board, automatically adjust for (lengthening and shortening day. Onginal cost E40 each. Order Rel

1 Mintuntseleter, one use is for an electric Igsaw puzze, we give circuit diagram for this. One pulse into motor moves switch through one pote. Order Ref. 56
2 Flat solenords - you could make your multt-lester read AC amps with this. Order Ref. 79
1 Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks. Order Ref. 67.
1 Mains operated motors with gearbox. Final speed 16 rpm, 2 watt rated Order Ref. 91
16 V 750 mA power supply, nicely cased with mans input and 6 V output leads. Order Ret. 103 A
2 Stripper boards, each contans a 400 V 2A bridge rectifier and 14 other diodes and rectitiers as well as dozens of condensers, etc. Order Ref. 120.
10 m Iwin screened flex with white pvc cover. Order Ref. 122 12 Very fine drills for pcb boards etc. Normal cost about 80p each Order Ref. 128
2 Plasicic boxes approx 3 in cube with square hole through tod so Ideal for interrupted beam switch etc. Order Ref. 132.
5 motors for model aeroblanes. spin to star so needs no switch. Order Ref. 134.
6 Microphone inserts - magnefic 400 ohm also act as speakers. Order Ret. 139
4 Reed relay hits, you get 16 reed switches and 4 coll sets with notes on making c/o relays and other gadgets. Order Ref. 148. 6 Salety cover for 13 A sockets - prevent those inquisitive little tingers from getting nasty shocks. Order Ret. 149 6 Neon indicators in panel mounting holders with lens. Order Ref. 180.

1 in flex simmerstat keeps your soidering roon etc. always at the ready Order Ref. 196
4 Mans solenold, very powertul as $1 / 2$ In pult or could push is modtified. Order Ref. 149.
10 Keyboard switches - made for computers but have many othe applications. Order Ret. 201
I Electric clock, mains operated, put this in a box and you need never be late. Order Ref. 211
4 i2V alarms. make a noise about as loud as a car horn. All brand new. Order Rel 221.
2 in \times 4in speakers, 4 ohm made from Radiomobile so very good quality. Order Ref 242
$26 \operatorname{in} \times 4$ in speakers. 16 ohm 5 wattis so can be joined in parallel to make a high wattage column Order Ref. 243
I Panostat, controls output of bolling ring from simmer up to boil. Order Ref. 252.
50 Leads with push-on 1/an tags - a must for hook ups mans connections etc Order Ref 259.
2 oblong push switches for bell or chimes, these can switch mains up to 5 amps so could be foot switch if itted into pattress. Order Ref. 263
1 Mini I watt amp for record player attached to unit that will also change speed of record player motor. Order Ret. 268.
3 Midd steel boxes approx $3 \ln \times 3 \ln \times \ln$ deep -slandard electrical. Order Ref. 283
50 Mixed silicon diodes. Order Ref. 293
16 digit manns operated counter, standard size but counts in even numbers. Order Ref. 28
1 In-flight stereo unit. Has 2 most useful minı moving coul speakers. Ex BOAC. Order Rel. 29
26 V operated reed relays. one normally on, other normally closed Order Rel. 48.
2 Plug in relays with 3 changeover contacts. Coll operated by 12 V DC or 24V AC Order Ref. 50
1 12 V pcb mounting relay. 2 changeover. Order Ret "? 1 Cabinet lock with 2 keys. Order Ref. 55
4 Dolls house switches or use them for any other low voltage apolication. Order Ref 57
1 Magnetic brake lor stopping a motor or rotating tool. Order Ref 66.

1 Time reminder. Set if for anything up to 60 minutes. Order Ref.
I Shaded pole manns motor. $3 / 1$ In stack so quite powertul Order Ret 85
2 Sin aluminum fan blades Could be fitted to the above motor Order Rel ??

BARGAINS GALORE

AESISTORS TEN A PEMMY and they are top class 5\% carbon fonl types either $1 / 2$ or $1 /$ swatt rating You can buy at thus silly price on condition hat you tathe a full reel, which is 3000 on a bandolier You specity th although we have a very wde range, we do not have esery value Over a million in stock and it you will buy 50 reels or more you can have them at £ 2 a bandolier but please come to our store. puch them out yourself IITHIUM BITTERIES $3.5 v$ penlight size, 2 mounted on p c.b with dindes. ther brts Lithum batteries as you may know are virtually everlasting unitl they are put in circuit of course\} so they are idea for alarms and similat devices that do not draw current but do rely on it always being
available 4 panels that is 8 battenes altogether $£ 2$. order ret 2 P2588 POwER SUPPIY WITM EXTRAS ourpu 12v 1 mp mans inpu is tuse and fitered and $12 v$ output is voltage regulated, ven well made on pC and also mounted on the board but easily removed are fwo 12 z relays and a Prerosounder Made for expensive equioment but never installed. price $£ 3$ order ref $3 P 808$.
12 VOLT 1.9 AMP-HOUR rechargeable battery by Jap YUASHA brand new. charged ready for use E6.50 each solat charger to house this and keep leady L29 50
IBO watt maims tramsfonmers all normal primaries $20-0-20$ volt
 ach. good quantites in slock
COLOUR MOWITORS $12^{\prime \prime}$ high resolution in black metal case with mans s.u built in, unused, but line reepects so mirirequire servicing. hence tiered at the very low
PHILIPS $9^{\prime \prime}$ HIGH RESOLUTION MONITOR black and white in metal trame lor easy mountıng, brand new still in makers packing. Jtiered at less han price of tube alone only

quantitue

6 ChARACTER 2 LIME OISPLAY screen sIze $85 \mathrm{~mm} \times 36 \mathrm{~mm}$. Alohanumencic ICO dot matrui module with integral micro processor made by erates voltages IWSULATHON TESTER WITH MULTIMETER internally generates vollages has tour ranges. $A C / D C$ volts, 3 ranges $D C$ milliamps, 3 ranges esisfance and S amp range These instruments are EX Bntish Telecom. but in very good condition, tested and gntd OK. probably cost at leas © 50 each. yours for only £ $£ 50$ with leads. carryng case $£ 200$ extra
 causes no interterence $£ 800$
2WW LISER Hellum Meon by PHILIPS, full spec. £30, pcwer supply lor thi in kut form with case is $£ 15.00$, or in larger case to house fube as well 1700 The larger unit, made up, tested and ready to use complete with laser tube 26900 plus $\varepsilon 5$ insured delivery
MAIMS 2304 far make "PAPST" 414 " square. metal blades $\mathrm{C8} 00$ SOLAR CHAREER hoids 4 AA nicads and recharges the se in 8 hrs., in very neat plastic case $£ 6.00$.
SOLAR CELLS with terminals for loining in series for thather volis or

