
NEW

GENERATION ICE

- EXCLUSIVE ON-THE-FLY FACIUTY

Set breokpoints, display troce dato, and display memory with the torget system running ot full speed. Essentiol for debugging ReolTime systems.

- 256K TO 1M STATIC RAM OVERLAY Expondable to 1 mb. Overloy your torget system EPROM ond develop in RAM
- EASY TO USE

With on line help ond Auto help focility.

- HIGH SPEED PARALLEL INTERFACE

Down loods 64 K of code in 15 seconds. Supports BINARY-OMF-OBJ-HEX-S-ABS files.

- REAL-TIME TRACE 72 BIT WIDE BY 8K

4 Operating modes

1. Stort/Stop 3. Troce All
2. Trace Area 4. Selective Troce

- 8 bit support nlso aymlabif

All major 8 \& 16 bit CPU's

- hardWare breakpoints

Supports Address, doto, Stotus ond externol events. 8 Levels of nesting 256 points per level.

- MULII CPU SUPPORT

Change microprocessor support by exchanging the CPU module. We have support for: 8 BIT 280-8085-NSC800-8048/49/50-6301-6809-6309-8051/52-64180-647180-Z180-68HC11. 16 BIT 8086/ 88-80186/88-80C186/88-80286-V20/V30-V40/V50-V25/V35 68000/10-68020-H8/500-H16

- PERFORMANCE AND COVERAGE FULLY TEST,

OPTIMISE AND PROVE YOUR CODE

- MACRO FACILITY

Use 'C' commonds to define your own commonds.

- mULII-TASKING CAPABILITY ON PC

Single Key change from ICE to DOS tosk ond bock to ICE.
dux [ulk]Tel: (0420) 63724

CONTENTS

FEATURES

LIGHT DATA COMMS

Voice, data and video services at the end of every telephone line? Richard Wilson of Electronics Weekly assesses the fibre comms developments in the pipeline.

BUSY LINES 1039
Coherent lasers offer the prospect of optical broadcasting through frequency division multiplex. This might lead to a generation of telephones which tune into an optical line in the same way that a radio tunes into a programme.

THE HOW? AND WHY? OF FDDI....... 1040 There is a twist in the optical fibres: copper systems can use the $100 \mathrm{Mbit} / \mathrm{s}$ FDDI chip technology developed for optical systems. This guarantees widespread adoption of the protocol.

OPTICAL MAN-POWER 1042
The asynchronous transfer mode makes the best use of broadband fibres by allowing the integration of both wide and narrow band service in a single digital optical network. This may deliver the technology to take optical fibres directly to your door.

HARNESSING NEURAL NETWORKS
1047
Neural networks are more than a laboratory curiosity. And commercial software can make life easier for the programmer.

REVIEW - FUZZY SET
 COMPARATOR
 1054

Neural networks in hardware can perform high speed pattern recognition. Stephen Franks looks at the latest in development systems for the PC.

OZONE FRIENDLY PROFIT?

 1058With the ozone layer under attack, it is good to know that the electronics industry is doing its bit to save the world.

INTERFACING WITH C 1066

DISTORTING POWER SUPPLIES 1084
Audio intermodulation distortion can arise from poor power supply rejection, says Greg Ball.

PIONEERS 1090
Walter Schottky, man of barriers, defects, emission, diodes and noise.

CFA: WORKING ASSUMPTION? 1094
Is it possible to synthesise the Poynting vector directly to make the world's smallest MF and HF transmitting aerial? This seems to be - yes . . .

REVIEW - BARGAIN BLOWING 1101
A PC hooked up to a PLD/eprom programmer reduces programming costs. But is it cost effective? Brian Frost investigates.

REGULARS

COMMENT

1027Teaching women a lesson
RESEARCH NOTES 1029
Tuning into an earthquake, semiconductors for waste disposal, inverse squares and Venus unveiled.

UPDATE 1034
New chips for simplest computer, movement on static DAT, graphics processor hits 200 mops , HDTV at IBC, AM stereo for UK gets hearing.

APPLICATIONS 1061
Current feedback op-amp, motor drive IC, current sources and sinks.

CIRCUIT IDEAS 1074

NEW PRODUCTS CLASSIFIED 1080
New product information at-a-glance
RF CONNECTIONS 1107
New methods of digital broadcasting, user stress behind the VDU

In next month's issuc. Cúk - pronounced chook power conversion offers all the desirable features of switzhed mode power supply technology without the drawbacks. It cembines high efficiency, low switching noise and low ccmponent count. In all, a much better power supply techno.ogy.

Magellan at Venus: p1032

HF-235 A landmark in HF monitoring

The HF-235 is a highly cost effective solution to the need for a synthesised HF receiver for the professional user. The HF-235 can be used as a stand-alone general purpose monitor or in multiple unit installations where diversity or multi-channel monitoring is required.
$\star 30 \mathrm{kHz}-30 \mathrm{MHz}$
\star USB/LSB/CW/AM/FM/AM sync
\star All IF filters fitted as standard
\star Conventional tuning knob or keypad entry
$\star 30$ memories and 2 VFOs
$\star 600$ ohm line driving
\star Optional RS-232 interface for remote control

LOWE ELECTRONICS LTD, Chestérfield Road, Matlock, Derbyshire DE4 5LE Telephone: (0629) $\mathbf{5 8 0 8 0 0}$ Fax: (0629) $\mathbf{5 8 0 0 2 0}$

CIRCIE NO. I2ł ON REPII CARD

Tools for the professional engineer and programmer

80 XX in circuit emulation

Excellem sofinare.an ruly capable user interface and up to 64 K of emulation memory combine to give an advanced $8031 / 51 / 32 / 52$ and 805.3 PC based emulator. A langetave huffer. unlimited breakpoims and a single stepmode make dehugeing easy and fast. Prices from $668510 \leq 875$

PAL programming

The hest sub-floof PAL programmer availahle. the PLD) $1(\kappa)$ is pin programonahle and handles over hoondiffermdevices. New PAL sare supported withour fice lifelime update service. The PLD) 1 (OO) is approved by mosi PAI./PLD manufactures. cartion a one year warranty and costs £785.

PC BIOS support
If you need to have your own PC BIOS - for security. quallity control or jusi becallise you need cusiom facilities - you need these tools. A complete. documented BIOS for AT or XT with source and a 300 page mannal priced from $\mathfrak{E}^{\circ} 9$

Universal cross assembler
ECAL is a lighly polished and well produced cross assembler with a straightorward user imerface. It supports all known processors and gives ultra fast assembly supported by more features than pachages at ten times the price. There are many hundreds of happy users and the latest release costs only $£ 495$

Processor emulators

We offer emulators for processors from the common to the really obscure - from the 8051 to the 77 C 82 . Dedicated development systems are avaitable for the Mitsubishi 747 series. the Dallas DS 50% (the Phillips 80 C 552 range and several others. Please call for details

Analogue PC layout
This is the first PC layout package specifically for the andlogue designer. It gives you the capabilities you really need 10 turn oun first class work Ideal for microwave (withbuilt imimpedancecalculations). HF and high power systemsit cosis £820

EPROM programmers

The Expro 40 universal programmer call program EPROMs, singlechipmicrosas well as a range of PALs and most bipolar PROMs and is compatible with all PCs and clones. Complete with driver software and interface card the Expro 40 is $£ 485$

Mutek (MSS) Ltd. Frome Road, Bradford on Avon BA15 1LE 02216 6501/2

CONSULTING EDITOR

Philip Darrington
081-661 86.32

EDITOR
Frank Ogden
081-6013128

DEPUTY EDITOR
Jonathan Camphell 081-66186.38

ILLUSTRATION Roger Goodman

DESIGN \& PRODUCTION
Alan Kerr
EDITORIAL ADMINISTRATION
Lindsey Gardner
081-661 3614
ADVERTISEMENT MANAGER
Jan Thorpe
081-66131.30

DISPLAY SALES MANAGER
Shona Finnie
081-661 8640

ADVERTISEMENT ADMINISTRATION
Karen Baines
081-661 8649
ADVERTISING PRODUCTION
Melanie Green
081-6618469

PUBLISHER
Susan Downey
081-661 8452

FACSIMILE
081-6018939
REED BUSINESS
PUBLISHING
GROUP

 Surrey SM 2 SAs cheques should he made payalic we Rece liuwncs Publishing Grupp Bathorial \& Adverisimp office LWW Quadrant Howwe. Tbe Quadrant

Teaching women a lesson

First the good news. Secretary of State for Education John MacGregor has wrested a further $£ 500$ million from the Treasury to shore up the education system.

The bad news is that funding isn"t a complete answer to the malaise which runs through schools and colleges.

Girls want to be vets. doctors and lawyers. Boys expect to be lawyers. doctors and vets. Hardly anyone - with the exception of overseas students considers engineering as a worthy profession.

College lecturers working in electronics and engineering departments will tell you that their immediate problems aren't connected with funding. This wasn't always the case. Economic constraints have forced closure. The Physics Department at Bangor was compelled to auction its equipment and close down its activities. UMIST, with a worldwide reputation for engineering technology transfer, a powerhouse of innovation. had to implement savage cuts. Even so, courses in physics, electronics and engineering remain unfilled.

The same university teachers will tell you that UK course students who do apply for engineering courses habitually lack a proper foundation in basic maths; they seldom possess an appreciation of calculus for instance. Overseas students - typically around 25 per cent of intake - seem better equipped.

The basic education received in Hong Kong, Singapore and other Far Eastern countries provides an apparently excellent grounding for an engineering degree. This student sector takes a disproportionate number of Firsts and Upper Seconds even though. in the opinion of their teachers, the sector's basic aptitude is no greater than the British counterpart. In the words of one lecturer, it is simply that the British students "like to spend more time in the bar."

Female engineering undergraduates are even more scarce than decent
degrees. It is not untypical for a years intake of 60 students to include just four women. The fault for this, like everything else, rests firmly with the primary and secondary education system. Sex discrimination lies at the rool of everything which is wrong in engineering education although it is by no means clear where the discrimination starts.

The circular logic runs like this. The vast majority of primary school teachers are women who themselves received an arts rather than science based education. This promotes a firm link between gender and subject matter in the pupils they teach. It also implies that personal enthusiasm, so necessary in effective teaching, is more likely to be tilted towards arts than sciences.

The secondary education system employs a greater percentage of men. mostly engaged for science and sports. This simply serves to reinforce the link between gender and occupation. Girls quickly get the idea that engineering science is not for them. Boys wishing to pursue engineering are unlikely to have received a rigorous grounding in basic science from an arts based primary school. It is hardly surprising that engineering faculties don't see too many well qualified British students of either gender.

Since the universities produce so few women engineering science graduates, there are correspondingly few available to the primary education workforce. The logic wheel turns full circle.

Engineering faculties are trying to help the mselves by offering four year courses: students spend the first year on foundation science and maths, the so called access course. The
Government, alarmed at the collapse of A Level science, has agreed to fund this in full. However, it cannot be a complete answer.

There is only one solution. Science must be taught more effectively at the lower education levels and without regard to gender.

Frank Ogden

| EASY-PC | PCB and SCHEMATIC CAD |
| :---: | :---: | :---: |

Tuning into an earthquake

It's hardly surprising to find the Japanese applying electronics to the art of earthquake prediction; they do, after all, have more than their fair share of both. Until now though, the performance of most systems has fallen far short of practical usefulness. From memory, the best idea so far has involved attaching a pair of croc. clips to a pot plant and measuring the potentials!

The latest and somewhat more scientific approach comes from the Japanese National Research Institute for Earth Science and Disaster Prevention and the Communications Research Laboratory in Tokyo. It's based on the frequent anecdotal reports over the last ten years of bursts of electromagnetic radiation preceding seismic or volcanic activity.

In their recent paper (Nature, Vol. 347, No 6291) Yokio Fujinawa and Kozo Takahashi explain how systematic research has been hampered by high urban levels of noise, which effectively drown any signals of seismic origin. They therefore set about developing a novel electrode system to measure only the vertical component of the underground electric field in a deep borehole. This configuration, they say, is very effective in reducing signals caused by lightning discharges and other atmospheric phenomena. Such
atmospheric signals reverberate between the Earth and the ionosphere in a waveguide mode that generates predominantly horizontal underground fields. A system responsive only to the vertical component was therefore assumed to provide a useful degree of discrimination.

What Fujinawa and Takahashi did was to install two electrodes, one an insułated steel pipe 603 m below the surface and another a 40 mm diameter circle of earthed wire immediately above the steel pipe and one metre below the surface.

Electromagnetic signals were recorded in the range $1-9 \mathrm{kHz}$ over a period of several months, during which local seismometers recorded a number of sizeable earthquakes. There were enough seismic and volcanic events to make possible a valid statistical comparison between the mechanical and electrical signals.

Perhaps the clearest example of premonitory radiation, shown in the figure, is where large bursts of ELF/ VLF energy were detected six hours before a magnitude 4.9 earthquake that took place 100 km south-west of Tokyo on 5th July, 1989. This anomatous radiation consisis of large pulses.
Radiation pattern before and after Tokyo earthquake of July 5, 1989 at (a), compared with normal radiation. Picture by courtesy of Nature.
mostly around 50 ms in duration, much longer than the 5 ms pulses normally associated with atmospheric phenomena. Examination of the chart recordings showed other simitar examples of advance warning signals, often 10 hours or more before following earthquake.

Unlike the experiments with potted plants, this latest approach to earthquake prediction has a very sound theoretical basis. Several laboratory experiments on rocks indicate that, prior to catastrophic fracture, numerous "microfractures" occur which cause electron expulsion and positive charge accumulation. The rate at which these microfractures open up then determines the character of the resulting electromagnetic radiation. The Japanese recordings show evidence both of intermittent radiation which they attribute to fracture of hardcrystal rocks and continuous radiation, possibly from volcanic intrusion.
Altogether, this new research indicates that it should be possible to predict shallow earthquakes, reliably several days in advance.

Other monitoring stations are now being set up in Japan to increase reliability and also to open up the possibility of precise source location using measurement of phase differences between the stations

Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by integrating sophisticated graphical editors and CAM outputs at an affordable price.

NEW VERISION

In the new version V2.23, full consideration has been given to allow designers to continue using their existing schematic capture package as a front end to BoardMaker. Even powerful facilities such as Top Down Modification. Component renumber and Back Annotation have been accomodated to provide overall design integrity between your schematic package and BoardMaker. Equally, powerful features are included to ensure that users who do not have schematic capture software can still take full advantage of BoardMaker's net capabilities.

BoardMaker V2.23 is still a remarkable $£ 295.00$ and includes 3 months FREE software updates and full telephone technical support.

NEW AUTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specify the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you would route it yourself manually.
This ability allows you to autoroute mixed technology designs (SMD, analogue, digital, power switching etc)in ONE PASS while respecting ALL design rules.

CRIDIESS ROUTINE

No worrying about whether tracks will fit between pins. If the track widths and clearances allow. BoardRouter will automatically place 1.2 or even 3 tracks between pins.

PULLY RE=ENIRANT

You can freely pre-route any tracks manually using
BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes placed, interrupt it, manually modify the layout and resume autorouting

BoardRouter is priced at $£ 295.00$, which includes 3 months free software updates and full telephone technical support. As a special introductory offer, BoardMaker and BoardRouter can be bought together for only $£ 495.00$.

Optimized placement by displaying ratsnest per component. Lines indicate the unrouted nets.

HIGHLIGHTS

- Net llist input from OrCAD, Schema etc.
- Top down modification
- Forward and back annotation
- Component renumber
- Fully re-entrant gridless autorouting
- Simultaneously routes up to eight layers
- Powerful component placement tools
- Extensive Design Rule Checking
- Full complement of CAM outputs
- Full support and update service
- Reports generator
- PostScript output
- SMD support
- Effortless manual routing

Tsien (UK) Limited

Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 0DJ
tsien
Tel 0223277777
Fax 0223277747

> Don't just take our word for it. Call us today for a FREE Evaluation Pack and judge for yourself.

Semiconductors for waste disposal

Chemists in Wales and the USA have found that it is possible to harness semiconductors to break down organic waste and convert it into harmless by-products. The semiconductors in question are based not on silicon or exotic III-V compounds, but on a humble everyday material, titanium dioxide. TiO_{2} is the white pigment which now replaces lead compounds in paint.

Andrew Mills of the University College of Wales in Swansea explained on the BBC World Service programme Science in Action how semiconductor waste disposal grew from earlier experiments in photochemistry, the holy grail of which is to use sunlight to split water into unlimited supplies of hydrogen and oxygen. This aim is still dogged by the need for complex catalysts and by problems of efficiency.

Given semiconductor material like titanium dioxide it is possible, though, to harness the high-energy photons of UV light to perform other chemical reactions, notably the breakdown of many noxious and vile-smelling industrial waste products. Mills says that TiO_{2} will mineralize most organic pollutants, converting them harmlessly to carbon dioxide and water.

The process is remarkably similar to what happens in a photovoltaic cell, where the light energy separates electrons and holes across a potential barrier. But where a photocell needs a refined structure with lead-out wires to generate electricity, the behaviour of semiconductors in photochemical cells is much simpler - in theory at least.

An electron-hole pair, separated by a barrier, constitute potential energy, not just in the electrical sense but also in the chemical sense. (Think of a rechargeable cell where electrical and chemical energy can be interchanged). Andrew Mills and his fellow workers have exploited the fact that a spare electron is a chemical reducing agent, whilst a hole is a powerful oxidizing agent.

To make use of the oxidizing properties of holes, any spare electrons must first react chemically with oxygen from the atmosphere, something that can easily be arranged by aerating the mixture. The holes then behave just like any other powerful oxidizing agent such as bleach or ozone. The difference
is that, while ozone or bleach are very effective at destroying organic wastes. they are also potentially dangerous or unpleasant. Semiconductor waste disposal on the other hand is a relatively safe helping hand for some of the mechanisms by which chemicals break down naturally in the environment.

At present, Sandia National Laboratories in the USA are developing some of these ideas with a pilot indust-rial-scale plant for destroying benzene and other organic solvents. The hope is that titanium-dioxide coated surfaces could be made to work in conjunction with artificial sources of $\mathrm{L} V$ light. It might also be possible to run a cheaper system in which less toxic or volatile chemicals could be pumped into lagoons containing TiO_{2}-coated substrates. In that way the small amounts of UV in sunlight could carry out the decomposition in a slower, albeit cheaper process.

Andrew Mills, however, shares with your columnist a greater interest in bogs than in lagoons. He suggests, tongue in cheek, that some enterprising manufacturer could coat the inside of a toilet bowl with a layer of titanium dioxide. The addition of the UV lamp

Inverse square

The inverse square law, hated by generations of schoolkids, is something most engineers instinctively take for granted. Whether it's radiation from a point source or forces between bodies, the same relationship between amplitude and distance seems to apply.

In recent years, however. there have been numerous suggestions that gravity may violate the inverse square law. Physicists have even proposed a fifth fundamental force of nature that could be disturbing the nice simple Newtonian formula describing the attraction between two bodies. Research described in these columns (June, 1988, March, 1989) has provided tentative evidence of the existence of a very weak force that operates over intermediate distances and which could be responsible for deviations from the well-established laws of gravity.

One of the classical experiments appeared to show a consistent variation from the expected measurements as a

under the seat would then ensure the instant demise of all those germs and other unmentionables that lurk in and around the bend. Clever idea, Dr Mills, but how do you explain away sunburn on the parts that even foreign holidays cannot reach???

law rules OK

standard mass was weighed at different depths down a 1000 m deep mine in Australia. Obviously, these deviations could have been due to measurement errors or to incorrect assumptions about the mechanics or geology of the Earth. Frank Stacey and his researchers did, however, consider all the possible sources of systematic error and found that the deviation from the inverse square law simply wouldn't go away.
Now a similar experiment has been reported (Phys. Rev. Lett., Vol. 65, No 10) by a team from the Lawrence Livermore National Laboratory and the California Institute of Technology. The holes they used were a cluster varying in depth from a few hundred metres to 4 km that have been drilled in the Nevada desert to characterise the geology prior to underground nuclear weapons tests. Every parameter of the experimental holes was measured and corrections made for the terrain and

RESEARCH NOTES

even for the state of the tides.
When the measurements of gravity ture from the laws of classical physics were made at various depths, the What the groups have probably been deviation from the inverse square law measuring are systematic uncertainties turned out to be greater, not less than caused by density anomalies deep that previously reported by the Austra- within the Earth. That being the case, lian workers. It was, however, consis- they conclude that such anomalies are tent between the different holes in the likely to exist anywhere around the Nevada desert. Earth where such experiments ar
The fact that the departure from attempted. theory differs between the two research groups is considered to be good news. Had the two teams recorded identical still has many years to run. Moreover departures from the inverse square if there are any minor infringements of law, it would have been tempting to the inverse square law, a radically new resurrect the now-discounted sugges- set of experiments will be needed to tions of a non-Newtonian force of uncover them.
gravity. As it is, the Americans believe

Venus unveiled

After a series of nail-biting technical hitches the American space probe Magellan has sent back some of the most amazing pictures of the planet Venus. Huge craters and rivers of solidified lava indicate that Venus was, and probably still is a very active planet geologically. Unlike the Earth, where water and ice have eroded the rocks, Venus has some spectacularly jagged mountains and valleys.

In one respect we're extremely fortunate to have these pictures, because Magellan was plagued with difficulties soon after completing its tortuous 1.5 billion kilometre journey to Venus. After a test orbit in which the radar system was instructed to look down onto the planet's surface, radio contact was lost with Earth. Fourteen hours later, when contact was re-established,

NASA engineers pieced together what had happened.

The first fault is thought to have been the result of a high-energy cosmic ray hitting and damaging a computer that keeps a continuous check on the performance of two other on-board computers. As a result, a back-up system was activated and it too failed. Magellan, which is supposed to orientate itself by locking onto the star Sirius, locked onto another star and ended up with its antennas pointing away from Earth.

When this happened, the spacecraft Image taken from the first set of radar data collected by Magellan, showing fault-hounded troughs in the Lavinia region of Venus. Area in picture is 28 km wide, 75 km long. Right, an impression of the Magellan spacecraft approaching Venui. Pictures by courtesy of NASA.
first turned its solar panels towards the Sun to maintain its electrical supplies and then began sweeping the sky with its antenna. This is a standard recovery procedure which ensures that contact will eventually be re-established.

Fourteen hours later, contact was re-established, only to be lost again five days later. Up to that point NASA engineers had been trying to read out the state of the on-board memories to try and discover precisely what had gone wrong. This they did using a low-gain antenna that can only send data at a slow rate.

Fortunately, the same fail-safe procedure enabled contact to be reestablished, though the fact that Magellan orientated itself incorrectly twice suggested the possibility of a software error somewhere in the system. For the time being, and to avoid a repetition, ground controllers have sent commands to disable the part of the fault protection system that appears to be generating the glitches.

Radar pictures taken through the visually impenetrable clouds that permanently shroud Venus are truly spectacular. Let's not forget, however, the very considerable engineering involved in getting them here. Servicing a sophisticated computer system millions of miles away is no mean feat!
Research notes is written by John Wilson of the BBC World Service

Lasers on wafers

IBM's researchers believe the company will have integrated lasers onto semiconductor logic devices and used them in computer systems in the next two years. The fabrication process, developed at the US giant's Zurich research labs. is now being added to its manufacturing lines.
Various techniques are used to make the devices but few of them are exclusive to IBM. Only the scanning tumelling microscope (STM) used to check the devices and a polishing process are proprietary.

IBM is not the only company to have integrated lasers and logic. AT\&T's Bell Labs demonstrated optical data
Atomic structures under the STM: individual atoms on the surfaces of materials picked out by IBM's microscope. Top picture shows the grooves produced by etching the edges of laser structures. Picture of the DNA-recA protein complex (middle) is fuzzy because the material is an insulator, so charge builds ap on the surface, impairing the STM. Contrast this effect with that in the bottom picture, which shows the atomic structure of a gold surface

processing using so-called photonic integrated circuits earlier this year using similar technology.

IBM sees the devices as the solution to data transmission between parts of a mainframe distributed between different sites. Earlier this year it demonstrated a data link which could transmit and receive 1 Gbyte/s using a serial data stream. Parallel data moving at that rate is hard to synchronise so that bits on different lines arrive at different times.

The chips are made using gallium arsenide. The high electron mobility allows the logic parts to run at much higher speeds than silicon devices. The lasers are easier to fabricate using gallium arsenide because layers of indium can be grown to form the light sources.

The lasers are grown using compound beam epitaxy (CBE) in which solid elemental sources are heated and molecules deposited onto the semiconductor surface. The devices follow the multiple quantum well structure already widespread among laser makers.

The real difference between other lasers and these devices comes after the structures have been grown. Instead of forming the lasing cavities by cleaving the crystals, IBM etches grooves in the wafer surface.

The edges of the etched grooves are then polished to form mirrors. This part of the process gives IBM an edge over other companies like STL which atso has submicron semiconductor etching technologies.

A second advantage with the polishing technique is that it leaves the lasers on the wafer. Each device can be tested without having to be handled individually and the yield should also be improved.

Special microscope is key

The STM has been used to map the characteristic luminescence of the quantum wells across the surface of the laser

Quantum wells can be found by moving the tip of the STM across the surface until an electron from the tip falls down a hole. That electron will then cause light in the form of a photon to be released. The distance from the
centre of the well which will cause the same effect is a measure of the luminescence of the well.

Careful characterisation and full wafer testing should eventually lead to higher production yields. The Zurich researchers have now handed the work over to developers in the US who will turn it into a repeatable production process.

At the moment IBM has run full wafer testing on lasers built on 2 in wafers. The next stage is to use 3 in wafers with just lasers on them and to test devices with mixed logic and light sources.

The company will then go into production of the devices. The prototype receiver used in the 1Gbyte/s trial included 8000 transistors as well as the photodiode. The latter consisted of two multiple quantum well structures next to each other without the lasing mirrors. The receiver had a sensitivity of -22 dBm

Rob Cawey, Electronics Weekly

OBITUARY

W.A. SCOTT MURRAY BSc, PhD

Sandy Murray died last April after a number of illinesses, aged 64.

He will be remembered by readers of Wireless World during the 1980s as one of a group of "heretics" who were making serious enquiries into the way that modern physics was going since Einstein published his relativity theory: his Heretics Guide to Modern Physics series of articles was published in this journal in 1982 and resulted in lively correspondences and articles by others of the same persuasion.

Sandy Murray started his career as a Dartmouth cadet and served in the Royal Navy during the second half of WWII, after which he took a tirst degree with honours in physics at Manchester under Prof P.M.S. Blackett and a second in the radio astronomy: whilst at Jodrell Bank he discovered the Faraday rotation of radlo waves in the ionosphere.
He joined the Royal Radar Establishment in 1954, where he was instrumental in the reception of the firstever transatlantic satcom signals in the UK and later designed and directed the Malvern satellite tracking radar. He retired from the Scientific Civil Service in 1982.

Static dat joins audio battle

The hi-fi industry now has another standards battle on its hands. The R-dat system, with rotating heads. versus DCC, a digital compact cassette which records with stationary heads.

The Japanese are backing R-dat. with decks just reaching British shops. Philips developed DCC, and now has the backing of all the major record companies except CBS. Of course Sony, owner of CBS, has a heavy investment in R-dat. Although DCC will not be ready for sale until 1992, the possibilities for market confusion are already obvious.

The Philips announcement came after nine months of rumour and speculation. Philips had been secretly "selling" the idea of DCC to the record companies who are notoriously loosetongued. Record company executives are also notoriously ignorant of technical matters, so it is hardly surprising that the leaks were very garbled.

The long-awaited formal announcement from Philips was brief and said very little, except that DCC relies on "revolutionary coding" techniques.

The national press and media have been slow to see the significance of Philips' announcement. There was no consolidated press release. Philips referred only to "major companies" supporting the system. The major record companies (Polygram, BMG/ RCA, EMI and WEA) never have, and probably never will have, any interest in, or contact with, anyone outside the showbiz and music press.

So far only one hardware company, Tandy of the US, has backed DCC. Tandy has a downmarket image in the audio world and has never taken press relations seriously. Also the last time

Tandy made an announcement of future technology, it was to promise the Thor recordable CD system. Tandy's share prices benefited but Thor never appeared.

Japanese sources believe that Matsushita, maker of Panasonic and Technics equipment, wants to support Philips on DCC but is hamstrung because the Japanese government fears commitment to DCC would slow sales of R-dat machines. In mid September a joint Philips/Matsushita announcement was still on the cards. But in early October Philips went it alone.

If Matsushita follows, then other Japanese majors (including Sony) are likely to do so too, in domino fashion. Then DCC might make national news.
The new DCC cassette will be the same size as a conventional analogue audio cassette, but styled quite differently, with a closed top and sliding tape cover. The tape inside the cassette will be the same as the chromium dioxide video tape sold in bulk to duplicators of VHS video cassettes.

The recorder will have a conventional stereo pair of heads for analogue recording and playback, and in addition, a solid state head for digital recording. This head is divided into 16 very narrow segments, spread across the width of the tape. Each head segment is itself divided into two parts. a magneto-resistive element for playback, and magneto-inductive for recording.

Although DCC follows the

Sony's 55ES R-DAT player. A fight on its hands?
traditional format of recording on one half of the tape width in one direction and then on the other half in the other direction, DCC is not a flip-over format. The cassette need not be taken out and turned over. DCC has been designed from day one for autoreverse.
The 16 head segments lay down, and play hack from, 16 very narrow parallel tracks spread across the tape width. 8 for each stereo pair. Tape speed remains the same as for conventional cassettes, 4.75 cm per seconds.
At this low speed, and with only eight parallel linear tracks per stereo pair, it is impossible to record the several Megabits per second needed for 16-bit linear PCM with control subcodes and error correction as in the case of $C D$. DCC relies on a new coding technique, called precision adaptive sub-band coding (pasc) which has been developed mainly as a method of broadcasting digital stereo over conventional radio channels for digital audio broadcasting (dab).
The pasc processor samples the signal at the standard digital recording frequences of R-dat, $32 \mathrm{kHz}, 44.1 \mathrm{kHz}$ and 48 kHz , and then analyses the content of the sound, right across the frequency range. Where signals are audible to human ears, precise coding is used. Where signals are likely to be inaudible, less precise coding, with fewer bits, is used.
This drastically reduces the data rate. Philips claims that with pasc, DCC can offer the equivalent of 18 -bit digital code, which is two bits (12 dB) better than CD or R-dat. Philips says DCC allows a dynamic range of 110 dB which gives sound quality "equivalent to that of compact disc".

Barry Fox

AM stereo gets UK hearing

AM stereo broadcasting could at last be about to take off in the UK. Two local radio stations. Orwell in Ipswich and Capital in London, look set to be on-air with test transmissions by the end of the year.

Receiving stereo on the AM band is a familiar concept to radio listeners in the US. where two alternative systems exist. Of these, C-Quam, pioneered by Motorola, is proving the most attractive, mainly because of the company's ability to produce single microchips which will handle the broadcasts, and hence to beat its rival, Kahn Communications, on receiver price.

Meanwhile, the AM band in the UK is becoming progressively less popular with listeners who, where possible, choose the better reception and stereo capability of FM broadcasts. Figures released by the IBA this year show that, for the first time, FM is "predominantly used" by more listeners than AM. But C-Quam produces perceptibly better audio
performance than standard AM, and so could wean UK listeners from low-cost, lower-quality AM receivers.

Orwell started test broadcasts in June, and Capital is understood to be waiting only for Department of Trade and Industry approval before commencing its tests. The BBC and the receiver manufacturers are currently taking a "wait and see" attitude, but there can be little doubt that. if the Independents popularise the system, Auntie and the equipment makers will not be far behind

C-Quam maintains compatibility with existing radios by transmitting the sum of the two stereo channels as standard AM, and phase modulating the stereo information - the difference between the two channels - onto the existing carrier. This scheme avoids the hiss problems associated with weak FM stereo reception and takes advantage of AM's more even coverage of its service area to reduce localised loss of reception - useful for mobile reception.

Leading-edge software

ARS Microsystems' dV/dt software allows designers of digital circuits to sketch and analyse timing characteristics on a PC. The package costs less than $£ 700$ and does not require a netlist or behavioural models, so can be used before the schematic stage of design. Signal edges are displayed on-screen in the timing diagram, with maximum and minimum uncertainties defined by the user. Clock speeds, propagation delays and wait states can be interactively varied, so that designers can look at the effects of, for instance, speeding up the entire design, or using cheaper components. Such changes ripple through the entire timing diagram, without the need to re-analyse the system completely. Common-path and common-part analyses are available.

The package could be particularly useful in the design of bus-based systems, such as VME or Nubus, where timing between boards needs to be verified to ensure the proper granting of bus requests, interrupts and so on.

Virtual vision blurs reality

"Not living in the real world", is a criticism often levelled at anyone not having his or her feet firmly fixed to the ground. But Bristol-based systems designers Division Ltd hope that their

Picking up and manipulating "atoms" by hand is possible in virtual reality.
own promise of an alternative reality where users can enter and interact with a computer-generated three dimensional universe will have very practical down-to-earth applications.

The principle of the system is that an operator, watching a three dimensional image on a stereoscopic viewer, is able to move around inside a machinegenerated "virtual reality" simply by movements of the head. In this way computer generated objects and scenes can be looked at from any viewpoint so that the user has the illusion that they are solid and "real".

Adding to the reality, the movements of the user's hand can be translated into three dimensional movements within the virtual reality allowing interaction with the computer images. So for example in a computer model of a room, a user could reach out, turn the computer generated handle and "open" the door.

Applications ranging from fluid dynamics to molecular modelling are thought possible, though the Division system is not yet being used in a practical situation. However Salford

University's Advanced Robotics Research company is expecting to use a system to help develop its design of complex robot remote control.
The basic component of the system is a terminal providing a physical interface between the user and the computer environment. Input and output channels include the visual display channels, tactile input, audio channel etc.
Hand and head movements are captured through the wearing of sensors, for example a glove interface. and speech too, can be used to interact with the computer world.
The extremely large processing requirements for a full system mean that a single, or even limited number of processors is going to limit performance and Division is pursuing parallel architecture to support existing and future requirements.
A complete distributed virtual environment system (DVS) consists of a network of different virtual environment terminals and a single application server such as a Vax

"Radiation at work" debate heats up

There is good reason to believe that workers in jobs with high exposure to non-ionising radiation are facing increased health risks, says Dr John Dennis, ex-Assistant Director of the National Radiological Protection Board.

Speaking at a London seminar dealing with the subject of NIR exposure at work, Dr Dennis focused on the evidence linking an increased exposure, to workers with an elevated risk of brain tumour. He estimated a 33% increased risk, from current research, but said this was still low compared with the higher risks from car accidents and other activities.

The increased risk of leukemia in electrical and electronic workers Dr Dennis assessed at 20%, indicating an absolute excess risk of 10 per million per year, but compounds in the workplace may also contribute to this
higher risk, he said
Dr Dennis also considered the likelihood of miscarriage in women using VDUs more than 20 hours a week. In the US a Congressional Office of Technology Assessment has recently concluded that emerging evidence no longer allows categorical assertions that there are no risks from very low frequency (VLF) and extremely low frequency (ELF) radiation

As yet there are no international standards for VDU exposure levels. although the Swedes seem to be leading the way, allowing ELF and VLF electric and magnetic fields of $25 \mathrm{~V} / \mathrm{m}$ and 2.5 mG , and $2.5 \mathrm{~V} / \mathrm{m}$ and 0.25 mG respectively.

In the case of microwave irradiation. Dr Dennis' assessment of existing studies was that no particular risk has yet been substantiated. Nonetheless. new evidence could suggest that

IBC '90: year of HDTV

For the last IBC to be held in Brighton, HDTV formed a major core of both the technical papers and many of the exhibition stands.

Apart from better quality images, there were other unusual consumer boxes on the Hitachi stand. The Lap watch VCR is a portable $£ 1300$ multistandard receiver/VCR built to the VHS format, with a 5 in LCD colour display. The Hitachi video printer ($£ 1500$) is capable of grabbing a video frame from either RGB or PAL inputs and producing a print priced at about 40 per copy, in about two minutes

Ferguson offered a wide screen 1250 line TV receiver consisting of French circuitry and an Italian CRT. This is expected to retail at about $£ 3000$.

The 36 in diagonal, $16: 9$ aspect ratio tube displays the standard PAL signal using line doubling to achieve improved picture quality. The receiver is equipped with a control function so that the viewer can switch between the standard 4:3 and wide screen formats to suit the transmitted signal. Also included are features that allow a second image to be displayed either as picture-in-picture (pip) or picture-outside-picture (pop). The receiver design is compatible with current
standards and upward compatible with 1250 line 50 Hz MAC.
It was clearly stated and demonstrated that the European PAL standard was not yet ready to lie down and give way to another system, MAC or otherwise. Improved definition (IPAL), Extended definition (E-PAL), Quality PAL (O-PAL), and even I-PAL-M. a modified and phase error compensated system were all explained. The BBC demonstrated a system described as (Weston) Clean PAL that had been derived from technology developed within the Eureka-95 project. This was said to give rise to a range of possible PAL enhancements. The PAL-Plus group and others reported on the advances made with the ghost cancelling receiver, a feature that has benefits for both vision and teletext signals. The fact that a MAC system produces better quality pictures and is easily extendable to high definition, seems to carry less import when the high level of capital already invested in the PAL system is taken into consideration.

The automated VCR programming concept has been further enhanced by a BBC development. The system uses teletext to broadcast a label to
exposure guidelines between 30 and 300 MHz , where maximum coupling with the human body occurs, should be reduced.
Regarding residential exposure, Dr Dennis discussed the work of Wertheimer and Leeper. and Savitz, and calculated that by setting the figure given for the relative risk against the measured fields from their data, the percentage of childhood leukemia in the US due to magnetic fields reduces to $2.5-10 \%$, rather than the $10-15 \%$ originally assessed by Savitz. The difference in overhead versus underground residential distribution of electricity between the US and UK produced considerably lower magnetic fields in UK homes, he said.

The seminar was organised by Dale Electronics, manufacturer of electromagnetic spectrum monitors. Simon Best

Making it big in Europe: Eureka HDTV. But will it become more than simulated pictures?
accompany each programme. These labels are transmitted about once each second while a programme is running. A VCR equipped for this system stores a list of the wanted labels, plus network source, with the time window in which the programme is expected. When the recorder finds a match between wanted and broadcast labels, recording starts and continues until a change of programme generates a change of label. The VCR then switches off.

Intel's 80 X 86 processors, chosen as the heart of the IBM PC, seem to be impossible to keep out of the news at the moment. Latest developments include law suits, portable PCs and imitations.

Litigation involves Intel's rival chipmaker and erstwhile collaborator, AMD. The two companies set up a technology agreement in 1982, but the relationship deteriorated very soon afterwards, and now Intel is trying to stop AMD making its own version of the 80386 . The whole messy business has been referred to an independent arbitrator, who has released a preliminary conclusion and has now set about working out who gets what. Every time the arbitrator delivers a judgement, both sides claim victory, so it is not surprising that, this time round, Intel said that it was "pleased that the judgement does not require the transfer of the $80386^{\prime \prime}$, whilst AMD promised to go for $\$ 500$ million compensation and seek transfer of the 386 in the next arbitration phase.

AMD has sampled a 386 -compatible product, which it describes as "a miracle of re-engineering". In response, Intel has taken out an injunction forbidding AMD's use of the " 386 " tradename. Doubtless, the whole dispute will rumble on and on

Just to drive home the rivalry, the two companies chose the same day to launch products based on flash eproms

- reckoned to be the next great thing in non-volatile memory technology. AMD's effort is a 1 Mbit chip with an access time of 90 ns , built in the 1 micron technology used for its eproms and eeproms. Intel, slightly further advanced, has come up with a range of credit-card-sized storage devices based on its own flash chips, with capacities of up to 4Mbyte. The company says that these could replace floppy and hard disks in many applications, and demonstrated a PC-compatible card reader, based on the same form factor as a standard disk drive.

Again, portable computers will be a major target, since the cards are solid state and can be read without all the physical trouble of spinning a disk drive, leading to much lower power requirements. The cards stand up to rough treatment much better than magnetic media.

AMD's engineering department has obviously been working hard; not content with the "miracle" 386 , the company has come up with two products which put many of the features of an IBM AT onto a single chip. The Am286ZX is aimed at the desktop market, while the Am286LX adds power management to allow it to be used as the basis for portable computers. Production of 12 MHz and 16 MHz versions of the chips is scheduled for early next year, with 20 MHz parts to follow.

At the higher performance end of the market, AMD has produced a floating-point version of its 29000 risc processor, dubbed the 29050. The idea is to get the chip into embedded applications, particularly those involving graphics processing such as laser printers, where the company says it expects to see several design wins in the first half of next year. The 40 MHz part is pin-compatible with the existing 28 k type devices and has on-chip memory management, emphasising AMD's aim of making risc work with low-cost dynamic memory. On-chip cache, however, is limited to 1 kbyte .

Within a couple of weeks of AMD's chipset announcement, Intel had come up with one of its own. The 80386SL consists of a 20 MHz 386 core, cache controller, main memory controller, PC/AT and ISA bus interface, coprocessor interface and power management on a single chip. Support comes from the 82360 SL , which handles functions such as serial and parallel communications, DMA, hard disk control, and memory refresh. Once again, the focus is on notebook and laptop computers, so other new low-power support chips such as flash memory chips, keyboard controller, and a modem chipset, have been added.
Another company on the trail of Intel-based PC chipsets is Chips and Technologies, which has come up with several new products and a new European headquarters to go with them.

Chips says that the European PC market looks set to outdo both the US and Pacific rim in coming years, with particular emphasis on industrial computing. Hence the new base, which is in Switzerland. The products include a 3-chip set which will allow OEMs to build 80386DX-type PCs using only 15 components, plus memory. Directmapped cache and processing speeds of 25 and 33 MHz make this a fairly high-performance beast, although Chips describes it as "entry level".
Also on offer are 80386SX types, including the Chipslite family, designed for the growing laptop and portable markets. These include on-chip flatpanel graphics, mouse and communications port controllers, as well as power management.

0ver the last twenty years digital telephony and optical fibres have radically changed the way we communicate. But we have still only exploited a tiny proportion of the full porential of optical communications.
Current high speed systems carrying seven and a half thousand simultaneous telephone calls on a single strand of glass are impressive enough.
But in theory the optical fibre has a bandwidth of around 150 Tera Hertz 15000000000000000 Hz - the equivalent of 20 million television channels or more than two billion digital telephone connections.

The practical challenge is to incorporate this ability to carry large volumes of information. into fibre networks that connect directly to customers premises. Radio transmission techniques first developed over 50 years ago may hold the key.

Researchers at British Telecom's Martlesham Research Centre are using coherent optical techniques analogous to super-heterodyning in radio transmission as a solution.

At present. over half of BT's trunk telephone network uses fibre optic transmission in a technique. perfected over the last ten years. called direct detection.
Data is transmitted over the fibre by changing the optical intensity of a light source or laser. At the receiving end the optical data train is converted back into an electrical signal with output directly proportional to the optical power falling on the photo-detector. The lower the received power the harder it is to decipher the electrical data.

As the optical signal travels through the fibre it becomes attemuated and the data pulses broaden because different wavelengths of light travel at different speeds through the glass. This limits the amount of information and distance it can be carried.

Coherent approach

Direct detection systems under development call achieve data rates of $2.4 \mathrm{Ghit} / \mathrm{s}$ - equivalent to 25000 simultaneous telephone calls. But attenuation and dispersive pulse broadening means the optical signal must be electronically reconstituted every 50 km or so.

However BT researchers have shown that coherent optics will create a new class of system with $l(0) X)$ times the information carrying capacity

The advantage of using coherent optical lechniques, according to Dr Roger Steele. a researcher in BT's coherent optical systems group at Mart

Looking forward to busy lines

Voice, data and video services at the end of a telephone? In the following series of articles Richard Wilson assesses fibre optic developments in the pipeline.
lesham, is that they make more efficient use of the fibre's full optical bandwidth.
Single wavelength light is used to transmit a data train along the fibre, with the opto-electronic detector which converts it back into electrical data used in a way analogous to a heterodyning radio receiver

The incoming optical signal is combined with a second monochromatic signal generated by a laser in the receiver. The photodetector acts like an electrical mixer circuit, its output proportional to the combined power of the two optical signals. In this way the incoming signal can be boosted. A $20-$ fold enhancement could extend the transmission lengths for $2.4 \mathrm{Gbit} / \mathrm{s}$ to over 100 km .

Coherent fibres can carry a large stumber of signals simultaneously, each with a discrete optical frequency. The time may arrive when you tune in a telephone as you would a radio. The picture shows a BT experimental coherent optical link between Edinburgh, Galashiels and Vewcastle.

Another advantage of coherent systems is the amount of information that can be carried. Coherent techniques allow different optical channels to be supported in the same fibre.

Last year BT demonstrated a coherent optical system that transmitted two data channels each operating with light of a different wavelength via an optical repeater 2000 km between Edinburgh and Newcastle. Each channel carried a $622 \mathrm{Mbit} / \mathrm{s}$ data train, enough to handle almost 8000 telephone calls.

To prevent interference between the channels the wavelengths of light used were 7 GHz apart, but even fibre with a usable bandwidth of 50000 GHz could support $70(0)$ separate data channels.

Such information carrying capacity, when it is introduced into the public networks could transform our view of the telephone.

Looking maybe 15 years into the future Dr Peter Cochrane, a BT strategist for optical networks, draws a picture of a coherent optical network without telephone exchanges where a range of voice, data and video services are available to the customer on what will be called a passive optical network.

Customers select which of the services they require and they then tune their receiver to the necessary wavelength, much the same as they would a radio receiver. With the enormous capacity of the optical medium such a passive optical network would meet all our communication needs both for business and leisure activities. From videophones and compu-

> In a wideband distribution network using "tuned" coherent transmission, customers can obtain different services by selecting wavelengths on their receiver.
ter networking to high definition television and high speed facsimile, all services will be available through a single optical fibre connection.

