

HYPOTHESIS

Omni-Pro II - The Next Generation

When you get a new product, what are your main concerns? Freedom from frustration is certainly one important consideration, for your time is valuable. You will want a product which is reliable and sophisticated, yet simple to use, with clearly written documentation. You will be looking for a high standard of technical support and regular upgrades for the product.
We at Dataman recognise how difficult it can be to choose between programmers which look and cost much the same. So, instead, why not concentrate your effort into choosing a reliable vendor. Dataman has been the leading vendor of low-cost programmers for as long as the
market has existed. Any of our customers will tell you that Dataman has always supplied excellent

> well-supported products.

That's why we're still here! We take technical support seriously. We give you your money back, if you're not satisfied. These are important points to consider. But now let's take a look at some of the special benefits of owning Omni-Pro II.

What Benefits?

Well, for instance, the interface is not via the computer's parallel port, which is speed-limited, and probably connected to your printer. A dedicated plug-in half card performs fast data transfers.
The software is a professional package in full colour that will run in only 400 K of RAM. What's more it will run on any PC/AT or compatible - even the latest 486 machines. That's because Omni-Pro II has its own independent clock - some programmers rely on the computer for timing, and won't work with faster machines.
Ground pins are connected by relays not by logic outputs. Some vendors won't approve programmers which don't ground pins in this way.
The 40 -pin Textool socket can be changed without even having to remove the cover. A complete range of PLCC adapters is available.

Truly Universal

Omni-Pro II has universal pin-drivers which will accommodate a very wide selection of parts. You can program BIPOLARS, PROMS, E/EEPROMS, PALS, GALS, FPLAS, PEELS, E/EEPLDS and MICROCONTROLLERS. The latest FLASH EPROMS are supported too. The list has 1250 devices already and substantial numbers of new devices will be added FREE every quarter. We have optimised programming speeds, using algorithms like Quickpulse, Flashrite and TI Snap and have already gained parts approval from TI, NS and ICT. We provide fast downloading of files in any standard format: Intel Hex, Motorola, Tek Hex, HP64000ABS or Binary. You can also send JEDEC files from all popular PLD compilers and JEDEC standard vector testing is supported: a full array of test condition codes can be generated.

> Remember - you get a 30 day money-back guarantee, FREE quarterly software updates and FREE technical support - as much as you need. Phone now for a free Demo Disk and up-to-date Device-List.
> Omni-Pro II comes with a FREE copy of NS's superb Open Programmable Architecture Language - OPAL Junior.
Omni-Pro II - complete
$£ 495$
Gang-of-eight Programmer..... $£ 395$ This production programmer from Dataman can handle all 25 and 27 pin EPROMs up to 512 K bits. Programs eight copies from a master EPROM, cr from an object file. The G8 offers fast programming methods and three, user-selectable programming voltages. G8 is clearly designed for the busy workshop being supplied, as standard, in a high quality steel case.

Software Development from £195
Dataman's Software Development Environment, SDE, comprises a two-window Editor, Macro Assembler, Linker, Librarian, Serial Comms and intelligent Make facility. The latter reassembles selectively just those files you have edited, links them and downloads the object-code to your Emulator or Programmer. It's quick and painless. If the assembler finds a mistake it puts you back in the Editor at the right place to fix it.
The Multi-Processor version supports all common micros - please ask for list. The Disassembler makes source files out of object code - from a ROM, for example. SDE is not copy-protected.
SDE Multi-processors \& Disassemblers..........£695 SDE Multi-processors (includes 82 micros) 395 SDE Single-processor.
£195

OPAL from NS

 $\Sigma 297$Are you looking for a PLD design tool? Then OPAL could be just what you need. It supports state machine, truth table and Boolean equation entry, also optimisation, verification and implementation, for a great many PLDs.

Erase an EPROM in ten seconds!

Simply hold the gun right over the EPROM's window and squeeze the trigger. The strobe eraser puts out intense UV light at the right wavelength $(253.7 \mathrm{~nm})$. Erase EPROMS on the bench, in the PCB or in the programmer.

Strobe Eraser.
.$£ 175$

UK customers please add VAT. Major credit cards accepted. UK delivery available next working day.

CIRCLE NO. 101 ON REPIY CARD

DdThan ©

Station Road, MAIDEN NEWTON, Dorset DT2 0AE, England
Phon
0300-20719
Fax.
$0300-21012$
Telex
.418442
Bulletin Board...............0300-21095
(300/1200/2400/9600 V. 32)

CONTENTS

> SCRATCHING THE SURFACE OF E-M THEORY . 1032 Could the electrons and holes of solid state physics provide a better modzl of electromagnetism? Julian Millar describes his kinetic theory of electromagnetism

DESIGNING DIGITS INTO
 AUDIO EQUALISATION
 998
 Studios now look to digital audio processing for even the most basic sound manipulation. Bill Hardman describes the design process for a third octave graphic equaliser.

SELF OSCILLATING POWER CONVERSION 1005
David Bradbury explains the design methodology behind single transistor inverters and makes use of the ZTX653 supplied with UK copies of $E W+W W$.

SCHEMA AND iPLS:
A MARRIAGE OF CONVENIENCE? \qquad .1010

UNLEASH THE GRAPHIC

POTENTIAL OF YOUR PC
1015
Data in graphical form is far more appealing than dull tables. Allen Brown finds Graftool opens up new 3-D vistas for the PC.

BIRTHDAY CHALLENGE

1021So you think you know a thing or two about valves. Try your hand at our birthday comperition and you might change your mind

MEASURING DETECTORS

lan Hickman discusses pros and cons of various fast response, large dynamic range circuit designs for RF level measurements.

UPDATE SPECIAL
US to reject teletext. asks Barry Fox.

RUGGED RECEIVER

WITH AN EDGE. . 1046
Tim Stanley tests Lowe's HF receiver and finds it not only good value for money, but also a cut above the average.

REGULARS

COMMENT 987
UPDATE 988

US television dialling in to BT's numbers? PC on a chip.
Will interactive video electrify the consumer? Poserphones for the masses.

RESEARCH NOTES

Non-stick molecules for tomorrow's electronics; How to keep a quantum secret: First stable non-metallic magne:
Flying robot challenge; Bright future for silicon.

LETTERS

Ifs and buts; Shifted opinion; Nuclear response: Why antennas work - and the CFA won t: Power line resonance... and vibrating bodies: Old valve... nol suitable: Ether or no; Fluxgate equation; c nor constant.

APPLICATIONS 1042
Medium-wave/VHF frequency synthesiser: Shock alarm:
Low-cost speech synthesis.

CIRCUIT IDEAS

 1051Divide by 2.5; Busy line indicator: High-res A-to-D using low-res converters; Continuous on/off timer switch;
Simple but versatile timer: Adjusting differential amplifier gain: Dual-speed DC motor controller.

- NEW PRODUCTS.
$E W+W W$'s round-up of all that's new in electronics.

CIRCUITS, SYSTEMS AND DESIGNS \qquad .1062
IF chip forms audio decibel-level detector: Three-rail power supply uses four diodes: Cmos circuit always oscillates.

HISTORY: BRIDGING THE ATLANTIC

\qquad .1066
Ninely years ago this month Guglielmo Marconi carried out the first transatlantic wireless transmission. Peter Willis puts the words to a pictorial record.

In next months issue: Don't lose your way in circuit design. Following on from the fluxgate magnetometry article in the September issue, Richard Noble extends the design process to a high accuracy electronic compass.

ELECTRONICS WORLD SOFTWARE DISCOUNT SCHEME

Get 25\% discount on Labcenter electronic design software.
Schematic: Isis SuperSketch, Isis Designer PCB layout: PCB II, Ares, Ares Autoroute

Simply call Labcenter Electronics on 0274-542868 for a current price list, and then send in your order and remittance less 25% together with the tokens from October, November and this issue to Labcenter Electronics, 14 Marriners Drive, Bradford BD9 4JT.

〔1 Down!-a tax efficient innovation from Digitask If you are a limited company or one-man business your repayments are ax deducilble business expenses.

Personal customers can have a Personal Loan Advance for only f1 Down! (APR\% on request)

A)XIOM sYSTEMS

MODEL	HARD DISK	RAM	PRICE
AXIOM $286 / 20 \mathrm{MHz}$	40 Mb	2Mb	$£ 829$
AXIOM $3865 \times / 20 \mathrm{MHz}$	40 Mb	$\mathbf{2 M b}$	$£ 995$
AXIOM $386 / 25 \mathrm{MHz}$	90 Mb	4 Mb	$£ 1337$
AXIOM $386 / 33 \mathrm{MHz} / 64 \mathrm{c}$	90 Mb	4 Mb	$£ 1487$
AXIOM $386 / 40 \mathrm{MHz} / 428 \mathrm{c}$	90 Mb	4 Mb	$£ 1647$
AXIOM $486 / 33 \mathrm{MHz/256c}$	90 Mb	4 Mb	$£ 1945$

AXIOM SYSTEMS FROM DICITASK

Axiom Systems are manufactured by Digitask from the best quality components available - and fully slopported by our qualified technical support team. All the desk top sytems quoted include:

SVGA 1024×768 colour VGA adaptor
14" colour monitor
Fast access IDE type Hard Drives
Dual 3.5" (1.44 Mb) \& 5.25 " (1.2 Mb) floppy drives

102 key extended keyboard and your choice of Desktop, Tower or Slimline case

When you buy any Axiom System you can choose between MS-DOS 5 or a second year's On-site
Maintenance. Another valuable choice from Digitask helping you make the most of your budget.

Digitask Business Systems Limited, Unit 2, Gatwick Metro Centre,
Balcombe Road, Horley, Surrey RH6 9YH

Иर्य FAX OR POST THIS COUPON FOR DETAILS OF $£ 1$ DOWN!

1 YEAR WARRANTY ON ALL PRODUCTS (regardless of manufacturers' terms) PRE-SALE CONSULTANCY POST-SALE TECHNICAL SUPPORT

DIGITASK CUSTOMER CARE INCLUDES: £1 DOWN! - FOR BUSINESS

 £1 DOWN! - PERSONAL LOAN ADVANCE 21 DAY MONEY-BACK GUARANTEE* SWAP-OUT WARRANTY* 1 YEAR ON-SITE MAINTENANCE (extendable to 3 years for only $£ 40$)
EDITOR

Frank Ogden
081-661 3128

DEPUTY EDITOR
Jonathan Campbell 081-6618638

DESIGN \& PRODUCTION

 Alan KerrEDITORIAL ADMINISTRATION
Lindsey Gardner
081-661 3614
ADVERTISEMENT MANAGER
Jan Thorpe
081-661 3130
DISPLAY SALES MANAGER
Shona Finnie
081-661 8640
ADVERTISING ADMINISTRATION
Kathy Lambart
081-661 3139

ADVERTISING PRODUCTION

Shirley Lawrence
081-661 8659
PUBLISHER
Robert Marcus
08I-661 3930
FACSIMILE
081-661 8956

Space for the dreamers

Ahighly speculative hypothesis on electromagnetism might seem an odd choice for our cover subject. When you commence reading Dr Julian Millar's article, you might well decide that his arguments are decidedly odd, full stop.
I make no apologies even though I personally take issue with a number of points. At the centre of Dr Millar's argument is an assertion that the common place effects of electromagnetics - attraction, repulsion, induction and remanence could be better attributed to bulk effects of electrons and holes moving dynamically within a body. He suggests that these exchange energy at the external surface boundary with as yet uncharacterised particles. Rather self-consciously, he calls these phaeons.
Mirroring the holes and electrons of conventional solid-state physics, Dr Millar hypothesises that energy exchange at the surface gives rise to n and p-phaeons. Looking very much like photons, these particles, he suggests, have direction and spin and are thus capable of producing/inducing a polarised force - and charge - at a distance.
A conventional physicist immediately says "but holes move about too slowly to fit the description". Dr Millar ingeniously brings in Lorentz compression to argue that it is the relative velocity of holes and electrons
which is important, not their absolute values.
He even finds a place for permanent magnets in his scheme of things although at this point, he admits, the whole thing becomes "highly speculative". An understatement if ever I heard one.
Conventional physics has yet to separate Millar's ubiquitous phaeons. But against this, physicists can't adequately describe gravity.
I subsequently applied Occam's Razor to the Millar hypothesis to decide that his explanation was far too convoluted to be the most likely explanation of observed facts.
It took a subsequent conversation with a physicist friend to remind me that conventional science is paradoxical. Astrophysicists currently maintain that spinning neutron stars emit electromagnetic radiation. Now every schoolboy knows that neutrons are uncharged particles. How can it be that great lumps of uncharged spinning matter radiate energy? Of course they can't unless there is a unification theory waiting to be discovered.
Well considered ideas deserve an airing, even though unlikely at face value. You can't predict where they may lead although the overwhelming odds are a dead end.
I wish Dr Millar and all the other dreamers the best of luck.
Frank Ogden

[^0]
REGULARS

UPDATE

Will interactive video electrify the consumer?

Confounding gloomy predictions of missed dates. Philips launched a domestic CD-I player in North America in October, exactly as promised.
The launch on time confirms that a great deal has changed inside Philips over recent years, following the arrival of new supremo Jan Timmer.
It was Timmer who ten years ago, when he was head of Philips" subsidiary record company Polygram, convinced the industry to adopt CD. Timmer has since then been preaching the gospel of DCC, the digital compact cassette. That too looks like being a winner when launched next year.
The official launch of CD-I in the USA was a neat blend of show biz hype and serious business talk. The general consensus of opinion was that Philips was giving CD-I its best shot. Significantly, the Japanese who are supposed to be backing CD-I. Sony and Matsushita, were not in on the launch. True to form they are sitting back and watching
how Philips fares. This is exactly how the Japanese cleaned up on the video market over ten years ago.
Bul Philips under Timmer is a very different company. The Dutch will not be handing the interactive CD market to Japan on a silver platter. For one thing. most of the CD-I software available has been developed by Philips subsidiary company. PIMA. Philps Interactive Media of America. formerly known as American Interactive Media.
Even if the Japanese undercut Philips on CD-l hardware, by leaving Philips to spend over $£ 20$ million on advertising to open up the market, Philips will still make money out of the software discs.
Although no-one says it, everyone knows that the American launch is a test bed. The challenge is in getting the public interested in a completely new concept.
"But we need all our marketing flair, all our imagination to get the public to accept

this new medium", says Timmer. "We have to devise ways and means of making people aware of what CD-I offers. You cannot describe interactive multimedia on paper".
"It's like trying to describe the smell of a rose to someone whom has never smelled one", says Gordon Stulberg, head of PIMA.
The player will sell for around $\$ 800$ a time. The launch catalogue has around 30 titles, costing between $\$ 20$ and $\$ 50$. PIMA promises more than fifty titles by the end of this year and over one hundred by mid-1992.
In mlany respects Philips’ publicity
campaign for CD-I in the US press parallels the publicity which Commodore used for its rival and incompatible interactive video system. CDTV, earlier this year.
"The inventor of CD technology presents a whole new way of looking at television". trumpets Philips.
"Honey, turn on the TV. I'm trying to think", said Commodore of CDTV
But Commodore failed to follow through. It would be hard to find anyone outside the industry who even knows what CDTV is. let alone what it can do. Commodore in the UK promises that it has learned from mistakes and will now be getting better software and more players into the market with a coherent policy on demonstrations. But we heard this before, at the CDTV launch, when Commodore people brazenly promised players and software that just weren't ready. This kind of behaviour may get by in the computer industry, where they laugh about "vapourware". but the consumer electronics industry has much higher expectations of truth.

Kiss of death for CDTV?

Even if the latest promises from Commodore are true, it may already be too late for CDTV. When asked about CDTV at an Oxford Street branch of Dixons recently. the staff said "Yes, we have them in stock, but they are not on demonstration".
Putting the audience in the picture. Potential punters, like these at the Ideal Home Show, have yet to grasp the importance of interactive video

This smells like the kiss of death from the UK electronics goods chainstore, who are well known for dumping any product that does not sell. They just pile it high at half price or less. Dixons game plan may well be to get CDTV out of the way in time for the CD-I launch in Europe next year. The less noise they make about CDTV. the less confusion there will be when CD-I appears. Just about everyone in the interactive CD business recognises that there is no point in even trying to tell the public that a five inch disc can store 650 megabytes of digital data. and the player can unravel a mix of 250,000 pages of text. 7000 photographic quality still pictures. 19 hours of sound, cartoon animation and even moving video.
This is computer industry talk. Says Gordon Stulberg. "the computer industry has got it wrong. over and over and over again. They have addressed their products to the business community, not the consumer".
The only way to sell interactive multimedia to the consumer, is to give the public a hands-on opportunity to find out for themselves what it offers. Learning from Commodore's mistakes Philips is launching CD-I in a 1000 retail outlets across the USA. with a hands-on demonstration kiosk in each shop. The kiosk has a CD-I player, iv screen and remote control. Philips claims that it is training 2500 shop staff to help customers use these kiosks and will spend over $\$ 20$ million over the next year on advertising to bring customers into the shops and within reach of a demo kiosk.
The CD-I player will also play audio dises and the dises for the Photo CD system which Kodak will launch next year. Timmer stresses the importance of this because of the limited space people now have for yet more electronic equipment.
Again with a nod to Commodore's mistakes, the CD-I player does not require the disc to be loaded in a protective caddy before it plays. The Commodore CDTV player will only play dises in a caddy. Caddies are hard to find in theshops and cost almost as much as an audio CD.
All round there are encouraging signs that Philips has thought CD-I through as well as DCC. But whereas DCC can record, CD-I is a playback-only medium wholly dependent on the availability of software which people want to buy.
This is why Philips has spent five years priming the pump with the development of software, liest by AIM (American Interactive Multimedia) and now with PIMA.
The CD-I launch titles include material which is well-known to the industry
(Treasures of the Smithsonian Museum, a Sesame Street childrens' program, The Time-Life photography notor, which lets people see the effect of snapshots taken with different exposures, without using any film. and the Palm Springs Open Golf
Tournament, which lets users challenge professionals to a round of golf). But for the world at large it is a whole new world.
The problem is that although all of this software appeals to someone, none of it appeals to everyone.

Putting the wheels in motion

The Imagination Machine (Philips selfproclaimed name for CD-I in the US) does not yet have full motion video but it is upgradeable. And Philips pledges that when CD-I is launched in Europe next year it will have FMV from day one. Already PIMA is working on a litle which tells a story with
alternative middles and endings.
Once people have bought CD-I players to play an irresistible gane, they will be a sitting target for more serious software, like visual coffee table encyclopedias, and spinoff applications such as photo CD.
Jan Timmer is right when he says that everyone who thinks about CD-1 immediately thinks of some piece of soltware they would love to see and use. Some want to use CD-I to help them mend a broken car. others want to use as an aid for dress-making. The branched choices and visual displays would make it the ideal aid for identifying plants or edible fungi. All round, the opportunities for the soliware industry are obvious.
But first the public at large must embrace the idea of CD-I. The US launch will give the first real pointers on how long this will lake. Barry Fox.

Low-cost poserphone plan

Vodafone pians a new low-cost, urbanbased portable service aimed at the consumer market in Spring 1993.
Calls to the fixed network will cost 1Op per minute for local calls originating in a subscriber's home town. 15 p per minute for local calls originating in other urban areas and 20 p per minute for national calls.
Subscribers will also pay a one-time $£ 30$ connection charge and a $£ 20$ monthly subscription charge. Vodafone hopes that portable telephones will be available for less than $£ 2(0)$
The company plans to introduce the service, known as Vodafone MCN iMicro Cellular Network) into London and towns and citics in the South East of England, and then roll-out to cover the Midlands. North England and Scotland. A third and linal rollout phase will cover the West and South of England. Northern Ireland and any remaining towns by early 1995.
MCN will be based on the GSM (Groupe Special Mobile) pan-European standard.
To access the national and pan-European GSM services. MCN subscribers will need to plug their handsets into a power hoosting car adaptor. They will be able to make calls while travelling outside of the MCN service coverage area and will be charged a premium call rate.
The company believes that this approach could be implemented in all GSM systems throughout Europe and so provide the platform for a Europe-wide business and consumer mobile phone market.

Planned coverage map for the UK's GSM mobile phone network.

GSM uses digital audio technology and embodies advanced network features. It is expected to become the standard for cellular radio for the next 20 years. Vodafone MCN will be based on frequencies in the 900 MHz . band.
Vodafone currently has a 56 per cent share of the UK mobile telephone market.

US television dialling in to BT's numbers?

Britain's cable television companies are about to prove that BT's dominance of the nation's local telephone services may not be impregnable.
Untouched by five years of competition from rival Mercury Communications, BT's virtual monopoly over Britain's 20 million residential telephone lines may be about to face its biggest challenge.
North American backed cable television companies are preparing to take on the giant which the Government and Mercury sense is the best and possibly last chance to attack their old adversary in its stronghold.
Peter Lilley. Trade and Industry Secretary,

Will she be disconnected if the US cablevision companies offer a real challenge to BT's domestic phone monopoly?
Subscribers will soon able to hook their phones into into the networks used for cable TV
told executives from the UK's 28 cable companies at a recent meeting in London that the Government no longer distinguishes between their cable TV and telephony services.
In addition to cable TV services, Lilley
said all franchises must make clear their plans to offer local telephone services. And this time he means business.
Any cable companies which have not applied for a telecommunications service licence by the end of January next year risk losing their franchise. "I'll challenge these holders to show evidence of action or make way for others." Lilley warned.
But Lilley is pushing at an open door. Many of the most aggressive cable companies, financed by US telephone operators, have already connected up 16,000 UK telephone subscribers and growth is booming at a rate of 3000 a month.
Over half of the UK's 132 cable franchises are controlled by six cable operators. By far the largest stake holders are the US "baby Bell" telephone operators and North American cable companies: they are drawing up plans to carve up shares of the UK's 20 m residential telephone users.

Engaged tone for Mercury

Those plans have started to take shape in the last few weeks with the active involvement of Mercury Communications. Mercury, the UK's second public telephone operator can provide the long distance and international telephone connections the cable companies need for their services.
But Mercury needs the cable companies as much as they need it. Currently Mercury is connecting between five and ten thousand residential customers a month. At that rate it will be 20 years before it has 2 million subscribers or 10 per cent of BT's residential business.
The cable companies are already connecting over 3000 new customers a month to Mercury's network, and according to Andrew Sangster, general manager of Mercury's business with the cable companies, that figure is growing rapidly: "In the last four weeks cable companies have connected as many telephone customers as they did in the whole of last year." says Sangster.
There is a new force in the local telephone market and Mercury intends to take advantage of it. Last week the company signed an interconnect agreement with multiple cable franchise holder Videotron. This, at a stroke, gives Mercury access to a potential 1.1 million new customers in London and Southampton.
This follows a similar interconnect deal with baby Bell US West last year which has interests in a large number of franchises
covering 2.4 million potential telephone users.
Mercury is doing more than offering the cable companies exchange lines. According to Sangster Mercury is putting "many millions of pounds" into these cable franchises to promote the telephone services.
The national operator has no plans to take equity stakes in any of these franchises itself but it is working closely with key cable owners such as Videotron, US West and Nynex to increase their cable interests. "We want the telephony expertise spread across a number of franchises." said Sangster.
The creation of large groups controlling a number of important franchise areas is changing the odds in the cable telephony business. Mercury recognises this and so does Sir Bryan Carsberg, director general of Oftel, the UK's telecomms industry regulator.
In future, says Sir Bryan he will more sympathetic to the needs of multiple cable franchise holders trying to build networks in a number of areas.
Sir Bryan is confident that the cable companies are about to mount the long awaited challenge to BT 's local monopoly. "I am confident it's starting to happen now" he told the cable companies last week.
BT could be wrong-footed by the growth in cable telephony. Its original interests in ten UK cable franchises were allowed to dwindle in the run up to last year's duopoly review. But the operator's plan to bully Oftel into allowing it to carry TV programmes on its telephone network backfired.
It will be at least 1998 before it will be allowed to carry TV services in competition to the cable companies. In the meantime its local telephone market will be whitled away by half a dozen cash-rich US operators. BT will be most alarmed by the new coordinated approach to the UK market orchestrated by its rival Mercury.
The industry believes BT could regret its policy of getting out of cable. "When you think that the (other) operators are chipping away from the roots of the tree, it was a very bad mistake." comments Chris Quinlan. marketing director of cable systems supplier Cabletime.
No one in the cable industry has any illusions about the difficulty of smiting the BT giant on its home ground. Only now they believe they can win.

Richard Wilson,

Electronics Weekly.

£1 BARGAIN PACKS

In fact, cheaper than $£ 1$ because if you buy 10 you can choose

and recive it tree.

5 13A spurs provide a fused outlet to a ring main where devices such as a clock must not be switched off. Order Ref. 2.
4 In fiex switches with neon on/off lights, saves leaving things switched on. Order Ret. 7
2 6V IA mains transformers upright mounting with fixing clamps. Order Ref. 9.
1 6/2in speaker cabinet ideal for ertensions, takes our 61/2in speaker. Order Ref. 11
1230 watt reed switches, it's surprising what you can make with these - burglar alarms, secret switches, relay, etc. Order Ref. 13. 225 watt loudspeakers two unit crossovers. Ordet Rei. 22.
2 Nicad constant current chargers adapt to charge almost any nicad battery. Order Ref. 30
2 Humidity switches, as the air becomes damper the membrane
stretches and operates a microswitch. Order Ref. 32.
5 13A rocker switch three tags so on/off, or change over with
centre off. Order Ref. 42
124 hr time switch, ex-Electricity Board, automatically adjust for lengthening and shortening day. Original cost $£ 40$ each. Order Ret 45.

1 Mini uniselector, one use is for an electric igsaw puzle, we give circuit diagram for this. One pulse into motor moves switch through one pole. Order Ref. 56.
2 Flat solenoids - you could make your multi-tester read AC amps with this. Order Ref. 79.
1 Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks. Order Ret. 67.
1 Mains operated motors with gearbox. Final speed $16 \mathrm{rpm}, 2$ watt rated. Order Ref. 91.
16 V 750 mA power supply, nicely cased with mains input and 6 V output leads. Order Ref. 103 A .
2 Stripper boards, each contains a 400V 2A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ret. 120.
10 m Iwin screened flex with white pvc cover. Order Ret. 122 12 Yery fine drills for pcb boards etc. Normal cost about 80p each Order Ret. 128.
2 Plastic boxes approx 3in cube with square hole through top so ideal for interupted beam switch etc. Order Ref. 132.
5 Motors tor model aeroplanes, spin to start so needs no switch. Order Ret. 134.
6 Microphone inserts - magnetic 400 ohm also act as speakers. Order Ret. 139
4 Reed relay kits. you get 16 reed switches and 4 coil sets with notes on making c/o relays and other gadgets. Order Ref. 148. 6 Satety cover for $13 A$ sockets - prevent those inquisitive little fingers from getting nasty shocks. Order Ref. 149
6 Meon indicators in panel mounting holders with lens. Order Ret. 180.

1 in flex simmerstal - keeps your soldering iron elc. always at the ready. Order Ret. 196.
1 Mans solenoid. very powerful as $1 / 2$ in pull or could push if modified. Order Ref. 199.
10 Keytoard switches - made for computers but have many other applications. Order Ref. 201.
1 Electric clock, mains operated, put this in a box and you need never be late. Order Ret. 211
412 V alarms, make a noise about as loud as a car horn. All brand new. Order Ret. 221
2 in \times 4in speakers. 4 ohm made from Radiomobile so veng good quality. Order Ref. 242
2 in x din speakers. 16 ohm 5 watts so can be joined in parallel to make a high wattage column. Order Ref. 243.
1 Panostat, controls output of boiling ring from simmer up to boil. Order Ret. 252.
50 Leads with push-on Yiain tags - a must tor hook ups - mains connections etc. Order Ref. 259.
2 Oblong push switches for bell or chimes, these can switch mains up to 5 amps so could be toot switch if fitted into pattress. Order Ret. 263.
1 Mini I watt amp for record player attached to unit that will also change speed of record player motor. Order Ref. 268.
3 mild steel boxes approx $\operatorname{3in} \times \operatorname{3in} \times$ lin deep - standard electrical, Order Ret. 283.
50 mixed silicon diodes. Order Ref. 293
16 digit mains operated counter, standard size but counts in even numbers. Order Ret. 28.
1 in -fight steree unit. Has 2 most useful mini moving coil speakers. Ex BOAC. Order Ref. 29.
26 V operated reed relays, one normally on, other normally closed. Order Ret. 48.
Plug in relays with 3 changeover contacts. Coil operated by 12 V DC or 24 V AC. Order Ret. 50
112 V pcb mounting relay. 2 changeover. Order Ref. ??
1 Cabinet lock with 2 keys. Order Ret. 55
4 Dolls house swilches or use them for any other low voltage application. Order Ret. 57
1 Magnetic brake for stopping a motor or rotating tool. Order Ref. 66.

1 Time reminder. Set it for anything up to 60 minutes. Order Ret
1 Shaded pole mains motor. $3 /$ in stack so quite powerful. Order Ret 85.
2 Sin aluminium fan blades. Could be fitted to the above motor. Order Ret. ??

RESISTORS TEM A PEMWY and they are too class 5% carbon foil types that you take a full reet, which is 3000 on a bandolier. You specity the value you want but please say it you can accept a near value as. although we have a very wide range, we do not have every value. Over a million in stock and if you will buy 50 reess or more you can have them $1 £ 2$ a bandolier but please come to our store, pich them out yourself. LTHIUM BATTERIES 3.Sv penlight size, 2 mounted on o.c.b. with diodes. other bits. Lithum batteries as you may know are virtually everlasting similar devices that do not draw current but do rely on it atways beine vailable. 4 panels that is 8 batteries altogether $£ 2$. order ref $2 P 258 B$ POWER SUPPIY WITM EXTR ES output 12v lamp mans ind is fused and filtered and 12 v output is voltage regulated, very well made on p.C.D and also mounted on the board but easily removed are two 12 v relays and a Prezosounder. Made for expensive equipment but never installed,
rice $£ 3$ order ret. 3 P80
12 YOLT 1.9 AMP-MOUR rechargeable battery by Jap YUASHA brand new, charged ready for use $£ 6.50$ each. Solar charger to house this and heed Iready $£ 29.50$
100 wart mams tramsformers all normal primaries. 20-C-20 wolt 2 ha 30 volt $31 / 2 A$, 4Ovoh $21 / 2 A$ and 50 voll 2 A atl upright mounting. all E each, good quantites in stock
OLOUR MOMITORS $12^{\prime \prime}$ high resolution in blach metal case with mains .s.u. built in, unused, but line rejects so will require servicing, hence
ofrered at the very how price of 249.00 Dlus $E 5$ delivery.
Ho easy mounting brand new still in makers and white in metal frame for easy mounting, brand new still in makers packing, offered at less uantities.
6 ChARACTER 2 LIME OISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$. Aphanumeric LCD dot matrix module with integral micro processon made EDSon their ref $16027 a R$ brand $£ 8$ each, 10 for $£ 70,100$ for $£ 500$.
WSULATIOM TESTER WITH MULTIME TER internally generates voliages wich enable you to read insulation directly in megohms. The multimeter has four ranges. AC/DC volts, 3 ranges $D C$ milliamps, 3 ranges esistance and 5 amp range. These instruments are EX British Telecom but in very good condition, tested and gntd. OK. probably cos? at leas ESO each, yours for only $£ 7.50$ wih leads, carrying case $£ 2.00$ extra. RUSHLESS $0 . C$. 1 IV FAM tiny, only 60 mm square good air mover bu causes no interterence 28.00.
WW LASER Helium Neon by PHILIPS, full spec, $¢ 30$, power supply for this in torm with case is $£ 15.00$, or in larger case to house fube as well laser tube $£ 69.00$ plus $£ 5$ insured delivery. alus 230\% FAM best make "PAPST" A SOl AP CMAPCEP hids a A ins heal plastic case $£ 6.00$.
SOLAR CEUS with terminals for joining in series for higher vatts or parallet for extra curfent: $100 \mathrm{~m} \AA £ 1,400 \mathrm{~mA} £ 2,700 \mathrm{~mA} £ 2.75,1 \AA £ 3.50$ SOL AR MOTORS $1 / 2-9 \mathrm{~V}$ precision made to operate from low cmrrent off solar cells $£ 1.50$, solar generator to drive this $£ 7.00$, has provision for attery back up when sun is not shining!
IR SPACED TAIMMER CAPS 2-20 pf ideal for precision tunung uht
ircuits 25 p each, 10 for $£ 2.100$ for $£ 15$.
Chiz. TONE GEMERATOR this is PP3 battery operated and has a 1 hhz output that can be continuous or interrupted al a rate variable by a aner mounted control. Constructed on a DCD and front panel suze approx 550 mm ex equipment but in as new condition $£ 2$ each.
 man 150 wat uphig woun MIMI MOMO AMP on pco size $4^{\prime \prime} \times 2^{"}$ with tront panet holding volume
 nd pertect only $\mathrm{E} \mid$ each or 12 for $£ 10$. and periect only 2 each or 12 for 210
5 RPM GOW MAMMS DRIVEW MOTOR AND CEARTOX this has a 3in square mis in is ant based 4.5 V 100 trice L 5. OWER SUPPLY 1 2AES, 24v 200 mA E2.
TORROIOAL MAIMS TRAMSFORMER with twin outputs, 6.3 y 2 amps and 12 V 1 amp , one use would be power supply, price $£ 5$.
AMSTRAD POWER UNIT $13.5 v$ at $1.9 A$ encased and with leads 3nd outpu plug, normal mains input $£ 5$ each, 10 for $£ 45$.
AMSTRAD 3.5 FLOPPY DRIVE Reterence F09 Drand new and perfect, £35
ATAAI GAXE COMPUTER al $65 K$ this is quite powerful so suitabte for home or business, unused and in periect order but less PSU. only E19.50. tandbook $£ 5$ extra.
5 CATHODE RAY TUAE Phillips M24/306W, which is not only high resolution but is also X Ray and implosion protected, regular pnce ove $£ 30$, you can have them at $£ 12$ each. Tubes are guaranteed unused. so watt maimS TRAMSF ORMERS two available in good quality, bath with
normal promaries and upright mounting one is 20 V 4 A he other 40 V 2 A normal pnmaries and upright mounting,
only $£ 3$ each or 10 tor $£ 27$ carriage pard.
papiect ex
PROJECT BOX size appron $8^{n \prime} \times 4^{\prime \prime} \times 41 / 2^{n}$ metal, sprayed grey. louvred ends for ventilation otherwise undrilied made for GPO so best quality.
12V Solemoid has good $1 / 2 /$ pull or could push if modithed, size approx 12/ long by square, 21 each or 10 for 29
spray or would control air or gas into tanksections, ideal for auto plant MANG UP PHOME wan't clutter up your desk or wortbench, curent Dide haut UP PHowe won't clutter up your desk or wortbench, current model, in good condition and fully working ready to plug in. £5
HICh VoLTace CAPS it you use these ask for our 1-20 Kv Capacitor list we have over $1 / 1$ million in slock and might save you a lot of meney. ELECTROMIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions, will make ideal present tor budding young electrician. Should be able to assemble but you may have to help with the soldering of the components on the PCB. Complete kit

ع8.95.

Scov BRIDEE MEGGER developed for G.P.O. Technicians the Onmeter 18B is the modern equivalent of the bridge meggar. $9 v$ battery operated it
incorporates a 500 g generation for insulation testing and a null balance incorporates a sovr generation for insulation testing and a nul balance condition with data \& tested. Yours for a fraction of original cost $445+$ E5 insured delivery.
EXPERIMEMTIMG WITH MALVES don't spend a fortune on a main: transtormer we can supply one with standard mains input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3 A . price $£ 5$. 15Watt Bohrin S" SPEAKER \& 3" TWEETER made for a discontineed high quality music centre, give real hi.h. and for only \&4 par.

UITRASOMIC TRAMSMITTER/RECEIVER with Piero alarm, built into preformed case, is triggered by movement disturbing reflected signal uto reset, secret oft device etc. A E 40 instrument yours tor fio del OVEMEMT MAMM goes oft with slightest touch ideal to protect acle, doorway, window, stairway, etc. efc. Complete with plezo shrieter cady to use. Cnly £2 (PP3 battery not su pplied).
STEREO HEADPHOME extra lightweight with plug E2 each or 10 pairs for E18.
B.T. TELEPHOME LEAD 3 m Iong and with B.T. Hat olug ideal to make , £ 10.00
STUODO 100 by Amstrad, the ultimate disco control panel, has four separately controlled and metered channels, twin cassettes, AWFM radio sereo audio amplifier, phono \& C.D. inputs, etc, etc, etc, regular price wer $£ 400$ we have a few still in maker's packing, brand new and uaranteed, yours for $£ 99$.
ROTAAY POSITION COMTROLLER for aerials, ventilators, dampers, theostats, dampers or appications requiring 180 degrees clochwise and anti-cloctwise moverent. We have the Sauter MVE4 154 servo motor 12 Yoll a amp mams trancropmea ca, wat
12 YoLI AMP MAMS TRMMSFORMER E4, waterproot metal bou for same.
110 want SwITCHMODE POWER SUPPLY 230w mains operated, outputs of 38 v 2 hA and 5 v 3 h , we have a lot of these and need the space so you
can have these at a fraction of their cost if you order before Dec 31 price is $£ 6$.
10 V MAINS TRAMSF ORMERS all p.c.b. mountıng, all $£ 1$ each, 10 for $£ 9$ 100 for $£ 75$, for output 12-0-12v order ref Wal, 20/0/20v order ref Wh3, 18-0-18y not p.c.b. mounting but fully shrouded same price order ref O-1 mA FULL VISIOM PAMEL METER $2^{3} \mathrm{~m}^{m}$ square, scaled $0-100$ but scale easily removed for re-witing $£ 1$ each.
10 for $£ 9,100$ for $£ 75$ 10 for E 9 , 100 for £ 75

\section*{CNEL MMP-METERS $80 \times 70 \mathrm{~mm}$} beautiful instruments $£ 5$ each, 10 | ampo. |
| :--- |
| winf. |

Yu METER illuminate thus from behind becomes on/oft indicator as well 112^{*} square 75 p each, 10 for $£ 6$, 100 for $£ 50$.
EDGE-WISE PAMEL METER ideal when short of panel space only $40 \times$ 14 mm , also have built-in led, 500 uA f.sdd, scaled $0-5$. $£ 1$ each, 10 for £9, 100 tor $£ 75$

VIBRATIMG REED FREQUEMCY PANEL METER 4" square, $55-65 \mathrm{~Hz}$ only £9

 each.P.C.a. anius 12 assonted sizes between . 75 and 1.5 mm £ the lot. LOW PRICED FIELD TELEPHOWES. Ex-GPO models, not quite so nice looking but quite efficient, and have the big advantage that the ninging is done by means of a hand operated intemal generator. This saves a lot of batteries. These 'phones have the normal type of rotary dial built in and can still be connected into a normal B.T. system. Tested, guartanteed in good orde, Dice only $\mathbf{L} .50$ each. Order Ref gps MAMD CEMERADORS as htted in the above field telephones, this hand generator is a permanent magnet type and has an AC output of higher voltage then simply connect the output to a transtormer. We have lit a 60 watt bulb quite successfully. The hand generator, complete with handle, $£ 4.00$. Order Ret 4 P51.
AMSTRAD 3" FLOPPY DRIVE cased and with built-in power suoply so aself contained ertra drive for you it you use $3^{\prime \prime}$ discs, real bargain E35.00. Order Ret 35P2B
DRY BATTERIES CAM BE RECHARCED Dut not with a normal de charger It must be a periodic current reversal type. We can supply the hit, with data, 56.50 . Order Ref 6 P98.
THE COMPUTER CRADE CAPACITOR ideal for low volt, high current experiments, 75 p each or 10 for $£ 6.00$. Two types avallable, $15000 \mu \mathrm{l} 10 \mathrm{~V}$
of $10000 \mu \mathrm{f} 15 \mathrm{y}$ or $10000 \mu \mathrm{I}$ ISV
HELP YOUR BOYS WTO ELECTMOMICS let them learn by experiments with our simple kits. See our latest newsletter which will be sent to you with supes muth metir
SUPER MULTI-METER EX British Telecom, this is a 19 -range 20K o.p.v.
top grade instrumemt, covers AC \& $D C$ voltages,
top grace instrumemi, covers $A C$ ach vortages, current and ressistance. carying case $£ 2$ entra (batteries not included but readily available). SOLAR EMERCY EDUCATIOMAL KIT - an ideal present for electronics students, it shows how to make solar circuits and electncal circuits, how to increase the volitage or current, how to use solar power to work a radio. calculator, cassette player and to charge nicad Datterres. The kit compnises 8 solar cells, one solar motor, fan blades to fit motor and well written instruction manual mates this a lovely intle present. Price Es.ce. Order Ref 8 P 42 B
Whnt TO KHOW HOW FAST IT'S TURMIMG? - Made by the iamous Murhead Company, we have DC tachometer generators which have an output voltage depending upon its speed. At 1000 rpm for instance, the output voltage is 3 . Ex-equipment, price only 2 for $£ t$. ©0. Order Ref 246 BSR RECORO PLAYERS - Although records are fast being superseded by compact discs, you or yours may still have a collection of records that rou wish to play from time to time and it would, therefore, be a good idea o buy a soare record player before they disappear from the market. We have never been used. are complete with diamond styli, price only E 5.00 each. Order Ref GPSB.
BLOW HEATERS - Winter is coming on so it is a pood idea to check your heaters to make sure they are all up to scratch. We can still supply langenitial units: 2.5 kw , which is aporax. 9 long plus the motor. This can de operated at full heat, halt heat or cold blow. Price of unit is $£ 5.00$ and we include a control switch and winng diagram, Order Ref $6 P 12$. We also have Ikw blow heater, only $6^{\prime \prime}$ wide, so ideal where space is limite defrosting pipes, etc. Complete littie unit, although motorised, is virt silent in operation. A shaded pote motor drives air from tangentiai tan through Ihw spiras element. There is al so a cut-out to switch heat off should anything stop the fan from blowing. Regular drice of this unit around $£ 20.00$, yours for $£ 5.00$ or 5 for $£ 20.00$, Order Ref $5 P 23$

Prices include V.A. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing. Orders over $£ 25$ post tree, unless postage quot

M\&B ELECTRICAL SUPPLIES LTD
12 Boundary Road, Hove, Sussex BN3 4EH
Telephone (0273) 430380 Fax (0273) 410142

RESEARCH NOTES

Non-stick molecules for tomorrow's electronics

Polytetrafluoroethylene (PTFE) is among the most hyped of all plastics - the space-age material that brought you nonstick frying pans. (lt wasn't in fact discovered by the space industry). Now, not content with serving merely the needs of frictionless bearings in the far distant solar system or non-drip fried eggs in the kitchen, PTFE is about to spring another surprise or two.
Jean Claude Wittmann and Paul Smith, working at the University of California at Santa Barbara, have recently published a paper (Nature, Vol 352, No 6334) showing how PTFE can be used as a substrate on which to crystallise or synthesise othersubstances with a high degree of molecular alignment.
The interest in molecular alignment stems from the fact that the properties of many polymers and crystals change dramatically as their molecules are placed in some sort of order. (Just think of the dramatic changes in the properties of liquid crystals as their molecules are lined up by means of electric fields). Ordered molecules can mean an increase in strength or stiffness of two
orders of magnitude; they can also lead to improvements in everything from optical transparency to electrical conductivity. Polyacetylene is an example of an ordered molecule which, under certain conditions, can have a conductivity comparable with that of metals.
What Wittmann and Smith have done is to demonstrate how PTFE can be used to produce order from disorder in other molecules that don't themselves show a strong natural tendency to order. To this end they were prompted first of all to consider the well understood process by which PTFE achieves its low coefficient of friction when rubbed against other substances.

If you take a stick of PTFE and rub it across a smooth surface such as a sheet of glass, long molecules of PTFE are dragged out of the bar and form an orderly array on the surface of the glass. Slippage then occurs between these ordered molecules and the bulk of the PTFE bar. But could the glass with its 5 nm or so layer of ordered PTFE molecules then be used as a substrate on which to deposit other molecules in orderly arrays ?

Wittmann and Smith have now demonstrated convincingly that a whole range of substances from polyaniline to thallium chloride can indeed by synthesised or crystallised with their molecules orientated to match those of the PTFE substrate. What's more, the PTFE layer is completely unaffected by aggressive chemicals used in the process (polyaniline is precipitated from 96% sulphuric acid). In this respect the PTFE film method in lining up molecules scores heavily in favour of techniques like Langmuir-Blodgett films which require the material to float on water.
The real significance of this latest research is the possibilities it opens up for the manufacture of novel electronics materials. Since electronic mobility is known to be enhanced by the degree of molecular order in a material, it seems highly probable that new practical conductors or semiconductors will emerge from further research particularly in the area of long-chain polymers. Already several teams have experimented with a polymer sexithiophene as the active material in fets. More practical avenues are now likely to open up.

How to keep a quantum secret ryplography has a long and fascinating

Chistory going back to 400 BC at least, perhaps even further if you include the Tower of Babel as a legitimate attempt to keep communication secret. Today, secret coding plays a vital role, not just in obvious applications such as covert military communications. Virtually anyone who uses a computer employs some sort of key to gain access to their files; all sensitive data travelling over networks - public or private - needs some form of encryption. So too do pay-TV signals.
Throughout history, secret codes have come progressively more difficult to break. Early codes - like those used by schoolchildren - employed some simple key, such as $A=1, B=2$ etc. Once an eavesdropper had worked out the key, all subsequent transmissions would then be a very open secret.
As time went on, coding techniques became more complex, leading to the inevitable cat and mouse game between code makers and code breakers. The Allied victory in World War II owed much to Britain's cryptographers being one step ahead of Germany’s.

Today, the same game is played out using the enormously powerful number-crunching capabilities of supercomputers. A coding key usually consists of a very long string of random digits, so long that even if the encrypting algorithm is publicly available, the chances of intercepting and decoding messages is small. Nevertheless the possibility does exist, especially at the vulnerable stage when the key has to be communicated between the sender and the recipient of the message.
A new approach, proposed recently by Arthur Ekert of Merton College Oxford (Phys Rev. Letl vol 67 no 6), makes use of quantum channels. These, in theory, would allow a key to be communicated to two parties without any risk of interception. Or if interception did occur, it would be apparent.
Ekert's idea is based in Heisenberg's uncertainty principle which dictates that certain properties of fundamental particles, such as position and spin cannot simultaneously be known. If you attempt to measure one of these quantities, you disturb the other. So anyone attempting to cavesdrop on a quantum channel would instantly betray his or her presence.

