Recruitment special: starts page 560

ELECTRONICS

Denmark DKr. 70.00 Germany DM 18.00 Greece Dra.1400.00 Holland Dfl. 12.95 Iraly L. 9400.00 Maita Lm. 1.80 IR £3.30 Singapore 5\$7.50 Spain Pts. 925.00 USA \$6.75

Austria Asch. 70.00

A REED BUSINESS PUBLICATION SOR DISTRIBUTION

INCORPORATING WIRELESS WORLD

WORLD

Self explains muting relays

Measure receiver sensitivity

Early effect in practice

Stereo analysis

Wilkes: pioneer of modern computers

Designing filters

Speaker coils: round wire, or square?

The route to simulation: new review series starts with Workbench

BUT WAIT, THERE'S MORE POWER SEMICONDUCTOR EXPERTISE WHERE THAT CAME FROM.

Because you asked us for specific answers to your power design questions, we've answered with more power solutions. Solutions that offer more performance and reliability. Because we have more power semiconductor design and manufacturing experience and invest in more R&D. Over two times more.

Now it's time to do your part – visit our Web site today. For a free copy of our CD-ROM iractive* call +44 (0)1883 732 020. For technical assistance call +44 (0)1883 733 309 or the Fax-on-Demand system on +44 (0)1883 733 420.

www.irf.com

Internationa

ICR Rectifier

Available in UK from: Abacus Polar Arrow Farnell Future Electronics RS Components Solid State Supplies

PCIM Nürnberg 22nd - 24th June See us at Stand No. 401

11

CIRCLE NO. 101 ON REPLY CARD

CONTENTS

531 COMMENT

Digital terrestrial: a launch too soon?.

532 NEWS

- UK high-tech firms turn recession tide
- No hot heads at BT
- LCD adapts to bright and dim
- Sub 100nm geometry from optical litho?
- 1000MHz PC has fridge technology

Copper interconnects offer significant benefits over aluminium, but can they be mass produced? Find out on page 532.

• Copper chip interconnects "ready to roll"

- Tempo rivals Dixons with free Internet
- Digital radio waves hello to Web access
- UK leads Europe in IC design capability

537 STEREO FROM ALL ANGLES

Stereo image is ignored in hi-fi specifications, possibly because it is difficult to quantify, but it is a crucial factor as **John Watkinson** explains.

544 RELAY MUTING

Douglas Self tackles the vital subject of relay muting and protection in audio amplifiers. He reveals some secrets of relay operation and shows how to make them switch faster than is apparently possible.

550 THE ROUTE TO SIMULATION

Choosing a circuit simulation package is complex and making a mistake is costly. Starting with a review of Workbench, Rod Cooper's guide is essential reading – especially for first time buyers.

555 SENSITIVITY DEMYSTIFIED

Joe Carr explains not only how to decipher receiver sensitivity figures, but also how to verify them for yourself.

560 RECRUITMENT SPECIAL

565 CIRCUIT IDEAS

- Non-intrusive continuity tester
- Liquid level controller
- Mosfet hf mixer
- Wide-band amplitude modulator
- Twilight switch
- Triode amplifier with bootstrapping
- New FIR speaker crossover
- Low-current battery monitor
- Two-op-amp sine generator, MkII

577 SPEAKERS' CORNER

John Watkinson looks at why the moving coil loudspeaker is so inefficient, and explains the trade-offs.

580 PIONEER OF MODERN COMPUTING

In 1949, innovator Maurice Wilkes built the first computer designed to store programs. **Chris Hipwell** has been researching Maurice's work.

585 HOTTER SPICE 2

In this second article presenting a breakthrough in power mosfet modelling for audio design, **Ian Hegglun** adds compensation for electrothermal effects and answers the question of whether sub-threshold conduction is needed for simulating crossover distortion.

591 EARLY APPLIED

Bryan Hart illustrates the importance of the 'Early' effect by describing its influence on four common circuit configurations – common base, common emitter, current mirror and long-tailed pair.

596 BRIGHTER DRIVER FOR EL LAMPS

Andy Woolff outlines a new electroluminescent lamp driver that produces 220V pk-pk from a couple of penlight cells.

599 NEW PRODUCTS

New product briefs edited by Richard Wilson

604 COOL SOLUTIONS

James Stratford looks at thermal management products, including thermally-conductive pcb material.

611 PROGRAMMING THE EEPROM HC11

Peter Topping's step-by-step guide for programming the LW radio-code clock presented last month demonstrates how easy it is to program and develop a modern microcontroller.

If you want to know why stereo systems with identical specifications sound so different, turn to page 537.

This month's cover mount is an advanced thermally-conductive material that can fill air voids and surface irregularities without the need for silicone grease. See page 607 for more.

In 1949, Maurice Wilkes built the first computer designed to store programs in 1.6m long memories. Read more on page 580.

August issue on sale 24 June

Now the **WR3100e** external **WINRADIO** arrives!

"WiNRADiO[™] now brings you a complete choice in **personnel computer** controlled radio scanning and reception solutions.."

With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

New external WiNRADiO[™]

(WR1000e, WR1500e and new WR3100e) provide complete comms systems connecting either via the basic RS232 - or with an optional PCMCIA adaptor, for high speed control. Power from existing 12v supplies, or our optional NiMH rechargeable 12v battery pack.

Use-WiNRADiO scanning PC comms receivers for..

Broadcast . Media monitoring . Professional & amateur radio communications . Scanning . Spot frequency & whole spectrum monitoring . Instrumentation Surveillance (and recording)

If you want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. (DSP is available with the ISA card version only).

Your choice of virtual front panel

Take a look at WiNRADiO's Digital Suite Software.

For WR1000/1500/3100

- internal or external
- 1. WEFAX / HF Fax
- 2. Packet Radio for HF and VHF
- 3. Aircraft Addressing and Reporting System (ACARS)
- 4. Audio Oscilloscope, real time Spectrum Analyzer

Squelch-controlled AF Recorder DTMF, CTSS decode

ONLY £81.05 inc VAT

(requires SoundBlaster 16 compatible sound card)

The DSP applet provided with the WR3100 spectrum monitor ISA card (£995+VAT) allows continuous control of audio bandwidth and other signal conditioning functions

WR-1500 Model Name/Number **WR-1000** WR-3100 **Construction of internals** WR-1000i/WR-1500i-3100DSP- Internal full length ISA cards **Construction of externals** WR-1000e/WR-1500e - 3100e - external RS232/PCMCIA (optional) 0.15-1500 MHz 0.15-1500 MHz **Frequency range** 0.5-1300 MHz Modes AM,SSB/CW,FM-N,FM-W AM,LSB,USB,CW,FM-N,FM-W AM, LSB, USB, CW, FM-N, FM-W **Tuning step size** 100 Hz (5 Hz BFO) 100 Hz (1 Hz for SSB and CW) 100 Hz (1 Hz for SSB and CW) IF bandwidths 2.5 kHz(SSB/CW), 9 kHz (AM) 2.5 kHz(SSB/CW), 9 kHz (AM) 6 kHz (AM/SSB), 17 kHz (FM-N), 230 kHz (W) 17 kHz (FM-N), 230 kHz (W) 17 kHz (FM-N), 230 kHz (W) **Receiver type** PLL-based triple-conv. superhet Scanning speed 10 ch/sec (AM), 50 ch/sec (FM) 200mW Audio output on card 200mW 200mW Max on one motherboard 8 cards 8 cards 3-8 cards (pse ask) **Dynamic range** 65 dB 65 dB 85dB ±2 kHz ±2 kHz IF shift (passband tuning) no YES (ISA card ONLY) **DSP** in hardware no - use optional DS software yes (for ISA card) **IRQ** required no no **Spectrum Scope** ves ves yes Visitune yes yes ves Published software API ves yes (also DSP) ves **Internal ISA cards** £299 inc vat £369 inc vat £1169.13 inc vat £1169.13 Inc (Hardware DSP only internal) £429 inc vat **External units** £359 inc vat

PCMCIA adaptor (external): £30 when bought at same time as the 4e' series unit, otherwise: £69 inc. PPS NiMH 12v battery pack & charger: £99 when purchased with 4e' series unit, otherwise: £139

For your free info pack and software emulation demo disk contact Broadercasting Communication Systems - and please note all available information is also available 24 hours a day on the web.

http://www.broadercasting.com - FREEPHONE: 0800 0746 263 - PHONE: 01245 348000 EMAIL: info@broadercasting.co.uk - FAX: 01245 287057 Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex CM1 3AG

E&OE WINRADIO and Visitune are trademarks of WiNRADIO Communications

CIRCLE NO. 104 ON REPLY CARD

EDITOR

Martin Eccles 0181 652 3614

CONSULTANTS

lan Hickman Philip Darrington Frank Ogden

EDITORIAL ADMINISTRATION

Jackie Lowe 0181-652 3614

EDITORIAL E-MAIL ADDRESS jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER Richard Napier 0181-652 3620

DISPLAY SALES EXECUTIVE Joannah Cox 0181-652 3620

ADVERTISEMENT E-MAIL

joannah.cox@rbi.co.uk

ADVERTISING PRODUCTION 0181-652 3620

PUBLISHER Mick Elliott

EDITORIAL FAX 0181-652 8111

CLASSIFIED FAX 0181-652 8938

NEWSTRADE ENQUIRIES 0171 261 7704

ISSN 0959-8332

SUBSCRIPTION HOTLINE 01622 778000

subscription queries rbp.subscriptions@rbi.co.uk Tel 01444 445566

Fax 01444 445447

For a full listing of RBI magazines: http://www.reedbusiness.com

Digital terrestrial: a launch too soon?

aunching a brand-new entertainment product at a time when consumers are scarcely flush with spending money is a brave stratagem, yet digital television has successfully managed to allure around a quarter of a million viewers since its launch.

With an either/or choice between satellite (BSkyB) and terrestrial (British Digital Broadcasting, that's ONdigital to you and me), the pundits were expecting digital consumers to opt overwhelmingly for Sky with its established brand image and earlier launch date.

In point of fact ONdigital's 'through the air' sales pitch seems to have struck a chord. In its first four and a half months of operation, Ondigital succeeded in signing up 110 000 customers – only 10 000 fewer than BskyB achieved.

Digital terrestrial television, DTT, will receive a further boost this summer when the first TV receivers with built-in digital decoders appear in the shops, at a subsidised price of £500 or so; outboard set-top boxes are an unattractive solution.

So far so good: the road map for the digital replacement of analogue terrestrial transmissions is coming into clear focus and DTT has been proven as viable technology. Or has it?

Not if this viewer's experience is anything to go by. DTT has been oversold. In exactly the same way as BSB made extravagant claims for its miniature Squarial, the marketeers at ONdigital have convinced themselves that DTT can charm birds out of trees and turn base metal into gold.

Their technical advisers must be squirming... To begin with, ONdigital's advertising claims of

'crystal-clear pictures' and 'the sharpest sound with the immediacy of CDs' are no more than claims. Although noise-free, the pictures are noticeably 'soft', while the data rate used for audio fails to reach the sampling levels necessary to match CDs and is in fact no better than the also digital NICAM used on analogue transmissions. Good analogue reception is every bit the equal of good DTT reception and to infer otherwise is deceit.

The promotional literature is also less than honest with its promises of improved pictures. While the DTT set-top box can theoretically produce results on-screen that beat most analogue signals, these results will only be achieved on sets having a direct RGB input. Nowhere is this stated in the literature, and anyone stuck with the more commonplace arrangements of UHF or composite video input will enjoy pictures that are no more than average and probably no better than analogue.

Whereas analogue reception degrades gradually, receiving DTT is an either/or affair. It may be adequate in winter, when there are no leaves on the trees, yet disappear in summer.

The suggestion that viewers with indifferent analogue reception will see better pictures on digital is not borne out by experience. In fact the whole success of DTT is predicated on optimised antenna installations – a phenomenon that's extremely rare in reality.

Most viewers have corroded, misaligned rooftop aerials and a coaxial down-lead that is more attenuator than feeder; those that don't rely on loft antennas or settop devices that is. All these may be adequate for indifferent analogue reception but for the more demanding DTT process they just don't cut the mustard.

Articles in the trade press also indicate that many antenna fitters are inexperienced in optimising installations for digital and are not equipped with the special meters and equipment necessary. Fortunately ONdigital is committed to replacing aerial installations – with some exceptions – but the company may end up having to change many more of these than anticipated.

Not everyone has the choice of ONdigital either. Coverage from the 81 digital transmitter sites currently being built is stated by the Digital TV Group to be between 73 and 90 per cent of population as opposed to the 99.4 per cent of analogue, meaning than many viewers will be disappointed. Significant areas of the country have no reception as yet and it will be a long time before all relay transmitters are digitised – if ever.

Even where viewers receive rock-solid analogue pictures, digital reception may suffer constant break-up on account of local impulsive interference. Causes include domestic light switches and thermostats, DECT cordless phones and passing road traffic, and for all the robustness that digital transmissions may show in the face of multipath reception, they are pitiably vulnerable to the natural hazards of the electromagnetic spectrum.

Whereas these effects produce minor flecks and buzzing on analogue television, with digital they result in picture loss for two to three seconds and extremely unpleasant audible pops and cracks way above normal listening levels.

In short digital terrestrial television is flawed – significantly flawed. This is not to deny its advantages; the future is inevitably digital and eventually improved receiver design and increased transmitter power will eliminate the current bugbears.

Nor would I decry the commercial achievements of British Digital Broadcasting and the attractive assortment of programming offered. Time will tell if their business is a success – and we'll all be in trouble if it is not. It is nonetheless unfortunate that early adopters must pay the price of field-trialling at their own expense a system that is demonstrably inadequate and that may also prejudice further take-up.

Andrew Emmerson

Electronics World is published monthly. By post, current issue £2.45, back issues (if available £3.00). Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5A5. Tk:892984 REED BP G. Cheques should be made payable to Reed Business Information Lid Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London W1P OAU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oakfield Hause Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year UK £36.00 2 years £58.00 3 years £72.00.

Europe/Eu 1 year £51.00 2 years £82.00 3 years £103.00 ROW 1 year £61.00 2 years £98.00 3 years £123 Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fox; (212) 679 9455

USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. Periodicles Postage Paid at Rahway NJ Postmaster. Send address changes to above.

Printed by Polestor (Colchester) Ltd, Filmsetting by JJ Typographics Ltd, Unit 4 Baron Court, Chandlers Way, Southend-on-Sea, Essex SS2 SSE.

© Reed Business Information Ltd 1997 ISSN 0959 8332

UPDATE

UK high-tech firms turn recession tide

The UK is emerging from the risk of recession on the back of a reshaped high-tech industry, according to several reports out this week.

A study by Deloitte & Touche says the high-tech industry is benefiting from unprecedented growth, with the UK's top 50 fastest growing technology companies recording an average increase in turnover of 1857 per cent from 1995 to 1997. At the same time, the government released figures showing a 0.1 per cent increase in gross domestic product, which analysts say means the country has avoided a recession.

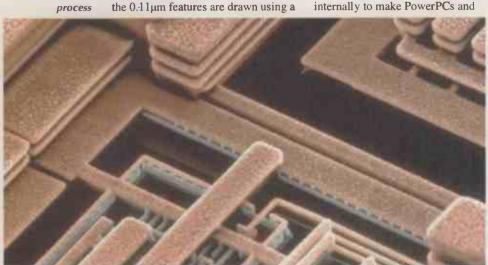
"The main message from this survey is one of great optimism. The UK has a technology business that is driven by highly focused entrepreneurs," said William Touche, a partner with Deloitte & Touche.

Scotland is doing particularly well with one quarter of the top 50 firms located in the area, higher than in London and the south east. Other evidence of the UK's burgeoning high-tech industry came from the Invest in Britain Bureau (IBB) which reported an increase in overseas investment in UK high-tech firms.

"We looked back over the past three months to test our drive in attracting high-tech investments rather than large scale manufacturing jobs. Britain is doing exceptionally well," said an IBB spokesman. The IBB reported a 39 per cent rise in overseas high-tech investments compared to the first quarter of 1997. "Hopefully this news adds to the government's White Paper. It makes clear where we are going," added the spokesman. The White Paper was introduced to encourage start-ups and investments in the high-tech industry.

However, a note of caution was offered by the Federation of Electronics Industry (FEI). "It depends what products you are selling, what industry you are serving. The fastest growing is the mobile telecoms market but if you are involved in the infrastructure – base stations – side of the market, it is not growing as fast as other areas," said Richard Hinds, the FEI's components director.

> Alex Mayhew-Smith Electronics Weekly


Copper chip interconnects "ready to roll"

BM Microelectronics has a copper interconnect on silicon on insulator (SOI) process available for prototyping that can draw gate lengths on silicon down to 0.11 µm.

"For the past couple of years our process technology has been very showy," said Dr Lisa Su, project manager for CMOS Logic Technologies at IBM Microelectronics, pointing out that the 0.11 µm features are drawn using a 248nm ultraviolet wavelength. At the moment, the process is available to customers only for prototyping but, "it is ready to roll," said Su.

Before volume production is available to OEMs, an ASIC library for the process has to be developed. According to IBM, this is currently underway.

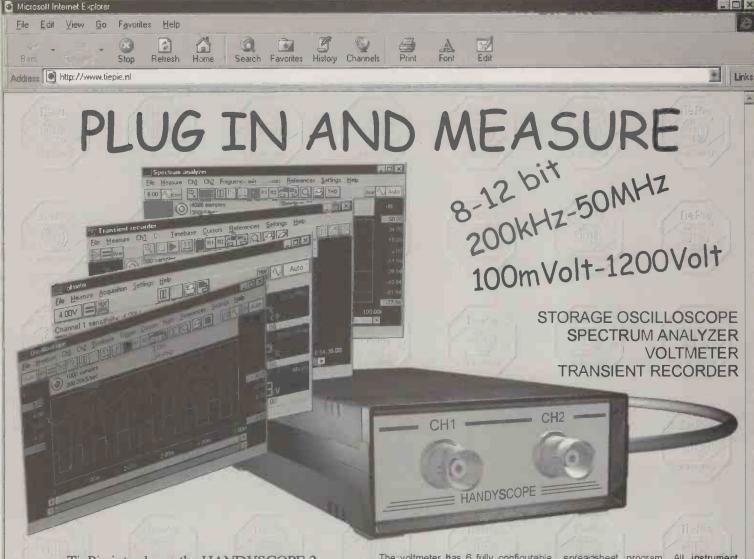
The company has used the process internally to make PowerPCs and

ASICS. It expects customers to use it for IBM BlueLogic system-level chips and for ASICS used in high-end servers.

Using copper interconnects speeds up chips by 10 to 20 per cent compared to aluminium, says IBM, while using SOI wafers improves transistor performance by up to 35 per cent and offers up to a threefold reduction in power.

Although SOI wafers cost three times the price of silicon wafers, according to Andre' Auberton-Herve', president of SOI wafer suppliers SOITEC, the extra cost for finished silicon is only ten per cent, claims Su.

IBM calls its copper/SOI process SA27E. "The reason SOI is so attractive is that it is an ideal transistor," said Su. "The difficulties with it have been in getting good enough materials without defects. What has kept people away from SOI is that scaling has been going so fast that SOI couldn't catch up. It could only be useful if SOI and silicon scaling were equivalent. Now SOI has caught up."


David Manners Electronics Weekly

Cross section of

the structure of

IBM's copper

interconnect

TiePie introduces the HANDYSCOPE 2 A powerful 12 bit virtual measuring instrument for the PC

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:

"PLUG IN AND MEASURE".

Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring Instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using: the speed button bar. Gives direct

access to most settings. the mouse. Place the cursor on an

object and press the right mouse button for the corresponding settings menu.

- menus. All settings can be changed using the menus.

Some quick examples:

The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8K spectrum and disposes of 6 window functions, Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec, so it is easy to measure events that last up to almost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements. also True RMS, Peak- Peak, Mean, Max and Min values of the measured signal are available.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 (50MHz-8bit), TP112 (1MHz-12bit), TP208 (20MHz-8bit) and TP508 (50MHz-8bit).

Convince yourself and download the demo software from our web page: http://www.tiepie.nl.

When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package:

The HANDYSCOPE 2 is delivered with two 1:1/1:10 switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE2 is £ 299.00 excl. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL) Koperslagersstraat 37 8601 WL SNEEK The Netherlands Tel: +31 515 415 416 Fax+31515418819

Internet zone

UK leads Europe in IC design capability

The UK has taken the lead in Europe in high-level IC design. Local firms now account for well over half of all the revenues generated by Europe's independent design houses, according to a report by analysts Future Horizons.

"The level of intellect that's there is staggering," said Malcolm Penn, chairman of Future Horizons.

The report says that out of 140 design houses in Europe, 60 are in the UK and that, out of total 1998 design revenues of \$1.06bn generated in Europe, \$604m are generated by UK design houses.

The reason why the UK generates more than half Europe's revenues with less than half Europe's number of companies is, "because of the UK background in telecomms and mixed signal where you have to have the real brainpower," said Penn.

"Where you're not just linking millions of gates together but you're hand-crafting the transistors to get performance – these are fabulously intellectual skills and a very scarce resource," he continued.

"It's back to the days when you had linear designers who would sit for months in the desert drinking Tequila and then come back with a brilliant design," said Penn.

Driving the growth of the design house is the move to system level chips. Because OEMs and semiconductor houses do not need to employ high-level designers permanently, it is cheaper to out-source design work. "Typically these companies are five to 15 engineers with sophisticated software but inexpensive workstations," said Penn. "The software cost is horrendous but after that it's all brainpower."

Typically the UK's design houses are located in clusters: in Bristol where they have spun-off from Inmos, in Swindon where they have spun off from GEC-Plessey Semiconductors (now Mitel Semiconductor), and around the Universities of Edinburgh and Cambridge.

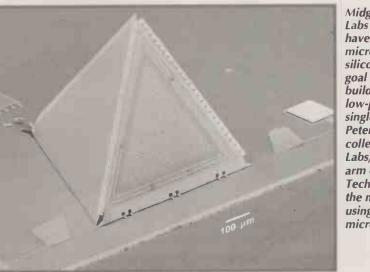
European high-level IC design revenues will grow at 34 per cent compound annual growth rate over the next five years, said the report. David Manners

1000MHz PC has fridge technology

A dvanced Micro Devices (AMD) has demonstrated a PC running at 1GHz using an innovative cooling system.

The prototype PC, called the Super-G, uses AMD's forthcoming K7 microprocessor cooled by a system from KryoTech. Cooling the microprocessor allows engineers to increase the clock speed without worrying about overheating the chip.

"The Super-G is derived from two years of technical co-operation between Kryo-Tech and AMD," said Al Quick, chairman and CEO of KryoTech.


The Super-G cooling system uses a vapour phase refrigeration technology similar to that used in refrigerators. KryoTech said it will ship Super-G PCs later this year and will release pricing information at a future date.

AMD competitor Intel has also demonstrated a 1GHz PC but it is believed to have used liquid nitrogen rather than a commercial system to cool the processor.

No hot heads at BT

B^T has denied that it has instructed bits staff to use headsets with their mobile phones in response to a former employee's plan to sue the telecom giant.

The company confirmed that hands-free sets are available to those employees requesting them but said this has been the case for some time. "Our position hasn't changed on this

Midget mike... Bell Labs researchers have built a tiny microphone on a silicon chip in their goal towards building a low-power, single-chip radio. Peter Gammel and colleagues at Bell Labs, the research arm of Lucent Technologies, built the microphone using micromachining.

issue at all," said a BT spokesman. "The fact we give employees the chance to have hands-free sets if they want doesn't change our view that there's no evidence that mobile phones are harmful."

Stephen Corney, a former BT engineer, is suing the company over permanent brain damage allegedly caused by using mobile phones for several hours a day as part of his job.

Tempo rivals Dixons with free Internet

In the latest battle to win subscribers to free Internet service, Dixons' rival Tempo has set up a service offering free calls.

The high street chain is offering a free service, the same as that offered by Dixons' Freeserve, but with the addition of free connection calls during off-peak hours.

Tempo's screaming.net service will offer 118 off-peak hours a week Internet connection at no charge. The service will be available at first from Tempo stores through free CDs containing the necessary software.

Users will have to sign up with telecoms service provider Localtel to use the service, which will make a return on normal voice calls. This, the firm says, will be cheaper than BT rates.

Initially a limited number of CDs will be available so as not to swamp the service. Later on these will be on offer at the rate of 100 000 to 200 000 a month.

Digital radio waves hello to Web access

The BBC is working with UK start-up RadioScape to enable Web access through digital radio transmissions.

The initiative will mean that Web sites containing headline news and share prices can be transmitted to a PC without connection to the Internet. The information will then be continually updated using digital radio, or digital audio broadcasting (DAB) as it is called.

"This is where DAB is going to become compelling," said Peter Florence, managing director of London-based digital radio specialist RadioScape. "This is the year it is really happening."

RadioScape is working on the infrastructure of the system and is receiving funding from the Department of Trade and Industry. The results of its work will be made available to those involved in the digital radio community. "We'll be defining and developing software and then making it available to help people build up data services and broadcast data services in DAB," said Florence.

Work on the project has already begun and is anticipated to take six months. Broadcasts could start by the year end.

To receive the radio transmissions, software and a DAB PC card will need to be installed in the PC. The system will also allow the normal data associated with DAB transmissions to be read by the PC. This includes data appended to radio programmes offering such information as the title of the current music and the band playing it.

Florence stresses the value of DAB's ability to add data available from digital radio, especially when it could attract "some people who don't want to get into the whole Internet thing".

Melanie Reynolds

LCD adapts to bright and dim

Biggin Hill-based liquid crystal display (LCD) manufacturer Densitron has developed a display technology that improves visibility in different ambient lighting conditions.

"It's a major breakthrough for us," said Nick How, product manager at Densitron.

The display shows a negative image and uses a backlight in low light conditions. When light levels are high, the display is positive, and reflects light.

Called Chameleon, the technology has applications where there is both high and low ambient light, such as marine and automotive

environments and mobile phones. "The technology automatically

senses the ambient light and adjusts the image on the display from a positive to a negative image," said How. "As ambient light stops getting reflected, transmitted light takes over."

The technique can be applied to any size of display, said How, with minimal cost increase to the glass. Because less backlighting is needed, overall system cost could be reduced, he claimed.

"And a by-product is that reflected light is double that of a normal LCD technology," said How. Up to 70 per cent of incident light is reflected.

Backlights can use LED or electro-luminescent techniques.

Densitron has no plans to license Chameleon to other LCD manufacturers, preferring to keep it for its own displays.

Richard Ball

Sub 100nm geometry from optical litho?

E lash memory with a minimum feature size of just 0.08µm has been manufactured using conventional optical lithography by Bell Labs.

Researchers claim this is the smallest working device ever manufactured using optical lithography. Stepper manufacturers and semiconductor engineers believed optical techniques would reach a limit at 0.12µm, or 120nm.

The achievement could result in big savings for semiconductor makers, by not having to switch to new manufacturing technology.

To make the device, Bell Labs used a 193nm laser in combination with phase shift masks. Photo-resists were also developed to work with the shorter wavelength light.

The resulting flash storage cell has a floating gate measuring 80x160nm.

Beyond the 193nm used by Bell Labs, semiconductor manufacturers are looking towards extreme ultraviolet (EUV) lasers, ion-beam and electron-beam.

New chip solves music industry's web copyright fears

Lucent Technologies, Texas Instruments (TI) and e.Digital are developing a device that can download from the Internet copyright protected music.

The device will compete with other portable digital music products that play audio encoded in the popular MP3 format.

e.Digital will make the portable devices based on a TI DSP running

Lucent's enhanced perceptual audio coder (EPAC) technology.

"The quality of the sound that we've heard with EPAC on our hardware platform is exceptional," said Fred Falk, CEO of e.Digital.

Lucent and its partners hope that their EPAC-based devices will find favour among main music publishers who are shunning MP3 because it lacks copyright protection.

EPAC uses an 11-to-1 compression ratio to provide CD-quality sound and was developed at Lucent's Bell Labs. Positive or negative? Densitron's Chameleon display technology changes from a positive to negative image as ambient light levels change. In bright light, the positive image is reflective, saving battery power otherwise required for the backlight.

www.quickroute.co.uk

THE QUICKROUTE

Simulation Circuit Capture PCB Autorouting CADCAM

Imagine an electronics design system that lets you draw schematics onto the screen and then simulate them at the touch of a button. Now imagine pressing another button and seeing the schematic replaced with a PCB rats-nest. Pressing another button starts the autorouter, and finally you can click on File then Save As to create a complete set of CADCAM files.

Too easy? We hope so. Quickroute has always been designed first and foremost to be easy to use. That's why simulation, circuit capture, PCB autorouting and CADCAM support are all integrated into one package, so that you only have to learn one package.

If you would like to find out more about Quickroute, why not call us on FREEphone 0800 731 28 24, or visit our web site on www.quickroute.co.uk. Prices start at under £100 including UK P&P and VAT for a complete system.

DATA TEP **FREEphone**


CIRCLE NO.106 ON REPLY CARD

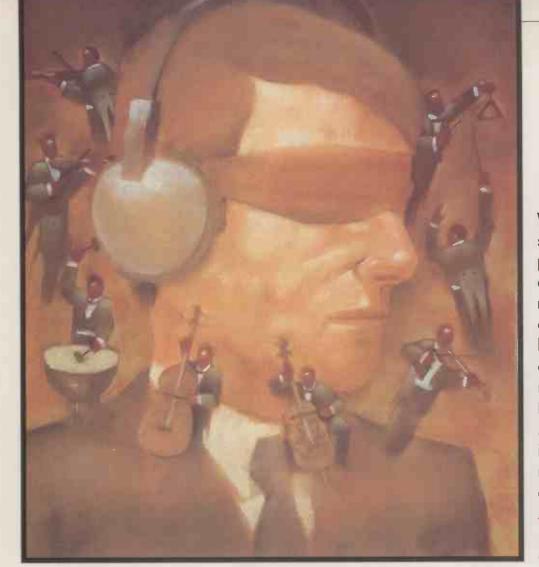
"modern, powerful and easy to use" Electranics 97

Int +44 161 476 0202 Fax 0161 476 0505 Copyright © 1998 Quickroute Systems Ltd Regent Liouse Heaton Lane Stockport SK4 1BS UK

0800 731 28 24

Surplus electrical equipment. All items are untested and sold as seen. Please ring for more details.

Tektronix 212 Oscilloscope (AC/DC) £99, Tektronic 2205 Oscilloscope (20Mhz) £ 199 Tektronic 2445A Oscilloscope (150Mhz) £399, H.P. 1744A Oscilloscope (100Mhz) £75, Philips 3217 Oscilloscope (50Mhz) £149, Marconi 2305 Modulation Meter £999, Solartron JM1861 Signal Generator £99, Datalab DL1080 Transient Recorder £99, Wavetek 178 Waveform Synthesiser £599, Datron 1041 Voltmeter Multifunction £132, Fluke 8800A Multimeter Digital £58, Dana 5000 Multimeter Digital £92, Philips PM5705 Pulse Generator 0.1Hz-10Mhz £149


OFFICIAL SURPLUS CONTRACTORS TO THE BRITISH MINISTRY OF DEFENCE

Church Lane, Croft, Skegness, Lincs PE24 4RW (Just off theA52) **Telephone 01754 880880**

CIRCLE NO.107 ON REPLY CARD

Milford Instruments 01977 683665 www.milinst.demon.co.uk

7 digital outputs
Toggle/momentary
Re-Programmable

When considering a stereo system, most people look at distortion, frequency response and power output. Purists also look at things like damping factor, noise and slew rate. But what about the system's stereo image? Does it matter? If so, how can it be quantified? John Watkinson provides the answers.

Stereo from all angles

his set of articles looks at every aspect of stereo and in particular those areas where quality can be lost. Starting with the human ear, it considers the direction sensing mechanism, the way that the illusion of intensity stereo is created, the way stereo microphones should work and possible pitfalls, and then the way in which loudspeakers ought to work in stereo but frequently don't.

In addition to explaining the theory of stereo, I will present practical advice on what to do to make a tangible difference.

Where is it coming from?

Without doubt, the ability to convey some impression of the spatial nature of sound adds considerably to the realism of an otherwise accurate reproduction of the frequency and time domain information.

It is axiomatic that the more accurate a reproduction system is, the more realistic it will sound. Various measurement techniques have evolved for audio equipment in which an objective measurement is made and compared with some criterion based on subjective tests of human hearing.

Measurements of frequency response and linear and non-linear distortion are routinely made to assess the quality of audio equipment and all have internationally agreed measurement units.

The mechanism by which humans determine sound direction, and the accuracy to which it can be done are well known. Accordingly, this ought to be the criterion for the spatial accuracy of a stereo reproduction system – just as the ear's sensitivity

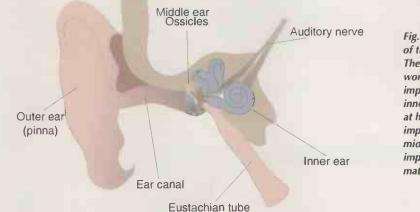
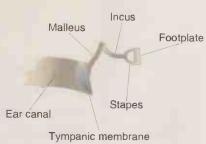
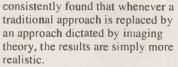



Fig. 1. Structure of the human ear. The outer ear works at low impedance, the inner ear works at high impedance. The middle ear is an impedance matching device. Fig. 2. The malleus tensions the tympanic membrane into a conical shape. The ossicles provide an impedancetransforming lever system between the tympanic membrane and the oval window.

to distortion is the basis for audio linearity criteria.


I find it bizarre that there are no internationally agreed techniques for measuring the spatial accuracy of stereo reproduction systems. Nor are there even any units of measurement, although other industries purveying spatiallydisposed images have evolved such means.

The consequences of this lack are all around us. It is well known that loudspeakers displaying identical conventional measurements sound different from each other and from the original. This confirms that existing measurements give an incomplete picture of performance. In the absence of a

psychoacoustically based unit of spatial accuracy, the comparison of speakers becomes a minefield of subjectivism and technical progress is hampered.

I have been carrying out fundamental research into stereo imaging accuracy and I have

Helicotrema

As this series evolves, it will become clear that there is considerable scope for improvement in the realism of stereo reproduction and that an additional metric is required to help bring that about.

Enter the ear...

The ultimate criterion for sound reproduction is that the human ear is fooled into thinking it has heard the real thing. It follows that good understanding of human hearing has to form the basis for all of the value judgements which will be necessary as system design proceeds.

Figure 1 shows that the structure of the ear is traditionally divided into the outer, middle and inner ears. The outer ear works at low impedance, the inner ear works at high impedance, and the middle ear is an impedance matching device.

The visible part of the outer ear is called the pinna which plays a subtle role in determining the direction of arrival of sound at high frequencies. It is too small to have any effect at low frequencies. Incident sound enters the auditory canal or meatus.

The pipe-like meatus causes a small resonance at around 4kHz. Sound vibrates the eardrum or tympanic membrane which is stretched between the outer ear and the middle ear.

The inner ear, or cochlea, works by sound travelling though a fluid. Sound enters the cochlea via a membrane called the oval window. If airborne sound were to be incident on the oval window directly, the serious impedance mismatch would cause most of the sound to be reflected. The middle ear remedies that mismatch by providing a mechanical advantage.

The tympanic membrane is linked to the oval window by three bones known as ossicles. These act as a lever system such that a large displacement of the tympanic membrane results in a smaller displacement of the oval window, but with greater force.

Figure 2 shows that the malleus applies tension to the tympanic membrane rendering it conical. The malleus and the incus are firmly joined together to form a lever. The incus acts upon the stapes through a spherical joint. The area of the tympanic membrane is greater than that of the oval window, creating a further mechanical advantage. Small pressures over the large area of the tympanic membrane are converted to high pressures over the small area of the oval window.

The middle ear is normally sealed, but ambient pressure changes will cause static pressure on the tympanic membrane that is painful. The pressure is relieved by the eustachian tube, which opens involuntarily while swallowing.

The cochlea, shown in Fig. 3a), is a tapering spiral cavity within the bony walls which is filled with fluid. The widest part, near the oval window, is called the base and the distant end is the apex.

Figure 3b) shows that the cochlea is divided lengthwise into three volumes by Reissner's membrane and the basilar membrane. The scala vestibuli and the scala tympani are connected by a small aperture at the apex of the cochlea known as the helicotrema.

Vibrations from the stapes are transferred to the oval window and become fluid pressure variations

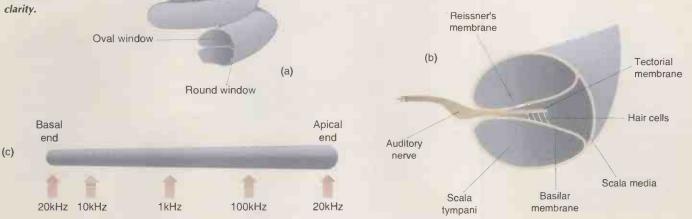


Fig. 3. At a) is the

cochlea and b) is

a section through

shows the cochlea

it. Diagram c)

unrolled for

which are relieved by the flexing of the round window.

Effectively the basilar membrane is in series with the fluid motion and is driven by it except at very low frequencies where the fluid flows through the helicotrema, bypassing the basilar membrane. Figure 3c) shows that the basilar membrane tapers in width and varies in thickness in the opposite sense to the taper of the cochlea.

How various frequencies affect the mechanism

The part of the basilar membrane that resonates as a result of an applied sound is a function of the frequency. High frequencies cause resonance near to the oval window, and low frequencies cause resonances further away.

The distance from the apex where the maximum resonance occurs is a logarithmic function of the frequency so that tones spaced apart in octave steps will excite evenly spaced resonances in the basilar membrane.

The existence of resonance at a location on the membrane which is a function of frequency is predicted by place theory. Essentially the basilar membrane is a mechanical frequency analyser.

A knowledge of the way it operates is essential to an understanding of musical phenomena such as pitch discrimination, timbre, consonance and dissonance and to auditory phenomena such as critical bands, masking and the precedence effect.

The vibration of the basilar membrane is sensed by the organ of corti, which runs along the centre of the cochlea and contains elements which can generate vibration as well as sense it. These are connected in a regenerative fashion so that the Q factor, or frequency selectivity, of the ear is higher than it would otherwise be.

The deflection of hair cells in the organ of corti triggers nerve firings and these signals are conducted to the brain by the auditory nerve.

Nerve firings are not a perfect analogue of the basilar membrane motion. A nerve firing appears to occur at a constant phase relationship to the basilar vibration; a phenomenon called phase locking, but firings do not necessarily occur on every cycle. At higher frequencies firings are intermittent, yet each has the same phase relationship.

Ear resonances

The resonant behaviour of the basilar membrane is not observed at the lowest audible frequencies below 50Hz. The pattern of vibration does not appear to change with frequency and it is possible that the frequency is low enough to be measured directly from the rate of nerve firings.

At its best, the ear can detect a sound pressure variation of only 20 micropascals RMS and so this figure is used as the reference against which sound pressure level is measured. The sensation of loudness is a logarithmic function of sound pressure level and consequently a logarithmic unit – the decibel – is used in audio measurement.

The dynamic range of the ear exceeds 130dB, but at the extremes of this range, the ear is either straining to hear or is in pain. The frequency response of the ear is not at all uniform. It changes with sound pressure level.

The subjective response to level is called loudness and is measured in phons. The phon scale and the sound pressure level scale coincide at 1kHz, but at other frequencies the phon scale deviates because it displays the actual sound pressure levels judged by a human subject to be equally loud as a given level at 1kHz.

Figure 4 shows the so-called equal loudness contours which were originally measured by Fletcher and Munson and subsequently by Robinson and Dadson. Note the irregularities caused by resonances in the meatus at about 4kHz and 13kHz.

Usually, people's ears are at their most sensitive between about 2kHz

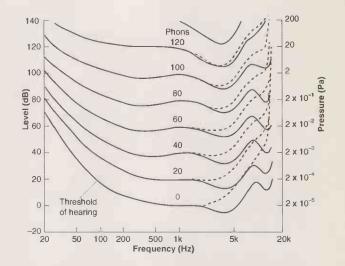
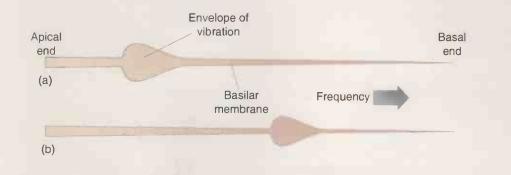
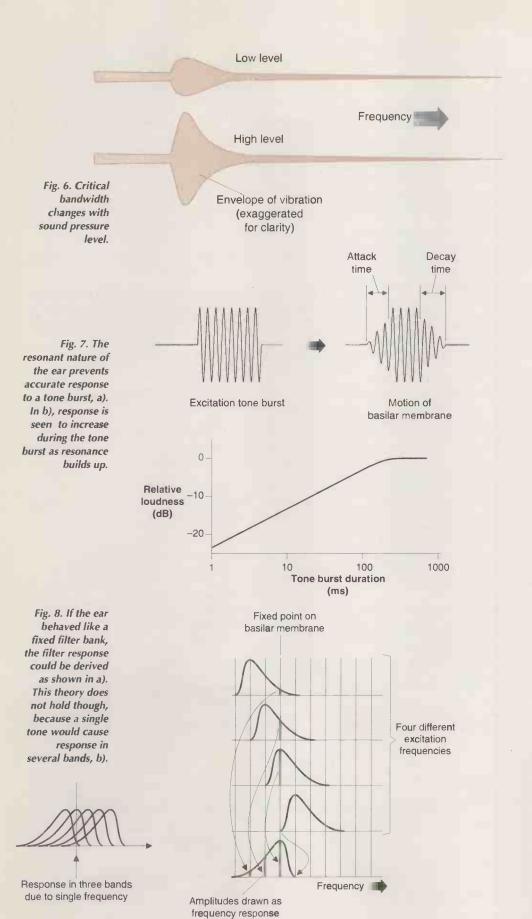


Fig. 4. Contours of equal loudness showing that the frequency response of the ear is highly level dependent. The solid line is typical of someone aged 20 and the dashed line a 60-year old.

and 5kHz. The generally accepted frequency range for high quality audio is 20Hz to 20000Hz.


Where did the bass go?


The most dramatic effect of the curves of Fig. 4 is that the bass content of reproduced sound is disproportionately reduced as the level is turned down.

If an adequately powerful yet high quality reproduction system is available the correct tonal balance when playing a good recording can be obtained simply by setting the volume control to a level that sounds natural. Many musical instruments and the human voice change timbre with level and there is only one level that sounds correct for the timbre.

A further consequence of leveldependent hearing response is that recordings mixed at an excessively high level will appear bass-light when played back at a normal level. Such recordings are more a product of self-indulgence than professionalism. Fig. 5. Basilar membrane symbolically uncoiled. This shows that when the single frequency at a) is changed, as in b), the peak of the envelope moves.