$£ 20$ bn investment

Major investment is required to create a fibre network that connects to every home and office, perhaps $£ 20$ bn will be needed for the UK. But technologists are not waiting for the politicians to make up their minds and are already tackling the technical problems.

As BT's Dr Steele points out, one of the immediate stumbling blocks is to find a laser with the required spectral purity. "The ideal source hasn't yet been invented." he says.

A twist in the tale of optical fibres

> Twisted pairs matching optical networks in performance? A lot more than copper is at stake.

Photons are rapidly replacing electrons as the world's favourite communications medium. Whether it is a transatlantic cable or a data path between microprocessors in a super-computer, optical fibre seems to hold all the answers for our communications needs.
But recent developments in the US are suggesting that copper and the familiar twisted pair may yet have a resurgence of popularity.

For over 100 years copper cable has been the commonest way to connect electronic equipment. From telephone to personal computer, information has been exchanged over two intertwined copper wires, the twisted-pair. Cheap and reliable, it met most of our needs until pushed to carry more data than it could physically support. Then the world discovered optical fibre.

But Dr Steele believes that the distinction between coherent techniques and traditional direct detection methods is not so clear-cut as first thought. He is working on a system offering the characteristics of coherency but using commercially available lasers and optical filters.
Using a tunable filter to select the wavelength Dr Steele claims that 10 channels can be created using existing laser sources. A second filter would improve resolution to 100 channels.
With the possibility of the first "cohe-rent-like" systems appearing in the UK network before the end of the decade, maybe it isn't too fanciful to picture a time when we'll tune our telephones like our radios.

Fibre vs copper

Fibre has everything going for it: theoretically it has thousands of times the capacity of copper, is less prone to electrostatic interference and is very difficult to tap into.
But costs of fibre, electro-optic transmitters and receivers restricted use to high-performance systems in the long-distance telephone network. In computer networks requiring less than 20Mbit/s data rates, copper won over fibre every time.

Since the mid-1980s local area networks (lans) and computer companies have stuck by copper with $10 \mathrm{Mbit} / \mathrm{s}$ Ethernet championed by DEC and IBM's alternative Token Ring networks. But with computer power rising many lans are now hitting the performance limit. For example "You can flood Ethernet with one Unix server or even a powerful PC", says Jeff King, lan product marketing manager at BICC Data Networks.
In the late 1980s networking companies started getting serious about fibre lans. The technology was available but a standard interface protocol was needed that would steer a safe course through the mine-field of multivendor computer networks.

FDDI emerges

For the last two years the US standards body Ansi and some 80 computer

Nearly all FDDI's 100Mbit/s bandwidth will be available through improved protocol. Ansi is expected to complete the FDDI standard early next year.

vendors have wrestled with the problem and the result is FDDI - fibredistributed data interface (see box). This is a standard high-capacity $100 \mathrm{Mbit} / \mathrm{s}$ communications backbone supporting a large number of lans, using a range of computer hardware and protocols.

Although the standards process is not fully complete companies like Fibronics of the US believe the situation is stable enough to offer FDDI products. "First applications of FDDI are in the large data processing environments, namely the DEC and IBM sites", predicts lan Milne, managing director of Fibronics (UK). But key to FDDI's future success is the endorsement and the announcement of products by the likes of DEC", he adds. But FDDI may not have things all its own way; copper is fighting back.

In July two US companies succeeded in persuading Ansi to consider modifying the proposed FDDI standard to allow for use of copper in place of fibre as a transport medium. ChipCom of Massachusetts and Synoptics of California claim to have demonstrated data transmission at the FDDI data rate of $100 \mathrm{Mbit} / \mathrm{s}$ over 100 m of shielded twisted-pair cable.

ChipCom's engineering director Don

Saussy sees a 100 m transmission length as the larget which will make FDDI/ twisted-pair an attractive alternative to fibre for 90% of all lans. To achieve this ChipCom's system electrically filters the data before transmission, to compensate for high- and lowfrequency distortion as the signal passes down the cable.

What and why of FDDI

FDDI fibre distributed data interface: what it does is to put a high speed $100 \mathrm{Mbit/s}$ communications backbone into companies using computers on local area networks (lans). What it is, is a proposed hardware and software standard for implementing this backbone in most of the leading computer environments.

An FDDI backbone uses an optical fibre ring with two contra directional data paths each running at $100 \mathrm{Mbit} / \mathrm{s}$. The dual bus ring can be up to 100 km in length supporting a maximum of 1000 access points, or 500 if they are connected to both data paths for improved reliability.

Current systems use multimode fibre and low-cost light-emitting diodes as optical sources and will support 2 km of fibre between connections. There are plans to extend this by using more expensive single-mode fibre and higherpower laser diode sources.

The standard has been created to be compatible with existing lan protocols, and specifically the most common ones Ethernet and Token Ring. As well as
providing interworking between protocols and equipment from different suppliers, FDDI has the capacity to meet the need for increased throughput on computer networks running high-performance workstations and supporting everincreasing numbers of users.

Most of FDDI's 100 Mbits information carrying capacity is available to users through the implementation of an improved token protocol which could mean a 12-20-fold increase in data throughput compared to traditional Ethernet or Token Ring networks. Part of this improvement is due to the use of a data coding scheme which is more efficient than the Manchester coding format used on Ethernet and Token Ring protocols.

So far FDDI is only three-quarters of the way towards a fully-fledged standard, but this has not stopped many manufacturers from introducing products. Most are convinced that the hard work in creating the standard has been completed and that all that remains is approval of network management software - and that can be back-engineered if necessary.

There were two problems to be solved: first the poor high-frequency response of the twisted-pair meant the transmitted signal had to be shaped so that the overall response of the system was flat. Second, the FDDI coding scheme created a low-frequency problem because its signal value was nonzero at DC, or zero frequency.

According to Saussy this is solved in a fibre system by using capacitive coupling into and out of the optical transmitter and receiver. In an all-copper system this would create electromagnetic emission difficulties so ChipCom were forced to use transformer coupling to allow for the DC response, requiring additional low-frequency filtering.

While Ansi mulls over the claims, which now have the backing of DEC according to ChipCom's Saussy, other FDDI manufacturers are playing down their importance.
Jeff King of BICC simply does not believe 100 m transmission over a twisted pair is practical. "It might be possible up to 50 m . but it won't work on unscreened cabie which will radiate like crazy".

Saussy responds that radiation is a concern but tests on shietded cable up 10100 m complies with the strict West German VDE emissions standard.

Fibronics Ian Milne warns about the false economy of non-fibre lans, "It is all about the cost of ownership over a 10-year period: although fibre systems
are a little more expensive to purchase ultimately they win on the lower cost of maintenance, reliability and upgradability".
There is an enormous amount of twisted-pair in today's computer networks and it is this which at the end of the day could be the biggest asset to companies like ChipCom and Synoptics; introduction of fibre will be slow.

Prospects for FDDI

Most manufacturers indicate that the first market for FDDI is not in the lans on which the computers sit, but in creating a broadband backbone which will continue to support the copper sytems such as Ethernet and Token Ring.
Jeff King of BICC believes it will be

Man-power frees local networks

> Metropolitan public networks could take the "local" out of lans while moving a step closer to a broadband future.

1n Britain most of the long-distance telephone network uses optical fibre, with many routes capable of carrying $565 \mathrm{Mbit} / \mathrm{s}$ - equivalent to four highdefinition television channels or 750 k simultaneous telephone calls. But final connections to all homes and most office; is by old copper cable technology limiting data to a trickle at only $64000 \mathrm{bit} / \mathrm{s}$.
Companies and institutes are already sharing their processing power and databases on local area networks (lans) and taking advantage of fibre optics. Meanwhile the new FDDI - fibre distributed data interface offers a $100 \mathrm{Mbit} / \mathrm{s}$ communications backbone that can support high-speed applications such as diskless workstations and display of animated graphics. But these optical lans hit a performance bottleneck when they use the public telephone network or even dedicated 2Mbit/s lines to connect to networks in other buildings and locations.
The solution is a broadband optical fibre connection to every home and business, an ambitious plan and one which could take 20 years to realise ir Britain and at a cost of some $£ 20 \mathrm{bn}$.

First lan, now man

But there are now signs that the worlds business computer users may not need to
wait that long. In North America the demand by companies to send several million bits of data per second between buildings in different parts of cities has led to development of a new class of high-capacity wide-area optical fibre network, the metropolitan area network (man).

The significance of mans is that they offer the high information-carrying capacity and flexibility of lans but on a geographic scale over a network operated by public telephone companies or large private data network operators.
Company computer networks will be able to connect to a $140 \mathrm{Mbit} / \mathrm{s}$ com-

Asynchronous transfer mode (ATM)

makes the best use of high capacity fibre optic systems and could integrate
broadband and narrowband services in a single digital network.
at least another year before FDDI starts to make an impression on the market for networks connected directly to workstations. Maybe the development of higher performance copper systems such as those of ChipCom and Synoptics will make it all the more difficult for FDDI to extend its market once the backbone networks are in place.
munications spine extending across a city - or even further. Users will be able to access remote databases, retrieving IMbyte of data in less than a second, or transmit an A4-page containing approximately two million bits of information in under half a second. Through mans these features will all be available on what is a public data network.

The network uses a distributed switch architecture, giving the user greater control of network management than is common on current public data networks, and also offers an open systems interface to most software environments.
This distributed queue dual bus (DQDB) architecture was developed by the University of Western Australia and Telecom Australia, and a private company, QPSX Communications, set up to license the design. Now manufacturers such as Alcatel of France and Siemens of West Germany, are already trialling mans in North America.

Dual bus architecture means it can support full bi-directional communication between nodes on the network, for dedicated point-to-point connections or shared operation in an open bus configuration. High transmission rates are achieved using data packets asynchronously switched around the network

within 125μ s time-slots. Just as a train of carriages move from one station to the next, the "train" of time slots carry data from one computer terminal to another.

The amount of data that can be carried in any frame of time slots depends on the bit rate of the buses and typical fibre optic mans will support bit rates up to $140 \mathrm{Mbit} / \mathrm{s}$.

Asynchronous transmission

Mans' other importance is that they represent the first step towards broadband networks of even greater information carrying capacity using asynchronous data transmission in an asynchronous transfer mode (ATM).
Public networks carry digital information using synchronous transmission so that the amount of data that can be carried over a connection in the network is unchanging even when it is not needed. Wasted network capacity results. Using the railway analogy, it is like having long empty trains running all day on the railways though they are only full for short periods in the rush-hour.

With asynchronous transmission the network capacity can more easily be

European network

The distributed queue dual bus (DQDB) architecture originally developed in Australia has been adopted as the basis of an American standard for mans. The IEEE802.6 protocol has already led to the swift development of man products. now being trialled in North America and appearing in Europe next year.

Two European manufacturers, Siemens and Alcatel, have developed systems based on the 802.6 standard which will be used in two German pilot networks in Munich and Stuttgart. They will operate at up to 140Mbit/s and will connect computer networks within an area 50 km across to high-performance mainframe computers and databases. Typical
adjusted to meet demand, making better use of high capacity fibre optic systems.

Long-term the goal is to build broadband fibre networks based on asynchronous transmission. Operating at multigigabit data rates these will solve all our communications bottleneck problems with capacity to spare to offer highdefinition TV services in the home. But the enormous cost of building this broad-
applications could include the transmission of medical X-ray scans between hospitals or in industry with the transfer of computer-aided design (cad) data.
Like the German Bundespost, both British Telecom and Mercury Communications are sure to recognise the importance of mans for meeting the business needs of companies in the UK. The appearance of operational mans in Europe has prompted the European standards body to act quickly and produce a draft standard before the end of the year.
True, nothing ever happens without a standard. The trick is to create the standard before the networks are built.
band network means it will only happen if network operators can justify investment in terms of new business.

The importance of mans is that over the next five years they will meet the need for high-speed computer/computer communications, at the same time providing network operators with the next commercially viable step towards a bot-tleneck-free broadband future.

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Road, Borehamwood, Herts. WD6 1AA. Fax: 081-207 6375, 0836640328

SPECIAL OFFERS

Philips CM7000 monitor. Composite video input: RGB (mono) + audio 240vac 12" green screen new \& boxed $\mathbf{£ 6 5 . 0 0} \mathrm{c} / \mathrm{p} 8.75$
Micropolis hard disk drive full height including PSU \& Rack slides. $5^{1 / 4 "}$ model 1325br. ST 506 51MB MFM. $£ 250.00 \mathrm{c} / \mathrm{p} 9.00$
$9^{\prime \prime}$ Nec monitor, 240 vac input. composite video input, $\mathbb{E} 29.95 \mathrm{c} / \mathrm{p} 6.80$
$19^{\prime \prime}$ colour monitor, 240 Vac input. R.G.B. composite videa input, ex-equipment tested with no screen burns, case size $181 / 2 \times 17^{1 / 2} \times 17^{3 / 4}$. \& $150.00 \mathrm{c} / \mathrm{p}$ please ring
$25^{\prime \prime}$ colour monitor, 240 Vac input. composite video input, new, case size $241 / 2 \times 17^{1 / 2} \times 21^{1 / 4^{\prime \prime}}$. £195.00 c/p please ring. Both $19^{\prime \prime}$ \& $25^{\prime \prime}$ monitors made by Electrohome
Teac $1 / 2$ height floppy disk drive FD 55 F 96 TPI single/double density $500 / 1000$ kbytes 80 track $300 \mathrm{rpm}, \mathrm{E} 35.004 .50 \mathrm{ex}$-equip
Teac $1 / 2$ height floppy disk drive FD 55 FV 96 TPI $500 / 1000$ kbytes 80 track 300 rpm SA400 interface new, $£ 49.95 \mathrm{cp} 4.50$
Teac FO 55 GFR Multi Format Drive BBC Micro IBM/AT or compatible ex-equipment no guarantee $£ 24.00 \mathrm{inc} \mathrm{c} / \mathrm{p}$
Tandon (Winchester) hard disk drive $1 / 2$ height TM 25210 Mb new ex-equipment $£ 57.50 \mathrm{c} / \mathrm{p}$ 6.50

Plantronics acoustics communications headsets new \& boxed (Auralite) type headset, model
star set II complete with eartips instructions etc, $\mathbf{£ 5 0 . 0 0} \mathrm{c} / \mathrm{p} 3.50$ qty:discounts
Coutant DCIDC converter + 5 VDC 5 A output input 48 VDC new, $£ 20.00 \mathrm{c} / \mathrm{p} 3.00$
qty:discounts
Panaflo DC brushless fan model FBP-06A12L, new, $60 \times 60 \times 25 \mathrm{~mm}$. $\mathbf{\varepsilon 8 . 9 0 \mathrm { c } / \mathrm { p } 2 . 2 5}$
Sola Mini Ups + Inverter and Line Conditioner: Sinusoidal output wave shape. 600VA
240VAC $£ 250+$ VAT c/p details please ring.
Torin TA450 5 V.D.C. Fans $120 \times 120 \times 40 £ 5.75$
Torin TA450 12 V.D.C. Fans $120 \times 120 \times 40 £ 5.75$
Torin TA450 24 V.D.C. Fans $120 \times 120 \times 40 £ 5.75$
All Fans New c/p 1.50 qly: discount
360K $1 / 2$ height Fioppy Disk Drives IBM compatible ex-equipment. No guarantee $£ 16.50 \mathrm{inc} \mathrm{c} / \mathrm{p}$. PC, XT, AT Type Cards
Coluur Cards: Disk Adpt: Controller; Comms etc: WD11 C00-JU: WD1015-PL: WD16C92-P WD2010B-PL: WD10C20A-PH: + various chips $\mathbf{\Sigma 1 0 . 0 0}$.
KM4164B-12×8 UM6845B: D24382E: + various chips $£ 10.00$
KP-001: CXK5816PN: CIC 8236E: SS1531-CPE NMC27CP128Q: WD1010A-PL $£ 5.00$ UM8272A: CXK5816P-10L: WD1010A-PL C36031AE: PAL20L8ANC: CK8236AE £10.00. V6363: 82C 11: 23C07: SN74LS244N E4.00.
V6363: 82C11: 23C07: SN74LS244N \&4.00. Please Ring for EGAVGANetwork Cards - too many to list
Test \& measurement/audio/communications/computer equipment always in stock, power supplies transformers plugsisockets \& connectors. components fans panel meters cables etc.

We would llke the opportunity to tender for surplus equipment
Otficial orders credit card telephone ordera accepted with Access. Amex, Diners, Visa cards. Overseas enquiries
welcome c / p rates U.K. mainland only.
Please ring for e / p rates not shown.
All prices inc. V.A.T. unless stated. Stock list available.

PROGRAMMERS

EPROM, EEPROM PALS, GAL etc Micro, Bipolar

Extensive device support - Up to 1 Mbit devices and larger - Simple menu operation - Intelligent programming algorithm

Split and shuffle
Support all common file formats
From only £139
SCN10 Low cost E(E)PROM programmer Options for micros and 4 gang
UP600 Universal Device programmer with editor E(E)PROM, PAL, GAL, PEEL, Micro, Bipolar
SA10 Standalone E(E)PROM programmer with editor
SA20 8 gang version of SA10

CIRCLE NO. 129 ON REPLY CARD
CIRCLE NO. 130 ON REPLY CARD

Testing assertions

My letter in the June 1990 issue about subjective amplifier assessment having produced some further correspondence (August and September issues), I feel that a reply is called for

My letter was triggered off by John Linsley Hood's articles in the November and December 1989 and January 1990 issues, in which my name appeared several times. I pointed out that in my article Audible Amplitier Distortion is Not a Mystery in your November 1977 issue, to which he referred, I did not in fact describe the substitution test he mentioned, but rather a nulling or differential test, which 1 credited to Peter Walker. (When my diagram for this was redrawn, the mixing resistors in the op. amp. input were inadvertently omitted.)

I pointed out that such a mulling test enables one to listen to all the imperfections of an amplifier at theirtrue volume level, or at a higher level if desired, while it is handling a programme under normal working conditions but without the quite large masking effect of the programme itself. This, I stated, gives one greatly increased aural discrimination. so that small defects may be heard that would be missed by even the most "golden eared" listener, such as Martin Colloms may well be, when listening in the ordinary manner. With sufficiently good amplifiers, no imperfections at all can be heard

Martin Colloms reviewed the Hafler XL-280 amplifier in $\mathrm{Hi}-\mathrm{Fi}$ News, June 1987, using a

Fax and pax

With respect to the letter from G.S. Firown in the September 1990 edition of $E W \& W W, I$ am moved to make the following observations.

I read your periodical for information, but am also aware of the fact that it is very easy to get carried away with any new technical development, praising the technical ingenuity of it whilst forgetting that it has to exist in a world with real people Your magazine is one of the few that does carry discussions of the wider issues of electronics technclogy. You should be praised for that, and I do hope that you will carry on doing so. There are few other widely access ble journals that carry items of interest for "those who are worried about the wider

social issues".

All of us in this field and in other fields of technological innovation should be worried about the effects of our work on the world. We have to live in it, our kids do, and, with any luck, so do our grandchildren. It's very easy for us to ignore the wider issues, but I feel strongly that we shouldn't have an ostrich-like attitude to these matters because, whilst protecting the head, the ostrich does tend to leave the rest of itself open to being shot at. So, please keep up the work; your mix of technical and ethical is spot on as far as I'm concerned. Joe Pritchard,
Systems Consultant
Sheffield
West-Yorkshire
switching unit provided by Hatler that enabled him conveniently to carry out the above nulling or differential test and also to perform a comparison test involving listening either to the directpath sound or to that coming via the amplifier under test. The Hatler amplifier passed the nulling test - no imperfections could be heard - nor could any differences be heard on the comparison test. Nevertheless, Martin says, another amplifier, which did not do so well as the Hatler on the nulling test, was a higher scorer "by our established presentation methods for sound quality" which involve comparisons made without a switching unit
and therefore with longer time intervals between them. Martin does not deny the validity of the nulling test. saying that the initial puzzlement was resolved when it was found that comparisons made with the Hafler switch unit still present showed no audible differences, whereas when done in his usual manner, the amplifier differences were quite evident
Even if the above quality degradation by the switching unit and extra connections was genuine, which seems extremely unlikely, it still does not explain the nulling test result. How can an amplifier with no audible imperfections - for the switching unit can hardly have made them less audible than they really

Crossover distortion

I would like to add a few words on the article Reducing Crossover Distortion by Mr. Michael McLoughlin ($E W+W W$, October 1990). I agree that most of the crossove r problem may be dealt with by applying more feedback But, from Fig. 3, it is evident that there is also a direct feedforward signal path from the Tr the emitter to output. Also, at crossover, Tr_{3} and Tr_{1} form a second complementary pair which is active for most of the time the signal spends in
crossover region. If Tr_{1} current is increased (by reducing R_{3}) the distortion may be further reduced.

Another point is the audibility of the crossover spikes. In my article I have shown that much more harm is done by secondary effects of feedback-loop bandwidth modulation and instantaneous feedback cut-out than by the spikes themselves, Actually all too often we have seen audio amplifiers with small heat-sinks and output-stage emitter degeneration resistors of
lohm or greater and quiescent current of 50 mA or less and open-loop bandwidth of 100 Hz or less. A good class B amplifier is the result of design compromises in all performance aspects, including thermal stability. I like Mr.
McLoughlin's idea of avoiding the thermal runaway problem by zeroing the quiescent current, but the fig 3 circuit may not be then regarded as a typical class B output stage.
Erik Margan
Ljubljana Yugoslavia
were - sound worse than one with easily audible imperfections? It should be, of course. that the amplifier thought to sound superior had imperfections of a kind felt to constitute an improvenient on mere faithful amplification, which leads to the point made at the beginning of my June letter about what constitutes the proper criterion for a reference power amplifier

Mr Stanley asks why Quad changed from valve to transistor amplifiers in the late 1960)s, and I can assure him that this had nothing whatsoever to do with sound quality and everything to do with economy and reduction in size and weight. He says Peter Walker. David Hatler and I are living with closed minds. suggesting that we believe in measurements alone and not in listening tests. However, if he will carefully re-read my letter. he will see that it is virtually all about listening tests. for the nulling test is very much a listening test. I do find it rather displeasing to be classified as an objectivist, since I am very interested in music and do quite a lot of recording of professiona concerts, which involves much critical listening to the subtleties of reproduced sound.

Though I do not like having to say this, it does seem to me that the people witl closed minds are those such as Messrs. Colloms and Stanley who simply refuse to face up to the accumulated evidence of many carefully carried out independent subjective amplifier assessment trials, such as the Stereo Review one I mentioned in my letter Another very carefully carried out subjective amplifier investigation was described in the American magazine Audio Amateur, 1/1980. More recently my attention has been drawn 10 a 1988 presentation to the Chicago Section of the AES by Thomas Nousaine, entitled Blind Tests Exposed, in which the results of 18 published investigations are taken into account.

All the above investigations have shown that provided sufficient care is taken to ensure very accurate matching of signal levels, together with the avoidance of any form of overloading and/or hum, then when a sufficient number of tests
are carried out with a proper understanding of statistical procedures, the panels of judges are found to be unable to distinguish one well-designed amplifier from another. The amplifiers do not have to be very expensive, for a very high price is more likely to be indicative of unenlightened and extravagant design than of true virtue.

Martin says I chose to deny the results of his 1985 trial at the AES, while the statistician's opinion was positive. This is not a fair comment, because I made no such denial. All I did was to point out that if the number of "similar" and "different" presentations had been made equal, there would have been no need for the statistician to have prefaced her remarks by saying she had assumed that if there was no difference between the amplifiers then the probabilities of obtaining "similar" or "different" answers would be $50: 50$. The assumption is certainly not a safe one to make, so that the validity of the final result becomes dubious unless the kinds of presentation were correctly proportioned, and Martin has still given no information on this point. Mentioning this possible shortcoming in the trial procedure does not constitute a denial of the result.

I find myself in total agreement with all the views expressed by Douglas Self in two excellent articles - one in your July 1988 issue and one in Hi-Fi News, August 1988, and a letter from him and P.W. King in Hi-Fi News, August 1986 also casts doubts on the soundness of the procedure in Martin's 1985 trial.

One cannot help noticing, over the years, that Martin has several times come up against the results of carefully organised independent trials that do not support the validity of his "established presentation methods for sound quality". but that he has been only temporarily influenced by them. His aim seems to have been to search for any evidence that will justify his rating system, rather than to adopt an unprejudiced attitude of trying to find out what is the truth about these matters.

Martin asks "Does Peter still need to imply that my subjective reporting is at best unreliable and unverifiable, and at worst. imaginary?" This is a fair question which deserves a
carefully considered and nonevasive answer. The answer is "yes"! Nulling tests, the results of independent subjective trials such as the Stereo Review one. my own experiences in critical subjective quality assessment over many years. together with a fairly full professional understanding of the many subtleties of modern amplifier design, leave me with no possible grounds for giving any other answer.

The notion that the main interest of the world highfidelity industry is better sound strikes me, I much regret to say, as highly naïve, for I'm afraid the main interest in the larger part of this industry today is in making a profit in any way it can whilst fooling the customer into believing that the arm is ever better sound. There are, fortunately, still some firms which are splendid exceptions to this sordid state of affairs, but a member of one of these told me there are times when he almost feels ashamed to belong to the industry.

Encouraging a belief in significant differences between expensive amplifiers. in the audible differences between different types of passive components. cables, connectors, etc. no doubt helps to promote sales, even if no actual sonic benefits results. Imaginative reviewing helps all this along and provides plenty of work for the reviewers.

With regard to passive components, I know of no genuine evidence whatever to suggest that these are ever a source of audible quality differences in any normal welldesigned amplifier. Indeed, in a good amplifier with plenty of overall negative feedback, the only passive components that could conceivably have any effect on sound quality would normally be the two resistors in the β-arm, and decent resistors of adequate rating simply do not produce quality degradation with a large margin to spare. (In a high-output-impedance current-drive amplifier I designed for KEF Electronics Ltd., a 0.22Ω wire-wound resistor used for currentmonitoring was found to produce about 0.06% oddharmonic distortion, which was surprising. Investigation ultimately established that the distortion was caused by B-H curve effects in the ferrous end caps. Such effects are quite
negligible, however, with the types and values of resistor used in the feedback network of more normal amplifiers.)

It is true that most practical capacitors have an impedance which is more complex than that of an ideal capacitance - this has been known for many decades and that, by rigging up an appropriate balanced circuit with two different types of capacitor in it, queer frequency responses and step responses may be produced, and their effects made audible if desired. as Martin Colloms has done. But to conclude from this that the sound quality of practical power amplifiers must therefore be audibly affected by the choice of capacitor types is an appalling example of totally unjustified extrapolation. The only attributes required for a coupling capacitor are that it should be free from significant leakage and should have a sufficiently low impedarce over the whole audio spectrum. Who says this impedance ought to be that of an ideal capacitance? I can see no argument at all in favour of this.

The degree of absurdity that can be reached by the "passive component brigade" is illustrated by the statement made by Martin in his letter in Hi-Fi News, March 199(\%. ". . . it is not all that difficult to hear performance differences between single 100Ω resistors used as the input loading for a fine moving-coil cartridge". This is definitely total nonsense, and anyone who can believe it can clearly believe and say almost anything. I suspect that Martin. on reflection, must really know it is nonsense. As it stand, I am afraid it is liable to detract greatly from the general credibility of Martin's other writings.

I think that, just like myself, Martin and his associates are not actually all that good at judging very small and subtle differences in sound reproduction, especially when the presentations are well spaced out in time. All human beings have limitations in these respects, even if regarded as "golden eared", and are, moreover, highly subject to psychological influences of various kinds. I suggest that it is quite unrealistic for Martin to feel that he is somehow an exception to all this
Peter J. Baxandall
Malvern
Worcs.

Deja view

It's always rewarding to learn your articles provoke further thought and generate feedback (J.D. Ryan. Smooth sampling. September 1990).

Certain parts of Mr Ryan's argument could be presented more incisively using sequences together with z-transforms. thereby removing ambiguity. Unfortunately the filter analogy of a moving coil meter. presented as a damped secondorder system is incorrect. Perhaps this note will provide a sense of direction and encourage you to re-read the text more critically. I must confess that the suggested references were all new to me, Brown's algorithm I had never heard of.

When faced with a fresh problem or new challenge I subconsciously ask "Have I seen it before"? The suggested preferred form of the algorithm:

New estimate $=$ old estimate $+\alpha$ (new sample - old estimate)
looked suspiciously similar to the recurrence relationship which characterizes a first-order low-pass digital filter. Expressed in terms of sequences:
$\hat{y}(n)=\hat{y}(n-1)+\alpha(x(n)-\hat{y}(n-1))$
(The cap or hat symbolizes an estimate)
Converting from sequences to transforms, we may express the transfer function of the filter $\mathrm{H}(\mathrm{z})$ as:
$H(z)=\frac{Y(z)}{X(z)}=\frac{\alpha z}{z-1+\alpha}$

Clearly, the system pole is situated on the real axis. located where $z=I-\alpha$. Naturally for low-pass filtering the range of the "smoothing constant" will be $0<\alpha<1$, not 0 to 1 as advertised. I'm not being pedantic, if you've got time check out the effect on the impulse response. For stability the system pole should lie within the unit circle, in this case the limits of stability are exclusively real determined by z $= \pm 1$. Obviously the range of smoothing constant
commensurate with a well behaved system will be $0<\alpha<2$. For values of smoothing constant in the range of $1<\alpha<2$, the filter exhibits high-pass characteristics, the impulse response oscillating at half the sampling frequency.

Remembering that $z=e^{\checkmark T}$, we
substitute and commute between domains to obtain the location of the s-domain pole (T is the sampling period).
$s=\frac{\ln (1-\alpha)}{T}$
As usual the time constant of the filter is the reciprocal of the system pole. Obviously small values of α give rise to a large time constant and the filter can only track or follow trends slowly, without overshooting the
steady state value.
I hofe this note helps to put the record straight and encour ages readers to think about the statistical analysis of data in signal processing terms. Howard Hutchings Humberside College of Higher Education
Hull.

Clipped-sine Fourier analysis

The analysis of a clipped sine wave is not often found in the standard texts, at least in those I have to hand. The results of a little DIY work may be of interest to other readers.
Asymmetrically clipped sine wave. Figure 1 shows the wave $y=v \sin x$ with the negative half-cycle clipped to the value $-v / C_{n}$ and the positive half clipped to v / C_{p}. Clipping is usually referred to in terms of "dB clipping"; in this case,

$$
\begin{aligned}
\mathrm{dBp} & =20 \log \mathrm{C}_{\mathrm{p}} \mathrm{~dB} \\
\mathrm{C}_{\mathrm{p}} & =10^{\mathrm{dB} \mathrm{p} / 20}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{dBn} & =20 \log C_{n} \mathrm{~dB} \\
\mathrm{C}_{\mathrm{n}} & =10^{\mathrm{dBn} / 20}
\end{aligned}
$$

The onset of clipping in the positive half-cycle occurs at an angle α radians. When

$$
\begin{aligned}
& x=\alpha, y=v \sin \alpha=v / C_{p} \\
& v / C_{p}=v \sin \alpha \\
& \sin \alpha=1 / C_{p}
\end{aligned}
$$

or
$\alpha=\sin ^{-1} 1 / C_{p}$.
Similarly,

$$
\sin \beta=1 / C_{n}
$$

or

$$
\beta=\sin ^{-1} 1 / C_{n} .
$$

Note that, with no clipping, $C_{p}=C_{n}=1$ and $\alpha=\beta=\pi / 2$; with infinite clipping $C_{p}=C_{n}=\propto$ and $\alpha=\beta=0$; with symmetrical clipping, $C_{p}=C_{n}$ and $\alpha=\beta$.

The Fourier equation for the waveform in Fig. 1 is

$$
\begin{aligned}
y= & \frac{v}{\pi}\left\{\left[\cos \beta-\cos \alpha+\left(\frac{\pi}{2}-\alpha\right) \sin \alpha-\left(\frac{\pi}{2}-\beta\right) \sin \beta\right]\right. \\
& +\left[\alpha+\beta+\frac{\sin 2 \alpha}{2}+\frac{\sin 2 \beta}{2}\right] \sin x \\
& +\left\{\frac{1}{n_{e}\left(n_{e}-1\right)}\left[\cos \left(n_{e}-1\right) \alpha-\cos \left(n_{e}-1\right) \beta\right]\right. \\
& +\frac{1}{n_{c}\left(n_{e}+1\right)}\left[\cos \left(n_{c}+1\right) \alpha-\cos \left(n_{c}+1\right) \beta\right] \cos n_{c} x
\end{aligned}
$$

where n_{c} is even

$$
\begin{aligned}
& +\left\{\frac{1}{n_{0}\left(n_{o}-1\right)}\left[\sin \left(n_{0}-1\right) \alpha+\sin \left(n_{o}-1\right) \beta\right]\right. \\
& \left.+\frac{1}{n_{o}\left(n_{o}+1\right)}\left[\sin \left(n_{o}+1\right) \alpha+\sin \left(n_{0}+1\right) \beta\right] \sin n_{0} x\right\}
\end{aligned}
$$

where n_{o} is odd, $n_{o} \neq 1$.

Two special cases are of interest: the symmetrically clipped wave and the half-cycle clipped wave.
Symmetrical clipping. Figure 2 shows the sine wave with equal positive and negative clipping. Angles α and β are equal and $\mathrm{dBp}=\mathrm{dB} n$.

The Fourier equation for Fig. 2 is

this case
Half-cycle clipping. The sine wave of Fig. 3 is clipped on the positive half-cycle only. Here, $\beta=\pi / 2$ and $\mathrm{dB} n=0$. The relevant equation is
$y=\frac{v}{\pi}\left\{\left[\left(\frac{\pi}{2}-\alpha\right) \frac{\sin \alpha}{2}-\cos \alpha\right]\right.$

$$
+\left[u+\frac{\pi}{2}+\frac{\sin 2 u}{2}\right] \sin x
$$

Fig. 2

$$
+\left[\frac{\cos \left(n_{e}-1\right) \alpha}{n_{e}\left(n_{e}-1\right)}+\frac{\cos \left(n_{e}+1\right) \alpha}{n_{e}\left(n_{e}+1\right)}\right] \cos n_{e} x
$$

where n_{c} is even

$$
\left.+\left[\frac{\sin \left(n_{0}-1\right) \alpha}{n_{0}\left(n_{0}-1\right)}+\frac{\sin \left(n_{0}+1\right) \alpha}{n_{0}\left(n_{0}+1\right)}\right] \sin n_{0} x\right\}
$$

where n_{0} is odd, $n_{0} \neq 1$.
This reduces to the classic half-wave rectifier Fourier equation when $\alpha=0$ and the odd harmonics disappear.
James E. Diggins
South Ascot
Berkshire

Software engineering advances such as 4GLs have made software cheaper and quicker to develop. Nevertheless. a number of areas remains where the 'software botteneck' is a problem - it's easier to see an application than to code and debug it. A principal difficulty is the so-called 'knowledge acquisition bottleneck' that slows the construction of artificial intelligence and robotics applications
Exhaustively stating the rules required by artificially intelligent systems to deal with all possible circumstances is effectively impossible, even if the principles could be extracted from experts in the first place. Biological systems deal with such problems in a remarkably robust fashion - and they do not need to be programmed, learning instead from experience. The pattern recognition, motor control and memory feats of the world of biology are so impressive it makes obvious sense to try to understand and reproduce the mechanisms involved. The goal is reverse engineering the brain. The result is neurocomputing.

Basics

Artificial neural networks are densely interconnected webs of simple processing units - hard-wired or software simulated - that are not programmed but instead learn to solve problems. Such systems mimic physiology by representing neurones (nerve cells) as individual nodes or units. Each unit receives signals from many other units. If the necessary threshold is reached, the unit sends a signal to other units.

Harnessing neural networks

Neural networks are more than a laboratory curiosity. They find applications in medical diagnostics, weather forecasting, financial markets. They have the power to make sense out of patterns. Nick Beard
and Antonia Jones patterns. Nick Beard
and Antonia Jones explain.
(See box: what happens in a node?) All the processing in a neural network is carried out by these units - there is no "executive" or 'overseer." Networks are trained on data for which 'the right answer' is known, after which they should be able to generalise what they know, responding correctly to novel data. They represent a powerful allermative method of computing and have already found a wide range of applications.

Pattern recognition. An archetypal neural network application is pattern recogmition. Almost any pattern recognition problem can be cast in a form suitable for neurocomputing, and the list of examples is very long. Neural nets have not solved all the problems of difficult pattern recognition tasks, but are now a valuable addition to the armoury. For example, they have been used in sonar target classification,

A ballistics simulation using Neural Works software. This network can predict an impact point within 5% of the figure expected by classic calculation.

The PC piatform provides a relatively easy method of setting up networks. However, even with user fine tuning from entry fields like these, software nets run slowly.

N EURAL NETWORKS

Application areas include:

- Modelling \& Forecasting
- Process Control
- Signal Analysis \& Classification
- Complex Scheduling
- Financial \& Economic Modelling

Scientific Computers - a company having more than 30 year's experience in the fields of simulation and parallel processing - is the European Distributor on behalf of NeuralWare Inc.

We supply the complete range of Neural Network development tools

Our service includes:

On-line technical support- Authorised NeuralWare Inc. training courses
- Consultancy

Find out how you can maintain your competitive edge by calling:

KNOWLEDGE TECHNOLOGY GROUP

Scientific Computers Ltd., Victoria Road, Burgess Hill, West Sussex RH15 9LW

TEL: (0444) 235101
FAX: (0444) 242921

LOW-COSTCOMPUTERISED CONTROL \& AUTOMATION

- The MEG EXECUTOR H Iow cost computer can be programmed in BASIC to control heaters, motors, valves or other actuators in response to signals from sensors or timers.
- Ideal for automating low whime or prototype comtrol applications.
- Complete full-featured BASIC interpreter with floating point maths.
- Programs are automaticaly stored in erasable memory.
- Plug in expansion boards wallebth.

MEG
Instrumentation Ltd

Name
For lurther information complete the coupon below and return to
ME Burumentation Lid
Ecclesall Road. Shettıeld S11 8PL Tel: (0742) 669887 Fax (0742) 630858 Tel: (0742) 669887

Position
Company
Address

Post Code
Tel
Fax
ww/12

CIRCLENO. 132 ON REPLYCARD

VALVES			*SPECIAL QUALITY			Prices are correct at time of press but may tluctuate. Please phone for firm quotation. V. A T included.					
${ }^{\text {A1065 }}$	700	${ }_{\text {EF33 }}$	$2 / 5$ 1.40	PFL200* PL36	2.80 1.60	28000 28014	345 3.75	6CL6 6 CW 4		$12 A T 6$	$\begin{aligned} & 1.95 \\ & 1,25 \end{aligned}$
A2293	7.00	EF39	1.40	PL36	1.60	28014	3.75	${ }_{6}^{6 C W 4}$	7.40	$124 T 7$	125
A2900	1275	EF80	0.55	PL81	1.30	2803 U	21.15	${ }_{6}^{6 C \times 8}$	4.60	12AU'	0.95
AR8	1.40	Efb3	3.90	PL82	0.70	29009	9.50	${ }_{6} \mathrm{Cl}_{5} 5$	1.15	${ }_{124 \times 7}$	1.50
ARf3	1.45	EF85	0.90	PL83	0.70	1A3	1.90	606	250	${ }^{128 a 6}$	2.95
ARP35	1.50	EF86	1,45	Pl84	0.90	114	095	$6 \mathrm{F6C}$	2.90	12856	240
ATP $_{4}$	0.90	EF89	1.60	PL504	1.25	1R5	120	${ }_{65768}$	2.90	12Bh7A	5.36
B12H	6.90	EF91	1.60	PL508	2.00	1S4	1.20	$6 F 7$	2.80	12E1	19.95
CY31	240	Ef92	2.15	PL509	5.35	155	0.85	${ }^{6 F 8 G}$	1.75	12 J 5 GT	1.80
DAF/0	1.75	EF95	1.40	PL519	5.85	$1 T 4$	0.75	6F 12	1.60	12K7GT	1.15
DAF96	135	EF96	0.65	PL802	650	$1{ }^{1} 4$	125	${ }^{6 F 14}$	1.15	$12 \mathrm{K8GT}$	125
De 122	32.80	EF183	0.75	PY80	0.90	$2 \times 2 \mathrm{~A}$	3.80	6F15	3.40	$12076 T$	1.15
DF92	0.95	EF184	0.75		075	3AA	1.30	${ }^{6 F 17}$	3.10	${ }^{12547}$	1.2
DF96	1.15	EF812	0.75	PY81/800	0.85	3AT2	3.40	${ }_{6} 6$ F23	0.75	$12 \mathrm{SJ7}$	1.40
DH76	1.15	EFL200	1.85	PY82	075	${ }^{3828}$	17.50	${ }_{5 \times 23}$	1.15	12SK7	1.45
D192	1.70	EM90	085	PY88	060	306	1.15	${ }^{6513}$	10.50	${ }_{12 \mathrm{~L}}^{12 \mathrm{SO}}$	20
DY86/87	0.65	EL32	085	PY500A	210	3 E 29	21.85	6FH8	18.80	12 Y 4	0.70
DY802	0.70	El34	325	aovo3/10	5.95	354	1.70	${ }^{\text {6GAB }}$	0.65	${ }_{13}^{1303}$	2.80 0.90
E92CC	1.95	El34*	9.50	OOVOM10	7.50	4832	35.00	${ }^{\text {6GHAA }}$	1.95	13D6	0.90
E 180CC	980	EL82	0.70	OOV03/20A		${ }^{5 R 4 G Y}$	4.85 1.85	${ }_{6}^{6 H 6}$	1.90	${ }_{1963}^{19 A O 5}$	1.85 11.50
E1148	0.75 1.50	$\underset{\text { EL84 }}{\text { EL86 }}$	1.35 1.45 1		${ }^{27.50}$	${ }_{\text {5VAG }}$	1.85 190 1	6J4 614 Wa	1.95 3.10	1963 1966	11.50 10.35
EA76	1.60	EL86	1.45	00v06/40A		5V4G	190	GJ4WA 6.5	3.10 230	$\begin{array}{\|l\|l} 19 \mathrm{G6} \\ 19 \mathrm{H} 5 \end{array}$	
E834	1.15 0.60	EL90	1.75 6.50	OOVOG/40A		${ }_{583}^{5 Y 36 T}$	3.45 4.85	${ }_{\text {Wh6 }}^{\text {a/5 }}$	230 1.80	19001	38.00 0.80
Eвc33	220	Et95	1.80		46,00	52ag	2.20	6.6	220	20 E 1	1.30
EBC9O	1.20	Ei504	230	0v03/12	7.40	63007	0.90	${ }^{60} 6 \mathrm{~W}$	2.80	20 P 1	0.60
EBC91	1.15	EL519	7.70	Or4 400	0160	6487	1.85	6.E6C	9.15	${ }^{2516 G T}$	1.90
E日F80	0.75	EL82	7.50	SP61	3.20	6AC7	1.80	${ }^{6156 C}$	9.15	252AG	1.80
E8F99	0.80	EL822	11.50	TB205/400	88.30	6ags	0.60	6ul	535	85A2.	1.40
EC52	0.65	Ellbose	4.50	$\Pi{ }^{T 1}$	47.50	6AK5	${ }_{2}^{1.90}$	6K7	2.20	8782 ${ }^{\text {85 }}$	255 6.35
EC91	520	EMB0	150	$\Pi 22$	45.00	6AK6	2.85	6KD6	13.75	${ }^{5728}$	${ }_{56,35}$
EC92	555	EM87	2.85	Tr.125A	8530	6AL5	0.60	${ }^{616}$	7.80	${ }^{807}$	3.45
ECC81	1.25	EY51	0.90	TY 4004	9.20	6AL5W	1.50	616 GC	9.60	${ }_{817}^{807}{ }^{\text {81 }}$	4.35
ECCB2	0.95	EY81	1.10	UABCso	0.75	6AMS	6.50	${ }^{666 G T / C}$	2.90	811 A	1350
Ecce 3	1.50	EY86:87	0.75	UBF80	0.95	6AM6	1.60	${ }^{6} 18$	0.70	812 A	32.00
ECC84	0.60	EY88	065	UBF89	0.95	6ANBA	3.80	${ }^{6 L D 20}$	0.70	813	2850
ECC85	0.75	EZ80	0.80	ucc8a	0.85	6A05	1.75	${ }_{60}^{606}$	9.15	$8^{813}{ }^{\circ}$	40.00
ECC88	125	EZ81	0.80	UCCBS	0.70	64056	2.90	${ }^{6076}$	1.50	${ }_{8298} 8$	16.00
ECC189	1.20	GM4	11.05	UCH42	460	6AS6	1.15	6SA7*	1.80	$8298{ }^{\circ}$	24.00
ECC809	0.65	GN4	630	UCH81	0.75	6AS7G	4.95	${ }^{\text {6SG7 }}$	180	${ }^{8665}$	14.95
ECFbo	125	GY501	150	UC182	1.50	6au6	0.90	6 S 37	2.50	${ }^{9314}{ }^{\text {a }}$	18.95
ECFB2	1.60	GZ32	2.80	UF41	185	6AX4GT	130	6SK7	1.85	$931 A^{\circ}$	26.80
ECF802	1.80	G233	420	UF80	1.60	6AX5G	130	6SL7GT	435	954	1.10
ECFB04	4.50	GZ34	2.80	UF85	1.45	6B46	1.75	6SN7GT	4.35	955	1.10
ECH35	2.75	G237	3.95	UL84	1.50	$68_{685}{ }^{\circ}$	220	6507	320	956	120
ECH42	1.65	KT77**	16.10	UM80.	2.30	$68 E 6$	1.75	6SR7	4.60	6060	1.95
ECHB1	1.25	M $\times 12001$	29.50	UM84	1.30	${ }^{68 E 6}{ }^{*}$	2.20	${ }_{6 \times 4}^{606 T}$	1.50 1.50	${ }^{6080}$	7.30
ECH84	0.90	N78	9.90	UY82	1.10	${ }^{\text {6BG6G }}$	2.65	6X4	1.50 0 0	${ }^{6136}$	2.80
ECL80	0.75	$0 \mathrm{OB2}$	1.70	UY85	0.85	${ }^{681} 6$	1.75	${ }^{6 \times 569}$	2.75	${ }_{63364}^{61468}$	10.50 33
ECL82	0.95	PCL82	0.95	VR105/30	2.75	6807a	3.95	${ }_{674}^{67}$	2.80	${ }^{63364}$	33.35
ECL85	0.95	PCLPA	0.85	VR150/30	2.75	68R7	4.80	${ }^{624}$		9001	
ECL86*	120	PCL86	0.80	${ }^{\times 66}$	4.95	68W6	6.10 1.50	72 A 906	190 2.15	${ }_{9003}$	6.50 8.50
ECLLP00	17.50	PCL $805 / 85$			11.50 0.75					9003	
$\begin{aligned} & \text { EF9 } \\ & \text { EF22 } \end{aligned}$	3.80 3.90	$\begin{aligned} & \text { PD500/510 } \\ & \text { PFL200 } \end{aligned}$		$\left.\right\|_{7759} ^{2749}$	$\begin{array}{r} 0.75 \\ 17.90 \end{array}$	6C4 6CH6	1.20 7.50		$\begin{array}{r} 1950 \\ 3.50 \end{array}$		
VALVES AND TRANSISTORS FIELD TELEPHONE, CABLE TYPRE DTO FIELD TELEPHONES TYPE 'J'. Tropical in metal cases 10 .line MAGNE TO SWITCH-BOARD. Can work with every tyoe of magneto telephones POSTAGE AND PACKING CHARGES: C1. $2 \mathrm{~B}, 250$, over C20 but below 2 kg E2.65 over 2 kg of Cost NEW HEADSETS mith builitim microonones CAROL HP. 339M at 510.00 Headphone imp 4.16 ohms. Microphone imp at 600 ohms. E-80 at ci5.00 Headphone Imp 416 ohms. Microphone imp at 200 Ohms. Surplus VIDICON P821 and others at $£ 18.00$ 											
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W12 Tel: $081-7430899$ Fax: 081.749 3934. Open Monday to Friday 9 a.m-5.30 p.m.											