The proposal makes use of a quantum channel created when an atom decays and sends out pairs of particles, in this case one particle to each end of the quantum channel. These particles carry a quantum property known as 'spin', which can be measured as 'up' or 'down'. As emitted, each pair of particles has correlated spins.
Because of this correlation, each legitimate communicator can receive the information needed to create a common key. Independent checks can be made on the presence of an eavesdropper by analysing the statistics of the whole data stream.
Ekert points out in his paper that the eavesdropper cannot extract information from the particle stream because there is no information encoded there, only statistically correlated properties. The information exists only when the legitimate users perform measurements and then subsequently communicate publicly.
The mathematics of these measurements is complex, as is the technology necessary to implement such a system. Ekert is nevertheless confident of some experimental realisation in the near future... provided that someone doesn't steal the idea.

First stable nonmetallic magnet

Ateam at the University of Tokyo, led by Minoru Kinoshita has published details (Phys Rev Lell. Vol 67, No 6) of what may prove to be the world's firsi organic magnet that is chemically stable at room temperature. This qualification is important because other groups have produced organic magnets that exhibit fenomagnetism, but which decompose rapidly on exposure to air Examples of the latter have been synthesised by chemists at DuPont in the USA and at Leeds and Durham in the UK
The new Japanese material, called paranitrophenyl nitronyl nitroxide (p -NPNN) is chemically stable, but unlike the other contenders in the race for a practical organic magnet, has to be cooled to 0.65 K to demonstrate its magnetic properties. This transition temperature may be rather low, though in the light of what has happened in the field of superconductivity. it may just be a matter of time before things change rapidly in this area.

The other exciting aspect of this latest Japanese work is that the chemical structure of the p-NPNN is well defined. Most of the other contenders in the field of organic magnetism either have ill-defined or variable chemical formulae. The advantage of a clearly defined structure is that funure experimental work - both in terms of synthesis and subsequent analysis - will be readily repeatable and less of a cook-book activity.

Virtually all existing magnels are made from alloys or compounds containing transition metals from groups 3 d or 4 f of the periodic table. Cobatt. neodymium, samarium and of course iron are familiar examples. Here the magnetism derives from the fact that all unpaired electrons can have their spins aligned in the same direction

In the case of p-NPNN, the molecule has an unpaired electron which behaves in some respects like a metal ion. The Japanese researchers point out, though, that because organic radicals rarely have the high spin rates necessary for lerromagnetism, there will be great problems ahead with any attempts to make a very strong organic magnet.
A practical, strong magnet made of light plastic material is clearly some way off yet. Nevertheless, if such a goal is ever achieved it will revolutionise a whole range of machinery that currently depends on large, heavy metal magnets. Lightweight motors might even herald the atl-electric aeroplane!

Flying robot challenge

n an effort to stimulate thought on a new
generation of flying robots, Georgia Tech recently sponsored a student design competition.
It seemed like a simple enough task: move six metal discs from one side of a volley ball court to another in three minutes or less. But for five groups of college students taking part, the assignment proved difficult.
Once the vehicle was started, each robot had to travel on its own, using machine vision to see and interpret where it was going. It had to search for the disc, pick it up, fly across the barrier and drop it in a designated place.
For the most part, the velicles were built from existing off-the-shelf equipment. The Georgia Tech team, for example, adapted a small radio-controlled helicopter originally designed for use in the movie industry.
None of the five competing teams managed to complete the task. The three judges split the prize between all five teams
based on how close they came to the competition's original goal. The top award of $\$ 3000$ went to the Liniversity of Texas at Arlington, whose "tail-sitter" lifted off the ground and reached the bin where the discs were stored before being knocked off balance.
Winning \$2000 each for meritorious achievement were the University of Dayton (Ohios and California State Polytechnic University (San Luis Obispo). Both Dayton's helicopter and Cal Poly's hovercraft attempted the task in the arena, a volley ball courn divided by a three-foot high wooden barrier
Teams from Georgia Tech and MIT each won S 1500 for honourable mentions. Last minute engine failure grounded the Georgia Tech helicopter. MIT demonstrated a hovercraft via remote control, but was unable to fly unassisted due to sensor failure.

Texas star: University of Texas' flying robot tumed in the best performance.

Georgia Tech's helicopter robot grounded by engine failure

Bright future for silicon

If there's one frustration that surrounds the vast growih of optoelectronics, it's the fact that virtually every light-emitting device be it a humble led or a quantum well laser is currently based on III-V compounds. Even the simplest of these, gallium arsenide, is expensive, difficult to fabricate in large waters and, because of incompatibilities in the crystal structures, difficult to integrate with silicon-based electronics.

If only silicon could be made to emit light. Obstacles are at first sight insuperable. not least the fact that silicon has an indirect bandgap of only 1.1 leV . Bandgap in simple terms dictates the precise amount of energy released when an excited electron moves from the conduction band to the valence band. The energy released during such transitions in turn determines the wavelength of any light emitted. So, ignoring any other constraints, it would be impossible to make silicon emit anywhere outside the infra red.
There's another constraint in that silicon's bandgap is indirect. The crystal structure
forbids the electronic transition that would otherwise release energy as infra red. If an electron is 10 make that transition, it must release not only a photon, but also a phonon - essentially a heat wave - into the crystal. Probability of those two things happening simultaneously is very small indeed. Yet, because of the advantages of being able to make large, cheap and easily integrated silicon light-emitting devices, researchers are pursuing some of the most unlikely avenues in search of this holy grail.
In overcoming the small bandgap of silicon the most promising approach in theory would be to pursue the creation of low-dimensional structures. For a long time physicists have known that the bandgap can be raised if the material is fabricated in the form of wires or dots that are only a few nanometres in size. In such structures, electrons are constrained to behave as if the material had only one or two dimensions instead of three. Low dimensionality has already been used successfully to lift the bandgap of III-V compounds to enable, for

Conventional micromotors in a spin?

It looks as though low cost, variable capacitance micromotors might be produced using electro-plated circuit board manufacturing technology rather than the expensive processes derived from semiconductor industry.
Georgia Tech researchers have developed a system of using standard photolithic techniques to produce microscopic moulds in standard photoresist. These are made electroconductive and subsequently electroplated in the normal way.
Motors made using the process exhibit superior performance to the earlier

Wheels within wheels. Could this be the start of a new generation of low cost micromotors? Research student Bruno Frazier looks at some of the component parts made in much the same way as the conductors of a printed circuit board.
method. The silicon components were severely limited by the attainable thickness of the finished part. As a result, they scarcely developed enough torque to overcome internal friction, never mind the completion of any useful work. The moulded parts are much thicker and thus develop far greater torque.
example. the creation of visible lightemitting solid state lasers. But as a route to cheap silicon displays. conventional lowdimensional fabrication techniques involving molecular beam epitaxy (MBE) and fine-line photolithograpliy are hopelessly over the top. The serendipitous part of the slory came some years ago when workers in a number of UK establishments were examining wafers of p-silicon that had been etched with hydrofluoric acid in the course of developing conventional silicon devices. Under UV light, these waters were found to glow red!
What apparently happens is that hydrotluoric acid etches the surface of a silicon water to create a microporous structure with a void volume of up to 85%. So a straight forward piece of chemistry could well be creating naturally the sort of low-dimensional structures that are extremely hard to fabricate deliberately. A group from the Electronics Division of the Defence Research Agency (formerly RSRE) has produced silicon walers up to 5 in diameter that emil red, orange and green in response to UV excitation.
Because of the extreme practical difficulty of preparing samples of the etched silicon for transmission electron microscopy (TEM), there's still much debate about what the porous structure actually looks like and what is happening as it emits visible light. A group based at the Joseph Fourier University in Grenoble believes that their greenemilting material consists of 2 mm dots of silicon perched on microscopic pillars of silica. A team at Umist is more inclined to believe that the emission comes from tiny pillars of pure silicon - in other words. quantum wires rather than quantum dots.
As for an agreed theory to explain this curious photoluminescence, scientists differ widely. Researchers at Umist and Duke University are convinced, from measurements of luminosity againsı temperature, that quantum effects are indeed responsible. The Grenoble team are unsure, citing the long luminescence decay - much too long for what ought to happen within a quantum dot. Finally, a team from Johns Hopkins Universily working in conjunction with AT\&T Bell Labs have conducled experiments leading them to doubt whether the light emission has anything 10 do with quantum confinement at all!
Unknown the effect may be. but its importance is incalculable, and things will really begin to move when a practical way is found 10 make silicon luminesce, not by UV excitation, but by electrical stimulation. The real altraction of electroluminescent silicon devices will be in large, cheap and easily fabricated displays.

Research Nores is written by John Wilson of the BBC World Service

There's no doubt that ASIC technology is highly desirable if you want to give your product the edge.

But what particularly worries newcomers to the technology is the amount they have to invest before their ASIC passes the test.

So we turned the tables by developing the Falcon Programme. It's a fast yet low-cost route to silicon, and this is how it works:

Firstly, we provide you with a software package. It allows you to design analog/digital arrays using 5 or 2 micron digital, or 3 micron mixed technologies, and, most important, verify the design/performance yourself.

Additionally, we can help you design at a functional level by providing you with a range of

MCE
Micro Circuit Engineerıng
components for bread boarding critical analog functions.
As a result, you'll end up with a high degree of confidence that your design is going to work before you commit yourself to a prototype.

When you are satisfied and send us your prototyping brief, we again keep costs down by manufacturing in batches with many customers sharing the expense.

Your prototype is then returned to you within as little as 28 days.

Finally, once the design is proven, we can provide you with production parts in any volume from very low to very high, and to any screening level under BS9450 approval.

So if you want to get it right first time, make sure you talk to Mike Goodwin this time.

IT TAKES LESS THAN A WEEK TO FALL IN LOVE

instrumentation equipment
is just a phone call away. Buy direct
from Electronics World + Wireless World and we know that you won't be disappointed. And in the unlikely event that you are, simply return the goods and we will refund the purchase price.*

SC110A miniakure portable oscilloscope

SC1 10A miniature portable oscilloscope

The SC110A from Thurlby-Thandar is a full feature, single trace analogue oscilloscope packaged into the size of a benchtop multimeter. Fitted with a $32 \mathrm{~mm} \times 26 \mathrm{~mm}$ screen miniature CRT, the bright, sharp image provides resolution and detail associated with much larger instruments. UK designed and built, the internal switch mode power supply draws just 195 mA from four C sized batteries (not supplied). The instrument will operate from 4 to 10 V DC.

The specification includes a Y bandwidth of DC to $10 \mathrm{MHz}, 10 \mathrm{mV} /$ div sensitivity and an adjustable brightline trigger with $\mathrm{AC} / \mathrm{DC} / \mathrm{TV}$ coupling from both internal and external scurces. The X timebase is adjustable from $500 \mathrm{~ms} / \mathrm{div}$ to $100 \mathrm{~ns} /$ div in 24 steps. The case measures $25 \times 5 \times 15 \mathrm{~cm}$ and the instrument weighs about 1 kg . SC110A $£ 249+V A T(£ 292.58)$.

1021 general purpose 20 MHz oscilloscope

The Model 1021 general purpose oscilloscope from Japanese instrument maker Leader Electronics more than meets its published specification and is of exceptional build quality. Features include 20 MHz dual channel operation, $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area, $5 \mathrm{~m} \mathrm{~V} / \mathrm{div} \mathrm{Y} 1 / \mathrm{Y} 2$ sensitivity at $20 \mathrm{MHz}, \mathrm{DC}$ to 500 kHz X-amplifier response, variable trigger response, multiple sync conditioning and an overall accuracy better than 3%. $1021 £ 299+$ VAT (£351.33)

[^1]

PL.320K laboratory sraple power supply

\square
 PL320K laboratory triple power supply

This power supply from Thurlby-Thandar combines three, totally independent power supplies within a single unit: $0-30 \mathrm{~V}$ at $2 \mathrm{~A}, 0-30 \mathrm{~V}$ at 1 A and $4-6 \mathrm{~V}$ at 7 A for logic supply. The 30 V supplies will operate in a bipolar tracking mode for $\pm 30 \mathrm{~V}$ operation or in a series mode to provide 0 to 60 V output. Both supplies incorporate independent remote sensing and independent precision voltage/over-voltage/current-limit preset. Three 3 3/4 digit led panel meters indicate current and voltage to an accuracy of 0.05% fsd. Output stability is typically 0.01% for 90% load change. PL320K $£ 359+$ VAT ($£ 421.83$).

TD201 digital storage adaptor

The TD201 digital storage adaptor from Thurlby-Thandar is a low power, single channel digital storage unit which adds digital storage capability to ordinary analogue oscilloscopes. The maximum sampling rate of 200 kHz permits fast transients to be captured while the lowest rate can extend the sampling period to over an hour. The unit stores over a thousand points on the X axis with 256 levels in the Y axis. The internal batteries (not supplied) allow data retention for up to four years. Other features include an AC/DC sensitivity down to 5 mV , selectable pre-trigger, roll and refresh modes and a plot mode. The case measures $25 \times 5 \times 15 \mathrm{~cm}$ and the unit weighs about 1 kg . The TD201 provides the ideal solution for those wanting a well specified and easy-touse DSO at the lowest possible cost. TD201 £195+VAT (£229.13)

How to order

To order equipment with your credit card, phone Lindsey Gardner on 081 661 3128. Alternatively, to order by post, fill in the coupon on the right. and send to, L333, Electronics World, Quadrani House, The Quadrant,Sutton, Surrey, SM2 5AS. All prices include postage, packing and delivery but exclude VAT. Inclusive price in brackets.

ORDER FORM

Total order price £... Debit my credit card Expiry date Name (with initials) Address

Signature

TS3022S laboratory dual power supply

TS3022S laboratory dual power supply

This laboratory quality power supply from ThurlbyThandar provides two fully floating $0-30 \mathrm{~V} 2 \mathrm{~A}$ outputs for parallel, series or independent operation. Each supply has its own metering of voltage and current by LCD display; with the output switch to off, the display can be used to preset the voltage and current limits prior to connection of the load. Coarse and fine controls permit oulput voltage adjustment to within 5 mV of a predetermined value. The current limit control employs a log law for precise adjustment down to 1 mA . Load regulation is typically within 0.01%. Both supplies incorporate remote sensing. TS3022S $£ 299+$ VAT ($£ 351.33$).

TD201 digital storage adaptor

Please send model number(s).
\square -... (please include VAT) or enclose cheque/PO made out for the total order price
\qquad
\qquad

Contact phone number (if possible)

Designing digits into audio equalisation

> Professional recording studios now look to digital audio processing for even the most basic sound manipulation. Bill Hardman describes the design process for a third octave graphic equaliser.

Greater reguirement for precise and lexible control of frequency response in audio signal processing has stimulated evolution of advanced analogue designs. most notably the graphic equaliser.
Unfortunately analogue frequency response control-systems can produce simultaneous and unwanted phase changes. Compensating networks can cancel these phase changes. but they must track the amplitude control. a complexity that is usually impracticable.

The effect of applying a phase shift to some portions of the audio band and not to others is to catuse a frequency-dependent time-detay to the signal. usually with low frequencies being delayed more than high frequencies. Transients can only pass through a system unscathed when there are no frequency dependent time delays.
For the listener, the build up of frequency-
dependent time-delays in the audio path. from performance - via disc or tape - to ear, gives recordings an "unreal" leeling, in spite of the greal improvements in recording media, amplifiers and loudspeakers.

As a resuht high quality andio equipment manufacturers have tended to drop frequen-cy-response controls. But this also stops the listener adjusting balance to suit taste or equipment. and does not allow for compensation for variations arising from room resonances and furnishing.

FIR iiller

One class of tilter that can provide frequency control of amplitude without phase shift is the finite impulse response tilter (see FIR box text). It uses a tapped delay line and becatuse of this. call only be realised in practice in high quality use, in the digital domain.

Describing a filter as producing no phase
shift is not strictly accurate. All filters produce phase shift because of the finite time tahen for data to be processed.

The solution is to make the phase-shift Prequency dependent. with a linear relationship, producing an ideal filter. in series with a time delay - referred to as a linear phase filter.

To construct a digital filter that is linear in phase we should first examine the pole zero plot - a convenient method of judging the performance of a filter derived from the mathematical expression of its gain and phase in the X / Y form (see box). Zeros are the factors of X . and poles the factors of Y . Each pole or zero of its response inside the unit circle must be balanced by a corresponding partner outside.

Filters with poles outside the unit circle. are unstable. so we are constrained into making linear phase filters from seros alone; eg the FIR filter.

Principal snag is that to make filters with sharp responses. without poles. requires large numbers of zeros. However digital signal processors are oriented toward implementing the FIR filter structure - to such an extent that the FIR can generally be executed in less time than an equivalent lower order pole-sero filter followed by phase compensation.

The longer the filter. the more geros it has. and the more closely it can mateh the desired response. Practical constraints are the time to execute the filter, the sample rate and memory requirement.
A sample rate of $44.1 \mathrm{kll} /$ allows a maximum of $22 \mu \mathrm{~s}$ to do all the processing. With a 100 ns instruction time. Filter length cannot be greater than 220) stages and in practice. processing time must be allowed for dealing with interrupts, data I/O. and parameter control. So a filter length of 181 stages has been adopted.

Structure of the equaliser

A graphic equaliser uses a bank of bandpass filters, ideally each having the frequency response shown in Fig. 1, with a rectangular pass band. and zero output anywhere else. Fig. 2. shows how the filters are used in parallel with the input signal applied simutane-

TONE.CONTROL-fig1 s / s
Fig. 1. Performance of the ideal $1 / 3$ octave filter.

Graphic equaliser display

Target response of software (white on blue); achieved response (red on blue). Above is impulse response (yellow) and applied Window (white).
ously to all inputs. Output is derived from the summation of all the filter oupputs and overall frequercy response is set by adjusiing the gain of each filter.

In practice, filters cannot be made with infinitely steep sides, and the response of one filter will overlap that of its neighbour. To allow for this efleet the shape of the transition regions are controlled, conforming to

Fig. 2. Implementing a parallel structure.
a sine ${ }^{2}$ cos ${ }^{2}$ contour. The method produces very small amounts of ripple when all filters are set to the same level. and smooth transitions between filters set at different levels (Fig. 3).

Production of filter coefficients

Designing FIR filters means handling a lot of data: 27 bands of third octave filtering requires in this case, calculation of almost 5000 coelficients.
Althongh the coefficients are ultimately to be used by the DSP unit. they come via the comtrolling processor, with its program written in C. So it is useful to have the filter-design-program-output lloating-point-coefficients in ascii text files that can be called drectly by the C compiler as INCLLDE files.

The filter design program uses an FFT implementation of the DFT to calculate the filter coeflicients. FFT requires input data to be presented in a very precise way as usable oatput and frequency responses of both amplitude and phase have to be defined. This is only half the FIF input. because both positive and negative frequency components are required.

HALF PRICE MEMORIES . . . GUARANTEED
 . . . Recycled, quality i.c's for next day delivery WHY PAY MORE?

\star Ulirasonically cleaned
\star UV erased and tested
\star Handled in accordance with BS5783
\star Packed in antistatic fubes or boxes
\star Original OEM brands
We are major suppliers to colleges, Universities, R\&D Departments and OEMs who recognise our commitment to quality. Export orders welcome.
UK Orders please add $£ 2$ Carriage and VAT to total.

ABRACADABRA

3 WAYS TO ORDER

By 'phone 0480891119
(8am-7pm Mon-Fri) All major Credit Cards accepted

By Post - send cheque or Banker's Draft to: Abracadabra Electronics Ltd, 25 High Street, Ellington, HUNTINGDON, Cambs. PE18 OAB
By Fax: Official orders to 0480890980 (24-Hour Service)

Abracadabra - for an environmentally friendly service!

EXTIENSIVE STOCKS			
*DRAMS	$1-25$	$25+100+$	
41256-10	$£ 0.95$	0.80	0.70
4164-15	$£ 0.55$	0.45	0.35
*SRAMS			
62256LP-10	$£ 1.90$	1.70	1.50
6264LP-15	$£ 0.79$	0.69	0.59
6116LP-15	$£ 0.55$	0.45	0.39

*EPROMS
27C1000-15 \quad §3.50 $3.10 \quad 2.90$
27C512-15 $\quad £ 2.20 \quad 1.99 \quad 1.80$
27C256-25 \quad \&1.20 $1.10 \quad 1.00$
$\begin{array}{llll}\text { 27128-25 } & 11.00 & 0.90 & 0.80\end{array}$
2764-25
2732-25
2532-5v
2716-45

Many other items in stock, for FREE List use reader enquiry service or 'phone now.

IEEE488, Digital I/O, Timer Counters, RS232, RS422, RS485, D/A, A/D, Acquisition, Analysis
AND A WHOLE LOT MORE:

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact:
ELLMAX ELECTRONICS LTD.,
Unit 29, Leytor Business Centre,
Etloe Road, Leyton, London, E10 7BT. Telephone: (081) 5390136
Fax: (081) 5397746

CIRCLE NO. 122 ON REPLY CARD

Fig. 3a. Filter's practical response with sir 2 $\cos ^{2}$ transitions.

Fig. 3b. Response with bands at differing levels.

Finally the data is converted from polar to complex format.
Figure 4 illustrates the design process. Figure 4a shows the shape of a single filter. Width at half amplitude is one third octave and the transition regions. conforming 10 a $\sin ^{2}, \cos ^{2}$ profile, are each one sixth octave wide.
This frequency response is sampled al imtervals of sample rate/FFT size up to the half sample rate frequency. The filter is to be linear phase. so plase response al each sample point is given by:

Phase $=$ phase at previous point + (frequency/sample rate) $\times 2 \pi \times(\mathrm{FFT}$ size/2)

So far we have calculated data up to the half sample frepuency. but above this, up to the stample frequency, the FFT requires the negallive frequency part of the input data. fl the output coeflicients are to be real, that is the imaginary part is equal to zero (necessary for pratelical realisation), the negative frequency data must be a mirror image of the posilive frequency data, with even-symmetry in the amplitude, and odd-symmetry in the phase, as demonstrated in Fig. 4b.

Finally data is converted to complex format at each sample point by:

Real datal $=$ amplitude $x \cos$ (phase)
Amaginary data $=$ amplitude $\times \sin (p h a s e)$
FFT output gives the filter coefficients, but many more than can be used in practice so outer values are discanded to give required length. The process causes a deterioration in filter shape, with pass-band ripple increasing. stop-band gain rising, and transition regions broadening.
Any one of these can be improved at the expense of the others by smoothing the coef-

Poles, zeros, linear phase and FIR filters

The pole zero plot, giving a quick visual method of judging the nature and performance of a filter, is derived from the mathematical expression describing the gain and phase of the filter, put in the X / Y form. Zeros are the factors of X, and poles the factors of Y.

Poles and zeros can be plotted graphically, and tor a sampled data system, the circle is the line from which the frequency response of the filter can be measured.

Points along the upper semi-circle represent frequencies from $D C$ to half the sampling frequency of the filter (maximum useful frequency).

Response is calculated by the closeness of poles and zeros to the circle; a pole close to the circle will cause a peak in the response, a zero will cause a dip.

The closer they are to the circle the more extreme their effect, so that a zero on the circle will cause an infinitely deep notch in amplitude at the frequency corresponding to that point on the circle.
Similarly a pole on the circle will cause a peak to infinity.

Amplitude and phase is calculated as shown in Fig. 1, and note that because zeros only cause decrease in

amplitude, they can be placed anywhere. Poles cause an increase in amplitude and can only be placed inside the circle; put them on the circle, or outside it, and the filter is unstable.

Figure 1 lb shows the importance of being able to place zeros outside the circle. Looking at the phase angles at Z_{1} and Z_{2}, as the frequency measurement point moves anticlockwise around the circle (increasing frequency), phase contribution of Z_{2} increases while that of Z_{1} decreases. Amplitude is only influenced by the distance of a zero from the circle, not by whether it is inside or out. The result is that there is the freedom to place zeros inside or outside the circle to obtain the desired amplitude response, and to use the phase shift of those outside, to cancel the phase shift of those inside.
Because poles cannot be placed outside the circle, we cannot use poles inside the circle with phase cancelling poles outside. What is needed is a filter that contains only zeros; the FIR filter.
But there is a price to be paid. Filters with sharp responses, for example a low pass filter with steep attenuation, and flat passband, can be constructed from less poles and zeros, than zeros alone. This is because the effective cancellation of poles and zeros in close proxinity can be exploited to enhance the filter shape in the transition region.

To make an all-zero filter to periorm as well as, say, a two pole, two zero filter, may take twenty or more zeros.

Advantages of the FIR filter, apart from the all-conquering virtue of linear phase are easy implementation in DSPs, relatively easy design and few problems with limitation on the number of bits used in the filter calculations.

Fig. 1a. (top) Calculated amplitude and phase. Because zeros only cause decrease in amplitude, they can be placed anywhere. Poles cause an increase in amplitude and can only be placed inside the cirche.

Fig. 1b. (bottom) The importance of being able to flace zeros outside the circle.

Prototype DSP graphic equaliser
ficients towards the ends to zero, with the shape of this smoothing called a "window". There are a number of standard windows and the ones used for the equaliser are from variants of the Kaiser window.

As an aside, for those contemplating writing their own design software tools, the routine is a simple transcription into C of one of the many Fortran versions to be found in text books.

No effort has been made to make it fast, though it runs 1024 points in less than $2 s$ on a 12 MHz 80286 machine with 8 MHz coprocessor. Also note that the FFT routine occupies only 70 lines of code ont of several thousand needed to fetch, manipulate, display, and store data.

Practical implementation

A difficulty experienced with using the FIR filter is that ins length imposes a limit on low frequency capabilities. Unless the delay line contains several cycles of the signal to be processed, filtering with any degree of precision becomes impossible. The sharper the filter, the more cycles the delay line must hold.
To make an FIR third octave bandpass filter at a sample rate of 44.1 kHz for operation below 100 Hz would require a filler length in excess of 20,000 .

With a 44.1 kHz sample rate, the filter length is 181 and for this particular application a filter with 181 taps is useful down to about a fifth of the sample frepuency; it will

(a)

(b)

(d)

(e)

Fig. 4. The filter design process. Fig. 4d. Bandpass filter shape. Fig. 4b., FFT input spectrum. Fig. 4c. Impulse response. Fig. 4 d. Truncate and multiply by window. Fig. 4 e. Final impulse response.
just be able to realise bandpass filters in the range $8 \mathrm{kHz}-20 \mathrm{kHz}$.
The limitation can be overcome by splitting the digital data stream into several freguency bands and lowering the sample rate, for each, accordingly. The lower the maximum frequency in any band, the lower can be the rate al which it is sampled.

Signal processing is performed at this lower sample rate, and the result converted back to the input sample rate. a process known as decimation and interpolation (see box).
Figure 5 shows the general method of arranging the filtering system and illustrates why so many DSPs are involved in a practical system. Interpolation and decimation are quite processor-intensive and the top levels need a processor to themselves.
The remaining three stages of rate-change can just be handled by a single processor because the input sample rate has now dropped to 22.05 kHz . Decimation and interpolation alone involve four processors, and

Decimation

Decination is used to reduce the sample rate and is not achieved without sacrifice. For example, a stream of sampled data with information up to 20 kHz , cannot be reduced to a 1 kHz sample rate why still preserving data above 500 Hz .

The process is essentially straight forward. The incoming data stream is filtered to remove any frequency components above the half sample rate frequency of the output. Samples are discarded to give the new rate, meaning that the decimation process can only provide integer reductions, eg $1 / 2,1 / 3$, $1 / 4 \ldots$ of the input rate.

Decimation is useful where high frequency information is not wanted. Band pass filters at a few tens of Hz become unwieldy in length if they have to operate at $44 . \mathrm{kHz}$ sample rate. If a band pass filter only outputs data in the range $80-100 \mathrm{~Hz}$, then input data at any other frequency is redundant, but still has to be processed. Decimation pre-processes the data, removing the redundant high frequency data and reducing the sample rate, an action that considerably improves digital filters. In general they conform more accurately to the design target when operating at frequencies approaching their half sample rate and FIR bandpass filters benefit in this way.

The FIR does not make a very good job at the high-pass filter action that is a necessary part of a bandpass filter. It can manage infinite attenuation at $D C$, but has difficulty in providing steep, defined slopes, the further down from its half sampling frequency it is used.

Finite impulse response filter

To understand the finite impulse response, or FIR, filter some basic facts about its operation must be grasped.

On one hand it can be considered as an advanced version of the moving average filter, shown in Fig. 1. Samples come in at the left. As each one is added, the previous samples are moved along and the oldest moves out at the right. When all the samples have been shifted, they are summed and the result optionally scaled by dividing by the number of samples. This type of filter is familiar as a means of smoothing out iluctuations in statistical data such as monthly rainfall or inflation figures, to produce annual averages.
In fact the basic filter is not very good. A single large value passing through it will cause an abrupt change in output as it enters and leaves. By applying test data in the form of a sinusoid at different rates, we could plot its frequency response.
What we would find is the expected response of a low pass filter, but one that had no sharply defined cut-off and poor attenuation above that.
An intuitive approach to filter operation, might suggest improving performance by reducing the effect of data as it enters and leaves the filter; ie multiply each data value by a scaling coefficient that favours those samples towards the centre, as demonstrated in Fig. 2.
At this point we should stop to consider another way of looking at the filter operation. If we pass into the filter, a stream of zeros with a solitary data value of "none"
sandwiched between them, as the data value "one" passes along the delav, it would be multiplied in turn bv each of the coefficients, A, B, C etc.

Result of the transit of this data "one" through the filter would be to make it deliver all of its coefficients in turn, from A through to F. What we have done is to present a unit impulse into the filter; the output is the filter's impulse response. For the FIR filter, inmulse response is the same as the filter coefficients.

In DSP terms the process performed by the FIR filter is called the convolution of two impulse responses, that of the data and that of the filter. The effect is the same as multiplying

their frequency responses together.
We now have a means of designing the filter; the DFT is the link between frequency and time and can be used to convert a desired frequency response to an impulse response and hence provide the filter coefficients.

Interestingly, design techniques for the FIR filter are still evolving. Using the DFT to produce coefficients is convenient for many applications, but does not always produce optimunn filters; the same filter characteristic could probably be produced with less coefficients by an alternative design strategy.
Complicated iterative design programs have been developed, such as that by McClellan ${ }^{1}$.
Structure of the filter has a simplicity and symmetry that nlake it very suitable for implementation on a DSP microprocessor. Figure 3 shows the process of operations.

Moving from left to right, multiply sample 1 by coefficient A, save the result. Multiply sample 2 and coefficient B, add the result to the previous sum, etc. Most DSP microprocessors have a Harvard structure, meaning that they have separate data and program memory address buses. In addition such processors have a fast hardware multiplier and adder that will be able to function at the same time as making memory fetches. The advantage of this is that the processor can fetch from the two buses simultaneously. By placing the signal samples in data memory and coefficients in program memory, a DSP processor can fetch data and coefficients, multiply them together and add the result to the previous sum in a single cycle. Cycle time will be at the most $100 \mathrm{~ns}-$ an impressive feat of processing meaning that a 100 stage FIR can be executed in $10 \mu \mathrm{~s}$
the remaining five processors execute bandpass filtering.
In lact three processors have sufficient power to execute all the bandpass filters, but difficulties arise in handling data at the various rates, so the simplest solution has proved to be to have each DSP operate on a single stream of data at a fixed sample rate.
Filters operating at the same sample rate can be combined by adding their impulse responses - a convenient technique when fill ters in a group have the same number of coefficients (Fig. 6).

Controlling the frequency response

Frequency response of the equaliser is con-
trolled by changing the coefficients in the bilters, coefficients coming from a general purpose microprocessor. Serial interfaces are the most economic and practical means of moving data like this around a multiprocessor system. The ADSP2105 (Fig 7) has input and output serial interfaces, efficiently handled by the processor and, in this application, dedicated to the audio data.
To get the additional serial data containing filter coefficients into the DSPS, a simple 24-bit serial-to-parallel shift register is mapped into the DSP program memory. Three 74 HC 4094 s receive the 24 -bit data. and the strobe that translers the internal shift-register data to the output also gener-
ates an interrupt in the ADSP2105, causing it to read the data on its program bus, presented by the 74 HC 4094 s .
Figure 3 shows the controller and DSP system. Atd the DSPS have common data and clock lines, but an addressable strobe. This enables a single 24 -bit data word containing 16 -bit coefficient data and 8 -bit control information to be handled.

Continued on page 1022

AMSTRAD PORTABLE PC'S FROM £149 (PPC1512SD). C179 (PPC1512DD) C179 (PPC1640SD). \&209 £179 (PPC1512DD). £179 (PPC1640SD). £209
(PPC1640DD). MODEMS £30 EXTRA.NO MANUALS OR PSU.
HIGH POWER CAR SPEAKERS, Stereo pair outpur 100w each 40 hm impedance and consisting of $61 / 2^{\prime \prime}$ wooter 2^{-3} mid range and 1 " Iweeter Ideal to wont with the ampliter described above Price per pair $£ 30$. 0 Order rel 30P7R.
2KV 500 WATT TRANSFORMERS Suitable for tigh vollage experiments or as a spare for a microwaw oven elc. 250 V AC input fio on rel 10Pg3R
MICROWAVE CONTROL PANEL. Mains operated, with touch switches Complete with 4 digit display. digital clock, and 2 relay outputs one for power and one for pulsed power (programmable) Ideat lor all sorss of precision imer applications etc $£ 6.00$ ref 6 P 18 R FIBRE OPTIC CABLE. Stranded oplical fibres sheathed in black PVC. Five metre lengit E 7.00 rel 7P29R
12 V SOLAR CELL. 200 mA output ideal for trickle
charging e
15P42R
PASSIVE INFRA-RED MOTION SENSOR
omplete with dayight sensor, adustable lighis on tumer (8 secs -15 mins). 50 range with a 90
deg coverage Manual ovende facility. Com
plete with wall brackets, bulb hoider etc Brand
now and guaranteed $\varsigma 2500$ ret 25P24R.
Pack of two PAR38 bultos for above unit £1200
ef $12^{\circ} 43$ R
VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, udeo recorder of computer to any
standard TV set within a 100 rangel (tune TV to a spare channel) standard TV Set within a 12 PJ range (tune TV 5P191R
FM TRANSMITTER housed in a standard working 13A adapter (bug is mains driven) 52600 ret 26 P 2 R
MINATURE RADIO TRANSCEIVERS A pair of walke taknes with a range of up to 2 kilometres. Units measure 22x
FM CORDLESS MICROPHONE.Small hand held unit . I| with a 500' range 2 transmit power levels reqs PP3 battery Tun eable lo any FM recerver Our price $£ 15$ ret 15P42AR
12 BAND COMMUNICATIONS RECEIVER. 9 shon
bands, FM, AM and IW DXhocal switeh, uning eye mains in NOW ONLY E19.001I REF 19P14R.
WHISPER 2000 LISTENING AID.Enables you to hear sounds that would otherwse be inaudiblel Complete with headphones Cased. 5500 rel 5P179R
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watis per channel Signal to noise ratio better than 45 db . wow and thuter tess than 35% Neg earth 5.25 .00 rel 25P21R LOW COST WALIKIE TALKIES Pair of battery ope ated unts with
7 CHANNEL GRAPHIC EQUALIZER lus a 60 watt power amp! $20.21 \mathrm{KHZ} 4-8 \mathrm{R} 12.14 \mathrm{~V}$ DC negative eanh Cased C 25 NICAD BAT TERIES. Brand now top quality $4 \times$ AA's $\mathbb{C} 4.00$ rel
 C6.00 re1 6P3SA
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ulimate equivalents book Latest edition $£ 2000$ rel GUIDE.
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 \mathrm{\Gamma} 3.00 \mathrm{rel}$ 3P104R. Bumper pack of 1,000 fín $£ 14.00$ rel 14 P 6 R

1992 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REOUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} \times 9^{*}$ SAE FOR A FREE COPY.
GEIGER COUNTER KIT. Complete with tube. PCB and all compo nents to build a batrery operated geiger counter $£ 3900$ el 39P1R FM BUG KIT.New design with PCB embedded col Transmits to any FM radio 9 v batrery req'd $\$ 5.00$ rel SP 158 R
FM BUG Bult and rested superior 9 v operation $£ 14.00$ ref 14P3R COMPOSITE VIDEO KITS, These conven composite video into separate H sync. V sync and video $12 v$ DC $£ 8.00$ rel $8 P 39 R$ SINCLAIR C5 MOTORS $12 v 29 A$ (tull load) $3300 \mathrm{~mm} 6{ }^{\prime \prime} \times 4^{\prime \prime} 1 / 4^{\prime \prime}$ O.P shat New $£ 20.00$ rel 20Pzen

As above but with hrted 4 to 1 infine reduction box (800 pm) and roothed nyton bett dnve cog $£ 40.00$ ret 40P8R
SINCLAIR C5 WHEELS 13° or 16° dia including treaded tyre and inner tube. Wheels are black, spoked one piece poly
wheel 56.00 ref 6P20R. $16^{\prime \prime}$ wheel 86.00 rel 6P21R whel 56.00 rel 6P20R. 16 " wheel $£ 6.00$ rel 6P21R
ELEC TRONIC SPEED CONTROL KIThor c 5 motor PCB and all components to build a spead controller $(0.95 \%$ of speed) Uses pulse width modulation $£ 1700$ ref 17P3R
SOLAR POWERED NICAD CHARGER.Charges 4
AA nuca
6P3R
12 VOLT BRUSHLESS FAN4 $1 / 2^{\prime \prime}$ square brand new ideal for boat, car, caravan etc $\mathbf{~} 5.00$ el 5P206
ACORN DATA RECORDER ALF503 Mado for BBC computer but suitable for others Includes mains adapter, leads and book S1500 ref 15P43R
VIDEO TAPES. Three hour superior quality tapes made under hcence from the lamous JVC company Pack of 10 tapes 520.00 ref 20P20R PHILIPS LASER. 2MW HELUM NEON LASER TUBE BRAND NEW FULL SPEC C40.00 REF 40P10R. MAINS POWER SUPPLY KIT £20.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE 975.00 REF 75P4R 6V $10 A$ H LEAD ACIDsealed battery by yuasha ex equi 12 TO 220V INVERTER KITAs supplied it will handle up to about 15 wat 220 v but with a larger transformer it will handle 80 watts. Bas kit C 1200 ref 12P17R Larger transformer $\Omega 12.00$ rel 12P41R

VERO EASI WIRE PROTOTYPING SYSTEMIdeal lor designing projects on etc. Complete with tools, wire and reusable board Our pnce $\Sigma 600$ rel 6P33R
MICROWAVE TURNTABLE MOTORS. Ideal for window displays etc 5500 ref 5P165R
STC SWITCHED MODE POWER SUPPLY 220 v of 110 v input givng $5 v$ at $2 A,+24 v$ al $0.25 A$. $+12 v$ at $0.15 A$ and 490 v at 0.4 A £6.00 ref 6P59
HIGH RESOLUTION 12" AMBER MONITOR $2 v$ 1.5A Hercules compatible (TTL input) new and cased $£ 22.00$ rel 22P2R VGA PAPER WHITE MONO monitors new and caser 240 V AC. $£ 59.00$ ref $59 \mathrm{P}_{4} \mathrm{R}$
25 WATT STEREO AMPLIFIERC. STKO43 With the addition of 25 WATT STEREO AMPLIFIERC. ST 25 watt amplifier $¢ 4.00$ rat a handful of components you
4 P69R (Circcuil dia included)
UNEAR POWER SUPPLK Brand new 220 v input +5 at 3 A
at 1 A .12 at 1 A . Short circuit protected $£ 1200$ rel 12 P 21 R
MINI RADIO MODULE Only 2 " square with ferrite aenal and funer MINI RADIO MODULE Only 2 " square with ferpit
Supethet Req"s PP3 battery $\mathrm{S1} 00$ ref BD716R
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF BARGAIN NICADS AAA SIZE $200 \mathrm{MAH} 1,2 \mathrm{CACK}$ R £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P16R FRESNEL MAGNIF YING LENS $83 \times 52 \mathrm{~mm}$ £ 100 rel BD 827 A ALARM TRANSMITTERS, No data avaliable but nicety made complex transmitters 9 v operation $£ 400$ each ref 4 P 81 R UNIVERSAL BATTERY CHARGER.Takes AA's. C's, D's and PP3 nicads. Holds up 105 batteries at once New and cased, mains operated 5600 rof 6P36R
ASTEC SWITCHED MODE POWER SUPPLY $80 \mathrm{~mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A}, 12$ at $1.5 \mathrm{~A},-12$ at 0.44 Brand new £1200 ref 12P39R
VENTILATED CASE FOR ABOVE PSUwith IEC filtered socket and power swith 5500 rel 5P190R
IN CAR POWER SUPPLY.Plugs into cigar socket and gives 3.4.5.6.7.5.9 and $12 v$ outputs at 800 mA Complete with universal spider plug. 55.00 ret 5P167R
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ wall 2% metal film $£ 5.00$ ret 5P170R
CAPACITOR PACK 1.100 assoned non electrolytic capacitors
5200 ref 2P286R.
CAPACITOR PACK 2. 40 assorted electrolytic capacitors $£ 2.00$ ref 2P287R
QUICK CUPPA? 12 vimmersion heater with lead and cigar lighter pling £3.00 rel 3P92R
LED PACK. 50 red leds. 50 green ieds and 50 yellow leds all 5 mm LED PACK. 50 R
FERRARI TESTAROSSA. A true 2 channel radio controlled car with forward reverse. 2 gears plus lurbo Working headlights. 2200 ret 22P6R
WASHING MACHINE PUMP
piming IS 00 re SPi8R IBM PRINTER L
COPPER CLAD SIRIP BOARD 17 " $\times 4$ of t" pitch "vero"board E4.00 a sheet ref 4P62R or 2 sheets for $£ 700$ ret 7P22R
STRIP BOARD CUTTING TOOL. 200 tel $2 P 352 R$
50 METRES OF MAINS CABLE $£ 3.002$ core blach precur in convenient 2 m lengths, Ideal for repars and profects re 3 Sir
4 CORE SCREENED AUDIO CABLE 24 METRES 2.00 4 CORE SCREENED AUDIO CABLE 24 N
Precut into convenient 1.2 m lingiths. Hel $2^{2} 365$ a
TWEETERS $21 / 4^{\prime \prime}$ DIA 8 ohm mounted on a smant metal plate for TWEETERS 2 1/4" DIA 8 o
easy fixing $£ 200$ ral $2 P 366$ R
COMPUTER MICE Originally made for Future PC's but can be adapted for other machines Swiss made $£ 00$ ref 8P57R. Alari ST conversion kit £2.00 ref 2P362R
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Buith in tweeter 4 ohm 55.00 ref 5P205R
ADJUSTABLE SPEAKER BRACKETS Ideal tot mounting speakers on internal or external corners, uneven surfaces etc 2 for
§5.00 ret SP207R PIR LIGHT SWITCH Replaces a standard fight switch in seconds ught operates when anybody comes within detection range (4 m) and stays on for an adjustable time (15 secs 1015 mins) Compiete with dayighl sensor Unit also tunctions as a dimmer swith
max Not suitable for flourescents $£ 14.00$ ref 14 P 10fi
max Not suitable for flourescents $£ 14$ and
CUS TOMER RE TURNED 2 channeifull function radio controlled cars only $£ 8.00$ ref 8 P200R
WINDUP
WINDUP SOLAR POWERED RADIOI FMAM radictahas re chargeable batteries complete with hand charger and solar panel
14 P 200 R 14 P200R
240 WATT RMS AMP KIT Stereo $30-0-30$ psu fequired 540.00 ral 40P200R
300 WATT RMS MONO AMP KIT $\mathbf{C 5 5 . 0 0} \mathrm{P}_{\text {Su }}$ required rel 55P200
ALARM PIR SENSORS Standard 12 valarm type sensor will inter
face to most atarm panels $£ 1600$ ref 16P200
ALARMP PANELS 2 zone cased keypad entry, enty exit time delay ALC £1800 ref 18P200
MODEMS FOR THREE POUNDS!!
Fully cased UK modems designed for dial up system (PSTN) no data or info but only $£ 300$ raf 3P145R
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with mic and speaker only £3.00 ref 3P1 46R
BARGAIN STRIPPERS
Computer keyboards Loads of switches and components excellent
value at $£ 1.00$ ret CD40f
PC POWER SUPPLIES
These units are new bui need attention complete with case tan IEC

npul plug disc drive and mother board fly leads (less than the fan alone would cost
HIGH VOLTAGE CAPACITORS
HIGH VOLTAGE CAPACITORS
Apack of 20500 PF 10 KV capacitors ideal for ionizers TV
high voltage expenmen
Customer returned mains battery units bult in muc idealior Computer general purpose audio use Pnce is $\Omega^{a} 00$ ref 4 P 100 R
SPECTRUM JOYSTICK INTERFACE
plugs into 48 K Spectrum to provide a standard Atan type foystick
port Our price 54.00 ref 4P101R
ATARI JOYSTICKS
Ok for use with the above interlace our price $S .400$ ret 4 P102R
BENCH POWER SUPPLIES
Supertly made fuly cased (metal) giving 12 v at 2 A plus a 6 V supply Fused and shon circuit protected. For sale at less than the cost of the case! Our price is $£ 400$ rel 4 P103R
SPEAKER WIRE
Brown iwin core insulated cabie 100 feet tor $\varsigma 2.00$ REF 2P79月
MAINS FANS MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\prime \prime}$ complete with mounting plate quite powertull and quite Our pnce $£: \infty$ rea CDA1R
DISC DRIVES
DISC DRIVES
Customer retumed units muxed capacrlies (up to 1.44 M) We have no sorted these so you just get the next one on the shell. Price is only S7.00 rel 7P1R (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
PRONECT BOX
$51 / 2 \times 312^{\prime \prime} \times 1$ black $A B S$ with screw on hid $£ 1.00$ ref CD43R SCART TO SCART LEADS
Bargan pnce leads at 2 for $£ 3.00$ ef 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end. Midensity D type on the other Pack of ten leads only $£ 7.00$ ref 7P2R
OZONE FRIENDL Y LATEX
250 ml bortle of hquid nubber sets in 2 hours. Ideal for mounting PCB 's thxing wires ote $\varsigma .200$ each rel 2p $^{\mathrm{P}} 379$ ar
OUICK SHOTS
Standard Alari compatible hand controller (sarne as oysticks) our pnce is 2 tor $£ 2.00$ ref 2 P380R
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with 1200 /75 buik in Brand new units made ay TANOA
modem infra red emote controlled qwerty keyboard BT appproved Prestel compatible. Centronics printer pont RGB colour and compos ite output (works with ordinary television) complete with powe supply and fully cased Our pnce is only $£ 20.00$ ret 20P1R 3 INCH DISCS
Ideal for Amstrad PCW and Spectium +3 machines pack of 10 discs. is 5.200 ref 12 P 1 A
AC STEPDOWN CONVERTOR
Cased units thal convert 240 ov to $110 \mathrm{~N} 3^{\prime \prime} \times 2$ with mains input lead and 2 pin Arnerican output socket (suitable for pesistive loads onty) our price $E 200$ rel $2 P 38$ tR
SPECTRUM +3 UGHT GUN PACK
CURLY CABLE
Extendstrom $8^{\prime \prime}$ to 6 loel D connector on one end, spade connectors Extendstrom 8 inal for ioysticks etc (6 core) $\sum 1.00$ each rel CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 loy sticks onty 5.200 ret 2P3828
MINI MONO AMPUFIER PACK
4 amphifiers for $\varsigma .20013$ wath units 9.12 voperation ideal for expen. ments etc $£ 2$ 20 ref 2P383R
BUGGING TAPE RECORDER
Small hand held cassette recorders that only operato when there is day and just record any thing that was said Pnceis $£ 20.00$ ret 20P3R IEC MAINS LEADS
Complete mith 3 A COMPUTER SOFTWARE BARGAIN
10 cassertes with games for commodore 64. Spectrum etc Our bargain price one poundl rel CD44R
NEW SOLAR ENERGY KIT
Contains 8 solar cells, motor tools, tan etc plus educational booklet
Ideal for the budding enthusiast' Price is $؟ 1200$ ref 12P2R
FUSE PACK NO 1
Fily fuses i 1/4" long (glass) quick blow 10 pnoular values $£ 200 \mathrm{re}$ Fily tuses
2P384R

FUSE PACK NO 2

Fitty tuses 20 mm long (glass) quick blow 10 popular values £ 200 re POTEN
POTENTIOMETER PACK NO

286 AT PC
286 MOTHER BOARD WITH 640K RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POW
PLY \&139 REF 139P1 (no io cards or dnves included)

35MM CAMERAS Cul
35MM CAMERAS Cusiomer relu
STEAM ENGINE Standard Mamed ongne comp

TALKING CLOCK

LCD display alarm. bamery operated
Clock will announce the time at th
push of a bution and when the

alarm is due The alarm is switchable
from voice to a cock crowngl£ 14.00 ret 14P200.R
HANDHELD TONE DIALLERS
Small units that are designed to hold over the mouth prece of a telephone to send MF dialhng tones
COMMODORE 64 MICRODRIVE SYSTEM
Commoo Complete cased brand new dnves with disc and sofiware 10 times The orgin Γ Dice for these was C 4900 but we can offer them to you at onty $£ 2500$! Ref 25P1R

USED SCART PLUGS
 USED SCART PLUGS

Packol 10 phigs surtable for making up teads only $£ 5.00 \mathrm{red} 5$ S209R
C CELL SOLAR CHARGER
Same style as our $4 \times A A$ charger but holds 2 C cells. Fully cased with
Same style as our $4 \times$ AA chargerbothol

Provided free with the UK circulation of this month's issue of $E W+W W$ is a ZTX653 bipolar transistor. This diminutive device has characteristics that will surprise readers familiar only with standard TO92 devices. It is a 100 V NPN transistor that can be used at junction temperatures up to $200^{\circ} \mathrm{C}$. It will dissipate iW coupled to a saturation voltage of less than 0.25 V at 2 A collector current. Switching rise and fall times are typically less than 200 ns.
These characteristics make the ZTX653 ideal for automotive relay, lamp and motor drivers, where high temperatures and large current/voltage surges must be withstood. The device is also well suited to low power DC-to-DC converters. Since automotive uses tend to be very specific to particular loads. the application examples shown here concentrate on DC converters.

