Develop Filash 8051 controllers in C for under 5150

 ELECTRONICS WORLD Denmark DKr. 66.00 Germany DM 15.00 Greece Dra. 1000.00 Holland Dfl. 11.50 Italy L. 8500.00Applications for magnetic sensing
Hybrid audio power amp Reviews: Circuitmaker Traxmaker

Self on crossover distortion
Dipole feeding
Audio
routines in C

Precise frequency generation

 PROBLEMS? No Time SOLUTIONH
PIC based TOOLS to help you realise your project: from single applications to full scale production

BASIC STAMPS

PIC based BASIC Stamps are perfect for one-off and low volume applications.
Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ...THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independantly of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

BASIC Stamp Development Kits including PC software, manuals, 24+application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

PIC16Gxx DEVELOPMENT TOOLS

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat. We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52545556575862062162261626364657172737484

PIC16Cxx Programmer

Also stocked

* ZIF sockets
* SOIC/SSOP/PLCC adapters
* Prototyping boards
* Compilers/Simulator

In Circuit Emulators

*True hardware emulation of program memory, registers and I/O

* Unlimited breakpoints.
*Single stepping

* Software-programmable oscillator
* Windows Environment
*Runs from 32 Khz to 10 Mhz (' xx) and 20 Mhz (' 5 x)
* Source level debugging for PASM(X), MPASM and MPC
* Optional trace facility

Milford Instruments Milford House, 120 High Street, SOUTH MILFORD LS25 5AQ

Please call or fax to receive our catalogue and price list.

All prices exclude VAT and $£ 3$ shipping.
BASIC Stampe the Parallax logo are

PAALAX
3805 Atherton Road, $\neq 102$ Rocklin, CA 95765 USA 916-624-8333, Fax 916-624-8303

Contents

830 MAGNETIC SENSING APPLICATIONS

Inclination detection, vehicle counting and a jam jar for hams three applications for a three-terminal magnetic sensor.

836 NO-CONTACT CURRENT MEASUREMENT

Steve Winder shows how measuring dc via a magnetic sensor gets round the problems associated with shunts.

842 GAIN FROM PASSIVE

Ian Hickman investigates how gain can be obtained in unusual ways - using only passive components.

847 THE ROUTE TO PCB CAD
Thinking of using cad for your pcbs? Rod Cooper discusses autorouters and reviews Circuitmaker and Traxmaker.

853 FEEDING THE OFF-CENTRE DIPOLE

Richard Formato challenges traditional thinking about where the off-centre fed dipole should be tapped.

858 NIGHT THOUGHTS ON CROSSOVER DISTORTION

When designing a high-performance Class-B audio power amplifier, removing crossover distortion is one of the most problematic areas. Doug Self shares his experience.

864 HANDS-ON INTERNET

Cyril Bateman looks at circuit-design software on the net - including packages specially for rf engineering.

872 Interfacing with C - new book, and special offer for listings disk

873 AUDIO PROCESSING ON THE PC
Howard Hutchings discusses the C code needed to process audio on the PC, for effects such as flanging and chorus.

892 PRECISE FREQUENCY GENERATION

Nick Wheeler shows how to derive almost any frequency with quartz precision.

897 HYBRID POWER AMPLIFIER

Valves, transistors and ICs combine in Wim van der Jager's hybrid power amplifier, capable of delivering up to 40 W

Regulars

819 COMMENT
Media megalomania

820 NEWS

1000 times more data on a cd? Missed opportunity, Superconductor breakthrough.

823 RESEARCH NOTES

Chips that will not heat, World's smallest wire, 3D display, Safer driving

868 LETTERS

Do-it-yourself pth and an answer to the motional feedback headphone problem.

881 CIRCUIT IDEAS

Electric whisker, Deglitcher for smps, Very simple charger for NiCds, Voltage division.

887 NEW PRODUCTS

Pick of the month - classified for convenience.

EW reader discount

This 10 Hz to 1 MHz audio signal generator is available to Electronics World readers at 20% discount - page 855.

Sottware and hardware for developing Atmel Flash 8051 microcontrollers in C or assemler - ovailable exclusively to Electronics World readers at the special price of $£ 184.48$, pager 828

3D all round: with this three dimensional display cube, a coloured image can float in all three axes - and be viewed from any angle - page 825. for such a comprehensive package"

Practical Wireless July 96

NEW Library Packs Available!
Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic \& PCB design system for windows. With its multiple button bars, ' tool tips' , and ' parts bin' Quickroute helps you to get working quickly and efficiently

Quickroute is available in 4 different versions (see Table) all of which offer great value for money. Quickroute is available with multi-sheet schematic capture, 1-8 layer auto-routing, copper fill, engineering change, and a range of popular file impon/export features allowing connection to simulators and other software packages (details on request). Prices are Personal ($\$ 68$), Designer ($£ 149$), PRO ($£ 249$) and PRO $+(\$ 399$). Please add P\&P and V.A.T to total (see below*).

 amazing flexibility \& power at an affordable price! Compatible with Windows $3.1 / 95 / \mathrm{NT}$, SMARTRoute gives you total control over routing strategies including layers used, track \& via sizes, design rules, etc.

SMARTRoute is completely compatible with Quickroute 3.5 and offers improved completion rates compared with Quickroute's built in autorouter (ask for details) SMARTRoute is available for £149 plus P\&P and V.A.T. Special bundle pricing for Quickroute and SMARTRoute when purchased together. 818

VISUALISATION, DATA ANALYSIS \& APPLICATION DEVELOPMENT

MExpress is a powerful tod that can be used interactively to load, analyse and display data - or by using its powerful BASIC-like scripting language - you can create technical appllcations with buttons, menus, 2D \& 3D graphics, and powerful numerical methods (ask for details).
MExpress is available in Standard (£99) and Developers Editions ($£ 299$). Prices exclude P\&P and V.A.T (see below*). The Developers Edition includes tools for turning MExpress script files into $\mathrm{C}++$ code. This can then be compiled by an MExpress compatible $\mathrm{C}_{+}+$compiler into a stand alone executable!

"The Engineering \& Scientific
 Software People"

EDITOR

Martin Eccles
01816523128
EDITORIAL ASSISTANT
Mark Hefley
01816528638

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden
DESIGN
Alan Kerr
EDITORIAL
ADMINISTRATION
Jackie Lowe
0181-6523614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

ADVERTISEMENT

MANAGER

Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE
Malcolm Wells
0181-6523620

ADVERTISING
 PRODUCTION

0181-6523620

PUBLISHER

Mick EllioH

EDITORIAL FAX

0181-6528956

CLASSIFIED FAX

0181-6528956

SUBSCRIPTION HOTLINE

01622778000
Quote ref INJ
SUBSCRIPTION QUERIES
01444445566
FAX 01444445447
ISSN 0959-8332

NEWSAGENT ENQUIRIES

Contact MarketForce
(UK) Ltd.
Telephone:
0171-261 5555
Fax: 0171-2616106
REED
BUSINESS
PUBLISHING

Media megalomania

Sometimes one wonders what drives industrial moguls. Some build business empires which destroy their families - like Aristotle Onassis; some build companies which get taken over soon after they leave - like Charlie Forte; some pursue a vision of a better life - like Walt Disney; some want to pioneer technology - like the founders of Intel; but in the media world the usual driving force behind the industry's moguls is the pursuit of influence.
From William Randolph Hearst to Lord Northcliffe the motivation of media tycoons has been to amass and exercise power. Wealth came to them as a by-product. In Northcliffe's case the pursuit of power led to raving megolamania and a madman's death.
It was not just political power which Northcliffe relished. It was any power. He was said to enjoy appointing two people to the same job just for the pleasure of seeing them fight it out to see who survived.
But it was political power that caused the most concern. Even then. And in those days, because of the limitations of the technology, the voters which a media tycoon could hope to influence would be limited to one country.
Nowadays technology means that a global media tycoon can influence the voters of any country on the planet. And the advent of seamless digital technology in all the main information delivery vehicles - terrestial broadcasting, satellite broadcasting, cable, wireless telecommunications/datacommunications - means that a tycoon can access the global citizenry not just on a mass basis but, literally, on an individual basis.
Take, for instance, the apparently innocuous declared intention of BSkyB to provide Internet access. This is from a parent company - News Corp - which has terrestial and satellite broadcasting facilities, linked to cable and wireless communications interests, backed by film and news creation capabilities.
Imagine the power of all that combined with Internet access! The company will be able to monitor what you view, who you e-mail, what web sites you visit, what sort of information you access. With a bit of experience of you, the provider will be able to suggest new
> "Nowadays technology means that a global media tycoon can influence the voters of any country on the planet."
services, products, or ideas which you might accept.
And what that information worth to a government seeking to monitor its citizens or to influence them in the run-up to elections? One would think it worth a lot. And one would think that media tycoons could ask a lot for it. Not in money perhaps, but in concessions allowing further extensions of their power. Internet access via a big media company should carry a public health warning!

Potentially more dangerous than the open pipeline into your wallet, is the pipe into your head, particularly when it comes from a company that also creates entertainment and news. For how can entertainment and news be separated in one company? If the entertainment arm of the company makes a film about, say, aliens, and the news-dissemination arm of the company puts out stories about aliens to coincide with the launch of the film, no one is the wiser but many are attracted to see the film on the grounds of its supposed topicality.
More dangerously, if a film is made which has a recognisable characterisation of a politician seeking reelection, and then news stories are printed which support that characterisation - many will be influenced. The ability to infect and sway the zeitgeist will be immense.
Governments in the Western World have done a pretty lousy job of separating the ownership of the various media-types. It may already be too late for them to grasp back the power to do so by breaking up the big media companies. But with the digitisation of all media - and the power which that adds to media tycoons - we should all be aware and, more particularly, wary, of the megalomaniac in the business suit.
David Manners

[^0]
UK loses plastic led lead

TThe UK appears to have lost its chance to become the first country in the world to manufacture in volume light emitting polymer (LEP)-displays. This follows Cambridge Display Technology's (CDT) announcement that it has, for the time being, abandoned its plans to start volume manufacturing its pioneering LEP technology with Xyratex, a UK manufacturer. Instead, CDT has opted to license its technology with the consumer giant Philips being the first taker. "You can't bring technology to market by yourself. This agreement with Philips is purely a licensing. agreement.
We are talking to other people on
aspects further than that," said Danny Chapchal, CDT's CEO. "We are talking to too many large Companies from East and West to ignore it." Philips will now undertake further development of the LEP technology and incorporate it into consumer products, although it did not specify when.
CDT is planning to make a second similar announcement with another European giant within six weeks. Agreements with Far Eastern companies will follow. "If you are serious about this technology then you have to look East. We know the number and kind of companies we want and in which geographical regions," said

Chapchal. Xyratex, formerly IBM's Havant-based disc drive manufacturer, is aware of CDT's plans and is in full agreement.
"These early licensing opportunities.make sense," said David Martin, technical director of Xyratex.
LEPs will provide an efficient, low-power, low-cost replacement for lcds and leds currently used m most consumer electronics products. CDT's own target is to have LEP based consumer products
on the market by the decade end. Meanwhile it hopes to retain the image of a centre for excellence for this technology, and will continue to develop it and prime it for transfer.

Micromirror devices for evaluation

Digital micromirror devices (dmds) from Texas Instruments are to be offered evaluation kits for the first time.
The company says this move comes as a result of "thousands of enquiries". The digital light processing evaluation kits will include all the necessary components to interface to a pc.
However, the resolution of the kits is limited to VGA: 640×480 pixels. The actual dmds themselves can work up to 1280 -by-1024 pixels, but these are only available in oem versions of the kits. Digital micromirros devices are not available in component form.

Aston students trial Smartcard ID

Aston University students are to trial the use of smartcards as part of the university's project to develop the technology. The project, started in August, is being funded with a $£ 200,000$ government grant. The cards will give students access to premises and services such as libraries, as well as access to the Internet. To extend the range of services available to student card owners, project manager Tony Bell said that the university was "aiming to work with banks, travel companies, and other organisations".

New magnets are attractive for chips

ucent Technologies' Bell Labs has discovered a magnetic effect, charLacteristic of a group of superconducting materials, which could lead to the development of advanced chips.
Bell Labs' scientists claim to have found a way to control magnetic fields which impede or even destroy a superconducting state.
Caused by the flow of electrons within superconductive material or by electrical devices, ubiquitous magnetic fields have limited the degree of superconductivity possible thus far. Normally, when a superconductor is placed in a strong magnetic field, the magnetic field lines create electronic vortices which impede the flow of electrons in the material.
But chemists have discovered a single-crystal compound which resists external magnetic fields while retaining its superconductivity.
Called ErNi2B2C, the compound allows the scientists to find new patterns of magnetic lines which they hope to control. The patterns suggest the lines could be pinned without using expensive dopants. The result could be the advent of practical superconducting devices sooner than expected. However, the researchers warn that while practical applications are being explored, applying this discovery commercially will take time.

1000 times more data on a standard cd?

Compact disk media may experience a major advance in the amount of data they can store. Scientists from the University of Buffalo have announced a storage technique that allows 1000 times more data to be crammed onto cds.
The design puts the data in layers, similar to the pages of a book, on a disc made of new polymer-based photonic materials made using inexpensive plastic and new dyes.
To read the stacked data, the disc scans laterally across, similar to conventional cds, but when it reaches
the end of a layer it refocuses the read beam onto the next layer, running across the disc again.
The new technology is called twophoton absorption where a molecule absorbs two photons of light simultaneously if the light beam has enough intensity. Since conventional plastics are only capable of weak light absorption, they are useless for such applications.
By coating plastic with new dyes, the material shows the strong twophoton absorption needed to tightly focus the laser beam.

Surf with confidence

Anew book shows Internet users how to access confidential information about other people on the Internet. The items include driving records, address, license plate number, genealogical data, insurance claims history and other information which was once confidential.
Much of the information is US based, but it shows how such data is increasingly available over the Internet. The book, by Bob Villa and John LeCarre, is called "NetSpy: How You Can Access the Facts and Cover Your Tracks Using the Internet and Online Services." It shows how the Intemet can be used to find people through myriad web sites or check people's credit histories. http://www.ypn.com

Growth in contract manufacture still keen

The worldwide market for electronics contract manufacturing is expected to equal $\$ 59.3 \mathrm{bn}$ in 1996 , continuing the recent trend of sharp growth, according to a recent report by Californian-based

Technology

Forecasters.

The report, Contract Manufacturing: 1996 State-of-the-Industry, revealed that the 31 leading worldwide contract manufacturers accounted for one third of the global contract manufacturing market in 1995, and that the sum of their revenues increased 51 per cent between 1994 and 1995.

UK-based Design to Distribution (D2D) was mentioned in the report as one the few companies to more than double their contract manufacturing revenues.
Commenting on the report, Brian Haken, executive director of the UK's Printed Circuit Interconnection Federation, said: "Fewer electronics companies are making their own pcbs so we can expect this growth to continue." Haken, who describes Technology Forecasters as "one of the best sources of information available on the contract manufacturing market", explained that electronics companies are increasingly concentrating on core competencies, leaving the production of electronic assemblies to others.
An average of 63 per cent of outsourced pcb assemblies involved surface mount technology. This is estimated to rise to 82 per cent by the year 2000.

Mobile 'phones: "no evidence of risk"

There is no existing evidence that a health threat exists for millions of UK mobile phone users, according to the chairman of a body set up to initiate research into possible health effects related to mobile telephony.
Alastair McKinlay, who chairs an 'Expert Group' set up by the European Commission (EC) earlier this year, said: "The group is quite clear that there is no existing scientific evidence of a cancer risk."

But the group, which is to deliver a report to the EC at the end of this month, has identified that gaps do exist in knowledge of this area.
Most of the existing biological and epidemiological research that has been conducted, has been to do with power frequencies of 50 Hz . "What is now required," said McKinley, "is a lot more research in the microwave regions of the electromagnetic spectrum. It is in this region, 1 to 2 GHz , that mobile phones operate."

McKinley stressed that this was not because there was any concern into health effects, but because the explosion in the use of mobile phones was quite recent, and that such research makes sense to quell any public concern.

On this month's cover - Zetex 78L05 regulator

Zetex's ZR78L05C 5V regulator - free on this month's cover* - is a high-performance three-terminal device which is similar to the industry-standard 78L05, except that it has a quiescent current of around $350 \mu \mathrm{~A}$ as opposed to $2-3 \mathrm{~mA}$. This makes it ideal for battery-power applications. In addition, the ZR78L05C has double the output current - at 200 mA - and improved line and load regulation.
*UK readers only

Pin out of the ZR78L05C
three-terminal regulator.
Absolute maximum ratings

Input voltage	20 V
TO92 package disslpation	0.6 W
Output current	200 mA
Operating temperature	-55 to $125^{\circ} \mathrm{C}$
Storage temperature	-65 to $150^{\circ} \mathrm{C}$

Electrical characteristics

SymbolV_{0}	parameter output voltage	Conditions	$\min _{4.875}$	$\begin{aligned} & \text { typ. } \\ & 5 \end{aligned}$	$\begin{aligned} & \max \\ & 5.125 \end{aligned}$	units V
		$\begin{aligned} & I_{0}=1 \text { to } 200 \mathrm{~mA} \\ & T_{\mathrm{J}}=55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	4.8		5.2	V
		$\begin{aligned} & V_{\text {in }}=7 \text { to } 20 \mathrm{~V} \\ & I_{0}=1 \text { to } 100 \mathrm{~mA} \\ & T_{\mathrm{j}}=55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	4.8		5.2	V
ΔV_{0}	line regulation	$V_{\text {in }}=7$ to 20 V		10	40	$m V$
ΔV_{0}	load regulation	$I_{0}=1$ to 200 mA		5	25	mV
		$l_{0}=1$ to 100 mA		2		mV
la	quiescent current	$T_{\mathrm{J}}=55$ to $125^{\circ} \mathrm{C}$		350	600	$\mu \mathrm{A}$
$\Delta /$ a	quiescent current	$I_{0}=1$ to 200 mA			50	$\mu \mathrm{A}$
	change	$V_{\text {in }}=7$ to 20 V			100	$\mu \mathrm{A}$
$V_{\text {n }}$	output noise voltage	$f=10 \mathrm{~Hz}$ to 10 kHz		75		$\mu \mathrm{V}$ rms
$\Delta \mathrm{V}_{\mathrm{in}} / \Delta \mathrm{V}_{0}$	ripple rejection	$\begin{aligned} & V_{\text {in }}=8 \text { to } 18 \mathrm{~V}, \\ & \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$	48	62		$d B$
$V_{\text {in }}$	input voltage required					
	to maintain regulation		7	6.7		V
$\Delta V_{0} / \Delta T$	average temperature	$10=5.0 \mathrm{~mA}$				
	coefficient of V_{0}	$T_{j}=-55$ to $125^{\circ} \mathrm{C}$		0.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Test conditions, unless otherwise stated, T_{1} is $25^{\circ} \mathrm{C}, I_{0}$ is 100 mA and $V_{\text {in }}$ is 9 V .

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK Telephone: + 44 (0115) 986 4902/ +44 (0115) 9864041 24hr answerphone Fax: +44 (0115) 9864667

Micro Video Cameras

Following last Month's Readers Offer for the 721-S Micro Camera many readers have contacted us asking about other items in our range of Micro Cameras and Security

Surveillance equipment.
We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world's leading manufacturer. ALL items in the range carry a full 12 Months Guarantee. If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large SAE with 48 p postage, marked "Camera Catalogue"

Here is a sample of the available stock.