CIRCLE NO. 133 ON REPLY CARD
ELECTRONICS WORLD + WIRELESS WORLD December 1990
radar signal analysis, handwriting recognition and electrocardiogram interpretation.

Image compression. Nets have been used to find efficient representations to enable image specifications to be compressed for transmission. The network was able to retrieve a high-fidelity reconstruction of the image after transmission. (See diagram).

System modelling. Chaotic systems dynamic systems that are theoretically deterministic but unpredictable in practice - are commonplace. An example is the weather. Many such systems are often treated as random, but if the underlying dynamics can be gleaned. better predictions might follow than statistical methods would suggest. Neural nets are sometimes able to extract the underlying dynamics, and make effective predictions. An obvious application of such forecasting is economic modelling, where the technique has been used to better effect than moving-average predictions.

Getting the job done

The process of developing a neural network remains something of an alchemic business. Nevertheless, some principles are emerging. The first question, as in any software development programme, is to decide precisely what you want the system to do. With neurocomputing, this means "asking the network the right question", teaching it a meaningful classification system. For example, in training a credit-rating network, it is better to teach it to classify cases as "lend", "do not lend" or "refer" than to predict an accurate loan risk probability. Further

What nappens inside a node?

There are no explicit memory or processing locations in neural networks. Memory and processing capacity are implicit in the interconnections between the nodes. Also, there is no overall supervisor, each node having the same simple features. It is the combined effect of many such nodes acting in concert that gives neural networks their power. A node receives signals, transforms them and sends signals on. Nol all the sources of signals will be of equal importance, so a weight - a measure of this importance - is attached to each connection. It is by varying these connection strengths that networks learn. The various inputs to a node are each multiplied by their respective weights and the results added logether for the node input total.

As in real neurones - nerve cells connections may be stimulatory or inhibitory, and in artificial networks this means simply positive or negative weights or
signals. The input is then transformed according to the network transfer or activation function. This is usually a sigmoidal curve function, though many varieties of function have been studied, such as step and linear functions. Generally, all that matters is that the function be continuous and non-linear. The mathematics of this observation are beyond the scope of this article, but interested readers are referred to McClelland and Rumelhart (1986). In summary, if the function is discontinuous, then it is nondifferentiable, which interferes with the development of the training algorithm (see box Back propagation). If it is linear, then the advantages of multiple layers are lost (see box The hidden layer).

It is important to distinguish between two phases of network operation: learning and recall. These are determined by whether or not the node interconnections weights are variable.
questions include: what network paradigm should be used? Should it be supervised or unsupervised? How should the data be represented? Should the application be fresh-coded, or is an off-the-shelf package available?

There are a number of different paradigms to choose from, each with distinct strengths and weaknesses. A network is defined by three attributes: the network architecture ('wiring diagram'), the transfer function (formula individual units use to process signals), and the training algorithm (the method by which the interconnections are adjusted in the light of experience). For detailed discussion of these, readers are referred to Wasserman (1989).
A further distinction is between supervised and unsupervised nets.

Unsupervised nets are simply presented with data, and self-organise without any external guidance (such as from the programmer). One example is the Kohonen topologising network. This is a matrix of units with interconnections that are stimulatory to near neighbours but inhibitory to more distant units. This is deliberately "wired' after the human cerebral cortex. On presentation of each item of the input data, the interconnection weights of the maximaliy responding node are updated. There is no 'correct answer', the weights are changed by some fraction of the difference between the weight and the input signal. The network converges on a 'feature map' of the data used to train it. One example of an application for these networks is

Noise filtering with Neural Works. The input and output layers use the same mumber of processing elements so that the filtered signal may be accurately reconstructed.

Results of processing: the lower trace shows the original trace with 30% noise addition, the upper trace the filtered result.

NEURAL NETWORK COMPUTING

Talk to the Experts . . .

Recognition Research provides a range of cost-effective neural network software products to meet all your needs.

- AutoNet - an expert system to AUTOMATICALLY build an optimal neural network for your application.
- NeuralWorks Professional II - the world's leading neural network simulation software, with over 4,500 installations worldwide, is a graphically driven prototyping environment with OVER 30 different neural network models.
- NeuralWorks Explorer - the first training and development software that provides a COMPREHENSIVE introduction to neural computing. Explorer is designed to get you started quickly and easily.
- InstaProbe - a unique software oscilloscope, available with Professional II and Explorer, that allows you to monitor and display data values at ANY point in the network.
- Documentation - the two-volume NeuralWorks manual provides over 500 pages including an in:roduction to neural networks, and an extensive user's guide complete with tutorials.
Applications - in Medical Diagnosis, Industrial Inspection, Financial Services, Signal Processing and many other areas.

To find out more about this exciting new technology ...
Call Recognition Research today!

the phonetic typewriter, already being implemented commercially.

In contrast, supervised networks use sample vector pairs (input and output) which are presented to the network in sequence. Desired outputs must be known, unlike unsupervised nets. A training algorithm is applied to the network to adjust the inter-node connection strengths and effect learning.
The simplest supervised network is the perceptron, which was developed in the 1950)s by Frank Rosenblatt. This is a network with only one layer of adjustable connections, and can learn to classify patterns into two categories. It has significant limitations, however. which were recognised by Marvin Minsky and Seymour Papert. Their book, Perceptrons, effectively stopped neural networks research for two decades. Readers interested in a more detailed history of neurocomputing are referred to Simpson (1990). (See box: hidden layer.)

Solutions

Several techniques were developed which did overcome earlier limitations. Back-propagation of errors, (see box: back-prop) has proved a reliable 'workhorse' approach. Back-prop nets are multi-layered perceptrons, with a gradient descent learning method that also finds weights for hidden layers in the network. Patterns are presented to the input layer of the network, producing a random output because all the initial node-interconnection weights are random. These weights are then modified by the back-propagation algorithm. The difference between the random output and the desired output is used to derive an adjustment factor which is then propagated back through the network, changing the weights. The network error gradually converges on a solution - as a set of weights that produce the desired output for all the training data is found. The network should then have generalised - and be able to classify patterns it has never 'seen' before.
A fast variant of back-prop is the functional-link network, where the dimension of the pattern representation space is expanded. An example is where additional inputs are provided to the network, using trigonometric functions applied to the raw imput data multiplied by factors of π.
For example, if the input pattern is (x_{1}, x_{2}, x_{3}), we may instead use (x_{1}, x_{2}. $\left.x_{3}, x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2} x_{3}\right)$ or some pruned subset of these parameters. The obvious disadvantages of this approach is that the scale of the input layer can

There are usually three types of node: input, output and hidden. These are arranged in layers, usually fully interconnected between layers - i.e. each node is connected to every node in the adjacent layer. Input layers have their activation set by the user: this is the data input. These input signals propagate through the network until a signal is formed at the output layer. So the user has 'direct access' to the input and output nodes. However, in between are the hidden nodes. These are necessary for the network to form 'internal representations' of problems. Without them, there are severe limits on the types of problems that nets can solve. Specifically, they are unable to classify items that are not linearly separable (see Fig.1). The classic example is the exclusive-Or (XOr) problem (A or B but not both). To solve XOr (and similar) problems, more layers are required, to enable the network to build an internal representation of the problem.
rise dramatically. However, the resulting network learns very quickly, and if the dimensional enhancement is carried out appropriately, only a single layer network is needed.
A network does not always immediately converge on the ideal solution. The output error may settle on a stable high-error value, or else may oscillate wildly between high and low error states. The process of training a network is one of searching an "error surface" for the set of interconnection weights that will solve the problem. This "surface" is in fact a high-dimensional space, with eack dimension representing the weights for a particular node. Networks are trained

Nets in hardware can perform image compression and reconstruction with a useful degree of accuracy.

Fig. 1. simple nets can only solve simple problems
However, the user has no direct connection with the hidden nodes, so training them is difficult: how can we know how these nodes should behave? According to Minsky and Papert, seeking such solutions was likely to be a sterile project. In fact, solutions to this problem prompted the resurgence of research and investment in neural networks in the last decade. One of the most successiul has been the back-propagation of errors method, (see box Back propagation), another is simulated annealling.
by some means of determining the lowest error point in the space.

What happens?

The basic operation of neural networks is classifying patterns. This is roughly equivalent to 'curve fitting' in the high-dimensional space, though in a fashion that is not yet susceptible to rigorous mathematical analysis. A problem when training a network on complex datasets is 'false minima'. The training process involves searching an error 'surface" by gradient descent, and the network can sometimes get stuck in an error pit that is not a sufficiently low error to give a useful solution. One approach is to add noise to the weights at each learning cycle, to jolt the network out of false minima when necessary. Oscillating weights are com-

batted by adding an extra term - called momentum - to the error signal (see box on back prop) in the learning algorithm, to keep the network moving rapidly towards the required solution, but slowing it down as it begins to converge and becomes more sensitive to weight changes.

Data representation

With a singlee layer of input nodes, data representation requires some thought. Is the representation to $\mathrm{b}=$ digital or analogue? The choice depends on the type of data involved, and its suitability to a digital representation. In addition, an analogue representation makes less sense if the output nodes use a clipped (threshold) transfer function.

The next choice is between local and distributed representations. Representing the 26 letters of the alphabet with a local representation would require 26 digital nodes, each one representing a different letter. A distributed representation could represent the numbers 0 to 8 with three nodes using binary coding. There are variants on these themes, such as using a "histograr. representation along the input layer. A local representation requires less learning by the network.

It is not always clear how a networs has solved a problem, and so its conclusions must be checked empirically. At least a third of the available data

Back propagation

Back prop is one of the most widely used methods of training neural nets. This was developed independently by several people, but was made widely known after cognitive scientists Rumelhart, Hinton and Williams described it in Nature in 1986. It had the immediate effect of answering Minsky and Papert's criticisms of perceptrons that had stifled neural network research.
In order to train a back-prop net, a series of patterns for which the correct answer is known is presented to the input layer of the network. This could be state of the stock market for which the next days' prices are known. After each pattern in the series, the actual output of the network (which will usually initially be random) is compared with the desired output. This difference is 'fed into' a formula based on the first derivative of the network transfer function, to derive an error signal - positive or negative that is then added to all the nodes in the network.

This method will gradually minimise the output error, though it is only guaran teed to find the local minimum, not the global minimum. Repeated attempts at training the net may be necessary to optimise its performance.
> "It is not always clear how a network has solved a problem and so its conclusions must be checked empirically"

should not be used in training the net, and should be retained for testing.

Software: program or purchase?

A frequent question when about to embark on any project is 'package or bespoke'? Should you buy off-the-shelf software, or code-up from scratch? There are no simple answers. If the goal is to produce working nets quickly and with the minimum of fuss, then it makes sense to use one of the commercial packages. An examination of commercial software provides insight into the development process.

NeuralWorks. NeuralWorks Profes-sional-II is an advanced network development environment, available for PCs, Mac, Sun workstations or N -Cubes. It is mouse-and-menu driven, enabling a wide variety of customisable networks to be selected and configured to any particular application. An outstanding feature of the software is the documentation, which contains a text-book-quality introduction to neurocomputing as well as a detailed description of how to use the software.
The networks 'provided' within NeuralWorks include: Adaline, ART1 (adaptive resonance theory), BAM (bidirectional associative memory), numerous back-prop variants, counter propagation nets, Hamming, Hopfield, Madaline and Perceptron networks, and many others.
The opening menu includes help, Instanet, and various network definition options (layer, unit, connection, etc). Instanet is a quick way to get started. It provides ready-made constructions of most of the common neural net paradigms, which are readily user-definable to fit particular applications.

The network is initialised with random or user-defined weights, and then needs to know the title of the training data files. A further menu option is used to display an 'Instrument', which is a graphical representation of any of the network parameters. Commonly this will be the output layer error, but
other values can be displayed if of interest.

Data preprocessing will almost always be required in neurocomputing applications. For example, when data items are absent some alternative value is needed, usually the mean for that field. NeuralWorks minimises the trauma of I/O handling. Node transfer functions expect input values between 0 and 1 , and usually constrain the output to that range too. This can be an added complication to the data preprocessing stage, but NeuralWorks helps by scanning input files to find the minimum and maximum 'real world' values to produce a 'MinMax' chart. The user can then specify the range of values to be presented at each input field. Scales and offsets are calculated automatically. To make life even easier, NeuralWorks accepts data in numerous formats, including ".PRN" as used by Lotus 123 and Excel, binary, and its own ASCII-based format. Users can write their own I/O functions, to be called by NeuralWorks.

A recent addition to the program is the User-defined Neurodynamics addon, which allows advanced users to develop their own summation, transfer, output, error and learning functions in C, and to link them to NeuralWorks. Samples are provided to suggest methods of implementing novel functions.

NeuralWorks is a serious package, for real applications. It would as well serve a neurocomputing lab as it would an industrial computer consultant operating in this field (and there are an increasing number of them!). NeuralWorks can be also used in conjunction with the Designer Pack, which takes networks that were trained and tested in the NeuralWorks development environment, and turns them into C source code. As the product promotional leaflet notes: I did it on my PC but the boss wants it on the mainframe!

NeuralWorks is an extremely powerful package, offering a good combination of flexibility and functionality. It places neurocomputing properly in the world of real engineering.

Nick Beard trained in medicine and psychiatry before joining the computer industry. He also recently completed an MSc in knowledge based systems at Imperial College. He is an IT consultant with Price Waterhouse.
Antonia Jones is a Senior Lecuturer in Computing at Imperial College, London, working in the field of adaptive pattern recognition and neural nets.

HALCYON ELECTRONICS

Computers, test equipment, video monitors, amateur radio gear, oscilloscopes, scientific instruments, connectors, printers, power supplies, communications, disk drives, multimeters, component bridges, frequency counters, signal generators, semi-conductors, integrated circuits, etc.

 FARNELL E350 STABILISED PSU'S 0-350V IOOMA. VIA METERS. 6.3V 2A CT. 0-2.5-5-6.3V 3 A

 LINSTEAD M28 MILLIMOLT METERS, BATT OP, PORTABLE RANGES $12 \mathrm{NV}-400 \mathrm{~V}$ AC. $120 \mathrm{NV}-400 \mathrm{~V} D C$ ZENITH 3 PHASE VARIAC 270V 25A 50HZ C99 MICROWAVE ITEMS BY HP. KELTEC. YARIAN. ETC DIGTEXT 7 SEG DISPLAYS 12^{2} TECMAR QIC- 6 OH LEAKSEEKER 46 PORTABLE GAS DETECTORGOULD KIOO D LOGIC ANALYSER
C995 METROHM 9A 250V MEGGERS
DATA PRECISION 6000 WAVEFORM ANALYSER EVO9S OTHER MEGGERS MEGGER BRIDGES -FROUC15
WITH 681 TWIN DISK DRIVE UNTT FOR ABOVE HP 9825 DESKTOP COMPUTER WITH 15263A
LEADER LCG 396 NTSC PATT. GENERATOR C395 CARD READER
DECCA VOYAGER (MARINE), PSU. HANDSET
LEADER LBO-9C ALIGNMENT SCOPE
QUBEX OA 200 DISK DRIVE TEST UNIT
HITACHI CW2OT3A301 20" RGB, 6 GKKZ SCAN CAD.DTP
14" MICROVITEC 1456DGB. CGA NEW $14{ }^{4}$ MICROVITEC 1456 TLLIN BBC, etc NEW P4000 \& EP4000 EPROM PROGRAMMERS EA
 RACAL 1772 S S2 RB3 FO ac RECEIVE
CONAAC 7211 H-RES RGB MONITOR CONAAC 7211 HI-RES RGB MONITOR
OSCILLOSCOPES DUAL TRACE FTOOM ᄃ80 UDI 2026 SONAR SCANNER. SURFACE UNIT C249 SALLOR 66TS MF NARINE RECEIVER £1995 ZXB1. 16K RAMPAK. PSU. MANDBOOK NEWBURY TERMINLLS 9509L NEW
cass NEWBURY TERMINAL 8002 NEW
c159 GETRONCS VISA 95 TERMINALS c159 OTHER TERMINALS FTOO LIS9 EOUINOX COMPUTERS C1950 DEC RXO2M-MD TWIN DISK DRIVES HANDHELD MONTOR TESTER FOR IBM MONO CGA EGA

OSCILLOSCOPES SINGLE TRACE FIOM 12^{2} GREEN SCREEN MONTORS FFOM 24° VIDEO MONITOAS BSW. SOUND From
 SIGNAL GENERATORS. AF TO 5GHZ FTOM
GALLENKAMP MAGNETIC STIRRER -HOTPLATE 9 - BSW MONITOR WITH PULSECROSS. ETC PLESSEY INVERTERS 5OV OC TO 240V SINE 3 SONY UMATIC VTEO30 + RF \qquad
1000 'S OF UNLISTED BARGAINS FOR CALLERS
QUALITY ELECTRONIC EQUIPMENT BOUGHT. ALL PRICES EXC. OF P\&P AND VAT
423, KINGSTON ROAD, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT TEL 081-542 6383

CIRCLE NO. 135 ON REPLY CARD

A two year guarantee on all our second-hand Test and Measurement equipment!

To give you the confidence that you really did save money hy buying second-hand. we are the only company to offer you the protection of a two year parts and labour guarantee on all the Test and Measurement equipment we supply.

Dealing in equipment from the leading manufacturers such as Hewlett Packard. Tektronix. Marconi. Philips, Gould. etc.. we can offer you the hest in test. Call us now for more information.

0800521231

Capella-Technos, Park Ilouse, The Pavilions, Downmill Road. Bracknell. Berkshire, RCil2 I(2S. Fax (0,344 8692,30
business ends that mean business

The Antex range of soldering irons and soldering stations have a well-deserved reputation throughout every industry where high quality soldered joints mean the difference between product success and failure.

But equally important are the business end components. The bits themselves.

Antex offer a comprehensive range of SMT de-soldering bits to fit Antex CS; TCS; XSTC; and XSD soldering irons, as well as all the irons in their new industrial range - A245, A545 and A718.

They are available singly or in packs of 12 with a tray.

The bit tray itself is also available separately (and takes most competitive bits).

The entire range is available from leading electronics distributors.

Remember. Antex quality means good business.
Coupon to: Antex (Electronics) Limited 2 Westbridge Industrial Estate Tavistock, Devon PL19 8DE

Please send me full details of the Antex range of soldering bits and trays. \square (Please tick)

I am also interested in the complete range of Antex soldering products. \square (Please tick)

Name \qquad Position \qquad Organisation
Address

The Fuzzy Set Comparator evaluation kit is based on the MDI210 chip from Micro Devices, which allows the comparison of an unknown set of data against several known patterns to find the closest match even for especially!) when the data doesn't match exactly.

MD1210

In the MID 1210 chip, a serial input data stream is compared with patterns previously stored in memory - ram, rom or both. If the input stream is not 100 different from one of the stored patterns, a match is declared (see Fig. I).

Each chip compares its input with up to eight patterns, and up to 32 chips can be interconnected to compare simultancously 256 patterns with one unknown. Each pattern may be up to 64 K bits long (longer with extra ha-dware), and can be formatted as words from 1 to 8 hits wide; the chip tates care of mapping, say, an 8 K by 8 -bit image into the 64 Kbit memory. MD 1210 performs many comparisons in parallel and at high speed, the unknown input pattern being accepted at up to 20Mbit/s.

An unusual aspect of the 1210 is that it uses a neural network internally to identify the nearest matching pattern. Surprisingly, it doesn't use the network in the matching process directly, but as a replacement for conventional logic to determine the least of eight 16 -bit

Neural nets and fuzzy sets

accumulators. An incoming pattern is converted to parallel words, and compared, word by word, with the known patterns stored in memory.

A difference value is accumulated for each of the known patterns as the sum of the absolute difference between the known and input words. Thus, after the unknown pattern has been input, each of the known patterns will have a 16-bit value which indicates how close it was to the input pattern. The "winning" pattern is the one with the lowest closeness value, provided that it is not greater than a preset threshold value

The neural network, which is entirely pre-programmed to perform its task, and cannot be altered, performs this final comparison of eight 16 -bit values, together with the threshold

Fig. I. Simplified block diagram of the MD1210 chip. The magnitude comparators also perform the serial-toparallel conversion if the data has more than I bit per word.

[^0]value and those from any other connected 1210 chips. It is interesting to see the technology appearing in this way, as a means to an end rather than the core around which the rest of the system is based.

Evaluation kit

A PC card carrying one MD1210 chip and software that runs under Windows version 2 compose the kit. Run-time Windows is supplied for those people that do not already have it. There are 64 Kbit of ram for each of the eight channels and a video input that can supply the "unknown" data, which can be stored for later recognition.

Documentation takes the form of a data sheet for the 1210 and a manual for the kit in the form of a spiral-bound book containing installation instructions, an overview of the 1210 , a section on Fuzzy Logic theory, a full description of the hardware and a series of experiments that demonstrate the 1210. However, some of this is superseded by a UK update, which sometimes makes it hard to find information easily. Update UK1.00, which does not correspond with the software, came with the kit and caused some confusion, but Tubb Research was prepared both to post and to fax the correct version (UK1.01).

Software

Running under Windows allows the software to present a pleasant face to the world. It allows a wide range of control, from bit manipulation of the 1210 registers through to demonstrations of the chip's abilities, using pictures. The diversity of commands would be confusing if it were not for the experiments described in the manuals, which give clear demonstrations at all levels.
A main screen always shows the current contents of all the 1210 registers, which can be changed merely by overtyping with new values (Figs. 2 and 3). The system defaults to showing control registers in binary, and address and counter registers in hexadecimal, but allows hex. and decimal respectively as an option.
Apart from setting the registers, the screen allows control of the mode of the 1210 . In normal use, a comparison

Fig. 2. MD1210 register set. The eight accumulators can also be read, so that the chip needs a total of 16 addresses. Bit 7 of register 1 controls access to the high and low bytes of 16-bit values.
would take the chip through at least three of its four modes: reset, which does what its name suggests; data entry, which allows the input of unknown data; and report, which tells the chip to perform the comparison of the accumulators. The fourth mode, wait, is entered at any time - including between bits of input data - to allow any synchronisation required. In the kit, data entry is from the video input, a disk file or one of the rams; in this last case that ram would normally be excluded from the comparisons.

Another scrollable window, attached to the main window, shows a history of interrupts generated by the chip. Although the card can generate true interrupts, under the Windows software these are disabled and the 1210 registers polled to produce this information. The number of interrupts remembered was a little unpredictable (perhaps it is dependent on memory) and, when scrolling back, the first few lines of the list always contained rubbish. However, it never failed to recall at least a dozen messages, which would be enough for most purposes.

In the 1210 , any one of the ready, overflow, learn or win conditions triggers interrupts, which can be selectively disabled. Overflow occurs during the data entry mode if any of the accumulators cycles past FFFF(hex), although the chip will automatically remove the accumulator from the comparisons. A learn interrupt is caused by an incoming data stream that has been written to ram not matching any existing data (i.e. a new picture has arrived). Ready and win interrupts are selfexplanatory.

One can open further windows to display the contents of each of the pattern rams. If system memory allows, all eight can be on screen at once, although this leaves very little screen area for anything else! This is only of real use when working with the video input (or the sample images supplied), but does give a distinctive pattern for other data. Video input is monochrome only, but the pictures can be displayed in mono or false colour, as in Fig. 4. The system maps each of the grey levels to a different colour, which surprisingly results in a better display than the straight monochrome image.

To load the pattern rams, the chip has a "learn" variation of the data entry mode, which channels the input data into a selected ram; comparison with the other rams can be performed simultaneously. In the development system, the software allows many or all rams to be loaded from different files in one operation and gives the rams the name of the file from which they were loaded.

Video input provides an excellent example of the capabilities of the chip. It grabs 192 samples per line, every other line, in the odd frames only, the samples being in the form of 2-bit grey scales. This sampling method reduces the data to fit into 64 Kbit , but still leaves (just) recognisable pictures. Having learned several pictures, the chip will decide whether live input from the camera matches any of the known scenes. Despite the fact that the kit runs the 1210 at nowhere near full speed, matching is effectively instant; the only delays are caused by updating the on-screen display of the incoming image, if present. It is here that a fast processor and display card are highly

desirable, as they hoth significantly affect the screen update rate.

Since there is rudimentary control of contrast and no brightness adjustment at all, the interface supplied would not be suitable for a final production system. However, as a demonstration of the 1210 , it is quite spectacular and I had no difficulty in connecting a camera. Synchronisation was not perfeet with videotape output, but with the adjustments provided (hardware contrast control and software for synchronisation), the camera performed perfectly.

Using the development kit, incoming pictures can be learned into memory and subsequently stored on disk. Stored pictures can be printed (using any printer supported by Windows.). but the system does not appear to allow for the grey-scale information, with the result that printed output does not exactly match the data the chip is "seeing". Given that the pictures are small. it would be better to enlarge tive printed area by a factor of two in each dimension to allow a simple dithering

Fig. 3. Main screen. Register values can be changed by overtyping, except the top bytes of the accumulators.

Fig. 4. Images displayed in mono and

 false colour. Default size is optimised for fast screen updates, but they can be sized and stretched like any window. "Linda" is one of the sample images, which are all of employees of Micro Devices.technique to show the four levels of grey.
While being transferred to and from disk, any picture may have noise added to it in $0.01 \%, 0.1 \%, 1 \%$ or 10% increments. as in Fig. 5. This is used to demonstrate matching when no video source is available and is a good demonstration of non-exact matching. The chip was most impressive in its ability to recognise correctly pictures buried in noise, although in a real-

Fig. 5. Testing pattern matching ability with video picture material. The development board could happily sort out pictures with up to 10% added noise superimposed on the signal.

world application this woukl depend on the images to be recognised being sufficiently dissimilar.
The development system concentrates on the video images, because these provide a good demonstration of the 1210 . However, there is full support for those wishing to experiment with their own data. A separate application note describes modifications to the video interface to accept other signals and full circuit diagrams (including listings of the pals) are included.

Software drivers are provided in source form and are very comprehensive, including a number of routines which are not directly relevant to the 1210, hut which might prove useful. The interface code used in the development kit is also included, as a working example. All the code contains enough comments to be readable to a competent C programmer and is in Microsoft C 5.1 (apart from a minor excursion into 8086 assembler for the display example), but should be transportable to other systems with little effort. The manual is at pains to point out that the code is non-proprietary, and may be modified and used as desired without incurring royalties.

Applications

MD1210 is probably at its best in a dedicated (or turnkey) system, rather than being added to a general-purpose computer such as a PC. Any system that performs pattern matching could benefit, although the best gains would be where the patterns to be matched are at least several kbit in size.

Used directly with raw data, the chip has many applications based on pictorial input, either from a video camera or a flat-bed scanner. Possibilities that spring to mind include production-line
quality-control systems, especially those where slight variation is acceptable, such as in food or confectionery production, simple characterrecognition systems and paper currency recognition. Systems could also find use in medical or biochemical laboratories to automate routine tests. Nonpictorial uses might include noise analysis of machinery to detect faults before complete breakdown - an application that is currently very expensive to implement
One problem with all the comparisons is that the chip cannot cope with "offset" data when the object in a picture is slightly to the left or right of the learned pictures. However, in many cases it may be possible to eliminate this by pre-processing the data; for example, rather than attempt to match speech input directly with "known" words, the speech could be analysed into sound type and length, and this data compared with known values. Similarly, rather than comparing pictures of fingerprints directly, which would not allow for stretching or other distortions, one could analyse

System requirements

The FSC evaluation kit requires at least a PC capable of running Windows, i.e. 512K memory and a graphics screen. A mouse is recommended. To make best use of the kit, Tubb recommend a minimum of an EGA screen and a 12 MHz i286 processor and they claim excellent results from a 16 -bit VGA screen with a 25 MHz i 386 .
relative positions of ridges, and match the resulting data

Conclusion

This kit is one of the best I have encountered: it has been well thought through to provide an excellent introduction to the 1210 chip. Documentation would be improved by incorporating the addenda into the main book. but the existing organisation is not a major drawback. The kit makes it very easy to learn the capabilities of the 1210, and it can answer most, if not all, of the small but important detailed questions that always crop up during the design and testing of a product.

The MD) 210 chip itself is a capable device, which can perform fuzzy comparisons which would be prohibitively expensive to implement any other way. I would prefer to have a parallel input function, although this would need extra pins. They could be found by changing the memory interface to a multiplexed form suitable for dynamic memories and the chip could then also provide the refresh function. However, this would make interface to roms more difficult, so there are arguments for both sides.

I would recommend anyone who thints they may have an application for this chip to get the evalluation kit. Even if you don't use the chip after all. youl can have fun learning about it!

Supplier

The FSC evaluation kit costs $£ 499+$ vat and is available from Tubb Research Lid., 7a Lavant Street, Petersfield, Hampshire GU32 3EL Telephone: (0730) 60256 Fax: (0730) 60466

PC WAVEFORM GENERATOR

FEATURES

* Powerful complex waveform generator
* Four analogue outputs
* Five TTL outputs
* External trigger input
* Up to 6 MHz clock rate
* Comprehensive software included
* Standard waveform library
* User definable waveform library
* Full graphical editor
* Time delay, continuous \& single shot
* Example microcode and assembler also included for OEM applications.

Unit 14A, Sunrise Business Park, Blandford Forum Dorset. DT11 8ST. Telephone (0258) 451347 Fax (0258) 456046

- Arbitrary waveform simulator
* Low cost ATE
\star Process control
* Robotics

FREE DEMO DISK
ON REQUEST

We also supply a full range of DIY parts for PCs and clones. Call us for more information or a free catalogue.

INTELIIGENT MEASUREMENT AND CONTROL

* MCS-52 basic with full floating point and trig functions
* Four 12 bit A to D converter, 25μ secs conversion
* One 12 bit D to A converter
* Battery backed real time clock
* 32K Battery backed RAM
* 16 K Eprom and on board Eprom programmer
* Six by eight bit digital ports
* RS232 and networked RS485 interface
* Serial printer port
* Direct drive to a LCD/Vacuum fluorescent display and user defined keypad or VDU
* Automatically calibrates to any dumb terminal

WARWICK INDUSTRIAL ELECTRONICS LTD

UNIT 19, RIGBY CLOSE,
HEATHCOTE INDUSTRIAL ESTATE, WARWICK CV34 6TH § NATIONAL (0926) 334311 - NORTH WEST (056 587) 3540

The electronics industry is at the heart of the struggle to save the earth's ozone layer. Companies that make semiconductors use ozone destroying chemicals that, under a UN agreement, will be illegal in ten yecrs. Some firms are panicking, some are trying to ignore the inevitable cind more are desperately awaiting substitutes - which chemicals companies will be happy to supply, at a price.

Others have looked beyond the old processes and discovered that wha is good for the ozone can also be good for corporate profits.

Ozone depletion

Ozone $\left(\mathrm{O}_{3}\right)$ is often portrayed as a "bandwagon" issue promoted by a fashionable environmental movement. It is not; it is the layer of gas in the upper atmosphere that shields life on earth - all life. from people, to the algae in the sea that produce our oxygen - against harmful rays from the sun. Ozone is destroyed by chlorine. Several chemicats invented in the 1950s, notably chloroftuorocarbons (CFCs), have turned out to be remarkably good transpotters of chlorine to the upper atmosphere. Scientists have proved beyond any doubt that these chemicals are destroying the ozone layer.

Ozone has already diminished by an average of 3% over the whole planet, with heavier losses over the temperate zones of the northern hemisphere and so much damage over Antarctica that it is called an "ozone hole". As a direct result, increased amounts of deadly ultraviolet light are already hitting the earth's surface. Ultraviolet that normally gets through is enough to cause suntan and sunburn; increased amounts will cause damage ranging from cataracts and skin cancer to dead wildtife and damaged crops.

In 1987 scientists working for the JN convinced many of the world's nations to sign a treaty limiting the production of chemicals that destroy ozone. Last June. in the face of yet more worrying scientific evidence, many more countries signed up. They strengthened the treaty so that most of the worst chemicals will be banned by the year 2C00.

Printed-board cleaning

This leaves electronics firms in a bind. After assembly. electronic circuit hoards must be cleaned of dirt and

Lose the CFCs; keep the profit

> The ozone layer is under attack by chlorofluorocarbons used by the electronics industry, among others. Debora MacKenzie points out that ozone-friendly alternatives could make financial sense

grease, and particularly of the residues of solder flux. Such debris can cause shorts and malfunction. Many firms use CFC-113 as a cleaning fluid. since it is a good solvent, easy to handle and chemically inert. It is also responsible for

Semiconductor makers: looking to water to save the ozone layer?

16% of the ozone damage so far. It will be illegal in ten years.

Some companies, and surprisingly some of the most innovative when it comes to products and marketing, have reacted as though they had lost a favourite toy. The Japanese electronics industry officially "sees no effective solution other than conservation of CFC-113 ... within ten years". This means using it, but keeping it from evaporating readily.

That is probably the best short-term way to cut emissions of CFC-113. The US Environmental Protection Agency says taking more care with CFC-113 can "cut the cost of operating the solvent machines in half". Margaret Kerr, head of safety at Northern Telecom, Canada's largest electronics manufacturer, says replacing manual cleaning procedures with closed, automated cleaning machines cut consumption of CFC-113 from the usual two kilograms per square metre of circuit board to half a kilogram.

This might cut emissions in the short term, but CFC-113 is long-lived and hard to destroy, and eventually must end up in the ozone. Recognising this, the ozone treaty bans both its manufacture and trade. Not even products made with CFC-113 will be legally exportable to countries that have signed the treaty, which include all of Europe and North America, Japan, the Soviet Union, Australia, India, China and others. This provision, and the looming export problem it entails. seems to have gone unnoticed in Taiwan, which has held out against signing the treaty and recently invested in production facilities for CFC-113.
Instead of such stonewalling, other electronics firms are hoping to be rescued by the companies that brought them CFC-113 in the first place. "As an industry, we are leaning on our chemicals suppliers, hoping they will come up with substitutes." says the environmental manager of one American semiconductor company.
Chemicals suppliers, despite feverish research over the past few years, have not yet produced an alternative. CFC113 is used because it is stable, but it is this very property that allows it to persist in the atmosphere long enough to reach the ozone. Substitutes in the same family of chemicals that do not harm ozone must therefore be less stable.

This means that they are not the simple "drop-in" substitutes companies want, but require investment in different handling facilities, notably to prevent combustion. This is true of HCFC.

141b, a hydrochlorotluorocarbon produced by the British firm ICI. The American company Du Pont makes HCFC-141b more stable by blending it with methanol and another new relative of CFCs, HCFC123.

There are problems with both approaches, beyond the investment required for new equipment. One is that the new relatives of CFCs are less damaging to the ozone, but not wholly safe; HCFC-141b can cause 10% as much ozone depletion per molecule as CFC-113. Scientists are also finding that these chemicals share another unhappy property with CFCs: they are powerful greenhouse gases, and add to the global warming now worrying scientists.

Hence, the new CFC substitutes themselves could well be banned under impending versions of the ozone treaty, or under treaties now in the works that will limit greenhouse gases. This may turn out to be no bad thing for electronics firms, since the substitute chemicals and blends are all patented. Chemicals firms are being discreet about prices, but admit they will cost some three times as much as the old CFCs.

This stands in stark contrast to estimates compiled this year for the UN on the costs of adhering to the ozone treaty. The US Envirommental Protection Agency estimates that replacing CFC-113 with water-based cleansers, instead of chemicals similar to CFCs, could require an investment, for each cleaning machine, of $\$ 10-13,000$. But then, the annual operating costs of the machinery fall by $\$ 1800$ to $\$ 25.000$, which means that even the most expensive new equipment will have paid for itself in five or six years, something that would not be true of the new equipment required to handle HCFC-141b.

Introducing water-based cleansers does require some thinking, because

The chemical industry takes the view that water-based cleaning processes cause pollution problems of their own. Aqueous cleaning creates effluent comprising a mixture of water, cleaning chemicals and oily residues. While there is more contamination in the cleaning fluid than the rinse water, the latter is discharged in large volumes. Chlorine-contaminated dirty water in bulk is expensive to purify before discharge.

ICl advocates the use of sealed, volatile solvent cleansing chambers (shown in the photo) to remove manufacturing residues. These chambers release only small volumes of solvent to the outside world through the use of solvent recovery systems. This, claims ICI, could allow the use of CFCs and related compounds with minimal damage to the environment.
none is a universal substitute for CFC113. Some are better suited to some applications. They include simple deionised water, squirted at high pressure, or mixed with alcohols or deter-gent-like solvents called saponifiers. Such mixtures can be cleaned and
Ozone-friendly profit

Environmental groups declared last year that creative, money-saving options to ozone-damaging chemicals are being neglected, because "private investment into alternatives (to CFCs) is disproportionately controlled by the CFC. producing companies who are overemphasising the development of close variants of the current chemicals". One can hardly blame the chemical companies for this. Du Pont and ICI can make no profit selling small volumes of propane to refrigerator manufacturers, or deionised water or propanol as a cleaning solvents to electronics firms.

Those consumers will make the final
decisions about what technology is adopted to replace CFCs. In the end it may depend on how much access they have to information about alternatives to CFCs that are cheaper, safer, and more profitable, if not for the chemicals industry, then for the users. Alternatives will, by law, have to be found. In electronics, it is already clear that altematives to CFC-113 are available that will cost less, protect ozone better, pay for themselves faster, and perhaps even work better than the replacements on offer from your usual chemical supplier.

The semiconductor industry uses significant quantities of hazardous chemicals and has long been aware of environmental safety issues.
recirculated to avoid problems with disposal of waste water.
Sweden has pledged to rid itself of CFC. 113 by next year. Husamuddin Ahmadzai, of Sweden's National Environmental Protection Board. says the best results in Swedish factories have been obtained with alcohols. such as ethanol and isopropanol, which are cheap and plentiful. They are also flammable. but using enclosed cleaning machines filled with nitrogen defeats this problem. The solvents are so cheap, he says, that equipment pays for itself by saving what would have been spent on CFC-113.

Swedish companies are also trying to avoid the cleaning process altogether. says Ahmadzai, by using laser welding or conducting glue instead of solder. Low-solid soldering fluxes that leave less residue can be used without cleaning. for any circuit board that can tolerate contamination of up to the equivalent of one microgram of salt per square centimetre of board. Aqueous cleaning leaves one-fifth of that, while alcohols exceed the exacting US military standard. says Ahmadzai. Kerr. of Northern Telecom. says some circuits need not be cleaned to as high a standard as they often are.

Northern Telecom is one of several companies experimenting with Bioact EC-7. owned by AT\&T and developed by PetroFerm. a company based in Florida. It is a water solution of terpenes, which are oily chemicals extracted from orange peel: Kerr says it can work better than CFC-113. It is flammable. but enclosed cleaning machines solve the problem. Since such machines are also necessary for other means of cutting CFC-113. such as
preventing evaporation or switching to HCFC-141b, companies could find it more profitable to switch straight to aqueous cleaning and use a cheaper solvent.

Such lateral thinking, away from dependence on the same chemicals companies that sell CFCs. has been rare in the response of industry to the ozone treaty. One reason for that could be an innate reluctance to abandon long-established buying practices or to invest in new technology. It could also be that the researchers working on innovative solutions to the replacement of CFCs are not in big. well-funded. well-publicised chemicals companies. whose interests lie with a new generation of patented chemicals.

Refrigerators

Replacement of CFCs as coolants in refrigerators, for example, is widely assumed. even by advisors to the UN. to depend on the next generation of chemicals similar to CFCs. Like the proposed substitutes for CFC-113 as a solvent. the substitutes for banned CFC-12 or CFC-11 as refrigerants are themselves damaging to ozone or they are greenhouse gases. At the very least. they are going to be three times as expensive as the chemicals they are meant to replace.
This is not true of propane, a simple hydrocarbon that is a more efficient transporter of heat in cooling equipment than CFCs. The refrigeration industry used to use propane, but abandoned it when CFCs were invented: the ten or more litres of propane coolant that an average home refrigerator then contained was a fire hazard. Modern refrigerators contain only about 100 ml of coolant, however. making propane once again a cheap. attractive option.

It has not been considered by major companies, says John Missenden, head of the Institute of Environmental Engineering at South Bank Polytechnic in London, because of "entrenched attitudes" in the refrigeration industry. He thinks propane can be used as the coolant in an average refrigerator without hazard, pointing out that there is often more propane in a table-top cigarette lighter. And propane. Missenden notes, costs a mere 50 p per kilogram, while HFC-134a, the replacement for CFCs proposed by the chemicals industry. will cost $£ 30$ per kilogram.

HFC-134a is also a greenhouse gas. This September. an international panel of scientists advising the UN strongly recommended that such substitutes for
banned CFCs, even if they do little to deplete ozone, be avoided, or they will contribute heavily to global warming. This dims the long-term prospects for HFC-134a.

The same story of neglect is true of another technology, absorption refrigeration. in which common chemicals such as water and ammonia can transport heat. Such refrigerators make no noise. because they do not use mechanical compressors to re-condense the coolant and release its heat. Instead. it is absorbed by another chemical, such as lithium bromide. Georg Alefeld. of the Technical University of Munich. says absorption refrigerators can even run on less energy than standard models.

Insulating materials

Half the CFCs in a refrigerator, and 21% of all CFCs. are in plastic foam. used as insulation. packaging and upholstery. The chemicals industry has proposed HCFC-123 and HCFC-141b to replace the banned CFC-11 now used to puff up foams. Both can deplete ozone and are greenhouse gases. HCFC-1+1b is flammable.

The European Isocyanate Producers Association, which groups the major foam producers in Europe, says it has cut its use of CFC11 by 70%, partly by using water as well as CFC to blow the foam. It says HCFC-123 and HCFC. 141b will allow the foam industry to reduce the damage it does to the ozone by 95%. The West German parliament has already called for such chemicals to be regarded as interim measures. for use only until the year 2000, however, because they do hurt ozone.

Simple carbon dioxide can be used to blow flexible and rigid foams. It increases the width of rigid foams needed for insulation by about 5%. This is not a serious penalty in home refrigerators, though it would slightly reduce the capacity of an insulated truck or freight car. Kabelwerk Eupen. a West German firm. has developed a process in which a chemical reaction generates carbon dioxide and monoxide to puff up flexible foam.

Most promising for insulation is the development, in California and elsewhere, of vacuum panels that are more efficient than foam in insulating refrigerators and can pay for themselves in energy savings. This also means more fuel efficiency, in turn reducing the pollution from coal and oil; the US government estimates that it could save billions of barrels of oil a year if people just used more efficient refrigerators.

Current-feedback op-amp

OPA603 from Burr-Brown is a highspeed current-feedtack operational amplifier which can deliver $\pm 10 \mathrm{~V}$ signals into 1502 loads at up to $1000 \mathrm{~V} / \mu \mathrm{s}$ and at an output current of $\pm 150 \mathrm{~mA}$. The current-feedbach technique yields constant bandwidth and settling time over a large range of gain settings.

In general, the OPAGOI 3 behaves as a conventional op-amp: a feedback network on the inverting input controls ctosed-toop gain. The difference is that the impedance of the network also controls open-loop gain and frequency response. Figures 1 and 2 show the feedback resistor values against closedloop gain for maximum bandwidth and minimum peaking. As can be seen from the left vertical axes. bandwidth varies only between about 35 MHz and 55 MHz with gain from 1 to 100 .

Fig. I. Bandwidth and feedback resistor against inverting gain.

Fig. 2. Closed-loop handwidth and feedback for a non-inverting amplifier.

Since open-loop gain is controlled by feedbach impedance, the dynamic characteristics can be tailored to fit given requirements. For example. lower feedback resistance gives wider bandwidth, a peakier response and a greater pulse overshoor; the increased open-loop gain afforded by the lower feedhack resistance also gives lower distortion. Higher feedback resistance

Fig. 3. OPA 603 in a loMHz iow-pass Butterworth filter.
gives an overdamped response with very tittle peaking and overshoor useful for driving capacitive loads. A capacitor in parallel with R_{F} reduces frequency-response peaking and takes a value of 2 to 10 pF . depending on closed-loop gain and load chatracteristics; 100 large a value may cause instability.