Portable NiCd battery charger

The self-oscillating flyback converter for charging NiCd cells includes voltage limiting and a low-current biasing circuit. It sup-
plies a charging current of 220 nIA at 12 V . It was designed for over-night charging of 12 V power packs found in portable video recorders, using a car battery power source.
Because the NiCd battery's end-of-charge voltage is higher than the lead-acid battery's off-charge output, the car battery can not be used directly. Since the open-circuit voltage of the NiCd battery can vary over a wide range depending on its state of charge, the converter circuit must be able to adapt to this. This feature makes the converter useful for charging batteries of differing voltage and construction too.
Flyback converters are ideal for loads of varying voltage, hence their use in flash guns, capacitor-discharge ignition systems. etc. However, they have no natural control of their final output voltage and can be damaged by short circuit loads. The circuit shown in Fig. 1 is a basic self-oscillating flyback converter modified to include a voltage limiting winding and a low-current biasing circuit. This circuit withstands indefinite short circuits and will charge battery packs

The 2TX653 was developed to complement its PNP counterpart. One for one, NPN transistors tend to be less linear than PNF devices and this layout - the result of exensive work into optimising chip geometry to get the best from a given area of silicon - provides PNP performance in an NPN format.

ING ERSION

David Bradlbury, head of applications at UK semiconductor company

Zetex, explains the design methodology behind single transistor inverters. His example makes use of the ZTX653 sample transistor supplied with UK copies of this month's issue.

Fig. 1. Self-oscillating inverter for NiCd battery charging.

in the range of 4.8 to 15.6 V from a supply of 12 V . 11 provides a charging current of 220 mA at an outpul voltage of 12 V .

Operation

When power is applied to the circuit a small bias current supplied by $R_{/}$charges C_{2} and via winding $W_{\text {}}$, eventually starts to turn on the ZTX653. This forces a voltage across W_{2} and positive feedback given by the coupling of W_{2} to W_{1} increases the base drive. causing the transistor to turn hard on. The drive volage induced across W_{l} forces the junclion of R_{1} and R_{2} negative, forward biasing $D_{/}$to supply the base current necessary to hold $T_{r /}$ on.

With the ZTX653 applying the supply across W_{2}, a magnetising current builds up linearly until the ferrite core of $T_{/}$saturates. At this point the effective inductance of W_{2} collapses and the collector current of $T_{r l}$ increases at a much higher rate. When this current reaches a level that cannot be supported by the transistor's base drive. the device comes out of saturation and feedback action now works to turn off T_{1}, rapidly.
Current flowing in W_{2} forces the collector voltage of $T r$, to swing positive until restricted by the transformer output windings. During this flyback period the voltage induced across W_{4} forward biases $D_{3} 10$ dump magnetising energy into the output capacitor C_{4}. The current flowing out of W_{4} follows a linear ramp falling from an initial peak to zero in a mirror image of $T r_{l}$'s 'on'

Fig. 2. Output current and efficiency against output voltage $V_{\text {in }}=12 \mathrm{~V}$ of the converter of Fig. 1.
cycle. During this period the collector of Tr_{1}, is held at a constant level defined by the supply voltage added to the output voltage multiplied by the turns ratio of W_{2} to W_{4}. When W_{i} s current reaches zero the collector voltage of $T r$, then lalls and feedback given by W_{2} to W_{1} initiates the next switching cycle of the converter.
Should no load be connected, the converter will charge C_{f} until the voltage across it becomes dangerously high. To prevent this the transformer includes an extra output winding W_{3} which dumps energy back into the power supply via D_{2} should the output voltage exceed 20 V .
The network made by R_{4} and C_{3} was included to limit the rate of rise of collector voltage across T_{r}, so that damaging transients would not be caused as T_{r}, turned off. A second network comprising R_{3} and C_{2} was added to assist converter operation during start-up and switching.
Capacitor C_{2} also has an important effect if the output of the converter should be shorted. During the conduction cycle of $T i$, C_{2} is charged to a negative voltage by W_{1} and this charge largely remains during the Hyback cycle. This negative bias inhibits the start of the next conduction cycle unless the transfomer 'rings' sufficiently at the end of the flyback. Since an output voltage of at least 1.5 V is required to produce sufficient ringing, a short circuit load causes the converter to rum intermittently, so consuming little power.

Transformer design

As with most self-oscillating designs, the transformer $T_{\text {, }}$ dominates the operation of the circuit, controlling power throughput, switching frequency, duty cycle and output voltage. The criteria used for selection for this converter were as follows.
The converter must provide 220 mA at I2V. Since self-oscillating flyback converters of this voltage and type typically have efliciencies around 75%. the expected average supply current will be:

$$
I_{s}=\frac{I_{\text {out }} \times V_{\text {omi }}}{V_{s} \times \eta_{\text {(eff) }}}=\frac{0.22}{0.75}=0.29 \mathrm{~A}
$$

For each converter switching cycle, the actual supply current taken will be a linear ramp from zero to $\left.\right|_{\text {peak }}$ followed by a period of no current llow.

This makes the circuit's peak supply current dependent on duty cycle:

$$
1_{\text {peah }}=\frac{2 I_{s}}{\text { Duty cycle }}
$$

The duty cycle is dependent on the turns ratio of W_{2} to W_{4} and the input and output voltages. The duty cycle selected of 70% for

Fig. 3. Driver for an $8 W$ thuorescent tube running at 20 kHz . Only one transistor is needed since the ZTX 6.53 supplies energy to the tube in both forward and flyback modes.

12 V outpur loads gives a reasonable compromise between primary and secondary losses. This sets $I_{\text {peakk }}$ to 0.83 A . which is well within the capabilities of the ZTX653. An oscillation frequency of 25 kHz was chosen 10 minimise switching losses yel give inaudible operation. The inductance of W_{2} must be:

$$
L=\frac{V_{s} \times T_{o n}}{I_{\text {peak }}}=\frac{12 \times 28 \times 10^{-6}}{0.83}=0.4 \mathrm{mH}
$$

The energy storage capability of ferrite transformer cores is often described in the form of Hanna curves. These manufacturersupplied data curves relate the factors $/ 2 \mathrm{x} L$. $1 \times N$ and core spacer. Use of the spacer greatIy increases the energy storage capability of a particular core set. Hanna-curve data for the smallest core in the common RM range, the FX 3437 . shows that a 0.08 mm spacer is needed for this core set 10 give an $/ 2 L$ factor of 0.275×10^{-3}. The curve data shows that a

Fig. 4. Current and voltage waveforms of the fluorescent lamp DC converter before the tube has struck.

Timebase $10 \mu \mathrm{sicm}$

Transformer details. Core type FX3439 with $0.005^{\prime \prime}(0.125 \mathrm{~mm})$ spacer. Former type DT2523
W1 4 turns 34 swg. Enamelled copper wire
W2 17 turns 26swg.
W3 7 turns 28swg.
W4 7 turns 28swg.
W5 130 turns 36 swg.

Fig. 6. Winding details for the fluorescent lamp circuit transformer.
heaters of the un-struck tube present little loading to the transformer. Each time the transistor turns off, the magnetising current built up in winding W_{2} 'rings' with the capacitor wired across the ZTX653 to generate high-voltage pulses. (Current and voltage wave forms of converter operation during this period are shown in Fig. 4.) Transformed up on winding W_{5}, the voltage of these pulses is high enough to cause the tube to strike once its heaters have warmed.

Once struck, the tube loads the transformer heavily, swamping the flyback ringing action. The sustaining voltage of the tube is now much lower than the open circuit output of the converter. A capacitor is wired in series with W_{5} to control the current fed through the tube in this mode setting the output power to 8 W . Power is fed to the tube both in forward and flyback parts of the converter cycle. To ensure that the correct amount of energy is supplied during flyback, the saturation current of the converter's transformer was designed to meet half the tube's energy requirements. The other half is supplied during the conduction part of the converter cycle.

The action of both in directly driving the tube and storing energy in the transformer for tlyback can be clearly seen in the collector current waveform shown in Fig. 5. The early part of the conduction period shows current flow caused by the tube directly but the later part is dominated by magnetising current as it ramps up to saturation, storing energy for the flyback period.
The low saturation voltages shown in the waveforms of Fig. 5 indicate that transistor dissipation is low, around 0.5 W under normal operating conditions. Worst-case power dissipation occurs when the circuit is used with a high supply voltage and a broken or missing fluorescent tube, for which a small heatsink may be necessary for the transistor.
Figure 6 shows the winding details of the converter transformer. These should be followed precisely if the converter is to perform as designed.

In the prototype, enamelled copper wire was wound on to a DT2523 former for an FX3439 core with a 0.125 mm spacer. Turns are as shown on the diagram.

The ZTX653 is one of a range of high performance NPN and PNP transistors now available in a TO92 style package. The preceding circuits are just a few of the possible applications for these devices.

COLOURIET 182 COLOUR INK JET PRINTER

Compatible with:IBM pc Archimedes Nimbus BBC Micro Amiga Apple Mac (serial version)

EMULATES OTHER COLOUR PRINTERS EG. IBM 3852, Canon PJ1080A, Quadjet PRINTS OVERHEAD TRANSPARENCIES

EDUCATIONAL DISCOUNTS AVALIABLE
INTEGREX LTD., CHURCH GRESLEY, SWADLINCOTE DERBYS. DE11 9PT
Tel (0283) 551551
Fax (0283) 550325
T/X 341727 INTEGX

0

The Schema schematic entry package

Left: editing screen
Schemalic diagram with logic primitives

Schema and iPLS: a marriage of convenience?

How well does a schematic entry program perform as the starting point for systems stuffed full of PLDs? John Anderson blows hot and cold.

This review is for two products from different vendors that are promoted by their UK distributor as working together to provide a coherent programmable logic development system.

Schema Ill from Omation Inc. is the most recent version of its long established schematic capture software. This standard product can be used as the front end to many PCB layout and routing systems from a wide variely of vendors.
Intel iPLS II software is designed to take the information from the schematic caplure package and convert it to a macro description language, which in turn can be reduced to a series of Boolean expressions and thus to a jedec file for an Intel PLD.

What you get

Both products come with bulky thick boxed manuals which describe every aspect of the operation of the software in great detail. The software is contained on
three 360 K Omation disks and eleven 360 K intel disks.
The Schema III manual contains a series of well prepared tutorials which should allow successful use of the product. However, this is an indictment of the user interface: it is not really possible to run this package successfully without recourse to the manual.

Installation

The files for Schema 111 are distributed in compressed form and expand to 3.6MBytes. Beware. The installation process attered the autoexec and config files on the computer without prompting or asking.
The Intel iPI.D installation was different requiring just 15s per disk. The software has a two installation limit. A software bomb ensures that the installation process can be carried out only twice. A saving grace is that the program can be de-installed. increasing the number of available installations. However this whole

process could easily become tedious if one had to move the software about too often. The installation software asked for permission to edit the autoexec and config tiles.
The Intel software takes about 2MBytes of disk space, although the manual warns that the software uses an additional 500 K of disk space for temporary files during execution.

Opening menu

The opening menu is a simple textual affair with a keyboard and mouse interface to allow selection of the required operation. There are three groups of commands. Schema related. IPL.S related and utilities. This opening menu is really the only obvious operational relation between the two packages. and has the look and feel of an afterthought.

Schema III in use

The product has a number of different aspects to its operation, subdivided into a number ol different programs. There are the drawing editor. printing and plotting programs, a post processor which generates bill of materials, netlist and reports. library manager and a range of utilities including forward and back annotation. The EPLD design manager allows capture of EPLD logic primitives which can be translated to a netlist file compatible with the Intel software.
In many respects Schema III is similar to most schematic capture programs; however it does have some points of difference. Firstly its automatic panning ficility is very fast - so much so that in taking the mouse cursor to the edge of the sereen to select a function from the action menu can cause the part of the schematic that you are working on to scroll right off the screen. This can be overcome by configuring the speed of pan. Secondly, there appears to be no rubber banding (the ability to move an object with its connections attached). Although referred to in the index to the manual. it did not appear at the indexed page and no help or menu command seemed to assist.
Schema does have on line help which. although brief, was sufficient to provide assistance to the first time user.

iPLS II on its own

The iPLS software can be used on its own with the logic equations. declarations and I/O primitives for input as a hardware description language (HDL) with a text editor.

Execution of the basic shell confronts the user with a simple menu describing the actions of the program initiated by the function keys. This environment looks and feels very old and unattractive, though in operation it is adequate.

On choosing to edit a pla description file, the user is prompted to use EDLIN. the terrible and ancient dos line editor, though you can fill in your own editor

name instead. It surprised me that a product like this is not supplied with a simple ascii editor.

There are some important advantages in excluding the schematic capture part of the PLD development process. By describing the operation of the PLD in terms of its logical equations and state variables. the engineer can fully document the thinking behind the design. information that would have to be supplied as schematic annotation with the schematic capture route.

Further. hardware description language (HDL) is becoming an important part of the logic cesign process because it allows a hierarchical and structured description of the design. Even thougt the final Boolean expressions generated by the two routes might be identical, the abstraction of the design to hardware description language improves the description of device function. The schematic route using TTL 74 series look-alihes and othet logic primitives only provides documentation which is essentially the schematic of the internals of a device.

In use the Intel software compiled the netlist to boolean expressions and then to a Jedec file within a

Top: Intel PLS II main menu

Loc the PLS translation program) menu and results screen

PRODUCT

INFORMATION
Omation Schema III
costs $£ 363.60$. Intel
iPLS II costs $£ 147.80$
Both products
available from:
Jermyn Distribution,
Vestry Road,
Sevenoaks, Kent
0732451251
few seconds. The whole process seemed quick and efficient. Error messages, were reported on the righthand side of the screen and were reasonably easy to understand.
iPLS II contains programmer support and, according to Jermyn, is normally sold with a programmer.
The iPLS manual contains a useful chapter on EPLD design techniques. This introduces the concept of macro libraries, with data on TTL devices, EPLD macros, and user defined libraries. Potentially this could be a boon to designers in that a design might be built up quickly from already proven macro blocks.

Conclusions

These products are supplied by a major component distribution outlet, and this being the case, one would expect informed support not only for the software but for the integrated circuits at which the software is targeted. On calling Jermyn, I found the applications people helpful and knowledgeable, although they admitted to having some problems with the package.
"Has this tool improved productivity or methodolo-
gy so that its cost can be repaid?" This is the most important question to be asked of any CAD software product. My impression of the pair was one of potential advantage in being able to download TTL macro blocks into a schematic to produce solutions based on these building blocks. However this is outweighed by both the awkward system operation and a design methodology that does not reflect the needs of the designer who wants to work from logic equations and state machines. This latter approach is fully supported by the Intel software alone.
The system only works for Intel 5C/5AC/85Cxxx series devices, a serious limitation of this software. This means that many industry standard products from other vendors cannot be designed or implemented with this system.
The Schema III package is perhaps beginning to show its age. Its user interface is difficult to master and looks and feels awkward. However, the automatic panning at the edges of the drawing are delightfully fast. There are few schematic capture systems that can compete in this aspect.
The Intel software is functional and relatively new. The user interface pre-dates pull down menus never mind a graphic user interface. Since Intel expects to make its money selling devices programmed with this software, it seems strange that the software should be copy protected and awkward to use.
At the combined price of about $£ 500$, this marriage does look attractive, especially bearing in mind that the schematic capture may be used as a front end to PCB layout. Do the two products work together? The answer is both yes and no; yes in the sense that iPLS can take data from Schema III, but no in that these packages were not designed to co-exist, and it would seem likely that Schema might follow the Orcad trail and advance to provide its own more broadly based PLD support. This would make the Intel product redundant.

SYSTEM REQUIREMENTS

Schema III:
XT/AT/386 Computer
Hard disk with at least 4MBytes free
CGA/EGA/VGA/HGA or Olivetti graphics support Dos v3+
Plotter or printer for hard copy
Optional mouse

iPLS II: XT/AT/386 Computer

Hard disk drive
5.25 in floppy drive

512 K ram
DOS v3+
CGA adapter and colour monitor recommended

Talent omputers

Disks

QUANTUM 2-year warranty 210Mb IDE disk drive $£ 410$ 105Mb IDE disk drive £210
$52 \mathrm{Mb} 3.5^{\prime \prime}$ IDE disk drive £145
KYOCERA 1-year warranty 32Mb RLL disk drive $£ 85$
Mother Boards
386sx 20MHz 0Kb RAM £160

Video Cards

256 Kb VGA card XT/AT £45
512Kb VGA card XT/AT £65
1024 Kb VGA card AT £115
Disk Controllers
IDE with FD, 2S, 1P, 1G £30
ESDI WD1007A-WHA £50
8-bit RLL and MFM £30

Tel 0533-376909 Fax 0533-376770

For all your computer requirements call Paul on (0533) 376909

Prices exclude VAT and Postage

Computer Systems

Quality Computers at affordable prices.
All computers custom built to your specification.
Prices start from AT-16MHz $£ 430$ SX-20MHz $£ 520$ $\mathbf{3 8 6}-25 \mathrm{MHz} \mathbf{£ 6 6 0}$ $\mathbf{3 8 6}-\mathbf{3 3 M H z} \quad £ 760$

CIRCIE NO. 107 ON REPLY CARD

CIRCLE NO. 108 ON REPIY CARD

KESTREL ELECTRONIC COMPONENTS LTD

\& All items guaranteed to manufacturers' spec. is Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	100+		$1+$	100+
280A CPU	1.00	0.65	62256LP-100	3.40	2.32
Z80A CTC	0.60	0.30	6264LP-100	1.70	1.30
Z80A P1O	0.60	0.40	6264LP-120	1.50	1.10
280A SIOIO	1.20	0.90	6116 LP -100	1.10	0.65
Z80A DMA	0.90	0.65	2764A-25	1.60	1.20
Z80A (CMOS) CPU	1.20	0.90	27C64-15	1.65	1.35
Z80B (CMOS) CTC	0.70	0.45	27C128-25	1.75	1.45
1488	0.14	0.12	27128A-20	1.65	1.30
1489	0.14	0.12	27256-25	1.80	1.40
ILQ-74	1.20	0.85	27C256-200	1.90	1.55
ULN2803A	0.50	0.35	27C512-150	2.50	2.00
6502 AP	2.20	1.50	41256-100	1.30	0.95
6522 AP	2.20	1.50	41C1000AP-80	4.10	3.25
6551	2.00	1.40	74LS04	0.10	0.07
65C21P2	2.80	2.40	74LS138	0.17	0.12
8031	1.90	1.40	74LS273	0.21	0.16
8251A	1.10	0.75	74LS368	0.14	0.10
8255-5	1.20	0.90	74LS373	0.20	0.14
8259AC	1.00	0.70	74LS374	0.20	0.14
D8742	10.50	9.40	74 HC 244	0.18	0.12
74LS00	0.10	0.07	74 HC 374	0.18	0.12
74LS02	0.10	0.07	74HCT373	0.18	0.12
All memory prices are fluctuating daily, please phone to confirm prices					
178 Brighton Road,					
Purley, Surrev CR2 4HA					
Tel: 081-6687522. Fax: 081-6684190.					

High Performance 2 MHz Function Generators

from Thurlby-Thandar

the new TG200 series from $£ 169$!

- Choice of three models
- 0.002 Hz to $>2 \mathrm{MHz}$ range
- Exceptional waveform purity
- Variable symmetry/duty cycle
- Digital display of frequency, amplitude \& dc offset
- Precision internal lin/log sweep
- Internal/external AM facilities
- Price range $£ 169$ to $£ 249$ (+vat)

THURLBY \wedge THANDAR

Glebe Road, Huntingdon, Cambs. PE18 7DX

Unleash the graphic potential of your PC

Data in graphical form is far more appealing than dull tables. Allen Brown finds Graftool opens up new 3-D vistas for the PC.

PCs equipped with EGA, VGA or Super-VGA have long been recognised as suitable vehicles for graphical information. The problem has been to unleash all that stored potential. Graftool, from 3 D Visions Corporation. could be just the application package to do that job. making full use of the graphics capability of the PC.
Graftool can represent data in almost every format: two or three dimensions, projections, histograms. polar charts. contours, vector plots and trajectory plots are possible.
To make the most effective use of the package a PC should be equipped with a Microsoft mouse and a high resolution (colour) monitor. Since it can also perform a reasonable amount of processing then a maths coprocessor is advisable. With this hardware in place installation is well organised and the whole package can be up and running within ten minutes.

User's view

The user interface (Fig. 1) consists of an array of menu options, evoked by mouse action. giving rise to pop-up dialogue boxes. The graphics user interface (GUI) is pleasant to work with and a lot of thought has gone into its design.
Graftool's display area is partitioned into four principal regions: the graph area for plots and the dialogue boxes: menu area for options: view area (bottom left) for viewing option, and data status area at the botton of the screen. For experimental purposes there is a formula solver enabling users to create data. The DATA formlila option opens a dialogue box and allows a function along with its parameters (max and min values) and data file name to be defined. The data file created is then stored on dise.
Once the data file has been created its contents can be represented in a variety of formats. Format is selected from the menu option list and its dialogue box (Fig. 2), and the user can choose data point symbols. line texture, plotting colours and graph projections. Once these have been defined Graftool produces a graphical placement area whose scale can be adjusted by using mouse handles on the plot boundaries. A great deal of flexibility is allowed in defining axis parameters and labels.

Two-dimensional plots

Within its 2-D framework Graftool allows several data curves to be plotted on the same graph, complete with secondary definitions of the axis as required. For example (Fig. 3) phase and magnitude on the same plot with a common legend. The user can edit the graph as each component on the plot is referred to an object - changeable at will - and can adjust the orientation and size of the object. There is also the option of colour filling different areas of the plot.
Engineers needing bar charts should be happy with Graftool's variety of formats and extensive range of labelling options. For electronics engineers. Smith Charts can be generated where the input data set is defined as an array of impedance values (R, X).
Topographic plots can also be generated from within Graftool, requiring data files consisting of three columns, X, Y and Z where Z is the elevation of the contour. To add to the versatility of this option users can colour map the contour levels, highlighting the contrasts (Fig. 4).
For vector plots the display is constructed from arrows showing direction of the vector, and each input

Fig. 1. Graftool front end display with menu options shows a pleasant to use GUI

System Requirements Incustry standard PC Hard disc
MS-dos $3.0+$
Graphics (V'GA, EGA, CCA or Hercules) Printer: dot matrix, laser, PostScript, HP plotter
Optional maths coprocessor

Fig. 2. Dialogue boxes give the user a number of choices.
data point consists of start and end coordinates Another appealing feature of Graftool for the electronics engineer is the TRANSFER Pl.ot option which allows mapping of an input waveform with the transter plot characteristic. Graftool calculates and displays its. response to a data file containing the transfer and input waveform data.

3-Dimensional plots

One of the most appealing aspects of Graltool is its 3D capability - it could be argued that this feature calls upon the artistic temperament of the user through the use of imaginative colour displays.

Fig. 3. Multiple plots and axis can exist on the same graph

Simplest type of Graftool 3-D plot is the "carpet" plot - basically several curves plotted adjacently and not dissimilar to the waterfall display found on most digital spectrum analysers. As expected the wellknown surface plot is casily generated with Graftool and the user has the same degree of flexibility in definition of axis parameters as in the 2-D case.
In quality assessment the histogram technique is often used and Graftool can display 3-D histograms. set up with relative ease. In fact 3-D scatter point data can be used to construct three separate 3-D histograms.
Graftool's shadow-contour plot is not only able to generate a 3-D surface but also contour projection of the surface in the three planes as required (Fig. 5). In addition to the projections the 3 -D surface can be stratilied with different colours, each colour band representing a range of height values
Once a 3-D object has been created, a user cian generate, from the vilaw menu, a zoom with pan, an orientation change or can generate a cursor to access each data point. As expected the zoom enables focusing on a particular region of the plot. Resolution should not suffer signilicantly since Grattool uses 64-bit double precision storage for all its variables. Once the zoom option is in effect, the user can pan across the whole graph area with the zoom pan - though this is not parlicularly fast even with a 386 PC .

Recognisable spreadsheet

A key feature of the package is its dual-role built-in spreadsheet. It acts as a convenient interface to other (lata sources (other spreadsheets) and provides a means for importing data into Graftool. One major advantage over conventional spreadsheets is that a mathematical formula can be applied to a range of spreadsheet cells as opposed to individual cells.

Appearance is that of the standard spreadsheet arraty of elements and anyone familiar with Lotus $1-2-3$ will have no difficulty is mastering Grattool's spreadsheet. Definitions required by the graphical format. labels. scaling and units can all be entered into the spreadsheet. When the data is ploted all the information is present and a complete plot is produced.
The spreadsheet can also be used as a pre-processing aid before data is plotted: removal of trends is a frequent requirement.

Data processing

Another attractive feature of Graftool is its data processing options. One of the first processes applied to statistical data is that of smoothing using splines, and Graftool provides three options for smoothing: weighted, uniform and parametric.
In the weighed version, smoothing is dependent on the variance, and input data must have an extra column containing this information.
Parametric smoothing is applicable to monotonicall-ly-increasing parallel (X and Y) data sets. To comple-

ECA - 2

FAST, FRIENDLY, FLEXIBLE FEATURES

 ECA-2 is a powerful user-friendly program for analogue circuit analysis. In association with a spe cially tailored graphics entry program, you can draw and analyse your circuits simultaneously. Even with just some of its features that we have been able to show in this ad, you will be pleasant ly surprised by its pricing. Shown below is a small corner of its facilities. To see more, you must contact us for a free demo disk which is the complete program limited only in the size of circuits it can handle. The full version is able to handle upwards of 500 circuit nodes!

Components

ECA. 2 accepts simple two-terminal linear components such as resistors and capacitors; Hincludes current and voltage sources and transmission lines. Diodes are descr bed by the exponential diode equation wherein (amongst other parame. ters) the user can define the emission coefticient, energy gap temperature correction lactor, and forward and reverse resis tances. This enables real diode characteristics to be matched. Transistors. thynistors and operational amplitiers can also be modelled. These can be saved as macro modet and a number of pooular devices is supolied on the disk Furthermore, non-linear functions can be added tic any com ponent to enable for example zener dodes and veltagevariable capacitors to be created. It is possible to define com ponents in terms of their real and imaginary pars, for example to define the band-width or phase shitt

Statistical Analysis

A rather pessimistic worst case analysis can be run. It also performs a sensitivity analysis indicating which tolerance contnbution is the most important factor, whilst Rc2 has negligible eftect. A more realistic estimate of production yield is obtained by a Monte Carlo analy. sis which can be tabulated or displayed as a graph Just 25 runs of a 3re order Chebyshev titter are shown here.

Transient Analysis This salaulates circuit condtions over the prescribed time range at the pre scribed intervals. This is a full non-linez analysis which is illustrated here by a quadrature oscillator. The cir cuit generates two sine waves in quadrature. A smrall initiating pulse is pequired and is produced by the pulse generator whose output resistance is made vey large so that it has no effect on the subsequent operation ECA. 2 allows up to four points to be plotted and here the quadrature waveforms and the current in R 5 are

DC Signal Analysis

Here the analysis is carried out at a fixed temperature with the signal generators set to oc. An interesting application of this is the Schmitt Trigger where the dc command is used to step the input from .5 V to 5 V in 0.1 V steps. The loop option then causes the voltage to reverse so that the hysteresis loo can be traced. In conjunction with the sweep command. this allows the effect of altering the resistor $R 1$ from 5 k 2 to 30 $\mathrm{k} \Omega$ in three logatithmically spaced steps to be observed.

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder now you ever managed without Those Engineers circuit Simulation Software.

A good range of properly supported and proven programs is available and our expert staff are at your service.

Telephone: Charles Clarke on 071-435 2771
for a demonstration disk.

106a Fortune Green Road - West Hampstead London NW6 1DS
Tel: 071-435 2771 • Fax: 071-435 3757

CIRCIE NO. 109 ON REPLY CARD

Prototypes manufactured directly in your own Lab in only a few hours
 LPKF offers a complete solution: Professional periphery for every CAD System.

Time spec sheet
of a 4 layer multilayer milling inner layer: pressing 45 min 120 min drilling 10 min through plating: $\quad 105 \mathrm{~min}$ milling outer layer: 60 min operating time: 5 hrs .40 min

For prototype production LPKF Mill/Drilling Request info malerial or call: machines have proven its merits in thousands of installations all over the world. CAD data can be downloaded from any CAD system and prototypes are manutactured automatically either through the mill/drilling machine or by means of our latest laser technology
The CONTAC through plating system and the MULTIPRESS completes the system
Suitable for any CAD system!

GH Systems 12 Connngsby
Bracknell Berkshure AG12

FULL SPECTRUM MONITORING

The world is af your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, super wideband range of 100 KHz to 1999.8 MHz and a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutionary IC-R9000 features IF Shiff, IF Notch, a fully adjustable noise blanker and more. The Direct Digital Synthesiser assures the widest range, lowest noise and rapid scanning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning modes include programmable limits, automatic frequency and time-mark storage of scanned signals, full, restricted or mode-selected memory scanning priority channel watch, voice-sense scanning and a selectable width around your tuned frequency.
 Post to: Icom (UK) Ltd. Dept WW Sea Street Herne Bay Kent CT6 8LD Tel:0227 741741 (24 hr). Fax: 0227360155

```
iName/address/postcode
```

\qquad

Call sign: \qquad Tel: \qquad Dept: WW

Fig. 4. Colour can be used, map contour levels highlighting contrasts.
ment smoothing, interpolation and regression options for curve fitting include a Fourier regression which. given a waveform, altempts to calculate the Fourier
coefficients of its series.
No data processing application package is complete these days without the obligatory Fast Fourier Transform (FFT). Graftool has the FFT andits inverse but alas no windowing functions.

Printing options and slide show

An important requirement for any package of this sor is the ability to generate hard copies of the graphs and
Fig. 5. 3-D surface plot with projections and colour stratifying is a powerful (10) PRINT is selected the plot is regenerated

supporied and I found it especially pleasing that the first time that I linked the package up to a Qume PosiScripl primer it produced a perfect screen dump. Graftool also recognises several plotters, including Hewlett Packard devices, and the more daring users can deline their own printer driver.
Slide show is an interesting novelty of Graftool and consists of a sequence of screen dumps which can be played back as a reel. Each screen dump is loaded into a . SCF file and can be accessed individually or as pari of a reel. Up to 100 frames or screen dumps can be replayed and the feature is useful for displaying the dynamic characteristics of a surface. For example showing how zero positions change in operation of an adaptive digital filter.

Many good points

Graftool is a well designed package. On the whole the user's manual is well written and leads the user along a gentle learning curve. Sections are well laid out and most of the information makes sense the first time it is read.
My main criticism is of a lack of working examples and sample data files. More information would be helpful on the required format of data files, with more comments on the few examples provided. Grafiool's packaging shows 3-D multicoloured plots but you have to use your own imagination to generate the appropriate data files.
An additional disc carrying sample data filles to illustrate the major feature of the product would be valuable. and would also serve to complement the manual on the data file formats. But a lot of thought has plainly been given to making the package friendly 10 work with and there are relatively few irritations.
Main problem must be the speed of plotting. Even with a 386 PC (with shadow-ram to speed up the graphics) a lot of time is spent waiting. But that is more of a hardware limitation than software. For many engincering applications the bridge belween Grafiool and the data acquisition expansion card needs to be addressed al some stage.
I was rather disappointed with the range of output file formats. With the prevalence of desk top publishting in engineering circles there is an obvious need to export image files in formats which are readily recognised by DTP packages. Encapsulated PosiScripi files can be produced but this is not enough.
But apart from this small reservation and the lack of data files I feel Graftool is well-engineered and is the sort of package that many engineers will find useful when combating the pressures from the marketing and management sectors of their company.

Supplier details

$£ 395$. Available from; Adept Scientific Micro Systems Lid, 6 Business Centre West, Avenue One, Letchworth, Herts. Tel: 0462480055.

MQP ELECTRONICS SYSTEM 200
UNIVERSAL DEVICE PROGRAMMING SYSTEM

System 200 is one of the most versatile programming systems available. At the heart of the system is the award-winning Model 200A programmer. Designed to quickly connect to the serial or parallel port of any PC compatible, the Model 200A is controlled by PROMDRIVER, widely acclaimed as the best driver software available for any programmer.

- EPROMs, EEPROMs and FLASH memories up to 4Mbit and beyond
- Microcontrollers from most manufacturers including
- 8748 and Family
- 8751 Family (including 87C751/2 and 87C552)
- 28 Family
- PIC18C5 Family

Emulators

- 8-pin Serial EEPROMs
- PALs, GALs, EPLDs etc

Bipolar PROMs
Write or phone today for Free Information Pack: Phone: (0666) 825146 Fax: (0666) 825141

MOP ELECTRONICS LTD, PARK ROAD CENTRE, MALMESBURY, WILTSHIRE SN 18 OBX UK
European Distributors: Digitron, Norway Tel 071-17890; Synatron, Germany Tel 089/4602071; Logtek, Sweden Tel 087701470

CIRCLE NO. 112 ON REPLY CARD

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749

Complete your tools with Antex Soldering Irons and Stations

The art of accurate soldering is to maintain the bit temperature at the optimum level.

Antex fixed setting, thermally balanced, high efficiency irons maintain constant tip temperature and offer a wide range of soldering bits to suit your particular application.

For the more sophisticated applications, control at lower temperatures is essential. In these cases an adjustable temperature soldering iron is required. Also available are soldering stations with the option of digital temperature read out

Antex products are designed for precision soldering to

CIRCIE NO. 114 ON REPIY CARD

PSST...

Powerful Software Saves Time!

ANNOUNCING ISIS DESIGNER VERSION II

Our popular range of schematic capture products has been upgraded to give 'one button' integration to other CAD software. A special script language allows you to add your own options to the menus so that you can, for example, compile a netlist, convert it to the desired format and then invoke another DOS program all from one menu selection.

Other new features include full network compatibility, sophisticated support for PCB design including automatic property assignment and sheet global net properties, improved editing facilities, a full screen library maintainance tool and much more.

ARES - Advanced Routing

ARES

£275
A netlist based, multi-layer PCB design package that can integrate with ISIS or other schematics software Includes connectivity checker, design rule checker, power plane generator and automatic back-annotator

ARES AUTOROUTE £475
Our new autorouter uses an advanced, multi-strategy algorithm to achieve very high completion rates, yet when driven from ISIS, there is remarkably little setting up to do - Package, Router-Strategy and DRC data can all be read from the netlist.

- Topological Route Editor (another Labcenter innovation)
- Unlimited user configurable pad, track and via styles.

Full surface mount and metric support.
10 copper + 2 silk. layers.

- 1 thou resolution.
- 30×30 inch max board size.
- Up to 5000 pins, 50000 trace segments using EMS RAM.
- Object oriented 2D drawing for silk screen graphics.

Drivers for dot matrix, pen plotters, lasers. POSTSCRIPT Photoplot (Gerber), NC drill (Excellon).
Graphics export in IMG. BMP or EPS formats.

ISIS DESIGNER.
£275
ISIS DESIGNER+
£475

- Auto wire routing, dot placement and label generation.
- Powerful editing facilities.
- Object oriented 2D drawing with symbol library.
- Comprehensive device libraries provided.
- Device editor integral to main program
- Output to dot matrix. pen plotters. lasers. POSTSCRIPT.
- Export to DT? packages in IMG. BMP. DXF or EPS formats.
- Multi-sheet and hierarchical designs held in one file.
- Nellist oulput to most popular EDA software
- Bill of Materials and Electrical Rules Check reports.
- DESIGNER + advanced features include hierarchical design. Automatic Arnotation/Packaging. ASCII data import.

Budget Price CAD Software

ISIS SUPERSKETCH \qquad from only £69

Our highly popular schematic drawing program is still the only budget package designed specifically for drawing circuit diagrams. It has all the editing features of ISIS DESIGNER and our Graphical User Interface makes it exceptionally easy to learn and use.
Diagrams produced with SUPERSKETCH can be rendered on all common printers/plotters including POSTSCRIPT and graphics export to most DTP and Wordprocessing packages is also possible
An extended device library containing TTL, CMOS, Memory, Microprocessor and Analogue ICs is available for $£ 30$.

PCB II .only $£ 69$

An exceptionally easy to use manual PCB drafting package offering most of the features of ARES but without the netlisting capabilities

PCB II shares the same user interface as ISIS SUPERSKETCH and both packages plus the extended device library are available for just $£ 149$

$E \quad \mid \quad e \quad c \quad t \quad r \quad o \quad n \quad i \quad c \quad s$

COMBINATION PRICES

ISIS DESIGNER \& ARES ISIS DESIGNER \& ARES AR ISIS DESIGNER $+\&$ ARES
ISIS DESIGNER + \& ARES AR
Prices inc UK dellvery, exc VAT

Call for demo packs Tel: 0274542868 Fax: 0274481078

14 Marriner's Drive. Bradiord. BD9 4JT

BIRTHDAY CHALLENGE

1. This is clearly a prototype 10 cm cavity magnetron. What is unusual about it? (Clue: The efficiency would probably ? have been very low, say, 10-12\%)

2. Identify each valve and state in which radar it was used. (Clue: WWII)

3. What is this and what is its significance?(Clue: New York, around 1909)

4. What is this and what was it known as? (Clue: FOTOS)

As a parting shot in the celebration of EW + WW's 80th birthday, test your historical knowledge by entering this month's competition sponsored by Pascall Electronics. Simply look at the six valves pictured here and answef the questions below. The ten best entries will receive $£ 10$ book tokens. Answers and winners will appear in our February 1992 issue. Closing date for entries will be January 3, 1992.

Each of the items has technical significance in the history ond development of electronics.

Entries will be judged jointly by Frank Ogden, editor of $E W+W W$ and Rod Burman, managing director of Pascall and should be sent to Electronics World + Wireless World, Reed Business Publishing Group, L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Please mark your envelope

5. What is this? (Clue: The tuned circuit is built within the glass envelope)

5. What is this, who made it, and in what year? What was special about it? (Clue: 1927)

Designing digits into audio equalisation

continued from page 1003

Control information allows the processor to decide how the 16 -bit data should be used. A non zero value indicates a coefficient and its position in the filter; a zero value indicates completion of the transmission. Transmission times can be almost halved by recognising that the filters are symmetrical about a centre value.
For the purposes of my prototype, where the aim has been to prove the control technique rather than look for the most economic hardware solution, I considered it essential to be able to write the control sofiware in a high level language.
The goal was achieved by using an Arcom SC88PIO board with SourceView development tools allowing Borland C source, written on a PC, to be down-loaded over a serial link and run with all the debug facilities expected of a PC-resident program. All the control software fitted in a single 64 K eprom.
Similarly. expediency demanded use of a display with a high level of intelligence that could display a mixture of bit-mapped graphics and standard ascii strings. An Optrex 240×64 graphics module with fluorescent backlight provided the necessary ease of use.

Fig. 5. Practical implementation showing why so many DSPs are involved.

Fig. 6. Combining FIR filters into a single filter.

The user interface is a hand-held infra-red remote controller, with five buttons. Two buttons move a display cursor, left or right, under the filter bands or to the volume control band; two further buttons increment or decrement the selected band, and additional functions are provided through menus selected by a fifth key.

The controller retains, in floating point format, all the coefficients for each of the twenty seven bands, and when a particular frequency band is adjusted, it determines which other bands come in the same group for the appropriate DSP.

The composite coefficient is calculated by summing individual coefficients after multiplying each by the level for that particular band. The 80188 processor was too slow to achieve the target update rate of 10 Hz using purely C routines. But the fact that output was to be 16 bit integers enabled some of the maths routines to be moved to simple assembler routines that could make use of the raw 16 bit capability of the 80188 .

Implementing a multi-DSP system

The incoming serial data stream has to be converted into parallel data streams at different sample rates, passed through the bandpass filters, and then recombined into single serial data stream.
Starting point is to consider the data format from the digital audio interface, consisting of alternate left and right hand channels

Fig. 7. DSP control interface.

Fig. 8. Passing control data to the DSPs.
at a combined rate of 88.2 kHz .
Each DSP filter bank handles only one channel, at 44.1 kHz , meaning that there is the unused time slot at the other channel into which a second data stream can be inserted. This is used by the top level decimation and interpolation to produce a sub channel at 22.5 kHz sample rate.

Figure 9 shows how the decimation DSPs, DSP1 and DSP2 split the incoming signal. DSPI produces a single channel at 44.1 kHz . but in every alternate space inserts a sample at 22.05 kHz , passed to DSP2. DSP2 has four available time slots to output data at the reduced rates indicated. Although these data rates are reduced there is always a point. every 64 samples, when all the time slots are occupied with data.

Figure 10 indicates the processing of DSP9.

Samples at various reduced sample rates. have their sample rates increased by stages of up-conversion and interpolation.
Finally DSP8 takes the output of DSP9.
increases the sample rate by two and adds it to the output of DSP3.

Alignment of time delays

An FIR always has an associated time delay - for a linear-phase FIR filter this is equal to hall the length of the delay line. Such a filter can be regarded as having zero phase shift with a parasitic time delay. There is a build up of time delays throughout the equaliser. the longest being through the low frequency filters where there is additional delay caused by the interpolation and decimation filters. Total delay at the low frequencies is about 0.3 s .

Delay through the higher frequency filters is progressively smaller, with the shortest being about 2 ms . For filters to produce a flat response they must all have the same time delay so an additional delay must be added to all filters other than those at the lowest sample rate. The longest delay is added to those at the full sample rate.

Zipper Noise

"Zipper Noise" refers to the characteristic sound of data heing passed through a digital system while parameters, such as filter coefficients are being changed. The equaliser system described is almost completely free from the effect. most likely as a result of the use of FIR filters. Lack of a feedback path limits the time that disturbances can persist. It is also thought that "zipper noise" exhibited by IIR filters with coefficient changes is inherent, because of the phase differences existing between different parts of the filter.

Bibliography

1. "Theory and Application of Digital Signal Processing". Rabiner and Gold. Prentice Hall. 1975
2. "Discrete-Time Signal Processing". Oppenheim and Schater. Prentice Hall. 1989
3. "Discrete-Time Signal Processing", van den Enden and Verhoeckx. Prentice Hall. 1989

Fig. 10. DSP9 increases the sample rate of DSP4-ラ up to 22.05 kHz .
4. "Introductory Digital Signal Processing with Computer Applications". Lynn and Fuerst. Wiley. 1989
5. "The Art of Digital Audio". Warkinson. Focal Press. 1988. revised 1989
6. "Principles of Digital Audio". Pohlmann. Howard W Sams \& Co. 1985. 2nd Edition 1989
The first two are a must for the DSP engineer's library. The others are good reading and help understanding by each taking slightly different approaches to the topics. WH

Fig. 9. Digital audio data stream showing how decimation DSPs split the signal.

MEASURING DETECTORS

lan Hickman discusses pros and cons of various fast response, large dynamic range circuit designs for RF level measurements.