 A-721-S Micro Camera $\mathbf{3 2 m m \times 3 2 m m}$... $£ 85$A-721-P Micro PIN-HOLE Camera ... $32 \mathrm{~mm} \times 32 \mathrm{~mm}$... $£ 85$
A-921-S Camera with AUDIO ... $30 \mathrm{~mm} \times 30 \mathrm{~mm}$... $£ 95$
A-1211 C/CS Mount Camera .. $110 \mathrm{~mm} \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} . . . £ 110$

6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... $£ 210$
Outdoor Camera Housings ... Aluminium ... £45
Camera Mounting Brackets ... Universal Mounting ... $£ 5.95$
Camera Switchers ... for up to 8 Cameras ... $£ 85$
Auto Record Controllers ... Allow NORMAL VHS Videos to operate
like professional Time Lapse or Security Recorders ... £75
QUAD-1 Multi Vision Processors ... Digital Freeze ... Quad Pictures etc £275 PLEASE NOTE:
AS A CONTINUED SPECLAL OFFER ALL THE ABOVE CAMERA AND ACCESSORY PRICES INCLUDE VAT AND CARRIAGE TO UK ADDRESSES
Government Surplus Electronics Equipment on Special Offer This Month
TIME Electronics 404N/1021 Voltage/Current Calibrators ... $\mathbf{0 . 0 5 \%}$ accuracy ... ONLY $£ 275$
FRANKLIN Wavetek 3600 Power Line Disturbance Monitor + Printer ... LAST 2 NOW ONLY $£ 350$ MARCONI TF9693 + TF2361 + TF9695 VHF Sig Gen / Sweeper sets ... $1 \mathrm{Mhz}-300 \mathrm{Mhz} . .0 .01-100 \mathrm{Khz}$ sweep rate. .0 0-60db attenuators

INCL Cased Adaptor sets ... LAST FEW NOW ONLY £125
COMARK $2007+3$ " K^{n} type probes ... 0.1° res ... $\pm 0.5 \%$ acc ... Cased As New ... ONLY ... £65
Other Digital Thermometers always in stock ... Please Phone
SINERGY TRILINE PC5A Energy Monitor LCD Screen ... Colour Plotter 1+3ph ... ONLY £195 MARCONI TF2300S FM/AM Mod Meter 3.5Mhz-1Ghz AM/AM ... ONLY £75

HP8616A Signal generators $1.8 \mathrm{Ghz}-4.5 \mathrm{Gh}$ AM/FM/Pulse $\mathbf{£ 1 2 5}$
TEK $7603+7 A 18+7 B 50 A 4$ Channel 100 Mhz Scope ... Rack version ... FEW left ... Only $£ \mathbf{3} 25$
FARNELL TM8 Sampling RF Millivoltmeters $1 \mathrm{mV}-3 \mathrm{~V}$ 10Khz-1.5Ghz ... FEW left ... ONLY $£ 125$
MARCONI TF2603 RF Millivoltmeters + Accessory Kit ... LAST FEW ... ONLY £60
TEK 466 Storage Scopes ... Twin Trace and Timebase ... Dc-100MHz ... ONLY £475
TELEQUIPMENT D61A Scopes ... Twin Trace DC-20MHz ... ONLY $£ 120$
MARCONI TF2018 Signal Generators .. 80KHz-520MHz AM/FM ... Fully Digitally Synthesised Internal/External Modulation ... ONLY £995

OPEN SEVEN DAYS A WEEK Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage and carry our Unique 30 Day Un-Conditional Warranty

RESEARCH NOTES

Jonathan Campbell

Staircase effect gives lift to nanodevices

Development of molecule-sized components that could be used to build more powerful computers and miniaturised electrical devices may have come a step closer thanks to work being carried out at Purdue University in the US.
The Purdue team has shown that single electrons can tunnel through a layer of ultra-small gold clusters - one to two nanometres in diameter - at room temperature, passing electrical current in a stair-step fashion that largely eliminates the problem of heat build-up found in current electrical devices.

Instead of having current go through the device continuously, the device operates by a series of discrete single electron transfers, explains Clifford Kubiak, professor of chemistry and part of the interdisciplinary team at Purdue.
The achievement marks the first time a miniature unit based on single electron tunnelling has been able to run at room temperature, and it could provide a prototype for constructing molecule-sized electronic components.

Efforts to build such small electronic components have produced active elements on computer memory chips as small as 500 nm . But attempts to build smaller units have been hindered because current processes such as photolithography cannot create structures that small, and because of the heat buildup that occurs when electrical current passes through such small structures.

The structure developed at Purdue - made of gold clusters attached to a gold substrate by organic molecules - side-steps
this problem by acting as a sort of "turnstile" to limit the amount of current that passes through the module, allowing just one electron at a time to cross.
The Purdue structure was designed using an approach called self-assembly, a method that allows scientists to produce a structure atom-by-atom. The scientists first produced a set of molecules shaped like a barbell with a sulphur atom on each end. When exposed to a flat gold surface, the barbells stood on end, with one sulphur atom firmly adhering to the surface and the other sulphur atom exposed. Preformed crystallites, containing 100 to 200 gold atoms, were then attached to the exposed ends.
Using a scanning tunnelling microscope the group was able to image the attached clusters and measure the relationship between current and voltage as electrons passed through the structure.
At room temperature, the current-voltage data showed the desired staircase behaviour.

Up to now the staircase effect had previously only been seen in small structures at temperatures near absolute zero. But the Purdue structure, producing the effect at room temperature, could provide a model for designing components tens to hundreds of times smaller than those currently in use today.
For more information contact: Clifford Kubiak Purdue
University, West Lafayette, Indiana. email
cliff@chem.purdue.edu

Dryden's digital contribution: Nasa's Dryden Flight Research Center in Edwards, California, celebrates its fiftieth birthday. In 1946 a small number of engineers formed a group in the Mojave Desert to research the sound barrier using the X - 1 research aircraft. This year, at the same site, saw the first supersonic yaw vectoring flight of the F-15 active thrust vectoring research aircraft, a technology that allows a plane to sit up in the air like a cobra rearing its head.
In the intervening years, the Center has been the home of many steps forward in aircraft design and avionics.
For example, in 1972 the Center flew the world's first purely digital fly-by-wire aircraft, contributing to the creation of McDonnell Douglas' F-18 Hornet, General Dynamics' F-16 CD Falcon fighters, and even aircraft such as Boeing's new 777 digital fly-by-wire airliner.
Dryden researchers also helped manufacturers explore new engine designs and integrated engine and flight control
systems made possible by computer technology. The Digital Electronic Engine Control flight research project led Pratt \& Whitney to commit to a digitally controlled production engine, which since then has been integrated into aircraft ranging from the McDonnell Douglas F-15 to the MD-11 and the Boeing 757.
A more advanced concept, integrating digital flight and engine controls, showed the potential of a fighter aircraft having a "self-repairing" control system, in which the aircraft would automatically use engine power to compensate for damage to an engine or flight control surface. After reading about one of several crashes resulting from the loss of flight controls because of hydraulic failures, a Dryden researcher then adapted that integrated fight control and engine concept into a potential Propulsion Controlled Aircraft (PCA) system.
A PCA system would provide a pilot with a computerised system to land an aircraft with only engine controls in the event of a catastrophic hydraulic system failure.
Although the feat was considered impossible by many engineers, Dryden nevertheless completed successful automatic PCA landings with both a McDonnell Douglas F15 fighter in 1993 and an MD-11 airliner in 1995.
Happy birthday guys,

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP Now Colour Spectrum Analysers
HP $141 \mathrm{~T}+8552 \mathrm{~B}$ if $+8553 \mathrm{BRF}-1 \mathrm{KHz}-110 \mathrm{Me} / \mathrm{s}-£ 700$.
HP141T $+8552 \mathrm{BIF}+85548 \mathrm{RF}-100 \mathrm{KHz}-1250 \mathrm{Mc/s}-£ 900$.
HP141T $+8552 \mathrm{BIF}+856 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{F}$.
HP $141 \mathrm{~T}+8552 \mathrm{~B}$ IF $+8556 \mathrm{~A} \mathrm{RF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{f7} 700$.
Special Offer just in from MOD Qty 40 HP $8555 A$ AF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$.
HP141T +85528 AF $+8555 A$ 10M
HP141T+8552BIF $+8555 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-£ 1200$.
HP ANZ Units Available separately - New Colours - Tested
HP141T Mainframe -
HP1417 Mainfram
HP8552B If $-£ 300$.
HP85538 RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-200$.
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP9555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathbf{£ 8 0 0}$.
HP 556 A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HPS443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP8445B Tracking Preselactor DC to $18 \mathrm{GHz}-£ 350$.
HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHz} \mathrm{ANz}-\varepsilon / 5$
HP3582A .02 Hz to $25.6 \mathrm{KHz}-\varepsilon 2 \mathrm{k}$
HP3582A .02 Hz to 25.6 KHz - £2k.
$\mathrm{HPP568A} 100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ- 66 k.
HP85698 $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ - f 6 k .
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-£ 4 \mathrm{k}-\mathrm{E} 4.2 \mathrm{k}$.
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2+3-£ 4.5 \mathrm{~K}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHz} \mathrm{Opt} 1+2+3-\mathrm{E} 5 \mathrm{k}$.
TEK 494AP $1 \mathrm{KC} / \mathrm{S}-21 \mathrm{GHz}$ - $\mathrm{E7} 7 \mathrm{k}$
TEK 5 L4N O $100 \mathrm{KHz}-£ 400$.
TEK $7 \mathrm{LL}+\mathrm{L} 1-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-£ 700$
TEK $7 \mathrm{LL}+\mathrm{L3}$-Opt 25 Tracking Gen - $£ 900$.

TEK $7118-1.5-60 \mathrm{GH} 2 \mathrm{~s}-\mathrm{f1500}$ 。
TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}-£ 750$. $12.4 \mathrm{Ghzs}-40 \mathrm{Ghzs}$ with Mixers.
Tektronix Mixers are avallable for above ANZ to 60GHzs
Systron Donner 763 Spectrum ANZ + 4745B Preselector .01-18GHz + Two Mixers $18-40 \mathrm{GHz}$ in HP8673D Signal Gen
HP8673D Signal Generator.05-26.5GHz-£20k.
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep Generator Synthesizer AM FM $4-2500 \mathrm{Mc/s}-£ 3.5 \mathrm{~K}$.
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 600$.
HP8640A Signal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - f 800.
HP3717A 70Mc/s Modutator - Demodulator - $£ 500$.
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP53168 Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200W.
HP6825A Bipolar Power Supply Amplifier
HP6825A Bipolar Power Supply Amplifier
HP8i519A Optical Receiver DC-400 Mc/s.
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ.
HP3770B Telephone Line Analyser.
HP8182A Data Analyser.
HP59401A Bus System Analyser.
HP62608 Power Unit 0-10V O-100 Amps.
HP62608 Power Unit 0-1
HP3782A Error Detector.
HP3781A Pattern Generator
HP3730A + 3737A Down Convertor Oscillator 3.5-6.5GHz
HP Microwave Amps 491-492-493-494-495-1 GHz-12.4GHz - £250.
HP105B Quartz Oscillator - £400.
HP5087A Distribution Amplifier.
HP5087A Distribution Amplifier.
HP6034A System Power Supply 0-60V 0-10A-200W - £500.
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2 \mathrm{Amp}$.
HP4275A Multi Frequency L.C.R. Meter
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP1630G Logic Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C.
MP595018 is olated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 8901B
HP5370A Universal Time Interval Counter.
Marconi TF2370-30Hz-110 Mc/s 750HM Output (2 BNC Sockets+Resistor for 500 HM MOD with Marcon! TF2370 30Hz-110 Mc/s 50 ohm
Marconi TF2370 as above but late type Output - $£ 750$
Marconi TF2370 as above but late type Brown Case - $£ 1000$.
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2440 Microwave Counter - 20 GHz - $£ 1500$
Marconi TF2442 Microwave Counter $\mathbf{2 6} 5 \mathrm{GHz}-£ 2 \mathrm{k}$
Marconi TF2442 Microwave Counter - $26.5 \mathrm{GHz}-£ 2 \mathrm{k}$.
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$.
Racal/Dana 2101 Microwave Counter $-10 \mathrm{~Hz}-20 \mathrm{GHz}-£ 2 \mathrm{k}$.
Racai//ana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
RacalDana 120 k
Racal/Dana 9303 True RMS Levelmeter + Head - £450. IFFE - $£ 500$.
TEKA6902A also A6902B Isolator - $£ 300-£ 400$.
TEK 1240 Logic Analyser - £400..
TEK FG5010 Progremmable Function Generator 20Mc/s - £600.
TEK2465A 350Mc/s Oscilloscope - $£ 2.5 \mathrm{k}$ + probes $-£ 150$ each.
TEK CT. 5 High Current Transformer Probe - €250.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - £300.
TEK J16 Digital Photometer + J6503 Luminance Probe $-£ 250$
ROTEK 320 Calibrator +350 High Current Adaptor AC DC - $£ 500$.
FLUKE 5102 AB AC-DC Calibrator - $£ 4 \mathrm{k}$.
FLUKE 1120 A IEEE-488 Translator - $£ 250$.
Tinsley Standard Cell Battery $5644 \mathrm{~B}-£ 500$.
Tinsley Standard Cell Battery $5644 \mathrm{~B}-£ 500$.
Tinstey Transportable Voltage Reference - $£ 500$.
Tinstey Transportable Voltage
FLUKE Y5020 Current Shunt - $£ 150$.
HP745A
HP745A + 746A AC Calibrator - $£ 600$.
HP8080A MF + 8091A 1GHz Rate Generator + B092A Delay Generator + Two 8093A 1GHz Amps +75400 A - $\mathrm{f800}$.
HP54200A Digitizing Oscilloscope.
HP11729B Carrier Noise Test Set. 01 -18GHz - LEF - $\mathbf{~} 2000$
HP3311A Function Generator - $£ 300$.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb genera tor type 8406 - $£ 400$
HP Frequency comb generator type $8406-£ 400$.
HP Vector Voitmeter type $8405 \mathrm{~A}-£ 400$ new colour. HP Network Analyzer type 8407A $+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$.
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200-\mathrm{HP} 8447 \mathrm{~A}$ Dual - $£ 300$.
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} \mathrm{f1000}$ - rear out $\mathbf{~}$. 8800
HP Frequency Counter type 5340A-18GHz $£ 1000$ - rear output $£ 800$.
HP 8810 - A - B - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743Pacal/Dana 93014 - 9302 RF
Racaldiler
Racal/Dana Modulation Meter type 9009
Marconi RCL Bridge type TF2700- $£ 150$.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 -
£250-£350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF 1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - $£ 100-£ 300$.
Marconi mlcrowave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-$ $40 \mathrm{GHz}-£ 1000$ or PI only $£ 600$. MF only $£ 250$.
Marconi distortion meter type TF2331-E150. TF2331A - ©200.

Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1
-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7B92A
Gould J3B test oscillator + manual $-£ 150$.
Tektronix Mainframes - 7603-7623A - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 -7904A-7834-7623-7633.
Marconi $6155 A$ Signal Source -1 to 2 GHz - LED readout - $£ 400$.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass $-£ 150$.
Barran Stroud Variable filter EF 163 attenuator -1 GHz . $£ 200$.
Farnall power unit H60/50- $£ 400$ tested. H60/25- $£ 250$.
Racal/Dana 9300 RMS voltmeter - $£ 250$.
HP 8750 A storage normalizer - $£ 400$ with lead + S.A or N, A Interface.
Marconi TF2330-or TF2330A wave analy sers - £100-£150.
Tektronix-7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11. Marconi mod meters type TF2304- $£ 250$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}-$ LED readout - $£ 1 \mathrm{k}$.
Systrol/Dana 9083 signal source - two tone - E 250 .
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - $£ 600$.
Tektronix TM5 15 mainframe + TM5006 mainframe - $£ 450$ - $\mathbf{E 8 5 0}$.
Farnall electronic load type RB1030-35- $£ 350$.
Racal/Dana counters - 9904 - $9905-9906-9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$ - $\mathbf{5 1 0 0}$ -E450- all fitted with FX standards.
HP 4815 A RF vector impedance meter
HP 4815 A RF vector impedance meter cAw probe - $£ 500$ - E 600 .
Marconi TF2092 noise receiver. A. B or C plus filters - $£ 100-£ 350$.
Marconi TF2091 noise generator. A, B or C plus filters $-£ 100-£ 350$.
Marconi $2017 \mathrm{~S} / \mathrm{G} \quad 10 \mathrm{Khz}-1024 \mathrm{MHz}$.
HP180TR, HP182T mainframes $£ 300-£ 500$.
Philips panoramic receiver type PM7900-1 1020 GHz - E 400 .
Marconi 6700 A sweep osciftator +18 GHz Pl's available.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - £4k.
HP8505 network ANZ $8505+8501$ A +8503 A.
Racal/Dana VLF frequency standard equipment. Tracer receiver type $900 \mathrm{~A}+$ difference meter
type $527 \mathrm{E}+$ rubidium standard type $9475-£ 2750$.
HP 432A - 435A or B-436A - power meters + powerheads - Mc/s - 40GHz - £200-£1000.
Bradley oscilloscope calibrator type 192 - $£ 600$.
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$
HP8516A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$.
HP 3325A syn function gen 20Mc/s - $£ 1500$.
HP 3336A or B syn level generator - $£ 500-\mathbf{£ 6 0 0}$.
HP 3586B or C selective level meter - $£ 750-\mathrm{E} 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-\mathrm{E400}$
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 400$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$ - opt 001 - 003 - £4.5k.
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM + FM $+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2600 \mathrm{Mc} / \mathrm{s}-£ 500-\mathrm{E} 2000$.
HP 8640B S/G AM-FM 512Mc/s or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - £800-£1250.
HP 86222 BX Sweep PI $-01-2.4 \mathrm{GHz}+$ ATT - £ 1750 .
HP 8629A Sweep PI $-2-18 \mathrm{GHz}$ - £ 1000 .
HP 86290B Sweep PI $-2-18 \mathrm{GHz}-\mathrm{E} 1250$.
HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-\mathrm{£} 250-\mathrm{f} 1 \mathrm{k}$.
HP 8620C Mainframe - E 250 . IEEE - E 500 .
HP 8615A Programmable signal source- 1 MHz - $50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - f 1 k
HP 3488A HP - IB switch control unit - $£ 500+$ control modules various - $£ 175$ each.
HP 8160A $50 \mathrm{Mc} / \mathrm{s}$ programmable pulse generator - $£ 1000$.
HP 853 A MF ANZ - 11.5 k .
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 4 \mathrm{k}$.
HP 8569 B Analyser $.01-22 \mathrm{GHz}-£ 5 \mathrm{~K}$.
HP 3580A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$.
HP 1980 B Oscilloscope measurement system - $£ 600$.
HP 3455 A Digital voltmeter - $£ 500$.
HP 3581C Selective voltmeter - $£ 250$.
HP 5370 Universal time interval counter - $£ 450$.
HP 5335 A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 5328 A Universal counter $-500 \mathrm{Mc} / \mathrm{s}-£ 250$.
HP 6034A Sy stem power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}-\mathrm{f} 500$.
HP 1645 A Data error analyser - $£ 150$
HP 1645A Data error analyser - $£ 150$
HP $3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}$ modulator $-£ 400$.
HP 3710A - 3715A - 3716A - $3702 \mathrm{E}-3703 \mathrm{~B}-3705 \mathrm{~A}-3711 \mathrm{~A}-3791 \mathrm{~B}-3712 \mathrm{~A}-3793 \mathrm{~B}$
MP 3730 A + B RF down converter - P.O.R.
HP 3552A Transmission test set - $£ 400$.
HP 3764A Digital transmission analyser - 6600
HP 3770 A Amp delay distortion analyser - $£ 400$
HP 3780A Pattern generator detector - $£ 400$.
HP 3781 A Pattern generator - $£ 400$.
HP 3781B Pattern generator (bell) - $£ 300$.
HP 37828 Error detector (bell) - $£ 3$
HP 3785A Jitter generator + receiver- $£ 750-\mathrm{E} 1 \mathrm{k}$.
HP 8006 A Word generator $-£ 100-£ 150$.
HP 8016 A Word generator - $£ 250$.
HP 8170 A Lo gic pattern generator - $£ 500$.
HP 59401A Bus system analyser - $£ 350$.
HP 59401 A Bus system analyser - £350.
HP 59500 A Multiprogrammer HP - $\mathrm{IB}-\mathrm{f} 30$
Philips PM5390 RF syn - $0.1-1 \mathrm{GHz}$ - AM + FM - £1000.
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - $£ 1500$.