Figure 5 shows an uncoiled basilar

membrane with the apex on the left so that the usual logarithmic frequency scale can be applied. The envelope of displacement of the basilar membrane is shown for a single frequency at a). The vibration of the membrane in sympathy with a single frequency cannot be localised to an infinitely small area. Nearby areas are forced to vibrate at the same frequency with an amplitude that decreases with distance.

Note that the envelope is asymmetrical because the membrane is tapering and because of frequency dependent losses in the propagation of vibrational energy down the cochlea.

If the frequency is changed, as in b), the position of maximum displacement will also change. As the basilar membrane is continuous, the position of maximum displacement is infinitely variable allowing extremely good pitch discrimination of about one twelfth of a semitone which is determined by the spacing of hair cells.

In the presence of a complex spectrum, the finite width of the vibration envelope means that the ear fails to register energy in some bands when there is more energy in a nearby band. Within those areas, other frequencies are mechanically excluded because their amplitude is insufficient to dominate the local vibration of the membrane.

The Q factor of the membrane is responsible for the degree of auditory masking, defined as the decreased audibility of one sound in the presence of another.

The term critical bandwidth is used in psychoacoustics to describe the finite width of the vibration envelope. The envelope of basilar vibration is a complicated function. It is clear from the mechanism that the area of the membrane involved will increase as the sound level rises. Figure 6 shows the bandwidth as a function of level.

Transform theory teaches that the higher the frequency resolution of a transform, the worse the time accuracy. As the basilar membrane has finite frequency resolution measured in the width of a critical band, it follows that it must have finite time resolution. This also follows from the fact that the membrane is resonant, taking time to start and stop vibrating in response to a stimulus. There are many examples of this. Figure 7a) shows the impulse response and Fig. 7b) shows the perceived loudness of a tone burst increases with duration up to about 200ms due to the finite response time.

The ear has evolved to offer intelligibility in reverberant environments. It does this by averaging all received energy over a period of about 30ms. Reflected sound that arrives within this time is integrated to produce a louder sensation, whereas reflected sound arriving after that time can be temporally discriminated and is perceived as an echo.

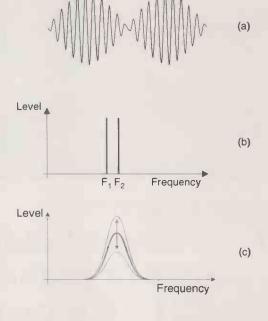
A further example of the finite time discrimination of the ear is the fact that short interruptions to a continuous tone are difficult to detect. Finite time resolution means that masking can take place even when the masking tone begins after and ceases before the masked sound. This is referred to as forward and backward masking.

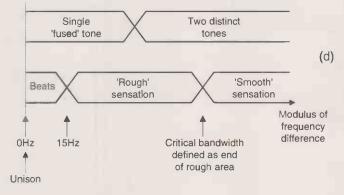
Some treatments of human hearing liken the basilar membrane to a bank of fixed filters each of which is the width of a critical band. The frequency response of such a filter can be deduced from the envelope of basilar displacement as has been done in Fig. 8.

The fact that no agreement has been reached on the number of such filters should alert the suspicions of the reader. The fact that a thirdoctave filter-bank model cannot explain pitch discrimination some thirty times better is another cause for doubt.

The response of the basilar membrane is centred upon the input frequency. No fixed filter can do this.

However, the most worrying aspect of the fixed filter mode, is that according to Fig. **8b**), a single tone would cause a response in several bands which would be interpreted as several tones. This is at variance with reality. Far from masking higher frequencies, we appear to be creating them!


Figure 9 shows an electrical signal a) in which two equal sine waves of nearly the same frequency have been linearly added together. Note that the envelope of the signal varies as the two waves move in and out of phrase.


Clearly the frequency transforms calculated to infinite accuracy is that

shown at b). The two amplitudes are constant and there is no evidence of the envelope modulation. However, such a measurement requires an infinite time. When a shorter time is available, the frequency discrimination of the transform falls and the bands in which energy is detected become broader.

When the frequency discrimination is too wide to distinguish the two tones as in c), the result is that they are registered as a single tone. The amplitude of the single tone will change from one measurement to the next because the envelope is being measured.

The rate at which the envelope amplitude changes is called a beat frequency. This beat frequency is not present in the input signal. Beats are an artefact of finite frequency resolution transforms. The fact that

human hearing produces beats from pairs of tones proves that it has finite resolution.

Measurement of when beats occur allows measurement of critical bandwidth. **Figure 9d**) shows the results of human perception of a two-tone signal as the frequency difference changes. When it is zero, described musically as unison, only a single note is heard.

As the difference increases, beats are heard, yet only a single note is perceived. The limited frequency resolution of the basilar membrane has fused the two tones together. As it increases further, the sensation of beats ceases at 12-15Hz and is replaced by a sensation of roughness or dissonance.

The roughness is due to parts of the basilar membrane being unable to decide the frequency at which to vibrate. The regenerative effect may Fig. 9. Section a) shows two sine waves of similar frequency added and b) shows the waveform's spectrum to infinite accuracy. Assuming finite accuracy, only a single frequency is distinguished, c), whose amplitude changes with the envelope of a), giving rise to beats. Perception of a two-tone signal as frequency difference changes is shown in d).

well become confused under such conditions. The roughness persists until the frequency difference has reached the critical bandwidth. Beyond this bandwidth, two separate tones will be heard because there are now two discrete basilar resonances. In fact this is the definition of critical bandwidth.

My next article on this topic continues with how the human hearing mechanism senses direction.

Unique reader offer: x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

Name

Address

Postcode

Telephone

Total

Method of payment (please circle)

Cheques should be made payable to Reed Business Information

Access/Mastercard/Visa/Cheque/PO

Credit card no

Card expiry date

Signed

Please allow up to 28 days for delivery

Seen on sale for £20 each, these highquality oscilloscope probe sets comprise:

- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
 trimming tools

There's also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet.

To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Readers outside Europe, please add £2.50 to your order.

Specifications

Switch position 1 Bandwidth Input resistance Input capacitance Working voltage

Switch position 2 Bandwidth Rise time Input resistance 1MΩ Input capacitance Compensation range Working voltage DC to 10MHz 1M Ω – i.e. oscilloscope i/p 40pF+oscilloscope capacitance 600V DC or pk-pk AC

DC to 150MHz 2.4ns 10M Ω ±1% if oscilloscope i/p is

12pF if oscilloscope i/p is 20pF 10-60pF 600V DC or pk-pk AC

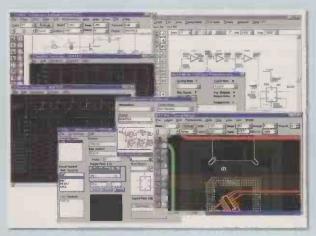
Switch position 'Ref' Probe tip grounded via $9M\Omega$, scope i/p grounded Professional Electronics Design

EDWN NC

• Genuine, professional EDA software with no limitations! - and yOU can afford it!

• EDWin NC comes from Visionics: one of the *longest established*, *most experienced* producers of *professional* EDA systems, so it's fully proven in professional work.

• Now you can have this best-selling non-commercial version of the software at just


50% of the normal price, with no limits in its capabilities.

• It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis. Many more advanced features are available and it runs in Windows 3.x, 95, 98 or NT.

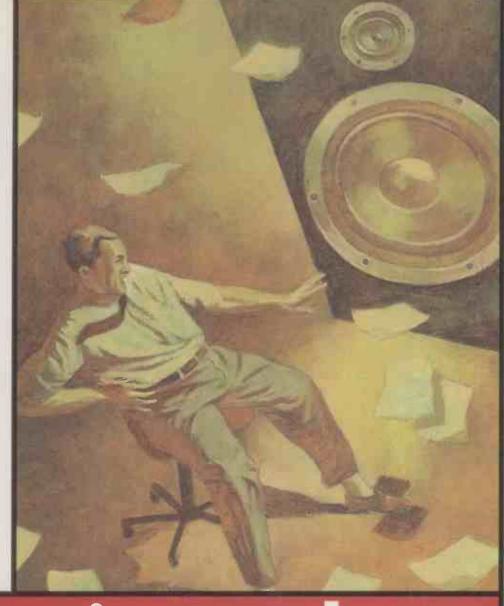
• Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes. Prices start from just £59.00 for the basic system, up to only £285.00 for the full system including all available modules!

Don't forget - Phone Today for Your 50% Discount!

- EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
- EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
- EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
- EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator,
- EMC and Signal Integrity Analysers.

50%

Discount


Plus Postage & Packing UK £5.00; Rest of World £10.00 (only one charge per order)

Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com Please Visit Our Web Site http://www.swiftdesigns.co.uk

	Swift Eurotech Ltd	
I enclose: £total. We aim to dispatch as soon as we but please allow 28 days for Subject Unsold.		Qty. Total (£)
Visa/Mastercard/Eurocard: No.	• EDWin NC BASIC: £59.00	
	• EDWin NC De Luxe 1: £119.00	
Issue Date: Expiry Date:	• EDWin NC De Luxe 2: £155.00	
	• EDWin NC De Luxe 3: £285.00	
Date Signature	Postage & Packing UK £5.00	
Name:	Rest of World £10.00	
Address:	(only one P&P charge per order)	Total £
		ft Eurotech Ltd.,
Tel.: Evenings		ns Alley, 160 High Stree Essex, CM16 4AQ, UK.
Tel., Evenings	ppmg,	

CIPCLE NO 100 ON PEPLY CAPD

Douglas Self tackles the vital subject of relay muting and protection in audio amplifiers. He reveals some little known secrets of relay operation and shows how to make them switch faster than is apparently possible. As a bonus, there's an upgrade to his precision preamp.

Muting relays

ost power amplifiers incorporate an output relay that not only provides muting to prevent transients reaching the loudspeakers, but also protection against destructive DC faults.

Loudspeakers are expensive, and no amplifier should ever be connected to one without proper DC-offset protection. This applies with particular force to experimental amplifiers.

Sensible preamplifiers – ie those with AC-coupled outputs – do not require DC protection, but the muting of thumps is no less important. Electronic switching at preamp outputs is feasible, but still presents technical challenges if high standards of linearity are to be combined with a reasonably low output impedance. Electronic output switching is impracticable at power amplifier signal levels; however, if the amplifier is powered by a switch-mode supply, then turning it off is an option if positive and negative rails can be relied upon to collapse quickly and symmetrically

Protection circuit operation

Basic functions of a power-on thump elimination and DC protection circuit are as follows:

- Delay relay pull-in until amplifier turn-on transients are over.
- Drop out relay as fast as possible when AC power is removed.
- Drop out relay as fast as possible when DC fault occurs.
- Drop out relay on excess temper-

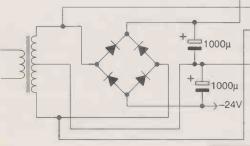
ature, etc. Speed non-critical.

Figure 1 is a block-diagram of a system to perform these functions. Since this is in part a protection system, simplicity and bullet-proof reliability are essential.

The main dynamic parameters of a relay are the pull-in and drop-out time. For this kind of application, the pull-in time is more or less irrelevant, as it is milliseconds compared with the seconds of the turn-on delay.

Relay contacts bounce when they close, but the duration of pull-in contact bounce is not important for this application.

All the relays I examined showed clean contact-breaking on drop-out, and this is essential for fast muting. **Table 1** gives details of three poweramp relays and the Fujitsu relay used in the Precision Preamp '96 article.¹


The specifications for the P&B relay are very conservative. The example measured pulled-in at 72% of the must-operate voltage, and dropped out at 350% of the mustdrop-out voltage. Likewise the real operating times are much less than those specified.

The critical parameter for audio muting is the drop-out time, for this puts a limit on the speed with which turn-off transients can be suppressed. It seems at first that the drop-out time must be solely a function of the relay design, depending on the force in the bent contact spring and the inertia of the moving parts. This is partly true, as mechanical factors set a minimum time, but that time is greatly extended by the normal relay-driving circuits.

Relay-on timing

The delay required at amplifier turn-on depends on the amplifier characteristics.

If there are long time-constants, and voltages that take a while to settle, then the muting period will have to be extended to prevent

clicks and thumps. Five seconds is probably the upper limit before the delay gets irritating; one second is long enough for a silent start-up with most conventional amplifiers.

This delay function can be performed in many ways, but there are a few points to consider. The tolerance on the length of the turn-on delay is not critical, and an RCtime-constant is quite adequate to define it.

It is convenient – and significantly cheaper – to run the relay control circuitry directly from the main HT rails rather than creating regulated sub-rails or extra windings on the mains transformer. The emphasis is therefore on discrete transistor circuitry.

Figure 2 shows the relay control system I used in the Precision

Preamplifier '96. Note that there was an error in the original diagram that is corrected here.

Capacitor C_{224} charges through R_{211} until D_{207} is forward-biased and Tr_{205} turns on. This turns on Tr_{206} and energises the relay; the extra current-gain of Tr_{206} enables the timing circuitry to run at low power. The on-timing delay here is 2 seconds.

A series dropper resistor for the relay is usually required; here it is R_{218} . The highest voltage relay-coil available is usually 48V, though 24V is more common, and power amplifier rails are often much higher than this.

The reverse diodes across the relay coils prevent Tr_{206} being damaged by the inductive spike created when the coil is suddenly de-energised. For relays of the size used in power amplifiers, signal diodes cannot cope

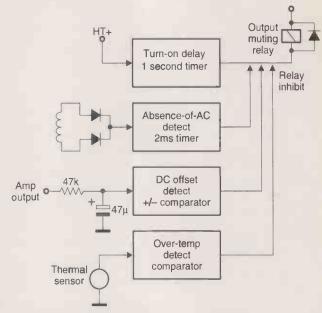


Fig. 1. Block diagram of a relay control system.

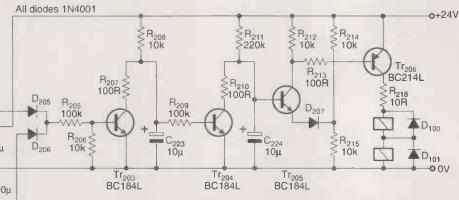
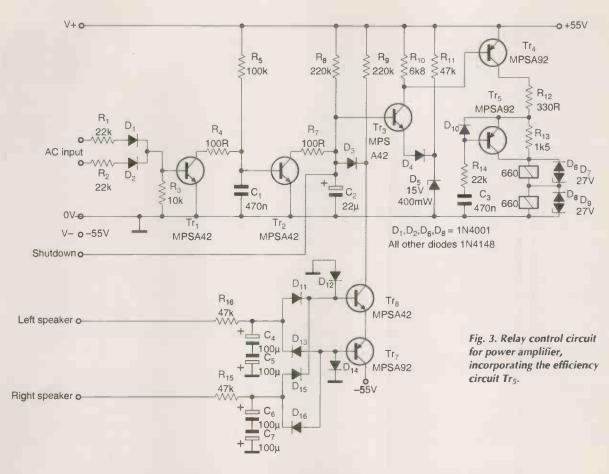



Fig. 2. Relay-control circuit as used in the Precision Preamplifier '96 – effective, but it can be improved. Component numbers retained from original design.

Laurinal coltana	P&B	Oko	Schrack	Fujitsu
Nominal voltage	24V	18V	12V	12V
Must-operate voltage Drop-out voltage	18V 2.4V			8.4V 1.2V
Coil resistance	2.4v 660Ω			320Ω
Coil inductance	0.55H			32012
Pull-in time maximum	15ms			5ms
Pull-in time typical	9ms			01110
Drop-out time maximur				3ms
Drop-out time typical	7ms			onio
Table 1b. Measured relay	specifications	i.		
· · · · ·	P&B	Oko	Schrack	Fujitsu
Operate voltage	13V	13V	7V	6V
Drop-out voltage	8.5V	6.5V	2.5V	2V
Pull-in time	14ms	10ms	10ms	2.7ms
Drop-out time	1.0ms	1.3ms	2.4ms	1.2ms
Diode drop-out time 5.4ms		6.9ms	11ms	4.2ms
27V-clamp drop-out time 1.8ms		2.4ms	2.7ms	1.3ms

with the stored energy and the 1N4001 type should be used.

Off timing criteria

The relay drop-out must be as fast as possible. If a relay is powered directly from the supply rails, then it will drop out eventually as the rails collapse, but this will be far too slow to catch turn-off noises.

The drop-out voltage may well be less than a third of the pull-in voltage, and this slows things down even more. A specific fast off circuit is required, and there are several ways to achieve this.

Mechanical detection. This is a mains switch that closes or opens a control circuit before the mains power contacts are opened. It could give perfect relay operation, but I am not aware that any such mains switch has ever been produced.

Detecting the loss of DC supply. This technique involves a subsidiary supply rail with a small reservoir capacitor. When the mains is switched off, the capacitor discharges quickly and either removes the relay power directly, or resets the turn-on delay timer. The latter is usually easier to implement.

This method is inherently slow, because the relay-off threshold must be below the ripple troughs. Therefore in the worst case, an entire half-cycle of mains must pass before the capacitor becomes fully discharged, so the delay may be 10ms.

In practice there are component tolerances to be allowed for, and the threshold must be set low enough to prevent spurious operation if the mains voltage is below normal. It is usually prudent to ensure circuitry works with mains down to at least -20%. This extends the minimum delay to about 16ms. The reservoir capacitor will have a large ripple voltage across it, and its ripple-current rating must be carefully observed.

Detection of loss of AC. Detecting the loss of AC supply, as opposed to the rectified DC, is potentially quicker as there is no reservoir capacitor to discharge before the circuit operates. An AC waveform is effectively appearing and disappearing every half-cycle, so the circuit must distinguish between the zero-crossings that occur every 10ms, and genuine loss of power.

AC loss detection

The most straightforward method of AC-loss detection exploits the fact that properly-defined zero-crossings are very brief; all that is required is a timer that will not complete and drop out the relay until a period greater than the width of the zero-crossing has expired. This delay can readily be reduced to less than 1ms.

Referring to Fig. 2, Tr_{203} is normally held firmly on by the incoming AC, via D_{205} on positive halfcycles and D_{206} on negative ones, and thus keeps C_{223} fully discharged.

At the zero-crossings, Tr_{203} has no base drive and turns off, allowing C_{223} to begin charging through R_{208} . If the absence of base drive persists beyond the preset period, which means the AC has been interrupted, then C_{223} charges until Tr_{204} turns on and rapidly discharges the main timing capacitor C_{210} through R_{207} , dropping out the relay.

When a relay is driven by a transistor, it is standard to put a reversed diode across the coil. Without it, abrupt turn-off of current causes the coil voltage to reverse, driving the collector more negative. For the relays here, the worst spike measured was -120V, which is enough

to destructively exceed the V_{ceo} of most transistors.

This apparently innocent, and indeed laudable practice of diode protection conceals a lurking snag; drop-out time is hugely increased by the reversed diode. It is roughly five times longer, which is very unwelcome in this particular application. This is because the diode gives a path for current to circulate while the magnetic field decays.

This is a good point to stop and consider exactly what we are trying to do: the aim is not to totally suppress the back-EMF but rather to protect the transistor.

If the back-EMF is clamped to about -27V by a suitable Zener diode in series with the reverse diode, the circulating current stops much sooner, and the drop-out is almost as fast as for the non-suppressed relay.

In general, drop-out is speeded up by a factor of about four on moving from conventional protection to Zener clamping. For the relays examined here, a 500mW Zener appeared to be adequate.

Preamp enhancement

The preamp relay controller can be improved upon; it works well under most circumstances, but it could be faster. Testing showed that the delay between loss of AC and the relay power being removed could be as long as 17ms, depending slightly on the phase of the mains when it was cut. The relay drop-out time was 5ms giving a total of 22ms before the preamp output is muted.

The following circuit improvements were made to speed up relay drop out.

The on-timing reference divider $R_{214,215}$ is replaced with a 15V Zener diode. This sharpens up the relay pull-in, making a more 'precise' click. It also prevents the voltage on C_{224} rising beyond that required to turn on Tr_{205} ; discharging it when the time comes is therefore quicker.

Base drive to Tr_{203} is increased by reducing R_{205} to $22k\Omega$. This defines the zero-crossing as twice as narrow, allowing the time-constant R_{208} - C_{223} which bridges this period to be made shorter. Capacitor C_{224} therefore starts discharging sooner after AC is lost.

Impedance of the zero-crossing time-constant R_{208} - C_{223} is increased by changing the values from $10k\Omega$ - 10μ F to $100k\Omega$ -470nF. This simultaneously reduces the time-constant mentioned in the previous paragraph. It is now possible to use a non-electrolytic timing capacitor, which reduces tolerances and makes the circuit more designable.

Base drive to Tr_{204} is increased to speed up the discharge of C_{224} by reducing R_{205} from $100 k\Omega$ to 100Ω .

Finally, a 27V Zener clamp is applied to each relay, as described above.

After these improvements, the electronic delay was reduced from 17 to 5.4ms; the total delay including contacts opening now was 9.5ms worst-case.

After adding Zener clamping to the relays this fell to 6.3ms worst-case, the average being 4.5ms; the improved circuit is four times faster.

These component changes can be simply retro-fitted to existing Preamp '96 circuit boards using Table 2.

Other relay functions

The extra protective functions of a power amp relay require OR-ing together several error signals for DC offset, temperature shutdown, etc.

If a DC fault occurs in a power amplifier, this typically means that the output slams hard to one of the rails and stays there. Assuming the loudspeaker does not suffer instantaneous mechanical damage, it will overheat after a relatively short period as the DC flows through it.

DC offset protection cannot prevent a loudspeaker hitting its mechanical limits, but it will stop it catching fire if the relay opens promptly. Once more, time is of the essence.

Usually, DC offset is detected by passing the amplifier output through an *RC* time-constant long enough to remove all audio, followed by a DCdetect circuit that responds to offsets of either polarity.

To allow a safety margin against false triggering on bass signals, I decided that the *RC* filter must accept full output at 2Hz without the detector acting. For example, if it triggers at $\pm 2V$, then for supply rails of $\pm 55V$ there must be 29dB of attenuation at 2Hz; with a single pole this means a -3 db frequency about 0.07Hz.

This sort of low-pass filtering inevitably introduces a time delay; if the output leaves 0V and moves promptly to one of the rails, this will be 50ms with the circuit of Fig. 3.

Detecting offsets of either polarity requires a little thought. Figure 4

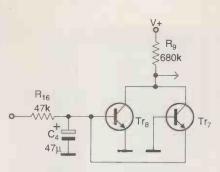
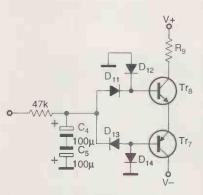
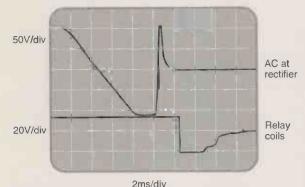
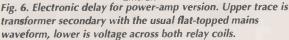
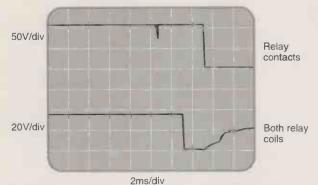


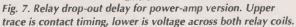
Fig. 4. Simple DC-detect circuit with asymmetrical thresholds at +1.05V and -5.5V.




Fig. 5. Improved DC-detect circuit; fully symmetrical thresholds at ±2.4V. RC filter can cope with either polarity.


Table 2.	Component revis	ions for the preamplifier. New value
$R_{205} \\ R_{208} \\ C_{223} \\ R_{209} \\ R_{215} \\ Relay$	100kΩ 10kΩ 10μF 100kΩ 10kΩ 1N4001	22kΩ 100kΩ 470nF 100Ω 15V 400mW Zener 1N4001 + Suppression 27V, 500mW Zener


shows a common circuit; a positive voltage turns on Tr_8 by forward biasing its base, while a negative voltage turns on Tr_7 by pulling down the emitter. The presence of DC is indicated by the collector voltage falling.


This solution is simple but highly asymmetrical, requiring either +1.05V or -5.5V to pull the collectors down to 0V. For positive voltages the stage is common-emitter with high voltage gain, but for negative ones it works in common-base with a lower voltage gain, set by the ratio of R_{16} and R_9 . It is difficult to make this ratio large without R_{16} becoming too small and hence C_4 inconveniently big.

If you're unlucky – and chances are you will be – the offset will have

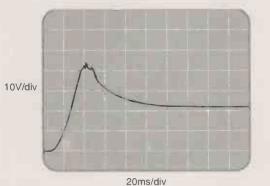


Fig. 8. Pull-in voltage across both relay coils with efficiency circuit added.

the wrong polarity for C_4 , which will degrade if left reverse-biased for long periods. Two ordinary electrolytics back-to-back is the cheapest solution.

The improved DC detector in Fig. 5 is fully symmetrical. Positive voltages turn on D_{11} and Tr_8 ; Tr_7 also conducts as its emitter is pulled up by Tr_8 , while its base is held low by D_{14} . Negative voltages turn on D_{13} and Tr_7 ; Tr_8 conducts with its base fed by D_{12} . The threshold is now $\pm 2.4V$, as for each polarity there are

two diodes and two base-emitter voltages in series. The higher threshold is not a problem as the typical amplifier fault snaps the output hard to one of the rails.

One exception to this statement is HF instability. If an amplifier bursts joyfully into HF oscillation, it will almost certainly show slew-limiting as well. This is unlikely to be very symmetrical so there will be a DC shift at the output.

The magnitude of this is not very predictable, but a 2.4V threshold will detect most cases. This should save your tweeters, though it may not save the amplifier from internal heating due to conduction overlap in the relatively slow output devices.

Figure 5 can be adapted for stereo simply by adding two more diodes, as in Fig. 3. Note that a positive offset on one channel and a negative one on the other – admittedly highly unlikely – do not cancel out; a fault is still signalled.

Power amplifier relay control Figure 3 shows a power amp relay controller, designed for $\pm 55V$ rails and 24V relays such as the P&B *T90* type outlined in Table 1. The main differences are the inclusion of DC offset detection and an efficiency circuit to minimise dissipation in the relays, which are now larger than in the preamp, and require more power.

The DC-detect circuit rapidly discharges on-timing capacitor C_2 through D_3 when Tr_8 collector goes low. An extra OR input for thermal shutdown acts via a series diode in the shutdown line.

The circuit now uses MPSA42/MPSA92 transistors to withstand the higher supply voltages; as usual higher V_{ceo} means lower current-gain, which must be allowed for in the detailed design.

The electronic delay until coil switch-off averages 2ms, the timing being shown in Fig. 6. The AC was interrupted at centre screen, and a large positive-going off-transient can be seen just to the right. This is due to the leakage inductance of a large transformer.

The loss of AC cannot be detected until this transient decays to zero, so the delay is slightly extended. This was not a problem with the preamp version as it uses a small toroid with much less leakage inductance.

Figure 7 shows the relay coil volt-

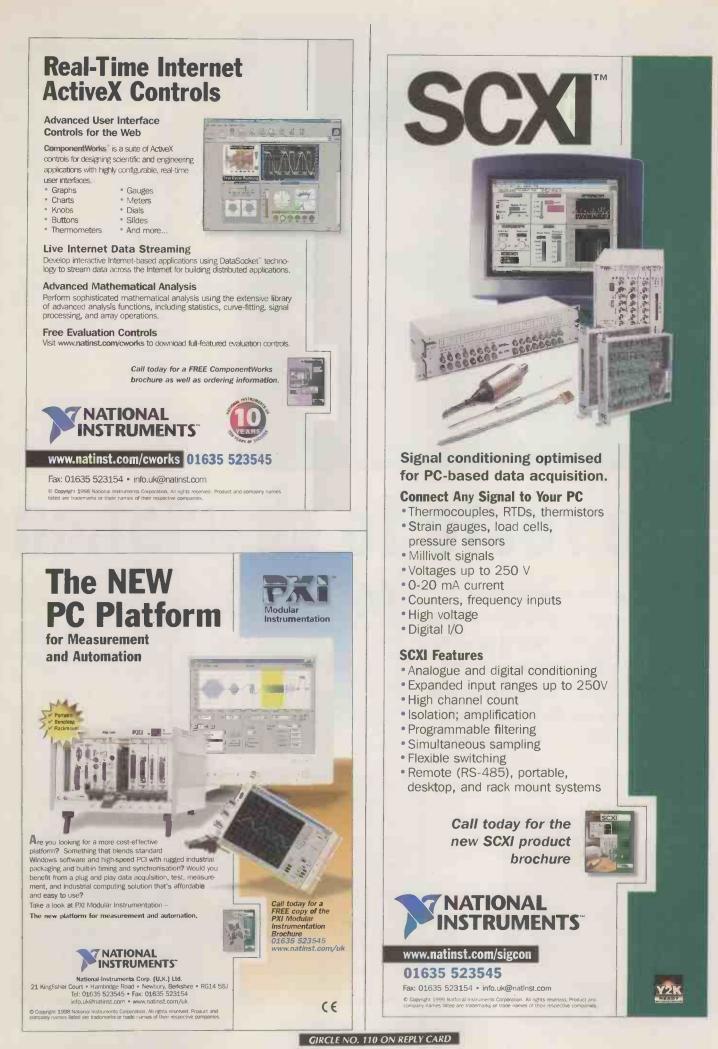
age. At switch off it goes straight down through zero until clamped by the two Zeners at around -50V. This puts 105V on Tr_4 collector, which is no problem as it is rated at 300V V_{ceo} . The relay contacts open just as clamping ceases and the coil voltage returns slowly to zero. Drop-out time is 1.8ms, giving a total delay of 3.8ms.

Efficiency circuit

All relays have a pull-in voltage that is greatly in excess of that required to keep them closed. It is therefore possible to save considerable power by applying full voltage only briefly, and then reducing it to a level which is still safely above the maximum drop-out voltage.

From Table 1 there is plenty of scope for this. By comparing the specified and measured performance, you will see that the P&B relay can be trusted to pull in at 18V and not drop out above 8.5V.

The initial pulse is provided by Tr_5 and R_{13} . At switch-on, Tr_4 is off and Tr_5 does nothing. After the on-timing delay Tr_4 conducts, Tr_5 's emitter is pulled up, and its base receives a pulse of current via R_{14} and C_3 . Resistor R_{13} is shorted by Tr_5 and the relays get a voltage reduced only by R_{12} ; see Fig. 8.


After 40ms, C_3 is fully charged and Tr_5 turns off; this is at least four times longer than the minimum pulse to pull-in the T90 relay, but may be adjusted to suit other types by altering C_3 . Diode D_{10} protects Tr_5 at switch-off.

In Fig. 3, the initial voltage is 22V per relay and the holding voltage 12V, giving an initial power consumption of 1.85W, falling to 960mW long-term. The total power saving is just under a watt.

Running relays at a reduced holding voltage not only avoids the inelegance of consuming power for no good reason, but also speeds dropout time by reducing the magnetic energy stored. It could be argued that such a power saving is negligible. In a big Class-A amplifier it might be, but it makes sense in modest Class-B amplifiers idling for much of the time – which is of course almost all of them.

Reference

1. Self, D. 'Precision Preamplifier '96,' *Electronics World*, Jul/Aug,Sept 1996.

Like its modern counterparts, this early attempt at simulation was difficult and expensive to implement – and it didn't always do what its creator wanted it to.

The route to simulation

Choosing a circuit simulation package is complex and making a mistake is costly. Starting with a review of Workbench and an outline of what the problems are, Rod Cooper's guide is essential reading for all first time buyers.

Review subjects

This first review covers *Electronic Workbench* version 5.12, whose maker is IIT Ltd of Canada. Workbench's UK supplier is Adept Scientific plc, tel 01462 480055. *Electronic Workbench*'s price is £199.

Subsequent reviews cover *CircuitMaker Pro* from Microcode Engineering, *Tina Pro* from Designsoft, Labcenter's *Lisa*, which is part of Proteus IV, and *Pulsar and Analyser* from Number One Systems, which are modules from the Easy PC package. y recent series 'The route to pcb-cad' looked at CAD programs specifically written for designing printed circuits using a PC. The series comprised a set of reviews and was intended to help first-time buyers of such a package make the right choice.

At the end of this series, I pointed out that if you went to the trouble of generating a net list for autorouteing a pcb, it was a natural progression to use the same net list for running a simulation of the circuit.

This set of reviews is intended primarily for those of you who, having bought your pcb-cad program, wish to take the almost irresistible step of adding a compatible budget-priced simulator.

For this reason, programs covered are either already adjuncts of the pcb-cad products reviewed previously, or they have an easy – or at least compatible – net-list interface. In addition though, these reviews will be of interest to those who just want to buy a standalone simulator.

Selecting what to review

People starting in the field of simulation require a program that is not too difficult to operate, so I have picked only simulation programs that I found relatively easy to use.

The second criterion is that they should not necessarily be equipped with every feature and every simulation under the sun. Rather they should have a number of basic simulations, with sufficient scope for broad, non-specialised use.

The third criterion is that, for the range of simulations offered, the programs should have a modest price tag. Programs that I felt did not meet all three criteria have not been included.

This review sets out to indicate what attributes the programs offer – or what is lacking, as the case may be. This gives the potential purchaser the chance to pick out a specific program that will suit the type of simulations he wants to run. It is then up to him to check through the demo version of the program to see if he likes it, and if it will do what he wants in his own field.

Spice, but you wouldn't know it Spice in its raw form takes a lot of time and effort to learn properly. Most of the circuit simulators reviewed here are based on Spice. However, the GUI provided with some of them is so well developed that for most of the time you would not realise you were using Spice.

You do not need a full grasp of Spice in order to use the packages described here, but there are occasions when a basic grasp of Spice theory does help.

Spice has some peculiarities, which cause the first-time buyer some unnecessary dismay. Typical of these was a program returned under a 30-day trial period.

The buyer wanted to simulate transformers. He noticed the Spice requirement that 'all nodes in a circuit had to have a path to ground'. In the case of transformers, this seemed nonsensical, so he returned his software.

All he had to do to satisfy Spice though was to emulate real life and put in the very high leakage resistances that all transformers have. Even easier, if he had read a little about Spice, he would have spotted a device called RSHUNT, which did this for him automatically, for all circuit nodes.

Another typical example of difficulties with Spice is in simulating two or more series-connected capacitors. The connection between them will be isolated from ground if the capacitor model is ideal. Also, getting oscillators to work can be a problem.

However, there are ways and means of getting round these difficulties. Indeed, for many Spice-induced obstacles, there is often a known work-around, so it's usually just a question of reading the available literature.

Not all simulators use Spice. One of the advantages of using Spice-based simulators is that you can transfer Spice net lists relatively easily between programs.

Also, Spice data is available from device makers that can be added to the model library. These may be factors that influence your purchase.

Why bother to simulate?

The cynical would say that it's just so much less effort, and more convenient to turn on the PC and play around with a simulation program, rather than go down to the lab and set about plugging in 'scopes and signal generators.

But there are several advantages of simulation compared to bench testing. The big attraction is the potential to save money.

Manufacturers see simulation as an inexpensive way of detecting design errors before any money is spent making and bench-testing even the prototype hardware. Investment in test-gear can be reduced – although it may be unwise to go too far down this road.

Educationalists also see simulators as a way of saving money. For example, when teaching students it is possible to test circuits without destroying any expensive components – either deliberately, or in error. It is possible to fully demonstrate a design in the classroom, without incurring the cost of building it in an expensive laboratory.

There are also some good non-financial reasons for using simulation. The range of tests in a simulator is usually much greater than that available in the average workshop. For example, simulator signal generators can typically be set to run from 1Hz to 1GHz in one sweep, the output amplitude can be adjusted from 0 to plus or minus a gigavolt, and duty cycle from 1 to 99% in a choice of waveforms. It would be difficult or impossible – and certainly expensive – to achieve such versatility in a laboratory with real instruments.

Another reason for simulating is that some simulator operations just have no easy, inexpensive real-world equivalent, such as the word generator in digital analysis. Also, the purity of signal sources in simulation is not compromised by physical constraints.

Often a simulator can avoid doing tedious mathematical calculation. Another advantage is that simulators can produce test results quicker than by the conventional tests on real instruments. However, this is not always true.

Sometimes a circuit that refuses to run on a simulator can consume disproportionate amounts of time, not because it is inherently difficult, but due to some peculiarity of the simulation program. It is very easy to fall into the trap of spending more time getting the simulator to comply than it would take doing a real test on the bench.

Against all these advantages, there is the initial difficulty of learning how to operate the program correctly. A simulator has to be learnt just like any program and the degree of difficulty experienced is wide and varied.

Spice outline

Spice was invented by the University of California at Berkeley in the USA as a means of simulating the function of IC designs. The name Spice is an acronym for Simulation Program (with) Integrated Circuit Emphasis.

Like the decibel, Spice was far too useful a concept just to be left to itself. The concept has been expanded and adapted to cover many other devices – many not connected at all with ICs.

Spice originated in the early seventies, so could be considered an old program. But it has been kept up-to-date by extensive up-grading, becoming the *de facto* standard in the process. If you want to find out more about Spice, especially the benefits, restrictions and incompatibilities, or if you want to edit your own Spice models, there are several books that go into Spice in depth. I will mention them in a subsequent article.

Only a few years ago, learning Spice was a difficult process. But with the present generation of programs, any engineer with a knowledge of real instruments and who is familiar with Windows should be up and running in an hour or so. Because of this, most firms are finding that the need for a 'simulation specialist' is much reduced or non-existent.

Reliability issues

Simulation is not an easy way out of testing a new circuit. On the contrary you have to watch your step.

A view taken by many designers is that simulation does not replace bench testing, but complements it. Used with discretion, a simulator can save a lot of bench-testing time. But now and then it can give a misleading result.

As the art of modelling components for simulation has progressed, such odd results have decreased. Even in a budget-

Net-lists or schematic capture?

Some users still prefer to type out a net list in order to make a simulation, instead of using schematic capture, maintaining that this gives a better insight into what is actually taking place. This may be true, but proponents of schematic capture regard such insight as a lengthy diversion from the main task of getting the simulations done.

Unless you have good typing speed, the net list is a slow and cumbersome method. It suffers from being abstract and unintuitive. I read in one net-list-entry program manual that 'it takes only ten minutes to type out the circuit as a net list'. Using exactly the same circuit, it took just 90 seconds to schematic-capture it in CircuitMaker.

The net list does not have universal acceptability – show a group of engineers a

net list and the chances are that some of them will not understand it.

Designers have to ask themselves if they really want an insight into the workings of their simulator via the net list. It may all be very interesting, but is it relevant to the job? For some people, such as teachers, perhaps it will be, but for commercial designers who simply use simulators as just another tool, it may be merely a distraction.

There are better things to learn in an age of information overload than the particular way your work-tools operate. Therefore, 1 make no apology that the reviewed simulators all use schematic entry.

However, a simulator that uses schematic capture will stand or fall on the quality of its schematic drawing system. Some are excellent, others serviceable, but I believe none in this review is difficult to use. priced simulator of the present generation, the results in the majority of cases are usually acceptable.

Another example of a source of error is that, at this price level, there is usually no compensation for strays introduced by the PCB design. You can of course make a guess what they are, based on experience, and add them into the circuit.

Now for the first of the reviews.

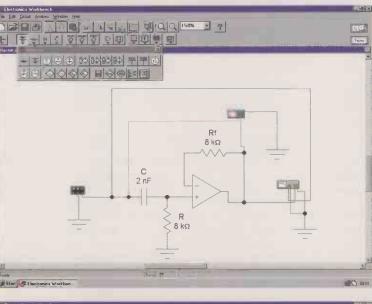
Review 1: Electronic Workbench V5.12

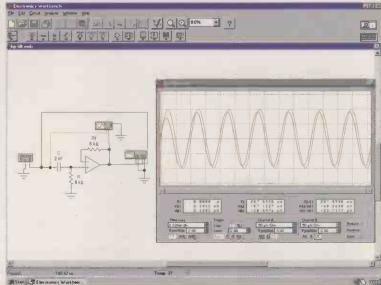
This is the latest version of a popular program which has sold 100 000 copies to date.

Workbench features a schematic drawing and capture program coupled with a mixed-mode simulator. The two sections are fully integrated, i.e. you don't have to transfer out of the schematic program to work the simulator. For practical purposes, it is one program.

Simulations can be displayed on the same screen as the schematic. There is no pin limitation. The simulator, based on Spice 3F5, uses both the virtual instrument

concept and conventional analyses. It is claimed to be 5 to 10 times faster than version 4.


The software comes on CD and installation is easy. Security is by registration number. Besides running on WIN95 and 98 and NT, there is a Windows 3.1 version. As Workbench V.5 is 32-bit, the Windows 3.1 version installs the W32s extension.


Recommended hardware is a 486 or later with 8MB RAM, or 12MB with Windows NT. Disk space needed is 20MB.

Documentation

The main documentation comes in four soft-back books, and there is a quickreference card and an installation sheet as well.

The first book is a user guide that runs through the basic system and contains several tutorials. This is complemented by a larger technical reference book, which goes into more depth. The review copy contained references to the higher

EDA version of Workbench, but sorting out what was applicable to version 5 was no problem.

A third, slimmer volume lists all the ICs and models available in the library, and a final booklet explains how to import and export net lists.

All this documentation is very well presented and readable. There is plenty of explanation *en route*, but no glossary. A chapter in the technical reference book is devoted to a basic explanation of how Spice works, which is useful reading if you are not conversant with it.

A useful 'Help' section in the program complements the books.

Schematic capture

For an insight into the schematic-capture part of this program, refer to the review of Workbench version 4.0already published in *EW* October 96. Briefly, this indicated that generally, the schematic drawing section was easy to use, flexible and versatile.

With its multiple parts bins, the schematic drafter is suitable for onscreen designing and experimentation. Although there have been several small improvements to the drawing section since V.4, the fundamentals have not altered much since this earlier review – with the big exception of the wiring-up system. Here there has been a significant change, as the auto-wirer has now been complemented with a manual system of wiring up the symbols. This removes one of the criticisms of earlier versions.

Like most autowirers, the one in Workbench is acceptable for simple circuit diagrams but tends towards complicated routes and untidiness on larger diagrams. For this reason, a manual method is be welcomed.

As before, some sleight of hand has to be developed during wiring up to avoid selecting a component for editing instead of connecting it. Both are done with the left mouse button and it is easy to mix the two up until some manual skill has been gained.

A few moments with the demonstration program will illustrate this. However, most existing users of the package will find schematic drawing in version 5.12 generally much easier.

The notional size of the working area of the drawing sheet is about 7 by 20in. The enlarged library holds more than 100 analogue and 200 digital symbols backed by 4000 Spice device models.

With this version of the program it is not possible to make up and add your own symbols. You can, however, add extra Spice models, but these must be assigned to a generic 'black box' symbol. You can also alter existing models if you are conversant with Spice.

As well as a Spice net list, Workbench

Fig. 1. A simple schematic, taken from Workbench's sample library, illustrating how the virtual instruments are wired into circuit and a typical open parts bin.

Fig. 2. The same circuit with the 'scope instrument expanded to show traces from the two points indicated on the circuit by red and blue wires.

