

PROFESSIONAL LOGIC ANALYSIS FOR UNDER $£ 400$

In recent years, the personal computer has become an integral part of the modern electronics laboratory. The Logic Analyser is now as necessary to design, development, test and maintenance departments as a multimeter or an oscilloscope.

Flight Electronics' range of PC based Logic Analysers offers the advantages of low cost and high specification while saving the bench space normally occupied by stand alone alternatives.

Being PC based allows great flexibility in permanent storage of data and set ups, either to disk for recall at a later date, or for hard copy.

The Flight Electronics range of Logic Analyser cards has internal clock speeds of up to 200 MHz and are suitable for use with $X T, A T$, monochrome and colour PCs

Data acquisition can be displayed in both timing and state formats. Presentation of information is clear and uncluttered.The soft key controls mean simplicity of operation, making the products particularly suitable for both industrial and educational use

Flight Electronics offers a choice of five models, ranging from a unit suitable for the first time student user to the complex requirements of the design and development laboratory.

We also supply a range of PAL/EPROM programmers for your PC Call our sales office for a free copy of the Flight Electronics catalogue

FEATURES

Wide choice of specifications - High specification at low cost - Up to 200 MHz internal clock - Up to 3 independent clocks with 12 qualifiers - 24 signal input channels - Up to 16K memory depth - 16 level sequential triggering (models $27200 \& 27100$) - Pre and post triggering

- State listing in Binary, Hex and ASCII
- Timing display of all channels simultaneousiy - User specified channel labelling - Auto and conditional repeat 41 Dala save to and load from disc
We can even supply suitable PCs. Call our sales office for a quote.

Model	Frequency	Channel	Memory	Impedance	Threshold Voltage	External Clock	Trigger	Quality	Max input	Max Input Bandwidth
CLK 27200	$\begin{aligned} & 200 \mathrm{MHz} \\ & 250 \mathrm{~Hz} \text { to } 50 \mathrm{MHz} \end{aligned}$	Channel $0-5$ Chonnel 0-23	$\begin{aligned} & 16 \mathrm{~K} \\ & 4 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \mathrm{\Omega} \\ & \leqslant 5 \mathrm{pF} \end{aligned}$	2 Independent seltings -81014 V	3 Channels $0-50 \mathrm{MHz}$	16 Levels $00,{ }^{\circ} 10, x^{\circ}$	12 Channels 0". "1" "x	$=150 \mathrm{~V}$	100 MHz
CLK-27100	$\begin{aligned} & 250 \mathrm{~Hz} \text { to } 100 \mathrm{MHz} \\ & 250 \mathrm{~Hz} \text { to } 50 \mathrm{MHz} \end{aligned}$	Channel 0-5 Channel 0-23	$\begin{aligned} & 16 K \\ & 4 K \end{aligned}$	$\begin{aligned} & 1 M \Omega \\ & \leqslant 5 \rho F \end{aligned}$	2 Independent settings -8 to 14 V	$\begin{aligned} & 3 \text { Channels } \\ & 0.50 \mathrm{MHz} \end{aligned}$	16 Levets $0,1^{\circ} \cdot x$	$\begin{aligned} & 12 \text { Channels } \\ & 0^{-} 1^{\circ} 1^{\circ} x^{\prime} \end{aligned}$	$=150 \mathrm{~V}$	100 MHz
CLK 2400	$\begin{aligned} & 100 \mathrm{MHz} \\ & 25 \mathrm{KHz} \text { 10 } 25 \mathrm{MHz} \end{aligned}$	Chonnel 0-5 Channel0-23	$\begin{aligned} & 4 \mathrm{~K} \\ & 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~K} \Omega \\ & \leq 15 \mathrm{pF} \end{aligned}$	1 Setting $-10 \mathrm{~V} \text { to } 10 \mathrm{~V}$	1 Channels 0.25 MHz	I Level "0" "1", "x $100 \mathrm{MHz} \mathrm{ZO}^{\circ}$ " 1 " only	I Channel $\cdots "$	$=25 \mathrm{~V}$	25 MHz
CLK 12100	100MHZ 25 KHz to 50 MHz	Channel0-11 Chonnel 0-23	$\begin{aligned} & 2 K \\ & 1 K \end{aligned}$	$\begin{aligned} & 1 M \Omega 2 \\ & \leqslant 5 \rho F \end{aligned}$	π	0.50 MHz	1 Level "0" "1" "x*	NO	$=10 \mathrm{~V}$	50 MHz
CLK. 2450	25 KHz 10.50 MHz	Channel 0-23	IK	1M13	TL	0.50 MHz	1 Level $\left.{ }^{-0}\right)^{* 1 *}{ }^{*}$	NO	$=10 \mathrm{~V}$	50 MHz

Flight Electronics Ltd.
Flight House. Ascupart Street Southampton SOI ILU. U.K Telephone: Southampton (0703) 227721 (6 lines) Telex: 477389 FLIGHT G Fax: (0703) 330039

ORDERING INFORMATION (Excl. VAT. P\&P £7.00)

Description

Part No
Price £
CLK-2450 PC Logic Analyser CLK-12100 PC Logic Analyser CLK-2400 PC Logic Analyser CLK-27100 PC Logic Analyser CLK-27200 PC Logic Analyser

655-001
399.00 655-002 499.00 655-003 799.00
655-004 999.00
655-005 1599.00

CAll US NOW ON 0703-227721

CONTENTS

FEATURES

NEURAL NETWORKS

Conventional computers require description of a problem before they can begin to work on the solution. Neural based machines are able to define the problem for themselves. They achieve this by exploring connections within a problem and reinforce those which tend towards a useful result.

LIVING COMPUTERS

186
Neural networks operate in a manner not clearly understood yet, in spite of this limitation, can solve real problems.

ARTIFICIAL NEURAL NETWORKS ..
 191
 Tom Ivall reports on a recent IEEE conference which reflected the learning and training aspect of artificial intelligence

DUMB INTELLIGENCE.
Wilfred James argues the case that intelligence is nothing more than pattern recognition. He proposes a new generation of highly parallel machines based on memory rather than distributed processing.

KILLING FIELDS - THE MICROWAVE HEALTH HAZARD
 208

The UK microwave exposure limits were originally determined by irradiating a body to the point where thermal tissue damage occurred, then backing off the power by a factor of ten. Our standards for safe exposure are still determined by this crude test. Meanwhile, a number of associative studies have linked cancer and blindness to microwaves exposure at power levels orders of magnitude lower. By Simon Best.

RIDING THESOLAR STORM
220
There are still plenty of gaps in our knowledge about the causes and effects of solar magnetic storms. Anthony Hopwood discusses simple equipment which will measure the relative intensity of magnetic storms precisely.

REVIEW - PC VOLTMETER BOARD 224

An add-in voltmeter can turn a standard PC into a four channel, $61 / 2$ digit voltmeter

DISPLACEI) RADAR........................... 226
Separating the transmitter and receiver may offer advantages in separating ground clutter, while provid ing a greater degree of integrity. By Henry Hislop.

SHORT RANGE RADAR

The development of short range radar demo equipment turns up unusual design problems. Resolving centi metre sized objects over just a few tens of metres calls for transmission pulse widths down to lns.

MINIATURE HF ANTENNA
 253

Bryan Wells reports on further development and experiments with the barrel shaped crossed-field antenna first discussed in the March 1989 issue.

REVIEW - PC OSCILLOSCOPE BOARD
 257

Amplicon's PC99 oscilloscope board plugs into the back of a standard PC AT-alike converting the computer to a digital storage scope and function generator How good, how efficiently?

REGULARS

Abstract

COMMENT 179 Shock to the system. Is the Energy Secretary putting political expediency before public health?

RESEARCH NOTES

181
Superconducting wire, radio earthquakes, watched pots, stormy propagation and all optical repeaters

UPDATE
202
Telepoint isn't going to be the unmitigated marketing disaster which most people are expecting...says a Tclepoint consortium. Plus a round-up of news from around the industry

CIRCUIT IDEAS 213
An electronic compass, DC to DC step-up convertor, optical fibre data link, programmable timer, etc

LETTERS 234
The trouble with relative FSK, clash of symbols, mass confusion, tuned Vauxhalls, audio power and total disgust are just a few of the criticisms levelled at us.

PIONEERS
Alessandro Volta invented both a primary battery and a unit of electricity: One Volta $=13350 \mathrm{~V}$!

NEW PRODUCT CLASSIFIED
242
Round-up of new products at-a-glance

APPLICATIONS

Audio current conveyor allows op-amp type circuit configurations without the global negative feedback associated with transient intermodulation distortion. Plus a low noise audio pre-amp chip.

In next month's issue. Every thing you need ic know about silicen speech: how it is programmed, synthesized and recognized. Also the chance to win a Texas Instraments speech development board. We are offering 10 boards as prizes in a competition based on applications ingenuiry

Computers and signal processing do mix. We begin a major new series entitled 'Signal processing with C^{\prime}

CONSULTING EDITOR
Philip Darrington
01-661 86.32
EDITOR
Frank Ogden
01-6613128
IILUSTRATION
Roger (ioodman
DESIGN \& IPRODUICTION Alun Kerr

EDITORIAL ADMINISTRATION
Lindsey Gardner 01-6613614

ADVERTISEMENTMANAGER
Paul Kitchen
(11-661.3130
DISI'LAY'SALESMANAGER
Shoma Fimuic
$01-(06180+11$
ADVERTISING PROIUUCTION
Una Russ
61-66/ 80ł4
PUBIISIIER
Susam Den'mey (11-6n/815?

FACSIMIIE
(11-6618 8.39

Shock to the system

Secretary of State for Energy, John Wakeham, has some explaining to do. If he declines, then resignation seems the appropriate action for a Minister of the Crown who allows his department, or the agents of his department, to put political expediency before public health.
In March 1988, the CEGB began a research programme investigating the possible health effects associated with power frequency electric and magnetic fields. Part of the research involved a commissioned 6000 person study into adult leukaemia following on from an earlier, smaller one looking at the childhood disease.
In September 1989, the CEGB issued an interim statement which concluded that the results of the adult health inquiry would be published at "the end of 1989". The conclusions of this study, which sets out to examine the public health implications of power line fields, have yet to be published even though Chief Medical Officer at the CEGB, Dr Robin Cox, admits to possessing the preliminary findings. Furthermore, Dr Cox is not prepared to give any further commitment on the publication date in marked contrast to the earlier CEGB written statement.

It seems legitimate to ask for a reason. Dr Cox says that the results "must await initial publication in a learned journal". This argument doesn't hold much water. The CEGB was certain enough of the publication timetable just a few months ago. It seems logical to look for other motives.

Given the weight of evidence connecting power line fields and disease derived from similar studies in the US, one might surmise that the CEGB study also casts suspicion on power line fields. Publication would most certainly interfere with the forthcoming privatisation scheduled for the end of this year. After all, the pablic outcry following a proven link between electricity and cancer would demand
compensation and building control at the very least.

Suppression of such a report, purely on political grounds, if proven, must result in the Minister's resignation.
One can't help but make comparsion with the Government's attitude to the samonella-in-eggs affair. In that instance it acted swiftly against the egg producers and terminally against hundreds of thousands of hens. It dispossessed nuns and inspired a flock of EEC directives. All this happened in defending us from a few gippy tummies on just the merest shred of evidence.
Power line fields are implicated with a number of very serious diseases and the associated evidence, already to hand even without the current CEGB sludy, is far more damning than ever was the case with infected eggs.

The weight of evidence about the effects of power line fields was presented in last month's issue. It is sufficient to note that the US Congress Office of Technology Assessment concluded that "electric and magnetic fields produced by electric power systems may pose public health hazards." The report accepts that "even weak electric and magnetic fields can effect living cells." As a result, eight US states have implemented rights of way along major power lines excluding human habitation. People affected by the building of power lines in these states are entitled to compensation. Compare this with the apparent obfuscation in the UK.
We would be the first to say that more research is needed and that the links between power lines and disease have yet to be established definitively. However, there is enough evidence to state that the public interest is best served by a moratorium on house building under power lines, and that public warnings should be issued to users of certain electrical products. Any other course should be unacceptable. There is no room for politics in public health.

Frank Ogden

Superconducting wire by CVD

Using a new chemical vapour deposition (CVD) process to coat flexible fibres within a thin film of hightemperature superconducting material researchers at the Georgia Institute of Technology have increased deposition rates considerably while achieving promising critical temperatures and maximum current capacity. Existing CVD technology for thin-film superconductors yields a coating just one or two microns thick during a one-hour deposition run. The new process yields 50 to 200 microns per hour, depending on production conditions.

In the past, carrier gas has been used to transport metal sources into a CVD reactor. Since the flow rate, temperature and pressure must be controlled for each vaporizer the process has often been delicate and timeconsuming. To make matters even more difficult, reagent sources for the commonly-used 1-2-3 superconductor (yttrium, barium and copper) provide low vapour pressure. If heat levels are increased to speed vaporization, these metal sources undergo chemical reactions and form unwanted compounds.
To improve this situation, Principal Research scientist Jack Lackey replaced the vaporizers with a powder feeder. A combination of finely-ground yttrium, barium and copper metalorganic powders are mixed with argon gas before flowing into the horizontal
reactor, thus eliminating the need for complex controls. During a 5-30 minute period, the team fed between 2 and 10 grams of powder into the reactor.
Thus far, the technique has mostly been demonstrated using rectangular. single-crystal magnesium-oxide substrates, but several types of flexible. thin fibres also have been coated. Ultimately, the team plans to coat inexpensive, commercially-available

Dr Jack Lackey with CVD equip-ment
ceramic or metal fibres, possibly made of aluminium oxide and/or silicon dioxide. Other possible substrate materials include silicon carbide and carbon coated with a layer of an oxidationprotective material. A coating barrier between the fibre and the superconductor should eliminate any undesirable chemical reactions.
Meanwhile, Lackey has designed a continuous fibre coater and hopes to commercialize the product.

Tune in for the big one

Earthquake prediction has always been something of an inexact science, rarely offering better than a 50% probability of a big 'quake in any one decade. And, while any warning is arguably better than no warning, there's little prospect of people being able to take any useful preventive action unless prediction improves greatly in accuracy. It's intriguing therefore to speculate on a finding presented by Stanford University electrical engineers at a recent meeting of the American Geophysical Union.

Antony Fraser-Smith and his colleagues were using very low frequency radio receivers set up under a US Navy contract to explore new ways of detecting submarines. Recordings, when subsequently analysed, showed that in the first few days of October - just prior to the big earth quake on October 17th there was a sudden increase in the level of otherwise steady background noise.

Three hours before the actual disaster there was an even greater peak of VLF radio noise, quite unlike anything previously observed.
Coincidence perhaps? While many US seismologists are impressed by the remarkable fit between the radio emissions and the subsequent ground movement, Fraser-Smith himself cautions that there's no proof of a causal link. On the other hand, nothing similar was previously observed during the two years the experiment had been running; nor has any alternative natural or artificial explanation been offered.
Now the US Geological Survey is to consider setting up similar VLF monitoring systems in other parts of California. And if the same VLF emission is observed prior to the next big earthquake, the coincidence would be too much to explain away. Why ground movement might generate VLF radio waves remains a mystery.

Watched pot never boils official!

A recent experiment by Wayne Itano et al at the National Institute of Standards and Technology in Boulder, Colorado provides the first clear evidence of one of the strangest predictions of quantum theory - that you can influence the behaviour of a system merely by observing it.

A recent report (Science, Vol. 246, 888) describes how the NIST scientists took a special magnetic "pot", in which they trapped several thousand ions of beryllium-9, all initially in the ground state, level 1. By switching on an RF heater for just 256 ms , the experimenters raised all the ions to a higher energy state, level 2.

That, at least, is what happened if no observations were made during the heating period. On the other hand, if the scientists took a peek at the beryllium while it was on the boil, a significant proportion of the ions failed to make it to level 2. If the experimenters lonked 64 times, almost no beryllium ions changed state.
According to quantum theory, the very act of looking at the ions - done, incidentally, using ultra-short pulses of laser light - causes energy to be lost, thus returning them to a lower energy state. This, to be precise, only happens if the ions are in a transition state between levels 1 and 2. After 256ms they are safely in level 2 and hence remain unaffected. On the other hand, if the ions are watched every 4 ms , then fewer than 1% of them will ever migrate to the upper level.
This finding that a watched (quantum) pot never boils is the first unambigious confirmation of an effect noted in the late 1970s by experimenters at the University of Texas. The recent success, however, is the result of choosing an atomic process that proceeds slowly enough for the experimenters to observe it often enough to reduce significantly the probability of it taking place!

A logical question arising from this experiment is whether or not regular observation could arrest other quantum processes such as radioactive decay. In theory the answer is yes but, in practice, radioactive decay happens far too quickly for repeated observation. As Itano notes, any observation takes a finite time and there will always be gaps between observations when an atom' can secretly decay without being noticed. Pity!

PROTEL PCB CAD SYSTEMS Professional high quality PCB CAD SYSTEMS at a Price you can afford.

Conventional and SMD on both sides of the board.

PROTEL AUTOTRAX at $£ 999.00$ is an affordable, precision design tool that improves productivity for occasional and expert users alike. It streamlines the PCB layout processes while providing powerful interactive design automation, and generates professionally accurate PCB artwork.

PROTEL TRAXSTAR at $£ 807.50^{*}$ is a grid based, costed maze autorouter with full rip-up and re-route capability. The router incorporates a user-definable cost structure and allows separate cost structures for the route, rip-up and smoothing passes. Works with Protel Autotrax files.

All Protel Users Contact J.A.V.
For Technical Support \& Upgrades
Version 3 Schematic users contact us now for free upgrade to Version 3.30

$$
\mathbf{F}^{*} \mathbf{R} * \mathbf{E} * \mathbf{E}
$$

ONE YEAR HOTLINE SUPPORT

PROTEL SCHEMATIC at £498.75* streamlines drafting operations, improving productivity, design practice and documentation. Used on its own or with Autotrax to form a powerful PCB CAD system.
PROTEL EASYTRAX at $£ 299.00$ is a low cost entry level easy to use precision tool that generates professionally accurate PCB artwork, with support for a wide range of displays, photoplotters, pen plotters, laser and dot matrix printers all as standard. (NOW UNPROTECTED)
PROTEL TRAXVIEW at $£ 430.00$ is a new utility program for viewing and editing Gerber files. Includes Panelization
J.A.V. Electronics Limited, Unit 12a Heaton Street, Denton, Manchester, M34 3RG

Tel : $0613207210 \quad$ Fax : 0613350119
The UK Distributor for the PROTEL CAD Software. Main Dealers for ROLAND Plotters. Dealers for Sage. Brother, OKI, Amstrad \& Epson. Evaluation Packs Available on Request. All Prices Exclude VAT. *Price Includes 5\% Discount if Bought With Autotrax. CIRCLE NO. 108 ON REPLY CARD

teIEveron
 SERVICING-PRONECTS-VIDEO-DEVELOPMENTS
 FREE CLEANING CLOTH

Washable, re-usable \& antistatic

Servicing the Mitsubishi HS 304 - We test the Maspro LCZE satellite signal level checker-Brown goods servicing-how to make it pay - Servicing a CD playertrack search and skip techniques CD player casebook

miniature transducers

Entran's products have taken an integral part in many high technology programmes in weaponry, aircraft, space, automotive, biomedical, nuclear where high integrity sensors are of the utmost importance.

FAST delivery now available ! Entran Ltd.
5 Albert Road, Crowthorne, Berks RG11 7LT. Tel: (0344) 778848
CIRCLE NO. 147 ON REPL Y CARD

Ballistic electrons for high-speed switching

IBM researchers have demonstrated for the first time that fast-moving ballistic electrons can be focussed and steered as they travel at very low temperatures through gallium arsenide. The finding is the latest from a team led by Dr Mordehai Heiblum at the Thomas J. Watson Research Center in Yorktown Heights, N.Y. This group previously showed that ballistic electrons can travel through ultra-thin layers of gallium arsenide at speeds considerably greater than 10^{6} kilometres per hour.

Under normal conditions, electrons moving through a semiconductor travel only a short distance (the mean free path) before colliding with atoms, other electrons, or impurities in the semiconductor and scattering. In the process they lose energy and change direction.

In these experiments, however, the mean free path is lengthened, so the electrons can travel across the semiconductor ballistically, that is, without scattering. At around 5 K , the normal motion of atoms inside the semiconductor material is greatly reduced, lessening the chance of coltision with the electrons as they speed past. As a result, at that low temperature, the mean free path can exceed 1 micron, providing room for the insertion of a tiny focusing device.

In their experiments, Heiblum and his team injected high-energy electrons on one side of a region of semiconductor material 2 microns across and collected them at the other. The electrons travelled ballistically though a region free of the impurities that might cause energy-wasting collisions. That region, known as a two dimensional electron gas, can be created at the interface between a single-crystal layer of gallium arsenide and another of aluminium gallium arsenide.

To demonstrate that the path of travet of the ballistic electrons could be controlled, the team applied a differential voltage across tiny metal gates as they injected the electrons into the semiconductor. They found they could steer the electrons about 60 degrees off the original path over a distance as great as two microns. This will, it's hoped, allow new types of extremely fast electronic switching devices and circuits to be made that use directed electron beams.

Stormy future for EHF satellite channels?

As we currently exploited microwave frequencies are beginning to fill up with an ever-growing volume of traffic. experimenters are paying increasing attention to parts of the spectrum beyond 20 GHz . Until recently these wide-open spaces have remained the province of specialist users, mainly because of the high cost of low-noise receiving equipment and efficient highpower satellite-borne transmitters. There are however, other constraints, not least the problems of absorption by the atmosphere. At frequencies where the wavelength is of the order of 1 cm , raindrops behave like dielectric spheres that either absorb or scatter the signal in a random and unpredictable manner.

Above; installing the 12.5 GHz dish at the Rutherford Appleton Laboratory.
 First major recorded rain event on Olympus 30GHz beacon on August 10, 1989at RAL.

One of the functions of ESA's advanced technology communications satellite Olympus, launched in July last year, is to send out test signals on 12.5, 20 and 30 GHz to enable researchers to monitor the effects of the weather on propagation.
Here in Britain a group at the Rutherford Appleton Laboratory who incidentally were closely involved in designing the satellite itself - are in the process of commissioning three experimental propagation receivers. one for each of the Olympus beacons. The 30 GHz receiver, already working, demonstrated within a few days of switch-on just how severe can be the attenuation due to rainfall.
Dr John Norbury, who is responsible for the project, says that attenuation of 30 dB or more is relatively infrequent, but must be allowed for in any future commercial systems. Experiments on counter-measures are part of a parallel programme at RAL.
As these words appear in print, the 30 GHz receiver and its 12.5 GHz counterpart will be fully operational. to be fotlowed by the 20 GHz system sometime in the middle of the year.
The 12.5 GHz system, as well as studying propagation, will be used to receive information for a satellite data transfer experiment to be undertaken by Dr John Burren and his colleagues at RAL's Advanced Communications Research Unit, together with collaborators at the University of Buckingham and at Graz in Austria and Pisa, Italy. Results will be awaited with interest.

Record
 magnetic storage density

A team at the IBM Almaden Research Centre in San Jose claims to have set a world record in magnetic data storage density by successfully storing a gigabit of information on a single square inch of disk surface. This is 15 to 30 times greater than that of current hard disks.

To achieve gigabit storage density, the IBM researchers combined a number of advanced components, including experimental thin-film recording heads and disks with advanced electronics. The demonstration was performed on a precision test apparatus, though all of the critical hardware components were made by conventional manufacturing processes. Nevertheless, say the group, several more years of development will be required before gigabit technology could be incorporated into everyday commercial products.
The experimental dual-element thin-film recording head used in the demonstration features an inductive "write" element and a magnetoresistive (MR) "read" element. Both elements operate while the head flies over the disk at a height of less than 0.05 microns - so narrow a gap that even light can't pass through.
The electrical resistance of materials that exhibit the MR effect changes according to the strength of any magnetic field present. By monitoring the rapid resistance changes that occur as an MR head passes over recorded magnetic bits, it's possible to detect bits too small for a conventional all inductive head to recognise. In addition, since the strength of the signal produced by an MR head does not reduce with reducing disk velocity, an MR head has the advantage of providing an identical performance regardless of disk size and speed.

The aluminium disk used in the tests is coated with a thin film of magnetic cobalt alloy designed for very high bit density and very low magnetic noise - a critical advantage in reading the recorded bits. A thin coating of a hard material protects the alloy film from contact with the recording head.

In the gigabit demonstration, bits were stored at a linear density of $62,000 \mathrm{bit} / \mathrm{cm}$ along concentric tracks spaced at $2500 /$ radial centimetre. Each data bit measures only 0.16 microns long by 4 microns wide - comparable in area to current optical-storage bit cells.

Quantum varactors for millimetre waves

Swedish researchers at the Chalmers University of Technology at Göteborg have proposed the use of a new device. the quantum barrier varactor diode (QBV), as an efficient source of millimetre waves. They say (Electronics Letrers Vol. 25 No 25) that, because the QBV diode is a symmetrical device, it could replace conventional Schottky varactor multiplier diodes with higher efficiency and much simplified circuitry.
Conventional varactor diodes are reasonably efficient at generating over 100 GHz by multiplication from lower frequencies. Thus a conventional varactor could multiply an input frequency of 35 GHz by three with an efficiency of around 30%. The only problem is that, because a Schottky varactor is symmetrical, it yields even harmonics which need to be terminated reactively to avoid loss. A tripler therefore requires an "idler" circuit resonant at the second harmonic. A quintupler would require three such idlers mechanically impossible and probably very lossy even if they could be implemented.
Enter the QBV diode with its natural property of generating only odd harmonics. A tripler based on this device would require no idler at all (here being no second harmonic) and a prac-
tical quintupler could be made with only a single idler (for the third harmonic).

The Swedish tean have calculated the optimum device parameters for most efficient conversion, which could exceed 60% at an output level of around 40 mW at 105 GHz . Output power is limited mainly by avalanche breakdown (in either direction) due to the RF voltage swing across the diode. The main diode characteristics are shown below.

Authors E. Kollberg and A. Rydberg conclude that, because of the considerable simplification in circuitry, the QBV should prove a potentially very competitive device for millimetre wave generation

Towards practical all-optical repeaters

Erbium (Er^{3+}) doped fibre amplifiers are an extremely attractive prospect for optical repeaters because they operate at a wavelength of $1.5 \mu \mathrm{~m}$. This is a wavelength most commonly used for long-haul optical communications. If an erbium-fibre amplifier were practical enough to put down manholes or to sink to the seabed, it would neatly avoid the present need to convert optical signals to electrical signals and then convert them back again. The problem is that, to work efficiently. erbium-doped fibre amplifiers need to be pumped at a wavelength of around $0.98 \mu \mathrm{~m}$. for which no practical semiconductor lasers are available
The development of such a laser by a team at the NTT Optoelectronics Laboratory in Japan is therefore a significant step towards all-optical repeaters. The team, led by M . Okayasu, report (Electronics Letters Vol. 25 No 23) laboratory experiments in which they created a strained-layer gallium-indium-arsenide quantum well structure using MOCVD epitaxy.
Output wavelength is $0.97 \mu \mathrm{~m}$ and a
peak power of 85 mW is obtainable at a current of 150 mA . The researchers say that at a reduced power of 30 mW their laser diode shows good long-term stability with no marked deterioration of output. Further study, they say, is now under way to improve stability and cure the drop in efficiency at full power.

Even before this further development began the NTT team were already testing their lasers in conjunction with an erbium fibre amplifier. Two lasers with their outputs optically combined were used to pump such an ampllfier at a wavelength of $1.536 \mu \mathrm{~m}$

Maximum gain was reported to be 37.8 dB , which represents 1.9 dB for every milliwatt of pumping power - an excellent figure. On this basis a practical all-optical semiconductor laserpumped erbium-doped fibre amplifier can't be very far away. That in turn should greatly increase the reliability and the bandwidth of long-haul fibres that employ such devices.
Research Notes are by John Wilson of the BBC World Service science unit.

DOTOURTE:
 NPQ* INK JET PRINTER

262,143 MORE COLOURS THAN THE MODEL ' \mathbf{T}^{\prime}

Atempts to imitate natural neural network systems bring into focus the essentially different approaches of serial digital computing and the operation of the brain, in which each element is connected to many others. But these are early days in the process; the development of the relevant computing techniques is a bare 50 years old, while natural networks have been around slightly longer.

The first man-made computers were essentially fast adding machines. While there have been vast improvements in processing speeds, memory capacity and programming methods, the pattern of machine instructions being handled serially by a complex processing unit has largely persisted.

In the forward march of evolution there has been a consistent initiative to

Douglas Clarkson introduces neural networks, which

 operate in a manner not yet clearly understood, but which nonetheless are capable of producing specific answers to specific problems
develop life forms with more highly developed nervous systems. Of course man prides himself in being the apex of cerebral achievement, but throughout nature there are many marvellous examples of various species with highly developed sensory mechanisms. It is widely realised that if man tries to imitate nature, then initially his neural network creations will be vastly inferior, even if to him they appear superbly clever.

The human brain has been referred to as "the neural network which already works". Figure 1 shows a magnetic-resonance image of the human brain, superbly indicating even fine structures such as the optic nerve and the pineal gland; it is a superbly developed connectionist system. There is therefore no highly localized site of processing power, although nerve bundles provide important functions for the routeing of information. For those who wish to know more about the function and structure of the brain, the work of Angevine and Cotman ${ }^{1}$ is highly recommended reading.

Networks - natural and otherwise

The basic building block in the brain is the neuron, which can vary consider-

Spectrogram of speech resulting from representation of speech applied to neural nets, shown in lower half of screen. Picture by courtesy of British Telecom and the University of East Anglia.

Pattern recognition being performed by the WISARD system, developed by Professor Igor Aleksander at Imperial College.

NEURAL NETWORKS

Fig. 1. Magnetic-resonance image of the human brain showing entry of the spinal column into the mid-brain and associated details of the cerebral hemisphere and cerebellum. Picture courtesy IGE.
ably in type and function but can be represented as shown in Fig. 2. Neurons communicate across synapses and receive inputs over larger axon connections.
This collective functioning is determined largely by the way in which neural units are connected physically together and also in the relative strengths of the interactions across the links. The mechanisms whereby cellbased networks can organize themselves to implement such intelligent functions are as yet very poorly understood. Contributing to the poor understanding is the overwhelming complexity of natural neural systems. The human brain, for example, may have as many as 10^{9} neurons, each with around 1000 synaptic connections to other neurons.

Various mathematical models of neural units which could interact collectively were developed as long ago as the 194)s. The role of McCulloch and Pitts ${ }^{2}$ was to establish the early formal rules for abstract connectionist systems. Later. Hebb ${ }^{3}$ was to introduce the concept of neurons in the brain which were fired repeatedly or consistently together, influencing each other's metabolism and response to stimuli.

A simple and fairly widely adopted logical unit of a neural network is shown in Fig. 3, where the inputs A, B and C take the values 0 or 1 . The values $-2,+2.5$, and +1 are the socalled weighting values of the inputs, so that the sum of inputs into the unit has value $A(-2)+B(+2.5)+C(+1)$. If this value is greater than or equal to 2 , then the value of the output is 1 : otherwise it remains 0 as outlined in the table.

A	B	C	sum	output
0	0	0	0	0
0	0	1	1	0
0	1	0	2.5	1
0	1	1	3.5	1
1	0	0	-2	0
1	0	1	-1	0
1	1	0	0.5	0
1	1	1	1.5	0

Such logical units form building blocks of much more complex structures.

Figure 4a shows a simple two-layer association of units, while the system in Fig. 4b has a so-called hidden layer.

Fig. 3. Simple neural unit consisting of three inputs and an output. The unit sums the inputs (0 or 1) and incorporates a specific weighting factor for each input $(-2 .+2.5$ and +1$)$. The unit's output is therefore of value I when the summed value is greater than or equal to its threshold value (2)

Fig. 4. Simple, two-layer forward-feed network at (a) and at (b) a three-layer network with a "hidden" middle layer. Some complex problems can only be solved by the inclusion of such layers
cates the number of weights required for a network for the configuration of Fig. 4 b as a function of the number of input units. Neural networks which are more complex can undertake more sophisticated tasks, though this is compensated for by the much higher number of weighting values which have to be calculated.

This process of selecting weighting values so that a network performs well defined tasks, translating input values to output values, is called "training". The significant recent advance in neural networks has undoubtedly been the development of general-purpose training algorithms.

One of the first training algorithms was the back-propagation method. Typically, all the weighting values would be set initially to random values. a specific weighting element then being selected and the errors between desired and observed outputs determined for an input training set. The value of weighting value selected would be that which gave minimum error between the desired output and the observed output. Now software products such as NeuralWare's set of neural-network-configured programs are available for use with an IBM PC. A range of public-domain software offerings is also available.

Networks usually converge with training to a stable solution. Often it is relevant to introduce random noise into the weighting values to "bounce" the network out of a less than optimal solution. This process of introducing noise and reducing its amplitude during
the training process is termed "annealing".
The field of neural network research now reveals a diversification of network models and associated training methods. Work at Imperial College London has, for example, developed ram-based network models, where the output value of the ram neuron is a look-up value corresponding to the address data presented to the input lines of the unit.
As the field develops, a particular model and training method which once provided a solution to a specific problem can be replaced by a more efficient model/training algorithm. As networks become more complex and contain more weighting values for estimation, the emphasis on speed of network analysis will become even more critical. Neural networks, however, will not be used to duplicate what presentday silicon circuitry already does well. Exact numerical representation and manipulation will remain the remit of conventional digital computers. It is very clear, however, that digital computers are an essential tool for the implementation of neural network solutions, both through their use to determine weighting factors and also to undertake simulations. One of the limiting factors in the current development of parallel, connectionist neural networks is indeed the availability of sufficiently powerful serial digital computers; solutions which take a Sun workstation several hours would occupy a PC for days on end. There is a finite level of complexity, however. beyond which even the mightiest computer grinds to a halt.

Applying neural networks

Neural networks are being widely investigated in the area of pattern recognition, one obvious form of which being that of recognition of human faces. This highlights the fact that conventional digital computers have not yet proved entirely satisfactory in solving such problems.

Neural network technology is being used, for example, in the validation of written signatures, the recognition of character patterns in the postal service and even in the recognition of star patterns for on-board satellite navigation. The WISARD pattern recognition system developed further at Imperial College under the direction of Professor Igor Aleksander has been developed using their specific ram model of the neural unit. Pattern recognition involving ram-based nets is

Fig. 5. For the configuration of Fig. 4(b), the graph shows the rapid increase in the number of network connections with the number of input stages. Systems to be simulated must therefore be kept to a sensible size.
being undertaken at the University of York.
Other associated application areas include classification of aircraft radar signals and automatic guidance systems for road vehicles. The ALVINN vehicle at Carnegie-Mellon University, aided by three Sun computers, can as yet only achieve a maximum driverless speed of $0.5 \mathrm{~m} / \mathrm{s}$, but that may change. All these examples represent only a very small range of applications which are being developed in this one area.

Speech recognition. Significant work has also been undertaken in the field of speech recognition - an area which poses perhaps one of the greatest challenges to neural network technology. Various researchers are undertaking what could be described as an incremental approach, where each advance in performance brings the ultimate solution closer, though each improvement does not yet yield a practical solution.
An interesting project staged by the Carnegie-Mellon University and ATR Research Laboratories in Osaka highlights one promising way forward in offering a solution for efficient realtime speech-decoding facilities. The frequency spectrum of speech is dynamically analysed at 10 ms intervals over 16 separate frequency bands, so that the input to the network is a rapidly changing window of sampled data. Using this system, a range of networks was developed to differentiate Japanese consonants. The approach of solving more difficult tasks just by implementing more complex networks proved somewhat counter-productive. In going from a conventional network to recognise G, D and B to one to
recognise B, D, G, P, T and K, the size of the network increased from 60100 connections to 18000 ; training required some 18 days of supercomputer time. A modular construction, however, which identified consonant groupings and then specific consonants within a grouping proved more efficient, leading eventually to the dynamic identification of all 16 Japanese consonant sounds for a single controlled speaker. The skill of problem design is therefore of paramount importance when tackling more complex network problems and this modular approach will doubtless be a feature of other application areas.

Considerable interest is being shown in the use of voice recognition systems by telecommunications companies, no doubt in order to allow a patient, nonhuman listening service to differentiate between "yes" and "no" and other responses not remotely like either. Several projects in British Telecom's CONNEX neural network initiative relate to voice recognition.
It is not surprising, therefore, that there is significant interest from the life sciences in discovering the ways in which natural networks implement highly complex tasks. This confirms that research in neural networks has expanded far beyond the narrow confines of computer science. The emergent subject of cognitive science is a much more wide-ranging discipline and employs the skills of mathematicians. neurobiologists, neurophysiologists, psychologists and electronics engineers.