 battery back up when sun is not shinung! AIR SPACED TRIMMER CAPS 2-20 pl idea
Whz. TOME CEMERAIOR this is PP3 battery peerated and has a 1 Khz tutput that can be continuous or interrupted al a rate yariable by a panel mounted control Constructed on a pcb and front panel size approm $105 \times 50 \mathrm{~mm}$ ex equipment but in as new condition $£ 2$ each
malms isolailom tramsformer stops you gefting "to earth" shocks 230 V in and 230 V out 150 watt upnght mounting $£ 750$
MIM MOMO AMP on pCb size $4^{4 \prime} \times 2^{\text {n }}$ with front panel holding volume control and with spare hole for switch or tone control, cutput is 4 watt into 4 ohm speaker using 12 V or I watt into 8 ohm using 9 V Brand new
and pertect only E1 each or 12 tor $\mathrm{El0}$
5 RPM GOW MAMS ORIVEM MOTOR AMD GEARBOX this has a 3In souare mounting plate and is 4 in deep it is a shaded pole motor Price ES POWER SUPPLY UWITS mains in, dc out, based $4.5 v 100 \mathrm{~mA}$ regulated $£ 1$ $2 A E S$. 24 v 200 mA £2
TORROHAL MAMS TRAMSFORMER with twin Outputs. 6.3 v 2 amps and 2v] amp, one use would be power supply. price
AMSTRAD POWER UMIT 13 SV at I 9 A enc ased and mitl leads and outpu plug. nerm
AMSTRAD 3.5 FLOPPY DRIVE Reteence FDg brand new and pertect, £35. ATARI GAXE COMPUTER at 65 K this is quite powertul so suitable for home a business, unuse
g" Caichode ray tube Philips M24/306W, which is not only high resolution but is also X Ray and implosion protected. regular price over
£30. you can have them al $£ 12$ each Tubes are guararteed unused SO Watt MAIMS IRAMSFORMERS two available in good quality, both with normal promaries and upright mounting, one is 20 V 4 A the other 40 V 2 A only £3 each or 10 for £27 cartiage pard
Prolect box size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey, louved ends for ventina 10 onerms undied made only £3 each or £ 10 for £27
I2v solemolo has good t/ pull or could push if moditited, size approm 1/2" long by 1 " square. $£ 1$ each or 10 for C 9
WATER VILVE 230 V operated with hose connections, ideal tor auto plant spray or mour or or dis ion han Gup phone won I clutter up your desk or worbench, current mode in good condition and tully workung ready to plug in $£ 5$
HICH VOLTAGE CAPS it you use these ask for our $1-20 \mathrm{kv}$ Capacitor list. over wimiltion in stock and might save you a of of money ELECTRONIC BUMP \& 60 SPACESMIP sound and impact controlled anything' Kit with really detalled instructions, will mathe ideal present to budding young electrician. Should be able to assemble but you may have 10 help with the soldering of the components on the PC3. Complete kit c8 95
500V BRIDGE MECGER developed for G P 0 rechnicians the Ohmeter 18 is the modern equivalent of the bindge meggai $9 V$ battery operated it incorporates a 500 V generation tor insulation testing and a null balance
bridge tor very accurate resistance measurement. EA B.T. in quite good brioge tor very accurate resisiance measurement. Ex B.I. In quite good ES insured delivery
EXPERIMENTIMG WITH vaLvES don't spend a lortune or a mains itranstormer we can supoly one with standard ma
$250-0-250 \mathrm{~V}$ at 75 mA and 6 V at 3 A . pnce $£ 5$
15 Watt dohm ${ }^{\circ}$ " SPEAKER \& $3^{\prime \prime}$ TWEETER made for a discontinued high quality music centre. give real hi th and tor only £4 palir

ULTRASOMIC TRAMSMITTER/RECEIVER with Piezo alaim, built into preformed case. is triggered by movement disturbing refiected signal.
intended for burglaı alarm, car alarm etc. has many extias, time delay intended for burglal alarm, car alarm eic. has many exiras, time MOYEMEMT LIAMM GOes off with slughtest touch, ideal to protect cycle doorway window sitarway. etc etc. Complete with prezo shrieke ready to use Onty £2 (PP3 battery not supplied) STEREO HEADPHOME extra lightweight with plug C 2 each or 10 pairs for ¢18
B.I. IELPPYOME LEAO 3 m long and with BI fiat plug Ideal to mak ertenston for phone. Fay, etc 50p each, £40 per 100, £300 per 1000 £ 1000
STuDiO 100 by Amstiad, the ultumate disco control panel, has four separatey controlled and metered channels. twin cassettes, AMFM radio stereo audio amplifter, phono \& C. D. inputs, etc, etc, etc. regular price over $£ 400$ we have a few
ROTARY POSIIIOM COMTROLLER Por aenials, ventilators, dampers, theostat:, dampers or applications requiring 180 degiess clockwise and anti-clocamse movement we have the sauter MVEA 54 servo mo 12 VOLT \& AMP MAMS TRXISFFORMER EA, waterpreat colal box for same.

TIO WAT SWITCHMODE POWER SUPPLY 230 V mains operated, outputs o $38 \mathrm{v} 21 / 2 \mathrm{~A}$ and 5 v 3 A , we have a lot of these ond need the space so you
 is Et. 100 for 775 for output $12-0-12 \mathrm{v}$ order rei Whal 200/2OM order ret Wi 3 . $18-0-18 y$ not p.c b mounting but fully shrouded same price order ref Wha
0-1 ma IULL VISIOM PAMEL METER $23^{\prime \prime}$ square, scaled 0.100 but scale 10 tor $\mathrm{E9} 100$ tor E 75

PAMEL AMP METERS $80 \times 70 \mathrm{~mm}$ autifu instituments $£ 5$ each, 10 amp
WA
w

K" sqGare 750 each. 10 for $\mathrm{E6}$. 100 for ESO
EOGE-WISE PMEL METER ideal when short of panel space only $40 \times$
dmm, also have buill-in led, 500 uAf sdd. scaled $0-5$, £1 each. 10 tor
visratieg reed frequemcy pamel meter 4" square, $55-65 \mathrm{~Hz}$ only £9 each.
P.C.B. Driul 12 assorted sizes between 75 and 15 mm £1 the lot LOW PRICED FIELD TELEPHONES. Ex-GPO models, not quite so nice ookng bit quite ettcient, and have the big advantage that the ringing is done ty means of a hand operated internal generator This saves a lot of batteress. These 'ohones have the normal type of rotany dial built in and can still be connected into a normal BT system. Tested guarlanteed in good order, price only 5950 each Order Rel 9ps HAND GBMERMTORS as fitted in the above held telephones, this hand generator is a permanent magnet type and has an AC output of higher vollage then simply connect the output to a fianstormer We have ift a 60 wall bulb quite successtully. The hand generator, complete with handle, $£ 400$ OrdeI Ref 4PSI
Amsirat $3^{" \pi}$ FLOPPY ORIVE cased and with built-in power supply so a Self cont.onned ext
Order Rel 35P28
ORY BAT 'ERIES CAM BE RECHARGEO bu not with a normal dc charge amust ar a peridic curent wesal lyde. We can subply he hit, with ta. E 650 Order Rel 6P9B
THE COMPUTER GRADE CAPACITOR deal for low volt, high current
periments. 750 each or 10 for $E 600$ Two types avalable. $15000 \mathrm{\mu t} 10$ or 10000 ut 15 V
HELP YOAR BOYS IMTO ELECTROMICS let them learn by expenments with our simphe kits See our latest Pla meiti MeTEA E B
SUPER MUITI-METER Ex British Telecom, this is a 19-range 20K o p v. 0 grade instrument, covers $\&$ oc vortages, current and resistance, carrying .ase $£ 2$ extra (batteries not included but readily avaltable) SOLAR EmERGY educatiomal NIT - an ideal present tor electronic students it shows how to make solar circuits and electrical circuits, how to increa ee the vollage or current, how to use solat power to worh a radio calculatcr, cassette player and to charge nicad batteries The fit comprise 8 solar cells. one solar motor, fan blades to tit motor and ell witten instruction manual makes this a lovely little present Pice ce.00. Orler Ret 8 P 428
WANT TO KNOW HDW FAST IT'S TURMMG? Made by the tamous murtheac Comp ny, we have DC tachometer generators which have an output velyge depending upon its speed aty
output y flage is 3 . Ex-equipment. price only 2 for $£ 1.00$ Order Rein 246 BSR geCDRD PLAYERS - Although records are last being superseded by compact jiscs, you or yours may stili have a collection of records that ol wish to play room ime fo time and in would. hereiare, be a good ide have some that were orignally intended tor quite expensive midi systems. have never been used. are complete with diamond styll. price only 66.00 each. Oroer Rel GPSB
BLOW HEAERES Winters coming on soit is a good idea to chech you heateer fo make sure they are att 40 to scratch We can still supply tapential units:El heat, half heat or cold brom price of unt 15 © 6.00 . be operaled at full heat, half heat or cold biaw Price of unit is $\mathrm{E6.00}$. We and we include a control switch and wiring diagram -ardes Ret $6 P 12$. We
also have 1 kw blow heater. only 6^{*} wide, so 1 deal where spaterallouted under a desk or similar - or can be made into a portawle heaie sortualy inent in uperation A shaded pole motor dives alr from tangenital itan hrough :kw spisal element. There is also a cut-out to smitch heat of; around $£ 20.00$. yout tor $£ 5.00$ or 5 for £20.00. Order Rel 5 P23
Prices indulude V.A I. Send chequerpastal arder or fing and quote credil
cald nurber Add $£ 3$ post and paclung Orders over 225 post fiee, unless cand number Add £3 post