PC ENGINEERING

schematic capture can export files to several PCB design programs, namely OrCad, Tango, Eagle, Protel, Layo1.

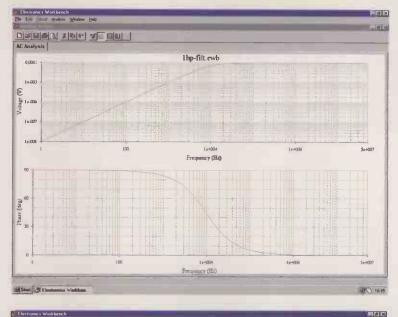
Simulation section

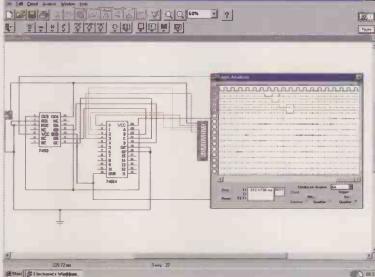
Simulation relies strongly on virtual instruments. These are made to resemble the operating panels of real instruments as far as it is possible on a PC.

The virtual instruments consist of function generator, twin-beam oscilloscope, multimeter, bode plotter, logic converter, word generator, and 16channel logic analyser.

In addition to these main instruments, there are ammeters and voltmeters, and an impressive range of signal sources, such as AM and FM, and various voltage-controlled waveforms. They are all easy to insert into the schematic and to wire up, behaving just like regular component symbols, and are also pleasantly intuitive to set up and use.

The method of use for the main virtual instruments is to expand the icon to a more usable size when you want to run a simulation. It then appears in the form of an overlay on the schematic drawing, Figs 1 and 2. By dragging the instrument to one side of the diagram, to get a view of the diagram, it is possible to change component values, or the components themselves, while the simulator is running. This is a useful attribute.


Two points to note about the instruments. Firstly the 'scope has two levels of expansion for more detailed examination. Secondly, the bode plotter has no graduated plot. If you want to make an accurate measurement you have to run a conventional analysis instead.


In general, all these virtual instruments have a wide choice of parameters and plenty of adjustment range. The actual figures occupy too much space to list here but can be viewed in the product's promotional leaflet.

To complement the virtual instruments, there is a range of analyses, *viz.* noise, distortion, AC frequency sweep for gain and phase, Fourier, transient, and DC operating point. There is no plot of output or input impedance versus frequency -anotable omission.

A typical analysis graph for the circuit of Fig. 1 is shown in Fig. 3. The analyses are menu-driven in a clear, easily understood format and plain terminology.

To run an analysis of this type you specify the circuit node you want to sample, from such a menu. To do this, you modify the circuit diagram to show the nodes, again through a menu, then select a node. Fig. 3 shows just one node, the output, but you could add more if required. Unlike the virtual instruments, you can expand

the analyses to full-screen if you wish.

There is no probe tool as there is in Tina and CircuitMaker. The analyses are stored in a stack for ready reference so you can flip back to one if you wish to re-view it.

As with Workbench's predecessor, you can use a range of colours for individual wires on the more complex schematics to improve the readability of the diagram. This is a good, practical idea. Even better, you can transfer this colour scheme to the graphs. Figure 4 shows this in practice on the digital analyser. Note that there is no glitch control – this is explained next month.

If you are interested in transformer simulations, for switch-mode supplies for example, then you will find Workbench's transformer modelling better than many others in this price bracket.

Version 5 retains its educational bias with features useful to teachers, such as fault injection.

Fig. 4. The digital analyser in use showing how useful the coloured wire

system is.

Summary

Workbench's comfortable learning curve, assisted by the excellent combination of printed manuals and complementary help files, makes it an attractive purchase for a first-time buyer. With the few exceptions detailed above, the program is easy to run.

The package also has appeal as a quick check for the more experienced designer. The range and scope offered by the package is excellent for the price, the range of signal inputs being particularly good.

You should still check carefully that the parameters you want to simulate are included. For example there is no glitch control and no input/output impedance graphs. Also check that the results are presented to your liking and that the schematic symbols provided cover everything needed. There is no way of adding to them.

Considering the range of simulations, at £199 the program represents very good value for money.

ELECTRONICS WORLD eaders The Surface Mount Technology Handbook

New First Edition, only £50 (normal price £75)

The essential in-depth reference manual for design, process and production engineers seeking practical, cost-effective surface mount solutions.

Whether used as a practical "how-to-do" manual, or in specifying denser and more complex surface mount projects, the Surface Mount Technology Handbook in over 300 pages provides a wealth of high quality reference data covering "stateof-the-art" surface mount processes:

- assembly and technical design issues
- cost-effective design
- processes and process control
- components including fine pitch
- applications and solutions

Contentsin Brie

Chapter 1	Introduction to Surface
	Mount Technology
Chapter 2	Interconnecting Media
Chapter 3	Surface Mount
	Components

- the pitfalls and how to avoid them
- trouble-shooting and QA
- where to go to get further advice
- comprehensive sourcing guide for equipment and materials

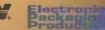
Chapter 4 Paste/Adhesive Chapter 8 Equipment Selection Application Chapter 5 Component Placement Chapter 9 Glossary of Terms Chapter 10 Buyers Guide Chapter 6 Solder Reflow

Order your copy now

criteria

Benefit from the most comprehensive surface mount reference available and save $\pounds 25$.

SURFACE


MAFERR

ingtronig

307 Pages with 10 Chapters providing in-depth coverage of all aspects of the process. No risk 28 day Refund Guarantee - if the Surface Mount Technology Handbook does not meet your expectations, simply return the book to us within 28 days for a full refund.

Chapter 7 Cleaning

REED ELECTRONICS RESEARCH in association with

iscount Order Form

Special reader price of $\pounds 50.00$ (normal price $\pounds 75$) plus postage and packing of $\pounds 5$ per copy (UK/Europe) Yes, please send me copy/copies of the Surface Mount Technology Handbook - ISBN 1 90158 842 4 Special Price £50 each copy total Add postage & packing of Total

European Customers please state your VAT number

Method of payment - D Payment enclosed (cheques payable to Reed Electronics Research). Please charge my credit card: Mastercard/VISA/AMEX

Cardholder Name	Card Number	Expiry Date	I.
Delivery			
Name	Job Title	Organisation	
Address			
Town/County	Postcode	Country	
Tel	Fax	Email	
Signature 554		Date	

Return to: Reed Electronics Research, Quadrant House, The Quadrant, Sutton SM2 5AS, UK. Credit Card Fax orders: +44 (0)181 652 8921 Reed Business Information Company, Registrated in England (Registered number 151537), VAT No: GB 235 723565

Sensitivity demystified

Joe Carr explains not only how to decipher sensitivity figures for receivers, but also how to verify them for yourself.

R adio receiver specifications can be verified using test equipment and a few simple procedures. Such tests are made to evaluate receivers, to troubleshoot problems, and to verify performance. A number of receiver parameters are important, but perhaps the one that is most commonly discussed is sensitivity. Let's take a look at how these tests are done.

What is sensitivity?

Receiver sensitivity is a measure of how well a receiver will pick up very weak signals.

As with most engineering measurements, the notion of sensitivity is an operational definition. In other words, there are standard procedures that will yield coherent results by which different receivers – or the same receiver before and after repairs – can be compared.

Sensitivity is basically a game of SNR, i.e. signal-to-noise ratio. Or more properly, the signal-plus-noise-to-noise ratio, (S+N)/N. For every receiver or amplifier there is a basic noise level consisting of the noise produced external to the

receiver and noise produced inside the receiver. Even a receiver with its antenna input terminated in a shielded matching resistor, rather than an antenna or signal generator, will show a certain amount of thermal noise.

One important consideration when making sensitivity measurements – or comparing receiver sensitivity specifications – is bandwidth. Thermal and other forms of noise are gaussian distributed over all possible bandwidths.

The value of the noise at any given instant depends on the bandwidth of the channel. For most receivers this means the IF selectivity bandwidth, although in some cases the audio bandwidth is less than the IF so that number would dominate.

Table 1 shows the thermal noise expected from a 50Ω resistor at various bandwidths. Always make sure that the bandwidths at which various sensitivity numbers are compared are the same.

Figure 1 depicts two different definitions of SNR. Basically, you can't hear signals down in the noise. The minimum discernible signal is operationally defined as the

R8500 communications receiver, photo courtesy ICOM.

RF DESIGN

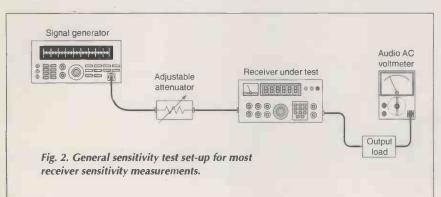
1			
	Table 1.	Thermal noise	
ļ	expected	from a 50 Ω resistor	▲
ļ	at variou	s bandwidths.	
	BW (Hz)	Thermal noise (µV)	A
	500	0.01	
	1000	0.014	
	1500	0.017	
	2000	0.02	
	2500	0.022	
	3000	0.025	10dB
	3500	0.027	
	4000	0.028	Mînimum
	4500	0.03	discernible
	5000	0.032	signal (MDS)
	5500	0.033	▲ 1000000000000000000000000000000000000
	6000	0.035	3dB
	6500	0.036	
	7000	0.037	
	7500	0.039	
	8000	0.04	
	8500	0.041	
	9000	0.042	and an and the second second second
	9500	0.044	Fig. 1. When evaluating sensitivity, it
	10000	0.045	know how SNR is defined.

Practical

sensitivity

's important to

signal level that is the same as the noise floor, or the signal level that is 3dB above the receiver's noise floor. But that sensitivity is not all that useful for most applications.


I'm sure that there are people out there who can listen to a signal that is only 3dB above the noise floor. Most of us, however, require a higher SNR to be practical

Although some definitions use 6dB, 12dB or 20dB, the standard for practical sensitivity is that it is the signal level that produces a 10dB SNR. This definition is found on most CW, AM and SSB receivers.

Signal Generator. The signal generator selected to make sensitivity measurements must have very high isolation figures. Most 'service grade' signal generators are useful for doing troubleshooting, but they are not satisfactory for making sensitivity measurements. The reason is that signal escapes around the cabinet flanges and control bushings. If you have a sensitive receiver or spectrum analyser then you can detect this unwanted signal.

Want to give it a try? Connect a shielded dummy load to the output of the signal generator, and turn the signal generator's output down to zero. Connect a whip or wire antenna to the receiver's antenna input, and then tune the receiver across the signal generator frequency with the RF gain cranked all the way up.

The signal generator should also have a calibrated output control. The correct calibrations are either dBm - i.e.power decibels relative to one milliwatt in a 50Ω load – or microvolts.

Some signal generators have an output meter that can set relative output, but can become 'calibrated' if a calibrated step-attenuator is connected between the output of the signal generator and the receiver under test. You can find the exact level if you can measure the high level output of the signal generator.

'Laboratory grade' signal generators may be beyond the means of many people, but there is a relatively vigorous market in used or surplus equipment. Sources of such equipment are listed on the world wide web. If you don't need the latest digitally synthesised signal generators, then you will be able to find good signal generators at low cost.

Test set-up

Figure 2 shows the test set-up for most receiver sensitivity measurements. The attenuator is optional, and may not be needed if the signal generator is adequately equipped with a good quality calibrated output attenuator. When measuring an AM receiver, set the signal generator modulation for 30 percent depth and 1000Hz.

An audio AC voltmeter is used to measure the receiver's output level. Ideally, the instrument should be calibrated in decibels as well as volts, and should have RMS reading capability.

The receiver must be correctly set up, or the measurement will be in error. In most test set-ups, the receiver's RF and AF gain controls are turned to maximum, and the squelch is turned off. Further, the automatic gain control, or AGC, must be either turned off, or in the case of some models, clamped with a DC level according to the manufacturer's directions.

Minimum discernible signal sensitivity. To make the minimum discernible signal measurement you need to find the signal level in dBm or μ V that is 3dB above the receiver noise floor. To do this,

- Connect the equipment as in Fig. 2, and set the receiver and signal generator to the same frequency.
- Turn the signal generator output fully down to zero.
- Set the RF gain and AF controls to maximum. You may want to set the audio output control to a convenient level if you don't have a dummy speaker load.
- To make the measurement, you first measure the RMS value of the noise - i.e. 'hiss' - output on the AC voltmeter, and then increase the signal generator output level until the receiver output level increases by 3dB.

You can also determine the numerical value of the receiver noise floor by the same approach. Measure the output noise level, and then find the minimum discernible signal by the procedure above. The receiver noise floor level will be the same as the signal generator output level (less any attenuation in line).

Standard output conditions. A sensitivity specification used for consumer radio receivers uses a standard output approach. A typical receiver sensitivity specification might read, "xxµV for 400mW in an 8Ω load when modulated 30% by 1kHz."

The same equipment set up of Fig. 2 can be used for this measurement. A power of 400 mW into an 8Ω load is the same as 1.789V RMS, which can be read on the AC voltmeter. I recommend using an 8Ω noninductive resistor for the load rather than the loudspeaker since the sound levels involved in the measurements are pretty annoying.

Adjust the signal generator output level for an RMS output voltage of 1.789V, and read the output level from the signal generator controls.

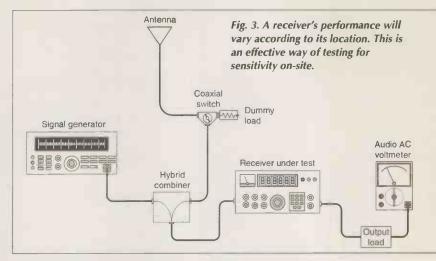
Full-power sensitivity. Some older receivers use the fullpower sensitivity figure. This is the signal level that will produce the full rated audio output power.

Set the signal generator for 1kHz modulation with 30% depth. Tune the radio and signal generator to the same frequency, and crank up the output until the audio output power is at the full-rated power level – for example 400mW, 1W, or in the case of one radio I owned 7.5W. The signal level that produces this condition is the 'sensitivity' of the receiver.

10dB (S+N)/N test. The 10dB test method is the same as the 3dB minimum discernible signal method, except that the signal generator level is increased until the output is 10dB above the noise floor.

An alternative method is sometimes used on AM receivers:

- Set up the signal generator and receiver as discussed above.
- Set the output of the receiver to produce at least 0.5W audio output, or if the rated output power is lower than 1W set it for at least 50mW audio output power.
- Turn off the modulation. If the audio output drops at least 10dB then the signal generator setting is 10dB S+N/N level. If the level drops less than 10dB, then readjust the signal generator output level upward a small amount and try again.


On-site effective sensitivity test. This test is only done onsite where the receiver is installed. It is intended to get some idea of how well the receiver performs in its actual installed environment. **Figure 3** shows the test set-up.

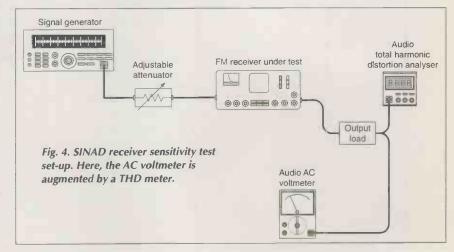
- Measure the 10dB S+N/N sensitivity as discussed above (see Fig. 2 for set-up) and write down the figure.
- Connect the hybrid combiner, two-position coaxial switch, antenna and dummy load into the circuit.
- Set the switch to the dummy load and measure the sensitivity. It will be considerably worse than the 10dB sensitivity.
- Set the coaxial switch to the antenna, and again measure the 10dB sensitivity. It should be lower still.

The effective sensitivity is SNR_{10dB} -(SNR_{LOAD} - SNR_{ANT}). The figure SNR_{LOAD} - SNR_{ANT} is the degradation factor. For example, suppose the 10dB SNR is -122dBm, the SNR when the load is connected is -77dBm and when the antenna is connected it is -70dBm. The effective on-site SNR is:

 $\begin{array}{l} SNR_{EFF} = SNR_{10dB} - (SNR_{LOAD} - SNR_{ANT}) \\ SNR_{EFF} = -122dBm - [(-77dBm) - (-70dBm)] \\ SNR_{EFF} = -122dBm - [-7dBm] = -115dBm \end{array}$

The effective sensitivity is only valid for the given site and conditions present when the test is performed. If the site is changed, or if the noise generators and other signals present change, then the test must be repeated.

FM receiver sensitivity


There are two basic methods for measuring the sensitivity of FM receivers: 20dB quieting and 12dB SINAD. The 20dB quieting method is typically used on FM broadcast band receivers. It was once popular for communications receivers as well. More recently, the 12dB SINAD method is preferred.

20dB quieting method. This method relies on the fact that the FM detector will suppress noise once the limiting signal level is reached. The well-known capability of FM to eliminate noise relies on the fact that most noise amplitude modulates the carrier.

If the amplitude can be clamped below the level where the noise is effective, then the frequency variations can be detected to recover the audio. This effect is called 'quieting,' i.e. the reduction of noise as the signal level increases.

To measure the 20dB quieting sensitivity:

- Connect the receiver and signal generator as in Fig.
 Keep the signal generator output at zero. The modulation deviation should be set to whatever is appropriate for the class of receiver being measured.
- Turn the RF gain all the way up. Set the audio output to produce a convenient reading in the high end of the AC voltmeter scale.
- Measure the output noise level and write it down.
- With modulation off, turn the signal generator

output level up until the reading on the AC voltmeter drops 20dB. The signal generator output level that accomplishes this is the 20dB quieting sensitivity – typically less than $1\mu V$.

SINAD sensitivity. The sensitivity of FM receivers is often expressed in terms of SINAD. This approach to signal-to-noise ratio recognises that the problem of detection depends on not simply signal and noise level, but also distortion. The SINAD (signal-noise-distortion) method is described by equation (1).

$$SINAD = \frac{signal + noise + distortion}{noise + distortion}$$
(1)

In terms of decibels, the following equation is used:

$$SINAD(dB) = 20 \log \frac{V_{signal} + V_{noise} + V_{distortion}}{V_{noise} + V_{distortion}}$$

Here, SINAD(dB) is the SINAD sensitivity expressed in decibels, V_{signal} is the output voltage due to signal, V_{noise} is the output voltage due to noise and $V_{distortion}$ is the output voltage due to distortion.

The standard 12dB SINAD sensitivity corresponds to a 4:1 S/N ratio, in which the sum or noise and distortion is 25 percent of the signal voltage. As signal levels get higher, the SINAD and 10dB S/N values tend to converge.

Figure 4 shows a typical test set-up for the SINAD measurement. The output AC voltmeter is augmented by a totalharmonic-distortion analyser, both of which measure the output signal across the audio load (speaker, load resistor, etc.)Set the signal generator frequency and receiver

- frequency to the same value.
- Set standard conditions: modulating frequency 1kHz sine wave; deviation set to 60 percent of the peak deviation used for that service. For an FM broadcast band receiver for example, deviation is ±75kHz, so set the signal generator deviation to 0.6×±75kHz=±45kHz. For a communications receiver designed for ±5kHz deviation, set deviation to 0.6×±5kHz=±3kHz.
- Adjust the receiver audio output to approximately 50 percent of the receiver's rated audio output.
- Adjust the signal generator output until the input signal is high enough to produce 25 percent distortion. This is the 12dB SINAD sensitivity.

Special SINAD sensitivity meters are available that combine the total-harmonic-distortion analyser and audio voltmeter functions in one instrument.

In summary

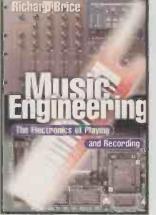
(2)

Measuring a receiver's sensitivity is relatively easy if correct procedures and decent equipment are used. Now you should be able to tell whether the specifications claimed in advertisements are reasonably accurate – or not.

Music Engineering by Richard Brice The Electronics of Playing and Recording

• Highly illustrated guide to the technology of music and recording.

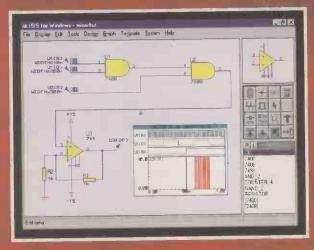
• Written in an approachable style using examples of well-known songs, this book is a must-have guide for sound recording engineers and electronic engineers.

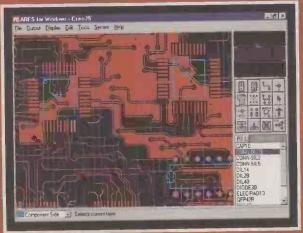

If you are an electronics engineer who needs specific information about music reproduction, or if you are a sound recording engineer who needs to get to grips with the electronic technology, Music Engineering is for you.

This handy volume is a technical guide to electric and electronic music, including the essential science, but concentrating on practical equipment, techniques and circuitry. It covers not only basic recording techniques and audio effects, kit such as microphones, amps and instruments, but also valve technology, stereo and digital audio, sequencers and MIDI, and even a glance at video synchronisation and a review of electronic music.

Music Engineering lifts the lid on the techniques and expertise employed in modern music over the last few decades. Packed with illustrations, the book also refers to well known classic recordings to describe how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician.

Richard Brice has worked as a senior design engineer In many of Britain's top broadcast companies and has his own music production company. He is the only writer who can provIde this unique blend of electronics and music. **Contents:** Soul Man – Science and sensibility; Good Vibrations – The nature of sound; Stand By Me – Microphones and their applications; Message in a Bottle – Valve technology; Roll over Beethoven – Electric Instruments; Wild Thing -Electronic effects; Pet Sounds - Electronic synthesis; Silver Machine - Sequencers & MIDI; Got to Get You into My Life -Sound recording; Bits 'n' Pieces Digital Audio; Space Odyssey -Stereo and spatial sound; Let's Stick Together - Recording consoles; Unchained Melody -Amplifiers; Shout -Loudspeakers; Synchronicity -Video and synchronisation; Dark Side of the Moon Electronics and the music of the 20th century.




Inclusive price: £22.50 UK, £25 Europe, £28 ROW.

To order by post, send a cheque or postal order to Jackie Lowe at *Electronics World*, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business Information. Alternatively, fax full credit card details to 0181 652 8111, e-mail jackie.lowe@rbi.co.uk. ISBN: 0 7506 39032 Paperback, 256pp, 150 line illustrations.

• Copies of Richard's previous book, Multimedia and Virtual Reality Engineering, are still available, inclusive hardback price: £27.50 UK, 29.50 Europe, £32 ROW.

including NEW SIMULATOR PROSPIC

"the **BEST** all-round OGRA

EWW CAD Review Round Up September 1998

0

S C

bcent

Simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use

<u>"a constant</u> high level of capability throughout"

EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up & Retry Autorouter with tidy pass
- Pinswap/Gateswap Optimizer & Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from £295 to £1625 + VAT. Call now for further information & upgrade prices.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756 753440. Fax: 01756 752857. EMAIL: info@labcenter.co.uk 53-55 Main St, Grassington. BD23 5AA. WWW: http://www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

e C

A rough guide to Europe

or some people a time working abroad has been a natural part of expanding their life and career. As opportunities in former colonies have diminished so those in Europe have increased.

Yet, while we are all Europeans now – or so we are told – for most people the European dream of living and working on the continent is little more than someone else's funny idea. Even so, you will not be a pioneer. Soldiers, footballers, construction workers and politicians have all been there before you.

European Union (EU) rules guarantee freedom of movement to nationals of all member countries, allowing you to work or set up business anywhere in the EU. As a British citizen you do not need a work permit, although in most EU countries you will need a resident's permit if you intend to stay more than three months.

The changing rules make life easier but they do not guarantee success and happiness. Working in Europe is very different from holidaying there but at least a holiday can start the acclimatisation process.

While language will be the main stumbling block, electronics means you can run your life in English with cash and credit cards, email, and telephone banking.

As for shopping, department store and supermarket staff rarely speak to you in Britain let alone abroad and there is always cyber shopping. All that is fine if you want to isolate yourself from the local community and so miss the point of being there in the first place.

The three basic recruitment questions apply just as much to working in Europe as in Britain. Working abroad in Europe could awaken your mind and boost your career, says Tony Atherton

- Can you do the job?
- Will you do the job?
- Will you fit in?

The third one takes on a new dimension when you move to another country. It is not simply a question of will you get along with your new colleagues, but will you fit into the community?

If you are heading for a large city with an international presence then you can lose yourself in the expatriate community, speak english all the time, read British newspapers, drink British beer and be a little Briton in a different climate. If that is all you want then you could stay at home and turn up the central heating.

Alternatively, your may want to experience the culture, work with the nationals, learn their way of life and speak their language. There are advantages. If employers can recruit locally they will not risk employing someone who may be pining for home within three months.

For this total immersion approach you must learn the language. A national training company, such as Linguarama, will charge around 1500 per week for intensive training but check out local trainers in the Yellow Pages. Also try schools, Sixth Form Colleges and friends to see if anyone will tutor privately.

Research is the key. Do you know anyone who has lived and worked in the country of your choice, or retired there? Does your existing employer offer any opportunities to work with subsidiaries or partners elsewhere in the EU? Do you know any nationals of your chosen country who work here?

Job Centres can put you in touch with Euroadvisers from the Overseas Placing Unit of the Employment Service. These Euroadvisers are part of the European Employment Services partnership (EURES) and are in contact with their opposite numbers in other EU countries. Try the Eures Web site as some jobs are advertised there. The current shortages include IT specialists. Ask at your Job Centre for a copy of the booklet Working in [Country Name]. These include details of resident permits, taxation, social security, education, Job Centres, and so on.

Visit your local reference library for a good careers encyclopedia (such as Cassells) and the Executive Grapevine Volume 1. The latter identifies the recruitment agencies that deal with both electronic engineering and EU countries. The CEPEC Guide is similar.

In electronics one immediately thinks of the Netherlands, Germany, France, Italy and Ireland. However, all EU countries have some electronics industry. The telecoms and IT industries are universal and generate opportunities everywhere, sunny or not. Finally do not forget the EU itself. Someone has to provide its IT and telecommunications services in Brussels and Strasbourg, for instance; likewise for the UN in Geneva.

Working abroad provides a huge range of experiences you will not get in the UK. As part of a career plan, especially in the early years, a spell in Europe will awaken your mind and possibly boost your career. You may even get a tan.

Tony Atherton: 01962 885534 tony.atherton@btinernet.com

A R B O U R APPOINTMENTS LTD

PLACING ENGINEERS FIRST

DEVELOPMENT ENGINEERS

North East

Salary £20,000 to £30,000

Vacancies for Engineers with good analogue and microcontroller/digital design skills (8, 16 and 32 bit). Ideally with control systems, sensors and/or actuators experience. C programming and serial comms, especially CAN Bus, an advantage.

Quote ref. WWB311

ASIC/FPGA ENGINEERS

West Midlands

Salary £22,000 to £28,000

Candidates must have at least 2 years' ASIC/FPGA design experience using HDL, preferably Verilog. Skills in PLDs and Synthesis would be an advantage. An understanding of CAE technology and an interest in telecommunications ideal.

Quote ref. WWB023

HARDWARE ENGINEER

West Yorkshire Salary £18,000 to £24,000

At least 1+ year's experience with PIC or 8051 microcontroller hardware. Any Windows programming using C++ an advantage. To work on cellular radio communication systems thus RF design knowledge would be very useful.

Quote ref. WWB597

HARDWARE ENGINEER

Avon

Salary £18,000 to £26,000

To design for microcontroller based products and peripherals, the ideal candidate will also have C/C++ and/or assembler programming experience. Any knowledge of designing for a production environment would be an advantage.

Quote ref. WWB389

DEVELOPMENT ENGINEER

Hants

Salary £24,000 to £33,000

HND educated in Electronics or similar, with two or more years' experience in digital, analogue and RF techniques, ideally with a test bias. A background in broadcast or digital communications would be a distinct advantage. Quote ref. WWB234

> Contact Jon Hopkins in total confidence: Telephone on: (01902) 326460 E-mail your CV: jon@arbour.co.uk Fax your CV 24 hrs: (01902) 326465

HARDWARE DESIGN ENGINEER

West Midlands

Salary £22,000 to £27,000

An exciting opportunity exists for an Engineer with a bias towards analogue circuit design. There will also be digital design and some RF exposure. This is a hands-on role working for a market leader on a range of control technologies. **Quote ref. WWB393**

PCB DESIGNERS Midlands S

Salary £14,000 to £26,000

With at least ONC, to be responsible for PCB design from receipt of customers requirements through to the generation of manufacturing outputs. PCB layout and routing by hand and using CAD such as Allegro, Veribest and Mentor Graphics.

Quote ref. WWB443

ELECTRONICS ENGINEER

North

Salary £18,000 to £23,000

Engineer to work on the development of high-end Audio & Video Recording Equipment for the professional broadcast sector. Analogue and digital skills required. Any microcontroller exposure, EMC and product approval desirable.

Quote ref. WWB438

SENIOR ELECTRONICS ENGINEER

West Midlands Salary £24,000 to £30,000

At least two years' experience designing embedded microcontroller systems. You must be able to program in C and assembler. Desirable skills include the use of CASE tools, serial communications, CAN bus and Fuzzy Control applications. Quote ref. WWB430

HARDWARE ENGINEER

South Midlands

Salary £18,000 to £24,000

Consultants based in a pleasant rural setting require creative engineers with experience in digital and analogue design for microprocessor based systems. Software skills in C and assembler ideal. A wide variety of exciting design tasks.

Quote ref. WWB124

Post your CV, quoting reference, to: Arbour Appointments Ltd. The Granary, High Street, Wombourne West Midlands WV5 9DN

ELECTRONICSAPPOINTMENTS Tel:0181 652 3620

Electronics World July 1999

VISIT OUR WEBSITE

You can search our full range of permanent or contract opportunities on-line, or choose to complete our on-line registration questionnaire to automatically receive details of relevant vacancies by email.

www.ers.co.uk

FPGA/ASIC Design

TV Broadcast to £35K

M3/M4

Senior position to work on future ASIC technology for set top box applications. Minimum of three years ASIC design experience with knowledge of VHDL/VERILOG, logic synthesis, test insertion, verification, etc. Ref: BC2200

Consultancy M3

Junior and Senior position to work on analogue and mixed signal ASIC design. Good BSc with interest or experience in customer driven ASIC design

Ref: BC2201

£20-40K

Processors

Middx

to £50K A number of positions to work on the design and verification of RISC and DSP processors. HDL/VHDL experience necessary with team/project leadership skills for senior position. Ref: BC2202

communi ons

M4 c. £45K Team leader to run a group of ASIC Designers working on mobile comms, chip sets. A hands on role requiring substantial experience of embedded codes and customer devices. Ref: BC2203

Satellites

Herts

C. £35K

to £35K

You will work on state of the art VLSI systems for space-borne DSP environment. Wide experience of CAE tools and in depth understanding of digital/DSP design. Ref: BC2204

Video

South Coast Good degree plus 2 years solid ASIC design skills to

work on digital video systems. Your experience should include VHDL, H/S digital systems, RF (to Ref: BC2205 2GHz), FPGA's, DSP, etc.

Consultancy Cambs

to £40K Minimum of 2 years experience in the mobile communications sector working on low cost high volume product design, VHDL/SYNOPSIS essential with the ability to specify and implement complex IC's. Ref: BC2206

ASIC and Clients M3

£28K + Car

Solid experience of design flows with particular emphasis on the front end from RTL coding, synthesis, simulation and timing analysis. Lots of customer contact. Ref: BC2207

Communications W. Country

to £40K

A number of positions with an IC design consultancy. CMOS and BiCMOS experience an advantage. Work will involve RF and Analogue IC design with an excellent salary and benefits package. Ref. BC2208

Mobile \mathbf{C}

M3

C. £35K

Development of digital hardware for communications equipment. In depth experience of FPGA's, ASIC's and gate arrays with VHDL and some PCB design.

Ref: BC2209

Mixed Signal North

C. £30K

Senior position working on the design and development of mixed signal IC's. Several years experience in a similar position with team leadership Ref: BC2210 ability

Library Development Surrev

£30K

Creation of basic cell libraries, memory and complex IP models, model validation using simulation tools and technical support to field sales team.

Ref: BC2211

RISC Micro's

Cambs

to £30K

High calibre digital design engineers with 2 years experience including strong HDL and synthesis skills. Ref: BC2212

Contact Brian Cornwell at...

ERS Technical

Ambassador House, 575-599 Maxted Road Hemel Hempstead Hertfordshire HP2 7DX

tel 01442 231691

eves/wkends 0411 467 185 fax 01442 215486

email brian cornwell@ers.co.uk

Hardware

Email: steve@soltech.co.uk Website: www.soltech.co.uk Solution Technical Recruitment, The Tower House, High Street, Aylesbury, Bucks HP20 ISQ Tel: 01296 336036 Fax: 01296 336037

SOLUTION

ASIC/VLSI			RF		
LSI Group Leader	Berks	to £45,000	Senior RF Designer	Berks	to £38,000
ASIC Designer	Cambs	to £40,000	RF Engineer	Berk s	to £33,000
DRAM Designer	Avon	to £50,000	RF Engineer	Surrey	to £35,000
Full Custom Design	Avon	to £45,000	RF Group Leader	Surrey	to £45,000
ASIC Designer	Suffolk	to £35,000	RF Engineer	Wilts	to £35,000
ASIC Designer	Wilts	to £35,000	Senior RF Engineer	Avon	to £45,000
RF IC Designer	Wilts	to £40,000	RF Engineers	S. Coast	to £40,000
ASIC Designer	Cambs	to £35,000	Young RF Engineer	Wilts	to £25,000
LSI Designer	Berks	to £30,000	RF Team Leader	Yorks	to £45,000
ASIC Designer	S. Coast	to £40,000	RF Engineer	Cambs	to £40,000
ASIC Designer	Hants	to £45,000	RF Engineer	Bucks	to £35,000
RF IC Designer	Hants	to £45,000	RF Engineer	Middx	to £38,000
RF IC Designer	Surrey	to £45,000	RF Engineer	Beds	to £35,000
ASIC Designer	Berks	to £40,000	RF Engineer	Lincs	to £30,000
ASIC Designer	Cambs	to £28,000	RF Engineer	Berks	to £30,000
ASIC Designer	Avon	to £35,000	RF Engineer (Filters)	Surrey	to £50,000
ASIC Designer	Cambs	to £45,000	RF Designers	Herts	to £45,000
RF IC Designer	Berks	to £40,000			
ASIC Designer	Surrey	to £35,000	DIGITAL/ANALO	GUE	
ASIC Designer	Herts	to £40,000	Senior Dig/Ana Designer	W. Mids	to £30,000
RF/Analogue IC Des	S. Coast	to £40,000	Senior Dig/Ana Designer	Surrey	to £40,000
RF/Analogue IC Des	Avon	to £60,000	Dig/Ana Designer	Yorks	to £30,000
			Dig/Ana Designer	Berks	to £28,000
DIGITAL			Senior Dig/Ana Designer	Berks	to £35,000
Digital Design	Herts	to £30,000	Dig/Ana Designer	Cambs	to £30,000
Digital Design	Surrey	to £30,000	Dig/Ana Designer	Essex	to £25,000
Digital Design	Cambs	to £2 8,000	Senior Dig/Ana Designer	Cambs	to £35,0 00
Digital Design	Cambs	to £45,000	Dig/Ana Designer	Sussex	to £25,000
Digital Design	Berks	to £35,000	Dig/Ana Designer	Avon	to £30,000
Digital Design	Middx	to £25, 000	Dig/Ana Designer	Surrey	to £30,000
Digital Design	Berks	to £30,000	Dig/Ana Designers	Cambs	to £45,000
Digital Design	S. Coast	to £33,000			
Digital Design	Avon	to £35,000	MANAGEMENT C	PPORT	UNITIES
Senior Digital Design	Bucks	to £45,000	LSI Group Leader	Berks	
Digital Design	Bucks	to £22,000	RF Group Leader	Surrey	
0 1 011 10 1		630.000			

July 1999 ELECTRONICS WORLD

Senior Digital Design

Surrey

Yorks

Avon

Wilts

Cambs

Wilts

S.Wales

to £38,000

to £35,000

to £30,000

to £25,000

to £35,000

to £30,000

to £30,000

RF Team Leader

Hardware Team Leader

DSP Group Leader

Hardware Manager

HDL Manager

RF Applications Manager Wilts

Hardware Project Leader W. Mids

Contact Steve Davis

Surrey

Cambs

Surrey

Cambs

Berks

OT GEACTIV

Electronics Weekly Hyperactive is more than just a magazine on the Web. Check out the site and you will see why thousands of electronics professionals around the world regularly log on to...

electronicsWEEKLY

best read for

s professiona

OTACTIVE

If you are serious about Internet marketing, then sponsorship of the Electronics Weekly HyperActivesite is something you must consider.

Whether you have your own web site or not, Hyperactive offers you a great way of delivering your company's products or message to a worldwide buying audience.

By sponsoring a section of **Hyperactive**, users will have the opportunity to link directly to your web site - therefore generating new traffic.

For more information on how to develop your internet marketing activity please call Shaun Barton on 0181 652 3638.

Point your browser at http://www.electronicsweekly.co.ukr register now, it's free

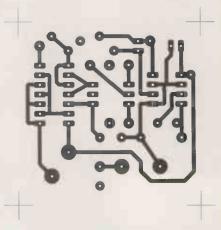
sponsored by
TOSHIBA

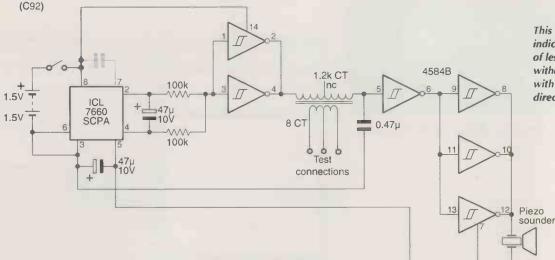
HYDOTACTIVE

CIRCUIT IDEAS

Non-intrusive continuity tester

Without injecting a direct current into the circuit being tested, or activating any semiconductor junctions by the millivolt-level ac, this tester provides an audio signal to indicate a low resistance between test points.


A switched-capacitor inverter provides both 6V for the hex Schmitt inverters and a square wave from its summing node. A reflected impedance of under 1Ω or 4Ω from the half or full transformer secondary provides a 4kHz tone from the piezoelectric transducer.


If required, a capacitor between

pins 7 and 8 of the inverter lowers the frequency of the square wave to match the transducer resonant frequency. John A Haase Fort Collins Colorado USA C92

Further reading

Einar Abill, 'Sense continuity below an ohm,' *Electronic design*, September 5, 1995.

This continuity tester indicates resistance of less than 1Ω without interfering with the circuit; no direct current is used.

Fact: most circuit ideas sent to Electronics World get published

Like life, *Electronics World* may seem surreal at times, but it is certainly not exclusive. Clearly, the best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don't forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best – but please label the disk clearly.

Liquid-level controller

ow power consumption, resistance to interference from mains spikes and low cost are features of this water level controller.

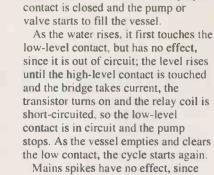
A step-down mains transformer provides voltage for the control circuit and a step-up transformer for the sensor measuring voltage of 100-200Vac to avoid electrolysis. Measuring current is 1-3mA, limited by the 100nF, 1.5kV capacitor. If the vessel is empty, no current

10V approx. 100n 1500V 2VA 900 220 30mA 2N1613 > 6V 12V-220V / ≤150R _16μ 220µ ov T₁ T2 Low power n.c. n.o contact Liquid level controller is impervious to mains spikes and the pump Pump or High level activation is fail-safe. electromagnetic Vessel valve to fill the vessel Low leve (C98) Ground

Ten year index: new update

Hard copies and floppy-disk databases both avaiable

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of *Electronics* World articles going back over the past nine years.


The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synoposis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512K ram and a hard disk.

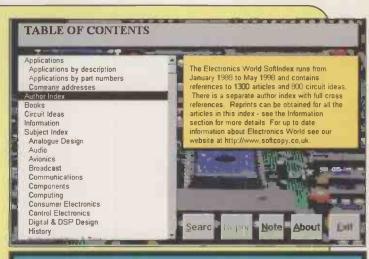
The disk-based index price is still only £20 inclusive. Please specify whether you need 5.25in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order

Photo copies of Electronics World articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy *Electronics World* index Indexes on paper for volumes 100,101, and 102 are available at £2 each, excluding postage.

flows through the bridge rectifier, the

activated. The normally closed contact


is open and the low-level electrode is

not in circuit, while the normally open

transistor is off and the relay is

they reinforce the actions of the circuit. Distance between the vessel and circuit may as much as 10m, but the ground line must not be near the other two lines to avoid stray capacitance.

Roland Vanthomme Sambreville Belgium C98

w.softcopy.co.u

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide. For enquires about photocopies etc please send an sae to SoftCopy Ltd. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 ONU.

Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

e-mail at SoftCopy@compuserve.com, tel 01242 241455

Portables with a Purpose

Reliable Tools that do the Job

FieldPac uniquely combines the power and expandability of a desktop PC with the mobility, strength and form-factor of a metal attaché case. One truly full-sized ISA or PCI expansion slot allows you the freedom to choose any add-in card on the market

- ISA or PCI Full Sized Slot.
- High Brightness TFT Display.
- Pentium CPU, CD, Multimedia.
- Rugged, All Metal Attaché Case.

for applications such as: Network Testing & Monitoring, Portable D/A systems, Image Capture & Commissioning/Installation Tools. Trust the FieldPac anywhere you travel and feel confident it will survive the rigors of transport, ready to do the job, every time.

- Airline Hand Luggage.
- Universal Autoswitch Integral PSU.
- Removable Full-size Keyboard.
- CardBus / PCMCIA x 2.

Tel: +44 1908 263622 Fax: +44 1908 263220 sales@dolch.co.uk www.dolch.com

Mosfet hf mixer

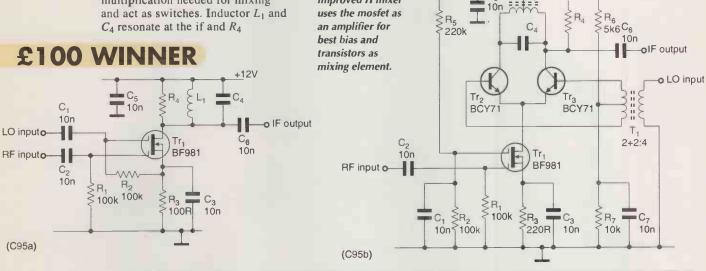
igure 1 shows a typical dual-gate hf mixer, which provides reasonable, low-cost intermodulation and noise performance.

The improved circuit in Fig. 2 employs the mosfet as an amplifier rather than a mixer, an arrangement that allows the mosfet to be biased for best noise figure.

Transistors $Tr_{2,3}$ provide the multiplication needed for mixing and act as switches. Inductor L_1 and represents the if load.