Figures $\mathbf{3 , 4}$ and 5 show examples of low-pass and high-pass 2-pole Butterworth filters and a 10 MHz band-pass filter using the OPA603. Burr-Brown points out that power supplies must be decoupled by a parallel combination of $0.01 \mu \mathrm{~F}$ ceramic and $2.2 \mu \mathrm{~F}$ solid tantalum capacitors close to the IC pins or. in high-current use, $10 \mu \mathrm{~F}$ instead of the $2.2 \mu \mathrm{~F}$ may improve matters.

Burr-Brown International Ltd. I Millfield House. Woodshots Meadow. Watford. Hertordshire WDI 8YX Telephone (0)23 33837.

Fig. 4. Two-pole Butterworth high-pass filter, with-3dB point at IMHZ.

Fig. 5. Combination of low-pass and high-pass filters produces hand-pass type with cat-off at loMHz.

PCB tracks as transmission lines

Motorola has pubtished a note (AN1051) on the design of printedcircuit boards for high-speed digital circuitry, taking into account the transmission tine effects produced by the tracks, depending on their length and the rise or fall times of the devices. Delays or ringing caused by these effects sometimes result in unpredictable behaviour, causing designs that work well in simulation to perform at less than their best in practice.

A track should be treated as a transmission line if the smaller of the rise or fall times of a device is less than twice the propagation delay along the track. If that is so the effects of the line are not masked during the transition
times of the device.
The note provides a detailed examination of the forms of track found on boards, methods of catculating their characteristic impedances and propagation delays and both lattice diagram and Bergeron plot procedures for analysing the transmission line. It also includes a description of methods of terminating the line to minimise the ringing and delays.

Finally, nearly half the 70)-page publication presents a large number of worked examples.
Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP. Telephone: 0908 614614.

Motor drive ICs

A range of single-chip drive circuits from Philips, described in Technical Publication IC (0)8, provides full-wave drive for permanent-magnet motors in hard-disk drives and video recorders.

This type of motor is attractive for computer. entertainment and car application, since there are no brushes to wear or arc. They are efficient. accelerate rapidly and run at high speed. Their chief drawback is the need for electronic commutation and rotor position detection using Hall sensors.

In the Philips devices, the commutation timing is determined by the ICs
and remains correct regardless of the type of motor or load. No rotor position sensing is needed, since timing is determined by sensing zero crossings of the back EMF generated by the three stator windings during their nonenergised periods. In addition, all these ICs have an accurate digital tachometer output and some can provide position information from an external pickup coil for monitoring tape position in a VCR scanner head. Each IC also has an uncommitted amplifier (OTA) for motor speed control by regulating the supply to the output drivers. input
being either PWM or an analogue voltage or current.
The diagram shows an evaluation board using the TDA5142T, which provides three-phase. full-wave drive for three pairs of external push-pull driver transistors. It is meant for use with continuously running, unidirectional, high-current motors such as those in mainframe hard-disk drives. The OTA speed-control amplifier is current fed.
Philips Components Ltd. Mullard House. Torrington Place, London WC1E 7HD. Telephone 0715806633.

SPECTRUM ANALYSERS

HP182C.8558B 0. 1-1500 MHZ HP141S 8552A85554L 1250 MHz sysiem
HP141T 8552 AB5 $54 \mathrm{~B} ~ 1250 \mathrm{MHz}$ HP 141 T 8552 B 8554 B 1250 MHz HP141T 8552 A 8555A 18 GHz Syslem TAKEOA RIKEN TR9 305 FFT $100 \mathrm{kH} / 2$ GPIB WA ISU SM 2100 dual channel 100 kH 2 Disc

MARCONIINSTRUMENTS

ADRET $71000300 \mathrm{kHz}-1300 \mathrm{MHz}$ signal gener ato 2356 2357 level oscillatorflevel meter 2370 specifum analysef $\dagger 10 \mathrm{MHz}$ 2331/ 200 MHz Hequency counler 2438 (303J) 520 MHz universal counler tumet 2501 RF power meler $0.3 \mathrm{WDC}-1 \mathrm{GHz}$ 2828A2829 digital simulator/analyser 2833 digtal in-line monilor
2870 data communications lester 6460 microwave power meler with head 6424 $605682-4 \mathrm{GHz}$ signal source OA2605A PCM regener ator test sel F1245:1246 Q-Meter and oscillalo TF2011 FM signal generalor $130-180 \mathrm{MH}$ TF2013 FM signal generalor $800-960 \mathrm{NHz}$ TF2120 varate phase wavetorm generato
F2162 audw antenuator
 TF2175 AF power ampliter $2-500 \mathrm{MHz} 27 \mathrm{~dB}$ gain TF2300 modulation meter
TF2300A modulation meler
TF2304 modulation meter. aulomatic TF2331 distorion meter TF2600日 video vollmeter ? mV - 300 V Iso TF2807A PCCM mulliplex leste F2905 8 sine squared pulse \& bar generalo F2908 blanking \& sync mixer TF2950 mobile rado tesi set TF893A audio Dower mete
iM4520 induclor set 170 trequency down-convenet for 8640 B sig'gen 3581 A audio wave analyset 15 Hz -50kHz 3824.4) P-band attenuator $12.4 \cdot 18 \mathrm{GHz} 0-50 \mathrm{db}$ 400 FL mV - Meter $100 \mathrm{uV}-300 \mathrm{~V}$ is. $20 \mathrm{~Hz}-4 \mathrm{Mhz}$ 4204 A decade oscillator $10 \mathrm{~Hz}-1 \mathrm{MHz}$
4328 A mullionmmeter $0.001 \cdot 100$ ohms Iso. 4329 A high -resistance meter 4342 A -meter $22 \mathrm{KHz}-70 \mathrm{MHzZ}$. Q-range $5 \cdot 1000$ 4948A in-cricut transmission imparmeni (TIMS) tester 5005 R signalure mull meter, programmable
5300 N 5302 A 50 MHz counter-timer 5363 E lime-interval probes 5384 A 225 MHz z system frequency counter GPIB 62668 power supply $0-3 \mathrm{KV}$ es 6 mA 6516 m power supply 0 -3KV er 6mA
$7440 \mathrm{~A}(002)$ HPIB A4 colorpro ploter 801313 pulse generalor 50 MHZ dual outpul 8165 A function generator 1 mHz 2.50 MHz GPIB 8327A lest sel selector. 868 ©omputer 6000 A dia ma . Lmited quantily avalabie of the se much so sghl-ater curren
modei cabie testers with fitted options 03 and 04 - Battery 8614 A dignal marker generator for 8601 86204 sweeper man trame 888618 plug-in units
86223 sween 86222 A sweep generator plug-in $10 \mathrm{MHz}-2.4 \mathrm{GHZ}$ 86408 signal generalot
8656 A signal generator $0.1-990 \mathrm{MHz}$ 8673 signal generator 2-36 5 GHz B954a transceiver intertace

STOCK EXAMPLES T\&M EQUIPMENT

£850

RACAL 9081 synthesized signal generalor 5-520MHz AM FM RACAL 9009 automatic modulation meter HACAL 9301 A RF mili-voltmeter
AACAL 9082 synthesized signal gen $1.5-520 \mathrm{MHz}$ AM FM ACAL 9105 RF micro wattmeter $0.02 \mu \mathrm{~W}-200 \mathrm{~mW}$ OHIEASOR TECHNOLOGY 1000 colour bar generator TAKEDA RIKEN TR9305 audio spectrum analyser FFT 0.0025 H OOhtz GPIB oplion
EKTRONIX TDR 1502 , EKTRONIX SG502 Oscillalo FG501/ 4 New EKTRONIX AMSO3 current probe amphtier EKJRONX 76333 A26i7853A slorage osculloscope

NOTE: ALL OJR EQUIPMENT NOW CHECKED TO BS5750 TRACEABILITY
WANTED. Top quality 'high-end' test equipment for stock or will sell on commission, Please call, post or Fax list, any
quantity. Slgnal generators, spectrum analysers etc urgently requlred for wailing customers.

ALL OUR EQUIPMENT IS SOLD IN EXCELLENT, FULLY FUNC TIONAL CONDITION AND GUARANTEED FOF 90 DAYS. MAIL TELEPHONE FDR EXPORT ENQUIRIES WELCOMED. PLEASE AVAILABLE EX.STOCK AS AT COPY DAIE. GOOD QUALITY TEST EQUIPMENT ALWAYS WANTED FOR STOCK PRICES QUOTED ARE SUBJECT TO ADDITIONAL VAT.

RALFE • ELECTRONICS
36 EASTCOTE LANE. S. HARROW. MIDDLESEX HA2 8DB
TEL: 081-4223593. FAX: 0E1-4234009 pack and Cr:at recordeı
The 1503 C has 2. 10, 100 and 1000 nanosecond pulse Withs. tront paner selectable cable
measuremett range 10 50,000 teet.
These units are FACTORY-NEW and PEAFECT in their original cartens at a price that will
Lisi with yotions is over $£ 5400$.

OUR PRICE 53250 each -
Don't delay limited quantity only avarab

CIRCLE NO. 106 ON REPI Y CARD

IPR Technology INVENTIONS FOR SALE

1. VOLTAGE MULTIPLIER or CONVERTER

The circuit described promises significant cost, complexity and efficiency advantages over currently available designs.

KEY FEATURES

*Runs from an input of less than 1 V .
*Any multiplication factor.

CHARGES:

Circuit Diagrams (Ref: 1C) _....... $£ 10.00$ (Available 1/1/91) Full Report (Ref: 1F)
$£ 25.00$ (Available 1/1/91)

2. FREQUENCY SYNTHESISER

This frequency synthesiser has all the usual features, as well as the following:

KEY FEATURES

*The frequency may be tuned continuously.
*The synthesiser may be turned off and on without affecting the VCO output frequency.

CHARGES:

Block Diagram (Ref: 2B)
£10.00 (Available 1/2/91) Circuit Diagrams (Ref: 2C) £20.00 (Available 1/4/91)
Full Report (Ref: 2F).
£50.00 (Available 1/4/91)

FULL SPECTRUM MONITORING

The world is al your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, super wideband range of 100 KHz to 1999.8 MHz and a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutionary IC-R9000 features IF Shitt, IF Notch, a fully adjustable noise blanker and more. The Direct Digital Synthesiser assures the widest range, lowest noise and rapid scanning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning modes include programmable limits, automatic frequency and time-mark storage of sconned signals, full, restricted or mode-selected memory scanning priority channel watch, voice-sense scanning and a selectable width around your tuned frequency.

Icon (UK) Lid. Tel: 0227 363859. Telex: 965179 ICOM G N.E. For Woles and the West contact:
M.E.S. Communications Lid. Cardiff. Tel: 0222224167

[^1]
Current sources and sinks

Application guide AN-165 from BurrBrown is a compendium of preferred circuits for sources and receivers, floating sources, transconductance amplifiers, mirrors and transimpedance amplifiers, using the REF200 dual current source and current mirror IC and one or more op-amps.

Each current-source cell in the REF200 supplies $100 \mu \mathrm{~A}$ on the application of 2.5 V or more, with a drift of less than 25 ppm and at an output impedance of more than $500 \mathrm{M} \Omega$. Temperature coefficient is zero. An internal block diagram is shown in Fig 1.

Using the basic $100 \mu \mathrm{~A}$ current source, one can make a source or sink of any value. For example, the $50 \mu \mathrm{~A}$ sink in Fig. 2 uses the mirror and one of the sources, the input current dividing equally between input and output, while in Fig. 3 a current sink subtracts $50 \mu \mathrm{~A}$ from a second $100 \mu \mathrm{~A}$ source to give a $50 \mu \mathrm{~A}$ source. To obtain a floating $200 \mu \mathrm{~A}$ source, parallel the two

Fig. 1

sources in the IC, or drive the mirror with this source to get a $100 \mu \mathrm{~A}$ sink.

The circuit of Fig. 4 supplies a source of any value more than $100 \mu \mathrm{~A}$; the reference current forces a voltage of $\mathrm{R}_{1} \times \mathrm{I}_{\text {ret }}$ at the non-inverting op-amp input, the same voltage appearing across R_{2}. If R_{1} is $N \times R_{2}$ output current is $(\mathrm{N}+1) 100 \mu \mathrm{~A}$. If the voltage drop across R_{1} is large enough, the current source will swing to the negative rail. Turn the circuit upside down to get a current sink.

For currents of virtually any value use the circuit in Fig. 5 which will give a current of $\mathrm{N} \times 100 \mu \mathrm{~A}$, when R_{1} is $N \times R_{2}$. For example, if R_{1} is 100Ω and R_{2} is $10 \mathrm{M} \Omega$, the current is $\ln A$; for $10 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ the output is 1 mA . Again, inverting the circuit gives a current sink.

To obtain a floating current source of greater than $100 \mu \mathrm{~A}$, use the circuit of Fig. 6, which is almost the same as that of Fig. 4, except that R_{2} is driven by a mosfet. Since no current flows in either the gate of the mosfet or the op-amp inputs, all the current entering the resistors leaves them and the source is completely floating.

The application guide goes on to describe a large variety of sources and sinks, with many applications in precision comparators, instrumentation amplifiers and current-to-voltage converters.

Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hertfordshire WD1 8YX. Telephone 092333837.

Fig. 4

Fig. 6

Fig. 2

H F SYSTEMS CHANNELISED SYSTEMS HF MOBILE ANTENNAS HW4 $1.5-30 \mathrm{MHz}$ single PRO SERIES Multi channel frequency tuned mobile tapped whip antennas up to whip complete with 4 frequencies $1.5-30 \mathrm{MHz}$ installation accessories, complete with base mount base mount and spring, spare channel coils available for multi frequency operation. FOR FURTHER INFORMATION, OR JUST ADVICE, CALL:		

Quality Toroidal Transformers

A large, standard range of (152000VA) high quality products are available conforming to BS415 (EC65) class 2 requirements.
Custom design options include -

Audio grade - low noise
Autotransformers

Inverter transformers

Current transformers

Metal banding

Potted centres

Tape screens

We also manufacture other
standards including:
EC742, EC601 (BS5724), UL506, UL544, CSA222

Agents wanted worldwide
Contact or tel 0849428734 fax 0849468745
Antrim Transformers Ltd 25 Randalstown Road, Antrim, Co. Antrim, N. Ireland BT41 4LD

Interfacing with C

An accompanying set of 57 source code C listings presented with this series is now available on disk, price $£ 25.50+$ VAT. We will shortly be publishing a book "Interfacing with C" written by Howard Hutchings and based on the series, but containing additional information on advanced processing techniques. We are now accepting advance orders, price £14.95.
Prices include post and packaging.
Please make cheque or company order payable to Reed Business Publishing Group and send to Lindsey Gardner, room L301, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Credit card orders can be phoned through on 081-661 3614 (mornings only).

INTERFACING WITH C

> PART 8
> Transferring between time and frequency domains can help to clarify the characteristics of a signal. Howard Hutchings demonstrates Fourier analysis, using the discrete transform as an introduction to the FFT, to be described later.

Horner's five thumb postulate: Experience varies directly with equipment ruined.

Fourier transforms using a PC

The impressive computational power of 16 -bit machines, together with the increased efficiency of the fast Fourier transform, makes spectral analysis a challenging proposition using a PC. The data capture with graphics routine outlined in Chapter 2 provided a useful time-domain chronicle of the signal. In certain circumstances, however, it may be advantageous to preserve this information in a complementary form and present it as a frequency-domain record.

Electronics engineers routinely use Fourier transforms to examine the effects of noise or bandwidth on the signals being processed through a particular system. The central idea is quite simple Spectral analysis decomposes a signal into its constituent frequencies and records the amplitude of each component in the frequency-domain. Most periodic phenomena exhibit
interesting characteristics when investigated in terms of frequency. The usual concern in electronic signal analysis is with time- to frequency-domain transformations, although numerous other applications exist. These include calculating heat distribution in the core of a nuclear reactor, testing for bias in the generation of random numbers, music waveform analysis, mechanical vibration/signature analysis, avionics, oceanography, and many others.

No matter how unusual or audacious the application, it is really the behaviour of a linear system in the frequency domain that is being examined. Analogue systems are pre-

Fig. 6.1. Using the Fourier transform, a continuous signal $x(t)$ expressed as a function of time may also be described as a function of frequency $X(\omega)$. Spectral analysis decomposes a signal into its constituent frequencies and records the amplitude of each in the frequency domain.

dominantly linear; if the amplitude of the input signal is halved, then so is the output, with no change in signal shape. Analogue non-linearity is associated with additional, unwanted harmonics hence the interest in Fourier methods Digital systems work well, despite being highly non-linear; indeed the non-linearity adds to the robustness of the design. Investigating the characteristics of a signal, or the behaviour of a system, from a different perspective is analogous to looking at a problem with a fresh pair of eyes. Facts which are unclear or hard to grasp in one domain are often clarified in another. This is a familiar theme pursued throughout this book. This chapter aims to demonstrate Fourier analysis using a PC.

Discrete Fourier transform DFT

The relatively straightforward discrete Fourier transform has been chosen as an initial example because it may be programmed directly and because, conceptually, it underpins the fast Fourier transform FFT which will be presented later. The object in each case is to evaluate how the energy of the timedomain signal $x(t)$ is distributed in the frequency domain.

Commuting between domains requires the mathematical scaffolding provided almost 200 years ago by Jean Baptiste Joseph Fourier. For continuous signals:

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

where $\mathrm{X}(\omega)=$ the frequency transform $x(t)=$ the signal to be transformed
$\omega=$ the frequency variable
$t=$ the spatial variable

$$
j=V-1
$$

To realise the Fourier transform on a digital computer, the continuous signal $x(t)$ needs to be replaced by the snapshots $x(n)$ taken by the a-to-d converter. Under the discrete Fourier transform, integration is replaced by the finite weighted summation:

$$
\begin{aligned}
& x(m)=-\frac{1}{N} \sum_{n=0}^{N-1} x(n) \exp \left(\frac{-j 2 \pi m n}{N}\right) \\
& m=0,1,2, \ldots N-1
\end{aligned}
$$

Fig. 6.2. Diagram at (a) is sampled data signal represented by N snapshots, each separated by sampling interval T.
Discrete Fourier spectrum is at (b), in which spectral resolution of is interval between ordinates, I/NT, where N is number of samples and T sampling interval. For example, using Microsoft C and the AD7820 half-flash converter, sampling frequency was 40 kHz . If 128 samples are captured, spectral resolution is 312.5 Hz , so a digitised 625 Hz sine wave would be seen as a singie ordinate at third harmonic number.

Make sure you understand the reality behind the abstraction of this expression. The discrete Fourier transform is an approximation to the continuous Fourier transform, made up of N samples of the signal $x(n)$. The integers n and m are analogous to the spatial and frequency variables (t and ω respectively).

A compelling method of addressing the core of the algorithm lies in writing effective software to describe the transform. The frequency transform $X(m)$ is a complex number made up of the real and imaginary coefficients:

$$
\begin{aligned}
& \operatorname{ar}(m)=-\frac{1}{N} \sum_{n=0}^{N-1} x(n) \cos \left(\frac{2 \pi m n}{N}\right) \\
& a i(m)=-\frac{1}{N} \sum_{n=0}^{N-1} x(n) \sin \left(\frac{2 \pi m n}{N}\right)
\end{aligned}
$$

where $X(m)=\operatorname{ar}(m)-j a i(m)$
In many applications, the meansquare power is the quantity of most significance. Visualise this as the modulus of the frequency transform squared or, alternatively, as X(m) multiplied by its complex conjugate $X \star(m)$. Hence the mean-square power may be written as:

$$
|X(m)|^{2}=[a r(m)]^{2}+[a i(m)]^{2}
$$

Frequency infeger(harmonic number)

As, no doubt, you have observed, it is easy to let the mathematics get in the way of the physics. I find the expression for mean-square power is a refreshing reminder of what the Fourier transform is really doing. If the interval between samples in the time domain is T seconds, and N samples are captured for subsequent frequency-domain processing, then the spectral resolution ($\delta \mathrm{f}$) is simply the number of Hertz between ordinates in the frequency domain. Spectral resolution is an important parameter given by $\delta \mathrm{f}=$ $1 / \mathrm{NT}$. For a fixed sampling rate (T), good resolution requires the capture of many samples, usually $\mathrm{N}>128$. The discrete Fourier transform calculates the magnitude (mean-square power) of each frequency component from $\mathrm{m}=0$ (d.c.) to $\mathrm{m}=\delta \mathrm{f}$ times N (the sampling frequency). When running listing 6.1 to test the algorithm, notice that frequencies from d.c. to half the sampling frequency are unique. Frequencies greater than half the sampling frequency are images folded about the line $f_{s} / 2$.

Listing 6.1

```
*************************************
/* ELEMENTARY }8\mathrm{ POINT
/* DFT TRANSFORM
#include<stdio.h>
#include<math.h>
#define PI 3.14159
main()
{
int m, n;
double real_sum, imag_sum, mean_sq_
power;
float x[8];
    DECLARE SIZE OF ARRAY AND DATA
        TYPE
for(n=0;n<= 7; n++)
{
x[n] = sin(2*PI*n/8);
}
        SYNTHETIC DATA
        DFT ALGORITHM STARTS HERE
for(m = 0;m<= 7;m++)
```

```
{
real_sum = 0;
imag_sum = 0;
mean_sq_power = 0;
for(n = 0;n<= 7;n++)
{
real_sum +=x[n] * cos(2 * PI * m * n/8) /8;
imag_sum + = x[n] * 齐(2 * PI *m*n/8)/8;
}
mean_sq_power = pow(real_sum, 2) +
pow(imag_sum, 2);
```


printf("\%dlt\%flt\%flt\%fin", m, real_sum,
imag_sum, mean_sq_power);

\}

Developing and explaining the program

Listing 6.1 demonstrates principles. The complications of truncated data capture are avoided by generating a synthetic waveform - in this case, one complete cycle of a sinewave. This is stored as eight samples in the array $x[n]$ and identified by the square brackets. The size of the array and the data type of the stored members must be declared in advance. In this program, the construction float $x[8]$ reserves space for 8 decimals. Each floating point element occupies 4 bytes.

Data capture, followed by sequential storage, figures prominently in many signal-processing applications. Subsequent programs will compute the Fourier transform using data captured via an A-to-D converter. Consequently, the size of the declared array must be modified to accommodate the increased number of samples, typically 256 or more. Real-time data logging frequently requires high sampling rates, so the structure of the software will be improved by storing the output of the A-to-D in an array of the declared type int. This more primitive construction represents each stored element using only two bytes, thus ensuring faster throughput.
For the purpose of comparison, a Basic data logging program is included, together with an equivalent C construction. Both are littered with comments as an aid to comprehension.

Data logging software structures
(a) Anatomy of a Basic program

100 BASE $=768$: REM BASE ADDRESS OF I/O CARD
110 DIM X(256) : REM DECLARE SIZE OF
DATA STRUCTURE
120 FOR N $=0$ TO 255

130 OUT BASE + 2, 0 : REM START
CONVERSION
$140 \times(N)=\operatorname{INP}($ BASE + 2) : REM READ I/P 150 NEXT N
(b) Comparable construction using C

```
#define BASE 768
int x[256];
    DECLARE SIZE OF ARRAY AND DATA
            TYPE
        SELECTING THE PRIMITIVE "INT"
        ENSURES FASTER THROUGHPUT
for(n = 0;n<= 255;n++)
{
outp(BASE + 2,0);
            START CONVERSION
x[n] = inp(BASE + 2);
    READ ADC AND STORE SEQUENTIALLY
}
```

Returning to listing 6.1, the exponential term in the discrete Fourier transform is expanded to express $\mathrm{X}(\mathrm{m})$ as the sum of the real and imaginary coefficients: $\operatorname{ar}(\mathrm{m})$ and ai(m) - called real_sum and imag_sum respectively in the program.

To compute the mean-squared power, square the real and imaginary coefficients before evaluating the sum. Surprisingly, this can be a problem using C. A belt and braces approach might lead to the equation mean_sqpower $=$ real_sum \star real_sum + imag_ sum * imag_sum. This is correct but laborious.

Fortunately, Microsoft C includes the function pow(), which is a contraction of power. An inspection of the program should make it clear that the construction pow(real_sum,2) squares the variable real_sum. Notice that both mean_sq_power and real_sum are declared as doubles. The effects of running the program are shown in Table 6.1.

Table 6.1 The results of a Fourier transform using an 8 point DFT computation

sample no.	$\operatorname{ar}(\mathrm{m})$	ai (m)	mean sq.power
0	0	0	0
1	0	0.5	0.25
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	-0.5	0.25

Graphical spectral analysis

Looking at columns of figures soon becomes tedious, and commercial spectral analysers usually display the computed frequency spectrum visually. The

Fig. 6.3. Flowchart describing elementary 8 -point DFT transform.
following example - a simple modification to listing 6.1 - is designed to be run through an EGA card and colour monitor. Regard the program as a testbed, an opportunity to consolidate facts and to watch the Fourier transform in action. As usual, program development is simplified with bottom up design as the intention is to add colour graphics to the tried and tested DFT algorithm.

However, at this stage, the complication of real-data capture is avoided. Instead, the sampled data is generated synthetically inside the PC. The reasons for this are really quite practical. It is easy to simulate the output from the a-to-d without the confusion of external hardware and still be con-
of external hardware and still be confident of the characteristics of the sampled signal. Furthermore, Microsoft C's rich set of mathematical functions will be exploited to generate a wide variety of input signals.

/*- ENTER NUMBEROF SAMPLES
_setvideomode(_DEFAULTMODE);
_setvideomode(_HRES16COLOR);

_clearscreen(_GCLEARSCREEN);
_setbkcolor(_GRAY);
_getvideoconfig(\&screen_size);
_setlogorg(screen_size.numxpixels/4,
screen_size.numypixels/2);
_moveto(0, 0);
_lineto(320, 0)
_moveto(0,0);
_lineto(0, -90);

```
DRAW X\&YAXES
_settextcolor(3);
settextposition(4, 8);
_outtext("r.m.s. power")
_settextposition \((14,50)\);
_outtext("Frequency (Hz)");
```

* COLOUR AND POSITION-...............................

```
* COLOUR AND POSITION-...............................
for(n = 0; n<= (N-1);n++)
for(n = 0; n<= (N-1);n++)
{
{
    LOCATE SYNTHETIC DATA HERE SEE
    LOCATE SYNTHETIC DATA HERE SEE
        TEXT FOR SUGGESTIONS
        TEXT FOR SUGGESTIONS
}
for(m = 0;m<= (N-1);m++)
{
real_sum = 0;
imag_sum = 0;
for(n = 0;n<=(N-1);n++)
{
real_sum +=x[n]*\operatorname{cos}(2*PI*m*n/N)/N;
imag_sum +=x[n]* sin(2*PI*m*n/N)/
N;
mean_sq_power = pow(real_sum, 2) +
pow(imag_sum, 2);
rms = sqrt(mean_sq_power);
TAKE SQUARE ROOT OF MEAN SQUARE
POWER TO IMPROVE GRAPHIC DISPLAY
```

_setcolor(14);
_moveto(320 * m / N, 0);
-lineto $(320 * m / N,-100 * \mathrm{rms})$;

PLOT AND SCALE FREQUENCY SPECTRUM
 $\}$
 goto start;
 Understanding the logical system of coordinates

The Microsoft C graphics library is contained in the header file graph.h. It supports two coordinate systems to identify a particular pixel location. Previous use of the physical system of coordinates in the graphics programs described in an earlier section restricted attention to positive values of x and y. This program extends our command of Microsoft C graphics and manipulates the logical system of coordinates. Inspect listing 6.2 carefully, and notice that a little more video housekeeping is required to get started. The function getvideoconfig() is used to obtain information about the current graphics environment. In this case, the configuration information (the number of pixels along the x and y axes) is contained in the variable screen_size. To set the logical origin (the point 0,0) at a specific pixel location on the screen, use the function -_setlogorg() Fig. 6.4 contains the details relevant to the video mode _HRES16COLOR made up of 640×200 pixels, with sixteen colours. Once the origin is established, increasing x moves the pixel horizontally from left to right across the monitor. But increasing y moves the pixel vertically downwards, which is mathematically unconventional. This should explain why the y coordinate is preceded by a negative sign in the function -lineto().

Applying the DFT program

Digital-signal processing can still provide one or two surprises for the unwary. Use this simple DFT with graphics program as a controlled environment with which to understand a few of the limitations of your computer and a-to-d converter.

In the real world, we are unlikely to capture a whole number of input signals, deliberately truncate the input data and observe the effect on the computed spectrum. Be inquisitive. Increase the number of samples and see if this results in any improvement. Look closely at the characteristics and spectra of sinusoids and repetitivepulse waveforms. Recognise that continuous signals such as sinewaves are

Fig. 6.4. Selecting the video mode

 HRESI6COLOR provides 640×200 pixels. Function _setlogor(screen_ size.numxpixels/4, screen_ size.numypixels/2) moves the logical origin $(0,0)$ to pixel coordinates (160,100).characterized by a discontinuous frequency spectrum, the spectral energy being concentrated at a single-spot frequency. Conversely, discontinuous functions such as squarewaves, which change abruptly with time, have a continuous spectral envelope. Use software to generate isolated pulses and examine the spectrum. Reduce the pulse width and observe how the spectral energy becomes extended in the frequency domain.

It is really quite remarkable just what can be achieved using a few lines of imaginative software. The following examples are intended to develop an instinct for spectral analysis. They will encourage you to experiment and acquire a feel for what a transform looks like and how it behaves. Each of the following functions is softwaregenerated and the pseudo-sampled data is stored in the array $\mathrm{x}[\mathrm{n}]$ prior to processing using listing 6.2.

Streamlining the arithmetic using the fast Fourier transform

Running listing 6.2 is fun, but the DFT does have its limitations - you probably noticed that processing time increased as the number of samples was increased. The complexity of the calculation is proportional to N^{2} where N is the number of samples. I hope you were critical and examined the computed spectral display carefully, particularly when processing a non-integer number of cycles (listing 6.4). Spectral spreading was evidently a problem

Listing 6.3

USING THIS GENERATING FUNCTION THE GRAPHICS AGREE WITH THE THEORY
$\operatorname{for}(\mathrm{n}=0 ; n<=(N-1) ; n++)$
$\{$
$x[n]=\sin (20 * P \mid * n / N) ;$
\}

Fig. 6.5. Using software to generate ten complete cycles of a sampled sine wave produces a single weighted impulse of energy where $m=10$, with an image folded at half sampling frequency. This component can be interpreted as negative frequency usually associated with classical analysis.

Listing 6.4

```
        THIS GENERATING FUNCTION
    DEMONSTRATES THE EFFECTS OF SPECTRAL SPREADING
```

for $(n=0 ; n<=(N-1) ; n++)$
$\{$
$x[\mathrm{n}]=\sin (19.9 * \mathrm{P} \mid \approx \mathrm{n} / \mathrm{N})$;
\}

Fig. 6.6. Fourier transform treats each data set as periodic, hence discontinuity due to processing non-integer number of cycles results in spectral spreading. Known more evocatively as "picket fence effect" or "leakage".

Listing 6.5

NOTICE HOW A DISCONTINUOUS TIME DOMAIN SIGNAL IS TRANSLATED INTO A CONTINUOUS FOURIER TRANSFORM

```
for(n=0;n<=(N-1)/8;n++)
```

1
$x[n]=5$;
$\}$
for($\mathrm{n}=(\mathrm{N}-1) / 8 ; \mathrm{n}<=(\mathrm{N}-1) ; \mathrm{n}++)$
1
$\mathrm{x}[\mathrm{n}]=0$;
\}

Fig. 6.7. Synthetically generating sample square wave, pulse width $1 / 8$ total period. Spectral envelope is continuous and rich in low-frequency components. Signal is characterised by infinite number of harmonics, but certain spot frequencies contain no spectral energy.

Listing 6.6

NARROW PULSES OCCUPY LARGE BANDWIDTHS
for $(n=0 ; n<=(N-1) / 16 ; n++)$
1
$x[n]=5$;
$\}$
for $(n=(N-1) / 16 ; n<=(N-1) ; n++)$
1
$x[n]=0$;
$\}$

Fig. 6.8. Decreasing pulse width reduces amplitude of spectral energy and extends frequency response, demonstrating need for large bandwidth in high-frequency pulse circuits.

Listing 6.7

Fig. 6.9. Progressively reducing pulse width by modifying FOR loop ultimately gives good approximation to impulse function. Processing through DFT demonstrates that spectral energy is constant in frequency domain.
which could be reduced simply by increasing the number of samples.

The fast Fourier transform is not a new transform. It is an algorithm which, when applied to a data set of 2^{N} samples, reduces the number of multiplications from N^{2} to $\mathrm{N} \log _{2} \mathrm{~N}$. This is a huge saving of computation time. Its existence generally became known in the mid 196()'s. It followed the matrix theory of J. W. Cooley and J. W. Tukey, who returned to the computation of "schedules" originally undertaken at Los Alamos as part of the Manhattan Project. Retrospectively, it is acknowledged that a few clever people had been using the FFT as early as 1942 (refer to Brigham for details).

How many multiplications?

Examination of the DFT algorithm, together with the relevant C program, indicates that approximately N complex multiplications and about the same number of additions are required to calculate the frequency coefficient for a particular value of m . Since there are $\mathrm{N} / 2$ unique spectral components, the total number of multiplications

Listing 6.8

Fig. 6.10. Processing pulse through limited-bandwidth system introduces exponential rounding of leading and trailing edges. Listing 6.8 generates decaying exponential function, decay factor chosen to allow pulse to fall to zero for $N=128$. Try decreasing time constant, observing wider spectrum.
Table 6.2 Comparing the number of computations required for DFT and FFT.

Number of samples	DFT	FFT
N	N^{2}	$\mathrm{~N} \log _{2} \mathrm{~N}$
8	64	24
16	256	64
32	1024	160
64	4096	384
128	16384	896
256	65536	2048
512	262144	4608
1024	1048576	10240

required to compute the complete spectrum is approximately N^{2}. This is a considerable calculation for a large number of samples, even on a PC. Now for the good news - many of the calculated coefficients are redundant and can be factored out. Evaluating the DFT by hand is an exercise in tedious calculation. Nevertheless, insight into the inner workings of the FFT only comes with real understanding of the more straightforward DFT. Modern notation tends to present the DFT in the form:

$$
\begin{gathered}
X(m)=-1 \sum_{N=0}^{N-1} x(n) W^{m n} \\
m=0,1,2, \ldots(N-1) \\
W_{N}=\exp \left(\frac{-j 2 \pi}{N}\right)
\end{gathered}
$$

Listing 6.9


```
    OF A SERIES R-L-C CIRCUIT
for(n=0;n<=(N-1);n++)
{
a=0.0392156;
```



```
    1/a IS THE TIME CONSTANT
x[n]=2*exp (-a*n)*sin(20*PI*n/N);
}
```


Fig. 6.11. Program of listing 6.9 generates sine wave modulated by exponentially decaying envelope, generating frequency-domain model of damped second-order system. Examine effects of varying time constant.

Contrary to appearances, this does improve comprehension and demonstrates coefficient redundancy. To understand the mathematics, consider the behaviour of the complex coefficient W_{N} for eight sampled values ie. $\mathrm{N}=8 . \mathrm{W}_{8}$ is raised to the power mn , where m and n are integers in the range 0 to 7 . The repetitive nature of the algorithm results in the calculation of W^{mn} being carried out 64 times. However, examination of the tabulated coefficients reveals only eight unique terms, the result of the integer product mn over the range 0 to 7 . Restricting the number of samples to eight makes pencil and paper confirmation relatively painless. This can be shown using an Argand diagram (Fig. 6.13) where the calculated coefficients are represented as rotating phasors. The 8 -point DFT multiplication table 6.3 should help with the calculation. If you have time, use the DFT algorithm in conjunction with Table 6.3 to confirm the results of listing 6.1 .

The fast Fourier transform recognizes that many of the calculations are redundant and uses a decimation process to bisect the data array until only two-point transforms remain. Look at

Listing 6.10

Fig. 6.12. Spectral analysis contains no information on phase of time-domain signal. Listings 6.10 and 6.11 generate twa apparently different waveforms, (a) and (b) respectively, which have identical spectral characteristics, as seen at (c).
Listing 6.1I

```
for \(n=0 ; n<=(N-1) ; n++)\)
\{
\(w=2 * \mathrm{Pl} * n / \mathrm{N}\)
\(x[n]=\sin (w)+\sin (3 * w) / 3-\sin (5 * w) / 5+\)
\(\sin (7 * w) / 7-\sin (9 * w) / 9 ;\)
)
```


Fig. 6.13. Geometrical interpretation of complex coefficient $W_{s}^{m n}$ as a rotating phasor.

Fig. 6.14. Butterfly diagram for fast Fourier transform of an 8 -element data array. Two paths entering a node are combined by forming sum: dotted line + (node coefficient) multiplied by solid line. For example, output of second row, second column is $X(I)+$ W0.X(5). Repeat procedure until processed output appears in final column.
the signal flow diagram Fig. 6.14, and notice that the effect of the algorithm has been to scramble the order of the output data. Write both the input and output data in binary form, and it will be apparent that the scrambling is not random but a mirror image of the input - where the results are placed in bit reversed order.

Table 6.3. Evaluating complex coefficient, or "How to learn your eight- times IDFT table".

	Volues of m							
	0	1	2	3	4	5	6	7
0	\dagger	1	1	1	1	1	1	1
1	1	$\left(\frac{1-1}{\sqrt{2}}\right)$	-1	$-\left(\frac{1+1}{\sqrt{2}}\right)$	-1	$-\left(\frac{1-j}{\sqrt{2}}\right)$	1	$\left(\frac{1+1}{\sqrt{2}}\right)$
2	1	-1	-1	I	1	-	-1	1
3	1	$-\left(\frac{1+1}{\sqrt{2}}\right)$	1	$\left(\frac{1-1}{\sqrt{2}}\right)$	-1	$\left(\frac{1+1}{\sqrt{2}}\right)$	-1	$-\left(\frac{1-1}{\sqrt{2}}\right)$
4	1	-1	1	-1	1	-1	1	-1
5	1	$-\left(\frac{1-1}{\sqrt{2}}\right)$	-1	$\left(\frac{1+i}{\sqrt{2}}\right)$	-1	$\left(\frac{9-i}{\sqrt{2}}\right)$	I	$-\left(\frac{1+1}{\sqrt{2}}\right)$
6	1	1	-1	-1	1	1	-1	-1
7	1	$\left(\frac{1+1}{\sqrt{2}}\right)$	1	$-\left(\frac{1-1}{\sqrt{2}}\right)$	-1	$-\left(\frac{1+1}{\sqrt{2}}\right)$	-1	$\left(\frac{1-1}{\sqrt{2}}\right)$

Having covered the discrete Fourier transform in this part, Howard Hutchings goes on next month to deal with the fast Fourier transform, including the use of a $P C$ as a real-time spectrum analyser

IMSULATIOM TESTER WITH MULTIMETER internally generates volitages which enable you to read insulation directly in megohms The multimeter has four ranges. $A C / D C$ volts. 3 ranges DC millamps. 3 fanges resistance and 5 amp range These instruments are EX British Telecom, but in very good condition, tested and gntd OK. probably cost at least $£ 50$ each, yours for only $£ 750$ with leads carrying case $£ 200$ extra
110 WATT POWER SUPPLY ASTEC switch mode. 230 V mans Input: 38 V at $21 / 2$ \& \& 3 A outputs. encased and fitted on panel mounting plate with mans input socket and on of switch, made for use with computers or other top grade equipment, you can have it al a fraction of its proper pice Brand new and guaranteed. Sample £12.00 post pard - 3000 available \& good discount to quantity buyers.
BRUSHLESS D.C. 12Y FAN tiny, only 60 mm square. good air mover but causes no interterence $£ 800$
2Mw LaSER Hehum Neon by PHILIPS, full spec, £30. power supply for this in kil form with case is $\mathrm{Cl5.00}$ or in larger case to house tube as well $£ 17.00$
MAIMS 230V FAN best make "PAPST" 41/2' square, metal blades $£ 800$
BATIERY MOTORS 12 models in stock in large quantitues ranging trom tiny model aircratt one at 25 p each $101 / 3$ hp made to drive the famous Sinclar C 5 car , you can have this at $£ 1750$
SOLRR MOTORS $11 / 2$ - 9 V precision made to operate trom tow current off solar cells $£ 150$, solar generator to drive this E7 00. has provision for battery back up when sun is not shanng'
COPPER BOARO for makung you pcb $174 \times 100 \mathrm{~mm} \times 2 \mathrm{~mm}$ thich double sided and brand new 50 peach, £ 40 per hundred. £350 per thousand
AIR SPACEO TRIMMER CAPS 2-20 pf ideal lor precision tuning uhf cireuits 25 p each. 10 for $\mathrm{£2}$. 100 for $£ 15$
1Khis. TONE GEMERATOR this is PP3 batiery operated and has a lKhz output that can be continuous or interrupted at a rate variable by a panel mounted control Also on the front panel are separate output sochets for montor or headphones. and a battery condition indicator Constructed on a pcb and front panel size approx $105 \times 50 \mathrm{~mm}$ ex equipment but in as new condition E2 each
OSCILLOSCOPE 3018 developed lor testing transmission lines, it makes and displays pulse echoes to lind shorts and breaks in cable networks, this uses a $3^{\prime \prime}$ CRT to display the type of lault and a LCD to read out the distance from the fault The instrument is powered by 12 Vof rechargeable nicads located in base, and it generates 15 kv internally it is housed in a high impact plastic case size approx $9 \frac{1 / 2 " ~}{x} \times 91 / 2^{\prime \prime} \times 5^{\prime \prime}$ Ex British Telecom in very good condition and working order, £49.50 plus £5 insured delivery
FIELD TELEPHOMES just right for building sites, ratlies, horse shows etc. just join two by twin wire and you have iwo way calling and talking, and you can join into regular phone lines if you want to Ex Brtish Telecom in very good condition, powered by batteries (not included) complete in shoulder slung carming case. §12.50 each
MAIMS ISOLATIOM TRAMSFORMER stops you getting "to earth ' shochs 230 V in and 230 V out 150 watt upright mounting £7.50
HAMG UP PHONE won't clutter up your desh or workbench. current model. has push bution dialling. last number recall, internal alarm etc Ex B T in good condition and tully working ready to plug in $\mathbb{E} 5$
HIGH VolTAge CAPS il you use these ask for our $1-10 \mathrm{Ky}$ Capacitor list we have over $1 / 4$ million in stoch and might save you a lot of money
Prices include VA.T Send cheque/postal order or ing and quote credit card number Add $£ 3$ post and packing Orders over $£ 25$ post tree. unless postage quoted separately

M\&B ELECTRICAL (WW Circle No. 119)
12 Boundary Road, Hove, Sussex BN3 4EH
Telephone (0273) 430380 Fax (0273) 410142

DON'T MISS THESE BARGAINS!