M\&B ELECTRICAL SUPPLIES LTD

12 Boundary Road, Hove, Sussex BN3 4EH
Telaphone (0273) 430380 Fax (0273) 410142

IMPROVED HF

 Small loops are easy to tune but relatively insensitive. Large loops deliver> but at the expense of tuning range and omnidirectional lobe shape. Ronald Salter suggests that aerial loops based on parallel clover leaves overcome these limitations.

wHen selecting an acrial, the serious short wave listener is not well served since the repertoire consists of long wires, dipoles, whips. small tuned loops, and little eise. More claborate aerials don't always improve the signal to noise ratio. Rising interference levels. however, require new solutions.
At the writer's location, there is high voltage reticulation and an arterial road, while six nearby AM broadcast transmitters produce cross-modulation across most of the HF spectrum. Tests have shown that a small resonant acrial gives the best signal to noise ratio under these conditions. The aerial described here is three metres square and can be mounted on a pole or above a ceiling.

The noise reducing properties of small vertical loops are well known. Low radiation

Fig. 1. Radiation pattern from a simple loop.

resistance, and a figure-of-8 field pattern combine to give good signal/noise ratios. However. size limitations restricts sensitivity: a single-turn HF loop must be no more than 0.1λ in circumference. or the loop current becomes non-uniform and the field pattern breaks into lobes.

Typically, a 10 MHz loop will have a diameter of less than 0.5 m , and an area of about 0.2 m . A 10 MHz dipole has a conservatively estimated aperture area of $60 \mathrm{~m}^{2}$. Signal strength is. among other things. proportional to aperture area, so the difference is obvious. Loop gains reported in the literature are from -14 dB . to -17 dB w.r.t. a dipole. A loop larger than 0.1λ may also have too much inductance to be tuned with a practical value of capacitor, especially if it is shielded.
In addition, the need to tune and rotate the loop means that it must be near the operator. unless a remote control system is used. Much can be done however, to remedy the situation.
Firstly, mounting the loop horizontally gives an omnidirectional field pattern (Fig. 1). Low mounting height will raise the radiation angle, so the loop should ideally be at a height of $\lambda / 2$, which is 25 m at 6 MHz : the prototype is giving good results at a height of about 6 m .

Secondly. the aperture area can be enlarged while keeping the inductance low by putting multiple turns in parallel. These cannot be placed side by side as in a normal LF loop: doing so gives the effect of a single turn with a larger cross-sectional area and roughly the same inductance. However. if the turns are separated to minimize the magnetic coupling between them. the inductance looking into the network terminals (Fig. 2) is given by:

$$
L_{n}=L_{d} / \mathrm{N}
$$

where L_{n} is the inductance of the network. L_{u} is the inductance of one loop, and N is the number of loops.

It follows from (1) that the individual loops in an N loop array can each be larger than a single loop having the same inductance as the array, and can cover the same frequency range using the same tuning capacitor. The prototype consists of four loops mounted horizontally in a clover leaf pattern.

Although the individual loop currents are non-uniform at $C / \lambda>0$). 1 , the geometric symmetry of the array keeps the overall field pattern reasonably uniform.
Thirdly, varicap diodes at the aerial can provide remote tuning, balancing, and impedance matching: DC control voltages are conveyed by a multi-core cable strapped to the feed-line.
Fig. 3a shows a small loop with tuning capacitor C and load resistance R_{l} : 3 b the equivalent circuit. I_{G} is the open-circuit induced signal voltage. $+j \omega L_{c}$ is the inductive reactance. R_{r} the radiation resistance. R_{i} the $R F$ resistance, and $-\mathrm{j} / \omega \mathrm{C}$ the reactance of the capacitor. Let R_{d} be the total in-phase component of the loop impedance

(b)

(c)
($R_{a}=R_{r}+R_{i}$). Then at resonance, $+\mathrm{j} \omega \mathrm{L}=$ $-\mathrm{j} \omega \mathrm{C}$, and the voltage across R_{L} is given by:

$$
\begin{equation*}
V_{R L}=\frac{V_{G K^{*}} \times R_{L}}{R_{a}+R_{L}} \tag{2}
\end{equation*}
$$

Figure 2a shows two identical loops mounted in the same plane, and connected so that their currents sum at the junction; $\mathbf{2 b}$ is the equivalent circuit. It can be shown that Fig. 3 b can be replaced by the circuit of 2 c . When $+\mathrm{j} \omega L_{\mathrm{a}} / 2=-\mathrm{j} / \omega C$:

$$
\begin{equation*}
V_{R L .}=\frac{V_{o c} \times R_{L}}{\frac{R_{a}}{2}+R_{L .}} \tag{3}
\end{equation*}
$$

It can be similarly shown that for N identical loops:

$$
V_{R L}=\frac{V_{o c} \times R_{L}}{\frac{R_{a}}{N}+R_{L}}
$$

$$
\begin{equation*}
\text { when }+\omega L_{d} / N=-\mathrm{j} / \omega C \tag{5}
\end{equation*}
$$

We can now find the gain of an N loop array compared to a single loop having the same inductance. Maximum power transfer occurs when $R_{L}=R_{d} / N$; power developed in R_{L} is:

$$
\begin{equation*}
P_{R l}=\frac{V_{o c^{2}}}{4 \times \frac{R_{a s}}{N}} \tag{6}
\end{equation*}
$$

From (6) and appendix b, we can develop an expression:

$$
\begin{equation*}
10 \log \frac{C_{2}{ }^{4} \times R_{u 1} \times N_{2}}{C_{1}{ }^{4} \times R_{a 2} \times N_{1}} \tag{7}
\end{equation*}
$$

Fig. 2. Compound loop circuitry. Paralleling the loops produces a significant advantage in bandwidth and radiation resistance.

Fig. 3. Electrical circuit of a single tuned loop with resonating components.

Fig. 5. Comparisons between expected and measured radiation resistance.

Fig. 4. Inductive reactance of prototype $0.454 m$ loop
where C_{l} is the circumference of the single loop. C_{2} is the circumference of one loop of the array, $R_{u l}$ is the resistance of the single loop. $R_{u 2}$ is the resistance of the array, $N_{l}=$ I (for a single loop), and N_{2} is the number of loops in the array.
There are no simple impedance relationships for larger loops; when $C / \lambda>0.1$, both $X_{l u}$ and R_{u} rise faster than predicted (Fig. 4).