Tektronix R7912 Transient waveform digitizer - programmable - $£ 400$.
Tektronix TR503 + TM503 tracking generator 0.1 - 1.8 GHz - £1k - or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 577 Curve tracer + a daptors $-£ 900$.
Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$
Tektronix SC501-SC502 - SC503 - SC504 oscilloscopes - £75-£350.
Tektronix $465-465 \mathrm{~B}-475-2213 \mathrm{~A}-2215-2225-2235-2245-2246-£ 250-£ 1000$.
Kikusul 100Me/s Oscilloscope COS6100M-E350.
Nicolet 3091 LF oscilloscope- $£ 400$.
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900.
Fluke 80K-40 High voltage probe in case - BN - $£ 100$.
Racal Recorders - Store 4-4D-7-14 channels in stock- $£ 250$ - $£ 500$.
EIP 545 microwave 18 GHz counter - $£ 1200$.
Fluke 510A AC ref standard $-400 \mathrm{~Hz}-\mathrm{f}^{200}$.
Fluke 355A DC voltage standard - $£ 300$.
Wiltron 610 D Sweep Generator + 6124 CPI P $-4-8 \mathrm{GHz}$ - $£ 400$.
Wiltron 610D Sweep Generator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$.
Time Electronics 9814 Voitage calibrator - $£ 750$.
Time Electronics 9811 Programmable resistance - $£ 600$.
Time Electronics 2004 D.C. voltage standard - $£ 1000$.
HP 8699 B Sweep PI YIG oscillator $.01-4 \mathrm{GHz}$ - $\mathbb{E} 300.869$
Schlumberger 1250 Frequency response ANZ - f . 0 . 18 GHz - microwave parts new and ex
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 G
equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors.
B\&K Items in stock - ask for list.
W8G ltems in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP - Weir-Thurlby-Racal etc. Ask for list.
TIEMS BDUGHT FROM HH GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILTY OR PRICE CHANGE VAT ANO CARRIAGE EXTRA IIEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMTTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradiford BD112 2ER. Tel. No: (01274) 684007. Fax: 651160

Smallest wires await a connection

Creation of the world's smallest wires and encasement in a plastic polymer is being heralded as an accomplishment that could find widespread electrical and optical uses at the nanometre scale - though no-one is quite sure what at the moment.
The wires, only 6 angstroms in diameter, or just several atoms wide, could be kept separate or bunched together to make cables inside a polymer matrix, depending on the intended purpose, say the researchers at Cornell University.
Length can be up to at least 10,000 angstroms in length. But as Francis DiSalvo, Cornell professor of chemistry who is leading the work, says: "No one has ever made wires this small before, so we're not sure what all the uses are going to be".
The wires were formed by taking atoms of molybdenum and selenium separated by lithium. By putting them in a solvent of ethylene carbonate - which polymerises into polyvinylene carbonate - the lithium was separated out, leaving long strings of the metals. An agent was then quickly added to make the polymer, so that the organic polymers gelled before the wires had a chance to clump together.
According to DiSalvo, the process can be described as: "like trapping a small, skinny sausage in a big bowl of spaghetti."
The result is a plastic block laced with sub-nanometresized wires. To make cables of more than one wire held together, the researchers simply have to increase the amount of metallic grains.
Now that they have shown it is possible to make such materials, the researchers are turning their attention to

A molecular wire of molybdenum selenide embedded in a polymeric matrix. The thickness of a single wire is approximately three atoms in diameter, with the length about 110 atoms. Approximate magnification is $\mathbf{1}$ million times.
what they can do with them. For example, chemists are trying to use the new structures as membranes, in which the wires act as a solid-state catalyst.
Other possibilities include, anti-static polymeric materials for microelectronics, such as in the packaging of chips or for computer housings, and anti-static agents for film. In many cases, static discharges can destroy sensitive electronic equipment or leave a blotch on film.
Part of the problem is in the basic science, says DiSalvo.
"We can make these perfect wires 6 angstroms in diameter. How do you make electrical contacts for wire that thick?"

For more information, contact: Francis DiSalvo, Cornell University, Ithaca, New York, USA.

3-D display that heralds new era of cubism

Many techniques have been developed to produce three dimensional image effects using two dimensional displays. Now scientists at Stanford have gone one better, developing a three dimensional display cube within which a coloured image can float in all three axis - and be viewed from any angle.
The fluorescent glass display is based on the principle of 'up-conversion', where certain atoms emit visible light when struck in rapid succession by two infrared laser beams of slightly different wavelengths. Different kinds of atoms emit different colours of light when stimulated in this fashion. By moving the intersection of two infrared laser beams around within a cube of glass that has been doped with suitable rare earth elements, the Stanford team can trace out an image that actually exists in three dimensions.
Over the years, researchers have developed a number of different ways of producing threedimensional images - from stereo pairs; to stacking two-dimensional images on different planes such as in a cat scan; to holography, where three-dimensional information is stored in invisible patterns on a film.
But as Stanford's Elizabeth Downing, developer of the display points out, this technology doesn't just "create an image that appears to be three dimensional, it actually
produces an image that is drawn in three dimensions."
As a result, there are few restrictions on the viewing angle and a number of people can view the images at once. Also, the images are emissive - they glow - rather than reflect, so they can be seen easily in room light.
The concept of displaying three-
dimensional objects in fluorescent glass dates back at least to the mid-1960s. But the materials problems involved have only now been solved.
For her display, Downing used surplus scanners from optical disk players to scan the two laser beams vertically, horizontally, and backward and forward through the volume of the cube. In this fashion she has successfully created three-dimensional wire figures, surfaces and simple solid shapes.
Surfaces formed, however, are transparent, not opaque like those of most common objects. This could be a drawback for some applications, but an advantage for others.
The technology can generate colour images by mixing atoms that create red, green and blue into the glass in separate layers close together. When the laser beams stimulate adjacent layers at nearly the same time, the different colours fuse into a single coloured dot.
The current prototype device consists of

Prototype fluorescent cube video display enables colour images in three dimensions.
three relatively thick layers, one for each colour. An actual display, however, would consist of thousands of groupings of red, green and blue layers so that 3-D objects of any colour could be created.
Downing considers medical imaging to be the most natural application for the new display technology and calculates that it would cost about $\$ 80,000$ to make a prototype 10 -inch display of this type.

Elizabeth Downing, Mechanical Engineering, Stanford University, Stanford, CA 94305, USA. e-mail: 3dlabs@pipeline.com

NOW, THE BATHLE Is OVE:

14T130ณรจ

ULTIboard's interactive strenght has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTIboard Designer system will be supplied with a SPECCTRA SP4 Autorouter, ULTIboard designers now get the best of both worlds.
All ULTIboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECCTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTImate Technology is the PCB-Design Tool vendor that really cares for their customers!

> THE ULTIMATE ULTIboard Entry Designer* £ 1295 (excl. VAT) will now SPECIAL OFFER be supplied with SPECCTRA Shape Based Autorouter *free Upgrade with EMC-EXPERT mid 1996 (list price at release £ 1875)

CIRCIE NO. 109 ON REPIY CARD.

Template for practical steering

Barely a month seems to go by without news of a fatal accident on the hard shoulder of a motorway, where a fast moving vehicle has ploughed into a stationary one. Would some kind of audible alert in the out-of-control vehicle, warning that it is veering out of its lane, save lives? Researchers at Carnegie Mellon university hope they have a system that one day could do just that. In fact their eventual aim is to produce an automatic steering controller that would be fitted to a car in much the same way that a cruise controller is today, to handle all steering - without intervention of the driver.

To road test their technology, Dean Pomerleau and Todd Jochem, researchers at Carnegie Mellon University, have fitted a 1990 Pontiac Trans Sport with a video camera and stand-alone hardware platform integrating a range of navigation and control technologies. As the vehicle moves along, the camera mounted just below the rear-view mirror reads the roadway, imaging information including lane markings, oil spots, curbs and even ruts made in snow by car wheels. The camera sends the image to a portable computer between the car's front seats that processes the data and instructs an electric motor on the steering wheel to turn right or left.
Simple, commercially available components have been used in the hardware, which because it is designed to be used in a unaltered passenger vehicle, has no special power or cooling requirements.
But the
development that puts the Carnegie team well in the fore of automatic steering technology is its adaptive image analysis algorithm.

In the Carnegie system, steering is decomposed into three steps: sampling the image, determining the road curvature, and assessing the lateral offset of the vehicle relative to the lane centre.
Up to now, research on automatic steering has tended to focus on machine-vision techniques that detect particular features in video images of the road. Unfortunately, where road markings vary such systems can suffer.
Other approaches combine machine-vision and machinelearning techniques. For example, in a previous Jochem and Pomerleau system, an artificial neural network was used to learn the characteristic features of particular roads under specific conditions. But "retraining" for change takes several minutes and invariably requires human intervention.
What Pomerleau and Todd's latest system does is to resample a trapezoid-shaped area in the video image to create a 30×32 pixel image where important features such as lane markings (which converge toward the top of the original image) appear parallel.
By comparing this current appearance with the appearance of a template created when the vehicle was centred in the lane, the system can estimate the vehicle's current lateral offset.
As the road changes character, several different strategies can be adopted to ensure the template is altered and the vehicle still correctly steered. The most sophisticated strategy, which can handle abrupt scene

Navstar 5 -a 1990 Pontiac Trans Sport - has completed a 3000mile journey (almost entirely) by steering itself.
changes, is to create a new rapidly adapting template based on the appearance of the road far ahead (typically 70 to 100 m) of the vehicle, while the road in the foreground is used to determine the current lateral offset and the curvature of the road.
The most impressive test of the system so far has been a 2850-mile drive from Washington to San Diego, completed at an average speed of $63 \mathrm{mile} / \mathrm{h}$. Results show that the system was able to steer the vehicle autonomously for 98.1% of the trip.
The researchers hope that simplicity of the algorithm should make a custom hardware implementation feasible, promising dramatic reductions in both size and cost of subsequent versions. Their goal is to build a system that is small enough to fit behind the rear-view mirror and inexpensive enough to sell as an option on passenger cars. Initially, such a system would simply warn that a driver is drifting off the road. But, in time, a system might assume at least partial control, relieving the driver of the monotonous task of steering - just as standard cruise control has done for maintaining vehicle speed.

For more information contact Dean Pomerleau at the Robotics Institute, Carnegie Mellon University, Pittsburgh,PA 15213.email pomerleau@cs.cmu.edu or deanp@assistware.com

8051 derelopment system

25% reader discount *Upgradable*

All the software and hardware needed to develop Atmel Flash 8051 microcontrollers - avallable exclusively to Electronics World readers af the special price of $£ 184.48$.

Part of the package is dScope for Windows - an integrated software simulator and debugger for the 8051 family.

8051 compatible Atmel controllers					
	8951	8952	$\mathbf{1 0 5 1}$	$\mathbf{2 0 5 1}$	
Flash code rom	4 k	8 k	1 k	2 k	
On-chip ram (byte)	128	256	64	128	
No of i/o pins	32	32	15	15	
16bit timer/counter	2	3	1	2	
Serial uart	Yes	Yes	No	Yes	
Interrupt sources	6	8	3	6	
Pins (DIL)	40	40	20	20	

Special features: 8952 includes Timer 2 while the 1051/2051 incorporate comparators

Develop microcontrollers for under $£ 150$

Free with this special offer Atmel data book on CD ROM

Featuring ANSI-C compiler, flash microcontrollers, device programmer and software simulating/debugging tools, the C51 Starter System is being made available to Electronics World readers at a special discount price of $£ 149$ excluding VAT and p+p, but only until 29 November*
Normally priced at £ 199, the C51 Starter System contains all the hardware and software needed to develop and program 89C-51/52 and 1051/2051 Flash microcontrollers. In addition to the optimising 2 k ANSI C compiler, the system contains a full suite of C51 demonstration software and complete project management environment. C51 Starter System allows a complete project to be authored in C51 but also contains an 8051 assembler for programmers not familiar with C
C51 Starter System is not an evaluation version. It is supplied with extensive hardware and software documentation and full production projects for Atmel AT89C2051/1051 controllers are possible. Projects involving a total program code output - i.e. assembler plus C - of up to 2 kbyte are possible. The system is easily upgradable to handle 8 k - and this upgrade includes floating-point libraries. Refer to Equinox's advertisement in this issue.
The 1051 and 2051 Flash microcontroller samples included the the Starter System can be reprogrammed a minimum of 1000 times are can be erased in 10 ms .
Please address enquiries regarding this offer to Equinox Technologies at 229 Greenmount Lane, Bolton BLI 5JB, tel. 01204491110 , fax 01204494883
*Overseas readers should contact Equinox for special offer cut-off date and postage details.

C51 Starter System includes:

- Micro-Pro 51 device programmer
- Programmer PSU
- Programmer PC soffware disk
- PC parallel cable
- Keil PK5 1 Lite software package
- Equinox system user manual
- Atmel microcontroller data book
- Atmel 89C1051 FLASH microcontroller (1k)
- Atmel 89C2051 FLASH microcontroller (2k)

Software features:

- uVision Integrated Windows Development Environment
- C51 C compiler
- A51 Macro assembler
- L5 1 linker
- dScope software simulator
- OH5 1 Hex creator
- PC compatible - requires Windows 95 or 3.11 .

[^1]
NEW programmers start at only $£ 295$

TV Tth prices starting as low as 6295 , ICE Technology's new range of parallel port programmers offers something for every budget. All programmers support dual in line devices directly in the socket - no adapters or modules are needed for any families of devices, providing extensive device coverage at very affordable prices. The full range of programmers is shown in the panel on the right. Our new easy to use device support checklist will help you to choose the programmer that is right for you, just call or use our faxback for a copy. All programmers come with FREE software updates on our BBS or our $f t p$ site, full technical support direct from the manufacturet and one year's guarantee. All models can run from batteries or mains - ideal for use with laptops.

Low cost EPROM programmer

A tonly $£ 295$, the EPMaster $L V$ is a powerful AEPROM programmer which offers so much more than other EPROM programmers. With it's 40 pin socket it can support all types of EPROMs including 16 bit wide with no need for additional modules. Serial PROMs, Serial EEPROMs, Flash and EEPROMs are all included in the device support at no extra cost. In addition, low voltage parts are fully supported with the programmer's separate $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V logic circuits. EPMaster LV connects to the parallel port of any PC compatible and can be operated from batteries or mains electricity. You can also add a built in ROM/RAM emulator with a capability of up to 512 k by 16 , turning the EPMaster LV into a powerful development tool.

CIRCLE NO. 152 ON REPLY CARD

High Speed Sman Proggrumning

The Speedmaster GLV-32 Gang/Set 1 programmer offers simultaneous high speed programming for up to 8 EPROM and Flash (up to 8 Mbit) at 3.3 V and 5 V . The 3.3 V facility ensures that programmed devices will work correctly at their nominal operating voltage. Functions include gang programming, set programming and full editing. The Speedmaster GLV32 works in PC or stand alone mode.

CIRCIE NO. 153 ON REPIY CARD

Universal programmer only $£ 525$

ST6, MC68HC705, MC68HC711, TMS370, TMS320, 87Cxxx, 89Cxxx, COPs etc. The Micromaster $1000+$ can support all device types, even Motorola micros, with NO ADAPTERS or MODULES for any dual in line devices up to and including 40 pins. As with all our programmers free software updates are included via BBS or our ftp site.
CIRCLE NO. 150 ON REPLY CARD

LV40 Partable

Reaching the parts other programmers can't reach

The NEW LV40 Portable stands head and shoulders above other portable programmers with it's comprehensive device support which includes EPROMs, EEPROMs, Serial PROMs, BPROMs, Flash, NVRAMs, PSDs, PALs, GALs, PEELs, EPLDs, MACH, MAX and over 180 microcontrollers. Unlike other portables, no adapters or modules are needed for any of these devices up to 40 pins dual in line. With socket adapters the LV40 is capable of supporting devices of over 40 pins and other package types A' $£ 995$ for the comple package you'll soon see why the LV40 Portable is the best value, most powerful portable programmer in the world.

CIRCLE NO. 151 ON REPLY CARD

Procrammer models and prices

LV MODELS (SUPPORT 1.8V, 3.3V and 5V DEVIGES)			SPEEDMASTER 1000+	EPROMs, EEPROMs, Flash, NVRAMs, Serial PROMs, Serial EEPROMs, BPROMs, GALs, 8748/5?	$£ 395$
EPMASTER LV	EPROMS, EEPROMs, Flash, Serial PROMS, Serial EEPROMS 8 to 40 pins all without adapters. Buit in emulator modules: 128k by 8 : $£ 395$ 128k by 16 : $£ 465$	£295	MICROMASTER 1000+	EPROMs, EEPROMs, NVRAMs, Flash, Serial, BPROMs, PALs, GALs, PEELs, MACH, MAX, PSO, over 180 microcontrollers without adapters.	£525
SPEEDMASTER LV	EPROMS, EEPROMs, Flash, NVRAMs, Serial PROMs, Serial EEPROMs, BPROMs, GALs, PALs, EPLDs, MACH, MAX, 8748/51.	£495	SPEEDMASTER GLV32	High speed EPROM/Flash 8 way Gang/Set Programmer. Supports 3.3 V and 5 V	£645
MICROMASTER LV	EPROMs, EEPROMs, NVRAMs, Flash, Serial, BPROMs, PALs, GALs, PEELS, MACH, MAX, PSD, over 180 microcontrollers without adapters.	£625	COP GANG PROGRAMMER	8 way Gang programmer for National Semiconductor COP family of micros	$£ 1500$
LV40 PORTABLE	All devices supported by Micromaster LV, plus completely portable with built in keypad and LCO display.	$£ 995$	SOCKET ADAPTERS	for PLCC, TSOP, OFP, SOIC, SSOP etc.	from £65

For details on any of our range of programmers, call or fax us now.
You can obtain information immediately by using our faxback service or homepage.
ICE Technology Lird, Penistone Court, Penistone, South Yorkshire 530 6HG. United Kingdom.
Tel: $+44(0) 1226767404$ Fax: +44 (0$) 1226370434$ Faxback: +44 (0) 1226761844 email: sales@icetech.com Homepage: http://wnw.icetech.com BBS: +44 (0)1226 761181 (14400 baud, 8N1)

CALL OUR SALES HOTLINE ON O1226 76704 - OR USE OUR FAXBACK FOR FUUL DETAILS - 01226761844

There exist three-terminal magnetic sensors that are sensitive enough to detect changes in Earth's magnetic field, yet are low cost. Richard Noble describes how these sensors can be used in a number of applications including inclination measurement and vehicle detection.

Field range of the $F G M 3$ magnetic sensor
is 0.5 oersted, or 50 tesla. Having three is 0.5 oersted, or 50 tesla. Having output - the sensor produces rectangular pulses whose period is proportional to the field strength along the device axis. The FGM3 resolves down to 10 nanoteslas, and has a variety of applications, some of which are described here. Further applications were detailed in the November 1995 issue of Electronics World.

Vehicle detection

Since the original article on the FGM3 magnetic sensor, SC Ltd has designed a support IC that provides most of the functions needed to convert a stationary FGM-3 into a vehicle detector.
Two modes of operation are provided for. One allows detection of stationary vehicles in storage or parking situations and the other detection of moving vehicle for traffic counting, etc. Both modes can be used in temporary or portable applications, as well as permanent installations since the system is fitted with automatic power-up set-up and calibration features.
In dynamic mode, the SCLOO2 vehicle detection IC continuously tracks and averages background magnetic field over a short period. This averaging provides a reference level from which the brief anomalies caused by passing vehicles can be measured.
Short-term averaging is useful in that it allows automatic start-up soon after the device is switched on - or moved. It also allows the effect of a large anomaly appearing unexpectedly after set-up to be removed automatically. This can occur if, for example, a lorry chooses to stop close to the sensor during a vehicle census operation. After a brief period, its effect will be cancelled out, simply because it remains stationary.
In the static mode, selected by changing the level on one pin of the IC, the background tracking process is stopped and replaced by an initial, fixed background determination on power-up or on demand at any time by using the reset pin. This type of use includes for example the determination of slot occupancy in car parks or as a theft alarm in private garages, where a large threshold can be set to establish the presence of the vehicle parked

Fig. 1. Demonstration set-up for vehicle detection. Practical applications might replace the leds with relays, suitable for alarms, or connection to a data-collecting computer.
directly over or beside the sensor.
A minimum number of external components are required to produce a detection system to the level of providing four different threshold levels arranged in approximately logarithmic scale on four separate output pins. These levels are ttl compatible and can also provide sufficient power to directly drive high intensity led indicators with up to 10 mA each, if required.
Pins 15 and 16 are used to connect an external crystal to give the IC a timing reference for the measurement of the field sensor's period. It is also used to set the background average timing. The sensor's output can be connected directly to the IC's input pin 17 .

Pin 18 is used as a calibration input, forcing a new background average cycle whenever it is taken low. This is normally used in the static operation, but does function in dynamic mode too.
Pin 1 is an input pin which permits background tracking when high, inhibiting it when taken low, thereby providing the distinction between static and dynamic modes of operation. Pin 4 is normally taken high but will act as a master reset when taken low and then high again, forcing the chip to repeat its initialising sequence as on normal power-up.
Pins 6 to 9 are the output pins in order of increasing threshold, pin 6 being the most sensitive, with a response triggered by a change in field strength of approximately 50 nanoteslas over a one tenth second period. This is close to the minimum that can be used at this speed without detecting the normal continuously occurring micro fluctuations of the earth's field itself.
A typical application circuit is shown in Fig. 1. Track inhibit and recalibrate can be taken high through resistors to +5 V if these features are not required, or used in conjunction with push buttons or switches to ground if needed.
Remember that this system is not actually a
vehicle detector, but rather a magnetic field fluctuation detector and some interpretation of the results is required in practice. Vehicles do not all have the same magnetic moment and occasionally seem to have none at all. Some also seem to have multiple magnetic moments and for example an aluminium-bodied bus may produce two outputs in rapid succession as the axles pass the sensor.