Improved rf mixer

Local oscillator input must be around 20mV pk-pk from a low impedance such as 50Ω and output inductor L_1 is bifilar wound on a ferrite core for best balance. These modifications to the original circuit provide higher gain and a lower


noise figure and higher intermodulation intercept to give an improvement in third-order dynamic range

+12V

P Goodson Bracknell Berkshire C95

 C_5

==

Wide-band amplitude modulator

ain of this amplitude I modulator is constant for carrier frequencies between 10kHz and 50MHz. The circuit linearly

modulates the carrier by up to 100% using a modulation signal between 10Hz and 200kHz. Modulating input varies the

current through Tr_3 and therefore the gain of the emitter-coupled amplifier $Tr_{1,2}$. Output of the amplifier is a composite of an ammodulated carrier and the modulating frequency, the latter normally being removed by a filter.

Since the modulating frequency appears at the two collectors in common-mode, the differential opamp amplifier rejects it, while amplifying the two am signals normally. The avoidance of filtering confers a wide-band performance.

Trimmer C_1 increases the gain of the op-amp to counteract precisely the fall-off in gain of the emittercoupled amplifier, while the potentiometer R_1 sets symmetry of the rf envelope when modulated to 50% by a 200kHz input, the carrier being anything over 2MHz.

The circuit is affected only minimally by temperature. John Gibson Berkelev California USA **C89**

Tel: 01203 650702

Hewlett Packard 8642A – high performance R/F synthesiser (0·1-1050MHz) 3335A – synthesiser (200Hz-81MHz)	£6500 £2750
Hewlett Packard 436A power meter and sensor (various) 437B power meter and sensor (various)	from £900 from £1250
8753B network analyser (3GHz) 1 'S' parameter test sets 85046A and 85047A	from £3000 from £4000 00 & £3000
Wandel & Goltermann PFJ-8 – error and fitter test set (all options fitted) PCM 4 – PCM channel measurement set	£POA £9500
Marconi 2305 – modulation meter 6310 – programmable sweep generator (2 to 20GHz) – new	£1750 £3500
Hewlett Packard 5342A – microwave frequency counter (500MHz-18GHz) ops 1 & 3 5370B – universal time interval counter	£800 £2000

OSCILLOSCOPES

OSCILLOSCOPES		
Beckman 9020 - 20MHz - Dual channel	£150	
Hewlett Packard 54100D - IGHz Digitizing	£1250	
Hewlett Packard 54201A - 300MHz Digitizing	£1250	
Hewlett Packard 54512B (300MHz-1G s/s) – 4 channel	EPOA	
Hitachi VI52/V212/V222/V302B/V302F/V353F/V550B/V650F	from £125	
Hitachi VI I00A - I00MHZ - 4 channel	£900	
Intron 2020 - 20MHz. Dual channel D.S.O. (new)	£450	
Iwatstu SS 5710/SS 5702 -	from £125	
Kikusui COS 5100 - 100MHz - Dual channel	£350	
Lecroy 9450A - 300MHz/400 MS/s D.S.O. 2 channel	£2250	
Lecroy 9304 AM – 200MHz – 4 channel DSO	£3000	
Meguro MSO 1270A - 20MHz - D.S.O. (new)	£450	
Philips 3055 - 50MHz .Dual channel	£450	
Philips PM 3335 - 50MHZ - D.S.O. Dual channel	£950	
Philips 3295A - 400MHz - Dual channel	£1600	
Tektronix 465 - 100MHZ - Dual channel Tektronix 464/466 - 100MHZ - (with AN, storage)	£350 £350	
Tektronix 475/475A - 200MHz/250MHz -	from £450	
Tektronix 468 - 100MHZ - D.S.O.	£650	
Tektronix 2213/2215 - 60MHz - Dual channel	£350	
Tektronix 2220 - 60MHZ - Dual channel D.S.O	£1250	
Tektronix 2225 - 50MHZ - Dual channel	£395	
Tektronix 2235 - 100MHZ - Dual channel	£600	
Tektronix 2221 - 60MHz - Dual channel D.S.O	£1250	
Tektronix 2245A - 100MHZ - 4 channel	£900	
Tektronix 2440 - 300MHz/500 MS/s D.S.O.	£2950	
Tektronix 2445A - 150MHz - 4 channel	£1250	
Tektronix 2445 - 150MHZ - 4 channel + DMM	£1200	
Tektronix TAS 475 - 100MHZ - 4 channel	£995	
Tektronix 7000 Series (I00MHZ to 500MHZ)	from £200	
Tektronix 2211 - 50MHz - 2 channel DSO	£950	
000000000000000000000000000000000000000		
SPECTRUM ANALYSERS		
Ando AC 821 1 - 1.7GHz	£1995	
Avcom PSA-65A - 2 to I000MHz	£850	
Anritsu MS 62B - 50Hz to 1700MHz	£1995	
Anritsu MS 610B 10KHz - 2GHz - as new	£4500	
Advantest/TAKEDA RIKEN - 4132 - I00KHz - I000MHz	£2100	
Hewlett Packard 3562A Dual channel dynamic signal analyser		
64µHz - 100KHz	£5750	
Hewlett Packard 3585A - 20Hz to 40MHz	£4000	
Hewlett Packard 8505A - 1.3GHz - Network Analyser	£1995	
Hewlett Packard 8756A/8757A Scaler Network Analyser	from £1000	
Hewlett Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21GHz)	£3000	
Hewlett Packard 182T Mainframe + 8559A Spec. An. (0.01 to 21GHz)	£2500	
Hewlett Packard 8569B (0-01 to 22GHz)	£4000	
IFR A7550 - 10KHz-1GHz - Portable	£2500	
Meguro - MSA 4901 - 30MHz - Spec.Analyser	£850	
Meguro - MSA 4912 - I MHz - IGHZ Spec. Analyser	£1250	
Stanford Research SR760 (100KHz-FFT analyser)	£2300	
Tektronix 495P Spec analyser prog 1.8GHz	£4500	

All equipment is used - with 30 days guarantee. Add carriage and VAT to all goods. Telnet, 8 Cavans Way, Binley Industrial Estate, Coverter CV/2 OCE

Quality second-user test & measurement equipment

Radio Communications Test Sets

£2000 £2250 £3750 £2250 £1200 £2000 £7500 **£POA** £4995 £1995 £2500 £5000 £6250 £6950 £2995

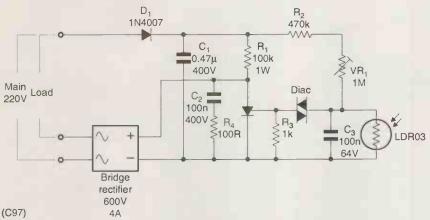
£4250 £2000

Marconi 2955 - calibrated
Marconi 2955A – calibrated
Marconi 2955R – calibrated
Marconi 2958/2960
Antritsu MS555A2
Hewlett Packard 8920A
Hewlett Packard 8922B (GSM)
Hewlett Packard 8922G/H/M (GSM)
Schlumberger Stabilock 4031
Schlumberger Stabilock 4040
Racal 611 (GSM)
Racal 6115 (GSM)
Rhode & Schwarz CMS 54 (new)
Rhode & Schwarz CMTA 94 (GSM)
IFR 1200S (calibrated)

Fax 01203 650 773

Tektronix 469P - 1KHz to 1.8GHz Wiltron 6409 - 10-2000MHz R/F Analyser

MISCELLANEOUS


INOCELEATEOOO	
Eaton 2075 - Nolse Gain Analyser	EPOA
Farnell AP30250 - Power Supply 30v-250amp	£1750
Fluke 5100A/5100B/5220A/5200A - Calibration Units (various available)	EPOA
Fluke 2625/2635 Data Buckets (various)	EPOA
GN ELMI EPR31 - PCM Signalling Recorder	£3000
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)	£750
Hewlett Packard 6632A - System Power Supply (20v-5A	£800
Hewlett Packard 3784A - Digital Transmission Analyser	£5000
Hewlett Packard 3785A - Jitter Generator & Receiver	£1250
Hewlett Packard 5370B - Universal Time Interval Counter	£2000
Hewlett Packard 8660D - Synth'd Sig. Gen (10 KHz-2600MHz)	£3,250
Hewlett Packard 4192A - LF Impedance Analyser	£6750
Hewlett Packard 16500C - Logic Analyser Mainframe	£4750
Hewlett Packard 16501A/B & C - Logic Analyser System Expander Frame	
Hewlett Packard 6624A – Quad Output Power Supply	£2000
Hewlett Packard 6652A – 20V-25A System PSU	£750
Hewlett Packard 8350B – Sweep Generator Mainframe	£2000
Hewlett Packard 75000 VXI Bus Controllers	£POA
HP 339A Distortion measuring set	£1500
HP 3488A - Switch/Control unit	£650
HP 435A + 435B Power meters	from £200
HP 8656A Synthesised signal generator	£850
HP 8656B Synthesised signal generator	£1450
HP 8657A - Signal generator 100KHZ - 1040MHZ	£1900
HP 37900D - Signalling test set	£4250
HP 5385A - 1 GHZ Frequency counter	£750
HP 8901B - Modulation Analyser	£3750
HP 8903B and E - Distortion Analyser	from £2000
HP 5359A - High Resolution Time Synthesiser	£2950
Keytek MZ-15/EC Minizap ESD Simulator (15kv - hand held)	£1750
Marconi 2610 True RMS Voltmeter	£700
Marconi 6950/6960 Power Meters & Sensors	from £500
Philips 5515 - TN - Colour TV pattern generator	£1500
Leader 3216 Signal generator 100KHz - 140MHz - AM/FM/CW with built in	FM stereo
modulator (as new) a snip at	£995
Racal 9087 - 1.3Ghz Synthesised Signal Generator, low noise	£2250
Racal 1992 – 1.3GHz Frequency Counter	£600
Rohde & Schwarz 5MY-01 Signal Generator (9KHz-1040MHz)	£2250
Rohde & Schwarz NRV Power Meter & NRV-Z2 Sensor	£1250
Systron Donner 6030 - 26.5GHz Microwave Freq Counter	£2250
Wandel & Goltermann PRA-1 - Frame Analyser	£5250
Wayne Kerr 3245 – Precision Inductance Analyser	£2250
Wilfron 6747A-20 - 10MHz-20GHz - Swept Frequency Synthesiser	£4950

Tel: 01203 650702 569 Fax.

Twilight switch

his circuit switches power to a load when ambient light falls below a set level. In some circuits

of this type, the light sensor will switch the load off again if light impinges on it. In this circuit, the

thyristor is supplied with a sustaining current from the rectified supply, so that the load remains on in the presence of mains power.

Capacitor C_2 and R_4 prevent rapid power-on voltage rises to avoid false thyristor firing. The variable resistor adjusts sensitivity. **Jean-Marc Brassart** Saint-Laurent-du-Var France C97

Once fired, the thyristor in this light switch stays on, regardless of light on the sensor.

Positive feedback

demands on low-

the 6080, which

obtained, avoids

the need for inter-

stage transformers

and exotic triodes.

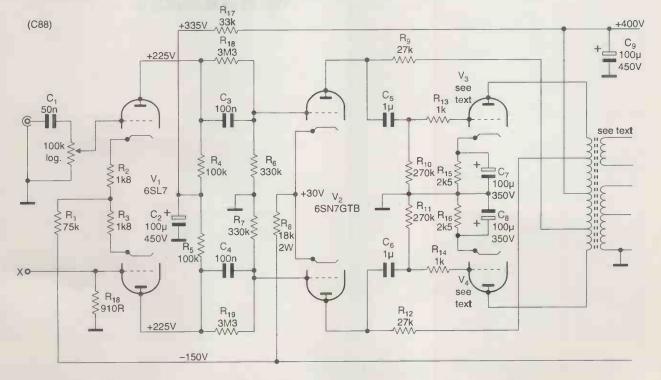
mu triodes such as

reduces the

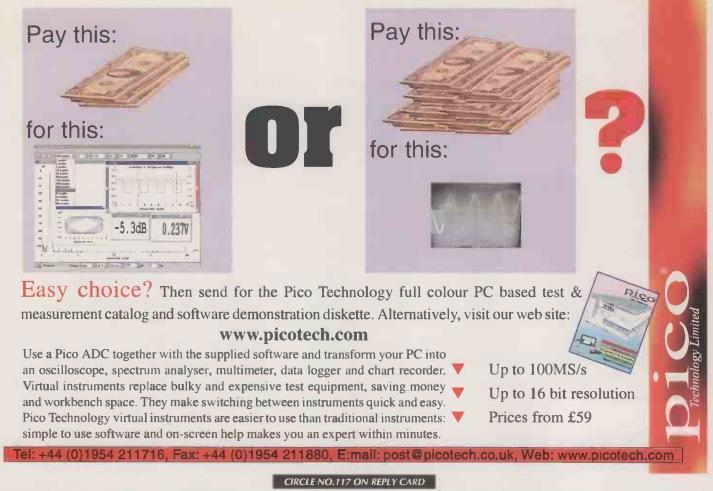
are easily

Triode audio amplifier with bootstrapping

he use of triodes as the output stage in valve amplifiers has much to recommend it, but there is the problem of the large drive needed by some types of valve. It is found that a form of bootstrapping overcomes the problem, following similar design techniques used by Macintosh.


Positive feedback, applied to the anode load resistors of the driver stage, comes from taps on the ultralinear output transformer, many of which are available. This removes the need for the drivers to supply the large voltage swings needed by low-µ triodes such as the 6080. An output transformer having 43% taps is suitable for use with the 6080 types or, with a μ of 4.5, 25% taps can be used

A single 6080 with a 4300Ω impedance transformer, running from a 350V rail, produced 10W of clean audio, while another with two 6080s in push-pull and a transformer impedance of 2150Ω on a supply of


400V gave 30W. V_3 and V_4 are both sections of a 6080, each section having its own cathode resistor and bypass.

Feedback comes from the 8Ω tap of the transformer to point X, reversal of the output transformer secondary stopping any oscillation.

John L. Stewart King City Ontario Canada **C88**

oscilloscopes spectrum analysers multimeters data acquisition environmental monitoring

The Technical Superstore that's always open

The Electromail CD-ROM Catalogue contains more than 100,000 technical products, all available from stock for same or next day despatch. All you have to do is make your selection from the CD-ROM and 'phone your order through to our 24 hour orderline - any day of the week.

Our sister company, RS Components, is the U.K.'s largest distributor of electronic, electrical and mechanical products to technical professionals. The Electromail CD-ROM makes this extensive product range available to technical hobbyists and small businesses, and there's a comprehensive library of product datasheets already on the CD-ROM which contain detailed information on the majority of our product range. There are also Technical Helplines, to answer more specific enquiries, relating to your actual

Fax: 01536 405555

intended application.

At just £3.99, the Electromail CD-ROM gives you everything at your fingertips, with the service back-up which is second to none.

Tel: 01536 204555

Electromail, P.O. Box 33, Corby, Northants. NN17 9EL.

HOW TO ORDER

CIRCLE NO.118 ON REPLY CARD

Please quote stock number 332-3996 when ordering, and have your

w ove

products

-ROM CATALOGI

OPEN AN

ELECTROMAIL ACCOUNT sk for details about opening an account, which can give you up to 50 days' interest free credit by paying by Variable Direct Debit. 0dBF

-20dB

-40dB

-60dB

-80dB

-100dB

0dB

-20dB

-40dB

-60dB

-80dB

-100dBL

(b)

(a)

200

200

£100 WINNER

New FIR speaker crossover

inite impulse response filters produce a linear phase response and a constant group delay and may be designed using all-pass elements and a summing network, a linear phase response being obtained when all coefficients are symmetrical.

The two-way crossover filter shown here is a member of a new class of phase-linear FIR crossovers.

Varying the coefficients produces differing low-pass filters, as shown below. Taking the difference between the delayed input and the low-pass output produces a high-pass characteristic.

With four all-pass elements, you can obtain slopes up to 24dB/octave. Adding elements with an extended summation network produces higher-

(C93a)

20

(C93b)

20

0dB

-20dB

-40dB

-60dB

-80dB

-100dB

0dB

-20dB

-40dB

60d**B**

-80dB

-100dB

(d)

(c)

order crossover, but for use with standard high-quality speakers, second or fourth-order crossovers are adequate.

Corner frequency depends on R_0C_0 in each element and on values in the summation network.

For an	average filter,
R ₁₋₅	20kΩ.

Least-squares filter: R_{\perp} $8.66k\Omega$ $34k\Omega$ $R_{2,4}$ 48.7kΩ. R_3

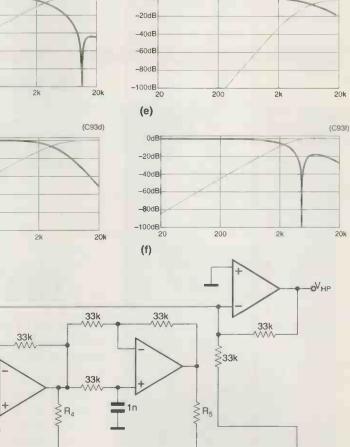
Optimis	ed average filter:
R_1	7.32kΩ
R _{2,4}	24. 9 kΩ
Ra	35.7kΩ.

200

200

1n

TL074

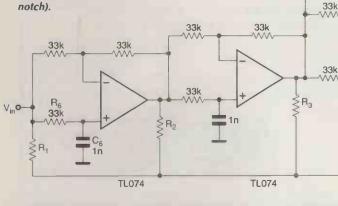

33k

Optimal low-pass filter: R_1 6.19kΩ R_{2,4} $24.9k\Omega$ R_3 37.4kΩ.

Optimal high-pass filter: 6.19kΩ R_1 24.9kΩ $R_{2,4}$ R_3 61.9kΩ.

Low-pass filter with notch: R_1 $12.4k\Omega$ R2-4 24.9kΩ

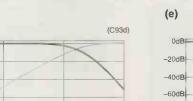
Frankfurt Germany



TL072

Characteristics of the two-way FIR filter, obtained by varying coefficients and the summing network. At (a) is the average filter; (b) shows the least-squares filter; (c) is an optimised average shape; (d) an optimal low-pass; (e) is the optimal high-pass and (f) is a low-pass with a notch).

2k


2k

New FIR filter for loudspeaker crossover applications.

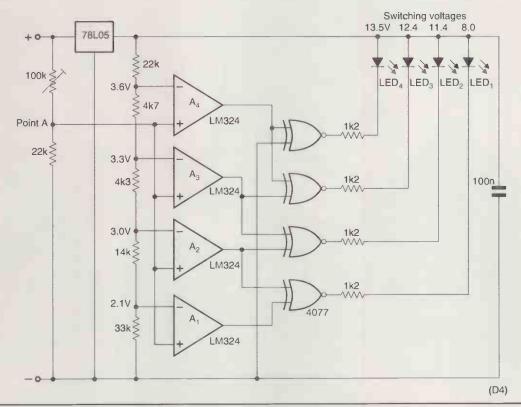
Gerd Schmidt C93 0dB

(C93e)

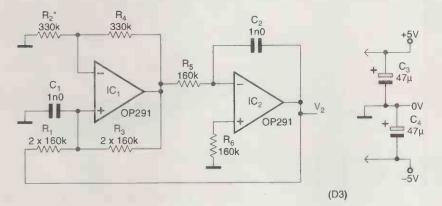
(C93c)

100k

VLP


(C93)

Low-current battery monitor


The use of exclusive-Nor gates in this four-led battery monitor, which originally had three of the four leds illuminated for much of the time, has allowed only one of the leds to be on at a time, so saving current.

As a reminder, an exNor gives a 1 output if one input is 0 and a 0 output if both inputs are 0. In the circuit shown, a 78L05 regulator supplies a tapped resistor chain with 5V to give four reference voltages, the four opamps in an LM324 being used as comparators, in which the voltagedivided input is compared with the four reference voltages. The use of the exNors means that as each led comes on, the one below it goes out, only the highest therefore being illuminated. Switching points with values shown are 8V, 11,4V, 12.4V and 13.5V. No led is on below 8V, since the circuit supplied by the battery is long gone at that voltage. • Neville Frewin Fontainebleau South Africa

Two-op-amp sine generator, MkII

Oscillator uses a non-inverting integrator described earlier, but modified to use one capacitor and two resistors. A n earlier contribution¹ showed how two op-amps may be made to generate low-distortion sine waves, the circuit being based on a noninverting integrator that needed two capacitors. This new circuit² needs only one capacitor, but two extra resistors, which are easy to match and readily available in low-temperature coefficient form at low cost. Op-amp IC_1 is the non-inverter, IC_2 being the inverting integrator. To obtain oscillation, phase lag from each integrator must be 90° and loop gain just greater than unity; adjustment of the gain to make v_1 just clip at the ±5V rails is critical and is done here by reducing R_2 and inserting a 20k Ω trimmer in its ground leg. Lowest distortion is

gained if C_2 is slightly greater than C_1 or R_5 slightly increased.

Common-mode signals into the inputs of IC_1 are nearly $\pm 3V$ and it is necessary to use an *OP-291* or similar that has near rail-to-rail inputs as well as output. Frequency of the circuit shown is 1kHz.

CJD Catto

Cambridge

References

- Catto, CJD. Two op-amp sine generator. *Electronics World*, April, 1999, p.291.
- Burnill, J. Integrator with no signal inversion. *Electronics World*, May, 1995, p.431.
- Hickman, I. A perfect variable oscillator? *Electronics World*, June, 1998, p.485.

(Ref. 3 was inadvertently omitted from the article in Ref.1.)

monitor shows only one led at a time, instead of a maximum of four, due to the use of exclusive-Nor gates.

Four-led battery

DEVELOPMENT TOOLS

The First Rung On The Microcontroller Ladder

hiter

Siemens uC starter kits are a great way to get into the world of embedded systems. With peripherals like ADC, Capture/ Compare and **Controller** Area Networking, you will be able to get your ideas going fast - you can choose between the popular 8-bit C500 CPU family or the 12.5 MIPS 16-bit C167 family to get the best fit for your project.

CROWNHILL ASSOCIATES LIMITED The Old Bakery, New Barns Road, Ely, Cambs. CB4 7PW Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710

Low cost professional quality Smart Card Systems

CHIPDRIVE

The intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure Memory using I2C, 2-wire & 3-wire interfaces. From April 1 1999 all ChipDrives are supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh, Linux, Unix, Solaris. Microsoft PC/SC and of course WINDOWS 95/98 and NT.

Supplied with CARDSERVER API for easy development of SmartCard Applications using Visual Basic, Delphi or C++

ChipDrives are CE Compliant ChipDrives conform to ISO7816, T=0 or T=1 3.579MHz, RS232 @ 9600-11500 bps, Internal Supply/Ni-MH. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows developers.

APP-LOCK

Protect any Windows applications from Unauthorised access under Win 95/98/NT Inclusive of Chipdrive Intern, Smart Card and Software. £79.95 + P&P £5 exclusive of VAT

GSM CARD READING application supplied with CHIPDRIVE-micro

CHIPDRIVE Developer Kit

CDK consists of: CD ROM containing cardserver.dll. Applications and Source code examples. CHIPDRIVE-micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer info, and memory map if available. Applications produced with the

P&P £5 Exclusive of VAT

£69.95+

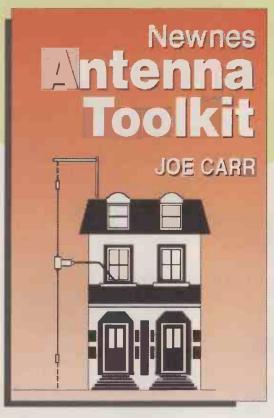
developer kit will operate under Windows 3.11/95/NT and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application

programmer from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.

> Supplied with CHIPDRIVE micro, Smart Cards and Source Code. Full Tech Support via Email.

http://www.towitoko.co.uk http://www.crownhill.co.uk http://www.edsim2000.com

HITAG[™] Cards The Contactless Reader/Writer is designed to communicate via an RF field with the HITAG[™] range of contactless cards. A simple ASCII based command set allows direct access to the powerful features that enable data to be read and written to the card at distances up to 150mm. A Written to the card at distances up to 150mm. A RS485 multi drop facility is built onto the reader/writer unit allowing daisy chaining of up to 32 devices. Communication is via an onboard configurable RS232 Port A sounder, two opto isolated outputs, 4 LED's and 2 high current open drain Mosfets are available for interfacing. Supplied with cards. E143 P&P £5 Exclusive £149.95 + P&P £5 Exclusive of VAT


CIRCLE NO.121 ON REPLY CARD

From £110 +VAT

For further details see our website www.hitex.co.uk

Hitex (UK) Ltd. University of Warwick Science Park, Coventry, CV4 7EZ Tel: 01203 692066 Fax: 01203 692131 KIT Email: sales@hitex.co.uk Web: www.hitex.co.uk

CIRCLE NO.120 ON REPLY CARD

What's in the book?

Radio Signals On The Move; Antenna Basics; Wire, Connections, Grounds And All That; Marconi and Other Unbalanced Antennas; Doublets, Dipoles And Other Hertzian Antennas; Limited Space Antennas; Large Loop Antennas; Wire Array Antennas; Impedance Matching; Simple Antenna Instrumentation & Measurements

Includes free CD with antenna design software

Antenna Toolkit

Combined with antenna design software on CD-rom, Newnes' new book Antenna Toolkit provides a complete design solution. Prepared by antenna expert Joe Carr, this package is written for beginners and advanced users alike. On the CD-rom is a suite of powerful software running on the pc. The software calculates the critical lengths and other parameters of the antennas in the book by having the user select the antenna type and set the frequency. The main menu screen is in the form of tabs, one for each chapter of the book plus other topics. This 220 page work includes 185 illustrations and 23 photographs.

** HF propagation predictor included **

Also included is a Windows freeware package, from the Voice of America organization, called VOACAP. This is an hf propagation predictor which some commercial sources have offered unmodified for hundreds of dollars. UK Price: £27.50 Europe £30.00 ROW £32.50

** Price includes delivery and package **

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please supply the following title:
Newnes Antenna Toolkit
Total
Name
Address
Postcode Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no
Card expiry date
Signed
Please allow up to 28 days for delivery

SPEAKERS' CORNER (1)

Getting more copper inside a loudspeaker's coil gap by using square cross-sectioned wire instead of circular has got to improve performance, hasn't it? John Watkinson investigates.

s I have demonstrated in earlier articles, the efficiency of a moving coil speaker is pretty miserable. Anything that offers an improvement in efficiency is worth looking at.

The efficiency depends upon the Bl product and the overall moving mass. Making the magnet more powerful is an obvious approach, but this is expensive. An alternative is to look at ways of getting more Bl from an existing magnet.

This is where square and rectangular wire comes in to consideration. Figure 1a) shows a coil made with round wire. The packing efficiency is poor because circles don't fit together at all well. The result is that only part of the magnetic field that we have payed for is being used. Figure 1b) shows that if square wire is used, the air voids are removed and the packing efficiency is better.

How much better?

The question is though, how much better? I have kept coming across the above argument, but the result was never quantified, so I decided to work it out. It turned out to be more complex than might at first be thought.

It is important to compare like with like, so that as much as possible everything should be kept the same except for the cross-sectional shape of the wire. So consider two coils, having the same overall length, the same DC resistance and the same mass. They differ only in their wire cross section.

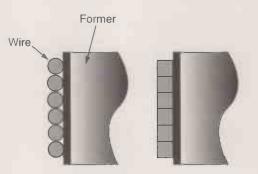
This isn't easy because if the crosssectional area of the wire is kept the same, the coil having the square wire will be shorter because of the better packing. This will reduce the linear travel of the cone and the overhung coil length and so we are not comparing like with like.

On the other hand, if the coils are

made the same length, the coil having the square wire would have more turns and hence higher resistance.

I thought that one approach would be to compare coils of the same length and DC resistance. The crosssectional area of the square coil would have to be greater so that the same resistance was obtained despite the larger number of turns. The result of this approach is that the coil wire itself would be heavier, but the effect of the changed moving mass could be estimated.

The panel entitled shows the calculations. The result is that the Bl product goes up by 8 percent because more turns are in the gap. The gap volume occupied by the wire can be reduced by 8 percent because of the improved packing. This means that the magnet could be smaller, or with the same magnet the field would be stronger.


Clearance and former losses

In practice, the magnet gap is wasted by clearance spaces and the coil former, so nothing like the 8 percent improvement is realised. The gain is more like 2 percent. The square wire has given about a ten percent improvement in *Bl*. Unfortunately, the panel also shows that the mass of the coil has gone up by 17 percent, so we lose!

Another approach to the problem is to allow rectangular wire. This would make it possible to match the mass, resistance and coil length with that of an equal circular wire coil.

Figure 2 shows that if the rectangular wire has the same cross-sectional area it will have the same mass and resistance per unit length as the round wire. Also, if the diameter is the same as the section height, the coil will have the same length too.

Note that the Bl product doesn't change. But the thickness of the coil

falls to about three quarters of the value for round wire. This allows a smaller gap volume and consequently a smaller magnet for the same field strength.

However, the magnet won't be three quarters as big because as before some of the gap is used up with coil former and clearance space. Maybe a ten percent reduction in magnet size, or a ten percent improvement in Bl for the same magnet would be feasible.

Bearing in mind the phenomenal cost of square wire and the enormous difficulty in obtaining it, it is likely that the saving on the magnet would be eclipsed by the extra cost of the wire below a certain size of drive unit. It is only in large drive units where the magnet cost becomes an issue and small magnetic efficiency gains become worthwhile.

So the efficiency argument for

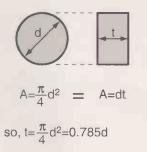


Fig. 1. Round wire at a) wastes magnetic field volume. Efficient packing of square wire at b) should be more efficient – but by how much?

Fig. 2. Rectangular wire can have the same weight and resistance as round wire, but needs only 3/4 the volume so the magnet can be smaller.

AUDIO DESIGN

Efficiency versus weight

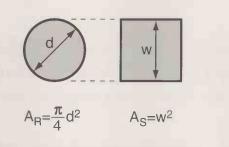
If wire length is L then for equal resistance,

$$\frac{L_s}{A_s} = \frac{L_R}{A_R}$$

If coil circumference is C, number of turns is L/C. Length of coil, L_C , is number of turns multiplied by w or d.

$$L_C = \frac{L_S}{C} \times w = \frac{L_R}{C} \times d \therefore \frac{L_S}{L_R} = \frac{d}{w}$$
(2)

From eqn 1,


$$\frac{4L_R}{\pi d^2} = \frac{L_S}{w^2} \therefore \frac{L_S}{L_R} = \frac{4w^2}{\pi d^2} = \frac{d}{w} \text{ (from eqn 2)}$$
$$\therefore \frac{d^3}{w^3} = \frac{4}{\pi} \therefore \frac{d}{w} = 1.084 \rightarrow Bl \text{ is } 8\% \text{ better}$$

If mass is M,

$$\frac{M_s}{M_R} = \frac{L_s \times A_s}{L_R \times A_R} = \frac{d}{w} \times \frac{4w^2}{\pi d^2} = \frac{4}{\pi} \times \frac{w}{d}$$

 $= 1.17 \rightarrow$ mass is 17% higher.

So assuming constant DC resistance and coil length, the coil using square wire is 8% more efficient, but 17% heavier.

square or rectangular wire is tenuous if used as a replacement for round wire in an existing design. It is certainly less effective than the improvement obtained by going from copper to aluminium. However, square or rectangular wire has the characteristic that successive turns can easily be

(1)

bonded together so that the coil former can be dispensed with. This has a number of advantages.

Benefits of no former

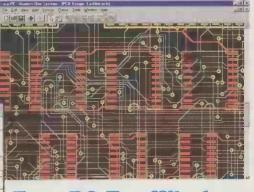
The elimination of the coil former reduces the amount of wasted volume

in the gap. The wasted volume is now only due to the inner and outer coil clearance spaces. A self supporting coil has better cooling because both sides are exposed and can radiate to both poles.

Combining the elimination of the coil former with the slightly better packing of the square wire gives a tangible reduction in gap volume. The more powerful the speaker, the greater the ratio of coil volume to clearance volume and the more relevant the approach becomes. Self supporting coils of this kind are found in all kinds of applications such as vibration table actuators and in the positioners of giant disk drives.

For small or low powered speakers, it doesn't make economic sense except for manufacturers who operate at very high volumes and can get specialist wires at reasonable cost through volume purchase. If square or rectangular wire is contemplated, the speaker has to be designed from the outset to use it. If the coil isn't self supporting, most of the advantage is lost.

"We never expected PCB Layout power at this price..."



brings you a simple and intuitive user interface with a set of

powerful features normally only found in the most expensive packages.

- True Windows graphical user interface
- Easy to learn and use
- Full connectivity between SCM and PCB
- Full multi-level Undo and Redo
- Multi-Sheet project based design
- 0.1 Micron system resolution
- Unlimited layers, electrical and non-electrical
- Uses technology files for 'fast start' designs
- OrCAD and IMT EDA Workbench schematics netlist import
- Intelligent circuit copy and paste within and across designs
- Cut, copy and paste to external Windows applications
- Extensive design rules and connectivity checking / reporting
- Features a comprehensive set of libraries including SMT devices
- Automatic links to our Analogue, Digital & Electromagnetic simulators
- Runs under Windows 95/98[™] and Windows NT[™]
- Available as Unlimited, 2000 pins, 1000 pins and 500 pins variants

CIRCLE NO.122 ON REPLY CARD

Easy-PC For Windows

Number One Systems

The Electronics CAD Software Specialists

Visit our web site at www.numberone.com or Email us on sales@numberone.com or call sales on 01684 773662 or fax 01684 773664

> Sightmagic Ltd, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR, UK

Number One Systems and Easy-PC are trademarks of Sightmagic Ltd. All other trademarks are acknowledged to their rightful owners.

600 A

The range of 'FM-Controllers' provide most of the features required for embedded control at a very low cost

FEATURES FM-200 Controller

- ♦ 68K Micro-Controller 14 MHz clock
- **512 Kbytes Flash EEPROM** ٠
- 512 Kbytes SRAM Battery Backed ٠ ٠
- 2 RS232 Serial Ports
- 1 RS232/RS485 Serial Port **Real Time Calendar Clock** (Y2K Compliant)
- Watchdog & Power fail detect •

•

Key Pad Port 64 Keys 8×8

• 8 Channels 8 bit analogue in

2 Channels 8 bit analogue out

• 8 Channels 13 bit analogue in

- 10 Digital I/O Lines
- 2-16 bit Counter/Timers ٠
- I²C Bus or M-Bus ٠
- **Expansion Bus** ٠
- Size 100 x 80 mm

OTHER FEATURES

- Up/Download removable card for data ٠ logging and or re-programming STE VO Bus, 68000 and PC Interface ٠
- Designed, Manufactured and supported ٠
- in the UK

----..... and in manny . 111

OPTIONAL EXTRAS

Additional extra features to the FM 200

- LCD Port Graphics or Alphanumeric

 Up to 32 Digital VO Channels Up to 8 Mbytes of SRAM Battery
 - Backed
 - Up to 512 Kbytes of Flash EEPROM. ♦ 1 Mbyte EPROM Space

Essex UK CM6 1XG Tel.+44 (0) 1371 875644 Fax:+44 (0) 1371 876073

CIRCLE NO.123 ON REPLY CARD

ASCIFTASCALES
HP 54201D 300 MHz 2 channel digitising (27 channels logic
state triggering)
TEKTRONIX 7903/7A 26 x2/7B80 200 MHz 4 channel £450
TEKTRONIX 7603/7A IBA x2/7B53 A 4 channel
TEKTRONIX 2465/2465A 300 MHz 4 channel from £1,800
TEKTRONIX 2445A 150 MHz 4 channel OPT05
TEKTRONIX 2445A 150 MHz 4 channel
TEKTRONIX 2445 150 MHz 4 channel GP-IB (900
TEKTRONIX 2246A 100 MHz 4 channel autocal
TEKTRONIX 2245 100 MHz 4 channel (NEW)
TEKTRONIX 2235 100 MHz 2 channel
TEKTRONIX 2230 100 MHz 2 channel digital storage £1,000
TEKTRONIX 2225 50 MHz 2 channel
TEKTRONIX 2220 60 MHz 2 channel digital storage
TEKTRONIX 2215 60 MHz 2 channel (295
TEKTRONIX TM504 4 slot mainframe
TEKTRONIX 475 200 MHz 2 channelfrom £400
TEKTRONIX 468 100 MHz 2 channel digital storage (new)

TEXTRONIX 448 100 MHz 2 channel girul ato TEXTRONIX 4455 100 MHz 2 channel OPTOS TEXTRONIX 4455 100 MHz 2 channel TEXTRONIX 4455 100 MHz 2 channel PHILIPS PM 32032 100 MHz diral (mess) PHILIPS PM 3217 50 MHz 1 channel PHILIPS PM 32032 100 MHz diral (mess) PHILIPS PM 32032 100 MHz diral (mess) PHILIPS PM 3057 50 MHz 2 channel PHILIPS PM 3057 30 MHz 2 channel IVATSU 55 510 60 MHz 4 channel (an new). KIKUSUI COSSO41 40 MHz 2 channel KIKUSUI COSSO41 40 MHz 2 channel NICOLET 4094/4502F43 digital scoge — NITACH V 1100 100 MHz 4 channel (an new). GOULD 051 000 30 MHz 2 channel GOULD 052208 15 MHz 2 channel GOULD 052208 15 MHz 2 channel GOULD 052208 15 MHz 2 channel (375 .6295 .6375 .6350 .6325 275 6245 £200 (\$00 £160

SIGNAL GENERATORS
HP 8904A DC-600 KHz multifunction synthesiser
HP 8683D 2.3 GHz-13 GHz OPT 001/003 solid state
generator (as new)
HP 8656A 100 KHz-990 MHz signal generator
HP 8640A 20 Hz-512 MHz signal generator £250
HP 8640B 600 KHz-512 MHz signal generator
HP 8620C/86242D 5.9-9 GHz sweeper
HP 8620C/86241A 3.2-6.5 GHz sweeper
HP 8620C/86230B 1.8 GHz-4.2 GHz sweeper
HP 8620C/86220A 10-1300 MHz sweeper
HP 8620C sweeper mainframes (as new)
HP 8005B 0.3 Hz-20 MHz pulse generator
HP 3336B 10 Hz-21 MHz synthesiser/level meter
HP 3320A frequency synthesiser 0.1 Hz-13 MHz
HP 3314A 0.001 Hz-19.99 MHz function/waveform monitor
£1,200
HP 3312A 0.1 Hz-13 MHz function generator
THURLBY TG230 2 MHz sweep function generator (150

MP 331ZA 0.1 Hz-13 MHz function generator	.400
THURLBY TG230 2 MHz sweep function generator	6150
TEKTRONIX 2901 time mark generator	
MARCONITE2022 10 KHz-1000 MHz signal generator .	
MARCONITE2018 80 KHg-520 MHz signal generator	6700
MARCONI TF2015/2171 10 MHz-520 MHz	with
synchroniser	€350
FARNELL SSG 520 10 MHz-520 MHz synthesised	6300

July 1999 ELECTRONICS WORLD

(new)	
GIGA GRII01A 12 GHz-18 GHz pulse generator	
PHILIPS PM5190 / MHz-2 MHz LF synthesiser (new) £400	
SPECTRUM ANALYSERS	
TEKTRONIX 496P 10 KHz-1800 MHz	
TEKTRONIX 494P 10 KHz-21 GHz (1 year Cal & warranty).	
TEKTRONIX 492P 10 KHz-21 GHz OPT 001/002/003	
ANRITSU MS610B 10 KHz-2 GHz spectrum analyser.£3,000	
TAKEDA RIKEN TR4172 400 Hz-1800 MHz	
spectrum/network analyser£5,500	
HP 1650B 80 channel 100 MHz logic analyser (new)£1,250	
HP CALAN 3010R sweep/ingress analyser	
HP 8753A/85046A 100 KHz-3 GHz network analyser/S	
parameter test set opt 0106,000 HP 8903A audio analyser61,500	
HP 8590A 10 MHz-1.5 GHz spectrum analyser £4,000	
HP 85598/182T 10 MHz-21 GHz	
HP 8558B 100 KHz-1,500 MHz analyser + mainframe£1,000	
HP 8557A 100 KHz-350 MHz analyser + mainframefrom	
HP 8407A/8412B network analyser 0.1-110 MHz	
HP 3582A 0.02 Hz-25.5 KHz dual channel signal analyser	
HP 141T/8552B/8555A 10 MHz-18 GHz	
HP 1417/85518/85518 10/14-110 MH-	
HP 140T/8552B/8553B 10 KHz-110 MHz	
MARCONI TF2370 30 Hz-110 MHz digital storage	
C	
CUSHMAN CETS I MHz-1000 MHz spectrum monitor, £350	
CUSHMAN CE15 1 MHz-1000 MHz spectrum monitor. £350	
SPECIAL OFFERS	
SPECIAL OFFERS	
SPECIAL OFFERS IWATSU SSS711 100 MHz 4 channel oscilloscopes (as	
SPECIAL OFFERS IWATSU SSS711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS IWATSU SSS711 100 MHz 4 channel oscilloscopes (ss new)	
SPECIAL OFFERS IWATSU SSS711 100 MHz 4 channel oscilloscopes (ss new)	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 thannel oscilloscopes (as new) (225) IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) (275) PLESSEY PR52282A HF receivers	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 thannel oscilloscopes (as new) (225) IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) (275) PLESSEY PR52282A HF receivers	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 thannel oscilloscopes (as new)	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 channel oscilloscopes (as new) 625 IWATSU SS5710 60 MHz 4 channel oscilloscopet (as new) 6275 RACAL RA1772 HF receiver 1 6500 RACAL RA1772 HF receiver 5Ks adaptor 300 RACAL RA1772 HF receiver 1 650	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 thannel oscilloscopes (as new)	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 thannel oscilloscopes (as new) 6235 IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) 6275 PLESSEY PR52282A HF receivers 6100 RACAL RAIT72 HF receivers 650 RACAL RAIT71 INF receivers 6300 RACAL RAIT10 receiver FSK adptor 6300 RACAL RAIT10 receivers 6150 LESDER RESS2C streptococe 640	
SPECIAL OFFERS WATSU 555711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 channel oscilloscopes (as new) (235) IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) (275) PLESSEY PR52282A HF receivers (1000 RACAL RAIT72 HF receivers) (300 RACAL RAIT72 HF receivers) RACAL RAIT71 IMF receivers (300 RACAL RAIT72 IMF receivers) (300 RACAL RAIT72 HF receivers) (300 RACAL RAIT72 HF receivers) LEADER LBS51C stereoscope. (40 LEADER IBSAR 2 channel millivolmeters) (45	
SPECIAL OFFERS WATSU 555711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 channel oscilloscopes (as new) (235) IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) (275) PLESSEY PR52282A HF receivers (1000 RACAL RAIT72 HF receivers) (300 RACAL RAIT72 HF receivers) RACAL RAIT71 IMF receivers (300 RACAL RAIT72 IMF receivers) (300 RACAL RAIT72 HF receivers) (300 RACAL RAIT72 HF receivers) LEADER LBS51C stereoscope. (40 LEADER IBSAR 2 channel millivolmeters) (45	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 channel oscilloscopes (as new) (235) IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) (275) PLESSEY PR52282A HF receivers (1000 RACAL RAIT72 HF receivers) (300 RACAL RAIT72 HF receivers) RACAL RAIT71 IMF receivers (300 RACAL RAIT72 IMF receivers) (300 RACAL RAIT72 HF receivers) (300 RACAL RAIT72 HF receivers) LEADER LBS51C stereoscope. (40 LEADER IBSAR 2 channel millivolmeters) (45	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 thannel oscilloscopes (as new)	
SPECIAL OFFERS WATSU SSS711 100 MHz 4 thannel oscilloscopes (as new)	
SPECIAL OFFERS WATSU SS5711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS WATSU SSS711 100 MHz 4 thannel oscilloscopes (as new)	
SPECIAL OFFERS WATSU SSS711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS WATSU SSS711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS WATSU SS5711 100 MHz 4 channel oscilloscopes (as new)	
SPECIAL OFFERS IWATSU SS5711 100 MHz 4 channel oscilloscopes (as new) (235) IWATSU SS5710 60 MHz 4 channel oscilloscopes (as new) (275) PLESSEY PR52282A HF receivers (1000 RACAL RAIT72 HF receivers) RACAL RAIT72 HF receivers (350) RACAL RAIT2 HAB receivers (350) RACAL RAITS Description (40) LEADER IBS52C stereoscope (40) LEADER IBS52C stereoscope (40) LEADER RAGUNG ETC automatic distortion meters. (50) ANRITSU MSS5A 2 GHz error detector (500) ANRITSU MSS5A 2 GHz error detector (500) ANRITSU MSS6A 2 GHz error detector (500) ANRITSU MSG6A 2000 Chronostation terret (500) ANRITSU MSG6A 2000 Chronostation terret (500) ANRITSU MSG70 MTRH-Hrububdum frequeury standard (300) </td <td></td>	
SPECIAL OFFERS WATSU SSS711 100 MHz 4 channel oscilloscopes (as new)	