TWIM 350K 5.25 INCH FLOPPY DSSK DRIVE with power supply built into a protes sional while case complete with mains lead. Connections are via a 37 pın 'D' socket, full connection detalls supplied. Brand new by lamous Japanese maker C59 50
ELECTRONIC BUMP \& $\mathbf{G O}$ SPACESHIP sound and Impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions. will make ideal present lor budding young electrician. Should be able to assemble but you may have to help with the solderng of the components on the PCB Complete ht E8 95
SOIL HEATIMG germinates and brings on the young plants without having to heat the whole greenhouse Now is the time to instal it, the main items, a 750 watt fransformer and 100 metres of heating cable will cost you only £29 including carriage
CEILINGS COULO COME OOWM if the water pipes above treeze and burst. you can guard against this by winding our waterprool heating cable around them Costs only about the same as a 40 watt lamp to fun Cable resistance is approx. 90 ohms per metre. 15 metre length sulis the average house pilce is E 5 or cut to your specilication 40 p metre.
IMSTANT HEAT is what you want bor your works hop ete. and you will get it with one of our tangential blow heaters. can be mounted under the bench or in a simple enclosure, three models avallable all have full or halif heat plus cotd blow. 3 Kw has $12^{\prime \prime}$ element $£ 8,21 / 2 \mathrm{Kw} \& 2 \mathrm{Kw}$ both have $8^{\prime \prime}$ elements and are $£ 6$ each
POWER CUTS OR FALLURES cause inconvenience or worse, our emergency fluorescent lighting unit keeps itself charged, comes on automatically and stays on for at least 3 hours, is neatly cased and ready to instal price $£ 25$ includes its ni-cad batteries
SOOV BRIOGE MEGEER developed for G.P O. technicians the Ohmeter 18 B is the modern equivatent of the bridge meggar. 9 V battery operated it incorporates a 500 V generation for insulation testing and a nutl balance bridge for very accurate resistance measurement On the front panel there is a $3^{\prime \prime} \times 3^{\prime \prime}$ panel meter catibrated in megoh ms to inl. and a small scale to indicate balance showng the exact setting of the four controls in the variable arm of the resistance bridge. Ex B.T. in quite good condition with data\&tested. Yours for a fraction of onginal cost $£ 45+\mathbb{£} 5$ insured delwery.
TRAVEL MECHANISM goes bachwards and forwards, could be used to animate a display or position a device. battery or p.s.u operated. distance of travel 4 " and speed of travel depends on applied voltage $1 / 2 \mathrm{~V}$ very slow 12 V max is quite fast. ©5.00
SOUND SWITCH has countless uses, one could be to control the above travel mech. Signats of 10 Hz to 20 Hzz piched up by Ats electrit mike and FET anpifier and further amplified to be able to confrol relay motor etc up to $1 / 2$ amb. supplied ready to work from 6V. Price only $£ 2$.
EXPERIMEWTIMG WITH VALVES don'i spegda fortune on a manns transformer we can supply one with standard htans input and secs. ol $250-0-650 \mathrm{~V} 775$ h A and 6.3 V at 3 A . price $£ 5$
 for only £4 pair.
WANT TO EXPERIMEWT WITM DISC DRIVE You can have a double sided JAP made model, brand new for only £lo Why. because il was made for a very compact unit and consequently uses a small non standard disc (We stock these at LL each) it requires 5 V 300 mA pomer supply (we can supply). The drive is nicely cased and has output and input leads, originally listed at over $£ 100$. so it's a real bargain.
TTMES TEN IOWISER using transformers and novel circuitry, our ioniser emits at least ten times as many ions as does any other kit on ofter, nor do we know of a ready bullt model that is as good you don't need a tester to see if it is working just bring your hand close to it and leel the stream of neg ions. It's a kit complete with case. nothing else to buy yours for $\mathbb{1} 1450$.
ULTRASONIC TRAMSMITTER/RECEIVER with Piezo alarm, Buit into preformed case, is triggered by movement disturbing reflected signal, intenced for burglar alarm, car alarm etc has many extras. time delay, auto reset secret off device etc. A £40 instrument yours lor £10.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK
Test Equipment. We hold a large stock of modern and old equipment - RF and AF signal generators Spectrum analysers - counters - power supplies - chart recorders, all speeds single lo multipen - XY plotters A4-A.3- oscilioscooes - normal \& storage
rektronix
Telequipment 0755 - 50 MC . S S oscilloscopes - tested C W 2 probes - manual - $£ 250$
 Marconi TF2002B-AM.FM signal generator - 10 KCIS - $88 M \mathrm{MCIS}$ - 1100 tested 10 C 150 as new + probes Marconi TF2008-AM.FM signal generator-Also sweeper-10KC/S - $510 \mathrm{MC} / \mathrm{S}$ - from E 350 tested to
$£ 500$ as new with manual - probe kit in wooden carrying Dox - $£ 50$.
HP Signature analyser type 5006 A - 1300
HP DC C urrent source type 6177 C - E 300 .
HP Frequency counter type 5384A-225MC/S - $£ 350$.
HP Frequency comb generator type 8406A - 1400.
HP Amplifier type 8447A -. 110400 MHzs - $£ 300$.
HP Sampling voltmeter (Broadband) type $3406 \mathrm{~A}=£ 200$.
HP Vector voltmeter type 8405A - $£ 400$ to $£ 600$
HP Oscilloscope mainframe type 182C - $£ 300$.
HP Oscilloscope mainframe type 181 TR- $£ 400$
HP Signal generator Iype $8614 \mathrm{~A}-8616 \mathrm{~A}-£ 400$ to $£ 800$
HP Frequency counter tyoe 5340A-18GHZS - 11000 .
HP Frequency counter type 5352B - 40GHZS
HP Synthesiser/signal generator fype $8672 \mathrm{~A}-21018 \mathrm{GH}$ (HSS - $£ 7500$.
HP Synthesiser/signal generator type 8672A - 2 t 18GHZS
HP Vector impedance meler and prode type A 3 A
HP Network analyser lype 8754A - HPa50
HP Function generator type 3312A- $£ 500$.
HP Spectrum analyser plug-in-. 0110 350MCOS - option .001 + manntrame - $£ 1000$
HP 3575A gain phase meter - P.O.R
HP 8660 B signal generator - maintrame - $£ 1000$
HP 8660 C signal generator - $1300 \mathrm{MC} / \mathrm{S}$ or 2600 MC S - P.O.R
HP 8505A network analyser - $500 \mathrm{KC} / \mathrm{S}-1.3 \mathrm{GHz}$ - HP 8502 A test set - P.C.R
HP 8640A signal generator-OPT 001 - $002-.5$ MC/ S-1024MC S - 1000.
HP 8558B-. $1 \mathrm{MC} / \mathrm{S}-1500 \mathrm{MC} \mathrm{S}$ + mainframe - P.O.R.
Racal Dana digital multimeter tyoe $5001-£ 250$.
Racal/Dana interlace type 9932 - $£ 150$.
Racal/Oana GPIB Interlace rype 9934A - 1100
Racal:Dana RMS meter type 9301A- $\mathbb{3 0 0}$.
Racal/Dana RMS voltmeter type 9303 - $£ 600$.
Racal Dana timer/counter type 9500 (9515 OPT 42) - 1250MCIS- 1750
Racal Thermionic store 4 recorder - $โ 300$.
Racal frequency standard generators type MA259-600KC/S-1MC \& $5 \mathrm{MC} / \mathrm{S}-£ 200$. Marconi AF power meler type 893B- $£ 300$ Marconi bridge type 2700 - $£ 250$
Marconi attenuator type TF2163S - 1GHZ- £250
Marconi'Saunders signal sources types - $6058 \mathrm{~B}-6070 \mathrm{~A}-6055 \mathrm{~B}-6059 \mathrm{~A}-400$ to 18GHZS
Marconi'Saunders signal sources types - $6058 \mathrm{~B}-6070 \mathrm{~A}-60558$ - 605 AA - 40 -in
Marconi/Saunders microwave sweep oscillator type $6600 \mathrm{~A}+18$ to 40 GHZ plug.ins - P.O.R.
Marconi/Saunders microwave sweep oscill
Thurlby conventor 19-GP-IEEE-488- $£ 150$.
Phillips logic multimeter nyoe PM2544 - $£ 200$
Gould $J 3$ B audio signal/generator $-£ 250$.
Gould $J 38$ audio signal/generator - $£ 250$.
Microwave systems MOS/3600 microwave frequency stabilizer -1 to $18 \mathrm{GH} Z S \& 18$ to $40 \mathrm{GHZ}-£ 1500$.
Microwave systems MOS5 microwave trequency stablizer - 1 to 18 GHZs \& 18 to 40 GHZS - $£ .300$
EIP Microwave counter type 371-soutce locking - 18GHZS - โ1400.
R \& S Vector analyser ZPV with $100 \mathrm{MC/S}$ or $2000 \mathrm{MC} / \mathrm{S}$ plug in - $£ 1200$. XTRA PI - $£ 500$
Scientific Atlanta LF realtime analyser type SD330A - $£ 750$.
Bradley oscilloscope calibrator type 156 - §150.
Bradiey oscilloscope calibralor type 192 - $£ 600$
Tektronix curve tracer type 576 - $£ 1400$.
Tektronix curve tracer type 577- 11000
Tektronix mainframes - 7403 N - 7603 - 7623-7633-7704A - 7834 - 7844 - 7904 - TM501 - TM503TM506. P OR.
Textronix plug-ins - 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1-S2 -S6 - S52-PG506 -SC504 - SG502 - SG503 - SG504 - DC503 - DC508 - DD501 - WR501 DM501A - FG501A - TG501 - TR50 P. P.O.R.
Textronix spectrum analyser type $491-\$.51040 \mathrm{GHZS}$ (as new) $£ 1200$
Racal HF drive unit 1.6 to 25 MC S type 1724 - brand new - $£ 350$
Racal HF drive unit type 1720-1MC to 29MCS - £150- 2250 .
Ailtech Stoddart receiver tyoe 17/27A - $01-32 \mathrm{MC} / \mathrm{S}-£ 5000$
Ailtech Stoddart receiver type 17/27A -.01-32MC/S- 55000
Ailtech Stoddart receiver type $3757-30101000$ MC/S- $\{5000$
Ailtech Stoddart receiver type $3757-30101000$ MCS- 5000
Altech Stoddart receiver type NM65T- 10 10GIGS- 53000
HP Oscillographic recorder type 7404A - 4 track - $£ 350$
HP Plotter type 9872B - 4 pen - $£ 300$
HP Plotter type 7470A - $\Sigma 200$.
Marconi TF2015. SIG/GEN - 10 MHZ - $520 \mathrm{MC} / \mathrm{S}$ - AM. FM - $£ 250$.
HP power meter type 431C to 18GHZ with C type head \& waveguide head - $£ 150$ to $£ 200$ HP sweep oscillators type $8690 \mathrm{AsB}=$ plug-ins from 10 MC S to 18 GHZ also 18 -40GHZ P.O.R. HP 3325A synthesiser - function generator - $£ 9500$ - manual.
Marconl TF 1245A circuit magnification meter +124681247 oscillators - $£ 10010 \S 300$ HP signal generators. Type 612-614-618-620-626-628-ftequency from 450 MCS to 21 GHZs . HP 8614A - HP8616A signal generators $-800 \cdot 2400 \mathrm{MCS}$ - $1800-4500 \mathrm{MC}$. S - $£ 800-£ 600$ Gould J 3 B test oscillator - $£ 250$ - manual.
Ferrograph recorder test sets - RST2- $£ 200$
Racal Dana 9301 - 9303 RF millivoltmeters. $1.5-2 \mathrm{GHZ}-£ 350-£ 750$.

HP + B network analysers -110 MC S to 12.4 GHZ or $\uparrow 8 \mathrm{GHZ}$ plus most other units and displays used in this set up 8413A - 8414A-8418A -8740A -8743A -8750A P.O.R.
HP 141 T mainframe plus - 8556A-8553B-8554B-P.O.R. - 8555 A - 8552 A - 8552 - plug-in units HP 181TR mainframe - $£ 400$ - HP 182T mainframe - $£ 500$. HP 141T mainframe - $£ 500-£ 1000$. HP $432 \mathrm{~A}=435 \mathrm{~B}-436 \mathrm{~A}$ power meters \rightarrow Powerheads $-10 \mathrm{MCS}-40 \mathrm{CHZ}$. HP 478A - P486A - K486-8481A -8481B. P.O.R.
HP oscilloscope type $1740 \mathrm{~A}-100 \mathrm{MC}$ S - $£ 300 \mathrm{C}$ W manual.
image Intensifiers - ex MOD - tripod fitting for long range night viewing - as new - $£ 3000 \mathrm{EA}$ Intensifier tybes - $£ 50$ to $£ 250$ - tested - depending on grade - first gen XX1060 Thermal Imaging Equipment - high definition - from $£ 2500$ - complete in transil case. Ctark air operated heavy duty masts - with legs and kit with pump. $£ 200-£ 500$ Don 10 telephone cable - $1 / 2$ mile canvas containers or wooden drum - new - Mk2-3 or 4 P.O.R Infra-red binoculars in fibre-glass carrying case - tested- $£ 100$ EA also Infra-red AFV sights - $£ 100 E A$ S.A.E. tor details-Infra-red spotlights and Infra-red tilters P O. R.

Tracor 599 K VLF-LF receiver - FX standard - $£ 1000$
Tracor 527A or Edifference meter - $£ 400-£ 500$.
B \& K 2019 analyset - 2305 level recorder - 2425 meter - 4220 piston phones etc. P.O. A thems bought from HM Government being surplus. Price is ex-works. S.A.E. For enquiries phone for appointment or for demonstration of any items, availability or price change. VAT and Carr. extra.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. TeI. No. (0274) 684007. Fax: 651160
Wanted: Redundant test equipment - valves - plugs - sockets - synchro's etc. Receiving \& transmitting equipment - general electronic equipment

Radar \& Fibre-Optics Training Equipment

A full range of professional training equipment now available from a leading manufacturer including:

Radar
\qquad
\qquad
Fibreoptic
\qquad
Analog \& Digital Comms
\qquad
Microwave
\qquad
Telephony
Simulators

Several of these high quality products have been winners of the prestigious Worlddidac awards, Geneva, Switzerland, with our Radar Trainer taking this years Gold medal.

Contact:

Lab-Volt (UK) Ltd

2 Stephenson Road Industrial Estate

St. Ives, Cambridgeshire PE17 4WJ Tel: (0480) 300695 Fax: (0480) 61654

Thermistor temperature gradiometer

Negative temperature-coefficient beac thermistors, such as the GL23 from RS Components, have a thermal time constant of between 19 and 20 seconds. Response time of such thermistors can be reduced considerably by using them in conjunction with operational amplifiers in a closed feedback loop. A bridge configuration is, perhaps, the simplest one to implement; for example, in the diagram Th_{1}, with negligible self-heating when kept at $20^{\circ} \mathrm{C}$, has a resistance of $1.5 \mathrm{k} \Omega$. With a current of 5 mA , self-heating will reduce its resistance to 250Ω.

Hence, if the bridge is roughly balanced and the feedback loop of IC_{1} a is closed, the inputs will detect the error signal ${ }^{\prime}$ and force the output to reduce it to zero, via the change of resistance of Th , due to self-heating. Any further changes in the temperature of Th_{1} will result in corresponding changes in the output as the feedback loop tracks the error signal. The mechanism is linear to $\pm 1 \%$ in the temperature range $0-30^{\circ} \mathrm{C}$ and gives an output of $200 \mathrm{mV} / /^{\circ} \mathrm{C}$. For a wider temperature range, non-linearity must be expected. A slew rate of $1 \mathrm{~V} / \mathrm{s}$ is obtained without the use of stahilising networks.

A useful application is in the measurement of temperature gradients. A single-chip quad op-amp such as the LM324 with a high gain and internal frequency compensation may be used. IC C_{10} and IC C_{15} drive the thermistors, $\mathrm{IC}_{\mathrm{Ic}}$ being a difference amplifier. Magnitude and sign of the output define the gradient between the thermistors.

Initially, both thermistors are kept in ice and the trimmers are adjusted to obtain zero output when both temperature and gradient are zero. When in use, the thermistors must be protected against draughts, since stray variations in temperature appear as noise ${ }^{1}$.
A. de Sa

University of Newcastle upon Tyne

Reference

1. Principles of Electronic Instrumentation (2nd edn) 190). Edward Arnold.

Circuit diagram of the gradiometer.
$\mathbf{R}_{11}=\mathbf{R}_{21}=1 \mathrm{~K} \Omega ; \quad \mathbf{R}_{12}=\mathbf{R}_{13}$ $=\mathrm{R}_{22}=\mathrm{R}_{23}=560 \Omega$; TH_{1}, TH_{2} are GL_{23} thermistors (RS stock no. 151-029), $R_{3}=R_{4}=R_{5}=R_{6}=47 \mathrm{~K} \Omega$, I.C (1a), I.C (1b), I.C(1c) is a single chip operational amplifier LM324 (National Semiconductors). Trimmers across R_{13} and R_{23} consist of 560Ω fixed resistor in series with a $5 \mathrm{~K} \Omega$ variable.
Power supply $\pm 15 \mathrm{~V}$, 100 mA .

Battery-status indicator

The circuit shown indicates the lowvoltage condition of a battery by flickering the led D.
Normally, the supply voltage is high enough to maintain the transistor in its ON state and the micropower timer does not receive enough voltage to operate, the led being OFF. As the supply voltage falls to about 3 V , the transistor base current becomes too small for conduction, its collector voltage now being high enough to operate the timer, which will work with a 2.7 V supply and which is arranged as a 10 Hz astable multivibrator.

When, therefore, the battery voltage falls to a point set by the potentiometer, the led flickers at 10 Hz .

Power consumed by the XR-L555 is only about 1 mW ($1 / 15$ of that for the normal 555), so that it does not seriously affect battery life. The circuit is designed for operation at 4.5 V , but is easily modified for other supplies.
V. Lakshminarayanan

Centre for Development of Telematics Bangalore
India

THE ORIGINAL SURPLUS WONDERLAND!

MONOCHROME MONTTORS
THIS MONTH'S SPECAALI Brand spanking new \& boxed monitors Irom NEC, normally selling al about $£ 140$ These are over-engineered for ultra
rellability. 9^{-}green screen composite inpu with eiched non-glare screen plus switch able high/low Impedance inpul and outpu for dajsy chaining. 3 Iront controls and 6 at rear. Standard BNC carrying ledge. Pertecl as a main or backup monitor and for quanlity usersi $£ 39.95$ each (D) or 5 for $£ 185$ (G) CALL FOR DISCOUNTS ON HIGHER QUANIIDES! Zenith ZVM- 1240-EA brand new 8 boxed 12^{-}amber fat screen
with optional swivel and tilt base. Sunfiex filter with dark tint. Standard III. PC compalible. 18 mizz bancwioth. Very attractive "state of the aft" lapered grey case. Standard 9 pin D plug (supplied) on 1 metre cord and mains cord terminated with IEC $\begin{array}{lll}\text { solute gitt at: } \quad \mathrm{ES9} & \text { (D) } 10 \Sigma 500 & \text { (G). Swivel tilt base } \mathrm{C4} 4.95 \text {. }\end{array}$ input Adjustable for filt Requires 12 wdc Brand new and voxe in perfect condition. Only $£ 39$ each or 2 for $\mathcal{5 7 5}$ (F) Motorola M1000-100 5" black 8 white compact chassis measur ing only $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 22 \mathrm{D}$. Ideal for CCTV or computer applications. Accepts standard composite or Individual H 8 V syncs. Needs $12 v d c$ at only 0.8 a . Some units may have minor
screen blemshes. Fully tested with 30 day guarantee and full screen biemishes. Fuly lested with 30 day guarantee and fuli
data.
Fully cased as above in attractive moulded desk standing Fully cased as above in aftractive moulded desk standing JVC 751 ultra conypact chassis monitor for 12 vdc 0.7 a . Dim 1 video input. Full data. BRAND NEW E65.00(B) 20 Black \& white monitors by Aztek. Cotron \& National. A applications. Standard composite vdeo inputs with integral audio amp and speaker. Sold in good used condition . fully tested with 90 day guarantee. $\mathbf{E 8 5 . 0 0}$ (F) Decca $16^{-8} 80$ budget range colour monitor. Features a PIL tube
beautitul teak style case and guaranteed 80 column resolution teatures usually seen only on colour monltors costing 3 times our pricel Ready to connect to most computers or video outputs.
758 i composite incut with Integral audio amp \& speaker Fully tested surplus. sold in little or hardly used condition with 90 day full RTB guarantee, Ideal for use with video recorder or ou
Ielebox SI and other audio visual uses. $\operatorname{L99}(\mathrm{E}) 3 / \mathrm{C} / 5(\mathrm{G}$ HLDEFINITION COLOUR MONITORS
\qquad at a lower than over pricel Completely CGA equivalent. Hi-res Mitsubushi 0.4 ? dot pitch giving 669×507 plxels. Big 28 Mhz 90 day guarantee. Only \quad E149 20' $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS monitors, complete with composite. vil all solid state colou in EXCELL ENT litue used condition with Shops, Oisco, Clubs. 20".... $1352^{2 \prime \prime} \ldots .$. . 155 26".... 185 (f)

LIQUID CRYSTAL DISPLAYS

COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the famous Elnstein. The IPC2000 Professional 3 plece system comprises: Ouality high
resolution Green 12^{-}monltor. Sculptured 92 key keyboard and resolution Green 12^{-}monltor. Sculptured 92 key keyboard and
plinth unlt containing 280A CPIJ and all control clrcuits. PLUS 2 Integral TEAC 5.2580 track double sided disk drives. Generous
other features indude dual 8^{-}IBM tormat disk drive suppon. Senial and parallel outputs. full expansion port, 64 K ram and and Basic. Brand new and covered by our lamous 90 day V22 1200 BAUD MODEMS
Our

We gol a fremendous buy on lurther slocks of this popular

 thater bystems modent. We can now bring them 10 you at hat last advertised price! Fully BT epproved unit. provides standard V22 high speed data comm, which at 120 cps , can save yourphone bill and connect time by a staggening 75% Ulira slim 45 mm high. Full leatured with LED status Indicators and remote error diagnostics. Sync or Async use; speech or data swiching; are in used but good condition. Fully tested prlor despatch. with

IBM KEYEOARD DEALS

A replacement or backup keyboard, switchable for IBM PC, PC-XT or PC-AT. LED's for Caps, Scroll \& Num Locks. Standard Absolutely standard. Brand new 8 boxed with manual and key emplate for user slogans on the function keys. Atractive belge, grey and cream firsh, with the ucual relractable legs undermeath A generous length of autly cord terminating in the standard 5 pin DIN plug. A beautiful clean plece of marulachurers surpus. What a deall $£ 39$ (B) $5 \sqrt{2} 175$ (D) Brand new and boxed 84 key PC/XT type keyboards In standard BM grey with very attractive motted finish and "cicky" solid lee keys. 10 function keys on side. Englishlayout and $\&$ sign. Green LEDs for Caps, Scroll 8 Num tocks. $\quad[99.95$ (B) 5/玉135 (D)

CALL FOR DUSCOUNTS ON HIGHER QUANTITES

FLOPPY DISK DRIVES BARGAINS GALORE!

NEW 51/4 Inch from E29.95

Massive purchases of standard $51 / a^{-2}$ drives enables us present prime product at industry beating low pricesl All units (unless stated) are removed from often brand new equipment guaramee and and accept the standard 34 way connector
 SHUGART SA405. BRAND NEW TANDON TM100-2A IBM compabible DS TANOON TM101-4 80 Track DS
CANON TEC EtcDS Track OS E38.95(C) CANON, TEC etc.DS half height.State 40 or 801
TEAC FD-55-F, $40-80$ DS half height. BRAND NEW $\begin{aligned} & \mathrm{E} 79.001 \mathrm{C}\end{aligned}$ £ 48.95 (C) $31 / 2$ INCH BRAND NEW AT 19.95 II
Never belore seen price for a $31 / 2^{\circ}$ drive. Slandard size believed to be by Canon. Brand new and packaged - mint conditionl 40 track SS, run from $+58+12$ wde with standard CHOOSE YOUR 8 INCHI
Shugart 800 801 SS refurbished 8 lested
Mitaubishi N2894- 63 double sided swilchable hard or sott sectors. BRAND NEW

SPECIAL OFFERSII

Dual 8^{-}drives with 2 megabyte capacily housed in a smatt case with built in power supply $\downarrow \quad$ Only E499.00 (F) deal as exterior drives! \qquad Only $\mathbb{1} 99.00$ (F)
End of line purchase scoop! Brand new NEC O2246 8-8 standard SMDinterlace. Ulira hi speed transter and access ume eaves the good old ST 506 interface standing. In mint conditio

MAINS SUPPRESSORS \& FILTERS

Roxburgh SDC 0212 amp mains RFI filter. Has an extra wide requency range of 150 khz to 30 mhz Can type, soider lug $1-1 / 2^{\circ} \mathrm{D} \times 1-3 / 4^{*} \mathrm{H}$.......... £3.95 or $\mathbf{3}$ lor E 10 (A) 10 for $\mathbf{E} 28$ (B) Rorburgh SDA 01325 . Similar to above rated at $1.1 / 2$ amps. Dims $1-1 / 2^{-} \mathrm{D} \times 1-3 / 4^{-} \mathrm{H}$....E3.25 or 3 for $£ 8.50$ (A) 10 for $\mathbb{E} 5$ (B Suppression Devices SD5 A10. Extra compact general pu pose suppressor. Plastic moulded case with single bolt $9 x i n g$ and snap connectors. Rated at 230 vac 5 amps. Dims 1-3/42 Belling-Le type 2127 . 3.95 or 3 for $£ 10$ (A) 10 for $£ 28$ (B) mains cable (Engllsh coding), and a three pin miniature non-re versible socket and a mating plug. to go to the equipment. Ideal

RECHARGEABLE BATTERIES

LEAD ACID

Mainterance tree 300 .

12 volis 12 volts 3 amphours

6 volts 6 volts 3 amphours
12 volts Centre tapped 1.8 amp hours. RFE
24 amp hours. A200. AFE
NICKEL CADMIUM
Ouslity 12 v tah cell pack. Originally made for the I echnicololor video company. Comains 10 GE top quality D nicad cells in a equipmem. Brand new
Ex equipment NICAD

Ex equipment NICAD cells by GE. Remove

SPECIAL INTEREST
Tektronix 1751 Wavelorm/Vecior monitor
Tho 0.18 vdc bench PSU. 30 amps. Now
DEC VAX $11 / 750$ inc. 2 Meg Mam DZ and tull
documentation, In brand new condition DEC VAX Station 100
DEC LS/02 CPU board
Caicomp 1036 large drum 3 pen plotter Thurlby LA 160 B logic analyser
1.5 kw 115 v 60 hz power source
Tektronix R 140 NTSC IV test signal standard Sony KTX 1000 Videotex system -brand new ADDS 2020 VDU terminals brand new Sekonic SD $150 H 18$ channel Hytrid recorder
Trend 1-9-1 Data transmission test sel

Fantastic PC-XT Col/Mono Compat
arrastic deal for an eniny machine or cheap enough to buy as backup. Brand new and boxed colour (CGA) or mono (MGA) GW Basic PC-XI compatible. complete with MS-DOS 3.3 and o-prose 8 maruals. 8088-2 16 bit CPU with socket for 8087 paraliel ports 8 one 5.25° DS 360 K foppy disk backup. Senia paraliel ports 8 one 5.25° DS 360K foppy disk. Two hall heigh and ribbon cable are ready installed waiting for a second floppy. Power lead for a hard disk is also installed. Room available for hard disk comroller card in addition to the four stots. CGAMGA cerd, switchable at rear. Small tootprint, dims. only 13.5 W $15^{\circ} \mathrm{O} \times 4.25^{\circ} \mathrm{H}$. Three convenient ways to SAVE! PC/XT-1 Base system as above \quad £269 (${ }^{(E)}$ FC/XT-M As above PLUS Zenith ZVM 1240

POWER SUPPLIES

All PSUs 220-240vac input and are BRAND NEW unless atated. Many types ranging from 3v to 10kv aiways in stock Power One SPL130. 130 watts. Link selectable for $12 v$ (4A) or Astec AC-8151 40 watts. Switch mode. $+5 v$ @ $2.5 a .+12 v @$
 $1 \mathrm{a} . 土 15 \mathrm{v} @ 1 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $\mathbf{2} 4.95(\mathrm{C})$ Conver AC130. 130 watt hi grade VDE spec. Swich mode. +5 v
© $15 \mathrm{a} .-5 \mathrm{v}$ (1a. 112 v @ $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cnis} \quad \mathrm{E} 49.95$ (C) @ $15 \mathrm{a},-5 \mathrm{v}$ @ $1 \mathrm{a}, \pm 12 v$ @ $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{~cm}$ s 49.95 (C)
Boshert 13090. Switch mode.ideal for drives 8 system. $+5 \mathrm{v} @$ 6a.+12v@ 2.5a. 12v@ 0.5a. 5v@ 0.5a. Femell G6/40A. Switch mode. $5 v$ @ 40a. Encased E95.001C)

COOLING FANS

inch	AC. 11/2 tinck	₹ 8.50(B)
3/2inch	AC ETRI slimline. Only $1^{\prime \prime}$ thick.	E 9.95(B)
4 inch	AC 110/240v 1122° thick.	E10.95(B)
4 Inch	AC $11 / 2{ }^{-1}$ thick	E 9.95 (B)
10 inch	AC round. $31 / 2$ thick. Rotron 110 V	ع10.95(B)
10 inch	As above but 230 volts	E24.95(B)
62 mm	DC $1^{\prime \prime}$ thick. No. 812 for 6/12v. 81424 v .	E15.95(A)
80 mm	DC 5 v. Papst 8105G 4w. 38mm. RFE.	E19.95(A)
92 mm	DC 12v. 18 mm thick.	E14.95(A)
4 inch	DC 12v. 12w 112^{-1} thick	E12.50(B)
4 inch	DC 24v 8w. 1° thick.	E14.50(B)

THE AMAZINGTELEBOX!
Converts your colour monitor into a QUAUTY COLOUR TVI!

Grand new high quality, fully cased, 7 channelUHF PAL TV funer system. Unit simply conrects to your IV aerial socket and colour your monitor does'nt have sound. the TELEBOX even has an imtegral audio amp for driving a speaker plus an auxillary output Status indicator, Smart moulded case, Majns powered. Built to ES satety specs. Many other uses for TV sound or video etc.
Supplied BRAND NFW with full 1 year quarantee. Telebox ST lor composite video inpul monitors..........ع29.85(B) Telebox STL as ST but with integral speaker............ $£ 34.95$ (B)
Telebox RGB for analogue RGB monitors............. 565 (B)

BRAND NEW PRINTERS

 ristration and quality. On board microprocessor gives full tandshake. Bidirectional 25 cps , switchable 10 or 12 pitch. 136 including \& sign. Fort and itboon Diablo compatible....... E199(E)
DED DPG21 miniature ball point pen printer plotter mechanism 0 with tull 40 characters per tine. Complete with data sto
\qquad
\qquad
50-4 Sertal up to 9.5" paper. fan fold tractor.......... ©99.001E)50-4 Serial up to 9.5 paper. tractor, foll or $\$ /$ sheet E129.00 E)
CALL FOR THE MANY OTHERS IN STOCK.

VISIT OUR SHOP FOR BARGAINS

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOW!
\square

ALL ENGUIFIES
081-679-4414
Fax-081-679-1927
Telex-894502

Sample-and-infinite-hold

I needed a sample-and-hold circuit to capture an analogue value and hold it without drifting for some hours. No charge-storage method can do this and an ADC driving a DAC with an input latch is expensive for more than eight bits. The successive-approximation type of ADC is constructed from a digital register and a DAC in a feedback loop; if the output of this DAC were available, then a separate DAC would not be needed, thus reducing the cost. Unfortunately, no ADC could be found with this feature, so I decided to build an ADC using a successive approximation register (SAR) and a DAC formed from a simple $R / 2 R$ network. The resulting device is shown in the block diagram.

Referring to the timing diagram, the SAR is first synchronously reset to 1000,0000 by holding the START input high, whilst applying a positive clock edge, which also sets the BUSY output high. A-to-D conversion process begins when START returns low. The 1000,0000 output is converted to analogue and compared with the input signal in the comparator, the result of the comparison being fed to the CMP input of the SAR. On the next clock edge, the SAR outputs a one in bit 6 , and the result of the comparison in bit 7. The new output is therefore 1100,000 or 0100,0000 , which is converted to analogue, and the process continues. With each clock pulse, the SAR 'homes in' on the result; after the 8th clock pulse the BUSY output goes low and the conversion is complete. The SAR now holds the converted value, and the output of the DAC is equal to the analogue input voltage.
The practical circuit uses a 22 V 10 PAL device for the SAR and an R/2R SIL network for the DAC. The R/2R network does not have to be particularly accurate, since the digital output is not used externally; the digital code will suffer from errors due to resistor tolerances and saturation voltages at the PAL outputs, but the feedback

from the analogue output to the input effectively removes these. Long-term drift of the PAL output voltages limits the number of bits that can usefully be used for very long holding periods. $\mathrm{R} / 2 \mathrm{R}$ networks are available in SIL packages, but if you build your own. note the value of the grounded resistor - it is $2 R$, not R.

The table shows a listing of the logic equations used to program the PAL. This has been simplified from the original, which included pins to enable devices to be cascaded to 16 bits. The
test bit is shifted up the register using the rule that 'if this bit and all the lower bits are zero, and the next higher bit is one, then make this bit a one. Results are latched using the rule that 'if this bit is a one, and all the lower bits are zero, then latch the result into this bit'. The tricky part is to define what happens to the registers when no change is required. This is the function of the last 'feedback' clause on each line.
David Gibson
Leeds
Yorkshire

EPROM PROGRAMMERS

MODEL 200 - $£ 295$ (other models from $£ 195$)

- includes MSDOS driver software, serial cable, comprehensive manual, 32 pi 2IF socket and universal object fite - Programs virtuall
- Programs virtually aH EPROM devices corrently avaliable includ
- Emulation capabitity with our E512 or the Greenwich tnstrument emutators. - Ee Greenwich nstument emukators - 12 Month Guarantot a plug in board. 12 Month Guarantee. Money back if nor completely satisied
Designed, manufactured and supported in the UK

Z8 ADAPTER FOR MOOEL 200 Programs Zilog and SGS parts - All Security Functions Programmable
¢75
increasingly popular 8 bit microcomputer available In CMOS versions.

[^2]

Adapters available also include -8748/41 family

- 8751 family

40 pin EPROMs up to 4 Mbit

- 63701/5
- 647180
$\begin{array}{r}£ 85 \\ £ 125 \\ \hline\end{array}$

We also sell Bipolar and Gang Programmers, EPROM Emulators and
Erasers and a universal cross-assembler for IBM PCs and compatibles.
Write or phone today for Free Information Pack Tel: (0666) 825146

Fax: (0666) 825141

MOP ELECTRONICS, PARK ROAD CENTRE MALMESBURY, WILTSHIRE, SN16 OBX UK

Norwegian customers please contact Digitron A/S. Phone number: 071-45 89 Norway Fax number: 071-45453

CIRCIE NO. 116 ON REPLI CARD

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749

Many Radio Amateurs and SWLS are puzzled.
Just what are all those strange signals you can hear but not identify on the I.f. and h.f. frequencies? A few of them, such as c.w. RTIY, and Packet you'll know - but what about the many other signals?

Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading, etc., but then there is Code 3 from Hoka Electronic!
It's up to you to make your choice - but it will be easy once you know more about Code 3.
Code 3 works on any IEM-compatible computer with MSDOS having at least 640 kB of RAM.

Code 3 hardware includes a complete digital FSK Converter with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code 3 is the most sophisticated decoder available, and the best news of all is that it only costs £249 plus VAT!
The following modes are included in the base-program (with the exact protocols).

Packet Radio Ax 25. 50 to 1200 Bd
Hell Sinchronous/asynchronous all speeds Fax: Weather charts, photographs wish 16 grey scales at 60, 90. 120, 180. 240 rpm Morse: Automatic and Manual with speed indication
Press DPA: F7b spec., 300 Bd ASCII Wirtschattdienst F7b spec.. 300 Bd ASCII Sport Information: F7b spec. 300 Bd ASC Autospec Bauer: ITA 2 including 3 modes SPREAD 11,21 and SPREAD 51 Dupler ara Artac ITA 2
TWINPLEX F7bl ...F7b6 Duplex ARal ASCII ITA 5 all speeds, parity
Baudat: ITA 2 plus all types of Bit inversion. at any speed
SITOR Automatic Mode A and B ARQ and FEC
All modes in preset and variable user defined speedrates and shifts.
Three options are available to use with the Code 3 and consist of:
1: OSCILLOSCOPE, this facility displays the measured frequency versus time, including split-screen, storage and non-storage modes at $\mathbf{£ 2 5}$.
2: PICCOLO MK VI (Everybody wants this facility, but it's only on offer from Hoka), the well-known multitone-mode at $\mathbf{£ 6 0}$.
3: LONG-TIME AUTO-STORAGE in ASCII (up to several days) f 25
Plus many other special codes. Send for details, price on application.
Along with the many facilities listed, the analysis section of the Code 3 offers you a wide choice of unique facilities such as: a built-in low frequency spectrum-analyser for shift measurement and tuning, plus precision speed measurement up to 0.001 Baud resolution. Other toolfacilities include Speed Bit analysis, Speed Measurement, Character Analysis, Auto-correlation of MOD and RAW signal, Bit Analysis. All these state-of-the-art features are included in Code 3 to assist the experienced user
All options are available from the main menu, saving or loading to or from hard or floppy disk in Bit form (no loss of unknown signals), hard copy with printer, on-screen tuning indicator and very easy to use Help-files.

To order, phone us for more details or send cheque, payable to:
HOKA Electronics
Feiko Clockstr. 31
NL-9665 BB Oude Pekela
The Netherlands
Tel: 010-31-5978-12327
HOKA UK
84 Churchstrèet
Langford, Biggleswade,

Fax: 010-31-5978-12645

Please specify disk size $31 / 2$ or $51 / a^{\prime \prime}$ when ordering!
All prices ex. VAT and shipping, but including 6 month software updating free of charge

Digital milliohmeter

Ordinary 3.5 -digit multimeters do not have the resolution needed to measure very low resistance values: consequently, a DMM will not measure anything under 1Ω with any degree of accuracy.

When an unknown value resistor R_{x} is connected between the output of the op-amp and the inverting input, the negative feedback holds the inverting input at 0 V or virtual ground. Since R_{1} has a fixed voltage of 2 V across it, the current through R_{1} is constant and flows through R_{x} to give an output voltage which is sent to the succeeding A-to-D converter. Obviously, this current is too small to produce an apreciable voltage drop across an R_{λ} of less than 1Ω.

A solution to this problem is to pump a relatively large current through R_{x} and to use a DVM to measure the voltage drop across it. In this design, current of IA was chosen to avoid conversion factor: readings are in direct units. For example, if the mea-

sured voltage drop is 36 mv then $\mathrm{R}, ~ V$ would equal 36 ml ?

The LM350K is an adjustable positive voltage regulator capable of supplying 3 A over a 1.2 to 33 V output range. Its output is the voltage of the adjustment terminal plus 1.2 V ; if the adjustment terminal is grounded the device will act as a 1.2 V regulator.

A current of 1A is pumped through R_{x} by the LM350K and is sensed by R_{s}, a 2.49Ω resistor. With 1 A flowing through R_{s}, a voltage drop of 2.49 V will appear at the inverting input of an L.M301A op-amp, which is configured as a DC error amplifier, the 2.5 V reference voltage at pin 3 being provided by an LM385Z-2.5 precision reference. Since the op-amp, regulator and R_{x} comprise a negative-feedback control system, the voltage at the inverting input of the LM301A is equal to $V_{\text {rer. }}$. Therefore, 2.5 volts will be maintained across R_{s}, forcing 1 A of current to flow through RX. The maximum size of R_{x} is limited by the LM350K's output voltage minus 2.5 V .

A 1 N 4148 diode is used to clip any negative voltage from the op-amp. The LM350K is required only to provide IA and the power dissipated by R, is only 2.49 watts, yet I used a 20 watt resistor. These components were deliberately oversized so that very little thermal drift would occur.
Mike McGlinchy
Los Altos
California
USA

555 with less than 1:1 M/S ratio

In the arrangement shown, a 555 will operate as an astable multivibrator with less than 50% duty cycle.

The high-output state is timed by $\mathrm{R}_{1} \mathrm{C}_{1}$, while $\mathrm{R}_{2} \mathrm{C}_{2}$ time the low state. To gate the output, return R_{1} to a gating signal instead of the supply line. If pin 4 is connected to the supply, pin 3 remains high when the gating signal is low, first going low at the end of the first $R_{1} C_{1}$ period. If it is connected to the gating signal, pin 3 stays low when the gate is low.
D. Bridgen

Santiago
Chile

A 20MHz top quality oscilloscope for $£ 270$?

This specia offer, only available through Electrcnics World + Wireless World, represents unbelievable value.

We have assured ourselves that tie Madel 1021 oscilloscjpe from Japanese instrume tt ma aufacturer, Leader Electroniss, more than meets its publis ed specificajon and is ơ an exceplionall, high build quaity. Ou- judgement is tacked $כ y$ an uneqlivoca guarentee.
Aì £2.0 iinclusive of test prozes, packaging ard celivery but excluding VAT) the instrume t is an absolute bergain.20 MHz dual char nel ojerat on O Variatcle trisger hcld-off - $5 \mathrm{mV} / \mathrm{JiN}{ }^{\vee} 1 / \gamma 2$ sensitivity at 20 MF z
 - 200ns/div to $0.2 s^{\prime}$ div swzep rate O IC to 500 kt X tandwidth O X/Y o jeration using Y channels O \times / Y p ase shift $<3^{\circ}$ at 20 kHz $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area - Calibration accurécy better $\operatorname{tran} 3 \%$ O lkHz ïntera calibrator - Spezēl videc sigral trigger modes ORise-tme <17.5rs

- Graticule Illmination
Qtwax 10prebe k ts incurdec
- Uneq ivocal guarantee

To place you order please send in 3 cheque or $£ 310.50$ (which includes V AT) to the adcress shown. Alternatively complete the colpon with your credit card details or phone r your credit card order on D81-661 3614 (rr ornings only).

Oscillcscope offer, Room L333,
Electroncs World + Wireless Worlc, Quadrant House,
Tre Quajrant,
Sutton SM2 5AS

Asic

Micron arrays. Five libraries for the recently launched CLA 70000 family of 0.8μ channel-less cmos gate arrays offer 4900 to 256000 total gates in nine different array sizes. 70% utilisation achievable with double layer metallisation. A triple layer option increases this to 90%. Up to 256000 raw gates provided as a channel-less 5 V array with less than $5 \mu \mathrm{~W}$ per gate/ MHz power dissipation. Gate delays around 420ps (NAND2 Fanout2). GEC Plessey Semiconductors, 0793518000.

Discrete active devices

Mobile coms transistors. Siemens BFP180 series silicon RF transistors are suitable for DECT and PCN applications, and are available in both SOT23 and SOT 143 configurations BFP181 has a transition frequency of 7 GHz , and a noise figure of 1.2 dB measured at 800 MHz . Maximum collector current is 20 mA . Figures for BFP183 are $8 \mathrm{GHz}, 1.2 \mathrm{~dB}$ and 65 mA . Siemens plc, 0932752320

High-current complementary

 transistors. With a current rating of 1A continuous, the PNP FMMT551 and NPN FMMT451 transistors can dissipate 425 mW at $25^{\circ} \mathrm{C}$. Current gain for both devices is typically 50 at 1 A collector current, rising to 100 at 150 mA . Saturation voltages are 0.35 V (PNP) and 0.25 V (NPN) at 500 mA collector. Zetex plc, 0616274963.Digital signal processor
Pythagoras processor. PDSP16330 Pythagoras processor converts cartesian $16+16$-bit, two's complement or sign magnitude data into 16 -bit magnitude and 12 -bit phase. Magnitude output may be scaled by 2 , 4 or 8 and phase output represents a full $2 \times \pi$ field. Three state output and independent data for simplified interfacing. Dissipation less than 800 mW when operating at 25 MHz Plessey Semiconductors Ltd, 0793 518000.

Linear integrated circuits 12-bit multiplying D-to-A. DAC7802 is a dual 12 -bit, four-quadrant, multiplying unit with output settling to 0.01% of full scale within $0.4 \mu \mathrm{~s}$ typical, $0.8 \mu \mathrm{~s}$ maximum. High speed digital latches. Burr-Brown International Ltd, 0252510054

Power packed buffer amp. The
Elantec EL2009 provides continuous output currents of over 1.0A into a 10Ω load, at 90 MHz . The 3 dB bandwidth associated with a 50Ω load is 125 MHz Applications include video distribution amplifier, fast op-amp booster, flash A-to-D converter buffer or motor driver. Microelectronics Technology, 0844 278781

Logic building blocks

AT chip set. METL has released UMC's Mortar chip set for building a PC AT from three VLSI devices, eight logic components, memory and processor. 4Mbyte of on-board memory supported using standard 80 ns drams for zero wait state operation at 12 MHz . 120 ns drams for

Cartesian-to-magnitude/phase processor, the PDSP16330 from Plessey.

one wait state operation at 12.5 MHz Landmark speeds are 15.9 MHz a 12 MHz operation and 16.5 MHz at 12.5 MHz . Microelectronics Technology, 0844278781.

Delay timer. The 74HC/HCT5555 cmos timer and oscillator provides stable, programmable, delay periods from 100ns to several days. The 5555 contains a 24 -stage binary counter, oscillator, a retriggerable or nonretriggerable monostable, a power-on reset and a master reset circuit. Signetics Company, (408) 9912000.

Memory chips

1 Mbit eprom 70 ns . The CAT27HC010 access times are 70/90120ns. Operating from a single 5 V supply (read mode), it consumes 80 mA active and 1 mA on standby. High speed programming is 100μ s/byte using 12.5 V and the quick pulse algorithm. MMD Lid, 0734313232.

Sram. The CXK7701J 1Mbit cmos high-speed latched cache sram, is optimised for use with Intel's 82385 cache controller for 20,25 and 33 MHz 80386 devices. Access times are 30 ($\mathrm{J}-30$), $35(\mathrm{~J}-35)$ and 45 ns ($\mathrm{J}-45$) and output enable times 10, 13 and 16 ns . Housed in a 52 -pin plastic leaded chip carrier (PLCC). 5V supply. Sony Europe GmbH, 0784466660.

Optical devices

Fixed optical attenuators. LCSPATC series with 1 m pigtails allows connection of a variety of connectors. The compact in-line single/multimode products are designed for use with D4; FC and FC/PC; ST and ST/PC;
SMA905 and SMA906 connectors. The LCS-BUD series are configured into a bulkhead adaptor design with either FC, ST or d4 bulkhead adaptors. Fibre Optech Ltd, 0767600800.

Passive components

Resistor networks for dram damping. The 4800P range of surface-mount resistor networks now includes 20-pin and dual-terminator versions available with gull-wing leads for easy mounting on 8.9 mm wide land patters. Tape-and-reel or tube packaging. Bourns Electronics Ltd, 0276692392

Cermet trimmers. The 12-turn Mepcopal 8026 series industrial-type 0.25 in square trimmers have cermet resistance elements with infinite resolution. Sealed aga nst moisture in a vibration proof housing. Meets AC and HF requirements of MIL R-22097 and MIL-R-39035. Greenwood Electronics, 0734595843.

Ceramic capacitors. Class 1 JKE capacitors, available from 1 to 680pF promise accurate temperature compensation. Working voltages up to 3 kV in five steps. The disc-type capacitors' temperature coefficients range from $0 \pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (NPO dielectric types) to -750 ± 120 (N750). Young Electronic Services, 06285 31417.

PASSIVE

Connectors and cabling
Twist-to-flat cable. Colour-coded cable allows mass termination of standard 0.050 -in insulation displacement connectors (IDCs). 28 AWG gauge wire with $7 / 36$ stranded tinned copper conductors and PVC insulation. 0.007in laminated film applied to one side helps dimensional stability. Twisted lengths of 18 in alternate with 2in flat sections long Alpha Wire Ltd, 0817510261

IC sockets. AMP DIP socket connectors, in either standard or low force options, are available in 6-40 positions. All standard insertion sockets have dual wipe selectively plated contacts in UL 94 V-0 rated polyester housings. Suitable for high board densities. Gothic Crellon Ltd, 0734788878.

Displays

DPM module. The MDM350 with $\pm 199.9 \mathrm{mV}$ full scale and optional scaling has auto-zero, auto-polarity and over-range indication; singleended, differential or floating measurements; digital display hold and a high stability bandgap reference. A multi-turn scale control provides ior readouts in engineering units. Martel Instruments Ltd, 0207290266

Hardware

Four-module din controls. A standard version three- or four-way multisocket Dis-board with integral DIN 43880 housing will accept any standard DIN rail mounting module up to four modules wide. Aphel Ltd, 0788 832488.