Another area of significant activity is the use of neural networks to reproduce speech from text, for which there are applications such as the quoting of stock market prices over the telephone and also in improved man/machine dialogue in industry and commerce.

Speech continues to be an amalgam of well established rules and a large number of exceptions and special cases. Numerous systems using conventional digital computers and phoneme reconstruction methods have of course already been developed. On a base of the initial work by developers of NETtalk at Johns Hopkins University, work is being undertaken using neural networks at a number of centres, no doubt to produce the ultimate human voice beloved of science fiction writers who have perhaps prepared us for the prospect of failing to differentiate between natural and synthesized speech.

Work in progress, such as that being

Fig. 6. Neural unit, where incoming pulse train is width modulated by weighting voltage. Output voltage of the unit is stored in charge held on output stage
undertaken by Fujitsu on speech production, indicates how much the subject has advanced in a relatively short time. Specific neural topologies whose inputs and outputs are not simply 0 or 1 are selected to learn analogue data more accurately and a more efficient training algorithm than back-projection allows more stable solutions to be derived

The NETtalk system was a significant initial demonstration of the ability of neural networks to respond to a training set. Progressive training of a NETtalk configuration could be demonstrated as a transition from the initial babbling of the untrained network through to the highly recognisable speech obtained after extensive training of the system. Also, NETtalk indicated the essential resilience of a neural network. If, for example, certain weighting connections were given random values, the performance of the network could be heard to have been degraded, although it was not rendered inoperative; with additional training. the system was heard to recover its performance.

Expert systems. The role of neural networks as a means of implementing expert systems is one which has caused considerable interest, some annoyance and a certain amount of confusion. The ability of a neural network to solve a specific problem, producing as it were a black-box solution where the mode of producing answers is not clearly understood, goes against the traditional attitude of scientists who are used to understanding the tools and methods they use.

It is usually difficult to make valid
comparisons between conventional expert systems and connective equivatents. One relevant exception, howerer, is that of a specific system for forecasting solar flare activity at Colorado University. Using an identical data set, the performance of THEONET, a neural-network implementation, was found to be at least as good as a previous expert-system solution called THEO. While the performance of the two systems may have been similar, the connective solution was implemented in less than a week, while THEO had required more than a man year of work to implement. The potential, therefore, for developing connective expert systems is being taken very seriously.

Hardware

To date, most functioning neuralnetwork systems exist as software simulations on a variety of digital computer systems. This represents a major gap between theory and application, though hardware implementation of neural network topologies has as a result become a major area of endeavour.

Part of the problem of implementing hardware-based networks lies in the conflicting demands of massive connectivity between neural elements and the degree of resolution required in the setting of values of weighting links. Many networks, for example, require at least a l0bit resolution in weighting values to implement training algorithms effectively. Also, development has largely been directed towards solutions which can be dynamically updated, in contrast to systems which have, for example, fixed-value lasertrimmed resistive networks.

Hardware implementation of rambased models has an immediate advan-
tage in terms of availability of VLSI chip-fabrication facilities. Greatest effort is being expended in developing systems which use analogue circuit elements. The approach adopted by several groups, including those at Edinburgh University and AT \& T Laboratories, is the use of mos charge storage as the means of dynamically updating individual weighting values or storing the outputs of individual analogue neurons. Innovative analogue circuit designers are therefore at a premium in this field at present.

In the Edinburgh group's approach, voltage weighting values are implemented by off-chip D-to-A converters and used to width-modulated incoming pulses. Input pulses and modulated pulses are integrated with opposite sense at an output charge-retaining stage, so that for weighting voltages of around 2 V the output voltage remains stable when the unit receives trains of input pulses. For values between 2 and 3 V output neural voltage increases, while for between 1 and 2 V it decreases. Such a neural unit is illustrated in Fig. 6.

Numerous researchers are also seek-
ing to develop adaptive hardware networks, which will embody learning facilities to train their neural set dynamically. This will not only allow such systems to become much more self contained, but it should be possible to train them significantly faster than equivalent software simulations.

The work is spread from the one-man-and-his-PC type of activity up to the extensive R and D facilities of large corporations. The major developments have to date, however, largely originated from the outstanding work of individuals infused with original ideas. In the UK, several large companies have recently offered support for a Technology Club, founded by University College, London and the software houses Logica and SD to promote the implementation of neural-network technology. Also, the Annie project in neural networks is being funded as part of the European esprit initiative

References

I. J.B. Angevine and C.W. Cotman. Principles of Neuroanatomy. Oxford University Press. 1981
2. W.McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943; 5: 115-133
3. D.O. Hebb, The organisation of behaviour. Wiley. New York, 1949

Further reading

D.E. Rumelhart. G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, in Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Volume 1. MIT Press, pp318-362. 1986
T.J. Sejnowski and C.R. Rosenberg, Parallel networks that learn to pronounce english text (NETtalk), Complex Systems, 1, 1987, 145-168 A. Waibel, Consonant recognition by modular construction of large phonemic time-delay neural networks, in Advances in Neural Information Processing Systems 1: editor D.S Touretzky, pp232-239. Morgan Kaufmann. 1988
T. Kohonen, The neural phonetic typewriter, Computer, 21, 11-22, 1988
A.F. Murray, A. Hamilion and L. Tarassenko, Programmable analogue pulse firing neural networks, in Advances in Neural Information Processing Systems 1: editor D.S. Tourctzky, pp671-677, Morgan Kaufmann. 988

PROFESSIONAL CIRCUIT-BOARDS

PCB EAGLE is the complete board layout solution at an affordable price; - Yes complete -
No starter kits followed by expensive upgrades. It's easy-to-learn, quick to use and runs on an IBM PC. So at "one-per-desk" prices, you can afford several for your engineering team. Look at what it offers:

* MANUAL OR AUTOROUTE, TRACK/SIGNAL/BOARD ROUTING
* 255 LAYERS, 1 MIL RESOLUTION, UP TO 64"x64" BOARDS
* CONTINUOUS ZOOM, AUTOPAN, UNLIMITED UNDO/REDO (OOPS)
* RATSNEST, RIPUP, RUBBERBAND, CUT \& PASTE FUNCTIONS
* INTERACTIVE OR NETLIST ENTRY (EG ORCAD)
* COMPONENT \& USER-SPECIFIC MACRO LIBRARIES
* COMPREHENSIVE DESIGN RULE CHECK AND DISPLAY
* USER-CONFIGURABLE FUNCTION KEYS, MENUS, SETUPS, COLOURS ETC.
* FREE DRIVERS FOR STANDARD PLOTTERS \& PRINTERS
* RUNS ON IBM PCXT/AT, 640KB, 5" FLOPPY, EGA OR VGA COLOUR

designed by you!

Why not try out our demo and see for yourself how

Tom Ivall reports on the IEEE conference,

 which reflected the connectionist approach to AlThe artificial neural network an electronic system of interconnected elements processing information in parallel may yet prove to be a solution in search of real problems. After more than four decades of research and the publication of what must be thousands of papers, not to mention dozens of books, this so-called 'connectionist' computing technique doesn't seem to have found an application niche where its performance is clearly superior to those of conventional analogue or digital processing methods.

A recent IEE international conference on ANNs, as they are known, added a further 90 papers to the existing swollen corpus of literature. And this after about the same number had been rejected. But the philosopher's stone has not yet been discovered.

In spite of endless permutations of network topologies, interconnections, element characterstics, training algorithms and so on, the magic formula - of a really useful technique-did not reveal itself. That's not to say it won't appear eventually.

Charles Goodyear discovered how to vulcanize rubber not by science but just dogged experimentation. This could happen with the neural network.

These remarks are prompted by the many conference papers devoted to 'toy" problems - originated in the laboratory rather than the outside world. They came largely from the 22 British and 16 foreign universities making contributions. Industrial R\&D labs were in a minority. Of course, some of these 'toy' problems could have been disguised versions of military requirements, as an MoD man hinted.

Pattern recognition seems to be the most promising field. This encompasses

ARTIFICIAL NEURAL NETWORKS

automatic speech recognition on the audio side and various visual tasks such as optical character recognition, rohot control, tracking human face movements and identifying features of landscapes. Essentially the signal processing functions needed are discrimination and classification. This also applies to pattern recognition tasks not working on sense data but on other electrical signals. Examples include radar, electromyograph, digital telecoms, navigational bearing and non-destructive testing signals.

Network topologies

A network topology used in many of the reported experiments is shown in Fig.

1(a). This is the multilayer perception, an analogue network derived from the original Rosenblatt single-layer perceptron of 1959. Its input terminals receive signals in parallel which are features of the subject being analysed such as filterbank outputs in speech recognition and pixel values from two-dimensional image sources. The outputs give parallel data which is some function of the inputs and is meaningful as an interpretation of the input pattern.
Between inputs and outputs are several layers of interconnected computing elements or "neurons". The output of every neuron element in a layer is connected through adjustable weighting (multiplying) circuits to the inputs of all the neurons in the next layer. Each

The philosopher's stone is still to be discovered...
computing element Fig. 1 (b) is an clectronic circuit which sums the weighted input voltages, applies a threshold and passes the result through a non linearity to give an output voltage which is one of two states (on or off). Depending on the sum of the weighted inputs, it either 'fires' or doesn't, rather like a biological neuron responding to excitatory and inhibitory stimuli at its synapses.

Thus the network maps the array of inputs on the array of outputs. The actual input-output relationship is encoded in the various adjustable weights in the interconnections. With enough neurons any input-output relationship can be achieved by suitable choice of these synaptic weights. A visual labelling network developed by British Aerospace, for example, has 89 neurons in the input layer, 16 in the middle, hidden layer, and two neurons in the output layer.

Learning and training

But a highly important feature of this kind of network (and others) is that the adjustable weights may be used to make it 'learn' a required relationship of the output to the input. In speech recognition, for example, it can learn to produce an output digital code representing a text word when a particular audio signal spectral pattern is applied to the inputs.

To achieve this, 'rraining' is necessary, with back propagation of error, in the current ANN jargon. With input signals applied and arbitrary initial weight settings, the resulting output signals are compared with the desired output signals for that relationship. The error between them is measured and used to adjust automatically the weight settings so that the mean squared error function is minimised.

This is achieved step by step (iteratively) with repeated applications of the input signals. When there are no further changes in the neuron outputs the system has completely converged and the desired overall input-output relationship is established.

Fig. I. Principle of multilayer perception is shown at (a). Numbers of layers, neurons in a layer and values of weights are all variable. Each neuron (b) in this network computes the sum of the weighted inputs, applies a threshold and gives a t wo-state output signal.

The multilayer perceptron is an example of a so-called 'feedforward' network. Other ANNs discussed at the conference have 'feedback' topologies. Here the output of each neuron is fed back to all other neurons via the synaptic weighting circuits. The Hopfield feedback network operates on binary input signals and has stimulated a lot of recent work, especially in VLSI implementation. It can be used as an associative or content-addressable memory, in which storage locations are identified by their content rather than by their physical address. Thus the input signals can be an incomplete or noisecorrupted binary pattern to be recognised, and the network uses this information to address the storage location to which the correct, complete pattern has been supplied.

A learning algorithm can be used on this feedback network in much the same way as outlined above for the feedforward multilayer perceptron. Such a network tends to find stable configurations of taught patterns from incomplete inputs of such patterns.

A third kind of ANN topography is called the self-organizing feature map. Here the 'map' is a two-dimensional array of neurons. It organizes itself without the supervised learning described above - so that clusters of neurons in particular neighbourhoods of the array are activated in response to particular features of the input data. Thus for speech recognition the network could end up with a fixed relationship between a particular input phoneme and a physical localized area in the twodimensional array

This is comparable to what happens when sensory stimuli activate biological neurons in the cortex of the brain. For example, individual audio frequencies evoke responses in neurons at particular anatomical locations. Thus the selforganizing feature map can be used for classification on the basis of the spatial positions of clusters of firing neurons.

Protessor T. Kohonen of Helsinki University, the originator of this technique, showed a video demonstrating an experiment on speech recognition. As each word was spoken into a microphone, a wriggly bright trace weaved brietly among the corresponding letters of the alphabet displayed in two dimensions on a CRT screen.
Apart from their topology, ANNs can be categorised in several other ways: analogue or digital input: supervised (trained) or unsupervised learning; and the characteristics of the electronic neurons.

Their performance varies too. It emerged at the conference that multilayer perceptrons have a rapid response in operation but need a lot of training time. Many of the systems described have not been built in hardware but merely simulated on conventional sequential (Von Neumann) computers. Here the modelling process takes a great deal of time, especially for training, but research at University College Swansea showed how it could be speeded up by using a parallel array of transputers (at least seven) for simulation.

One class of networks which seems to stand out operates digitally and makes use of standard, commercial logic chips. In this it has the edge on simulations and special VLSI still under development. An early British example was the Wisard optical pattern recognition machine devised at Brunel University in 1981. This uses simple rams as the computing elements, which are connected to provide discrimination in a parallel, neural-like network.
In each ram 'neuron' the address terminals form the multiple inputs while the data output terminal provides the output. Before training these rams produce only logical ()s, then logical Is as the system learns to recognize optical patterns. Operating on $512-512$ pixel images in $1 / 25$ th second and using 250,(000 neurons, the Wisard has been built into commercial vision systems by Computer Recognition Systems of Wokingham, Berks. But topologically this device does not resemble the multilayer perceptron of Hopfield ANNs previously mentioned.

A recent development from this logic-based approach is a new form of neuron element called a probabilistic logic node. As explained by Professor I. Aleksander of Imperial College, London, this kind of neuron makes possible weightless ANNs. Essentially it is probabilistic in function.
The ram, instead of storing just a 0 or 1 output in response to each input signal pattern, stores an n-bit number which represents the probability of that neuron's firing. For example, if the number of bits $\mathrm{n} \times 3$, then a range of (decimal) probability values between () and 7 can be stored in a ram location. So if value 4 is stored, the probability of firing is $4 / 7$ or, more conventionally, 0.57 .

ANNs built from such neurons can be trained. Here, the progressive weight adjustment in perceptrons is replaced by updating the contents of the ram neurons. Learning from errors is

Fig.2. Optical interconnection of two VLSI layers of CMOS neurons aims to achieve high network integration density and connectivity.
claimed to be faster than in the backpropagation method. Also, with this kind of neuron, rather than the Wisard one, the typical characteristics of multilayer perceptrons and other established topologies are said to be obtainable. And there is the advantage of being able to use off-the-shelf digital logic devices as components.

But apart from this use of standard chips, the business of constructing ANNs emerged largely as a matter of designing special VLSI devices. Several universities are working on integrated mosfet technology to mimic neurons and synapses and produce analogue adders. multipliers, threshold detectors and storage elements. Multiplication for weighting is a real problem because it needs a lot of transistors and therefore silicon area.

Not conventional

An unusual solution reported by A.F. Murray of Edinburgh University is to use streams of pulses to represent information instead of the conventional analogue or digital voltage levels. The pulse repetition frequency is varied, rather like the variable firing rate in biological neurons.

The ram is off to see the Wisard...

In such a pulse stream the width of each pulse is multiplied by a fraction. representing the weight value, stored as an analogue voltage on a capacitor. This weight voltage is refreshed from an offchip via a D-to-A converter and is therefore programmable.

Definitely a blue-sky project is a proposal to interconnect VLSI network layers optically, by multiple thin light beams, rather than by conventional conductors. STC Technology and Edinburgh University reported some experimental work on this hybrid of semiconductor and optoelectronic technology. Figure. 2 shows the basic principle of interconnecting two ANN layers of silicon VLSI neurons. In each layer an external incident light source is modulated by liquid-crystal cells driven by the outputs of CMOS neurons.

The reflected light from the modulator is split and deflected into multiple thin beams by a hologram to produce a fan-out as shown. These interconnection beams fall onto photodiode detectors in the next layer. The outputs of the photodetectors are then amplified to form input signals to the CMOS neurons in that layer.

The idea is to get a large number of neurons on a single chip -256 on $1 \mathrm{~cm}^{2}$ is suggested - and also achieve high connectivity between layers. This is possithe because the necessary summing for each neuron and the multiplication for weighting the neuron inputs is done through the light beams themselves. So there is no need for adders and multipliers integrated on the chip, and silicon area is saved.

Two light intensities are added when the two beams fall on the same photodetctor. Multiplication is achieved when the same light beam is consecutively reflected off two liquid crystal modulators: the reflection coefficients of the two modulators are multiplied.

In studying methods of reproducing the way the human brain works, using conventional computer hardware components, my philosophy has been to try to arrange a series of look-up tables which act at progressively higher levels until the desired result has been obtained.

The result of my efforts has not yet been a reproduction of the human brain in hardware, but a hypothesis of how it operates. I have never come across a hypothesis which answers as many questions (to me at least) so I offer my thoughts on the subject for comment and criticism.

One way of studying how the human brain works is to see how it evolved. Here, I will attempt to give a summary of the stages which led to its evolution.

Development of the brain

All animals, from the simplest to the most complex, must eat to live. The

INTE
 first simple animals discriminated
 UGENCE

 between food and non-food items with their primitive digestive systems. The next stage of development enabled the simple animal to discriminate between food and non-food before it was ingested and to do this, the primitive animal had to be able to remember the difference. This type of animal had the first external sensor coupled to an internal memory unit. Further evolution resulted in progressive enhancements of the sensor and memory unit combination because they were advantageous. Each enhancement enabled the animal to find food more easily so that it could grow more rapidly and have more offspring.The first sensor would have been a chemical discriminator which developed over time to become a sense of smell; where one sensor provided an evolutionary advantage, two were even better. Detection of light was possibly the next stage in evolution and, as with the development of smell, each step resulted in an improvement in the sensor and a corresponding increase in the number of memory cells needed to identify and remember what the sensor detected. An advantage is gained if the animal can learn from experience - a process which requires even more memory.

DUMB

The simplest memory system which could be developed would be one which is directly linked to the sensors themselves; there is no advantage in separating the sensor and memory functions more than is necessary. If one considers the first life-form which was able to recognise a shape or a pattern, it is safe to assume that its eye sensors were linked to a set of memory cells which were an extension of the eye itself. These pattern-memory cells would be linked in turn to a group of cells which were associated with the experience memory. A pattern match could have either a good (food) or a bad (predator) association and could be as simple as a sudden change in light level or the outline of a particular shape.
The rest of the stages of evolution of the brain itself do not need much description. Each stage of development has incorporated the best fea-
tures of the previous stage. Pointers along the way include the use of camouflage by zebras and the eye markings on butterfly wings; both features evolved to counter a predator's ability to recognise visual patterns. Wherever you look you will see that the animal world relies on patterns.

Intelligence

In this very brief survey of the evolution of the brain I have not mentioned intelligence. I have tried to work out where, in the path of evolution, one could say that intelligence originated and have come to the conclusion that there was no point when it provided an evolutionary advantage. Since evolution exploits advantageous developments, intelligence has never developed.

Obviously, there is something which everyone calls intelligence, or the word would never have been coined in hun-
dreds of languages. If we take a step or three back along the evolutionary path, we can identify two advantageous facilities - pattern recognition and memory. I think I can show that what is called intelligence is only a combination of these two facilities.

Patterns and language

The ability to read is based on being able to recognise word patterns; to learn a foreign language, one has to learn the patterns of the foreign words. As one becomes more proficient in a foreign language, one learns more expressions which are not directly translatable between two languages, but relate to abstract patterns associated with the language. Some of these non-translatable patterns become transferred - glasnost, reggae, hamburger, savoir faire, le weekend - the patterns relating to the region where they occur most often. Language is only a part of pattern recognition, but it is a tool which has developed to enable the concept of a pattern to be transmitted in an abstract form from one human to another.

It is said that a picture is worth a thousand words. Here, it is even easier to see what concept is being dealt with without the need for an abstract description. Until the advent of photography just over 100 years ago there was no way of showing what something looked like except by a drawing, painting or statue. But most of us are quite happy to accept outline drawings as representations of things. A good cartoonist can capture the look of a person so that the drawing is instantly recognisable; the amount of detail shown is only a very small amount of that which would be contained in a photograph. Even if the shape is very distorted it can still be recognisable.

We obviously have an advanced pattern-recognition and storage system, which uses the minimum of memory to record the main features of whatever is represented. This in itself must be an evolutionary advantage; the more compactly data can be stored, the more can be stored within a limited space. The creature which can record and recall the greatest number of patterns is evolutionarily superior.

Pattern association

The next step is a secondary memory process to associate one pattern with another, which has to be developed if a person is to show any signs of intelligence. If it is very well developed and

Fig. 1. Optical character recogniser input unit; typical arrangement for a 7 $\times 9$ matrix. Each photocell connected separately. Optical fibre could be used to link photocells to image plane.
the person concerned has recorded many patterns, then he is thought of as being highly intelligent. If, on the other hand, pattern association is not well developed or the person has not learned a wide range of patterns, he is regarded as being mentally subnormal.

The process by which a pattern is learned is mysterious, or education would be simplified. However, there are several points which are worthy of note: firstly, a pattern is learned through necessity if one's life depends on it; secondly, a pattern is learned through repeated exposure to it; thirdly, a pattern is learned if it fills an obvious gap or solves a mystery; fourthly, a pattern is more easily learned if it is associated in some way with pleasure. (All teachers should remember this!)

Associative links between patterns depend firstly on the number of patterns learned and secondly on the connectiveness of the memory cells, which may be inherited or acquired. For most people, there is some link between the pleasure centre and the "gap filling" aspect of learning-pattern linking. The extent to which this linking operates is a guide to the motivation of the person concerned; the popularity of puzzles indicates that most of us enjoy filling in gaps. If the gap-filling pattern offered matches existing patterns, it is accepted as being valid and true - if it does not, it is taken to be false.

Humans cannot calculate

Wherever one looks, every so-called intelligent function can be explained by pattern linking. It is impossible for the human brain to perform the simplest calculation. Every so-called calculation is a series of look-ups of memorized patterns. Learning multiplication tables by rote follows the memorization of other patterns - additions and
subtractions of combinations of 0 to 9 and the concept of the carry. With these patterns memorized, it is possible to learn the rest of the rule patterns of arithmetic.

Algebra is just a method of showing arithmetical patterns by alternative generalized patterns. Since mathematics operates under strict fixed rules (patterns), advancement in maths depends on learning a wide vocabulary of algebraic patterns which can be recalled for use when needed. Every step in any calculation is based on the use of patterns, ranging from the simple multiplication table to the concepts of calculus. We cannot calculate without using look-up table methods and our digital computers are programmed to use the same methods to do calculations.

Artificial intelligence

If there isn't such a thing as human intelligence, there can't be such a thing as artificial intelligence. Even so, since pattern-association ability is called intelligence in humans, the same thing must be true for machines. Von Neumann serial processing machines cannot provide a practical basis for any form of "real" artificial intelligence because they do not have a large-scale pattern-recognition capability. A machine which emulates the way a human brain works must therefore operate in a parallel manner.

Much of what is called parallel processing is, in fact, a number of sections of a serial process being dealt with simultaneously. True parallel processing is used in neural networks and a $\mathrm{f} \in \mathrm{w}$ other specialized machines, but it has been given much less exposure than serial processing in the technical peess.

A parallel processor can handle a very large number of simultaneous pattern inputs and produce a secondary set of patterns which relate to the inputs. In turn, these secondary patterns can be processed again to prodace tertiary patterns and so on. After several stages, the complex set of patterns will be resolved as one pattern, which will be recognised as being the logical conclusion. This final pattern could be a demand for more input or a prompt for an action.

There have been several attempts to devise neural networks which can perform the recognition function. Most of these have been based on the interconnection of a relatively limited number of memory cells and cross-linking cells.

In an effort to avoid the problem of making a complex network of such cells from discrete components, I have tried to use ordinary memory chips. My resources have not yet enabled me to produce a working machine, but I think I have worked out the principles which will enable such a machine to be produced.

I will attempt to explain these in terms which are familiar to those who have worked with the standard chips which make up a microprocessor computer. Please note that I have used the ASCII code only because most readers will be familiar with it. Any other arbitrary numbering system is equally valid. I refer to a $2 \mathrm{~K} \times 8$ bit chip like the 6116 for the same reason. Readers may like to imagine other memory structures using any feasible type of static ram chip.

Character recognition

The dot-matrix system is now so widely used that it needs no explanation; its most common use is in printers and video displays. Quality of the display depends on the number of dots used, but a satisfactory representation of

Fig. 2. Recogniser input stage mapping to suita 7×9 optical unit. Tïming controlled by serial processor to enable successive pairs of stages. Each chip progranmed with arbitrary sequence of numbers and always in "read"state. Inputs are address lines - outputs data lines.
roman characters and arabic numbers can be achieved with a 7×9 matrix; such a matrix is made up of 63 pixels. A machine which will instantly recognise a character shown by such a display must therefore have 63 inputs, one for each pixel. Recognition of the character can be signified by the generation of the equivalent ASCII code for the character.

Only a few hundred different characters are needed, so a mapping process which will transform 63 inputs to eight outputs would be suitable. This could be done with 2 K static ram/rom chips in stages. Six such chips have a total of 66 address lines and 48 data lines between them, which would enable 63 bits to be mapped down to 48 bits. A second stage could use four chips to reduce 44 bits to 32 bits; a third stage
reduces 33 bits to 24 bits, a fourth stage 22 bits to 16 bits and a fifth stage also reduces 22 bits to 16 bits; the "lost" bits in the mapping of some stages to lower stages can be picked up in the later stages. The final result is 16 bits, eight of which identify the character; the other eight bits can be used to indicate vertical or lateral displacement, type face, size, and the reliability of the recognition process.

Everyone who has some knowledge of maths will immediately ask: "Where has all the lost information gone?" The answer is that nothing has been lost because it wasn't there in the first place. Although 63 bits represent an incredibly huge number in binary terms. (9.22337204^{18}), in practical terms they can only represent a few hundred generally recognisable patterns. If we look at the way the chips are programmed in each stage, we will be able to see that the problem is not losing information, but sorting out the difference between valid information and that which is useless.

Assume that each of the first set of chips is programmed with the numbers 0 to 255 in sequence for 2048 bytes. The bit pattern repeats eight times in each chip. It is therefore possible to have eight different inputs on each chip which could give the same desired output. This duplication problem repeats itself at each stage until it reaches the final stage, which is programmed with what is being "seen", so a letter A would be programmed to be $01000001(41 \mathrm{H})$ and a letter a would be $01100001(61 \mathrm{H})$. Because of numerous duplications of numbers in the lower stages, there will be thousands of combinations which will also produce the same output. These unwanted combinations cannot be identified easily in advance, so a secondary process is needed to ensure that they have no effect; this process is, in essence, the reverse of the input process. The desired output is used to drive rams/ roms to reproduce the matrix, which should cause the desired output.

This reproduced matrix is compared with the input matrix on a bit-by-bit basis. A 100% match is obviously desirable, but in the real world, a 90% match is likely to be more than sufficient to identify a wanted pattern. The ratios of the 1 bits and the 0 bits in the two matrices are compared and the reliability of the recognition is expressed as the proportion of bits which are correct. (63 true And gates are required, i.e. $0.0=1,1.1=1,0.1=0$, $1.0=0$.

It can be seen that it is also possible to use precisely the same process for progressively larger numbers of "missing" bits in the reference matrix. For example, it is fairly easy for a human to recognise letters printed on a dotmatrix printer which doesn't print on one of its pins. It would be pointless to make a character recogniser which would reject a character which was printed with this fault because it would only have limited usefulness. This method of character recognition can be extended to cover larger matrices to allow larger, smaller and displaced letters to be recognised. An 18×14 matrix would permit a 50% displacement of a 9×7 character within its field of view in any direction, or deal with characters which are twice the size of the original.

The basic programming of such a character recognition unit would be done manually, but the rest of the variations - dots missing, size and displacement - could be handled by a microprocessor. As soon as one of these units has been made and programmed, the contents of the various ram chips can be copied into eproms or roms for the mass production of character recognisers.

Cognic processing

This is the term I have coined to refer to a processing method which uses an input system based on the principles of the character recogniser I have just described. For simplicity, I will continue to assume that the patterns to be recognised are characters, but any type of meaningful input pattern can be used, including sound patterns.

Word recognition

If a row of 80 character recognisers was made so that they covered an $\operatorname{Sin} \times$

Fig. 3. Character recogniser unit, with reverse mapping to produce recognition signal. Reverse mapping can be used to identify any pattern input.

1/6in rectangle, a whole line of typewriter type could be read at once. If a character recogniser identifies a letter with sufficient accuracy, it can produce an output bit which flags this fact and a group of adjacent recognisers which have set flags are assumed to have identified a word; a recogniser which identifies a blank area will set a "no character" space flag instead. In the assumption that ASCII code is being used to identify the characters, a word will consist of a number which is made up of the ASCII codes of its letters. A word could be of any length, but the number of positions on the line is limited to 80 , one of which must be a space for a word end to be identified. It is therefore assumed that a word can have from 1 to 79 letters. The recognition of words uses a similar process to that which is used for letters: all the words on a line will be recognised simultaneously.

In an 80-letter line there can be no more than 40 single-letter words, since a word must be terminated by a space. In practice, provision would be made for up to 20 words on a line. The word recogniser used for any word is selected by the relative value of the

Fig. 4. Word recogniser identifies word endings by following spaces. Here, 7-bit ASCII codes produce numbers to represent words. Logic unit identifies word length and position on line, selecting next word recogniser available which matches word length.
position number of a word's terminating space character, which simplifies the switching needed to connect a group of character recogniser outputs to a word recogniser input. The process of reducing a large binary number to a smaller one which has a pre-defined meaning has been covered in the character-recognition process.

Meanings of words

There is no universally agreed way of classifying words in order except alphabetically, but this order has no meaning and is purely arbitrary. One meaningful method of word classification is the one used in Roget's Thesaurus. For the purpose of explanation, Roget's numbers will be used.
There are just over 1000 classifications of words. Within each of these classifications all words which have similar or related meanings are listed,

words within each classification varying in quality and degree. By some arbitrary method, each word can be given a weighting number which indicates the sort of classification which is appropriate. A typical list might be:

freezing	-9	stuffy	+1
icy	-8	warming	+2
cold	-7	warm	+4
chilly	-5	tropical	+6
cool	-4	hot	+7
cooling	-2	scorching	+8
temperate	0	searing	+9

There may be some argument about which numbers are allocated to certain words but the numbers I have allocated will show the principle. It is therefore possible to convert groups of letters into a set of agreed numbers which represent word meanings.
It is at this point that the next stage of recognition becomes harder to define. There is already a system in use which gives words meaning: every computer which uses a high-level language has an interpreter to convert character sequences into computer operations. This principle has been extended in computer-based dictionaries for foreign languages. An arbitrary numbering system is used to link pairs or groups of letter sequences.

The meanings of patterns

Individual patterns can only have meaning if they are part of a larger

Fig. 5. Stages in "understanding"an input. First stage classifies word by grammatical type, "Roget"number, weighting within Roget class and arbitrary reference number. Flag indicates whether part of phrase or compound. Second stage records time marker and three Roget classes which include word. Concept in which word occurs given number to mark position in text. Third stage identifies two Roget class numbers which create suitable context identification number when combined. Probability of correct identification allocated and context sequence number generated. Reference to related context in text included. Number of bits used in each stage depends on application.
pattern structure, which can be either parallel or serial. This text was serially produced but it could be reproduced by the parallel method of photography. However, the pages on which it is written are each an entity which cannot be defined in a serial manner. The meaning of the text can only be arrived at serially, while the medium on which it appears has no me aning at all.
If I have written my description correctly, the reader will have stored a sort of summary of the abstract concepts which are contained in it; each concept is a recognisable pattern which has been described by the words I have used. These concepts have most of
their meaning in the context of the other concepts, which are part of the even larger concept pattern which will be conveyed by the article.

The article can only be understood if the various concepts it contains overlay each other in a logical manner. Since it is in print, it has the advantage that the reader can re-read it if some vital point has been missed.

These comments are a description of a pattern which can be duplicated by using a further extension of the character and word recognition processes.

In context

The key aspect of this type of pattern is time; the meaning of the later parts of this article is based on what was written previously. Parallel input to the recogniser I have described must be flagged with the time the information appeared. Concepts of begin, read, store, continue, until and end are already incorporated in existing computer languages. It is therefore logical to use a serial processor to control the parallel recognition unit.

The higher level of recognition is based on a context comparison between text which is currently input and that which has been seen previously. Since every context can (by definition) be defined in words, a context number can be generated. Each change or development of context will also be flagged with its chronological position. As each context is identified it can be used to refer back to previous inputs to revise individual word meanings which could not be unambiguously recognised when they were first seen. Context recognition can use the same cues as we ourselves use when reading a text. Titles and headings are two examples of such context cues

Final stage

I hope that the vague terms in which the previous section was expressed conveyed the idea of developing meaning/idea/concept from a collection of lesser concepts. The final in-built command of the cognic processor is to compare the knowledge gained, if any, with existing data. In the naive state, all input is new to the processor, so it is automatically stored. As time progresses, new input will either reinforce existing information or negate it. Stored information will thereby become more refined and reliable as a reference.

At a mature stage, the processor will be able to note that some new input is
very similar to existing data, so only the differences need to be stored. If the data is exactly the same, only the facts that it has been seen again and when it was seen are stored. If the same data is repeated many times, only the first occurrence, the times of the first and last occurrences and the number of repeats are stored. Gradually the recogniser will need to store less and less as it becomes more knowledgeable.

The difference in meaning between command and data information is dealt with at an early stage, but the later stages of context analysis can alter the interpretation of what is a command and what is data. The processor will learn by experience.

Thinking

A machine which can think is almost unthinkable, but the cognic processor described can be made to emulate thinking. The input devices can be made to operate much faster than a human can; in consequence it is likely that the machine will have periods when no new input is available. A random number generator controlled by the serial (control) processor can then select pseudo inputs from different parts of the memory for comparison. Where common patterns are discovered, these are labelled with cross references to each other in a concordance, the cross references including the degree of matching and the contexts involved in the two sources. If the common pattern is well defined, a search can be started for more occurrences of the same pattern, which can be added to the concordance list. The possibilities for such a machine are almost endless. A biological version of such a machine has been used to write this article.

Notes on possibilities

One line of 80 character recognisers, which each cover a 14×18 matrix, produces $80 \times 18 \times 14=20160$ pixels or 2.5 K byte. Using 2 K types, about 32 chips would be needed to cover an 18 $\times 14$ matrix in the way I have described. The word and context recognisers would use far fewer chips per stage, since they would have fewer bits to handle; about 500 chips would be needed to make a one-line reader/ processor. A cognic processor made on this basis would produce an output from an 80 -character input in less than $2 \mu \mathrm{~s}$ using 120 ns chips. This speed would be unaltered for all sizes of processor. A one-line cognic processor

Fig. 6. Cognic processor. Each stage is a mapping unit which functions as parallellook-up table. Serial processor only controls timing and pseudo input generation for "thinking" process; it does not perform input processing. Only new data is stored.
could read text printed at 6 lines $/ i n$, (and act on the input) at the rate of 1.315 mile/s. A typical 50000 word book could be read and "understood" in 8.3 ms .
If custom chips are designed to reduce the number of steps needed, the processing time would be correspondingly faster. A cognic processor which could read 1000000 pixels in less than a microsecond is conceivable.
Sound data is also formed in patterns which are received serially but processed after short-term storage in parallel chunks. Spoken language relies on the listener's ability to relate current input to that which has been received previously and our ability to understand a written text relies on the same processing system. This is why it is impossible to listen to one thing and read another at the same time. but it is easy to follow a written version of the spoken word even in another language (if you know both languages).
Since A-to-D sampling methods provide a satisfactory way of converting sound for digital storage, the data
produced in, say, a 1 s sample can be analysed in the same way as has been described for character and word patterns. There is no particular need to "know" how it is done; a cognic processor simply needs to be read to aloud at the same time as it "sees" the text. Its in-built cross-referencing system would enable it to relate one input to the other and it would quickly learn the rules of pronunciation for itself so that it could read to you or understand any spoken commands within minutes.

The system I have attempted to describe would deal with the equivalent of a line of type in $2 \mu \mathrm{~s}$. A fast human reader could read the same type in about a second. Such a machine could "learn" at least 500000 times as fast as a human, if not faster. It would have to have the Asimovian Laws of Robotics built into it.

The author

After serving in the RAF until he was 27, the author worked for various electronics companies untilstarting a degree course in computing and German at Hatfield Polytechnic, graduating in 1983 aged 50. He has been developing the ideas in this article for over 20 years, having become involved in the subject while designing artificial limbs using myoelectric input; at that time, he developed a novel type of memory using extremely fine glass fibres. He now works for Neosid.