PROFESSIONAL ELECTRONIC TEST AND MEASUREMENT

OSCILLOSCOPES	FLUKE 6011A 10 Hz-11 MHz synthesised signal generator	BRADLEY 192 oscilloscope calibrator	ŀ
HP 54201D 300 MHz 2 channel digitising (27 channels logic	EI,000 ROHDES & SCHWARTZ APN62 0.1 Hz-260 KHz LF gen	BRUEL & KJAER 2515 vibration analyser (AS NEW) £3,000	+
state triggering)	(new)	DATRON 1065 autocal digital multimeter	
TEKTRONIX 7903/7A 26 x2/7B80 200 MHz 4 channel £450	GIGA GRI 101A 12 GHz-18 GHz pulse generator	EIP 331 [2.5 GHz autofiet microwave counter	
TEKTRONIX 7603/7A18A x2/7B53 A 4 channel	PHILIPS PM5190 1 MHz-2 MHz LF synthesiser (new) £400	FARNELL PDA3502A dual power supply 0-35v 2 amp£175	L.
TEKTRONIX 2465/2465A 300 MHz 4 channel from £1,800		FARNELL RB1030/35 electronic load	h
TEKTRONIX 2445A 150 MHz 4 channel OPT05	SPECTRUM ANALYSERS	FARNELL SCG50 synthesised clock generator	
TEKTRONIX 2445A 150 MHz 4 channel	TEKTRONIX 496P 10 KHz-1800 MHz	FARNELL TSV70 power supply 0-70v 0-10 amp	
TEKTRONIX 2445 150 MHz 4 channel GP-IB	TEKTRONIX 494P 10 KHz-21 GHz (1 year Cal & warranty)	FARNELL LT30-2 2x 0-30v 2 amp	F
TEKTRONIX 2246A 100 MHz 4 channel autocal	ET.000	FARNELL LT30-5 0-30v \$ amp	P
TEKTRONIX 2245 100 MHz 4 channel (NEW)	TEKTRONIX 492P 10 KHz-21 GHz OPT 001/002/003	FARNELL D100 0-100v I amp	P
TEKTRONIX 2230 100 MHz 2 channel digital storage £1,000	(5.500	FLUKE 8505A digital multimeter	Þ
TEKTRONIX 2225 50 MHz 2 channel	ANRITSU MS610B 10 KHz-2 GHz spectrum analyser.£3,000	FLUKE 8506A thermal RMS multimeter	P
TEKTRONIX 2220 60 MHz 2 channel digital storage mak750	TAKEDA RIKEN TR4172 400 Hz-1800 MHz	FLUKE 5440B direct volts calibrator	٢
TEKTRONIX 2215 60 MHz 2 channel	spectrum/network analyser	FLUKE 5205A precision power amp	P
TEKTRONIX 2215 60 MHz 2 channel	HP 1650B 80 channel 100 MHz logic analyser (new)£1,250	FLUKE 5200A AC calibrator	٢
TEKTRONIX 475 200 MHz 2 channelfrom £400	HP CALAN 3010R sweep/ingress analyser	FLUKE 33308 prog constant current/voltage calibrator	(
TEKTRONIX 468 100 MHz 2 channel digital storage (new)	HP 8753A/85046A 100 KHz-3 GHz network analyser/S	HP 59401A bus system analyser	P
	parameter test set opt 0106,000 HP 8903A audio analyser61,500	HP 11710A down tonverter	P
TEKTRONIX 465B 100 MHz 2 channel OPT05	HP 8590A 10 MHz-1.5 GHz spectrum analyser	HP 11665B 150 MHz-18 GHz modulator	
FLUKE PM3082 100 MHz 4 channel (new)	HP 85598/182T 10 MHz-21 GHz	HP 11582A attenuator set DC-18 GHz	P
PHILIPS PM 3263X 100 MHz delay/events	HP 8558B 100 KHz-1,500 MHz analyser + mainframe _£1,000	HP 8970A noise figure meter	
PHILIPS PM 3217 50 MHz 2 channel	HP 8557A 100 KHz-350 MHz analyser + mainframe from		
PHILIPS PM 3057 50 MHz 2 channel	£500	HP 8750A storage normaliser	
PHILIPS PM 3055, 50 MHz 2 channel	HP 8407A/8412B network analyser 0.1-110 MHz	HP 8477A RF power meter calibrator	R
IWATSU SS 5711 100 MHz 4 channel (as new)	HP 3582A 0.02 Hz-25.5 KHz dual thannel signal analyser	HP 6291A DC power supply 0-40v/0-5 amp	1
IWATSU SS 5710 60 MHz 4 channel (as new)	£1,800	HP 6263A DC power supply 0-20v/0-10 amp	B
KIKUSUI COSS041 40 MHz 2 channel	HP 141T/85528/8555A 10 MHz-18 GHz	HP 5350B 10 Hz-20 GHz high performance microwave	B
KENWOOD C5 4025 20 MHz 2 channel £200	MARCONI 2380/2382 100 Hz-400 MHz	counter	B
NICOLET 4094/4562/F43 digital scope	MARCONITEZITO 30 Hz-110 MHz detal storage	HP \$345A 1.5 MHz-26.5 GHz counter/5355A/5356A+8 sensors	P
GOULD 4035 20 MHz digital storage + remote keypad 6500	CUSHMAN CEIS I MHz-1000 MHz spectrum monitor. £350	HP 5342A 500 MHz-18 GHz microwave frequency meter	a
GOULD OSI 100A 30 MHz 2 channel D/L timebase £160		from £500	R
GOULD OS250B 15 MHz 2 channel (130	SPECIAL OFFERS	HP \$335A universal systems counter high stability OPT	
		HP \$334A universal systems counter . £400	B
SIGHAL GENERATORS	IWATSU SSS711 100 MHz 4 thannel oscilloscopes (as	HP \$328A universal counter/DVM OPT011/021/041	9
HP 8904A DC-600 KHz multifunction synthesiser	new)	HP \$180A waveform recorder600	R
HP 8683D 2.3 GHz-13 GHz OPT 001/003 solid state	IWATSU SSS710 60 MHz 4 channel oscilioscopes (as new)	HP \$087A distribution amplifier (new)£500	P
generator (as new)	PLESSEY PRS2282A HF receivers	HP 5004A signature analyser £150 HP 5005A signature	6
HP 8656A 100 KHz-990 MHz signal generator£1,200	RACAL RAI772 HF receivers650	multimeter	P
HP 8640A 20 Hz-512 MHz signal generator	RACAL RA217D receiver + FSK adaptor	HP 4954A protocol analyser + HP 18135A pod	
HP 8640B 600 KHz-512 MHz signal generator	RACAL RAITL 30 MHz receivers	HP 4951B protocol analyser + HP 18179A interface	¥
HP 8620C/86242D 5.9-9 GHz sweeper	KENWOOD CS1575A SMHz dual trace oscilloscopes	HP 3770B telephone line analyser	1
	£50	MP 3761A error detector	
HP 8620C/86230B 1.8 GHz-4.2 GHz sweeper	LEADER LB552C stereoscope	HP 3754A selective level meter	-
HP 8620C sweeper mainframes (as new)	LEADER 189AR 2 channel millivoltmeter	HP 3702B/3705 IF/BB Receiver +3710A/3716A IF/BB	s
HP 8005B 0.3 Hz-20 MHz pulse generator6250	LEADER MEGURO ETC automatic distortion meters	Transmitter	-
HP 3336B 10 Hz-21 MHz synthesiser/level meter	from £75	HP 44473A matrix switch	T
HP 3320A frequency synthesiser 0.1 Hz-13 MHz		HP 44470A relay mux	ī
HP 3314A 0.001 Hz-19.99 MHz function/waveform monitor	TEST EQUIPMENT	HP 3586C 50 Hz-32.5 MHz selective level meter	T
£1,200	ANRITSU MS65A 2 GHz error detector	HP 3581A 15 Hz-50 KHz selective voltmeters as new £500	T
MP 3312A 0.1 Hz-13 MHz function generator	ANRITSU MS09C1 voiceband monitor (boxed new with	HP 3468A 5.5 digit multimeter/auto cal (LCD)	V
THURLBY TG230 2 MHz sweep function generator £150	manuals)	HP 3466A 4.5 digit autoranging multimeter	
TEKTRONIX 2901 time mark generator	AVO 215-L/2 AC/DC breakdown ionisation tester	HP 3437A 3.5 digit high speed system voltmeter	٧
MARCONITE2022 10 KHz-1000 MHz signal generator £900	AVO CT 160 valve tester	HP 1645 data error analyser	۷
	ATTO GT TOO VAIVE LESLET MINIMUM AND		
MARCONITE2018 80 KHz-520 MHz signal generator	BALL EFRATROM MRT-M rubidium frequency standard	HP 1645 data error analyser	۷
MARCONI TF2015/2171 10 MHz-520 MHz with	BALL EFRATROM MRT-M rubidium frequency standard	HP 435B/8481A/8484A/11708A 10 MHz-18 GHz (new/HP	v
MARCONI TF2015/2171 10 MHz-520 MHz with synchroniser	BALL EFRATROM MRT.H rubidium frequency standard £3,500 BIRD 8329 300W 30dB attenuator	HP 435B/8481A/8484A/11708A 10 MHz-18 GHz (new/HP case/manuals)	v v v
MARCONI TF2015/2171 10 MHz-520 MHz with synchroniser	BALL EFRATROM M.RT-H rubidium frequency standard	HP 435B/8481A/8484A/11708A 10 MHz-18 GHz (new/HP case/manuals)	~ ~ ~ ~
MARCONI TF2015/2171 10 MHz-520 MHz with synchroniser (350 FARNELL SSG520 10 MHz-520 MHz synchrossed (350 86 Bishopsgate Street	BALL EFRATROM MRT-H rubidum frequency standard	HP 4358/6481a/2484a/11708a 10 HHz-18 GHz (new/HP cste/manual) HP 435a/6482aH 100 KHz-12 GHz RF power meter	
MARCONI TF2015/2171 10 MHz-520 MHz with synchroniser (350 FARNELL SSG520 10 MHz-520 MHz synchrossed (350 86 Bishopsgate Street	BALL EFRATROM MRT-H rubidum frequency standard	HP 435B/8481A/8484A/11708A 10 MHz-18 GHz (new/HP case/manuals)	

PER 100 UNITS

DEVELOPMENT

The PC Starter Pack provides the quickest method to get your application up and running

each

Operating System

- Real Time Multi Tasking
- Unlimited copy licence

Languages

- C', Modula-2 and Assembler
- Full libraries & device drivers provided

Expansion

• Easy to expand to a wide range of peripheral and I/O cards

Support

Free unlimited telephone, FAX, email and Internet support

Custom Design

CMS will design and manufacture to customers requirements

MENT
HP 400E 10 Hz-10 MHz AC volumeter
HP 339A distortion measurement set
MP 333A distortion analyser
KEMO DPI 1 Hz-100 KHz phase meter (new)
LINIPLEX FI-2 HF receiver
LINIPLEX F1-2 HF receiver
MARCONI 2945 communication service monitor +
ETACS/battery/GP-IB 64,800
MARCONI 2955B RF communications test set
MARCONITF2871 data communications monitor500 MARCONITF2810 true RMS voltmeter600 MARCONITF2306 programmable intereface unit6200 MARCONITF2305 mod meter 50 KHz-2.3 GHz61,000
MARCONITE2610 true RMS voltmeter
MARCONI TF2306 programmable interface unit
MARCONI TF 1305 mod meter 50 KHz-L3 GHz
NARDA 3044B-20 3.7 GHz-8.3 GHz 20db directional coupler
(new)
NARDA 3004-10 4-10 GHz 10db directional coupler £100
RACAL DANA 9919 10 Hz-1100 MHz frequency counter
£195
RACAL DANA 9918 10 Hz-560 MHz 9 divit counter £100
RACAL DANA 9916 10 Hz-520 MHz frequency counter £100
RACAL DANA 9914 10 Hz-200 MHz frequency counter
RACAL DANA 9301A true RMS RF millivotuneter
RACAL DANA 9302A true RMS RF millivoltmeter 10 KHz
to 1.5 GHz
RACAL DANA 9300B RM5 voltmeter (new)
to 1.5 GHz
RACAL 9343M LCR databridge6395
RACAL DANA 9300 RMS voltmeter (met)
meter
RACAL DANA (992 10 Hz-1300 MHz nanosecond counter
RACAL DANA 1991 10 Hz-160 MHz universal counter timer
9 digit(250
9 digit (250 RACAL DANA 6000 microprocessing digital volumeter .(250
RF MICROSYSTEMS INC AN/TRC-176 VHF/UHF K&L
filters £400
ROHDES & SCHWARTZ, GA082 FSK analyser
ROHDES & SCHWARTZ URE 10 Hz-20 MHz RMS
Voltmeter
ROHDES & SCHWARTZ URV3S RF voltmeter
SAYROSA AMM 1.5 MHz-2 GHz automatic modulation
meters
SCHLUMBERGER 7702 digital transmission analyser (new)
TEKTRONIX A6902A isolator £500
TEKTRONIX A6902A isolator
TEKTRONIX 1141/SPG11/TSG11 pal video generator £750
TEKTRONIX \$21A vector scopes
TEKTRONIX 145 pal gen. lock test signal generator£750
WAVETEK 1018A log lin RF beak power meter DC-26 GHz
C600 WAYNE KERR AMM2SS auto modulation meter
WALLISTING 100 Ky insulation tester / 1000
WALLIST100 100 Kv insulation tester
W & G DLM3 data line test set (POA
W & G SPM19 S0 Hz-25 MHz level measuring set6500
W & G SPM19 50 Hz-25 MHz level measuring set6500 W & G SPM31 200 Hz-620 KHz level meter6750
: (+44) 113 2426881
C
nb-radio.co.uk e-mail info@mb-radio.co.uk

Maurice Wilkes: pioneer of modern computing

Wilkes addressing IBM staff at Wembley Conference Centre in 1977.

Wilkes and Wireless World

In his autobiography 'Memoirs of a Computer Pioneer', Wilkes pays tribute to the part that *Wireless World* played in the development of his interest in electronics.

Some time in the mid 1920s, he says he, "began to take regularly the *Wireless World*." This excellent journal published constructional articles containing complete designs for receivers... and tutorial articles on the more theoretical aspects of the subject. It was through reading *Wireless World* that I laid the foundation of my knowledge of electronics". Chris Hipwell has been talking to Maurice Wilkes, the innovator who, in 1949, built the first computer designed to store programs.

ifty years ago, on 6 May 1949, a machine read a paper tape containing a program for computing a table of squares and printed the results. Edsac, the first computer designed to embody the concept of the stored program, was up and running. It would remain operational, providing a service for scientists and researchers at Cambridge University, until 1958.

Those bare facts hardly do justice to the achievement of Maurice Wilkes who had, with a team rarely numbering more than half a dozen people, transformed a concept proposed by American computing pioneers into a working system. It had taken two-and-ahalf years but even so Wilkes' implementation of the stored program concept was completed ahead of its American counterpart, Edvac.

Remarkably Wilkes, now aged 85, still works as a consultant at the AT&T Research Laboratory in Cambridge. This institution, formerly funded by Olivetti and Oracle, is a think-tank that provides a link between academia and the commercial IT world.

In Wilkes' case it also provides a link with the present generation of researchers at the University Computing Laboratory, which he was director of for 34 years from 1946 to 1980.

It was at his office in the AT&T laboratory that we talked about his early days and the unusual conditions prevailing in Britain when he set out to design Edsac in 1946. Despite the austerity and power-cuts of the post-war years, for Wilkes it was the best of times. Although Britain was on its knees in economic terms, "everybody was very co-operative, everybody was keen to reestablish peacetime values and this released an enormous amount of energy," remembers Wilkes. In consequence, he asserts, "there couldn't have been a more favourable time to establish an ambitious project of that sort."

Wilkes was then 33 and the whole of his life seemed to have been a preparation for the task that lay before him. As a schoolboy he had tinkered with electric batteries, lamps and bells.

After the advent of broadcasting in 1922 he became a keen constructor of crystal sets and receivers, reading *Wireless World* – the main source of his knowledge of electronics. "As a boy," he said, "I used to lap up *Wireless World*." During his sixth-form years, Wilkes became a radio ham, building his own rig.

Wilkes went on to study mathematics at Cambridge, achieving first class honours in his finals in 1934. He stayed on to study for a PhD, joining the radio group at the Cavendish Laboratory, where he undertook research into the passage of long wave radio in the ionosphere.

During this period Wilkes attended a lecture by Professor Hartree of Manchester University on their differential analyser. He used a machine modelled on the analyser for his own research at Cambridge.

This work gave Wilkes an insight into mechanical calculation and the demand for such facilities among university researchers. He was appointed to a

Edsac, circa 1949 -

into memory.

the first computer to run a program read

junior position in the new Mathematical Laboratory established in 1937.

The War years

For many, the war years marked a hiatus in their careers. For Wilkes, although physically removed from Cambridge, the war years marked a further stage in his progress as an electronics engineer capable of applying his knowledge to a variety of problems.

Early on he was introduced to the new technology of radar, briefly operating on radar sites, but later undertaking research into the development of radar for a range of wartime applications.

Wilkes returned to Cambridge as Acting Director of the Mathematical Laboratory in 1945. He soon came into contact with Professor Hartree who had recently visited the US. While there, he had seen the Eniac computer which was under development at the Moore School of the University of Pennsylvania.

In the following year, Wilkes read the 'Draft report on the Edvac' written by John von Neumann on behalf of the group at the Moore School. It laid out the principles on which the digital computer was to be based, prompting Wilkes to comment that, "I recognised this at once to be the real thing, and from that time on never had any doubt as to the way computer development would go."

This certainty was reinforced later in 1946 when Wilkes visited the US to attend a course on electronic computers at the Moore School. There he saw Eniac – a monster containing $18\,000$ vacuum tubes, $70\,000$ resistors, $10\,000$ capacitors and 6000 switches. It occupied three sides of a 40 feet by 20 feet room.

However, Eniac lacked a memory. Programs were set up manually by inserting plugs in sockets and via three function tables, large vertical panels bearing some hundreds of switches on which numbers could be set.

Wilkes was impressed by the scale of Eniac, but he realised that it was already yesterday's machine. The future lay with the stored-program principle.

Even before Wilkes left the US, he began to sketch out the design of the machine that finally became Edsac. He acknowledged that this would follow the ideas of Eckert and Mauchly as set out in von Neumann's Edvac report. Even so, much had still to be decided – not least the actual design of the allimportant memory.

However, Wilkes was well prepared for the task that lay before him and could claim in his memoirs that, "with my experience of radio and radar behind me, I was entirely confident in

the design of electronic circuits and knew exactly what it was possible – and not possible – to do with them."

Developing the memory

The only part of the proposed computer that called for significant technological innovation was the memory. Although not specified in the Edvac report, the type of memory envisaged by Eckert and Mauchly was a delay line that depended on the transmission of ultrasonic pulses through a column of mercury.

Fortunately for Wilkes he met Tommy Gold in 1946. Gold was a research student at the Cavendish Laboratory who had worked on the design of mercury tanks during the war. The devices looked like 'tubes' but the word 'tank' was used to avoid confusion with vacuum tubes. With the help of Gold's experience, Wilkes soon designed and built his first mercury tank.

Writing for a technical journal in 1948, Wilkes described the delay system as follows:

'Ultrasonic waves in liquids travel at speeds which are slow on the time scale on which electronic events can be made to occur, so it is possible to delay a train of pulses for a comparatively long time by converting them into pulses of ultrasonic sound and passing them down a column of liquid (mercury) a few feet long. The conversion is done by means of an X-cut quartz crystal and an exactly similar crystal is used at the far end of the tube to convert the ultrasonic pulses back into electrical pulses.'

When the pulses appear at the output terminals, they are amplified and routed back to the input. They are thus kept in circulation for a definite length of time and can be taken out when required.

Principles and prototypes are all very well, but converting them into an engineered product draws on different skills. When asked which aspect of the Edsac project had given him most satisfaction Wilkes replied, "I certainly enjoyed designing the memory batteries, enjoyed it very much. It was a bit of mechanical design, properly stressed and designed so that it could be made."

Electronic memory – 1.6m long A single mercury tank 1.5 metres long would hold only 16 words of 32 bits. It was decided that in order to give a reasonable amount of memory, 32 tanks would be required. These all had to be the same length to within a very close tolerance. Moreover the crystals at the opposite ends of each tube had to be aligned very accurately, within a few minutes of arc.

Rather than building each tank as an independent unit, Wilkes said, 'I

Typical logic gate circuit. A pulse train was fed to input 1 and a square wave to input 2. According to the description, "Pulses appear at the output for as long as the square wave lasts. They cease to pass as soon as the grid of the valve at input 2 returns to zero."

Maurice Wilkes in his office at AT&T's research laboratories, March 1999.

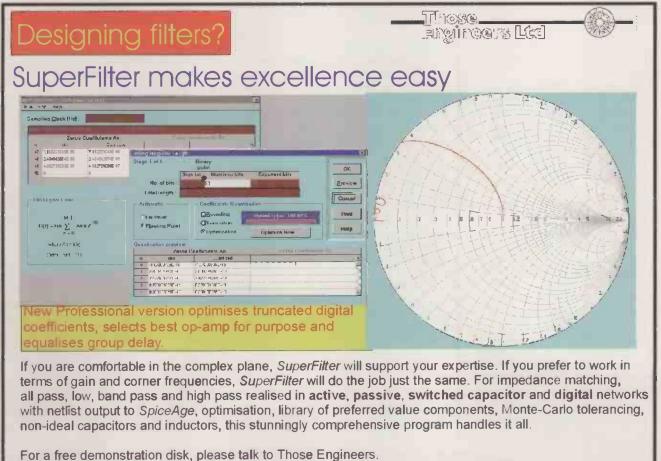
thought it would be much nicer to build these tanks in batteries of 16 and to have each battery made with sufficient precision so that when it was bolted up solid everything was in line and the crystals were the correct distance apart'.

Short mercury tanks, an inch or so long and each holding only one short or long number, were used for the registers in the arithmetic unit, the accumulator and the multiply register. Short tanks were also used for the registers for holding instructions that had been called.

In all, Edsac contained around 3000 vacuum tubes. A typical gate used for switching comprised two cathode followers that applied inputs to the cathodes of two diodes the anodes of which were connected together. There was a pull-up resistor, marked *R* on the circuit diagram, and the output was fed into an amplifier.

Wilkes says, "I was very proud of my discovery. After quite a lot of experimental work, I found that the ideal sort of amplifier for that purpose was a cathode-coupled type." Dual diodes, namely EB34s, were used for the rectifiers and EF54s (RL7s) connected as triodes were used for the cathode followers.

The machine was AC-coupled. To keep the level baseline in a fixed position, DC restoring diodes were used; "We had to put these things everywhere and make sure they worked," commented Wilkes. Consequently, DC restoring diodes made up an appreciable proportion of the total number of valves in the machine. The circuit assemblies were housed in purpose-built racks with long chassis to make access easier, rather than the more familiar 'Post office' racks.


"I never liked 19in racks"

Wilkes says, "I never liked 19-inch racks. Why something that appeals to people who design telephone exchanges should have exercised such a grip on the electronics industry, I have always failed to understand."

With the self-confidence of a born engineer, Wilkes has never been afraid to question conventional wisdom if he could see a better way to achieve his objectives. Following Edsac, he went on to demonstrate the concept of microprogramming in Edsac 2.

Wilkes also become involved in the time-sharing developments of the early 1960s, and to conceive the idea of the Cambridge ring – an early local area network – in the late seventies.

Even so, it will be for the work which culminated in the running of that program one day in May fifty years ago that Maurice Wilkes will be remembered.

Those Engineers Ltd, 31 Birkbeck Road, London NW7 4BP. Tel +44 181 906 0155 FAX +44 181 906 0969 e-mail Those_Engineers@compuserve.com url http://www.spiceage.com

CIRCLE NO.125 ON REPLY CARD

CIRCLE NO.128 ON REPLY CARD

CIRCLE NO.129 ON REPLY CARD

Power amplifier circuit boards £42 per pair

Professionally designed and manufactured printed circuit boards for Giovanni Stochino's no compromise 100W power amp are available to buy.

These high-quality fibre-glass reinforced circuit boards are designed for Giovanni Stochino's fast, low-distortion 100W power amplifier described in the August 1998 issue. Layout of the doublesided, silk screened and solder masked boards has been verified and approved by Giovanni.

This offer is for the pcbs only. The layout does not accommodate the power supply scheme shown in the article. Note that a copy of the article and a few designers' notes are included with each purchase, but you will need some knowledge of electronics and thermal management in order to successfully implement this design.

You can receive a copy of the technical notes that accompany the pcbs and a copy of Giovanni's original article for £3.50, refundable on purchase of one or more pcbs. Send a postal order or cheque payable to Reed Business Information to 'Board notes,' Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Don't forget to include your address.

fully inclusive or £25 each

Giovanni's high-performance power amplifier mounted on its heat sink.

> 100W 20Hz (-0.1dB), 1.3MHz (-3dB) 22MHz 42uV rms +32mV

Please send me pcbs @ £25 each or £42 a	pair.
I enclose my cheque for £	
Please debit my credit card for £	
Card type MasterCard/Visa.	
Card number Ex	oiry dat

Signature

Name

Address

584

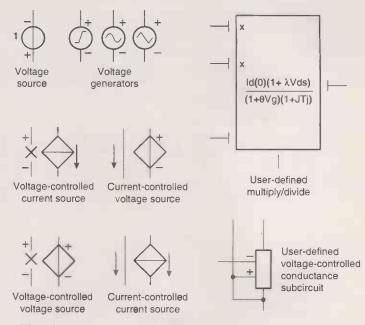
Tel Cheques made payable to Reed Business Information. Post to: PCB Offer, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Please alow 28 days for delivery.

Specifica Power into 8Ω loo Small-signal bandw	d	e output filter
Unity gain frequen Output noise (BW= Measured output o	80kHz, input t	output filter terminated with 50 Ω
Distortion perform	nance	
V _{out} , pk-pk	1kHz	20kHz
5	0.0030%	0.0043%
10	0.0028%	0.0047%
20	0.0023%	0.0061%
40	0.0028%	0.0110%
80	0.0026%	0.0170%
Slew rate		
Positive slew-rate	+320V/µs	
Negative slew-rate	-300V/µs	

Hotter Spice II

In this second article presenting a breakthrough in power mosfet modelling for audio design, Ian Hegglun adds compensation for mosfet electrothermal effects and answers the question of whether subthreshold conduction is needed for simulating crossover distortion.

he macromodels presented in the May issue do not show the effect of junction heating with time. This occurs when a curve tracer generates manufacturer data sheet curves.


Trying to fit models to published power mosfet curves will cause significant errors in the region where V_{DS} and I_D are both high and the sweep time is not short enough to limit junction temperature rise to only a few degrees.

The only way to simulate mosfets subjected to large cyclical junction temperature changes is to use an electrothermal model. The effect of junction temperature can be modelled to a first approximation using,

$$\beta = \frac{\beta T_0}{1 + J\beta (T_J - T_0)}$$
$$V_{\text{TH}} = V_{TO} + J_{VTH} (T_J - T_0)$$

where J_{β} is the temperature coefficient for β , typically $-0.5mV'^{\circ}C$ for vertical mosfets,¹ and J_{VTH} is the temperature coefficient for the threshold voltage, typically $-5.5mV'^{\circ}C$.

Spice fet models that include electrothermal feedback are rare. The Parker Skellern level 4 MESFET model is one. This is now included as standard in some of the latest versions of Spice. It can be adapted to behave like a mosfet by

Model symbols used in the Windows-based circuit simulation tool, Tina.

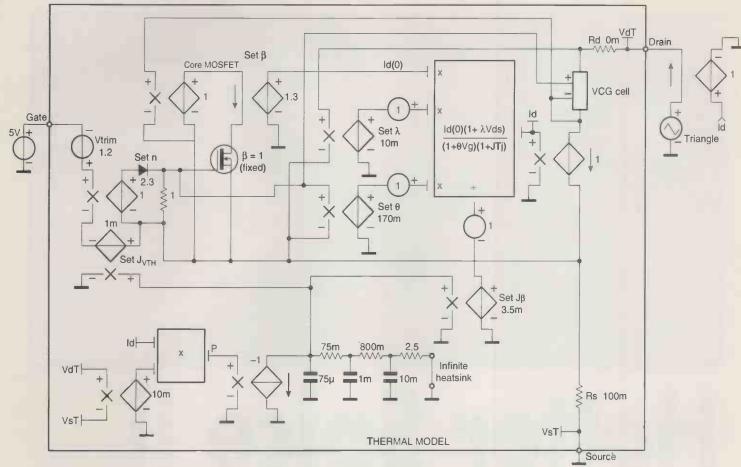
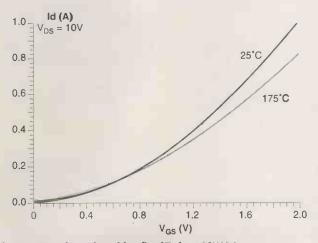
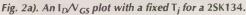


Fig. 1. An electrothermal model including subthreshold conduction, velocity saturation and smooth pinch-off. A two-quadrant multiplier/divider subcircuit is used to modify the current from the core mosfet and generates the overall drain conductance.

disabling the gate diodes, by setting IS=1e-30 and N=10. This also models subthreshold conduction and is reported to run fast.²

Figure 1 shows an electrothermal model, which includes subthreshold conduction, velocity saturation and smooth, pinch-off. A two-quadrant multiplier/divider subcircuit, Fig. C in the 'Maths' panel, generates velocity saturation and the overall drain conductance.


A four-quadrant multiplier, Fig. D, is used to calculate the instantaneous power dissipated by multiplying $V_{DS} \times I_D$, which allows for power dissipation in drain and source termination resistances.


The $V_{\text{DS}} \times I_{\text{D}}$ product is passed to a thermal model using a three-stage *RC* low-pass network that models the thermal impedance of the die and mounting. The resulting junction

temperature appears at the input of the *RC* network, which then changes the threshold voltage and β parameter. If a *V*_{CG} cell is included in the drain path the parameter λ of the core mosfet must be set to zero as previously mentioned.

To set up the model, first fix the junction temperature to 25°C by inserting a fixed voltage source in place of the output of the *RC* thermal network. Fit values for β , θ , V_{TH} , λ and β_0 , then raise the temperature setting to that of the data sheet and vary the temperature coefficient for β and V_{TH} until correct curve is achieved, as Fig. 2a). Finally remove the fixed source and reconnect the thermal model.

An oscilloscope in X-Y mode allows thermal looping of the I_D/V_{DS} curve to be viewed Fig. 2b). Even at 2.5µs (100kHz) the junction temperature rises by 20°C. Data

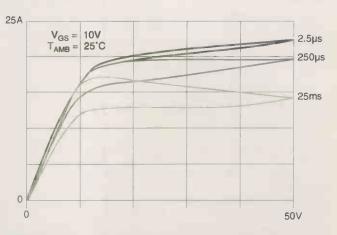


Fig. 2b). Thermal looping oscilloscope plot for different sweep rates when $V_{GS} = 10V$ and $T_{amb} = 25$ °C.

sheet curves do not usually show the return trace for 20µs pulses. It is significantly different from the forward trace at high currents.

Gain variations due to junction heating invariably affects large signal linearity in a power amplifier. As the frequency falls the amount of gain variation during each cycle will increase causing distortion to increase as frequency falls.

Note the peak transconductance depends on pulse duration for currents above 2A for V_{DS} of 30V. Hence, large signal linearity in a power amplifier will depend on frequency, with deviation increasing as frequency falls.

In most cases this type of nonlinearity is swamped by crossover nonlinearity and the increasing amount of negative feedback as frequency falls will offset the thermal distortion increase. However, the longer term thermallyinduced changes in the bias point for class AB circuits usually lead to a detectable increase in distortion, particularly after significant change in the output power level.

Lateral audio mosfets such as the 2SK134 are almost unaffected by thermally induced bias point changes because the zero temperature coefficient point lies in the region for optimum bias. But not all lateral mosfets have this property – the 2SK400/2SJ114 pair being one exception.

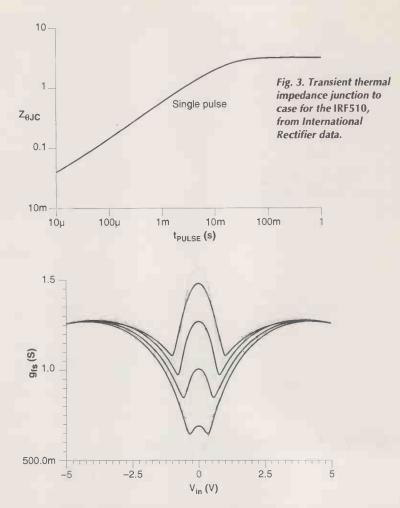
The thermal model

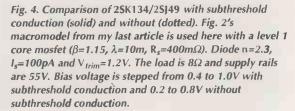
A three stage *RC* low-pass model is used for the *IRF510* for accuracy down to 10μ s pulses based on the data sheet. The roll-off slope of thermal impedance for the *IRF510* falls by one decade every two decades of pulse duration reduction, or half the rate of a simple *RC* integrator.

A three-stage network has its time constants staggered over six decades of time. The slowest *RC* time constant is assigned the value of 200s, one decade higher than the devices time constant of 20ms as seen on the log $R\theta_{\rm JC}/\log(t_{\rm PULSE})$ graph, Fig. 3. As a result, the shortest pulse is placed at 20µs, where the value of $R\theta_{\rm JC}$ is read as 75m Ω . This value is used for the first resistor closest to the junction.

The next resistor is the value of $R\theta_{JC}$ at 2ms, two decades to the right, read as 750m Ω . The final resistor value is $R\theta_{JC}$ at dc less the sum of the other resistors, i.e. 3.5–0.825=2.675 Ω . The first capacitor is assigned the same numeric value as the first resistor, ie 75mF, and the second 0.75F. The last capacitor is the impedance extrapolated out to the slowest time – 200ms — giving 10°C/W or 10F.

An infinite heat sink is simulated using shorted output at the case. This keeps the thermal time constant to a minimum to reduce the simulation time to approach the final temperature; around 50ms to reach 90% of the final value in this case.


All diode capacitances and time delays should be set to zero to avoid instability. Wherever possible, the internal circuitry has been level shifted to ground reference most of the circuit in an attempt to minimise convergence problems.


In some cases it was necessary to enable the 'calculate operating point' option when performing a transient simulation so the simulation can get started. When simulating very low frequencies with the electrothermal model, the first two capacitors in the thermal model can be removed or set to zero.

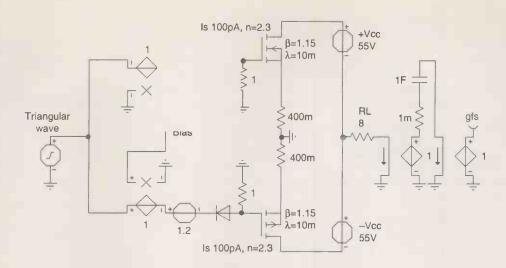
Simulating crossover distortion

Distortion simulations are run in transient mode with a sine source with 500 time steps per cycle and applying Fourier analysis to one complete cycle.³

For most audio-frequency simulations, mosfet gate termination resistance, lead inductances and junction capac-

itances can be set to zero or left out to speed.up simulations. Also, open loop simulations for the output stage only are faster and more likely to reach convergence than closed loop.

In closed loop, distortion of the entire circuit may be hard to measure due to limited numeric accuracy. With the Tina⁴ circuit simulator, Fourier series analysis resolves to 0.0002% thd – sufficient for most closed-loop simulations.


Figure 4 shows results from a class AB simulation of a simple output stage using a matched 2SJ49/2SK134 pair tested open loop with an 8 Ω load and 55V supply rails, Fig. 5. When subthreshold conduction is included, using the macromodel in Fig. 2 of my previous article, gain curves for various bias settings turn out to be surprisingly similar to the reference level 1 models once the 200mV difference in the bias settings is removed. Although I initially tried the level 3 mode, I could not get it to run.

With subthreshold conduction the curves are smoother. Thd results are similar – around 1% for 50Vpk swing using a similar bias.

In reference 6 of my previous article, the bias voltages were fixed at the bench test values. This suggests that the

PC ENGINEERING

Fig. 5. Circuit used to generate the open-loop gain curves of Fig. 5 using Tina. Closed-loop gain obtained by connecting the load to the source and moving the earth to the supply centre tap. The bias generator can be stepped to generate a family of curves. Note: Source resistors are part of the macromodel for generating velocity saturation.

simulated thd values are significantly different from the measured thd because of significantly different biasing points due to the choice of the V_{TH} parameter rather than the choice of model.

This seems to answer my question of whether subthreshold conduction is needed for simulating crossover distortion. In most cases it seems the simulated thd can be predicted reasonably well with a simple level 1 model if quiescent current is the reference parameter. For cases where error correction is used to reduce distortion, the sensitivity to model error is increased. One way to discover whether the extra parameters are needed or not is to run a simulation with and without these effects.

If, when adding or dropping an effect, the results change significantly, then the parameter changed should be included in the model. Otherwise it can be left out to improve the simulation time.

Maths functions for Spice

The Schockley equation can be used to make log and anti-log subcircuits. By setting a user defined diode with zero series resistance, $I_s=1A$ and the diodes emission coefficient parameter n to 27.88 – ie, $1/V_T$ at $27^{\circ}C$ – gives $I_D = exp(V_D) - 1$. Converting I_D to voltage and adding 1V gives $V_{out} = exp(V_D)$, Fig. A.

The natural logarithm can be generated by applying a voltage controlled current and measuring the diode voltage giving V_{out} =ln(V_D +1). Subtracting 1V from the input gives V_{out} =ln(V_D), Fig. B. A multiplier can be constructed by adding logs then taking the antilog. Negative inputs can be handled by offsetting an input by a positive amount and the additional expansion terms are removed by subtraction. Figure C shows a combination two quadrant multiplier and divider.

Input 1 may vary in the range of -99.9V to several kilovolts positive while inputs 2 and 3 must be greater than zero. Output voltage is given by $V_{out} = V_1 \times V_2/V_3$.

A four-quadrant multiplier can be

constructed as in **Fig. D** while **Fig. E**, also a four-quadrant multiplier, uses mosfets. In Fig. E the output is valid when $|V_1|+|V_2| < V_{offset}$.

Simulators may only allow V_{GS} to go to 30V but this restriction can be overcome by scaling the input to allow a much higher input level and then scaling the output to compensate. The mosfet drain supply also needs to be greater than the highest gate voltage for square law operation.

Some versions of Spice 2 allow the voltage-controlled voltage source, or

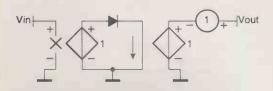


Fig. A. Implementing the exponential function using an ideal diode.

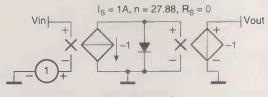


Fig. B. Implementing natural logarithms.

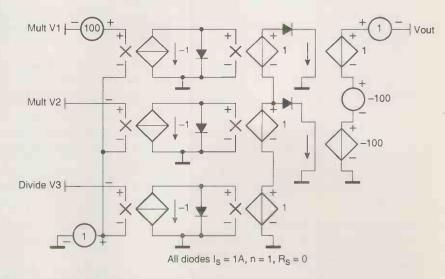


Fig. C. Implementing a two quadrant multiplier/divider with diodes.

Getting started

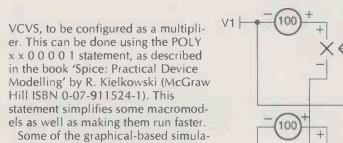
Anyone who has used a circuit simulator before should not have too much difficulty translating these macromodels to suit their version.

Those beginning from scratch are best advised to choose a simulator with schematic capture; TINA and Electronics Workbench are two already mentioned.

There are several others available free as demos or student versions on the net, although most are too crippled to be used for these macromodels. A number of text based versions are not crippled but require more learning to get going.

In Electronics Workbench, subcircuits are called custom parts and can be placed into a circuit more than once, but in TINA there is no facility for subcircuits. Instead the copy and paste clipboard must be used to duplicate macromodels.

When defining circuit blocks in TINA it is best to avoid using the interconnect pins because the labels get copied and must be changed one by one, leading to possible errors. Instead run wires for all connections.


Test each subcircuit first and save it before copying. If you want to simulate a complex amplifier circuit, do it in stages by getting the output stage running first then add the other circuitry.

Anyone using Spice will sooner or later discover nonconvergence problems. Tina's help file under 'Set Parameters' in the 'Analysis' section may help. More information can be found from references 1 and 5. Simulators often require the same diagnostic skills as for real circuits just to get them to run properly. Once you get to know their limitations and shortcomings, you you should find it possible to live with them.

Ian's first article on this topic was presented in the May issue. As the two articles are closely linked, this one should have been presented in the June issue. Sorry for the gap. Ed.