SM plastic chip carriers. The surface mount chip carrier socket accepts postmoulded plastic chip carriers conforming to Jedec specification MO047. The sockets offer a protective package in both through-board and surface-mount configurations for vapour-phase soldering. Highpressure contact eliminates gold plating. Methode Electronics,

Backplanes for VME-bus and STEbus. These backplanes are supported by ancillary components including termination networks and extender cards. Reliable maintenance even under full loading is claimed through multilayer construction. Noise-critical lines are fully surrounded by screening Press-fit technology employed. Sub Rack System Products, 0279418401

Instrumentation

R9211C FFT analyser. Servo-analysis functions include curve fit and frequency-response synthesis. The instrument uses swept sine sweep to achieve an inter-channel amplitude difference of $\pm 0.1 \mathrm{~dB}$ and a phase difference of $\pm 1.0^{\circ}$. Internal summing amplifier and a servo-measurement function with frequency table included. Advantest, 0813361606.

Advantest R9211C FFT servo analyser

Alternating voltage calibration
Model 4920 alternating voltage measurement standard can measure signals from 1 Hz to 1.25 MHz with total uncertainties to $\pm 28 \mathrm{ppm}$ in standalone measurement mode, $\pm 14 \mathrm{ppm}$ in AC/DC transfer mode (one year $\pm 5^{\circ} \mathrm{C}$). Datron Instruments Ltd, 0603404824.

VME-bus analyser. Vbat board, plugged into any VME system, can continuously monitor all bus traffic, screening for protocol violations. It allows designers of VME boards to check compliance and provides simple debugging

Temperature and humidity

indicator. Operating from a standard 9 V battery, the Model 525 lightweight portable instrument provides temperature and humidity readings via a single LCD display. Detachable sensor connected by 1 m coiled cable. Range +10 to $+140^{\circ} \mathrm{C}$. Relative humidity from 2 to 98%. Hartley Measurements,

Multi-channel recorder. The M2000 records most engineering parameters in real time or individual signal storage The recorder uses digital print techniques on to low cost thermal paper. Interfaces with analogue input signals through individual conditioning channels which will operate with most sensors. Sensor excitation supplies are included. Micro Movements Ltd, 0734730200.

Time to voltage converter. The TVC 501 converter measures pulse width. pulse periods and signal-10-signal delays. Time-interval measurement is instantaneously converted to voltage. The resulting waveform can be viewed real-time on any oscilloscope. It will convert up to 2.5 million consecutive timing measurements per second. Tektronix UK Ltd, 062846000.

Test signal generator. The TSG has two independent oscillators, continuously variable via the front panel. A frequency and level meter ensure these are set up accurately. There is a pulse generator section, where the mark and space time can be set. Overall length of pulses is also selectable. Tele-Products Lid, 0904 659583.

Interfaces

Keyboard for medical system. A membrane keyboard has been introduced, designed for advanced ultrasound medical systers. It combines both membrane and electroluminescent technology, w th embossed polyester overlays, polyester tactile domes and RFI shielding. Dart Electronic Controls, 029624478.

Production equipment

Durable protective wrist strap. The Charge Guard 2240, a Speidel "Twist-O-Flex" metal expansion band, has an insulating capped exterior to overcome fear of burn or shock associated with non-insulated metal bands and jewellery. Spring-loaded snap system holds the ground cord securely. 3M Static Control Systems, 0234268868

Power supplies

Pluggable switched mode supply. The PK120 Trivolt supply offers 5 V at 12 A and ± 12 to 15 V at 2 A . Packaging is either a $3 \mathrm{U}, 14 \mathrm{HP}$ cassette module or a $6 \mathrm{U}, 8 \mathrm{HP}$ cassette for uses in systems based around eitrer single or double Eurocard sizes. cla med efficiencies $>75 \%$. BICC-Vero Electronics Ltd, 0703266300.

Cigarette pack sized converter. The PWR-82400 triple output DC/DC converters ($3.2 \times 2.4 \times 0.6 \mathrm{in}$) operate over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, supply 5 W . and give a power density of $19.4 \mathrm{~W} / \mathrm{in}^{3}$ The series has been expressly designed not to derate to zero at maximum temperature. ILC Data Device Corporation, 063540158.

Lithium round cells. Varta's high capacity manganese dioxide round cells, of bobbin construction, are designed for low rate discharge. Laser welded sealing for a ten year seal life. Operating range is -30 to $+75^{\circ} \mathrm{C}$ with short term excursions to -40 to $+85^{\circ} \mathrm{C}$. Varta Ltd, 046072320.

Production test equipment

Interceptor for board testing.
Interceptor runs on IBM compatibles to troubleshoot on linear or digital Cs and other types of components including capacitors and wound components. DCA Technology. 073060699.

Three point approach to testing. The QA XX08 three needle point, spring loaded test probes are designed for diagnostics of returned printed circuit
boards and assemblies. High point forces will penetrate any patina buildup around the test pads during field use. 0.25 and $0.4-\mathrm{In}$ probe travel sizes interchangeable in the same industry standard socket contiguration. Teknis Lid, 0344780022

Radio communications

 productsATE for RF receivers. Carston Electronics' HP 8642B, with highstability time base option, is programmable via HP-IB (IEEE 488) and allows testing to be fully automated. The 8642 B ranges from 100 kHz to 2.115 GHz and provides SSB phase noise at 20 kHz offsets of
$-13 \mathrm{dBc} / \mathrm{Hz}$ at 1 GHz . Carston
Electronics. 0819434477

Transducers and

 sensorsPrecision pressure transmitter. The BL flush diaphragm pressure transmitter is a two-wire component receiving excitation voltage and transmitting current output over the same pair of cables. Signal output is the standard 4 to 20 mA into 0 to 2000 s loop resistance. Control Transducers, 0234217704.

VME-bus and STE-bus backpages from Sub Rack System Products.

Tele-Products test-signal generator has two independent oscillators.

Silicon pressure sensor. The MPX5100D is a 0.15 psi, signalconditioned output sensor integrating the sensing element, olfset calibration, temperature compensation circuitry and signal amplification on a monolithic silicon chip. It is said to be the first rail-to-rail integrated pressure sensor, Output scalef ácalibrated from 0.5 V to 4.5V. Motorola Inc, 0101602952 3856.

Miniature loadcell. Model 31 miniature loadcell's tripled stack design eliminates off-axis loading and false load measurements. Welded stainless steel construction. Typical diameter is 19 mm . Mechanical overload stops, precision calibration to 0.15% stabilising diaphragms and pressure compensation included. RDP Electronics, 090257512.

COMPUTER

Computer-aided design

Microwave design system.

Microwave Musician handles front-ioback design of monolithic microwave circuits and hybrid devices. Schematic capture, libraries, simulator interfaces and microwave-specific layout and physical verification tools included Libraries of theoretical or ideal microwave components, and foundry components are available. Cadence Design Systems, 0628826821.

PCB design. A suite of cad/cam tools for electronics engineers from Excitech is made up of four programs under the name Satcam; schematic capture, circuit board layout, post processing, and a database containing symbols and packaging information. Autocad drawing editor. Excitech Computers, 063566767

Circuit synthesis program. RFSynthesist from Ingsoft runs on the Macintosh. Calculations included are filter synthesis, transmission line characteristics from physical dimensions, synthesis of microstrip lines, and coupled transmission line characteristics in stripline and microstrip configurations. Use alone or with RFDesigner. Ingsoft, 0101416 7309611.

Layout software packages. Standalone layout packages provide the interface between Pads-PCB and electronic and mechanical cad and cae packages, available for five on-way Pads-PCB interfaces, three two-way interfaces and four general purpose converters. Lloyd Doyle, 0932245000.

Computer board level products

Digital I/O card. CIO-DIO 48 low-cost high density board (for PC/XT/ATs) is an enhanced compatible equivalent of the Metrabyte PIO 12/PIO 24. It is actually is one PIO 12 and one PIO 24 together on one half length card. Amplicon Liveline Ltd, 0273608331

Fast series das boards. The Fast series high speed, precision, analogue input boards for IBM PC/AT compatibles offers speeds from 14-bit 1 and 2 MHz , to 16 -bit 1 MHz and complements the existing 12 -bit boards. Four differential input channels with software programmable ranges and four-channel simultaneous sample and hold. Optional memory for onboard storage. Consort Electronics, 0252871717.

Signal conditioning modules. The PCLD-770 links industrial sensors to PC data acquisition cards. Carrier board includes a cold junction sensor, multiplexer and screw terminals. Eight DIN sockets mate with separate signal conditioning modules. Breadboard module available. Ten PCLD-770s can be linked to one PC card, providing 80 differential inputs from one PC slot. Fairchild Lid, 0421216527.

Data communications

 productsVehicle identification system. The two-digit encoder will send a 190 ms DTMF burst at the end of each over with a unique identity. Operates on any two-way radio system. CDS Lid, 0256 83528.

Sensor conditioning modules in carrier from Fairchild.

Version 6.0 of DI. 3000 graphic programming tool from Precision Visuals.
Multiplexer for Unix systems.
Designed to turn standard 386 or 486 AT compatibles into a high performance multiuser Unix or Xenix system, the PC01 is the first 16 -line multiplexer board supporting speeds of 38.4 kps on all lines with minimal host degradation. Emulex Ltd, 0734 772929.

Development and

 evaluationZ80 debugger. The SourceZ80 supports the IAR/Archimedes C compiler and Ashling's CT series of in-circuit emulators. It includes automatic synchronisation of source code and disassembled code windows, evaluation of the addresses and offsets of all system variables, and continuously updated variables display. Ashling Microsystems, 0628 773070.

8 -bit development system. The teletest 88 -bit system from Hitex is contigurable for most major microprocessors (determined by a replaceable personality card and outboard processor cable). Real-time emulation with eight hardware triggers, on-the-fly retrieval of external program variables and 8 k cycles by 72 -bit tracing. Optional 1 Mbyte of emulation memory. Hitek (UK) Lid, 0203692066.

16 MHz in-circuit emulator. The EB78320 Mini IE, supports the uPD78320/322 microcontroller family at 16 MHz . Designed for use with a host PC, the package includes a full-screen debugger, 64kbytes of user ram and an optional real-time trace board. NEC Electronics, 0908691133.

Mass storage devices

Rewritable optical drive. The

RS9200E/2 is a 650 Mbvte optical disk drive, using standard 5.25 -in optical cartridges, writes at $150 \mathrm{kbyte} / \mathrm{s}$ and reads at $450 \mathrm{kbyte} / \mathrm{s}$. It is aimed at memory-hungry applications.
Magneto-optic media can handle over 10 million write/erase cycles. 25-year life. Data Peripherals (UK) Ltd, 0785 57050.

Software

Asic design goes Solo. ES2's PC version of its Solo 1400 v 3.0 software has most of its capabilities but runs on IBM-AT compatibles. It has a 32-bit Detinicon coprocessor card. Chips can be designed for manufacture by ES2 in either 1.7 or $1.1 \mu \mathrm{mc}$-mos. The library includes basic cells, macro cells, I/O cells, 74 series equivalents, analogue cells, and compiled megacells of rom, ram and PLA. ES2, 0344525252

Fast tile tinder for PCs. Fleettinder combines hardware and software to quickly locate a file. It uses direct memory access to scan a hard disk looking for selected words and is faster than a software only search. Fleetwood Systems, 082940552.

Enhanced windows connection. Concurrent access to applications residing on large computers and personal computers running in a graphical operating system is possible with Windows Connection Version 2.0 It integrates host sessions and workstation applications running in the Microsoft's Windows 3 environment, giving users easy-to-use graphical interface. Supports IBM Application System/400 (AS/400). IBM UK Ltd, 0705321212

Bus monitor. The GPIB-410 is the enhanced IEEE488 GPIB bus monitor and analyser package, main improvement being that it can capture data in background. In foreground mode, it can dynamically update its capture buffer display. Users can see most recent bus transactions as they occur. Analysis and editing features include detailed device addressing information, fixed cursor positioning, and store data buffer retrieval from disc. National Instruments, 0635 523545.

Graphics programming tools. Versions 6.0 of the DI-3000 and DI3000 XPM graphics programming tools for Unix promise increases in application development productivity through more than 100 new customerrequested enhancements and features. Precision Visuals, 0895 35131.

(0) HITACHI "Compact" series laboratory oscilloscopes

This best-selling Hitachi lab. 'scope is exceptionally compact and lightweight but is packed with features:

- 60 MHz or 100 MHz B/W
- Cursor readout models
- Dual Timebases
- DSO versions available
- Two or four channels
- Prices from $\mathbf{£ 8 5 5}$

There are seven models to choose from. Our sales engineers can provide on-site demonstration and immediate delivery. Ask for more details:

Thurlby

Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

Serial Data Protocol Analysis from 279

Abstract

The Thurlby DA100 is a very low cost protocol analyser for solving problems with asynchronous serial data systems, particularly RS-232. It provides baud rate analysis, data word format analysis, data monitoring, triggered data capturing, and test data generation. The DA100 uses a standard oscilloscope as its display device, connecting to it via a single cable. Alternatively an optional LCD display device can be fitted. An optional RS-232 breakout-box is also available. Contact us now for full technical details:

Thurlby

Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

CIRCIE NO. 119 ON REPIY CARD

Class B, and to a lesser extent class AB , amplifiers are notorious for the generation of switching or crossover distortion at high frequencies, related to the switching speed of their push-pull output stages. These distortions are present as a spray of high-frequency harmonics and much effort has been expended by designers in reducing or eliminating these audibly objectionable distortions.

While some manufacturers espouse the need for pure class A operation in their promotional literature, others have concentrated on reducing the levels through the use of class $A B$, higher speed devices such as mosfets and innovative circuit techniques. Here, I wish to draw attention to another, often overlooked, source of a similar type of distortion which is generated as a result of the class B amplifier's interaction with the power supply impedance and which could easily be mistaken for crossover distortion when observed in the residual distortion waveform.

Fig. 1. Typical class B amplifier, with parasitic resistive and inductive impedances from power supply and wiring, which draws the currents shown.

Figure 1 shows a typical Class B amplifier interacting with its power supply when driven by a sine wave. where $v_{i}=v \sin 2 \pi f t, G$ is amplifier gain, R, and L_{s} are resistance and inductance of wiring, fuse and capacitor, C_{5} is pure power-supply capacitance and Z_{1} is the complex speaker load impedance $Z_{1}(f, \phi)$.

The input signal V_{1} is amplified by G and applied across the load as GV_{i} $\sin 2 \pi \mathrm{ft}$, demanding a current from the class B output stage of $I_{L}=\left(\mathrm{GV}_{\mathrm{i}} /\right.$ $\left.\mathrm{Z}_{1}\right) \sin 2 \pi \mathrm{ft}$. This output current is drawn from the positive or negative power supply for half the output waveform cycle, depending on the phase angle of the load, resulting in the

Distorting power supplies

> When is crossover distortion not crossover distortion? When it comes from the power supply, says Greg Ball

;upply-current waveforms shown for $+I_{L}$ and $-I_{L}$. These half-wave-rectified current waveforms are shifted in phase from the original output waveform according to the phase angle of Z_{1}.

Fourier analysis of these supply current waveforms shows them to be rich in higher harmonics of the fundamental frequency fas follows.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}}= & \mathrm{Gv}_{\mathrm{i}} / Z_{\mathrm{L}} \\
& +\left(\mathrm{Gv}_{i} \sin \pi \mathrm{ft} \quad 1 Z_{1}\right. \\
& -2 G v_{i} / \pi Z_{1}[\cos 2(2 \pi \mathrm{ft}) / 3 \\
& +\cos 4(2 \pi \mathrm{ft}) / 15 \\
& +\cos 6(2 \pi \mathrm{ft}) / 35 \\
& +\cos n(2 \pi \mathrm{ft}) /((\mathrm{n}-1)(\mathrm{n}+1)) \ldots] \\
& (n \text { even })
\end{aligned}
$$

Simplifying the coefficients with $\mathrm{I}=\mathrm{Gv}_{\mathrm{i}} /$ Z_{i} and truncating this infinite series at the tenth harmonic of f as the higher terms become less significant, gives

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}}= & \mathrm{I} / \pi \\
& +\mathrm{I} / 2[\sin \omega \mathrm{t} \\
& -0.424 \cos 2 \omega \mathrm{t} \\
& -0.084 \cos 4 \omega \mathrm{t} \\
& -0.036 \cos 6 \omega \mathrm{t} \\
& -0.02 \cos 8 \omega \mathrm{t} \\
& -0.013 \cos 10 \omega \mathrm{t}]
\end{aligned}
$$

The first term constitutes a DC level shift due to the single-sided current being drawn from each power supply. Remaining terms are harmonically related and compose the half-waverectified supply-current waveforms, the coefficients of each representing its level as part of the waveform makeup.

Supply impedance interaction

A typical capacitor-smoothed power supply with wiring and fuses could have a supply impedance as seen at the amplifier module of Z, which is fre-quency-dependent, as shown in Fig. 2. Above a frequency f_{r} its impedance is no longer capacitive but resistive or, worse, inductive. In many commercial power amplifiers this may occur at

Fig. 2. Variation of supply impedance with frequency.
relatively low frequencies.
Consider the case where $f_{r}=4 \mathrm{kHz}$, the test sine-wave frequency used earlier is 2 kHz so that its 10 th harmonic occurs at 20 kHz and we have the worst-case inductive-supply impedance. The voltage developed across

Table I. Effect on gain at each harmonic frequency of power supply impedance.

Frequency	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz	20 kHz
Phase	$+26.6^{\circ}$	$+45^{\circ}$	$+63.4^{\circ}$	$+71.6^{\circ}$	$+76^{\circ}$	$+78.7^{\circ}$
Gain	1.12	1.42	2.23	3.16	4.123	5.10
Harmonic	fundamental	2 nd	4 h	6 th	8 th	10 th

the supply impedance due to $+\mathrm{I}_{\mathrm{L}}$ or $-I_{1}$ depends on the supply impedance Z, at each frequency and Table 1 shows the effect on each harmonic individually of the rising impedance with frequency.
Applying the effect of this supply impedance Z, to the individual terms in the harmonic series for the supply currents yields a similar series for the voltage developed across the supply impedance due to the pure sine-wave output from the amplifier, thus
V, modulation $=\mathrm{K}[\sin (\omega t+26.6)$

$$
\begin{aligned}
& -0.54 \cos (2 \omega t+45) \\
& -0.17 \cos (4 \omega t+63.4) \\
& -0.1 \cos (6 \omega t+71.6) \\
& -0.074 \cos (8 \omega t+76) \\
& -0.59 \cos (1(1 \omega t+78.7)]
\end{aligned}
$$

where K is a normalising constant on the magnitude of the fundamental and the phase shifts applied are those for an inductively rising power-supply impedance.

Plotting this function as in Fig. 3 shows the transformation of the half-wave-rectified supply current waveform (a) into a supply-voltage modulation waveform (b) resulting from the inductive supply. This latter waveform is superimposed on the DC supply voltage. As can be seen, this voltage waveform is enriched with high-order harmonics of the fundamental output frequency $f(2 \mathrm{kHz}$ in the example),

(a)

(b)

Fig. 3. Supply-current waveform at (a) and consequent supply-voltage modulation.
to power-supply impedance (capacitance) for acceptable low-frequency performance, curve (b) is characteristic of operational-amplifier design techniques and, for the purposes of our argument, constitutes the worst-case condition.

This type of PSRR response is decreasing at $6 \mathrm{~dB} /$ octave throughout most of the audio spectrum and substantially alters the harmonic structure of the power-supply voltage modulation. Associated with this 6dB/octave decrease in PSRR is a tixed 90° phase shift (well above the corner frequency) which affects all harmonics equally and is thus added to the fixed phase shift for each harmonic. Because the PSRR decreases at $6 \mathrm{~dB} /$ octave with increasing f, we can consider this as, in effect, extra gain for the higher harmonics and the effect on our truncated Fourier series for the supply voltage modulation is shown in Table 2.
Applying this emphasis to the supplyvoltage harmonic series, normalised to unity for the fundamental, gives the harmonic structure of the waveform which is presented at the amplifier input through the finite PSRR of the amplifier, is amplified by the gain G and appears across the load.

$$
\begin{aligned}
\mathrm{v}_{\mathrm{iPSSR}}= & (\mathrm{K} / \mathrm{PSRR})[\sin (\omega t+116.6) \\
& -1.08 \cos (2(\omega t+135) \\
& -0.68 \cos (+\omega t+153.4) \\
& -0.6 \cos (6 \omega t 161.6) \\
& -0.59 \cos (8 \omega t+166) \\
& -0.59 \cos (10(\omega t+168.7)]
\end{aligned}
$$

The higher harmonics have been heavily emphasised by comparison with the original half-wave-rectified supplycurrent waveform. Plotting this function and also that for the same function with the fundamental frequency subtracted give the results in Fig. 5.

The two curves and the series for $v_{\text {iPSRR }}$ show that the second-harmonic component is of similar level to the fundamental, while all the higher order harmonics considered in our truncated series are at 59% to 68% of the level of the fundamental. This signal (reduced to a magnitude dependent on the level of the PSRR at f) will be amplified by the gain G to appear at the output across the loudspeaker load. Even with an output stage free from crossover distortion, a waveform as in Fig. 5(a)

Frequency	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz	20 kHz
Gain	1	2	4	6	8	10
Harmonic	fundamental	2 nd	4 th	6 th	8 th	10 th

Table 2. Effect on gain at each harmonic frequency of power supply impedance.

Fig. 5. Input voltage at amplifier input due to PSRR (a) and the residual waveform after subtraction of fundamental.
will appear at the output and, if a THD analyser is used, at frequency f the residual in (b) will be present.

Common power supply

Many commercial power amplifiers use a power supply which is common to both channels, as in Fig. 6. In this case. there will be a degree of interaction between the two channels due to common power-supply impedance and. while the cross-talk introduced may be at an acceptable level, it may be well below the level of harmonic distortion introduced in each chamnel by the mechanism described earlier. The presence of any significant level of crosstalk gives a rough indication of inadequate PSRR in the amplifier proper. since the common supply impedance is likely to be only part of the overall supply impedance seen by either channel.

As the common components of the supply are usually only the reservoir capacitors, with good design these can remain capacitive to well in excess of

Fig. 6. Stereo amplifier with common power supply, impedance of which causes crosstalk.
the audio frequency range, thus eliminating the harmonic emphasis due to supply fuses and wiring in the crosstalk waveform. The capacitive impedance (assuming low ESR and ESL) will reduce, at $6 \mathrm{~dB} /$ octave, the harmonics in the half-wave-rectified supplycurrent waveform which develop the supply-voltage modulation on the capacitors, but they will resurface in the other channel due to the 6 dB /octave emphasis resulting from its declining PSRR. Thus the injected crosstalk waveform will have the same makeup as the $-I_{1}$ waveform earlier.

$$
\begin{aligned}
\mathrm{v}_{\text {cruss }}= & \mathrm{K}[\sin \omega \mathrm{t} \\
& -0.42 \cos 2 \omega \mathrm{t} \\
& -0.084 \cos 4 \omega \mathrm{t} \\
& -0.036 \cos 6 \omega t \\
& -0.02 \cos 8 \omega t \\
& -0.01 .3 \cos 1(\omega) . \ldots]
\end{aligned}
$$

A plot of this, shown in Fig. 7(a), is that of the half-wave-rectified current waveform shown earlier. Crosstalk, however, is generally considered to be pure-tone fundamental appearing in the adjoining channel due to a signal in the first, while the remaining injected harmonics are not considered, despite their presence at substantial levels. If there is a crosstalk figure of, say, 66 dB at 5 kHz . there will be -73.5 dB (or 0.021%) of 10 kHz component and -87.5 dB (or 0.004%) of 20 kHz , due solely to a pure tone of 5 kHz in the adjoining channel. The waveform, with the fundamental pure-tone crosstalk subtracted, looks like the graph in Fig. 7(b).

This introduction of harmonics to the pure-tone crosstalk is for best-case. high-quality (negligible ESR and ESL) reservoir capacitors and is only dependent on the PSRR of the amplifier declining at $6 \mathrm{~dB} /$ octave with increasing frequency. While not all amplifiers have a declining PSRR to emphasise the harmonics in the current waveform, not all power-supply capacitors exhibit pure capacitive reactance at high audio frequencies, particularly large single types. so this is far from a worst case.

While interchannel crosstalk waveforms are easily observed in the output of the undriven channel. intra-channel higher-harmonic distortion waveforms induced by the power supply are not and could casily be interpreted as part of the crossover distortion. Since the supply impedance seen by each channel will generally be higher and different in nature to the pure common capacitance, this source of distortion will probably be substantially higher than the crosstalk in proportion to the ratio of Z, to X_{c} at any given frequency. No

Fig. 7. Crosstalk components resulting from a pure sine wave input waveform (a) and waveform with fundamental puretone subtracted.
account has been taken of impedance variations in the loudspeaker load impedance (unknown), $\mathrm{Z}_{\mathrm{L}}(\mathrm{f}, \phi)$, which could easily exacerbate the problem if there were substantial dips in its impedance at higher frequencies, resulting in higher current demand from the supply.

This distortion mechanism, responsible for generating a spray of high-order harmonics in response to a pure-tone sine-wave, input is deemed responsible for masking the spatial and timbral detail in an audio signal and is likely to contribute to the perceived harshness of many class B (and low-bias class $\mathrm{AB})$ designs.

Reducing the problem

The rectified waveform can be completely eliminated very simply by having the output stage operating at a current always in excess of that demanded by the loudspeaker - i.e. by operating the amplifier in pure class A! Since no high harmonics are then generated in the power supply, the distortion is eliminated. This solution is impractical in many applications and certainly where high power and costeffectiveness are required. Crosstalk will still occur, but can be eliminated by using separate power supplies or monoblock construction.

Worthwhile improvement can be achieved by using multiple. paralleled power-supply capacitor banks (of smaller types with better high-frequency characteristics), eliminating supply fuses and using short, heavy supply-tomodule cable runs. Some manufacturers use massively oversized transformers and capacitor banks for a further small improvement at great size,

signal/acquisition/storage/display/analysis/hardcopy/measurement vibrationitest/calibration/design/examination/realtime/digital

The comalete signal inspection system from ITT Instruments available directly from Electronics World For just $£ 16 \subseteq 9+V A^{-}$

The OX7520 Digiscope from ITT Instruments combines the best eatures of analogue storage instruments in a top quality $20 \mathrm{Megasample/s} \mathrm{digital} \mathrm{storage} \mathrm{oscilloscJpe}$. TX7130 KY plotter, also from ITT, provides A3 hard copy in up to eight colours with a reproduction accuracy of 0.1 mm . Used together, the instruments provide a complete capture and analysis package for most of tre signals encountered in industrial systems. laboratories and educational establishments.

OX752C DIGISCOPE

Analogue mode bendwidth 20 MHz

- Storage rode sample rate 20MS/s
- Two idertical Y channels
- Sensiiviviy 1 mV tc $20 \mathrm{~V} / \mathrm{div}$
- Timebase speed down to $20 \mathrm{~ns} / \mathrm{div}$ ($\times 10$)

8-bit A-tc-D conveter precision

- Two, 2kword storgge memories
- Multirle rigger modes
- Multicle acquisition modes
- Multifle signal analysis modes
- On-screen measurement parameters
- Two selectable measurement cursors
- Stored signaldisplay
- Accuracy 3\%
- RS232 ir terface
- HPGL deta output for plotter

TX7130 $\times 4$ PLOTTER-

- A4 and f3 paper size
- Eight ecording coburs
- Plotte- speed $230 \mathrm{~mm} / \mathrm{s}$
- Accuracy $<0.1 \mathrm{~mm}$ with samepen
- Memory zapacity ¿.5Kwords
- HPGL protocol
- RS232 irterface, 200 to 9600 baud
- Test program with stored signs/characters

ITT OX7520/TX7130 ORDER FORM

```
Please senc ne the special oter irstrument, I enclose a cheque for £1953 35 (ir c VAT) payable to Reed Business Publishing Group
Please cebi ny credil card Access, Visa, American Express, Diners Club Cardro
Expiry date \| \(\mid\) To the sum of \(£ 1953.85\)
Please senc nore infermatior
Name \(\mathrm{l} / \mathbf{/} / \mathrm{M}_{3}\) with initals)
Adcress
Signature
```

As well es supporting all the tunctions of a high performance, dua channel 20 MHz analogue oscilloscope, the OX7520 povides three acquisitier modes covering rumerous applications with transient or repetitive sigrals.

The a-alysis of all facets of the displayed signal can be simplified by using the wo measurement cursors. These make horizontal (level) or vertical (ime \boldsymbol{y} frequency) measurements and display the quantified results d ectld on screen.
The osl function transmits the screen display to the slotter using HPGL proocol via an RS232 inteface.
We resagn se there are one or two tasks which the DSO/plotter combinaion can't tacke. To help you with these, we are pleased to include eา ITT MX5 12 full function digital multimeter w th every order

All equipment supplied through Electronics World carries an unequivecal cuarantee backed by a nationwide servicing agreement.

To place your order please send in a cheque for $£ 1953.85$ (which includes VAT) to the address shown. Alternatively somplete the coupon with your credit card details or phone in your crecit card order on 081.6613614

DSO/Plotter ctier, Room L333,
Electronics World + Wireless World,
Quadrant Holse,
The Ouadrant,
Sutton SM2 5AS
weight and cost penalty. For example, a four-times oversize power supply can achieve a 12 dB improvement, but this is usually swamped at high frequencies by practical wiring needs. This approach is common among manufacturers who subscribe to the low loopgain. low-feedback concept (now moribund) where the PSRR is poor at low frequencies and substantial improvement is experienced in bass performance where supply capacitance easily dominates supply impedance.

Active regulation of the power supplies with low-impedance regulators is an alternative, expensive method of reducing power-supply impedance. which can achieve far lower supply impedances at low frequencies, but is rarely as effective as a quality capacitor bank at high frequencies due to stability requirements, particularly in highpower applications. Substantial supplyvoltage losses occur, which are wasteful of amplifier dynamic headroom and produce an amplifier which is less capable of responding to the power demands of modern musical programme.

This distortion mechanism, responsible for generating a spray of high-order harmonics in

 response to a puretone sine-wave input, . . . is likely to contribute to the perceived harshness of many class A designsunderstood, a more elegant solution is possible, with virtually perfect isolation being achievable at minimal cost, and depends on a very high PSRR in the amplifier proper so that all power-supply-borne interactions are prevented from appearing at the amplifier input at any significant level. These interactions can easily be reduced by 30.40 or even 100 dB simply and inexpensively by competent design and reduced to well below the spot noise floor of the amplifier. Given the controversy surrounding a trained ear's ability to perceive distortion below the noise floor, this is considered a worthwhile goal. This design approach in no way compromises dynamic headroom and desensitises the module to supply wiring, fuses or capacitance.
Elimination of this audibly nasty distortion permits performance of a standard commensurate with the best class A monoblocks in a class AB common-supply stereo power amplifier, while retaining the full dynamic headroom of the design.

Once the mechanisms are properly

Toroidal Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.
Toroidal Price List
Quantity prices Exclude VAT \& carriage

VA	Mall Order	Quantity Price Excluding VAT \& Carriage $2+\quad 10+{ }_{25+}{ }^{2}+10+\quad 100+$				
15	12.16	8.51	6.89	5.17	5.02	4.87
30	13.37	9.36	7.35	5.65	5.51	5.35
50	14.86	10.40	8.17	${ }^{6.32}$	${ }_{6}^{6.13}$	5.94
60	15.02	10.51	8.26	${ }^{6.38}$	6.20	6.01
80	${ }^{14.98}$	10.50	0.25	${ }^{6.36}$	6.19	6.00
100	17.58	12.29	9.88	7.48	7.24	7.02
120	17.95	12.57	9.87	7.63	7.41	7.18
150	21.65	15.16	11.81	9.20	8.93	8.68
180	19.88	13.9	10.92	8.4	8.19	7.94
225	25.09	17.5	13.80	${ }^{10.66}$	10.35	10.04
300	28.80	20.02	15.73	12.16	11.50	11.44
400	33.49	26.9	21.17	18.36	15.88	15.40
500	42.07	29.4	23.14	17.88	17.35	${ }^{16.03}$
625	44.24	34.47	27.08	20.93	19.31	18.70
750	48.66	30.6	28.98	22.38	21.72	21.06
1000	65.67	45.97	38.12	27.91	27.09	26.27
1200	68.71	4.10	37.78	29.20	${ }^{20.34}$	${ }^{27.48}$
1500	87.58	81.36	48.17	37.22	38.13	${ }^{35.03}$
2000	114.45	80.11	82.95	48.4	47.21	45.7
2500	135.87	95.1	74.73	57.71	58.04	\$4.35
these pricess are for single primary with two equal secondaries with 8 colour coded fly leads. Each tranaformer te supplied with a mounting kit, conslating of one ateel washer, two neoprene pads. and a nut and bolt. Please do not healtate to telephone or write with your particuler requiremente. Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, $18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-45,50-0-50,110,220,240$ Primary 240 volt.						
Air Link Transformers						
nit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425 Fax: 0279726379						

These pricess are for single primary with two equal eecondaries with s colour coded ny lespe. pads. and a nut and bolt.

Available from tock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15 $18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-45,50-0-50,110,220,240$

Air Link Transformers

Tel: 0279724425 Fax: 0279726379

\& All items guaranteed to manufacturers' spec.
4 Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
Z8530	1.00	0.50	2732A	2.00	1.50
Z80ACPU	0.80	0.65	2764A.25	2.00	1.35
Z80B CPU	0.90	0.70	27C128.25	2.40	1.95
Z80ACTC	0.50	0.35	27128A.25	2.10	1.60
Z80B CTC	0.75	0.55	27256.25	2.20	1.70
Z80A P10	0.60	0.50	27C256.25	2.10	1.60
Z80B (CMOS) CTC	1.00	0.80	27C512.25	3.00	2.60
74LS02	0.13	0.06	6116LP.150	1.00	0.70
74LS32	0.13	0.07	6264LP.150	2.00	1.55
74LS83	0.16	0.10	62256LP.120	3.60	3.10
74LS123	0.18	0.12	6821P	0.70	0.50
74LS125	0.14	0.10	6850P	0.68	0.48
74LS138	0.14	0.09	8251A	1.10	0.80
74LS148	0.30	0.20	8255A	1.20	0.95
74LS154	0.28	0.15	82C55A	1.30	0.95
74LS174	0.16	0.10	6502P	2.20	1.56
74LS244	0.22	0.14	6522P	2.00	1.45
74HC32	0.12	0.09	6551A	2.80	1.75
74HC86	0.16	0.12	LM324	0.16	0.10
74HC132	0.20	0.14	74HCT125	0.18	0.13
74HC153	0.18	0.12	74HCT373	0.30	0.18

All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road, Purley, Surrey CR2 4HA Tel: 081-668 7522. Fax: 081-668 4190

ROM EMULATOR from only

- Emulates CMOS, NMOS and Bipolar PROMs, as well as 24, 28 and 32 pin devices
- All sizes from 16k to 1 Meg
- Bus widths up to 32 bits
- Loads 27512 in under 10 seconds
- Battery backed

UP to 1 Megabit
DOWN to 45 nano Second

SIMULATOR

- Debug microprocessor software on your PC
- Break point and trace
- Free run or single step

PIONEERS

Walter Schottky 1886-1976 Barriers, defects, emission, diodes and noise. Tony Atherton

Walter Schottky (1960), courtesy of Siemens AG

heart of much of modern phesics Schotthy could hardly have wished for abetter start to a career as a physicist.

After receiving his Ph.D.. Schothy went to dena, some 45 miles south-west of Leipzig, where he worked under onour hut it is perhaps an accolade which stands above medals, awards and citations from learned societies, prestigious as such things are. Walter Schottky 's name is associated with themionic cmission, noise, defects in semiconductors and the Schottiky diode. It is perhaps best known now in the context of Schotthy TTL (Transistor-Tramsistor Logic), so named because of the modification of standard TTL by the addition of a metal-semicondactor or Schotthy diode.

Schothy's career spamned the ages of hoth thermionic valve electmonics and solid-state electronics and he made major contributions to both. He worked in both industrial and university research laboratories, and was known as a modest and selfless character who avoided the centre stage

He was horn on Juty 23, 1886 in Zurich, Switzertand, but he spent his life in Germany. He died on March 4 , 1976 in his 90th year, at Pretzfeld (near Erlangen), the lown 10 which he had retired in 1958 . His death came just two vears after his old emplover. Sicmens, had begun commercial manufacture of Schotthy diodes for microwave use.

Schotthy's father. Fricdrich was a university mathematician. As a result of his career move from Marburg to Bertin, Schotthy attended schools in both places and entered the Humboldt University in Berlin in 1904 , where he studied physics. fo 1912, he was awarded a doctorate in Berlin for his thesis on the Special Theorv of Retativity which Einstein had anonounced only seven years éarlier. Schotthys tutor was Mad Planch, the originator of the Quantam Theory and a mant at the

Max Wien. It was here that he turned away from relativity theory and turned to what was to become his life's work - the interaction of electrons and ions in vacuum and sotid bodies. To put it another way: electron physics.

For the next 15 years his career pattern was to be one of movement between university and industrial research. Finally he settled for industrial research with Siemens AG.

The pattern began with a couple of years with Max Wien at Jena, after which he joined the Siemens industrial research taboratories in Berlin, staying there until 1919. In 1920 he returned to university life, this time under Wilhelm Wien at Würzburg. It was there that he qualified as a university lecturer. W. Wien is chiefly remembered for his work on black-body radiation, for which he received the Nobel Prize in Physics in 1911. After three years with Wien, Schotthy advanced his academic
career, becoming Professor of Theoretical Physics at Rostock. He was then in his late thirties. Finally in 1927, at the age of 40 or 41 , he moved for the last time, back into industrial research, rejoining Siemens AG. There he stayed until his retirement.

Three-halves law

Schottky's achievements can be loosely divided into two phases: the first being research into vacuum electronics and the second, starting in 1929, covering semiconductor electronics. Of course, there were side issues to these two generalisations, some of which would alone have guaranteed him a place in the history books. The invention of the ribbon microphone was one, the superhet another

Schottky's original curve showing the

 $V^{3 / 2}$ lan for the thermionic diode (1913), courtesy of Siemens AG.

The ribbon microphone dates from 1924 and was invented jointly with Erwin Gerlach. They used an extremely thin concertina ribbon of aluminium placed between the poles of a permanent magnet. Reversing the physicat effects led them to invent a ribbon loudspeaker as well, also using a thin ribbon of aluminium. The invention of the superhet is usually credited to the American Edwin Armstrong, but Schottky independently discovered the same principle of the superheterodyne with IF amplification in 1918. Coming second, it would seem, does not provide lasting fame, except perhaps in one's home country.

At Jena, where Schottky began his work on electron physics, he performed both theoretical and experimental studies of the spacecharge effects of electrons emitted from cathodes in vacuum tubes. In 1913/14, at about the same time as Irving Langmuir in America, he independently discovered the basic law relating the current in a valve to the applied voltage; the $V^{3 / 2}$ law. Here, at least, he gained more lasting fame than with the superhet; it was a pioneering achievenent and would have established him as a leading physicist. It may also have helped to determine his temporary career move to Siemens in 1915.

Noise

At Siemens, Schottky further developed his interests in electronic valves. Though he was there only from 1915 to 1919, he seemed to reel off a series of discoveries or inventions. His invention of the screen-grid valve or tetrode (which apparently he originally calfed the protection grid tube) was a major invention in electronics vet, in the light of hindsight, it was possibly overshadowed by his prediction of thermal and shot noise, two of the fundamental classes of noise in electronic devices.
During the early years of electronic circuitry, especially around the period of WWI, engineers and physicists were trying to solve problenis involved in making better vacuum valves. Whilst many of the problems were related to design and manufacturing techniques, such as inadequate vacuum pumping, mechanical resonance, poor welds and the like, the fundamental problem of noise was gaining recognition. Some scientists were trying to discover what the ultimate performance of valve amplitiers might be, once all manufac-
turing problems were solved and only fundamental problems of physics remained. J.B. Johnson and Harry Nyquist, Swedes working at Bell Laboratories in America, were to provide some of the answers in the 1920s, but the classic paper on noise in valve amplifiers was published by Walter Schottky in 1918 in Germany.

More than 50 years later, Johnson was to remark on the fact that a paper of such quality and technical importance should come out of a Germany facing military defeat and economic collapse ${ }^{1}$. In fact, though the paper was published in 1918, Schottky had been working on the problem of noise since 1915.

Schottky had reached the conclusion that there would be two sources of noise of a fundamental nature in an amplifier. The first would occur in the input circuit and would result from the random motion of charge caused by the thermal motion of the molecules in the conductors. This we know as thermal noise, Schottky called it the Wärmeff$e k$. Because this noise originated in the input circuit it would be amplified and appear at the output. He deduced that it would be proportional to the Boltzmann constant (k) multiplied by the absolute temperature. In the mid1920)s, Johnson experimentally identified thermal noise and Nyquist analysed the discovery mathematically, producing a formula of 4 kT watts per unit of bandwidth, confirming Schottky's deduction.

Schottky called his second fundamental source of noise, suggested in his 1918 paper, the Schroteffekt. This, he suggested, would be internal to the valve and would be caused by the randomness of the emission from the cathode and the randomness of the velocity of the emitted electrons. We know it as shot noise and it was first experimentally identified and measured in Schottky's laboratory ${ }^{2}$. Later studies showed it was linked to factors such as the material and design of the cathode. Better understanding of these sources of noise led to better valves and, in the semiconductor age, to better solid-state devices.

This work on noise and thermionic emission in valves represents one of the great periods of Schottky's work. It was near simultaneous with his more engineering contributions of valve and circuit developments, notably the superhet. The next great period of his work was to be with semiconductors, but before that he turned his attention to thermodynamics.

Throughout the 1920s Schottky

> Cross section of an integrated Schottky diode connected in parallel with the collector-base junction of an integrated $n-p-n$ transistor. B is the diode, anode and the transistor base contact.

gathered material which eventually appeared in 1929 in a book on thermodynamics. It was written in collaboration with H. Ulich and C. Wagner and presented the thermodynamic theory of solids with very low impurity content or with small deviations from stoichiometry. It led him naturally to the study of semiconductors.

His other achievement of the period was in finding a wife. He married Elizabeth Lintz in 1923. They had three children.

Schottky diode

The Schottky diode is made from a junction between a metal and a semiconductor instead of a junction between two pieces of semiconductor. Metal-semiconductor junctions are also used for non-rectifying (ohmic) contacts to semiconductor devices.

Ferdinand Braun is usually credited with the first systematic study of metalsemiconductor rectifiers, work which was published in 1874. Point-contact metal-semiconductor rectifiers were used from the carly years of this century, but it was not until 1931 that the theory of current flow in semiconductors was placed on a modern basis by A.H. Wilson. Seven years later, Schottky published his diffusion theory of current transport in metalsemiconductor junctions. It was from this theory that modern understanding grew, hence a metal-semiconductor diode is usually known as a Schottky diode. Their importance lies in the speed with which they can be switched off from the saturated state. Being majority carrier devices they do not suffer from the minority carrier storage problems which slow down p-n junction switching.

In thermionic valves, the current emitted from the metal cathode into the vacuum depends, in part, on the metal's work function. Schottky discovered that this work function was lowered from its "normal" value by the presence of image forces and by the electric field at the cathode. This effect
became known as the Schottky effect. In practical thermionic diodes it meant that, even when the current saturated, there would still be some increase in current if the anode voltage was further increased. However, unless very high anode voltages were used the Schottky effect could be neglected.
If we regard the filament in a thermionic valve as part of a metal-vacuum "junction" then the Schottky effect theory can be extended to a metalsemiconductor junction. The "barrier lowering" (as it is then called) that takes place is less than in the equivalent metal-vacuum "junction" but the effect is profound. Schottky used this as the basis of his explanation of the metalsemiconductor rectifier, work that was published in 1938. Other work by H.A. Bethe, Neville Mott, B. Davidov and others further clarified the conduction processes within metal-semiconductor rectifiers, but even so the term Schottky diode seems to be used synonymously with metalsemiconductor diode.

Two further examples of Schottky's vision are worth recounting: one to do with electronics, one not.

Schottky's obituaries recount that, in 1929. whilst studying semiconductors. he perceived or anticipated what we now call "holes" ${ }^{3}$. He wrote: "To a certain extent the places available for conduction electrons are occupied by static electron space charges and thus the passage of conduction electrons is blocked." These static space charges he called "defect electrons". It was another two years before Werner Heisenberg clarified the phenomenon of holes using quantum mechanics. Again Schottky's work paralleled that of someone else. Rudolph Peierls, at Bell Telephone Laboratories, conceived the same idea - also in 1929.

The final example of Schottkys vision relates to man's use of natural resources. In the preface to his 1929 book on thermodynamics he commented: "The time when man could dispose freely over the resources of energy and materials given to us by Nature will one day appear to belong to an era past, probably in the lifetime of our children." The world is now witnessing the truth of that prophecy.

References

I. J.B. Johnson. "Electronic noise, the first two decades." IEEE Spectrum. Feb. 1971. 2. M.D. Fagen (Ed), "A History of engineering and science in the Bell System." Vol. 1, Bell Labs, 1975.
3. H. Welker, Solid-State Electronics, Vol, 19.817-818, 1976, and Physics Today, Vol. 29. 63-64, June 1976.