Masses of gain

Further, radiation coupling between closespaced loops causes R_{a} to rise to much higher values than for one loop in free space. The writer measured R_{a} directly by two different methods: these were in substantial agreement (Fig. 5).
The prototype has four loops, each of 4.54 m circumference, made from 5 mm thick coaxial cable. At 10 MHz the C / λ ratio $=$ $0.15 . \mathrm{X} L_{a}=87.5 \Omega$ and $\mathrm{Ra}=3.6 \Omega$. By extrapolation from the calculated performance of a 0.15 m single loop aerial, the effective performance for the 4.54 m four loop system is some 12 dB better. This gives a gain of -2 dB to -5 dB w.r.t. a dipole - a good performance for a small antenna. Furthermore, this gain is available over 360°.
Equation 7 assumes circular loops, but no more than two such loops can be mounted side-by-side without overlapping. For $N>2$, a shape other than a circle must be used; measurements on the prototype show this is not a major factor provided the departure from the circular form is not too great.
Realising this gain requires a match between the array R_{a} values, ranging from 2.4 S at 6.5 MHz , to $30 \Omega 2$ at 20 MHz , and the load impedance - normally 50 to $70 \Omega 2$. A shunt capacitor matching network was used in the prototype in conjunction with a balancing/matching transformer.
Inserting the R_{a} values in the appropriate

Fig. 6. Balancing/matching transformer.
equation gives a shunt capacitor vs frequency curve similar in shape to the tuning curve; the varicap voltages can then be arranged so that the shunt capacitance tracks the tuning capacitance across the frequency range and allows close to optimum matching. Although this is not of great importance in a receiving application, tests show it works quite well.

Constructional points

The transformer is wound on a toroid, and has two secondary windings of six turns each, wound in opposite directions, connected in parallel, and each spaced over half the core length. The four turn primary is wound over the secondaries and occupies the full core length (Fig. 6). This arrangement attempts to balance inter-winding capacitance while retaining full core usage. Tests with a source and load show highveransmis-

sion efficiency and an essentially flat fre quency response (ldB).
RF balancing is by varicaps to earth from each side of the array. Their control voltages mimic the action of a differential capacitor as one voltage rises, the other falls. Thus the effect of the balancing circuit on the tuning calibration is minimised, while still allowing a large change in the balance point.
The prototype array is shown in Fig. 7. Needing to suspend it between masts, the writer produced an assembly of spars, spreaders, wire and rope worthy of the Wright brothers. Each loop is earthed at its mid-point to minimise broadcast crossmodulation; the earth conductors are two metal

spars, and two lengths of coax strapped to the support rope. All four join at the centre.
Loop phasing is important. Each loop exits, curves clockwise (looking from above) and enters below. The four starts are joined inside a top cap; the four ends are joined in the tee body. Flexible leads and screw connectors connect these joins to the tuner.

Figures 8(a) and 8(b) show the masthead tuner and control circuitry. The emitter follower allows the tuning, matching, and balance voltages to follow the setting of the tuning potentiometer. It has been found convenient to allow the balancing voltage to follow the tuning also; this allows roughly constant adjustment of the balance pot at different frequencies. Occasionally, a better s / n ratio is obtained by reducing the balance voltage below the maximum, but this happens so rarely that the balance voltage pot may be eliminated if desired, the supply for the balance network being taken direct from the emitter of the transistor.
The tuner exhibits an apparent doublehumped tuning characteristic, due to the array coming to balance at resonance. To tune, set the balance pot central, adjust tuning to mid way between noise peaks. then reset balance pot. If a noise null cannot be found (a rare occurrence) slight adjustment of the Z-match will often help. While the exact reason for this latter phenomenon is not apparent, it may be that adjusting V changes the phase relationship between the signal current and components flowing in the array earth network.

The modest gain $(+10 \mathrm{~dB})$ line amplifier was an after thought, and is useful particularly at the lower frequencies. At the top of the spectrum, a little white noise is apparent, which may be reduced by lowering the amplifier supply voltage to about half the normal value.

Fig. 8. Tuning and control circuitry. 8(a) (left) masthead tuner; 8(b) above) control box.

Performance

The writer has compared the loop array performance over several years, against three other aerials: a 2 m long luned whip, a 35 m wire, and an array of three dipoles cut logperiodic fashion across the frequency range. Accurate measurements are difficult - but an idea of performance has been gained.
The calculated figure of +12 dB w.r.t. a
loop, and -3 dB w.r.t. a dipole, at 10 MHz . has been confirmed. No attempt has been made to measure the field pattern, but where the dipoles and long wire are clearly direclional. no such properiy has been observed.
As expected, broadcast cross-modulation is severe with both the long wire and dipoles, but is scarcely observable with both the whip and the loop array.

Table 1. Summary w.r.t the dipole set.			
Frequency	Long wire	Loop array	Whip
7 MHz	-2 dB	+3 dB	-3 dB
11 MHz	-3 dB	+8 dB	0 dB
17 MHz	-0.5 dB	+10 dB	-1 dB

The most important property, the signal/noise ratio, depends on the frequency and the conditions - i.e. the current level of electro-magnetic noise.
Table 1 gives a summary at three frequencies w.r.t the dipole set. These figures, based mainly on receiver AGC measurements, do not accurately reflect the ability of the loops to reject imputse noise. especially at the lower fretuencies. Tape recordings have been made of signals which are clear and legible on the loop array, but unreadable on all other aerials. The performance of the loops is such that the whip and dipoles have been discarded, the long wire being retained only for demonsiration purposes.

Bibliography

Mukherjee. S. Indoor Loop Aerial for Short Waves. Electronics and Wireless World. April 1985. p. 39.

Smith. G.S. Loop amemnas, Chapter 5. Antenna Engineering Handhook. by Johnson and Jasik, Mcgraw-Hill.
Patterson. R.H. Down-to-Earth Army amennas, Electronics (Amer.) August 1967. p. III.
Netwerk Transformers. R.S.G.B. Communicalions Handbook. Radio Sociely of Great Britain
Alford. A. and. A. Kandoian. Loop Anennas. Trans A.I.E.E. Supplement, vol. 59. p. 843. 1940.

Looking into a crystal memory

Massive but miniaturised storage capacity has been the computer industry's ultimate goal for over a decade. When magnetic bubble memories came about in the late 1970s they were highly regarded as a major leap forward. But now, following from observations made by a team of physicists during the course of a research project, there may be a new way of developing high capacity storage systems.
The research project is taking place at Oxford University's Physics Department (the Clarendon Laboratory), and the aim is to study the magnetic properties of crystals containing rare earth ions.
As part of the project the team is developing rare earth multilayers and superlattice structures by using an ultra high vacuum deposition plant.
Layers of magnetic and non-magnetic atoms are deposited in succession to form a multiple sandwich repeated about 100 times in coherent epitaxy. The atomic layers are deposited in a regular coherent array - more akin to materials engineering, putting rafts of atoms on top of each other. The layers. each of which can be about two atomic

> Results from a project at the Clarendon Laboratory shows the production of memory systems made out of stacks of atoms may at last be possible. Shaz Horner reports.

buffer layer. The substrate/buffer system provides the atomically smooth and regular surface on which the rare earths can be deposited in any desired sequence or thickness, and built up atomic layer by atomic layer.
It is when the designed crystal structures are placed in a magnetic field that they show "interesting properties". According to the team: "New and unexpected magnetic phenomena have been observed in these designer materials which suggest tantalising possibilities for device application".
One example is that in a multilayer

Looking for "New and unexpected magnetic phenomena": Mike Wells of the Oxford team examines the loaded cassettes in the UMS 630 at the Clarendon Laboratory
layers thick, are deposited by using molecular beam epitaxy (MBE) - this is where the project gets its name: LaMBE. La comes from the lanthanide series of rare earths. MBE has been in use for sometime for semiconductor deposition and for the development of high temperature superconductors.
The resulting sandwich is thin at about 50 Angstrom or less.
Alternating layers are deposited on a sapphire substrate coated with a niobium
structure where the "particular"rare carth metals and the thicknesses of the layers are optimised, "metastable magnetic states" are observed.
In these states the magnetisation vector for neighbouring rare earth ions along a specified direction. form a left handed or right handed helix depending on magnetic and thermal history. In addition the magnetic behaviour is translated through the layers - one layer talks to another layer magnetically even if there is a non-magnetic