On special offer:

 $\mathrm{Hz}, \mu \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$All digital multimeters offer V, A and Ω. Instruments from ELECTRONICS WORLD + WIRELESS WORLD can also give you Hz , μF and ${ }^{\circ} \mathrm{C}$ on selected models with up to $41 / 2$ digits of precision. At prices you wouldn't believe.

DM 7333
\checkmark capacitance to $20 \mu \mathrm{~F}$
\checkmark frequency to $200 \mathrm{kHz}(10 \mathrm{~Hz}$ resolution)
\checkmark transistor $h_{\text {FE }}$ test
\bigcirc extra large 3½ digit display § $£ 67.87$

Our special reader offer, negotiated with South Korea's technology driver, GoldStar, brings you a choice of four top quality digital multimeters. Each instrument has specific facilities to match your needs. Simply choose the model which suits you and fill in the coupon below. Alternatively, use your credit card to order the model of your choice by phone.

GOLDSTAR MULTIMETER ORDER FORM

Please senc me model number.

Price $£$
\square I enclose a cheque/PO to the value of $£ \quad$ ma de payazle to Reed Bu siness Publishing Ltd

FREE POCKET CIRCUIT TESTER
WITHEVERY ORDER Test for AC line, continuity and polarity in a single instrument
\square Please dzbit my credit card \square
Expiry date
\square Access \square Barclaycard/Visa \square American Express \square D nersClub
Name. Mr. Vrs. Miss (Initıals must be supplied)
Address

Phone number
Sigrature
Please returnto Electronics World - Wireless World, Room L301, Reed Business Publishing Group. Quadrant House. The Quadrant. Sutton. Surrey SMć 5AS. Fhone orcers ${ }^{\circ} \mathrm{O}$ Lindsey Gardner on 01.661
3614 (mornings only).
Offer applies to UK only.

The GoldStar DMMs are handheld, battery powered precision instruments with large, clear liquid-crystal displays. All measure DC voltage to 1000 V , AC voltage to $750 \mathrm{~V}, \mathrm{AC}$ and DC current to 10A and resistance to 20MS. Instruments are supplied ready for use with battery, test leads and, where applicable, calibrated thermocouple probes. GoldStar multimeters carry a one year guarantee.

Please note that quoted prices are fully in'clusive of VAT, postage and packing.

DM 8243

4 $41 / 2$ digit display
0.05\% accuracy
\checkmark capacitance to $20 \mu \mathrm{~F}(0.1 \mathrm{pF}$ resolution)
\checkmark frequency to 200 kHz (1 Hz resolution)
\checkmark transistor $\mathrm{h}_{\text {FE }}$ test
\} £ 8 8 . 5 5

DM8433

\checkmark temperature measurement

$$
-2 \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

© capacitance to $20 \mu \mathrm{~F}$
\square
\checkmark transistor $h_{\text {FE }}$ test
extra large $31 / 2$ digit display † $£ 72.45$

Telepoint firm hits back

One of the four Telepoint consortiums has hit back at claims that Telepoint is doomed because of the competing threat of personal communication networks (PCN).

BYPS, a combination of Barclays, Philips and Shell, claims that the decision by European PTTs to support the Common Air Interface (CAI) as the leading technical standard for Telepoint will be a boost to the UK's fledgling Telepoint industry.

Peter Wright, B YPS' managing director, said: "There has been a lot of comment in the press about the importance of PCN. Much of it has been confused and has led to the perception that the Telepoint industry will not flourish. Telepoint exists now. PCN is still a long way off." It took five years for the Common Air Interface (CAI) standard to reach its current position and it will take at least another five years for PCN to establish a
common workable technical standard He said: "Telepoint will be the first mass-market mobile communication system and the CAI will be the technical standard which underpins its successful development. CAI will allow manufacturers and consumers to get the best from the cost-effective mobile communication which Telepoint can offer."

An independent report from CMA Research suggests that CT2 cordless telephone technology has a future that is not as bleak as some industry observers believe. Interviews conducted last year among potential users of Telepoint and CT2 found a high degree of confidence in CT2.

Carl Morris, Chairman of CMA, said: "The key to understanding the future prospects of CT2 technology is to appreciate that Telepoint should not be considered the main thrust of CT2." He said that Telepoint is just the first

Hopefully rendered obsolete by the new politics: millimetre wave seeker for the Maverick air-to-surface missile. Millinetre wave radar, with its small system size and high resolution, makes autonomous target detection, acquisition and tracking possible in a missile-size package. This 9.6in diameter seeker was designed and built by Hughes to be evaluated by the US Air Force in captive and free-flight tests. The demonstration programme is being managed at the Elgin Air Force base in Florida.

marketable service to use CT2 and pointed out that the next CT2 development after Telepoint is the wireless PBX

He added: "The general belief among operators, manufacturers and opinion leading prospective users seems to be that CT2 technology will really take off when it is used in the office and business environment."

Computer shielding

Ugly metal shields to protect computer terminals from electromagnetic interference can be ablot on the landscape of a plush office complex

A Kent firm may have the answer. Magnetic Shields has built a shield made of Mumetal sandwiched between two pieces of teak. As well as looking attractive, it cuts out crosstalk between adjacent terminals

United Friendly Insurance in London is using them to block out electromagnetic interference from a nearby electricity substation. It can also help to stop rivals spying by remotely reading the data from the computer screen. Michael Eastland from Magnetic Shields said: "It does assist in stopping security tapping, but it does not stop it. It will make it more difficult."

The firm makes two sizes, the largest of which will hold most sizes of terminal, but the firm plans toextend the range to five in the near future. A space at the back of the shield allows access to sockets and ensures a free flow of air.

CIRCIE NO. 130 ON REPLY CARD

Optical chip doubles capacity

A photonic IC has been developed with what is claimed to be the highest capacity in the world. Such devices use photons as well as electrons to process information.

The device, from AT\&T Bell Laboratories, can process 2 K bit of optical information in parallel, twice that of other photonic ICs. It is a single GaAschip with 2K elements. Each element is a symmetric self electrooptic effect device. (S-SEED), invented at Bell in 1987. An S-SEED can act as a logic gate, memory ccll or switch.

An S-SEED is cascadable and operates as a three-terminal device; it uses differential inputs and outputs. Switching speed is less than 1 ns and
initial results show that the optical switching energy per device is 2.5 pJ . Holding power is 200 nW per beam or 1 mW for the entire array.

Prototypes of the new chip are being made and it is expected that it will be used in future optical computers and other optical systems. Edward Labuda, an AT\&T executive director, said: "We're exploring the use of these ICs. We're a long way from development and delivery of whole systems using technology, but there is a lot of interest. We're happy to work with developers in other companies to design it into their systems."
The chips are 2 mm square and come in a 32×64 element array in an open 24-pin package.

Laser diode for fast opticalcommunication

AveryfastInGaAsPlaserdiodefor high bit-rate optical-fibre communicationsincorporatesinternal electricalcompensationforoperation at up to $2.4 \mathrm{Gbi} / \mathrm{s}$, claimed to be a record for a dil-packaged device.

The Philips CQF60 has an LC compensation network that counteracts the effects of the inductance andcapacitance of the encapsulation and feed-through connections, providesperfect 500) impedance matching and avoids electricalreflections. Itcomesina 14pindipratherthantheconventional hutterfly-style encapsulations.

Thediodeisoneofafamilycovering 1.3 and $1.55 \mu \mathrm{~m}$ wavelengths that includesdeviceswithmultimodeand single-modefibrepigtailsandoutput powerlevelsfrom $100 \mu \mathrm{~W}$ tol .5 mW .

Lasers with FP and DFP heterojunction structures are available and some devices have integral TE cooling.

Patent grant for science students

The British Technology Group is to sponsor a course on intellectual property law for science and technology graduates.

The $£ 2000$ scholarship will be at London University's Queen Mary and Westfield College and it has been introduced as a response to a growth in British-generated technology.
An MSc in intellectual property law does not fall in the academic fields for which postgraduate research funding is generally available and often students have to finance their own studies. The college will decide which applicants receive the BTG grant. BTG hopes the
grant will improve its links with the college, whose intellectual property law unit is highly regarded for teaching and researching patent, copyright, trademark and information law in the UK. BTG has one of Britain's largest patenting departments.

- Betronex, Hertfordshire based CAD/CAE system maker, has announced a scholarship programme for students of computer-aided electronic engineering. It will award two students $£ 1000$ grants towards tuition costs at a college or university of their choice.

Beware the ides of April

April could be a record month for nervous break downs among computer managers. A Friday the Thirteenth following so soon after Fool's Day is an ideal environment for computer viruses to flourish. The perpetuators of these soft ware-wrecking bugs are unlikely to misssuch a glorious opportunity.
The National Computing Centre has responded by putting out a fact sheet giving advice on prevention as well as telling you what to do if affected. Tony Elbra from the NCC's security department said: "The best way out of all viruses is by using back-ups."
But, if you haven't already started regular back-ups, it may be too late. The time-bomb viruses that are likely to hit in April may have been lying dormant for up to a year. Any back-up taken since the virus arrived will itself have the virus.

The golden rule if you are affected is not to panic. Do not switch the system off. Do not try using different data or different machines; this may just spread the virus. Contact a help desk for professional assistance. Some viruses can be easily cured if you know what you are doing.

Elbra said: "Most viruses are innocent. They are just a nuisance, such as a bouncing ball on the bottom of the screen. They are generally written by clever people with a warped sense of humour."

Fastest PNP transistor

Scientists have produced PNP transistors capable of switching at 25 GHz , more than three times the speed of present generation PNP products, claims IBM.

Developed for supercomputer applications, the new device technology will allow complementary high-speed silicon technology rather than the all-NPN arrangements currently used at high switching rates. This will enable semiconductor makers to build low power chips without speed sacrifice. Although the advantage has yet to be demonstrated, the advent of complementary bipolar circuits "may revolutionize logic design in the same way that the combination of nmos and pmos devices in c-mos produced dramatic advances in mos technology". This will lead to larger, more complex IC systems, says IBM.

- Antex TCS $240 \vee 50 \mathrm{~W}$ and JCS 24 V 50 W.
- Temperature Controlled Solder ing Irons for electronic and e'ec trical applications - especially field maintenance and repair.
- Temperature range 200° to 450° C. Analogue proportional control $\pm 1 \%$ Max. temperature achieved within 60 seconds.
- Antex M-12W: CS-17W; and XS -25W. Available in 240 or 24 volt.
- Tools specially designed for fine precision soldering. Ideal for all electronics craftsmen and hobbyists.
For full information on the comprehensive Antex range of soldering irons, power supply units and accessories, please clip the coupon

Electronics
Electro-
Antex (Electronics) Limited, 2 Wessoridge Industrial Estate, lavistock,
Devon PL19 8DE Tel: 0822613565 Fax: 0822 617598. Telex: 9312110595 AE G Please send me full details of the mill range of Antex soldering. products.

Name
Address

ATs get chip set boost

Intel has announced two chip sets based on the 386 SX and 386 DX microprocessors for use on IBM ATs and compatibles. They are claimed to be the only 16bit two or three component solution for the entire price and performance range of 32bit 386 microprocessor architecture.

They are called 82340 SX and DX and Young Sohn, an Intel marketing manager based in Santa Clara, said it "is the most flexible and cost effective solution for 386 PC AT systems available today, from entry level to high-performance computers."

The set brings down the total logic and TTL chip count for AT compatible computer systems to less than six components, compared to sometimes more than 25 components in comparable systems.

Samples are available now and production quantities are expected within three months.

- Sevenoaks based distributor Jermyn has announced ex-stock availability of Intel 80486 processors. They have previously been available to selected customers only.

Superchip can perform 200Mflops

Motorola and TRW have built a multimillion device superchip called CPUAX. It contains four million $0.5 \mu \mathrm{~m} \mathrm{c}$-mos devices and can perform 200 million floating-point operations a second.

Dr Thomas Zimmerman, a TRW director, said: "The CPUAX is the computational equivalent of some supercomputers that fill an entire room, require elaborate refrigeration systems and weigh several tons."

The CPUAX measures 2 . 1 in square and weighs 1.5 ounces. When used with a TRW-Motorola 36 K -device satellite chip that can test, monitor and configure the on-chip assets of the CPUAX, the CPUAX can repair itself.

Zimmerman explained: "The selfrepair abilities of the CPUAX make it
possible to work around the inevitable flaws that occur during fabrication. Also they enable the CPUAX to repair itself should any failures occur on the chip during operation."

It is intended to function as the central brain of an advanced digital signal processing system in various air, ground and space based systems.

- Motorola has announced an 88000based risc CPU that will power a highperformance multi-user system, from Norway-based Dolphin Server Technology. Motorola and Dolphin have a technology agreement which gives Dolphin access to the 88000 instruction set and gives Motorola access to Dolphin's processor technology.

BT has obscene headache

One in five telephone customers believe they get fairly or very bad value for money from British Telecom, according to a survey carried out by Oftel at the end of last year. Though bad, it is a slight improvement on the figures for 1988 . While the figure for very bad value for money stayed the same at 4 per cent there was an improvement from 18 to 16 per cent who rated it fairly bad.

The best figures, though, were on customer satisfaction. Those who were fairly or very dissatisfied dropped from 15 to 9 per cent.

One of the main problems is the number of obscene telephone calls made to women, which is estimated at being more than ten million a year and there is evidence of substantial numbers of other types of nuisance calls. Sir Bryan Carsberg, director

RSGB frets over proposed EMC law

A European Community directive and a DTI consultative document have been produced as a prelude to legislation on electromagnetic compatibility planned for mid-1991.

The directive tries to set standards for all marketed products covering radiation and immunity. Radiation refers to unwanted signals from equipment including toy trains, X-ray equipment, telephone exchanges and home computers. Immunity covers the ability of products to ignore the radiation from other devices.

The Radio Society of Great Britain is producing a response to the proposals and is seeking input from radio amateurs, short-wave listeners, amateur radio suppliers and associated bodies.

One of the RSGB's worries is that it could cost a company $£ 5000$ in testing before it could sell anything. Such a figure could be disastrous for small companies. Buyers of kits and secondhand equipment of all kind - not only amateur radio-could be badly hit, since it is proposed that this type of apparatus shall be covered by the legislation.

Flat year for industry

Little growth is expected in the electronics industry this year, but 1991 is looking good, according to a Dataquest survey commissioned by Semiconductor Equipment \& Materials International (SEMI).

The survey adds that worldwide semiconductor production is expected to double in the next four years from $\$ 60$ billion in 1990 to $\$ 120$ billion in 1994. To meet this, more than 100 new wafer fabrication facilities are planned for the next two years, half of them in North America.

Paul Davis, SEMI's European director, said: "To support the expected increase in production, capital spending will have to increase simultaneously." And he added that Europe looks a likely target for expansion by Japanese semiconductor makers.

Significantly, equipment suppliers are expecting a 7% growth this year compared with only 3% for semiconductor device sales. Davis said: "This is very good news for our member companies which produce capital equipment for the semiconductor industry."

EEDESIGNER III
 A CAD SYSTEM BY BETRONEX AB, SWEDEN.
 Fully PC compatible, EE Designer is the world's teading CAD/CAE system for PCB design.

... The new uf graded E E Designer III, version 2.2 has been improvec to offer even more features:

- Curved tracks.
- 96 different apetures for tracks, etc.
- Additional libraries.
- Simplified menu structure.
- Imprcved a atorouters.
- Largest PC compaticle database available.
- To find out more on EE Designer III simply circle the enquiry number belcw or call Betronex NOW!

Stay ahead with EE Designer.

ZBETRONEX

1 Wells Yard, High Street, Ware, Hertordshire SG12 9AS Tel: Ware 0920 469;31 Fax: 0920 467335

EE DESIGNER: SCHEMATIC CAPTURE, CIRCUTT SIMULATION, PCB LAYOUT, COMPONENT PLACEMENT, AUTO ROUTING, DESIGN RULE CHECKING, PHOTO/PEN PLOTMNG

Standard products and custom metalwork

- Standard products include a wide range of $19^{\prime \prime}$ rack mount cases, rack mount strips and blanking and ventilation panels
- Bespoke work dealt with quickly and efficiently
- All products manufactured and fabricated in-house
Contact (0734) 311030 for further details lan P Kinloch \& Company Limited, IPK House, 3 Darwin Close,
Reading, Berks RG2 0TB

KILLING FIELDS

The microwave health hazard

> The UK microwave exposure limits were originally determined by irradiating a body to the point where thermal tissue damage occurred, then backing off the power by a factor of ten. Our standards for safe exposure are still derived from this crude test. Meanwhile a number of associative studies have linked cancer and blindness to microwave exposure at power levels orders of magnitude lower. By Simon Best.

Epidemiological studies of RF/ MW exposure are far less in number than those of exposure to ELF power frequency fields, perhaps for obvious reasons. Far less of the general population are directly exposed to such fields, at least at levels that current safety guidelines would lead one to think might be harmful, although some can be exposed to high fields occupationally.

Thus, some of the earliest studies have been of individuals exposed through a military or similar situation. Between 1953 and 1977 the Russians irradiated the US Embassy in Moscow on a more or less continuous basis, but at levels so far below the US MW exposure safety guideline of $10 \mathrm{~mW} / \mathrm{cm}^{2}$ that the Americans could not believe they could be harmful.
A US Senate Report was finally produced on the irradiation ${ }^{1}$, in which it detailed the irradiation and health studies performed during and afterwards. For example, from August 1963 to May 1975 the frequency of the beam ranged from 2.56 to 4.1 GHz and the intensity remained at about $5 \mu \mathrm{~W} / \mathrm{cm}^{2}$
at the strongest point of the beam. Other beams appeared in due course, boosting the intensity at times to 18 $\mu \mathrm{W} / \mathrm{cm}^{2}$. The irradiation stopped altogether in January 1979 but reappeared briefly in 1983 and again in 1988, when a frequency in the $9-11 \mathrm{GHz}$ range was reported producing power levels of $0.01 \mu \mathrm{~W} / \mathrm{cm}^{2}$ inside the building.

Some of the health studies and results are difficult to evaluate and tended to be deemed inconclusive. ${ }^{2}$ One study of lymphocytes used 350 Moscow personnel, two-thirds of them male, and a group of some 1000 foreign service personnel resident in the US as controls. Although mean lymphocyte counts among Moscow personnel were 41% higher than the control group's, they were present equally among those personnel who had arrived afterwards. They showed a sharp and sustained drop-off after August 1977, when they reverted to the control group's levels. ${ }^{3}$

The most extensive epidemiological study of ex-Moscow Embassy personnel was completed in 1978 by Dr Abraham Lilienfeld at John Hopkins University's School of Hygiene and Public Health. ${ }^{4}$ It assessed the mortal-
ity and morbidity of all Moscow Embassy personnel and dependants from 1953 to 1976 and matched them with a control group of US personnel who had been stationed in other East European embassies, none of which had reported irradiation.

The analysis of the medical records of some 3100 Moscow personnel and 2336 dependants, 1468 of them children, yielded some provocative results. Although overall mortality favoured the Moscow group, females in the group showed a non-significant but higher than average death-rate from malignant neoplasms

However, Moscow males showed a definitely significant raised rate of protozoal intestinal diseases, benign neoplasms, and diseases of the nerves and peripheral ganglia. Moscow females had a significantly higher rate of protozoal intestinal disease also, as well as complications of pregnancy and childbirth.
As a group, Moscow personnel suffered significantly more eye problems, psoriasis and other skin conditions, as well as depression, irritability, loss of appetite and difficulty in concentrating. And in the children four diseases mumps, anaemic blood diseases, heart disease and respiratory infections occured in significantly higher numbers. ${ }^{4}$

Although the evidence of a health hazard was very strong, the US State Department has continued to deny a radiation effect or liability, though it did try to appease by re-grading the Moscow post to carry a 20% extra salary. Three US ambassadors who served during the period have died of cancer and some former staff are still filing claims against the US Government.

If the microwave irradiation did wholly or partly cause the increased incidence of disease observed, then it was doing so at levels way below the $10 \mathrm{~mW} / \mathrm{cm}^{2}$ safety guideline then (and still) in force, but at levels around the Russian standard at the time of 10 $\mu \mathrm{W} / \mathrm{cm}^{2}$.

US Navy personnel exposed to radar during the Korean War were studied by Robinette and colleagues ${ }^{5}$ and Silverman ${ }^{6}$ but no differences reaching significance were found between the high and low exposure groups for malignant neoplasms as the cause of hospitalization and/or death. But when the high-exposure group was divided into three sub-groups to provide a gradient of potential exposure, a trend did appear for increased number of malignant neoplasms in the sub-group
rated as most highly exposed.
Recently, Dr Stanislaw Szmigielski. of the Centre for Radiobiology and Radioprotection in Warsaw, Poland. internationally known for his work on RF/MW radiation effects on the immune system. has reported on a fiveyear retrospective study of Polish military personnel exposed to RF/MW radiation over the period 1971-80 and their incidence of cancer. Typical exposure levels were estimated as $4-8$ hours daily below $0.2 \mathrm{~mW} / \mathrm{cm}^{2}$ (the Polish "safety zone'), although some. defying the safety rules, reported brief exposures to levels up to $20 \mathrm{~mW} / \mathrm{cm}^{2}$. Szmigielski summarised his findings in his contribution to the magnum opus Modern Bioelectricity (a book of over 1000 pages, with 48 contributors on virtually every area of bio electro magnetics as follows:

* The risk of developing clinically detectable neoplastic disease was about three times higher for personnel exposed occupationally to MW/RF radiations. The highest risk appeared for malignancies originating from the haematolymphatic systems (morbidity about seven times higher). Other more frequent neoplasms were located in the alimentary tract and in skin (including melanomas).
* The highest risk factor of cancer morbidity related to occupational exposure to MW/RFs appeared for subjects at the age of $40-49$ who had a 5-15 year period of exposure.
* Morbidity rates of neoplasms in personnel exposed occupationally to MW/RFs showed strong correlation with the period of exposure
* Neoplasms of the same localization and/or type developed earlier (by about 10 years) in personnel exposed occupationally to MW/RFs than in those not working in the MW/RF environment. ${ }^{7}$

Referring to immunological effects, Szmigielski and his co-workers feel that research to date suggests that the immune system exhibits a bi-phasic' reaction to $\mathrm{RF} / \mathrm{MW}$ radiation, with initial exposure stimulating the whole system, followed by a gradual suppression of the whole immunity with increasing exposure and/or power
> ...Lester and Moore... reported an elevated risk of cancer close to (airport) radar installations. They observed that the highest cancer incidence tended to occur on leading terrain crests in the path of transmissions with the lowest occurring in the vallevs...

densities.

In a recent communication on his current prospective study of the same population from 1986-90. Szmigielski reports that an analysis of the data to the end of 1988 supports our earlier results from retrospective studies. although the differences between the exposed and non-exposed groups are somewhat smaller (although still highly statistically significant) than those found for the decade of 1971-1980 . ${ }^{8}$ Preliminary results apparently indicated a doubling of the incidence of all forms of cancer among those exposed to RF/MW radiation.

Studies of those occupationally exposed in a non-military situation have also reported health effects. Vagero and Olin, in a study of cancer in the Swedish electronics industry, found a number of elevated incidences: for example, the relative risk for nasopharyngeal cancers in the radio and TV industry was 3.7 ($\mathrm{Cl} 95 \% \quad 1.0-13.5$). ${ }^{9}$ Milham, in a follow-up of a previous finding, found that a sample of 2.485 amateur radio operators showed a sig. nificant excess of deaths due to acute myeloid leukemia, multiple myeloma and non-Hodgkin's lymphomas. "1"
Zaret has observed a particular type of posterior, subcapsular cataract

(PSC) in microwave-exposed personnel, first identified in 1964 while studying radar maintenance men for the US Air Force. ${ }^{11}$ Further studies ${ }^{12}$, including air traffic controllers ${ }^{13}$. led Zaret to describe a 'microwave cataract' which originates in the elastic membrane or capsule that surrounds the lens, as opposed to the other types of cataract (hereditary, metabolic and senile) that originate in the lens. According to Zaret, exposure to either thermal or non-thermal radiation can cause microwave cataracts, which can remain latent for months or years. Others have confirmed his findings, for example. Hollows and Douglas, who found a significant increase of PSCs in a sample of Australian radiolinemen versus controls. ${ }^{14}$
Studies such as the above led to the formation, in the States in 1976, of the Radar Victims Network, comprising a group (as many as 150 at its peak) of mainly ex-Forces personnel in Framington, Mass., which helped each other to obtain treatment and sue for damages for heath problems allegedly due to their employment. Out-of-court settlements were achieved, though the group is smaller and less active since the death of its founder, Joe Towne, in 1985.

Here, in Britain, considerable concern has been shown in the five deaths that have occurred at the Royal Signals Research Establishment at Malvern, all from brain tumours, giving an incidence rate 6.4 times the national average. ${ }^{15}$
The Ministry of Defence has not indicated what, if any, research it is doing on RF/MW irradiation; by contrast, Georgia Institute of Technology in the States is working with the US Air Force on a study of long-term pulsed MW irradiation of mice.

Another US occupational study has looked at the levels of exposure experienced by surgeons. Simulating a normal operation, Paz and his colleagues found that surgeons using electrosurgical units (ESUs), for cutting and sealing tissues, were being exposed to extremely high levels of RF radiation, especially around their eyes and foreheads which registered electric and magnetic fields as high as 9000000 V / m and $3.5 \mathrm{~A} / \mathrm{m}$ respectively, far about the current ANSI standard of $4000 \mathrm{~V} / \mathrm{m}$ and $0.0025 \mathrm{~A} / \mathrm{m}$ for frequencies between 30 and $200 \mathrm{MHz} .^{16}$ An ESU may be used up to 100 times depending on the operation performed.

Turning to public exposure to RF/ MW radiation, Lester and Moore.

> One study of lymphocytes used 350 personnel and a group of some 1000 controls . . . Mean lymphocyte counts were 41 per cent higher than among the control group . . .

again in the US, reported an elevated risk of cancer with residence close to radar installations. ${ }^{17}$ They mapped the geographical incidence of cancer mortality and morbidity between 1975-9 in Wichita, Kansas, against line-of-sight projections of radars from the local Mid-Continent Airport and McConnell Air Base. Cancer morbidity was found to be significantly related to the degree of radar exposure. They also observed that the highest cancer incidence tended to occur on leading terrain crests in the path of radar transmissions, with the lowest occuring in the valleys, shielded from the radar beams. They cited one residential building with 100 occupants, situated so that the upper levels were directly exposed to both beams, whose cancer morbidity rate was over six times that for a sample of six nursing homes in the city.

In the second study, the researchers analysed the cancer mortality rates from 1950 to 1969 in areas surrounding 92 US Air Force bases containing radar, $\left({ }^{18}\right)$ using as controls the nearest county within the State having the most similar population size but lacking an Air Force base. They found that the former had a significantly higher incidence of cancer mortality for the period in question, though they conceded that other factors, such as noise, may have contributed to this finding. Their results were criticised as being due to incorrectly assembled data ${ }^{19}$, but the authors showed that this was not the case and that re-analysis confirmed their original association. ${ }^{20}$

A further threat for those so irradi-
ated is that the various scanning systems for the radar beams will produce ELF modulation of the microwaves. Such modulation, using 2.45 GHz , has recently been shown to act as a cocarcinogen in cells also exposed to a chemical cancer promoter. ${ }^{21}$.

In a very recent report, Chinese researchers compared 1170 students and soldiers living near radio antennae and radar installations for a minimum of one year with 689 non-exposed controls of the same grade, age, sex and education level, using field measurements and psychological and physiological tests. ${ }^{22}$ Visual reaction time was delayed in the groups exposed to power densities from $10-42 \mu \mathrm{~W} / \mathrm{cm}^{2}$, significantly so in the group of male soldiers exposed to $10-15 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The same groups also had significantly lower scores in the memory function tests, although the scores of the boys and girls in the low-intensity group (0 $4 \mu \mathrm{~W} / \mathrm{cm}^{2}$) were higher than those of their control groups. Phagocytosis (the ability of white blood cells to destroy bacteria, and thus a measure of immune function) was significantly impared in the highest exposure group (13-42 $\mu \mathrm{W} / \mathrm{cm}^{2}$) and significantly increased at the lowest exposure level. For those exposed to AM radio frequencies, phagocytosis tended to increase in those exposed to relatively low levels ($3-11 \mathrm{~V} / \mathrm{m}$), while decreasing in the highest exposed group (22-23 V/m).

The Chinese findings seem to support Szmigielski's conclusion that the immune system exhibits a bi-phasic response to RF/MW irradiation, initial very low exposure acting as a stimulus, with higher intensities suppressing immune function. This bi-phasic response may also explain the results of the memory tests. The Chinese observations indicate that the cut-off level for this difference in reaction occurs at around $10 \mu \mathrm{~W} / \mathrm{cm}^{2}$, the Russian MW exposure safety standard at the time of the irradiation of the US Embassy in Moscow and 1000 times below the current ANSI standard of $10 \mathrm{~mW} / \mathrm{cm}^{2}$.

The latter has been in the process of revision almost since its adoption in 1982. ${ }^{23}$ It is based on limiting the wholebody average specific absorption rate (SAR) to 0.4 W per kilogram of body weight for both public and occupational exposure. Reducing the maximum SAR to $0.04 \mathrm{~W} / \mathrm{kg}$ or below (equivalent to a power density of 100 $\mu \mathrm{W} / \mathrm{cm}^{2}$ or lower) has been suggested and debate continues over the evidence for thermal and non-thermal effects and their implications for introducing
different standards for different frequency bands.

In the UK, the NRPB published its exposure guidance for frequencies up to 300 GHz in May 1989^{24}, although this is due for revision in 1990 according to its author, Dr John Dennis. For frequencies above 30 MHz the NRPB recommends $1,2.5 \times \mathrm{f}(\mathrm{GHz})$, and 5 $\mathrm{mW} / \mathrm{cm}^{2}$ for the ranges $30-400 \mathrm{MHz}$, $0.4-2.0 \mathrm{GHz}$, and $2-300 \mathrm{GHz}$, respectively. At its lowest the NRPB guide line is still 10 times above the $100 \mu \mathrm{~W} /$ cm^{2} level being considered by the ANSI revision subcommittee and approximately 100 times above the levels at which the above Chinese study observed significant differences in those chronically exposed to micro waves.

The Ministry of Defence also published its guide to the safe use of RF energy (from 10 kHz to 300 GHz) in 1989. ${ }^{25}$ While not attempting to set any numerical limits, the MoD document summarily dismisses non-thermal RF effects in three sentences, without any discussion of specific studies, and endorses the ANSI $10 \mathrm{~mW} / \mathrm{cm}^{2}$ standard without giving any indication of the debate and revision currently in progress. Thus, its grossly biassed presentation of the state of research findings and debate conceals more than it reveals and gives the impression that there is no need even to research the health status for Forces personnel exposed to RF/MW radiation.

It is to be hoped that when the NRPB revises its Guidance this year a more positive and informed attitude prevails and that due consideration is given not only to all the accumulated evidence, epidemiological, animal and cellular, but also to the growing RF
eferences
1 US Senate. Microwave Irradiation of the US Embassy in Moscow. US Committec on Commerce, Science and Transportation, Washington, DC. . 1979
2. Smith C. Best S. Electromagnetic Man: heath and hazard in the electrical environment, London: Dent \& Sons, 1989. in the electincal
3ee Chapter 10.
3. US Senate, op. cit
3. US Senate, op. cit.
4. Lilienfeld AM et al.
4. Lilienfeld AM et al. Foreign Service Health Status Study. Dept of Epideniology. The John Hopkins University, Ballimore, 1978.
5. Robinette CD et al. Effects upon health of occupational exposure 10 microwave radiation (radar), AM J Epid. 1980:1 12: 39-53.
6. Silverman C. Epidemiologic studies of microwave effects. Proc. IEEE, 1980:68: 78-84.
7. Szmigielski S et al. Immunologic and cancer-related aspects of exposure to low-level microwave and radiofrequency fields. In: Marino A (ed), Modern Bioelectricity, New York: Marcel Dekker, pp 861-925. (Cost: $£ 150$)
8. Polish Epi study continues to show RF/MW cancer link Microwave News (USA). 1989, July/Augusi, p14.
Microwave News (USA). 1989, July/August, pl4.
9. Vageor D, Olin, R, Incidence of cancer in the electronics industry: using the new Swedish Cancer Environment Registry as a screening instrument Br J Ind. Med. 1983;40:188-92.
10. Mitham S. Increased mortality in amateur radio operators due to lymphatic and hematopoictic malignancies. Am J Epid. 1988:127:50-4.
11. Zaret M. An experimental study of the cataractogenic effects of microwave radiation, US Air Force. Technical Document Report No. RADC-TDR-64-273, 1964.
12. Zaret M. Ophthalmic hazards of microwave and laser environments. Proc. Acro. Med. Assoc. Ann. Meeting. 1964:29.33
13. Zaret M, Snyder W. Cataracts and avionic radiations. Br J

Ophthalm. 1677:61:3*0-4. (See also Zaret M. Electromagnetic energy and catarack. In: Marino A (see ref. 7). pp. 839-59.) 14. Hollows. F, Douglas 3. Microwave cataract in radioline men and controls. Lancet, 1004:ii;406-7.
15. Exposure levels under scrutiny. Electronics Times, 1989 Sept. 14, p. 19.
16. Paz J et al. Potential ocular damage from microwave exposure during electro-surgery: dosimetric survey. J Occ Med. 1987;29:580:3
17. Lester J, Moore D. Cancer incidence and electromagnetic radiation. J Bioclearicity. 1982;1:59-76.
18. Lester J, Moore D. Cancer mortality and air force bases. J Binelectricity, 1982; 1:77-82.
19. Polson P. Merrit J. Cancer morality and air force bases: a reevaluation. J Bioelectricity. 1985:4:121-7.
20. Lester J. Moure D. Reply to ${ }^{\circ}$ Cancer mortality and air force bases: a reevaluation'. J Bivelectricity. 1985:4:129-32
21. Balcer-Kubicek E, Harrison G. Search for neoplastic transformation in vilto following pulsed 2.45 GHz microwa ves. Paper presemed at the 1 th Annual Meeting of the Binelectromagneties Society. Tucson, AZ, June 1989
22. Chiang Het at. Health effects of environmental electromagnetic fields. J Bioelectricity, 1989:8:127-31.
23 ANSI, American national standards safety levels with respect to human exposure to radiofrequency electromagnetic fields. 300 kHz ta 100 GHz . IEEE. New York. NY 10017 ANS1 C95-1-1982.1982.
24. NRPB. Guidadce as to Restrictions on Exposures to Time Varying Electromagnetic Fields and the 1988 Recommendations of the International Non-lonizing Radiation Committee. Didcot, Oxon, Ma: 1989 (GSII. HMSO).
25. MoD. Guide tos the Practical Safety Aspects of the Use of Radiofrequency Energy. DEF STAN 05-7 \$/1. Jamuary 1489 Auailable free fram: MoD. Directorate of Standardization. Kentigern House, a5 Brown Street, Glasgow G28EX
and MW sources in the environment from radio and microwave communication systems, radar, cellular phone systems and increasing satellite TV 'footprints', and their complex possible interactions - that a large part of the population is now increasingly and chronically exposed to.

> Simon Best is a medical journalist specialising in the biological effects of electric fields and co-author of the book 'Electromagnetic Man' together with Dr Cyril Smith. Simon Best holds a degree in psychology.

MAKING ELECTRONICS C.A.D. AFFORDABLE

IINY-PG

Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?

- Have you access to an IBM PC/XT/AT or clone?

Would you like to be able to produce PCB layouts up to 17 " square?
With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range . 002 to .531"?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes?
That can be used for surface mount components?
With the ability to locate components and pads on grid or to .002" resolution?
With an optional auto via facility for multilayer boards?
With the ability to create and save your own symbols?
That can be used with either cursor keys or mouse?
That is as good at circuit diagrams as it is at PCB's?

- Which outputs to dot matrix printer, pen-plotter or photo-plotter (via bureaux)?
Where you can learn how to use it in around an hour?

SMITH CHART PROGRAM - 2 MATBU

CIRCUIT ANALYSIS BY COMPUTER ATIM MEB

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and $B B C B, B+$ and Master.

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.
Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES MICROSTRIP, STRIPLINE and WAVEGUIDES The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.
Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES
£130 ex VAT for PC/XT/AT etc. $\mathbf{£ 6 5 . 0 0}$ ex VAT for BBC B, B+ and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512. 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadboarding and thousands of pounds worth of equipment.