3K AND 4K DISTT Dmms

NEW LOW PRICSS

METEX PROFESSIONAL

Continuity Test. 20A AC/DC, Large 17 mm LCD
Displays. Hard Carry Case. H/e Test, 20 Megohm m3800 3\%/29its 32 Range $20 \mu \mathrm{~A} \mathrm{AC/OC}(12 \mathrm{~mm}) 0.5 \%$ M3150 3\% Oigitit 30 Range 0.3% M36108 M36108 Bargraph Version 0.3%
M 36303% Digits 30 Range with C M36308 Bargraph Version 0.3% M36308 8argraph Version 0.3%
M3650 $3 \% 30$ Range. Frequency Capacitance 0.3\%
m36508 31/2 Bargraph Version 0.3\%
M4600 41/DDigit 30 Range.
Data Hold 0.05%
M4630 4 $4 / 2$ Digit 30 Range, Capacitance Oala Hold 0.05%
M46308 Bargraph Version 0.05\%
M4650 4\% Digit 30 Range. Freq. Cap. Data Hold 0.05\%

£26.50 £35.35 $£ 43.40$ $\begin{array}{r} \\ \hline\end{array} 49.600$
 ¢42 45 £50.50 $£ 53.85$
 £59.20
 £67.25
 £63.25

AUTORANGE (NoHte)3y Digit LCD M8021mm Display $0 / 4 / 20$ KHZCounter $£ 43.15$ MB18 True Rms. 40 KHZ Counter. Oata $£ 43.15$ $\begin{array}{ll}\text { MB18B Bargraph Version } & \mathbf{£ 4 3 . 1 5} \\ & \mathbf{£ 4 9 . 8 0}\end{array}$
TEST LAB with Soft Carry Case. 31/2 Digit, 12 mm LCD m2308 18 Range $10 A D C$ $£ 16.35$ M23158 17 Range 10 ADC. Cont. $£ 20.00$ m23188 23 Range 10 ADC . Cont. H / k M2335 31 Range 10A/DC Cont m232532 Range 10A AC/OC. H/e Cont $£ 30.42$ m2355 32 Range 10A/AC/DC. H/e Cont. Frea. 234.57 H/e Cont Frea $10 \mathrm{~A} / \mathrm{AC} / 0 \mathrm{C}$ /e. Cont Freq Logic Test

INSTRUMENTS \& POWER SUPPLIES

3000 LCR AC Bridge
m3002A AC Millivoli Meter 1 MHZ 2002500 kHZ Function Generator 2020500 KHZ Function Generator 416240150
Counter
2603 AD 1 MHZ AI Gen. plus 6 Digit Counter
TE200 150 MHZ RI Gen. (350 MHZ Harmonic)
£103.20 TE220 1 MHZ Audio Generalor $£ 85.803300$ Autorange Digital Cap. Meter £96.50 6100 Signal Tracer/Injector 5250150 MHz 7 Oig Freq Counter £172.85 2430/24V 0/3A Variable PSU E151.40 $2450 / 24 \mathrm{~V}$ O/5A Variable PSU £151.40 1544/15V 0/4A Variable PSU $£ 73.70$ PS3030 Dual Version
£77.70 $£ 64.00$ £52.30 £64.50 $£ 56.00$ £69.55 $£ 40.00$ $£ 108.40$ £213.00

YF20 Dual Scale Sound Level Meter 120 dB
225 V VSS Video Head Tester 1065 Digital Lux Meter-3 Ranges ${ }^{0} 07$ Logic Probe
M625 Logic Probe/Pulser
300 CC Clamp Meter 600A/300V Resis Range
M265 Add on Clamp Probe for Dmm's 0 / 1999 Amps 501 Electronic Insulation Tester 500 V 504 Electronic Insulation Tester 1000 V K0M6 TR Oip Meler 1.5 to 250 MHZ 1062 LCO Temperature \& data hold
 £8.65 6KW 6 KW . 207019 Range M.M. 10AOC - Buzzer 5050 E 41 Range FET mm a aLT26 10ADC Dmm Sturdy oms ThIN Autorange 0 mm HC31 Pen Type Autorange Omm 850 Mains Phase Tester 141.88 $2601000 \mathrm{~A} A C$ Digital clamp meter E36.72 261 Add on insulation tester for 260
JUST A SELECTION
Henry's are also instrument distributors for HAMEG. FLIGHT ALTAI, BLACKSTAR, THURLBY HITACHI, CROTECH, THANDAR. Phone for best prices.

Also stocked
Tools, components, CB, public address, CCTV. security. communications. TV, video audio, computer accessories.

Prices correct at October 90 TELEPHONE YOUR ORDER WITH VISA/ACCESS OPEN 6 DAYS A WEEK FOR CALLERS

ADD 15\% VAT
(UK ONLY)
CATALOGUES
FREE TO
$\because(3 \cap)$
$\because(3 \cap)$
404 Edgware Road, London W2 1ED Instruments/Audio 071-724 3564
Security/Communications/CCTV 071-7240323
Components 071-723 1008 Fax: 071-724 0322 Trade/Education/Export 071-258 1831
Account Facilities Available for Education and Trade/Industry

THURLBY

 THANDAR

For Logic Analysers

Whatever your need in logic analysis, ThurlbyThandar can supply it.

The widest range of analysers available stretches from basic 16 channel models through value-for-money 32 and 48 channel analysers up to highly sophisticated modular units with up to 112 channels.

Our analysers have an unbeatable level of support including disassemblers for most popular 8 and 15 bit microprocessors

LA3200/4800

This range offers exceptional value for money with up to 48 channels and 100 MHz timing from around $£ 1000+$ VAT

Contact us now for full details of all our LAs.
Thurlby-Thandar Ltd
Glebe Rd., Huntingdon, Cambs. PE187DX
Tel: (0480) 412451 Fax: (0480) 450409

CFA: working assumption?

Radio antenna design has traditionally been based on techniques stemming from Hertz's original use of resonant half-wavelength rods. But Poynting vector synthesis, and the crossed field antenna are demonstrating good early results for an alternative approach.

In the crossed field antenna an intense electric field is stimulated using one half transmit power. and an intense magnetic field is separately stimulated using the other half of the power. The two fields are carefully synchronised in time and crossed in geometry so that together they synthesise a powerful electromagnetic wave according to the theory of the Poynting vector:

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}
$$

This is a vector equation stating that S. the radiated power density in $\mathrm{W} / \mathrm{m}^{2}$ is the vector cross product (symbol x) of the electric field \mathbf{E}. in V / ml. with the

> Is it possible to synthesise the Poynting Vector directly? CFA designers M C Hately, FM Kabbary and B G Stewart claim innovation in compact aerial systems.

Fig. I. Experimental medium-wave ground plane CFA radiating 25 kW on 350 m under test in Egypt.

magnetic field \mathbf{H}, in \mathbf{A}. turns $/ \mathrm{m}$. The fields employed are intense, but the crossed field antenna is small, typicatly 3% of a wavelength. The initial wavefronts generated are therefore correspondingly small. but like all unconstrained waves they naturally expand.
Waves created by the CFA are thus just as useful for radio communication as the waves generated by classical antennas
Previously the circular magnetic field has been stimulated by a capacitor. This was done to ensure the field lines of the Efield were not "shorted out" by zero-resistance current-carrying conductors lying in the electric field zone. The approach was based on stimulating a magnetic field by a capacitor following the Maxwell law

$$
\mathrm{d} \mathbf{D} / \mathrm{dt}=\nabla \times \mathbf{H}
$$

meaning that a vector curl H results from there being a change of displacement charge with time. In other words, an RF electric field causes an RF magnetic field with all the geometric properties of the curl.

To cover fully the principles of the CFA in the patent application, the concept of origination of the magnetic field by a stimulating coil has been covered - and does work to a certain extent. But for first production and experimental versions. development effort has been concentrated on forms of CFA using a D-plate capacitor to originate the magnetic field.

Experiments commenced with HF antennas small enough to be carried through a doorway using fields of sufficient intensity to radiate the full power allowed by the UK amateur licence (400W PEP). A few initial calculations showed that 400 W waves from a small device did not need unreasonably high voltage values, and later measurements confirmed that plate voltages are of the order of 300 V . The Maxwell form of CFA is also

Fig. 2. Barrel-shaped crossed field antenna.

EMC-friendly and not likely to be a danger to users or nearby electronic equipment.

Barrel shaped CFA

When radiating from a small device, wavefronts are small, almost spherical, so the fields are curved.

Unfortunately early experiments used a straight-line electric-field layout, and did not work. When the stimulator electrodes were changed to initiate curved electric fields the antenna immediately became active, with the appropriate phase delay in the feed system.

Very quickly the "barrel shape" structure (Fig. 2.) was evolved as the optimum shape for generating omnidirectional vertically polarised radio waves.

Fig. 3. Dimensions of the barrel-shaped CFA for HF .

In the barrel-shaped CFA the Poynting vector is synthesised in an annular "interaction zone" (Fig. 3.) around the centre of the device which is usually mounted upright. From the interaction zone a stream of vertically polarised waves leave and travel outwards to infinity at the velocity of light.
The antenna has circular symmetry in the horizontal plane, so the polar diagram of the intensity of radiation in
the horizontal plane is a circle around the antenna.

The vertical radiation pattern has a broad maximum in the equatorial plane (provided the antenna is being supported far enough above ground) and there are two minima, one above and one below the CFA.

In space the CFA has the classic doughnut shape of the dipole held well above ground. Although it is less than a metre high it is possible to radiate any frequency from 2 MHz to 30 MHz ; wavelengths from 150 m to 10 m .

In fact the CFA's size means it is tempting not to hold it at the right height, and to try to radiate from near the ground with wavelengths many times its mounting height.

But the CFA cannot defeat nature and the result of mounting at a small fraction of the wavelength radiated, is partial cancellation of the radiation to low angles of elevation. This is due to destructive summation with the antiphase signal from the bottom half of the device reflected off the ground.

Fig. 4 CFA ground plane form for HF

Fig. ó. Barrei shaped CFA showing an -1.0 unusually wide bandwidth. 21MHz. [(4)

Fig. 7. Barrel shaped CFA 3.6MHz.

Input impedances

When the CFA is operating, input impedances seen at the two separate electrode input ports are moderately valued and contain resistance, which is itself a cogent evidence of real radiation. The plates may be fed either directly or by using a step-up or stepdown transformer. For feed via coaxial cable, primaries are normally constructed as isolating coils.

The input impedance of prime interest to the antenna user is not that at the electrodes, but that at the single feeder entering the phasing unit. Provided the phasing unit is well designed it can produce voltage magnitudes and phases able to synthesise the Poynting vector around the CFA somewhere in the interaction zone. The common feeder impedance then is close to 50Ω.
When the wavelength becomes very long compared with the physical size of the CFA it is more difficult to adjust the "in-phase" situation for the incoming fields at the interaction zone. In fact if the antenna is set up to radiate say 10 MHz and then the transmitter frequency changed, the error in phase angle caused by change in the phasing unit internal impedances becomes evident first in depreciation of the field synchronism at the interaction zone. For a given CFA, the interaction zone size is fixed. Proportion of the band which is in phase relates to the size of the interaction zone as a proportion of a wavelength. Thus the longer the wavelength, the more critical must be the phase accuracy to produce interaction at the zone.

Working bandwidth

Fortunately Maxwell types of CFA are not nearly as narrow band as might be expected. Field stimulators are capacitors and therefore when they go off tune, they both tend to change in the same direction so the resulting error between them is minimised. Had a coil been used for stimulus of the magnetic field, the phase errors would have been opposite and their difference, presumably, more severely affected by frequency change.
A typical Smith chart of the measured single feeder input impedance normalised to 50Ω on a network analyser shows a band of frequency around 21 MHz and an unusually wide bandwidth (Fig. 6). The antenna used was barrel shaped with dimensions given in Fig. 3. For operation anywhere within the amateur telephony band of 21.15 to 21.45 it is unnecessary to alter the phasing control of the antenna. At a
much lower frequency, $3.6 \mathrm{MHz}(80 \mathrm{~m})$, the boundaries of the input SWR rising beyond 1.5 to 1 are surprisingly wide at about 200 kHz (Fig. 7.).

Figure. 8 shows the input impedance of the ground plane atenna again at the 3.6 MHz band where bandwidth is defined to be the frequency band with SWR 1.5 to 1 or less.

As an experiment the phase accuracy of the feed stimuli were deliberately upset by known angles and the power radiated noted. Output power versus electrical degrees phase error plotted for the full range of frequencies of HF (Fig. 9.) clearly confirms that the phase accuracy requirement becomes more severe as frequency goes down, at longer wavelengths. Figure. 10 shows the effect of deliberate phase error on the single-feeder SWR measurements demonstrating that the CFA is a comparatively easy device to adjust.

CFA vs conventional

Two questions inevitably arise; if the CFA fields are so modest, why are the fields around a classical antenna so fierce and extensive? And if the CFA is so small, why do classical antennas have to be so large?

The answer to the first lies in the cycle by cycle inefficiency of classical wire antennas revealed in the typical Q of the average half-wave dipole of around 10 . Almost all the energy stimulated by the classical antenna is stored in the induction fields (alternately electric then magnetic) and returned to the system four times each cycle. Only a fraction of the induction field is radiated.

In the CFA most of the energy gets away as radiated field each cycle.

Fig. 9. \% radiated power vs plate phase difference shows phase accuracy requirement becomes more severe as frequency goes down.

Fig. 8. Ground plane CFA. 3.6MHz.

There is a very small induction field around the device; the interaction zone field(s). This can be verified by experiment or by consideration of the values of SWR - almost 1 for correctly phased input energies. The phasing unit can typically arrange correct phase for the feeds over a 10 to 1 frequency working band.

The second question concerns correct timing of the two field components to produce the Poynting vector.

It is a feature of the CFA that the crossed and superposed E and H fields have to be carefully synchronsied in phase. This is achieved by splitting the power into half at the phasing unit, passing the two halves into separate, adjustable 45° phase lead and phase lag circuits, and then feeding to separate stimulating electrodes.

In contrast to the CFA, the classical antenna cannot achieve field timesynchronism close to itself (cf a resonant wire where current maximum and voltage maximum occur a quarter of a cycle apart). But if the antenna wire is large enough, it can achieve field phase synchronism for that part of the induction field fluxes which are
located a significant distance away - a fortuitous accident ensuring success.

It may be explained using Fig. 11. The magnetic field flux spreads from the wire in a radial manner. But the electric field lines spread from the conductor parts well away from the centre of the wire antenna along circumferential paths. So they are longer and experience more delay.

Consequently only a small fraction of the electric and magnetic lines achieve synchronism, occuring within an annular region some λ / π about (0.318

Fig. 10. SWR plotted against plate phase aifferences suggests the CFA is comparatively easy to adjust.

Fig. 11. Radiation by a half-wave dipole.

Phase advance is +time; phase delay is -time. All effects move with velocity of light C .

The crossed fields successfully launch a Poynting vector from a comparatively narrow annular interaction zone (IZ), distance r from the dipole, where the phase error is zero. It is desired to calculate r.
E has come from charges $\pm \mathrm{q}$ stationary at the instant shown, distance r along the conductors, having entered the dipole time $+r / \mathrm{c}$ before, from the balanced feeder on the left. The E field travels circumferentially around the paths $\pi / 2 \mathrm{r}$ long and arrives at the IZ delayed by additional time $-\pi \mathrm{r} / 2 \mathrm{c}$.
H has come from moving charges $\pm \mathrm{q}$ which entered from the feeder half a cycle earlier; at time $+\lambda / 2 \mathrm{c}$. This magnetic effect has expanded radially, distance r, to reach the $I Z$ as shown also delayed by $-r / c$.

Totalling all the effects to zero time error, r can be calculated:

$$
\begin{array}{ll}
0=+\frac{r}{c}-\frac{\pi r}{2 c}+\frac{\lambda}{2 c}-\frac{r}{c} & \frac{\lambda}{2}=\frac{\pi r}{2} \\
0=-\frac{\pi r}{2 c}+\frac{\lambda}{2 c} & r=\frac{\lambda}{\pi}
\end{array}
$$

wavelength) away from the wire.
It is not surprising then that cycle-bycycle efficiency is so poor; most of the intensely field-stressed volume near the wire contains energy that cannot cosynchronise to synthesise a Poynting vector and fly away as a wave. Every quarter cycle the induction-magnetic or induction-electric fields collapse back to the antenna giving it self inductance and self capacity.
By contrast the properly adjusted CFA has good cycle-by-cycle efficiency, a low Q , wide bandwidth, and fair efficiency with comparatively low plate voltages. Performance limitations of the CFA are set by impedance and phase variations with frequency.
Given a sufficiently adaptable phasing unit, a single CFA can be adjusted to radiate any frequency, within a decade (or more), and is, in this sense, an aperiodic antenna.

Equivalent CFA circuit

Two points should be noted:

1. If either of the fields ceases, the radiation stops.
2. If the phase of the feed to one of the electrodes is reversed, the action ceases, because the electrodes develop high impedance and refuse to accept power. The CFA does not pile up energy inside itself as has been suggested.

A proper equivalent circuit for the CFA has not yet been evolved but will be the electrical equivalent of a chemical reaction or a thermodynamic change of state. Departure of power to space from the two interacting fields represents a unique form of load. The prime fields interact to produce radio waves which fly away to the infinite energy sink of space. An appropriate equivalent circuit must behave in a manner exactly similar to these unusual characteristics.

Broadcasting tests

Successful experiments are proceeding in Egypt with the use of the ground plane form of the CFA for medium wave broadcasting at approximately 0.85 MHz (wavelength 350 m). Figure 1 shows an experimental ground plane CFA adjusted to radiate 25 kW . The original antenna used for this service was a tuned monopole about 75 m high. Transmission is satisfactorily received in day-light at a range of 90 km , and has a wider band width than the mast and its tuning unit.

The CFA total height is 2 m and the ground plane is only 4 m in diameter. Ground conditions at the site are normal moist earth, as the locaton is in the Nile delta area.

In a letter, Mahmoud Khattab, Head of Projects at the Egyptian Radio and Television Union has reported some initial results:
"The half-balanced CFA using a ground plane could be designed and adjusted successfully to get an input pure resistive impedance of 34Ω. 50Ω (or more) antenna input impedance can be easily reached by the same arrangements. . .
"In our case the transmitter output impedance was 250Ω, matched to the ground plane CFA radiating 25 kW at MF, with no power reflection.
"More field measurements and signal monitoring with modulation are under evaluation at different locations."
> "Transmission is satisfactorily received in daylight at a range of 90 km , and has a wider bandwidth than the 75 m mast and tuning unit"

Receiving capabilities

Does the CFA receive? In short yes. Receiving properties display characteristics of the electromagnetic wave having been analysed; just as the transmitted waves have been synthesised. The phasing unit setting affects the received signals, the setting for maximum received signal is the same as that for low SWR at the input to the phasing unit and maximum transmitted power. Any station using the CFA for transmit can always hear the target stations. The CFA is therefore a practical two way radio communication antenna.

Future applications

The CFA will be of immediate interest for radiating from city centre sites on HF, for example diplomatic and amateur stations. MF broadcasting applications are also expected to develop rapidly since it is small enough to be sited on a building in the centre of a city, and so will be more appropriate to provision of a satisfactory service. Highest signal strengths will be where they are required - in the city centre where RF noise levels are highest.

Radiating to a city from outlying suburban sites, necessary for siting huge antennas for efficiency and protection of nearby listeners from strong induction fields will be unnecessary.
On long wave, LF antennas can be made more efficient, wider in bandwidth and less fussy in tuning, than present antennas.
Experiments are proceding with users of modest powers at LF for navigation aids.

ELF users may be interested when the system is fully proved, since their antennas are very large, expensive and inefficient.

It is also apparent that since waves emanating from the CFA are so small,
they can be deflected by a small reflector. Experiments have been performed using a CFA 20 cm in size radiating on the 15 m amateur band, located at the focus of a 1.5 m parabolic dish. The result was not only front to back ratio but also directivity.

Before the CFA, sources of radiation were always so large that this experiment could not be attempted. The traditional belief that a surface must be a large fraction of a wavelength before it can be used to reflect radiation will require modification: "a reflector must be a large fraction of a wave-front before it can reflect energy".

Frequency re-use
Crossed field antennas look to have major advantages over conventional antennas in terms of size, efficiency, and lower working voltages. The CFA is not a resonant antenna as its structure is substantially smaller than the radiated wavelength, and it is low Q and broad banded.

Fundamental differences to conventional wire antennas mean it is not surprising that the CFA has attracted hostility from some experts. However
the fact that it works, indicates its basis is credible. Furthermore, the theory may be said to have passed the most severe test of a new hypothesis in that it can be used to design new devices.

Poynting vector synthesis has universal application as a design method for compact, efficient, electrically-small antennas, with demonstrated successful application at MF and HF, and experiments at VHF and LF. The technique could provide the solution to the difficult problem of efficient ELF radiation.

In addition the property of smallreflector directivity introduces some interesting possibilities. For instance a medium wave broadcaster could achieve frequency re-use. For example in the north-midland of a country, a ground plane CFA (probably only 4 m in size) radiating 300 m set on the north side of a flat reflecting screen some 20 m high and 20 m wide, would direct most of the radiation northwards and provide a service for the audience speaking the language spoken by the people in the north.

In the south-midland (say about 100 km distant) a ground plane CFA
radiating the same frequency set on the south side of a flat reflecting screen of similar size would direct most of its energy southwards simultaneously providing a different language service for the south region.
On short wave a moving reflectorCFA system could be used to radiate to different target areas at different times of the day. As the CFA can be phased to radiate any frequency, within a decade, even changes required night-to-day can be accommodated, all on the same antenna on a small site, or on a city roof top.

Reference

1. Maxwell's equations and the crossed field antenna. F M Kabbary, M C Hately, and B G Stewart, Electronics World \& Wireless World, March 1989 pp. 216 to 218.

1 Kenfield Place, ABERDEEN AB1 7UW, Scotland, U.K.
Telephone: (0224) 316004 ACCESS VISA MASTERCARD

CROSSED-FIELD ANTIENNA

TESTS CONFIRM This revolutionary System has:
EXCELLENT EFFICIENCY - Wide working frequency range adjustable
VERY SMALL VOLUME - Antenna only 3\% of wavelength high
WIDE BANDWIDTH \& LOW Q - After adjustment, stable and immune to climate
REASONABLE SURFACE VOLTAGES - Safe and EMC friendly

APPLICATIONS

BROADCASTING Long \& Medium Wave: small size for mounting on city centre building. SHORT WAVE: single antenna assignable to any frequency
DIPLOMATIC \& SPECIAL OPERATIONS: compact, frequency flexible, transportable, clandestine.
RADIO NAVIGATION: ideal small antenna for Long Wave Beacons, demountable, transportable.
MILITARY STRATEGIC: adaptable, inexpensive, wideband.
TACTICAL: compact, frequency-agile, covert, jamming roles.
NAVAL LAND BASED: Efficient LF and ELF radiation from modest size structures.
SHIP-BORNE: Compact, rugged, weather-proof, EMC friendly.
AMATEUR: Radiate any HF band from any small site. Loft-space or balcony, no planning problem
VHF \& UHF: CFA is no larger than the Type N or Type BNC plug on top of the transceiver.
Send for further details, test results, or Purchase Ground Plane CFA Kit for HF evaluation, PRICE: INC
VAT \& POSTAGE £400; Europe Air Mail £450 Rest of World £500
Terms for Licence to Manufacture under Our Patents available on request.
Proprietor: Maurice C Hately, M Sc FIEE, Chartered Electrical Engineer (GM3HAT)

UNIVERSAL PROGRAMMER

The XP6005 Universal programmer is a member of the new range of Labtool Programmers introduced by Dux (UK)

Designed to be controlled and powered by your IBMPC or compatible via a Labtool parallel interface card the XP6005 gives you:

* Outstanding Price-Performance

The system is capable of programming a vast range of logic and memory devices throughout the many different device technologies.
At present the XP6005 library supports PALs, GALs, PEELs, IFLs, EPLDs, EEPLDs, EFROMs, EEPROMs, bipolar Proms and single chip microcomputers.

* Free Software Support for New Devices
Coupled with your PC the XP6005 provides a
 unique universal concept, allowing Dux (UK) to add new devices to your library, on request.
* Easy To Operate Menu Driven Functions

Simple device manufacturer and part number selection ensures correct programming.
Selection of worse case supply or nominal supply verification with commercial or military reject options.
Automatic or manual selection of industry standard data transmission formats, such as MOS Technology, MotorolaS, Intel Hex, JEDEC, Binary etc.

* On Line Help Information

Effortless SET programming for 4,8,16 or 32-Bit words via screen prompts.
Straight forward testing of TTL, CMOS, Static RAM and Dynamic RAM devices.
Built in programmer calibration ensuring user confidence.

* Powerful Data and Vector Editing

Full screen memory editor, allows data movement, data transfers or fill memory, with a search option in HEX or ASCII.
Logic verification vectors are easily produced for functional tests.
Efficient parallel Computer-Programmer communication, transfers 256 K in 22 seconds.

* The XP6005 High Performance Programmer is available at a total price of ONLY £776.00 (excluding VAT) which includes the Adaptor Card and the Parallel Cable.

Since my review of programming equipment in the August issue, other similar items have been brought to my attention. This review features two low-cost programmers that are suitable as engineering support tools and in low-to-medium volume production.

There is now a wide variety of low-cost programming equipment available for the complete range of programmable logic devices and lowcost PLD programmers are now turning into stable products with a good range of device support.

These two products are examples of this, but each addresses the problem of programming devices in a different way: the first instrument is a universal programmer from Dux (UK) capable of programming both eproms and PLDs; and the second is a PLD-only programmer from MPE. which comes as a complete logic-development kit. They are hoth intended as low-cost support tools for engineering support or small-scale production and both use a PC-compatible computer as a host for their dedicated plug-in cards.

This approach, of employing a specialised PC plug-in card to control the programmer operation, has become very popular and it is easy to see the reason: it allows the programming equipment to use the PC's internal power supply and, more importantly. it eliminates the need to place any "intelligence" within the programmer hardware circuitry. By contrast. the microprocessors found in traditional programming equipment are mainly present to service the often serial communication link used to transfer data between the user's computer and the programmer itself. Additional features on such devices. such as local displays or keyboards. only build on this existing micro capability

In contrast, equipment dedicated to a PC (or any other computer for that matter) does not possess the portability of traditional RS232 communication. but does have simpler hardware and offers more interactive software that does not suffer from the imposition of a slow data link. With the simpler hardware, costs are now such that, even with a dedicated PC, the total package price can be lower than that of many previous stand-alone products.

Dux XP6005 LabTOOL

As described. this unit follows the common presentation format used by the lower-cost programmers which is to provide a special PC plug-in card.

bARGAIN BLOWING

> A PC hooked up to a PROM/PLD programmer cuts costs - but is it cost-effective? Brian Frost reviews the Dux LabTOOL vs MPE's Powerlogic development system.

Dux XP6005 LabTOOL universal programmer for eproms and PLDs. Socke: is labelled with device types.
together with connecting cable which provides power and logic control signals to the externat programmer Although incompatible with any other equipment, this link avoids the need for a power supply in the programmer and does not stretch $1 / O$ resources such as RS232 or parallel ports.

My tirst impressions of this device were good: the programmer unit is sturdy, has a single f()-way socket clearly labelled for various device footprints and is casily accommodated within existing desk space alongside an existing host PC XT or AT

Documentation is good. a briel introduction indic:sting that the unit accepts most of the programmable logic devices currently available, both PLDs and eproms. as well as providing some testing on traditional logic and memory parts. Although the unit originates in Taiwan (from a company called Xender). the manual was not. as is often the case. Iranslated from Chinese into broken English and contains a comprehensive section listing

exactly what you should have to hand in the package.

The specialised PC card does require you to find a free slot inside the PC and to ensure that the selected address used for the programmer does not conflict with any existing PC accessories. Two separate parts make up the package. the programmer module itself and an "Adapter package", both of which are needed to install and use the programmer, although the intention would appear to be that future, additional programmer "pods" could be supplied for use with a common PC card.

Following the installation procedure, I inserted the card into the PC and connected the cable, which was a little disappointing in that, at full stretch, it only just reached around to the front of my full-size PC; I like to use this PC mounted vertically under the desk and would have preferred a cable of about 1.5 m to allow this. I connected the programmer pod, switched on the PC and was reassured by a successful boot-up. Fairly often, one is confronted by a message such as "Hard Disk Failure", or "Cannot load command.com, system halted", but there were no problems here and I proceeded to install the software.

Installation impasse

This was where the first snag appeared: the manual stated that "a PC with 5.25 " disk drive and hard disk is required" No problem here. However, the software installation program said "Insert disk \#1 into drive A and disk \#2 into drive $\mathrm{B}^{\prime \prime}$. I do have a drive B , but it is a 3.5 in drive, common on many ATs. As a result the software happily saw that my drive B existed and promptly fell over when expecting to be able to read the second 5.25 in floppy in it. The falling over was not too helpful either,
with the system hung, drive light on and a re-boot needed to start.

This gave me cause to think. I decided that the best approach would be to go into my PC setup menu and tell it to pretend that it did not have a drive B, which might allow it to do what all self-respecting single-drive PCs do about drive B , which is to prompt for a disk change in drive A . This did not work, since the PC bios could see the drive B anyway and I was not prepared to go one stage further and start disconnecting drive cables.

I decided to cheat. I would take the second disk, copy it to a 3.5 in disk and be able to use both drives as requested. This worked but took ages, since disk 2 contained numerous device files; I was consoled by the thought that there cannot be more than 128 files in a root directory. One last try: disk I in Drive A, type "XP6005" and return.

Yes! It worked, but a note to software authors about installing software: bear the average, simple-minded user in mind when designing your software. I spent about 30 minutes on this problem and I use very advanced PC techniques every day. At the very least, such problems cause more telephone calls to the supplier than necessary, they cause annoyance and tag "low-cost" equipment with a poor image. If you must supply an automatic installation program, at least explain how to take short cuts. For example, I found later that if I copied the entire contents of both disks onto the hard disk the program would run with no problems immediately.
Running the software identified the

LabTOOL eprom dump display (left). Devices are selected by manufacturer and type number, picture on right being the list of makers.

programmer hardware and displayed the opening menu. Software menus were adequate, if a little garish. There is no colour and the program has an annoying habit of leaving the "typematic" (software key clicking) on after you leave it. All the important features of the software are here, though. Help is available on each menu choice by pressing FI, and all device types with which the unit is compatible are available from within the one menu shell, both eproms and PLDs.

Operation

Devices are selected by first choosing manufacturer and then choosing the type number from the presented menu; there is a useful type-number search facility too. I prepared two data files for programming: one a PLD JEDEC file intended for a 16 V 8 logic device and another 32 K byte eprom binary file. Selecting a National Semiconductor PLD 16 V 8 from the list gave me an error message that this file was not available, but I was prompted to insert the relevant disk into the drive " D :/ PROJECTS/PROG" which, of course, was rather difficult. Manually copying the disk files from the remaining two disks into my hard disk directory cured the problem.
With the 16V8 PLD selected, I was able to load my JEDEC file into memory and program the device. I was very pleased to see that test vectors can be applied to the device. This feature is not popular with low-cost equipment and yet it is an important aid to the production of correctly functional devices. Test vector checking PLDs is in addition to the read-back verification that is done immediately after programming the device, and operates by applying Is and 0 s to the input pins while monitoring the device outputs to

List of devices, in this frame from National Semiconductor.
check that the logic operation gives the expected results

Test vector information is contained within the PLD JEDEC file and is generated by the designer as a list of expected outputs against the required imputs. Many of the more expensive items of programming equipment can accept this test vector information and
use it to test the device functionally. following programming and verification, but it is only recently that this capability has been seen in the lowercost tools. This software allowed me to select whether to verify fuse map only, test vector check only, or to check both.

I found it annoying that I could not
get the software to load the vectors from my JEDEC file. I was able to see a blank vector table on the screen. which I could edit and insert vectors manually, but when I loaded my file the vectors remained empty. A call to DUX established a minor modification to the JEDEC file to cure this problem, which underlines the usefulness of having a supplier close at hand. Basic PLD programming features such as load, erase and program worked well. although I did become tired of the arcade-style sounds that accompany the success or failure of an option and would have liked to find a way of disabling the sound.

Programming time was around 2 s for the 16 V 8 at 8 MHz . This is slightly slower than the other equipment reviewed previously, but by no means a problem.

To check the programmer's capability to handle much larger amounts of data. I turned to its eprom functions, using a National Semiconductor 27 C 256256 K eprom for the test. I could not find the exact type number from the many presented, but chose the nearest. Hesitant about this, 1

TOOLS FOR ENGINEERS - TEL 0703631441 The PowerLogic Development System

*Half length PC plug in
*Programs
Lattice/National, SGS GALS 16V8A,
20V8A
Altera/Intel EP310, 320, 600,610
Cypress/TI C22V10, C20G10
ICT/PEEL 18CV8, 22CV10,
22CV10Z
*Integrated logic equation
assembler for each device
*Easy to install
*Menu driven system
from 1495

*PC Plug-in
*Programs EPROMS from
2716 to 27101
*1 or 4 gang available
*adapters available for
single chip micros
*1 gang £185
4 gang $£ 225$
8 gang and production also available
*8751 adaptor $£ 75.00$
*2/4/8 Mb programmers available

*PC Plug In
*Menu driven system
*Cuts development time
*Emulates 2 EPROMS at once
*Emulates all 28 pin types
'Supports 8 and 16 bit bus widths
*Expandable to 32 bit bus widths

* ${ }^{2} 495$
would have liked to see the exact programming conditions for the device; for example, the $V_{p p}$ programming voltage and the algorithm about to be used. The 32 K binary file took about 5 s to load and translate into the program memory buffer. Choosing the (P)rogram menu, the usual eprom options were displayed, for example data start and end address, data width and verification options. To read the device took 20 s (at 8 MHz), with another 20 s for a repeat read which verifies the device. Programming took 140s, with a further IOs to verify.

It is here that it would be useful to see the programming algorithm being used, since this time may not be the optimum for this device. However, my experience of universal programmers is that they often have a speed penalty compared to dedicated eprom progranmers when handling eproms, since for each of the many locations to program, the pin patterns for address and data need to be generated in
software to allow for the many noneprom device pinouts available in the one fixed-wired socket. This lookup operation often competes with the programming algorithm as the dominant factor in program execution time. As an example, I set my PC to its full speed $(25 \mathrm{MHz})$ and the programming time on the same device droped to 62 s .

To investigate the handling of large memory devices, I chose a very large eprom device, the 27 C 4001 . This requires a lot of memory, and I found that the memory 1 had avaitable was not sufficient, despite having both free EMS and extended memory available on the machine. The need to cater for devices larger than the memory available is presumably the reason for this software's ability to read and write directly from device to disk.

As well as the necessary features for device programming, the software also provides the ability to test traditional logic devices and memory parts. While this feature is not likely to be a great

Supplier

The unit supplied is the XP6005 LabTOOL universal programmer from DUX (UK) Lid, Bovinger House, 172 Winchester Rd, Four Marks, Alton, Hants, GU34 5HZ. Telephone 042063724 . Cost of supplied package: $£ 776+$ vat.
use to most users, it does demonstrate the versatility of the unit. Of more relevance is the calibration software, which both tests and calibrates the unit, allowing the user to set up the programmable voltages on device pins.

Conclusions

The DUX XP6005 is a nicely built unit with a lot of device capability, ideal for the lab., but also adequate for limited production programming. The software has atl the necessary facilities but its use and feel is only average and this rather lets down the nice hardware.

MPE PowerLogic development system

This programmer operates on the same principle as that previously described, being intended for insiallation within a PC-compatible computer. It comprises a PC plug-in card with a small programming "pod" containing a zero-insertion-force socket for the device to be programmed, but differs from the previous system in that it is not a universal programmer as such, but has been focused on a group of the newer, erasable programmable logic devices such as the 16 V 8 or EP300.

This focus has allowed the designers to supply software that both programs these devices and allows the user 10
generate the required programming information directly entered from logic equations by using the supplied logic assembler. This approach differs from that conventionally adopted, where the user purchases a programmer with data file-import facilities and is expected 10 provide the necessary software tools to generate the data files such as CUPL,

PLID-only development system from Microprocessor Engineering, intended for newer devices such as the EP300). Below (left) is the opening menu of Powerlogic and, on the right, the "help" тепи.

ABEL or PALASM for generating logic device files.
Installation of the card is quite easy although, as with all internal PC card systems, a possible conflict of I/O addresses should be avoided. The unit comes set to the IBM prototype card address of 300(hex), but can be easily changed if required. That even these simple problems can occur was demonstrated by my installed software refusing to see the card after installation. I had not checked the DIL switch to confirm the default address as specified in the manual and subsequent inspection showed that the switch was set for 380 (hex), possibly due one switch bit having been knocked during my installation.
With this corrected, the software, "PLDS", identified the card and displayed its opening menu. Choosing the Select Device Type option, I was presented with a menu of the newer. often erasable PLDs, such as the 16 V 8 and 5C031. My initial reaction was that, by comparison with the other programmer products, this list seemed a poor selection. Examination of the device types chosen, however, showed that all were of the newer EPLD types, with each device capable of being programmed to operate as one of the many early bipolar parts, where some 20 different devices used to be required. For example, the newer 16V8 PLD architecture is able to replace directly any of about 20 of the old bipolar metal-fuse PALs such as the 16L8, 16R8 and 16R6 and is also electrically eraseable. Where the user does not need to retain capability for these older devices, it makes good sense to standardise on one of these newer parts and eliminate the need to stock a mixture of devices.

A reduced device count has also allowed MPE to concentrate on supporting all of these devices with their logic assembler. included in the package, which avoids the need to obtain third-party PLD software tools to enable you to translate your source logic equations into JEDEC files for programming and is therefore ideal for users just getting started in programmable logic. This assembler software is supplied separately to the traditional programming software and generates JEDEC files that are then imported into the software for device programming.

Programming software is easy to use, is menu driven and provides help at each step. It is fast and I understand that it is written in Forth, in which MPE have been specialists for some time. I used the same existing JEDEC
> "With simpler hardware, costs are now such that, even with a dedicated PC, the total package price can be lower than that of many previous stand-alone products."

file of one of my 16 V 8 PLD designs as used for the previous test, which was originally produced by the logic compiler CUPL. Loading the file was easy and showed attention to the housekeeping tasks that become important when such a device is used regularly, such as the facility to list directories away from the current one.

As the file loaded, its header was displayed in a window which allows you to check that it is the correct file, but I found that, with my 386 at its default speed, the lifetime of the information was too short to be of use. With PC speeds constantly increasing and disk caches and ram disks becoming common. the range of users' speed capability is widening all of the time.
With the file loaded and the device in the socket, programming took about 6 s at 8 MHz , falling to 2 s at 25 MHz . Repeated programming of a batch of parts was very easy, with only a single key press necessary for each programming operation.
A very useful feature of this software that I would like to see provided on other systems is the ability to run the programmer software from a batch file. thereby "automating" the programming processes. For all the virtues of PLDs, with their flexibility and versatility, this can too easily be undone at the last minute by a simple errer in the hands of inexperienced or careless users during programming. Driving the programming process from a batch file allows one simple filename to set all of the important setup parameters, leaving the user merely to insert the device in the socket and press P.

Since it is intended to be used with the supplied logic assembler, the programming software has options to transfer to either your own named editor or the MPE assembler itself. This transfer worked very cleanly and made for a very tight loop of edit/assemble/
program operations. There are other useful support facilities, such as the ability to print an outline of the final device, ideal for subsequent logic probing. The logic assembler itself took under is to assemble a 16 V 8 source file.

A facility that is missing is an ability to perform test-vector checking, an omission in which this unit is by no means alone. I am sure that a number of users will wish to use the MPE unit with their own JEDEC files instead of the supplied logic assembler, particularly as they graduate to the more complex (and expensive) PAL software tools. These often contain existing testvectors and although the fuse-map verification after programming does provide good confidence of a successfully programmed device. there have been situations where problems with the fuse-map generation by particular design tools have shown up at the point where the (correct) test vectors did not provide the expected device outputs following successful programming and verification.

While the incidence of this is low enough to argue against the need for test vectors. I know from personal experience that they really do concentrate the mind wonderfully and almost always result in a successful PLD going into the PCB simply due to this technique of applying a software logic-probe to the design before any hardware has been tested. If the decision is maintained to leave the test vector checking out of the programming process. then it really should be by provided within the logic assembler as a simulation tool.

Conclusions

Powerlogic is a neat unit. It only programs a limited number of the newer PLDs, but the devices are well chosen, newer parts with a lot of capability. All the software is good, robust and fast. The logic assembler provides a complete logic development package and there is no need to purchase anything else. It is ideal for users new to PLDs, but it does lack the simulation capability of more traditional PLD tools.

Supplier

The unit supplied is the MPE PowerLogic development system from Microprocessor Engineering Ltd, 133 Hill Lane, Southampton, SO1 5AF. Telephone 0703 631441. Cost of supplied package: $£ 495+$ vat. Additional device pods (e.g. for Cypress 22V10 device) $£ 145+$ vat.

OFDM opening way to digital broadcasting?

At IBC90 it was clear that the digital modulation scheme of orthogonal frequency division multiplex (OFDM) is now seen by UK and European broadcasters as offering a most promising technique for delivering broadcast digital signals to the home, or to moving vehicles, even under severe multipath conditions. OFDM comprises a large number of carriers equally spaced in frequency, with each carrier digitally modulated (for example, using QPSK). The spectrum of each modulated carrier is arranged to overlap the spectrum of its neighbouring carrier in such a way that the information content of each carrier is mutually orthogonal. OFDM is spectrally very efficient and very tolerant of the short-term echoes that can prove a major barrier to digital broadcasting from terrestrial transmitters or from space to car receivers.

As noted in EWW (March 1989, page 316) the cofdm system developed by CCETT (OFDM with convolutional coding C), France, was successfully demonstrated at Geneva during the WARC-ORB88 conference in conjunction with the German-developed mascam (Masking-pattern adapted subband and multiplexing) audio bit-rate reduction technique which enables a complete high-quality stereo sound programme to be carried as a $256 \mathrm{kbit} / \mathrm{s}$ multiplexed digital system.

Cofdm was designed to overcome the multipath changes in amplitude and phase of a signal received in a moving vehicle. It is claimed to be virtually free of the multipath and inter-symbol interference that impairs digital reception in the presence of short-term echoes.

Information to be transmitted is split into a large number of elementary narrow-band channels, as increasingly used in telecommunications transmissions. A fast Fourier transform is used to process the channels in both the modulation and demodulation subsystems. Convolution coding is used in conjunction with a Viterbi maximumlikelihood decoding algorithm to give a coding gain in excess of 20 dB at a bit error ratio of 10^{-3}.

At IBC90, C.P. Bell and J.H. Stott (BBC) reported trials of mascam/ cofdm in south London this year from Crystal Palace with an on-channel repeater (active deflector) at Kenley using the French/German Geneva demonstration equipment. Activedeflector techniques with a relay using the same frequency channel as the main station are possible because codfm makes constructive use of multipath reflections.

As currently implemented, the system carries up to 16 stereo programmes, plus a data channel, in an overall bandwidth of 7 MHz , but it is also foreseen that further development would permit at least 12 stereo programmes in a 4 MHz band, giving appreciably better spectrum utilisation than current FM pilot-tone stereo analogue transmissions.
BBC tests have confirmed that mascam/cofdm would be capable of satisfying the stringent requirements for high-quality reception of digital audio signals from either satellite or terrestrial transmitters even in a mobile situation. The BBC paper concludes: "Collaborative studies to define the system fully and to implement the receiver as a consumer product are continuing

Channel frequency-time response for mobile reception (left) and spectrum arrangement for interleaved, multi-carrier sound signals using OFDM techniques.

within the Eureka 147 project, much encouraged by the favourable findings of a range of broadcasting tests recently conducted across Europe". EBU is seeking a digital audio broadcasting (dab) frequency in the range 1 to 3 GHz , suitable for reception on car radios.

Reception quality of the Crystal Palace tests showed that quality, in general, was uniformly high except close to the coverage limit, where the onset of failure tended to be total. However, during static assessments in fringe conditions, reflections from large moving vehicles had a significant effect. In the coverage area, the system was found capable of operating satisfactorily in multipath conditions which caused in-band amplitude variations exceeding 20 dB in the RF spectrum.

The adoption of OFDM techniques to provide digital-video TV signals to the home from terrestrial 8 MHz "taboo" channels is being investigated by the IBA Engineering Division (shortly to become National Transcommunications) with 625 -line TV plus stereo sound and teletext signals contained in a $13.5 \mathrm{Mbit} / \mathrm{s}$ digital multiplex. In this application, OFDM is not only extremely bandwidth-efficient but allows its spectrum to be tailored to minimise interference both to and from existing PAL transmissions in adjacent channels.

The project is clearly at a less advanced stage than the digital audio broadcasting project and the chances that it will ever be implemented in the manner envisaged by Arthur Mason at IBC90 must be considered as less than a racing certainty, since there are rival demands for use of the taboo UHF channels. Receivers would have to cope not only with the new and complex decoding of the digital signals, but also the handling of conventional PAL analogue signals. There would seem, however, to be little doubt that, technically, the compression of a TV broadcast channel into a $13.5 \mathrm{Mbit} / \mathrm{s}$ bit stream using such techniques as motion-compensated hybrid discrete cosine transform (DCT) coding is feasible and could be delivered to homes at least those equipped with reasonable receiving antennas - by means of OFDM technology.

TV flicker and the VDU

For years, the controversy over possible hazards to computer users arising from suspected electromagnetic radiation from VI)Us has dragged on, much of it dating back to the early 1971)s when some models of American colour TV sets were shown to radiate X-rays at levels above the then accepted safety level. Although this was often ascribed to the cathode-ray tube, in fact the prime cause was the so-called damperdiode (efficiency diode) in the EHT generating circuit. This problem was never experienced in Europe, where even the early valve colour sets were found to radiate only negligible ionised radiation, but the idea that VIDUs emit significant levels of iomised radiation dies hard. More recently, it is being suggested, with no convincing evidence, that low-frequency, non-ionized radiation could explain those studies that have indicated (though not consistently) that there may be an increased rate of miscarriages and general heath problems among those whose work involves many hours in front of a VDU screen.
There is, however, an alternative possibility that is receiving increasing attention. This suggests that stress, migraine headaches, nausea, etc, may be the result, not of EM radiation, but flicker at the 50 Hz or 25 Hz (interline) rate that is present when a CRT display is viewed relatively close to the screen.
Medical circles recognized many years ago that a small minority of people are particularly sensitive to flicker (photo-sensitivity) and that some sufferers from epilepsy could have attacks triggered by sitting close to high-contrast TV sereens or when approaching the set to adjust controls. More recently, migraine headaches have sometimes been aseribed to TV flicker or the 100 Hz striking rate of fluorescent strip lighting.
For example, in January 1988. a report in The Observer noted that Dr Arnold Wilkins of the Applied Psychology Unit of the Medical Research Council at Cambridge had said that fluorescent lighting flicker affects only a small number of people. though these could suffer considerably. He believed the problem could be overcome by fitting the more expensive "non flicker" lamps powered by 15 kHz switched-mode power units, which cause the lights to "strike" at 30 kHz .
At this year's meeting of the British Association, Dr Wilkins returned to

Rather than EM radiation, it is now suggested that interline flicker might be the cause of health problems from VID's when viewed at clase range.
this subject and expressed his beliet that viewing text as presented on VDU screens could aggravate headaches, eyestrain and dizziness. He pointed out that we read text by making a series of accurately positioned eye movements, but that the 50 Hz pulsations of VIDU text disrupt this process: "When words are closely spaced horizontally and vertically, there is little unambiguous global information to guide the eye at the level of detail used for controlling eye movements; the text is more or less homogeneous ... the appropriate spacing of words is therefore critical for clarity" he added.