The useful dynamic range of a diode detector could be extended by applying $D C$ forward bias but the improvement made in this way can be very limited of the order of a few dB. There is also the standing offset (temperature dependent) to cope with, but that can be balanced by another dummy diode circuit, Fig. 1a.
Forward bias has another benefit: when the input signal falls rapidly the detected output voltage falls aiming at the negative rail. If the negative rail voltage is large, R virtually represents a constant current "Iong tail", defining a negative-going slew rate limit for the detector of $\mathrm{dv} / \mathrm{dt}=(\mathrm{V}-) / C R$. In this case. if the detected output parts company with a trough of the modulation, it will not be towards the tip. but at the point of maximum slope. For sinewave modulation of $v=$ $E_{\text {max }} \sin (\omega t)$, this is given by $\mathrm{dv} / \mathrm{dt}$, which equals $\mathrm{E}_{\text {max }}(\omega \cos (\omega t)$. The maximum value of $\cos (\omega t)$, of course, is just unity and occurs when $\sin (6) t)$ equals zero, so $\mathrm{dv} / \mathrm{dt} t_{\text {max }}=$ $\left(\omega \mathrm{E}_{\text {max }}\right.$) volts per second. giving the maxi-
mum permissible value for ($\mathrm{V}-\mathrm{-} / \mathrm{CR}$ for distortionless demodulation.
It would be a small step to replace the detector diode with a transistor, giving an arrangement which in the days of valves was known as the infinite impedance detector. Fig. 1b. With no RF voltage swing at either anode or cathode. a triode is perfectly satisfactory. Assuming no grid current. the only loading on the preceding tuned circuit is the loss component of the $\mathrm{C}_{\text {grid }}$-all capacitance. This was very low up to VHF and quite negligible at all the usual Intermediate Frequencies then in use.
In the case of the infinite impedance detector circuit, clearly the loading is finite, however low the frequency. But loading will be less for the diode of the forward biased detector circuit (Fig. la) by a factor roughly equal to the current gain of the transistor. Substituting an RF jfet such as a BF244 results in a very close semiconductor analogy of the infinite impedance detector.
In either case, a balancing device may be

added if the absolute detected DC level is important. When comparing the performance of a jfet with a bipolar infinite impedance detector. the more abrupt cut-off of the later results in a higher dynamic range. Fig. 1 c.
The circuit of the infinite impedance detector circuit lends itself to a further improvement not possible with the simple diode circuit (Fig.2a). Collector current of Tr_{l} in the absence of any input signal is arranged to be much smaller than the current through R_{3}. which is thus mainly supplied via Tr2.
When a large input signal is applied. once the steady state condition has established itself. $T r_{l}$ conducts only at the tips of positive going half cycles. These current pulses are amplified by $T r_{2}$, increasing the tail current through R_{3}. thereby holding $T r_{/}$cut off except at the very tip of each cycle.
Input impedance may not be quite as high as the infinite impedance detector and is slightly non-linear to boot - due to the voltage swing across R_{2} appearing across the collector-base capacitance (CBC) of Tr_{r}. At low input levels, Tr, never cuts off but passes a distorted sinewave where the increase in current on positive swings of the input is greater than the decrease on negative swings.
$T r_{2}$ never cuts off either. so the voltage swing at its base is very small and there is little Miller feedback via Tr $_{1}$'s CBC. Tr $_{2}$'s collector current is modulated. increasing more on the positive swings of the input and decreasing less on negative swings, so increasing the average voltage at $T r_{j}$'s emitter.
The circuit is in effect a servo-loop system. Linear as far as the envelope of the RF input is concerned, but non-linear over each individual cycle of RF. Tests on the circuit showed a linear dynamic range approaching 60 dB , measured in the upper part of the HF. Another variation (Fig. 2b) replaces the inverting PNP stage by an emitter follower: an inversion is not required with this circuit as $T r_{l}$ base to $T r_{2}$, collector is non-inverting.

> Fig. 1a. DC bias to the diode improves linearity by several $d B$. If R is made high enough, it becomes a current source greatly extending the linear detection region but this also requires a larger negative rail voltage.

Fig. 1b. This is the functional equivalent of the diode circuit (a).

Fig. 1c. Comparing the performance of a ifet vs bipolar infinite impedance detector. The latter has a more abrupt cut-off providing a higher dynamic range.

There is now no RF voltage at T_{i}; s collector at any input level, and the input impedance should be as high as the infinite impedance detector. Albough the circuit uses more components, in an inlegraled cilcuit implementation this is of litte conseguence.

The circuits discussed so far (Figs. 1 and 2) measure the amplitude of the positive peak of the input signat, and this will be a good guide to its RMS value if the input is laken from al tuned circuil, and so virtually undistorted. In the case of a widehand detector however, the wanted input signal may be signiticantly distorted and this may affect the expected 1.414 : I ratio of peat to RMS voltage. I say "may" because in the case of both odd order and even order distortion, the measured peak voltage could in fact be the same as if the distortion components (harmonics) were just not there. More commonly though, the peak voltage will be affected (Fig. 3).
An even order component, e.g. second harmonic, will reduce the amplitude of one peak but increase the amplitude of the opposite polarity peak by the same amount. It follows that by measuring the amplitude of both peaks and taking the difference - i.e. using a peak to peak detector - no error results, and the RMS value of the findamental component. if that is what you want to measure, is just the peat to peak value divided by 2.828 .
A difference between the absolute values (moduli) of the positive and negative peaks not only indicates the presence of distortion,

Fig. 3 In a wide band detector measuring the input signal's positive peak may alfect the expected ratio of peak to RMS voltage. (a,b) Show resultant phases in second and third harmonics.

Fig. 2a, b Active derectors provide further improvements on the infinite impedance detectors.

it directly gives the villue of the sum of the in-phase components of even order distortion. Odd order components, e.g. thind harmonic, affect both peaks in the same way: not only will they alter the expected $1.414: 1$ peak to RMS ratio, but unlike even order components there is no convenient indication (such as unequal + ve and -ve peaks) of their presence.

An ahternative $\mathbf{t o}$ measuring peath values or peat to peat values is to measure the average value of the modulus of the input sinewave - the average value of a sinewave itself is of course rero. This takes us to the topic of ideal rectifiers, which are readily implemented with op-amps, but such circuits are limited to audio and video or low RF frequencies.

Low error at higher odd harmonics

Twenty years ago I designed a circuit using level measuring sets operating up to 20 MHz . It is average responding, linear down to low levels and will work up to VHF with suitable components. Used as a product detector, the amplified signal will provide its own switching (reference) drive.
It operates linearly down to the point where there is no longer enough drive to the four transistor switching cell. In practice, the limit may be where the differential output signal reverses sense, due to device offsets. For use up to VHF, it may be necessary to introduce delay into the signal path to compensate for the lag through the switching drive amplifier.

A little simple algebra shows that the average value of a sinewave is related to the RMS value by $\mathrm{E}_{\text {av }} \times \Pi / 2 \times 0.707=\mathrm{E}_{\text {RMS }}=$ $1.11 \times E_{a v}$. The presence of even order harmonics does not affect the measured value of the fundamental, but the same is not true of odd harmonics. However, although 10% of third harmonic will give an error in a peak reading somewhere between 0 and 10%, for an average-responding detector, the error is between zero and only 3.3%, i.e. one third of the harmonic amplitude. For the fifth harmonic, the error is only one fitth for higher odd harmonics. So an average-responding circuit is really quite useful.

REGULARS

LETIERS

IF?

In most of his article "No ifs - no buts" (October. pp. 850-852). Mr Pettit tackles the wrong problems Although it is true that the key to successful programs is good design not skilful application of complex debugging kits, most of the article concerns inessential coding details. Only once is any design issue mentioned. namely the program whose faulty operation was cured by dissecting its components and reloadding them into an unspecified "standard framework".
Blanket condemination of IF..ENDIF. IF-THEN-ELSE, and IF...coto constructions is quite misleading: the first two constructions are essential for implementing wellstructured program designs. Only if...goto causes endless problems.
An electronics engineer's firss introduction to programming has often heen an assembly language where well-structured types of if are not implemented. This can easily lead to bad programming habits and fransformation of fas into thinly disguised equivalents and "domain partitioning" simply distracts from proper consideration of overall program design.
Petlit asks if are there any jobs left for If? My simple answer is that there is no salisfactory substitute for fully considering the problem at hand before attempting to write a computer program.
Wherever there is more that one case to consider then the program design must contain one corresponding conditional construction to select between cases. Each such design construction can always the implemented by a straightforward If or case construction (and sometimes. as Pettit demonstrates. by some equivalent means).
Often the program should contain no more ifs than can thus be accounted for.
It may the that inappropriate cases were considered at the outset: if the program has not been properly designed prior to coding (when it is casiest) there is no option but to try or redesign while testing. But frequently the justification for extra If:s - apart from their use in sloppy code-patching - concerns some
"opimisation" feallure. which only the reckless will attempt until program design has been proven by the most straightforward
implementation possible.

Eric Richards

Kibworth Computer Training Leicester

Shifted opinion

Steve Bennet (Letters. "Light hearted". EW' WW. Sept 9!) on the suhject of Doppler shift. suggested a method of accounting for the change in energy of a blue shifted photon. He required that the mass equivalence of the unshifled photon's energy and the velocity of the source should be substituted into the famous kinetic energy equation

$m n^{-1 / 2}$

after which it was to be added to the original photon energy and divided by Planch's constant

$E=\left(m c^{2}+m m^{2} / 2\right) / h \quad$ shifted

I have tried this numerically by working out the shifted photon"s energy from the equation:

$E=h f(/(\pm v)$

h is planch's constant: f is the frequency of the source before being Doppler shifted: c is the speed of light in a vactum: and r is the velocity of source relative to an outside observer. where coefficient y is positive for red shifted photons and negative for blue shifted photons.
1 found a marked discrepancy between the resulting value and the one obtained through Steve Bennet's suggested method (the equation I used is the usual equation used in physics). (In expanding the denominator of this equation using the binomial theorem and subsitituting $m c^{\prime \prime}$ for $l f$. the following expansions were derived.
For blue shifting:

$E=m c^{2}+m c \cdot+m n^{2}+m m^{3} / c+.$.

For red shifting:
$E=m C^{2}-m C v^{-m} \boldsymbol{m}^{2}-m n^{3} / c+\ldots$

Nuclear response
 The nuclear industry continues to campaign for support in the most

 absurd and blatant manner. We now are confronted by a serious proposal from Lawrence Livermore laboratories, ("Harnessing Hbombs to heat the home", $E W+W W$, October, p .808) to harness fusion by means of what amounts to an untrammelled licence to test nuclear devices underground. What a comfortable bed for the nuclear and defence lobbies to climb into. Is this proposal accompanied by a serious costing? I shudder to think what this would amount to.In light of the probable investment required, would your readers care to consider the huge amounts of very clean energy available not from such a profligate exercise, but from the earth itself.
Serious and grossly under-reported experiments have been underway to learn how to tap this geothermal power-house. No government has so far felt obliged to pay more than lip service to the possibility of power production from this massive resource. This is despite repeated success of experiments designed to prove the feasibility of such power production. Arguments against proceeding are invariably centred on the probability of economic returns for private investment judged on commercial timescales. Can anyone imagine Calder Hall being built with private capital? What economic returns would have been realised by now?

In truth the nuclear lobby - who have been central to the supervision of geothermal experiments in the UK - see such an abundant source of power as a serious threat to their own cosy arrangements within the establishment.
At depths of only ten miles we find mean temperatures of $600^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. Why do we anguish about pollution and waste disposal when we are quite literally standing on the solution to these problems. A fraction of the resources expended by almost any other means of energy production would ensure clean and safe supplies of power. Robert Gillatt.
Cornwall

There is an infinite number of terms. with each successive added term giving a more accurate value.
At low speeds the latter terms in the expansions are so small they can the ignored: at higher speeds they have to be taken into account. Note that the given expansions are not relativistic.
As it ean be seen there is no sign of the kinetic energy equation ($m \mathrm{~m}^{2} / 2$).
Considering the momentum of a photon and following the above procedure, change in momentum can be given by Newton's equation for momentum of a particle (momentum $=m$) at low speeds. At higher speeds the extra terms become more apparent. The expansiors found are for blue shifting
momentum $=m c+m+m r^{2} / c$ $+m v^{3} / c+\ldots$

For red shifting

> momentum $=m c-m v^{2}-m^{2} / c$ $-m v^{-3} / c+\ldots$

Do not te fooled into thinking that the initial unexpended equation is relativistic in any way by the mere fact that I have mentioned a deviation from Newton's laws at high speeds. To consider the relativistic case. frequency f for the equivalent rest mass) of the emilted photon must the that which is observed relative to the movingsource. After which the discriminant $\sqrt{ }\left(1-1^{2} / 4^{2}\right)$ derived from Special Relativity is included into the denominator of the Doppler shift equation. ie:

$E=h f \cdot /\left((c \pm v) \sqrt{\left(1-r^{2} / c^{2}\right)}\right)$

As an afterthought. in recalling the
law of conservation of energy. considering every Doppler shift that oceurs in the universe the resultant energy change will be zero. This is for those who may worry that the law of conservation of energy is apparently violated in individual Doppler shifts cases, whereas a whole (ie every Doppler shift case) it is not.
Robert / Aldridge
Hatfield
Herts

Clean power

I was impressed by your August 1991 article "The Hydrogen Economy" (pp. 668-671). I have for some time waited for serious debate about the hydrogen powered vehicle. To me it is the panacea for our polluted cities and I only hope the Green Johbyists are as quick to recognise the virtues as they are to dismiss nuclear power. Overlooked. however is that solar power is also available in other forms. notably hydro-electric power (HEP).
With a plentiful water supply HEP could well be the link in closing the energy cycle, all powered by the sun. Third world countries could be the next world energy basket though this will require vast sums of money and expertise to construct dams in appropriate places.
Perhaps Green lobbyists will rally logether with bodies such as Oxlam to help in this matter in the third world.
DT Moore
Basingstoke
Hampshire

Why antennas work - and the CFA won't

Continuing controversy over the crossed field antenna seems to illustrate the fact that few people really understand why antemas radiate. Maybe 1 am not alone in finding that most texthooks do not give a satisfactory answer. However by viewing wire antennas as perfectly conducting transmission lines. many of their characteristics can be resolved. The treatment also suggests that the crossed field
antenna is unlikely to have a low Q .
A two wire transmission line will Iransmit energy from sending end to receiving end by an electromugnetic field set up in the space mainly between the wires. Energy transmitted in the space outside the line is normally intended to the small. In the case where the wires are not close together but separated by half a wavelength the picture of energy concentration in the Iotal field is inverted. Between the wires the field Is repelled and forced to travel outwards on Ionger paths. Very little energy is transmitted here. Field lines taking the longer paths with long travelling time effectively never return or return to be repelled: energy is radiated.
The inlinitely-long two wire Iransmission line of this kind has an infinite loss. All energy is radiated and it is easy to see that the loss must be so-many-dB per unit length. in terms of wavelength.
For a single wire transmission line above earth. the lowest optimum height for radiation is thus a quarter wavelength. due to the ground image of the virtual return conductor. The horizontal dipole antenna can be considered as a special case being a centre-fed transmission line.
On unterminated lines the energy not lost by radiation is reflected back towards the transmitter where the line is terminated by the "radiation resistance". causing the remaining energy of the first wave to be reflected once more down the line.

If the antenna is resonant the remnant waves travel in phase with the new incident wave and reinforce it. If energy is entirely radiated in the incident wave's first pass. radiation resistance at the transmitter end corresponds with the characteristic impedance of the line. as it would with the infinite radiating line.
Existence of these travelling waves on the half wave dipole shows it to be less than the ideal antenna it is popularly supposed. and merely one of the shortest naturally resonant antennas. Remnants of carlier waves must build up in phase with the incident wave until energy transmitted in one cycle is equal to energy radiated.

Power line resonance...

I was interested in Dr Aspden"s article ($E W+W W$, "Power lines, cancer and cyclotron resonance", pp. 774-775) and his ingenious suggestion that we should either convert to DC or use $100-200 \mathrm{~Hz}$. There is a well documented history of the DC versus AC controversy which raged in the days of Edison and Westinghouse. Westinghouse won because it is not possible to carry DC currents very far before they break down, which is why Edison's "Power houses" had to be built all over large towns.
As for the notion that switching to 120 Hz might avoid ion cyclotron resonance effects, surely this ignores the problem that the resonance then simply occurs in slightly different strength magnetic fields (and there are also intensity effects)?
I discussed this with Abe Liboff recently. The total magnetic field in ICR is a mixture of the DC and the artificially created AC field. While the B_{o} required for Lithium $\left(\mathrm{Li}^{+}\right)$ICR would be 0.542 G at 120 Hz . for Magnesium $\left(\mathrm{Mg}^{2+}\right)$, another common biological ion, it would be 0.95 G which is not uncommonly different from the 0.879 G required for $45 \mathrm{Ca}^{2+}$ ICR at 60 Hz .
Nevertheless Dr Aspden's surmise that the hydroxyl ICR is the dominant cause in the $50-60 \mathrm{~Hz}$ hazard risk is well worth following up: it is the covalent hydrogen bond, after all, which lies at the heart of DNA base uncoiling mechanisms.
Roger Coghill
Gwent

.And vibrating bodies

In your September issue Dr Harold Aspden says ($E W+W W$. "Power lines, cancer and cyclotron resonance", pp. 774-775) that ions in the human body can be driven to resonate at 50 Hz in the earth's magnetic field, possibly damaging the body.
His proposed cure is to change the main frequency from its present value of 50 Hz , avoiding the cyclotron resonance.
But this would be enormously expensive and would waste effort where the problem did not exist.
Instead I suggest that the resonance frequency be changed by altering the standing field diatating it - a solution only needed where problems arise. For example a coil carrying direct current could be installed around affected houses such as those near transformers or power lines.
There have been reports of people who feel immediately ill on going near power lines; it would be interesting to see if their symptoms vanish when the ambient mean field is changed. A uniform field would be the target, since red corpuscles are attracted to positions of maximum field.
M Williams
North Yorkshire

The antenra is said to have a Q factor of a certain bandwidth. Shorter antennas must have a higter Q since they necessarily have greater remmants of previous waves still travelling back and forwards until they finally disappear.
Radiation resistance of a particular configuration depends on the travelling waves present in the antenna and could presumably be deduced from knowing the radiation lows per unit length for a standard
contiguration - more easily found by measurement.
It is therefore highly unlikely that the crossed field antenna could have a low Q, taking into account its small dimensions relative to wavelength if it is meant to be efficient, and that it must include components which bring it to resonance for highest efficiency. EC Forster
Phase Track Ltal
Reading

Finally... an exceptional PCB and Schematic CAD system for every electronics engineer!

BoardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed circuit boards, in one remarkably easy to use package. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC- based systems.
BoardMaker 1 is exceptionally easy to use - its sensible user interface allows you to use the cursor keys, mouse or direct keyboard commands to start designing a PCB or schematic within about half an hour of opening the box.

HIGHLIGHTS

Hardware:

- IBM PC, XT, AT or 100% compatible.
- MSDOS 3.x.
- 640K bytes system memory.
- HGA, CGA, MCGA, EGA or VGA display,
- Microsoft or compatible mouse recommended.

Capabilities :

- Integrated PCB and schematic editor.
- 8 tracking layers, 2 silk screen layers.
- Maximum board or schematic size - 17×17 inches.
- 2000 components per layout. Symbols can be moved, rotated, repeated and mirrored.
- User definable symbol and macro library facilitles including a symbol library editor.
- Graphical library browse facility.
- Design rule checking (DRC)-checks the clearances between items on the board.
- Real-time DRC display - when placing tracks you can see a continuous graphical dlsplay of the design rules set
- Placement grid - Separate visible and snap grid 7 placement grids in the range 2 thou to 0.1 inch.
- Auto via - vias are automatically placed when you swltch layers - layer pairs can be assigned by the user.
- Blocks - groups of tracks, pads, symbols and text can be block manipulated using repeat, move. rotate and mirroring commands. Connectivity can be maintained if required.
- SMD - full surface mount components and facilities are catered for, including the use of the same SMD library symbols on both sides of the board.
- Circles - Arcs and circles up to the maximum board size can be drawn. These can be used to generate rounded track corners.
- Ground plane support - areas of copper can be filled to provide a ground plane or large copper area. This will automatically flow around any existing tracks and pads respecting design rules.
Output drivers:
- Dot matrix printer.
- Compensated laser printer.
- PostScrlpt output.
- Penplotter driver (HPGL or DMPL).
- Photoplot (Gerber) output.
- NC (ASCII Excellon) drlll output.

Produce clear, professional schematics for inclusion in your technical documentation.
 surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

595

Despite its quality and performance, BoardMaker 1 only costs $£ 95.00$. Combine this with the 100% buy back discount if you upgrade to BoardMaker 2 or BoardRouter and your investment in Tsien products is assured.

Don't take our word for it. Call us today for a FREE demonstration disk and judge for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien
Fax 0223277747

All trade marks acknowledged

Not ridiculous

I note with irritation the arrogant stance of Alan Boswell (Letters. October) in connection with the CFA antenna. One paragraph would cover the valid part of what he has to say.
Mr Hately has published details of a structure which many find of interest. He would no doubt have expected rigorous examination. but is it necessary to ridicule?
If future examination shows a flaw in the hypotheses it would still be right for $E W+W W$ to publish; if not, we will stop talking about our thoughts for fear of being found wrong.
JFrench
Mariner Radar (Lowestoft) Ltd Lowestoft

Old valve...

Reference "Any old valves?" (Letters $E W+W W$. September. p.736).

Mr Ellis could do worse than consult "High quality Sound Reproduction" by James Moir. published by Chapman \& Hall, 2nd edition. 1961.
If he cannot find a copy in the technical library in his nearest large city (surely there must be a copy in Birmingham Central Library) he ought to be successful at the British Library. Lending Division, Boston Spa, West Yorks.
1 hope this helps. My only other suggestion is "that Mullard handbook" and various Mullard leaflets printed around that time. JM Notley
Tadcaster
North Yorks

...not suitable

To save DA Ellis a great deal of wasted effort in trying to construct valve pre-amplifiers from a bygone era ("Any old valves?". Letters, $E W$ +WW. September) can I suggest that he takes out a subscription to Classical Glass published by Edward T Dell in the USA.
There he will find projects, ideas and correspondence written by people who appreciate the benefits and limitations of valves in the audio field. While it has a strong North American slant most projects can be converted to European standards and component sources.
My collection of audio
publications, including copies of articles fromWireless World and the Audio Engineering Journal from the late 1940s to the mid 1960s, clearly
show that the pre-amplifier designs are rarely able to meet the needs of modern phono cartridges or line level inputs such as CD. In addition. availability of low cost voltage regulators and other components has enabled a level of performance far beyond that of 30 years ago.
If Mr Ellis wishes to construct preamplifiers from an carlier period for historical reasons he will find a series of volumes entitled Audios Amhology. available from the same publisher, containing numerous articles abstracted from Audio Enginecring. the predecessor of the Journal of the Audio Engineering Society, between 1947 and 1957.
I should add that my recommendation of Classical Glass is solely as an enthusiastic

subscriber.

lain Harley

Peterborough
Classical Glass. PO Box 576.
Peterborough NH (03458. USA.

Fielding gravity

George Overton`s letter ($E W+W W$, September 1991) is reminiscent of a previous letter ($E W+W W$. October 1990) where Bruce De Palma concludes that understanding of the gyroscope is dependent on the absolute motion of the rotatirg wheel in relation to a stationary ether.

As a fellow member of the AntiGravity Society (AGS) I strongly endorse the views expressed by Mr Overton in his response to Hugh Pincherie's letter ($E W+W W$. August 1991). Levitating gyroscopes are a phenomenon that refuses to be ignored. But some modification to current theores is required that few professional scientists are prepared to accept.
Certainly, the possible necessity of restoring the banished ether is strictly taboo though talk of zero point energy and vacuum energy is apparently permissible in the quantum physics of the 1990 s.
Harold Puthoff has suggested a new way to describe the vacuum energy in a cosmological context. He refers to the zero point energy field as the ZPF. and concludes that quantum theory must be modified to explain why the ZPF does not appear to produce a gravitational field. Zero point energy is real and produces measurable results. demonstrable by the Casimir force of attraction between two metal plates in a vacuum. and the Lamb shift in the wavelength of spectral lines of atoms. Clearly the ether is

Ether or no

Steve Bennett's letter ($E W+W W$, September 1991) draws attention to the shaky foundation underlying the current theory of light.
Physics books take the reader in a series of leaps and bounds, from corpuscular theory to quantum mechanics, via Newton, Maxwell and Einstein, only to conclude that none of these theories is satisfactory.
At the heart of the problem is Relativity After postulating that the speed of light is the same in all inertial frames, the theory requires that a photon is massless (despite the well-known fact that gravity bends star-light).
Authors of some physics text-books claim corpuscular theory cannot explain refraction. But the claim is bogus. If we assume that photons have mass, then by applying the vector law of conservation of linear momentum, we can readily derive the laws of reflection and refraction
We can also calculate how incident energy is divided between the reflected and refracted beams (all without reference to Fermat's principle or Maxwell's equations). A similar argument explains the Compton effect in terms of photons rather than waves.
But to return to Mr Bennett's letter, he need not apologise for mixing relativistic and Newtonian physics. The famous "Einstein formula" $E=$ $m c^{2}$ was first written in 1900 by Henri Poincare, five years before Einstein proposed Special Relativity.
Poincare's formula relates the Energy (E) of a pulse of light to its Newtonian mass (m) and speed (c).
I cannot say what Einstein bad in mind in his first (1905) paper.
Perhaps someone can enlighten me.

John Ferguson

Surrey
not dead only sleeping...
Perhaps those working on antigravity theories in connection with gyroscopes (and AGS members in particular) should replace the word ether by ZPF to gain acceptance in the scientific community. Even Harold Aspden, a long time exponent of ether theories, has resorted to using words such as vacuum latioce structure to defy the critics.
If accepted theories are correct. anti-gravity has no place in the real world. Only further development of known anti-gravity devices will destroy the dogma underlying current theory, and result in practical spin-off lechnology.
PR Sydor
The Anti-Gravity Society 14 Churchill Close
Tadley
Hants RC26 6NH

Illegal listening

Proliferation of multimode. wideband scanning radio receivers, most having many memory channels. means the question of legality of their use has become of general interest. with particular application to Fire/Police/Medical mohile radio. and cellular and cordless phones.
Current legislation seems to mean that though it is legal to manufacture. sell, and buy such apparatus
it is illegal to listen to signals on many frequencies.
I suggest that unless the transmitting authority takes reasonable precautions (eg transmitting a signal with digitally scrambled modulation. and/or frequency agile carrier following a "random" frequency sequence hopping) then confidentiality should not be expected. and it should not be a crime to listen to information so effortlessly obtained. The emergency and law enforcement services literally shout their E-M signals at a front-end deafening volume. If a simple superhet receiver has an image frequency that happens to coincide with an unnecessarily strong and uncoded "protected" signal, whose fault is it that the information carried is not secure ?
The means to achieve scrambling and hopping are now well established and the technology is sufficiently mature to be available at reasonable cost and with little penalty in terms of weight or power requirement. Outlawing unlicensed manufacture/sales/purchases and use of equipment capable of receiving such coded transmissions would be a great deal easier to understand and justify.
Joseph Barry
G8SLP
Chester

Fluxgate equation

We have constructed a Helmholiz calibration coil as described in the arricle by Richard Noble ("Fluxgate magnetometry", $E W+W W$.
September. pp. 726-7.32).
We also cut a circular hole in the top of the former, between the windings, so that a compass placed in the centre of the coil could be observed, and conducted experiments to evaluate the coil and compass as a simple tangent magnetometer.
Experiments showed inconsistencies between the predicted and measured values for the earth"s flux density. But by cheeking the initial equation in the article used to calculate the fied of Helmholtz coils, it was found that the main catuse of the inconsistencies was the inappropriate value for N .
During the experiments. the coil was orientated E/W so that the compass neede aligned at 90° to the axis of the coil. Now if the magnetising force 11, proxluced by the coil equals that of the earth's magnetic field $\mathrm{H}_{\text {a }}$. the two fields are halanced and the compass needle is deflected 45°. (Arctan $1 / / H_{i}$).
Only 60 mA was required to deflect the compass needle 45°. but aceording to the initial equation. 12.5 mA is required to produce a fied within the coil equal to the earth's flux density, ic about 47.(0)O) gamma.
The initial equation was $\left(9.1 \times 10^{3}\right.$ $\times \mathrm{N} \times 1) / \mathrm{r}$ where $\mathrm{N}=$ turns in each pair of coils and $r=$ radius.
The most obvious error was misplacing the decimal point which should of course be 0.395 gauss $/ \mathrm{A}$. Nonetheless this error seenss to have been corrected in the text to give $125 \mathrm{~mA}=47.000$ gamma. So the inconsistency appears to be related to the equation.

Taking the basic equation for a field half way between the windings of a Helmholta coil with permeability of the air core as $4 \pi \times 10^{-7}$, a constant of 8.992 is obtained somewhat different to 9.1 given in the equation.
Permeability would however be increased considerably hy the toroidal core of the tlux gate transducer and presumably that would upset calibration.
But the significant difference is that the value of N is now the total number of turns. instead of half the total as given. Hence:
$\left(8.992 \times 10^{-3} \times N \times 11 / r=\right.$ gauss: ($\left.8.992 \times 10^{-7} \times \mathrm{N} \times 1\right) / \mathrm{r}=$ tesla: or ($899.2 \times \mathrm{N} \times \mathrm{l}) / \mathrm{r}=\mathrm{n} \mathrm{T}$ (gamma) where N is the total number of turns. $r=$ radius of coil in metres and $\mathrm{I}=$ current.
The following worked example is based on I being found by experiment and gave 47.08.5nT for the earth's magnetic field which is consistent with its known value: $\mathrm{B}=$ $(899.2 \times 48 \times 0.066) /(0.05 .5=$ 4708.5.382nT where $\mathrm{N}=48$ turns. r $=0.055$ and $\mathrm{I}=0.060 \mathrm{~A}$.
The result confirms the inappropriate value for N given in the published equation. The very fact that the inconsistency wats detected by experiment with the most hasic of equipment demonstrates that simple, readily understandable devices can still play a valuable role in this age of "black hoxes". Indeed, the tangent magnetometer may well find application in education where a high resolution is nol required.
But with regard to employing the Helmholte coil for calibration purposes. if the coil is orientated NS so that the earth"s magnetic field lines pass axially through the coil. the flux produced by the coil. depending on polarity of the current. either adds to or subtracts from those of the earth's magnetic field. So. it would seem as if the Helmholtz coil can only be used for calibration when oriented EW and account taken of any changes in permeability caused by placing devices in the coil.
Terry Arnold and George

Pickworth

Kettering

Soviet souvenir

In my quest to promote Russian culture around the workd. I am offering any amateur radio operator who establishes a QSO with me. the opportunity to ohtain a souvenir of my country. To anyone establishing a QSO with RW3PW and sending their name, address and 7 IRCs I will despatch the souvenir by return. Hams in Europe will find me on 14.270 MHz between 20.00 21.(K)L'TC. Please note this dows not affect my QSI -card which is available as usual to anyone who requests it.
Igor A Gumilevsky RW3PW
USSR

c not constant?

In Letters. $E W+W W$. October issue, George Overton mentions that the Michelson and Morley experiment has been repeated recently, and that it showed a variation in the velocity of light. I have often wondered why the various proponents in the Einstein Relativity debate have not cited the Michelson and Morley paper itselfl.
When I first read it I felt that few modern engineers would have dismissed it as showing no variation. though theoretical physicists might well feel differently, even though Hicks ${ }^{2}$ is reported to have shown that the variations discovered by M and M could not be dismissed as experimental error.
Physics books assert that Michelson and Morley repeated their experiment many times, and no variation in velocity of light was discovered. But Miller ${ }^{3}$ says: "... Michelson and Morley made only one series of experiments in July 1887, and never repeated the ether drift experiment at any other time, notwithstanding many statements to the contrary". More importantly though. he describes a later series of experiments, conducted by Morley and himself. which gave results for an ether drift of 7.5 , and later. $8.7 \mathrm{~m} / \mathrm{s}$, but this was not all.
After the solar eclipse of 1919, when tests were made that were said to confirm Einstein's theory. Miller wrote: "Since the theory of Relativity postulates an exact null effect from the ether-drift experiment which had never been obtained in fact, the writer felt impelled to repeat the experiment in order obtain a definitive result". He then went on to conduct an amazing series of experiments, and in 1925 was able to state that there was an ether-drift of about $10 \mathrm{~m} / \mathrm{s}$ in the direction, RA 17.5 h , dec $+65^{\circ}$.

His results are at variance with some others. but I find his paper so compelling that. together with the various anomalies that arise with the general adoption of Einstein's theory, I am quite convinced that there is an ether and that its drift has been measured. Indeed. As Miller points out, the crucial test of Einstein's theory would be to obtain an absolute null in an ether-drift experiment; other observations, such as the anomaly of Mercury's orbit and the apparent deflection of starlight by the sun's gravitational field, are not crucial, and it is quite acceptable to seek other theories to explain them.
Taking all this into account the discussion needs to be not about whether Einstein's theory is valid but rather where it is valid.
This tacitly presumes a search for a region where the ether is moving with it. Perhaps this could be within atomic particles, or even in quite large regions, surrounded by a lot of very dense mass.

In space. there are very limited cases where Einstein's relativity is relevant: perhaps within stars, or even within dense nebulae. After all it seems conceivable that such very wide-spread masses could move the ether - or perhaps the ether moves them.
So we. who find that physical explanations carry far more weight than theoretical ones, can come out of the closet and unashamedly think about EM waves as being waves in something real. The theoreticians* favourite let-out. that we should not be too bound by practical considerations, does contain an element of truth. But it should not be allowed as an excuse for allowing domination with arrogant mathematical games.
For the engineer, mathematics is a tool, not a master.
On a more intriguing note. perhaps the Anti-Gravity Society could find interest in searching for an ether shield - a real one I mean.
Paul Dunnet
Lincoln

References

1. AA Michelson and EW Morley, Phil Mag, [5]. 24, 449 (1887)
2. WM Hicks, Phil Mag, [6]. 3. 9. 256, 555 (1902)
3. DC Miller. Rev Mod. Phys, [5]. 203 (1933)
4. A Einstein, Ann d Physik. 17, 891 (1905)

FROM CLASSROOM ... THE BeTA MICROCONTROLLER TRAINER

The BeTA Microcontroller Trainer provides an in depth course in the programming and use of microcontrollers through hands on experience using ready built applications circuits. Based on the Phillips range of 8051 microcontrollers the course uses the CAMEO board which in addition to providing the interface to a VDU is suitable for incorporation in small batch production projects.

The BeTA Microcontroller Course Provides:-

- CAMEO Board incorporating:-
- Powerful 80C552 Microcontroller
- Eight A to D Inputs
- Four Capture and Three Compare Timer Inputs
- RS232 Serial Interface

PLUS:-

- Mains Power Supply
- Aprconnect Unit
- \quad Mulications Board
-
- Sudemputer Cable
Student and User Manuals
- Interconnect Unit

Applications Board
Student and User Manuals

Price $£ 450.00$

BeTA Marketing

Frog Mill, Tedburn St. Mary, Exeter, Devon EX6 6ES, Telephone (0647) 24239 Fax (0647) 24059

TO PRODUCTION LINE

CIRCLE NO. 116 ON REPLY CARD

STEREO STABILIZER 5 Rack mounting frequency shifter tion in public address and sound Mono version, box types and boards also available.
 \star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$.
 \star Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$.
 \star Stereo Variable Emphasis Limiter 3.
 \star 10-Outlet Distribution Amplifier 4.
 \star PPM10 In-vision PPM and chart recorder.
 * Twin Twin PPM Rack and Box Units.
 \star PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements.
 \star Broadcast Stereo Coders.
 * Stereo Disc Amplifiers.
 * Philips DC777 short wave car combination: discount $£ 205+$ VAT. Also quick-release mount.
 SURREY ELECTRONICS LTD
 The Forge, Lucks Green, Cranleigh, GU6 7BG Telephone: 0483275997. Fax: 276477.

SHERWOOD Data ©ystems

 The
 Dragonfly

V25 Industrial controller family

EEPROM or FLASH memory Up to 64 Digital I/O lines 2 serial ports RS232/485 LCD 8 keyboard interfaces Real time clock option Optional DC-DC converters

Battery backed RAM 8 analog sense Inputs Single Eurocard Processor expansion bus Watchdog and power fall Optional debug monitor
for information contact:
Sherwood Data סyatenio L.td.

Tel: 0494464264 fax: O494 445374

Scratching the surface of electromagnetism

Could it be that a better model of electromagnetism may be found in the electrons and holes of solid state physics? Dr Julian Millar suggests that the commonplace effects of a flowing electric current have a different cause: a kinetic model of electromagnetism.

Acouple of years ago, while working on some practical problems in screening a signal from electromagnetic interference, I began to discuss with colleagues the idea that the key to understanding electrostatic fields was in the flux of the electric field. Flux normally implies flow, something moving, and this seems at odds with electrostatics where everything is usually thought of as stationary. immobile, and fixed. So flux, which in the early days of electrostatics was an important idea, is nowadays often considered an obsolete concept.
Just as an argument I suggested that flux could be thought of as a form of particle emission from the surface of a charged object. To our surprise, the model seemed to explain the facts of electrostatics rather well. and ideas started falling out about the nature of surface forces on charged objects.
I began to take the idea seriously, and thought hard about how the logic could be followed through into electromagnetism. The results were somewhat surprising: I appeared to have stumbled on a new way of looking at all electromagnetic phenomena. My colteagues and I tried to see if this idea had been worked on before, but it is difficult to tell what is going on in electromagnetic research without access to high-powered mathematics, in particular the methods of quantum electrodynamics. We couldn't tell if the model is original or not but the ideas developed to a point where we felt we had to let them out into the open for other engineers to discuss and criticise.

Electric fields from single charged objects
The fundamental Law of electrostatics is Coulomb's Law. This relates the force between two charged objects to their total charge and the distance between them. An electric field is defined in terms of the force due to electric charges that is exerted on a unit charge. But what is charge? No-one really knows. It is supposed to be a static, enduring quality of the electron and the proton which generates force at a distance.

Due to some extraordinary property of these two particles, even though they are very different in mass and other properties, the charge on the two of them is found to be exactly equal and opposite with a precision of measurement that is one of the most accurately known in all science.
To give a concrete starting point, consider charge in terms of a deficiency or surplus of the number of electrons in a (macroscopic) object relative to the total number of protons present. Start with a negatively charged object, say a billiard ball. Suppose the capacitance of such a ball were one picofarad. If the ball were charged to 100 V then

TThe model develops the idea that the fundamental entities which underlie electrical and magnetic interactions are not electrons and protons but electrons and holes. Holes are to be understood in the semiconductor sense, that is regions of space that are distorted by the presence of protons to form orbital spaces for electrons. Electrons may or may not fill these orbital spaces; if they do not, the spaces are called holes. This model argues that in negatively charged objects the surplus electrons move about at high speed inside the object. When they reach the surface they are reflected back inwards, and this change of momentum results in the emission of a particle which may be called a "phaeon".

Phaeons are emitted continuously from a charged object because the electrons that have lost momentum can take up rotational or vibrational energy from the stationary electrons in the lattice. Positively charged objects have a surplus of holes, and these holes can be considered to move about the
object in a similar way to electrons. Because of the parity of the electron, it is argued that the change in momentum when a hole reflects at the surface of a charged object is distinguishable from the change of momentum when an electron reflects. Therefore different particles must be involved.

The particle emitted from an electron reflection has been called an " n-phaeon" and that from a hole reflection a "p-phaeon". Coulombic forces arise from the phaeonmediated exchange of momentum between charged objects. These forces are a distortion of surface forces in the charged objects.

The Theory of Relativity states that when two conductors both carry an electric current in the same direction, the electrons in one conductor observe a compression (the Lorentz transform) of the lattice relative to the moving electrons in the other conductor. This complession is the basis of magnetic forces in both the normal theory of electromagnetism and the present one.

However, the current theory argues that
this compression of the lattice combined with the axial spin of the mobile electrons generates a turning moment on the electrons similar to that seen in a tilted gyroscope. The result is that the electron trajectories are curved. This curvature is also found in the trajectories of phaeons emitted when the electrons reflect at the surface of the conductor. The interaction of the relativistically curved trajectories of electrons and phaeons generates magnetic forces between the conductors.
When an $A C$ potential is applied to a conductor it is argued that phaeon efflux becomes polarised to the ends of the conductor. Thus for each cycle of the applied potential, a phaeon "dipole" is emitted from the conductor. The polarity of this dipole reverses with each cycle of the applied potential. Electromagnetic radiation consists of phaeon dipoles whose polarity alternates at the frequency of the radiation. Thus a single photon is not a unitary particle, but an oriented pair of n - and p -phaeons.
we would have 10^{-10} coulombs of charge present. This would represent 6.28×10^{8} electrons. (If the ball weighed 100 g we might estimate, depending on the molecular weight of the material of the ball, the total number of molecules in the ball to be about 10^{23}. This would be something like one excess electron per 10^{15} molecules).
Now the key question is: what is the disposition of these electrons? The orthodox models would say that because the charges repel each other they would spread out in a relatively stationary way over the surface of the ball. Our first argument is that these electrons do not slay in fixed positions but have enough energy to move around the molecular lattice. They form a hind of electron "gas" in the solit.
Sooner or later a mobile electron will collide with an electron in a stationary orbital. It is like a game of musical chairs. with the electrons as the players and the molecules ats the chairs. The mobile electron may dislodge the stationary electron and take its place, leaving the newly mobile electron to move through the lattice until it in turn can dislodge another electron. A dynamic equilibrium will exist and, inside the ball, electrons will move in all directions equally. with the net effect in any one direction at any point averaging to zero.

But what happens at the surface? We can imagine an electron reaching the surface at some finite velocity; however, most negatively charged objects (except specially designed cathodes) do not emit electrons. The electrons to not have sufficient energy to leave the charged object and so they musi either stay near the surface or be reflected back into the bulk of the ball. It seems logical to think that this change in the momentum of the electron must be associated with the emission (or absorption) of some kind of
energy. i.e. some kind of particle. Photons are the particles which are normally emitted or absorbed when an electron changes its energy state. But of course we know that charged objects do not normally emit photons.

However, let us suppose that some form of particle is emitted by the reflected electrons. I would like to call them "phatons" (from the Greek $\varphi \alpha \varepsilon \theta \omega v$, the child of the sun god). Suppose that the loss of outward momentum of the electron is accompanied by the emission of one or more phacons. The electron must throw off at least one phaeon to decelerate itself to zero velocity at the surface and then either stay at the surface or emir at least another phacon to accelerate itself inwards again. (If we assume that phaeons always travel at the speed of light, this implies that the energy of the free electrons is quantized and can only change in amounts equivalent to the emission of one or more phateons). We thus cone to the conclusion that a negatively charged object is constantly emiting phacons, much like a radioactive object is emitting alpha, beta or ohler particles.

This immediately leads to the question of whether the charge must therefore "run down". in the sense that radioactive emissions have a half-life. Do the electrons gradwally lose their kinetic energy and stop moving around the lattice?
Not necessarily. Suppose that, initially, immediately after the charge has been deposited on the ball, there is emission of phacons caused by electrons moving outwards towards the surface and then slaying there. The molecules near the imner surface of the ball will now have a surplus of electrons. The molecules will have energy stored in them related to the absolute temperature, which is expressed as vibration and rotation-
al energy in the chemical or valence bonds between the atoms of the molecules. These chemical bonds consist of electrons in molecular or atomic orbitals.
Suppose that some of this energy can be translated to the outermost elections by local photon exchange. The exchanged thermal energy could provide a source of energy for continuing movement of free electrons throngh the lattice. The end result could be a dynamic equilibrium with a constant exchange of energy between fixed and mobile electrons and a constant emission of phacons as electrons are decelerated and reflected back inwards at the surface of the ball (Fig. 1).
Now assume that the phacons emitted from the charged hatl travel in a straight line through space until they reach other electrons able to absorb them. Phacons would then correspond to the classic idea of the flux of an electric field. Harking bach to

Fig. 1. Reflections of electrons at the surface of a negatively charged ball. Phaeons are emitted when electrons are reflected at the inner surface of a negatively charged object.

Gauss's law, we can say that charge may be an expression of the total phacon efflux from an object.
What happens with a positively charged ball? In this case there will be fewer electrons than protons in the ball, in other words a deficit in electrons relative to the orbital "spaces" created by the protons. We can again assume a dynamic equilibrium where electrons are constantly moving through the lattice of the ball, so that no single orbital spaces are permanently filled or permanently empty. There may be a tendency for orbitals near the inner surface of the ball to be less occupied than orbitals in the bulk of the material. Inside the bulk of the material. there will be no net forces in any direction. because the electron movement will be equal in all directions: but there will be a tendency for electrons to migrate inwards awher from the surface, the complementary situation to that in the negatively charged ball.

Instead of thinking about electrons accelerating inwards from the surface of positively charged objects, it is useful to draw on ideas in semiconductor physics. Conduction in semiconductors can be mediated by both electrons moving one way under an applied field and "holes" (ie spaces around protons that could be occupied by an electron but aren't) moving in an opposite direction. Migration of a hole in one direction is the same as migration by all electron in the opposite direction in terms of charge displacement. but it is not quite an identical process. Instead of a single electron moving forwards. the hole migrates by a sequence of movements of a set of electrons, each one moving one space backwards in the lattice.

From the arguments above, a positively charged object can be thought of as having holes accelerating towards the surface and being reflected back into the bulk of the object, in the same way that a negatively charged object has electrons constantly reflected back from its surface (Fig. 2).

Does the reflection of the hole emit from the surface of a positively charged object the

Fig. 2. Reflections of holes at the surface of a positively charged ball. Phaeons are emitted when holes ("virtual electrons") are reflected at the inner surface of a positively charged object.

same kind of phaeons that are emitted from a negatively-charged object? Both cases involve a change of momentum of electrons: but for the real electron the momentum change at the surface is from outwards to zero and then inwards: for the hole (which can be thought of as a virtual electron) the change in electron momentum in the set of electrons involved is from inwards to zero and then outwards. (Thus the momentum changes are equivalent to those that would be produced by an electron reflection if it were moving backwards in time).
If the electron had no parity or "handedness", we would be unable to distinguish between these two events, and so we would have to assume the phacons associated with them were also indistinguishable. However, modern physics has shown us that electrons do have parity. The parity condition can be expressed in a number of ways, but an appropriate way for the current model is to imagine that electrons have an intrinsic handedness or "spirality" like a bolt or screw. We can assert that because of this spirality, when electrons travel linearly through space they also must rotate in a fixed direction about the axis of movement. Put another way, the angular momentum and linear momentum of electrons are linked and must change together: an electron has to "corkscrew" through space.
Assume that the electron has a left-handed thread in space-time, and so rotates clockwise when travelling towards the observer. or anticlockwise when moving away from him. Thus an electron moving away from the centre of a sphere towards the surface and towards an observer outside the sphere will always appear to be rotating clockwise. If the electron is reflected inwards at the surface, it has to change its direction of rotation relative to the observer. It does not matter whether we think of this change as being mediated by the electron keeping the same direction of rotation and "swivelling around" in space, or by a reversal of rotation without swivelling.

Suppose one phacon is emitted in order to bring the electron to a halt at the surface. and another to start the inwards movement. The first phacon can be considered to carry an element of clockwise momentum forwards towards the observer, the momentum that the electron has lost. The second phaeon will also carry an element of clockwise momentum towards the observer, as the electron will have to lose more clock wise momentum in order to start an anticlockwise rotation and start moving back. We might initially assume that the phacons are emitted outward along the line of the incident and reflected tracks of the electron. But there is a complication. The angular momentum or rotation of the electron can be thought of in the same way as the spin that a rifle produces on a bullet; and when a spinning bullet bounces off a solid object, the spin produces a ricochet, and the bullet may fly off in any direction.