£195 ex VAT for PC/XT/AT etc. £130 ex VAT for BBC, B, B+ and Master

All major credit cards accepted
WRITE OR PHONE FOR FULL DETAILS:- REF WW

Harding Way, St Ives, Huntingdon Cambs, PE174WR Tel: St Ives (0480) 61778 (5 lines)
We provide full after-sales support with free telephone
'hotline help' service.
Software updates are free within 6 months of purchase date.

Observing short pulses at low PRF

While setting software time constants in a microprocessor-based system, it became apparent that low to mid-
priced oscilloscopes are useless for observing input-port enable pulses of $1 \mu \mathrm{~s}$ or less at a repetition of 30 Hz or

Low voltage switch

This switch for high-power applications has the advantages of a simple drive circuit, absence of simultaneous conduction, and a $\mathrm{V}_{\mathrm{ce}(\text { min })}$ of 0.9 V . It operates on 2.6 V .

Transistors Tr_{1} and Tr_{3} work as comparators, Tr_{2} and Tr_{4} as regulators and Tr_{5} and Tr_{6} as power switches. Transistors Tr_{1} and Tr_{3} are equivalent to Russian part numbers KT301, Tr_{2} and Tr_{3} as $\mathrm{KT} 363, \mathrm{Tr}_{5}$ as KT 817 , and Tr_{6} a KT814. It should be acceptable to use standard $p-n-p$ transistor equivalents.
Serge Khazanov
Leningrad

USSR

300 baud. This circuit, using a 4528 cmos dual-monostable IC, should help.

MV1 produces 1 ms pulses, while MV2 produces 5 ms pulses. As the 4528 is retriggerable, the Q output of MV2 stays high at an input pulse rate of 200 Hz or above. Below 200 Hz , the Q output of MV2 produces a 5 ms pulse waveform with a mark/space ratio that varies with decreasing frequency. This waveform is integrated by R_{4} and C_{2} to produce a varying $D C$, which is applied via D_{1} to auxiliary timing resistor R_{5}.

Above 200 Hz or 2000 baud, R_{5} is in paralle! with R_{6} and the output pulse from MV1 is $20 \mu \mathrm{~s}$. Between 200 and 60 Hz , the output of MV1 varies from $20 \mu \mathrm{~s}$ to 1 ms . Below 60 Hz , MV1 produces 1 ms pulses.

The unit can be powered by two miniature alkaline cells (3V) or three miniature button NiCd cells (3.6 V). The NiCd cells can be charged by applying 12 V DC to the input connector.
Darren Yates
French's Forest
New South wales

40W step-up DC/DC converter

This circuit lets a 12 V car battery supply equipment requiring a higher voltage. It is a switch-mode design with a fixed frequency of 35 kHz and uses a PWM method of providing regulation. Input is $10-14 \mathrm{~V}$; output from $\mathrm{V}_{\text {in }}$ to 24 V using resistors shown.

As the output voltage is adjusted, the maximum available output current will vary to keep the output power product about 40 W . Output regulation was about one per cent but there is a 35 kHz ripple at full load of 200 mV .

Most of the lost power is given up as heat in the mosfet switch and the output diode, so adequate heat sinking of the BUZ71 is needed.
Care should be taken to make sure the core for the inductor L 1 can cope with the switching currents and the required output without saturation. The current limit facilities of the SG3524 have not been used because of the variable output voltage. But if a fixed output voltage is needed this can be brought into use by sampling the current in the drain of the BUZ71 and comparing it to a reference voltage

L1 Core material Molypermalloy normal perm $\mu=125$
Arnold magnetics part no A-930157-2
$157 \mathrm{mH} / 1000$ turns $\operatorname{Dim} 26.9 \mathrm{~mm} 0 . \mathrm{D}$ $14.7-1.0$
using the current limit sense circuits on pins 4 and 5 of the IC.
Anton Forte

Nirad
Antrim
Northern Ireland

Electronic compass helps the blind

This circuit produces an audible output with a varying pitch depending on its orientation to the earth's magnetic field. The accuracy is not high but it can be used as a hand-held compass by blind people. There are already commercially available compasses for the blind based on the traditional sus-
pended needle. This though is unsuitable if the sense of touch is impaired.

The heart of the device is the UGN3501 M Hall effect sensor IC_{1} which has a monolithic Hall cell and a linear differential amplifier with differential emitter follower outputs. Typical sensitivity is $1.4 \mathrm{mV} /$ gauss. It is unsuitable

for measuring small fields such as the earth's since the drift is comparable with the signal. To overcome this, a flux concentrator in the form of a 6 cm by 9 mm ferrite rod is glued to each face of the IC.

The two outputs are fed into a differential amplifier IC_{2}. The output voltage for zero input can be adjusted by $R_{3} . C_{1}$ inhibits parasitic oscillations. The output of IC_{2} is fed into a voltage-to-frequency converter based on the 555 timer IC_{3}. Its output drives the transistor in the grounded emitter configuration with R_{12} used as a current limiting resistor. An audible note is produced from the loudspeaker. The circuit draws a total current of about 50 mA .
R_{3} acts as a pitch control giving an output of about 1 kHz . In the circuit shown the pitch varies by an octave as the orientation is changed from north to south.
W. Gough

Department of Physics
University of Wales
Cardiff

SAUNA"

THERMAL ANALYSIS MADE EASY

Sauna is exceptionally easy to use. To create a sophisticated 3D thermal model, you simply choose a model type (heat sink, source, enclosure, board etc), enter dimensions and select the necessary materials from Sauna's menus. All the other details are handled by Sauna. Within just minutes, you will have a comprehensive, accurate model for an entire electronic enclosure, circuit board or heat sink. Seconds later, Sauna will have predicted a complete set of temperatures. There is no other package available which can so quickly model and analyse a complete electronic unit.

Moving heat sources, repositioning circuit boards, changing copper thickness, changing from ABS to steel for the enclosure, painting it, plating it, adding a fan - you can experiment with all these variables with the results appearing in seconds. A colour display will show you a heat map in different colours while you use your judgement to decide on the best arrangements. Then you can put it on record with a report.

THE COSTS. The biggest cost with most design software is your learning time. SAUNA almost does not need its tutorial-style manual and it does not need a heat transfer expert - it holds the expertise. So after a couple of hours of tutorial, you will be using it for real. Take off the savings in time, savings in quality problems, the saving of a heat transfer expert and add improved reliability - the cost of $£ 995+$ VAT is almost incidental!

In keeping with Those Engineer's circuit simulation software, SAUNA runs on PC compatible hardware and is supported by engineers who use it. Please contact us for all your design software requirements analogue \& digital simulation, schematics and PCB layout and control system simulation.

Sauna's enclosure model lets you handle a difficult combination of convection, conduction and radiation. $3 D$ thermal model in just minutes.

CIRCLENO. 115 ON REPLYCARIJ

(10) HITACHI OSCILLOSCOPES

from $\mathfrak{£ 3 3 0}$

The highest quality. The Hitachi name is synonomous with quality and reliability and is backed by an extended warranty on every model.
The keenest pricing. With prices starting from $£ 330+$ VAT for a 20 MHz dual trace model, the price-performance ratio can not be bettered.

The largest range. Totalling 26 models the Hitachi range covers every bandwidth from 20 MHz to 200 MHz plus DSOs to $200 \mathrm{MS} / \mathrm{s}$.

And immediate delivery. We can supply any model from stock. Our sales engineers can arrange an on-site demonstration. Ask for full details of the Hitachi range
Thurlby
CIRCIE NO. 129 on reply card
Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: \{0480\} 412451

DSOs - a low cost alternative from Thurlby

If you already have an oscilloscope and are looking for a high performance DSO, look at the DSA511 and DSA524 digital storage adaptors. Both offer exceptional performance and versatility at very low cost - from $£ 445$.

- $10 \mathrm{MS} / \mathrm{s}$ or $20 \mathrm{MS} / \mathrm{s}$ sample rate, 1 K or 4 K stores
- 20 MHz or 35 MHz storage bandwidth
- Dual Channels, 2 mV per division sensitivity
- Full digital control and waveform transfer
- Multiple save memories, waveform processing,

There's much more to say, so send for the full data

Thurlby

KESTREL dELECTRONIC COMPONENTS LTD.

* All items guaranteed to manufacturers spec.
* Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
28530	2.00	1.00	2732A	2.20	1.85
Z8536A	2.00	1.00	2764A-25	2.20	1.65
Z80B CPU	1.20	0.65	27C64-25	2.20	1.50
Z80B CTC	1.20	0.65	27128A-25	2.40	1.75
Z80B (CMOS) CPU	1.40	1.00	27256-25	2.60	1.70
Z80B (CMOS) CTC	1.40	1.00	27-256-25	2.60	1.75
74LS00	0.13	0.07	27C512-25	4.80	3.30
74LS125	0.14	0.11	6116LP-150	1.20	1.00
74LS138	0.14	0.09	6264LP-150	2.60	1.95
74LS175	0.14	0.11	8251A	1.30	0.95
74LS240	0.28	0.22	8156D-2	1.60	1.00
74 HCO 2	0.12	0.08	8255-5	1.30	1.05
$74 \mathrm{HC147}$	0.20	0.10	82 C 55	1.30	1.00
74 HC 373	0.22	0.18	8085A	1.00	0.70
74HCT00	0.12	0.07	8259AC-2	1.00	0.60
74 HCT 153	0.27	0.22	6845P	1.70	1.25
74HCT373	0.22	0.15	6850P	1.00	0.60
74HCT574	0.22	0.20	8250AN	4.60	3.00
1.8432MHz Crystal	0.82	0.68	Z80A CPU	0.80	0.65
4 meg crystal	0.60	0.27	Z80A CTC	0.80	0.45
6 meg crystal	0.60	0.27	Z80A P10	0.80	0.50

All memory prices are fluctuating daily, please phone to confirm prices.
178 Brighton Road, Purley, Surrey CR2 4HA
Tel: 01-668 7522. Fax: 01-6684190

SIGNAL ANALYSIS on a PC

A plug-in card and software from Radioplan give your PC AT/XT these capabilities:

- Oscilloscope
- FFT Spectrum Analysis up to 4096 points
- Digital recording up to 500 kBytes
- Sampling rates up to 500 kHz
- Waterfall display of Spectrum frames
- Spectrograph with colour-coded amplitude

Applications include:

- Speech 8 acoustic signal analysis
- Radio signal modulation analysis
- Vibration analysis
- Impulse testing

Send for your brochure or demonstration disk to:

Radioplan Limited

Unit 14, Cheltenham Trade Park, Arle Road, Cheltenham Gloucestershire GL50 8LZ
Telephone (0242) 224304; Telefax (0242) 227154;
Telex: 437244 CMINTL

TTL compatible optical fibre data link

Off-the-shelf components can be used to make this $100 \mathrm{bit} / \mathrm{s}$ to $40 \mathrm{Mbit} / \mathrm{s}$ TTLcompatible optical fibre data link much cheaper than commercially available products.
The optical transmitter is based on the 74 F 38 quad open collector Nand buffer. Gate 1 reshapes and buffers the TTL data input and gates 2 and 3 connected in parallel drive the led. The

parallel design reduces each gate's output current by half. It also gives a faster led turn-off time because it halves the impedance that the led junction capacitor has to discharge through.
Using a low power led, the launched optical power in a 200$) \mu \mathrm{m}$ PCS stepindex fibre was about $60 \mu \mathrm{~W}$, giving about -12 dBm . This was with a pullup resistor of 563 and an led pumping current of 60 mA . Optical rise and fall times were less than fis.

The optical receiver front end is made using a pin diode detector and a differential I/O video amplifier NE592 with an adjustable differential voltage gain from 0 to 4() . The pin-compatible MC1733 amp can also be used.

The photocurrent from the incident light on the pin diode flows in the $200 \Omega 2$ resistor, generating a voltage at the amplifier input which is amplified with a gain of $1(0)$. Photodiode responsiveness is $0.5 \mathrm{~A} / \mathrm{W}$ giving an overall optical power to voltage conversion ratio of $5500 \mathrm{~V} / \mathrm{W}$ single ended.

Using the transmitter, the measured rise and fall times at the video amplifier output were 11.5 ns , indicating a bandwidth of 30 MHz and allowing digital transmission up to $40 \mathrm{Mbit} / \mathrm{s}$. The other input of the video amp is connected

(a)

(b)
through a $220 \Omega 2$ resistor, bypassed by a $47 \mu \mathrm{~F}$ capacitor to ground to balance the amplifier input bias currents and voltages.

The differential output of the receiver is AC coupled to an LM360 comparator via the $1 \mu \mathrm{~F}-10 \mathrm{k} \Omega$ capacitorresistor combination, allowing for a minimum bit rate operation of $40 \mathrm{bit} / \mathrm{s}$. The use of a $0.1 \mu \mathrm{~F}$ disc ceramic capacitor across the $1 \mu \mathrm{~F}$ tantalums stabilizes the high-frequency operation. The comparator is driven differentially to

LC oscillator

Maintaining a wide tuning range in an LC oscillator needs some controi to stop the output clipping. This circuit has no series capacitance but the approximate 30 pF input capacitance of the emitter follower increases minimum capacitance.
With 100 pF coupling the tuned circuit to the emitter follower, the effective tuning ratio is about $1: \nmid$ rather than the theoretical $1: 7$. Reducing the coupling capacitor to 22 pF increases the ratio to $1: 5$.
The circuit works from 2 to 10 MHz with essentially constant amplitude. The amplitude does, though, drop slighlly at the end of the range. Replacing the first transistor by a decent RF device would improve the tuning range further.
Frantisek Michele
Brno
Czechoslovakia
reduce the effect of common-mode noise and its differential output provides the TTL data and data signals.

Successful operation through 1 km of optical fibre ($200 \mu \mathrm{~m}$ PCS) has been demonstrated at $40 \mathrm{Mbit} / \mathrm{s}$ giving a better than 10^{-4} bit error rate.
Z. Ghassemlooy

City Polytechnic
Sheffield; and
I. Darwazeh

UMIST
Manchester

Programmable timer

This 0 to 10 min timer circuit was devised to control exposure times in a printed circuit process and its main advantage is that the time can be preset and, by pressing two switches, reentered and started.
The tens of seconds digit will count from 0 to 5 using a 74157 data selector which either loads in the BCD switch value at pre-set or when a count is started. A fixed value of 6 is loaded at a count of 9 by decoding the outputs of the 74192 presettable up/down counter and loading the value 6 using Pin 11 . The minutes and seconds count 0 through 9 and are only pre-set for start purposes.

Diodes detect zero count and $\mathrm{IC}_{\text {Ic }}$ prevents further clocking down. To
over-ride this zero count on starting a new count, a 74123 monostable pulls briefly the reset line high. This is triggered from the start pulse generated from the start button. When operating the pre-set switch this pulse lets the counters be pre-set and the clock gate enabled. The other half of the 74123 generates a buzzer enable signal to indicate timeout.

A simple toggle using two NAND gates is used for pre-set and start and the NOR gate allows either pre-set or fixed values to be loaded in the tens of seconds counter.
C.C. Clarke

Kenilworth
Warwickshire

Don't waste ideas

We prefer circuit ideas contributions with neat drawings and widely-spaced typescripts but we would rather have scribbles on the back of an envelope than let good ideas be wasted.

We pay for all published circuit ideas. You can expect a minimum of $£ 15$, increasing to $£ 40$ for the best ones.

A FREE IQ. FOR AN IND...

GET SHARP

Earn the chance to win a Sharp Personal Organiser in our Prize draw when you introduce a new reader to Electronics World.

Add your name and address to the coupon, then invite colleagues to complete it by taking out a subscription to Electronics World. If we receive their subscription before 3cth March 1990 they will qualify for over 25\% discount off the normal price:

Uk $£ 22$ for a year. Overseas $£ 26.00$ for a year

As soon as we've received their subscription, your card will be entered in our prize draw.

Draw Rules

The prize in the draw must be won The winning name will be selected at random out of a box by the Publisher of Electronics World.
2. The closing date for entries is 30 th March 1990 and the draw will be conducted on 15 th April 1990
3. We reserve the right to publish the winner s name
4. Employees of Reed Business Publishing Group or any of its associated companies are ineligible, as are members of their immediate families and all persons under the age of 18 5. The draw and prize allocation will be witnessed independently by a Commissioner of Oaths No correspondence will be entered into concerning the result of the draw and no liability can be accepted for entries lost or rendered unrecognisable in the post.

Please enter your name and address

 here ane ask your colleague to complete the res?NAME

ADDRESS \qquad
\square

POSTCODE

Please send this coupon Freepost Please send this coupon Freepost
to lain NicGrath, Electronic World to lain NcGrath, Electronic World

+ Wireless World, FREEPOST. CN + Wireless World, FREEPOST
2297 Room H316, Quadrant 2297 Room H316, Quadrant
House, The Quadrant. Sutton House. The Quad
Surrey SM 2 5BR.
lacceot your invitation to crime for only per ye subscribe for only per
Please send Electronics World + Please send Electronics world +
Wireless World every month to my Wireless World every

NAME

JOB TITLE
COMPANY
ADDRESS \qquad

POSTCODE

\square Please invoice me/my Company
\square enclose payment for ! ! by
cheque/money order. made payable to
REED BUSINESS PUBLISHING GROUP
\square Please charge my Accesss/isal
American Express Card/Diners Cut

EXPIRY DATE
SIGNATURE

RIDING THE SOLAR STORM

Solar magnetic storms are the precursor of auroral ionization and deeply affect radio propagation. Although severe storms can induce power surges which have enough energy to knock out circuit breakers, we still have gaps in our knowledge about their origins and behaviour. Anthony Hopwood looks at the development of simple equipment which will measure the relative intensity of magnetic storms precisely.

Asensitive compass (magnetometer) will display the normal diurnal magnetic variation as a very small shift around zero, peaking to the west about 1300 UT , and to the east about 0700).

Unfortunately sensitive magnetometers do not tolerate normal domestic activity and react alarmingly to any nearby ferrous movement or domestic electrical activity.

A less pernickety detector of the magnetic storm triggering an aurora is an earth-current monitor. The variation of current in long wires earthed at both ends was noted as early as 1848 when Barlow presented a paper to the Royal Society on spontaneous current
flow in the early earth-return telegraph lines. At times the current flowing between the earth plates along the telegraph line was strong enough to work the system without a battery!
Barlow's original observations were enlarged by the Rev. Lloyd who carried out a detailed analysis of the diurnal and sporadic variations of current in telegraph lines between Rugby and Derby and Derby to Birmingham.
His conclusions were published in the Proceedings of the Royal Irish Academy in 1861-2. In them he notes the correspondence between line current disturbances and deviations of the magnetic compass at the Dublin Observatory.
He also mentions that the French

False colour 30 nm wavelength ultrawolet image of the solar disc showing a tuge solar prominence as recorded by Skylab in 1973. Courtesy NASA/ Science Photo Library.

Fhysicist De la Rive "ascribes the current variations to a direct electrical action emanating from the sun" - a typothesis which he attempts to cemolish in his own work. To date I rave not yet pinpointed De la Rive's criginal reference which may well be the earliest intimation of what we now know to be the true origin of magnetic storm phenomena recorded over 120 years ago.

Updated monitor

To measure accurately earth currents, the whole system must be isolated from the local mains earth, otherwise leakage, transients and voltage drops from local domestic and industrial consumers will obscure the relatively small long period natural changes. It is possible to use a fet input DC opamp system running off batteries, carefully isolated from the mains, which will not introduce spurious mains borne signals. I ried another way
A sensitive galvanometer will detect -he effect without amplification. I used 310 mA FSD recording microammeter as a totally non-electronic earth current ecording system. This, like the Victo--ian telegraph systegns is totally floatng and isolateghron the local mains.
Text booksent est that the theoretizarearth current PD is at least 1 voltsilometer on a NS axis. An activity Egraph is strown in Fig. 1 (by R. Saunlers). In fact using 6×2 in copper foil electrodes buried on an EW and NS axis some 30 m apart, currents of 1.5 and $4 \mu \mathrm{~A}$ respectively were recorded between the pairs of plates once the chemical battery effects had been exhausted by shunting each couple with a permanent $2 \mathrm{k} \Omega$ resistor
The diurnal variation was very slight, being less than $0.1 \mu \mathrm{~A}$ on the NS axis. There was one surprise - persistent long period wavetrains sometimes appeared on both input channels and to a lesser extent on the reference mechanical zero channel - they turned out to be the long secondary waves from distant earthquakes, recorded electrically and confirmed mechanically thanks to the inherent seismic sensitivity of the 6in long printing pointer on the galvo!
The plates did indicate magnetic storms too - when the recording was checked against RSGB reported auror-
al events - but at such a low sensitivity that the record was not very useful.

The problem was insufficient distance between the plates which were restricted to the boundaries of my garden.

Not wishing to forgo the simplicity and reliability of the recording galvo I decided to tap an unorthodox but accessible distant earth for the NS signal axis at the Upton-on-Severn telephone exchange - so I wrote to BT Engineering at Worcester . . .

They readily consented when they learned that I only wanted a few BT microamperes from the earth return line, and that there would be no mains earth link.

A line was strung from the junction box on the house gable to the lab, and a $22 \mathrm{k} \Omega$ resistor was fitted in the box to set the earth current at about $3 \mu \mathrm{~A}$. The original earth plates were then linked together to make a distributed local earth to complete the circuit via the recorder.

The first magnetic storm logged by the system started about 1300BST on 20 October 1989 when the earth currents started to carry an intermittent wave of $15 / 20$ minute period, and the magnetometer showed a slight deviation.

At 2000 a large earth current transient occurred (Fig. 2) accompanied by an initial westward swing of the magnetometer followed by a rapid excursion to the East.

A check on the short wave showed an HF fadeout extending down to 14 MHz .

The night-time earth currents remained disturbed with an easterly deviation on the magnetometer of 1.5 divisions (6 mm). Cloud prevented any visual auroral observation.

Next morning HF propagation remained poor with normally audible transatlantic stations blacked out.

At 0830 BST, the magnetometer and earth current recorder showed increased activity, with vigorous current and magnetometer swings reaching a maximum Eastward deviation of 2.5 divisions (10 mm) at 1100 .

Instability continued all day, with a further sudden large magnetometer and current excursion at 1915. (Fig. 3).
Still being under cloud, I decided to check for radio auroral activity. My own standard 'test' for this is the BBC World Service transmitter on the 49 m band which comes in at $S 9$ on the meter. During auroral conditions, the signal stays at S 9 but acquires rapid auroral echo and flutter to such an

Fig.1. Activity graph of earth current levels with latitude.

Fig.2. Evidence of the magnetosphere rebounding after a solar shock?

Fig.3. A subsequent transient was recorded with regular period on following days.
extent as to be unintelligible! This effect is due to the multiple additional propagation paths caused by auroral ionisation which play ducks and drakes with the signal on its short journey to my aerial . . . The magnetometer and earth currents remained disturbed until 0100.

Transient excitement

Next day there was still a slight 2.5 mm . Eastward 'hangover' on the magnetometer (which decays over several days after any magnetic storm). My test for the 'end' of the storm is when the magnetometer returns to zero, and WWV from Colorado can be heard
during the day on 20 MHz .
Two features of the earth current recording which excited my curiosity were the large transients at 2000 BST on 20.10.89 and 1915 on 21.10.89. The spacing seemed oddly coincident so a watch was kept on the earth current recording around 1830 on 22.10.89. This also showed a smaller but distinct isolated transient, with an even weaker but still distinct event around 1745 on 23.10.89.

A check back on the week's recording before the storm showed no earlier similar events, so what mechanısm caused them?

It was time to consult an astronomer. I asked Michael Guest FRAS if the moon might have blocked the particle stream from the sun at those times? 'Unlikely' he said 'it was nearly at right angles to the Sun - Earth axis and it has no magnetic field'. The consistent 23.3 hour interval between successive transients certainly suggested a cyclic origin -but how?

The prime suspect was the moon, but this seemed even less likely when tables showed the lunar/terrestrial period to deviate more than two hours every 24 from the observed transient period.

The precession of the earth current transient from true rotation period is more likely to be due to the compression and recovery of the sun-facing magnetosphere and its internal shock wave structure in response to the incoming solar emissions. In that case the transient time may provide a rough indicator of the strength and velocity of the solar blast wave from a flare.

In any event it seems likely that any magnetospheric shock or standing wave effect that is big enough to induce surface earth current transients during a magnetic storm will have already been regularly observed by orbiting spacecraft, so we may not have to wait long for a full explanation of this intriguing observation.

REFERHACES:

BARLOW. "On the Spontaneous Electrical Currents owserved in the Wires of the Electric Telegraph" paper to Royal Society. 1848.
Rev. H. L.LOYD DD. "On Farth Currents, and their Connexion with the Phenomena of Terrestrial Magnetism." Paper to Royal Irish Academy Nov 111861. Rev. H. LILOYD DD. "On the probable causes of Farth Currents" Paper to Royal Irish Academy June 231862.

MURRAY DRIVER. Dynamics of the Magnetospheric Shock Solar Blast Wave Interaction. Space Research VIII. COSPAR I.ONDON 1967.
DAVID BRUCE NEWMAN. Space Vehicle Electronics. pp. 67. D. Van Nost rand 1964.
R. SAUNDERS. "Creomagnetic and Geoelectric Activity as a Function of Magnetic Latitude." ARS Journal October 196I.

$$
\begin{aligned}
& \text { may ravan } \\
& \text { maspult:... }
\end{aligned}
$$

The most powertul microprocessor in the world using concurrent processing.

State of the art technology!
With major computer companies "designing-in" the Transputer, it is imperative that todays technology does not remain a mystery.

In short, the Transputer Training System gives you a unique low-cost method of obtaining practical experience - fast!

- Saves your time

Unpack, plug in and start learning. Everything you need including self teach manuals in one package

- Saves your money

The complete system costs just £995.00 + VAT and uses any IBM Compatible PC with 640 K RAM and hard disk as the host computer.

Now with $1 / 2$ price course option
Attend our special 3 day course for just $£ 200$ extra if order with the system. Normal price of course is $£ 400$

The unique Transputer Training System has been designed specifically for education and is therefore ideal for use in colleges and universities. The excellent self-teach manuals, included with the package, mean that it can also be used by engineers to rapidly evaluate the transputer and utilise its amazing power in real time applications.

The system is supflied with everything you need including

- Imerface card - takes a 'short slot' in the PC and provides link in/out and control lines.
- Cuble - links tre interoce card to the Transputer Module
- Transputer Module - complete T414 based subsystem, supplied in its cwn sturdy case.
- Power supply - ndependant power to transputer if required
- Development S.Jtware - folding editor, OCCAM compiler, downloader, terminal e nulator and utilities, hosted on the PC
- Example programs - no less than 28 fully worked examples.
- On Screen Tutorials - learn how to use the system 'כn-screen'
- Hardware Manual - flll circuit diagrams, timing diagrams a a circuit description;
- TDS User Guide - seli contained tutorial guide to using the development software.
- TDS User Manual - the reference manual for the development software.
- Introduction to ОССАМ - a complete self-teach course in OCCAM.
- OCCAM Progromming Manual - the definitive guide to CCCAM
- T414 Engineering Data - full specifications for the Transputer.
- C012 Engineering Data - full specifications for the Link Adapter.
The Transputer Module houses a 15 MHz T 414 with 256 K RAM and is external to the PC, so that the hardware is fully accessable. The module includes a wealth of test points, 14 status LEDs, 16 I/C lines, EVENT input, independant power supply, prototyping area and four 15 way D connectors, which allow access to the 10 M bits/sec links and control signals.

Full hardware and sottware support is provided for multi-fransputer applications. Simply plug additional Transputer Modules into the spare link connectors using the cables supplied. In this woy networks of any configuration using any number of transputers may be realised! Each module can run one or more concurrent processes and has access to its own local $1 / 4 \mathrm{Mb}$ RAM and I/O system.

The I/O connector links directly to our Applications Board, which enables the Transputer to control DC motor speed, temperature, analog input/output, and much more!

CIRCIE NO. 118 on reply card

FLIGHT ELECTRONICS LTD.

Flight House, Ascupart St, Southampton, SO1 ILU. Telex: 477389 FLIGHT G Fax: 0703330039

Call 0703227721 today
for a free full colour catalogue.

John Martin looks at an add-in board which can turn a PC into a four channel $61 / 2$ digit voltmeter

Software which is a joy to use completes the icing on the cake. The cake? An evaluation board which turns a standard PC into a high resolution voltmeter. The kit comprises the AD1175K 22bit A/D converter module mounted on the AC5005 evaluation mother board which plugs directly in the backplane of an IBM PC/XT/AT or compatible

The $51 / 4$ in disk contains a colourful menu-driven program which exercises the functions of the converter. It lets the user view the voltages on the analogue input ports and change some of the system's configurations like gain and offset. Any changes to the configuration can be stored in the internal non-volatile RAM.

The disc also contains: the same program in Basic; the Basic program listing; a simpler Basic program to do conversions; and a help-screen file for use with the executable programs. A screen-shot of the main menu of the program is in Fig. 1.

The user guide is well written and presented, containing absolutely everything that a user could wish to know about the internal and external operation of the converter and its evaluation board including circuit diagrams and board layout. Clear explanations are
given for setting the board's base address and for selecting 50 or 60 Hz mains frequency.
The program's functions and menus are well described as are the connections to and from the board and the commands that can be used. In fact the documentation told me things about my PC that are not covered in its own user manual! For instance I did not know that the IBM I/O address map contains a reserved area for prototype boards starting at address 300 hex . Although I did not need this information, as the AC5005 comes with a default address of 300 hex preselected, t's still nice to know.
The converter is shipped separately from the mother board and needs to be plugged-in. This is simple enough but antistatic handling precautions should be observed. As mentioned, the base address of the board is factory set to 300hex but can be altered using the DIP switches on the board. Once installed, this setting can be changed using the supplied software.
The jumper link which selects 50 or 60 Hz was factory set to 60 Hz and so was changed to 50 Hz . This is necessary

The converter is a high accuracy, autozeroing 22 bit module using a mutlslope integration technique to provide 16 conversions a second, or 20 a second with a 60 Hz mains supply. It has a high impedance differential input with a nominal range of $\pm 5 \mathrm{~V}$. The digital inputs and outputs are LSTTL compatible for direct interfacing with a microprocessor bus. Its power requirements are +5 and $\pm 15 \mathrm{~V}$.
The mother board accepts the AD1175K module which simply plugs into the board. It contains necessary address decoding logic. a four-channel analogue input multiplexer, a 5 to $\pm 15 \mathrm{~V}$ converter and links and switches to select the base address of the unit and whether a 50 or 60 Hz mains supply is used. The board fits easily into an expansion slot of an IBM-compatible PC and provides the user with two 15 -pin D-type connectors.
The male connector is for the analogue inputs but also provides access to the $\pm 15 \mathrm{~V}$ supplies and the internally generated reference voltage of +6.95 V . The female connector provides an 8 bit $1 / 0$ port with flags for use in interfacing with external equipment for control applications and so on. Conversion may also be triggered using a pin on this connector.

Fig. 1. Main menu and selection of menu screens associated with the evaluation boara. The software includes a Basic source code listing for customisation to individual specifications. There is also a help screen file for use with .EXE code, and a conversion program.
to ensure maximum supply-frequency rejection by the converter. The board fitted easily into the expansion slot of an Amstrad PCl640, leaving the Dtype user connectors readily accessible at the side of the computer. Unfortunately, no mating connectors were supplied but they are common enough.

For testing, analogue channel \#1 was connected to a variable power supply with a nominal output voltage of -4 V ; channel \#2 was wired shortcircuit and earthed; channel \#3 was comnected to an alkaline cell of nominal voltage 1.5 V ; and channel \#4 was also wired as short-circuit and earthed. The evaluation program "AC5005.EXE" was run with the simple command "AC5005" and the "Work with analog port" option selected from the main menu. The results can be seen in the "messages" box in the screen-shot of the analogue menu in Fig. 2.

Inputs \#2 and \#4 should have been 0 V but showed varying readings from 0 V to as much as $+7 \mu \mathrm{~V}$ shortly after switch-on, reducing to a maximum of $+5 \mu \mathrm{~V}$ after a 45 min warm-up period

Similar fluctuations occurred in the readings of channels \#1 and \#3. This noise is probably due to the electrically noisy environment inside the computer and the connections between the D type connectors and the ADC module are PCB tracks of some length, also containing an analogue multiplexer. The noise quoted on the manufacturers data sheet is $5 \mu \mathrm{~V}$ peak to peak.

A simple test of linearity used one channel of the system to measure the voltages of three constant-temperature 1.5 V alkaline cells, first individually and then in series. The error between the arithmetic sum of the individual voltages and the actual series voltage was 0.001295%
Although the analogue inputs are described as true differential, it should be noted that the cold leg of the differential pair is for remote ground sensing and should be within $\pm 100 \mathrm{mV}$ of the analogue ground. This restricts the use of the kit if non groundreferenced voltages are to be measured, or if the kit is to be used with shunts for current measurement. However, OEMs may wish to design
analogue front-ends to overcome this problem and provide input scaling.

The sofiware was excellent and the supplied routines, with the documentary support, provide the basis of a useful instrumentation system for the display of voltages and their incorporation into PC-based data logging and control applications. Software snobs who abhor Basic are reminded that the conversion time of 40 ms should allow even the most unstructured and sloppy program to make full use of the 16 conversions a second!
OEMs who wish to incorporate the AD1175K converter into a laboratory instrument are supplied with all the information necessary to access the ADC's 16 registers and interface the data to a microprocessor bus. Analog Devices are to be congratulated on producing such a user-friendly package, which is as important as producing a good product.

> The AC50 $\mathbf{3} 5$ including software costs $£ 350$ plus VAT and the AD1175K $£ 754$ plus VAT. Buth are available from Analog Devices, Station Alenue, Walton-on-Thames, Surrey KT12 1PF. Telephone: 0932253320.

DISPLACED RADAR Gift of second sight?

Separating transmitter and receiver avoids PRF anomalies and ground clutter and is more secure than monostatic types. Henry Hislop describes the advantages and disadvantages of the process.

Most radars use the same antenna to transmit and receive. Only a small part of the energy reflected by an aircraft is returned to that antema; the rest is scattered in other directions. This energy can be received by other antennas in other places so that. in areas where radars are already operating, aircraft can be detected with no more than a receiver, in an arrangement known as bistatic radar.
Figure. 1 shows how radio amateurs living near Heathrow airport are able to locate an aircraft with nothing more than a simple receiver and a small omni-directional antenna. First, by measuring the time delay between a signal received directly from the radar and the same signal received after reflection from the aircraft, they can plot an ellipse on which that aircraft must lie. Then, by noting how the amplitude of the direct signal varies with time as the radar antenna rotates. they can estimate the position of the beam when the maximum signal is reflected from the aircraft. As long as the radar antenna is rotating at a constant speed, these two measurements provide all the information needed to determine the aircraft's position.

If the receiver is relatively close to the radar. the approximate position of aircraft detected in this way can be displayed on a plan position indicator by rotating the bearing line in synchronism with the radar antenna and using the pulses received directly from the radar to trigger the radial timebase. Such a display makes no allowance for parallax.

If the receiver is some distance from
the radar, a more accurate display can be obtained by using a computer to determine where the transmitted beam intersects the ellipse on which the aircraft is known to be. The accuracy will depend on the angle at which the transmitted beam intersects the ellipse. It is greatest at long ranges and zero on a line joining the transmitter to the receiver. This problem can be overcome, as will be explained later.

Sensitivity compensation

Other things being equal, there is no reason why a remote receiver should be any less sensitive than one colocated with the transmitter. If, however, the antenna of a remote receiven is smaller or has a wider beamwidth than that of the radar, then the gain of that antenna will be less and the range at which aircraft can be detected with that antenna will be correspondingly reduced. If the simplest possible omnidirectional antenna is used with the remote receiver - so that there is no need for the receiving antenna to scan - then the sensitivity of the remote receiving system is likely to be about 30dB less than that of a typical air surveillance radar. This will reduce the maximum range at which aircraft can be detected by a factor of 5.6 ; typically from 250 miles to less than 50 .

The maximum range at which aircraft can be detected with a remote receiver can be increased by designing the receiving antenna to be omnidirectional in azimuth but with the beam shaped in elevation to match that of the radar antenna. Further improvements can be obtained by rotating the receiving antema broadly in synchronism with the radar antenna and using a beamwidth no wider than is needed to

The antenna of a modern surveillance radar, which serves both transmitter and receiver. Picture by courtesy of Plessey Radar.
accommodate the angular errors caused by parallax and lack of synchronism. Very conveniently, the effect of parallax is greatest at short ranges where there is the least need for highantenna gain

An interesting way of compensating for the lower gain of an antenna with a wide beam in azimuth is to reduce its beamwidth in elevation and use several narrower beams to cover the same total
elevation angle. If each of these beams is connected to a separate receiver, not only is the sensitivity improved but the remote receiver can determine the height of an aircraft; a facility that may not be available at the main radar.