The Applied Psychological Unit is currently extending their work to evaluate whether VIDU screens made of coloured glass case the perceptual problems of computer script.

It may well be that further investigation of the effects of barely perceptible flicker, both from strip lighting and from TV/VDU displays. could prove more rewarding than the present concentration on the potential hazards of low-level electromagnetic radiation. Just why, for instance, are a few people so much more sensistive to flicker than others". To what extent would these benefit from the use of HDTV techni-
ques providing displays with 100$) \mathrm{Hz}$ progressive (sequential) scanning?

Arother alternative to EM radiation affecting some keyboard/VDU operators is the still-controversial medical condation RSI (repetitive strain injury). While some doctors still refuse to accept that RSI really exists, there seems some evidence that it is the re-emergence of what was once known as "telegraphist's cramp". or more colloquially as "glass arm" or "brass arm". This affected a minority of Post Office telegraphists using manual keys in the days before the introduction of the teleprinter - although a few cases of teleprinter "keyboard cramp" were experienced in the 1930)s. It seems that such "cramp" or RSI tends to affect people who do relatively monotonous. repetitive work while under stress in a fixed position. The risk factors appear to be bad working posture, high frequency of hand movements, often coupled with a degree of forceful exertion and stressful, poorly organised work processes. Telegraphists" cramp was rare, affecting only one or two per cent of telegraphists, hut it could be severe enough to force an operator to give up the job altogether.

RF Connections is by P'at. Hawker

ONE POUND PACKS

All packs are E 1 each. Note the figure on the extreme let of the pach ref number and the next figure is the quantity of hems in the pack finally a shon description
8025 13A spurs provide a fused outlet to a ting main where devices such as a clock must not be switched of
6V IA mains
fixing clamps.
30 wall reed switches, it's surprising what you can make with these-burglar alarms, secret swithes. relay. etc., etc.
$3022-225$ watt loudspeaker two unit crossovers
BD30 2 Nicad constant current chargers adapt 10 charge almost any nicad battery
Humidity switches, as the air becomes damper the membrane stretches and operates a microswitch. 13A rocker switch three tags so on/oth, or change over with centre of cally adjust for lengthening and shortening day ariginal cost $£ 40$ each
8049 Neon valves, with series resistor these make good night lights
Minn uniselector, one use is for an eleclric jigsaw puzzle, we give circuit diagram for this. One pulse into motor, moves switch through one pole
B067 I Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks
6V 750 mA power supply, nicely cased with mains input and 6 V output leads.
BD120 2 Stripper boards, each contains a 400 V 2 A bridge rectifier and 14 other diodes and reclifiers as well as dozens of condensers, etc
B0132 2 Plastic boxes approx 3 in cube with square hole through top so ideal for interrupted beam switch
80134 10 Motors for model aeroplanes, spin to stan so needs no switch.
80137 Microphone insens-magnetic 400 ohm also act as speakers.
B0148 Reed relay kits, you get 16 reed switches and 4 col sets with notes on making c/o relays and othe 6 Sadery
B0:49 6 Salery cover for 13A sockets - prevent those inqui. sitive little lingers getting nasty shocks
BO180 6 Neon indicators in panel mounting holders with
BD193 $\quad 65 \mathrm{smp} 3$ pin flush mounting sockets make a low cost disco panel
Cost disco panel Mains solenoid. very powertul, has lin pull or could push it modified

push if moditied

80201 many other applications
B0211 Eiectric clock, mains operated, put ithis in a box and you need never be late
12V alarms, make a noise about as loud as a car horn Slightly soiled but OK
Panostat, contsols output of boiling ring from sim mer up boil.
B0259 50 Leads with pushoon Min lags-a must for hook ups - mains connections etc
Oblong push switches for bell or chimes, these can mains up 105 amps $s 0$ could be foot switch if fitted into pattress
80268 i Mini I watl amp for record player Will also change speed of record player motor
803051 Tubular dynamic mic with optional table rest
80653 2 Miniature driver transformers. Ref LT44 20k to ik centre tapped
$80548 \quad 23.5 \mathrm{~V}$ relays each with 2 pairs changeover contacts

There are over 1,000 items in our Catalogue. If you want a complete copy please request this when ordering.

METAL PROJECT BOX ldeal for battery charger, power supply eic. Sprayed grey sure $8 \times 4^{-1} \times 4 \frac{1 / 2^{\circ}}{}$ Louvred for ventilation. Price $£ 3.00$. Rel
FLOPPY DISCS 5% pack of to 5500 Ret 168 3\% pack of 15
c1000 Rel tops
PERSONAL STEREOS Agann customer retums but complete and with tereo head phones. A bargain at only $[300$ each. Our rel 3 P83
MICROWAVE CONTROL PANEL Mains operated, with touch switches This unit has a 4 digit display with a buith in clock and 2 relay oulputs -
one tor power and one for pulsed power level. Couid be used for all sorts one for power and one for pulsed power level. Could be used for all sorts of timer control applications Only $£ 6.00$. Our ret 6 P18.
EQUIPMENT WALL MOUNT Multi adjustable metal bracket ideal for speakers, lights, etc. 2 for 5500 Our eet 5p152
NEW MAINS MOTORS 25 wath 3000 rpm made by Framco. Approx 6 $x Y \not \approx 4^{-}$. Priced at only 400 each. Our ref 4P54.
SHADED POLE MOTORS Approx 3 square Available in 24 V and 240 V AC . Both with threaded output shatt and 2 fixing bolts. Price is $£ 7.00$ each. 24V Ret 2P65, 240V Ret 2P66.
SUB-MIN TOGGLE SWITCH Body size $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBDT with chrome dolly fixing nuts 3 for f1. Order ref BO6A9.
COPPER CLAD PANEL for making PCB Sire appron 12in long $\times 81 /$ in
wide. Double sided on fibreglass middle which is quite
and 16 in) so this would support quite heavy components and could even form a chassis to hold a mains transformer, etc Price f? each Our ret 80683

POWERFUL IONISER

aprox 10 times more Urys than the Eil and simila circuits. Will refresh your home. ofice, workoom ell. Makes you ieel better fid Our ref 18P?
2KV 500 WATT MAINS TRANSFORMERS. Surable

REAL POWER AMPUFER tor your car, it has 150 watts output Frequency response 20 h , to 20 Khz and signal to noise ratio better than 60 dB . Has buit in shon circuit protection and adjustabie input hevel to 50 your existing car stereo, so needs no pre-amp. Works into speakers rel
30 P 7 described below a real bargain at only E 5700 . Order ret: 57 P1. REAL POWER CAR SPEAKERS, Stereo parr oulpul 100 W each 40 hm mpedince and consising of 6°, wooter. 2 mid range and i weeler Ideal to Work with the
VIDEO TAPES These are three hour tapes of superior quality, made inder licence from the famous JVC Company OHered at only 63 each Our ref 3P63. Or 5 for § $\$ 1$. Our ref 11 P3. Or for the really big user 10 tor
E20. Ou Pel 20 P20. ELECTRONIC SPACESHIP. Sound and impact controlied, responds to claps and shouts and reverses when it hits anything Kit with really detailed instructions. Ideal present for budding young electrician. A youngster should be able to assemble but you may have to help with the soldering
nents on the pcb. Complete kit f 10 . Our ret. 10 P 1
COMPUTER KEYBOAROS Brand new, uncased. $\mathbf{6 3 . 0 0}$ each. ref 3 P89
12" HIGH RESOLUTION MONITOR. Amber screer bedutitully cased tor tree standing, neeos only 12 V 15 amp supply
inpul separate syncs 8 Brand new in mamers camons Price $£ 2200$ inpul separate sy
Orden lel 22P2

SINCLAAR C5 WHEELS

Including inner tubes and ryres is and io diameter spoked poly carbonate wheels Finished in black. Only 56.00 each.
13' Ret 6P10. 16° Rel 6 P11
COMPOSTTE VDEO KITS These conven composite video into separate
H sync, V sync and video. Price 8800 Out ref 8 P39
LINEAR POWER SUPPLY Biand new - 5v 3A. $=1-12 v 1$ Com. plete with cricuit diagram Short cricull protected Our price $£ 1200 \mathrm{Ret}$ 3/itin FLOPPY DRIVES We still have wo models in slock Single sided, BO rrack, by Chinon. This is in the manufacturers metal case with leads and IDC connectors. Price $£ 40$, relerence 4091 . Also a double sided, 80 rrack , by NEC This is uncased. Price $£ 60.00$, reterence 60 P ?
Both are brand new
10 MEMORY PUSHBUTTON TELEPHONES These are customer retums and "soid as seen". They are complete and may need sloght INDUCTVE PROXIMATY SWTCHES These will derect terrous of nonferrous metals at approx. 10 mm and are $10-36 \mathrm{~V}$ operation ideal io alarms position sensors. etc. RS price is : 68.00 each! Ours $\$ 12.00$. Ret BOSCHERT SWITCHED MODE POWER SUP. PLIES - 5 V ar 15 A - 12 V at $3 \mathrm{~A}-12 \mathrm{~V}$ at $2 \mathrm{~A}-24 \mathrm{~V}$ al 2 A 220 V on 190 V TV SOUND DECODER. Nicelv cased mans powered with 8 channeis Will dive a small speater divectivor could be fed inio $\mathrm{H} / \mathrm{FI} 1 \mathrm{system}$ elc
$\$ 1200$ each Rel $\$ 2 \mathrm{P} 22$
PC POWER SUPPLIES Brand nex with buith in fan and poner swich on the back - $5 \quad 5 \quad 12$-12V 150 wath made by AZTEC $\$ 2500$
each Ref 25 P18
VERY POWERFUL 12 VOLT MOTORS, \%rod Horsecowe?, Made to VERY POWERFUL 12 VOLT MOTORS. Ard Horsedower Mo are to drive the Sinclair C5 electric cal but adaptable to powet a go:tan, ${ }^{3}$
mowet, a rail car model railway, etc. Brand new Price $£ 20$ Our ret 20 P22 AS ABOVE with gearbon [40 Rel 40 P8

PHIUPS LASER

This is helium.neon and has a power rating of 2 mW Completely safe as long as you do not look directly into the beam when e
damage could result. Brand new, full spec $£ 35$ Our ret 35 P 1
 1.25 iv at 5 mA running Complete tit with case $£ 15$
 SURFACE MOUNT KIT Makes a suber high gain snooping ampififet on a PC8 less than an inch square' $¢ 7.00$. Our ref 7 P15.
CB CONVERTERS Converts a car rado into an AM CB receiver © 400 Our ref 4P48
GEIGER COUNTER KIT Includes PCB, fube, loudspe aker, and all components to build a $9 v$ batterv operated geiger counter: Only $[73$
12 V TO 220V INVERTER KIT This tit will convert 12 V OC 10220 VAC h will supaly uo to 130 watts by using a larget transtormet As supplied will handle about 15 waths Pice is $\mathrm{f12}$ Our ret 12 P 17
$51 /{ }^{* *} 360 \mathrm{~K}$ DISC DRIVES. Biand new HALF HEIGHT disc drives made by Milsubishi bimned quaniliva avalable of $\$ 3500$ Rel 35 P5
HIGH RESOLUTION MONITOR gin black and white, used Philios tube M24360W Made up in a lacquered frame and has open sides. Made
for use with OPD computer but suitable for most others. Brand new. 120 for use with OPD
Our ref $20 P 26$
12 VOLT BRUSHLESS FAN. Japanese made. The popu ar squate shape $\left(4^{1}\right.$ zinv $4^{1 / 2 i n} \times$ 1tain). The electronically fun tans "o only consume very little current but also they do not cause interference as the brush iype motors do id
caravan fl each Our ief 8 P26

MINI MONO AMP

Fitted Volume control. The amplifer $\mathrm{A}^{\circ} \times 2$ lapp transistors and we estimate the output to be 2 W ims. More technical data Brand new. perlect condition offered at the very low price of $£ 1.15 \mathrm{e}$ a or 13 for 51200

BULL ELECTRICAL

Dept EW250 PORTLAND ROAD, HOV BRIGHTON, SUSSEX BN3 5OT.
MAK ORDER TERMS: Cash, PO or cheque with order. Monthly account orders accepted from schools and public companies. Please add $£ 2.50$ postage to orders. Minimum order (5.
Phone (0273) 203500 fan No (0273) 23077

POPULAR ITEMS

- MANY NEW THIS MONTH

MAINS FANS Snail rype constuction. Approx. $5^{-} \times 4^{-}$
melal plate for easy fixing. New. 65.00 each. Our ret 5P166.
MICROWAVE TURNTABLE MOTOR COmplete with weigh sensing electionics that would have varied the cooting time ideal or midow displays, etc. Only E5 00 Our rei SP1 65
PC STYLE CASES $18^{\prime \prime} \times 18^{\prime \prime} \times 6^{\prime \prime}$ Complele with ian and

VERO EASIWIRE PROTOTYPING SYSTEM. Ideal for design. ing porpects on et
6600 Rei 6 P33
MAINS AXIAL FANS. Brano new 5 diamele powertul sient tans with shaped pole morors Yours lor f300 Rel 3 P1 12
AA CELLS Probably the most popular of the rectiargeable NICAD rypes 4 for $£ 400$ Our ret 4P4A
20 WATT 4 OHM SPEAKER With buith in nweeter: Really well made unit which has the powet and the gual
$5 P 155$ or 10 for $\{40.00$ ret. 40 P $)$
MINI RADIO MODULE Only zin square with fertite aerial ano solid dia. Tuner with own tnob. It is superhet and operates fiom a PP3 b,
would dive a crystal headphone. Price $£ 1.00$ Our rel. 80716 .
BULGIN MAINS PUUG AND SOCKET The old and baithhil 3 pin with screw terminals the glug is panel mounted and the socket is cable mounted 2 pairs 10 (
$80715 P$ or $80715 S$.
MICROPHONE Low coss hand neld dynamic microohone with onvolf
switch in handie. Lead lerminates in 135 mm and 12.5 mm plug. Onl f1.00 Ret. BD711
MOSFETS FOR POWER AMPLIFIERS AND HIGH CURRENT DEVICES 140 V 100 wat pail made by Hilach
ment 2 SK3 343 Only 4400 a pail Our eft 4 PSI
TME ANO TEMPERATURE LCO MODULE A 12 hour dock a Censiua and fahrenheil $50 \times 20 \mathrm{~mm}$ with 12.7 mm digits Requires 1 AA batter and a dew mwiches. Comes with full dala and diagram. Price $£ 900$. Our ref. SPS.
REMOTE TEMPERATURE PROBE FOR ABOVE E 3.00 . Our ref. 3 P60 PAPST Ian $80 \times 80 \mathrm{~mm} 230 \mathrm{~V}$ Out rei 9 P7 Price 99
PAPST Ian 120 : 120 mm 230 V Our ree 6PG Pice 16
600 WATT AIR OR LIOUIO MAINS HEATER Small coil heater made for heating air or hquids Will not corrode, lasts for vears. Coils size $3 \star \gamma$ mounted on a meta, iale
EX.EQUIPMENT POWER SUPPYES Various makes and specs. ideal Bench supoh Only c8 00 . Our ret. 8 P36
ACORN DATA RECORDER Made for the Electron or BBC computer but suirable for others Includes mains adaptor leads and book. $£ 12.00$. Rel. $12 P 95$

SOLDER

22 SWG 60/40 resin cored soldee. \$KG reel. 10 P quality $\$ 400$ Rei 4 P70
NEW PIR SENSORS infra red movement sensors will swith up to 1000W mans. UK made 12 monihs manulacturers watranty. $15-20 \mathrm{~m}$ Pange
f25
GEARBOX KITS Ideal for models, etc. Contains 18 geans $(2$ of each size), $4 \times 50 \mathrm{~mm}$ axles and a powertul adjustable speed motor. 9.12 V operation
Al the gears, etc. are 2 mm push fit. $\$ 3.00$ tor the complete kit. Ret. 3 Pg3 MINI MIF SPEAKERS Made for televisions, etc. Two sizes availabie $70 \mathrm{~mm} \times 57 \mathrm{~mm} 3 \mathrm{~W} 8 \mathrm{ohm}, 2$ for $\{3.00$. Ref $3 \mathrm{Pg} 9.127 \mathrm{~mm} \times 57 \mathrm{~mm} 5 \mathrm{~W} 8$ ohm, 2 for $€ 300$. Ref. 3P100.
TELEPHONE EXTENSION LEAD 5 m phone erten sion lead with plug on one end, socket on the other. White. Price $\uparrow 300$ Our ref. 3P70 or 10 leads lor only $£ 1900!$ Ret. 19P?
LCD DISPLAY 4% digits supplied with connection data $\{3.00$. Ret. 3 P77
CROSS OVER NETWORK 8 Onm 3 way for weeter midrange and wooter nicely cased with con
or 10 for $C 1500$ Ref. 15 P32
BASE STAMON MICROPHONE Top quality uni-directional electel ondenser mic 600 impedence sensitivity 16.18 KHz - 68 dd tuith in chime bracket. 〔15.00. Rel 15P28
MICROPHONE STAND Very heaw chromed mic slan
4^{-}high $E 300$ il ordered with above mic. Our ref $3 P 90$
SOLAR POWERED NICAD CHARGER a Nicad AA battery charger Charges 4 batteries in 8 hours Price 6600 Our ref. 6 P3
YUASHA SEALED LEAD ACID BATTERIES. 6 V 10AH STC SWITCHED MODE POWER SUPPLY. 220 v
 INCAR GRAPHIC EQUAUZER/BOOSTER Slimline 7 band with built in 30 watts pet channel amplifier. 12 V operation, iwn 5 LEO power indicators, 20-21knz with front and rear lader plus
Brand new and guaranteed. Only $£ 2500$. Ref. 25 P 14.

MODEMS Dial up brand ne

CAR IONIZER KIT Improve the air in your car, clears
pevent fatione Case reo Price $\$ 12.00$. Out ret 12P8
NEW FM BUG KI New desian with PCB embeoded coil gropation

00 Our ref 5P158.

NEW PANEL METERS 50UA movement with three dirierent scales that are brought into view with a lever Price only $£ 3.00$. Ret. 3 P91 ELECTRONIC SPEED CONTROL KTT Suitabie for controling our ELECTRONIC TICKET MACHINES. These Unuls contan a mag.
 JOYSTICKS. Brand new can be adapled for mast machines by changing FIVE ROUND MYSTERY PACKS. We have decided p rentroduce
SP174 out mystery packs once again. Aher a gap of 4 years we have amasser quite a lot
al slockr for $£ 500$ you will receve a selection of goods contaning at liast

T 90 CATALOGUE NOW AVAILABLE PLEASE
SEND 6 " $\times 9$ "SAEFOR FREE COPY

CLASSIFIED
 081-661 8640
 CLASSIFIED DISPLAY: $£ 29$ per single column centimetre (min 3 cm)

 LINE ADVERTISEMENTS (iun on): $£ 6.00$ per line, minimum $£ 48$ (pre payable).(Please add on 15\% V.A.T. Ior prepaid advertisements)
BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the box number in the advertisement, c/o Quadrant House, The Quadrant Sutton, Surrey SM2 5AS IO REED BUSINESS
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING GROUP LTD and crossed.

ARTICLES FOR SALE

Vin

 Cooke International
 WISH THEIR CUSTOMERS "HAPPY CHRISTMAS"
 DO YOU WANT USED SCOPES, SIGNAL GENERATORS, POWER SUPPLIES, POWER METERS, DVM's, OSCILLATORS,
 ATTENUATORS, TEST EQUIPMENT.
 Contact: Cooke International, Unit 4, Fordingbridge Site, Main
 Road, Barnham, Bognor Regis, West Sussex PO22 0EB
 Tel: 0243 545111. Fax: 0243542457
 Open Mon to Fri 9.30am-5pm
 Wide range of items available. Visit our walk round bargain store. Send for lists.

KU BAND SATELLITE TELEVISION $£ 23$,
World Satellite TV \& Scrambling, Methods £27. Satellite Installation Guide $£ 12$.
European Scrambling and haker circuits $\mathfrak{E 2 9}$.
1991 Satellite Annual $£ 33$.
UK post included. Airmail Europe $+10 \%$, heyond $+210 \%$. Acces: $/ \mathrm{Visis} / \mathrm{COD}$
Baylin Publications, 24 River Gardens, Purley, Reading. 0734 41468 (Fax \& Answerphone).

FOR SALE

Most issues of 'Wireless World' from August 1947.

Reasonable offers for 380 magazines to
Fairweather, Berthen, Lixwm, Holywell, Clwyd, Wales. Tel: 0352 780367

QUARTZ CRYSTALS OSCIILATORS AND FILTERS of all types. 1.age stocks of standard items. Specials supplied to order. Persomal and export orders weleomed - SAE for livts please. OEM suppore thru: design advice prolotype quantities. production schedules. Goilledge Electronies. Merrioth. Somerset TAló 5 NS . Tel: (14)(0) 73718.

TO MANUFACTURERS, WHOLESALERS,

 BULK BUYERS, ETC.LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all Iypes, INTEGRATED CIRCUITS, TRANSISTORS, DIODES RECTIFIERS, THYRISTORS, etC. RESISTORS, CIF, MF, WW, etc CAPACITORS SILVER MICA, POLYSTYRENE, C2B0, C296, DISC CERAMICS. PLATE CERAMICS, etc ELECTROL.YTIC CONDENSERS, SPEAKERS. CONNECTING WIRE, CABLES SCREENED WIRE SCREWS, NUTS, CHOKES, TRANSFORMERS, eIC ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE

TELEPHONE 081445 0749/445 2713 R. HENSON LTD.

21 Lodge Lane, North Finchley, London N12 8JG. (5 minutes from Tally Ho Corner)

ARTICLES WANTED

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity Prompt service and cash M \& B RADIO
86 Bishopgate Street, Leeds LS1 4BB. Tel: 0532435649 Fax: 0532426881

WANTED

Receivers, Transmitters, Test Equipment, Components. Cable and Electronic, Scrap. Boxes, PCB's. Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclalr, Electronics, Stoc rholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

WANTED: VALNES TRAVSISTORS I.Cs (e-pecially types KTto. KTsx PXt. PX25). Also plugs sockeLs and complete factory clearance. If possible. send written list for offer by return. Billington V'alves, phone 04113 865105 . Fav: 14013865106 . Sec adjoining advert.

STEWART OF READING 110 WYKEHAM ROAD READING. RGG 1 PL . TEL: 073468041 FAX: 0734351695
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

APPOINTMENTS
 $081-6618640$

DISPLAY APPOINTMENTS
f29 per single col. centimetre (min .3 cm).
Full page $£ 2311$
$1 / 4$ page $£ 693$
Full colour $£ 400$
2nd colour £275
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING GROUP LTD and crossed.

Wanted urgently, Practical people for the Third World.

Sharing your skill with people in the Third World is an experience which brings challenge and true job satisfaction.

VSO has urgent requests for the following:

- Hospital Electronics Engineers - Refrigeration/Radio/TV Engineers © Electrical Engineers for instruction/installation ■ Electronics Instructors ■ Maintenance and Repair Technician for Medical or Secondary school equipment

For more details, please complete and return the coupon to: Enquiries Unit, VSO, 317 Putney Bridge Road, London SW15 2PN. Telephone $081-7801331$ (24hr. ansaphone). Conditions of work: - Pay based on local rates - Equipment and re-equipment grants provided - Rent-free accommodatlon usually provided - National Insurance and medical insurance paid - Language training provided where necessary-- Return flight paid - Posts (always approved by our field staft) are for a minimum of '̂wo years.

It's a working experience.

I'm interested. I have the following training/ experience:

Name

Telephone
Address
\longrightarrow Postcode

Charity No. 313757.
EWW/12/90

Garibaldi-RF \& Microwave

We are the specialist agency for 'Radio Frequency' design or test Engineers working from 1 MHz to light! We have hundreds of top positions throughout the UK, working on RF moblie comms (GSM, PCN, CT2), opto, satellite, mm -wove \& microwave projects. Please contact our consultant Simon Luttrell MSc on 0494792592
160 Bellingdon Road, Chesham, Bucks. HP5 2HF.

Cable TV Systems Engineer

To take charge of VHF $(300 \mathrm{MHz})$ tree and branch, upgraded, systems in North Ayrshire.

Please send C.V.
A. Thomson (Relay) Ltd

27 Auld Lea Road
Beith, Ayrshire

SCOTTISH OFFICE DIRECTORATE OF TELECOMMUNICATIONS PROFESSIONAL AND TECHNOLOGY OFFICERS EDINBURGH BASED

You will join a professional multi-disciplinary team responsible for the provision of telecommunication facilities to the Departments of the Secretary of State for Scotland and for an advisory and co-ordination service to the Emergency Services. Telecommunications Engineers at PTO level are employed in the Directorate's Headquarters in Edinburgh where they assist in the work of the various Branches. The Work covers a wide spectrum of telecommunications disciplines ranging from radio site surveys and propagation measurements for the provision of mobile radio schemes, multi-channel digital microwave radio links to the provision of telephones, facsimile equipments, etc within the various Scottish Office buildings.
Although Edinburgh based the possession of a current UK driving licence is essential as there will be a significant amount of travelling to various sites in Scotland.

Candidates must possess an ONC or an equivalent or higher qualification in a relevant discipline, and have an aggregate of at least 4 years recognised training (eg full apprenticeship) which may include up to 3 years' relevant full-time study.
Starting salary will be in the range of $£ 10,466-$ $£ 14,381$ according to qualifications and experience with further increments depending on performance up to $£ 16,822$. Five day working week together with a generous leave allowance and the option of flexible working hours. Promotion prospects.
For full details and an application form (to be returned by 14 December 1990) write to Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN or telephone 0312443854 or 3857 quoting PM(PTS) 1/ 14/90.
The Civil Service is an equal opportunity employer.

ALL THINGS TO ALL MEN?

Perhaps not. But we do recruit a wide range of professionals for companies throughout the LK and Europe

So, if you have experience in the following areas:
TEST ENGINEERS
CALIBRATION ENGINEERS
SERVICE ENGINEERS
AUDI() ENGINEERS
RF ENGINEERS
DESIGN ENGINEERS
DESIGN DRAUGHTPERSONS
and would like more information or an informal chat, call:

Martin Ennis or Paul Atherton
Telub Inforum Services Limited
11 Bancroft, Hitchin, Hertfordshire SG5 1JQ, UK
Telephone: + 44 (0) 462420024
Fax: + 44 (0) 462420394
D of E Licence No. $\operatorname{Se}(\mathrm{A}) 2824$
TelubInforum

University of Exeter

ELECTRONICS TECHNICIANS

Vacancies exist for technicians in the Electronics Workshop of the School of Engineering and in the Microprocessor Unit. A very wide range of work is covered including analogue and digital circuit design, the development of specialised circuitry and instrumentation for data acquisition; software development with associated hardware, etc. The main thrust of all the work is in support of teaching and research over the whole range of engineering activities and consequently most of the work is one-off.
The successful applicants will be those who are self-motivated with a flair for original design ideas and an ability to put these ideas into practice; they will be prepared to work with the minimum of guidance. They will come with preferably a BTEC HNC in electronics and experience gained from a background of advanced electronics.
If you would like to find out more about the vacancies please telephone Peter Slader, 0392 263714 for details of the Electronics Workshop posts or Michael Horwood, 0392263936 for more about the Microprocessor Unit.
Salary within the range £9,706-£11,589 per annum.
Applications should be made by sending a full C.V., together with the names of two referees, to Mr J S Lowry, Personnel Division, University of Exeter, Northcote House, The Queen's Drive, Exeter EX4 40J not later than Friday, 7 December 1990. Please quote reference no. 5284

I-Mex Business Park, Upper Villiers Street, Wolverhampton, WV2 4NU. Tel: (0902) 20267. Fax: (0902) 28439.

NEW MATMOS 286 and 386 COMPATIBLE COMPUTERS

MATMOS 286 AND 386 HIGH PERFORMANCE COMPATIBLE COMPUTERS
16 MHz 286 system: $\mathbf{C 3 9 9}$ plus VAT
A quality system using the industry standard 80286-12 processor, running at a Landmark speed of 16 MHz : clock speed 12MHz. Complete with 4 Mbyte RAM expandable to 4 Mbyes. Serial and paralle (Centronics) ports, 101 keyboard, mono graphics card. 12 bovte 2.25 toch whth tull setup routine and diagnostics including HDD tormatting, well made stylist case with space for up to three 5.25 drives and two 3.5 inch drives; lock, front panel switches and LEDs. full manual included.
$33 \mathrm{MHz} \mathbf{3 8 6} \mathrm{MHz}$ system: $\mathbf{f} 979$ plus VAT
Same system as above but with state-of the-an 386 motherboard Uses full spec. Intel 80386.25 mother board running at a Landmark speed of 33 MHz ; clock speed $25 \mathrm{MH} /$ This is not a 386 sx but has a full 32 bit CPU. Comes with 1 Mbyte of RAM upgradable to 8 Mbyte Also available in quality full height towe Case at f 1079 plus Ca .

FLOPPY DRIVES

720 K 3.5 INCH DISK DRIVE' AMAZING NEW LOW PRICE TO CLEAR WAREHIDUSE
Excellemt Japanese low component, half-height chassis drives. Ex almost new systems, 80 wack doubl sided £29 95 (carp £3) Easy fir kit for Amstrad 15121640, IBM XT and AT, Etc. Including adaptor board computers including Amstrads, IBM XT and AT compatibles BBC's etc. not Araris and Amigas. 360 K 525 inch Standard qualiy IBM half-height chassis drive £29.95 (carr £3.50), 720K 3.5 inch NEC FO1036 30 mm drive $[32.50$ (can E33). Fitting kit for 5.25 inch space $£ 8.4$ 1.44 Mbyte 3.5 inch Citizen OSDA $45 A 3.5$ inch slim (25 mmi drive (49.50 (carf f3). Fitting kht for 5.25 inch space 88.49 .
IBM standard tloppy disk drive cable £4.

External

720 K cased Siandard $720 \mathrm{~K} 3.5^{\prime \prime}$ in smart case with cables to suit Amstrad 2286 series of machines Lut (carr $\mathrm{£3.50}$)

HARD DISK DRIVES, etc

20 Mbyte ST125-1 Scagate 3.528 msec . MFM hard drive: Iatest, fast, sllent technology E129 (carr E4) 20 Mbyte Miniscribe 8225 'state of the ar' hard drive with embedded controller and all cabling to connect straight to 16 bit AT slot. 5.25 inch, half-herght © 159 (Carr ©5). © 129 when ordered with 286 and 38 Mbyle Western Digutal 584R RLL halt-height 3.5 inch drive in 5.25 inch chassis C 189 (call C4). 50 Mbyte Seagate 3.5 inch $28 \mathrm{~m} . \mathrm{sec}$ RLL £209 (catt £4) or available as hard ca:d for Amstrad, XT or AT ©229 (carrif5).
HOD cable set $£ 5.00$

DISK DRIVE CONTROLLER CARDS

AT RLL E37.50. AT MFM ©49.95 AT IDE © 19.50 (Carr C2.50)

IBM COMPATIBLE XT and AT MOTHERBOARDS, CARDS AND KEYBOARDS
12 MHz . AT mother board, 80286 cpu , 8 expansion slots, full AMI bios with diagnostics etc. 80287 socket. manual, Landmark speed of 16 MH 2 . accepts up to 4 Meg of RAM on board. C 99.00 (carr C 3.50 1 Meg of RAM for above £4950
16 MH 2. 80387 maths co-processor £ $£ 99$
AT UO card, parallel, serial. game. $\mathbb{[7 7 . 5 0}$
AT Hoppy disk controller fis
Mono graphics card E 17.50 (911 carr. £2)
10 MH 2. XT motherboatd. $8 \mathrm{CB8}$ processor 8 expansion stots, legal bios, 8087 socket C 49.50 (car (4) 102 key compatible AT and $\times T$ keyboard $\{34.50$
XT compatible quality keybcard at very low price $£ 14.95$ (carr $£ 3.50$)

MONITORS - MONO

wier-fiendly high res. display $\mathbf{\Sigma 5 9} 9.95$ (cart $\mathbb{6} .50$)

12 inch Hercules amber; 12 volt supply voltage (psu needed) $£ 34.50$ (carr 55)
MONITORS - COLOUR
Famous name 12 inch high resolution analogue RGB monitor; high definition (80 column, 0.28 dot pitch), modern, verv stylish case with til-and-swiver base. Avaiabie modined ho son verical horuse can be used on Alaris it sync stynals are combined
(carr $£ 10)(3 \mathrm{~m}$ guarantee). 14 inch EGA Ex demonstration compatible manitar 1024 . 768 VGA Latest multi sync VGA. 28 dot pitch. Displays up to 1024×768 at a very high 14 inch 1024×768 VGA Latest multi sync VGA 28 dot pitch. Displays up 10 1024 768 at a very hig
Buality C299 (carr E10).
Hitachi CAD monitors CM1636A; 16 inch 64KHz ultra nigh resolution (not VGA) £395; (carf (20).

PRINTERS

OivettiOY200 Modern, office quality, bidirectional daispwheel printer. Complete with manual

 dasywheel, ribbon and st andard Centronics interface. Prints at 25 cps . variable pilch: 132 characters in 45. tractor feeder f35 (cart 16.50)

VGA CARDS

6 bit VGA card, 256 K , all emulation witchable for use in XT's 17495
 16 bit designet VGA card, all emulations up to $800 \times 600,256 \mathrm{~K}$ RAM, upgr adable to 512 K . Paradise

 16 bit 1024×768 supet VGA card. Very high resolution with 512 K and software $\mathbb{1} 199$ (carriage on cards E2.00).WESTINGHOUSE WPC500 MODEM CARD

Standard size card to tit inside IBM. style or similar PC and communicate at 1200 Baud, $1200 / 75$ Baud or

 300 Baud . Sold 'as is', with lienited details and no support C 9.50 (caer ©2.50). Full user's manual
POWER SUPPLIES

 NB* VAT and carriage must be added to allitems (quotes for carriage over seas) Everything new and guaranteed 6 months uniess stated - Access and Vise refephone service WEST SUSSEX RH $162 L X$. O444 482091 and 0444483830 (Fax 0444484258)
Matmos Ltd. have been successtully trading since 1976.

Visa \& Access phone service

INDEX TO ADVERTISERS

PAGE	
Airlink Transformers	ers 1088
Antex Electronics	105
Antrim Transformers	ers 106
Audio Electronics	1093
Blackmore Electronics	
ull Electronics	1108
Capella Technos	1053
Celertec	1089
ita	IB
Colomor Electronics	ics 1048
Dataman Designs	OBC
Display Electronics	s ... 1075
Dux (UK) IFC	IFC 1100
Field Electric	1043
Halcyon Electronics	cs 1053
Hately Antenna	1099
Hitex	1089
Hoka Electronics	1077
n P. Kinlock	

PAGE

Airlink Transformers 1088 Antex Electronics 1053 Antrim Transformers 1065 Audio Electronics 1093 Blackmore Electronics

Bull Electronics
Capella Technos 1053
Celertec 1089
Citadel IBC
Colomor Electronics 1048
Dataman Designs OBC
Display Electronics ... 1075
Field Electric 1043
Halcyon Electronics 1053
Hately Antenna 1099
Hitex 1089
Ian P. Kinlock 1083

PAGE
ICOM (UK) 1063
IR Group 1033
IPR Technology 1063
John's Radio 1073
Kestrel Electronics ... 1088
Lab-Volt (UK) 1073
Lowe Electronics 1026
Matmos 1112
M \& B Electrical 1072
MEG 1048
MGS/Powerware 1083
Micro Processor
Engineering
1103
MQP 1077
Mutek 1026
Number One Systems 1028
R. Henson 1077

Ralfe Electronics 1063
Recognition Research
1050

PAGE

Roline Systems 1111
Scientific Computers 1048
Smart Communications
1043,1089
South Midlands
Communications 1065
Stewart of Reading ... 1065
Thurlby Thandar
1083,1093
Tsien(UK) 1030
Warwick Industrial
Electronics
1057

OVERSEAS ADVERTISEMENT AGENTS

France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine. Paris 75008.
United States of America: Jay Fenman. Reed Business Lid., 205 East 42 nd Street. New York, NY 10017 - Telephone (212) 867 2080 - Telex 23827.

Printed in Great Britain by Carlisle Web, Olfset, Caxton Ruad, Newtown Trading Estate, Carlisle, Cumbria CAz 7NR. and typeset by Marlin Graphics, Sidcup, Hent DA14 5IIT, for the proprietors, Reed Business Publishing Lid, Quadrant Howse, The Quadrant, Sutton, Surrey SM12 5AS. (i Reed l'ublishing Led i990, Khectronics Qnd Wireless World can be obtained from the following: AUSTIRA!IA and NEW ZEALAND: Gordon \& Gotch I.td. INDIA: A.H. Wheeler \& Co CANADA. The Wm Davson Subseription Service Lid. Gordon \& Gotch Lid., SOUTI AFIKICA: Central News Agency Led.; William Dawson \& Sons (S.A.I I.td.; UNITEI) STATES: Worldwide Media Services Inc., 115 Last $23 r d$ Street, NEW YORK, N. Y. 10010 . USA Electrontes de Wirtless World $\$ 5.95$ 1745131.

PROGRAMMING SOLUTIONS from £139

For the IBM PC, install the interface card and programming socket, load the menu driven software and you have a complete design system at your fingertips.

EASY TO INSTALL

The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

SOFTWARE DRIVEN

All software for the programmer is supplied on $5 \frac{1}{4} 4^{\prime \prime}$ low density disk. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically.

SUIT ALL PC'S

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPAQ the programmers will work. The software is text only monographic so is compatible with any machine.

FEATURES

The menu driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verity, read and modity are all standard features. Hex to bin file conversions included for popular file formats including Intel, Motorola etc.

MODELS

PC84-1, -4, -8 Eprom programmers only. The variant is only gang size. The -4 and -8 gang will program multiple EPROMs simultaneously. Device sizes are from 2716 to 271000 both C and NMOS. ZIF (zero insertion force) sockets are used on all models.

PC83

PAL programmer only. Will program most 20 and 24 pin types from TI, NS \& MMI from standard Jedec files.

PC82

Universal programmer. The complete designers kit. This will program EPROMS, EEROMS, BPROMS, PALS, GALS, EPLD's 28 and 87XX microprocessors.
A unique feature is the testing of logic parts such as 74LS393 etc. The PC82 can check and identify parts. Already programmed are the TTL and CMOS logic test vectors. Software is supplied to write vectors for most unique chips.

PRICE LIST

PC84-1 1 Gang Eprom	$£ 139$
PC84-4 4 Gang Eprom	$£ 199$
PC84-8 8 Gang Eprom	$£ 299$
PC83 Pal Programmer	$£ 275$
PC82 Universal Programmer	$£ 469$

All pricing includes software, interface card, socket box and full instructions.
(Prices do not include VAT or carriage)

ORDER INFORMATION

Please include $£ 7$ carriage plus VAT on all orders. ACCESS, VISA or CWO. Official orders welcome from Gov. bodys \& Public Limited Companies. All products carry a one year guarantee.

CITADEL PRODUCTS LTD Dept. WW. 50 High Street Edgware, Middx HA8 7EP. Tel: 081-951 1848

TTL, CMOS, DRAM \& SRAM TESTING

PC82 can test and verify any TTL/CMOS logic chip, DRAM \& SRAM. The software will also identity a TTL chip. Do you have a lew TTL chips aside not knowing whether they are working?

also available

A wide range of PC expansion cards, Industrial control cards (A/D, D/A and Digital I/O) and PC peripherals.

Dataman Introduces Omni-Pro at £395

S3-The Best-Seller . £495

Wouldn't you like an EPROM Programmer that is Elegant? Stunning? Superb?

These are words used by engineers to describe S3. They often say S3 makes their expensive lab-programmer look stupid. How can we disagree? When designing $S .3$ we tried to turn a boring bench-instrument into something more exciting: a compact, intelligent tool which could be used for New Product Development. with facilities such as Editing and Memory-Emulation. We made S3 small enough to slip in a pocket and battery-powered so that it would retain data and configuration. because we were sure engineers would w ant one each. And they do! $S 3$ is now the best-selling programmer in the U.K.
S. 3 is likely to fill needs that you never knew you had! We can send you an S3 today on FREE TRIAI. - 30 DAYS SAIE-OR-RETURN.

Optional S3 Modules...

EPLIDS. (MOS PALS	¢295
32 pin EPROMS	£75
4) pin EPR ()MS	£75
87.4149	¢125
8751/53	125
NiCOR 2II?	145

Optional S3 Developers Package

Soltware and Invide latormation for engincers Who winh lo stady and customixe S3. No Secrem! Editor/Assembler (SDE see below). Circuit Diagrams. Livo of Cath and BIOS Source Code
\&195

S3 as a Development System...

The FREE Terminal Program which comen with $\$ 3$ providen Full Remone Connol from your $P($ All heytorad functions are suppored - Such an Editing, Byte and Bloch Shifiting. Split \& Shutfle. Seech and (hech Sum. $S 3$ is also a Memory Emalator - it will substitute ROM or RAD in-circuis. You can try your program before committing it to PRON.

S3 as a Programmer...

$\$ 3$ will program virtually any EPROM or EESPROM that will go in the socket. Without recharging you can program 1 (N $)$ modern fart PROMS or $1(0)$ ancient slow PROMS. Operation is continuous with a mains supply: $\$ 3$ can ted used uhile recharging. $\$ 3$ dew not monopotise your computer lor copying. editing or
programming PROMS. S 3 use latent high-speed programming methods and supports FI.ASH EPROMS. Program. Data and Conliguration are retained while turned-off $\$ 3$ han a KO) M BlOS. hur runs its main program in RAM. Soltware can te upgraded instantly from a PROM in the nochet. SOFTWARE LPGRADES ARI: FREE

What you get with S3...

Mains Charger, Ring-Bound FacomFile
Mamual. Emulation Lead (plugs into your RO\1 sochert). Wrile-lead (hoohs-up your up Write-L ine when emulating RAM in a ROM soch(t). FRIEE Sofituate Upgrader by BBS Technical Support by Phone, Fax and BBS and an FUII. THREEL YEAR (GUARANTEE

Omni-Pro.
$£ 395$
Programs BIPOLARS, PROMS, PALS, GALS, EPLIDS, PEELS, IFLS, EPROMS, EEPROMS ANI) MICROCONTROILLERS. Tests SRAM, IRRAM AND TTL/CMOS logic
Omni-Pro uses a short slot PC card to make fast parallel tansfers of data. It is controlled by softuare with a professional look and feel. The latest quick-programming methods are supported. Any of the usual file-transmission formats can be used. Ommi-Pro is compatible with all popular PID compilers producing JEDEC files.

Omni-Pro comes with this I niversal Guarantee: it WIII, program all the parts you need. Or you can have your money back.

What you get with Omni-Pro...

An Evcellen Mantal in Plain Englioh. A quality topin TTX T')(OL. Double-Width Sockel. FREE Technical Suppor by Phone, Fan or BBS FREE Sofmare Upgrade by BBS and a FL LL YEAR'SGUARANTEE

SDE Assembler
$£ 195$
Develop your New Product in an advanced Software Development Environment.

Dataman`s SDE comprises a two-window Editor, fast Macro Assembler. Linker. Librarian. Serial Comms and an intelligent Make facility which automatically reassembles ONL.Y those files you have edited, links them and downloads to your Memory-Emulator or Programmer. SDE works very well with S.3.
The Editor is prelly smart: it can tell you the Ahsolute Address of any line of the Source-File. The Assembler is prelly smart too: if it finds at mistake it puts you hack in the Editor at the right place to fix it. SDE's Multi-Processor version supports all common micros - please ash lor list. The Disasember version creates Source Files from Ohject Corle (e.g, from a ROM).
SDE IS NOT COPY-PROTECTED.
SDE Multi-processors \& Disassemblers E6ys
SDE Multi-processors
SDE Single-procesor.
Strobe Eraser £175

Wipes EPROMS before you can say "Jack Robinson".

Our Flashy New Eraser wipes EPROMS clean in seconds. You can do it to chips on the bench. chips in-circuit or even chips in the Programmer. Tidy up your workshop tomorrow. Recycle all those old Memory Chips!

UK customers - please add VAT

Lombard House, Cornwall Rd, D(ORCHESTER, Dorset DT1 IRX, Phone. 0,305-268066
Fas. $0305-264997$
Teles. $+18+42$
BBS (Bulletin Board)... 0305-251786
$300 / 1200 / 2400, \mathrm{~N}, 8,1$ (24hr)

[^0]: Address
 select
 to RAMs

[^1]: Ple ase send information on Icom products \& my nearest Icom dealer.
 Name/address/postcode:

 Job Title:
 Tel:
 Post to lcom (UK) LCd Depi.WW, FREEPOST, Herne Bay, Kent CT6 8BR

[^2]: PIC 16C5x ADAPTER FOR MODEL 200 - Available for DIL or SOHC parts - Manufacturer approved algorithms From f 75
 The $16 \mathrm{C} 54 / 7$ is a range of low cost, low power, high speed microcontrollers ideally sulted to low or high volume developments