Fig. 3. Phaeon parity.
A. The phaeon emitted from a negatively charged object has one type of parity which can be represented as a clockwise rotation as seen by the observer. We can call this type of phaeon an "n-phaeon".
B. The phaeon emitted from a positively charged object has the opposite parity, ie an anticlockwise rotation as seen by the observer. We can call this type of phaeon a "p-phaeon".

We can assume that the direction of the emitted phaeons will depend not only on the angle of the incident electron track, but also on the precise momentary state of the stationary electrons at the surface. In other words. there will be a probability distribution of the direction of the outward trajectories for the emissions for both the electron deceleration and acceleration events. However. the only unique direction will be normal to the surface at the point of impact. and the net effect of phacons at other angles will sum to an effective emission outwards along this normal. Thus the effect of many electron reflections will be a flux of phaeons directed radially outwards from the surface.

In summary, to a distant observer, the phaeons emitted from a charged object will radiate radially outwards from the surface; those emitted towards him (which are the only ones he normally detects) from a negativels charged object will have an element of clockwise (left-handed) rotation or angular momentum (Fig. 3A)

Consider the same outside observer watching a hole approach the surface of the sphere and then be reflected. As the hole approaches the surface a series of electrons will move one at a time away from him towards the interior of the sphere. After reflection of the hole the same or another set of electrons will move in sequence towards him. At the moment the hole reflects, the last electron in the first set will throw off one or more phaeons towards the observer to stop its inward momentum, and then the first electron in the second set will also emit phaeons outwards to give itself outward momentum.
However, the change in electron rotation (in both cases) will be from anticlockwise to
clockwise. So for a positively charged object the phacons emitted towards the outside observer will all carry an element of anticlockuise (right-handed) rotation or angular momentum. (Fig. 3B).
Thus, because of electron parity, we can differentiate between the phacons emitted when an electron is reflected inwards at the surface of a negatively charged object and those emitted when a hole is similarly reflected inwards at the surface of a positively charged object. The two sorts of reflection will emit phacons with different kinds of angular momentum.

Taking in the surface tension

Let us call these two kinds of phacon " n " and " p ". We can define n-phacons as those emitted from a negatively charged objeet and p-phaeons as those emilted from a positively charged object.
Finally, we can consider the nature of the forces exerted on the surface of charged objects by electrons and holes. Electrostatic theory tells us that there is an outward force at the surface of both negatively and positively charged objects due to the mutual repulsion of the surface charges. For example in a fluid, the presence of charge on its surface decreases the surface tension. whether the charge is positive or negative.
In the present model the inner surface of a negatively charged sphere is bombarded with electrons, and electrons have finite inertia, so we can reasonably suppose that this barrage will indeed exert an outward force at all points on the surface of the object which will tend to make it expand (and counteract surface tension). On the other hand a positively charged object has its inner surface constantly bombarded by holes. This bombardment by holes is equivalent in momentum terms to a constiant withdrawal of electrons from the surlace, and so we might conclude that there ought to be an inward force acting at the surface of positively charged objects. The force should. for example. incrcase surface tension in at fluid.
This postulate of an inward surlace force on positively charged objects is fundamental to the present model. for it forms the basis of the explanation of the coulombic forces between charged objects.
The postutate is experimentally testable, and there is at least one piece of evidence which seems to support the present model. The capillary electrometer is an instrument, now rarely used, that can measure voltages by their effect on the position of a mercury-clectrolyte interface in a capillary tube. The mercury meniscus at the interface can be made to move one way by one polarity of an applied voltage, and the

A. Bectron reflections generate outwardforces at the surface of nengatively charged objects

8. Hole reflecli ons generate inward forces at the surface of positively charged objects

Fig. 4. Surface forces on charged objects. A. Electron reflections generate oulward forces at the surface of negatively charged objects.
B. Hole reflections generate inward forces at the surface of positively charged objects.

Fig. 5. Surface forces on two negatively charged sprieres.
A. If two negatively charged spheres are a long distance apart the surface forces are close to those of an isolated sphere. B. If the spineres are brought logether the n phaeon exchange alters the momentum changes of the electrons at the surface and hence the surface forces; the oulward forces on the sides nearer the other sphere are diminished and those on the far sides are increased. The result is a mutual repulsive force belween the spheres.
other way by a reversal of this potential; thus one polarity of applied potential or fiedd appears to increase the net surface tension at the meniscus while the other decreases it: according to standard theory the surface tension should be decreased by either polarity of applied field.

Interaction of charged objects

What happens when two charged objects are brought together? To simplify the argument. we shall deal solely with the effects of electrons and holes moving out to the surface of charged objects.

The effect of reflections at the surface will simply double-up the effects of the outward movement.

It becomes helpful at this point to think of thechange of momentum of the electron at the surface as an "event" with a time direction (electron acceleration or deceleration) as well as a spatial component. These events can be indicated by arrows with bars at the beginning or end. The force exerted on the surface is indicated by the length and direction of the arrow, and electron acceleration or deceleration by a bar at the beginning or end of the arrow.
To) be consistent we must define a direction for positive acceleration. Positive acceleration will be defined as acceleration in the left-to-right direction in all the diagrams.
Figure 4 shows the surlace forces of charged spheres using this convention. The direction and magnitude of the surface force is indicated by the arrows: Thus in Fig. 4A there are outward forces in a negalively charged sphere. The event arrows have a bar at the pointed end, to denote deceleration of the electron at the surface. Figure 4 B shows the inward forces in a positively charged sphere. The bars at the beginning of the arrows indicate that the electrons accelerate innards at the surface. (This is of course equivalent to holes decelerating outwards). Note that phacons are always emitted from the "bar end" of the event. Now we can consider the interactions between two spheres.

Figure 5 shows two negatively charged spheres initially at a distance (Fig 5A) which are brought together. N phacons emitted from sphere 1 in the figure will be absorbed by electrons in sphere 2 and vice-versa. Absorption of phacons from sphere I will add to the initial momentum of electrons on the right-hand (far) side of sphere 2 and thus increase the outward surlace force in this region, but subtract from the initial momentum of the electrons on the left-hand (near) side of sphere 2 and thus decrease the outward surface force here. The net effect will be an imbalance in the surface forces on the two

Fig. 6. Surface forces on two positively charged spheres. A. When the spheres are a long disfance apart the surface forces are close to those of an isolated sphere.
B. If the spheres are brought together p-phaeon exchange alters the momentum changes of the holes at the surface and hence the surface forces; the inward forces on the sides closer to the other sphere are increased and those on the far sides are decreased. The result is a mutual repulsive force similar to that between negatively charged spheres.

Fig. 7. Interaction of oppositely charged spheres. A. With the spheres a long distance apart the surface forces are close to those on an isolated sphere.
B. If the spheres are brought fogether the phaeon fluxes interact as in Table 1 . N-phaeons from the negatively charged sphere are absorbed by the holes reflecting in the positively charged sphere, and p-phaeons are absorbed by electrons reflecting in the negatively charged sphere. The result is a distortion of the surface forces on the two spheres which produces an atfractive force between the two spheres.
sides of the sphere resulting in a net force tending to move the sphere to the right away from sphere 1.
A complementary process will occur in sphere 1. which will experience a net force to the left.
The total effect is thus one of mutual repulsion (Fig. 5B).
Figure 6 shows the situation when two positively charged spheres initially at a distance (Fig 6A) are brought logether. P-

Table 1: Electron-phaeon interactions.

phacons emitled from sphere 1 will be absorbed by electrons on the left-hand side of sphere 2 and add to their momentum, an: thus increase the inward surface force in this region. They will subtract from the inward momentum of electrons on the right-hand side of sphere 2 , and so decrease the inward surface force here. Thus in sphere 2 there will be an imbalance of surface forces which will tend to make it move to the right away from sphere 1. A similar process will occur in sphere 1 ; net effect is again that the two spheres will tend to move apart (Fig 6B).
Finally, we can analyze the case when (wo) spleres with opposite charge are brought together. To do this. consider what happens when an n-phacon from a decelerating electron in a negatively charged sphere is absorbed by an accelerating electron in a positively charged sphere. To accelerate inwards from the surface of a sphere, a stationary electron would nomally throw off an element (the p -phaeon) of anticlochwise momentum outwards. However, if it can absorb an element of elockwise momentum forwards it can start its forward motion without ally reaction on to the surface, ie the surface force is eliminated.
Similarly, to decelerate at the surface, an electron would normally need to throw off forwards an elemen of clockwise momentum (an n-phacon). However, if it catn absorb an element of anticlockwise momentum travelling backwards, this "brakes" the electron without involvenent of the surface. and hence the surface force is again eliminated. At this point it is helpful to draw up a lable of the algebra of the event interactions.

Table 1 lines $1-4$ shows the interactions described so far in figs 4 and 5. From the discussion above. we can add the interactions on lines 5 and 6 . and from considerations of symmetry. we can add lines 7-8. Thus we can see that the n-phacon electron emitted from the left-hand sphere (lines 1.2.5 and 7) always produces a net increase in right-to-left acceleration of the recipient electron. (This is sometimes seen as an increase in left-to-right deceleration, a decrease in right-to-left deceleration or a decrease in left-to-right acceleration but in all cases the overall momentum change is the same). In a similar way absorption of p phaeon from the lefthand sphere will always produce a net increase in left-to-right acceleration in the recipient electron.
Figure 7 shows what will happen when negatively and positively charged spheres are brought togelher.
The absorption of an n-phateon by an electron accelerating inwards from the left-hand side of sphere 2 will reduce the inward force on this surface, and the absorption of another th-phaton by an electron accelerating inwards from the right-hand side of the splere will increase the inward force on this surface. The net result is a foree tending to move the splere to the left, ie towards the negatively charged spliere. The monentum changes in the negatively charged splere create a complementary force which tends to move it to the right, lowards the positively charged sphere. Thus the two spheres will be attracted together (fig 7B)
To sum up, according to my hypothesis, we can regard electrostatic (coulombic)
forces as the result of the changes in surface forces on charged objects due to phacon emission and absorption. These phaeon emissions are in turn due to electron momentum changes at the surface of the charged objects. Charged objects are attracted to or repelled from other charged objects because of an imbalance in the surface forces on the sides of them nearer to and further away from these other objects.

Fields of moving charges

In the Special Theory of Relativity. Einstein showed that magnetic forces arise as a necessary consequence of relativistic mechanies applied to the fields of moving charges. The necessary and sufficient condition for magnetic forces to appear is just that charge remains an invariant (a scalar) at all velocities (ie in all inertial frames of reference) whereas mass, length and time all change (via the Lorentz transformation) as the speed of the object relative to an observer approaches the speed of light. c.
In one sense any model of electrostatics which explains Coulomb's Law must predict magnetic fields from moving charges if the Coulombic forces in the model are relativistically invariant. We cannot prove that the phaeon fluxes are relativistically invariant, but we can develop some models of how the kinetic theory can generate electromagnetism via a relativistic mechanism.

Consider first the electromagnetic force that we know is produced between two parallel metal wires each carrying a steady (DC) current. If the current is in the same direction in both wires - for the sake of this example the $\%$ direction - the electromagnetic force is attractive between the wires. The relativistic explanation of this force in the classical model stems from the Lorente transformation (dimensional compression) of moving inertial frames. So, for example.
if we consider a siream of electrons moving through one conductor, we can place a frame of reference around one of these electrons and "look out" at the other wire (Fig. 8a).

From our electron-centred frame, the protons in the lattice of the other wire will be moving in the negative z direction at a higher velocity than the electrons in the other wire will be moving in the positive z direction. The difference in velocities will produce a relative compression of the observed distance between the protons, and so the apparent proton density in the other wire will be greater than the electron density. This is because each proton and electron keeps the same charge regardless of velocily: an attractive electrostatic force will be felt by the moving electron.

The situation is simitar for an electron in the other wire; it will also observe a relative increase in proton density in the observed wire. Hence a mutually attractive force will be produced between the wires as the moving electrons in both wires see an apparent increase in proton density in the other wire (Fig. 8b).

We can use exactly the same kinds of argument to explain magnetic forces in the present model. Consider a metallic wire conductor carrying an electric current. The negative end of the wire has a relative excess of electrons and the positive end has a relative excess of holes.

Now we know that Ohm's Law is valid because the velocity of the mobile elections in the direction of the current flow in a conductor is small relative to their random thermal motion. Thus we can think of each electron (or hole, for parallel arguments apply) as involved in random motion inside the wire with a small superimposed component of velocity in the direction of the current. In this situation the electrons and holes will be involved in frequent collisions with the
atoms of the lattice including those on the surface. In other words, we can envisage a contiauous emission of n - and p-phatons from the surface of a wire carrying an electrical current (Fig. 9a).

As we have argued before, the net flux of the phaeons will be radially outwards from the surface. Because this emission contains equall amounts of both kinds of phacons (viewed from a distance), there will be no net surlace forces generated.

Now consider two parallel conductors both carrying a current in the same direction. We can use the same arguments about relativistic spatial compression that the classical model uses. Thus from the viewpoint of the inertial frame of an electron in conductor 2 the holes will be moving downwards in conductor I at a higher speed than the electrons will be moving upwards. The Lorentz transformation of distance will increase the apparent density of holes over electrons in conductor 1 as seen from this electron. Thus the number of collisions of holes with the surface and therefore p-phacons emitted will also be increased. In other words. from the viewpoint of the moving electrons in conductor 2. there will be an excess of p phatons over n-phacons emilted towards them. (Fig. 9b).
This net tlux of p-phacons will change the surface forces exerted by these electrons in the same way that a positively charged object aflects a negatively charged object; an attractive force towards conductor 2 will be generated. Exactly the same process will occur for the inertial frame of any moving (current carrying) electron in conductor 1 . Thus a mutually attractive force is generated between the two wires.

If the current thow is in opposite directions in the two conductors, an electron in conductor 1 would see an excess of electrons in conductor 2, and therefore experience an

Fig. 8a. Electron and proton densities in a current-carrying conductor. A stationary electron on this conductor observes an equal density of protons and electrons in the left-hand conductor. Although the electrons in the other conductor are moving past the protons they have the same linear density as the protons.

Fig. 8b. Relativistic effects of moving charges in two conductors. The electron which is moving in this conductor sees an increase in the density (in the z axis) of the protons in the other wire relative to the electrons. Thus it experiences an attractive electrostatic force.

Fig. 9a. Phaeon flux from a conductor carrying a current as seen by a stationary electron in another conductor.

Fig. 9b. Phaeon flux from a conductor carrying a current as seen by a moving electron in another conductor.
excess n-phateon over p-phateon tlux. The same thing would happen to an electron in conductor 2 , so in this case there would be a repulsive force between theconductors. Exactly parallel argument will hold true from the frame of holes moving through the two conductors; a similar direction of current will produce attractive forces and an
opposite direction will produce repulsive forces.

Thus. in summary, we can argue that the forces that we know that are generated between two parallel current-carrying conductors call be explained in our model by a relativistic compression of the motion of electrons and holes that carry the current.

Dr Iulian Millar is senior lecturer. Deparment of Physiology. Basic Medical Sciences. Ques'l Mary and Westfield College London.

Next month:

Place for permanent magnets...

Not a data logger ...

.. but a module to build into your own products. It enables you to quickly build tailormade data collection systems with removable memory which can be read by a Personal Computer.

As a Data Logger Module you've little to add to its low current, up to 8 Mbytes of non-volatile card memory, 10-bit 8-channel A to D and real-time clock. Directly connect a matrix keypad and graphics or character LCDs.

As a High Performance 16-bit Control Computer its on-board Assembler \& multitasking Forth high level language make programming and debugging a pleasure, yet give the 3 MIPS execution speed you need in a real-time system.

Triangle Digital Services Ltd 223 Lea Bridge Road, LONDON E10 7NE Tel 081-539 0285 Fax 081-558 8110

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Road, Borehamwood, Herts. WD6 1AA. Fax: 081-207 6375, 0836640328
HT12 fully 286 compatible; half size mother board; Intel 286 CPU ; running at $12 / 16 /$ 20 MHz ; zero wait state; 1 Mb RAM supplied; up to 4 MD . AMI BIOS; set-up disk. New \& boxed. £115+VAT c/p £6.00.
386 sx half size mother board same as above but expandable to 8 Mb . New \& boxed. Sola mini UPS. 500 watt + line conditioner $\&$ inverter. $£ 95$ inc VAT c/p please ring. Chloride Powersate batteries. 12V DC 24 Ah sealed lead acid. $£ 19.95 \mathrm{c} / \mathrm{p}$ £9.00. New, marked cases.
3.5" Hoppy disk drive Chinon BBC compatible, new $\mathrm{E} 35 \mathrm{c} / \mathrm{p} £ 4.00$

Astrolux Mono Headset New $£ 15.95 \mathrm{c} / \mathrm{p} £ 3.50$
Astrolux Headset with boom mic £19.95 c / p £3.50
Tekironix 7403 N Maintrame ${ }^{\prime \prime}$.
3.5 hoppy disk drive NEC IBM compatible. Full height unit. $\mathbf{\varepsilon} 39.95$ new $\&$ boxed Switch mp 23.00 .
$5 \mathrm{VDC} 40 \mathrm{amp}-12 \mathrm{~V}$ DC $4 \mathrm{amp}+15 \mathrm{VDC} 11 \mathrm{amp} \mathrm{\Sigma} 48$
NEC $9^{\prime \prime}$ mono monitor composite video input, switchable high-low impedance input $\&$
output tor dalsy-chalning. BNG sockets. Bullt-in carry handle. $\mathbf{\Sigma 2 9 . 9 5} \mathrm{c} / \mathrm{p} £ 7.50$.
H.P. 4328 A millohmmeter $£ 450 \mathrm{c} / \mathrm{p} £ 11.00$.
H.P. 3400A RMS voltmeter $£ 225 \mathrm{C} / \mathrm{p}$ £11.00.
H.P. 3330 B auto synthesizer $£ 550 \mathrm{c} / \mathrm{p}$ please ring.
Tektronix 191 constant amplitude sig.gen. $£ 175 \mathrm{C} / \mathrm{p} £ 12.00$.

Tektronix 191 constant amplitude sig.gen.
Tektronix 067-502 standard amplitude calibrator $£ 120 \mathrm{c} / \mathrm{p} £ 12.00$.
Leader LBO-5810A dual trace programmable 25 MHz o'scope $£ 200 \mathrm{c} / \mathrm{p} \mathrm{£18.00}$
Apple II Europlus 875
Apple II E £125 Disk drive extra
Hewlett Packard 618 BH SHF slgnal generator $£ 75.00$
Hewletl Packard 606B signal generator $£ 75.00$.
Hewletl Packard 612A UHF signal generator $£ 75.00$
Hewlett Packard 86A personal computer new $£ 95.00$
Hewlett Packard 5000A logic state analyser $\mathbf{\Sigma 6 0 . 0 0}$.
Hewlett Packard 3450 B multi-function meter $\mathbf{£ 6 5 . 0 0}$
Hewlett Packard 6930 sweep oscillator $£ 175.00$
Hewlett Packard 651B test oscillator $£ 75.00$

Iswatsu SS5
Kikusui COS 504040 MHz O'Scope Calto $1-92 £ 350$
Hitachl V212 20 MHz O'scope $£ 230$
Hitachl V202F 20 MHz O'scope Catio $1-92$ £230 Tektronix 455 O'scope $\mathbf{\Sigma 3 5 0}$
Leader Programable 20 MHz O'scope $£ 95$
Tektronix 7 B 70 time base plug-in $£ 100.00$.
Tektronix 7 DO1 logic analyser plug-in $£ 100.00$
Singer spectrum analyser 20 Hz to 35 kHz £275.00
Singer Alfred o'scope c/with sweep network analyser 7051 £ 175.00 Datron 1030A RMS voltmeter $\mathbf{8 6 5 . 0 0}$
Datron 1030 RMS voltmeter $\mathbf{8 6 5 . 0 0}$
Paratronics Model 532 led generator Model III $\mathbf{8 6 0 . 0 0}$ Paratronics Model 532 logic state analyser 32chn $£ 165.00$
All above prices $+171 / 2 \%$ VAT. Please ring for c/p rates.

We would tike the opportunity to tender for surplus equipment Official orders credit card telephone orders accepted with Access, Amex, Diners, visa cards. Overseas enquiries welcome c/p rates U.K. maintand only. lease ring for c / p rates not shown.
All prices inc. V.A.T. unless stated. Stock list available,

COMPUTERICS
2817A－20 used
B0CB8A－2 used

27S191 PROM／wiped
MS1400P－45
P7749H MICRO
D8751H
NEW 4164－15
USED 4164－15
BBC VIDEO ULÄ
VIDEO ULA 20164
De55 ULA 201647
522 PIA
DM88LS120
AY3－1015D UART
$\times 41256-15$ SIMM
$\times 4164$ SIP MODULE NEW
HD 146818 CLOCK IC
2864 EPROM
27128A 250 ns EPROM USED．．．
27C1001－20Z NEW 1M EPROM
FLOPPY DISC CONT．．．．．．．．．．．．．．．．．．．．．．．． 6
\＆

HD6384－6
ALL USED EPROMS ERASED ANO BLANK CHECKED
CAN BE PROGRAMMED IF DESIRED
2716－45 USED
． 52 100／E1
2732－45 USED 5210051

27C256－30 USED £2 100／E1．60
$27 C 512$ USED
1702 EPROM EX EOPT
114 EXEOPT 50 4 416 EX EOPT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
$6264-158 \mathrm{k}$ STATIC RAM
SN76489AN
GR281 NON VOLATLLE RAM EQUIV 6116
Z80A SIO－O
TMS27PC256－25 ONE SHOT 27C256 ．．．．．．．．．．．．．．．．．．．．．． 1 \＆1．25 100 8085 PROCESSORE2 MC6802 PROCESSOR
REGULATORS
$78 \mathrm{MO5} 5 \mathrm{~V} 0.5 \mathrm{~A}$
…．．．．．．．．．．．．．．．．．．．．．．．．．．．751

M3317T PLAST
M317 METAL
8055／1215／24V plastic $.25 p ~ 100+20 p 1000+15 p$ CA3085 TO99 variable reg ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 25 p 100 LM338 5A VARIABLE 2． 88

CRYSTAL OSCILLATORS
1 M000 1 M 8432 1M000 4M000 16 MO 00 20M500 32M0000 56M6092

£1．50 each

CRYSTALS

M1 2M77 4M000 4M9152 5M0688 6M0000 8M0000 14M31818 15M000 16M0
21 M 855 22M1184 49M50
c1 each

TRANSISTORS

BC107 BCY70 PREFORMED LEADS
full spoe ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 1 £ 4 / 100 ~ £ 30 / 1000$

POWER TRANSISTORS

NPOWERFETIRF531 BA 60V
25C1520 sim BE259 TIP 141／2 $£ 1$ ea
SE9301 100V 1DA DARL SIM TIP121 ．．．．．．．．．．．．．．．．．．．．．．．．．2／E1
PLASTIC 3055 OR 2955 equiv 50p ．．．．．．．．．．．．．．．．．．．．．．． 100 L35

TEXTOOL ZIF SOCKETS

28 WAY ZIF EX NEW EQUIPMENT 40 WAY NEW ．．
SiNGLE IN LINE 32 WAY CANBE GANGED FOR US WITH ANY DUAL IN LINE DEVICES ．．．COUPLING

CITORS COMPUTER GRA
CAPACITORS COMPUTER GRADE
TOROID 350VA $35+35 \mathrm{~V}$ AND $15+15 \mathrm{~V} 24 \mathrm{VA}$ $2200 \mu \mathrm{~F} 160 \mathrm{~V}$ SIC SAFCO FELSIC CO38 ．．．．．．．．．．$£ 4$（ $£ 1.20$ ） $24,000 \mu \mathrm{~F} 50 \mathrm{~V}$ TOROID 350VA $35 \mathrm{~V}+35 \mathrm{~V}$ AND $15 \mathrm{~V}+15 \mathrm{~V} 24 \mathrm{VA}$ ．．．．．．．．．． 16

QUARTZ HALOGENLAMPS

12V 50watt LAMP TYPE M312．．．£1 es HOLDERS 60p ea 24V 150 WAT TS LAMP TYPE A1／215 ．．．．．．．．．．．．．$£ 2.50$ each

MISCELLANEOUS

HITACHI LM018L LCD MODULE 40×2 CHARACTERS $182 \times 35 \times 13 \mathrm{~mm}$ ．． $84 \times 44 \times 12 \mathrm{~mm}$
6－32 UNC 5／16 POZI PAN SCREWS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1 / 100$
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1.25 / 100$
PUSH SWITCH CHANGEOVER
S232 SERIAL CABLE D25 WAY MALE CONNECTORS

25 FEET LONG， 15 PINS WIRED BRAID＋FOIL
SCREENS ．．．．．．．．．．．．．．．．．．．．INMAC LIST PRICE 130 STICK ON CABINET FEET RS NO 543－327 ……．．．． $30, \Sigma 1$ LEMAG EARTH LEAKAGE TRIP 35A 35mA TR
（OTHER VI
（OTHER VOLTAGES／SIZES USUALLY AVAILABLE AMERICAN $2 / 3$ PIN CHASSIS SOCKET HUMIDITY SWITCH ADJUSTABLE WIRE ENDED FUSES $0.25 A$.
NEW ULTRASONIC TRANSD ． 12 $30 / 1$ 12－CORE ع2pr POWERFUL SMALL CYLINDRICAL MAGNE 70p／metre SONETS ．．．．．．．．3／21 BNC 500HM SCREENED CHASSIS SOCKET $3 / 21$
$2 / 21$ SMALL MICROWAVE DIODES AE1 OC1026A
D．I．．．．．．．． 221
180VOLT IWATT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V}$ ．．．．．．．．．．．．． $20 \% 1$ PLASTIC EQUIPMENT CASE $9 \times 6 \times 1.25$ WITभ FRONT ANO REAR ANELSCONTANING PCBWITHEPROM WAY D PLUG，PUSH BUTTON SWITCH，DIN SOCKET
VN 10LM 60V 1／2A 5 Ohm TO－92 mosfet ．．．．．．．．．．．．．．．．． $4 / \varepsilon 1$ £ 100 MINGLASS NEONS 10 L RELAY 5V 2－pole changeover looks like RS 355－741 marked STC 47WBost
MINIATURE CO－mX FREE PLUG RS 456－071 ．．．．．．．．．．．．．．．． MINIATURE CO－AX FREE SKT RS 456－273 ．．．．．．．．．2£1．50 DIL REED RELAY 2 POLE n／o CONTACTS ．．．．．．．．．．．．．．．． PCB WITH 2N2646 UNIJUNCTION WITH 12V 4－POLE RELAY
$400 \mathrm{~m} 0.5 W$ thick film resistors（yes four hundred megohms）
STRAIN GA
STRAIN GAUGES 40 ohm Foil type polyester oacked 4／E1 balco grid alloy …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 1.50$ ea $10+£ 1$ Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304 －
 HALL EFFECTIC UGS3040＋magnet ．．． OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10 \ldots \ldots . .112$ CHEAP PHONO PLUGS ．．．．．．．．．．．．．．．．．．．．．．．．．． $50 \Sigma 21000$ £10 1 pole 12－way rotary switch
AUDIO ICS LM380 LM386 TDA 2003
555 TIMERS $\& 1741$ OP AMP
ZN414 AM RAIDO CHIP COAXPLUGS nice One
 COAX PLUGS nice ones ．．．80p 4×4 MEMBR ANE KE YBOARD NDUCTOR ANE KE YBOARD \qquad $3 / \Sigma 1$
$\varepsilon 1.50$ 1．25＂PANEL FUSEHOLDERS 5．．．． 51
$-\quad 3 / \Sigma 1$ CHROMED STEEL HINGES $14.5 \times 1^{\prime \prime}$ OPEN ．．．．．．．．$£ 1$ each 12 V ． 2 W small wire ended lamps fit Audi VW Saab Volvo
STEREO CASSETTE HEAD
$\begin{array}{r}10 / 1 \\ \text { E2 } \\ \hline\end{array}$

\＆1 51
TRANSISTOR MOUNTING PADS TO－5／TO－18 ．．．$£ 3,1000$ TO－3 TRANSISTOR COVERS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．10／E1 PCB PINS FIT 0.1^{*} VERO ．．200 10 ع 1 TO－ 220 micas＋bushes ．．．．．．．．．．．．．．．．．．．．．．．．．．．．10／50p 100／£2
TO－3 micas＋bushes PTFE min screer．ed cable $\begin{array}{r}10 \mathrm{~m} / \mathrm{\Sigma} 1 \\ \mathrm{c} \\ \hline 1\end{array}$ Large heat shrink sleeving pack ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 22 IEC chassis plug fitter 10A ．．£3 Potentiometers sthort spindles values 2 k 5 10k 25k 1 m 2 m 5
500 k lio $500 \mathrm{k} \log$ ．．421 40kHz ULTRASONIC TRANSDUCERS EX－EOPT NO DATA
LM335Z TEMP SENSOR $10^{\circ} \mathrm{C}$ PER MV
M234Z CONST．CURRENT I．C
PAPST $18-24 \mathrm{~V}$ FAN 120 MM WORKS OK ON 12 V
BNC TO 4MM BINDING POST SIM RS 455－961
BUTTON CELLSWATCH BATTERIES SIM AG10／AG12 11
MIN PCB POWER RELAY 12 V COIL $6 V$ CONTACTS $2 P$
DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE ．．．．．．．．．．．．．．．4／E1
1N5407 3A 1000V
1N54073A 1000V ．． 8 81
IN4148 ．．100／E1．50
IN4004／SD4 1A 300V ．．． 100 I
B5451 3A 100V ．．． 1001
BA158 1A 400VI last recovery ．．
BY254 800V 3 A
BY255 1300 V 3 A
6A 100V SIMILAR MR751

A A 600V BRIDGE RECTIFIER ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$/$／ 1
6A 100V BRIDGE ．．．2反1

10A 200V BRIDGE ．．．
．． 1.50
25A 200V BRIDGE C2
10 E182

SCRS

PULSE TRANSFORMERS $1: 1+1$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.25
PP4M EQUIV C106D
MEV106D 800mA 400C SCR $3 \mathrm{E1}$ ．．．．．．．．．．．．．．．．．．．．．．．．． 100 L 15

TRIACS
DIACS 4／${ }^{1}$
NEC TRIAC ACOBF BA 600V TO220 $5: 12100$ © 30 XAL 225 EA 500 V 5 mA GATE $2 \Sigma 1100$ \＆35 TA $08-400$ ISO TAB 400 V 5 mA GATE 20． 1 ． 90 D TRAL22300 30A 400V ISOLATED STUD ${ }_{5} 5$

CONNECTORS

D25 IDC SOCKE FUJITSU ．．．．TOR（disk drwe i．．．．．．≤ 2
34－way card edge IDCCONNECTOR（disk drive type） 52
CENTRONICS 36 WAY IDC PLUG $〔 1.25$
5250
CENTRONICS 36 WAY IDC SKT ．．． 4.00
BBC TO CENTRONICS PRINTER LEAD 1.5 M CENTRONICS 36 WAY PLUG SOLOER TYPE USED CENTRONICS 36W PLUG＋SKT
USED D CONNECTORS price per pair D9 60p，D15 £1．50，D25 £2，D37 £2，D50 £3．50，covers

50p ea

WIRE WOUND RESISTORS

W21 or simi 2．5W 10 of one value ．．．．．．．．．．．．．．．．．\＆
R100R150R21 2R0 4R7 5R0 5R6 8R2 10R 12R 15R 18R 20R 430R 470R 680R B20R 910R 1 K 151 K 21 K 51 KB 2K4 2K7 ЗК3 3K0 5K0
R05（ 50 milli－ohm）1\％3W
W22 or sim 6 W 7 OF ONE VALUE
PHOTO DEVICES
HIBRIGH NESS LEDS COX24 RED ．．．．．．．．．．．．．．．．．．．．．．．．5／ $\mathbf{~} 1$
SLOTTED OPTO－SWITCH OPCOA OPB815 ．．．．．．．．．．．$£ 1.30$ 2N5777
L81 PHOTO TRANSISTOR
TIL38 INFIA RED LED ．．．．．．．．．．．．．．．
4N25，OP12252 OPTO ISOLATOR
PHOTO DIODE 50P
PHET（PHOTE 50P ．．．．．．．．．．．．．．．．．． 50
MEL＇（PHOTO DARLINGTON BASE n／c）$\quad 50$
LED＇s GREEN OR YELI 3 I
$100 \% 6$
LDS GRENN YELLOW 10 E1
FLASHING RED OR GREEN LED 5 mm 50 p ．．．．．．．． 100 r40
HIGH SPE ED MEDIUM AREA PHOTODIODE RS651
STC NTC BEAD THERMISTORS
G22 220R，G13 1K，G23 2K，G24 20K，G54 50K．G25
200K，RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE ．．．．．．．．．．$£ 1$ ea
FS22BW NTC BEAD INSIDE END OF 1＂GLASS PROBE
RES $20^{\circ} \mathrm{C}$ 200R ．． 1 ea
A13 DIRECTLY HEATED BEAD THERMISTOR 1 k res．
ideal for a．sdio Wien Bridge Oscillator ．．．．．．．．．．．．．．．．．．．．．．．． 22 ee
CERNET MULTI TURN PRESETS $3 / \mathbf{4}^{\prime \prime}$
10R 20R＊OOR 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K200K 500K 2M ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．50p ea IC SOCKETS
32－WAY TURNED PIN SOCKETS 7K AVAILABLE 3／81 6 pin 15／21 8 pin 12／E1 14／16 pin 10／\＆1 18／20 pin 7／E1 $22 / 2428$ pin 4 \＆ 14030 p
SIMM SOCKET TAKES 2×30 WAY SIMMS ．．．．．．．．．．．．．．．．．．．．\＆
SOLID STATE RELAYS
40A 250V AC SOLID STATE RELAYS ．．．．．．．．．．．．．．．．．．．．．．．．．£10
POLYESTER／POLYCARB CAPS
100n，220n 63 V 5 mm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20 上1 $100 /$／3 $1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} 6 / 8 \mathrm{n} 2 / 10 \mathrm{n} 1 \% 63 \mathrm{~V} 10 \mathrm{~mm}$ 100 n 250 V radial 10 mm $100 \mathrm{n} 250 \vee$ radial 10 mm
100 n 600 V Sprague axial $10 / \mathrm{L1}$
$2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V} \mathrm{rad} 15 \mathrm{~mm} \quad 100 \mathrm{r} 6$（ E 1
$10 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC \times rated 15 mm
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC．．．
－．． 100 ¢10 $\ldots \quad . \quad . \quad . \quad . \quad 10 \mathrm{c} 1$

RF BITS

CONHEX 50 hm PCB RIGHT ANGLE PLUG
ITT／SEALECTRO 0510539029 22－0 4K AVAILABLE
TRW 50wall 500hm DUMMY LOADS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 550
TRIMMER CAPS ．．．ALL 450p
SMALL 50F 2 pin mounting 5 mm centres
SMALL NULLARD 2 to 22pF ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．450p
Larger type grey 2 to 25 pF black 15 to 20pF
FEED THRU CERAMIC CAPS 1000pF 10 E
MINIATURE RELAYS Suitable for RF
5 voll coil 1 pole changeover ．．．$\Sigma 1$
5 volt coln 2 pole changeover

MONOLITHIC CERAMIC

CAPACITORS
10 n 50 V 2.5 mm ．．．．．．．．．．．．
100 n 50 V 2.5 mm or 5 mm \qquad

100 n ax ：hort leads
100 n ax ：inng leads
100 n 50 V dil package $0.3^{\circ} \mathrm{ra}$

STEPPER MOTORS

2 CENTRE－TAPPED 9 VOLT WINDINGS 7.5° STEPS $£ 4$

TEL．0279－505543
FAX．0279－757656 POBOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

ADD 17112% VAT TO TOTAL ELECTRONIC COMPONENTS BOUGHT FOR CASH

US teletext falls on deaf ears

In spite of some 50 million teletext TV receivers operating in over 40 countrics, the US market has shown no interest in what is now known as World System Teletext.
"We have failed dismally in the USA", admits Dick Bugg of Philips
Semiconductors. "But it's not for want of trying. The last big opportunity to open new markets in is in China."
Since the first text service began in 1976 the company has supplied 42 million chip sets. Early decoders needed over 200 1C's. Now one chip does it all.
Having given up hope of turning the US market onto teletext, Philips is pitching for a share of the market for closed caption decoders. TV programmes in the US have subtitling for the deaf buried in line 21 . The data rate is much lower than for teletext, around $0.5 \mathrm{MBit} / \mathrm{s}$. Congress has decreed that from 1993 every TV set with a 13 in or larger screen must have a built-in decoder.
underlining. Chips cost is put al $\$ 5$ in volume. Makers of budget TV sets can make only hardware connections, withou any sofiware control of the Litod chip.
Why should all this interest us in Britain, when we already have teletext for subtitles? Because the US Litod system has one very special advantage over teletexi. The data rate of the signal in line 21 is so slow that it can casily be recorded by any VCR. British teletext can only he recorded by professional video decks or iweaked Super VHS. This is why prerecorded video tapes in NTSC format can boast subtitles for the deat.

Chinese whisper

The teletext signal is a stream of digital code. running at just under 7 MHz , which is transmitted in the unused lines of the TV picture which define the black borders at top and bottom of the screen. This code triggers the generation of alphanumeric characters

The aim is to force down the price of decoders from around $\$ 200$ for an add on box, to around $\$ 10$ on the price of a TV set. Philips has eyed the potential market of 20 million TV sets a year and designed a single chip decoder for manufacturers to build into TV sets. The chip ("Litod", short for Line 21 decoder) will be ready in the first quarter of 1992. It will connect in a daisy chain with the RGB colour circuits, to give calour titles with the option of scrolling, rolling and
permanent stored in rom. Early decoders stored 96 characters. The latest can store 192, which covers all languages in Western Europe. But this is still nowhere near enough to cope with the Chinese langauge. which uses at least 20.000 ideograms or picture symbols. Each requires six times as much digital code as a Western character to describe.
It is far too expensive to store the code for all the necessary ideograms in rom. Japan's

Capain system uses facsimile technology to transmit ideograms as ready-made characters. This takes up far more transmission capacity than the teletext method of sending only short codes which trigger the generation of characters stored in rom. Also the code is easily corruped by transmission errors, for instance caused by reflections of the broadcast signal from buildings or hills. Small code errors cause large changes in the ideogram.
Jajlan has been rrying to sell Captain to China, but with no success. The Chinese Ministry of Radio. Film and Television wanted a more robust system than Captain. The Ministry also said the system was cheap enough for the masses and compatible with World System Teletext so that the TV station can broadcast pages of either Western text or Chinese ideograms, or pages containing both, to all TV sets.
Philips Semiconductors at Southampton has come up with a solution. The transmitted signal is a mixture of conventional teletext trigger codes and ready-made patterns. The decoder in the TV set has a read only memory which stores a library of the most commonly used ideograms. It also has a random access memory. When the text page contains an idcogram which is not available from rom, the transmitter convers the character into a string of dots, like facsimile code. The receiver stores these dots in ram which reconstructs them into a "soft character". What appears on screen is thus at mix of ideograms sourced from rom and ram. The rom also contains Western characters. so the system can mix and match languages.
The more characters the rom stores, the less time the system must waste reconstituting soft characters from ram. But large rom storage increases component cost. After analysing text likely to be transmitted, Philips chose 4 Mbits of rom, to store 3000 hard characters and 16 K bits of ram to buffer the sofit characters
The system was tested during the Asian games, held in Beijing. Philips installed 150 prototype receivers in puhtic places to check compatibility of dual language information services. The Chinese Ministry is now recommending that the system be adopted as a broadcasting standard.
Barry Fox

CIRCIENO. 130 ON REPLY CARD
ELALCYON

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers
WAYNE KERR RAZO0 + ADSI DISP STORE . 2995 VACUUM PUMPS TYP 100NBAR (28LMIN) \quad I95 HONETWELL 612 HUMIDTYTTEMP RECORDERS ... 55 POHDE \& SCHWARZ PZN PHASE MEIER 1125
 SIEMENS XTC1012 2PEN CHART RECORDEA...... ES5 RAS SCA UHF SIG GEN 95J. 1900 MHz GOULD BRUSH 260 GCH CHART RECORDER 5395 RAS SMLM POWER SIG GEN $30-30 \mathrm{CMHz}$ RUSH RT2 EN CU WISTRIPPER 2B-45AWG RUSH DCF $4+$ VAR SPEED CONT 9-29 AWG B8K 1013 BFO, 2305 LEVEL RECORDER. DATALAB DL912 TRANSIENT RECORDER. BBC-B \& MASTER COMPUTERS.
 MARCONI TF2337A AUTO DISTN METER CIS Has $2 O N$ ADMITTANCE BRIDGE $15-30 \mathrm{MHz}$ FROM £139 COSSCA CPM511 ILSVOR AUDIO SIG GEW........PO MARCONI TF2331 DISTN FACTOR METER 19575 FKVA ISOL 120240 in 12C1240 OU LIGHT BOXES 230 V 10x12 area DECADE RCN BOXES... AVERY 9.1 \& 99.1 RATIO SCALES
 KIMGSHILL NS1540 15V 40A PSU CASED ICROWAVE $1-20 \mathrm{GHz}$ ATIENUATORS, DRECTIONAL £49 DETECTORS/COUPLERS NOISE SOURAE, SIGNAL OM I15 GENERATORS, SWEEP CSCILLATOAS, LF FILTERS

Visit our bargain corner in shop.
Many valuable items at knock-down prices.

AECHARGEABLE SEALED LEAD ACID BATTS GV 1OAH LONG LIFE, EX NEW EOUIPT. 5950 HP 6168, 618C, 6208, 626A. 628A SIG GEN POA HAMEG HMAOB 40 MHZ DIGITAL STORAGE OSCIL OSCOPES DUAL TRACE SKTAIE FTOM 1110 SCOPE 2 TRACE WITH HM8148-2 GRAPHKC ARC ONI TFES DU3 AMFM TRACE SKTATE... §110 C995 POBIA 4112 PHASE EART-1 LOOP TESTER EDOYSTONE RECEIVERS \quad From $£ 49$ to $£ 125$ ROBIN 5402 DIGITAL RCC3 (ELCB) TESTEA $£ 75$ OTHER COMMS RECEIVERS......................... $£ 49$ to 195 B 85 MARCONI TF2300 FWAM MODULATION METER 5195 REDPINT GE-1, HSINKS $15^{\circ} \mathrm{CN}$. OTY TEK 545A. 5458. 585, 535A, 51, 535A 495 STAG PP41 EPROM PROGRAMMER TERIANE 1150 VARIABLE OUTPUT PSU'S HV \& LV.....FTOM L35 COHU 301 C-500V DC VATAGE STD, INT REF F 125 TEKTRONIX $520521 A$ PAL V/ SCOPES........From £495 LEAOER LBO-9C ALIGNMENT SCO²E WAYNE KERR CT492 UNIV LCR BRIDGES............. 565 SIGNAL GENERATORS AF TO 21 GHz C295 SIGNAL GENERATORS AF TO 21 GHz

QUALITY ELECTRONIC EQUIPMENT BOUGHT. ALL PRICE EXC. OF PQP ANO VAT
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383.

wherever and whenever

 it's neededRadio linking is the 1990's answer to the question of data transference and remote control . . cutting out the need for fixed cables and direct connections. At Wood \& Douglas we've developed this technology to a fine art with a range of compact, radio link modules capable of simple, highly efficient application across a wide spectrum of commercial and industrial uses. Where standard modules are not applicable we custom-build to precise requirements.
Over the past ten years we've successfully applied radio linking over such diverse areas as water leak detection, remote control of cranes and other industrial equipment, medical and veterinary monitoring, data logging, fuel and power control, automated warehousing the list is endless.

In short, give us the proolem . . . and we'll give you wireless control, wherever and whenever it's needed.

VHF UHF COMMUNICATIONS PRODUCTS
Lattice House, Baughurst, Basingstoke, Hampshire RG26 5LL England Telephone: 0734811444 . Fax: 0734811567

REGULARS

Medium-wave/VHF frequency synthesiser

AII necessary logic for a MF/VHF phaselocked loop synthesiser is on board the Plessey NJ88C31 cmos chip: reference oscillator, divider, two-modulus prescaler, control register, programmable divider, phase comparator and interface logic.
A Pierce oscillator uses parallel-resonant fundamental crystals in the two bands, although an external sinewave or logic-level reference oscillator may be connected if necessary. Oscillator output is divided to give a number of comparison frequencies which are selected by the first three bits of the input data, one of them being available as a band-switch bit. The chip provides a 4.5 MHz microprocessor clock output.

On FM, the oscillator frequency is divided by $15 / 16$ in a two-modulus divider.
Phase comparison results in three opendrain outputs. The charge pump receives its drive from $\phi U P$ and $\phi D N$ and Lock detect generates a mute signal. Phase comparison is linear over $\pm 2 \pi$; if the phase shifts by more than 2 , one cycle is lost or added and the comparator retries with the new difference.
Three lines only are needed to control the synthesiser: data, clock and data transfer. There are 19 bits, the first three being concerned with the reference divider and the rest with the prescaler and programmable divider.
Data transfer instructs the device to accept

One application of the Plessey chip, in this case for a VHF-only receiver. Control is by means of the three lines on pins 14-16.
new data, until which point the old frequency is output.
In this circuit for a VHF synthesiser, the
NJ88C31 VHF/Medium-wave frequency synthesiser. The chip is in either a plastic DIL package or a miniature DIL, for which the pin numbers are in brackets.

Varicap drive voltage may need to be higher than the 5 V provided by the chip. For this reason, the single-supply op-amp gives a 110 V range. The filter $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}$ removes the pulses from the phase comparator, values being given in the application note from Plessey contained in the data book on frequency dividers and synthesisers.

Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wiltshire SN2 2QW. Telephone 079336251.

Shock alarm

One IC. Iwo piezoelectric devices and a few passive components make a mechanical shock alarm than emits a loud, modulated tone for a minute.
In the circuit shown in Fig.1. which is taken from the Maxim Applications Handbook, any flexure of the piezoelectric plate on pin 6 of the 1 Cla gives a voltage across the 10 M resistor, which triggers the 556 timer and sounds the piezoelectric horn X2 during the time constant of IC la (the horn shown is complete with ins own oscillator to drive it at its resonam frequency). The second timer ICIb modulates the sound by gating the horn at around 5 Hz .
In the application note, the sensor takes the form of a brass disc with the sensitive element bonded to its centre and is mounted according to whether the sensitive direction is in one plane or all round, as seen in Figs. $\mathbf{2}$ and $\mathbf{3}$ respectively. The weight shown in Fig. 3 amplifies the movement and provides a greater voltage for a given shock. It consists of a $1 / 4 \mathrm{in}$ bolt with a couple of nuts at one end, the prosition of which on the bolt can be adjusted to obtain the correct sensitivity.
Maxim Integrated Products UK LId, 21 C Horseshoe Park, Pangbourne, Reading RCB 7 IW

Fig. 3. Sensitivity in all directions is given by this layout, nuts on the $\mathbf{1 / 4 i n}$ bolt being adjusted for sensitivity.