References

- C. E. Hymowitz, 'Step-by-step procedures help you solve SPICE convergence problems', *EDN*, 3 March 1994. http://www.ednmag.com
- 2. Anthony E. Parker and David J. Skellern, 'A Realistic Large-Signal MESFET Model for SPICE', *IEEE Trans MTT*, Vol 45, No. 9, Sept 97, pp1563-157. http://www.mpce.mq.edu.au/elec/cnerf/publications/index.ht ml (file MTT97.PDF).
- Owen Bishop, 'Distortion by design', *Electronics World*, Jan 96, p79-82.
- C. Ouseby, 'Design Lab Bytes', *Electronics World*, September 1996, p663-665.
 - http://www.eece.napier.ac.uk/~tina/
- T. L. Quaries, 'Analysis of Performance and Convergence Issues for Circuit Simulation', University of California, Berkeley, ERL memo, M98/42.

tors such as *Electronics Workbench* include a multiplier, but note that the multiplier in *Workbench V4* cannot be used in negative feedback arrangement. Workbench version 5/EDA has overcome this problem.

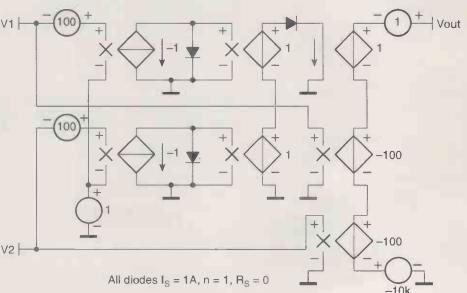


Fig. D. A four-quadrant multiplier using logs and antilogs

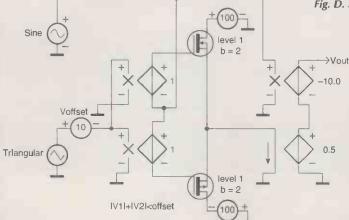


Fig. E. A four-quadrant multiplier based on the difference of two square laws.

	erators DC-150N mories, LCD A nd leads RANTED NLY £750	TEK 2445 Scopes Mhz 4 Trace/2 Timebase and Cursors REAL Anchor Special ONLY £495
Frequency Counters Racal Dana 9903/4 3 eggment 30Mhz E24 Racal Dana 9918 9 segment 560Mhz E75 Signal Generators Hewlett Packard 86408 As above but with Digital Readout ONLY E595 Farnel PSG520 10Mhz-520Mhz AM-FM Sinad ONLY E295 Rohde and Schwarz APN62 1bz to 260KHz with LCD display E995 Farnel DSG2 Synthesised 0.1mHz to 110Khz E195 Navetek 155 Programmable VCG 0.01hz to 1Mhz sine, square, triangle E195 Schlumberger FSD120M Remote Synthesiser to 120Mhz in 0.01hz steps Vas E175 Reduced, Now ONLY E125 Narconi TF211 Synthesiser to 120Mhz In 0.01hz steps Was E175 Reduced, Now ONLY E125 D 520Mhz NOW ONLY E95 BDTF2015 and TF2171 ONLY E180 DScilloscopes EK 2445A 150Mhz Four Trace/2 Time bases with Cursors, etc. Now Only E495 EK 2445A 150Mhz Four Trace/2 Time bases Now Only E1250 GOULD OS3500 with D'Ago10 D.M.M fitted, 60Mhz Dual Time base Vas E350 Reduced, Now ONLY E250 GOULD OS3500 with D'Ago10 D.M.M fitted, 60Mhz Dual Time base Vas E350 Reduced, Now ONLY E250 H 17410 100Mhz Storage Dual Time base Vas E350 Reduced, Now ONLY E250	THIS MONTH'S SPECIALSPhilips PM/3217 ScopesDC-500Mhz 2 Trace/2 TimebaseA REAL Anchor Special ONLY £275Colour Special ONLY £275Cold OS300 ScopesDC-20Mhz 2 TraceSPECIAL NOW ONLY £150OSCOUR Pattern GeneratorLast One Was £125,Now ONLY £75DECIAL ONLY £275DECIAL ONLY £275DECIAL ONLY £275DECIAL ONLY £275DECIAL ONLY £275DECIAL ONLY £275DECIAL ONLY £295DECIAL ONLY £150DECIAL ONLY £150 <t< th=""><th> Wangel & Golterman DF64 Error Rate Measuring set Was £195 Reduced, Now ONLY £150 Huntron Tracker 2000 and DS1 700 Portable component tester with manuals ONE ONLY £595 Beckman Industrial HD110 LCD Multimeters in Leather case, 1000V, 10A ONLY£50 Robinair 14950A Autobalance Refrigerant Leak Detectors in Leather case ONLY £35 Bird 43 Thru-Line Power Meters, Note: NO SLUGS ONLY £50 Robin 3111V Insulation/Continuity tester, cased ONLY £50 Marconi Cellflex HCF 1/2° CU2Y-50, 50 Ohm Helical Coax like Andrews LDF. NEW approx 16m (50°) coils ONLY £20 ELF 16mm Cine Projectors Various Model RM1 with sound ONLY £75 Model NT1 with sound ONLY £75 Model NT1 with sound ONLY £75 Model NT1 with Sound ONLY £75 Model RM1 with sound ONLY £75 Model RM1 with sound ONLY £20 ELF 1540 Oscilloscope 20Mhz Twin trace incl probes ONLY £29 DTA40 Oscilloscope 40Mhz Twin Trace incl probes ONLY £29 DTA40 Oscilloscope 40Mhz Digital Storage twin channel Cursors + readouts Incl. Probes. ONLY £399 AMM255 Automatic Mod Meter 1.5Mhz to 2Ghz, LCD IEE488 ONLY £495 SCG50 Synth Clock Gen. To 50Mhz, LED display ONLY £125 </th></t<>	 Wangel & Golterman DF64 Error Rate Measuring set Was £195 Reduced, Now ONLY £150 Huntron Tracker 2000 and DS1 700 Portable component tester with manuals ONE ONLY £595 Beckman Industrial HD110 LCD Multimeters in Leather case, 1000V, 10A ONLY£50 Robinair 14950A Autobalance Refrigerant Leak Detectors in Leather case ONLY £35 Bird 43 Thru-Line Power Meters, Note: NO SLUGS ONLY £50 Robin 3111V Insulation/Continuity tester, cased ONLY £50 Marconi Cellflex HCF 1/2° CU2Y-50, 50 Ohm Helical Coax like Andrews LDF. NEW approx 16m (50°) coils ONLY £20 ELF 16mm Cine Projectors Various Model RM1 with sound ONLY £75 Model NT1 with sound ONLY £75 Model NT1 with sound ONLY £75 Model NT1 with Sound ONLY £75 Model RM1 with sound ONLY £75 Model RM1 with sound ONLY £20 ELF 1540 Oscilloscope 20Mhz Twin trace incl probes ONLY £29 DTA40 Oscilloscope 40Mhz Twin Trace incl probes ONLY £29 DTA40 Oscilloscope 40Mhz Digital Storage twin channel Cursors + readouts Incl. Probes. ONLY £399 AMM255 Automatic Mod Meter 1.5Mhz to 2Ghz, LCD IEE488 ONLY £495 SCG50 Synth Clock Gen. To 50Mhz, LED display ONLY £125
Timebase Now Only £295 TEK 465M scope as 465B but built only for Military. Only £350 TEK 475 200Mhz Dual Trace/Timebase Now Only £395 The Cattle	@ 10A £60 ANCHOR SUPPLIES LTD All prices are EX VAT and Carriage MAIL ORDER A PLEASURE Market Depot, Nottingham NG 115) 986 4902 Fax: (0115) 98 Also at Peasehill Road, Ripley, Derbys	

Visit our Web Site: www.anchor-supplies.ltd.uk email: sales@anchor-supplies.ltd.uk

Early applied

Bryan Hart illustrates the importance of the 'Early' effect by describing its influence on four common circuit configurations – common base, common emitter, current mirror and long-tailed pair.

ast month I looked at the theory behind the 'Early' voltage, and explained its importance in the design of highgain, small-signal amplifiers working at low frequencies. This article looks at the effect of the Early voltage on real discrete transistor configurations including the current mirror and long-tailed pair.

In the numerical examples that follow, it is assumed that, β =100, so βV_T =2.5 V, V_{BE} =0.7V and V_A =100V.

The common-emitter amplifier

Figure 1 shows a common-emitter amplifier stage with necessary DC bias components omitted. They set the quiescent output voltage at $V_O = V_{CC} - V_R$, but play no role in small-signal calculations based on the equivalent circuit of Fig. 1b). The input signal is v_s and output signal v_o . By the voltage divider principle,

$$G = \frac{v_o}{v_s} = -\frac{r_\pi}{r_x + r_\pi} \times \frac{\mu R_c}{R_c + r_o} \tag{1}$$

For

Since $r_{\pi}=\beta V_T/I_{CQ}$, you can ignore r_x in comparison with r_{π} if you operate with,

$$I_{CQ} \le \frac{\beta V_T}{r_s}$$

design purposes this can be interpreted as,

$$l_{CQ} \le \frac{\beta V_T}{10r_x}$$

Provided $r_x \le 50\Omega$, this means $I_{CQ} \le 2.5$ mA – a condition I will assume from now on.

The maximum magnitude, $|G_m|$, of G is achieved with $R_C \gg r_0$: then, $|G_m| = \mu \approx 4000$. This value is only approached with an active load, one example of which is the output circuit of a current-mirror – dealt with later – using p-n-p transistors.

However, employing an active load necessarily involves the use, also, of a DC feedback network connected from a second or later stage to the input circuit of the stage in question, in order to guarantee a value for V_0 in the linear amplifying region. This is the case with some operational amplifier designs.

For the present case of a resistive load, $R_C = V_R / I_{CO}$

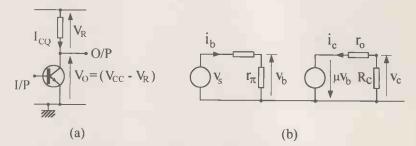
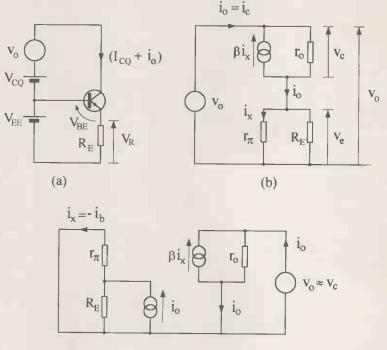
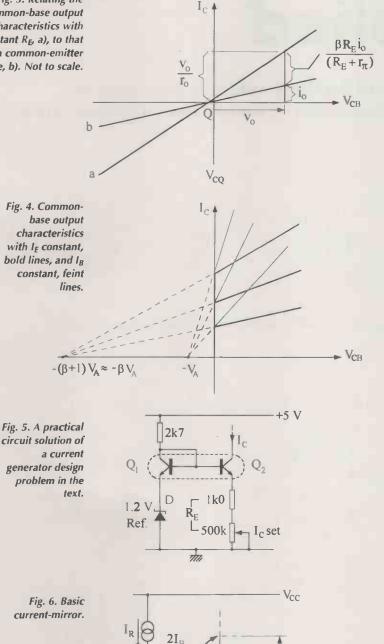



Fig. 1. Common-emitter amplifier stage, a), and its equivalent circuit, b).

(c)

Fig. 2. A common-base current generator, a), an equivalent circuit, b), and a simplified form of b) emphasising feedback action, c).

Substituting for R_c and r_o in eqn 1 then gives,


$$G = -\mu \frac{V_R}{V_A + V_R}$$

Since $V_A >> V_R$, this reduces to,

$$G \approx -\frac{V_1}{V_1}$$

Assume that V_{CC} is 10 V and suppose the bipolar-junction transistor is biassed for maximum symmetrical output voltage swing, $V_R \approx V_{CC}/2$, then G is approximately -250.

Fig. 3. Relating the common-base output characteristics with constant R_E, a), to that of a common-emitter stage, b). Not to scale.

св

Ì

 $I_0 = I_{C2}$

Vo

The common-base stage

Figure 2a) shows a common-base stage intended to operate as a current generator and Fig 2b) shows a small-signal equivalent circuit of it. The problem is to develop a design formula for the output resistance R_o for a given operating current.

By inspection, $v_c >> v_e$ because $r_o >> r_{\pi}$ and the current in r_o is much greater than that in r_{π} . Consequently, r_{π} , R_E can be omitted from the output circuit, but they cannot be omitted from the input circuit. This is because the fraction of the output current, i_o , flowing in r_{π} controls the current generator βi_b .

Figure 2c) - a simplified and redrawn version of Fig 2b) emphasises the negative feedback action that leads to a resistance transformation at the collector of the bipolar junction transistor.

But.

$$i_b = -i_x = -i_o \frac{R_E}{R_E + r_\pi}$$

: $i_o \left[1 + \beta \frac{R_E}{R_E + r_\pi} \right] = \frac{v_o}{r_o}$

 $i_o = i_c = \beta i_b + \frac{v_o}{m}$

and.

$$R_o = \frac{v_o}{i_o} = \left[1 + \beta \frac{R_E}{R_E + r_\pi} \right] r_o \tag{2}$$

Figure 3 is a graphical interpretation of eqn 2. It shows how the output characteristic for a fixed value of R_E , line b, is related to the characteristic for constant I_B , line a.

For fixed values of IE, you obtain the common-base characteristics by making R_E infinity in eqn 2. These are shown in Figure 4: now, $R_0 = (1+\beta)r_0$. The Early voltage may be regarded as increased by a factor β .

For design purposes, you should make the substitutions $R_E \approx V_R/I_{CO}$, $r_{\pi} = \beta V_T/I_{CO}$ in eqn 2. Then,

$$R_{o} = \frac{V_{A}}{I_{cQ}} \times \left[1 + \beta \frac{V_{R}}{V_{R} + \beta V_{T}}\right]$$
(3)

Problem: Design a simple temperature-insensitive current generator having an output current that can be set precisely at 1mA and an output resistance exceeding $3M\Omega$. The supply rail is 5 V.

Solution: Substituting figures in eqn 3, you will find that V_R is greater than 1.02V. Figure 5 is one possible solution to the problem. The V_{BE} s of $Q_{1,2}$ - part of a matched array - balance and track with temperature. This is because they operate at approximately the same current, so V_R is equal to the voltage provided by the 1.2V reference source.

The potentiometer permits precise setting of I_C .

The current mirror

For the basic current mirror shown in Fig. 6, Q1 and Q2 are assumed to have identical characteristics. The relevant circuit equations are,

$$I_B = \frac{I_{C1}}{\beta_0}$$
$$I_R = I_{C1} + 2I_B$$

ANALOGUE DESIGN

From these we obtain,

$$I_o = I_R \left[\left(1 + \frac{V_{CB}}{V_A} \right) \div \left(1 + \frac{2}{\beta_0} \right) \right]$$

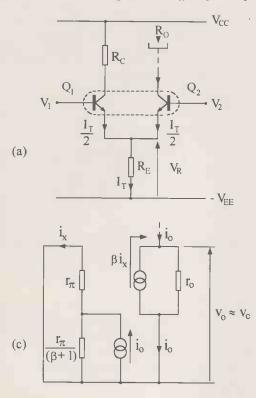
Using the binomial theorem, then multiplying out and neglecting second and higher order terms, gives:

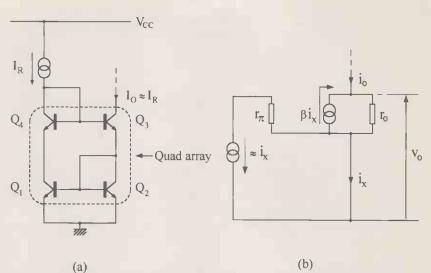
$$\lambda = \frac{I_o}{I_R} \approx 1 - \frac{2}{\beta_0} + \frac{V_{CB}}{V_A} \tag{4}$$

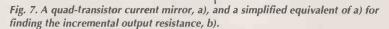
As $\beta_0 >> 1$ and $V_A >> V_{CB}$, λ is close to unity: also, $R_0 = r_o$ because $\Delta V_{CB} = \Delta V_O$ if V_{BE} is constant.

Both λ and R_o are improved using the scheme in Fig. 7a), which is the 'Wilson' current mirror with an additional transistor.¹

The V_{BE} of Q_4 balances that of Q_3 , so Q_1 and Q_2 operate at the same V_{CB} and the third term in eqn 4 is zero. The second term also effectively disappears because the current $2I_B$ is supplied from the emitter of Q_3 rather than by I_R . Consequently, λ is unity with a tolerance that depends on the V_{BE} matching of Q_1 and Q_2 and can be as small as 1%.


Figure 7b) is an equivalent circuit for the calculation of R_0 . It has been simplified using the same reasoning that was employed to derive Fig 2c) from 2b),


By Kirchhoff's current law, $i_0 = 2i_x$. Furthermore,


$$i_o = -\beta i_x + \frac{v_o}{r_o}$$
$$R_o = r_o \left(1 + \frac{\beta}{2}\right) \approx \beta \frac{V_A}{2I_{co}}$$

Experimental results attest to the added benefits of the quadtransistor current mirror. Figure 8 shows the output characteristics using a CA3045 matched bipolar-junction transistor array. The near-vertical line close to the origin was obtained with a collector-base strap on Q_3 and denotes a boundary line for saturation.

A word of caution though. If source I_R is replaced by a resis-

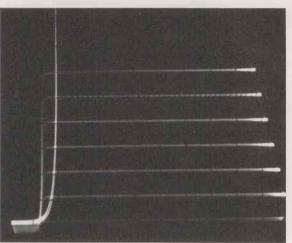


Fig. 8. Output characteristics for circuit of 7(a) using a CA3045 bipolar-junction transistor array. Horizontal scale: V_{CE}=0.5V/div. For V_{CE}>1.5V, the vertical spacing between each characteristic is 100μA.

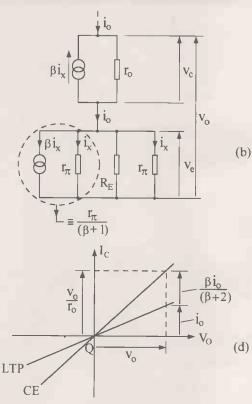
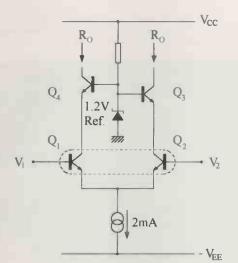


Fig. 9. Section a) shows a longtailed pair, b) shows an equivalent circuit for finding Ro. Section c) shows a simplified form of b) assuming $R_E >> r_{\pi}/(\beta+1)$ while d) shows how long-tailed pair output characteristics are derived from those of a common-emitter stage.

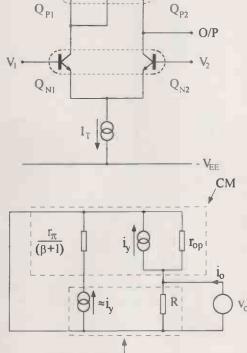
tor R_S across which the potential difference is V_R it can be shown, after some tedious algebra, that,

$$R_o \approx \beta \frac{\beta T_o V_R}{2V_R + V_T} \tag{5}$$


If $V_{CC}=5V$, R_o as calculated from eqn (5) is only some 75% of what would be obtained using an ideal current source at the input.

The long-tailed pair

To calculate R_0 for a long-tailed pair, Fig. 9a), both bases are set at AC ground on the equivalent circuit, Fig. 9b). The base currents of $Q_{1,2}$ must be equal because they both experience the same change in emitter base voltage, v_e .


A simplified form of Fig. 9b) is shown in Fig. 9c): it assumes $v_c \gg v_e$ as with the common-base stage, and that,

Vcc

Fig. 11. A longtailed pair with active load is shown in a) and an equivalent circuit for finding R_o is shown in b).

LPT outputs -

$$R_E >> \frac{r_{\pi}}{\beta + 1}$$

 $i_o = -\beta i_x + \frac{v_o}{2}$

$$i_x = \frac{i_o}{\beta + 2}$$

and,

$$R_o = r_o \left(1 + \frac{\beta}{\beta + 2} \right)$$

or, as $\beta >>1$,

$$R_o \approx 4 \frac{V_A}{I_T} \tag{6}$$

Since $R_E = V_R/I_T$ and $r_{\pi} = 2\beta V_T/I_T$, the condition,

$$R_E >> \frac{r_\pi}{\beta + 1}$$

is met if V_R is much greater than $2V_T$. This is always the case in practice.

Figure 9d) shows how the output characteristic for a fixed R_E is related to that for a fixed I_B .

Problem: Design a long-tailed pair having an I_T of around 2mA and R_o greater than 10M Ω at either output point.

Solution: It is clear from eqn 6 that if I_T is 2mA then R_o is 200k Ω , so a straightforward long-tailed pair is unsuitable. However, the required R_o can be achieved with the added cascode scheme shown in Fig. 10. For this, eqn 2 applies with $R_E \gg r_{\pi}$. So $R_O = 2V_A (1 + \beta)/I_T$, i.e., R_o is approximately 20M Ω . Tail current I_T can be supplied by a circuit such as that in Fig. 5.

In conclusion, consider a long-tailed pair with a current mirror as an active load, Fig. 11a). Referring to the equivalent circuit of Fig. 11b), the collector current change in Q_{N1} is equal in magnitude, but opposite in sign, to that i_y of Q_{N2} and this is reflected by the current mirror so that,

$$i_o = 2i_y + \frac{v_o}{v_o}$$

' of

But,

$$i_{y} = \frac{v_{o}}{R} = \frac{v_{o}}{2r_{on}}$$

$$\therefore R_{o} = \frac{v_{o}}{i} = r_{on} // r_{op}$$
(7)

In these equations, r_{on} , i.e. V_{AN}/I_C , is the collector resistance of Q_{N2} and r_{op} , which is V_{AP}/I_C , is the collector resistance of Q_{P2} . Hence,

$$R_o = 2V_{AN} \frac{V_{AP}}{I_T \times (V_{AN} + V_{AP})}$$
(8)

Reference

 Hart, BL, and Barker, RJ, 'DC matching errors in the Wilson current source,' *Electronics Letters*, Vol. 12, No 15, pp. 389-390, July 1976.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

 HP New Colour Spectrum Analysers LAST FEW ONLY

 HP141T+ 8552B IF + 8553B RF -1KHZ -110Mc/s - £500.

 HP141T+ 8552B IF + 8554B RF -100KHz -1250M - £600.

 HP141T+ 8552B IF + 8554B RF -100KHz -1250M - £600.

 HP141T+ 8552B IF + 8555A 17 MC/S1-186Hz5 - £1000.

 HP141T+ 8552B IF + 8555A 17 MC/S1-186Hz5 - £1000.

 HP345A Tracking Gen Counter 100KHz -110Mc/s - £200.

 HP8445A Tracking Generator • 5-1300Mc/s - £450.

 HP8444A OPT 059 Tracking Gen • 5-1500Mc/s - £650.

 HP350A 1A Spectrum Ang Interface - £300.

 HP837A Protocol Anz - £400.

 HP8970A Noise Figure Meter + 346B Noise Head - £3k.

 HP8975A+B+C Scalar Network Anz PI - £250 + MF 180C - Heads

 11664 Extra - £150 each.

 HP3709B Constellation ANZ £1,000.

 HP1715A AM-FM Test Source - £350.

 FARVELT VS70MKII PU 0-70V 10 amps - £150.

 MARCONI 6500 Network Scaler Anz - £500. Heads available to 40GHz many types in stock.

 Minsters are available forANZs to 60GHz.

 HP8131C Diritel Voltage Scure or .100/V/ Arep

40GHz many types in stock. Mixers are available for ANZs to 60GHz. HP6131C Digital Voltage Source + -100V% Amp. HP5316A Universal Counter A+B. Marconi TF2374 Zero Loss Probe - £200. Racal/Dana 2101 Microwave Counter - 10Hz-20GHz - with book as new £2k.

Racal/Dana 210 interformer of the second s

Bat 12-34 13-84 14-56 14-07 41-07 41-07 42-07 43-07 45-0600. F1011 E In.
Racal/Dana 9301 A-3902 RF millivolumeter - 1.5-26Hz - qty in stock £250-£400.
Racal/Dana Modulation Meter Type 9009-9008 - 8Mc/s - 1.5GHz - £150/£250 - 9009A £350.
Marconi RCL Bridge type TF2700 - £150.
Marconi RCL Bridge type TF2700 - £150.
Marconi RCL Bridge type TF2700 - £150.
Gould J3B test oscillator + manual - £150.
Gould J3B test oscillator + manual - £150.
Marconi RDS Asigna Source: 1 to 2GHz - £ED - £400.
Barr & Stroud Variable filter £53 0.1Hz-100Kc/s + high pass + low pass - £150, other makes in stock.
Racal/Dana 9300 RMS voltmeter - £250.
HP 8750A storage normalizer - £400 with lead + S.A. or N, A Marconi mod metres type TF2304 - £250 - FE305 - £1,000.
Racal/Dana counters-99904-9905-9906-9915-9916-9917-9921-500Mc/s 342K - £100 - £400 - all fitter £250 - £500.
HP 432A-435A or B-436A-power meters + powerheads to 60GHz - £150.
HP886220A-B Sweep P1 - 21-36GHz + ATT £1000-£1250.
HP886220A-B Sweep P1 - 210-12.4GHz + ATT £1000-£1250.
HP86220A-B Sweep P1 - 210-12.4GHz + ATT £1000-£1250.
HP86220A-B Sweep P1 - 210-12.4GHz + ATT £1000-1250.
HP85673456A Digital voltmeter - £400.
HP8357456A Digital voltmeter - £100.
HP350A Universal time interval counter - £18.
HP305A Universal time interval counter - £100.
HP350A Universal time interval counter - £400.
HP350A Universal time interval counter - £14.
HP350A Universal time interval counter - £140.
HP3699B Sweep P1 YIG oscillator .01 - 4GHz - £300. 6690B MF- £250.
Dummy Loads & Power att up to 2.5 kilowatts FX up to 18GHz - 100m + 1864z - 2000.

L200. Both E500. Dummy Loads & Power att up to 2.5 kilowatts FX up to 18GHz -microwave parts new and ex equipt - relays - attenuators -switches - waveguides - Vigs - SMA - APC7 plugs - adaptors etc. dty. in stock.

switches waregulates " Hgs - Solar - Ar Cr pugs tabplots etc. qty. in stock. B&K Items in stock - ask for list. Power Supplies Heavy duty + bench in stock - Farnell - HP -Weir - Thurlby - Racai etc. Ask for list. Large quantity in stock, all types to 400 amp - 100 kv. HP8405A Vector voltmeter - fate colour - £400. HP8505A vector voltmeter - £2500. HP8505A + 8502A or 8503A test sets - £1200 - £1500. HP8505A + 8502A or 8503A test sets - £1200 - £1500. HP8505A + 8502A or 8503A test sets - £1200 - £1500. Phillips 3217 50Mc/s oscilloscopes - £150-£250. Phillips 3296 350Mc/s IR remote oscilloscope - £500. R&S APN 62 LF S/G 0. Hz - 260KHz with book - £500. Wavetek-Schlumberger 4031 Radio communication test set

LIGHT AND OPTICAL EQUIPMENT

LIGHT AND OPTICAL EQUIPMENT Anritsu ML93A & Optical Lead Power Meter - £250. Anritsu ML93B & Optical Lead Power Meter - £250. Power Sensors for above MA96A - MA98A - MA913A - Battery Pack M295A. Anritsu MW97A Pulse Echo Tester. Pi available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -MH925A 1.3 - MH925A 1.55 - MH925A 1.3GI - MH914C 1.3SM -£500 + one Pl. Anritsu MW98A Time Domain Reflector. PI available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1.3SM -£500 + one Pl.

MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1 E500 + one PI. Anritsu M2100A E/O Converter. + MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source £350. Anritsu M2118A O/E Converter. + MH922A 0.8 O/E unit + MH923 A1.3 O/E unit £350. Anritsu M195B Power Meter & Charger £450. Anritsu M195B Variable Att. 1300 £100. Photo Dyne 1950 XR Continuous Att. 1300 ± 1500 £100. Photo Dyne 1950 XR Continuous Att. 1300 ± 1500 £100. Cossor-Raytheon 108L Optical Cable Fault Locator 0-1000M 0-10kM £200. TEK OF150 Fibre Optic TDR - £750. HP31512A Head 150MC/S 950.1700 £250. HP34801A Fibre Power Sensor 600-1200 £250. TEX SOLES A Head 150MC/S 950.1700 £250.

HP8158B ATT OPT 002+011 1300-1550 £300. HP81519A RX DC-400MC/S 550-950 £250. STC OFR10 Reflectometer - £250. STC OFSK15 Machine jointing + eye magnifier - £250.

STC OFSK15 Machine jointing + eye magnifiler - L250. COMMUNICATION EQUIPMENT Anritsu ME453L RX Microwave ANZ - E350. Anritsu ME453L TX Microwave ANZ - E350. Anritsu ME453L TX Microwave ANZ - E350. Anritsu ME4542 Pulse Patt Gen. E350. System MS02A Timer & Digital Printer - E500. Complete MS65A Error Detector. Anritsu ML24AS Sel Level Meter - E400. Anritsu ML24AS Level Meter - E300. W&G SPM13 Auto Measuring Set - E300. W&G SPM14 Sel Level Meter - E300. W&G SPM15 Sel Level Meter - E300. W&G SPM15 Sel Level Meter - E400. W&G SPM15 Sel Level Meter - E400. W&G SPM16 Sel Level Meter - E300. W&G SPM16 Sel Level Meter - E300. W&G SPM16 Sel Level Meter - E300. W&G SPM16 Generator - E300. W&G SPM16 Generator - E300. W&G SPM16 Generator - E300. W&G SPM14 Level Generator - E300. W&G SPM14 Level Generator - E300. W&G SPM14 Data Line Test Set - E400. W&G DLM10 Phase Jitter & Noise - E350. W&G DLM10 Phase Jitter & Noise - E350. W&G ST1 & Sent Weter - E400. W&G ST1 & Sent Weter - E400. W&G DLM10 Phase Jitter & Noise - E350. W&G DLM10 Phase Jitter & Noise - E

MISCELLANEOUS ITEMS HP 3852A Data Acquisition Control Unit + 44721A 16ch input £1.000 E1,000. HP 4261 LCR meter - E650. HP 4274 FX LCR meter - E1,500. HP 4951A Protocol ANZ - E500. HP 3488 Switch Control Unit + PI Boards - E500. HP 75000 VXI Bus Controllers + E13268-DVM-quantity. HP 83220A GSM DCS/PCS 1805-1990MC/S convertor for use HP 3522A - 52,000. HP 1630-1631-1650 Logic ANZ's in stock. HP 8754A Network ANZ + 41300M/CS + 8502A + cables - £1,500. HP 8754A Network ANZ H26 4:2600M/C/S + 8502A + Cables -
 NP 8794A NetWOR ANZ N20 N2000MC13 + 0302A + 0302A + 0302A + 02008

 PP 8250A Sweeper MF + 83540A PI 2-8.4GHZ + 83545A PI 5.9-12.4GHZ at 3 = £3,500.

 HP MICROWAVE TWT AMPLIFIER 489A 1-2GHZ-30DB - £400.

 HP PREAMPLIFIER 8447A 0.10-1.3GHZ - £400.

 HP PREAMPLIFIER 8447A 0.10-1.3GHZ - £400.

 HP PREAMPLIFIER 8447E 0.01-1.3GHZ - £400.

 HP PREAMPLIFIER 8447E 0.01-1.3GHZ - £400.

 HP STA AMPLIFIER 8447E 0.01-1.3GHZ - £400.

 MARCONI 2305 Modulation Meter-50(HZ-2.3 GHZ - £1,000.

 MARCONI 2305 Modulation Meter-50(HZ-2.3 GHZ - £1,000.

 MARCONI 833B AF Power Meter (opt Sinad filter) - £250-£350.

 MARCONI 839B 6960B Power Meters + Heads - £400-£900.

 MARCONI 830B AF DOWER Meter 1465-6057-5058-6059 - FX

 Range 4-18GHZ- £250-£400.

 RACAL 1792 COMMUNICATION RX - £500 early - £1,000 - late model with back lighting and byte test.
 £2 000

model with back lighting and byte test. RACAL 1772 COMMUNICATION RX – £400-£500. PLESSEY PR2250 A.G.+H. COMMUNICATION RX – £500-£900. TEK MODULE MAINFRAMES – TM501-502-503-504-506-

TEK PI 5010-M1 – Prog Multi Interface – £250. FG Prog 20MC/S Function Gen – £400 – S1 Prog Scanner – £250 – DM Prog DMM – £400.

TEK 7000 OSCILLOSCOPE MAINFRAMES - 7603-7623-7633-

TEK 7000 056105607E 0104 £150-£1,000. TEK 7000 PIS - TA11-7A12-7A13-7A18-7A19-7A22-7A24-7A26-7A29-7A42-7B10-7B15-7B53A-7B80-7B85-7B92A-7D15-7D20. TEK 7000 - 7S11-7S12-7S14-7M11-S1-S2-S3A-S4-S5-S6-S51-S53-S54.

RADIO COMMUNICATION TEST SETS

RADIO COMMUNICATION TEST SETS BULK PURCHASE ONLY FROM JOHNS RADIO H 9820A RF Communication Test Set - Opts 003-004-007-011 unit contains Syn Signal Gen-Distortion Meter-Mod Meter-Digital Oscilloscope etc. 1000MC/S - 61,500 each. MOTOROLA R2600A plus RLNA260A RF Test Set - 63,000 MARCONI 2955 RF Test Sets-1000MC/S - 61,200 each. MARCONI 2956 RF Test Sets-1000MC/S - 61,200 each. MARCONI 2950 RF Test Sets-1000MC/S - 61,200 each. MARCONI 2050 RF Test Sets-1000MC/S - 61,200 each. MARCONI 2050 RF Test Sets-1000MC/S - 61,200 each. MARCONI 2050 RF MARCONI 2010 A SYNTHESIZED SIGNAL GENERATORS -80KC/S-104MC/S - AM-FM all functions tested off the pile as received from Gov - in average used condition - 6550 each or in original Gov cartons as telass condition - each fitted with IEEE plus added protection front cover lid containing RF-IEEE-mains cables + N to BNC adaptor - Attenuator etc. + Instruction Book - fully checked to high standards in our own workshop - 61. MCC/S-101GHZ AM-FM - made small and light for portability being the naval version - all functions tested off the pile as received from Gov - in average used condition - each fitted with IEEE + added protection front cover lid containing RF-IEEE - mains cables. N to BNC Adaptor - Attenuator 50-505MM adaptor etc. + navinction Book - fully checked to high standards in our own workshop - 61,250 each. WE KEPT IN STOCK HP and other makes of RF Frequency dygenerator doubles the output frequency EG.50-1300MC/S to 50-2600MC/S price from E250 - E450 each.

SPECTRUM ANALYZERS

SPECTRUM ANALYZERS HP 3580A 5HZ-50KHZ - C750. HP 3580A DUI 0.2HZ-25.5KHZ - C1,500. HP 3588A 20HZ-40MC/S - C3,500. HP 3588A 10HZ-150HC/S - C7,500. HP 3588A 10HZ-15GHZ - C3,500. HP 8568B 100HZ-1.5GHZ - C4,500. HP 8590B 9KC/S-1.8GHZ - C4,500. HP 8590B 9KC/S-1.8GHZ - C4,500. HP 3581A Signal Analyzer 15HZ-50KHZ - C400. TEK491 10MC/S-12.4GHZ + 12.4-40GHZ - E500.

TEK492 50KHZ-21GHZ OPT 2 - £2,500. TEK492P 50KHZ-21GHZ OPT 1-2-3 - £3,500. TEK492AP 50KHZ-21GHZ OPT 1-2-3 - £3,600. TEK495 100KHZ-1.8GHZ - £2,000. HP 8557A 0.01MC/S-350MC/S - £500 + MF180T or 180C - £150 -182T - £500. HP 8558B 0.01-1500MC/S - £750 - MF180T or 180C - £150 -192T - £500.

182T - f500HP 8559A 0.01-21 GHZ - £1,000 - MF180T or 180C - £150 - 182T

£500

- £500. HP 8901A AM FM Modulation ANZ Meter - £800. HP 8901A AM FM Modulation ANZ Meter - £1,750. HP 8903A Audio Analyzer - £1,000. HP 8903B Audio Analyzer - £1,500. MARCONI 2370 SPECTRUM ANALYZERS - HIGH QUALITY -DIGITAL STORAGE - 30H2-110MC/S Large qty to clear as received from Gov - all sold as is from pile complete or add £100 for basic testing and adjustment - callers preferred - pi your own from over sixty units - discount on qtys of five or more. pick more

more. A EARLY MODEL GREY – horizontal alloy cooling fins – £200. B LATE MODEL GREY – vartical alloy cooling fins – £300. C LATE MODEL BROWN – as above (few only) – £500.

OSCILLOSCOPES.

USUILUSCOPER TEK 465-465B 100MC/S + 2 probes - £250-£300. TEK 456-100MC/S storage + 2 probes - £200. TEK 475-475A 200MC/S-250MC/S + 2 probes - £300-£350. TEK 2213-2213A-2215-2215A-2225-2225-2235-2236-2245-60-TEK 475-475A 200MC/S-250M/C/S + 2 probes - £300-£350. TEK 2213-2213-2215-2215A-2224-2225-2235-2236-2245-60-100MC/S - £250-£400. TEK 2445A tch 150MC/S + 2 probes - £450. TEK 2445A tch 150MC/S + 2 probes - £500. TEK 2445B 4ch 150MC/S + 2 probes - £500. TEK 2445B 4ch 150MC/S + 2 probes - £500. TEK 2465 4ch-300MC/S - £1,150. TEK 2465A 4ch-350MC/S - £1,150. TEK 2465A 4ch-350MC/S - £1,750. TEK 2465B 4ch-400MC/S - £2 probes - £1,000. TEK 2465B 4ch-400MC/S + 2 probes - £1,250. TEK 2465B 4ch-400MC/S + 2 probes - £1,750. TEK 0.5.0. 2430 - 150MC/S + 2 probes - £1,750. TEK D.S.0. 2430 - 150MC/S + 2 probes - £1,750. TEK D.S.0. 2430 - 150MC/S + 2 probes - £1,750. TEK D.S.0. 2430 - 150MC/S + 2 probes - £1,750. TEK D.S.0. 2430 - 150MC/S + 2 probes - £2,000. TEK TAS 475-485 - 100MC/S + 2 probes - £2,000. TEK TAS 475-485 - 100MC/S + 2 probes - £2,000. TEK TAS 475-485 - 100MC/S + 2 probes - £2,000. HP1740A - 100MC/S storage + 2 probes - £200. HP1740A - 100MC/S storage - 1 probes - £200. HP1745A - 1146A - 100MC/S - 20MC/S + 2 probes - £300-£400. HP1745A - 100MC/S storage - 1 probes - £250. HP1745A - 10

MICROWAVE COUNTERS - ALL LED READOUT

MICROWAVE COUNTERS - ALL LED READOUT EIP 351D Autohet 20Hz-18GHz - £750. EIP 351D Autohet 20Hz-18GHz - £750. EIP 351 Micro Pulse Counter - 300MC/S-18GHz - £700. EIP 545 Micro Pulse Counter - 300MC/S-18GHz - £1.5k. EIP 558 Microwave Frequency Counter - 10Hz-18GHz - £1.5k. EIP 558 Microwave Pulse Counter - 300MC/S-26.5GHz - £1.5k. EIP 558 Micro Counter 20Hz-24GHZ - SMA Socket - £800. SD 6054B Micro Counter 20Hz-24GHZ - SMA Socket - £800. SD 6054B Micro Counter 20Hz-24GHZ - SMA Socket - £100. SD 6054B Micro Counter 20Hz-24GHZ - 51.5k. EIP 558 Micro Counter 20Hz-24GHZ - SMA Socket - £800. SD 624A Micro Counter 20Hz-24GHZ - £1.2k. SD 624A Micro Counter 20Hz-24GHZ - £1.2k. SD 624A Micro Counter 10HZ-18GHz - Nixey - £500. HP5342B Micro Counter 10HZ-18CHZ - Nixey - £500. HP5342A Micro Counter 10HZ-18CHZ - Nixey - £500. HP5342A Micro Counter 10HZ-18CHZ - 15.5k. HP5345A 50300-S011 avialable. HP5345A 5355A Plugin vith 5356A 18GHZ Head - £1K. HP5345A 5355A Plugin vith 5356A 18GHZ Head - £1K. HP5345A 5355A Plugin vith 5356A 18GHZ Head - £1K. HP5345A 5355A Plugin vith 5356A 18GHZ Head - £1K. HP5345A 5355A Plugin 2000. HP5345A 5355A Plugin 2000. HP5345A 5355A Plugin 2000. HP5345A 16Hz 5386A 3556A 36HZ Counter - £1K-£2K. Racal/Dana Counter 1991-160MC/S - £200. Racal/Dana Counter 1992-1.3GHz - £500.

SIGNAL GENERATORS HP8640A – AM-FM 0.5-512-1024MC/S – £200-£400. HP8640B – Phase locked – AM-FM-0.5-512-1024MC/S – £500-SIGNAL GENERATORS HP86408 – AM-FM 0.5-512-1024MC/S – £200-£400. HP86408 – Phase locked – AM-FM-0.5-512-1024MC/S – £500-£1.2K. Opts 1-2-3 available. HP86564 – B AM-FM 10MC/S-520MC/S – £300. HP86566 SYN AM-FM 0.1-990MC/S – £900. HP86568 SYN AM-FM 0.1-990MC/S – £900. HP86568 SYN AM-FM 0.1-2060MC/S – £3K. HP86570 SYN AM-FM-0.1-1300MC/S-2600MC/S – £2K. HP86570 SYN AM-FM-PM-0.01-1300MC/S-2600MC/S – £2K. HP865730 SYN AM-FM-PM-0.01-1300MC/S-2600MC/S – £2K. HP865730 SYN AM-FM-PM-0.01-1300MC/S-2600MC/S – £3K. HP865730 SYN AM-FM-PM-0.01-1300MC/S-2600MC/S – £3K. HP8312A Function Generator AM-FM 13MC/S-Dual – £300. HP33254 SYN Function Generator 21MC/S – £2K. HP33263 SYN Function Generator 21MC/S – £2K. HP3326A SYN Function Generator 21MC/S – £2K. HP3326A SYN FUnction Generator 21MC/S – £2K. HP3326A SYN 2CH Function Generator 13MC/S – £200. Racal/Dana 9081 SYN S/G AM-FM-PH-15-520MC/S – £300. Racal/Dana 9081 SYN S/G AM-FM-PH-001-1300MC/S – £100. Racal/Dana 9087 SYN S/G AM-FM-PH-001-1300MC/S – £100. Racal/Dana 9087 SYN S/G AM-FM-PH-001-130MC/S – £100. Racal/Dana 9087 SYN S/G AM-FM-PH-001-130MC/S – £100. Marconi TF2015 AM-FM-10-520MC/S – £100. Marconi TF2015 AM-FM-PH 10-520MC/S – £100. Marconi TF2015 AM-FM-10-520MC/S – £100. Marconi TF2015 AM-FM-SWN 10KC/S-1040MC/S – £500. Marconi TF2015 AM-FM-SWN 10KC/S-1040MC/S – £500. Marconi TF2015 AM-FM-SWN 10KC/S-1040MC/S – £500. Marconi TF2028 AM-FM SYN 10KC

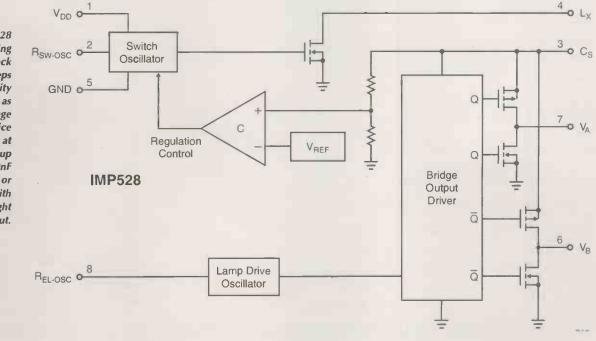
ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Brighter driver for EL lamps

Andy Wolff looks at a new electroluminescent lamp driver chip that produces 220V pk-pk from a couple of penlight cells with only five additional passives.

he popularity of electroluminescent lamps is shown by their almost universal use for backlights, signs and keyboards by the makers of pagers, cellphones and digital notepads.