Also, a magnetic moment produces field strengths which vary inversely as the cube of the distance from it, which means that the apparent sensitivity of the system tends to fall off rapidly with distance for small vehicles, less rapidly for the larger ones. Combinations of sensors on both sides of the road may be needed to resolve some of these interpretations, depending on the requirements of the operation.
Another effect which can occur is caused by the slow passage of a large vehicle close to the sensor. This can have a sufficiently large influence on the running average of the background readings to make the low threshold output persist for a longer period than normal as the average adjusts itself again. This effect is a function of the number of readings used in the average determination.
When a large number is used the effect more or less disappears, but the time taken to settle initially - or after a disturbance increases. The performance is thus a compromise between sensitivity and settling or tracking time. For this reason the chip is made available in several versions which differ only in the number of readings used in the initial and running background averages. For example the SCL002/64 uses 64 readings in its averaging process.
The effect described above does not necessarily mean that signals will be missed, but calls for a more sophisticated interpretation of the outputs. If a large vehicle produces the low
threshold persistence and is followed rapidly by a smaller one, the low threshold output will still reverse as the vehicle passes. In other words an erroneously high output will go low if a small change in field does occur.

High sensitivity gradiometer

Another new support IC, the SCL007, allows two-sensor type gradiometers to be constructed.
While small magnetic field changes can be readily detected with a single static sensor, as in the case of an earth field magnetometer, the presence of the large earth field presents an immediate problem if the sensor is to be moved. A small change in angle will give a signal which is likely to be many times larger than the field magnitude variations that are being looked for as anomalies.

The gradiometer principle is based on the fact that, in a uniform field, two identical and perfectly aligned sensors will give identical outputs which can be subtracted from one another to give a zero output, effectively eliminating the apparent presence of the field. Provided the sensors remain solidly fixed in relation to one another, the whole assembly can be rotated in space without producing any orientational output.

If, however, there is a superimposed small field gradient as well as the uniform field, the

Fig. 2. Simple and flexible gradiometer construction technique, permitting a range of sizes suitable for everything from weapon detection to wreck finding.
output of the subtracted sensor combination will change as a function of the magnitude and direction of that gradient. Such gradients arise from the presence of anomalous magnetic moments within the capture range of the gradiometer.

These anomalies may arise from a great many causes, varying from the tiny firing pin of a plastic land-mine buried only a few inches under the surface, to a large marine wreck on the sea bed. The apparent capture range also varies enormously since it depends on the magnetic moment of the anomaly.
A small pole strength coupled with a very large object can produce a large magnetic moment, giving a correspondingly large capture range. Conversely even a large pole strength in a very small object can give rise to a very limited capture range. A typical example of the latter is the modern flat ceramic type of magnet which is magnetised through is thickness rather than along its larger dimension. Such magnets seem very powerful in their grip but produce very small fields at a

proteus Nexto Whane $31.95 \& \mathrm{NT}$

Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List \& ERC report's.
- Hierarchical Design.
- Extensive componėnt/model libraries.
- Advanced Property Management.
- Seamless integration with. simulation and PCB design.

Stimulation

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling. language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCE Desigh

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerbếr and DXF Import capability.

Write, phone or-fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: 01756752857. 53-55 Main St, Grassington. BD23 5AA,

distance.
In practice no two sensors are ever identical and measures must be taken to eliminate their zero-field offsets and to match their sensitivities. In practice this is not too difficult to do electronically, if an initial calibration routine is adopted on switch-on. This can be semi-automatic and requires only a simple manual manipulation.
It is more difficult however to guarantee the identical alignment of the sensor axes in the mechanical sense and for accurate instruments some adjusting mechanism will be required. This type of adjustment should fortunately not be necessary at every start-up and should remain accurate if the gradiometer is constructed from stable materials.

One method of arranging for this alignment is to build the gradiometer in a tube of diameter somewhat larger than that of the sensors. One sensor is fitted permanently into one end of the tube with appropriate packing to hold it securely. The other sensor is fitted to the opposite end of the tube but only held at one of its ends by some sort of flexible mount such as a snugly fitting o-ring. Four adjusting, nonmagnetic screws can the be fitted at right angles around a circumference of the tube to force the non-clamped end of the sensor to tilt slightly in the required direction, Fig. 2.
The position of the set screws can only be determined by experiment, the objective being to reduce to a minimum the variation of output - after electronic calibration - observed when the gradiometer is rotated freely in space.

One technique for doing this is to place the gradiometer tube in mechanical engineers' vee-blocks in an approximately horizontal east-west direction and gently rotate the tube about its axis. Since the earth's field should be at right angles to both sensors in this configuration any misalignment of the sensors should result in a sinusoidal variation of output with rotation, giving a clue as to the required direction of adjustment.
A further source of potential error is the possibility that the sensors may not have identical non-linearities. This is less easy to overcome but an improvement in performance is possi-
ble in most cases by adopting an appropriate usage technique. It will vary with the application but consists basically of trying always to hold the gradiometer in the same orientation when making measurements.
For accurate measurements, where speed is not the prime requirement one good way of doing this is to suspend the tube vertically from a simple pivot allowing gravity to guarantee the repeatable alignment. In this way the gradiometer can be moved over a large grid, for example, to allow the plotting of contours of gradient in a search for underground anomalies.
Earth anomalies usually show up best in the vertical orientation, which is probably why oil companies and archaeologists make use of the vertical vector in their studies.
For simpler less accurate systems used with short ranges, for example metal detectors, it may be enough to simply maintain a constant orientation by hand and eye coordination.
Pin layout is shown in Fig. 3. Pin 1 is an input giving two different sensitivities when set either high or low. The two sensitivities, controlled by pin 1 differ by a factor of eight to provide a range for larger field anomalies. Pin 2 is an output pin which provides a polarity signal as part of the output, which should therefore be regarded as a signed magnitude, rather than the usual twos complement. This gives an extra bit of precision to the reading by effectively making the output a total of nine bits.
Pins 17 and 18 are the sensor inputs and accept the 5 volt output pulses directly. Pins 15 and 16 are for a crystal circuit to give a stable reference to measure the sensor period variations against. The remaining pins are mostly the digital output bits, D0 to D7 for use by external equipment or displays.
during the first ten to twenty seconds after switch on, the system performs an auto calibration during which it expects to see the maximum and minimum value of the Earth's field. The best way to do this is to hold the gradiometer in a north-south orientation pointing upwards at about the angle of the field's inclination, which in the UK is about 67° to
the horizontal in the north/south direction. Next, switch on and rotate the gradiometer through 180° to directly reverse its direction, during the ten seconds after switch on. It is best not to do this in a hurry.
After this the system will determine the sensitivity and the zero offset for each sensor separately and correct for the errors, which would arise through sensor differences, during the signal subtraction process. It should then be possible to rotate the gradiometer slowly in any direction without getting too much output if there are no field anomalies at the location. It should be done slowly because the sensors are time multiplexed and rapid movement will beat the system to some extent.

A little practice at this technique will soon get the best cancellation and the process can be repeated as often as necessary to optimise the balance. Also for the best observations it is obviously advantageous to always have the sensor in the same orientation during the taking of readings.
You can test the success of the set-up by approaching the gradiometer with a permanent magnet as the local anomaly. The size of the anomaly will be a function of the moment of the magnet which is a function of its magnetic length.
One other point is worth mentioning. If you adopt the suggestion of hanging the gradiometer vertically, then it is an advantage to hang it from the end that makes the wires from each sensor emerge in the downward direction.

Jam jars and Earth field studies

A single axis, sensitive magnetometer for Earth field studies is relatively easy to construct using an $F G M$ sensor and SCLOO6A signal conditioning IC.
This design is intended as a robust replacement for the classic - but somewhat delicate -jam-jar magnetometer, popular with radio amateurs for confirming propagation experiments. For this reason it duplicates the same type of output, namely the small angular fluctuations which occur in the direction of the earth's horizontal field component. In this way it should correlate correctly with other measurements taken by other amateurs in different locations.
A version of the FGM-3 field sensor with higher sensitivity is used here, distinguished by an h suffix. Signal from this sensor feeds the integrated circuit, which performs all the functions required to the level of providing a digital output on eight parallel lines mirroring the tiny field fluctuations. Being digital, this output is easily input directly to a computer for data storage or digital display. Readers wishing to use a meter or chart recorder can add a ZN429 for digital-to-analogue conversion.
The IC converts the period variations to an eight bit digital output, but only after consid-

SENSORS

erable amplification and comparison to a chosen zero reference, set by changing the input to one of the IC pins, by switch or by software control from a computer output port.
Sensitivity or full-scale range can be coded by programming the levels on two input pins on the IC, either by switches or software control through a computer output port, $\mathrm{S}_{0,1}$. Each increment in this coded input from 00_{2} to 11_{2} reduces the sensitivity by a factor of two.
The circuit of Fig. 4 is for use either with a computer or chart recorder. Additional parts required for the meter or chart recorder are shown in Fig. 5.
If a computer is used the ZN429 can be omitted and the lines D_{0-7} are taken directly to the input port instead. Alternatively for those with a built in analogue converter in their computer, such as the BBC computer has, the ZN429 output can be used to input the data via this channel.
If a meter or chart recorder is used, remember that the $Z N 429$ has an inherent output impedance of $10 \mathrm{k} \Omega$ and so can only provide a maximum of $100 \mu \mathrm{~A}$ per volt of output. This calls for a meter with a sensitivity of 50 to 150μ A to ensure a full scale deflection capability. Voltage sensitive chart recorders should have in input impedance greater than $10 \mathrm{k} \Omega$ or a full scale range of around one volt.
In the case of a meter or current sensitive chart recorder a series $10 \mathrm{k} \Omega$ variable resistor will permit adjustment of the scale readings. The same can be done for a voltage sensitive chart recorder by using a larger variable resistor in potentiometer configuration, Fig. 5.
If direct digital input is chosen, it should be noted that there is no strobe, interrupt or handshaking facility available from the chip. This gives rise to the risk of data lines changing during input, causing incorrect reading.
The software should take two readings in rapid succession and only accept data if they
are identical, taking a third reading if necessary to obtain this identity. This problem does not arise in the case of a computer using an internal analogue to digital converter. The SCLOO6a output changes once per second and the computer input scan rate need only be slightly higher than this to collect all the available data.
This rate is probably still too high for most applications and the computer can be used to average the readings over a longer period before storing or displaying the results. Typically, a plotted point once every three or four minutes will produce a 24 hour recording across the screen, depending on the screen resolution in use.
In normal use the sensor will be mounted horizontally with its long axis lying on an east-west line. On powerup the output will automatically move to half-scale and all subsequent field variations will be measured up and down from there. At any later time the output can be set again to the centrescale position by applying a ground level to the reset pin for slightly longer than one second. This can be done by switch or computer control and allows the user to remove any apparent bias in the reading range, caused by switching on by chance on a peak fluctuation.
The switch arrangements in Fig. 6 will provide the control signals needed by the chart recorder type systems.

Fig. 5. Additional circuitry needed to connect output of the magnetometer to a chart recorder or voltmeter.

Magnetic field nulling

A further application-specific integrated circuit is available to provide most of the functions required to provide automatic cancellation of low level magnetic field interference. The technique employs a closed loop containing a sensor to measure the local field and a magnetic field generating coil system to provide the cancellation. A typical application is the reduction of interfering fields near the neck of crt display tubes.
Further information on this applications, FGM sensors and the ICs mentioned here is available from Speake \& Co, Elvicta Estate, Crickhowell, Powys NP8 1DF, tel 01873811281 , fax 01873810958.

Fig. 7. Connecting a capacitor close to the sensor body minimises interference.
sources of interfering magnetic field.
Output impedance of the sensor is 330Ω and the leads to it can be augmented by quite long lengths of cable without much effect on the rectangular pulse output. This permits the sensor to be located remotely from the rest of the equipment, something that is normally necessary to avoid local field anomalies caused by ferrous metal objects being moved around and electronic equipment or electrical cables.
Moving vehicles, for example can be detected at distances of 4 to 5 metres. Burying the sensor at the bottom of the garden away from the road or mounting it on the roof are possible strategies to resolve this.
Although the sensor has been designed to minimise radiation, if it is used in conjunction with high gain radio receivers, it is obviously advisable to screen the long cable to the sensor and also to decouple the supplies as close to the sensor as possible to avoid potential harmonic pickup. The sensor connections are shown in Fig. 7.

TiePieSCOPE HS508

- interface PC parallel printer port
- sampling speed 50 Msampleș/sec
- resolution 8 bits
- input range $50 \mathrm{mV} / \mathrm{div}-20 \mathrm{~V} / \mathrm{div}$
- record length 32KByte/channel
- price £597.00, incl. söftware, user manual and 2 probes (1:1/1:10 switchable)

Software for the PC-based instruments

contains an Oscilloscope, a Spectrum analyzer, a Voltmeter, and a Transient recorder. All instruments are controlled in the same intuitive way and provide for saving and recalling waveforms and settings, cursor measurements, hardcopy on matrix/laser printer and online help. Minimum requirements: a 80286-based PC with 2MByte and running MS-DOS 3.3 or higher.

Fax for a free demo disk and catalog of all our products
Easy installation: just plug in and measure

TP508

- interface PC-XT/AT ISA slot
- sampling speed 50 Msamples/sec
- resolution 8 bits

2 input range $5 \mathrm{mV} / \mathrm{dlv}-20 \mathrm{~V} / \mathrm{div}$

- record length $32 \mathrm{KByte} /$ channel
- price £ 630.00 incl. software, user manual and 2 probes ($1: 1 / 1: 10$ switchable)

Prices are excluding V.A.T.

TiePie engineering (NL)

P.O. Box 290	Koperslagersstraat 37
8600 AG Sneek	8601 WL Sneek
The Netherlands	The Netherlands
Tel +31515415416	Fax +31515418819

TiePie engineering (UK)
28, Stephenson Road, Industrial Estate,
St. Ives, Cambs, PE17 4WJ,
United Kingdom
Tel : +44 1480460028 Fax: +44 1480460340

No-contact current measurement

Current measurement usign a shunt has three disadvantages - the circuit under test has to be broken, the shunt resistor affects the reading, and the measurement system is not galvanically isolated.
A magnetic sensor circumvents all of these, as Steve Winder explains.

Measuring current using a voltmeter relies on the voltage drop across a resistor that has been inserted in series with a circuit, Fig. 1. This method has several disadvantages. In particular, the series resistor introduces a voltage drop that in turn causes a reduction in the current flow. This causes a measurement error. Additionally, the measuring system is directly coupled to the circuit being measured and the circuit has to be broken before a measurement can be made.

Using a moving coil ammeter to measure current flow involves having its movement coil inserted in series with the circuit being measured. This means that resistance is introduced by the wire used in the coil, again reducing current flow and causing an error in the reading.
Multimeters usually have a separate resistors for each current measurement range. Low current ranges require a higher resistor value in order to produce sufficient voltage drop to be

Fig. 1. Current is usually read by measuring the voltage over a shunt resistance, but inserting the shunt usually alters current flow.

Fig. 2. In a Hall effect device, current is made to flow across a semiconductor. Voltage at the sheet sides varies with magnetic field.
measured by the multimeter.
Isolation between the circuit being measured and the test equipment is not usually a problem for low voltage circuits. It is more likely to be important where high voltages are used however. Operational amplifiers with an isolated output are available. This isolation is achieved by chopping the direct-current input signal, passing it through capacitive coupling circuits - or exceptionally through a transformer - and then rectifying the signal to produce a dc output.
The disadvantage of the chopping method is that the output may need filtering to remove the switching transients produced by the chopping process. This slows down the response of the circuit.
Measuring the current in a wire without breaking the circuit can also be important in some applications. It may not be possible to break a circuit, perhaps for safety reasons, for example in a fire alarm system. Alternatively, it may be that the equipment cannot be turned off since it is continuous use. Production line machinery is an example of this.

Other brand 125 Hz

Wavy trace shows poor damping after a transient

SUPRA Ply 125 Hz
Superior damping - similar results at all audio frequencies

Supra Ply has got a big brother, Ply 3.4 £8.00/m for superior bass sonics We are cable specialists since 1976 with distribution established in 24 countries

The test winner!

Stereophile USA December 1995
Studio Sound UK December 1995
Reproduced Sound Conference Nov 1995
"Speaker cable differences: CASE PROVEN" by Ben Duncan Research.

Low inductance concept, low, benign oxidation Much faster, tighter damping gives you higher definition and more control. Result: less blur, less listening fatigue. Transient error in a spaced wire or a zip-wire is as much as $1 / 28$ th of the immediately preceding signal; our cable design reduces this at least ten times.

The low, benign oxidation is discussed in Ben Duncan's article in Electronics World, February 1996: Modelling cable
Please send for our catalog to see our complete range of cables and connectors, for pro and HiFi!
Jenving Technology AB
Backamo 12800 • S-459 91 Ljungskile • Sweden Fax: +46 52223131 Tel: +46522 23460

Electronics Workbench

Wew 4.1 32 Bit Yersion Electronics Workbench saves you time. It's highly productive simulated workbench let's over 70,000 USERS
you design and verify circuits faster
than it would take on a real bench. Mix analogue and digital components and ICs in any combination

Electronics Workbench:

- Click \& drag schematic capture
- Mixed analogue/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analogue components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1. DOS and Macintosh versions
- FREE unlimited technical support
- 30-day money-back guarantee

รi"

8
 (1Robinson Marshall (Europe) Plc 44-(1)-12133-2333216

Fax: 44-(0)-1203-233210
Nadella Building, Progress Close,
Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Shipping chorges UK $£ 6.99$ All prites ore plus VAT.
Electronics Workench is
Eloctronics Workbench is a trodemork of
Interoctive Image Technologies Ltd., Toronto, Conada
All other trodemarks are the property of their respective owners.

Fig. 3. Giant magnetoresistive devices comprise alternating sheets of magnetic and non-magnetic thin films. This diagram shows conditions when no magnetic field is present.

Fig. 4. Resistance of a giant magnetoresistive device reduces when magnetic field is applied.

Magnetic field sensors

Current flow causes a voltage drop when passing through a resistor. It also causes a magnetic field to be generated. There are three possible methods of sensing this field.
One method is to use a magnetometer. This device has a series of coils around a non-linear magnetic core. Alternating currents through the coils generate a flux that either aids or opposes the flux being measured. The difference between the energy supplied to one coil, compared with another, gives a measure of the flux being measured.
Magnetometers are quite large - approximately the size of a fat cigar - and are very sensitive. These devices are sometimes used for sensing the Earth's magnetic field.
Another method involves the Hall effect. Both linear and digital output Hall-effect devices are now available in TO-92 and eight-
pin dual-in-line packages ${ }^{1}$. In a Hall-effect device, a sheet of semiconductor material forms the sensor.
Current is made to flow across the semiconductor sheet while voltage difference across the sides of the sheet are measured. When magnetic flux passes through the sheet, in the perpendicular direction, electrons are deflected on their path through the sheet. Because the electron density on one side of the sheet is higher than the other side, a voltage is developed across the sheet, at right angles to the current flow, Fig. 2.
Hall effect devices are not very sensitive; an analogue sensor has a typical working range of 40 mT . Hall devices are more readily available in their digital form. Digital Hall devices comprise a Hall sensor and a comparator. This addition gives a logic output dependent on the flux - typically switching at 20 mT . Hall devices are sometimes used in conjunction with permanent magnets to sense the movement of ferrous materials.