Fig. 1. (left) Two halves of a 7556 generate timing and modulation for the shock alarm, which sounds for a minute.

Low-cost speech synthesis

U
ling the NEC μ PD775X speech synthesiser family and a few peripherals, a simple. fixed-vocabulary module can be added to existing equipment such as telephones, alarms, toys and the
kind of car equipment that drives you mad with its air of superiority.
Up to 45 words are generated by the minimum contiguration shown in the diagram, which uses the μ PD77P56 one-

time programmable version to allow quick realisation of the initial idea.
It will store selectable single words, phrases or sentences and possesses a tone generator which will play melody or produce DTMF tones. Words and phrases are recorded and then digitally compressed on a PC before being blown into the synthesiser's prom.
Messages are selected by applying a binary value to inputs 0 to 7 , whereupon the message is produced when the start line goes low. The Busy line provides an indication to the rest of the equipment that a message is in progress.

NEC Electronics (UK) Ltd, Cygnus House, Linford Wood Business Centre, Sunrise Parkway, Linford Wood, Milton Keynes MK 14 6NP. Telephone 0908 691133.

NEC's simple voice synthesiser using one of the μ PD775X family of synthesiser devices. The resonator is a CSB640P ceramic type from Murata.

Wide-range waveform generator

Alow-cost audio signal generator can be made using the Analog Devices AD639 universal trig. function converter. Such a circuit in no way extends the chip, but does illustrate its capabilities and versatility. The AD639 provides all standard trigonometric functions and their inverses, which are obtained by pin straps. Accuracy of law exceeds that given by diode shapers and speed is higher than is produced by rom took-up tables with a D-to-A converter on the output. For example, a triangular-to-sine conversion is carried out with -74 dB distortion at up to 1.5 MHz . Figure 1 is its internal block diagram.
Figure 2 shows the application referred to above: a general-purpose function generator providing sine, square and triangular wave outputs from 20 Hz to 20 kHz , which can be gated and modulated.
The AD 654 generates the triangular wave across C_{1}. the two AD6 |ts A_{1} and A_{2} buffering, amplifying and level-shifting the signal: P_{3} and P_{4} are used, while viewing the output on a spectrum analyser, to reduce harmonic distortion to a minimum. Although this triangle is not accurate enough to make the AD639 exert itself, THD is nevertheless around - 55 dB . Amplifier A_{3} provides more gain for a 10 V triangular wave output. Sine outpur is fixed at 2 V RMS from the AD639

Fig. 1. Block diagram of AD639 trig. function converter which, among its other roles in life, makes a good function generator.
and squares are taken direct from the AD654 at 15 V and are not buffered. The square becomes 30 V pk-pk if pins 2 and 5 of the AD 6.54 go to -15 V .
Alternative frequency-adjustment methods are shown in Fig. 2. The circuit using P_{1}

Fig.2. Analog Devices's AD6.39 used with an AD654 to make a general-purpose audio function generator to give sine, square and triangular waves from 20 Hz to 20 kHz .
shown connected to the AD654 gives about $10 \mathrm{kHz} / \mathrm{V}, 2 \mathrm{~V}$ being used to give 20 kHz . The other method gives a log sweep response with a scaling of $10^{\mathrm{V}} \mathrm{kHz}$ (V in volts). the range being from 10 Hz to 100 kHz .
The AD6.39 will atso multiply the frequency of the triangular wave to give sines at two, three, four or five times the frequency using cosine for even multiples or sine for odd ones. In this mode, harmonic distortion stays less than -50dB.

Analog Devices LId, Station Avenue, Walton-on-Thames, Surrey KT1 2 IPF Telephone 932252320.

Sannurime THE ORIGINAL SURPLUS WONDERLAND!

BBC Model B APM Board

WHASHOC
$=$ CASA
£100 CASH FOR THE MOST NOVEL DEMONSTRATABLE APPLICATION!

BBC Model B type computer a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics board has so many similarities to the regular BBC model B tha we are sume that with a blt of experimentation and ingenuity many usetul applications will be found for this boardll it is supplied and BNC type connectors - all you have to do is provide +5 and ± 12 v DC. The APM consists of a slngle PCB with most major lc's sockeled. The ic's are too numerous to list but include a 6502. RAM and an SAA5050 teletext chip. Three 27128 EPROMS comaln the custom operating system on which we have no data, On appilcation of DC power the system boots and provides oflagnostic information on the video output. On board DIP swiches and jumpers select the ECONET address and enable the four extra EPROM sockets for user software. Appx with circuit diagram, data and compettion entry form.

Ony $£ 29.95_{\text {or }}$ itor 2 §53 MONITORS

MONOCHROME MONITORS

THIS MONTH'S SPECAAL
 There has never been a deal like this one Brand spanking new \& boxed monitors from NEC, normally selling at about $₹ 1401$ The se are over-engineered for ultra with etched non-glare screen plus switch able highlow impedance Input and output for dasy-chaining. 3 fromt controls and 6 at rear. Standard BNC sockets. Beauthul high contrast screen and attractive case with carrying ledge. Perlect as a maln or backup monitor and to quanity usersl \quad £39.95 each (D) or 5 for $£ 185$ (G) CALL FOR DSCOUNTS ON HIGHER OUANTIIES! COLOUR MONTTORS
Decca $16^{\circ} 80$ budget range colour monitor. Features a PIL tube beauiltul leak style case and guarameed 80 column resolution eatures usualy seen onfy to most computers or video outputs. 512 composite triput with integral audlo amp 8 speaker. Fully ested surplus, sold in iltie or hardy used condition with 90 day full RTB guarantee. Ideal tor use with video recorder or our
Telebox ST, and other audio visual uses. E99(E) 3/E275(G) 20', $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour tive teak style case. Pertect for Schools,Shops, Disco, Clubs. In EXCELLENT Iltve used condition with full 90 day guarantee 20"...£135 22"...£155 26"...£185 (F) CALL FOR PRICING ON NTSC VERSIONS! HI-DEFINITION COLOUR MONTTORS Brand new $12^{\prime \prime}$ mutlilinput high definition colour monitors by Microvitek. Nice Ught modem metal black box styling. Operates rom any 15.625 khz sync RGB video source, with either individual H\& V syncs
 with composite sync such as Atari, Com modore Amiga, Acom Archimedes 8 BBC. 12^{-}square Free data sheel lncluding connection intorm 14"

Only
£145
Brand new Centronic 14" monitor for ABM PC and compatibles at a lower than ever pricel Completely CGA equivalent. Hi-res
Mitsubushi 0.42 dot pitch giving 669×507 pixels. Big 28 Mitz banctwidth. A super monitorin attractive styie moulded case. Fut 90 day guaramee.

Only
E 129 (E)
NEC CGA IBM-PC compatible. High quality ex equipment tully tested with a 90 day guarantee. In an attractive two tone ribbed grey plastic case measuring

V22 1200 BAUD MODEMS

Master Systems $2 / 12$ microprocessor controlied V22 full duplex 1200 baud modem. Fully BI approved urnt, provies standard V22 high speed data comm, which at 120 cps, can save your phone bill and connect ime by a staggening 75% Uitra sime 45
mm high. Full featured with LED status indicators and remote error diagnostics. Sync of Async use; speech or dala switching; bullt In 240 v mains supply and 2 wire connection to BT. Units are In used but good condition. Fully tested prior despatch, with
data and a fult 90 day guarantee. What more can you ask for data and a fult 90 day guarantee. What more can you ask for and at this pricell

IBMKEYBOAFD DEALS

PC-XT or PC-AT. LED's for Caps. Scroll \& Num Locks. Standard PC-XI or PC-AT. LED's for Caps,Scrois Num Locks. Standard 84 keytooard layout. Made by NCR tor the English 8 US markets Absolutely standard. Brand new $\&$ boxed with manual and key lemplate for user slogans on the function keys. Attractive belge,grey and cream hish, win the usual relractable legs tandard 5 pin Diny pus lengit of curly cord, terminating in the standard 5 pin DN plug. A beaublul clean piece of manufac turers surplus. What a deal

830 (B) 5/E175 (D)
Brand new and boxed 84 key PC/XT type keyboards in standard IBM grey with very attractlve motved finish and "dicky" solid feel keys. 10 function keys on side. Engllsh layout and $£$ sign. Green LEDs for Caps, Scrod 8 Num locks. $\quad 20.95$ (B) 5/E135 (D)

CALL FOR DSCOUNTS ONHIGHER OUANTIIES!

FLOPPY DISK DRIVES
 BARGAINS GALORE!

 NEW 51/4 Inch from E29.951
Massive purchase

(unless ptated) product at indusiry beaung low pricesl All units from often brand new equipment guarantee and operate from $+5 s+12 \mathrm{voc}$, are of standard cize and accept the standard 34 way connector.
TANDON TMIOO-2A IBM compatible DS
ANDON TEN OO- DS halt compa Ste DS $80.95(\mathrm{C}$ TEAC FD-55-F.40-80 DS half herght. BRAND NEW E79.00(C

TEAC FD-55 half height serles In your choice of 40 track double slded 360 k or 80 track double sided 720 k . Ex equipment fully tested in excellent condition with 90 day wartanty.

CHOOSE YOUR 8 INCHI

Shugart 800/801 SS meturbished 8 tested
Shugart 851 double sided returbished 8 te sted
Whtoubishl mez894-63 double sided swichable
BRAAND NEW
ع150.00(E) E225.001E [250.00(E) SPECIAL OFFERSII
Dual 8^{n} ditives with 2 megabyle capacity housed in a smart case with bultt in power supplyl Only $\mathbf{C 4 9 9 . 0 0}$ (F)
deal as exterior dilves!
End of line purchase scoop! Brand new NEC D2246 8. 85 megabyte of hard disk storagel Full CPU control and inctustry standard SMD Intertace. Ulira hi speed transter and access time eaves the good old ST506 interface standing. In mirt conditlon

AFFORDABLE 10 Mb WNCHESTERS

A fantastic dead $=10 \mathrm{mb}$ (formatted) Winchester for $£ 39.95$ Tandon TMS02 full helght ST506 Interface. Use It as a second hard drive on your present driver card or as a starter Into
Winchester land - see the driver card Ilsted below. In excellem Winchester land - see the driver card ilsted below. In excelen

Hard disk driver card, complele with cables ready to plug Into
 No Break Uninterruptable PSU's

Brand new and boxed 230 volts uninternuplable power supplies from Densel. Model MUK 0565-AUAF Is 0.5 kva and MUU 1085-AHBH is 1 kva. Both have sealed lead acld batteries. MU are imema, MUD has inem in a matcining case. Times fron Internupt are 5 and 15 minutes respectively. Complete with full
operation manuals...........MUK....E240 (F) MUD.....E525 (G)

RECHARGEABLE BATTERIIES

LEAD ACID
Meintenance tree seeled long iifo. Type A300 12 volts 12 voits 3 amphours
6 volts 6 volts 3 amphours
\qquad
2 vola $\varepsilon 9.95(\mathrm{~A}$
12 volts 12 volts 38 amp hours. $7-1 / 2^{\circ} \mathrm{L} \times 6^{*}$ S. RFE $£ 35.00$ (B) EXTRA HI-CAPACITY NICKEL CADMIUM
 banks of 10 cells perfly available Potasslum Hydroxide. In measures $8^{\circ} \mathrm{H} \times 1.75^{\circ} \mathrm{L} \times 4^{\circ} \mathrm{D}$. Can be easily separated. Idea or all standby power appllcations. Ex MoD, tike riew ..E49.95 (E SPEC/AL INTEREST
3 phase 400 hr . 15 kva output. As new.
Trlo 0.18 vadc bench PSU. 30 amps. Now
Fujtasu M3041 600 LPM band printer
DEC LS/02 CPU board
Rhode a Schwarz SBUF TV iest transmitter
$25-1000 \mathrm{mtz}$. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter
Thurtby LA 160 B logic analyser
1.5kw $15 v$ 60tr power sourca

Tektronl x R140 NTSC TV test signal standard. Sony KTX 1000 Videotex system-brend new ADOS 2020 VDU terminals - brend new Sekonic SD 150H 18 channet Hybrid recorder Trend 1-0-1 Data Iransmission test se

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI Deflrt: \qquad PISTEL © The original Free dlal-up databasel

ALL ENQUIRIES V21, V22 $\&$ V22 bis 081-679-1888
081-679-4414
Fax. $081-679.1927$
Telex- 8995027

Tim Stanley tests Lowe's HF receiver and finds it not only good value for money, but also a cut above the average

Rugged receiver with an edge

Lowe Electronics seems to have made a worthwhile contribution here in the professional receiver market. The HF235 is a general coverage HF communications and broadcast receiver, to Lowe's design, in the lower price range for the professional user. Advertised as a "professional monitor receiver", the equipment is interesting to those looking for good performance but not wanting to pay significantly more for equipment over-engineered for their requirements. The unit is a development of the HF225 consumer/amateur receiver (the main signal handling board is essentially the same). Since introduction early this year it has
apparently been selling well world-wide.
Features highlighted by Lowe are: four IF filters fitted as standard, low-noise synthesiser. 8 Hz luning steps and a synchronous AM detector. The receiver supplied is also filted with the high stability oscillator option. (See Table 1 for handbook specification of significant parameters).
Appearance is smart and simple, and the uncluttered front panel is less daunting than the banks of knobs and switches often found on receivers of this class!
Standard bodywork is for lin rack mounting but desk-top use is possible using an optional stand-alone case. The rear panel

Frequency configuration

TThe HF-235 is a dual-conversion superheterodyne receiver, using intermediate frequencies of 45 MHz and 455 kHz in its two If stages. RF signals are converted to 45 MHz by the local oscillator signal (LO) which is tuned from 45.030 MHz to 79.999 MHz to give 30 kHz to 30 MHz receiver coverage. The local oscillator is tuned in 1 kHz steps. A set of switched filters in the RF signal path provide primary control of image rejection. They switch automatically via the microcontroller.
Conversion between the two IFs is by the heterodyne oscillator signal (HET) which is tuned over a 1 kHz range between 44.544 and 44.545 MHz in 128 steps of 8 Hz . The frequencies of LO and HET are varied together by the microcontroller to give continuous receiver tuning. The filters in the 2 nd IF are centred on 455 kHz . This frequency corresponds to the tuned frequency in AM and FM modes, but the IF
is offset by 1.4 kHz above or below 455 kHz in SSB mode so that only the correct sideband signals pass through the filters.
The offset is provided numerically within the microcontroller program.
SSB mode audio is derived by mixing the final If with a carrier reinsertion signal (CAR). The frequency of this reflects the IF offset, ie 456.4 kHz in USB mode and 453.6 kHz in LSB mode. In CW mode the IF is offset by 200 Hz towards the upper sideband and the CAR frequency is 456.0 kHz to give an 800 Hz audio tone at the tuned frequency.

Because the local oscillator frequency is higher than the 1st IF, the RF frequency spectrum is reversed in both IF stages, so an increase in signal frequency produces a corresponding decrease in intermediate frequency.

carries the usual mains power (IEC) and acrial (BNC) sockets and a 25 -way D-type socket with connections including mute control, external gain control/indication and various audio o/p, power supply and earthing conligurations.

Simple design

Familiarisation with the basic controls takes only a few minutes. But the apparent simplicity of the front panel is at the cost of operating convenience - the design of the plastic-membrane-type push buttons leaves something to be desired. These buttons are used extensively in control of the receiver. and the "scrolling" technique of selection is cumbersome - particularly noticeable when selecting filter bandwidth.

To go from, say. 10 kHz to 7 kHz requires three keystrokes as the receiver scrolls through, and executes, the other settings (2.2 and 4 kHz) to finally arrive at 7 kHz . This is an operation which may have to be tried a few times to decide on the best setting for a particular transmission.

Memory programming and reading, selection between the two VFOs and attenuator (20dB) in/out are also controlled via these push-buttons, with the LCD display giving three or so seconds annunciation of the current selection, on pressing the appropriate button, before reverting to receive frequency readout.

Presumably the use of button type controls is a cost saving, but 1 would much prefer the more conventional rotary/loggle switches. particularly if I need to drive the receiver in a dynamic hands-on way rather than leaving it in a monitoring role with only occasional operator intervention.

A minor niggle is that the main tuning control jumps to its higher speed mode a little too early for my liking and I sometimes missed weak signals. The internal speaker gives surprisingly nice sounding audio, but quality is, of course, improved with a larger external speaker.

Full marks to Lowe for an excellent handbook. This is conscisely written and includes clear circuit diagrams, an in-depth specification and extensive explanatory lext, including a technical description and alignment insiructions.

Bench tests

Results are good. One or two intermodulation and reciprocal mixing results for 10 kHz spacing were very slightly out of specification, but in general performance is similar to receivers in this class.

Selectivity is impressive, with a measured shape factor of better than 1.6 (the 60 dB

bandwidth measurement accuracy is limited by the noise floor of the test system, but is better than 3.5 kHz). Image rejection is particularly good and greatly exceeds the handbook's spec.
One significant area which might need improvement in some applications is sensitivity. While adequate for most of the frequency range, weak-signal reception towards the top end of the range could be enhanced - sky noise from a properly matched aerial is detectable at 28 MHz but sensitivity is still limited largely by the receiver noise floor. A switchable pre-amplifier is often included even in modern receivers without significantly compromising the dynamic range.

There is a surprisingly high level of high frequency noise from the audio stages. The hiss is much less than the "RF" noise, wideband audio hiss (up to about 15 kHz ?) but is noticeable using headphones or a high quality external speaker. This should be easy to improve in the design with a little more iF gain and audio filtering.

GENERAL FEATURES

30 kHz to 30 MHz continuous
AM, LSB (or FAX), USB, CW, narrow band FM, synchronous AM. 30 (Lithium battery back-up for >5 years). $2.2,4,7$ and 10 kHz (12 kHz for FM).
Permanently enabled, threshold level12dB above nominal carrier. Optional RS232 interface.

Field trials

The receiver was "field" tested - literally! at the end of a rhombic aerial totalling 280 m of wire at a height of about 30 ft .

Design frequency was 14 MHz , but an aerial of this type is not particularly frequency conscious and it performed very well from below 7 MHz to at least 24 MHz .

Orientation was for maximum response from the ENE and WSW directions but directivity was also not crilical and good allround high-angle reception was obtained. particularly in the 7.2 MHz broadcast band where signals were extremely strong. The set-up should be reasonably representative of a professional system for "serious" work. although professional installations may of ten be somewhat higher above ground.

However, the lower height of the aerial is likely to give a stringent trial as the most critical test of the receiver is thought to be the handling of relatively high-angle strong signals from European broadcast stations.

This test was carried out soon after dark when such signals are at their strongest, usually occurring between about 5 and 10 MHz . Weak-signal reception was tested, in-between the broadcast bands, by switching between the rhombic and a check aerial - an inverted "V" dipole 80 m in length, with the apex at 35ft above ground.

While tuning through the non-broadcast bands, any suspicion of an intermodulation

or spurious product appearing was checked by switching to the dipole as the signal levels from the smaller aerial were much less than from the rhombic. No spurious responses or products were apparent - a very pleasing result, especially as rejection of the band-pass filters was probably compromised by the (deliberate) omission of an aerial matching network.

A comparison was also made with my Yaesu FT-I general coverage HF transceiver (quoted simply as having " 90 dB dynamic range"). Any discrepancy between the two receivers would lead to suspicion of a spurious response. However, this was encountered on only one frequency -about 21.4 MHz - where a rogue response was discovered on the IIF2.35 at fairly low level (about S.3).

A further test was made soon after daylight; authenticity of signals was tested by switching in filtering (admittedly fairly broad) ahead of the receiver in the form of an aerial tuning unit tuned to the wanted frequency. Again, no spurious responses were revealed during this test (although signals were not as strong as during the evening test). These results are very good and lead me to a high degree of confidence that the receiver should cope with most normal applications in a professional role.

Tests were done using mains power and the good dynamic range was sacrificed when using a 12 V DC supply. The handbook concedes that using such a supply results in a slighlly reduced RF performance. In fact this rendered the receiver unable to cope below about 10 MHz . For example, at around 5 MIlz , signals were swamped by wideband intermodulation registering about S 5 on the signal strength meter. The effect occurred even using the dipole acrial. A 24 V DC used for the daylight tests confirmed the handbook recommendation for supplies of 20 to 40 V when not using mains. Close-in dynamic range seemed adequate with reception not compromised by reciprocal mixing.

Further comments

The receiver is supplied with the high-stability option fitted. A frequency standard is not available and so the frequency stability could not be measured. However, in practice the receiver seemed rock-steady; commercial SSB could be monitored for at least tens of minutes with no discernible pitch change

I suggest that the high stability would

Critical receiver design

Perhaps the most exacting task for the receiver designer is optimising the trade-off between sensitivity and the requirement for the receiver to handle the barrage of strong signals appearing in the HF spectrum, i.e. the test of its's "dynamic range".
Signals from the aerial outside the receiver passband appear at it's input and are passed through the early stages along with the wanted signal until the I.F. filters which define the passband for the wanted signal. The sum of the unwanted signals may be enough to push the early stages of the receiver (the front-end) into non-linearity. Hence mixing of the signals occurs - intermodulation - which can result in unwanted products falling within the receiver passband.

Obviously, a narrow RF filter before any active stages would help to eliminate the unwanted signals, but would of course need to be tunable in symoathy with the main-tuning of the receiver. This would not be a cost-effective solution.
The best technique is to arrive at a compromise between input filtering and designing the front-end stages for high signal level handling. This normally results in fixed-tuned bandpass filters in the front-end, each covering a portion of the HF spectrum, and minimising the amount of amplification before the main I.F. filters - see the HF 235 block diagram.

A further factor sometimes limiting the dynamic range in modern receivers is noise from the local oscillator. Frequency synthesizers offer high accuracy, stability and control agility, but a phase locked loop will always exhibit some phase jitter, resulting in noise sidebands on the local oscillator signal. These can be significant up to a few tens of kHz away from the nominal L.O. frequency, and, in the normal mixing process in the receiver, will again cause strong unwanted signals outside, but fairly close to, the nominal receiver passband to appear as noise within the passband. This is known as "reciprocal mixing".
allow long periods of "hands-off" FAX reception (an option in place of the L.SB mode setting), although a suitable terminal was not available to check this mode.
Synchronous AM detector certainly gives a significant improvement in audio quality when listening to MF broadcasts subject to selective fading (which includes domestic services). The high frequency response is noticeably exiended also. (An audio derived AGC would be useful to overcome the increase in loudness of the audio during a carrier fade, caused presumably, in part, by a sympathetic increase in gain by the receivcr's IF derived AGC).
Improvement in reception of shortwave broadcasts seems surprisingly moderate, but again a truer frequency response is sustained, particularly noticeable when listening to the pulses of a standard time transmission on 10 MHIz . Fairly careful tuning is required to make sure the detector PLL. is properly centred to minimise the amplitude threshold at which it could loose lock.
Quantitative evaluation of the permanently enabled noise blanker was not carried out but it seemed to do at least as well as the one on my FT-1 with which I have been very pleased. The squelch (the threshold level adjustment is on the back panel) works only in FM mode - an all-mode squelch may be
worthwhile for long-term monitoring of quiet channels. A faster (switchable) AGC time constant could make copy of CW signals easier during more rapid fading. The remote control option was not fitted in the review model, but its evaluation would have been limited as al the time of this review no control software packages were known to be available and customers have developed routines to their own requirements.

Conclusion

Reservations about design should be seen in perspective, as for many monitoring applications more elegant controls would be an unnecessary expense. I have suggested some other small additions and improvements but this should not undermine the overall impression which is good.

I sense that a lot of thought and genuine effort have gone into developing this receiver which is a cut above the average, though aimed at the lower end of the professional market. It should be very compelitive in the price range. Electrical performance is good, and the receiver should serve admirably in many professional applications.

HF235, basie se't, is flll6 (inc VAT). Lowe Electronics Lhe, Chesterfield Road, Matlock. Derbyshire DE4 5LE. Tel: 0629.580800)

HP182C/85588 0.1-1500MHz HPP821/8559A 21GHz Sy
HP8590A 1500 MHz GPIB MARCON: TF 2370110 MHz analyse MARCON: TF 2371.1200 MHz analyser HP 141 I/ $/ 8552 \mathrm{Z} / 855481250 \mathrm{MHz}$ system HP1 401250 MHz ssstem with 'A' units ANRITSU MS628 1700 MHz analyser

MARCONI INSTRUMENTS

2019A synthesized signal generator $10 \mathrm{kHz}-1040 \mathrm{MHz}$ 2015 signal generator AM/FM $10-520 \mathrm{MHZ}$ 2015/2171 above but with synch onizer 2177 RF ampltitier 3 W 40 dB gan to 1 GHz 235662357 level oscillator/level meter 2430 A 80 MHz trequency counter 2431 A 200 MHz trequency counte 2501 RF Dower meter 0.3 W DC- 1 GHz 2503 RF power meter to 100 W DC-1 GHz 282842829 digital simulator/analyser 2833 digita in in line monitor
5460 microwave power meter with head 6421
67008 sweep oscillator 8-12.4GHz
OA2805A PCM regenerator test set TF $1245 \mathrm{~A} Q$. Meter with 1246 and 47 oscallators
TF 2006 FM signal gene TF2011 FM signal generator $130-180 \mathrm{MHz}$ TF 2013 FM IIgnal generator $800-960 \mathrm{MHZ}$
TF2162 audio trequency atternator TF 2163S DC-1 GHz attenuato $T+2371200 \mathrm{MHz}$ Spectrum analyser TF2500 $\mathbf{2 0} \mathbf{d i o}$ trequency power met IF26008 video voltmeter $1 \mathrm{mV}-300 \mathrm{~V} / \mathrm{sd}$ TF2908 blankng \& sync mixe! TF893A audio power meter
TM4520 inductor set

82250
55000
$\$ 3600$
13600
$\{2750$
$\$ 3250$
$£ 2000$
$\$ 100$
$\$ 2250$
$£ 9000$

TEST EQUIPMENT

 ANRITSU MW98A/MH925A optical TOR ANRITSU MS $62 B$ B 1700 MHz spectrum analyser AVO CB154/5 electrolytic \& tant cap ' bridge AVO RM160/3 megohmmeter AVO RM215L. 2 ac/dc breakdown tester to 12 kV BRANDENBURG Alpha II 507R 0-5kV BOONTON 102 AB AM/FM sIgnal generator FARNELL PSG520 signal generator AM/FM $10-520 \mathrm{MH}$ GIGATRONICS GU1240A sugnal source $0.01-4 \mathrm{GHz}$ NATtONAL VP. 7750A wow \& flutter meterPHILIPS PM5190 synthesized turction PHILIIPS PM5190 syntheslzed function generator
PHILIPS PM5534 standard pattern generator NTS PHILIPS PM5545 colour encoder PAL PHILIPS PM5597 VHF modulators $£ 250$. PM5598 UHF PHILIPS PM5580 I.F modulator PHHLIIS PM6552 1.5GHz timer/counter GPIB RACAL 9081 sIgnal generator $5-520 \mathrm{MHz}$ synthe unit RACAL 9082 signal generator $1.5-520 \mathrm{MHz}$ synthesized RACAL 9105 RF micro wattmeter $0.02 \mu \mathrm{~W}-200 \mathrm{~mW}$ RACAL 9300 RMS voltmeter -80 dB to +50 RACAL Store 44 -channel tape recorder RACAL 9341 LCR databridge component tester
SCHAFFNER NSG200C/NSG223A interterenc generator
SCHLUMBERGER 4021 mobile radio test set SHIBASOKU 217 A/ 33 SECAM colour bar generator SYSTEM VIDEO TV vectorscope/waveform monito TEKTRONIX J 16 digital photometer TEKTRONIX 1485 R full spec' TV waveform monitor TEKTRONIX $1503 \mathrm{~B} / 03 / 04$ TDR cable Iester TEKTRONIX 475 A
TEKTRONIX 230 MHz oscilloscope
236 ruggedized 100 MHz oscilloscope TEKTRONIX SG503/PG506/TG501 calibration system TEKTRONIX 7623A 100MHz scope 7B53A 7A18s
TEKTRONIX 7613/7A19/7B10 storage scope system TEKTRONIX 7A13, 7A26, 7B53A. 7A18, 7885, 7B87, 7 TEKTRONIX FG504 function generator TEXSCAN VS50C 1000 MHz sweep generator TEXSCAN VS9015MHz-2400 M Hz Sweep generator TOA PM- $30 R$ RF volt-meter 1 mV V S 10 V fsd
WAYNE KERR 3245 precison YOKOGAWA 3655 analysing recordet
YOKOGAWA 3061 -21 6 -channel chart recorder

116028 transistor fixture for S parameter test 11710 trequency down converter for 8640 B
$141 \mathrm{~T} / 8552 \mathrm{~B} / 8554 \mathrm{~B}$ system
1741 A 100 MHz storage (analogue) oscilloscope 334A distortion meter SOLD 3580 A audio soectrum analyser $15 \mathrm{~Hz}-50 \mathrm{kHz}$ SOLD 4274 A multi-freq $100 \mu \mathrm{~V}-300 \mathrm{~V}$ is. $20 \mathrm{~Hz}-4 \mathrm{MHz}$ $435 \mathrm{~A} / 8484 \mathrm{~A}$ microwave power meter $4342 \mathrm{~A} Q$ meter $22 \mathrm{kHz}-70 \mathrm{MHz}$. Q range 5 1000 SOLO
5005 B signature mult-meter, programmable $5300 \mathrm{~A} / 5302 \mathrm{~A} 50 \mathrm{MHz}$ counter timer

5363 B tume-interval probes

6516A power supply 0 -3kV @ 6mA
70300 A tracking generator plug-in unit
70907 A external mixer
70158 analogue X. Y recorder with timebase 8405 A vector voltmeter, voltage \& phase to 1000 MHz 8503 A S-parameter test se
8505 A network analyser
85538110 MHz spectrum analyser plug-In
8556 A 141 T -system based spectrum analyser plug-in
$8558 \mathrm{~B} / 182 \mathrm{C} 1500 \mathrm{MHz}$ spectrum analyser system $8559 \mathrm{~A} / 182 \mathrm{~T} 21 \mathrm{GHz}$ spectrum analyser system 8566A spectrum analyser
8566 B spectrum analyser
8566 B spectrum analyser
8569 A 22 GHz spectrum analyser
8590A 1500 MHz spectrum analyser GPIB option
8614 A signal generator $800 \mathrm{MHz}-2.4 \mathrm{GHz}$
8620A sweeper main trame \& 86218 plug-in units 86222 A sweep generator plug. in $10 \mathrm{MHz}-2.4 \mathrm{GHz}$ 8640 A signal generator $5-520 \mathrm{MHz}$ AM/FM 8640 B signal generator options 1,2 and 3 SOLD 8954A transceiver interface - Aranscever inerace
$£ 1000$ $\mathbf{1} 1000$
$\mathbf{£} 1750$
$\mathbf{~} 95$

PLEASE NOTE ALL OUR EQUPPMENT IS NOW CHECKED ENT LABORATORY TO BSET5IICATIONS BY INDEPENDto this standard can be supplied at very reasonable cost. All items guaranteed for 3 months (90 days) and 7 days return
tor full refund" warranty URGEMTY RE - high end test equipment second user instruments. ALL PRICES SUBUECT TO ADOD-
TIONAL VAT. TIONAL VAT.

URGENTLY REQUIRED -
'HIGH-END' test Equipment
by brand names. TOP prices paid
for HP, TEK, MARCONI etc.

CIRCLE NO. 136 ON REPLY CARD

HCS

Hitek Calibration Services

CALIBRATION WITH THAT PERSONAL SERVICE

- Free collection and delivery
- Free results included
- Guaranteed 7 day turn round on calibration
- DC - Microwave capability
- Full traceability to National Standards
- New mechanical laboratory just opened
hITEK CALLBRATON SERVICES
Unit 14, Havenbury Industrial Estate, Station Road, Dorking, Surrey RH4 1EH
TELEPHONE: 030675382 FAX: 030675384

FSH9732

INTERFACING WITH C IMPORTANT ANNOUNCEMENT.

Many readers have been disappointed that Howard Hutchings' practical guide to real-time programming and use of the \mathbf{C} programming language for electronics engineers sold out so quickly.

As a result of this popular demand, we are reprinting "Interfacing with C " and new copies will be available from the beginning of December.

To order, send a cheque for $£ 14.95$ to Lindsey Gardner, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Make cheques payable to Reed Business Publishing Group or, for immediate response, you can telephone your order quoting your credit card number on 0816613614 (mornings only please).

The extensive source listings from the book are also available on dise at $£ 25.50$ + VAT from the above address.

REGULARS

CIRCUIT IDEAS

Divide by 2.5

Division by 2.5 is performed by two ICs. one of them being a 74 HCl 161 positive-edge-triggered 4 -bit binary counter.
A logic level at point C determines whether the counter triggers on a positivegoing or negative-going edge at the trigger input terminal, since trigger input is fed via an X -Or gate IC_{2}, $\mathrm{C}=1$ giving triggering on a negative-going edge. Level at C is controlled by the counter outputs and the circuit output from QB is a clean, though asymmetric waveform.

Yongping Xia

West Virginia University
Morgantown, WV
USA

Circuit by Xia to divide input frequency by 2.5. Circuit can be made to trigger from either edge.

FRESH IDEAS

While we are not short of Circuit Ideas to publish, it would be agreeable to see some fresh input from the vast, untapped bank of talent that our thousands of readers represent. We pay a moderate fee for all ideas published. So send them to Circuit Ideas, $E W+W W$, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. We will be happy to consider them.

Busy line indicator

Telephone line-activity indicator shown is simply connected in parallel with the line. It is line-powered and takes a stand-by current of less than $50 \mu \mathrm{~A}$, active current being about 8 mA .
Line voltage is rectified for ease of installation and is needed anyway if outgoing calls are inverted. Transistor Tr_{2} senses the 50 V line voltage and turns Tr_{3} off in standby mode, sensing voltage across R_{4} to limit active-mode current to avoid latching Base current to Tr 3 comes from Tr_{1}, current being limited by R_{1}. A $120 \mathrm{~V} \mathrm{~V}_{\text {cEO }}$ rating is needed by Tr_{1} and Tr_{3} to avoid breakdown to ringing voltage.
If an opto-coupler is used instead of the led, it will control recording equipment and transmitters etc; a small amount of modulation is visible in the light output, which indicates voice traffic.

Ron Weinstein

Centralab
Tel Aviv
Israel

Telephone line activity indicator uses a mere $50 \mu \mathrm{~A}$ in standby mode and may be modified for use in control.

High-res A-to-D using low-res converters

Using n low-resolution A-to-D converters, increase the final resolution of a converter by n-fold by means of the circuit shown here.
Converter I gives the most significant byte of the conversion, of which the analogue equivalent is at the output of the A-to-D converter and is subtracted from the analogue input by the 741 difference amplifier, providing a gain of 256 . This voltage goes to the second A-to-D, which produces the least significant byte of the conversion, the end-of-conversion signal from the first serving as the star-conversion input for the second, whose EOC signals the end of the whole conversion. So two 8 -bit A-to-D converters function as one 16 -hit device.
In principle, resolution of an A-to-D

Two low-resolution A-to-D converters perform the function of one high-resolution type, the principle being capable of extension to an increase of n times.
converter increases by n times for n lowresolution A-to-Ds of most kinds, including flash and successive-approximation types.

K Balasubramanian
Cukurova University
Adana, Turkey

Continuous on/off timer switch

On and off times of this continually operating switch are settable from seconds to hours independently of each other.
Closing S_{1} applies power to IC_{1}, an MC14541B oscillator/timer, making the associated BC173 conduct and energise RL_{A}. Contact A_{1} opens to de-energise IC_{2} and close contact A_{2} - the load switch. After IC_{1} timesout, A_{2} opens to isolate the load and A_{1} closes, applying power to IC_{2}. Relay RL_{B} is now energised and contact
B_{1} opens, disconnecting IC_{1}. When IC_{2} times out, IC_{1} is once again under way and the whole thing starts again. Values of $\mathrm{R}_{\text {on }}$, $\mathrm{C}_{\text {on }}, \mathrm{R}_{\text {off }}, \mathrm{C}_{\text {off }}$ are given by $\mathrm{T}=1.15 \mathrm{R}_{\mathrm{C}} \times$ 8192.

John Karageorgakis
Thessaloniki
Greece

Reference

Motorola data sheet on MC14541B programmable timer

Timer produces on and off periods, independently adjustable from a few seconds to hours.

Adjusting differential amplifier gain

Figure 1 shows the common-or-garden differential amplifier, which is known to be simple and reliable - unless its gain is to be made variable. In that case, ganged potentiometers or another gain stage might be needed, which neatly remove the

Fig. 1. Ordinary differential amp for fixedgain operation.
advantages of simplicity and reliability.
Figure 2 is one way out; if R_{g} is large compared with R_{1}, gain is $\approx R_{2} / R_{1}$, whereas a small R_{g} gives a gain approaching zero. In the case of o , the reverse applies; a small R_{g} gives a high

Fig. 2. One way of providing gain adjustment without losing benefits of simplicity and accuracy. Gain is from zero to R_{2} / R_{1}.
gain, a large value confers a gain of $\mathrm{R}_{2} / \mathrm{R}_{1}$. You cannot carry this too far, however, since if you make R_{g} too small, negative feedback is no longer effective.
B D Runagle
Swadlincote Derbyshire

Fig. 3. Another way, giving adjustment from R_{2} / R_{1} to a high value.

Dual-speed DC motor controller

Acmos nand IC, the CD4011, is the core of a pulse-width controller for DC motors, providing logic selection of two preset speeds.
Gate G_{4} forms one half of two separate astable multivibrators activated by a logic signal to G_{1}. One of the astables is formed by G_{4} and the components C_{1}, preset P_{1} and diodes D_{1} and D_{2}, the operative NAND being G_{2}; preset P_{1} sets the mark:space ratio for this astable.
When the speed selection input is low, this astable oscillates under the control of P_{1} and drives the output transistor: when high, the otherastable takes over at a M:S ratio set by \mathbf{P}_{2}. Run and Stop control is a separate input.

M S Nagarai

ISRO Satellite Centre
Bangalore
India
Two-speed pulse-width control of a DC motor with logic input; the two speeds are independently set.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

GENERAL TEST EQUIPMENT

Tektronix 521 A PAL Vectorscopes Tektronix 1485 Video Waveform Mon HP 5340A 10 HZ to 18 GHZ Freq Counter HP 5345A Timer Counter
HP 538180 MHZ Freq Counter
Iwatsu SC7104 1 GHZ Freq Counter
Tektronix DC508 1 GHZ Counter
Racal 9904 M Counter Timer
Racal 9908 1.1 GHZ Freq Counter
Racal 9009 Mod Meters
Sayrosa 252 Automatic Mod Meter 2 GHZ Marconi TF 2300 Mod Meter Mird 8201 Termaline 500 Watt
Bird 8201 Termaline 500 Watt
Farnell Amm Auto Mod Meter
Farnell Amm Auto Mod Me
Marconi 2950 RT Test Set
Marconi 2950 RT Test Set
Marconi TF2604 RF Millivoltmeter
HP 5306 GPIB Multimeter/Counter HP 3465A DVM
£1000

E500 HP 87XM Compurers

HP 294 A PSU 0 to 60 Volts 1 Amp HP 6453A PSU 0 to 15 Volts 200 Amps Racal Dana 211 Logic Analyser

F100
ᄃ350
$£ 350$
$£ 150$
SIGNAL GENERATORS
Farnell SSG 520 Synthesised 520 MHZ Generator $£ 650$ Farnell TTS 520 Transmitter Test Set 750 Farnell TTS 1000 Transmitter Test Set £895 Marconi TF 200810 KHZ to 520 MHZ AMFM complete with RF Kit Box RF Probe and Service Manual $£ 350$ Marconi TF2015/2171 Synchronizer $520 \mathrm{MHZ} £ 400$ Marconi TF2016A 10 KHZ to 120 MHZ AM/FM £200 Racal 9081 Synthesized Signal Generator $£ 650$ HP 3336C Sythesized/Levelt Generator 1750 Wavetek 10801 GHZ Sweep Generator 1905 XY f1300 Philips PM5234 100 KHZ to $110 \mathrm{MHZ} \mathrm{AM} / F M$ +
HP 3478A LCD Digital Multimeter HP 3455A Hi Stability Digital Voltmeter GPiB HP 3400A True RMS Voltmeter
HP 400E Vottmeters
Datalab DL1080 Programmable Transient Recorder
Gay Mitano Fast Transient Recorder HP 461A Amptifiers
Farnell LA 520 RF Power Amplifiers
HP 432A Power Meter with Mount
HP 432A Power Meter with Mount
Tektronix 576 Curve Tracer/172 Programmer Rank Kalee 1742 Wow Flutter Meter RFL 5950A Crystal Impedance Meter HP 3556A Posphometer
HP 8750A Storage Normalizer
HP 85 Computers
$\begin{array}{ll}\text { Sweep } & £ 200 \\ \text { Philips } 6456 \text { FM Stereo Generator } & £ 150\end{array}$
Radiameter SMGI Stereo Generator £150 Wavetek 14320 MHZ Function Generator £150 Farnell LFM3 Sine Square Signal Generator £245 $\begin{array}{ll}\text { Marconi TF2002B with } 2170 \mathrm{~B} \text { Syncroniser } & \text { £145 } \\ & \end{array}$

OSCILLOSCOPES

Tektronix 2455250 MHZ Portable Four Channel £1600 Tektronix 2445A 150 MHZ Four Channel £1450
Tektronix 222550 MHZ Dual Trace D/L Timebase fas
new) $\mathbf{5} \mathbf{5 0 0}$
Tektronix 221560 MHZ Dual Trace $\quad £ 350$
Tektronix $\mathbf{4 7 5} \mathbf{2 0 0 \mathrm { MHZ } \text { Dual Trace }} \mathbf{£ 4 5 0}$
Tektronix 468100 MHZ Digital Storage \quad E1000
Tektronix 5223 Digitizing Oscilloscope $£ 950$
Philips 3244 Four Channel
Philips 321750 MHZ Oscilloscope
Gould OS 350060 MHZ Dual Channe! $£ 375$
£295
Gould OS 30020 MHZ Dual Trace
Kikusui 100 MHZ Four Trace
Telequipment D83 50 MHZ Duat Trace Telequipment D755 50 MHZ Dual Trace HP 1707835 MHZ Bat Portable Oscilloscope illoscope HP 1703A Dual Channel Storage Scopex 4D12 12 MHZ D/T
Nicolet 4094 Digitat Oscilloscope
Nicolet 4094 Digitat Oscilloscope $£ 125$
Farnetl DTS12 Digital Storage Oscittoscope £1500
Tektronix 647100 MHZ Duaf Trace
HP 180 with 50 MHZ Plug-ins
£100

SPECIAL OFFERS

Cossor CDU150 35 MHZ Dual Trace Scopes £135 Western Towers 75 h Radio Mast with Fittings $£ 350$ 19' Racks $4 \mathrm{ft}, 5 \mathrm{f}, 6 \mathrm{~h}$ as new with doors and sides from
BRANO NEW ANO BOXEO
Gould OS 30020 MHZ Oscilloscopes with Probes and Manual

ALL PRICES PLUS VAT AND CARRIAGE 86 Bishopsgate Street, Leeds LS1 4BB Tel: 0532435649 Fax: (0532) 426881

CIRCLE NO. 127 ON REPLY CARD

VALVES transistors

We are one of the largest stockists of valves etc in the U.K.

CALL o\& PHONE

for a most courteous quotation.
0817430899
COLOMOR
ELECTRONICS ${ }_{\text {เто }}$
170, Goldhawk Road, London, W12 8HJ

FAX 081-749 3934

REGULARS

NEW PRODUCTS CLASSIFIED

ACTIVE

A-to-D \& D-to-A converters

12bit DAC. The DAC667 is a microprocessor compatible 12 bit d-toa converter with a precision voltage reference and double-buffered latching. Power consumption is 390 mW maximum. Feedback resistors used are specified to a tolerance of 10%. The double buffered latching scheme has four independently addressable latches letting the chip interface with $4,8,12$ or 16 bit data buses while eliminating spurious analogue outputs. Settling time to $\pm 0.01 \%$ of FSR is 2μ s typical, 3μ s maximum. Burr-Brown
Intemational, 092333837.

Discrete active devices

Transistor array. The SL2366 is an array of transistors internally connected to form a dual long-tail pair with current mirrors. They are made on a high speed 6 GHz bipolar process and they are suitable for battery powered radio applications such as CT2. It comes in a 14-pin SO14 package. GEC Plessey Serniconductors, 0793518000

P-channed mosfet. The ZVP4105 is a p-channel mosfet with a 4.8 by 2.4 mm lootprint. It can switch currents up to 520 mA with turn on and off times at this current lower than 20ns. The device operates from supplies up to 50 V and dissipates a maximum of 625 mW . On-state resistance is typically $6 \Omega 2$ given a 5 V gate-source voltage and 100 mA drain current. Zetex, 061-627 4963.

Linear integrated circuits

Op amp. The MAX406 is a cmos operational amplifier for battery operated applications. It has a $1 \mu \mathrm{~A}$ quiescent current that is relatively constant over the entire supply range in unity gain stable and high-speed modes of operation. The output can sourcef 2 mA when powered by a 9 V battery and smaller loads down to 2.5 V . The common-mode input voltage range extends from the negative rail to within 1.1 V of the positive supply, and the output stage swings from rail to rail. 2001 Electronic Components, 0438 742001.

Driver IC. A dual driver IC, the UDN2962W, is for use with solenoids and DC stepper motors. It consists of two source/sink driver pairs for continuous operation up to $\pm 3 \mathrm{~A}$ and uses PWM techniques to minimise power dissipation and maximuse load efficiency. It can be connected to drive two independent loads or a single load in the full bridge configuration. Allegro Microsystems, 0932253355

Wave generators. The Sierra SC11313 and 14 are programmable sine and square wave generators. The frequency range is from $D C$ to 3.5 kHz with an accuracy of $\pm 0.1 \mathrm{~dB}$ in amplitude, and of $\pm 1.0 \mathrm{~dB}$ from 3.5 to 8 kHz . No extemal components are needed to do this. Square waves are generated by a programmable 16 bit counter and sine waves by attenuating the harmonics of the square wave tones through a fifth order bandpass filter. They can be powered from a 5 or 10 V supply. Amega Electronics, 0256843166.