Deposition process

The laboratory uses a Serc funded Blazers UMS 630 customised to meet the project's specific requirements. The plant provides a vacuum of $10^{.11} \mathrm{mbar}$ as well as computerised control of the evaporation process. Up to six substrates may be loaded onto a cassette system and are transferred one at a time, from the load-lock chamber into the main growth chamber. The growth chamber has been fitted with a specially developed cryogenic shield for protection against contamination during deposition. Currently the plant has two electron beam guns and one effusion cell but there is capacity for expansion. These provide the sources of rare earth metal vapour and niobium.
According to the LaMBE team a particular advantage of the plant is the provision of a quadrupole mass spectrometer to monitor the evaporant beams from the electron-gunheated hearths. The measured flux is compared with a reference value and the difference is fed back to the electron gun controller. Slow control in the range of seconds is affected by altering the filament current of the electron source. Fast control in the range of ten milliseconds is produced by changing the voltage on the Wehnelt shield surrounding the source of electrons thereby altering the number which arrive at the hearth.
layer in between. Therefore by assigning zero or one to each of the states respectively an n-digit binary number could be stored vertically through the n-layer sample. If the results obtained from this research project can be harnessed for developing high density storage devices the consequences for the computer industry would be far reaching. The project could enable development of magnetic storage chips made of artificial crystals containing rare earth materials. It may prove to be the basis of devices with increased storage capacity and greater miniaturisation.
But one major hurdle still to be tackled would be finding a way to write and read data to and from such memories. A possible solution could be the use of variable intensity, focused laser radiation which uses the skin-depth effect. according to the LaMBE team

Nonetheless, the project's aim at present is to grow and understand the physical properties of the crystals. Finding a way 10 read or write the information, would be a problem for engineers to solve.
As to why rare earth metals are used for the research project, the team say that rare earth ions have smaller inter-atomic interactions which make them more "amenable" 10 investigations The magnetic behaviour of a rare carth ion arises from its incomplete shell of electrons. This shell is shielded by conduction electrons and therefore the effects observed are easier to piece together than would be the case with transition metals such as iron and cobalt.

Shaz Horner

REGULARS

RF CONNETTIONS

Low-cost synchronous detection

Direct-conversion receivers have a number of fundamental advantages over competitive techniques. But up to now nobody has yet marketed a direct-conversion receiver with synchronous demodulation for broadcast signals at a competitive price. However a recent patent application for design of a synchronised double-sideband AM broadcast receiver with no IF stages could change all that.
One of the important advantages of directconversion receivers is virtual elimination of spurious responses, in particular imageresponse. Benefits also include the opportunity to utilise the linear demodulated signal for effective post-detector filtering (including digital signal processing). This is preferable to IF filtering based on crystal filters of limited dynamic range which exhibit non-reciprocal characteristics.

Considerable use has been made of direct conversion, particularly for simple low-cost SSB/CW receivers built by amateurs without fully synchronous $1, Q$ demodulators. But the technique is suitable for simple applications such as paging receivers where it is possible to integrate the entire receiver on a chip. Direct conversion is also seen as one way of implementing digital HF receivers. although in this case there is usually a preliminary mixer and broadhand IF.

Over the years there have been a few designs for synchronous detection receivers for the reception of MF/HF AM broadeast stations. but only those based on superhettype front-ends seem to have reached the market-place.
Some years ago Phase Track of Reading introduced a portable superhet receiver, crystalled for a limited number of HF broadcast channels (eg BBC World Service) that featured synchronous AM detection to counter distortion due to selective fading. Later. for general coverage, a model with a frequency synthesizer was marketed. More recently. Sony has marketed an "enthusiast"s receiver" with synchronous detection and provision for reception of AM/SSB/NBFM/RTTY/FAX mode plus VHF/FM. including a massive bank of channel memories and also a built-in spectrum analyser to provide panoramic reception facilities for around $£ 3000$.
But, to the best of my knowledge, nobody has yet marketed a direct-conversion receiver with synchronous demodulation for broadcast signals at a competitive price.

Patent advance

This could soon change. In July, Edward Forster of Phase Track filed a patent application for design of a synchronised double-sideband AM broadcast receiver

[^5]
Early developments

Almost 20 years ago, I wrote a two-part article for Wireless World on synchronous detection in radio reception (September and November, 1972) which drew attention to the attractions of the form of phase-lockedloop synchronous detector described by J P Costas of General Electric (US) as the basis of a high-performance direct-conversion HF communications receiver.
Costas was a powerful advocate of synchronous systems and direct-conversion (zero-IF) receivers in the 1950s. In the December 1956 issue of Proc IRE, an issue devoted almost entirely to advocacy of HF SSB with fully suppressed carriers, he struck an "odd-man-out" attitude in showing that the main arguments in favour of SSB were based on use of conventional envelope detection of AM, and would not apply if receivers fully utilised synchronous demodulation, permitting the use of doublesideband, suppressed-carrier transmissions as well as reception of conventional AM signals.
He outlined, as Professor DG Tucker had done previously, the practical advantages of direct-conversion rather than superhet principles and provided some detail of an experimental high-performance directconversion receiver with one of the then very complex frequency synthesizers - the AN/FRR-48 (XW-1) prototype with twophase synchronous demodulation (using what has become known as the Costas loop), phase-locking the local oscillator by the use of an AM phase discriminator.
with no IF stages, aimed at low-cost receivers for the long, medium and shortwave bands (Fig. 1).
Elimination of the IF stages simplifies design of a receiver and should improve performance.
The receiver has no unwanted image responses and the bandwidth can be more accurately and cheaply set than with conventional IF filters. The only real spurious response, to the third harmonic. is casily filtered by a tracking pre-selector which may also usefully tune a small rod
antemna giving better performance than untuned active antenna counterparts. Being synchronous, very little non-linear distortion is experienced compared with that found in conventional (AM) receivers using envelope detectors.
Forster believes that with directconversion, two-phase (I.Q) receivers. the hey to making the synchronisation satisfactory is to ensure that it holds during modulation pauses. In his origimal (Phase Trach) superhet design synchronisation is to the carrier alone, but since this is subject to severe fading on HF , characteristics of the loop had to be carefully adjusted so as to hold synchronisation during these fades and also maintain high spectral purity. The approach has now been applied to the directconversion receiver. However. there are many other interactions in such a receiver between the AGC. the high level carrier and the modulation which has to be adjusted for correct operation.
Initially it proved difficult to overcome such dratwbachs. But now Edward Forster is convinced he has solved these problems. His aim is to develop at design that could make possible L.W/MW/SW receivers at a cost comparable to the bottom-line superhet models with envelope detection now on the market. But these would be capable of outperforming superhet-type receivers. particularly on HF.

Looking for exploitation

Forster is currently trying to interest consumer-receiver manufacturers in his design. The demonsiration prototype receiver uses al few standard IC devices but there is considerable scope to reduce the component-count with greater integration. The basic RIF input sections are similar to those of superhet receivers but are simpler to implement since all sections track the same signal frequency.
The patent application achnowledges that the concept is based on the techniques described by Costas in 1956, by D Richman in "Colour carrier relerence phase synchronisation accuracy in NTSC colour television". (Proc /RE. January 1954 and in British Patent GB 2077 533). In the figure. $N /$ io $N / 2$ are passive networks ($N 5$ to N/I simple resistor-capacitor networks): A/ to At are amplifiers: $M /$ to $M 3$ mixers (preferably doubly-balanced mixers): $E /$ to $E .3$ summing circuits.
In practice $N / . N 2$ and O are gang tuned. N/ preferably being double-tuned with N2 constructed using a low Q series inductor tuned by a shunt capacitor. one of the ganged section.
Since no frequency-synthesizer is used, the spectral purity of the oscillator is very good and power consumption much lower than for synthesised receivers.
The patent application explatins: "The output of amplifier $A+$ frequency modulates oscillator O by a small amount which is nearly constant throughout the receiver"s

Phasing-type SSB generation

Much of early amateur-radio equipment in the then absence of effective SSB crystal and mechanical filters at HF, was based on phasing-type generators and occasionally phasing-type demodulators (with some later use of the Weaver "Third Method" and the Gingell "Polyphase" networks).
But in practice for many years virtually all commercially manufactured, and most homebuilt, SSB transceivers have used filter-type systems.