The magnetoresistive option

The third option involves the magnetoresistive effect. There are two magnetoresistive effects; anisotropic and giant. Anisotropic means that the effect is different dependent on the direction of the flux. The magnetoresistance effect is produced using thin-film layers of magnetic conductors and anisotropic magnetoresistive devices have a sensitivity similar to Hall effect devices.
Being discovered in 1988, giant magnetoresistance, or gmr, is a relatively recent discovery. It has been implemented by alternating magnetic and non-magnetic layers of thin-film conductors ${ }^{2}$. Ferromagnetic materials have spin-polarised conduction electrons.
Adjacent magnetic layers in a gmr device couple together to produce anti-parallel electron spins. As current passes through layers of magnetic material, the electrons are scattered by the alternating magnetic spin of the conduction electrons in each layer. Electrical resistance is produced when electrons are scattered, Fig. 3.
When an external magnetic field is applied, the conduction electron's spin in the different layers begin to align with each other and the
conducting electrons are scattered less. In this way, the resistance is reduced, Fig. 4.
Recently, magnetic field sensors with sufficient sensitivity have been made available in IC form. US company Nonvolatile Electronics Inc has produced devices in surface mount SO-8 packages with full scale sensitivity down to 15 oersted. These are available from Rhopoint in the UK. The method used was to place four resistors in a bridge arrangement with a magnetic shield covering two of the resistors, Fig. 5.
The magnetic shield performs two functions: it shields resistors R_{1} and R_{2}; and it concentrates the magnetic flux through resistors R_{3} and R_{4}. In this way, an external field affects the resistance of resistors R_{3} and R_{4}, but leaves resistors R_{1} and R_{2} unaffected and therefore suitable for use as a reference. A supply voltage is applied across two nodes of the bridge. The remaining two nodes are used to sense a voltage difference.
When a magnetic field is applied, resistors R_{3} and R_{4} reduce in value, making the node joining R_{2} and R_{3} more positive than the node joining R_{1} and R_{4}; this is illustrated by the bridge circuit in Fig. 5.
When a current flows through a wire a magnetic field is produced. The magnetic flux density is given by the equation:

$$
B=\frac{\mu_{o} I}{2 \pi r} \text { tesla }
$$

Alternatively, since one tesla is 10^{4} gauss,

$$
B=\frac{10^{4} \mu_{o} I}{2 \pi r} \text { gauss }
$$

If the dielectric medium is air - or other non-magnetic material - then you can define the magnetic field as:

$$
H=\frac{I}{2 \pi r} \mathrm{amp} / \mathrm{m}
$$

Alternatively, since $1 \mathrm{~A} / \mathrm{m}=4 \pi \cdot 10^{-3}$ oersted:

$$
H=\frac{2.10^{-3} I}{r} \text { oersted }
$$

Fig. 5. Giant magnetoresistive sensor layout. In addition to screening $R_{1,2}$, the shield concentrates flux through $R_{3,4}$.

Fig. 6. Placing a conductor a precise distance from the gmr sensor allows current to be measured without calibration.

Interactive SPICE

Stop Waiting for your simulation results! Experience the power and Immediate Satisfaction of IsSpice4!

ICAP/4, The Virtual Circuit Design Lab, is a completely Integrated system with schematic entry, the IsSpIcE4 native analog and mixed mode simulator, extensive SPICE model libraries and powerful graphics post-processing.

Analyse and Simulate all types of designs with IsSpice4, the First and Only Interactive Native Mixed Mode SPICE 3 Simulator

- System, Board, and IC level
- Analog, Digital, Sampled-Data, Mixed Mode, Behavioural elements
- Power, ASIC, RF, Mechanical, Physical, Thermal applications
- AC, DC, Transient, Distortion, Temperature, Monte Carlo, Noise, Sensitivity, Optimisation, and Fourier analyses Works with all popular schematic entry systemsl
Graphically Driven and Easy To Use
Support \& Service - FREE, EXPERT, UK BASED AFTER SALE SUPPORT, Web \& CompuServe Forums
Affordable, Prices from $£ 450$ to $£ 2,300$

Technology Sources Ltd
Falmouth Avenue, NEWMARKET
CB8 OLZ, UNITED KINGDOM
Tel. 01638-561460
Fax 01638-561721
E-mail: aaj74@dial.pipex.com

Ask us for a FREE Working SPICE Simulation Kit! The Future Is Interactive!

Electronics Workbench

New 4.1 32 Bit Version
 Electronics Workbench uses a powerful SPICE simulator to ensure that circuits work like the -VER 70,000

 real thing. And since you have complete control over the value and behaviour of all components, you control the design process.
Electronics Workbench:

- Click \& drag schematic capture
- Mixed analogue/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analogue components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1, DOS and Macintosh versions
- FREE unlimited technical support
- 30 -day money-back guarantee

44-(0)-1203-233216

Fax: 44-(0)-1203-233210
Nadella Building, Progress Close,
Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Shipping chorges UK $£ 6.99$ All prices are plus VAT.
Electronics Workbench is a trademark of
Interacive Image Technologies Ltd., Toronto, Canada
All other trademarks are the property of their respective owners.
interactive

Using gmr for current sensing

The giant magnetoresistive sensor is approximately in the centre of the SO-8 package, or about 0.65 mm below the top surface. Placing a 0.7 mm wire across the top of the gmr sensor gives a distance from the conductor centre to the gmr sensor of 1 mm . This is convenient for solving the equations given to determine the magnetic field.
With a current of 500 mA through the wire, the magnetic field at the sensor is 1 oersted. The device is sensitive to fields along the axis of the IC, as illustrated by Fig. 6, which shows how the trial current sensor was used.
To test the gmr sensor, I built a a differential amplifier, Fig. 7. This amplifier had a gain of 20 , set by the $1 \mathrm{k} \Omega$ resistor placed between the inverting inputs of the two input op-amps. Low noise op-amps were used. The input stages incorporate a dual TLC2202 c-mos device while the output stage is a bipolar TLE2027. With hindsight the, 2027 limited the output voltage range and a c -mos device may have been a better choice.
I connected the gmr sensor IC across the power supply and into the differential amplifier. A 0.7 mm diameter wire was glued in place across the IC and used to carry current to be sensed by the device. The NVS5B15 gmr sensor uses $5 \mathrm{k} \Omega$ sensing resistors and has a full scale sensitivity of 15 oersted.
Output voltage of the gmr device is proportional to the supply voltage. The 5B15 gave 50 mV output per volt of supply at a field strength of 15 oersted.
I used a 10 V supply, so the maximum output was 500 mV . With a field of 1 oersted, relating to 500 mA through the sense wire, the gmr device produced an increase in output of $500 \mathrm{mV} / 15$ or 33.33 mV . Output of the differential amplifier increased by 666 mV due to the gain of 20 .

Interpreting the output

The reason for describing the output as an increase in voltage rather than an exact value is that, with no magnetic field present, the differential amplifier produced a voltage output of 0.65 V . This was due to offset voltages across the gmr device.
The offset voltage was temperature dependent. A reading of 0.65 V at room temperature, $20^{\circ} \mathrm{C}$, rose to 0.75 V at $35^{\circ} \mathrm{C}$. This offset and temperature dependence could pose a problem when detecting small currents. The offset is easily removed by biasing the differential amplifier. To reduce or remove the temperature dependence however would require a more sophisticated circuit and knowledge of the temperature coefficient. This information is not supplied in either the application notes or data sheet.
Sensitivity of the current sensor can be reduced by increasing the distance between the centre of the conductor and the gmr sensor. If the distance between the conductor's centre and the gmr device is increased to 2 mm , a current of 1 A would produce a field strength of 1 oersted. The surface of the gmr device package would have to be 1.35 mm

Fig. 7. Giant magnetoresistive device amplifier. Current of 500 mA though the sensing wire causes a field of 1 oersted, increasing the differential amplifier output by 666 mV . Power supply is 10 V .

Fig. 8. Giant magnetoresistive sensors suffer form noise. Modulation could be used to remove this.
from the centre of the conductor. This can be achieved by using a larger diameter wire, of 2.7 mm , or by having insulating material between the copper wire and the IC package.
Magnetic field produced by current flowing in a wire can be calculated by considering all the current to be flowing in the centre of the conductor. To find the field strength at a point, the distance should be measured from the centre of the conductor.
The gmr sensor suffers from noise. This is $1 / f$ noise and is about ten times the noise voltage of thin-film resistors. The $1 / f$ noise dominates up to about 10 kHz , above which thermal noise is dominant. Sensitivity of the device can be improved by applying an ac signal with a frequency greater than 10 kHz across the gmr device, instead of using a dc bias. Output of the gmr device will then be an amplitude modulated carrier.
Amplifying this signal and then demodulating it, using the same ac signal, produces a dc signal proportional to the magnetic field. Any low-frequency noise is frequency shifted to high frequency and can be filtered without unduly slowing the response of the circuit.
Figure 8 shows an implementation of this system. The carrier signal is input to the mixers in quadrature and the outputs are summed so that the phase of the signal from the gmr device and amplifier do not affect the amplitude of the output.

In summary

The body of the SO-8 package used by the gmr sensor would provide some electrical isolation between the sensor and the circuit being
measured. Using insulated wire would enable a much greater isolation voltage to be achieved.
Gluing the sensor to an existing wire would enable measurement of current without interrupting the circuit. No resistance is introduced into the circuit being measured, thus no power losses occur and the circuit's current is not affected by the measurement.
Development work is being carried out by NVE to find more sensitive materials and to find out the cause of the $1 / f$ noise. If improvements are possible there will be many more applications for these devices.

References

1 Martin Eccles, Applying Hall to Good Effect, $E W+W W$ July 1994.
2 Rhopoint Components, GMR Sensor
Application Notes, Sept 1995.

Rhopoint, UK distributor of the NVS5B15, is at Holland Road, Hurst Green, Oxted, Surrey RH8 9BB, tel 01883717988 , fax 01883

Get out of a pickle get into SpiceAge!

Hands up all who have been there? A great idea turns into sleepless nights: getting one thing right breaks something else...

Some circuits require the refining of many interdependent variables. SpiceAge provides a virtually limitless inventory of components, signal functions and instruments with facilities for sweeping values, with am and fm through arbitrary functions. It can guide you to a solution that could take much longer to find using hardware.

SpiceAge up your design without burning a hole in your pocket. Prices from just $£ 85+$ VAT to $£ 695+$ VAT. Friendly technical help comes free (dreadful puns optional). For a demonstration kit and details of our other and third party support programs lincludes schematics, PCB layout, filter synthesis and model synthesis), please contact:
Charles Clarke at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel: 01819060155 Fax: 01819060969 Email 100550.2455@compuserve.com

Electronics Workbench

New 4.132 Bit Version
Electronics Workbench is the first Electronics Workbench is the first
affordable integrated tool to offer $\quad \mathbf{7 0 , 0 0 0}$ true mixed-mode simulation. It

ove: USERS

delivers the power you need to design and
verify analogue, digital and true mixed-mode circuits-fast.

Electronics Workbench:

- Click \& drag schematic capture
- Mixed analogue/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analogue components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1, DOS and Macintosh versions - FREE unlimited technical support
- 30-day money-back guarantee

P/Robinson Marshall (Europe) Plc 44-(0)-1203-233216

Fax: 44-(0)-1203-2332 10

Nadella Building, Progress Close,
Leofric Business Park, Coveniry CV3 2TF
E-mail: sales@rme.co.uk.
Shipping chorges UK $£ 6.99$ All prices ore plus VAT.
Electronics Workbench is a trade mork of
Interactive Image Technologites Lidd., Toronto, Conada
All other trademarks ore the property of their respective owners.

ANALOGUE DESIGN

Gain

from passives

Some time ago, browsing through one of my files of cuttings, I came across an article by that guru of analogue design, Bob Pease, of National Semiconductor. It described, among other things, a passive circuit composed of just three capacitors and three resistors - not a transformer or tuned circuit in sight - which gives a voltage gain in excess of unity at one frequency.
Now this intrigued me, as it goes against one's instincts of what is possible in electronics, not to say what is decent. Of course, you can analyse the circuit to find the transfer function, although the algebra gets rather lengthy. You get a third-order equation in f, the frequency, or rather in $j \omega$, where $\omega=2 \pi f$. Separating out the real and imaginary parts, and equating the latter to zero will enable you to solve for the frequency at which the phase shift through the circuit is zero.
You can then substitute this value back into the transfer function and arrive at the gain at the zero phase shift frequency. You can also differentiate the modulus of the transfer function with respect to frequency, and set the result equal to zero. Solving this equation will give you the frequency at which the gain is a
maximum - not necessarily the same as the frequency of zero phase shift.
I contemplated doing just this, but decided against, being not only rather lazy, but also notoriously liable to make algebraic errors. But a more cogent reason for not doing it, is that at the end of the day, I would know what the circuit does, but would not really understand the way that it does it. And understanding is much better than just knowing.

Look - no maths!

So the circuit analysis was undertaken with the aid of graphical constructions known as circle diagrams, handy things that were touched on in reference 1. There, they were used to illustrate a passive lag, or low-pass (top cut) $C R$ circuit.
Now the passive circuit with gain mentioned above is best worked up to bit by bit, so let's start with a single section of it, a passive lead or high-pass $C R$ section, Fig. 1, and assume that the circuit is driven from a zero impedance source and its output monitored with an oscilloscope with an infinite (all right - very high) input impedance.

At very low frequencies, very little current

Fig. 1a) Simple passive lead (high-pass) circuit. b) Circle diagram, left, showing that at any frequency the locus of the tip of the vector $O B$, representing the output voltage at point B in a), is a semicircle. Note, the same current flows through both C_{1} and R_{1}, producing an in-phase voltage across R_{1}, but a quadrature voltage lagging the current by 90° across C_{1}, so angle OBA always equals 90°.

A
(In)

a)
b)
a)

Fig. 2a) Network with two capacitors and two resistors. b) In this case, the circle diagram looks something like this (with provisos, see fext). Note that output vector OC can exceed the input $O A$.

A
b)

Fig. 3. Bode plot for the circuit of Fig. 2a), for the case where $R_{7}=100 \Omega_{2} C_{1}=1 \mu F, R_{2}=100 \mathrm{k} \Omega$, $C_{2}=1 n F$. Thus the loading of $C_{2} R_{2}$ on the $C_{1} R_{1}$ circuit is negligible. Note: if $R_{1}=R_{2}$ and $C_{1}=C_{2}$, the plot is almost the same except that the peak gain falls from +1.25 dB to +0.65 dB .
the reactance of C_{1} is much lower than that of C_{2} and R_{2} in series. The only significant difference is that with equal values, peak gain is only about +0.6 dB against +1.25 dB in Fig. 3 .
Secondly, while the circle diagram OBA is accurate enough, the circle diagram BCA shows what the voltage BC across R_{2} does as the frequency varies, assuming the magnitude of the vector BA remains constant. But of course it doesn't; it too varies with frequency.
The semicircle BCA must thus be regarded as notional, since it varies in size. In fact, the locus of the tip of the output vector OC, representing how the output at C varies with frequency, is not a semicircle. It starts out at zero frequency following the circle OBA from the point O, but gradually diverges from it, becoming a little larger. Finally, it tucks back under to the left, approaching point A from the right.

...and one with zero phase shift

To make a sinewave oscillator, you need a frequency selective circuit to determine the frequency.
If the maintaining amplifier has unity gain, the frequency selective circuit must also have a gain of at least unity, at the frequency at which it provides a phase shift of zero ${ }^{\circ}$ (or 180° if an inverting amplifier). But the circuit of Fig. 2 provides a lead at all finite frequencies: the phase shift is not zero until you get to infinite frequency, by which time the gain is back at unity. However, the gain of an opamp, with its output tied back to the inverting

Fig. 4. Circuit giving a gain greater than unity at a finite frequency at which the phase shift is zero.
input as a unity gain buffer, is slightly less than unity, in fact $A /(1+A)$, where A is the opamp's open-loop gain. So with the circuit of Fig. 2 between its output and its non-inverting input, it can't oscillate, can it? What is needed for an oscillator using a unity gain maintaining amplifier, is a circuit with zero phase shift and a gain just in excess of unity, at a finite frequency. Such a circuit is shown in Fig. 4.
I haven't drawn a circle diagram for it, but you can see how it goes. Note that in Fig. 2b), the semicircle and lines BCA are a smaller scale version of OBC. Now sketch in a smaller version still, CDA, constructed upon CA as diameter. As phi tends to zero, the point D will meet and cross the horizontal axis, pro-

Fig. 5. Bode plot for the circuit of Fig. 4, where all Cs are 1 nF and all $R s=100 \mathrm{kS}$. Gain peaks at +0.9 dB at 1.2 kHz , but is still in excess of unity at the zero phase-shift frequency of 3.9 kHz .
viding a zero and even negative phase shift, whilst the vector OD representing the output at D in Fig. 4 is still greater than the input OA.
In fact, where the locus of the tip of the output vector in Fig. 2b) approaches point A at infinite frequency from the right, the locus of the point D curls round back under and finally up, approaching point A from directly below. This represents an ultimate phase shift (internal to the circuit, but not appearing at the output) of 90° more than the second order circuit of Fig. 2, and 180° more than the first order circuit of Fig. 1. This is just what you would expect in fact from a third order circuit.
(Note that the Bode plot of the gain and phase shift versus frequency in Fig. 5 is for the case where all three capacitors are nFF and all three resistors are $100 \mathrm{k} \Omega$.)

An awful oscillator

If the circuit of Fig. 4 is used as the feedback network around a unity gain amplifier, Fig. 6a), an oscillator results. The gain of the TLO7I buffer stage is very close to unity, while Fig. 5 shows that at the frequency of zero phase shift through the $C R$ network, it still has about 0.3 dB voltage gain. Consequently the loop gain exceeds unity by

a)

100k
Fig. 6a) An awful oscillator, using the network of Fig. 4 as the frequency determining feedback network.
about this amount, and the amplitude of oscillation builds up until there is heavy clipping, Fig. 6b), upper trace.
At under 3.5 kHz , the frequency is less than the 3.9 kHz predicted by the zero phase-shift frequency in Figure 5, but this is the usual experience when an erstwhile sinewave oscillator (without an LC tank circuit) has excess loop gain. When driven into saturation at each voltage extreme, the opamp's internal gain stages take time to recover; in fact, the circuit verges on a relaxation type of oscillator.
Inserting a $10 \mathrm{k} \Omega$ preset pot at the point X in Fig. 6a), and tweaking judiciously as required, resulted in a near sinewave, as shown in the lower trace. Since the $C R$ network has a capacitive component of input impedance, this has resulted in the introduction of some extra lag into the loop, and the frequency of oscillation has consequently adjusted itself to about 2.6 kHz , where the network provides a compensating lead of about 2°
Figure 7 compares the performance of the circuit with a TL071 (upper trace) and with a CA3130 opamp, lower trace. The lower amplitude is due to the maximum $\pm 8 \mathrm{~V}$ supply rating of the latter, compared with the $\pm 15 \mathrm{~V}$ used with the TL071. The waveform is better, possibly due to the lower slew rate of the CA3130 when compensated for unity gain, but the reason for showing both traces is to highlight one of the unsatisfactory aspects of the circuit. Although it is not measurable in Fig. 7, the frequencies were 2592 Hz (TL071) and 2642 Hz (CA3130), a difference of 2%.
In a good oscillator circuit, the actual frequency should be much more independent of minor differences in the performance of the maintaining amplifier. To prove the point, the same two opamps were tested in a Wien bridge oscillator circuit, using two of the $100 \mathrm{k} \Omega$ resistors and two of the InF capacitors from the Fig. 6a) circuit. The theoretical oscillation frequency is 1592 Hz , and the actual fre-

Fig. 7. Output of the circuit of Fig. 6 including the $10 \mathrm{~K} \Omega$ potentiometer - with a TLO71 ($\pm 15 \mathrm{~V}$ supplies, upper trace) compared with the performance with a CA3130 $(\pm 8 \mathrm{~V}$ supplies, lower trace). Frequency differs by 2%. Both traces are $10 \mathrm{~V} / \mathrm{div}$., $100 \mu \mathrm{~s} / \mathrm{div}$.

b) (upper trace) The output of circuit a). (lower trace) With the addition of a 10 K preset at point X, critically adjusted. (both at $10 \mathrm{~V} / \mathrm{div}$., $100 \mu \mathrm{~s} / \mathrm{div}$.)

b) Phase and amplitude response (Bode plot) for a). Note the much more rapid change of phase with frequency in the region of maximum output, compared with Fig. 5.

b) Bode plot for the circuit at a).
quency was 1552 Hz with either opamp; changing the TLO71 supply volts from $\pm 8 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ making no difference whatever.
The reason is the much greater rate of change of phase with change of frequency in the Wien bridge circuit, as shown in Fig. 8. (But it has a minmum attenuation of -9.5 dB or a gain of $1 / 3$, so that a maintaining amplifier with a gain of $\times 3$ is required.) This much greater 'phase slope' means that any slight variation in phase through the maintaining amplifier will result in a much smaller compensating frequency change. Of course, a high Q tuned circuit provides an even greater phase slope and hence less susceptibility still to the vagaries of a maintaining amplifier, and a quartz crystal a much much higher phase slope even than that.
Another disadvantage of the network of Fig. 4 as the basis of an oscillator, is the fact that it is basically a highpass filter. As such, it offers no attenuation of any harmonic distortion produced in the amplifier. The $R C$ network in the Wien bridge, however, is a bandpass circuit, and as such, even with its low Q of $1 / 3$, does provide some attenuation of harmonics.