Single-chip modem. The Yamaha YM7109C is a single-chip modem for use in Group 3 fax machines or for PC telecommunications. It operates from a single 5 V supply and has a typical power consumption of 200 mW , 300 mW maximum. Half duplex synchronous data transler is supported at $9600,7200,4800,2400$ and 300 baud and the device includes programmable functions for dual-tone origination and tone detection. Barlec Richfleld, 040350111.

Delay line. The Bt630 is a monolithic cmos high-bandwidth delay line with a programmable range of 25 to 400 ns and full TTL compatibility. it is adjustable in full-scale delay over this range and handles 15 ns pulses over the entire delay range. It comes in a 14-pin plastic DIP. There are five buffered taps at 20, 40,60, 80 and 100% of full-scale delay with output delay accuracies of $\pm 5 \%$ or $2 n s$.
Power dissipation is 50 mW Brooktree, 0844261989.

Vertical deflection. The TA8427K is a monolithic vertical deflection output circuit for use in colour televisions. It runs from a 27 V supply and uses a charge-pump topology to produce the 60 V needed to drive the vertical deflection of the current generation of CRTs with a peak-to-peak output current of up to 2.2A. It dissipates up to 20 W which reduces by $4 W /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ subject to the use of a suitable heatsink. It comes in a 7-pin single-in-line package. Toshiba Electronics, 0276694600.

Golden balls: the fastest 3V eproms in the West, from Arizona Microchip.

Video amp. The EL2073 is a precision voltage-feedloack amplifier with 200 MHz gain-bandwidth product, settling time of $13 \mathrm{~ns}(0.1 \%$ for a 2 V step), and 50 mA output current. It is unity gain stable with a -3 dB bandwidth of 400 MHz . Input offset voltage is $200 \mu \mathrm{~V}$ and bias curren $2 \mu \mathrm{~A}$. The feedback loop may be conligured for reactive components letting the unit be used in active fitters, integrators, sample-and-holds and \log amps. Elantec, 0714824596

Video amplifier. A dielectric isolation process has been used to improve the performance and reduce the cost of high-speed vidoo amplifiers such as the HA5020 which is a direct replacement for the EL2020/30 and OP160 devices. It has a slew rate of $800 \mathrm{~V} / \mu \mathrm{s}$ and 90 ns settling time making it suitable for high speed communication and data acquisition system designs. Offset voltage is 2 mV , offset drift $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, bias current 3 mA , input resistance 20MA2, minimum common mode rejection ratio 50 dB , and unity gain bandwidth 100 MHz . Harris Semiconductor, 0276686886.

OPSK modulator. A monolithic quadrature phase shift keyed modulator from Hewlett-Packard replaces several discrete components with a single 16-pin SO 16 IC. It is aimed at digital cellular and digital cordless telephones. Called the HPMX2001, it comprises win double-balanced modulators which are cross-coupled into a summing amplifier. It is for wide or narrow band applications and has a typical LO operating frequency range of DC to 2000 MHz and I/Q bandwidth I DC to 700 MHz . Jermyn Distribution, 0732740100.

Op amps. Three high speed op amps have $450 \mathrm{~V} / \mu \mathrm{s}$ slew rates, 50 to 100 MHz true bandwidths, and more than 50 mA of output drive current. Units in the LTC LT1190 family are specified driving 100s2 loads while operating from a single 5 V supply as well as ± 5 to $\pm 8 \mathrm{~V}$ supplies. Low offise vollage is 1 mV , input bias current 500 nA and gain $45,000 \mathrm{~V} / \mathrm{N}$. They come in 8-pin plastic DIL or ceramic packages and in 8-pin small outline packages. Micro Call, 0844261939.

Load switch IC. A load switch IC can extend battery life in portable equipment by up to 100% by shutting down functions that are not in use. The Si9405DY is a p-channel device in a low profile SO-8 package. Its on resistance is 200 ms when driven from 5 V logic. This translates into a negligible voltage drop across the switch which means more power is available to the load. Maximum power dissipation is 2 W at $25^{\circ} \mathrm{C}$ and 0.8 W at $100^{\circ} \mathrm{C}$. Siliconix, 063530905.

Temperature IC. Based on the period group switching principle, the U2800B bipolar IC is for use in temperature control applications. Offering three preadjustable temperature set points, it enables the configuration of a two-position control with adjustable hysteresis, as well as proportional control with
programmable proportional range. The 16 -step ramp is generated internally with selectable cycle times of either 31 or 5 s . It can be used for controlling either relays or triacs. Telefunken Electronic, 063530905.

Memory chips

64 Kblt sram. The DS2064 is a byte wide 64 Kbith sram for battery operated and battery backed applications. This cmos memory can operate at TTL levels from a supply voltage of 2.7 V and retains its data down to 2 V . Access time is 150 ns maximum from a 5 V supply or 250 ns from a 3 V supply. At $25^{\circ} \mathrm{C}$, standtby current from a 5.5 V supply is 100 nA and from a 3 V supply 50 nA . Dallas Semiconductor, 02217822959.

72Kbit fifo. The IDT7205 fito operates at 25 ns and is organised as 8K by 9bit. It combines a predictive look-ahead architecture with a submicron cmos process. Housing is a 300 mil thick DIP. It is suitable for inter-board communications, data communications and video graphics. It is available in commercial and military versions. Integrated Device Technology, 0372377375.

3V eproms. The 27LVX 3V cmos eproms have a 200 ns access time. The first two products in the range are organised as $32 \mathrm{~K} \times 8$ bit (27LV256) and 64K by 8bit (27LV512). They are claimed to draw four times less power at 3 V than similar 5 V eproms. Both are available in plastic DIP, PLCC and SOIC packages.

4Mbit sram. The uPD434000 4Mbit sram has a 55 ns access time and is made with a $0.5 \mu \mathrm{~m}$ cmos process and thin-film transistor memory cell technology. Data retention under power-down conditions is helped by the $0.4 \mu \mathrm{~A}$ standby current requirement and a 3 V supply potential. The chip measures 17.8 by 7.9 mm and packages include 600 mil 32-pin DIP, 525mil 32-pin SOP and

400mil 32-pin TSOP. NEC
Electronics, 0908691133.

Microprocessors and controllers

Single chip PC. Processor, graphics, communications and power
management are all integrated on the single 160 -pin PC/Chip using ChipSystem architecture. The chip implements a 3MIPS 8086 -compatible microprocessor running up to 14 MHz , IBM XT equivalent logic, colour graphics array compatible flat panel or CRT controller, serial port, and built-in power management. The Dos processor combines an iAPX86 compatible instruction set processor with a 16 bit four-stage pipeline. Chips \& Technologies SA, +41 38338490.

Optical devices

LED lamp. A deep-red high light output H-P LED lamp uses double heterojunction AIGaAs technology to improve flux efficiency, thermal management and power capabilities. The HPWR-A200 lies 3.58 mm above board height and emits at a wavelength of 637 nm . DC forward current is 120 mA , power dissipation 375 mW , and reverse voltage 5 V . Celdis, 0734585171.

Laser diodes. Compact visible (660 to 685 nm) laser diode modules in the Imatronic range have been given an added modulation option. These versions offer 1 to 100 kHz modulation with a $1 \mu \mathrm{~s}$ rise time and can be driven from any TTL compatible source. They are a suitable replacement for He:Ne lasers. There is also an infrared version at 820nm that comes in the same 49 by 16 mm housing. All units include focusing optics and need a 4 to 5.25 V DC supply. Outputs are from 1 to 3 mW for intra red and 0.5 to 3 mW visible. Lambda Photometrics, 0582764334.

Dual red LED. The TLRA179 is a two-chip LED lamp for message board applications. It has two LED chips connected in series and produces a high intensity red light from a forward current of 15 to 20 mA . It comes in a two-pin plastic moulded package with a lens that gives a viewing angle of $\pm 30^{\circ}$. Luminous intensity is 1000 mcd from a 20 mA drive. Peak emission wavelength is 660nm. Toshiba Electronics, 0276 694600.

Oscillators

Clock oscillator. Units in the 1600 series of surface mount crystal clock oscillators come in a 4.7 mm high 1.5 g weight packages that are suitable for reflow and vapour phase automatic mounting processes. They have stand-by functions for output (tristate). The crystal unit is hermetically sealed in a metal housing and the
available frequency range is 1 to 55 MHz . The units come in static proof packages using tape and reel. NDK Europe, 0813908344.

Programmable logic arrays

Cmos PLD. The 85C224-7 is a 24 -pin cmos microcomputer programmable logic device that runs at 7.5 ns input-to-output delay. It exceeds all performance parameters of E-speed PALs and is a plug-in replacement for them. Intemal clock speed is 100 MHz . Intel, 0793696000.

Gate array family. A submicron gate array family offers 250 ps speed and $0.7 \mu \mathrm{~m}$ triple-metal cmos technology. Called ISB24000, it has a usable gate count range from 3000 to more than 200,000 and features such as JTAG support and direct drive of industry standard buses. Flip-flop toggle rate is 200 MHz and there is a 24 mA per pad sink and source capability. The family is compatible with the emerging 3.3V standard supply voltage. SGSThomson Microelectronics, 0454 773095.

Power semiconductors

Hybrid couplers. A series of 90° hybrid couplers with a power rating of 200 or 400W comprises 20 models in 10 frequency bands from 100 to 1450 MHz . Insertion loss is less than 0.3 dB and isolation 20 dB . The quadrature phase shift characteristic allows for integration into high power amplifier subsystems where low interstage VSWR must be maintained. Atlantic Microwave, 0376 550220.

Avalanche diodes. Avalanche
diodes are available ra:ed from 1 to 2000A with peak inverse voltage ratings from 1.2 to 3.2 kV . The smallest devices are supplied in wireended form, those rated between 15 and 600A in conventional stud type packages, and the largest sizes in metal or ceramic capsules. Complete assemblies to customers requirements can include heatsinks and ancillary components. GD Rectifiers, 0444243452.

Quad power switches. Quad power drivers in the CA32 family are for driving loads such as motors, solenoids, lamps, and heaters. especially in automotive electronic systems. Four versions are available. The CA3242 is a quad gated inverting power driver that can switch 600 mA . The CA3252 is a noninverting version without built-in current or temperature protection. The CA3262 has a 700 mA rating. And the CA3272 is similar with a fault-mode diagnostic flag. Harnis Semiconductor, 0276686886.

Passive components

Chip coils. The LQH1C miniature chip coils measure 3.2 by 1.6 by 1.8 mm , making them 40% smaller than the LQH3C range. Inductances range from 0.12 to $100 \mu \mathrm{H}$, current ratings up to 970 mA , and DC resistances down to 0.0882 . Nominal self resonant frequencies are from 12 to 900 MHz . The devices are supplied taped and reeled and their nickel electrodes allow flow soldering at $270^{\circ} \mathrm{C}$ for up to 10 s . Murata Electronics, 0252811666.

Polyester capacitors. The Type 6124 metallised polyester capacitors are encapsulated in plastic cases and sealed with epoxy resin, complying with UL 94 V - 0 . A dipped version is available. They also come with a bleeder resistor of $2.2 \mathrm{M} \Omega$ nominal to safely discharge the unit to less than 50 V within one minute. Range is from 1 to $30 \mu \mathrm{~F}$. They are for motor run and applications where power factor correction of retrofit compact fluorescent lights is required.
They.are suitable for exit and ceiling lights. Tecate Industries, 0101619 4484811.

SM inductors. The IMC 1210 surface mount inductor has a PCB mounting height of 2.2 mm , is protected by moulded construction, and has a mounting footprint of 3.2 (long) by 2.49 mm (wide). It is compatible with vapour phase and infra-red reflow solderingtechniques and has solder coated terminals of phosphor bronze to eliminate leaching problems. Inductance ranges from 0.1 to $100 \mu \mathrm{H}$ with tolerances from ± 10 to $\pm 20 \%$. Vishay Components, 091-514 4155.

Crystals

Thin crystal. The CP21B advanced crystal unit is 1.3 mm thick and offers stable operation from -10 to $+50^{\circ} \mathrm{C}$. Frequency tolerance is $\pm 5 \times 10-6$ and the frequency range is 16 to 110 MHz . It can be surface mounted and is suitable for hand-held telephones, video cameras, portable laptops, electronic notebooks, pocket pagers and computer terminals. NDK Europe, 0813908344.

Displays

Digital indicators. A range of looppowered digital indicalors has been extended with the DM421-a panel mounting instrument that lets less than 3 V be drawn from the host loop. It can provide a panel reading for any 4 to 20 mA signal and gives a 3.5 digit 12 mm character display. It is packaged in a $96 \times 48 \mathrm{~m}$ Din case with sealing to IP65. Status Instruments, 0684296818.

Leader 3100D: scope for production?

Filters

Variable filter. The latest model in the VBF8 series of variable two channel filters offers a switchable highlow pass response with rejection equivalent to $132 \mathrm{~dB} /$ octave. The VBF806 is fitted with elliptic fitters which have a flat response up to the cut-off frequency and offer a typical rejection of 77 dB at 1.5 times cutoff.
This is achieved without sacrificing the ability to switch between low and high pass responses on both channels. It comes in rackmount or bench configurations. Kemo, 081-658 3838.

Isolation transformer. A line

 isolation transformer, the TRO1335, meets the barrier requirements between a carrier's network lines and the subscriber's equipment. Its performance has been optimised for speech and data communications in the audio transmission band. Nominal matching impedance is 60022 , but it can also be used with the complex impedances seen on most transmission lines. Kenton Research, 0322441933.Two-channel filters. The VBF3 and VBF4 are two-channel variable filter instruments with cut-off frequencies continuously variable from 0.1 Hz to 10 kHz for the VBF3 and 1 Hz to 100 kHz for the VBF4. Each of the two channels may be set to high or low pass response and the filter slope may be switched between 6 and $24 \mathrm{~dB} /$ octave with Butterworth characteristics. Kemo, 081-658 3838.

Hardware

Enclosed subrack. Ratiopac is a successor to the long-running Europac case range. It is designed to be versatile and to meet electromagnetic compatibility requirements. It can be used either as
a standard subrack in a 19 in equipment cabinet or as a desk-top case. Supplied in kit form, it is available in 13 models with heights of 3 or 6 U , widths of 42,63 or 84 HP . and depths of $266,326,386,446$ or 506 mm . There are also various front trims, handle styles and mounting rails. Schroff, 044240471.

Instrumentation

Clamp meter. A combined tester and clamp meter comes with various test leads and probes for direct voltage, current and resistance measurement. Using an optional thermocouple sensor it can measure temperature from -20 to $+200^{\circ} \mathrm{C}$. Called the CM8000, it can handle induced AC current measurement on 6,60 and 300 A ranges with cabies of 25 mm maximum diameter. Probes for direct voltage measurement work up to 300 or 600 V AC. Resistance can be measured from 0 to $10 \mathrm{k} \Omega$. Di-Log Instruments, 0942222657.

Dataprinter. There are two versions of the SP25 series four-channel dataprinters. The SP25K has a temperature range from -100 to $+1199.9^{\circ} \mathrm{C}$ and an accuracy of $\pm 1.7^{\circ} \mathrm{C}$ $\pm 0.1 \%$ of reading. And the SP25T has a -50 to $+399.9^{\circ} \mathrm{C}$ with an accuracy from ± 0.5 to $0.8^{\circ} \mathrm{C}$. Both monitor voltage over the range 1999.9 mV with an accuracy of $\pm 0.1 \mathrm{mV} \pm 0.02$ of reading. They can be programmed for unsupervised monitoring. Digitron Instrumentation, 0992587441.

Video analyser. The Panasonic VP8450A video analyser covers Pal and NTSC systems and has an LCD information panel for setup and results information. Up to 32 regular tests can be saved in memory. As well as video level and phase, it also measures peak values on video and $A C$ from 100 kHz to 5 MHz . Luminance level, chrominance level or phase,
sync/burst level, and peaks at specified points are possible on a composite signal or with Y/C separated signal as output. Farnell Instruments, 0937581961.

100 MHz scope. Panasonic has introduced a 100 MHz four-channel ten-trace analogue oscilloscope, the VP5020A, with a maximum sensitivity of $1 \mathrm{mV} / \mathrm{div}$, and maximum sweep rate of $2 \mathrm{~ns} / \mathrm{div}$. It has a brighter CRT than the firm's previous models and the vertical amplifier has a monolithic IC to improve stability and reduce drifs. The trigger and sync functions cover video and TV applications. A vertical trigger mode helps with multichannel signal observations. Famell Instruments, 0937581961.

Four-channel scopes. Covering the bandwidth DC to 100 MHz (V1085 and V1100A) and DC to 150 MHz (V1150), these three real-time oscilloscopes each have four independent channels, eight traces, and delayed sweep. Features include auto trigger level, CRT and cursor readout, bult-in frequency counter, and selectable signal output. The V1085 also has sweep time autoranging and trigger lock, and the V1100A and V1150 has ground reference and DVM. Hitachi Denshi, 081-202 4311.

D/A converters. IOTech has introduced lwo high resolution IEEE488.2 compatible d-lo-a converters - the DAC488HR2 and HR4. These data acquisition instruments provide the capabilities of a precision voltage source, function generator and arbitrary waveform generator. The architecture consists of a motherboard and up to four independent daughter board modules each of which has a microprocessor and isolated analogue circuitry. Keithley Instruments, 0734575666.

Spectrum analyser. The PSA-65A spectrum analyser provides 200 kHz to 1 GHz frequency coverage in a single sweep. Key uses include the alignment and testing of RF systems, cellular radio, cable TV equipment, and electronic countermeasures. Sensitivity is better than -95 dBm . It operates from 220 V AC, 12V DC or its own internal battery. Marconi Instruments, 072759292.

Field detector. Magnetic fields and voltages can be shown by the Type 200 non-contact test pen. The shirtpocket unit measures 22 by 32 by 140 mm , gives visual and audible warnings, and displays the polarity of magnetic fields. It is for conductors energised at voltages in the 100 to 600 V range and for inductors, relays, solenoids and translormers operating from low-voltage AC/DC and above. A sell-check facility uses a 50 Hz signal transmitted to either the voltage or magnetic sensor. Selectronix, 0442 874973.

Multimeter. The Testmate is a multimeter for service and maintenance engineers, laboratories and education. It costs $£ 29$ and has ranges for AC/DC current from 200 A to $10 \mathrm{~A}, \mathrm{AC} / \mathrm{DC}$ voltage from 200 mV to $100 \mathrm{~V}(750 \mathrm{~V} \mathrm{AC})$, and resistance from 200Ω to 200 M 2 . Other facilities include continuity, diode, transistor and battery testing. Accuracy on voltage ranges is 0.5% of reading ± 1 digit. Solexpress, 0455283486.

RMS multimeter. The 1504

 multimeter is a bench instrument with a scale length of 32,000 counts. It provides AC and DC voltage, AC and DC current, resistance, diode test, amd frequency measurements. All AC measurements are true RMS and the frequency response extends to 20 kHz . Basic accuracy is 0.05% and input impedance is either 10 or $1000 \mathrm{M} \Omega$ user selectable. Maximum sensitivity is $10 \mu \mathrm{~V}, 10 \mathrm{M} \Omega$ or 1 nA . Currents up to 25A can be measured. Thurtby-Thandar, 0480412451.Pulse generator. The TG105 is a fullfunction portable pulse generator that provides a frequency range of 5 Hz to 5 MHz and fully variable period and pulse width with a vaniable output level of 0.1 V to 10 V from 50Ω. Free run, single shot, gated and triggered modes are standard as is a TTL and synchronous output. It is housed in a rugged case measuring 255 by 150 by 50 mm and weighs 1.2 kg . ThurlbyThandar, 0480412451.

Literature

EMC wallchart. A wallchart is available that provides at a glance the most commonly used EMC data for conducted and radiated emission measurements. It is in full colour and measures 1000 by 700 mm . Detailed information is provided on the decibel

Cheap and cheerful: the $£ 29$ Testmate multimeter from Solexpress.

with conversion tablesand example calculations. Data is also provided for electromagnetic fields, open area test sites, antennas, standards, CISPR-16 instrumentation characteristics, and CISPR/FCC measurement layouts. Chase EMC, 0818787747.

Image sensors. A 458-page databook describes Toshiba's range of CCD linear image sensors. Full data is included on 32 image sensors with peripheral circuitry and modular subassemblies. There are also more than 60 pages of application notes and technical articles on the principles, characteristics and application of these sensors. Toshiba Electronics, 0276694600.

Navigation systems

Weather forecasting. Fax-2 combines weather facsimile reception with Navtex, RTTY, FEC, Marine Page and computer data printing. It comes in a rugged extruded aluminium case which can be hung from a shelf or mounted through a panel. It will plug into the loudspeaker extension socket of most HF SSB receivers. It picks up Navtex broadcasts that give printed navigation wamings, weather forecasts, gale wamings, and search and rescue information. ICS
Electronics, 0903731101.

Power supplies

Alkaline batteries. A range of alkaline batteries has been introduced for medical and communications applications. They are made to military standards, meet ISO approval, are guaranteed against leakage, and have a four year shelf life. There are six sizes: LR20 1.5 V $18,000 \mathrm{mAh}$ capacity; LR14 1.5V 7750 mAh ; LR6 1.5 V 2700mAh; 6LR61 9V 550mAh; LR03 1.5V 1175 mAh ; and LR1 1.5 V 825 mAh . Activair Europe, 0978661984.

325W supply. Measuring 63 by 127 by 216 mm , the Lightning ALS304 unit is claimed to have the smallest footprint of any 325 W multiple output power supply available. This has been achieved because of its 200 kHz switching frequency, implemented by two mosfet forward converters, and a thermally efficient external heatsink. It can be powered from any source from 90 to 264 V AC and comes with three or four fully floating outputs. The post regulation on the secondary outputs is achieved by MagAmp regulators designed to allow up to 200% peak loading capability on two outputs. It has 20 ms full load holdover storage. Astec Standard Power, 0246455946.

Production test

equipment
100 MHz scope. The 31000 is a
100 MHz bandwidth digital storage
oscilloscope which can automate the measurement task by presetting up to 100 different sets of conditions through a low-cost dedicated controller. This makes it suitable for the electronics production market where accurate or repetitive measurements need to be made with the minimum of operator interaction. In a production environment, the preset scope parameters can be set to mirror a test procedure,
coordinated by on-screen messaging for operator instructions, so nontechnical users can make circuit adjustments without knowing how to select ranges or timebases. Leader Instruments, 0753538022.

Radio communications products

IF synthesiser. The Sciteq VDS1306 satcom and radio IF synthesiser combines PLL with a patented DDS to improve resolution and spectral purity. Operating range is 55 to 85 MHz with 100 Hz steps and the potential for 0.1 Hz steps. It has BCD parallel control and non-hamonic spurious is better than -60 dBc typical. Power is less than 5 W and it measures 3 by 7.5 by 0.72 in . The phase noise floor is better than $-115 \mathrm{~d} 8 \mathrm{c} / \mathrm{Hz}$. Custom versions can provide other frequency bands to 300 Hz . Lyons Instruments, 0992467161.

Test set. The CMS50 radio communication test set has all the features of the CMS52 but costs 20\% less. These features include an autorun facility, built-in self test and field replaceable RF attenuator. The spectrum monitor has 150 Hz selectivity. It can test all parameters of AM, FM, phase modulation and SSB radio systems as well as cellular radio and networks including trunking MPT 1327/1343. Rohde \& Schwarz, 0252811377.

Switches and relays

PCB relays. Capable of switching low power signal loads up to a rated current of 16A, the RP series of PCB relays comply with VDE0110. Four of the models have 4 kV dielectric strength and 8 mm creepage and clearance. Included are relays with bilurcated contacts and a choice of contact materials for switching low level loads. Sterling Components, 0753820753.

Transducers and sensors

NTC thermistors. The Curve 17 negative temperature coefficient (NTC) thermistors have an NTC of $4.5 \%{ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ with a value range from 2 to $50 \mathrm{k} \Omega$. They come in standard conlormal coated styles with radial leads or in various custom models and assemblies. Point
matched models are available with tolerances of $\pm 1, \pm 2, \pm 3, \pm 5$ and $\pm 10 \%$. Standard curve tracking models are available from 0 to $70^{\circ} \mathrm{C}$
and from 25 to $125^{\circ} \mathrm{C}$ in ± 1 and $\pm 0.5^{\circ} \mathrm{C}$ versions. Vishay Components, 091-5144155.

COMPUTER

Computer-aided design

Electronics design. EE System is a version of the EE Designer package that gives a no-frills design system without some of the more advanced features. It can, however, be upgraded to a full EE Designer system. Options are Schematic, Designer (which combines schematic design with PCB layout), and Engineer which includes schematic design, PCB layout and mixed mode circuit simulation. Features include front and back annotation, autoplace, autoroute, unlimited pad sizes and shapes, design rule checking, and SMD support. Betronex, 0920 469131.

Thermal analysis. An enhanced version of the Flotherm thermalanalysis CAD package is available which uses computational fluid dynamics techniques to predict the 3D air flow and heat transfer within electronic systems. Known as version 1.3, this package lets design engineers examine the effects of air viscosity, turbulence and buoyancy forces. Special functions include the automatic calculation of fan power ratings and the analysis of air flow through tited equipment such as VDU monitors. It is available in Fortran and will run on all major Unix hardware platforms. Flomerics, 0815473373.
Computer board level products
SCSI adapter. An EISA addition to
the Rimfire 5000 series of SCS adapters has been announced. The RF5600 adapter is based on thirdgeneration SCSI technology incorporating Fast SCSI-2 features. The device can transfer data at up to $10 \mathrm{Mb} / \mathrm{s}$ and has separate data paths for simultaneous transfer of SCSI data and commands into an on-board queue reducing SCSI command overhead. Drivers can be NetWare 3.11, SCO Unix, or SCO Xenix. MSDos is supported by the on-board bios eprom. Ciprico, 063573666.

Motherboards. Two motherboards have been introduced that are compatible with the TIM-40 standard for modular flexible multiprocessor systems. The D8140 and DBV40 are for the PC-ATbus and VMEbus, respectively. Also available is the DBM40 TIM-40 plug-in module which includes a 50 MHz TMS320C40 to give a performance up to 275 Mops , 50 MF lops. The module has 1 Mbyte of zero wait state sram and 32Kbyte eeprom. Data Beta, 0734303631.

A/D interface. A 12bit a-to-d interface is available for data acquisition applications in transputer based parallel systems. The Parsytec TPMADC1 is an intelligent 16 channel module with multiplexed sample-hold circuitry and four RS422 buffered serial links. It operates at 200Ksample/s and comes in a single Eurocard format. DC-DC transformers and optocouplers are used and the analogue front end is separated galvanically from an on-board control

Size, not price. The DBM40 plug-in subsystem from Data Beta.

and communications transputer section. As well as a 16bit T222 processor, this section has 64 Kbit of sram and 32 Kbit of rom to store user code. Dean Microsystems, 0734 845155.

Multibus II board. A 33 MHz 68030 based Multibus II CPU board has a buffered Ethernet controller, SCSI interface, two buffered 32bit DMA controllers, and an optional MC68882 floating point coprocessor. The HK68/M230 has 4 to 16 Mbyte of static column dram which supports burst transfers. It implements the full Multibus II interface including the 32bit parallel system bus, the 32bit iLBX bus, and the 8bit iSBX bus. Diamond Point International, 0634 722390.

386SL chipset. The Intel 386SL chipset consists of two VLSI circuits with on-board main memory controller, cache memory controllers and ISA bus interface controller and buffers. It supports sram and dram arrays, including expanded memory configurations to the LIM/EMS standard. Jermyn Distribution, 0732 740100.

VME board. The MPV955 provides eight independent single-ended 16bit analogue output channels on a 6 U VMEbus card. The board design avoids VMEbus bottlenecks by using 16 Kwords of on-board sram to eliminatethe need for continual data transfers. Outputs are 14bit accurate providing a total error at $25^{\circ} \mathrm{C}$ of $\pm 0.006 \%$ of full scale range. Gain drift is typically $20 \mathrm{ppm} \nu^{\circ} \mathrm{C}$ and offset drift $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Eight d-to-a converters are controlled by an on-board rate generator which gives output data rates of up to 600 K sample/s. Pentland Systems, 0506464666.
Signal processing board. The Spirit 30 is a signal processing board based around the 33MFlop TMS320C30 floating point DSP. It is available in versions for the AT bus (ISAVEISA). PS/2 (MSA), VME bus and Sbus (Sparc). Each can be configured with up to 64 Moyte of sram and dram. Standard VO interfaces include two 8Mbyte/s ASM-Serial ports, one $66 \mathrm{Mbyte} / \mathrm{s}$ ASM-Main port, and one 32Mbyte/s ASM-Peripheral port. SSE Marketing, 071-387 1262.

Software

Analogue/digital design. DesignStar is a graphical design environment that has been integrated with the Saber simulator to provide a complete turnkey solution for analogue and mixed analogue and digital design and modelling. It lets designers quickly create schematics and simulation models. At its heart is a design capture package supported by a graphical model generator. This provides and tailors all the menus,
drawing commands and output formats. It can be run on various workstations including Sun, HP/Apollo, Solbourne and DEC. Analogy Europe, 0793432286.

Two-way interface. The RFD Schematic Interface is a two-way software interface between RFDesigner and DesignWorks running on Macintosh computers. It lets the user enter analysis and optimisation circuit data, edit it and tune the circuit through the schematic environment, as well as update schematic component parameters with the data modified or optimised in RFDesigner. Also, a circuit synthesised in RFSynthesist can automatically appear in the sublaunched DesignWorks with calculated values annotated to component fields. Ingsoft, 0101416 7309611.

Semiconductor testing. The Model $251 \mathrm{I}-\mathrm{V}$ test software package has been improved with the addition of automatic'semiconductor device test procedures. The software can automate the operation from one tosix source-measure units, plus voltage sources and switching matrices to characterise semiconductor devices quickly and display test data graphically. It can be used to control other IEEE488 programmable equipment such as probers, handlers, power supplies and hot chucks. It will run on IBM PCs and compatibles using Dos. Keithley Instruments, 0734 575666.

Linear circuit analysis. Analyser III is a linear circuit analyser program that makes full use of graphics facilities offered by EGA and VGA screens with a full colour display showing a smooth interpolated frequency response graph. Axes are automatically scaled and labeled in engineering units. The scaling can be altered by hand and two sets of results can be overlayed on the same graph. As many component models can be created as needed and there is a maximum capacity of more than 130 nodes or 2000 components. There is an easy upgrade path from previous versions of Analyser. Number One Systems, 048061778.

Maths editor. Version 1.1 of MathType for the IBM PC is a mathematical equation editor which runs in the Microsoft Windows environment. It lets users build complex mathematical equations using point-and-click techniques, and then place them into word processing and page-layout documents. This version includes new fonts, improved printer and display suppon, and enhancements to the user interface. It needs 640 K of ram, hard disk, mouse and Windows 3.0. Text Formatting, 081802447

- Low noise designs available for the most demanding audio applications.

- Triple insulation to IEC 742 on all standard transformers and where specified on custom designs.

All types of toroid power transformers supplied —low profile, potted centres, cased, auto transformers, control gear, lighting and others.

UK and overseas distributorships are available

Telephone or fax for details

COTTON ROAD . WINCHEAP CANTERBURY • KENT CT1 3RB

Telephone: coe271454778

ANSI C-Compilers

True processor specific, and not just modified generic, C-Compilers are now available.
$1802,1805,6301,64180,6502,6800$
$6801,6802,6805,6809,6811,68000$
$8051,8085,8086,8096$, Z80 . . .

Matching Assemblers, Linkers and Development Systems with High Level Debugging are also available to see you through your complete software and hardware design cycle.

Call us now for your FREE active demonstration disk.

Lee View House, Two Rivers Est., Station Lane, Witney, Oxon. OX8 6BH.

Tel: (0993) 778991 Fax: (0993) 702284

MICROPROCESSOR SUPPORT

\star IN.CIRCUIT EMULATORS. Universal real time emulators for all major processor manufacturers.
\star HIGH LEVEL DE-BUGGING. Complete emulation control of code in C, including single stepping.
\star SUPPORT FOR OVER 150 DEVICES.
\star PERFORMANCE ANALYSIS. Three modes of operation allows complete code optimisation.
\star RENTAL OR LEASE PURCHASE. Spread the cost of purchase by leasing.
\star FREE SOFTWARE WITH ALL EMULATORS. Assembler, Linker and De-Bugger software supplied at no extra charge.

* OPTIONAL C CROSS COMPILERS. All complying to ANSI 2nd edition.
* Call 0993.778991 NOW for your free demo disks and catalogue.
american automation
probes
Marconl TF2008 - AM.FM signal generalor - Also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 350$
tested to $£ 500$ as new with manual - probe knt in wooden carrying box - $£ 50$.
HP DC Current source tyoe 6177C - K200
HP Frequency comb generator type 8406A - $£ 400$
HP Sampling Voltmeter (Broadband) type 3406A - K200
HP Vector Volimeter type 8405A - $£ 400$ to $£ 600$
HP Synthesiser/signal generator type 8672A-2 to 18GHzS - $£ 6000$
HP 8640A signal generator-OPT $001-002$ - $5 \mathrm{MC} / \mathrm{s}-1024 \mathrm{MC} / \mathrm{s}-£ 1000$
HP Oscillographic recorder type 7404A - 4 track - โ35
HP Plotter type 98728-4 pen - $£ 300$
HP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}+$ ptug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18 \cdot 40 \mathrm{GHz}$. P O.R HP Signal Generators type 612-614-618-620-628-frequency from $450 \mathrm{Mc} / \mathrm{s}$ 10 21 GHz HP Network Analy ser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 1000$
HP 432A-435A or B Power miles
HP Down Converter type 117108-.01-1 M Mc/s- $£ 450$
HP Pulse Modulator type 11720A-2-1
HP Modulator type 8403A - $£ 100-£ 200$
HP Modulator type 8403A - $1100-£ 200$
HP PIn Modulators lor above-many different trequencies - $£ 150$
HP Power meler ype 435A (no head)- £150

HP Signal Generator type B640B - Oproo HP Correalator type 3721 A 150
HP Spectrum Oisplay type $37555+3756 \mathrm{~A}-90 \mathrm{Mc} / \mathrm{s}$ Switch $-£ 500$.
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{MC} / \mathrm{s} £ 400$ - HP8447F 1-1300Mc/s $£ 800$
HP Frequency Counter type $5340 \mathrm{~A}=18 \mathrm{GHz}$ £1000 - rear outpul $£ 800$
HP Frequency Counter type 5340A - type 8161 A - $£ 1500$.
HP Programmable pulse generatolyser $110 \mathrm{MC} /$ s to $^{\text {H }} 12 \mathrm{GHz}$ or 18 GHz - plus most other units and displays used in this set-up -8411A-8412-8413-8414-8418-8740-8741-8742-8743 displays used -8746 - 8650 . P.O.R
HP Stgnal Generator type $8660 \mathrm{C}-.1-2600 \mathrm{MC} / \mathrm{s}$. AMFM $-£ 3000$.
HP Signal Generator type 8656A-0.1-990MC/S. AMFM -

HP 8699B Sweep P1 - 0.1-4GHz £750-HP8690B Maintrame $£ 250$
HP Digltal Voltmeter type 3456 A - 5900 .
Racal/Dana digltal multimeter tyoe 5001- $£ 250$
Racal Dana Interface type 9932 - $£ 150$.
Racal/Dana GPIB interface type $9934 \mathrm{~A}-£ 100$
Racal/Dana Timer/counter type 9500 (9515 OPT42) - 1250MC/s - $\mathbf{~} 450$
Racal/Dana 9301A-9303 RF Miltwotmeter $-1.5-2 \mathrm{GHz}-£ 350-£ 750$
RacalDana Counters 9915 M - 9916 - 9917 - 9921 - $£ 150$ to £450. Fitted FX standards.
RacalDana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal - SG Brown Comprehensive Headset Tester (with attificial head) Z1A200/1 - £450.
EIN 310L. RF Power Amp - $250 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-50 \mathrm{Dbs}-£ 250$.
Marconl AF Power Meter type 893B - £300.
Marconl Bridge type TF2700 - $£ 150$
Marconi/Saunders Slgnal Sources type $=6058 \mathrm{~B}-6070 \mathrm{~A}-60558-6059 \mathrm{~A}-400$ to 18 GHzS P.O.R.

Marconi TF2015 Signal Generalors - $10 \mathrm{MHz}-520 \mathrm{MC} / \mathrm{s}$ - AMFM - $£ 250$
Marconl TF1245 Circuit magnification meter +1246 \& 1247 Oscillators $-£ 100-£ 300$
Marconl microwave 6600A sweep 05c., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - £1000 or Pl only $£ 600$
Marcont distortion meter type TF2331 - £150, TF2331A - £200
Marcond 6700 B sweep mainframe - $£ 200$.
Thuriby convertor 19-GP- IEEE-488-£150
Phillps logic multimeter type PM2544- ₹ 100 .
Microwave Systems MOS/3600 Microwave frequency stabilizer - 1 to 18GHzs \& 18 to 403 Hzs £1000.
Bradiey Oscllloscope calibrator type 156-£150.
Bradiey Oscliloscope calibrator type 192- $\$ 500$.
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12 S1-S2-S6-S52 -PG506-SC504 -SG502-SG503-SG504-DC503 - OC508-OD501 WR501 - OM501A - FG501A - TG501 - PG502 - OC505A - FG504 - P.O.A.
Altech Stoddart recelver type $17 / 27 \mathrm{~A}-.01-32 \mathrm{M} / \mathrm{s}-55000$
Aittech Stoddart recelver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{s}-£ 5000$
Aihech Stoddart receiver type NM65T - 1 to 10 GHz - $£ 3000$ Gould J3B Test oscillator + manual - $£ 200$
Image Intensifiers - ex MOD - tripod fitting for long range night vewing - as new - $£ 150 c$ - $£ 2000$ Don 10 Telephone Cable - $1 / 2$ mile canvas containers or wooden drum - new - Mk2-3 or 4 P.OR.
infra-red Binoculars in fibre-glass carrying case - tested - $£ 100 e a$ also Infra-red AFV sights ¢100ea.
ACL Fleld Intensify meter recelver type SR-209-6. Plugs-fins from $5 \mathrm{Mc} / \mathrm{s}$ to 4 GHz - P'O.R. Systron Donner Counter Madel 6057-18Ghz - 5800
Clark Alr Masts - Heavy Duty - Type Scam - 40tt or $70 \mathrm{tt}-\mathrm{\Sigma} 200$ - $£ 600$
Tektronix 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new $-£ 1200+$ manual
Tektronlx Malnframes - 7603-7623A - 7633-7704A - 7844-7904 - TM501 - TM503
TM506.
Knott Polyskanner WM1001 + WM5001 + WM3002 + WM4001 - £1000
Aithech 136 Precision test $R X+13505$ head $2-4 \mathrm{GHz}-\mathrm{C} 350$
SE Lab Elght Four - FM 4 Channel recorder - K200.
Altech 757 Spectrum Analyser - 001 22GHz - Oignal Storage + Readout - $\mathbf{5} 5000$ Altach $\mathbf{D} \mathbf{6 0 6}$ Power line disturbance analyser - $£ 500$.
Dranetz 606 Power line disturbance analyser - $£ 500$.
Precision Aneroid barometers- $900 \cdot 1050 \mathrm{Mb}$ - mechanical digit readout with electronic indicator - brettery powered. Housed in polished wood carrying box-tested - £100- $£ 200-$ - 250 . MK1, 2 or 3 B \& K Sound Level Meter type 2206-small - lightweight - precision - $1 / 2 \mathbf{2}^{\prime \prime}$ microphone - in foam protected filled brief type carrying case with windshield \& battery + books + plstol grip handle -lested- $£ 170$. Carr $£ 8$. - B \& K 2206 Meter + Mike + Book-less carrying case etc - $£ 145$. Carr £8. DISCOUNT ON QUANTITY
HP 141 T Spectrum Analysers. All new colours supplied with instruction manuals
HP 141T-8552A or B-8556A-20 Hz to 300 kHz . $£ 2000 \mathrm{~A}-£ 2200 \mathrm{~B}$.
HP 141T-8552A or B-8553B-1kHz to $110 \mathrm{Mc} / \mathrm{s}$. $£ 1800 \mathrm{~A}-£ 2000 \mathrm{~B}$
HP 141T-8552A or B-8554B-100kHz to 1250MC/s. $£ 2050$ A - £2250 B
HP 141T-8552A or $\mathrm{B}-8555 \mathrm{~A}-10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz . $£ 3250 \mathrm{~A}-£ 3450 \mathrm{~B}$.
HP 141T - old colour maintrame + 8552A:8553B-1kHz to $110 \mathrm{MC} / \mathrm{s}$. Instruction manuats -
§1500.
HP 3580A LF -spectrum analyser - 5 kHz to 50 kHz - LED readout - dignal stor age - $£ 1600$ with instruction manual or $£ 1750$ with internal rechargeable battery
HP5352B - 40GHz counter - Liquid crystal readout with instruction manual - $£ 5000$.
Spectrascope 11 SD335 (S.A) reallime LF analyser - 20 Hz to 50 kHz - LED readout with manual - $\mathbb{5} 850$.

Tektronix 7020 plug-ln 2-channel programmable dighlizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 maintrames -§500-manual - $£ 50$.
Datron 1065 Auto Cal digital multimeter with instruction manual - $\mathbf{C 7 5 0}$.
Racsi MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}-$ Internal NiCad battery - with manual

£150.

Tektronix $2235100 \mathrm{Mc} / \mathrm{s}$ oscilloscope + two protes + manual. $£ 800$.
Tektronlx $2465300 \mathrm{Mc} / \mathrm{s}$ oscilloscope + two probes + manual. $£ 1600$

Tektronlx $485350 \mathrm{mc} / \mathrm{s}$ oscliloscope + two protes + manual $£ 500$
Tektronix TR 503 tracking generator $-10 \mathrm{Mc} / \mathrm{s}$ to $1800 \mathrm{Mc} / \mathrm{s}+$ manual - $\$ 1500$
Aerlal array on metal plate $9^{\prime} \times 9^{\prime}$ containing 4 aeriats plus Narda detector $-.100-11 \mathrm{GHz}$. Using N rype and SMA plugs \& sockets - ex eqpt - $£ 100$.
Marcon AF Power Amplfier TF2175-1.5MC/s $10520 \mathrm{MC} / \mathrm{s}$ with book $-£ 100$
HP 8614 A Signal Generator $800 \mathrm{Mc} / \mathrm{s}$ to 2.4 GHz -old colour - $£ 300$. New colour - $£ 600$.
HP 8614 A Signal Generator $800 \mathrm{Mc} / \mathrm{s}$ to 2.4 GHz - old colour- $\mathrm{\Sigma} 300$. New colour - $£ 400$.
HP 8620 A or 8620 C Sweep Generators - $£ 400$ D $£ 900$
Marconl 6155 A Signal Source - 1 to 2 GHz - LED readout - $\mathbf{E} 600$
Marconi6155A Signal Source - I
Schlumberger 2720 Programmable Universal Counter 0 to $1250 \mathrm{Mc} / \mathrm{s}-\mathbf{\Sigma 6 0 0}$.
MP 37203A HP-IB Extender - $£ 150$.
PPM 411 F Current Reterence - $£ 150$.
HP 53638 Time interval Probes - $£ 150$
Marconl B057B Signal Source - $4.50108 .50 \mathrm{GHz}-£ 300$.
HP 8900 B Peak Power Calibrator $-£ 100$.
HP 59313A AD Convertor - E150.
HP 59306 A Relay Actuator $-£ 150$.
HP 2225CR Thinkjet Printer - £150.
TEK 178 Linear IG Test FIxture - $£ 150$
TEK 576 Callbration Fixture - 067-0597-99- $£ 250$.
HP 4437A 600 Ohm Altenuator - $£ 100$
Marconl Signal Source 6059A-12-18 GHZ - 5400.
HP 8006 A Word Generator - $£ 150$.
MP 1645A Data Error Analyser - [150
Texscan Rotary Attenuators - BNCISMA 0-10-60-100DBS - £50-£150.
HP 809C Siotted Line Carrlages - various frequencies 10 18GHZ - £100 to £300.
HP 532-536-537 Frequency Meters - various tequencies - $£ 150$ - $£ 250$.
HP 32008 VHF Osclilator - $10 \mathrm{MC} / \mathrm{S} .500 \mathrm{MC} / \mathrm{S}-£ 200$.
VAL Radio Invertors - 200 -watt 12 V to $115 / 231 \mathrm{JV}$ AC $50 \mathrm{c} / \mathrm{s}$. $£ 100$.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ + high pass + low pass - mains - bartery §150.
Krohn-Hite Model 3343 fiher - low pass, high pass, 0.1 Hz - $100 \mathrm{kc} / \mathrm{s}$ - mains - battery.
Krohn-Hite 4100 oscillator.
Krohn-Hite 4141 R oscillator - $1 \mathrm{~Hz}-10,000 \mathrm{kHz}$
Krohn-Hite 6880 programmable distortion ANZ-IEEE-488
Krohn-Hite 3750 filler, low pass, high pass -. $02 \mathrm{~Hz}-20 \mathrm{kHz}$
Parametron D150 vartable active fiter, low pass - high pass - $1.5 \mathrm{~Hz}-10 \mathrm{kHz}$. $£ 100$.
S.E. Lab SM215 Mk 11 transfer stancard volrmeter - $\mathbf{1 0 0 0}$ volts.

Fluke 4210A programmable voltage source.
Allech Stoddart P7 programmer - $\mathbf{\Sigma 2 0 0}$.
Fluke 8500A digital multimeter.
H.P. 3490 A mulfimeter.
H.P. 6941 B multiprogrammer extender. $£ 100$.

Fluke Y2000 RTD selecior + Fluke T120A IEEE-488-translator + Fluke 2180 RTD digital
thermometer +9 probes. $£ 350$ all three items.
H.P. 6181 DC current source. E150.
H.P. 59501 A - HP-IB Isolated D/A/power supply programmer
H.P. 3438 A digital multimeter.
H.P. 61775 OC current source.
H.P. 62078 DC power supply.
H.P. 7418 AC/DC differential volimeter standard (old colour) $£ 100$
H.P. 62098 OC power unt?

Fiuke 80 high voltage divider.
Fluke $887 \mathrm{AB} \mathrm{AC}+0 \mathrm{C}$ differential voltmeter
Fluke 431C high voltage OC supply.
H.P. 1104 A trigger countdown unt.

Tektronlx M2 gated delay calibration fixture. 067-0712-00
Tektronix precislon DC divider callbration fixture. 067-0503-00
Tektronix overdrive recovery callbration fixture. 067 .0608-OME $1515-85 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / 5$ + FSME $1514-85 \mathrm{kc} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}+15141+15142$ - locip aerials - $£ 500$. Vume 1520A VHF-UMF 25-
$1514-85 \mathrm{kC} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}+15141+15$
$1000 \mathrm{Mc} / \mathrm{s}-\mathrm{F500}$.
Avo VC 163 valve tester $+000 * £ 30$
Gould 60000 XYT recorder. 2250 .
H.P. 5011 T logic trouble shooting kit £150.