These are based on lattice-type HF crystal

filter or crystal ladder filters, the latter type, where all crystals can be on the same frequency, can be based on low-cost colourTV or "clock" crystals.
Phasing-type SSB generation tended to fall into disfacour largely because of the critical, non-standard component values required for $90^{\circ}\left(\pm 45^{\circ}\right.$; wideband $(300-4000 \mathrm{~Hz})$ audio
phasing networks and the difficulty in maintaining accurate phasing over an appreciable temperature range.
Recently, however, John R Hey, G3TDZ has been endeavouring to re-popularise classic phasing-type SSB generation as part of a "White Rose" club project designed to show that amateur SSB HF equipment need not involve factory-built $£ 1000$-plus transceivers. The White Rose project includes a 3.5 MHz SSB exciter that takes advantage of the improved stability of modern components such

The RF phase-shift network (above) used for the White Rose constructional project. (Radio Communication, June 1991)

Practical realisation of the audio phase-shift network (left) using standard value components (1%) found to give excellent results between 150 Hz and $\mathbf{4 k H z}$. (Radio Communication, June 1991)

as metal film resistors, multi-turn cermet trimmers and polystyrene capacitors and use of combinations of standard 1% tolerance values to form audio and RF phase-shift networks that gire excellent results between about 150 Hz and 4 kHz and between 3600 and 3800 kHz (the SSB segment of the 3.5 MHz amateur band.
frequency range so that loop gain remains sobstantially constant. This hind of feedback loop is hnoun as a type II system where this refers to the number of integrators in the loop. The circuit $R I$. C and $A t$ provide a virtuatly periect integrator if adjusted correctly. Since the error output of $M .3$ is driven to ecro by the loop action. momentary lapses of modulation can be accommodated since the loop control voltage is held by the voltage across $($.
"Thus the circuit remains substantially synchronised at all times.
However, to help initial synchronisation and maintain synchronisation during path disturbances on short wave. some extra acquisition system is required. This is obtained by a frequency discriminator characteristic sel about the carrier (zero baschand frequency) and operating below modulation frequencies so that it is not normally operative.
"This discriminator action is provided by the additional networks $N 8$ and $N 10$ which provide a high frequency gain and phase balance but a low frequency gain slope and phase unbalance. The gain of the
discriminator thus formed has to be adjusted to match the loop operation normally set for modulation control. As an aid to acquisition during moning. networh $N 7$ provides wider discriminator action operated by momentary switens/.
"Summing circuits $E 1, E 2$ and $E 3$ feed the resultant / and Q components 10 mixer MB. During tuning. it is desirable 10 short-circuit integrating capacitor (with switch $S 3$ and at the same time reduce the output volume by bringeng into operation attenuator N/2 by closing switch $S 2$. Finally the audio output $A F$ is fed from the manuatly variable gain amplifier. A.3."
The result appears to be an effective and simple-to-operate receiver of improved performance.
Whether Edward Forster will be able to convince the traditionally-conservative consumer industry to market receivers based on his patent-application remains to be seen; one can hope only that somebody will be" prepared to give this promising development a whirl.

Pat Hawker

APPOINTMENTS

BROADCAST ENGINEERS

Ref: 25/91

We are currently looking for Broadcast Engineers to work in our Broadcast Engineering Department.

The ideal candidates will be aged 23-35, educated to HND standard in electronic engineering and have work experience in broadcast or related industries.

The work, in this country and overseas, includes the operation, maintenance and installation of the full range of professional radio and television studio equipment and, in some areas, medium wave and VHF transmitters.

We give 22 days annual leave and benefits include: subsidised BUPA, contributory pension scheme, free lunch in the staff restaurant and free car parking.

For an application form please contact the Assistant Personnel Manager on 024074461 ext: 407.

The Services Sound and Vision Copporation Chalfont Grove Narcot Lane. Chaltont St Peter Gerrards Cross. Bucks SL9 8TN

TO ADVERTISE IN THIS SECTION PLEASE CALL PAT BUNCE ON 0816618339

UNIVERSITY OF READING Computer Services Centre

Technician (Grade D)

The Computer Services Centre is responsible for providing support for computing and network facilities throughout the University. Applications are invited for a post in the Technicians team who are responsible for the installation, maintenance and repair of a wide range of microcomputing and network equipment. Candidates should possess a BTEC HNC in Electronics and Communications or equivalent. Previous experience in the support of PCs or networking is desirable. Salary in range $£ 10,385-$ $£ 12,400$ p.a. Apply for application forms and further particulars to the Personnel Officer, University of Reading, WHITEKNIGHTS. P.O. Box 217, READING. RG6 2AH. Telephone (0734) 875123×7142. Please quote Ref: T9129.

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Road, Borehamwood, Herts. WD6 1AA. Fax: 081-207 6375, 0836640328
HT 12 fully 286 compatible: hall size mother board; Intel 286 CPU ; running at $12 / 16$, 20 MHz ; zero wait state; 1 Mb RAM supplied; up to 4Mb. AMI BIOS; set-up disk. New \& boxed. $£ 115+$ VAT $\mathrm{c} / \mathrm{p} £ 6.00$.
$3865 x$ hall slze mother board same as above but expandable to 8 Mb . Now \& boxed Sola mini UPS. 500watt + line conditioner \& Inverter. £95 inc VAT c/p please ring. Chioride Powersale batteries. 12V DC 24 Ah sealed lead acid. £19.95 c/p $£ 9.00$. New, marked cases.
3. $5^{\prime \prime}$ Hoppy disk drive Chinon BBC compatible, new $£ 35 \mathrm{c} / \mathrm{p} £ 4.00$.

Astrolux Mono Headset New $£ 15.95 \mathrm{c} / \mathrm{p} £ 3.50$
Astrolux Headset with brom mic $£ 19.0$
Tekironlx 7403 N Maintrame only $£ 80$
3.5" Hoppy disk drive NEC IBM compatible. Full height unit. £39.95 new \& boxed $1.6 \mathrm{Mb}, \mathrm{CP}$ ¢ $£ 3.00$
Switch mode power supplies 240 V AC input 5V DC 40 amp £29; 12V DC 10 amp £46 $5 V D C 40 \mathrm{amp}-12 V D C 4 \mathrm{amp}+15 \mathrm{VDC} 11 \mathrm{amp}$ \& 48. NEC 9 " mono monitor composite video input, switchable high-low impedance input $\&$ output for dalsy-chaining. BNC sockers. Built-in carry handle. $£ 29.95 \mathrm{c} / \mathrm{p} £ 7.50$. H.P. 4328A millonmmeter $£ 450$ c/p $£ 11.00$.
H. P. 3330 B auto synthesizer $555 \mathrm{c} / \mathrm{p}$ please ring.