IMP has made electroluminescent lamp drivers a major technology focus. By combining high-voltage process technology and clever analogue circuitry, IMP has become a major EL driver innovator in the last vear.


mount device packaged in both SOIC and MSOP that generates 220V pk-pk from a battery or from

The company's newest product is the IMP528, an eight-pin surfacefixed inputs in the range 2 to 6.5V dc

An internal feedback circuit makes battery operation especially efficient using several techniques. One of these, shown in Fig. 1, regulates the output by skipping pulses in its step-up oscillator when batteries are fresh, and restoring them as they age. This has the effect of making brightness appear constant almost to the point when the battery quits.

Figure 2 shows a generalised glimpse of the innards of the device, a), and the actual circuit connections, b). These diagrams show how the boost converter section charges $C_{\rm S}$ to high voltage of 110V dc and the high-voltage switching bridge that applies it to either side of the lamp at 220V pkpk. The two oscillators are individually tunable via R_{SW} and $R_{\rm EL}$ for optimal efficiency and lamp colour.

While a single supply is the most common operating scheme, certain applications may separate the chip supply, V_{DD} , from the main supply to the inductor, $V_{\rm L}$. This is frequently done in automotive applications -5V for V_{DD} , 8-12V for $V_{\rm L}$ – and pagers – 1.5V for $V_{\rm L}$, doubled to 3V for V_{DD} . IMP also supplies drivers that operate directly from one cell and require no doublers.

Andy is Applications Manager, Display Products at IMP Incorporated in San Jose.

Fig. 1. IMP528 internals showing the feedback control that keeps light intensity almost constant as battery voltage falls. The device drives lamps at high brightness up to 50nF capacitance - or more but with decreasing light output.

CONTROL AND INSTRUMENTATION

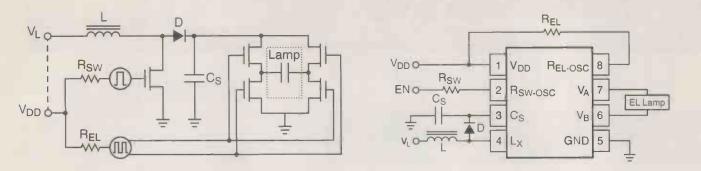
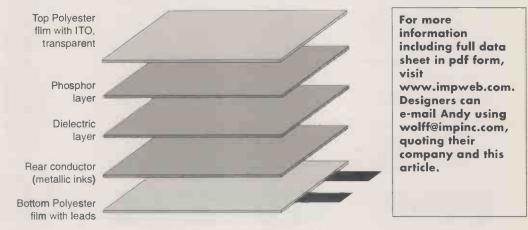
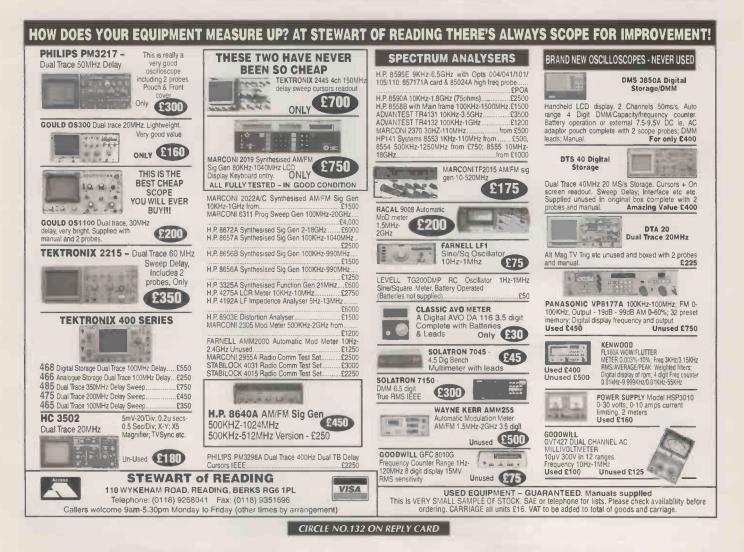




Fig. 2a) Generalised schematic of the integrated electroluminescent lamp driver and b), the complete circuit. This high-voltage CMOS chip eliminates the need for an external protection resistor in series with the EL lamp. Typical V_{DD} current consumption is 420µA.

You can see in Fig. 2b) that an 'enable' function can also be achieved by connecting R_{SW} to V_{DD} or ground. The ability to optimise each component that contributes to efficiency and performance is the hallmark of these devices. Values for L can range from 100µH-1mH, and for C_S , 10-100nF.

Final selection is made on the basis of the characteristics of the lamp selected – its size, colour and desired brightness. The high boost converter frequency used of around 70kHz permits the use of tiny components on the board.

Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants GU30 7QW Information line: 01428 751469 Fax: 751223 E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/catalogue/

GY2 4AF, UK.

Tel: +44 (0)1481 253081

Fax: +44 (0)1481 252476

Email: mail@polar.co.uk

USA

Customer tel: (800) 328 0817 Fax: (650) 344 7964 Email: staff@polarinst.com

www.polar.co.uk CIRCLE NO.135 ON REPLY CARD

CIRCLE NO.134 ON REPLY CARD

598

NEW PRODUCTS

Please quote Electronics World when seeking further information

Siemens Semiconductors is intended

fingertip recognition technology. The

plugged directly into the parallel port

of a PC and can be powered directly

FingerTIP Software Developer's Kit

contains all the software needed to

easily integrate the system into any

Robinson Nugent has developed a custom PCMCIA cardkit for use in

wireless data communications based

It has a type III cardkit as the basic

housing. In order to integrate with the

DECT system a transmitter/receiver

and antenna is built into the back of

http://www.siemens.co.uk

PCMCIA cardkit for

on the DECT digital cordless

Tel: 0990 550500

DECT phones

telephone standard.

application

Eng No 503

Siemens

from a PC mouse port or via the

as an introduction to biometric

evaluation kit's sensor can be

Flat panel controller

The HIQVideo 69000 mobile graphics/video accelerated flat panel controller provides 2MBytes of high speed SDRAM for notebooks, mininotebook, industrial PC, and palmtop applications. It is the first member of the Chips HiQVideo family to integrate high speed SDRAM frame buffer memory on chip. The SDRAM supports up to 83MHz operation, which provides up to 664MBytes/s frame buffer bandwidth. The increase in the frame buffer bandwidth enables support of high-resolution graphics modes and real-time video

acceleration. Thame Components Tel: 01844 261188 Eng No 502

Evaluation Kit

Comprising a sensor mounted in a small casing, a CD ROM containing software development kit and comprehensive documentation, and all the necessary cables, the FingerTIP Evaluation Kit from

Four-channel, real-time,

100MHz digital oscilloscope

Tektronix's TDS224 is a four-channel, real-time, 100MHz digital oscilloscope. It is the latest member of the TDS200 series. The 60 and 100MHz scopes are designed for digital design engineers and technicians working with 8-bit microcontrollers. Using oversampling technology, all three models, the TDS210, TDS220, and the TDS224, sample at 1Gsamples/s, providing full-bandwidth single-shot acquisition simultaneously on all channels. This technology enables users to capture non-repetitive signals that would be invisible to analogue oscilloscopes and distorted by DSOs without sufficient sample rate.

Tektronix http://www.tek.com/ Tel: 01628 403453 Eng No 501

the frame assembly. When a signal is received by the antenna identifying a tocal base station a LED module, which is built onto the end of the PCMCIA card frame, is activated, the light being reflected through the transparent LED housing Robinson Nugent http://www.robinsonnugent.com Tel: 01227 794495 Enq No 504

Gigabit Ethernet Fibre Channel ICs

Vitesse Semiconductor has announced a family of ICs for Glgabit Ethernet, Fibre Channel and serial interconnect applications at speeds up to 1.25Gbit/s. Initial products include the VSC7123 and VSC7133 10-bit transceivers. These two fifth generation devices provide the serialiser/deserialiser function for 10-bit, 8B/10B encoded data between 1.0 and 1.25Gbit/s. They feature low jitter generation, cable equalisation, reliable signal detection and reduced sensitivity to power supply noise and reference clock jitter. Vitesse Semiconductor Tel: 01634 683393 Eng No 507

Win CE platforms

Advantech has announced a systemlevel solution, which includes a compact chassis and a palm-size single board computer with an onboard solld-state disk. The disk comes pre-loaded with Windows CE v2.1 to reduce system integration time. Also available are boards with a disk loaded with Windows CE. According to the supplier, one difficulty in dealing with

Digital audio for set-tops

Micronas Intermetall has added a set-top box interface to its multistandard sound processor (MSP). In addition to all analogue TV audio standards, the MSP 34x8G also supports the digital Interface with digital or hybrid (analogue/digital) set-top boxes and TV receivers. The audio devices are also capable of processing digital audio signals

such as those delivered by the digital TV broadcasting decoders on the basis of the standards DVB (Europe) or ATSC (US). Micronas Intermetall http://www.micronas.com Tel: 01628 403453 Eng No 505

Windows CE is that it Is very hardware dependent. There may often be times when no drivers are available for the desired device. Secondly, lack of both familiarity and support for Windows CE development tools may cause difficulties. One must also spend time looking for a suitable hardware platform on which to run Windows CE. Advantech Tel: 01908 618999 Eng No 506

SM fuses

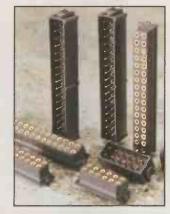
Bussmann has extended its range of surface mount circuit protection components, with the addition of a time lag fuse. The 6125TD Brick Fuse is rated at 125V AC or 60V DC, making it sultable for use in primary circuits and to replace glass tube fuses in certain applications. It is

Please quote Electronics World when seeking further information

designed for applications where it must withstand transient current surges, yet open safely when subjected to continuous fault currents. It is designed to carry 200 per cent of its rated current for a minimum of one second, ensuring it does not open prematurely due to harmless transients. It measures 6.1mm x 2.5mm x 2.5mm. Bussmann Tel: 01509 822702 Eng No 508

Comms adapter

Motorola has announced the MPMC860 communications adapter in PCI mezzanine card format for T1 and E1 connectivity. Powered by the PowerQUICC MPC860 quad integrated communications controller, the adapter is for use in highbandwidth voice and data switching systems. An optional controller allows connection to an SCbus switching fabric to provide a high-bandwidth TDM telephony bus. The MPMC860 PMC board has two T1 or E1 interfaces connected via RJ45 connectors on the front panel or via a rear transition module. A carrier board with two adapters can provide up to four E1 and T1 interfaces in a


Flat panel controller

Microchip has introduced what it claims to be the world's smallest 8-bit ROM microcontroller in an 8-pin package. The PIC12CR509A features 1024 words of ROM program memory, 41 bytes of user RAM, six I/O pins with on-chip clock oscillator, 33 single-word instructions, full speed 1µs instruction cycle at 4MHz, seven special function hardware registers and a two-level deep hardware stack. Other features include an 8-bit real time clock/counter with 8-bit programmable prescalar, watchdog timer, direct LED drive, 2.5-5.5V operating voltage and less than 2mA at 5V, 4 MHz power consumption. The PIC12CR509A is available in 8-pin PDIP and SOIC packages. Microchip Tel: 0118 921 5858 Enq No 509

CompactPCI or VME slot. Motorola Tel: 0171 386 1499 Eng No 509

SM connectors

Harwin has launched surface mount connectors on a 2mm pitch. The Datamate connectors are for use in medical, computer and aerospace industries. They come with four to 44

positions and have a board stacking height of 7.85mm maximum. The termination, which Incorporates a surface mount pad, keeps the solder point within the profile of the connector moulding, allowing for more tracking space outside the connector profile. The connectors are packaged in a tube as standard with tape and reel available as an option. Harwin

Tel: 01705 370451 Eng No 510

16Mbit 1.8V flash

AMD is offering the Am29SL160C 1.8V only, 16Mbit flash memory device. The device offers read access times of 100ns. The flash device features a powermanagement system, which conserves power by automatically putting the flash device into sleep mode during inactive periods. There is no latency/wake-up time when the system subsequently accesses the

device. In addition it features electronic seriallsation, accelerated programming mode and hardware write protection. *AMD Tel:* 01276 803100

Enq No 511

Configurable enclosure

Rittal's Quickrack enclosure can be configured to specification. Dismantling and reassembly takes less than five minutes because of the design of the multi-folded frame sections. Supplied fully screw fixed, it comes with a glazed front door, sheet steel frame, changeable door hinge and single-pane safety glass window. The vented rear door is made of sheet steel. Also included are front 482.6mm mounting angles that are adjustable on depth stays to which a rear pair of mounting angles can also be fastened. Metric 535mm mounting angles can also be

PC Card reader on PCI bus

Elan Digital Systems has introduced PC Card (PCMCIA) card reader/writer for PCI Bus applications which offers support under Windows95/98 and NT for all PC Cards, including those requiring interrupt control such as ATA, modem, LAN and DAQ. Model P128 allows a single PCI Bus motherboard slot, with two rear expansion slots, to be used for 2 PC Cards of any Type I, II and III simultaneously. This means that two large ATA cards may be inserted at the same time. A software driver is supplied with each unit and full Plug-n-Play features are available.

Elan Digital Systems Tel: 01489 579799 Enq No 512

Installed, and slide rails and component shelves can be attached to the punched holes of the mounting angles. *Rittal Tel: 01709 704000* Eng No 513

RF amp for CDMA mobiles

Hewlett-Packard has announced a new GaAs PHEMT (pseudomorphic high electron mobility transistor) RFIC amplifier in a four-lead SOT-343 package. It is aimed at CDMA handsets for mobile phone networks operating at 900 and 1800MHz. The MGA-72543 is the first release of the CDMA dual-band chipset. HP intends to introduce the remainder of the chipset - including power amplifier, upconverter downconverter, modulator and demodulator - later this year. The chipset, which is fabricated with silicon bipolar and GaAs PHEMT technology, is designed for use with existing digital baseband ICs, filters and duplexers. Hewlett-Packard Tel: 00 49 0 64 41 92 4646 Enq No 514

Miniature SM oscillators

A series of low-profile surface mountable digitally temperature compensated, voltage controlled crystal oscillators has been introduced by C-MAC Frequency Products. Intended for personal digital cellular, CDMA, GSM and other mobile communications devices, the IQDTCVCXO-91 range offers frequency stability to ±1.0ppm

over a temperature range from – 30°C to +80°C. In addition to digital temperature compensation, the device incorporates an AFC function that allows the output frequency to be trimmed by at least \pm 5ppm through a voltage input of 1.5V \pm 1.0V. Both functions are integrated within an SM ceramic package measuring 7 x 9 x 2mm. Frequencies offered include 13MHz and 19.2MHz. Ageing is specified to within \pm 1ppm for the first year (at 25°C). Designed to provide a 1V pkpk output into a 10kΩ/10pF load, the devices operate from a 3V supply. *C-MAC Frequency Products Tel: 01460 74433* **Eng No 515**

SC1105/6 PWM controller

Thame Components has announced the SC1105 and SC1106 from Semtech. The SC1105/6 is PWM controller designed for advanced graphics port (AGP) power supply applications. The device switches between two different voltages when

NEW PRODUCTS

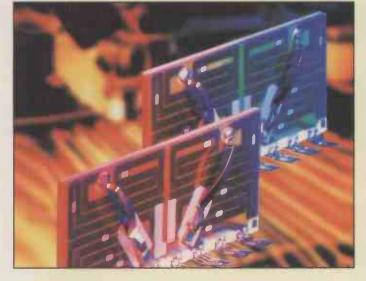
Please quote Electronics World when seeking further information

the **TYPEDET#** is toggled. The SC1105 is set to a fixed 1.5V while the SC1106 regulates to a voltage programmed by the user. The SC1105/6 provides a more efficient solution than the conventional linear regulator, claims the supplier. For a typical AGP circuit, the current requirement Is 2A, which, for a linear solution implies undesirable heat sinking requirements. The SC1105/6, a switching solution, does not require heat sinking for the MOSFET or the rectifying diode.

Thame Components Tel: 01844 261188 Enq No 517

Panel meters

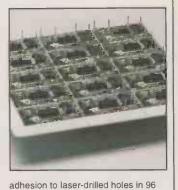
Made by Sifam, Select Din sized digital panel meters are available for voltage-current, process, counting-



totallsing, rate-frequency, temperature, and strain gauge measurements. They have up to six dights on the LED displays. The case meets IP66 and Nema Four standards. For security, the setup can be restricted using password protection and there is a removable front bezel option to prevent unauthorised button access. Features include menu driven configuration, programmable smoothing and averaging features, display scaling, and remote control access via computer. Sifam Tel: 01803 407710

Enq No 518

Thick-film conductors


Emca-Remex has introduced silver Multisyst conductors for automotive, telecoms and RF circuitry. There is a choice of leach resistance, green strength and thermal-aged adhesion. Multisyst 2075D thick film is a cadmium-free, mixed-bonded, 6:1 AgPd, screen-printable conductor material for automotive circuit applications requiring heavy aluminum wire bonding. It incorporates powder and vehicle technology, providing thermal-aged and temperature-cycled adhesion at 175°C on alumina and the 7001D and 7015D dielectrics. Recommended solder is 10Sn/88Pb/2Ag. Other solders with a solidus above 250°C can also be used. Applications include automotive and telecoms hybrids. The 2060D is a mixedbonded, Ag:Pd conductor for plughole applications in laser-drilled alumina substrates. It provides

Single-in-line resistor network

An SMT single-in-line network from Siemens can be positioned vertically on the circuit board by automatic placement machines. The network makes two fusing mechanisms possible – mechanical clip-in fuses and PTC. It allows tailoring of the circuit protection area and is suitable for protecting against fault currents, overvoltages, lightning strikes, mains disturbances and switching problems. The heat conductivity of the substrate materials makes it possible to have different current strengths in different power ranges. The network can be assembled fully automatically using either grippers or vacuum nozzles and can be soldered in a reflow oven. The variable tripping characteristics provide protection for currents up to 350mA and mains disturbances up to 600W. It is also triggered by a rise in temperature to 300°C. Resistance drift for a surge voltage is 0.1 per cent.

Tel: 00 49 89 636 53849 Enq No 516

per cent alumina. It reduces processing steps by letting ceramic through-holes be completely filled and fired only once at 850°C. *Emca-Remex Products Tel: 001 908 685 5148* Eng No 519

Comms test set

Racal has launched a portable radio communications test set for GSM mobile repair and maintenance applications. The 6104 is claimed to let a typical GSM phone be checked in under 30 seconds. For GSM 900, 1800 and 1900 radios, the tester

provides manual and automatic operation and has an IEEE488 remote control capability. It can run either predefined or user-defined test sequences. Test results can be stored in a database via the RS232 or IEEE 488 port and two PC card memory ports. This also provides a way to download operating code and custom test sequences into the instrument. *Racal Instruments Tel: 01344 388000* Enq No 520

Plastic circular connector

A plastic circular connector from Channel Electric uses rapid push-pull locking. The 544 connector works by sliding the locking collar forward on

QUANTEQ Integrated Test Equipment

- Dual channel DVM dc-2MHz, 10mV-500V
- Digitally synthesised signal generator
- Gain/phase analyser
- Dual isolated 1f digital storage oscilloscope
- Frequency meter
- Pulse generator
- LCR meter
- White noise generator
- Phase sensitive detector
- Phase meter
- Power meter
- Arbitrary waveform generator

Using modern FPGA and DSP technology, QuanteQ replaces a whole stack of conventional equipment with a single instrument.

- Electroluminescent graphic display
- RS232 interface
- Printer interface
- Audible alarm function
- 15 x 25 cm footprint

• Portable

QuanteQ is designed and manufactured in the UK by ENG-INN (electronics) Ltd

all for £3000

Tel: (0116) 237 6467 Fax: (0116) 237 6167 sales@eng-inn.co.uk http://www.eng-inn.co.uk

NEW PRODUCTS

Please quote Electronics World when seeking further information

the two-part body, pulling out the socket to open, inserting crimped or soldered terminations into the plug, mating the two components, and reversing the collar for a secure lock of plug and socket. Channel Electric Equipment Tel: 01635 864866 Eng No 521

Sensor stand

The UZZ2 universal sensor-mounting stand is adjustable in height and angle when used to mount photoelectric and fibre-optic sensors. Available in four assembly sets – basic, lateral arm, reflector and fibre – the stand can be combined with other Matsushita mounting sets, letting two or more sensors be used on one assembly. The stand can be mounted in horizontal and vertical planes and is for use on conveyors and

8-bit microcontroller

Fairchild has announced a 2kbyte reprogrammable EEPROM version of its arithmetic controller engine (ACE) microcontroller with dedicated functions to improve central processor efficiency by offloading some coding operations. The ACE1202 is for battery powered applications including automotive security systems, home security systems and portable devices. As well as the EEPROM for code storage, it has 64byte of parameter storage EEPROM and 64byte SRAM on chip. It has a 16-bit multifunction timer with a dedicated difference capture function for independently capturing pulse widths to a resolution of 1µs. EEPROM data is memory mapped to the rest of the controller, eliminating the need to write instructions through a protocol, typically I2C. Features Include idle timer with watchdog and programmable low battery detection Fairchild Semiconductor Tel: 01793 856831

Enq No 522

production machinery. Channel Electric Equipment Tel: 01635 864866 Eng No 523

Ceramic chip caps

TDK has announced Ni electrode multilayer ceramic chip capacitors that meet the COG temperature characteristic standard. They are available from 100 to 10,000pF. Temperature coefficient with capacitance change is 0±30ppm/°C from -55 to +125°C. Provided in a surface-mount package, the devices are suitable for flow, reflow and high temperature soldering. *TDK*

Tel: 00 49 0 211 90 770 Enq No 524

Noise generator

The ANG broadband noise generator from Atlantic is for the broadcast, wireless, satcom, radar and avionics industries. For laboratory and field operation, it generates white Gaussian noise over multi-octave bands at frequencies from 10Hz to 18GHz. Noise output can be varied over a 111dB range in 0.1dB steps by front panel step attenuators with the options of continuously variable control or remote digital control. The ANG6109 version provides typically +10dBm output power, equivalent to -80dBm/Hz noise density, over the 100Hz to 1GHz band with flatness better than +2dB into a 50Ω load. The ANG8109 has 1W, +30dBm output

and - 55dBm/Hz noise density from 1 to 300MHz. Fundamentally generated noise output is available up to 18GHz but, with up-conversion, this can be extended to 40GHz. Options include a signal combiner, which lets the user add the desired signal to the generated noise in making receiver sensitivity tests, and output filtering. The instrument measures 370 by 110 by 300mm and is also available in 2U x19in, rack mounted version. Standard input power is 80 to 240V, 50 to 60Hz but operation from a DC supply can be specified. Atlantic Microwave Tel: 01376 550220 Enq No 525

BACK ISSUES

Back issues of Electronics World are available, priced at £3.00 UK and £3.50 elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Free copy of Electronics Engineer's pocket book with every order while stocks last

Available issues

January
April
May
July
August
November
December
1995
1995 February
February
February April
February April May
February April May June

1004

1996 January February March May June July/August September October November 1997 June August

September

1998 January February March April May June July August September November December

1999 January February March April May June

AND THE PROGRAMMING LINK ON THE MODULE THEY CAN BE USED WITH 4 OR 8Ω LOADS WITH THE AUTOMATIC ADJUSTMENT OF INPUT SENSITIVITY.

HY2000	30W HYBRID AMPLIFIER	£11.50
HY2001	30W HYBRID AMPLIFIER WITH P.S.U. BOARD	£17.50
HY2002	60W HYBRID AMPLIFIER	£17.75
HY2003	60W HYBRID AMPLIFIER WITH P.S.U. BOARD	£24.75
HY2004	120W MOSFET AMPLIFIER	£37.00
HY2005	120W MOSFET AMPLIFIER WITH P.S.U. BOARD	£47.00
HY2006	240W MOSFET AMPLIFIER	£60.00
HY2007	240W MOSFET AMPLIFIER WITH P.S.U. BOARD	£83.50
HI-FLOU	ALITY AUDIO POWER TRANSFORMERS FINIS	
11111000		

BLACK WITH RESIN FILLED CENTRES FOR MAXIMUM NOISE ABSORPTION AND EASE OF MOUNTING.

AT0304	FOR ONE HY2000/1 IN 4Ω MODE	£17.50
AT0308	FOR ONE HY2000/1 IN 8Ω MODE	£17.50
AT0604	FOR ONE HY2002/3 IN 4Ω MODE	£21.00
AT0608	FOR ONE HY2002/3 IN 8Ω MODE	£21.00
AT1204	FOR ONE HY2004/5 IN 4Ω MODE	£28.00
AT1208	FOR ONE HY2004/5 IN 8Ω MODE	£28.00
AT2404	FOR ONE HY2006/7 IN 4Ω MODE	£39.00

PRICES INCLUDE VAT & POST AND PACKING

ILP DIRECT LTD

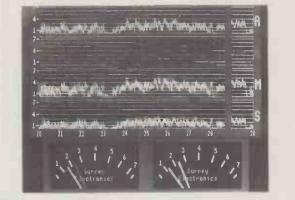
SPONG LANE, ELMSTED, ASHFORD, KENT TN25 5JU PHONE +44 (0) 1233 750481 FAX +44 (0) 1233 750578

CIRCLE NO.137 ON REPLY CARD

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES

(Using a video capture card)

47MIR size 60 x 36 x 27mm with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye). £50.00 + VAT = £58.75 40MP size 39 x 38 x 28mm spy camera with a fixed focus pin hole lens for hiding behind £50.00 + VAT = £58.75 verv small hole 40MC size 39 x 38 x 27mm camera for 'C' mount lens these give a much sharper imag than with the smaller lenses £38.79 + VAT = £45.58 Economy C mount lenses all fixed focus and fixed irls. VSL1220F 12mm F1.6 12 x 15 degrees viewing angle...... VSL4022F 4mm F1.22 63 x 47 degrees viewing angle...... £15.97 + VAT = £18.76 £17.65 + VAT = £20.74 VSL6022F 6mm F1.22 42 x 32 degrees viewing angle..... £19.05 + VAT = £22.38 VSL8020F 8mm F1.22 32 x 24 degrees viewing angle..... £19.90 + VAT = £23.38 Better quality C Mount lenses VSL1614F 16mm F1.6 30 x 24 degrees viewing angle......£26.43 + VAT £31.06 VWL813M 8mm F1.3 with Iris 56 x 42 degrees viewing angle......£77.45 + VAT = £91.00 Blue and silver recordable CD ROM bulk£0.766 + VAT = £0.90 With iewel case ..£0.98p + VAT = £1.15 20 for £13.00 + VAT = £15.28 P6KE103A 130v diode. RC300 Phillips universal remote control.5 for £24.45 + VAT (£4.69 + VAT each) = £27.55 Konig Ultrasonic remote control clearout, limited quantities. Quantity left in brackets: US8207 (15), US8209 (5), US8220 (4), US8224 (5), US8225 (2), US8232 (3), US8233 (2),US8239 (8), US8260 (1), US8264 (124), US8255 (116), US8302 (2), US8306 (1), US8309 (1), US8406 (1), US8513 (21), US8514 (40), US8516 (19), US8519 (2), US8535 (82), US8578 (182). .£5.50 + VAT each, £22.00 + VAT for 5, £85.00 + VAT for 25.


JPG ELECTRONICS 276-278 Chatsworth Road, Chesterfield S40 2BH Tel: 01246 211202 Fax: 01246 550905 Callers welcome 9.30am to 5.30pm Monday to Saturday

CIRCLE NO.138 ON REPLY CARD

July 1998 ELECTRONICS WORLD

CHART AUDIO LEVELS

In-vision colour display or hard copy printout

PPM10 In-Vision PPM and Chart Recorder generates a display emutating the well known coaxial TWIN movements for monitoring stereo audio levels and mono compatibility. Also: STEREO TWIN METER BOX comprising two PPM9 boards, featuring inherent stability with law under microprocessor control. A free standing mains powered box frequently used for the final stereo monitoring when working to broadcast standards. Manufactured under licence from the BBC.

★ Advanced Active Aerial 4kHz-30MHz ★ Stabilizer frequency shift units for howl reduction ★ 10 Outlet Distribution Amplifier ★ Stereo Variable Emphasis Limiter ★ PPM9, PPM5 hybrid and PPM8 IEC/DIN -50/+6dB drives and movements ★ Broadcast Stereo Coders ★ Broadcast Monitor Receiver 150kHz-30MHz ★

> SURREY ELECTRONICS LTD The Forge, Lucks Green, Cranleigh Surrey GU6 7BG Telephone: 01483 275997 Fax: 276477

CYC CHELMER VALVE COMPANY

for High Quality Audio Tubes

The CVC Premium range offers continuity of supply of high grade audio valves. Based on the best from world-wide sources, processed by us to suit audio applications. Pre-amp types tested/selected for LOW NOISE, HUM and MICROPHONY. Power valves are given controlled BURN-IN to improve stability and to select-out those with weaknesses. MAJOR BRANDS also supplied as available.

A selection of CVC PREMIUM Audio Tubes PRE-AMP TUBES POWER TUBES SOCKETS ETC POWER TUBES
 Forward

 7.50
 (Cantinued)

 8.00
 6356A

 8.50
 6550A

 4.70
 6550WA or WB

 13.00
 7581A

 6.50
 807

 9.50
 811A

 12.00
 812A

 12.50
 845
 5.00 EL34G 5.00 EL34 (TESLA) B9A (Chassis of PCB) B9A (Chi or PCB) Gold Plated 1.60 ECC81 ECC82 3.00 46.00
 46.00
 BSFA (Dri ar PCB) lobe Pair

 11.00
 Octal (ch or PCB)

 13.50
 Octal (ch or PCB)

 13.50
 Octal (ch or PCB)

 13.50
 Octal (ch or PCB)

 14.00
 4 Pin r/#or 2A3, 3008 erc.f

 9.00
 4 Pin r/#or 2A3, 3008 erc.f

 11.00
 4 Pin r/#or 2A3, 3008 erc.f

 34.00
 4 Pin shareh (or 211 erc.)

 34.00
 4 Pin shareh (or 211 erc.)

 30.00
 Gold Paired
 ECC83 5.00 EL34 (Large Dia.) 6.00 EL84/6BQ5 1.80 ECC83 ECC85 ECC85 ECC88 ECF82 ECL82 ECL82 ECL86 EF96 E80F Gold An E81CC Gold An E81CC Gold An
 6:00
 EL54/68/05

 5:00
 EL56/9759

 5:00
 FE66

 5:00
 KT66

 5:00
 KT68

 5:00
 KT68

 5:00
 KT68

 5:00
 KT68

 6:00
 KT68

 6:00
 KT68

 6:00
 FL50/519

 7:50
 2A3 store at their

 4:50
 6C33C-8

 4:50
 EL6GC

 5:20
 KL6VGC75881

 6:50
 KV6GT
 3.30 5.00 11.00
 12.00
 812A
 34.00
 4
 Pin_unes der 211 set;

 12.50
 845
 30.00
 Gert Hatet

 21.00
 RECTIFIER TUBES
 5
 Pin rive den

 9.00
 E281
 4.50
 9
 Pin rive den

 1450
 E281
 4.50
 Screening Can
 22.00

 22.00
 G232
 11.00
 intercase der den
 5

 50.00
 G232
 11.00
 intercase der den
 6

 50.00
 G232
 15.00
 Anode Connecter
 6

 6.50
 G233
 6.50
 Anode der et et
 6

 6.80
 G234
 6.50
 Anode connecter
 6

 6.80
 SU4G
 5.00
 Retainer for dated etc...
 6

 5.00
 SV4GT
 4.50
 Retainer for dated etc...
 6
 15.00 10.00 3.00 4.50 E82 CC Gold Pro 5.00 E82 CC Gold An E83CC Gold An E88CC Gold An 6EU7 6SL7GT 6SN7GT 6922 7025 2.00 1.50 1.70 6080 5Y3GT 6146B 10.50 574GT 4.50 ...and a few "Other Brands" (inc. Scarce types).
 SARA/G234 MULLARD
 20.00
 BB4G матлеком

 SR4GY леа stc
 7.00
 BBW6 влимал

 SF4WGY сматлем иза
 10.00
 BBW7 GT struman

 SV4GB леа сло ст
 12.00
 BC37 GT struman

 SV3WGT struman
 5.00
 BC375 Rear conservers
 12.00

 SASTG леа сло stermers
 12.00
 BCW4 Rear conservers
 12.00

 GASTG леа сло stermers
 12.00
 BCW4 Rear conservers
 12.00

 GASTG леа сло stermers
 12.00
 BCW4 Rear conservers
 12.00

 GASTG near conservers
 12.00
 BCW4 Rear conservers
 12.00

 GASTG Rear conservers
 12.00
 BCW4 Rear conservers
 12.00

 GASTG Rear conservers
 12.00
 BCW4 Rear conservers
 12.00
 27.00 - 6SN7GT BRIMAR 5.00 12AT7WA MULLARD 8.50 12AY7 GE-SR VANIA 7.50 12AY7 GE-SR VANIA 5.00 12BH7A GE GE RCA 11.00 12BY7A GE 13E1 src 805 cetron 5842A gec 6080W tungsu 6550A ge 6146B ge 5.50 110.00 5.00 7.75 7.50 13,00 9,00 50.00 15.00 12.50 22.00 17.00 5.50 12E1 sto 12.50 ASK ABOUT ANY TYPES NOT ON THIS LIST ALL PRICES IN U.K. POUNDS & n ordering state if matching re

Please note carriage extra + VAT (EEC only) - When ordering state if matching required (add £1.00 per tube). Payment by CREDIT CARD (ACCESS, VISA, MASTERCARD) or BANKERS DRAFT, TRANSFER or CHEQLE (UK ONLY) FAX or POST your ORDER - We shall send PROFORMA INVOICE Hencensery.

Valve Amplifiers sound better still fitted with CVC PREMIUM Valves! Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 0RG, England.

電 44 (0)1245 355296/265865 Fax: 44 (0)1245 490064

CIRCLE NO.139 ON REPLY CARD

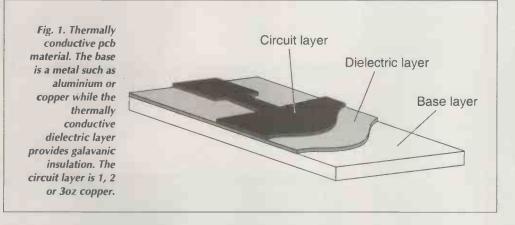
Cool solutions

Alternatives to thermally-conductive grease continue to be developed to overcome not only thermal management issues but also production issues. James Stratford gives an overview of the the options available from thermal product specialist Bergquist.

James is Sales Manager with The Bergquist Company hink of how to dissipate heat in an electronic circuit and most of us think of heat sinks and fans – strap a large lump of aluminium to the hot component and blow air over it. This remains a popular method of dissipating heat – but it's certainly not the only method.

Although there are innovations in electronics to reduce the wasted energy from active components, thermal management is an essential part of any modern circuit design. Moving the prototype from the R&D department and into production requires careful thought about how to build a product reliably and in volume.

As the demands for size and cost reduction increase, so traditional technologies for cooling become less plausible. Bulky heat sinks can also make up a noticeable cost within a product. Exacerbating this are the costs and time delays associated with manual heat sink assembly following PCB construction.


Production issues are best overcome by implementing good design practices to begin with. It is essential that engineers appreciate the thermal considerations of power devices as well as their electronic parameters. In this way engineers can explore complementary technologies to fans and extruded aluminium.

When is a fan undesirable?

When size constraints are placed on a design, heat dissipation becomes more problematic. Laptop PCs, for example, have a number of hot components critical to the operation of the product, but limited space for dissipating heat.

Forced convection using miniature fans is not desirable due to noise, excessive power consumption and reliability. As a result, hot components need to be laid out carefully on the PCB to ensure placement is close enough to an acceptable thermal transfer component such as a chassis.

Ensuring that a component as large and critical as a microprocessor remains in permanent contact with a suitable heatsink is difficult. Simple flexing of the board, or thermo-

mechanical stress could result in the component being separated from the heatsink. The tolerances that have to be worked to are stringent.

To remedy this Bergquist has developed *Gap Pad*, a conformal material with high thermal conductivity. During final assembly, the material is sandwiched between the hot device and heatsink, its shape conforming to take up the air gap and ensuring a uniform thermal transfer.

There's more on this material in the panel.

Why not use the circuit board as a heat sink?

Why stop at creating a uniform thermal transfer from a component to a heat spreader? Why not mate the PCB to the heat spreader and use surface mount components?

The common PCB material FR4 is a poor thermal conductor. New package types such as D-PAK can exceed their safe operating temperature when mounted on FR4. The increasing use of surface mount components, driven by size constraints and simpler production techniques, leaves heat dissipation problems.

To accommodate the use of surface mount components, FR4 is typically manufactured to include thermal vias designed to carry the heat to the underside of the PCB where a heatsink can be added relatively easily. In many applications, this arrangement is adequate, but for more demanding thermal requirements, Bergquist has developed an insulated metal substrate material called *Thermal Clad*, Fig. 1.

Continued on page 606

Void-filling cooling pads

n power inverter capacitors, constant charging and discharging generates heat that has to be removed in the interests of reliability.

Forced air cooling requires noisy, relatively costly fans which, being electromechanical parts, introduce an additional reliability issue. They also need power to drive them.

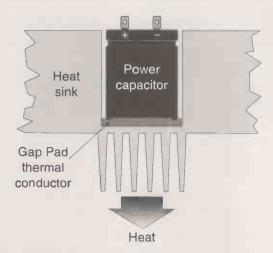
Convection cooling removes the need for a fan, but it involves large open areas in which air can flow. Both forced-air and convection require additional enclosure space.

Conduction is the most efficient method of dissipating heat, but large can capacitors are, by nature, irregular in shape. Consequently mechanically pressing the capacitor against the casing leaves air gaps. This results in poor thermal transfer.

Dimensions of can capacitors of the same type can vary by up to 2mm either way. Expansion and contraction of the capacitor during temperature cycling exacerbates this variation. This forces engineers to resort to fans or convection cooling rather than the preferred thermally-efficient option of conduction.

Grease compounds are sometimes used, but they are undesirable due to mess, migration and application. Grease can also present significant problems should the assembly require re-work.

To remedy this, Bergquist has developed a conformal pad material with high thermal conductivity. Called *Gap Pads*, the range of products includes a number of alternative thermal performance versions as well as a pressure injectable material called *Gap Filler*. These products have a thermal conductivity of between 0.8W/mK and 3.0W/mK.


Gap Pad materials work by changing to

conform to the required shape. This prevents the thermal interface from being broken, regardless of the fluctuations in physical shape or size.

Used with capacitors, *Gap Pad* conforms to the irregular shape of the can. Even with movement of the component relative to the case, *Gap Pad* conforms to maintain the thermal interface between the two.

Gap Pad is also available in standard, soft and gel-like modulus formats to accommodate low stress applications or where very irregular shapes require thermal interfacing.

Thicknesses of these products range from 0.5mm to 6.0mm in 0.5mm increments.

Gap Filler cures at room temperature to form a gel-like modulus that does not move from the interface, yet conforms with temperature cycling.

This material is made up of three layers – a base plate, typically aluminium or copper, a thermally efficient dielectric layer which electrically separates the base plate from the active circuit layer.

This copper circuit layer is etched using standard PCB fabrication practices and surface mount components assembled, soldered, cleaned and re-worked using common equipment. Heat from components passes directly through the dielectric layer and into the base plate with minimal interruption. Mounting a heatsink to the metal base plate completes the assembly forming a thermally efficient product.

In high-frequency applications such as DC/DC converters, switch mode power supplies or motor controllers, *Thermal Clad* exhibits unwanted capacitance, affecting the operation of the circuit. If these capacitive effects are important there is a two layer version of the product with a buried layer that can be used as a Faraday shield, as well as additional tracking as required. This shield significantly attenuates unwanted capacitance.

If you must use a fan...

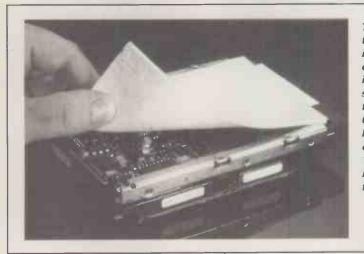
In some instances the heatsink and the fan are the only practical solutions, but even here there are practical considerations for engineers to take into account.

Traditionally, grease and/or mica is used to sandwich a hot component to a heatsink. As a cheap electrical isolator, mica does the job, but it is brittle and easily damaged.

A reasonable heat transfer can be achieved with grease providing it is laid down in an even layer.

However, grease cannot be applied to partially assembled PCBs as it

contaminates solder and cleaning is not possible because of the risk of washing out the thermal interface. This means it is only possible to apply grease at the final assembly stage after the PCB has been soldered and cleaned. Grease is also difficult to clean once applied, making re-work after testing difficult.


The problems associated with grease are not limited to production; reliability is also in question. During development, engineers ensure the application of grease is even. However, during production inconsistencies in greasing up components are inevitable.

Too much grease or an uneven application changes the thermal characteristics of the circuit, resulting in stressing of the component. An air hole in the grease layer may result in a hot spot on the component, also causing stress. Alternative silicon based greases can also deteriorate over time; migrating silicon molecules dry the grease out and contaminate the assembly.