Bistatic by design

At this point, the perceptive reader will realise that a simple idea that formed the basis of an amusing toy is now leading us towards an ingenious type of sensor with many valuable features. So far, for example, we have assumed no co-operation from the primary radar and that it is detecting aircraft with its own receiver in its own way and in its own time. Much more can be achieved if the radar is designed from the outset to work with its transmitter and receiver in different places.

Removing the restraints of colocation gives a new degree of freedom. Cynics have said that the invention of the T/R cell (which made it possible for a radar transmitter and receiver to share the same antenna) delayed the development of air surveillance by forty years.

If more than one transmitter is used with the same receiver, there is no need to depend on a narrow beam to determine the exact position of an aircraft. From each transmitter, the signals reflected by an aircraft will be delayed by an amount which defines an ellipse on which the aircraft lies. From two transmitters, for example, the signals reflected by an aircraft will define two ellipses on which the aircraft lies, and the exact position of that aircraft must be where those ellipses intersect. as shown in Fig. 2. The accuracy with

Fig. 1. Position of an aircraft can be determined using a simple receiver. Lines of equal time difference between reception of signal reflected from aircraft and that from transmitter form ellipses, on which aircraft lie.

Fig. 2. Two transmitters form two sets of ellipses, crossing points locating aircraft more accurately.
which an aircraft can be located in this way is limited only by the range resolution of the system and can be much higher than is possible with a conventional radar.
A conventional radar distinguishes between aircraft and ground "clutter" by detecting the phase change between successive returns. The returns from a fixed object bear a constant phase relationship to the transmitted signal; the returns from an aircraft moving radially vary with time. With a conventional radar, therefore, it is difficult to distinguish between clutter and aircraft that are moving tangentially, but a receiver associated with two transmitters can detect aircraft moving in any direction.

With a conventional radar, problems arise if the interval between successive pulses is less than the time for a pulse to return from an aircraft at maximum range. A conventional receiver cannot distinguish between a pulse that has been reflected from an aircraft at long range and another pulse that has been transmitted later and reflected by an aircraft at short range. Both will arrive at the same time.

These ambiguities can be resolved if the transmitter and receiver are separated, because the returns from aircraft at long range are not received at the same azimuth angle as those from aircraft at short range. Freedom to use a higher pulse-repetition frequency makes it easier to distinguish between aircraft and ground clutter (for reasons that are beyond the scope of this article). Freedom to use a higher duty cycle makes it easier to transmit more power.

Keeping a low profile

Without prior knowledge of the position of a receive-only station, it is unlikely to be the victim of highintensity jamming which, by definition, is concentrated in a particular direction. Pairs of receivers can locate selfscreening jammers by triangulation so that they can be engaged at the earliest opportunity.

The antenna of a conventional surveillance radar presents a prime target for anti-radiation missiles. These relatively crude weapons steer themselves towards a radar transmitter just as a moth heads for a light. A radar with its transmitter and receiver in different places can be protected against these weapons by reversing the roles of the antennas, so that the large directional antenna is used at the receiver where it will not attract attention by radiating and the omni-directional antenna is used at the transmitter where it can be made very small and robust. The whole system then presents a much more difficult target. Moreover, with this arrangement, the transmitter power can be increased to offset entirely the lower gain of the smaller antenna.

Compromises

All design is compromise. The design of a bistatic radar is no exception.

For most applications, the receiving antenna should be as large as possible; a large antenna captures more of the energy reflected by aircraft and its narrow beamwidth minimizes the returns from clutter and power from offset jammers.

If a bistatic radar with a narrow receiving beam has a long baseline and transmits with a low duty cycle then, for maximum efficiency, the receiving beam must be moved to follow each

RADAR

transmitted pulse as it propagates outwards. This will demand that the receiving beam is steered electronically. If the radar transmits with a high duty cycle, or if more than one transmitter is used, it may be better to use a set of fixed receiving beams, each with its own receiver and signal processor. Either arrangement is likeiy to be expensive.

Whether or not the receiving beam is moved to follow each transmitted pulse, the receiver must be synchronized with the transmitter to an accuracy that depends on the range resolution. This can be done by receiving the radar transmissions directly, by passing timing signals via a wide-band link or by synchronizing both the transmitter and the receiver with some external reference. Whichever method is used must be protected against interference. A two-way link will enable the delay caused by the link to be measured and compensated but, unless precautions are taken, this may reveal the position of the radar receiver.

Given some method of synchronization, there is nothing to prevent the frequency, modulation, timing or beam

REACTION FROM THE INDUSTRY

Comments from a radar manufacturer do not totally support the ideas put forward in this article.

It is pointed out that the advantages of bistatic operation are only realised when the distance between transmitter and receiver is long - perhaps 100 km - which rules out simple synchronization of rotation, except at reduced gain. Compensation for lost antenna gain by increasing transmitter power is hardly attractive; 10 dB of lost gain is equivalent to ten times the power.

The increasing complexity of radar waveforms, which is a response to the threat of jamming, would render synchronization dif. ficult.

The view is expressed that, although the idea of bistatic radar is not new and has still not found widespread use, there might be an application for it in defence, for the reasons expressed in the article.
position of the transmitter being changed in a pseudo-random sequence that is known to the receiver but cannot easily be predicted by a jammer. A two-way link will allow different sequences to be selected by the
receiver in response to changes in the electronic environment. The speed with which this can be done will be limited by the delay introduced by the link but, for most applications, a delay of less than a millisecond is negligible. Opinions differ on the value of a faster response

The cost and complexity of an efficient bistatic radar system will usually be more than that of a monostatic radar. For air-traffic control and strategic air defence, the important question is whether that extra cost is justified by the greater resistance to radiation homing, directional jamming and "stealth". For shorter range applications, the losses caused by transmitting a broad beam may be offset by the advantages of being able to use covert, lowconsumption sensors.

The possibilities are endless. Perhaps one day we shall see a national network of radar stations; some receiving, some transmitting and maybe some doing both, but all co-operating to extract the maximum possible information about movements in the sky. For how much longer will the transmitters be earthbound?

ANNOUNCING THE FIRST FULLY FEATURED SIGNAL ACQUISITION AND FFT ANALYSER PACKAGE FOR UNDER $£ 1,000$ INCLUDES ALL THE BITS (2 X 14 ACTUALLY) THAT THE OTHERS LEAVE OUT

- Runs with your PC or Macintosh
- Complete two channel system, synchronous 100 KHz sampling \& 40 KHz spectrum
- 14 bil ade!! 85 dB dynomic range.
- Anli olios filters
- Frequency and time domain zoom
- FTT up to 16384 lines, with or without weighting, log or linear scoling, exp or linear overaging.
- Smart, fully featured Irigger enobles ironsient analysis, time averaging elc.
- Hard copy oulpul with full annotation and custom legends.
- Archive results, either monually or automatically

Laplace Instruments Ltd

PO Box 14, Bramhall, Stockport SK7 2QS. Tel: 056550268

Complete system, incuding sland alone signal capture unit, application sofiware, manuals and cables for only $£ 960$.
This is the best value for money, professional system in the UK.

Send off for your FREE demonstration disc using the form below, or ing 056550268

[^0]CIRCLE NO. 106 ON REPLY CARD

ANTENNA ROTATORS from IITHLer
 Quality Antenna Rotators now available in the UK from
 CLARK MASTS TECHNICAL SERVICES LTD
 \section*{OSCILIOSCOPES}
 Top Quality Oscilloscopes for less than $£ 200$
 The oscilloscope is an essential aid to today's test and measurement operations.

Primarily designed for mobile antenna systems Winter Rotators are now more widely used on fixed masts and towers for Post Office Broadcasting, Telephone, Television and Military purposes

- Precise directional stability and control.
- Light in weight in proportion to the antenna size deployed
- Suitable for parabolic antennas from 0.6 m to 3.0 m diameter.
- Can accommodate log periodic and other antennas to users special requirement
- Designs based on 20 years experience
- Electronically controlled antenna positioning in azimuth and elevation.

Write for free catalogue

CLARK MASTS (TECHNICAL SERVICES) LTD 20 Ringwood Road. Binstead, Isle of Wight, PO33 3NX England. Tel: (0983) 67090. Telex: 86224. Fax: (0983) 811157

Flight Electronics offers a range of both dual and single beam scopes to suit applications in R\&D and service departments, educational establishments and laboratories.

Want to know nore?

Telephone Ilight's sales office for friendlo, qualified advice. flight Electronics Limited, Fight House, Ascupart Street, Southamplon SO1 1 LU . Telephone: (0703) 227721 Tclex: 477389 FLIGHT G Fax: (0703) 330039

FOUR NEW EPROM PROGRAMMERS FROM MQP

- Program 24/28/32/40 pin EPROMs, EEPROMs and Micro-controllers
- Easy to use menu driven software for MS-DOS included in the price
- High speed algorithms
- Low cost upgrades
- 1 Mb devices and beyond
- Up and running in minutes
- Prices from only £195!
- Designed, manufactured and supported in the UK

MQP Electronics has a reputation for quality combined with value fo money. Our Programmers are used and respected throughout the industry.
We are proud to announce our Series il range of Programmers, consisting of Models 160, 170, 180 and 200. The Programmers maintain the high technical standard our customers have become used to, and introduce a new stylish yet robust package and a wider choice of features.
The Series II range has been specially designed with flexibility in mind. The rugged power supply readily supports the range of add-on modules: look out for the Bipolar PROM and EPLD adapters to be announced soon.
Each model in the Series II range utilises the serial port of your PC compatible, without compromising speed. This saves valuable expansion slots, and allows fast and easy installation or use by more than one computer.
Models 180 and 200 program virtually every EPROM available, together with EEPROMs, Emulators and single chip Microcontroller families

Models 160 and 170 are EPROM only' programmers for users with a strict budget
Our 'No fuss' upgrades policy provides assurance that your Programmer will keep up with new developments in the programmable device fie d.
Also ideal for use with any computer with a serial port
Priced from $£ 195$ to $£ 295$, all Series II Programmers include the all new PROMDRIVER software package for MS-DOS with pop-up on-line manual, the RS232 lead and postage within the UK. Buy with confidence: Series il Programmers include a full 12 Month Guarantee, and in addition a Money Back Guarantee if you are not completely satisfied. They are normally available ex stock.
Series II is a quality British product, supported by its designers in the UK.

PARK ROAD CENTRE MALMESBURY, WILTS SN16 OBX.

CIRCLE NO. 107 ON REPIY CARD

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins. from Tally Ho Corner

> Telephone:
> 01-445 2713/0749

For continuity testing and voice comms.

For further details contact: ELLMAX ELECTRONICS LTD., Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 7BT. Telephone: (01) 5390136.

CIRCLENO. 122 ON REPLYCARD

Relative FSK

The profession of telecommunication engineer exists because there is noise. Without noise there is no telecommunication problem.
F.R. Connor in December $E W+W W$ is undermining the profession. Noise is a paper tiger, he seems to claim. Telecommunication engineers always have overlooked how easy it is to defeat this enemy. You just have to transmit your information signal twice, once as an upper sideband signal and once as a lower sideband signal, using the same carrier frequency. At the receiver you make a sum signal and a difference signal. The sum signal contains the information signal plus noise. However, the difference signal is just noise! So apply the principle of negative feedback to cancel the input noise and there you are!

Mr Connor even modifies what he calls Shannon's famous equation. Famous, yes! But understood? How can he think that he can change a property of the channel, called channel capacity, with the construction of his receiver?

The editors of $E W+W W$ are to blame. Let's forget this
'perpetuum mobile' of data transmission theory as soon as possible.
P. van der Wurf

Geldrop
The Netherlands.

I would like to make a point about F.R. Connor's article
"Relative frequency shift keying" $(E W+W W$,
December).
Takestereoradio. The originating signals are L (left) and R (right). These are combined to produce $L+R$ and $L-R$. The received signals are $\mathrm{L}+\mathrm{R}+\mathrm{N}$ and $\mathrm{L}-\mathbf{R}+\mathrm{N}$ where N is the added noise.

Decoding these signals gives $2 \mathrm{~L}+2 \mathrm{~N}$ and 2 R , that is the right hand channel is noiseless mono from a stereo broadcast if $\mathbf{L}=\mathbf{R}$. So what is wrong with this theory?

N (left) and N (right) are not phase coherent and their subtraction or addition leaves
the noise power unchanged. That is why Connor's hypothesis will not work.
E. Richards

Hitchin
Herts
In Hypothesis ($E W+W W$
December 1989), the statement "noise vol tages in the two channels are correlated prior to the de tector" must be revised carefully. In the real world, they aren't. But if they could, many other systems could be designed to reduce or even eliminate the probability of error due to such noise. To tell the truth. I fell into this trap ten years ago.

Also the statement "amplitude noise is removed by amplitude limiting" is not complete. The limiting process in actual circuits introduces a time (phase) delay which depends on the input amplitude, even for a step signal. So the amplitude noise at a limiter's input (e.g. comparator) will be transferred to some degree to phase noise at the output, especially at relatively low input levels.

Clash of symbols

I am sure that Michael
McLoughlin and I ($E W+W W$
December 1989) are really in close agreement. I do agree with him that an international language, at least for circuit symbols, would be good. The trouble is that the natives keep on speak ing their own dialects. The great and the good of the International Electrotechnical Commission designed the language which comes to us in the shape of BS3939; do we or do we not try to speak it? I’m afraid that the answer is no, we prefer our own tribal versions.

Even the standards
committees themselves sway in the wind. The 'wiggly resistor' is in BS3939 although it is a nonpreferred form: the use of 'other symbols" for logic elements is not in contradiction with BS3939 although again not the preferred way.
In 1985 Texas Instruments published an interesting 'Explanation of new logic

Finally, why do you still accept that DSB-SC and PSK are difficult to demodulate. You don't yet realise the real importance of my circuit idea "DSB-SC detector" $(E W+W W$ August 1987) which is not just a mere idea. I have been using it for eight years in my personal links for privacy (the suppressed carrier at each transmitter is deliberately vibrating).

I will not be surprised to read one day on your pages the name of a company or person who will adopt it as happened a few years ago to my little idea "Voltage regulator", (WW October 1983) when it was seen again in November 1986 by Siliconix with a different output transistor.

It is not easy to be professional without being also practical and vice versa.
Kerim Fahme
Aleppo
Syria
The first thing that struck me about the "Relative frequency shift keying" article in the December issue was that,
although the abstract claims that the system can approach the Shannon capacity, the equation $\mathrm{C} \leqslant \mathrm{W}_{\mathrm{b}} \log _{2}\left[1+\mathrm{K}_{\mathrm{F}}^{2}(\mathrm{~S} / \mathrm{N})\right] \mathrm{bit} / \mathrm{s}$ indicates that the limit can be exceeded by an arbitrary factor just by increasing K_{F}, the gain of the feedback path.

The system transmits the same FSK signal in two adjacent channels. After filtering, the receiver multiplies the contents of the two channels together. The signals labelled sum and difference in Fig. 3, normalized to unit amplitude are:

Sum signal $=\cos \left[2 \omega_{0}+\right.$

$\left.\emptyset_{u}(t)+\emptyset_{1}(t)\right]$

Difference signal $=\cos \left[2 \omega_{1} t\right.$ $\left.+\varnothing_{u}(t) \times \varnothing_{1}(t)\right]$
where $\emptyset_{u}(t)$ and $\emptyset_{1}(t)$ are respectively the phase noises in the upper and lower channels and $\omega_{1}=\omega_{\mathrm{s}}$ for logic 1 and ω_{1} $=0$ for logic 0 in the information stream.

The idea is that the sum signal which contains only noise can be fed back to remove the noise on the incoming signal at the second IF. The problem is that feeding back any amount of the $\operatorname{sum} \emptyset_{u}(t)$ and $\emptyset_{1}(t)$ will not cancel $\emptyset_{u}(t)-\emptyset_{1}(t)$ which is the phase noise on the signal component (difference signal).

There is no possibility of improving the signal-to-noise ratio in this way, so Shannon's capacity theorem lives to fight another day!
William Harrold
Harlow
The paper $(E W+W W$
December 1989) by F.R.
Connor is based upon a completely fallacious argument. The reference to relativity is irrelevant and that to Shannon, unhelpful.

The basis of the fallacy is the implied assumption that noise, as referred to a receiver's input, is correlated about a central frequency point. In particular, that noise in one band, say below the given point, is identical to that in another band spaced symmetrically above that same point. This assumption is not true, except for low frequency noises which modulate carriers and/or local oscillators.

Thus the common noise, consisting of the addition of two

For business benefits -
the more you look, the more you'll find.

COMMUNICATIONS

AICOMML'NICATIONS 90 vou can find practical solutions to virtually any communications need. For international coverage, broad product range and depth of choice in every sector, there's no show to rival it in the UK.

It should be evident, with over 400 exhibitors from far and wide, that Comml'NiCATIONS 90 will be a matchless opportunity to assess and compare the latest products and services which can benefit the efficiency and profitability of any organisation.

There's nothing obscure about the success of COMALCNICATIONS.

It provides hands-on experience,

24-27 APRIL 1990
NATIONAL EXHIBITION CENTRE. BIRMINGHAM. ENGLAND
TENTH IN THE SERIES

TELECOMMUNICATIONS, RADIO.
CABLE. SATELLITE \& INFORMATION TECHNOLOGY
explanations and answers - from the best in the industry, all conveniently located under one roof, and against :he background of the liberalised UK telecoms environment.

With so much to discover, plan vour visit in advance.

Send for the Visitor
Information l'ack which includes a full product profile, travel and accommodation arrangements and details of the top level conference. product trails and clinics - all of which make Comblunications so much more than an exhibition.

So don't ponder the problem.
Diary your visit to
Commlencations 90 now.

Please tick \square YES, please send me the COMMUNICATIONS 90 Visitor Information Pack	
	\square Please forward details of the conference when available.

NAME
ORGANISATION

POSITION
ADDRESS

TAX

For the complete Visitor Information Pack, Including Registration Ticket, complete coupon and return to the organisers.
COMMUNICATIONS 90
Promotonal Department 1251 2-5 Alston Road. Patthnson North, Washington, Tyne \& Wear NE 38 80A, England.
RBW1

Fig.2. Short range radar system block diagram. A $10 G H z$ source operates at a peak power of 2 mW in either CW or pulse mode providing a variety of display types up to 30 m range.
channels of the radar receiver in time. A repetitive pulse signal can be stretched in time by taking samples of this signal at different points of successive cycles, holding the value of each sample until the next one is taken

Figure 1b shows an example of the signal that could be obtained by stretching in time the pulse signal shown in Fig. 1a. In this example, the stretched-in-time signal is only a rough approximation of the original pulse signal because a small number of samples are taken to reconstruct it. Nevertheless, the pulse width of the stretched-in-time signal is much greater than that of the original pulse signal.

Fig.3. Power density for different operational modes with safety standard comparisons.

Fig. 1c shows the same signal stretched in time using a larger number of samples. This considerably increases the pulse width of the stretched-in-time signal (the time scales of (b) and (c) are not the same), and improves the resemblance of this signal to the original pulse signal.

By increasing the width of a pulse signal, the time-stretching process causes the bandwidth of this signal to be considerably reduced.

Safety

To protect people working with microwaves, various standards exist concerning the maximum microwave radiation levels considered to be safe. The standards are usually expressed in units of power density (Watts per unit area) at a given frequency. The power density of electromagnetic waves is equal to the emitted power per unit crosssectional area normal to the direction of propagation. Figure 3 shows three different safety standards and the power density levels associated with this training system: the maximum transmit power is fixed at 2 mW . The aperture of the horn is $25 \mathrm{~cm}^{2}$ and the area of the antenna reflector is $490 \mathrm{~cm}^{2}$. In pulsed mode, the maximum pulse width is $5 \mu \mathrm{~s}$, and the maximum PRF is $288 \times$ 1024 Hz .

In CW mode, Power density at horn = radiated power/area
$=2 \times 10-3 \mathrm{~W} / 25 \mathrm{~cm}^{2}=0.08 \mathrm{~mW} / \mathrm{cm}^{2}$ which is within the most stringent limit.

Optoelectronic line transmission, by Lt. Col. R.L. Tricker. The book is subtilled Introduction to Fibre Optics and, as that implies, is not confined to communications. A first chapter introducing optical-fibre communications and devices in a general way is followed by a chapter entitled Theory, which is somewhat overstating the case in that it is almost entirely descriptive

The next section describes the types and manufacturing processes of glass fibres and two further chapters are devoted to transmitting and receiving devices - leds, lasers, PIN diodes and avalanche photodiodes-again a little on the cursory side; the section on receiving photodiodes only occupies five pages. A piece on waveguides, couplers, connectors and repeaters completes the hardware section of the book, which then goes on to communication systems, listing and describing several established installations.

As its sub-title indicates, this is a purely introductory text and in this, it succeeds. It is well illustrated and indexed. Perhaps Lt. Col. Tricker will follow it with a more detailed and exhaustive text. Heinemann Professional Publishing, 161 pages, £12.95.

Designing with linear ICs, by G.C. Loveday. Number 3 in the series The Successful Design of Electronic Hardware is concerned with the much curtailed, but still vital field of analogue design.

An introductory chapter deals with the classification, application and design of analogue circuitry in general, computer methods of design being briefly described. The three following chapters consider operational amplifiers, comparators and timing circuits, worked design problems forming a fifth section.

The book leans towards the practical, with many design examples. The Benchmark Book Company, 184 pages.

Newnes Radio and Electronics Engineer's Pocket Book, by Keith Brindley. The 18 th edition of a book that has been around since 1940 manages to contain most of the factual information that any radio-oriented electronics engineer needs and often cannot remember. Who can hold in their heads all the 7400 series numbers, for example, or the frequencies in the microwave K band and in all four of the designation systems? About a hundred subjects are covered in impressive detail, including a 24-page glossary of electronics terms and a comprehensive section depicting BS symbols used on drawings and equipment. Heinemann Professional Publishing, hard back, 325 pages, $£ 9.95$.

The short range and high resolution required for operation inside a classroom or laboratory creates significant problems. A 15 cm resolution requires a radar pulse width of 1 ns and this, in turn, implies bandwidths in the gigahertz range. With high-speed electronics, the whole radar could theoretically operate with large bandwidths, but the cost would be astronomical.
At this point two major decisions were taken. The first was to design the receiver for direct baseband (homodyne) conversion. This eliminated the costly IF components and did not significantly reduce the instructional attractiveness of the system.
The second decision was to use a bandwidth reduction technique, similar to the one used in high-speed sampling oscilloscopes. The transmitted waveform is designed to repeat a certain number of times for each 'apparent' RF pulse transmitted. The bandwidth of the received signal reduces to a value where normal signal processing circuitry can operate. It was felt that this difference from a real radar would not affect the training potential of the system.
The T/R switch or duplexer design also caused problems. The ultra-short pulses involved did not permit conventional switching of the antenna between transmitter and receiver. A ferrite duplexer was selected to solve this problem. It couples the outgoing and incoming signals while reducing mutual interference.

Sampling technique

Pulsed radars transmit an RF signal in short bursts, at a constant rate. The shorter the duration of these bursts, the better the range resolution of the pulsed radar. Since the radar training system operates over ranges of only a few metres, the duration of the RF signal bursts must be in the order of Ins to obtain an adequate range resolution
Once received by the antenna, the RF signal bursts are demodulated in the receiver to extract their envelope. A repetitive pulse signal is therefore produced at the receiver output. Fig. I shows an example of what the pulse signal from the I or Q channel of the radar receiver might resemble. The duration of each pulse can be as short as Ins.

Short range radar

> The development of short range radar demo equipment turns up unusual design problems. Resolving the position of centimetre sized objects over just a few tens of metres calls for transmission pulse widths down to 1 ns . Lab-Volt has developed a pulse multiplication system which reduces the bandwidth requirements.

Such a pulse signal has an extremely large bandwidth. Therefore, the bandwidth of the circuitry involved in the processing of this pulse signal must also be extremely large. According to a rule of thumb currently used, the approximate bandwidth B required to process a pulse signal is equal to the reciprocal of the pulse width 1 of this signal. This is written

$$
\mathrm{B}=1 / \mathrm{t}
$$

Therefore, the bandwidth of the circuitry required to process the pulse signals from the I and Q channels of the radar receiver would have to be approximately 1 GHz . Such processing circuitry would be complex and costly.

In the radar training system (Fig. 2), this problem is avoided by stretching the pulse signals from the I and Q

Fig. 1. Nanosecond pulses provide the short-distance resolution while a pulse sampling technique reduces the subsequent signal processing bandwidth requirements.

uncorrelated packets of noise, can not cancel each separate one of these packets in their isolated upper and lower carrier forms.
If the assumption were true, communication over infinite ranges with infinitely small powers would be possible. Given uncorre lated noises, the performance will be limited by a near unity ratio of signal to noise power in the information band.
H.W. Hawkes

Winchcombe
Glos

Cross-field antenna

The CFA antenna ($E W+W W$ March 1989) is not a fundamental alternative to dipoles and loops as implied in $E W+W W$ November 1989. It consists of two separately fed aerials. One aerial is a short dipole with electric currents, the other consists of a loop with magnetic currents (i.e. a horizontal circular slot). Both are vertically polarized.

Each aerial generates its own separate combination of distant radiated, local inductive and local capacitive fields as described in standard text books. Both aerials have the same polar diagram, coincident phase centres and can be fed differentially in respect of phase and amplitude. The strong coupling, occasioned by the common phase centre, can cause feeding difficulties but can be exploited by an adjustment of phase and amplitude of each feed so as to tune and match the composite aerial.

It is advantageous for the tuning and matching to be via the aerial structure rather than externally in a smaller volume which could produce greater ohmic losses. A reduction of feed plus matching losses is of importance as a short dipole. with a given diameter, can then start to approach the effectiveness of a larger one: although the same level cannot be reached because of the inherent larger $1^{2} R$ surface losses.

A dipole (particularly if of diameter comparable to the CFA) can also be resolved into electric plus magnetic currents that flow over the aerial surface

Disgusted - Australia

I was surprised to receive an offer to resubscribe to your formerly excellent publication after letting my subscription lapse earlier this year. I can only hope that such an offer has been promoted by many lost subscriptions following the rape and engulfing of $W W$ by $E W$.

Wireless World was an institution to me for more than 20 years and I and many others have learnt a lot from authors of the calibre of John Linsley Hood and innumerable others. It's probably unavoidable progress that our beloved $W W$ has become a trade rag with articles
about computer busses and news items about selling solar powered megabytes to

Botswanaland.

I suppose some grey-suited marketing boffin has dictated that this type of magazine is appropriate to the times we live in. One can only hope that someone else will emerge with a journal that concerns itself with the elegant art rather than the state of the industry.
M. S. Odell

North Balwyn
Australia
You forgot to say if you want to resubscribe-Ed
(including the feed gap between the two dipole halves. However, because the feed is common, no extra tuning benefits are obtainable.
The above explanation based upon conventional aerial coupling is preferable to that of interacting Poynting vectors. Such interaction is not in the classic exposition of Maxwell's equations for transmission in a homogeneous medium. Indeed, if true there would be implications far beyond the aerial art as pointed out with clarity and impact in $E W+W W$ Letters.
July 1989.
H.W. Hawkes

Winchcombe
Glos

I was most disappointed by C. Byron Well's article, "The crossfield antenna in practice," in the November 1989 issue. This drivel does little to clear up the mystery that surrounds this antenna.

Wells claims a number of successful contacts with British, Irish, and European stations. How does he define successful? Likewise, he says that,
". . . results were almost as good as both my double zepp and an 82 M circumference vertical loop . . ."

Let's have some quantitative data here! I'd like to have signal reports from the stations he
contacted as well as signal reports for the more usual antennas. In the same vein, "almost as good" doesn't support antenna performance either. Worse, measurements were made with a flashlamp and a neon bulb. Doesn"t Wells own a field-strength meter?

Its performance remains in doubt until we have some quantitative data as well as the construction details on the balun, transmatch and multiband tuner used in Wells' research.

I'm very disappointed that you published such an article without any experimental details and without quantitative supporting evidence. After this editorial lapse, I cannot take you seriously.
J.R.Smallwood

Milford
USA

Mass confusion

Though John Ferguson (December letters) quotes correctly from an article in the June 1989 issue of Physics Today by Lev Okun of the Moscow Institute of Theoretical and Experimental Physics he does so in a totally misleading context. In fact Okun's article was a strong affirmation of special relativity. What he criticised were confused concepts of mass resulting from the use of the restricted classical
version of the force equation which states that force $=$ mass \times acceleration.
The proper relativistically invariant equation states that force $=$ rate of change of momentum. The mass of a free particle is a scalar constant, that is its value is the same whatever the particle velocity.
Okun said that while ideas such as those of transverse and longitudinal mass are in effect anachronisms, the idea of a mass which changes with particle velocity, widely used in teaching relativity physics, is in relativistic terms neither fish. flesh, nor fowl.
He particularly objected to the use of the equation ${ }{ }^{E}=$ $\mathrm{mc}^{2 \bullet}$ which purports to relate the total energy of a free particle to its velocity dependent 'mass'. The correct equation is the superficially similar $E_{o}=m c^{2}$.
However, in this equation m represents the invariant mass, while E_{o} is the rest energy, that is the total energy of the particle in a frame at rest. Pauli bears some responsibility for propagating the notion of a velocity dependent mass, but in a 1921 encyclopaedia article, when special relativity was only 16 years old, and Pauli himself was only 21 . In most respects that article has worn extremely well.
C. F. Coleman

Grove
Oxfordshire

Tuned Vauxhall

The new car (a Vauxhall Carlton - Opel Omega) hadits broadcast receiving aerial bonded to the windscreen and I wondered if it might be possible to drive part of a car body as an aerial, as in aircraft practice.
The whole body shell might resonate as a cavity, with radiation leaking out through the windows. Rough calculation showed this possible, and experiment confirmed the preliminary estimates.

The body shell (see diagram) is tuned to resonance by a capacitor between the centre of the roof (point a, the rear of the sunroof frame) and the transmission tunnel below it
(point b). For $27.8 \mathrm{MHz}, \mathrm{C}=$ 11 pF . Due the high Q , around 100 at 27.8 MHz , a simple J match connected between points x and b provides a good match to 50Ω. Over 27.6 to 28 MHz , SWR remains below 1.5 if set at minimum (no perceptible meter reading) in the centre of the band. Polarization is vertical, of course.

The J match section C-a can be replaced by a small inductor, about 100 nH , and the whole arrangement housed under the plastic console between the front seats.

Despite the low effective height, performance is comparable with that of a normal external aerial, certainly within 6 dB . At 4W drive, the power density in the body is less than that adjacent to the aerial of a hand-held Tx, for which no health-hazard has been reported at these frequencies and powers. Due to the high Q, the voltage across the resonating capacitor is high. Thus a wide spacing between capacitor plates is necessary. For the same reason, the internal vertical roda-b needs to be insulated.

Although SWR is affected by passengers and driver this is only a problem for distances of less than about 15 cm .

Since the length a-b is less than the 165 cm specified in the CB licence schedule, the arrangement is presumably legal.

The arrangement is also useful for HF reception, being tunable across most of the 3 to 30 MHz band with a single capacitor. Maximum useful frequency depends on the car, but is unlikely to exceed 40 MHz even for a mini

Interference from the car electrics in the case of the Carlton was found to be no greater than for an external antenna, and perfectly acceptable. The internal rod a-b
between the front seats can be a nuisance, but one soon gets used to it.

T.S. Christian

North Walsham
Norfolk

Inertia

Peter Graneaus' account of the Assis theory of inertia (EW + WW, January) is interesting but it is surprising that there is no mention of the work of Prof. Jennison; see for example the article "What is an Electron", $W W$, June 1979. In the latter Jennison presents an elegant theory which, inter alia, accounts for the intertial property of matter while avoiding the need to invoke hypothetical interactions such as those which support the various ideas presented in Peter Graneaus' article.

If any theory depends on the introduction of presently unknown forces, fields, instantancous interactions and so on then, at least, it is incumbent upon the theorist to explain what these are, where they come from and why they are there. In the absence of such
explanations it would seem just as reasonable to support new hypotheses by the introduction of anything from magical dust to divine intervention!
Jennisons' work relied on down to earth theoretical reasoning involving known laws of physics. It would be interesting to have his views and to hear whether he has developed and/or changed his approach to the origin of inertia during the intervening years.
M.G.T. Hewlett

Midhurst
W. Sussex

CCTV for BATC

The November 1968 issue of Wireless World contained a survey of closed-circuit television equipment. Of the 21 manufacturers included only two - one British and one Japanese - are still actively involved in CCTV, and many of the 'great' British names have left the market place.

I am not aware of any museum which has saved any of this interesting but obsolete equipment, but some members of the British Amateur

More audio?

I find articles somewhat removed from mainstream electronics and radio (such as the continuing Einstein debate) all that more interesting just because they are so removed. Long may $E W+W W$ continue to be a forum in which the more heretical clements in engineering can air their views The only thing on which I disagree with you is the magazine title.

Electronics World + Wireless World is a bit of a mouthful and I assume it is only a matter of time before the + Wireless World bit is dropped. A title that has lasted 80 odd years will then disappear, presumably forever. That I find distasteful. I know I'm old fashioned but couldn't you leave the Wireless World bit in the magazine title, even if it's only on the inside title page; just as a sweetener to us old 'uns who remember when
you didn't need a Towers guide to sort out one transistor from another. (${ }^{\circ} \mathrm{m}$ not that old, just halfway to my three score and ten.)

Can we also continue to have articles on audio and hi-fi? The article by Barry Fox was most welcome. I believe there is a growing disbelief in the subjective approach to hi-fi, but dissidents are effectively muzzled by the hi-fi press who seem unwilling or unable to criticise the more esoteric and not-so-esoteric offerings of hi-fi manufacturers. Yours is the only magazine open to us disbelievers with enough street cred to take on the hi-fi mags. Hopefully we can expect more articles like Barry's and indeed more by J. Linsley Hood and others of like mind and ability.
Philip Cadman
Dudley
West Midlands

Television Club (founded in 1949 incidentally) are trying to save some of it. Could I ask anyone in a position to dispose of industrial CCTV cameras more than 20 years old to get in touch with me? We can arrange carriage, possibly even modest payment! Many thanks.
Andrew Emmerson
71 Falcutt Way
Northampton NN2 8PH
(0604 844130).

Audio power

J.L.L. Hood's article on evolutionary audio is good, but has three important errors.
Referring to Fig. 9 (November), Hood says the compound emitter follower connection gives better quiescent current temperature stability than the conventional Darlington connection. This is incorrect, based on a false assumption that with the output transistor's base/ emitter junction outside the inner bias loop the circuit is less temperature dependent

Simple intuitive analysis of the circuit proves that the compound connection has the same temperature stability as the Darlington. The temperature stability of any compound connection is directly related to the g_{m} of the circuit, all things being equal, and if the g_{m} is the same, then the temperature stability will be the same. Considering the Darlington circuit, the total bias voltage would be $4 \times V_{\text {be }}$ and would have a $4 \times-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ temperature co-efficient, thus matching the total output and drivers against ambient changes

Ignoring ambient changes or thermal tracking and considering the stability of a discrete Darlington circuit on its own with a fixed bias, for every degree rise in either driver or output device junction there will be a 2 mV increase in potential across the emitter resistor, increasing driver and output emitter current and junction dissipation accordingly Therefore the rate of increase of I_{q} with temperature is due to transconductance, which for \mathbf{R}_{e} as 0.22Ω would be $5 \mathrm{~A} / \mathrm{V}$.