Tektronlx 191 constant amplitude sig.gen. $£ 175 \mathrm{c} / \mathrm{p} £ 12.00$,
Tektronix 178 linear IC test fixture $\mathbb{1} 25$
Tektronix $067-502$ standard amplitude calibrator $£ 120 \mathrm{c} / \mathrm{p} £ 12.00$
Leader LBO-5810A dual trace programmable 25MHz o'scope $£ 200 \mathrm{c} / \mathrm{p}$ §18.00

Apple 11 Europlus 875

Apple II E E125 Disk drive extra
Howlett Packard 618 B SHF signal generator $£ 75.00$ Hewletl Packard 6068 signal generator $£ 75.00$. Hewlett Packard 612A UHF signal generator $£ 75.00$. Hewletl Packard 86A personal computer new 895.00 Hewlett Packard 5000A logic state analyser $\mathbf{\varepsilon 6 0 . 0 0}$. Hewlett Packard 3450B multi-funclion meter $\mathbf{\Sigma 6 5 . 0 0}$ Hewlett Packard 693D sweep oscillator $\$ 175.00$
Hewlett Packard 651 test oscillator $\$ 75.00$. Hewlett Packard 9868 VO expander $\mathbf{\Sigma 5 5} .00$. Hewlett Packard 9868 I'O Oxpander £55 Kikusul COS 5040 40MHz O'Scope Calto 1-92 £350 Hitachi V2 1220 MHz O'scope $£ 230$ Hitachi V202F 20 MHz O'scope Calto $1-92$ £230 Tektronix 455 O'scope E 350
Leader Programable 20 MHz O'scope $£ 95$ Tekironix 7870 time base plug-in $£ 100.00$. Tekironix 7001 logic analyser plug-in $£ 100.00$. Singer spectrum analyser 20 Hz to 35 kHz \&275.00 Satron 10304 RMS voltmeter $E 65.00$. Datron 1030 RMS voltmeter $£ 65.00$
Wavetek voltage controlled generator Model III $£ 60.00$ Paratronics Model 532 logic state analyser $32 \mathrm{chn} £ 165.00$ All above prices $+171 / 2 \%$ VAT. Please ring for C / p rates.

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, al types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES
RECTFIERS, THYRISTORS, elc. RESISTORS, CFF, MF, WW, etc. CAPACITORS, SILVERMICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS eec. ELECTROLYTIC CONDENSERS, SPE AKERS, CONNECTING WIRE, CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, ETC ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDINS CAVE

TELEPHONE 081445 0749/445 2713

 R. HENSON LTD21 Lodge Lane, North Finchiey, London N12 8JG. (5 minutes from Tally Ho Corner)

5

COOKE INTERNATIONAL
TELEQUIPMENT D83 Oscilloscopes DC-50 MHz Dual Trace with Delay from $£ 195$ TELEQUIPMENT DM63 Oscilloscopes DC-15 MHz Dual Beam with Analogue
Storage

TEXTRONIX 6548 Storage Oscilloscopes DC- 10 MHz with Plug Ins MARCONI 2210 Oscilloscopes DC-100 MHz Dual Trace Dual Time Base H.P. 180A Oscilloscopes DC-50 MHz Dual Trace with Plug Ins SOLARTRON 4601 Programmable Synth. Signal Generators A.M. F.M. c95 f 350 MUCH MORE AVAILABLE, VISIT, PHONE OR S.A.E. FOR LISTS COOKE INTERNATIONAL
Unit 4 Fordingbridge Site, Main Road, Barnham, Bognor Regis. West Sussex PO22 OEB. TEL. 0243545111

We are always looking to purchase good S/H stoch
FREE .. 7000-item Semiconductor Price List - 50\% Off Many Items. DIAL ELECTRONICS LTD, BURNHOPE RD., WASHINGTON, TYNE \& WEAR NE38 8HZ. Tel: 091.4177003 . Fax: 091-417 7053.

VALVES AND C.R.T.S
 (also Magnetrons, Klystrons, 4CX250/350)
 Minimum order charge of $\mathbf{8 5 0}+$ VAT

Testing to special quality - Military/CV, low microphony etc available on request
BILLINGTON EXPORT
Unit F2, Oakéndene Industrial Estate, Near Horsham, Sussex RH13 8AZ.
Callers by appointment only.
Teiophone: 0403865105 Fax: 0403865106
Min. UK order $\mathbf{\$ 5 0}+$ VAT. Min. Export order $\mathbf{8 5 0}+$ Carriag

SECOND USER EQUIPMENT HUGE SAVINGS ${ }_{\substack{\text { ONRCES }}}^{\text {ON }}$
ATE/TEST ENVIRONMENTAL TEST

GENRAD 2272
MARCONI SOX
MARCONI MIDATA
540 and 530 ATE Systems
ZEHNTEL 3200
Pentormance/Functional Teste
New 1987 .
FACTRON 7760 S
VANWELL 3260
VANWELL 3260

KERRY 300/2HPF

SEMICONDUCTOR

£69,000
£26,500
ACE FS360
Prorammabe Over/Under Temp
Proceraion
MONFORD TSP-X2-E-LN2
H3,000
Ast Citord TSP-X2-E-LN2
为 iemperature speds in excess
of 6 poc per minue
ACE
£5,950
A6E
Noct
 ringway
 SAPRATIN
\qquad
MISCELLANEOUS
KOMAX 30
£3,795
SHIN MEIWA AWS4,
 BLUNDELL

FLOW SOLDER MACHINES
Benchoo nad fres stand Mng Many
$£ 1,900$

K\&S 1419-3

and Closed Cirouit TV SYB
and Close
From

£9,900

8UYERS NEWS Tel: 071-284 4074 (UK) Fax: 071-267 7363 (UK)
145 Camden Street, London NW1 SPF

CIRCLE NO. 130 ON REPLY CARD

GOLLEDGE

CRYSTALS OSCILLATORS FILTERS Comprehensive slocks of standard items. Over OEM support: design advice, prototype quan ities, production schedules. SAE for our latest product information sheets. $\begin{array}{lc}\text { GOLLEDGE ELECTRONICS LTD } & \text { Tel: } 046073718 \\ \text { Mertiont. Somerset. TA1G 5NS } & \text { Fax: } 046076340\end{array}$

ARTICLES WANTED

WANTED

Test equipment, receiver
values, transmitters,
electronic scrap and quantity
Prompt service and cash. M \& BRADIO
86 Bishopgate Sireet. Leeds LS1 4BB. Tel: 0532435649 Fax: 053242688

STEWART OF READING

 110 WYKEHAM ROADREADING, RG6 $1 P \mathrm{~L}$ READING, RG6 1PL TEL: 073468041
FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WINTEII: VAIVES, TRANSISTORS I.Cs (especially types KT66. KT88, PXt. PX25). Also capacitors, antique radios, shop clearance considered. If possible, send written list for offer by return Billington Valves. phone (0103 865105

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438 812193 Mobile: 0860 214302. Fax: 0438812387

CIRCLE NO. 138 ON REPLY CARD

INDEX TO ADVERTISERS

PAGE
21st Century Electronics.. 19
Abracadabra Electronics Ltd 13
AOR (UK) L.td 13
Bamber Electronics........ 19
Billington Valves Ltd......87
Bull Electrical................ 38
Buyers News................. 87
Citadel Products Ltd....OBC
Cricklewood Electronics 61
Dataman Designs......... IFC
Display Electronics 62
Field Electric Ltd 86
Halycon Electronics 7
Henrys Audio Electronics 7
ICE Technology 61

PAGE
ICOM (UK) Ltd............ 61
ILP Electronics 67
Integrex Ltd IBC
IPK Broadcast Systems ... 30
Johns Radio................... 25
Kestral Electronics
Components Ltd......... 32
Keytronics.................... 83
L J Technical Systems L.td 32
Langrex Supplies Ltd...... 30
M\&B Electrical 77
MQP Electronics 68
Matmos Ltd.................. 88
Micro Amps Ltd............. 68
Micro Circuit Engineering 9
Panasonic Technics 11

PAGE
R Henson Ltd 53
Ralfe Electronics 81
Research Communications
Ltd 7
Seetrix 68
Silica Systems.................. 2
Silica Systems................ 22
Smart Communications ... 19
Stewart of Reading......... 86
Surrey Electronics Ltd 53
Talent Computers 30
TELEVISION 13
Those Engineers Lid 32
Tsien L.td 20

France and Belgium: Pierre Mussard. 18-20 Place de la Madeleıne, Parıs 75008
United States of America: Jay Fenman, Reed Business Lid.. 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827

Printed in Great Britain by Riverside Press. Gillingham, Kent, and typeset by Marlin Graphics, Sidcup. Kent DA14 5DT, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sution, Surrey SM2 5AS. © Reed Publishing Lid 1991. Electronics and Wireless World can be obtained from the following: AUSTRALIA and NEW ZEALAND Gordon \& Gotch Ltd, INDIA:A.1T. Wheeler \& Co, WANADA: Sons IS.A Ltd.; UNITED STATES: Worldwide Media Services Inc.. 115 East 23rd Street, NEW YORK, N. Y. 10010. USA. Electrorics \& Wireless World \$5.95 (74513).