MPM 8000 programmabie scanner
PPM 8000 programmabie scanne
H.P. 9133 disk drive $+7907 \mathrm{~A}+9121$ twin disk.

Fluke 730 A DC Iranster standard
B\&K level recorder $2307+2010$ heterodyne analyser - in rack - $\mathbf{£ 1 0 0 0}$
B8K 2971 phase meter - $£ 150$.
B\&K 2112 audio trequency spectromeler - $£ 100$
B8K 4815 calibrator head
B\&K 4812 calibrator head.
B8K 1022 band FX oscillator - $£ 100$.
B8K 1612 band pass fiter set - $£ 150$
B8K 2107 frequency analyser - $£ 150$
B8K 1013 BFO- £100
B8K 1014 BFO- $£ 150$
B8K 4712 FX response tracer - $£ 250$.
B\&K 2603 microphone amp - $£ 150$.
B8K 2604 microphone amp - $£ 20 \mathrm{C}$.
B8K 2804 microphone power supply - £200
B8k 2019 analyser - $\AA 350$.
Farnell power unit H60/50- $£ 250$.
H.P. FX doubler 938A, also 940A- £300

Racal/Dana 9300 RMS voltmeter - $£ 250$
A.B. nolse figure meter $117 B-\mathbb{C} 00$.

Altech $360011+3601+3602$ FX synthesizer $1 \mathrm{Mc} / \mathrm{s}-2000 \mathrm{Mc} / \mathrm{s}$. $£ 500$
H.P. sweeper plug-ins - $86240 \mathrm{~A}-2-8.4 \mathrm{GHz}-86260 \mathrm{~A}-12.4-18 \mathrm{GHz}-86260 \mathrm{AH} 03-10-$ $15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz}$
Telequipment CT71 curve Hacer - $£ 200$
H.P. 461 A amplifier $-1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - old colbur - $£ 150$
H.P. 8750 A storage normalizer.

Tektronix oscllloscopes fype 2215A - 60NAC/s - c/w book \& probe - $£ 400$.
Tektronix monitor type 604 - $£ 110$.

SPECIAL END OF LINE OFFER

Marconl TF2008 Signal Generators 10 KCiS to 510 MC S S AM. FM - off the pite - tested working - $£ 300$. Not working or par-working - $£ 200$. Kil box of altachments - $£ 25$. All supplied with manual, quick test only given, working or non-working - fair looking condition - 300 only available As new ones still avallable as normal, fully tested with box of attachments - $£ 400-£ 500$.
As new ones still avallable as normal, fully tested with box of attachments $-£ 400-£ 500$.
Clark Scam Heavy Duty 40^{\prime} Telescopic Pneumatic Masts - retracted $7^{\prime} 88^{\prime}-$ head load 40 lbs -
Clark Scam Heavy Duty 40^{\prime} Telescoplc Pneumatic Masts - retracted 7 ' 8 - - . with or without supoorting legs \& erection kil - in bag + handbook - $£ 200$ - $£ 500$.
.
with or without supporting legs \& erection kit - in bag + handbook- $โ 200-25^{\prime \prime}$.
Clark Scam Heavy Duty 70^{\prime} Telescopic Preumatic Masts

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. Nc. (0274) 684007. Fax 651160.

Circuits, Systems \& Standards

First published in the US magazine EDN and edited here by lan Hickman.

IF chip forms audio decibel-level detector

The NE604 is a low-power IF chip that includes a logarithmic signal-strength output. Fig. 1 's circuit draws less than 5 mA from a 6 V supply and offers a signal sensitivity of $10.5 \mu \mathrm{~V}$. Although the chip is intended for cellular-radio and other RF applications the \log output provides an 80 dB range of response and $\pm 1.5 \mathrm{~dB}$ accuracy in the $100-10 \mathrm{kHz}$ audio range (Fig. 2).
Capacitively couple the audio signal to pin 16. The log circuit generates approximately $10 \mu \mathrm{~A}$ per 20 dB of input signal at pin 5; convert this current to voltage by connecting $100 \mathrm{k} \Omega\left(\mathrm{R}_{2}\right)$ from pin 5 to ground. You can then measure this voltage directly with a voltmeter, or buffer and filter the voltage as shown using op amps $\mathrm{IC}_{2 \mathrm{~A}}$ and $\mathrm{IC}_{2 \mathrm{~B}}$. A standard 0 to 5 V meter with a linear decibel scale serves to display 80 dB of signal level. To measure higher audio levels, add a resistive attenuator at the chip's audio input.
R_{1} and Cl form a lowpass filter. Specifying $2 \mathrm{k} \Omega$ for R_{1} provides maximum linearity. C_{1} should be adjusted to change the filter's cut-off frequency. A higher value for C_{1} lowers the circuit's output to about 0.6 V when no audio signal is present (Fig. 2). Lowering C_{1} increases the frequency response, but raises the circuit's output when no audio signal is present. Filter $\mathrm{R}_{3} / \mathrm{C}_{3}$ provides a trade-off between meter damping and ripple attenuation. If both a quick response and low ripple are required. substitute a more complex, active lowpass filter.
Robert / Zavrel, Signetics Inc, Sunnyvale, CA.

AF levelmeter from RF chip

 Here is another example of ingenuity in pressing devices into service in ways other than the criginal application. There are other ways of obtaining a log level response at $A F$, but if accuracy requirements are not too stringent, this one is quite neat. $\mathbf{I H}$.

Fig. 2. The dotted line indicates the response of Fig. 1's circuit for the 100 Hz to 10 kHz audio range; solid line indicates an ideal response. Full scale ($0 d B$) equals 300 mV pk-pk.

Fig. 1. Audio signal levels to $\pm 1.5 \mathrm{~dB}$ accuracy can be measured using a dual op amp and an FM IF chip (normally used for cellular-radio and other applications). Sensitivity is $10.5 \mu \mathrm{~V}$; power consumption is 30 mW .

Three-rail power supply uses four diodes

The circuit shown in Fig. 1 generates three supply voltages using a minimum of components. Diodes D_{2} and D_{3} perform full-wave rectification, alternately charging capacitor C_{2} on both halves of the AC cycle. On the other hand, diode D_{1} with capacitor C_{1} and diode D_{4} with capacitor C_{3} each perform half-wave rectification. The full- and half-wave rectification arrangement is satisfactory for modest supply currents drawn from the -5 and +12 V regulators (IC_{3} and IC_{2}).
You can use this circuit as an auxiliary supply in a $\mu \mathrm{P}$ based instrument, for example, and avoid the less attractive alternatives of buying a custom-wound transformer, building a more complex supply, or using a secondary winding (say 18 VAC) and wasting power in the 5 V regulators.

Economy and elegance

Of all the readers' Design Ideas which have appeared over the years in EDN, this is one of my favourites. A three-rail supply is powered by a two-winding transforner using only four diodes. The -5 V and +12 V regulators which are usually comparatively lightly loaced, are driven by a half wave circuit and a voltage doubler respectively. The main +5 V regulator on the other hand is supplied by a fu I wave rectifier circuit. IH

Robert / Zavrel, Signetics Inc, Sunnyvale, CA.

Fig. 1. Simple power supply generating three regulated voltages using a minimum of components.

Cmos circuit always oscillates

The common clock oscillator in Fig. 1a has two small problems: it may not oscillate if the transition regions of its two gates differ: and, if it does oscillate, it may sometimes oscillate at a slightly lower frequency than its equation predicts because of the finite gain of the first gate. If the circuit does work, oscillation occurs usually because both gates are in the same package and, therefore, have logic thresholds only a few millivolts apart.
Circuit Fig. Ib resolves both problems by adding a resistor and a capacitor. The $\mathrm{R}_{2}-\mathrm{C}_{2}$ network provides hysteresis, thus delaying the onset of Gate I's transition until C_{1} has enough voltage to move Gate 1 securely through its transition region. When Gate 1 is finally in

Surefire oscillator

I have never known the circuit of Fig. 1a fail to oscillate, but then I have never made up the circuit using gates from different packages. If you have to do so, be warned. IH.

its transition region, C_{2} provides positive feedback, thus rapidly moving Gate 1 out of its transition region.

The equations for the oscillator in Fig Ib are:
$\mathrm{R}_{2}=10 \mathrm{R}_{1}$
$\mathrm{R}_{3}=10 \mathrm{R}_{2}$
$\mathrm{C}_{1}=100 \mathrm{C}_{2}$
$f \approx 1 /\left(1.2 R_{1} C_{1}\right)$
WF McClelland, Electronic Resources, Stamford, CT.

Fig. 1. The conventional cmos oscillator, 1a, sometimes does not oscillate. Or if it does oscillate it can oscillate at a lower frequency than calculated. Circuit Ib adds hysteresis to overcome these problems.

Variable-Q bandpass filter fixes gain

major problem with standard variable bandpass filters is that their gain also varies, as shown by

$$
G(S)=\frac{\omega_{0} S}{S^{2}+\frac{\omega_{n}}{Q} S+\omega_{0}^{2}}
$$

where ω_{0} is the centre frequency and Q equals the selectivity at the 3 dB points. This Q-dependent gain becomes especially troublesome in swept (ie variable selectivity) applications, where you must compensate for such gain changes.
You can, however, realise a constant-gain, variablebandwidth transfer function by using

$$
F(S)=1-\frac{S^{2}+\omega_{0}^{2}}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}{ }^{2}}=\frac{\frac{\omega_{0} S}{Q}}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}{ }^{2}}
$$

Here, the transfer function of the second term of the middle expression duplicates that of an active notch filter with variable Q.
You can achieve an excellent realisation of this form by employing the design depicted in the figure. Here, you combine the individual highpass and lowpass oulputs of a four-op-amp state-variable filter. The fourstage version, unlike standard stage filters, has a Q independent gain. By superimposing these two filter characteristics, you get a fixed-gain notch filter. This circuit implements a fixed-gain, variable Q bandpass characteristic by summing the original input signal with the high/low signal emerging from the noteh filter.
You can continuously vary the filter's centre frequency by synchronously changing resistor $R_{\text {(})}$ or

Vary Q at constant gain

The state-variable filter provides lowpass, bandpass and highpass outputs, and centre frequency and Q are separately adjustable. However, adjusting the Q alters the centrefrequency gain at the bandpass output, as well as the Q. In this circuit, the bandpass characteristic is produced by summing the lowpass and highpass outputs to form a notch (of width adjustable by changing Q) and then summing this with the input, which is in antiphase. At the notch (centre) frequency, the output simply equals the input, whereas at other frequencies the notch output cancels out the original input. Note, however, that the roll-off either side of the pass band does not continue indefinitely, but reaches an attenuation floor set by the exactness of the cancellation - in turn set by resistor tolerances, etc. $\mathbf{I H}$.
step-wise change it by switching capacitors C_{0}. Varying R_{Q}, will modify the filter Q - without changing gain.
As with any active filter, the op amps" gain-bandwidth products must accommodate the filter's $\omega_{0} Q$ product. When you have satisfied this requirement, your design can supply stable Q s with values of several hundred. But note that because the filter's internal nodes operate at high gains under high- Q conditions, you must ensure that the input signal's level stays low enough to preclude saturating the amplifier.
Yishay Netzer, Honeywell Inc, Lexington, MA.

Fig. 1. A fixed-gain variable-Q bandpass filter results when a state-variable filter's highpass and lowpass respones are summed with the input signal. The filter centre frequency changes with R_{0} and/or C_{0} and Q varies with $\boldsymbol{R}_{\mathbf{0}}$.

Electronic Circuits, Systems \& Standards

Edited by lan Hickman, published by Butterworth Heinemann Newnes. ISBN 075060068 3. price $£ 20$.
Since its appearance in 1956 the US-based EDN has established itself as a leader in controlled circulation electronics magazines. Now this "best" of EDN - with useful information on components, equipment, circuits, systems and standards is available in a 216-page hardback publication Available from bookshops, or direct by postal application to EW + WW, Quadrant House, The Quadrant, Sutton Surrey SM2 5AS. Cost £20 plus £1.50 post and packing.

Micro AMPS

ICE 751
An emulator／programmer for the Philips 24 － pin skinny DIP 8051；the 87C751．The ICE75！ provides the cheapest way to emulate and program these devices．
ICE51 ${ }^{\text {TM }}$ A low－cost emulator for the industry standard 8051．This product is also available in kit form．
PEB552 The official Philips 80C552 evaluation board for this highly integrated 8051 variant．Op－ tional debug monitor and 87C552 program－ ming adapter are available．
BASIC A PC－based cross－compiler that enables code COMPILER written for the 8052AH－BASIC processor to be compiled for the standard 8051 or 8052 ． Interpreted Basic is also available on the ICE51．
80518051 Architecture，Programming and Applica－ BOOK tions．A recommended book for readers who require a text on the 8051 and interfacing techniques．This book is supplied with a PC－based cross－assembler and simulator for personal or educational use only．
OTHER Contact us for information on these and many other related products such as＇ C ＇compilers， $1^{2} \mathrm{C}$ tools and drivers．

ICE5 1 is a tradernark of Intel．

Micro AMPS Ltd

66 Smithbrook Kilns，Cranleigh， Surrey，GU6 8JJ
Tel：$+44(0) 483-268999$ Fax：$+44(0) 483$－ 268397

AOR AOR Room 2．Adam Bede High Tech Centre．
 （UK）Ltd Derby Road．Wirksworth．Derbys．DE4 4BG Tel：0629－825926 Fax：0629－825927

The AR3000 now extends your listening horizons．Frequency coverage is from 100 KHz to 2036 MHz without any gaps in the range．All mode：USB，LSB，CW，AM，FM（narrow）FM（wide）． 400 memory channels are arranged in 4 banks $\times 100$ channels 15 band pass filters before the GaAsFet RF ampliflers ensure high sensitivity throughout the entire range with outstanding dynamic range and freedom from intermodulation effects．An RS232 port is provided to enable remote operation by plugging directly into most persorial computers．ACEPAC3 is an exclusively developed multi－function IBM－PC based program to further increase the versatility of the AR3000．A sweep facility provides a spectrum analysis graph．The very latest version displays frequencies in X axis and squelch opening percentage on each frequency in the programmed frequency search range． This indicates how active the frequencies are in the programmed search range．In addition to the graphic display． ACEPAC3 can produce a detailed numerical list from the graphic Information．One memory tile has 400 channels divided into 4 banks of 100 channels．More than one memory fle can be created to Increase the memory storage capability．If you make just one extra memory fle you can store 800 memory channels！

R．R．P．inc VAT AR3000 $£ 765$ ACEPAC－ $3 £ 119$

CIRCIE NO． 124 ON REPIY CARD

Microprocessor Development \Tools

EMULATORS－SIMULATORS－COMPILERS－ASSEMBLERS－PROGRAMMERS
$77 \mathrm{C} 828085 \mathrm{Z} 86800080513201068 \mathrm{HC1} 63016502$ 87C751 6805 Z80 68098096740 Serles 7720 MIPS R2000 etc ．

UNTVEREAS PROMRANITAR

d Extensive device support

－PALs，GALs，PEELS，FPGAs etc．．．
－Serial PROMs，BPROMs，（E）EPROMs
－and mlcrocontrollers
\checkmark DIL，QFP and PLCC packages
$\checkmark \quad \mathrm{Tl}$ and NatSemi approved
」 Gang adapters avallable
SWAG UNUVIBSALL ASSENTBLER
d Relocatable－fast assembly
d Caters for ALL Microprocessors and Controllers
\checkmark Instruction sets for many mlcroprocessors Included
－from Z80 to RISC 2000
－or add your own
\checkmark Iteritive macros，Intelligent jump facilities
」 Linker and MAKE facility

RON EMTVLATOR
from only
$£ 99$
\checkmark Covers ROM sizes from 16 kbit to 8 Mbit
\checkmark Full screen editor
」 Emulates all 24，28， 32 \＆ 40 pin devices
，Fast download－loads 1 Meg In under 5 seconds
」 Split and shuffle capability
STMTLATORS
－Debug microprocessor and controller software on your pc
\checkmark Break points and trace
\checkmark Free run or single step

PROMRAMVIRS

\checkmark Low cost
\checkmark Up to 8 Mb ts
－ 16 bit wide EPROMs
d Microcontrollers including 87C751
PC based or stand－alone

Top left: Inverted cone suspended in a ring of unstayed 200ft masts at Poldhu.

Top right: Poldhu's new, more robust and simple fan shape, aerial after a storm destroyed the original.

Below left: Interior at Poldhu showing risky beginnings.

Below right:The wireless

operator's table at
Poldhu from which the first transatlantic signals were sent. On the left is the knife switch.
Connected by a cord to a change-over switch, it was used to make and break the circuit to form the Morse transmission. To its right are regulating instruments for the power supply.

BRIDGING THE ATLANTIC

hen The Marconigraph - soon to change its name to Wireless World - began publication in 1911, the wireless industry was already II years old. Its prehistory of discovery and invention stretched back at least in to the latter years of the previous century.
The moment of birth of a scientitic discovery is often difficult to determine amid the many learned contributions which lead up to it. But its coming-of-age is relatively obvious: the start of a commercial service or product based on the technology.
In the case of wireless, this was the founding of the Marconi International Marine Communication Company, to provide communication to and between ships, in 1900.
For Marconi himself, and the companies which bear, and have borne, his name, it was one of a long string of firsts. Its significance is that it provided a service which existing cable telegraphy could not. It ended the isolation of ships at sea, but also marked the end, for civilisation as
a whole, of reliance on a fixed link for long distance communications.
1900 also saw Marconi take out a patent (No 7777) on a "syntonic" system which enabled transmissions to be tuned to a specific frequency. Prior to this, signals had been unsuned, which led to interference and interception, and would have prevented any sizeable commercial development. So successful was the system that it was virtually impossible for competitors to avoid infringing the patent.
Marconi's early experiments with radio transmission had begun in 1894, when he was 20 . The possibilities of electromagnetic wave propagation through the "ether" (a substance presumed to exist between the particles of air, and in a vacuum) were first proposed by James Clerk Maxwell in 1864, and demonstrated by Heinrich Hertz in 1888. Others followed-on from Hertz, notably Oliver Lodge who first discovered, but failed to recognise the significance of, syntonic tuning and Professor Popoff,

who achieved reception over 5 km in 1895, while tracking clectric storms.
However, it was Guglielmo Marconi who persevered in using the Hertzian waves for signalling. In 1895, while using slabs of sheet-iron to increase the transmitter spark's wavelength. he placed one on the ground. and held the other in the air. This - the first aerial, in effect produced a large increase in the signal strength, and in the range - from about 100 ml to one kilometre.
He took out his first wireless patent in 1896. Transmission distances increased steadily and by 1899 the English Channel was bridged, with the signal picked up at Marconi's HQ in Chelmsford, 130 km away.
This month sees the 90th anniversary of the first transallantic wireless transmission.

Base for trans-Atlantic transmission

By 1901. Marconi had already established a wirelessbased commercial service for shipping. and had had taken
out his patent (No 7777) on a "syntonic" system which enabled transmissions to be tuned to a specific frequency. Now he turned his attention again to extending their range, and decided to attempt to transmit a signal across the Atlantic -over 20 times the distance so far achieved. Sites were selected at Poldhu in Comwall, and Cape Cod. Massachusetts, and aerials erected.
The design at Poldhu was an inverted cone, suspended in a ring of unstayed 200ft masts. The Poldhu aerial was destroyed on 17 September 1901 in the worst gale in living memory. But within eight days a new aerial, this time a more robust and simple fan shape, had been erected and tested.
The Poldhu transmitting station. operating at 20 kW equivalent DC input power, was 100 times more powerful than anything previously seen. Cautionary notices had to be placed in front of the transformers to remind visitors. The picture shows the racks containing banks of capacitors. and in the background, the spark gap.

Top: Marconi (centre) with assistants Kemp (left) and Paget arrive St John's, Newfoundland with a hamper full of balloon equipment to raise a temporary receiver aerial.

Below: Marconi (far left) using a kite to raise his aerial after an earlier balloon attempt failed.

In 1902, sailing westward on the SS Philadelphia, with wireless apparatus on its main mast Marconi succeeded in picking up signals over 2000 miles from Poldhu.

Right: Poldhu's inverted pyramid suspended from four towers, was a more robust version than previously (seen here dressed for the visit of the Prince and
Princess of Wales in 1903).

No equipment existed at the time which could measure accurately the efficiency of conversion from DC to RI* power.
Measurements on similar equipment made over a decade later suggested that conversion efficiency was around 20 per cent for simple spark transmitters.

Wind of change

Shortly before the plamned start of the tests, the Cape Cod aerial was also blown down. The idea of iwo-way transmission was abandoned and the North American site was shifted to St John's. Newfoundland, the nearest landfall, where Marconi with his assistants Kemp and

Paget arrived on December 6 with a hamper full of balloon equipment and a large kite with which to raise a temporary receiver aerial.
Reception was eventually achieved on December 12, in the midst of another gale After the first, balloon-hoisted aerial was carried away, another was held aloft on a kite The test signal from Poldhu - the Morse S, three dots was heard through appalling static by Marconi and his assistant George Kemp on a telephone headset, but was too weak to activate an inking machine
Despite public scepticism over this lack of proof, the American Institute of Electrical Engineers feted Marconi at its annual dinner on January 13, 1902 to mark his arrival in New York. Lamps flashing the Morse S adorned the Waldorf Hotel.

SS Philadelphia

No evidence having survived of the first transatantic transmission, Marconi decided to repeat the experiment in 1902. sailing westward on the SS Philadelphia (with wireless apparatus on its main mast).
He succeeded in picking up signals over 2000 miles from Foldhu (and messages at 1500 miles). This time the results were recorded and witnessed. It was proved that radio waves followed the curvature of the Earth, also that the signals were stronger after dark.
The eventual acrial design at Poldhu. an inverted pyramid suspended from four towers, was a more robust version of the original, ill-fated cone. Within a couple of years. directional aerials were evolved, for which the Poldhu site proved too small. Transatlantic operations were transferred to a new station at Clifden in the west of Ireland.

Below: Marconi's wireless cabin on the SS Philadelphia. In the words of George Kemp: "Inside of the cabin on SS Philadelphia, which I fitted for Mr Marconi's wonderful achievement, proving to the world that it was quite possible to receive on a ship greater distances than Newfoundland, which many of the Professors had doubted." Equipment includes, from the left, two coherers (receivers) in screened boxes, morse key, and two cylindrical induction coils, for generating the spark, behind which is a jigger, or transformer, the square plate to which the lead from the aerial is attached.

MARCO
INCORPORATING EAST CORNWALL COMPONENT ELECTRONIC COMPONENTS

포

 \& EQUIPMENTMAIL ORDER - WHOLESALE
RETAIL TV
send orders to - EWWo/12 MARCO TRADING
THE MALTINGS, HIGH STREET, WEM SHROPSHIRE SY4 5EN Tel: (0939) 32763 Telex: 35565 Fax: (0939) 33800 ELECTRICAL \& ELECTRONIC

24HR ANSAPHONE
LATEST 1992 CATALOGUE

* Velleman Kit Catalogue
* Free pre-paid envelope
* Many new lines
* Pages of special ofters \# Free gilts
132 PAGES
REMOTE CO
VIDED HEADS
NWN

VTV000
VTH00 42005000

JVE 11061106 G 111120121225
MRD
220035650760076107550702 VIO 26471585

SWYYO
VTCS000
SHARP
SHARP
$\mathrm{KC200} 300.330$
$\mathrm{~K} 381 / 1461$

TOSL108
V5470
V480

V9600
VITB1 18335
MINCH

MITRCHA AL

ORDERING: All componenls are brand new and to full specilcation. Please add $\mathbf{Y 2 . 0 0}$ postagdacking
$p \& p$

NOW
cheque/postal order or senamelephone your Access or visa number. Uficial orders from
$£ 2.25$ (0 o not forget to send for our catalogue - only $\mathbf{\Sigma}$. 00 per copy). Delivery by refurn on exstock items. All prices subjeci to change without notice. WEM RETALL shop open N on-Thy $9.00-5.30$. Friday $9.00 \cdot \mathbf{5} .00$. REMEMBER ALL PRICES INCLUDE VAT

 B005M CPA 200

SOLDEAM8 ERESWG 500cm REEL

YUASA SEALED LEAD ACID BATTERY OFFER

wo for $£ 60.00$
\qquad

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all Iypes, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, CIF, MF, WW, elc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISCCERAMICS, PLATE CERAMICS, etC ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, ETC ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN'S CAVE
TELEPHONE 081445 0749/445 2713 R. HENSON LTD

21 Lodge Lane, North Finchley, London N12 8JG. (5 minutes from Tally Ho Corner)

HAPPY CHRISTMAS

FILL UP YOUR STOCKINGS WITH SOME OF THESE BARGAINS HP 3581 A Wave Analyzer 15 Hz - 50 kHz 5 Digit LED readout MARCONI 1313A Universal L.C.R. Bridge
MARCONI 6460 Power Meter
MARCONI 64213 mW to 100 mW head to 12.5 GHz MARCONI $6422.03 \mathrm{~mW}-1 \mathrm{~mW}$ HEAD to 12.5 GHz SOLARTRON 4601 Prog Synthesized AM FM SIGNAL GENERATOR

B. BAMBER ELECTRONICS
 Manufacturers Surplus Stocks

Trade/bulk buyers, Electronic Components, Test Gear, Radiotelephones,
Photographic and Video Equipment. All at knockout prices.

Export and Trade Enquiries welcome

Monthly Sales

Catalogues available from:
5 STATIONHOAD, LITTLEPORT, CAMBS CB6 $10 E$ PHONE: ELY (0353), 860185

VALVES AND C.R.T.S

(also Magnetrons, Klystrons, 4CX250/350)
Minimum order charge of $£ 50+$ VAT
One million valves in stock. Obsolete types a speciality! Fax or phone for quote.
Special prices for wholesale quantities.
Orders from government departments, overseas etc. most welcome. Many other types in stock. Please enquire re any type not listed.
CATHODE RAY TUBES 400 difierent types in stock.

lease enq		quirement	l	d below		M28.13LG	¢45.00
$3 \mathrm{JP1}$	POA	D10.230GM	¢45.00	E723 (EEV).	POA	M31.182GV	E45.00
$12 \mathrm{CSP4}$	¢35.00	D 13.611 GH	159.00	F28-130LOS	POA	M31.184W	[55.00
1074 H	$¢ 45.00$	D13.630GH	¢59.00	F31.12LD	E75.00	M31 190GR	E45.00
1396P	POA	D14.200GM	175.00	LD708	175.00	M31 191W	[55.00
8931 (W.H)	POA	D16.100GH97	¢65.00	M7.120W	E19.50	M31 325GH	¢35.00
CME822W	¢7.00	DG7-5	¢45.00	M14 100GM	135.00	M38 100W	POA
CME 1523W	¢9.50	DG7-6	£45.00	M17 151GVR	R ... 5175.00	M40 120w	559.00
CRE 1400	£29.50	DG7-32	¢55.00	M23.112GV	[45.00	MV6-5 (Mul)	¢50.00
09.110GH	[45.00	OG7-36	¢55.00	M24.121GH	¢55.00	SESFP31	¢45.00
CME1431W	POA	DH3-91	550.00	M24.122WA	\$55.00	VLS4z9AG	POA
VALVES		Prices on	application	Please en	nquire re any	y type not	elow.
A2426		804 Maz	M8136 M		VL5631	6В,6	
A2521			M8162 M		2759	6В96	
C1149-1		cis Spec O	M513B		28034	6 CH 6	
${ }^{C 1166}$		B2	Magnelfo		$\gamma 644$	$6 \mathrm{C} / 6$	
CCS1		c32 Spec 0	PC900		18354	6 F 33	
CV TYPES: Many			PCC89		2 K 25	6L6GC	
in srock. Nol all		a3 Spec 1	PO500		$3 \mathrm{B28}$	6SL7G	
listed behw.		c88	PL509		3C.800t	6SN7G	
Prease		Crs Spec 0	COVO3. 1		3J.160E	128H7	
inquire.		ca 4	OQV03-1	Mul 4	-65A	12 El	
CV488	EF3		Qavo3-2		4-125a Emac	13 E 1	
CV1881	EFF		COV03-2	AEEV 4	-400A	19AOS	
CV2355	EF9		Qavoc-4		4 C 28	211	
CV4014	EF9		Qavoc-4	OA Mul 4	$4 \mathrm{C} \times 2503$	805	
CV4024		Stiemens	OY3.125		$4 \mathrm{Cx} \times 50 \mathrm{HC}$	807	
CV6087	EF9		OY4.250		$4 \mathrm{C} \times 350 \mathrm{~A}$	811 A	
CV7180	EF9		Qvos. 7		$4 \mathrm{CX1000} \mathrm{~A}$	813	
Cx1140	EL3		R10		$4 \mathrm{C} \times 5000 \mathrm{~A}$	4635	
DAA2	EL3		SU2150		$58-254 \mathrm{M}$	5763	
DET22	ELb		1721		58-255M	6336 A	
Def91		1 Mul	S11E12		58-257M	6973	
Erol	ELS	070	TV4.400		SU-296m	8056 8122	
E83F	GY	511	U19		5 V 4 G	Socket	
E8sCC		trons	UBC41		6AK5w	B9APC	
E180F	K761		UCL82		${ }_{6} 6$ AS 6	B9ach	
E810F EC158	KT8		U41		6B4G 6846	Octal Many	
$\begin{aligned} & \text { EC158 } \\ & \text { ECC35 Mul } \end{aligned}$		86550	UY85 VA222A		$6 \mathrm{CBH}_{6}$	Many 0	

BILLINGTON EXPORT
 Unit F2, Oakendene industrial Estate, Near-Horsham, Sussex RH13 8 AZ.
 Callers by appointment only.
 Telephone: 0403865105 Fax: 0403865106
 Min. UK order $£ 50$ + VAT. Min. Export order $£ 50$ + Carriage.

ARTICLES WANTED

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EDUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860214302 . Fax: 0438812387

WANTED URGENTLY

Marconi 2951 RT test set or similar plus any used two-way radio equipment.

Tel: 0256381528

STEWART OF READING

110 WYKEHAM ROAD
READING, RG6 1PL.
TEx: 073468041
FAX:0734 351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

BOOKS

OUR NEW CATALOGUE

'A WORLD OF
RADIO BOOKS'
n now avaulable. To obtain your copy please contact ATDOL B001.8 38 Atholl 8treet Plartif PH1 81~
THL: 075830707

FREE

7000 ITEM SEMICONDUCTOR'
PRICE LIST
50\% Off Many ltems
DLAL ELECTRONCIS LTD. BURNHOPE RD, WASHINGTON, TVNE 8 WEAR NE38 8HZ
TEL 091-4177003
FAX 091-4177053

COURSES

 essex Radio Frequency Engineering 5-day Course 3-7 February 1992 FOR FURTHER INFORMATION CONTACT: The Short Course Office (EW92), Department of Electronic Systems Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom. Telephone (0206) 872419 Fax (0206) 872900 International (+44) 206872419RF Engineering is one of 11 Short Courses in Telecommunication and InformationSystems the Department of Electronic Systems Engineering is running between January and March 1992. The Course Fee is $£ 675$.

PRODUCTION/A.T.E
 SECOND USER EQUIPMENT HUGE SAVINGS ${ }^{\text {Pinctew }}$

ATE/TEST	ENVIRONMENTAL TEST
	ACE FS3
	Preme Prometion
	MONTFORD TSP-X2-E-LN2
FACTRON 77605 ¢9,750	
	(enter
KCleryzeem Cuftordewiss Ecall	,
CLEANING EQUIPMENT	
KERRY 300/2HPF	Chen veomiter Proses tom
3 ${ }^{\text {a }}$	SAPRATIN
2ROV	Nomer
KERRY CRD 1500/4HP	
Micoporcesesa Com Combeco worl themponter POA	MISCELLANEOUS
SEMICONDUCTOR	
12 EDMAROS E 12 E3	SHIN MEIWA AWSA
, $£ 3,950$	BLUNDEL
MRC SEM 8620	(e)
Sp	
	FLOW SOLDER MACHINES
K<S 1419.3	Mower Podes mixem ind mitrout $\mathbf{£ 1 , 9 0 0}$
(trom	
Hucs scomits	44074 (UK)
cturing Equipment	Fax:071-267 7363 (UW
	Camden Street, London NW1

PCB CAD/CAE SOFTWARE FROM J.A.V. ELECTRONICS LIMITED

Protel Autotrax Basic Ver. 1.61 offers the same excellent professional quality as Protel Autotrax Extended but with out full autorouting and autoplacement. Includes CNC Drill, Photoplot and DXF export. Pads Import and EDF netlist support. Upgradeable to Protel Autotrax Extended.

Protel Autotrax Extended new Ver. 1.61 is a precision design tool that improves productivity for occasional and expert user alike. With full autorouting and autoplacement.

STARTING AT £75.00\# WITH AUTOROUTING

Please contact our Sales Office for Evauation pack and full details of latest Versions

For MS/ Dos \& MAC

Protel Traxstar new Ver. 1.38 is a costed rip-up and re-router option to Autotrax. Now includes redesigned rip-up algorithm, improved smoothing and new file re-start and file continue options.

Protel Easytrax 2 at $£ 75.00$ \# is the low cost entry level package to the Protel Range. Upgradeable to Autotrax.

Protel Schematic Ver. 3.30 is a cost effective, high performance program for creating Schematic Diagrams. Netlist Generation.

The Sole UK Distributor for Protel CAD Software. Main Dealers for Roland A3 - A0 Plotters. J.A.V. ELECTRONICS LIMITED

Unit 12a Heaton Street, Denton, Manchester, M34 3RG. Tel: 0613207210 Fax: 0613350119 Price quoted is a cash with order price and excludes delivery and VAT.\#Limited Period Only

TATUNG TCS8000 386 COMPUTER SYSTEM at E359
 on the motherbourd, eigth expension ziots. C 'nd T ' CMMP' chipsot. co-proc. socket, MS DOS 3.3, GW BASIC and 16 MHz clock 5358 , with 2 Mbytes RAM ET 9
201 HI I version of sbove with 2 Mitytes RAM ense
MATMOS HIGH PERFORMANCE 286 SYSTEM at f299

 well.made sthiush case. tull manuals included CZ99. Fized with 40 Mbyte hard diwe C399; hred with 60 Mbya herd

TOP SPEC. 386 AND 486 SYSTEMS

3 Milz 486 symom, Gek cache RAM, with 2 Mbyes ram ça
486 CAD/DTP SYSTEM WITH 1280×1024 MONITOR
 raphics comroller with 2 Megs video RAM and 8 MIPS processor, Hitecth 1 -inch utre high resolvion monitor to
 $380-20$ CAD syruem, with 2 Mbyas RAM, $1024 x 766$
Windows 3 , ACAD etc. $\mathrm{FS99}$.... phone for detuils

FLOPPY DISK DRIVES

144 Mbrte 3.5 -mach Cirizen OSDA39C third heipht drive for ATs, prey bazel E45.95 $\mathrm{carrr} \mathrm{C3}$)
18 M standard lioppy dist drive ceble C4.

HARD DISK DRIVES
10 Mbrte NEC 5.25 -inch MFM C39. 95 (carr C4)
20 move NEC 5.25 -inch MFM CE9.95 (carr C4).

$\$ 3$ Mbite Micropolis 13245.25 inch, 28 msec MFM, full height C139-C125 in syrrems - (carr. (5)

DISK DRIVE CONTROLLER CARDS (carr £2.50)

MITACHI CD ROM DRIVE (ex dem.)
Externel coned AT bus CDR1502S, hatt height. 5.25 inch with cird and estole E 179 (carr [5) IBM COMPATIBLE AT MOTHERBOARDS, CARDS etc.

AT/XT flopory duath, 2 merim, ganme Cri4.95
T/XT flopoy daki comroler (9..65.
Ethermet crich Novel NE-2000 compertible 16 br Cas (can C2)
 AT/XT CASES WITH PSU

Full
INTEL 386 PROCESSOR AND 287 AND 387 CO-PROCESSORS
10237 maths co-processior CG9.

MONITORS
MONO MEACULES: 12 -inch Philipe green screon, high res. daspley, E59.95 (carr E6.50).

(Carr. © 10) colleve
20-inch meltiopenc Hiruchi CM20esm from VGA up to 6 Cethe af 1280 by 1024 (ox dem.) case.
5-inch fixed mequency monieors (1024 by 768 wid 1280 by 1024) - phons for currem stocke
21 1200 DV 1024 (newc) C550 - Catse in syztems
 lo.o. A. for carriage for sbove)

6bit VGA eard. 256 K , all emulations, up to 800×600, with soft
Whicheblo for use in XT, cis
解
 FAX CARD
Mug into PC expansion slot Giving powertul fax tomuras: ATS Cipher BT approved Group ill ineotligem receival POWER SUPPLIES

pannel switch, opod value an (19.50 (carr (E4).
igitimers and video privinis someinies in suock-avalobity and prices on requess
 Access and Viss telephone servce.

MATMOS LTD., UNIT 11, THE ENTERPRISE PARK, LEWES ROAD.
LINDFIELD, WEST SUSSEX RH16 2LX
0444 482091 and 0444483830 (Fax: 0444 484258).
Astros led has been treding succectulty since 1978.

CIRCIE NO. 148 ON REPLY CARD

INDEX TO ADVERTISERS

PAGE	PAGE	PAGE
Abracadabra	Henrys Audio	Matmos Lid............ 1072
Electronics 1000	Electronics 1013	Micro Amps 1065
American	Hitek Calibration	Micro Circuit
Automation............... 1060	Services 1050	Engineering 995
Antex Electronics 1019	ICOM (UK) 1017	R Henson 1019
AOR UK 1065	ILP Electronics 1059	Ralfe Electronics 1050
BeTa Marketing 1031	Integrex 1009	Sherwood Data
Billington Valves 1070	Interfacing with C 1050	Systems 1031
Brain Boxes 1000	IPK Broadcast Systems 1013	Smart
Bull Electrical 1004	J A V Electronics...... 1071	Communications 1065
Buyers News.............. 1071	J J Components........ 1060	Stewart of Reading.... 1054
Citadel Products OBC	Johns Radio 1061	Surrey Electronics..... 1031
Colomore Electronics ... 1054	Kestral Electronic	Talent Computers..... 1013
Dataman Designs......... IFC	Components........... 1014	Taylor Bros (Oldham) IBC
Digitask Business	Keytronics 1039	Television 1041
Systems 986	L J Technical Systems 1014	Those Engineers....... 1017
Display Electronics 1045	Labcenter Electronics 1020	Thurlby Thandar 1014
Ellmax Electronics 1000	M \& B Electrical....... 991	Triangle Digital
Field Electric 1038	M \& B Radio (Leeds) 1054	Services............... 1038
G H Systems 1017	M Q P Electronics..... 1019	Tsien 1028
Halcyon Electronics 1041	Marco Trading 1069	Wood \& Douglas...... 1041

OVERSEAS ADVERTISEMENT AGENTS

France and Belglum: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008
United States of America: Jay Fenman, Reed Business Lid., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827.

[^2]
THE TRANSMITTER PEOPLE

STEREO RADIO TRANSMITTERS \& TRANSPOSERS

P30 902P BAND 2 FM STEREO MODULATOR
$£ 540.00$

19" Rack Mounting $2 \mu 350 \mathrm{~mm}$ deep		
Crystal controlled LF. P RF, Inequency wlability esppm		
Temp. controlied VCO. frequency sabilihy $\pm 2.5 \mathrm{KHz}$		
Audio B.andwidth torlz - $5 \mathbf{5 K H z}$		
Croselath < HOdR tKHz		
Deviathen level control with antalingue deviat on meter		
IKifz tone generatur switchalide Lior R, L \& R		
Vallage $220-240 \mathrm{~V}$ AC Solz (1 lo-120V AC no cost Opition F)		
Out put level 6.3 dHm V (1590V) 759 (1ECC Connector)		
OPTION G	5032 no cond (\%) Comnector)	
OPTION A	Oulput Level 1 Watt 5mR	f 590.100
OPTION B	Outpul frequericy 420-46 900-920才1HzSpectly Fre	

P30-30VF 30 WATT BAND 2

POWER AMP WITH A.G.C. $£ 901.00$

19" Kack Muunting $2 \mu .425 \mathrm{~mm}$ deep
Gain Madl +20 dB A.G.C.
Inpur Impedance 752, (IEC Connector)
Outpul Power 30 Warts inuo Sux (N Comnector)

```
P30-30VFT 30 WATT BAND 2
TRANSPOSER
                                    £1261.00
```


Power: Specification as P30-6VF

(A Connector) Specify Frequency
Crysal Controlled Frequenc: Stability <5ppm
A.C.C. $+0 \mathrm{~dB}(\pm 2 \mathrm{~dB})$

P30-300VF 300 WATT BAND 2 POWER AMP WITH A.G.C.£2628.00

ASK ABOUT

STEREO RADIO TRANSMITTERS AND TRANSPOSERS UP TO I KILOWATT

TV TRANSMITTERS AND TRANSPOSERS UP TO IOO WATTS

FM-AM-SSB RADIO TRANSMITTERS AND TRANSPOSERS $3-400 \mathrm{MHz}$ UP TO I KILOWATT

IC PROGRAMMING TESTING \& ERASING SOLUTIONS

PC82 UNIVERSAL PROGR AMMER \& TESTER
£395

Universal programmer. The complete designer's kit. This will program EPROMS, EEROMS, BPROMS, PALS, GALS, EPLD's, 28 and $87 X X$ microprocessors. A unique feature is the testing of logic parts such as 74LS393 etc. The PC82 can check and identify parts. Already programmed are the TTL \& CMOS logic test vectors. Software is supplied to write vectors for most unique chips. One of the most popular programmers in the USA.

TTL, CMOS, DRAM \& SRAM TESTING

PC82 can test and verify any TTLCMOS logic chip, DRAM \& SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

DEVICE GUIDE

EPROM NCMOS 2716-27010 (1 mBit) Vpp 12.5, 12.9,21,25
EPROM 27513.27011,572000/4000,8764-87256,CYC2XX SERIES EEPROM 2816,2816A,2817,2817A,2864A
EEPROM 9306,9307,9346,9356,93CS06,26,44,56,66,28256A
BPROM 32×8 to 4096×8, incl. $635080,7 \mathrm{C} 28 \mathrm{X}, 29 \mathrm{X}$.
PAL $10,12,14,16,18,20-L, R, X, P, 1,2,4,8,10$ (20824-pin)
GAL 16V8,18P8,20V8,22V10
EPLD 20G10,22V10, EP310,320,600,610,900,910,5C031,32,60,90 CMOS EPAL C16L8,R8,R6,R4,C18V8;C20G10,L8,R8,R6,R4, C22V10 MPU Z8,8741,42,48,49,50,51,C51,C52,C252,TMS7742,77C82,63701 Device testing TTLCMOS logic, DRAM \& SRAM

PC82
PC84
ERIES

56 A
\qquad
ADAPTERS FOR PC82
FROM $£ 95$ expand range expand the capability of the PC82. Various PLCC convertors \& 4 gang 28/32/ 40 pin Eprom, Gal \& Pal. Popular CPU types include PIC 16C54/5/6/7, 8796/7, 68705, 87C751/2, \& TMS320E25.

FEATURES ALL MODELS

For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips.

EASY TO INSTALL

The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

SUITS ALL PC's

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPAQ the programmers will work. The software is text only monographic so is compatible with any machine.

SOFTWARE DRIVEN

All software for the programmers is supplied on $5 \frac{1}{4 \prime \prime}$ low-density disks. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu-driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically. Free software updates for new types which are continually being added.
The menu-driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verify, read and modify are all standard features. Hex to bin file conversions included for popular file formats including Intel Motorola etc. 2 ways/4 ways bin file splitter for 16/32 bit file data. Selection of speed algorithm for FAST, INTELLIGENT, INTEL, etc.

PC86 HANDY POCKET TESTER $£ 99$
Tests all popular TTL 74/54, CMOS 40 / 45 \& DRAM types, can search and display type number of unknown/house marked types. Simple operation. 9 volt battery operated with LCD display

M1 FAST ERASER 999

NO MORE WAITING FOR EPROMS TO ERASE. New advanced UV source gives under 2 minute erasure time on most types of modern EPROM. Digital down counter \& display plus added features for simple operation in use. Large capacity e.g. 13×28 pin devices. Small footprint. Designed for heavy industrial/workshop use. UK design \& manufacture.

PC84 EPROM PROGRAMMERS
1-GANG £139, 4-GANG £199 \&
8-GANG £299
PC84 -1, -4, -8 Eprom programmers only. The variant is only gang size. The - 4 and -8 gang will program multiple EPROMs simultaneously. Device sizes are from 2716 to 271000 both C and NMOS. ZIF (zero insertion force) sockets are used on all models.

ORDER INFORMATION

Please include $£ 7$ for carriage by courlier, plus VAT on all UK orders. ($£ 20$ for exports.) All pricing for programmers includes sothware, interface card, socket box and full instructions. (Prices do not include VAT or carriage). ACCESS, VISA or CWO. Official orders welcome from Giovernment bodies \& local authorities.

CITADEL PRODUCTS LTD
Dept. WW, 50 High St, Edgware, Middx. HA8'7EP Tel: 081-951 1848

[^0]: Electronics World + Wiretess World is published monthly By post, current issue $£ 2.25$, back issues (if available) £2.50 Orders, payments and general correspondence to L333. Electronics World + Wireless Worid, Ouadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
 Newstrade: IPC Markettorce, 071 261-6745.
 Subscriptions: Quadrant Subscription Services, Oaklield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notify a change of address. Subscription rates: 1 year (normal rate) £30 UK and $£ 35$ outside UK.
 USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42 nd Sireet, NY 10117. Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine,Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Lid, 205 E. 42 nd Street. NY 10117.Telephone (212) 867-2080. Telex 23827.

 USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave. Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above. ©Reed Business Publishing Lid 1991 ISSN 0266-3244

[^1]: These straightforward conditions apply.
 The goods must be returned within seven days of receipt. The goods must be returned in their original packing.
 The goods must not be tanyered with in any way. The goods must be returned in the condition they were received.

[^2]: Printed in Great Britain by Riverside Press, Gillingham, Kent, and typeset by Marlin Graphics, Sidcup, Kent DA14 5DT, for the proprietors, Reed Business Publishing Lud, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. (C) Reed Publishing Lid 1991. Electronics and Wireless World can be obtained from the following: AUSTRALIA and NEW ZEALAND: Dawson \& Sons (S.A) Led. UNITED STATES: WorldwADA: The Wm Dawson Subscription Service Lid. Gordon \& Gotch Ltd., SOUTH AFRICA: Central News Agency Ltd.; William Dawson \& Sons (S.A.) Lid.; UNITED STATES: Worldwide Media Services Inc., 115 East 23rd Street, NEW YORK, N.Y. 10010 . USA. Electronics \& Wireless World \$5.95 (74513).