Alternatives to thermally conductive grease

Grease-replacement materials overcome these inconsistencies by forming a uniform layer of thermally conductive, electrically insulating material. They also mean less mess. One of Bergquist's grease alternatives is *Sil-Pad*. This range of highperformance dielectric films combines a tough carrier including fibreglass and silicone rubber as a binding material.

Silicone rubber has a low dielectric constant, high dielectric strength, good chemical resistance and high thermal stability making it good for conducting heat away from the component. Supplied as a sheet, or

This recent addition to the Gap Pad range has increased thermal conductivity relative to its counterparts in the same range. Available in thicknesses from 0.02 to 0.25in, Gap Pad 1500 has a thermal conductivity of 1.3W/mK and operates in temperatures ranging from -60 to 200°C. pre-cut to suit common package formats and custom shapes, *Sil Pad* comes in a number of formats to suit the application, including a version with an embedded copper layer for shielding purposes.

These materials exhibit 'cold flow', which excludes air from the interface as it heats and conforms to the mating surfaces. The films achieve thermal resistance of down to 0.2°C/Watt and a breakdown voltage of typically 6kV.

The uniformity and stability of the material allow the product to be reliably manufactured to the same standards time after time. Re-work of faulty products is far simpler with such materials as the pads are simple to remove and replace.

And for high-volume applications

Greasing up components during production also introduces a delay and a break in the manufacturing process. Typically, this is a manual job and so inevitably impacts on production costs – especially as production volumes increase. Even with dielectric films such as *Sil-Pad*, a manual process is usually required.

For such high-volume applications, Bergquist has developed *Softface*. Supplied as a film, this interface material is transferred to the desired surface using commercial hot stamping equipment.

To apply the material, the heatsink or case is pre-heated. Next, the interface material is coated on in any pattern as required. The heatsink can then be supplied to the production line for final assembly.

The material softens at 43°C to form a uniform thermally conductive layer. Its thixotropic characteristics prevent the material migrating out of the interface, and the material can be reused after re-work should it be required.

Unlike grease, *Softface* is also able to withstand solder baths and cleaning equipment, allowing partial or full assembly without the danger of contamination or wash out of the thermal layer. The combined benefits make the material an ideal grease replacement for medium and high volume manufacturing.

Ultimately, the thermal management requirements of a product depend on the design requirements. With the number of techniques designers have at their disposal to overcome thermal management issues, they don't have to totally rely on traditional heatsink arrangements.

Free with this issue

Gap Pad – an innovation in thermal management

The thermally-conductive pad on the cover of this issue isolates up to 6kV and has an operating temperature range of -40 to 200°C. But its really useful property is that it is flexible.

Being capable of conforming to its mating surfaces, the Gap Pad is clean and easy to apply and needs no grease - just a light pressure to ensure integrity of the joint. As a bonus, the Gap Pad doesn't dry out like grease so any voids that might occur due to thermal cycling and the like are filled as they occur.

This sample, known as Gap Pad VOSoft, has a thickness of 1.5mm and a thermal performance of 0.8W/mK, depending on applied pressure. To use the pad, simply assure a slight pressure between the hot component, its cooling surface, and the Gap Pad between them. Other products in the range cover 0.8W/mK to 5W/mK in thicknesses from 0.5mm to 6.0mm in 0.5mm increments. There's also a liquid version that can be pumped into a void, where it sets, providing effective thermal conduction between irregular surfaces.

Design engineers needing more information should call Bergquist on 01908 263663.

Thermal management specialist Bergquist

The Bergquist Company is a privately held family owned business started by Carl Bergquist in the sixties. The company began distributing electronic components in the upper Midwest of America and soon after developed their first proprietary product, Sil-Pad thermally conductive insulators.

This very successful product line has evolved into the Thermal Products Group which provides solutions to engineers for controlling and managing heat in electronic assemblies and printed circuit board designs. The other two main divisions of The Bergquist Company are Bergquist Switch and Bergquist Distribution, which includes the power cord product line.

The Thermal Products Group's 84 000 square foot manufacturing facility is in Cannon Falls, Minnesota. Thermal Products has additional facilities in Germany and the United Kingdom. A new facility in Prescott, Wisconsin houses the Thermal Clad printed circuit board operations and the new Touch Screen manufacturing operations.

Bergquist products are used by many of the world's largest OEMs in a variety of industries including automotive, computer, military/aerospace and telecommunications to name a few.

Over 260 materials have been developed to fit many different applications for transferring heat in electronic assemblies. Many of the new materials developed are the result of customer requests for a specific material that can perform for their particular application.

When your design demands ever decreasing dimensions, and ever increasing power, the first things that comes to mind for cooling are fans and heatsinks. However, it's a fact that conduction is the most efficient method for cooling, and this is where Gap Pad fits in

Gap Pad is a highly compliant material and works by filling the gap between your hot component and a nearby cold wall or chassis. Heat is drawn from the component by conduction where it can easily be dissipated.

Gap Pad really can replace a fan and a heatsink, saving space and cost. Reliability is assured with no m re

ssembly and nple.	also available for volume aut omated dispensing.		
al conduction	Highly compliant	materials	
1 W/m-K	Gap Pad V0	0.8 W/m-K	
1.5 W/m-K	Gap Pad V0 Soft	0.8 W/m-K	
2 W/m-K	Gap Filler 1000	1 W/m-K	
3 W/m-K	Gap Filler 2000	2 W/m-K	
	nple. al conduction 1 W/m-K 1.5 W/m-K 2 W/m-K	also available for volume auto dispensing. al conduction Highly compliant 1 W/m-K Gap Pad V0 1.5 W/m-K Gap Pad V0 Soft 2 W/m-K Gap Filler 1000	

Telephone +44 (0) 1908 263663 Fax +44 (0) 1908 263773 www.bergquistcompany.com

An Injectable version of Gap Pad is also available - Gap Filler* cures to a soft, highly compliant formula that can easily be peeled for re-work. Gap Filler also allows assemblies to be produced at zero stress which is particularly useful for ceramic components

Sounds too good to be true? Call Bergquist today to find out more.

908 263663

Gap Pad is available in thickness of 0.5mm to 6mm in 0.5mm increments Supplied as a sheet or in custom pre-cut form, with or without adhesive.

Gap Filler is available in 50cc, 200cc and 400cc for manual dispensing Larger containers a

new edition **Dictionary of Communications Technology**

WILE

dictionary of communications technolo

2400 bps or 4800 bp 4 Terminals @ 8400 tos indifiunced circuit A circuit that has been electrically altered to obtain the desired charac-tenistic for voice and data transmission. The reader is referred to the entires C-1 through C-8 and D-1 and D-2 for specific Information on C-level and D-level conditioning. in Watch An off-site network monitoring service marketed by Timeplex, Inc., of Woodcliff Lake, NJ. neutenation 1. The huking of transmission channels or subnetworks cul to end. 2. The linking of bioleks of user data or protocol transmissions 3. In fiber oppic technology, the interconnection of two or more fibers Into one continuous length. ion Collection of data at an intermedia im several low- and medium-speed lin-mission across one high-speed line. ing The "tuning" or addition of equip o improve the transmission characteristic-tity of a leased voice-grade line so that if specifications for data transmission. (See tor A device used to divide a data channel o or more channels of average lower speed, cally allocating space according to the Hin order to maximize data throughput at empooling Afcature of a PABX and other com-unications products that permits subscribers to be itomstically or manually connected to a group of iared or "pooled" modems. dem sharing unit. A device that splits a signal among a cluster of terminals and allows them to ahare one modern. Conditi the v required une moven, substitution switch An external option that is you to reroute your data through a "hot" (a modern that is already powered up) in the the original modern falls oderator A participant who is in charg conference A moderator is responsible for the discussion on track, for alleviating rigi for similar functions MODES Discrete optical waves that can propagate in optical waveguides Whereas in a single-mode fiber, only one mode, the fundamental mode, in a morpagate. There are several hundred modes in a multimode fiber which differ in field pattern and quick transvised. A modern with mittrani-tion and time when the line is used in a halt-ca mode. Also Quick Polit (QP). East PolI (PP), short haul. Description of both line drivers mixed dutates moderns. widehund: A modern designed to operate easily and the state of the state of the state easily and the state of the state of the state easily and the state of the sta propagation velocity (multimode dispers upper limit to the number of modes is de by the core diameter and numerical apert waveguide. tern and waveguid. Multified Chemical Vapor Deposition An AT&T Bell Laboratories-patented process that uses high temperatures to speed the manufacture of large quantities of their lightquide. The glass is made by allowing hot vapors is form a could pindule a tube of beated sinea, which is itseed drawn into fiber. Temperatures reach 4000 degrees F. (The mething polar of seel in 2800 degrees F.) equire a wideband circuli. =7 Communications software program sup-ing the public domain. X-modem, error-ciring filteransifer protocol. This version of the dom has multifilteransier capability. ronnert: The name used in DNA for that of communications hinks governed by industry ards for modein connection.

standards for modern connection. dem eliminator A device used to connect a local terminal and a computer port in heu of the pair of moderns that they would expect to connect to: allows DTE-no-DTE data and control ignal connections otherwise not easily ashleved by standard cables or connections. Modified cables

ration characteristics. See page 220

Ρ

C

C

C

S

point of vare is a 2000 degrees F.P. of the second second second second second second second Court militing that determined the trikes governing from ATeT and other antinua and deregulation have. Preudod over by lodge Handle Gerene, as was the ATET Antinus settlement which the MFT modified Judge Greene confunctions this moviement.

modular distribution accessories A term used to reference splitters, modular adapters and modular

With over 9000 entries and 250 illustrations, this book is an invaluable reference work for anyone involved with electronics and communications. Dictionary of Communications Technology provides comprehensive coverage of data and communications and has entries on PC lans, the Internet, communications testing and clientserver applications - in 500 pages.

Over 20 major companies helped prepare the Dictionary of Communications Technology, including AT&T, IBM and Digital Equipment Corporation.

Gilbert Held, author of Dictionary of Communications Technology, is an internationally author who has used his enormous expertise to make this work one of the most comprehensive sources of telecommunications information.

Europe £42.95 UK Price: £38.95 ROW £46.95

** Price includes delivery and package

Fax your order to 0181 6528111 or post to Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Dictionary of Communications Technology

	lotal
Name	
Address	
Postcode	Telephone
Method of payment (please	circle)
Access/Mastercard/Visa/C	heque/PO
Cheques should be made po	ayable to Reed Business Information
Credit card no	
Card expiry date	
Signed	
Please allow up to	28 days for delivery

WEB DIRECTIONS

To reserve your web site space contact Joannah Cox

Tel: 0181 6523620 Fax: 0181 6528938

AQUILA VISION

http://www.aquila-vision.co.uk

Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

ALCATEL COMPONENTS http://www.components @alcatel.de

AMBAR COMPONENTS

http://www.ambar.memec.com

Ambar Components, distributor for Cirrus Logic. Crystal, Cypress, Dense-Pac, Dynachip, Fairchild, IMI, Micro Linear, Mitel incorporating GEC Plessey Semiconductor, PowerDsine, QLogic, Scenix, SST and Summit.

APPLE RECRUITMENT http://www.applerec.u-net.com/

BF COMPONENTS

http://www.bfcomponents.co.uk

Visit the site for Milgray-Bell in the U.K. Full e-mail facility with instant links to Bell and Milgray web sites for stock interrogation.

BROADERCASTING COMMUNICATIONS SYSTEMS

www.broadercasting.co.uk

CAMBRIDGE MICRO Processor systems LTD

http://www.cms.uk.com

CONCEPT ELECTRONICS

http://www.conceptkey.co.uk

Concept Keyboards are specialists in the design and manufacture of

customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to ISO9001.

COOKE INTERNATIONAL

http://www.cooke-int.com e-mail: info@cooke-int.com

Stocklsts of Quality Used Electronic Test Instruments and Operating & Service Manuals.

CROWNHILL ASSOCIATES LTD

http://www.crownhill.co.uk Crownhill supply low cost development tools for use with Micro-Controllers and

Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DISPLAY ELECTRONICS

http://www.distel.co.uk

ECM SELECTION

http:// www.ecmsel.co.uk

For the pick of the UK's Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager --£22,000 - £70,000

EQUINOX TECHNOLOGIES UK LTD

http://www.equinox-tech.com Equinox Technologies UK Ltd.,

specialise in development tools for the embedded microcontroller market.

ELECTRONICS WEEKLY HYPERACTIVE

http://www.electronicsweekly.co .uk/

FELLER UK

http://www.feller-at.com

Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD

http://www.flash.co.uk

Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MCS51, Datlas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers'. ARE YOU developing code in a Flash?

HSPS LTD

http://dspace.dial.pipex.com/hsps/

FILTER DESIGNER - Advanced analog and digital filter design software for the PC. - Standard and Professional versions.- Free download of Evaluation version.

LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk

LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

MICRO CALL

http://www.microcall.memec.com

Micro Call is a distributor for the following Galleo,IDT (Integrated Device Technology), Lattice. Level 1. Linear Technology, Memec Design Service, NPC, Siliconians, Sillcon laboratories. WSI, Xilinx and Xicor.

M.K. CONSULTANTS (UK) LTD

http://www.mkconsultants.co.uk

A global supplier of low power modules designed and manufactured by MK in the UK. Nobody beats our prices. That's the MK price challenge.

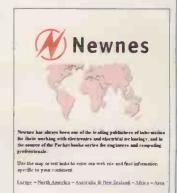
M&B RADIO

http://www.mb-radio.co.uk

MITRONICS

http://www.mitronics.com

Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circuits, and semiconductors


NATIONAL INSTRUMENTS

http://www.natinst.com/uk

NEWNES - BOOKS FOR THE ELECTRONICS WORLD

http://www.newnespress.com

Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads

OMEG POTENTIOMETERS

http://www.omeg.co.uk

Omeg 16mm and 20mm potentiometers and switched potentiometers with conductive polymer tracks. Web site has full product details, latest news, company contacts, stockists and distributors.

PCA:PHILIP COLLINS & ASSOCIATES PTY. LTD

http://www.pca.cc

PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

QUILLER ELECTRONICS

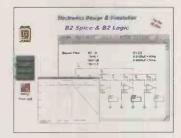
http://www.quiller.com

100+ pages of detailed technical Information on Schrack Relays, MEC Switches, Hirose Connections.

RALFE ELECTRONICS

professional test & measurement www.ralfe-electronics.co.uk

SWIFT EUROTECH


http://www.swiftdesigns.co.uk

EDWin NC - Professional EDA software at 90% discount! Integrated schematics, PCB layout and simulation. Plus CAMtastic! CAM software and netlist translators for most EDA systems.

RD RESEARCH

http://www.looking.co.uk/spice

Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis

SUPRA AUDIO CABLES

http://www.jenving.se

Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

SEETRAX LIMITED

http://www.ukonline.co.uk/seetrax

SYSONICS SYSTEMS LTD

http://www.sysonic.com

THOSE ENGINEERS LTD

http://www.spiceage.com

TRIDENT MICROSYSTEMS LTD

http://www.trident-uk.co.uk

Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter.

TRUMETER

http://www.truemeter.com

TOTAL FERQUENCY Control

http://www.tfc.co.uk

TRANSONICS

http://www.transonic.com

VANN DRAPER ELECTRONICS LTD

http://www.vanndraper.co.uk

Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

VUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk

VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

VECTOR BUSINESS COMMUNICATIONS

http://wwwvectore.co.uk/vector/

Pressrelations, advertising web sites, direct marketing, corporate literature, exhibitions and events .Marketing communications for the electronics industry In the UK and across Europe.

WOOD & DOUGLAS

http://www.woodanddouglas.co.uk

Wood & Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for International telemetry, data,voice & video wireless communications.

WINRADIO COMMUNICATIONS

http://www.broadercasting.com

XILINX

http://www.xilinx.com/

Xilinx is the world's largest supplier of programmable logic solutions producing industry leading device architecture and world class design software.

WEB DIRECTIONS

Put your web address in front of 21,000 Electronics fanatics. Electronics World acknowledges your companys need to promote your web site, which is why we are now dedicating page's in every issue to WEB ADDRESSES.

This gives our readers the opportunity to look up your companys name, to find your web address and to browse the magazine page to find new sites.

We also understand that cost is an important factor, as web sites are an added drain on budgets. I am sure you will agree these rates make all the difference

FOR 12 ISSUES:

Lineage only will cost £150 for a full year just £12..50 per month.

This includes your companys name, web address and a 25 word description.

Lineage with colour screen shot will cost £350 for a full year just £29.17 per month.

This will include the above plus a 3cm screen shot of your site, which we can produce if required.

To take up this offer or for more information ring Joannah Cox on 0181 652 3620 or fax on 0181 652 8938. E-mail: joannah.cox@rbi.co.uk

Company Name		Web address		

Programming the eeprom HC11

Peter Topping's step-by-step guide for programming the LW radio-code clock presented last month demonstrates how easy it is to program and develop a modern microcontroller. The software is freeware and the hardware is simply an RS232 interface.

A suitable method of programming the MC68HC811E2 is to use the PCbug11 software package. PCbug11 is a free program that runs on a PC. It talks to a small piece of code embedded in the HC11, or to code downloaded into its RAM using serial communication. The compact – in the case of the LW clock, downloaded – code is interrupt driven and is referred to as the talker.

This combination facilitates a debugging environment that can be used to download application code and then debug it by allowing the code to be modified and executed, breakpoints to be set, RAM locations to be inspected etc.

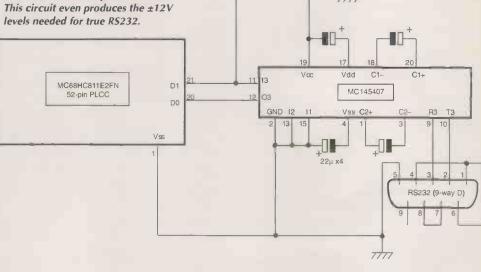
I used PCbug11 to develop the LW clock application described in last month's issue, but the only feature discussed here is its ability to download code into the EEPROM of the *MC68HC811E2*. This can only be done once communication has been established between the PC and the *HC11*.

The RS232 chip shown in the circuit diagram is required to establish communication. The LW clock digital board can be used by simply adding a small board containing this extra circuit.

Only three wires, Tx, Rx and ground, connect the extra board which can use the MC145407 shown, or a MAX232. Both these chips contain charge pumps so they do not need the additional ± 12 volt power supplies normally required for an RS232 interface. Connection to the PC's COM1 port with a default baud rate of 9600 is assumed.

Peter is an MCU applications engineer at Motorola's East Kilbride plant.

There are two modifications that must be made to the *HC11*'s circuit on the clock's digital board. These are the change of the crystal to 8MHz and the selection of a different mode.


To download simply short one pin The circuit shown in last month's article uses single-chip mode by holding the MODA pin low and the MODB pin high. For PCbug11 the special bootstrap mode is used requiring both mode pins to be low.

As the MODB pin is held high with a pull-

Program download circuitry between the HC811E2 and a PC COM port is simply an R5232 interface. All you need to do to put the controller in download mode is to change the level on one of two mode pins and reset. This circuit even produces the ±12V levels needed for true R5232. up resistor it can simply be shorted to ground to select the appropriate mode for PCbug11. With this done, a reset will force the *HC11* to enter it's special bootstrap mode. In this mode it runs pre-programmed ROM code that downloads data into on-chip RAM via the serial SCI interface. The interface is implemented via by pins D0 (20) and D1 (21).

When using PCbug11, the talker is first downloaded. Once downloaded, the talker can be used in conjunction with the PCbug11 program on the PC to download

100n

10k

5V

and debug the user's application code. This code can be loaded into RAM, EPROM or EEPROM. But for the purposes of the LW clock, the download is only into the *MC68HC811E2*'s 2Kbyte EEPROM.

The application has already been fully debugged so PCbug11's many other features – breakpoints, code modification, RAM inspection etc. – are not used.

To use PCbug11, I recommend that the entire contents of the floppy disk available from *Electronics World* is copied into a new DOS directory – say pcbug11 – on your hard disk. You should then run with this as the default directory. A real implementation of DOS is required. Emulated DOS running within Windows NT will probably not work correctly.

Application code download into EEPROM is in S-record format, as is the listing printed last month on page 453. An S-record is in ASCII and contains the following information.

The first two characters on each line are the record type – S0: header, S1: data, S9: terminator. The next two characters indicate, in hexadecimal form, the number of bytes of data that follow. The next four characters contain the 16-bit hexadecimal address of the first data byte and the data follows in hexadecimal, at two characters per byte, the last byte being a checksum.

In last month's LW clock article, the penultimate line in Table 4 should have read Y:3/5(1999)W:13. Apologies.

Programming and LW-clock software

The disk available from *Electronics World* contains the following PCbug11 files:

pcbug11.exe	PCbug11 executable program
codes.p11	Mnemonic tables for PCbug11
offsets.p11	Addressing mode offsets for mnemonic tables
pcbug11.hlp	PCbug11 help information
talk88.boo	Downloaded talker for the MC68HC811E2
talk88.boo	Downloaded talker for the MC68HC811E2

As well as its executable file, PCbug11 requires the two .p11 files and the talker for the MC68HC811E2. The disk also includes a help file, which is accessed by typing "help topic" within PCbug11. For a list of commands simply type "help". This disk also contains these LW clock application files.

lwrd.s11	Source code (Introl assembler switch setting: -TI).
lwrd.lst	LW clock listing output from assembler.
lwrd.doc	LW clock listing (Word format).
lwrd.bat	Batch file for use with Introl relocatable linker.
lwrd.ld	Address locations for use with linker.
lwrd.0	Object code in S-record format.

The lwrd.s11, lwrd.bat and lwrd.ld files are only relevant if modification and reassembly are required. The assembly directives included are for the Introl assembler and may need modification for other assemblers. For programming the LW clock application described in last month's magazine only the S-record object code file (lwrd.0) is used.

The object-code listing shown in last month's article can be obtained as a text attachment to a text file by e-mailing jackie.lowe@rbi.co.uk. The annotated source code can be obtained on disk for £10 to cover copying, administration and postage. Send a postal order or cheque payable to Reed Business Publishing Group to Precise Clock, Jackie Lowe, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Please note that the source-code listing will not be e-mailed due to network bandwidth limitations.

Procedure for using PCbug11 to download the LW clock program:

- Connect the serial board to the PC and to the LW clock digital board. Power up in special bootstrap mode (8MHz crystal, both mode pins low).
- 2. On PC enter "pcbug11 -88"
- 3. If communication is correctly established i.e. no error message - then continue. If communication between the PC and the HC11 is not established this will be intimated by an error message. If this occurs then the problem should be rectified before attempting to continue. The most common problem is incorrect connection of the Tx (D1) and Rx (D0) lines or the lack of a pull-up on the Tx line. This pull-up is missing from the circuit in some editions of the PCbug11 user's manual. Communications can be checked by typing ctrl R. This will get a response of "communications synchronised" or display an error message. After a communications error a retry should be carried out by exiting PCbug11 (quit y), resetting the HC11 and restarting at step 2. This is required as the talker is downloaded into RAM and if this step has failed then typing ctrl R will not fix the problem as it doesn't retry the download.
- 4. Once communication is functioning correctly enter the following PCbug11 commands :

control base hex	(allow subsequent commands to specify addresses and data in hex)
eeprom f800 ffff	(specify address range to be written as EEPROM, i.e. not RAM)
ms 1035 00	(enable EEPROM writing)
loads \pcbug11\lwrd.0) (download S-record code into EEPROM, this takes 2 minutes)
verf \pcbug11\lwrd.0	(verify that EEPROM contains the correct code)
quit y	(quit PCbug11)

- 5. If everything has occurred correctly the EEPROM will now contain the LW clock code. To convert the hardware back to run the clock: power down, remove the additional board containing the serial interface to the PC, replace the crystal with the application frequency of 2MHz, remove the short to ground on the MODB pin and connect the LW clock analogue board.
- 6. On power-up the LW reference clock should now be operational.

Converts your colour monitor into a QUALITY COLOUR TVI!

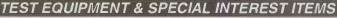
TV SOUND & TELEPOX 2 **VIDEO TUNER** CABLE COMPATIBLE

The TELEBOX is an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors or AV equipment which are fitted with a composite video or SCART input. The composite video output will also plug directly into most video recorders, allowing receivers' (TELEBOX MB), push button controls on the front panel allow receivers' (TELEBOX MB), push button controls on the front panel allow receivers' (TELEBOX MB), push button controls on the front panel allow receivers' (TELEBOX MB), push button controls on the front panel allow receivers' (TELEBOX MB), push button controls on the front panel allow receivers' (TELEBOX MB), push button controls on the front panel allow receivers' (TELEBOX SI and UHF) including the HYPERBAND as used by most cable TV operators, Ideal for desktop computer video systems & PIP (picture h picture) setups. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level HI Fi audio output are provided as standard. Brand new - fully guaranted. TELEBOX ST for composite video input type monitors \$36.95 TELEBOX ST as ST but fitted with integral speaker \$239.50 TELEBOX ST as ST but fitted with integral speaker \$239.50 TELEBOX ST as ST but fitted with integral speaker \$239.50 TeLEBOX ST performed signal reception Telebox MB should be connected to a cable type service. Shipping on all Telebox's, code (B) \$2140 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2160 of the art PAL (UK spec) UHF TV tuner module \$2 The TELEBOX is an attractive fully cased mains powered unit, containing all

State of the art PAL (UK spec) UHF TV tuner module with composite 1V pp video & NICAM hi fi stereo sound outputs. Micro electronics all on one small PCB only 73 x 160 x 52 mm enable full tuning control via a simple 3 wire link to an IBM pc type computer. Supplied complete with simple working pro-gram and documentation. Requires +12V & + 5V DC to operate. BRAND NEW - Order as MY00. Only £49.95 code (B) See www.distel.co.uk/data_my00.htm for picture + full details

FLOPPY DISK DRIVES 21/2" - 8"

All units (unless stated) are **BRAND** NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a full 90 day guarantee. Call or see our web site www.distel.co.uk for over 2000 unlisted drives for spares or repair.


31/2" Mitsubishi MF355C-L. 1.4 Meg. Laptops only	£25.95(B)
31/2" Mitsubishi MF355C-D. 1.4 Meg. Non laptop	£18.95(B)
51/4" Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE	£18.95(B)
5¼" Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFE	£29.95(B)
51/4" BRAND NEW Mitsubishi MF501B 360K	£22.95(B)
Table top case with integral PSU for HH 51/4" Floppy / HD	£29.95(B)
8" Shugart 800/801 8" SS refurbished & tested	£210.00(E)
8" Shugart 810 8" SS HH Brand New	£195.00(E)
8" Shugart 851 8" double sided refurbished & tested	£260.00(E)
8" Mitsubishi M2894-63 double sided NEW	£295.00(E)
8" Mitsubishi M2896-63-02U DS slimline NEW	£295.00(E)
Dual 8" cased drives with integral power supply 2 Mb	£499.00(E)

HARD DISK DRIVES 2%" - 14"

	-
21/2" TOSHIBA MK1002MAV 1.1Gb laptop(12.5 mm H) Net	¥ £79.95
21/2" TOSHIBA MK2101MAN 2.16 Gb laptop (19 mm H) Net	¥ £89.50
21/2" TOSHIBA MK4309MAT 4.3Gb laptop (8.2 mm H) New	£105.00
21/2" TOSHIBAMK6409MAV 6.1Gb laptop (12.7 mm H) New	£190.00
21/2" to 31/2" conversion kit for Pc's, complete with connectors	s £14.95
3½" FUJI FK-309-26 20mb MFM I/F RFE	£59.95
31/2" CONNER CP3024 20 mb IDE I/F (or equiv.) RFE	£59.95
31/2" CONNER CP3044 40 mb IDE I/F (or equiv.) RFE	269.00
31/2" QUANTUM 40S Prodri ve 42mb SCSI I/F, New RFE	£49.00
5¼" MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE	£49.95
51/4" SEAGATE ST-238R 30 mb RLL I/F Refurb	£69.95
51/4" CDC 94205-51 40mb HH MFM I/F RFE tested	£69.95
5%" HP 97548 850 Mb SCSI RFE tested	£99.00
51/4" HP C3010 2 Gbyte SCSI differential RFE tested	£195.00
8" NEC D2246 85 Mb SMD interface. New	£199.00
8" FUJITSU M2322K 160Mb SMD I/F RFE tested	£195.00
8" FUJITSU M2392K 2 Gb SMD I/F RFE tested	£345.00
Many other drives in stock - Shipping on all drives is c	ade (C1)

VISA

26

 TEST EQUIPMENT & SH

 MITS. & FA3445ETKL 14" Industrial spec SVGA monitors

 FARNELL 0-60W C @ 50 Amps, bench Suppig

 FARNELL AP3080 0-30V DC @ 80 Amps, bench Suppig

 VALUE OF COLSPANE AND C @ 80 Amps, bench Suppig

 VALUE OF COLSPANE AND C @ 80 Amps, bench Suppig

 VALUE OF COLSPANE AND C @ 80 Amps, bench Suppig

 VALUE OF C @ 50 Amps, bench Suppig

 VALUE OF C @ 100 KHz - 13 GHz signal generator

 AMAIT OKA 274 Data Analyser WIT 6703 (2W) 64 100

 VALUE OF C OKHZ-1GHZ RF signal generator

 VALUE OF C OKHZ-1GHZ RF signal generator

 VALUE OF C 20 C OKHZ-1GHZ RF Signal generator

 VALUE OF C 20 C OKHZ-1GHZ RF Signal generator

 VALUE OF C 20 C OKHZ-1GHZ RF Signal generator

 VEVA ARX marcon 12030 Opt 03 10KHZ r 13 GHZ signal generator

 ECIAL INTEREST ITEMS

 HP6030A 0-200V DC @ 17 Amps bench suppy Intel SBC 486/125C08 Enhanced Multibus (MSA) New 2013 20205 A0 4 pen HPGL fast drum plotters
 £1150

 Nikon HFX:11 (Ephiphol) exposure control unit PHILIPS PM5518 pro. TV signal generator
 £1450

 PMENDIO exposure control unit PHILIPS PM5518 pro. TV signal generator
 £1450

 Marcon 12924 Universit TV signal generator
 £1250

 Motorola VME Bus Boards & Components List. SAE / CALL £POA

 Trio 0-18 vdc linear, metered 30 amp bench PSU. New
 £550

 Fulltsu M3041B 600 LPM brinter with network interface
 £1250

 Perkin Elmer 299B Infrared spectrophotometer
 £550

 VG Electronics 1035 TELETEXT Decoding Margin Meter LightBand 60 output high spec 2u rack mount Video VDA's
 £4395

 Sekonic SD 150H 18 channel digital Hybrid chart recorder
 £1950

 BC AM20/3 PPM Meter (Ernest Turner) + drive electronics
 £750

 BC AM20/3 PPM Meter (Ernest Turner) + drive electronics
 £750

 ANRITSU M530 bick 10 6-17. UM optical spectrum analyser
 £990

 ANRITSU M530 bick 10 6-17. VM optical spectrum analyser
 £970

 R&S FTDZ Dual sound unit
 £855

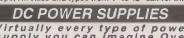
 R&S SBUF-E1 Vision modulator
 £975

 WILTRON 6630B 12. 4/ 20GH2 RF sweep generator

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £299 - CALL for info

PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with <u>both</u> HGB and standard composite 15,625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atarl BBC computers. Ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Good used condition - fully tested - guaranteed Dimensions: W14' x H123' x 15%* D.

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen burns). In attrac-tive square black plastic case measuring W10* x H10* x 13%* D. 240 V AC mains powered 240 V AC mains powered. Only £79.00 (D)


KME 10" 15M10009 high definition colour monitors with 0.28" dot pitch. Superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13/5" x 12" x 11". Good used condition. Only £125 (E)

Only £125 (E)

20" 22" and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & optional sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee.

20"....£135 22"....£155 26"....£185(F) We probably have the largest range of video monitors in Europe, All sizes and types from 4" to 42" call for info.

Virtually every type of power supply you can Imagine.Over 10,000 Power Supplies Ex Stock Call or see our web site.

2040

Made by Eurocraft Enclosures Ltd to the highest possible spec, rack features all steel construction with removable side, front and back doors. Front and back doors are

Superb quality 6 foot 40U

Virtually New, Ultra Smart Less than Half Price!

rack features all steel construction with removable side, front and back doors. Front and back doors are hinged for easy access and all are lockable with five secure 5 lever barrel locks. The front door is constructed of double walled steel with a 'designer style' smoked acrylic front panel to enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack reatures fully slotted reinforced vertical fixing members to take the heavlest of 19" rack equipment. The two movable vertical fixing strust (certras available) are pre punched for standard cage nuts'. A mains distribution panel internal-ly mounted to the bottom rear, provides 8 x IEC3 on Euro sockets and 1 x 13 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. External dimensions mm=1625H x 635D x 603 W. (64" H x 25" D x 23*" W) Sold at LESS than a third of makers price 1! A superb buy at only £245.000 (G)

£245.00 /G

A superb buy at only £245.00 (G) 42U version of the above only £345 - CALL

12V BATTERY SCOOP - 60% off !!

A special bulk purchase from a cancelled export order brings you the most amazing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Ltd, type SBS15 featuring pure lead plates which offer a far superior shelf & guaran-teed 15 year service life. Fully BT & BS629 approved. Supplied BRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 deep. M6 boit terminals. Fully guaranteed. Current makers price over £70 each Dure Price Case each Our Price £35 each (c) or 4 for £99 (E)

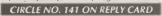
RELAYS - 200,000 FROM STOCK

Save EEEE's by choosing your next relay from our Massive Stocks covering types such as Military, Octal, Cradle, Hermetically Sealed, Continental, Contactors, Time Delay, Reed, Mercury Wetted, Solid State, Printed Circuit Mounting etc., CALL or see our web site www.distel.co.uk for more information. Many obsolete types from stork. Save SEEE're stock. Save ££££'s

COLOUR CCD CAMERAS

BIGE

COLOUR CCD CAMERAS Undubtedly a miracle of modern technology & our special buying power I A quality product lea-turing a fully cased COLOUR CCD camera at a give away price! Unit features full autolight sensing for understand the sensing for unders


ONLY £99.00 or 2 for £180.00 (B) Web ref = LK33

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 and licence - OEM packaged. ONLY £89.00 (a) ENCARTA 95 - CDROM, Not the latest - but at this price 1 £7.95 DOS 5.0 on 31 disks with concise books c/w OBasic Windows for Workgroups 3.11+ Dos 6.22 on 3.5" disks Wordperfect 6 for DOS supplied on 31 disks with manual £24.95

All prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools, Universities and Local Authorities - minimum account order £50. Cheques over £100 are subject to 10 working days clearance. Carriage charges (A)=£3.00, (A1)=£4.00, (B)=£5.50, (C)=£8.50, (C1) £12.50, (D)=£15.00, (E)=£18.00, (F)=£20.00, (G)=CALL Allow approx 6 days for shipping - faster CALL. All goods supplied to our Standard Conditions of Sale and unless stated guaranteed for 90 days. All guarantees on a return to base basis. All rights reserved to change prices / specifications without prior notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks, tradenames etc acknowledged. © Display Electronics 1999. E & O E, 04/99.

613

ADVERTISERS' INDEX

ANCHOR SUPPLIES	
ANTRIM TRANSFORMERS	
ARBOUR APPOINTMENTS	
CHELMER VALVE COMPANY	603
CMS	579 and 583
CONFORD	598
CROWNHILL	575 and 583
DATAMAN	OBC
DISPLAY ELECTRONICS	
DOLCH	
ELECTROMAIL	571
ELECTRONIC RECRUITMENT SERVI	CES562
ENG - INN ELECTRONICS	601
EQUINOX TECHNOLOGY	IBC
HITEX UK	
ILP DIRECT	
INTERNATIONAL RECTIFIER	
JOHNS RADIO	
JPG ELECTRONICS	
LABCENTER ELECTRONICS	559

M & B RADIO	.579
MILFORD INSTRUMENTS	.536
NATIONAL INSTRUMENTS	.549
OLSON ELECTRONICS	
PICO	.571
POLAR INSTRUMENTS	.598
PS CONSULTANTS	
QUICKROUTE	. 53 6
RALFE ELECTRONICS	
RAMCO	
RN ELECTRONICS	
SEETRAX	.598
SIGHTMAGIC	.578
SOLUTION	.563
STEWART OF READING	. 597
SURREY ELECTRONICS	. 603
SWIFT EUROTECH	.543
TELNET	.569
THOSE ENGINEERS	. 582
TIE PIE	.533

Tel: 0181 652 3620

CLASSIFIED

Fax 0181 652 8938

ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited

1 Mayo Road, Croydon Surrev CR0 2QP TEL: 0181 684 1166 FAX: 0181 684 3056

WANTED

Valves & Semiconductors All types e.g. Discrete & IC's Good Rates Paid CHELMER VALVE CO. 130 New London Road Chelmsford, Essex Tel: 01245 265865 Fax: 01245 490064

German-English documentation is looking for a FREELANCE TECHNICAL

TRANSLATOR an engineer with professional and translation experience in a Germanspeaking environment, in electrical/electronic/mechanical or measurement technology. E-mail is vital, DTP useful. Detailed information please to:

ACM C & P Chadwick 15 St Olaves Road York YO30 7AL

WANTED TO BUY. Used Neutrik chart recorder system. Fax USA 702/565-4828 Franklin Miller. Email fjm@anv.net

WANTED Sony model CDP-K1 CD player. This has variable speed and microphone facility. Equivalent considered. – Reading 9428986.

WANTED. Gemstar Video+ Plus+ programmer model VIP-185 (preferably). Must be in good working order. Instructions not required. 01736 367100.

VALVES WANTED Courteous, Professional Service Ask for a free copy of our wanted list. **BILLINGTON EXPORT LTD** Billingshurst, Sussex Tel: 01403 784961 Fax: 01403 783519 Email:

billingtonexportItd@btinternet.com VISITORS PLEASE PHONE FOR APPOINTMENT

Designer Systems has over a decade of experience designing innovative products for client companies and individuals. If you have a product idea, need to develop a new product or sub-assembly from scratch, want to re-develop an old product or need professionally written documentation or software, contact us for more information or see our web site.

Tel/Fax: 010/ Email: designer.systems @btinternet.com Web: http:// designersystems. DESIGNER DESIGNER DESIGNER DESIGNER DESIGNER Tel/Fax: 01872 223306

ADVERTISERS PLEASE NOTE FOR ALL YOUR **ENQUIRIES ON ADVERTISING** RATES PLEASE CONTACT JOANNAH COX ON TEL: 0181 652 3620 FAX: 0181 652 8938

APPOINTMENTS

School of Health Sciences

Principal Technician in Psychology

£18,374 - £19,596 pa

To support the development of research in the division of psychology through the design, construction, maintenance and repair of a variety of equipment ranging from bio-amplifiers to standard computer hardware. Supervisory experience of other technical staff is desirable but not essential. You should be qualified to HND/HNC level or higher in electronics, must be highly computer literate and have had previous experience in providing technical support in a University or other research environment. Experience of electronics design, in particular Ref CI790 interfacing analogue and digital technologies, is essential.

For detailed further particulars and an application form (returnable by 11 June 1999) and quoting the reference number, contact the Personnel Services Department, University of Wolverhampton, Molineux Street, Wolverhampton WVI ISB. Tel: 01902 321049 (ansaphone). For hearing impaired candidates our *S* Minicom number is 01902 321249. Email address: per@wlv.ac.uk

The University provides higher education services to all sections of the community and is committed to equality of opportunity.

ARTICLES FOR SALE

VBI DECODER CARDS

(Teletext Receivers) SALE

SALLE Manufacturer has surplus to requirements Printed Circuit Boards type CF2001. These through-hole unpopulated boards when built allow reception of BBC Datacast etc. VBI transmissions as well as ordinary Teletext. For further details see www.citifax.co.uk or phone 01204 392397 office hours. Olfered with programmed EPROM and Microsoft PnP Vendor ID EEPROM plus PC ISA bracket, with circuit diagram parts list and demo disk while stocks last at £25 each, £200/ten, inc. UK P&P free. Citifax Limited, 2nd Floor, 3 Atlas House, St George's Square, BOLTON BL1 2HB, Lancashire.

500,000+ GP10Y glass passivated 1A diode. Offers - 01233 750481.

ELECTRONIC circuit analysis program for PC. Provides graphical output to screen and printer Many circuit examples. £10. - Tel. 01753 643384.

Workshop Clearout! SPECTRUM ANALYSER Marconi TF2370 £300 + VAT Audio to 110MHz digital storage display, also extender available. Tektronics 466 Storage Oscilloscope VGC £275. Scanner AOR3000A (boxed) £350. PC Pentium 120 new 15" monitor, and new 3.4G HDD £350. **Precision Pressure Gauges** Barometric/Analogue £100. Digital absolute/differential Druck £200. Camera gyroscopic stabiliser +PSU £100. Gould sweep gen. 0 to 1.6GHz £100. HP 1600A Logic state analyser £100. Sig gens, audio and RF – phone. All guaranteed working Derby 01332 670707

100MHz OSCILLOSCOPE with 60MHz probe set, £580, unused (OS5100); TG230 Function generator, £200, unused; 10MHz Oscilloscope, £50. Evenings 01264 391165.

DYNAMIC Sciences Tempest RX, £1,695; HP141T > 18GHz, £950; Icom IC-M800 TSVR, £695; Racal RA1795, £995; Advantest TR4131 Spectrum Analyser, £2,750. - Tel: 01908 365726.

July 1999 ELECTRONICS WORLD

of-the-art technology to provide non-intrusive emulation programmers have been real-time, ALL-11 programmers have been developed with the semiconductor manufacturer's approval.

Most microprocessor families are supported, from manufacturers including Intel, Motorola, Siemens, Mitsubishi, Dhilies and more Philips and many more.

Tel: 01962 733140 Fax: 01962 725408 www.nohau.co.uk sales@nohau.co.uk

Ï

616

TFTs and touch screen technology from the world's leading

manufacturers.

Phone TRIDENT today for your free copy. TEL: 01737 780790

> FAX: 01737 771908 OR VISIT OUR WEBSITE:

www.tridentdisplays.co.uk

CIRCLE NO.148 ON REPLY CARD

Setting the Standards for Embedded Solutions!

Surely not. Surely someone somewhere has developed a portable programmer that has even more features, even greater flexibility and is even better value for money.

Actually, no. But don't take our word for it. Use the feature summary below to see how other manufacturers' products compare.

Dataman-48LV

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 and 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU for go-anywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

FREE

TRIAL

DAI

CE

Money-Back

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

still the world's most portable **LABORTERS** vertu

E**7**95

Dataman S4

INTELLIGENT UNIVERSAL PROGRAMMER

Dataman

£495

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL module

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

Still as unbeatable as ever

Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman. Order via credit card hotline - phone today,

use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions.

Support

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- · Next day delivery always in stock
- Dedicated UK supplier, established 1978

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorchester, Dorset, DT2 0AE, UK Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321095 (24hr) Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com

W320

Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!