COLOURIT 1 E2 COLOUR INK JET PRINTER

Compatible with:IBM pc Archimedes Nimbus BBC Micro Amiga Apple Mac (serial version)

EMULATES OTHER COLOUR PRINTERS EG IEM 3852, Caron PJ1080A, Quadjet PRINTS OVERHEAD TRANSPARENCIES

5
EDUCATIONAL DISCOUNTS AVALIẢBLE
INTEGREX LTD., CHURCH GRESLEY, SW'ADL NCCTE
DERBYS DE119PT
CIRCLENO. 102 ON REPLY CARD

IC PROGRAMMING TESTING \& ERASING SOLUTIONS

PC82 UNIVERSAL PROGRAMMER \& TESTER £395

Universal programmer. The complete designer's kit. This will program EPROMS, EEROMS, BPROMS, PALS, GALS, EPLD's, 28 and $87 X X$ microprocessors. A unique feature is the testing of logic parts such as 74LS393 etc. Software is supplied to write vectors for most unique chips. One of the most popular programmers in the USA.

TTL, CMOS, DRAM \& SRAM TESTING

PC82 can test and verify any TTL/CMOS logic chip, DRAM \& SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

DEVICE GUIDE

Over 1500 types are now covered, with many more to be added shortly. Some require an adapter
EPROM - Full range of $8 / 16$ bit wide types from 16 k to 16 mBit .2716 to THA 16 PO 100 FLASH EPROM - Full range of AMD \& Intel types. 28 FXX ranges.
EPROM - 17 manufacturers full range of types from AMD to Xicor. 2816 etc SERIAL EEPROM - 12 manufacturers full range of types. 9306/46 etc BPROM 32×8 to 4096×8, incl. 63 S080, $7 \mathrm{C} 28 \mathrm{X}, 29 \mathrm{X}$ etc
PAL - 18 manufacturers including Altera, Amd, AMI, Atmel, etc. GAL 16V8,18P8,20V8,20RA10,22V10,26V12,26CV12,6001
EPLD 20G $10,22 \mathrm{~V} 10$, EP310/320/600/610/900/910/5C031/32/60/90
CMOS EPAL C16L8,R8,R6,R4,C18V8,C20G10,L8,R8,R6,R4, C22V10
MPU Z8,8741,41,44,49,50,51,95,96,97,98,C51,C52,54,58,75,196,252,451,521,528,552, $528,652654,751,752,63705,68701,705,68 \mathrm{HC} 705,711,4074008$ series 77P008,25,108, 116,PSD301, PIC16C54,55,56,57

ADAPTERS FOR PC82 FROM $£ 95$
A wide range of plug-in adapters to expand the capability of the PC82. Various PLCC convertors \& 4 gang 28/32/ 40 pin Eprom, Gal \& Pal. Popular CPU types include PIC 16C54/5/6/7, 8796/7, 68705, 87C751/2, \& TMS320E25.

FEATURES ALL MODELS

For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips.

EASY TO INSTALL

The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

SUITS ALL PC's

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPAQ the programmers will work. The software is text only monographic so is compatible with any machine.

SOFTWARE DRIVEN

All software for the programmers is supplied on $51 / 4^{\prime \prime}$ low-density disks. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu-driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically. Free software updates for new types which are continually being added.
The menu-driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verify, read and modify are all standard features. Hex to bin file conversions included for popular file formats including Intel Motorola etc. 2 ways/4 ways bin file splitter for $16 / 32$ bit file data. Selection of speed algorithm for FAST, INTELLIGENT, INTEL, etc.

PC86 HANDY POCKET TESTER $£ 99$
Tests all popular TTL 74/54, CMOS $40 /$ 45 \& DRAM types, can search and display type number of unknown/house marked types. Simple operation. 9 volt battery operated with LCD display.

M1 FAST ERASER 999

NO MORE WAITING FOR EPROMs TO ERASE. New advanced UV source gives under 2 minute erasure time on most types of modern EPROM. Digital down counter \& display plus added features for simple operation in use. Large capacity e.g. 13×28 pin devices. Small footprin:. Designed for heavy industrial/workshop use. UK design \& manufacture.

PC84 EPROM PROGRAMMERS 1-GANG £139, 4-GANG £199 \& 8-GANG £299

PC84-1, -4, -8 Eprom programmers only. The variant is only gang size. The - 4 and -8 gang will program multiple EPROMs simultaneously. Device are from 2716 to 271000 both C and NMOS \& EEPROM from 2816 to 2864. ZIF (zero insertion force) sockets are used on all models

ORDER INFORMATION

Please include $£ 7$ for carriage by courier, plus VAT on all UK orders. ($£ 20$ for exports.) All pricing for programmers includes sotware, interface card. socket box and full instructions. (Prices do not include VAT or carriage). ACCESS, VISA or CWO. Official orders weicome from Government bodies \& local authorities.

CITADEL PRODUCTS LTD
Dept. WW, 50 High St, Edgware, Middx. HA8'7EP Tel: 081-951 1848

[^0]: Elecfronics Worid + Wireless World is published monthly By post, current issue $£ 2.25$, back issues (if avalable) $£ 2.50$ Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Ouadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reod Business Quadrant, Sutton
 Publishing Group.
 Publishing Group.
 Newstrade: IPC Marketiorce, 071 261-6745.
 Newstrade: IPC Marketforce, 071261.6745.
 Subscriptions: Quadrant Subscription Services, Oaklield House, Perrymounl Road, Haywards Heath, Sussex RH16 3D Telephone 0444441212 . Please notity a change of address. Subscription rates 1 year (normal rate) £30 UK and £35 outside UK.
 USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions orice, 205 E. 42 nd Street, NY 10117
 Overseas advertising agents: France and Belgium; Pierre Mussard, 18-20 Place de la Madeleine,Paris 75008. United States of America: Ray Barnes, Reed Business Publıshing Ltd, 205 E. 42 nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

 USA malling agents: Mercury Airfeight International Ltd Inc, 10 (b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid
 at Rahway NJ Postmaster. Send address changes to above.
 (c)Reed Business Publishing Lid 1992 ISSN 0266-3244

[^1]: Version 4.05 comes as a set of three 1.2 MB 5.25 in disks and requires a PC/AT fitted with a hard disk to run. Although limited in the number of nodes available, this version will run useful circuit models.
 Semiconductor company Zetex is supplying a fourth disk with the set containing transistor models of its products for use with the package.
 To get your three plus one disk set, cut out the software token from this page

[^2]: (photocopies are not acceptable) and return it together with your name and address (clearly written please) to:

 Electronics World software offer ARS Microsystems
 Herriard Business Centre
 Alton Road
 Basingstoke
 Hants RG25 2PN
 This offer applies to UK readers only

[^3]: Continued over page

[^4]: *These straightforward conditions apply:
 The goods must be returned within seven days of receipt. The goods must be returned in their original packing.
 The goods must not be tampered with in any way. The goods must be returned in the condition they were received.

[^5]: EC Forster's direct-conversion synchronous receiver for AM or reduced-carrier SSB broadcast transmissions.