Every circuit has its dual

Every circuit has its dual, and Fig. 4 is no exception. The dual is shown in Fig. 9a), and as you can see it is a low-pass circuit. Despite

being also a third order circuit like Fig. 4, the stopband roll-off is, like the earlier circuit, at 6 dB per octave. Figure 9 b) shows its frequency response in the form of a Bode plot, for the case where all three capacitors equal 1 nF and all the resistors $100 \mathrm{k} \Omega$. At zero hertz, or dc, the gain is unity and the phase shift zero, the phase exhibiting a small positive value of a degree or so in the region of $300-500 \mathrm{~Hz}$. The amplitude also peaks, by about 0.9 dB , the maximum occurring at about 2 kHz .
As the frequency determining network in an oscillator, it would have the advantage over Fig. 4 of providing some attenuation at harmonics. But it cannot be used in practice, since the attenuation at dc is zero. This means that if you connect it in the circuit of Figure 6a), you simply get a bistable - or do you? Except for a $100 \mathrm{k} \Omega$ resistor in series with the non-inverting input, as far as dc is concerned, the two opamp inputs are shorted together. I haven't tried it, but it doesn't look to be a useful circuit.

Tailpiece

For the with-it readers who spotted, it, and more for those who didn't, I stated earlier that the gain of an op-amp connected as a unity gain non-inverting buffer is slightly less than unity, and that the phase shift in the circuit of Fig. 2 does not reach zero until infinite frequency, by which time the gain is back at unity (both true).

And that therefore when the overall loop gain (network plus opamp in a Fig. 6a) type circuit but with the two C - two R network of Fig. 2) was unity the phase shift was not zero and when the phase shift was zero the gain was less than unity.
This is true in the case of an ideal opamp, but in practice, the buffer stage will start to exhibit a little phase lag long before its gain falls appreciably. This more than compensates the residual lead in the network of Figure 2, so that if the two C - two R network is used in the circuit of Figure 6a), the circuit will in fact oscillate. With a TL071, it produced a heavily clipped sinewave - virtually a squarewave - at about 10 kHz . But with the frequency determined by the point at which two tiny phase shifts, both changing slowly with frequency, cancel each other, the exact frequency is anybody's guess.

References

1. Ian Hickman, In the Picture, Electronics World July/August 1996 pp 558-561.
2. U.S. Patent No. 2730 679, 1951.

TEAC New \& Boxed N/Book:
LTop Floppy Disc Drive FD 05HF 4630V
Sony 9" Super Fine Pitch Trinitron RGB VDU
AT Keyboards for IBM Compatibles
$12^{\prime \prime}$ Colour SVGA 800×600 NEC
Marconi Inst $=2839$ Multiplex Tester £300
Marconi Inst $=$ Data Comms Tester
£385
Marconi Inst = Digital Line Monitor
Marconi Inst $=$ Digital Analyser
Farnell PSU 0-70V 0-5A/0-30V 0-10A
Siemens Data Line Analyser K1190 $£ 350$ £245

Black Star Multimeter 3225 £ 2400

Black Star Multimeter 3225
Tektronix DAS9100 Digital A
Tektronix 7A18 D.T. Amp
Tektronix 7B71 Delaying T.B
Tektronix 7B53A D.T. Base £80
Tektronix 7B70 T Base $£ 75$
Tektronix 7 B70 T. Base
Tektronix 7A15A Amp
Tektronix 7511 Diff $=$ Comp = £75

Tektronix 7511 Diff $=$ Comp =
Tektronix 7A13

12 VAC 200 Watt Transformer
27 VAC 30A Transformer New
£15
Tseng Labs 1 Mb 16 bit ISA SVGA Card $\{16.75 \mathrm{c} / \mathrm{p} 4.00$
Acer Expansion Chassis (Box) for Notebook/Laptop etc.
4.00

Contains 50W PSU. Fan 2×16 bit. 1×8 bit Stot. New \& Boxed $£ 24.99$
Philips PM 3240. 50 Mhz. Scope D/Trace £165
Gould OS300 20 Mhz . Scope D/Trace £145
Leader LMV 181 A AC Millivoltmeter
£145
Leader LMV 181 A AC Millivoltmeter
Racal Inst. 9915 UHF Freq: Meter 500 Mhz
Racal Inst. 9916 UHF Freq: Counter 500 Mhz £145
HP 8413A Phase Gain Ind:
HP 74758 Pen Plotter RS232
HP Colour Pro 8 Pen Plotter RS232
$£ 55$
HP 7470A Plotter HPIB £95
PLOTTERS • COMPUTERS • COMMUNICATIONS • PSU • VDU'S • VIDEO FANS - TEST • CABLE - NETWORK • PRINTERS -
DISK DRIVES ALWAYS IN STOCK. OVERSEA'S ENQ. WELCOME.
TELEPHONE ORDERS ACCEPTED
C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5% VAT.

SEETRAX CAE RANGER PCB DESIGN WITH COOPER \& CHYAN AUTOROUTER

RANGER3
 - DOS
 $£ 2500$
 - Windows\MT
 £2900

Hierarchical or flat schematic linked to artwork.
Unlimited design size, 1 micron resolution
Any shaped pad, definable outline library
Pin, gate \& outline swapping - auto back annotation
Split power planes, switchable on - line DRC
COOPER \& CHYAN SPECCTRA
autorouter (SP2) Inputs: OrCAD, Cadstar, PCAD, AutoCAD DXF

Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet,

HP-GL, Gerber,
NC Drill, AutoCAD DXF

RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER \& CHYAN SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

PCB CAD review subjects

This review, which began in the September issue and continues next month, covers the following ten products.

PCB Designer: Niche Software Ltd, tel. UK 01432 355414. £49 inclusive (see September issue).
PIA: AW Software, tel. Germany +49 89 6915352. PIA std 99DM: extended 171 DM 32bit 286DM inc tax (see September issue).
Easytrax: Protel International pty, tel. Australia 4084377771,
UK PDSL, tel. 01892663298 (see
September issue).
$£ 6$ copying charge.
Ranger2: Seetrax CAE Ltd. 01705591037 , (see October issue) $£ 150$ exc $£ 10$ p+P and VAT.
Electronics Workbench: Interactive Image Technologies Ltd (Canada), tel. 0014169775550 . UK Robinson Marshall, tel. 01203233216 , (see October issue) $£ 199$ exc $p+p$ and VAT.
CircuitMaker: MicroCode Engineering (USA) UK agent Labvolt, tel 01480 300695. Circutimaker and Traxmaker cost $£ 199$ each excluding vat and p\&p.
Quickroute 3.5 Pro+: Quickroute Systems Ltd.
Propak: Labcenter Electronics.
Proteus: Labcenter Electronics.
EasyPC Pro XM: Number 1 Systems.
Note that although it started last month with a couple of smaller packages, this review is not in any order of complexity or competence.

To the uninitiated, autorouters may seem like the perfect answer to the drudgery of manually routeing a board, but they have their own well-hidden snags.
Few low-cost autorouters can route a large or dense board 100% without difficulties of one sort or another. Some only reach 70% completion, leaving the undone tracks for a litthe 'interactive routeing'. You may think that manually routeing the other 30% would be easy, but you would be wrong. The autorouter will have done the easiest routes, leaving you to do the hardest. Moreover, in doing the easiest tracks on the board, it will have selfishly blocked off the spaces a human would have left for following tracks, so you will be faced with undoing the autorouted tracks just to get in the remaining manual tracks.

Undoing and re-routeing tracks that your expensive autorouter has already routed must surely rank as one of the most foolish and time-wasting CAD activities ever devised. Not only that, but you will probably be carrying out the final routeing by what will seem, at first, a truly awful technique called 'rubber banding' as described in the glossary in the September issue. It follows that if you want an autorouter, you must go for one that can route 100% or near. These have tended to be the most expensive, but there is now a handful of lower cost versions.

Most autorouters - especially the low-cost alternatives - balk at single-sided boards. You will not often see a CAD program claim to do a good single-sided board. I have only seen one such claim, and that was in a system where the autorouter alone cost $£ 5300$.

On the whole, autorouters do not produce tracks that compete with manually-laid tracks produced by a person with average competence. The routeing sometimes seems illogical,

the overall result can be aesthetically displeasing, and board functionality and manufacturability is often not up to standard.
Sales literature often refers to autorouter speed. If the autorouter is going to leave uncompleted tracks, then you want to know about it as soon as possible so that you can remake the rat's nest or alter the prerun configuration. For the best completion rates, an autorouter should have rip-up-and-retry and push and shove features. The speed of the autorouter is less important if you are running Windows, provided that you have sufficient resources to leave the autorouter running in the background while you get on with something else.

This chart shows the typical steps from start to finish for a schematic capture and autorouter system.

With an autorouter that you know is weak, then a short run time is a prime requirement. You will notice that all the better autorouters have high pc requirements - especially in the memory department - to improve both run times and success rates. There is clearly a trade-off between the length of run-times, success rates and the power of your pc.

Gridded versus Gridless

Gridded autorouters rely heavily on memory, and using a fine grid to emulate a gridless autorouter puts a large memory load on the pc , so it slows down. In addition, a finer grid can be counter-productive as Figs 1a,b) show. In the first case, Fig. 1a), with the coarse grid, the autorouter can put a track between pads A and B without infringing the design clearance distance ' d '. In the second, with the finer grid, the autorouter cannot put a track in because the clearance with pad A or pad B is less than 'd'. The autorouter would throw this out as an uncompleted track, even though a human operator could see that it could easily insert the track and satisfy ' d '. You would have to make the grid finer still to get back to the situation where the track was routable, extending the routeing time considerably.

Fig. 1. Finer grids are not always belfer. In a) a coarse grid allows the design clearance between the track and pad to be achieved, but b), using a fine grid, does not.

One of the claims for gridless autorouters is that, by using alternative methods like the geo-metric-shape technique, the load on the pc's memory is lower. But this does not necessarily mean the router will be quicker. A lot depends on the routeing strategies being used.
The pre-run configuration of the autorouter has a significant effect on the artwork produced, so it is highly desirable to be able to alter the configuration of the autorouter. Such optimisation can help the result meet the demands of the pcb specification, it can reduce the number of vias to a minimum to reduce cost, and it can help make the pcb easy to manufacture by maximising clearances.

The configuration will dictate which strategies are used by the autorouter. For example, it is pointless to run the memory strategy if there are no areas of regular, repeating mem-ory-type tracks.

Configuration capabilities should allow control of the lengths of track, allow or prohibit some via holes, and allow a decision as to whether the autorouter is permitted to autoneck or autoshave, and so on. Generally speaking, the more configurable an autorouter is, the better the results.

Current autorouters rely heavily on the operator to produce a viable rat's nest before routeing. Rotating just one component can alter the autorouter success rate dramatically, but knowing which component to rotate is a bit of a black art. With a weak autorouter, you can end up spending more time arranging and running the rat's nests than it would take you to manually route the board.

If you don't mind routeing the board manually, one of the simple pcb programs that just provides you with the pad symbols and component outlines is the best choice. That way, you get many of the computer's advantages without getting bogged down in the morass of steep learning curves, rubber-banding, and autorouters that don't route properly.

One-sided offerings

Nearly all the autorouters reviewed here are intended primarily for making large doublesided boards. Not one is aimed at the singlesided board user. This may give the impression that the single-sided board is passé, in some way inferior, but if you look at the photograph, Fig. 2, you will see that as usual the Japanese have a very different view. This board was designed by two manufacturers in Japan for mass production of office equipment. It is a microprocessor-based dc controller. It is not too small for a double-sided design, but nevertheless it is single-sided. The important thing to note is that the designers have placed more jumpers than components in their desire to remain single-sided.

Clearly it more economical to do things this way. But why? The industry standard used to be that if you had more than 50 components or half-a-dozen jumpers it was time to go doublesided. Obviously, this has now been superseded. The widespread use of robotic component insertion machines means that it is cheaper to insert more fixed-length jumpers than make a double-sided pcb - even though it is easier and quicker to design a double-sided board.
Not only is single sided board material cheaper, but the cost of removing copper is greatly reduced and the cost of making vias is of course nil. Plus which, solderability is said to be much better, and there is only need for one solder mask, one copper master etc. Naturally there are no production difficulties aligning the copper track on one side with the other. Prototyping is far easier and quicker with a single-sided board. Also, where boards are to be repaired rather than scrapped if proven faulty at the manufacturing stage or later during service, it is much easier to repair a single-sided board. Eight good reasons!
Another technique to avoid double-sided boards often seen in consumer and office equipment of Japanese design is to make motherldaughterboard arrangements with two or more single-sided boards. Sometimes these are hard-wired together to save the cost of a plug and socket.

Double-sided boards are rarely essential. With some notable exceptions like computers and the miltary, there are few applications where there is a pressing physical need or proven technical advantage in using them.

One trick used with weak autorouters to produce a single-sided board is to run the autorouter twice. First run a single-sided layout. This may well produce some undone tracks. Next, run a double-sided layout on the uncompleted tracks only. With appropriate autorouter configuration, this will often result in 100% completion with just a few tracks on the top side. These can then be turned into jumpers.
There is a large and obvious unfilled gap in the market for an affordable single-sided autorouter that does the job properly. I predict that such an autorouter would enjoy instant success, and it would have this part of the market to itself as it stands at present.

Fig. 2. Microprocessor-based dc controller of Japanese manufacture illustrates that it may wise to consider single-sided designs even for fairly complex

Autorouter testing

I discovered that it was difficult to devise a standard test that could produce a meaningful result for all the autorouters under review. This was because they could all route doublesided boards, without producing reject routes, until a large board size was reached.
The main difference between the various autorouters lay in how many vias were produced and the total length of track used to make up the design. Such factors as component density and variation in configuration of strategies unfairly influenced the results from some autorouters. Eventually I decided that a small single-sided board gave the best indication of the power of the autorouters. Such a board made it easy to fabricate a deliberate difficulty to show how the better autorouters could overcome the problem, and how the weaker ones could not.

I divided the autorouters into four categories by means of this test. Those in category A were able to complete the test, those in category B could complete it with a small relaxation of the design rules, those in category C could not complete it. Autorouters in category D could not attempt a single-sided board or did not work from a rat's nest. The Table presents a comparison of the autorouters reviewed.
The board design I used does not bear much relationship to a real board because I made generous space allowances everywhere so as not to inhibit certain routeing strategies. This would have made the test unfair.
Finding exactly matching component outlines proved to be problematic, so these vary a little in each program tested. The time taken for each router is also given, but this is on a relative scale only, in order to allow for dif-
ferences in pc speed. As a rough indication, if a router is rated at 1 on this scale, then it would take a minute or less in running time to give the result shown on a 386 with a co-processor running at 20 MHz with 16 Mbyte of ram. A router rated at ten would take ten minutes, and so on.

Although routeing power and speed are important, it should be pointed out that each autorouter has its own set of attributes some of which may make a particular autorouter attractive even though it may be comparatively slow, or low on routeing power.

Autorouter comparisons

Category A - able to complete the test circuit (relative time taken in brackets)

Specctra (2)	from	Range 2
MultiRouter (2)	from	Easy-PC
386 Rip-up (10)	from	Ranger2
ARESIII (2)	from	Proteus
AR3 (5)	from	Quickroute 3.5

Category B - able to complete the test circuit with slight relaxation of design rules
Ares (2) from Propak
Category C - unable to route the test circuit completely
Range2 Standard (1)
Traxmaker (1)
Quickroute 3.5 Standard (3)
Category D - unsuitable for use with the test circuit
P.I.A

EasyTrax

Review 1 - Circuitmaker

This program is a schematic drawing and capture product for Windows with digital, analogue and mixed-mode simulation provided all in one package. That is, neither the simulations nor the main libraries are sold separately as in the Nol System arrangement, but are provided as part and parcel of the product. This makes CircuitMaker very good value for money.
There is also a pcb drafting program complete with autorouter, available as an extra, called Traxmaker. Curiously this runs under dos and as you may suppose, the exit from CircuitMaker into Traxmaker is not effortless. You may find the plunge from an easy-to-use intuitive Windows program to a menu-driven dos program disconcerting.
CircuitMaker needs at least a386 pc with 4 Mb of ram, and a co-processor for the analogue simulations, which are based on Spice. You will need Windows 3.1 for the 16 bit version, which is the one I tested. A 32 -bit version is available which requires Windows NT

Fig. 14. Schematic in CircuitMaker. Note the lattice grid and pin-out on 741.
or 95 . A well-written and comprehensive manual is provided and there is good on-line help and a separate help directory, plus a very
good tutorial. The level is pitched just right for an practical introduction to CAD. Users will detect a slight bias towards the educational

REVIEW

Fig. 15. Zoom view of schematic, showing quality of graphics. Compare this with some DOS screens from next month's reviews.

field, but this should not stop professional engineers from using it
The schematic drawing part of Circuitmaker is excellent. A lattice grid is used instead of a dot matrix, akin to that used in Quickroute and the available drawing area on a 14 in monitor is fair at about 9 by 5.5 in . The full drawing area is several times more than this. There is no support for multi-sheet schematics.
Double use is made of the title bar. It is used for displaying button bar information when any of the buttons are selected. Little things like this show that a lot of thought has been put into CircuitMaker's display area to keep the drawing area from becoming cluttered.
Selecting and placing components is easy and the libraries are extensive - 1500 components, most of which carry simulation information. Access to such a large library is necessarily a little slow, but Circuitmaker gets round this with the hotkey concept, whereby frequently used components can be called up by one key from a parts bin.
I prefer having a large library and slow access to having fast access and a small library. The library is well organised and use-
ful. Symbols not in the 'hot-key' parts bins are selected one at a time from the library and sent straight to the drawing area; there is no parts bin for these symbols, so this process is a little slow overall.
Parts can be automatically annotated, and they can be rotated at the selection stage with the right mouse button, which is a convenient method, or later on using the rotate tool. Component text, such as R2, 100k and $\mathrm{BC108}$, stays upright during component rotation and may be moved independently to any position.
Placing multiple symbols of the same type is speeded up by using the repeat function to copy existing symbols. Should you need a component not in the library, you can make up your own functioning model as CircuitMaker is fully expandable. A new component can be cross-referenced with package outlines in the pcb program if required.
Drawing of lines is orthogonal, and a long cursor line is used to assist placement. There is inhibition of lines that don't make contact with pins, and as an extra aid, a small red box appears when the cursor is within striking
range of a pin. This system, called SmartWire, makes CircuitMaker one of the easiest and quickest schematic drawing programs of this review. You are unlikely to create lines without connectivity with this system and your netlists will be sound.
An automatic router similar to Propak's WAR is also provided. It can put in an orthogonal line for you if you click on the two pins you want to connect. This can operate in two modes - simple or intelligent. Simple takes the shortest orthogonal path, intelligent skirts round obstacles if possible. Like WAR in Propak, some editing of routes may be required to avoid the occasional odd effect, but the main advantage is speed.
Panning is carried out with the standard scroll bar concept. There is no map to locate the drawing, but it is debatable whether one is needed. When placing a device in the drawing area, autopanning is performed. There are ten levels of zoom, plus a zoom control which makes your circuit fit the screen fully - a feature well worth having.
Overall quality of schematic drawings is good, but some devices - such as the 741 shown in the test circuit - do not show all active pins. This is a sign that Circuitmaker has its roots in simulation rather than pcb production. But it is possible to edit devices and draw in the missing active pins.
Converting the circuit into a netlist for export to Traxmaker was fairly easy, the only snag being that it is necessary to specify a Traxmaker component outline for any schematic symbol that doesn't have an allocated outline already. To do this, the component outline information has to be extracted from Traxmaker, and ferried it over to Circuitmaker. This means leaving Circuitmaker, making an exit from Windows into dos, starting up Traxmaker, finding the outline, then reversing these steps to get back to where you began to insert the data.

This illustrates one of the penalties for having two different formats in a system.

Fig. 16. Typical analogue simulation of a circuit imported into Circuitmaker from Propak using SPICE netlist transfer. Note how the sig gen is connected and the test probe location.

Fig. 17. Any analysis from the above simulation can be run full-screen for making accurate measurement.