Compare this to the first derivative from the Darlington

connection shown as Fig. 2, with the quiescent current V_{e} set the same as before. $V_{e}+V_{b e}$ will appear across R_{2}. Since I_{c} and I_{c} for the driver are virtually equal then $\mathrm{V}_{\mathrm{e}}+\mathrm{V}_{\mathrm{be}}$ also appears across $R_{1} . I_{c}$ is now a constantcurrent generator feeding into \mathbf{R}_{2}. As I_{c} is considerably greater than Tr_{2} base current, V across R_{2} can be considered a voltage source to Tr_{2}. Every degree temperature rise in Tr_{2} will cause 2 mV increase in V_{e}. Similarly, for every degree rise for the driver, $\mathrm{V}_{\mathrm{R} 1}, \mathrm{~V}_{\mathrm{R} 2}$ and V_{e} will all increase by 2 mV . So the circuit has exactly the same temperature stability as the Darlington. The only difference being the saturation voltage is now $2 \times \vee R_{2}$ plus $V_{\text {be }}$ (driver) compared to just $\mathrm{V}_{\text {R1 }}$ plus V_{be} for the Darlington.
Short circuiting R_{1} and moving R_{e} to the collector (Fig.3) as in Hood's circuit will reduce the saturation voltage to that of the Darlington. With I_{q} set as before, every degree rise in Tr_{2} will cause its $\mathrm{V}_{\text {be }}$ to fall by 2 mV , giving rise to a potentially large increase in I_{q}, again as before. As $I_{c}=I_{c}$ the increased I_{q} will appear across R_{e} thus subtracting from the bias, giving stability.
Even though Tr_{2} collector effectively bootstraps Tr_{1} emitter, the I_{q} stability is still the same as the Darlington. The transconductance (g_{m}) of the circuit is the same hence temperature dependance of I_{q} is also the same.
However, Hood has missed the most salient difference of the two circuits. The Darlington connection is used more extensively in commercial amplifiers because it is faster than the compound pair, and has better HF stability and lower
distortion. The compound connection has the advantage that, with the circuit of Fig. 2, adding an additional resistor from Tr_{1} emitter to ground will give some voltage gain. This allows for lower overall swing requirements on the preceding driver stages, allowing lower voltage faster transistors to be used (with the disadvantage of higher distortion and output impedance).
A further disadvantage is that at clipping the driver saturates, leaving an operational output device working as a grounded emitter rather than a follower. Thus phase reversal occurs, giving a step at the clipping point and some HF instability. This is termed by Hood as latch up; his suggestion of adding driver base resistors does not totally solve the problem; the true answer is to ensure the output device saturates before the driver using the Fig. 2 circuit.

The third false assumption relates to slew rate, Hood thinks slewrate is limited by the class A driver's collector current. This is false. It is simple to prove that, provided the driver I_{c} is greater than the differential input stage tail current, then, for any given stability phase margin, slew rate is a direct function of input stage tail current and
transconductance only and independent of C compensation
Once this is appreciated it can be realised that the reason for asymmetrical slewing is not as Hood thinks but totally due to mismatch of the differential input stages collector currents (provided $I_{\text {driver }}$ is greater than I (aii). The way to improve slew rate (as in the Supermos amplifiers) is to operate the input stage with a very low
transconductance which also improves linearity, and use extremely fast output devices biased in class A and hence eliminate the need for compensation capacitors. The potential then exists for slew rates at least 20 times that of the Hood designs.
Les Sage
Sage Audio Electronics
Bingley, Yorks

Geocentric physics

1 found your December issue particularly rich in thought provoking matter on the true basis and purpose of scientific theory. Not only were there challenging letters from Harrison and Lerwill, but there was a nice speculative dose of scientific puzzling over the origin and nature of pulsars.

The laws that govern physics and appear to control the cosmos are the distillation of millions of scientific observations reduced to a convenient shorthand for practical use. This is fine with something like the speed of light, because it can be demonstrated in a large number of ways or even realised as one of Grace Hopper's pieces of wire! The problems start when we try to explain fundamental forces like gravity and magnetism.
The complexity of particle physics leads to a myopic view of the universe, which is reinforced by our own terrestial prejudices.

Einstein and Newton produced basic laws to help explain things. We are now told they are so full of errors they wouldn't pass the Trades Descriptions Act! At the same time the entire state of the universe continues to be based
on a belief that nothing can travel faster than light which is also constant, that zero is absolute and, worst of all, the red shifted light of distant galaxies proves that the more distant an object is from Earth, the faster it is receding.

I'm not saying the theory is wrong, I just want to caution against assuming our limited experience in one tiny corner of the universe holds good at the outer reaches.

Take the red shift. It works on Earth and can be demonstrated and used as a valuable yardstick in near space, but can we be certain that light coming from a galaxy thousands of light years away is not frequency shifted over such immense distances. Why shouldn't the speed of light vary with the age of the universe?
Take the pulsars in Research Notes-it's conveniently assumed that a pulsar emits two beams of radiation as it spins . . . why should it? We don't expect an oscillator to rotate to throw off electromagnetic waves. Why shouldn't a pulsar oscillate between different diameters, throwing off the surplus mass that makes it unstable as radiation? That would explain how the frequency decays with time until the pulsar turns into a neutron star, black hole or even a white dwarf-take your pick!
The truth is we are only making educated guesses, but our guesses may be too much conditioned by earthbound experience. One thing is certain -the true scientist keeps an open mind.
Anthony Hopwood
Upton-on-Severn
Worcester

CIRCLE NO. 121 ON REPLY CARD

SMALL SEECTION ONLY LISTED - EXPDRT TRADE AND QUANITIY DISCOUNTS
 RING US FOR YOUR REQUIREMENTS WHICH MAY bE IN STOCX

Cossor Oscilloscopes CDU150(CT531/3) £150 only. Solid state general purpose bandwidth DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - delayed time base - protection cover containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condition with operating instructons FEW AVAILABLE - NO PROTECTIVE COVERBUT MAINS LEAD + 1 PROBE - 125
Tektronlx 475 - 200Mc/s Oscilloscopes - iested from £400 less attachments to $£ 700$ as new c / w manual, probes elc
Telequlpment D755-50Mc/s Oscilloscopes - Tested c/w 2 Probes - ce 250
Marconl TF2002AS - AM-FM Signal Generator - $10 \mathrm{Kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}$ - L85. Tested + probe kit - Manual E10 extra.
Marconl TF2002B-AM-FM Signal Generator-10Kc/s-88Mc/s. - £100 Tested to $£ 150$ as new + probe kit - Manual $£ 10$ extra
Marconi TF2008 - AM-FM Signal Generator - Also Sweeper - 10Kc/s-510Mc/s - from £350 Tested to $£ 500$ as new with manual - Probe kit in wooden carrying box - £50 extra. (Few available with small laults [300).
Don 10 Telephone Cable - $1 / 2$ mile canvas comainers or wooden drum new
Infra-red Binoculars in fibre-glass carrying case - tested - £100 each also Infra-red AFV sighte E100 each S.A.E. Ior details.
Teat Equipment we hold a large stock of modern and old equipment - RF and AF Signal Generators Spectrum Analysers - Couniers - Power Supplies - Scopes - Chart Recorders all speeds single to multipen - XY Plotters A4-A3
Philips PM32t7 Oscilloscope - $50 \mathrm{Mc} / \mathrm{s}$ - Dual Trace - Delayed Timebase - $\mathbf{£ 3 5 0}$
Mac TF2016A SigGGen-10Khz-120Mc/s - AMFM - E150
Mac TF2015 Slg/Gen-10Mhz-520Mc/s - AMFM - £250.
Mac TF2304 Modulation Meter - AMFM $-1000 \mathrm{MC} / \mathrm{s}-£ 300$
Mac Slgnal Source Type 60588-8-12.5GHz - new or used - from $£ 450$ to $£ 600$.
Mac SignalV Source Type 6059A-12.0-18Ghz - new or used - from $£ 450$ to $£ 600$
MP Power Moter Type 431C to 18Ghz with C Type Head \& Waveguide Head - £150 to £200
HP Sweep Oscillators Type 8690A \& B + Plug-Ins trom 100Mc/s to 18Ghz-POR HP 8656A SlgGen. 1 to 990Mc/s - $£ 2500$
HP 3325A Synthesiser/Function Generator - Brand New - £3000.
Tektronix Mainframes - 7603-7613-7633-£300-£500 Various Plug-Ins - POR
Mac TF1245A Clrcuh Magnification Mater +124681247 Oscilators - $£ 100$ to $£ 300$
HP Signal Generators Type 612-614-618-620-626-628-Frequency from $450 \mathrm{Mc} / \mathrm{s}$ to 21 GHzs . POR mage intensifiers - EXMOD - Tripod Fiting for Long Range Nughi Viewing - As New - £3000 Es. Intenalfier Tubes-£50 to £250 - Tested-Depending on Grade First Gen XX1060
Thermall Imaging Equilpment - High Oelinition - From £2500
Clark Air Operated Heavy Duty Masts - POR
All items are bought direct from H M Government boing surphus equipment: price is ex-works. S.A. E. for enquiries. Phone for appointment for demonstration of any items. also availability or price change V.A.T
and carriage extra.

WANTE: NEDMONNT TEST EQUPMENT - VAVES - PLESS - SECLITS - SYMCMBS

CIRCIE NO. 114 ON REPIY CARD

R.s. LANGREX R.ST. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes,
rectifiers, tetrodes, thryatons, transistors,
transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 01-684 1166
Telex:946708
Fax: 01-684 3056

SMC

South Midlands Communications

RADIO

TRANSCEIVERS/RECEIVERS

SMC the leading European specialist in general
radio communications have developed moduiar systers for rapid delivery, particularly useful for emergencies, disasters, political unrest and aid concerns. This can consist of rugged, simpl touse. HF transceivers i.e, the FT80C with a frequency range of $1.5-30 \mathrm{MHz}$ used with either
one of the SMC basic wide band antennas, or more efficient, the multi spot frequency antennas complete with iransportable masts. More powerful and complex transceivers are Iso available.
Where monitoring or reception is required then ither the FRG8800 HF receiver with VHF optio or the FRG9600 VHF, UHF all mode scanning sensitivity and reliability, at realistic prices.

ANTENNAS

The TWB2530 and TEB3 are just two samples of the large range $\mathrm{HF}, \mathrm{VHF}$ and UHF antennas available from SMC. Both have been specifically designed for users with very different capability. The rugged transportable TWB2530 is a full self-contained extremely lightweight yet tough enough to withstand rough handling and quick assembly in adverse terrain.

The TEB series of spot frequency HF beam
TWE2530
antennas give excellent forward gain, rugge construction for long life, at a cost effective price.
If you require further information on the 300
various support mounts, MF, VHF or UHF
antennas, simply call for our new shortform catalogue.
Both can be supplied with the most efficient antennas and desirable accessories.

SMC LTD, SM HOUSE, SCHOOL CLOSE, CHANDLERS FORD INDUSTRIAL ESTATE, EASTLEIGH, HANTS S05 3BY. Tel: (0703) 255111. Telex: 477351 SMCOMM G. Fax: 0703263507

It is well known that Volta invented the primary battery and in so doing moved electrical science into an age of electrodynamics. What is less well known is that he proposed a fundamental unit of electric tension some years before that invention, when scientists were still deep in the age of electrostatics. It is perfectly appropriate then that the unit for electromotive force (a term he introduced) is named after him. We may be thankful, though, that his original unit was never accepted; it is roughly equal to 13350 volts!

Volta was already an established scientist with a reputation for experimental work when he announced the invention of the "Pile", the first electric battery. The importance of the invention was instantly recognised as being of the first rank and it opened new avenues of enquiry, including electrochemistry and electrodynamics. It quickly led to experimental electric light and industrial electroplating.

Volta was born in Como in the duchy of Milan in Northern Italy on the 18th February 1745 and died there 82 years later on the 5th March 1827. On his mother's side he came from a family with a leaning towards the law; his father's family was devoted to the church. One of his three paternal uncles was a Dominican, one a canon, and the third an archdeacon.

Alessandro, the youngest, was an active Roman Catholic and chose many clerics as close friends. His religion was important to him and he sought theological advice before his marriage in 1794. He was a large, vigorous man whom a friend once described as understanding "a lot about the electricity of women".

He was seven when his father died. When he was 12 one of his uncles took charge of his education, which began at a Jesuit college and nearly led to him becoming a Jesuit. His uncles decided they did not want that and so his education continued elsewhere. It was a wealthy friend, Giulio Cesare Gattoni, who provided the books and equipment which helped him to begin studying electricity.

The uncles had by now chosen his future career: the law. Somehow he avoided this path and continued to study what he termed his genius: elec-

PIONEERS

> Alessandro Volta: the man who made electricity portable

Alessandro Volta; interpreter and emulator of Nature.

tricity. Boldly, he wrote to leading scientists to discuss problems he encountered. One, Beccaria, recommended his own writings and also told Volta to experiment. So Volta began to develop his gift for making inexpensive but effective instruments.

Slowly, fromi the mid-1760's he learned the science and practice of electricity and in october 1774 he received his first academic appointment, at the Gymnasium in Como. The next year he was appointed professor of experimental physics. About the same time he made his first important invention, the electrophorus, and followed that with the discovery of methane.

The electrophore was probably the most significant electrical invention since the Leyden Jar capacitor. After considerable experimentation, in June 1775, he announced his "elettroforo perpetuo". It was an inductive device for repeatedly charging a tin-foil covered shield which, in turn, was used to build up a large charge on a Leyden Jar capacitor. Whilst others had come close, only Volta produced a sturdy and usable instrument.
In 1776, he briefly turned to the study of gases and discovered a new gas which we know as methane. "Inflammble air" (hydrogen) had been isolated chemically ten years earlier and was known to exist naturally. Volta became intrigued by the "different kinds of air" and searched the countryside for the telltale bubbles until he found a new gas at Lake Maggiore. Hydrogen, however, was more explosive and it was hydrogen and air (oxygen), not methane, that Volta used in an "inflammable air pistol" which was fired by an electric spark. The pistol fired a lead ball, denting wood at 15 feet. From related experiments he concluded that about 20% of common air was oxygen. He narrowly missed synthesizing water, but his method was successfully used later by Lavoisier, Laplace and Monge in France.
His discovery of methane obviously enhanced his scientific reputation and his reward was a travel grant, which took him to Switzerland and Alsace. The grant came from the Austrian government which then ruled Northern Italy. Then came Volta's appointment to the professorship of experimental physics at the University of Pavia; his popular professorship there ran for nearly 40 years. In 1781/82 he visited France and England, and in 1784 he went to Germany. On such statefinanced trips he bought new equipment for the laboratory at Pavia. Most of the instruments he built up were destroyed in a fire in 1899 .
Politically, Volta had much to be
thankful for to the Austrians, but in 1796 they were driven out of Northern Italy by the French, led by Napoleon. Volta was chosen in May of that year as one of a delegation to represent Como in honouring Napoleon. Later, he became an official of the new Government of Como but it was a position from which he soon resigned; his lingering loyalty to the Austrians, the damage done to his laboratory by French troops and his coldness towards the French led to his expulsion from pavia for a while. It did him no harm, however, when the Austrians retook the country in 1799: though they closed the university, Volta remained free.

Thirteen months later the French were back. The university was reopened, Volta was once again a professor and accepted his status as a citizen of the new republic. A trip to Paris to express the university's thanks to Napoleon became a triumph for Volta. The primary battery was by then well known and its chemical power had made scientific headlines. Even Napoleon attended his demonstrations at the French Academy and Volta was awarded a gold medal.
In many ways Volta's discoveries captured Napoleon's heart and he continued to be an admirer. A prize of 60,000 francs was announced for "whoever by his experiments and discoveries makes a contribution to electricity and galvanism comparable to Franklin's and Volta's". Volta was later given a pension, and made a count and a senator in the kingdom of Italy.

Volta's pile

The roots of Volta's invention go back to the discovery by his fellow Italian, Luigi Galvani, of frog legs fame. A full account was published in 1791 and caused great excitement amongst both physicists and the medical fraternity. The latter wondered if the "vital principle" had at last been found and pondered the possibilities for new treatments. Galvani was the second to report what we would now recognise as an electrochemical effect, the Swiss J.G. Sulzer having noted in 1762 that two dissimilar metals placed on the tongue gave a sensation of taste.

At first, Volta dismissed Galvani's reports as unbelievable. Pressed by colleagues, he at last investigated the phenomenon and, by the April 1 1791, had begun the series of careful step-bystep experiments which led him to the electric battery.

Galvani explained the excitation of the dead frog's legs as being caused by
animal electricity, an explanation which Volta firmly rejected. Volta was led to believe that the current flow was caused by the contact of two different metals. In that he too was wrong. It was another Italian, G.V. Fabroni, who got the right explanation by pointing to a chemical action between the liquid, which always seemed to be present in both Galvani's and Volta's work, and the two different metals.

Volta repeated Sulzer's as well as Galvani's work. In one experiment he brought insulated zinc and copper discs into contact and found that they were charged on separation. By experiment he found that zinc and silver discs best suited his purpose and eventually he arranged pairs of them in a pile. Each pair was separated from neighbouring pairs by a piece of cardboard soaked in water or brine to provide, as he believed, a conducting path between the pairs. Letting all pairs touch one another, he knew, provided only the same effect as a single pair of discs.

The finished pile of discs and cardboard multiplied the effects of a single pair many times and he was able to receive a shock from his pile similar to that from a charged Leyden Jar capacitor. The vital differences were that Volta's pile did not need to be immediately recharged and could give a continuous current.

News of the invention was announced in a letter to the Royal Society in London: "The apparatus of which I speak," wrote Volta, "will

Voltaic pile from the Wellcome Collection. This one appeared in the 1899 exhibition at Como and may have been used by Volta himself.

Volta's "crown of cups" - pairs of dissimilar metals with each end dipped into goblets containing brine.
doubtless astonish you." The continuous current almost appeared as perpetual motion, "but it is nonetheless true and real, and can be touched, as it were, with the hands."

Volta's pile, "as high as can hold itself without falling," consisted of 30 , 40 , or 60 cells. From such primitive origins grew today's huge international industry. As an alternative to the pile, Volta also used pairs of metals soldered together with each end dipping into water or brine contained in goblets; this arrangement he called the crown of cups. Again, 30 or more cells could be arranged to produce a battery of cells. The word battery had, of course, been used earlier, not only for a battery of guns but for a battery of charged Leyden Jars.

Improvements were soon made by others. For greater voltages more cells were needed in the pile, which increased the weight and squeezed out the electrolyte from the cardboard discs. In Germany, J.W. Ritter turned up the edges of his metal discs and obtained batteries which lasted for two weeks! A horizontal wooden trough provided an even better battery: zinc plates, for example, could be fixed vertically to a support and lowered into the trough between vertical plates of the other metal. This trough arrangement has been suggested as the origin of our circuit symbol for the battery.

Volta received many honours in his lifetime, including recognition by learned societies in London, Paris and Berlin. His financial rewards from his university salary were boosted in 1805 by the annuity he received from Napoleon and, in 1809, by his senatorial salary. For the last two decades of his life "he had the income of a wealthy man."

Reference

1. Dictionary of Scientific Biography

The volt was formally proposed as a unit of EMF in 1863 by a committee of the British Association for the Advancement of Science, although it may already have acquired some usage amongst practical telegraph engineers. It was adopted internationally in 1881.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

$¢ 599$

 ᄃ1250

Teklronix 2445150 MHZ Four Trace Teklronix 2465 A 350MHZ Four Trace
Textron 7603 Main Frame 785337 A 87 A 18 Omer Pices
Tektonix rasea 351 Siorage Scope
Gould O 3350060 MHZ
Tektronix 212 S00KHZ Dual Trace Miniscope
rektronux 2215 MHZ Single Trace Miniscope
TekMronix 45360 MHz Dual Trace
HP 1715 A 200 MHZ Dual Trace with DVM Opt HVP 1740 A 100 MHZ Dual Trace Philps 3232 True Dual
Phlips 3234 Oual Trace Storage
psill somiz Dual race Dual T/B (As N
Telequipment 075550 MHZ Dual Trace Delayed T Telequipment 08350 MHZ Dual Trace Large Display
Telequipment D61 15MHZ Dual Trace
Cossor CDU150 35 MHZ Dual Trace Delayed T/B
Gould 0S 110030 MHz Dual Trace
Scopex 4D10 10 MHZ Dual Trace
Phalips 3110 Dual Trace 10 MHZ
Hup 180 Oscilloscone with 50MHZ Plugins
Signal Generators
Marcon, TF 2015 10MHZ.520MHZ AMFM Marcon IF 2015 with TF2 2171 Synchronizer
THP

Marconi TF 995 1.5MHZ-220MHZ AM/FM (Special
Mel 1 I
Racal $3061 / 306210 \mathrm{MH}$ Z Smillesized
Philips PM5 234 100KHZ 110 MHZ AMFM + S
Fluke 6160A 1HZ-30MHZ Syn Signal Source Philips PM6456 FM Stereo Generator Lyons SO10 Sine Square Audio Osc

Radio Recelvers
Racal RAZ17 10 MHZ 10 30 MHZ Digila

Spectial OHers

Avo EA 113 Electronic Multumeters

 GEC Selectest Super 50 Testmeters Philips PM2403 Electronic Mumbeters Leader LMV I81A AC Milvortmeler Leader LMVI 86 A 2 Channel AC Milivoltmeters Brandenburg 470 Power Supply $(22 \mathrm{KV})$Exact 121 Funclion Generators $2 \mathrm{H} Z-2 \mathrm{MHZ}$ Exact 121 Proips PM5501 PAL Cobour Bar Generators Isolation Transior mers 500 Va in yellow Trio AG20 C Tro PF810 SWFUPowet Meters
Isolatoon 240 V to 24 V 60 VA for Wetier Irons

Test Equipment HP 1200 MHZ
1200 MHZ 2pectrum Analyser 855žU855 Marcont 2950 PHR Radio Test Sel Marcon TF2331 Distorlion Meter Marconi TF 2005 /R Ouscilator AF Oscillator + ATT Marconi TF2160 Monitored All Marconi TF 1313.1% LCR Bridge
Marconi TF2120 Function Gencrat Marconi TF 2300 Mod Meter (1GHZ)
Marcon TF 2303 (1) Marcon TF 2303 Mod Meter As New
Marconn TF 2600 Valve Voltmelers Marcopni TF2600 Valve Voltmeters Marconi TF2650 Fet Multimeters Marconi TF 1065 RT Test Set (Mod + RF Power $\$$ Dev)
HP 141 T Spectrum Analyser 8553L/8552A ${ }^{10 \mathrm{MHZ}} \mathrm{A}$ 2 Adre! Coda sync 1OHZ-10MHZ Marconi TF $1245 / 1247 / 1248$ Q Meter Texscan 9900D Sweep Analyser soom Farnell Radio Telephone Test Sel with SSGS2 Sig Gen Wayne Kert B424 LCR Bndge Alm 401 LCR Comparator Data Bndge
 TTS2 TX Test Sel SGiB/SWIBYOB2TME Cordiess
Phone Add
$\varepsilon 2000$ Iwatsu SC7103 10HZ.1GHZ Freg Counter (New) $£ 375$ 1 GernRad 1390 Random Norse Generator §195 HP 4271 : 1 MHZ Digital LCR Meer
VAT AND CARRIAGE
et, Leeds LS1 4BB.
Tel: 0532435649 . Fax: (0532) 426881
CIRCLE NO. 135 ON REPLY CARD

You need

for FREE CATALOGUE write phone or call
ELECTROVALUE LTD., FREEPOST. 289 Engiefiedd Grven. Egham. Surrey TWZO asf.
Phone: 0784 433603. Fax: 0784 435216 - Telenc. 264475 NORTHERN BAMANCH 680 Burnoge Lane, Manchester M19 iMA

Whatever your need in logic analysis, ThurlbyThandar can supply it

The widest range of analysers available stretches from basic 16 channel models through value-for-money 32 and 48 channel analysers up to highly sophisticated modular units with up to 112 channels.

Our analysers have an unbeatable level of support including disassemblers for most popular 8 and 16 bit microprocessors.

LA3200/4800

This range offers exceptional value for money with up to 48 channels and 100 MHz timing from around $£ 1000+$ VAT

Contact us now for full details of all our LAs.
Thurlby-Thandar Ltd.
Glebe Rd., Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451 Fax: (0480) 450409

ACTIVE

Asic

C-mos production process. ECPD-12 1s the name of ES2's 1.2 micron dual-layer metal c-mos process, developed to offer die-size reductions for manufacturers wanting to integrate high complexity designs on a single chip in excess of $100 \mathrm{~mm}^{2}$. Asic designs prototyped by ES2 can be transferred for manufacture by Philips. European Silicon Structures, 0344 525252.

High density c.mos. 26000 and 47000 gates with over 70% utilisation are offered by Motorola's HDCO26 and 027 high density c-mos micron arrays. The channel-less seaof gates architecture gives $300 \mathrm{ps} 1 / 0$ delays, with a fan-out of 2 . The 026 has 168 $1 / 0$ pins and the 047,212 . Slew rate control macros provide two choices of output slew rate. Motorola, 0296395252

A-to-D and D-toA converters

Digital to analogue. The DAC-8228 has a voltage output and is a direct replacement for Celdis' AD7528/7628. It is a single-chip dual 8 -bit c -mos device designed for outputs of 0 V to +10 V . Features include two integral output DACs, matched to 0.1\%; 8 -bit endpoint linearity; a write time of 50 ns ; and low power consumption. Available in 20 -pin Cerdip and plastic packages. Celdis, 0734585171

Development and
 evaluation

State machine. The 125 MHz CY7C361 high speed state machine sold by Ambar Cascom allows EPLD based logic design for systems with clock rates up to 66 MHz . It

Sony 3.port video ram can store an 8 -bit picture with two chips. Hakuto 0992 769090
incorporates an on board clock doubler Power consumption is 700 mW . New PLD architecture has been used to improve performance over other PLD-based state machines. Production quantities will be available next quarter. Ambar Cascom, 0296434141.

Discrete active devices

Barrier diodes. Hi-Rel III-V GaAs plana doped diodes, obtainable from Marconi offer high pulse burn-out resistance, low local oscillator drive requirements, high tangential sensitivity, together with improved $1 /$ i side-band nolse performance These combine to give good detection sensitivity and temperature stability Marconl Electronic Devices, 0522500500.

High performance semiconductors. Lower noise, better linearity, higher transition frequencies or reduced capacitance are the operational goals of Siemens latest RF silicon transistors. Its BFQ 82 noise level is less than 1.6 dB (at 800 MHz) with a gain of 17 dB (at 1 GHz) while its BAT 64 Schott ky diode draws 200 mA forward current, and has an overall capacitance of 6 pF . Siemens, 0932752323

Mesfet for telecoms. Toshiba has announced a new mesfet designed to produce extra power for high frequency operations. JS8856.AS provides a power output of 33.5 dBm at 14.5 GHz with a gain of 5.5 dB . The 100^{2} micron device has a thermal resistance of $9^{\circ} \mathrm{C} / \mathrm{W}$. Dimensions are 2.1 mm by 0.53 mm and Toshiba has increased the thickness of the chip to 70 micron. Toshiba Electronics (UK), 0276 694600.

General microprocessors

STD multiprocessing. 278832 single board STD bus multiprocessing computer with DOS extension can enhance performance, control, modularity and development facilities within control applications. 8 MHz V40 chlp ICP uses its own resources, not the system's. 800 kon board memory. SBX expansion socket,

Siliconix 9120 SMPS chip operates at mains input voltages; 9112 is intended for low voltage transverting. Siliconix 0635309050
three parallel ports, two serial ports. Optional maths co-processor Wordsworth Technology, 0732866988

Processor. Primarily designed as a serial I/O module, the BVME775 6UVME card can be used as a general purpose CPU card or stand-alone single board computer. Its CPU is a 68000 or 68010 running at 12.5 MHz and it has eight RS232/RS422 serial channels. It can be configured up to 0.5 MB of 150 ns dual port static ram accessible to local bus and VMEbus. BVM, 0703270770

Linear integrated circuits

Op amp. AD843 is said to be the fastest FET-input monolithic unit on the market. 135 ns settling time of 10 V steps to within $\pm 0.01 \%$. 34 MHz gain-bandwidth. The manufacturer also claims low cost and low power use as two of its features. Available in ive temperature performance grades and also to Mil-Std 883B, Analog Cevices, 0932 253320

Oper ational amplifier. Optimised for a gain of 5, the Harris HA- 2548 from Thame Components has a gain bandwidth product of 150 MHz , a slew rate of $120 \mathrm{~V} / \mathrm{s}$, a loop gain of 130 dB and 300 V offset voltage. Settling time is 200 ns to 0.01% (10 V step). Available from stock in 8-pin cerdip and 8 pin can packages. Thame Components, 0844261188.

Memory

C.mos eeprom. Seiko Epson has introduced a 512 bit device working at just 0.9 V , obtainable from Hero Electronics. The SPM28C51 series is available in 8 -pin SOP or DIP packages. They operate from 0.9 V to 5.5 V at the read stage with a supply current down to 40 A maximum at 1.5 V . Design is 10000 erase/write cycles per bit and a ten year bit retention time. Hero Electronics, 0525405015.

Optical devices

Laser light sources. Two environment resistant lasers are now available from Lambda. Both are stabilised single mode
sources. Model 7160 produces emission at 1300 nm .7170 emits at 1550 nm . Units are portable - weighing $12 l b s$ - held in water. ight heavy duty militarised cases. Power is from internal 12 V batteries. Features include adjustable level setting. Lambda Photometrics, 0582764334.

Triac optocoupler. Siemens says its IL 428 is the first optocoupled triac delivering 2 A at $55^{\circ} \mathrm{C}$ without additional cooling. Sensitivity is said to be so high that an input fless than 8 mA (typically 4 mA) is enough to switch up to 2A. A safety factor greater than 2 is promised with operation on 230 V ACsystems. Siemens, 0932752323.

Oscillators and crystals

Miniature oscillator. The Ball-Efratom FRS time base oscillator, available from RacalDana, offers long term accuracy of $1 \mathrm{in} 10^{-9}$ per year. Its dimensions are $2 \times 3 \times 4$ in and it may be Installed directly on instruments or systems. The unit uses 10 W at 24 V DC and will warm up to the above accuracy in 6 min. Standard output is a 10 MHz sine wave delivering 0.5 V RMS into 50 ohms , with options Racal-Dana, 0703843265

Power semiconductors

Easy mounting transistors. Low onresistance transistors in an industrial plastic package offering easier mounting can now be obtained from Siliconix. Nine devices are included in the range, based on the popular TO-220 package, and they do not suffer from the size disadvantages of the larger TO 3 packages. The devices also run cooler with greater rellability. Siliconix, 0635 30905.

PASSIVE

Miniature potentiometer. 10 mm square, over 750000 combinations all with conductive plastic elements to ensure low noise, the miniature Wilbrecht Electronics potentiometer can now be obtained from Radiatron. The model 400 has elght standard tapers and can be supplied in single or dual gang configurations. It is sealed for wave soldering. Radiatron Components, 027626466

NEW PRODUCTS CLASSIFIED

High frequency capacitors. The equivalent series resistance of Siemens' B45177 (axial lead) and B45187 (radial lead) tantalum electrolytic capacitors has been cut by over 50%. It now ranges between 45 and 330 mohms to meet the requirements of switched-mode power supplies. Capacitance values are 4.7μ to $330 \mu \mathrm{~F}$ with current ratings of 1.1 A to 4.6 A . RMS. Siemens, 0932752323.

Connectors and cabling

Cable ends. Contelec has extended its range of insulated cable ends to include types for use with stranded conductors from0. 25 up to $70 \mathrm{~mm}^{2}$ cross section. Standard and long versions can be supplied in all sizes and short and intermediate versions are available for most commonly used sizes of cables. Contelec Supplles, 0902366556.

Cables and hoods. Thomas \& Betts 300 series fully screened flat and round cables and associated hoods are being offered by Highland Distribution. Cable used is 28AWG stranded. Screening is with PVC-coated aluminium tape with additional braiding of tinned copper wire. External coating is flexible PVC. Eight versions are available. Highland Electronics, 0444245021.

Displays

Rackable monitors. Use in hostile environments is the aim of this range of 19in rack mounting units, supporting all the common graphics standards including EGA and VGA, in colour and monochrome. All are encased in nicket-plated mild steel with a 6 mm -thick Perspex screen to protect the monitor. Prices start at $£ 480$ for the mono version. Blue Chip Technology 0244 520222.

Small VGA colour monitor. 9in VGA screen units for mains-use with a maximum current consumption of 0.7 A are avallable from Components Bureau. The Sony Trinitron tube used has a short persistence B22 phosphor, with high resolution to $640 \times$ 400 on a display area of $140 \times 100 \mathrm{~mm}$ with a dot pitch of 0.26 mm . Dimensions are $164 \times 210 \times 310 \mathrm{~mm} .5 .2 \mathrm{~kg}$. Components Bureau, 0223214949.

LED displays. A range of single digit sevensegment numeric LED displays from 7.62 mm to 177.8 mm , manufactured by Everight Electronics, can now be obtained from HB Electronics. Colours include a choice of reds, green, yellow and orange. Each is equipped with a decimal point. HB Electronics, 020425544.

Colour terminal. ELF colour 14E terminal has VT220/VT320 compatibility with additional VT52, VT100, M2200 and Viewdata emulations as standard. All keys are programmable. Its high resolution screen has 0.31 mm dot pitch and offers 16 colours. Graphics and character sets can be defined. Easydata says it is designed to be a low cost display, DEC compatible.
Monotype Easydata, 0784244277.

Hitachi digital storage scope uses an IC memory card with in-buift data retention of up to three years. Reltech 048063570

Filters

Hex filter. MA6882 hex filter designed to consolidate flitering requirements in the dc to 8 kHz range in multi-channel analog signals systems. Two 7th order lowpass filters, two 6 th order bandpass filters and two 6 th order notch filters are included on one monolithic cmos chip. All filters include antia aliasing circults. Marconi Electronic Devices, 0522500500.

Hardware

Eurocard backplanes. Double-sided uncommitted backplanes with four voltage rails, and jumper pins to allow any signal line to be committed to any voltage rail are now part of the Bicc-Vero Eurocard range. Power connections can be $M 3$ studs or 6.33 mm Faston tabs. Five sizes are available. BiccVero, 0703266300 .
Data logger offers five basic recording modes across 12 channels with interchangeable data pods. Alpha Electronics 0942872434

Instrumentation

Power surges. Egal's modular system for testing power surges can now be obtained from Dielec. The EM101A is a transient generator systemt: 1044A series plug in units provide test wave forms simulating lightning: 1011A and 1012A EXP series provide powerful pulses with fast rise time and exponential cecay; 1020 provide damped sinusoid، Dielec, 0793783137.

Function generator. The 5 MHz GFG-8050 from Flight Electronics combines ouality construction with low cost. The unit's frequency range spans 0.5 Hz to 5 MHz and it has multi-function output, sweep and gate burst operation. Waveforms incluoe sine, triangle, square, pulse and ramp. There are six other units in the range. Flight Electronics, 0703227721

Digital storage oscilloscope. Grundig's SO 50 and SO 100 oscilloscopes have digital and analogue bandwidths of 50 MHz and 100 MHz respectively. Scanning frequencles up to $40 \mathrm{Ms} / \mathrm{s}$ with storage capacities up to 4 K produce optrmum recording of sigrials in the digital mode. Real

time sampling or sequential sampling can be selected. Grundig Electronic.

Battery dual trace oscilloscope. Hitachi"s V209 mini portable unit is now avallable from IR Group. The DC-20MHz bandwidth instrument measures $215 \times 110 \times 350 \mathrm{~mm}$, weighs 5.3 kg , and offers a sensivity of $1 \mathrm{mV} /$ div at 10 MHz and sweep times of $50 \mathrm{~ns} /$ div. It has a built-in TV sync separation circuit with selectable TV-v and TV-h modes. IR Group, 0753580000.

Digital phase meter. Feedback meter type DPM 609 will display the difference in degrees betweentwo signals of the same frequency 3.5 digit fluorescent display will show 0° to 180° in 0.1° steps. Its trequency range is 10 Hz to 100 kHz . Two symmetrical channels accept signals from 10 mV to 10 V RMS "sine" or IV to 30 V pk-ph for "logic waveforms. Resolution 0.1 ${ }^{\circ}$. STC Intruments, 0279641641

Literature

Power supplies. 1990 catalogue now available. 76 pages coverlng linear supplies, switched mode supplies, eurocassette supplies, DC-DC converters and laboratory burn-in supplies. Companies represented Include Computer Products. Danica, Elco, Electronic Measurements, HC Power, International Power and Schafer Electronics. XP, 0734508179

Materials

Ferrite cores. Steward's soft magnetic type 28 material is the basis for a range of ferrite cores now offered by Ramp Electronics. It is particularly suitable where applications involve frequencies of 1 kHz or greater. Cores may be specified to meet intended functions of wound components. Configurations include E or U shapes for power applications. Ramp Electronics, 0703 260161

Production equipment

Removal of surface mount components. CPE's system 1000 portable reworkstation can desolder and resolder using directed hot air blowers. Though designed for surface mount components it can also remove $0.3 \mathrm{in}(6-20$ pin), $0.4 \mathrm{in}(22$ pin), 0.6 in (24 pin) DIL components and now PGAs Boards up to 24×16 in can be
accommodated. Circuit Plating Equipment. 063533656.