However, to be fair, the majority of Circuitmaker components do have outlines allocated so you are not likely to do this frequently. But if you hit a similar snag - a net list problem springs to mind - you would have to go through this rigmarole to correct it. With a system like this, co-operation between the two parts, such as the automatic forward/reverse annotation as found in fully integrated packages like Propak, is difficult to implement. This problem is not unique to Circuitmaker, it is found in all set-ups where a third-party pcb package is added on to schematic drawing/capture program without full integration. Having one in dos and the other in Windows compounds the problem.
After compiling the net list, the next step is to make a note of the file name of the net list to be transferred and quit CircuilMaker and

Windows. The rest of the process of producing pcb artwork is carried out in TraxMaker. To complete the netlist transfer, start Traxmaker from dos, enter the drawing part of the program, and import the file using a full dos path command.
Of the combined schematic-capture and autorouter products reviewed, this was one of the most long-winded netlist transfers, but I did not find it difficult.
Net list outputs in Spice and pcb format and Windows metafiles can be generated. The pcb net list raises the possibility of exporting the schematic to a third-party autorouter, perhaps a Windows-based product, but the netlist compatibility would have to be carefully checked.

CircuitMaker can import a Spice 2 or 3 net list. This could be useful if you already have a pcb artwork program with Spice export and
wanted to add on an inexpensive simulator. I tried the Spice netlist from Propak into CircuitMaker with complete success.
Simulators are included with CircuitMaker and I am sure these will be one of the deciding factors influencing would-be purchasers. The simulations in CircuitMaker are as easy to use and intuitive as the schematic drawing program.
As already mentioned, CircuitMaker will be of interest to educationalists. There is a section that allows deliberate faults to be put into circuits that could be very useful to teachers, if not to designers using CircuitMaker in earnest. Also, numerous circuit diagrams already set up and ready to demonstrate are included with Circuitmaker

Review 2 - Traxmaker

Fig. 12. The test circuit was autorouted with Traxmaker. One net is incomplete, putting this autorouter in category C.

Fig. 13. Rat's nest in Traxmaker after interactive editing, showing a typical Traxmaker menu.

Traxmaker needs a 386 or higher pc and 640 K of ram. Expanded memory is supported, and it is advisable to provide some to avoid 'out-ofmemory' messages.
The package comprises a manual drawing package, a semi-automatic pad-to-pad router and an autorouter, and it can make single-layer, double-sided or multilayer boards. Traxmaker could be used as a stand-alone package, but here it is specifically tailored to take a netlist from CircuitMaker.
This is a mature menu-driven dos product and is well-developed. Users will notice an immediate similarity with a product already reviewed, Easytrar by Protel, and will guess its origin. There is a good manual, re-written for use with Circuitmaker.
Like Easyrrax, Traxmaker has a 32 in by 32 in board area and a drawing area on a 14 in monitor of about 9.5 in by 6.5 in. It has many useful features, such as adjustable autosave, and a
good library of component outlines, which is text only.
There is an autopan facility but no map showing where you are, a feature beneficial to any program that incorporates autopan. To compensate for that, there is a 'jump' feature, allowing the screen to jump to a particular component.
Seven pre-set zoom levels are available and there is a zoom function for making the circuit fit the screen. The basic manual drawing program is unremarkable and can produce good results with a little diligence.
Importing a net list from Circuitmaker has already been discussed. Creating a rat's nest for the autorouter in Traxmaker presents two unusually good features. Firstly, the program has a function called 'auto-space' which can deposit the components in a relatively ordered fashion around the chosen board area. This may not be the exact arrangement you want, but it is
a big improvement on having the components placed in a linear array or in a pile one on top of the other as in some other programs.
Having the components in an ordered form gives you a head start towards creating the desired rat's nest. Also, it is possible to configure auto placement to optimise the way it places the components inside the board area. This gives you an even better start. Secondly, there is a function within auto placement which can put all the components onto the chosen grid. In this way, the grid-type autorouter can route without difficulty. This feature is useful if you have been maneouvering components about and have not exactly located them back on the grid. Combined, these two features save a lot of time and effort.
There is the ability for creating tracks manually from a rat's nest but the rat lines stay in place, which can lead to a very complicatedlooking piece of artwork. However, a facility is
available for removing each rat line interactively as you progress, or removing them all from sight at one go. This is not as good as the Propak system of interactive routeing, but is better than purely manual routeing from scratch.
There are two other interactive routeing possibilities, firstly rubber-banding the rat lines to produce tracks, or secondly using the pad-topad router which works in a very similar way to the one in Easytrax. The rubber-banding system is easier to use than some, as it does not use the keyboard to insert corners.
As already mentioned, the autorouter is of the gridded variety and although it offers plenty of choice in pre-run configuration it is not very sophisticated or powerful. There is no rip-up-and-retry strategy for example. It can be configured to route single-sided but the results are typical of an autorouter of this type, with incomplete tracks frequently being reported. The test circuit circuit could not be completed and this puts it in category C .
Traxmaker made a better job of small to medium sized double-sided boards, but as you would expect, considerably more effort was needed to arrange the rat's nest to achieve 100% completion in comparison to category A and B autorouters.

In summary
Firstly, CircuitMaker. The schematic drawing program can be recommended. It is easy to learn and user-friendly. With the simulations and large component library, it is very good value for money, and this will make it attractive as a quick and easy simulator as well as a way of generating net list for a pcb routeing program.
Traxmaker has a learning curve of medium steepness. It has logical system of working, some very useful features not found in other programs, and not many of those cryptic dos commands. As a result, it is reasonably pleasant to use.
For manual drawing the package is capable of producing good artwork and is versatile. With its medium-power autorouter in category C, Traxmaker is only fair value at around $£ 200$ compared to similar products reviewed here. Ranger 2 for example is only $£ 200$ for a complete integrated schematic/autorouter system with an autorouter (the 386 rip-up) in category A. Even so, if your interest is only in doublesided or multilayer boards, or if you wish to route manually, then Traxmaker may be an attractive proposition.
The snag with Traxmaker is that it does not share the same Windows format as

CircuitMaker. In order to make it a complete schematic/simulation/pcb artwork package, what Circuitmaker really needs is a thoroughly integrated Windows based pcb program containing a rip-up-and-retry autorouter to put it on par with other autorouter systems. Then it would have a winning formula.
It is perhaps inevitable that CircuitMaker will be compared with Electronic Workbench. The latter probably has slightly more realism in its simulations, but both products are such an improvement in user-friendliness on previous budget simulators that it seems churlish to pick this out.
Electronic Workbench has no zoom feature, no library of connectors, and no integrated autorouter as yet; Circuitmaker can offer all three. Price may influence purchasers, because in Electronics Workbench, the larger library, net list export and Spice in/out are all charged extra. In Circuitmaker they are all in the basic price of $£ 199$.

Electronic Designs Right First Time?

LAYAN - Affordable Electromagnetic Simulation

For less than $£ 1000$!

Affordable Electronics CAD
$\left.\begin{array}{|l|l|c|}\hline \text { EASY-PC Professional XM : Schematic } & \$ 475.00 & \mathbf{£ 2 4 5 . 0 0} \\ \text { Capture and PCB CAD. Links directly to } \\ \text { ANALYSER III, LAYAN and PULSAR. }\end{array}\right)$

Number One Systems

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR, UK.
For Demo Disk Pease Write, Phone or Fax.
Tel: +44 (0) 1480461778
Fax: +44(0) 1480494042
email:sales@numberone.com

Feeding the off-centre dipole

Abstract

It is widely acknowledged that the best place for the off-centre-fed dipole's feed is a third the way along. Richard Formato explains this is not a universal the rule.

Theoretical data suggest that the commonly used feed point for the off-centrefed dipole, or ocfd, may not be the best. The off-centre-fed dipole is an attractive multiband antenna because it is simple, inexpensive, and requires no antenna tuner. Improving its performance simply by moving the feed point makes the antenna even more attractive. This note illustrates how the feed point influences antenna performance by analysing computermodelled standing-wave ratio data for three different feed point locations.
The ocfd, shown schematically in Fig. 1, consists of a single wire radiator of length L fed off-centre a distance D from one end. The usual implementation uses a $1 / 3$-feed', that is, the if source is located one-third of the way from the end, so that $D \equiv L / 3$. Why the feed point should be located there is not exactly clear. The 9 th edition of the Antenna Book ${ }^{1}$, for example, observes that there is not much
theoretical justification for this choice. Nevertheless, the $1 / 3$-feed is accepted practice for building an ocfd.
Design details for a $1 / 3$-feed three-band off-centre-fed dipole ($80-40-20$ meters) appear in the 17 th edition of the Antenna Book ${ }^{2}$. A 4:1 current balun at the feed point matches this antenna to any length of 50Ω coax. More recently, Bill Wright, G0FAH ${ }^{3}$, described a four-band $1 / 3$-feed off-centre-fed dipole (40-20-15-10 meters) fed with 300Ω ladder line. Matching 50Ω coax requires a $4: 1$ balun on $40-20-10$ meters and a $1: 1$ balun on 15 meters.
Four band operation therefore requires switching baluns. Another minor limitation is that the ladder line length can be only an odd multiple of the wavelength at 21 MHz because the line is used as an impedance transformer. A simpler approach to achieving four-band operation is to feed the off-centre-fed dipole at a different point along its length.
A 21.03 m (69 ft) long, 0.2053 cm diameter (\#12 AWG) off-centre-fed dipole was com-puter-modelled in free space. The dimensions are the same as those in the G0FAH design. Free-space results are a good approximation for antennas high enough above the ground (typically a significant fraction of a wavelength). The band-centre standing-wave ratio was computed on 40-20-15-10 meters at the antenna input terminals for a feed system impedance, Z_{0}, of 200Ω.
The theoretical values of input resistance and reactance were used to calculate standingwave ratio: the antenna was not assumed to be tuned. Because Z_{0} is 200Ω, a $4: 1$ balun is required to feed the antenna wih 50Ω coax. The results for three different feed points appear in Figs 2, 3 and 4.
Figure 2 plots standing-wave ratio at the antenna terminals for the conventional $1 / 3$-feed where D is 6.98 m . The 40 and 10 meter values are slightly over $2: 1$, while the 20 meter stand-ing-wave ratio is about 1.75. In marked con-

Fig. 1. Commonly, dipole feed distance D is a third of L, but this may not be the best choice.

Fig. 2.Standing-wave ratio at the antenna terminals for a standard 1/3-feed dipole.

Fig. 3. When the off-centre-fed dipole feed is located at $D=6.98 \mathrm{~m}$, this standing-wave ratio plot results.
trast, the 15 meter standing-wave ratio is off the scale (actual value >20). It is this behaviour that makes a special feed system necessary on 15 meters, a complication which can be avoided by moving the feed point.
Figure 3 plots standing-wave ratio when the off-centre-fed dipole feed is located 8.65 m from one end. The 40-20-10 meter standingwave ratios are somewhat higher than they are with the $1 / 3$ feed, but the 15 meter ratio is very low at around 1.2 . Moving the feed point 1.67 m closer to the centre of the antenna results in a much better average standing-wave ratio. And, more importantly, special matching is not required to achieve a standing-wave ratio of 2.5 or less at the antenna terminals on all bands. Balun and coaxial cable losses, which are inevitable, reduce the standingwave ratio at the coax input to even lower levels. For most installations, it is probably reasonable to expect standing-wave ratio at the transmitter to be less than $2: 1$ on all bands.
One more example of the effect of feed point location appears in Fig. 4, which plots standingwave ratio for a feed point 3.65 m from one end. The values on 40-20-15 meters are excellent. The 40 m standing-wave ratio is only slightly above 2, and the 20 and 15 meter standing-wave ratios are below $2: 1$. The highest value occurs on 10 m , where it is approxi-

Fig. 4. A further example of how moving the feed point affects standing-wave ratio.
mately 2.4. Since the standing-wave ratio is reduced by feed system losses, it will be less than 2.4 at the coax input. And, because balun and cable losses increase with frequency. the standing-wave ratio reduction will be greatest on 10 m where it is needed most. Feeding the antenna 3.65 m from one end may well provide the best overall four-band performance.
In a specific implementation, the off-centrefed dipole, like any antenna, must be 'tweaked' for optimum standing-wave ratio. This is accomplished by adjusting the feed point location. Other antennas. nearby metal-
lic objects. and the earth are typical factors that influence antenna performance. Since these factors are not included in the computer model. they must be dealt with empirically by adjusting the antenna on-site. The data presented here provide a starting point for experimenting with different feed points.
Depending on the total antenna length L, height above ground, earth electrical parameters, and feed system Z_{0}, it should be possible 10 operate a single off-centre-fed dipole on four or more bands without an antenna tuner or special feed arrangement.
It is apparent is that the ofcd's standing-wave ratio varies dramatically as the feed point is moved, and that the commonly used $1 / 3$-feed is not necessarily the best. Other feed points may therefore produce a better antenna.

References

1. The ARRL Antenna Book, 9th Edition, American Radio Relay League, Inc., Newington, CT, USA, 1960, pp. 191-192
2. R. Dean Straw, N6BV, Editor, The ARRL Antenna Book, 17th Edition, American Radio Relay League, Inc., Newington, CT, USA, 1994, page 7-20.
3. Bill Wright, Four Bands, Off Centre, QST Magazine (American Radio Relay League, Inc Newington, CT, USA), February 1996, page 65

20% EW reader discount

Audio signal generator

AG2601 is a portable mains-powered instrument covering 10 Hz to 1 MHz in five overlapping decades. Sinewave distortion between 500 Hz and 50 kHz is just 0.05%.

The AG2601 audio signal generator spans 10 Hz to 1 MHz in five overlapping ranges and features floating output and low distortion. This stable sine and square-wave oscillator is being made available to Electronics World readers at the fully-inclusive special price of $£ 129$. Its normal selling price is £ 129 excluding VAT and delivery. Please use the coupon to order your signal generator, and address all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE 18 2PL, fax 01162773945 or tel. 0116 2771400.

AG2601 audio generàtor - specifications

General

Frequency range 10 Hz to 1 MHz
Frequency stability within $\pm 2 \mathrm{~Hz}$
Output waveforms sine, square
Output impedance 600Ω
Accuracy $\quad \pm 5 \%+2 \mathrm{~Hz}, 10 \mathrm{~Hz}-1 \mathrm{MHz}$
$\pm 3 \%+2 \mathrm{~Hz}, 100 \mathrm{~Hz}-100 \mathrm{kHz}$
O / P floating voltage within $\pm 1.5 \mathrm{~dB}$

Sinewave characteristics

Distortion $\quad<0.05 \%, 500 \mathrm{~Hz}$ to 50 kHz $<0.5 \%, 50 \mathrm{~Hz}$ to 500 kHz
Output voltage 8 V rms, max
Output flatness $\pm 1.5 \mathrm{~dB}(1 \mathrm{kHz})$
Output impedance 600Ω

Squarewave characteristics

Output voltage 15 V pk-pk, min

Rise time $\quad 0.5 \mu \mathrm{~s}$

Synchronization input

Input impedance $10 \mathrm{k} \Omega$
Maximum input 10 V rms

Supply

$115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Physical data

Dimensions
Weight
150 by 250 by 130 mm
2.5 kg
*Test leads supplied as standard

Use this coupon to order your AG2601

Please send me AG2601 Audio Generator(s) at the fully inclusive special offer price of $£ 129$.

Name
Company (if any)
Address
\square
Phone number/fax
Total amount

Make cheques payable to Vann Draper Electronics Ltd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)
Card No

Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatlvely fax credit card detalls with order on 01162773945 or telephone on 01162771400 . Address orders and all correspondence relating to this order to Vann Draper Electronlcs at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.
*Overseas readers can also obtain this discount but details vary according to country.

Dictionary of Communications

Technology

Terms, definitions and abbreviations
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA In response to the changing face of the telecommunications industry and the rapid expansion in the use of microprocessors, fibre optics and satellites, Gil Held has updated his earlier telecommunications dictionary to bring readers in line with the very latest developments and terms in communications technology.

Features Include:

- Over 9000 references and $250+$ illustrations
- Comprehensive coverage of data and computer
communications
- New entries on PC LANs, the Internet, client/server operations and communications testing
- Trade name information

First Edition Review:

"For a consultant or telecommunications operative, this book is a must. It is comprehensive and timely an excellent reference for the IS professional."
Data Processing Digest
ISBN 047195542 6, 512pp, hardback, UK £68.50, Europe $£ 73$, ROW £85
ISBN $0471951269,512 \mathrm{pp}$, paperback, UK £ $\mathbf{3 8} .50$, Europe $£ 43$, ROW $£ 55$

encountered by network users and administrators on a daily basis, this book is designed to assist readers by focusing on testing, troubleshooting and tuning of Ethernet and TokenRing networks. It is devoted exclusively to: how things go wrong how to recognise, monitor and test for problems; network analysis and network management products that assist users in examining the flow of data in a complex network.
ISBN 047195880 8, $275_{\text {pp, }}$ hardback, UK $£ 37.50$, $£ u r o p e ~ £ 40$, ROW $£ 50$

Wireless Information Networks

Kaveh Pahlavan, Worcester Polytechnic Institute and Allen H Levesque, GTE Government Systems Corporation.
Wireless Information Networks organises all major elements of wireless technology - cordless and cellular telephony, Personal Communications Systems (PCS), mobile data networks and Wireless Local Area Networks (WLANs), presenting them from a ogical, systems engineering perspective. Technical material is thoroughly integrated with special applications and focuses on four main areas: Wireless
standards and descriptions of systems and products;
Measurement and modelling of radio and optical wave propagations; Wireless transmission techniques and Wireless multiple access techniques.
Contents: Overview of Wireless Nerworks. Frequency Administration and Standards Activities. Characterisation of Radio Propagation. Channel Measurement and Modelling for Narrow-band Signaling. Measurement of Wide-band Channel Characteristics. Computer Simulation of the Radio Channel. Modem Technology. Signal Processing for Wireless Applications. Spread Spectrum for WIN Systems. Wireless Optical Networks. Networks and Access Methods. Standards and Products.
ISBN 047110607 0, 304pp, hardback, UK
£63.50, £urope $£ 68$, ROW £81

Applied Cryplography

2nd Edition
Protocols, Algorithms and Source Code in C
Bruce Schneier, Security
Consultant and President of
Counterpane Systems, USA
This revision of the programmer's and system designer's guide to the practical applications of modern cryptography

provides the most comprehensive, up-to-dare survey of modern cryptographic techniques, along with practical advice on how to implement them.

New to this edition:

- Detailed treatment of the US government's Clipper Chip encryption program
- New encryption algorithms
(eg. 'GOST') recently
obtained from the former
Soviet Union
- More detailed information on incorporating algorithms and programming fragments
into working software
- The latest developments in the fields of message authentication ('digital signatures') and digital cash. ISBN O471 I2845 7, 816pp, hord badk, UK ES9, Europe £64, ROW £78
ISBN 0471117099,816 pp, pqperbock, UK £44, Europe $£ 49$, Row $£ 63$

Data and Image

 Compression4th edition tools and techniques Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA
Data and image compression are key issues in computer communications with the increasing demand for data transmission capacity.

Guiding the reader through the main techniques, this book explains how practical data and image compression techniques are now vital for efficient, low-cost transmission and data storage
requirements. Building on the success of the previous editions of Data Compression, the scope of the fourth edition has been considerably expanded. Now covering image and fax compression, the text has been restructured to take account of the many new advances in this important field. It is also accompanied by an updated disk containing compression routines.
ISBN 047195247 8, 450pp+disk, har dback,
UK £58.50, Europe £63, ROW £75

Handbook for Digital Signal Processing

S.K. Mitra, University of California and J.F. Kaiser, Bell Communications Research, New Jersey, USA
This is the definitive source of detailed information on all important topics in modern

digital signal processing. The only current handbook of its kind, it meets the needs of practising engineers and designers of hardware, systems and software. Written by world authorities, the Handbook for Digital Signal Processing is supplemented with hundreds of informative tables and illustrations. For professional engineers, designers and researchers in electronics and telecommunications, this work will be an indispensable reference - now and for years to come.