Component preformer. French manufactured Loupot CK machine, introduced to the UK by John Minister, is suitable for preforming axial components at up to $20,000 / \mathrm{hr}$ - ideal for small to medium batch runs. It can handle most bandoliered forms and cutting and banding is adjustable within 0.1 mm . Compact design produces easy changeover and low set up times. John Minister Automation 0303 56816/7.

Wire twister. Rush's model WT20 is an improved version of its WT 12 and incorporates an LCD pre-settable read-out and special wire clamping mechanism. It is particularly useful for twisted pairs and can twist two or more wires, up to 16AWG, of any length up to a speed of five f wists $/ \mathrm{sec}$. Rush Wire Strippers, 026451347.

Power supplies

Compact supply. Acdc's JF201 2000 W switchable power supply, from Astec UK, provides 2 or 5 V DC output at 400A, with other outputs of $12,15,24,28$ and 48 V DC Dimensions are $5 \times 8 \times 10 \mathrm{in}-$ a power density of $5 \mathrm{~W} / \mathrm{in}^{3}$. 208/230V AC or 300 V DC input with full output at typical efficiencies of 80%. Switching is at 100 kHz . Two forward converters are used. Astec UK, 0246 455946.

Capacitor charging unit. Series 5000 modular power supply is a low profile 19ın rack mount with a charging rate of $600 \mathrm{~J} / \mathrm{s}$. Voltags are $1,2.5,5,10,20$ and 30 kV with regulation and resolution figures of 0.5%. Maximum repetition rate is 10 pulse $/ \mathrm{s}$ though other voltages and rates are available. Hartley Measurements, 0752 344606.

Selectable requirements. Astec MS series supplies from Thame Power are rated at 1200 W and can provide any combination of $5,12,15,24$ or 48 V outputs.
Configurable AMPSS modules can be factory or customer selected for particular requirements. Overall efficiency is 75\%, with a 500 kHz switching frequency. Dimensions are $8 \times 5 \times 11 \mathrm{in}$. Thame Power, 0494 442266.

Dual laboratory power supplies. The Twinpack power supply 4000/2 from Weir gives a total of 120 W from two identical. isolated, 0-30V, 0-2A sections. True constant current/constant voltage operation and output protection diodes allow series/parallel connection, also giving $0-30 \mathrm{~V}, 0-4 \mathrm{~A}$ and $0-60 \mathrm{~V}, 0-2 \mathrm{~A}$. Simultaneous monitoring of each rail is possible. Weir Electronics, 0243865991.

Switches and relays

Sub-miniature switches. LIMA A6 series switches are designed for surface mounting and are fully sealed to allow wave and flow soldering. Resistive ratings with siiver contacts are 250 V AC at $2 \mathrm{~A}, 125 \mathrm{~V}$ AC at 5 A . Gold contacts give 5V AC/DC and 10A minimum or $20 \mathrm{~V} \mathrm{AC/DC}$ at 0.4 VA maximum. Insulation resistance is at least $1000 \mathrm{M} \Omega$.

Electric strength is 1 KV for 1 minute. ArrowHart (Europe), 0752701155.

Light load relays. Standard and high sensitivity relays have been made available by Devin in its M3 series for PCB mountıng At resistive load the contacts maximum switching current is $1 A A C / D C$. Maximum switching power is 3OW DC 60VA AC with maximum switching voltage of 60 VDC 120 V AC. Devlin Electronics, 0256467367.

SHL relays. A relay 3.7 mm wide, 15.1 mm long and 6.6 mm high, claimed to be the smallest currently available, has been introduced by Pickering. Its series 109
requires half the board needed by some other SIL relays. Switches are rated at 10 W 200 V and 0.5 A maximum. $5 \mathrm{~V}, 500 \mathrm{~s}$ and 12V 1000 s coils are available. Pickering Electronics, 0255428141.

Transducers and sensors

Photodetector. Centronic's OSI 35 series of devices has a photodiode mounted toget her with an amplifier in an hermetically seated TO8 package with a low profile cap. Simplitied system design should be possible through elimination of a head amplifier.
Four versions: uv ($250-400 \mathrm{~nm}$) visible (400 $900 \mathrm{~nm})$; $1 \mathrm{R}(600-1100 \mathrm{~nm})$ and eye response are available. Centronic, 068942121.

COMPUTER

Data communications products

Communications controller. Celdis has extended its range of Zilog microcontrollers with its type 16 C30 - delivering $4 x$ transmission rate of current 2-channel industry standard SCCs. It operates at a data rate of $10 \mathrm{MB} / \mathrm{s}$ which Celdis says is the fastest available. Bus bandwidth has been improved to $12.5 \mathrm{MB} / \mathrm{s}$. The device can operate two protocols simultaneously. Celdis, 0734585171.

Signal processing codec filter. Siemens SICOF 1 - 2 for ISDN switching systems can process two channels on one chip. An $10 \mathrm{M}-2$ interface should avoid compatibility prolems and programmable fitter

ICP series of dedicated on-board eprom programmers. Stag Microelectronics 0707332148
coefficients will enable matchirg of national standards. Power consumption is maximum 5 mW for both channels in power-down mode. Siemens, 0932752323.

Software

PCB design. RUN Electronic Design System for the Apple Macintosh, can deal with surface mounted devices cna multilayer board, and PCBs up to 32×32 in with up to 50 layers can be created with an internal resolution of 0.0005 in. Autoroute algorthms included, and up to 24 signal and power layers. Prices from $\$ 1000$ to $\$ 9500$. Formula GmbH.

Image processing. Real time cisplay, full image set-up, acquisition and analysis control are the features of MetraByte's MV. RMAC designed for use with PC/XT/ATs and compatibles. Systems must be equipped with MetraByte's MV1 frame/line grabber board. Menu selection should allow inexperienced users to access all features. Kerthley Instruments, 0734861287.

PC-based network management. CMS Nucleus 200 is network software for PC/XT/ AT PS2 and compatibles which Racal-Milgo says offers the benefits of mini-computer systems, but at lower cost. It will control up to 512 devices. Operator training is minimised through mouse control and windows/menus. Facilities include monitoring, testing and database management. Racal-Milgo, 0256763911.

PC8 design. Cadstar Professionat, running on PCAT, PS/2, Compaq 386 or compatibles, will help with design of large. complex, multilayer PCBs encompassing surface mount and fine line technologies. This enhanced version of the standard Cadstar package will cope with 5400 connections and over 50,000 segments. It has blind and buried via capabilities over all 16 permitted layers. Racal-Redac (UK) 0684 294161.

Back-up utility. SitBack from Roalan is a memory resident utility especially useful for users who forget to back up their files. At defined intervals SitBack will back up created or changed files without disturbing normal use of the PC, and without user intervention. Uses 13 k system memory and costs £99. Roalan International, 0202 861512.

Interfaces

Parallel DMA link. Ikon 10092 card provides a high speed parallel DMA port between Versatec or Centronics-type hard copy devices and 1 BM compatibles. It can be used in any AT-compatible or with a peripheral device adapter such as that provided with Apollo DN3000/4000 workstations. Taking up a single AT slot it allows a 6 MHz PC/AT system to transfer data at up to $425 \mathrm{kB} / \mathrm{s}$. GMT Electronic Systems, 0372373603.

DMA paralle interface. Compatible with DE DRV1 I-WA, Q-bus, MicroCax II and 18bit and 22-bit backplanes, the GT370 DMA board features 16 -bit input and output ports, used to transfer parallel data to and from the Q-bus under program control or DMA. For heavily driven I/O or DMA driven the unit contains a jumper throttle allowing selectable interleaving on and off the bus. Lighthouse Electronics, 082568849.

I/O controller. The IO 186/070 analogue and digital I/O board for Multibus II systems manufactured by Concurrent Technologies is available through Rapid Silicon. It has a 10 MHz 80186 CPU , six analogue outputs (employing 12 -bit D/A converters and amplifiers). 16 single ended or eight differential analogue inputs $(0$ to +10 V and 0 to -10 V) and 48 digital I/O lines. Rapid Silicon, 0494457267.

In-circuit emulator. Reduced program download time - typically 4 s for a 16 k object and symbol file - is one of the advantages of Nohau's 68 HCl 1 emulator Nohau claims this is the first emulator to be PC resident rather than stand alone. High sample rate, through eradication of the usual serial link, is another plus. Nohau UK 0962733140.

A selection from our stock of branded valves

 DAF9)
DAFF\%
DC. 70 0,0
$0 \times x \cdot 4$
0×1

$$
\begin{gathered}
\infty \\
50 \\
50
\end{gathered}-
$$

\section*{| k |
| :--- |
| K |
| $\mathrm{~K} \nmid$ |
| K |
| k |}

0
0
0
0

Q85 3500595.00
QOE02 519.50
QQE03 1? 7.95
00E03 2035.00
OCEO6-40 45.00
00v02 619.50

W21	4.50	4832	35.00
W61	4.50	4807A	1.75
W71	5.00	AB26	1.95
WBIM	4.50	${ }^{4} \mathbf{C} 28$	25.00
W739	1.50	${ }_{4} \mathbf{C} 35$	145.00

Audio current conveyor

A recently introduced integrated circuit could be the answer to the harshness in sound that has been a common criticism of compact disc players. The device uses a current conveyor configuration to give low-distortion and wide-bandwidth functions such as gain blocks, inverters and virtual ground inputs without the global negative feedback required by most other circuits such as operational amplifiers. It is therefore inherently free of dynamically induced distortion.

Global feedback techniques can introduce dynamic distortion such as transient intermodulation (TIM) and slewing induced distortion (SID). Many audio signals are band limited and therefore may not contain the fast edges needed to generate this type of distortion but there are notable exceptions. For example, the dynamic characteristics of op-amps in the D-to-A stages of digital recording and compact disc equipment must be considered carefully to eliminate distortion.

The new IC could be the answer. It comes in two versions, PA630 and PA630A, and each has two unity gain buffer amplifiers, a current mirror, and a current conveyor block. The PA630 is a 16 -pin device and the PA630A has two extra pins to give more flexibility in interfacing.

Each unity gain buffer amplifier (Fig. 1) consists of four emitter followers and two current sources. The quiescent operating point of each can be set independently with an external resistor. This arrangement produces a fast unity gain buffer that uses only the local feedback inherent in the emitter follower configuraton.
The current conveyor consists of two complementary cross-coupled current mirrors and an output transistor. This arrangement produces a virtual ground without the global negative feedback needed in op-amp type circuits. One mirror can set up an opposing reference current to define a net output current of zero at one of the pins for any desired input current. This combination of a current conveyor and opposing current mirror lets many useful function blocks be realised.

The on-chip circuitry consists of a connection of Wilson current mirrors, an emitter degeneration compensation
scheme to optimise the transient response and stability of these mirrors, and an output mirror arrangement to improve output impedance.

The nature of the high impedance current output allows for some interesting applications. Since the input reference (ground) and output
reference (cold end of the load) can be independent, signals can be level shifted between any two voltages in the common mode range. This could be used to isolate two grounds in a system while still retaining DC coupling. In audio systems this could help eliminate noise caused by ground loop circulating currents.

Fig. 1. Functional schematic of the PA630

Fig. 2. The output from the CI player

CIRCLE NO. 134 ON REPIY CARD

Business Integrated Test Systems

Unit 1, Holmside, Harrow Rd. East Dorking, Surrey, RB4 2AU

SOFTWARE DEVELOPMENT TOOLS

APRIL Eprom Emulator $£ 170$ inc P\&P
8/16 bit emulation up to 32 K as standard. 2764, 27128, 27256 devices.
Power drawn from Device Under Test Low power consumption (30mA typ). Intelligent PC software to load Binary, Intel format files etc.
Software includes a full function monitor with on board help. Dimensions: $200 \times 112 \times 30$ Access time better than 150 nS . All cables \& documentation supplied.

If you would like more information or place an order please write to:

- Business Integrated Test Systems -

FULL SPECTRUM MONITORING

The world is at your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, super wideband range of 100 KHz to 1999.8 MHz and a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutionary IC-R9000 teatures IF Shift, IF Notch, a fully adjustable noise blanker and more. The Direct Digital Synthesiser assures the widest range, lowest noise and rapid scanning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning modes include programmable limits, automatic frequency and time-mark storage of scanned sigmals, full, restricted or mode-selected memory scanning priority channel walch, voice-sense scanning and a selectable width around your funed frequency.

ICOMIsom (UK) Lid. Tel: 0227 363859. Telex: 965179 ICOM G N.B. For Wales and the West contact M.R.S. Communications Lid. Cardiff. Tel: 0222224167.

[^1]Name/address/poskode

Job Title
Tel:
Posito lcom (UK) Led Depi.WW, FREEPOST, Herne Bay, KentCT68BR CIRCIENO. 158 ON REPLYCARD

Fig. 2 shows the PA630 used in a typical compact disc player where the current output of a D-to-A converter, which must drive into a virtual ground, is opposed by a 2 mA current to establish the zero reference for the audio signal. The current conveyor together with a buffer section provides the virtual ground and performs the I to V conversion with a high frequency roll off. The filter is a Salen and Key second order linear phase based around a buffer connected as a unity gain op-amp.

Operation

Each unity gain buffer amplifier consists of four emitter followers and two current sources as shown in (a). The quiescent operating point of each can be set independently with an external resistor (Rset) connected as indicated. Pin 1 and pin 3 may be left open to save current if this buffer is not required, but since the other buffer provides internal bias, it must be powered up with an output stage current of no less than one tenth of the conveyor quiescent current. As the current sources are actually Wilson mirrors (2 Vbe), and the output devices are five times larger than the input transistors, the quiescent current in the output stage can be calculated as: $5\left[\mathrm{~V}_{\mathrm{cc}}+\mathrm{V}_{\mathrm{ee}}-2.8 \mathrm{~V}\right] / \mathrm{R}_{\mathrm{sel}}$.

The current conveyor block consists basically of two complementary crosscoupled current mirrors and an output transistor. Referring to (b) if pins 5 and 6 are shorted to ground, and current is sourced from pin 7, then to a first

Conveyor configurations: (a) butter; (b) Inverter; (c) in phase; (d) jfet output; and (e) rectifier.
order, equal currents are sourced into the ground and pin 10. Of particular interest is the fact that pin 7 will be driven to a virtual ground potential, regardless of the current levels being sourced. Conversely, pin 10 becomes a high impedance output. Current is therefore conveyed from pin 7 to pin 10 unaltered, except for impedance level. This arrangement produces a virtual ground without the global negative feedback required in op-amp type circuits.

By using both the conveyor and the current mirror, the inverting gain block of (b) is produced. Since pin 7 is a virtual ground, and the mirror is a Wilson ($2 \mathrm{~V}_{\mathrm{bc}}$), R_{3} sets up a quiescent current around the loop equal to:
$\left[\mathrm{V}_{\mathrm{ee}}-1.4 \mathrm{~V} \mid / \mathrm{R} 3\right.$.
If Vin is left open or connected to ground, pin 10 will also be at ground, since all currents balance. The gain of this block is R_{2} / R_{1} and it is bidirectional up to the level of current set by R_{3}. It should be noted that both the

Toumazou \& Lidgey

Introduction to

 Analog Design28 March - 4 April 1990

Franca \& O'Leary
on
Mixed-Mode System-Level Design

25-27 April 1990
Spence \& Soin
on

> Tolerance Design

Phillip Allen on

9, 10 July 1990

CMOS Aralog Integrated Circuit Design \& CAD Techniques

Barry Gilbert on

16-20 July 1990

Advanced Bipolar Analog Design

```
24-28 September 1990
```

Courses to satisfy the demand for vital but scarce skills in

Analog Circuit Design

Continuing Education Courses at Imperial College, London, England
Further details from: Peter Combey, Continuing Education Centre, Imperial College,
London SW7 2AZ, U.K. Call (44)-1-589-5111 Ext 3033/4 or FAX (44)-1-584-7596
input and output are actually currents that are converted to voltages by resistors R_{1} and R_{2} respectively. By eliminating one or both for these resistors, many current mode applications can be addressed.

A non-inverting configuration of the circuit is shown in (c). The gain is $\mathrm{R}_{2} /$ R_{1} and R_{3} sets up the quiescent current

Tape head amplifier

The voltage level at the output of the playback heads is too small to be useful without a large amount of low-noise preamplification. The preamp should have enough open loop gain so that the correct equalisation curves can be produced in the feedback networks of the amplifier.
The NE542 dual amplifier provides a matched pair of gain blocks that minimise amplifier noise and maximise the signal-to-noise ratio. Each of the two amplifiers is independent with individual internal power supply decoupler-regulator. Open loop gain is 104 dB from two stages of voltage gain and one stage of current gain.

When designing low noise devices special care must be focussed on the input stage. If different topography is used, the stage should be designed so that one of the differential transistors is turned off. This reduces the noise by a factor of 1.4 since only one transistor is producing noise. Current sources and mirrors cannot be used for biasing loads because active elements will contribute more noise. The first gain stage of the NE542 allows this (see Fig. 1).

Although the differential input configuration degrades the noise performance slightly, using differential inputs has the advantage of higher input impedance letting smalter capacitors and larger resistors be used.

The second stage, also shown in Fig. 1 , is a common-emitter amplifier Q_{5} with a current source load Q_{6}. The Darlington emitter-follower $\mathrm{Q}_{3}-\mathrm{Q}_{4}$ provides level shifting and current gain to Q_{5} and the output current $\operatorname{sink} Q_{7}$. The voltage gain of the second stage is about 2000 making the total gain of the amplifier typically 160000 in the differential input configuration.

The non-inverting input has been internally biased from a 1.4 V internal voltage source. From the zero differential rule, the output voltage will be set by the R4 and R5 resistor feedback network in Fig. 2. The base of Q2 needs $0.5 \mu \mathrm{~A}$ bias current. Hence R5 should pass at least $5 \mu \mathrm{~A}$ for stability.

DC amplifier gain is defined by the
as before. By making $\mathrm{R}_{4}=\mathrm{R}_{1}$ and $\mathrm{R}_{5}=$ R_{3}, transistor output impedance errors are minimized.
The additional pins on the PA630A can be used to interface with two external jfets which buffer the output, as shown in (d). This provides high output impedance, improved accuracy, and lower distortion.
ratio of R4 and R5. Open loop AC gain can be regained by adding a shunt capacitor across R5. The low frequency 3 dB corner is then defined by the capacitor-resistor break point.
Design of a preamplifier starts by determining the gain and output signal amplitudes in reference to the standard $800 \mu \mathrm{~V}$ input signal level. The NE542 is used to achieve a 100 mV output at 1 kHz following a $7.5 \mathrm{in} / \mathrm{s}$ equalisation curve. The closed loop gain becomes 32 dB at the highest frequency.
The NAB equalisation curve is
achieved by adding frequency-selective AC feedback as shown in Fig. 3. Resistors R4 and R5 select the DC gain. Lower corner frequency $0.159 /$ $(\mathrm{C} 4 \times \mathrm{R} 4)$ gives a C 4 of $0.0047 \mu \mathrm{~F}$.

The upper corner frequency is similarly fixed by the reactance of C4 and R7 and is equal to $0.159 /(\mathrm{C} 4 \times \mathrm{R} 7)$.

Midband gain is fixed by ($\mathrm{R} 6+\mathrm{R} 7$) R6. Solving for the 1 kHz gain of 42 dB gives a value of 88Ω for R6. The final calculation of the low frequency cut-off of the preamp determines the size of C 2 from C 2 equal to $0.159\left(\mathrm{f}_{\mathrm{cut}} \times \mathrm{R} 6\right)$.

The precision rectifier circuit (e) provides glitch free performance up to 1 MHz due to the diodes being current driven and no feedback. Even fast opamps ($30 \mathrm{~V} / \mu \mathrm{s}, 20 \mathrm{MHz}$) will produce distortion spikes well below 100 kHz when used as precision rectifiers, due to the slew rate limitations from having the diodes inside the feedback loop.

NOTE:
All resistor values are in Ω
Fig. 2. Differential input biasing NES42. Fig. 3. NAB response amplifier.

Fig. 1. Equivalent schematic of the NE542.

SPICE•AGE

Non-Linear Analogue Circuit Simulator £245 complete

or $£ 70$ per Module

Those Engineers have a reputation for supplying the best value-for-money in microcom-puter-based circuit simulation sottware. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-ot-use, performance. and lacilities
SPICE AGE periorms four types of analysis simply, speedily, and accurately

- Module 1-Frequency response Module 3-Transient analysis
- Module 2-DC quiescent analysis Module 4 - Fourier analysis

Frequency response of a low pass filter circult

2 DC Quies cent analysis
SPICE AGE analyses DC voltages in any network and is useful, for example, fo setting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components - see below). This type of analysis is ideal for confirming bias conditions and establishing clipping margin prior to performing a transient analysis Tabular results are given for each node the relerence node is user-selectable.

1 Frequency response

SPICE®AGE provides a clever hidden benelit. It first solves for circuit quiescence and only when the operating point is established does it release the carrect small-signal results. This essential concept is featured in all Those Engineers' software. Numerical and graphical (log \& lin) impedance, gain and phase results can be generated. A 'probe node' leature allows the output nodes to be changed. Outpul may be either dB or volts; the zero dB relerence can be defined in six difterent ways

DC conditions within model of 741

Impulse response of tow pass filter (transient analysis)

4 Fourier analyses

SPICEAGE performs Fourier trans forms on transient analysis data. This allows users to examine transient analy sis waveforms for the most prevalent trequency components (amplitude is plotted against frequency). Functions as a simple spectrum analyser for snapshct of transients. Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination of waveform through diferent windows Powertul analytical lunction is extremely easy to use.

3 Transient analysis
The transient response árising from a wide range of inputs can be examined. 7 types of of excitation are offered (impulse. sine wave, step, trangle, ramp, square, and pulse train): the parameters of each are user-definable. Reactive components may be pre-charged to steady-state condition. Up to 13 voltage generators and current generators may be connected Sweep time is adjustable. Up to 4 prode nodes are allowed, and simultaneous plots permit easy comparison of results

Spectrum of rectangular pulse train (Fourier analysis)

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.

A good range of properly supported and proven programs is available and our expert staff are at your service

Telephone: Charles Clarke on 01-435 2771 for a demonstration disk.

C.A.D. SOFTWARE MADE EASY

ISIS SCHEMATIC CAPTURE

An exceptionally casy way to draw circuit diagrams on your PC. Once the design is on the computer, you can generate a parts list, perform an electrical rules check, extract a netlist for PCB design and/or simulation, print hard copy on a wide range of printers and plotters, or else export it to a DTP package to create professional quality documentation.

- Auto wire routing
- Auto dot placement
- Auto name generator
- Powerful editing facilities.
- Object oriented 2D drawing with symbol library
- Support for hierarchical and multi-sheet designs.
- Comprehensive device libraries.
- Output to dot matrix, pen plothers or lasers.

PC-B PRO/AR PCB DESIGN

User friendly PCB layout software with optional auto-router. The layout editor (PC-B PRO) handles 2 copper layers plus overlays and solder resists whilst the auto-router (PC-B AR) will route single or double sided boards on a 25 or 50 thou grid. Together with ISIS, you have an integrated design system that really puts your computer to work.

PRICES

Call for FREE demo
disks - 0274542868.

- Auto generation of silk screen/overlay as com ponents are placed
- Auto generation of solder resists.
- Configurable object sizes. - On screen ovenview display - On screen pin numbering.
- Connectivity highlight.

Back netlist verification against schematic

- Dot matrix, laser, pen plot and Gerber drivers

TATUNG PG2000. Big broiher oi ine iannuis Einsierin. The resolution Green 12" muntor. Sculphired 92 key ke yboard and pinthunit comainmig 280 A GPU and all coutro circults. PLUS 2 olther heatures Inciude duall $8^{\circ} 18 \mathrm{~mm}$ formal disik orive suppor Senal and paralted culpurs, full expansion punt, 64k suppon. ready to nun soitwara. Supplied complete with CrM. Worustar and Basic. Brand new and covered by our fankus 90 day
gomeramee and beckup. Normaj price of this uniti is over $\hat{£} 1400$ in

SPECIAL PURCHASE
 V22 1200 baud modems

We got a trenmenours buy on funher siocks of this pupular Mastor Systerna 212 microprocessol comiroheci v 22 full dupiex
 v22 high speod data cornm, which at 120 ops, can save your mm high. Full featured with LED status ind caiors and remote errur diayimstics. Syic or Async use' suach or dia smioting errur dayirustios. Syice or Async use; speoch or dala smiching;
builh in $240 v$ madins supply and 2 mre colinection to BT. Units are in used but guud cond tion. Fuily tesied prior despatch, with and at this pricell

ONLY 169 (D)

MONITORS

Decce $16^{\circ} 80$ COLOUR MONTTORS
Decca 1680 senes oucgat range coicull In whicurs. Feabures incluce PR abe, hcused In a beautiul teak siye case and
guaranteed 80 colunnil resolution, featuias which ais ondy nor guaranteed 80 colunum resolution, teatures which ais oniy nor absotutery fratay to culnect to a host of compuier or video outputs. Marntacturers fully iesied surpilus, soidinititle or hardly Compu 75 onin comuposite undeo input with liriegred audio amp o speatiker. Kosal tor use with video rexurdial ul vir Teriebox
or arty otiver aucho visual use. Only $\mathrm{EY9.00}$ (E)

HLDEFINI IION COLOUR MUNITURS
 Mitsubushi 0.42 dot pitch giving 669×507 pixeis. Big 28 Mhz
 $20^{\circ}, 22^{\prime \prime}$ and 26° AV SPECLALS Superbly made UK manutacure. PIL all solid staie colou jive ieak singe Case. Periect for Schools.Sinus, Uisco, Clubs.

$20^{\prime \prime} \ldots £ 1552^{\circ \prime} \ldots . £ 17026^{\circ} \ldots £ 185(F)$

 MONOCHROME MONITORS
 green screncolitc sile intpul with etched fon-giare screell plus switchabie rugiviou impedanie inpul and cutput lui darsy-chaining. 3 front controis anci 6 ai rear. Standard
BNC suckeis. Beowirul high corniasi sciedil ano antractive case
 CALL FUR UISCOUNTS ON HIGHER GUANTIIES

 ing uniy $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 220$ ideaj for CCTVy or coinpu
 sylus. Newus 1 ivdc at oniy 0.8a. Somo units may have minor alla. $829.001 \mathrm{C})$ Qald.
Fully end as above in attracive nuciuied oesk sianding
swiver. Olin $12 \times 14.5 \times 26 \mathrm{~cm}$. swver. Olin $12 \times 14.5 \times 26 \mathrm{~cm}$. E3.00(C) a 14 a 18 cin . Simpie DIY data inciudoui ic curvesti io composite ndeo infur Full data. BRAND NEW E85.004(E$)$ 20 Bleck a woute mionifors by Aciek. Coifon a Naĩoliad. Al applicalions. Standard corrsusile videu infes is av or cciv applicalions. Standard cornusile viou in wis win megia win sc diy

FLOPPY DISK DRIVES
 BARGAINS GALORE !

NEW 51/4 Inch from $\mathbf{E 2 9 . 9 5 1}$

 (uniess slated) are remuved from beulling low pricesi All units ond are fully tested,allgned and shipped to you with a 90 day and accept the standard 34 way connecter are of standard size SHUGART SA4O5. BRAND HEW TANDON TM 100-2 BRAND IBMEW COMpatidie DS E29.95(B) ANDON TM101-4 80 Track DS CANOH, TEC etc. OS halt height. State 40 or 801 TEAC FD-55-F. $40-80$ OS hall helght. BRAND NEW $31 / 2$ INCH BRAND NEW AT E 19.95 IINo be by Canon. Brand new and packaged - mint conditlent 40
track SS, run from $+58+12$ voc with standard power connec
E 9.95 or 2 for 23450 (B)
CHOOSE YOUR 8 INCHI
CHOOSE YOUR 8 INCHI
Shugart 800/801 SS refurtished \& tested
Shugart 851 double sided returtished \& tested Whtaibl ont Mor804-63 double stided swichable hard or solt sectors- BRAND NEW
SPECAAL OFFERSI!
$\mathrm{E125.00}(\mathrm{E})$
$\mathrm{E195.00}(\mathrm{E})$
E250.00(E) Dual 8 " drives with 2 megabyte capadty housed in a smart case with built in power supplyl Onily 8499.00 (F) deal as exterior drives!

$$
499.00 \text { (F) }
$$

End of Hne purcheee ecoop! Brand new NEC D2246 8" 85 megabyte of hard disk sloragel Full CPU comtrol and Industry landes the good old ST506 intertace standing and access tme and comes complele with manual. Oniy......................E399(E)

MANS SJPPRESSORS \& FILTERS

The "Flitan" Irom Crotan Is a British made high current mains splke suppressor and RF fiter in one, capable of handing up
to 10 ampsi The attractive case has an Integral 13 amp sockel tor your equipmem plug and a tiving lead ierminates in a oually ptug (to BS 1363 a standard) to go to the mains socket. There Is anintemal fuse plus one in the plug. Two LED Ind cators, one or power on and the other ligms if the internal fuse lalls. Dims. 6°
$\times 3^{\circ} \times 2^{\circ}$. Brand new. Distributor's price. 565.001 Contineta plug version Filt-C. Elither only E15.95 eech or 2 tor EX9.95 (B) amps maximup L2127 mans RFI illers rated at 250 volts 3 (English cooling), and a three pin miniature non revorslus cable and andig), and a three pin miniaiure non-reversible sock who are bugged by RF to go to the equipriwnt. Ideal for those
c3.05 eench or 3 for E 10 (A)

COOLING FANS

Pleen woe apecity 110 or $\mathbf{2 4 0}$ volte for AC fans.

 $31 / 2$ lnch 4 linch 4 linch 10 inch62 mm 62 mm 4 Inch AC ETRI slimiline. Only $1^{\prime \prime}$ thick. AC $110 / 240 \mathrm{v} 1 \mathrm{~V} \mathbf{R}^{-1}$ thick. AC $11 / 2^{-1}$ thick
Round $31 / 2$ thick. Rotron 110 v
DC 1 thick. No. 812 for $6 / 12 \mathrm{v} .81424 \mathrm{v}$.
DC 12 v .18 mm thuck. DC $12 \mathrm{v} .12 \mathrm{w} 11 / 2^{-1}$ thick
RECHARGEABLE BATTERIES

LEAD ACID

volts
 rance it ered loing itte. Type A300

12 volte 12 volla 6 volts 3 amphours
12 vols Centre fapped 1.8 amp hours SPECAAL OFFERI

ع13.95(A)
E13.95(A)
$\varepsilon 9.95(\mathrm{~A}$
$\varepsilon .95(\mathrm{~A}$
$\Sigma 5.95$
$\mathrm{E} 29.00(\mathrm{~A})$

3VB1 100 . Leakproot with addittonal snap on chloride Powersate tor uninterruptable power supplits, poriable powtr seurce K 39 (E)

Technicoiol
video 12 r a ah coll pack. Ongnally made for the Technicololo
smant robust case with a DC outpul coinnctor. Ideal for portable Exuiprnent. Brand naw.
Ex equipmient NICAD cells
GE. Removed from equipment

D size 4ah

F size 7ah
SPECIAL INTERES
6 for 58 (B)

Recul-Aedac real time colour drafting PCB layout system. In DEC VAX11/750 inc. 2 Mgg Fam DZ and full docurventation, in brand new conoitionl
muriby La 160 A logic analys 3 pen plotiter
1.5kw ifve 60 Hz power source

Weyne Ker RCzto er source
Woyne Kerr Raz00 audio rad time treq.res. analyser.
VG Electronice 1033 Teleie xt Bndyg
Tehtrontce R140 NISC TV Iest Sge
Tetrontce A140 NI SC TV Iest sigial standard.
Sony KTX 1000 Videotex sysiein -
Sony KTX 1000 Videotex sy
OECLIS11/02 CPU board
 ع $2.50(\mathrm{~B})$
$\varepsilon 9.95(\mathrm{~B})$ ع10.95(B) $\varepsilon 10.95(\mathrm{~B})$
$\varepsilon 9.95(\mathrm{~B})$ ع10.95(B) E15.95(A) E14.95(A)
E1250(B) $1250(\mathrm{~B})$ B)

Brand new high quality, fully cased, 7 channel UHF PAL TV tunel
system. Unit simply connects to your TV aefial socket and colour It your monitor does'n' have sound, the TELEBOX Dont worry Integral audo amp for driving a speaker plus an aven has an Integral audio amp for driving a speaker plus an auxllary output
for Headphones or Hi F system etc. Many other features: LED Status inclicator. Smart moulded case, Mains powered, Bullt to BS salely specs. Many other uses for TV sound
Supplled BRAND NEW with full 1 year guaramee.
Telebox ST for composite video Input monitors.
Telebox STL as ST bull with Integral speaker.......... ©39.95(B)
NOT sultable for IBM or Clone type colour monitors.

BRAND NEW PRINTERS

Epson MX-00 F/T One of the most popular printers around enlarged, bold, condensed etc. Standard parallel interlace. Brand pauer. OK with 1 BM PC. Handes tractor,tanfold and Individual FOR A UM TED TIME ONLY.............................. 129.00 (E ard paraliel. Full pin adil desklop. 100 cps with AS232 and stand tc 9.5° paper. Sheet 8 tractor teed. SPECIAL SALE $\mathrm{EP9.00}(\mathrm{E})$ Centronics 150 serles. Aways known for their rellability in con with 4 fonts - real workhorses in any envice of interfaces. 50 su

LARGE OUANIIIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI
IBFLfut
Electronics-

ALL ENQUIRIES
$01-679-4414$
Fax-01-69-9.927

Telex- 894502	vin

CFA EXPERIMENTS

Amajor difference between this article and its predecessor in the November issue is that, as an amateur radio group, we have become convinced, since that article was written, that the CFA does indeed work effectively. We are now concerned with its performance and the potential for further development.

The question of whether the theory expressed in the original article by Hately, Kabbary and Stewart in the March 1989 issue is the correct explanation for the practical results we have experienced, we must leave to others better qualified to judge. However, we feel that whatever opinion may be expressed in this context, the authors have produced what appears to be some entirely original thinking which ought to be acknowledged as such.

Matching the feed

Since my previous article, I have made efforts to achieve a matched feed system for the CFA - for two reasons. Firstly, a matched system with more or less "flat" lines might avoid the criticism that all we have been doing is using the combination of the feed lines, the CFA and a matching unit to create a resonant system in which most of the radiation is from the feed lines.
The second and more important practical reason for a reasonably matched system is to obtain correct phasing; Hately confirmed that the required phasing between the plates and cylinders of the CFA is the 90° shown by our experiments.

The next step was to use a noise bridge to check as carefully as possible the approximate impedance of the plates and cylinders of the present version

Bryan Wells* reports on further experience with the barrel-shaped crossed-field antenna

*G3MND representing an amateur
radio experimenter's group.

Fig. 1. Impedance matching to 50Ω line. A 1:4 balun by Goanella, taken from Transmission Line Transformers, published by ARRL. Each element wound on 0.5in diameter ferrite rod of Q1 material. It is reputed to give 4:1 ratio from $50 \Omega 2$ unbalanced to $10-15 \Omega$? balanced over $1.8-1.5 \mathrm{MHz}$.
of the barrel-shaped CFA. (Previously I had obtained some very doubtful results, suggesting a very high radiation resistance and of course a substantial X_{c}.) Eventually, repeated measurements suggested that the impedance for both plates and cylinders in the $\mathrm{R}+$ jx form was of the order of 10Ω and 100Ω. Because of the difficulty of making accurate low-value resistance measurements with the noise bridge, these figures were checked by substiluting with $1 \% 8-12 \Omega$ carbon resistors. It seemed that the resistance values might be overstated, but only slightly.

An obvious way, neglecting reactance effects, of matching 12Ω to 50Ω co-ax. seemed to be a one-to-four, balanced-to-unbalanced transmissionline transformer that could be effective over the range $3-30 \mathrm{MHz}$. I constructed this transformer along the lines shown in Fig. 1, only to find that although it behaved perfectly well with a pure resistance load, its transformation ratio varied widely with even a slightly complex load and did not provide even a reasonable match for the transceiver. I put this down to its inability to cope with the inherently high capacitive reactance of the CFA, together with my use of ferrite core material of unknown specification. Attempts to cancel out the reactance with a conjugate inductive element did not achieve the desired result.

Series-section matching. My next thought was to try series-section matching and wrote a simple Basic programme so that I could vary the line-impedance values to see which combination could provide a match and also be of the shortest possible length. 1 eventually settled on the

rather clumsy and complicated looking system indicated in Fig. 2. A 1 m length of $300 \Omega 2$ ribbon makes the balanced connections to the CFA, and is immediately followed by a bifilarwound line transformer in the form of a sortabalun. (A balun of this kind is intended to provide a transition from balance to unbalance without necessarily forcing balance to earth).

A second series of impedance measurements was now required at the transceiver side of the sortabaluns for use in the final series-section calculations. The sortabaluns did not appear to affect the resistance values, but their inherent inductive element counterbalanced some of the CFA capacitive reactance. The impedance finally used for the series-section calculations was $\mathrm{R}=10$ and $\mathrm{X}_{\mathrm{c}}=100$ with 50Ω co-ax. as the main line and 300Ω ribbon as the series-section. Mixing balanced and unbalanced lines in this way is not very elegant, but seemed to be the only practical way to achieve the required transformation. Figure 2 also includes a very simple and effective phasing system drawn from a recent article in CQ Magazine, August 1989.

Operating experience with this system has shown that the phasing method

Fig. 2. Series-section matching. Phasing unit design appeared in CQ August 1989, p. 30.
works well and has produced the best CFA results so far on 40 m , for which the series-section matching was designed. Without altering the matching sections, the system also gives acceptable results on $20 \mathrm{~m}-I$ managed a contact in Western Connecticut in relatively poor conditions, using 350 W PEP to maintain a Q5 signal. The CFA is located about 25 feet above ground, inside the roof space of my house.

Perhaps the most surprising and puzzling results of all with this 40 m matching arrangement is that it has produced even better results on the 80 m band, where it has, at times, equalled the 272 ft -circumference horizontal loop at 35 feet that I normally use.

These results on 80 and 20 m caused me to question exactly what was happening in the series-section matching. It seems that one way of interpreting Fig. 2 is that it places plate and cylinder lines in parallel at the phasing unit, which suggests that the matching system has fortuitously provided a transformation to 100Ω on each line and a

Dimensions in mm

Fig. 3. Dimensions of CFA.
50Ω load for the transceiver.
To check this possibility I used a PL259 T connector to submit the plate and cylinder series-section "matched lines" directly to the transceiver without any other intervention; the result a perfect match and 1:1 SWR.

Further measurements showed an impedance at the end of each line of 100Ω and a small inductive reactance. Reintroducing the phasing circuit made no difference to the 1:1 SWR once it was correctly adjusted to give equal RF voltage readings in the two feed lines to the CFA. I think it is important to stress that a perfect match was available without any additional tuning or matching unit over the whole 40 m band, so the series-section match was working, but in an unpredicted way.

Fig. 4. Alternative 90° phasing method, adapted from ARRL Antenna Compendium Vol. 1, p. 67. L_{I} consists of 7 bililar turns of 32 -strand insulated wire on Amidon T200 Red Mix iron powder toroid.

RADIO COMMUNICATIONS

Hybrid combiners. Meanwhile, my attention had been drawn to an article in the ARRL Antenna Compendium, Volume 1, p.67, on phasing four 40 m vertical antennas by means of hybrid combiners. The initial combiner, a four-port device - all ports presented with 50Ω loads - produces two of its outputs at $\pm 45^{\circ}$. If my matching to 50Ω had not been shown to be flawed, this would have been a more or less ideal way to provide single-band phasing for the CFA, particularly since it was a broad-band device.
The "Twisted-wire Hybrid Combiner" was not difficult to construct as illustrated in Fig.3. Despite the mismatch with 100Ω plate and cylinder lines, I was delighted to find it worked well over the whole 40 metre band with a direct match to the transceiver and an SWR of about $1: 1.3$ without a matching unit. It may be slightly down, less than an S point, in comparison with the tuned phasing system. Again the hybrid is supposed to exhibit heavy dissipation in the dummy load if not presented with the correct $50 \Omega 2$ to each port. This did not seem to amount to as much as 5 W : probably accounted for by, at least the two antenna lines are about equal at 100Ω.

The question of why I failed 10 produce the designed 50Ω transformation with the series section intrigued me; running the computer programme again, I discovered that I had been working at the limits of what a 6:1 series-section combination could achieve.

Slotted 300Ω ribbon. If the CFA impedance had a resistance of less than about 8Ω, the series section would not work. In fact, its length approaches the length of the main line and the total becomes more than a half wavelength. This made me think that I might try out an electrical half-wave length of slotted 300Ω ribbon as the feeder to plates and cylinders. On 40 m this would mean that whatever impedance existed at the antenna would be repeated at the opposite end for any measurement purposes. I could also use the two sortabaluns to provide balance transition from the transceiver end of the 300Ω ribbon and use the $C Q$ tuned phasing system and a final matching unit for the transceiver's 50Ω needs. This arrangement would also provide multiband operation. This arrangement is now in use and works well on 80,40 and 20 metres.

All the effort with the series-section experiment had been useful experience and did provide matching of a kind which, so far as I could measure, eliminated most feeder radiation.

In making all the measurements that have been described, resistance values of somewhere between 7 and 12Ω have been encountered from the CFA at 7.07 MHz . These values are much larger than any DC resistance values, even if the circuits were closed. Does this confirm that the CFA does create a radiation resistance element as required for antenna operation? If not, where does this apparent resistance come from?

> The crossec-field antenra was described by F.M. Kabba y, M.C. Hately and B.G. Stewart in the March, 1989 issue of Electronics and Wireless World. It is intended to synthesize directly the Poynting vector $\mathbf{S}=\mathbf{E} . \mathrm{H}$ from separately stimulated \mathbf{E} and H fields and one result of the develc.pment is an extremely small and compact design which is independert of the radiated wavelength.

> There hare been criticisms of the design, some correspondents saying that it cannot possibly be practicable, but Bryan Wells has made models which appэar to work well. He described some initial experiments in the November 1989 issue.

Bryan Wells' original CFA developed from an original and patented idea by Hately and Kabbary.

55 WATTS $=3$ HP=YOUR SPACE PROBLEM SOLVED

* Single, Dual, and Triple Outputs * 55 Watts Fan Cooled
* 35 Watts Convection Cooled (55W pk)
* 90% Efficiency
* $0-70^{\circ} \mathrm{C}$ operating range
* $-25^{\circ} \mathrm{Coption}$
* RFI meets VDE 0871 Curve B
* Dual ĀC input
* DC input options
* Meets VDE 0804, 0806 IEC 380, 950, BS 5850 UL \& CSA
* M.T.B.F. 80,000 hours
* All outputs independently regulated
* No minimum load required
* Pi Filter option to Telecomm Specs.
* OV Protection
*TTL Shutdown
* 400+ Standard Models available
* AC input
* Wide range DC input
* Chassis or PCB mount

* 1000+ standard models available
* Dual AC input
* DC inputs from 9.6VDC to 275VDC
* 6U or 3U
* 160 mm or 220 mm
*750W, 1000W, 1500W
* Single or three Phase input
* DC inputs from 24VDC to 220VDC
* Power factor correction
*M.T.B.F. 130,000 hours

Allen Brown reviews

an IBM compatible

 backplane card which converts a personal computer into a 25 MHz sampling digital oscilloscope.IBM PC architecture is hosting an ever growing variety of I/O expansion cards. The PC99 card from Amplicon converts a typical business machine into a dual function instrument: it acts as a 25 MHz sampling oscilloscope with storage and, secondly, it provides a two channel waveform generator.
The electronics takes the form of a full length card with an 8-bit ISA bus which can also be accommodated in an IBM AT (clone) or 386 based machine. The PC99 can produce two output analogue signals as well as sample two input analogue signals. To make the card convenient to use, there is an additional module which fits into the D connector of the card providing two input BNCs, two output BNCs and a fifth BNC for a trigger signal.
A set of software drivers accompany the card and produce a rather attractive mouse driven screen display. It will rum under the Hercules, EGA and VGA display formats. However when used with a VGA on an OPUS VI, the results were a little disappointing only two thirds of the screen was occupied by the display.

The input waveforms can be frozen and stored to disc for recall and display at a later time. When operating in its

PC Oscilloscope add-in

Engineering I/O Cards for IBM PC/XT/AT \& Compatibles

```
EdUCATIONAL SYSTEM 808816 Bll System + LCD Display ROMRAM DISK CARD 360K1.2Mb PC EPROM SRAM Memory Cartrldge industrial control cards 16 Channel Opto Input/Relay Outpu
Amplifier and Multiplexer
\(\mathrm{mV} / \mathrm{mA}\) Signal Conditioner Card
8 Channel SSA Drive Card AC (280V/3A) DC ( \(60 \mathrm{~V} / 3 \mathrm{~A}\) )
DATA INTERFACE TEST SETS
Parallel Tester
RS. 232 (Single/Dual States Mini) Tester
RS-232 Break Out
AS-232 Jumper Box
Loopback Tester
Interlace Problem Check Test Set
COMMUNICATIONS
3270 Bl-Sync Emulation Card
PC Modem Net ( \(4 \times 1400\) BPS)
INDUSTRIAL COMPUTERS SUB SYSTEMS
Industrial PC AT ( \(802868 / 12 \mathrm{MHz}\) ) Motherboard Industrial Computer Chassis (19"' Rack Mountable)
PC-BuS Card PC-bus Card Cage
EPROMPALUSINGLE CHIP
PROGRAMMERS \& TESTERS FOR PC XT AT
1/4:416 Gang E(E)PROM Programmers (16K-1024K) PAL Programmer
8748/8751 Series Programmer
Digital \& Memory Tester
Universal Device Programmer
MISCELLANEOUS
PC Talk (8K Bit Sec 8 Bh Linear Sampling Rate)
PC TV Video-Picture Framestore
```


- 48 programmable I/O line

3 independent 16 bit counter

- 16 LED V/O display

Port address selectable Complete range of PC-LabCards
Lsb \& Engineering Addon's for PCXTIAT \& Accessories
 ELECTRONICS 289 Birchfield Zoad Perry Barr Birmingham B20 3DD

け1. SERIAL \& PARALLEL CARDS PC Serlal/Parallel/Card......... PC Twin Serial/ Parallel Card.............

PC Serial RS-232 Card (COM1 or COM2) | PC Dual RS-232- |
| :--- |
| PC 4 Port Multi-Serial AS-2.......... | PC 8 Port Multi-Serial IS-232 Card.

\qquad
PC Serial RS-422 Card
PC Dual Serial AS-422 Card PC Dual Port RS-422/AS-485 Card PC 8 Port Serial RS-422 Card. IEEE-488 CARD
PC IEEE-488 Turbo Pascal, C \& Quick Basic Support Package £45
\qquad 192 Line 8255 Digital I/O Card

ANALOGUEJDIGITAL CONVERSION

 CARDS 12 Bit AD/DA Card.14 Bit ADDA Card.. $£ 85$

INTERFACE CONVERTERS
Serial to Parallel Interface
Parallel to Serial Interiace

PROTOTYPE CARDS

PC Universal Card
PC Extenslon Card +3 siot Board
Write in number 42

CIRCIE NO. 156 ON REPLY CARD

CIRCLE NO. 104 ON REPLY CARD

CIRCLE NO. 141 ON REPIYCARD
storage mode, the PC99 can display up to seven waveforms at any one time, five recalled from storage and the two live inputs. as seen from Fig. 1, the display is well laid out and the seven different colour attributes of each waveform adds to display clarity.

The use of the mouse contributes to the usefulness of the package and this enables easy switching between waveforms, triggering levels and the instrument options shown on the bottom right of the display.

Oscilloscope

The PC99 signal inputs pass through anti-aliasing filters and lead to separate ADCs. The ADCs are 8-bit devices with sampling frequencies of 20 MHz . The effective bandwidth of each channel, is therefore at best 10 MHz . When operating as a 'scope, in its storage mode, the two channels can be displayed with a maximum time base setting of 25 MHz .

Despite the attractive screen presentation, the PC99 has three outstanding oversights in its design. Firstly, it is unable to cope with input waveforms with negative voltages. When an AC waveform is fed into the card, the negative half cycles are chopped off. An extraordinary characteristic for any oscilloscope, it could conceivably be useful for looking at the unbiased outputs from square law detectors.

Secondly, the user has no screen control over the input signal gain. This deficiency necessitates external attenuators or amplifiers on the input signals.

Thirdly, the input voltage range is limited to between 0 V and 2.5 V .

Although these specifications are laid out in the rather poor user manual, they render the board as almost useless as a general purpose oscilloscope However if there is a requirement to analyse only positive waveforms, not exceeding 2.5 V which are band limited to below 10 MHz , then the PC99 will serve the purpose well.

> Operating environment PC99 takes the form of a card for use with an IBM AT or clone, or a 386 -based computer. Software drivers are provided to allow the use of a mouse and the display format can be Hercules, EGA or VGA.

> An additional module provides five extra BNC connectors for input and output and the user is expected to provide his own oscilloscope probes with BNC connectors.

Waveform generator

The second mode of operation of the PC99 is for waveform generation (see Fig. 2). Four types of waveforms can be generated, sine, square, triangle (with adjustable symmetry) and pulse (single or continuous). Once the waveform has been specified by the user then it can be channelled through one of the digital to analogue converter outputs.

Two independent waveforms can be produced simultaneously by the PC99 card and these can also be displayed on the screen. This feature is attractive, but does not offer anything more than a standard waveform generator apart from two independent outputs. It is a great shame that this facility is so limited, since this type of unit could offer extensive options for waveform synthesis, for example five tone waveforms or FSK signal generation with varying degrees of added noise.

The final analysis

It's all very well having I/O expansion cards for PCs but unless they offer distinct features and advantages over

PC99 costs $£ 699$ plus VAT and consists of the card, maniual and software, an advanced wave processing software package is now available, for an additional £195 plus VAT, which enables further mathema tical manipulation, such as spectrum analysis, integration, differentiation and statistical operations.

The package is obtainable from Amplicon Liveline Limited, Centenary Industrial Estate, Hughes Road, Brighton, East Sus sex BN2 4AW. Telephone 0273570220.
conventional instrumentation, their value must be questionable. I can see no benefit of having the PC99 installed in a PC when the service provided by a modest priced scope and signal generator is considerably better. The PC99 cannot be recommended as a practical, general purpose 'scope because of the severe limitations it imposes upon the input waveforms. This limits potential applications to very tightly specified input conditions. It may be useful for highly sanitised demonstration purposes.

> Amplicon says it is well aware of the limitation on input mentioned by our reviewer, but points out that the package was designed primarily for, and in consultation with educational estublishments, who are prepared to use their own input signal conditioning with a view to keeping the price of the package as low as possible. Nevertheless, the company has plans to produce a signalconditioning package to provide a more flexible input requirement.

RADIO OFFICER

A CAREER WITH A DIFFERENCE
Government Communications Headquarters (GCHQ) are specialists in all aspects of communications and as a RADIO OFFICER you would be trained to undertoke wide ranging duties covering the complete radiocommunications spectrum from $D C$ to light.

Not only do we offer Comprehensive training but also:

- Good Career Prospeds
- Generous Leave Allowances
- Compelitive Salaries
- Job Security
- Voried Work (opportunities for moves within UK and Overseas)
- Non-Contributory Pension Scheme and much more!

QUALIFICATIONS

a. You need to hold or hope to obtain a BTEC National Diploma (or HNC/HND) in a Telecommunications, Electronics Engineering or similar discipline. Special consideration will be given to opplicants holding an MRGC Certificate. The C\&G 77 (Advanced) or other qualification incorporating morse skills would be advantageous but not essential
or
b. Have a minimum of 2 years recent relevanl radio operating experience. Preference will be given to those capoble of reading morse at 20 wpm . Preferred Age Range 18 to 45 years.

SALARIES (Reviewed Annually)
Affer a residential training course of between 29 and 52 weeks - depending on background experience - the Radio Officer Pay Scale ranges from $£ 12,678$ to $£ 18,431$ over 5 years with prospects for further promotion.
(Salaries include an allowance for shiff and weekend work).
APPLICANTS MUST BE BRITISH NATIONALS
For further information and application form contact:-
Recruitment Office, Room A/1108, GCHQ, Priors Road, CHELTENHAM, Glos GL52 5AJ or Telephone (0242) 232912 or 232913.

Reprinis

IF YOU ARE INTERESTED IN A PARTICULAR ARTICLE/SPECIAL FEATURE OR ADVERTISEMENT IN OUR JOURNAL WHY NOT TAKE ADVANTAGE OF OUR REPRINT SERVICE

REPRINTS CAN BE OBTAINED AT A REASONABLE COST, TO YOUR OWN INDIVIDUAL SPECIFICATIONS PROVIDING AN ATTRACTIVE AND VALUABLE ADDITION TO YOUR OWN PROMOTIONAL MATERIAL.

FOR EXAMPLE, A TWO PAGE ARTICLE CAN BE REPRODUCED AS A FOUR PAGE FOLDER WITH ADDITIONAL WORDING ON THE FRONT PAGE AS AN INTRODUCTION.

FOR FURTHER DETAILS CONTACT:
CLARE HAMPTON ON 01•661 8672

Wanted urgently

 Practical people for the Third World.Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance. You could make this priceless contribution by working with VSO.
We have a wide range of jobs for qualified electricians and electronics technicians in many countries including Kenya, Malawi, Zimbabwe, Nepal and Egypt. Among these jobs are some specialist ones, including technicians for:

Audiology	\square	Radio and TV servicing
Secondary		Electricians school sor domestic installation
equipment	\square	and workshop instruction
Medical		
equipment	\square	

For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.
Conditionsofwork: \bullet Paybasedonlocal rates \bullet Posts are for a minimum of 2 years - Many employers will grant leave of absence.

Helping the Third World help itself.
zop stamp approciened.

Cherliy no. 313757.
\square

> Please mention Electronics \& Wireless World when replying to adverts

RF \& MICROWAVE!

Design \& Test Engineers seeking top positions, from satcomms to CT2 should contact the specialists GARIBALDI RECRUITMENT 0494773918
160 Bellingdon Road Chesham HP5 2 HF

\&7,064 rising to £15,000

Train to become an Air Traffic Engineer

Each year, there are over three millien aircraft movements within UK airspace.

As you might :magine, Air Traffic Controllers fely on a wide range of highly advanced systems Prom radars and radio beacons through to the complex data communications nerwork that ties the whole operation together.

The planming, commissioming, installation, calibration and maintenance of all these techanologies is the respensibility of Air Traffe Enginecrs. Arguahly the most highly traized and well supported practical engineers in Europe

Regardless of your experience to date, the process of beeoming part of the team begitis with a 6 month residential course at our own College of Telecommunicatiuns Enginecring in Buckinghamshire. Here you'll be introduced to advanced radie, telephony, aircraft navigation aids. specialised computer systems for the processing of radar and comms information, and high power primary and secondary surveillanze radars.

Following a further 7 momshs on-joh experience. yofull become an ATE based at one of tur cestres which are spread from Semtand (o) Cornwall. Typically, as an experienced engineer, you could expeet en earn over L20,0100).

As your career develops - and promoxioms are based entirely em merit - you will perindically return to college on keep abreast of new eechoniques and you'll be encouraged (o) study for higher techmical gualifications. We are very proud of the fact that manty of she CA A's seniur manesers began their careers from where you are now

To join us, you svill need a mininum yualification of a BTHC National Diplema or HN: in Electrical and Electromic Enginecring (or the SCOVEC equivalent) and be aged 18 - 2 i as of lar April 1990.

These roles are epen equally when meve and women, so to apply please write a dis follerwing address giving your personal details cimeluding a contact telephome me mber), stur qualifisations and experience and cell ws why you think iw.u corold fit into our team. Alcernatively, call $01-8.2$ 587) (2.4 hovers) for an application form.

Write to: CAA, Engineer Recruitment (WWI). Room T1223. CAA House, 45-59 Kingsuay, Lomanu WC2B GTE The closing date for receipt of applications is Ist March.
The selection programme will take place at the College of Telecommunications Engineering during April and Mav.

Radio Investigation Service KeepingThe WavelengthsClear
 Assistant Telecommunications Technical Officers

up to $£ 14,335$

The Radio Investigation Service is part of the Department of Trade and Industry＇s Radiocommunications Division．Its brief is simple－to keep the wavelengths clear of interference and illegal operators．We have vacancies in LONDON \＆WORCESTER．

You will be responsible for the routine inspection of licensed operators，ensuring that they comply with the relevant regulations．You will assist in the detection of illegal operators，collecting and presenting evidence for prosecution．In addition you will assist in the investigation of inter－ ference to authorised radio and TV services，and advise on remedial action．

Candidates must be qualified in radio telecommunication subjects to BTEC／SCOTEC standard and have at least 2 years＇experience in the field of radio technology．

Starting salaries depend on experience，qualifications and location．A clean driving licence is essential．Relocation expenses may be available up to $£ 5,000$ ．

For further details and application form please contact Sue Mulvaney，（PM／PRTU）on 01－215 0066，quoting reference PR／ATTO（D）．The closing date for receipt of applications is 9th March 1990.

The Civil Service is an Equal Opportunities Employer．
dti
the department for Enterprise

1990
 CAREER DECISION YEAR

Irrespective of your career objectives－financial or geo－ graphical－let Cadmus put direction into your search and eliminate the stress．If you are a qualified engineer，you may be eligible for inclusion in our monthly register which will give you discrete access to over 3，000 UK companies． Phone 0603761220 （ 24 hrs ） for a registration form or send your C．V．together with your career objectives to：

PERSONNEL LIMITED Freepost．Sack ville Place 44－48 Magdalen Street Norwich NR 3 IBR อ司司司司司司司

T0
advertise
YOUR
VACANCIES
PLEASE CALL
CLASSIFIED
DEPARTMENT
ON
01－661 8640

Radio Technician

RADIO TECHNICIAN for Wood Street Police Building London EC2．

The appointed person who must be able to work with the minimum of supervision，will have had experience in the areas of installation，repair and maintenance of Fixed Mobile and Hand Portable VHF／UHF Radio Telephone equipment．Closed Circuit Television，Audio Visual Equipment and should be the holder of a City and Guilds Telecommunications Technician＇s Certificate，or its equivalent．

Experience in Police Communications and computer and electronics advantageous but not essential．

Hours 8.00 a．m．to 3.45 p．m．Monday to Friday．
Salary between £12，624－£14，178 p．a．inclusive．
Optional contributory Pension Scheme，canteen facilities， 20 days holiday plus 5 concessionary days，interest free season ticket loan scheme．

Application form and job description available from Civilian Personnel Office，City of London Police，26，Old Jewry，London EC2．

Telephone： 601 2233／34．

CLASSIFIED

01-661 8640

CLASSIFIED DISPLAY: $£ 29$ per single column centimetre (min 3 cm) LINE ADVERTISEMENTS (run on): $£ 6.00$ per line, minimum £ 48 (pre payable) (Please add on 15\% V.A.T. for prepaid advertisements)

ARTICLES FOR SALE

NEW SURPLUS:

1000 Hm626aAP-12 rams 206 Bulgin PS80/110 IEC sockets 51 Bulgin PS620/1/3A mains filters 98 IR 2 KBB 20 rectifiers (used) 116 NMC27C16Q. 55 Eproms 127 C074MCT373E 100 CD74MC175E 500 R.062CP 100 MEF 4012BP 150 R.072CP

Any quantity
Lindos: 0394380307

GOLLEDGE
ELECTRONICS
QUARTZ CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru: design advice, prototype quantities, production schedules Golledge Electronics. Merriott. Somerset TAl6 5Ns. Tel: 046073718.

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.
 LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS. all type ; INTEGRATED CIRCUITS. TRANSISTORS. DIODES. RECTIFIERS. THYRISTORS, etc RESISTORS C/F M/F.W/W. etc CAPACITORS SILVER MICA. POLYSTYRENE, C280, C296. DISC CERAMICS PLATE CERAMICS, etc ELECTROLYTIC CONDENSERS. SPEAKERS. CONNECTING WIRE, CABLES. SCREENED WIRE, SCREWS NUTS. CHOKES. TRANSFORMERS, etC ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley, London N12.
(5 minutes from Tally Ho Corner)

NR

Field Electric Ltd. Te: 01.95s 6009. 3 Shemerey Raver.

Telephone or S.A.E. for new stock list for Monitors: Disk Drives: Hard Disk Drives: Keyboards: Computers: Printers: Test \& Measurement Equipment: Diecast Ali Boxes: Fans: Power Supplies: Telephone Equipment: Audio Equipment: Transformers: Microwave Equipment.

We would like the opportunity to tender for suplus equipment

VALVES FOR AUDIO, INDUSTRY

 RECEIVING \& TRANSMITTINGRAनE AND JBSOLETE TYPES A SPECIALITV! ONE MILLION VALVES IN STOCK
SPECIAL PRI בES FOR WHOLESALE QUANTITIES
ORDERS FRJM GVTDEPTS, PLC'S, OVERSEAS ETC. WELCOME ALSO CRT, Cs, KLYSTRONS, MAGNETRONS, TRANSISTORS, USA VALVES.
FAXIPHONE FOR IMMEDIATE OUOTE:
IN THE CLASSIFIED SECTION
PLEASE PHONE
01-6618640

BILLINGTON VALVES
39 Highands Road. Horsham. Sussex RH13 5LS (UK)
Callers by appointment only Mon-Fri Gam-5 30pm

ARTICLES WANTED

STEWART OF READING

10 WYKEHAM ROAD READING RG6 1PL TEL: 073468041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic .Scrap. Boxes, PCB's, Plugs and Scokets, Computers, Edge Connectors.
TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders,

2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193.
Mobile: 0860214302 . Fax: 0438812387

30 Days Guarantee. Please add VAT. Check availabilty \& Carriage costs. harconi $2 \cos$ minrolumeter 10 - 4 4 OMH2 Waym ker Af Generator 10 Hz - 120 HHz Grolley 47IC Test Meter Marconi MI Teat Set 2603
Tehomir wala Dual Irace Scepe (MN Mods Marconi Wave Analyer $\mathbb{T 1 2 3 3 0}$ Mresem Generater 2002 LS 10 HHz - sthur afth
 enequmpent Duy Irace 755 scope SOMHz Conser CDUISO Dual irace 3sMm Scoo aYos Complete from C3S Mas 175 A. WOOD NORTH WEST

94 WORSLEY ROAD, FARNWORTH TEL: BOLTON (0204) 71795

720K 3.5 INCH DRIVE
 NEW LOW PRICE TO CLEAR WAREHOUSE

Japanese made, modern, low component, cast chassis drive. Surface mount design with industry standard interface. Removed from almost new systems these are top quality drives systems, the se are top quality drives in excellent condition, Boxed and with a full
six month guarantee 80 track double six month guarantee. 8 track $\mathbf{5 3 4}$
 sided 1 megabyte unformatted; $\mathbf{\Sigma 3 4 . 5 0}$ (carr. £3); $£ 30$ ten or more. Cradle to fit drive in a $5.25^{\prime \prime}$ slot e.g. IBM PC $£ 4.95$ (carr. $£ 1.00$; free with drive). Power and data connectors to suit $£ 0.99 \mathrm{p}$ (carr. free). Box of 103.5° discs $£ 9.95$ (carr. £1). Easy fit adaptors saves changing connectors $£ 3.49$ (carr. free).
N.B. Drives work with virtually all computers including Amstrads, IBM XT and AT compatibles BBC's etc. Special easy-nt kit available for Amstrad $1512 / 1640$, IBM XT, including adaptor board $£ 8.49$

RACAL V22 MODEM MPS1222

Microprocessor based modem providing full duplex
 communication at 1200, 600 and 300 baud to the CCITT V22 standard. Features include: \star Can be
used on standard phone line (PSTN) and private
circuit (PC) \star Auto answer but needs telephone to dial $\star 1200,600$ and 300
baud \star Very high quality construction $\star B T$ approved \star Seff tests and loop tests (V54) \star Comprehensive manual included. Uncased card $\mathbf{£ 1 9 . 9 5}$ seven cards in rack $£ 195$ (carr. one $£ 3.50$; seven $£ 15$)

HARD DISC DRIVES

20 MByte 3.5 inch (Kyocera, Lapine and Titan) in 5.25 inch chassis, and 20 MByte 5.25 inch (NEC and Seagate) $£ 125$; with controller card $£ 149$; 20 MByte hardcard £159. 30 MByte equivalents; £145; with controller card £179; hard card £179. 35 MByte CDC with nonstandard Finch, NRZ interface, $£ 39$ (carriage on hard drives £5.00).

5.25 INCH FLOPPY DISC DRIVES

Teac 1.2 megabyte IBM AT style drive $£ 49.95$ (carr, $£ 3.50$). 360 K ex equipment half height drives $£ 29.95$ (carr. $£ 3.50$). FLOPPY DRIVES constantly in and out of stock - phone for details

POWER SUPPLIES

Farnell N180 cased 180 Watt PSU +5 V at $20 \mathrm{~A},+12 \mathrm{~V}$ at $2 \mathrm{~A},-12 \mathrm{~V}$ at $2 \mathrm{~A}_{5}+24 \mathrm{~V}$
 AC9231 cased 50 Watt PSU +5 V at $6 \mathrm{~A}_{1}+12 \mathrm{~V}$ at $2.5 \mathrm{~A}, 5 \mathrm{~V}$ at 0.5 A (float) and 12 V at $0.5 \mathrm{~A} £ 15.95$ (carr. £3)

DAISYWHEEL PRINTER

Olivetti DY200. Modern, office quality, bidirectional daisywheel printer. Complete with manual, daisywheel, ribbon and standard Centronics interface. Prints at 25 cDS, variable pitch; 132^{\prime} characters in 12 pitch, proportional spacing. Sprocket and sheet feed options, p.o.a. Full IBM and Diablo emulations. $£ 99.50$ ((carr. $£ 6.50$). Carbon, ribbons $\mathbf{\Sigma 2 . 7 9}$ each (carr. 75 p). $£ 2.39$ each for ten or more (carr. $£ 2.50$).

FACIT ULTRA FAST DOT MATRIX PRINTER

Prints at up to a maximum of 500 CPS. Made to a high standard for heavy duty use. Compact slimline desktop model (only 26 inches wide). Ideal for Universities, large mailing lists, or any serious application $£ 349.00$ (carr. $£ 25$).

12" FAMOUS NAME COLOUR MONITORS

Quality analogue RGB input, high definition, suitable for Amiga, Atari, BBC etc $£ 99.50$ (carr. $£ 6.50$).

QUALITY VGA CARD

Up to 800×600
Fully compatible, 256 K £119 (carr. £3).

HITACHI PROFESSIONAL CAD COLOUR MONITORS

CM1686A 16° ultra high resolution in two CAD frequencies: $48 \mathrm{KHz} \mathbf{\Sigma 3 2 5}$ (carr £25), $64 \mathrm{KHz} £ 395$ (carr. £25).
CM2086A1E 20" ultra high resolution CAD $48 \mathrm{KHz} . £ 495$ (carr, £35).

HITACHI CDR2500 CD ROM DRIVE

Full height $5.25^{\circ} 550$ megabyte, high siepra spec., including IBM controller card MS-DOS extension, and manual $£ 265$ (carr. £4).

STC SCRIBE KEYBOARDS

Keyboards as supplied with Scribe wordprocessors. These are serial units but no data is available. $£ 5.95$ (carr. £3)
SOUND EQUIPMENT all socond-hand.
Speakers, amps, mikes etc. regularly in stock - please ring for current details. Studio speakers expected in soon.
ISTOP PRESS! 360K 5.25 inch half height disc drive, new at $£ 34.95$ AT computer with 1 meg RAM and 1.2 Meg floppy drive - 'phone for details and our usual pacesetting price.

N.B.

* VAT and carriage must be added to all items.
* Everything new unless stated otherwise.
* Access and Visa telephone service. phone service

Matmos Ltd., Unit 11, The Enterprise Park, Lewes Road, Lindfield, West Susser RH 16 2LX.
Telephone: (04447) 2091 and (04447) 3830.Fax: (04447) 4258

INDEA TO ADU:RTISERTS

Appointments Vacant Advertisement appear on pages 260-262

	PAGE
Anchor Surplus	
Antex Electronics	
Audio Electronics	205
Betronex UK	207
Byte Computers	
Blue Chip Technology	
Business Integrated	
Test Systems	247
Cadsoft (UK)	
Clark Masts	
(Technical Services)	
Display Electronics	
Electrovalue 241	
Ellmax Electronics	
Flight Electronics	
223,2	

PAGE
ABI Electronics................IBC
Anchor Surplus 203
........ 205
Audio Electronics 205
Berrex CK..................... 207
Blue Chip Technology 203
Business Integrated
Test Systems247

Clark Masts
(Technical Services) 229
Display Electronics 252
Electrovalue 241
Ellmax Electronics 230
Entran Limited.................. . 182
$223,229,180$, IFC

G H Systems 207
I R Group 178
Ian P. Kinlock 207
ICOM (UK) 247
Imperial College 249
Integrex............................ . 185
JAVElectronics 182
Johns Radio........................ 238
Kestrel Electronic
Components 216
L J Technical Systems......... 228
Lab Centre 251
Lab-Volt (UK) OBC
Langrex Supplies 238
Laplace Instruments 229
M \& B Radio (Leeds) 241
MQP Electronics 230
Matmos............................. . . 264

PAGE
Number One Systems......... 212
PM Components 245
Practical Computing 251
R Henson............................ 230
Radioplan 216
Ralfe Electronics 247
Reed Exhibition Company .. 233
Roscoe 258
South Midlands
Communications 238
Stewart of Reading 258
Strumech Engineering........ 238
Television Magazine 182
Those Engineers215,251
Thurlby Thandar216,241

OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Pierre Mussard, 18-20 Place de la Madelaine, Paris 75008
United States of America: Jay Feinman. Reed Business Ltd., 205 East 42nd Street. New York. NY 10017-Telephone (212) 8672080 - Telex 23827

[^2]

Affordable, standalone, PCB fault-diagnosis equipment.

The most economical way yet to improve the speed and efficiency of PCB servicing and manufacturing defects analysis.

24 and 40 pin Variants.

Providing a host of features for rapidly testing digital ICs in circuit.

Save and Compare

Data from a known good PCB can be saved enabling a suspect board to be compared in minutes without circuit documentation.

Automatic Circuit Compensation.

An IC is tested in the way it is connected No need to program each tesi.

Search Mode.

To identify unmarked ICs and give an
equivalent for replacement.

Manufact̄uring Defects Analysis. Rapic access to circuit information to locate production faults.

Out of Circuit Testing.

ZIF sockets make the units ideal for goods inward inspection and checking a device is functional before soldering

ABI ELECTRONICS LTD FREEPOST
Mason Way Platis C mmori
Blansiley South Yort:hire S74 9B tel 0226350145 Fdx 0226350483

Telecommunications Training from fundamentals to state-of-the-art technology

Lab-Volt offers a comprehensive range of telecommunications training equipment that covers basic electronics, analogue and digital communications circuits and systems, fibre optics, and microwave and radar technologies.

Our equipment is:

- modular and easy to upgrade
- industry relevant
- engineered for educational purposes.

Lab-Volt closely relates its telecommunications training equipment to operational systems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible test points, shortcircuit protection, silk-screened component identification, and full signal compatibility for system-level modules. We supply student and instructor manuals that are written specifically for the equipment; they provide practical hands-on technical training with step-by-step exercises, laboratory experiments, and troubleshooting activities.

[^0]: \% Pleose send by refurn:
 Information on PC-Acquisilion. \lrcorner Free Demo disk. \rfloor Details of FFT Ifoining courses. (\lrcorner Complete system (Enclose cheque for $£ 960+$ VAT io Loploce Instrumenls LId).
 Delails of your computer: \rfloor Macinlosh. Model: \qquad
 IIBM compatible PC or AT. Make model: \qquad
 Nome: \qquad Telephone No:
 Orgonisation: ; Address \qquad Post code:
 Por Post to: Loplace Instruments LId, PO Box 14, Bromholl, Slockpori SK7 205

[^1]: Please send information an icom products \& my nearest lcom deoler.

[^2]: Printed in Great Britain by BPCC Business Magazines (Carlisle) Limited, Caxton Road, Newtown Trading Estate, Carlisle, Cumbria CA2 7NR, and typeset by Graphac Typesetting, $8181 / 191$ Garth Road, Morden, Surrey SM4 4LL, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS. © Reed Business Publishing Lid 1989 electrontcs and Wireless World can be obtained from the following: AUSTRALIA and NEW ZEALAND; Gordon \& Gotch Lid, INDIA; A. H. Wheeler \& Co. CANADA: The Wm Dawson Subscription
 Service Ltd., Gordon \& Gotch Letd. SOUTH AFRICA: Central News Agency Led; William Dawson \& Sons (S.A.) Ltd. UNITEDSTATES: Worldwide Media Services Inc., 115 East $23 r d$ Street, NEW Service Ltd, Gordon \& Gotch Lid. So \& Wireless World $\$ 5.95$ (74513)