Contents: Introduction; Mathematical Foundations of Signal Processing; Linear TimeInvariant Discrete-Time Systems, Finite-impulse Response Filter Design; Digital Filter Implementation Considerations; Robust Digital Filter Structures; Fast DFT and Convolution Algorithms; finite Arithmetic Concepts; Signal Conditioning and Interface Circuits; Hardware and Architecture; Software Considerations; Special Filter Designs; Multirate Signal Processing; Adaptive filtering Spectral Analysis; Index. ISBN 0471619957,1302 pp, hardback, UK £110.50, Europe £118, ROW £138

Solving Inferference Problems In Electronics

R. Morrison, Eureka California, USA Interference in electronic equipment is a constant source of difficulty for the design and systems engineer. Until now, there has not been a coherent theory that engineers can refer to in their design work and the solution of interference problems has therefore often considered to be an 'art'. Written by an acknowledged expert in the field, this new title provides methods and techniques for testing and evaluating
designs, and covers interference questions in computer manufacturing and systems design.
ISBN 0471 I2796 5, 206pp, hordback, UK £47.50, Europe $£ 48.50$, ROW $£ 54$

Diode Lasers and Photonic Integrated Circuits

L. A. Coldren and S. W. Corzine, both of the University of California, Santa Barbara, USA. Diode lasers are found in numerous applications in the optoelectronics industry,

telecommunications and data communications, ranging from readout sources in compact disc players to transmitters for optical fibre communications systems. This new title provides a comprehensive treatment of diode laser technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this fast growing field. ISEN 047111875 3, 620pp, hardback, UK £63.50, Europe £67, ROW $£ 78$

All prices are fully inclusive of packing and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

Qry	Title or ISBN	Price

** All prices on these pages include delivery and package **
Total
Name
Address
\qquad

Postcode Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Publishing

Credit card no \qquad

Card expiry date

Signed

Please allow up to $\mathbf{2 8}$ days for delivery

Night thoughts on
 crossover distortion

Douglas Self investigates the biggest factor affecting signal purity in Class-B audio power amplifiers crossover distortion.

non-linearity detectable when driving an impedance of 8Ω or greater, and even this is only measurable above 2 kHz or so.
Such an amplifier typically gives a total-harmonic-distortion plot such as Fig. 1, where the thd is less than 0.001% from 10 Hz to 1 kHz , and only reaches 0.005% at 10 kHz . The thd rises at $6 \mathrm{~dB} /$ octave and emerges from the noise floor around 1 kHz , firstly because the global negative feedback (nfb) has been made to fall at 6 dB /octave for high-frequency stability, and secondly because crossover distortion is high-order, and so its harmonics are at high frequencies where the negative feedback factor is small.
The state of Blamelessness (an inelegant term perhaps, but no-one has yet come up with a better one) holds for 8Ω loads, but 4Ω loading introduces an extra third-order distortion due to current-dependent beta in the output devices ${ }^{1}$.

The pernicious nature of crossover distortion is partly due to the fact that it occurs over a small part of the signal swing, and so generates high-order harmonics. Worse still, the small range over which it occurs is at the zerocrossing point. Not only is it present at all levels and all but the lightest loads, but is generally
t is universally acknowledged that crossover distortion is the worst problem afflicting Class-B power amplifiers.
Those who have followed my investigations into amplifier distortion will recall my concept of a 'Blameless' Class-B amplifier - one so designed that the easily correctable distortions are reduced to negligible levels. This yields an amplifier where crossover distortion is the only
believed to increase as output level falls, having the potential to cause very poor linearity at the modest listening powers that most people use.

Seeing is believing

Being an untrusting person, I first looked to see if crossover distortion really did increase with decreasing output level in a Blameless amplifier.

The problem is that a Blameless amplifier has

[^2]such a low level of distortion at 1 kHz 0.001% or less - that the crossover artefacts are barely visible in circuit noise. This holds even if low-noise techniques are used ${ }^{2}$.
The measured percentage level of the noise-plus-distortion residual is bound to rise with falling output, because the noise voltage remains constant; this is the lowest line in Fig. 2. To circumvent this, the amplifier was deliberately underbiased by varying amounts to generate ample crossover spikes, on the assumption that any correctly adjusted amplifier should be less barbarous than this.
The answer from Fig. 2 is that the thd percentage does increase as level falls, but relatively slowly. Both emitter-follower and com-plementary-feedback-pair output stages give similar diagrams to Fig. 2. Whatever the degree of underbias, thd increases by about 1.6 times as the output voltage is halved. In other words, reducing the output power from 25 W to 250 mW , which is pretty drastic, only increases thd percentage by six times. This makes it clear that the absolute, as opposed to percentage, thd level in fact falls slowly with amplitude, and therefore probably remains imperceptible. This is something of a relief; but crossover distortion remains a bad thing to have.
Distortion versus level was also investigated at high frequencies, ie above 1 kHz where there is more thd to measure, and optimal biasing can be used. Figure 3 shows the variation of thd with level for the emitter-follower stage at a selection of frequencies; Fig. 4 shows the same for the complementary feedback pair. Neither shows a significant rise in percentage thd with falling level, though it is noticeable that the emitter follower gives a good deal less distortion at lower power levels around IW. This is an unexpected observation, and possibly a new one.
As a final look at the nature of the beast, Fig. 5 shows that high-frequency distortion is markedly reduced by increasing the load resistance. This provides further confirmation that almost all the 8Ω distortion originates as crossover in the output stage.

Minimising crossover distortion

Unlike some more benign kinds of signalwarping, crossover distortion seems to be unanimously agreed to be something any amplifier could well do without. I therefore scrutinised some output stages to find ways to reduce its production.
The amount of crossover distortion produced depends strongly on optimal quiescent adjustment, so the thermal compensation used to stabilise this against changes in temperature and power dissipation must be accurate. The first part of this article deals with the crossover region and its quiescent conditions, the second with temperature effects on these conditions. Both reveal surprises.

The output stage examined

Fig. 6 shows the two most common types of output stage: the emitter follower and the complementary-feedback-pair configurations. The manifold types of output stage based on

Fig 1. Distortion performance, percentage thd, of a typical Blameless Class-B amplifier at $25 \mathrm{~W} / 8 \Omega$; the noise floor is at the 0.0008% level. Bandwidth is 80 kHz .

Fig 2. Showing how crossover distortion rises slowly as output power is reduced from 25 W to 250 mW (83) for optimal bias and increasingly severe underbias (upper lines) This is an emitterfollower type output stage. Measurement bandwidth 22 kHz .

Fig 3. Variation of crossover distortion with output level for higher frequencies. Optimally biased emitter-follower output stage. Bandwidth 80 kHz .

AUDIO DESIGN

triples will have to be set aside for the moment. The two circuits shown have few components, and there are equally few variables to explore in attempting to reduce crossover distortion.
To get the terminology straight: here, as in my previous writings, $V_{\text {bias }}$ refers to the voltage set up across the driver bases by the V_{be}-multiplier bias generator. For Class-B operation, $V_{\text {bias }}$ is in the range $1-3 \mathrm{~V}$. Voltage V_{q} is the quiescent voltage across the two emitter resistors (hereafier R_{e}) alone, and is between 5 and 50 mV , depending on the configuration chosen. Quiescent current I_{q} refers only to that flowing in the output devices, and does not include driver standing currents.
I have already shown that the two most common output configurations are quite different in behaviour, with the complementary feedback pair being superior on most criteria. Table 1 shows that crossover gain variation for the emitter-follower stage is smoother, -
being some 20 times wider - but of four times higher amplitude than for the complementary feedback pair version. It is not immediately obvious from this which stage will generate the least high-frequency thd, bearing in mind that the negative feedback factor falls with frequency.
Table 1 also emphasises that a little-known drawback of the emitter follower is that its quiescent dissipation may be significant.

An experiment with crossover

Looking hard at the two output stage circuit diagrams, intuition suggests that the value of emitter resistor R_{e} is worth experimenting with. Since these two resistors are placed between the output devices, and alternately pass the full load current, it seems possible that their value could be critical in mediating the hand over of output control from one device to the other. Resistor R_{e} was therefore stepped from 0.1 to 0.47Ω, which covers the

Fig 4. Variation of distortion with level for higher frequencies. Optimally biased CFP output stage. Bandwidth 80 kHz .

Fig 5. How crossover distortion is reduced with increasing load resistance. Power is 20 W into 8Ω and bandwidth is 80 kHz .
practical range. Voltage $V_{\text {bias }}$ was re-optimised at each step, though the changes were very small, especially for the complementary feedback pair version.
Figure 7 shows the resulting gain variations in the crossover region for the emitter-follower stage, while Fig. 8 shows the same for the complementary feedback configuration. Table 2 summarises some numerical results for the emitter-follower stage, and Table 3 for the complementary feedback.
There are some obvious features; firstly R_{e} is clearly not critical in value as the gain changes in the crossover region are relatively minor. Reducing R_{e} allows the average gain to approach unity more closely, with a consequent advantage in output power capability ${ }^{3}$. Similarly, reducing R_{e} widens the crossover region for a constant load resistance, because more current must pass through one R_{e} to generate enough voltage-drop to turn off the other output device.
This implies that as R_{e} is reduced, the crossover products become lower-order and so of lower frequency. They should be better linearised by the frequency-dependent global negative feedback, and so overall closed-loop high-frequency thd should be lower.
The simulated crossover distortion experiment described in reference 4 showed that as the crossover region was made narrower, the distortion energy became more evenly spread over higher harmonics. A wider crossover region implies energy more concentrated in the lower harmonics, which will receive the benefit of more negative feedback. However, if the region is made wider, but retains the same amount of gain deviation, it seems likely that the total harmonic energy is greater. Consequently, there are two opposing effects to be considered.
This is partly confirmed by reference 2 , where measurements show that the thd reaches a very shallow minimum for $R_{\mathrm{e}}=0.22 \Omega$, at any rate for that particular configuration, level, and load; this is consistent with two opposing effects. While the variation of thd with R_{e} appears to be real, it is small, and I conclude that selecting $R_{\mathrm{e}}=0.1 \Omega$ for maximum efficiency is probably the over-riding consideration. This has the additional benefit that if the stage is erroneously over-biased into Class AB , the resulting g_{m}-doubling distortion will only be half as bad as if the more usual 0.22Ω values had been used for $R_{\mathrm{e}}{ }^{3}$.

Never assume

It would be easy to assume that higher values of R_{e} must be more linear, because of a vague feeling that 'there is more local feedback'. But this cannot be true as an emitter-follower already has 100% voltage feedback to its emitter, by definition. Changing the value of R_{e} alters slightly the total resistive load seen by the emitter itself, and this does seem to have a small but measurable effect on linearity.
The first surprise from this experiment is that in the typical Class-B output stage, qui-

Table 1. Crossover gain variation for the emitter follower is wider, thus smoother.

	Emitter-follower	CFP
	2.930 V	1.297 V
$\mathrm{~V}_{\text {bias }}$	50 mV	5 mV
V_{q}	114 mA	11 mA
I_{q}	4.6 W	0.44 W
P_{q} (per o/p device)	0.968	0.971
Average Cain	0.48%	0.13%
Peak gain deviation from average		
Crossover width*	$\pm 12 \mathrm{~V}$	$\pm 0.6 \mathrm{~V}$

(for $R_{\mathrm{e}}=0 R 22,8 \Omega$ load and $\pm 40 \mathrm{~V}$ supply rails)

* Crossover-width is the central region of the output voltage range over which crossover effects are significant; I have rather arbitrarily defined it as the \pm output range over which the incremental gain curves diverge by more than .0005 when $V_{\text {bias }}$ is altered around the optimum value. This is evaluated here for an 8Ω load only.

Table 2. Characteristics of the emiter-follower stage (Type 1).

Data for $8 \Omega 2$ load and emitter-follower o/p stage OUTEF2G.CIR (See HC \#2299-304)

$\boldsymbol{R}_{\mathbf{e}}$	Optimal $\boldsymbol{V}_{\text {bias }}$	Optimal $\boldsymbol{V}_{\mathrm{q}}$	$\boldsymbol{I}_{\mathrm{q}} \mathrm{mA}$	X-Width	Average Gain
Ω	V	mV	mA	V	ratio
0.1	2.86	42.6	215	18	0.982
0.22	2.87	46.2	107	12	0.968
0.33	2.89	47.6	74	9	0.955
0.47	2.93	54.8	59	7	0.939

As R_{e} is varied, V_{q} varies by only 29%, while I_{q} varies by 365%

Table 3. Complementary feedback pair characteristics.
Data for 8Ω load and cíp o/p stage OUTPUT4G.CIR (See HC \#2293-8)

R_{e}	Optimal $\boldsymbol{V}_{\text {bias }}$	Optimal $\boldsymbol{V}_{\mathrm{q}}$	$\boldsymbol{I}_{\mathrm{q}}$	X-Width	Average Gain
Ω	V	mV	mA	V	ratio
0.1	1.297	3.06	15.3	1.0	0.983
0.22	1.297	4.62	11.5	0.62	0.971
0.33	1.297	5.64	8.54	0.40	0.956
0.47	1.298	7.18	7.64	0.29	0.941

As R_{e} is varied, V_{q} varies by 230% while I_{q} varies by 85%. However the absolute V_{q} change is only 4 mV , while the sum of $V_{\text {be }}$ varies by only 0.23%. This makes it pretty plain that the voltage domain is what counts, rather than the absolute value of I_{q}.
escent current as such does not matter a great deal. This may be hard to believe, particularly after my repeated statements that quiescent conditions are critical in Class-B, but both assertions are true. The data for both the emitter follower and complementary feedback pair output stages show that changing R_{e} alters the I_{q} considerably, but the optimal value of $V_{\text {bias }}$ and V_{q} barely change.

Voltage across the transistor base-emitter junctions and emitter resistors seems to be what counts, and the actual value of current flowing as a result is not in itself of much interest. However, the $V_{\text {bias }}$ setting remains critical for minimum distortion; once the R_{e} value is settled at the design stage, the adjustment procedure for optimal crossover is just as before.
The irrelevance of quiescent current was confirmed in the Trimodal amplifier ${ }^{3}$, which was actually designed after the work in this article was done, and where I found that changing the output emitter resistor value R_{e} over a 5:1 range required no alteration in $V_{\text {bias }}$ to maintain optimal crossover conditions.
The critical factor is therefore the voltages across the various components in the output stage. Output stages get hot. When junction temperatures change, both experiment and simulation show that if $V_{\text {bias }}$ is altered to maintain optimal crossover, V_{q} remains virtually constant.
This confirms the task of thermal compensation is solely to cancel out the $V_{\text {be }}$ changes

Table 4. Tolerance of Vbias for 8Ω loading.

		Follower o/p	CFP output
		1.242 V	
Crossover spikes obvious	Underbias	2.25 V	1.258
Spikes just visible	Underbias	2.29	1.283
Optimal residual	Optimal	2.38	1.291
g_{m}-doubling just visible	Overbias	2.50	1.330

Fig 6. The two most popular kinds of output stage: the emitter-follower, left, and complementary feedback pair. $V_{\text {bias }}$ and V_{q} are identified.
in the transistors; this may appear to be a blindingly obvious, but it was worth checking as there is no inherent reason why the optimal V_{q} should not be a function of device temperature. Fortunately it isn't, for thermal com-

pensation that also dealt with a need for V_{q} to change with temperature might be a good deal more complex.
The recognition that V_{q} is the critical parameter has some interesting implications. Can we

AUDIO DESIGN

immediately start setting up amplifiers for optimal crossover with a cheap digital voltmeter rather than an expensive thd analyser? Setting up quiescent current with a milliammeter has often been advocated, but the direct measurement of this current is not easy. It requires breaking the output circuit so a meter can be inserted, and not all amplifiers react favourably to so rude an intrusion. The amplifier must also have near-zero dc offset voltage to get any accuracy.
Measuring the total amplifier consumption is not acceptable because the standing-current
taken by the small-signal and driver sections will, in the complementary feedback pair case at least, swamp the quiescent current. It is possible to determine quiescent current indirectly from the V_{q} drop across the emitter resistors still assuming zero dc offset - but this can never give a very accurate current reading as the tolerance of a low-value for R_{e} is unlikely to be better than $\pm 10 \%$.
However, if V_{q} is the real quantity we need to get at, then R_{e} tolerances can be blissfully ignored. This does not make thd analysers obsolete overnight. It would be first necessary

Fig 7. Output linearity of emitter-follower output stage for R_{e} between 0.1 and 0.47Ω.

Fig 8. Output linearity of the cfp output stage for emitter-resistance R_{e} between 0.1 and 0.47Ω.
to show that V_{q} was always a reliable indicator of crossover setting, no matter what variations occurred in driver or output transistor parameters. This would be a sizable undertaking.

There is also the difficulty that real-life dc offsets are not zero, though this could possibly be side-stepped by measuring V_{q} with the no load. A final objection is that without thd analysis and visual examination of the residual, you can never be sure an amplifier is free from parasitic oscillations and working properly.
I have previously demonstrated that the distortion behaviour of a typical amplifier is quite different when driving 4Ω rather than 8Ω loads. This is because with the heavier load, the output stage gain-behaviour tends to be dominated by beta-loss in the output devices at higher currents, and consequent extra loading on the drivers, giving third-harmonic distortion. If this is to be reduced, which may be well worthwhile as many loudspeaker loads have serious impedance dips, then it will need to be tackled in a completely different way from crossover distortion.
It is disappointing to find that no manipulation of output-stage component values appears to significantly improve crossover distortion, but apart from this one small piece of (negative) information gained, we have in addition determined that:

Quiescent current as such does not matter; V_{q} is the vital quantity.

- A perfect thermal compensation scheme, that was able to maintain V_{q} at exactly the correct value, requires no more information than the junction temperatures of the driver and outpuit devices. Regrettably none of these temperatures are actually accessible, but at least we know what to aim for.

Thermal issues

Quiescent condition stability depends on two main factors. The first is the stability of the $V_{\text {bias }}$ generator in the face of external perturbations, such as supply voltage variations. The second - and more important - is the effect of temperature changes in the drivers and output devices, and the accuracy with which $V_{\text {bias }}$ can cancel them out.
From the above investigations, and given a fixed $R_{\mathrm{e}}, V_{\text {bias }}$ must cancel out temperatureinduced changes in the voltage across the transistor base-emitter junctions, so that V_{q} remains constant. From the limited viewpoint of thermal compensation this is very much the same as the traditional criterion that the quiescent current must remain constant, and no relaxation in exactitude is permissible.
I have at last reached some conclusions on how accurate the $V_{\text {bias }}$ setting must be for minimal distortion, after many hours squinting at furry green scope traces. The results are approximate, depending partly on visual assessment of a noisy residual signal, and will probably change slightly with transistor type.

Nonetheless, Table 4 gives a starting point.
From these, er, subjective measurements, we can take the permissible error band for the emitter-follower stage as about $\pm 100 \mathrm{mV}$, and for the complementary-feedback pair as about $\pm 10 \mathrm{mV}$. This goes some way to explaining why the emitter-follower stage can give satisfactory quiescent stability despite its dependence on the V_{be} of hot power transistors.

Simulation

Returning to the PSpice simulator, and taking $R_{\mathrm{e}}=0.1 \Omega$, a quick check on how the various transistor junction temperatures affect V_{q} yields:

- The emitter-follower output stage has a V_{q} of 42 mV , with a V_{q} sensitivity of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to driver temperature, and $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to output junction temperature. No surprises here.
- The complementary-feedback pair stage has a much smaller V_{q} of 3.1 mV . Sensitivity of V_{q} is $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to driver temperature, and only $-0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to output device temperature. This confirms that local negative feedback in the stage makes V_{q} relatively independent of output device temperature, which is just as well as Table 4 shows it needs to be about ten times more accurate.

The complementary feedback pair output devices are about 20 times less sensitive to junction temperature, but the V_{q} across R_{e} is something like 10 times less; hence the actual relationship between output junction temperature and crossover distortion is not so very different for the two configurations, indicating that as regards temperature stability the complementary feedback pair is only twice as good as the emitter follower, and not vastly better, which is perhaps the common assumption.
In real life, with a continuously varying power output, the situation is complicated by the different dissipation characteristics of the drivers as output varies. See Fig. 9, which shows that the complementary feedback pair driver dissipation is more variable with output, but on average runs cooler.
For both configurations, driver temperature is equally important, but the emitter-follower driver dissipation does not vary much with output power. Initial drift at switch-on is however greater, as the standing dissipation is higher. This, combined with the two times greater sensitivity to output device temperature and the greater self-heating of the emitterfollower output devices, may be the real reason why most designers have a general feeling that the emitter-follower version has inferior quiescent stability.
Having assimilated this, we can speculate on the ideal thermal compensation system for the two output configurations. The emitter-follower stage has V_{q} set by the subtraction of four dissimilar base-emitter junctions from $V_{\text {bias }}$, all having an equal say, and so all four

Fig 9. Driver dissipation versus output level. In all variations on the emitter-follower configuration, power dissipation varies little with output; complementary-feedback-pair driver power however varies by a factor of two or more. (This is Fig. 1 taken from Reference 5.)
junction temperatures ought to be factored into the final result. This would certainly be comprehensive, but four temperature-sensors per channel is perhaps overdoing it. For the complementary feedback pair stage, we can ignore the output device temperatures and only sense the drivers, which simplifies things and works well in practice.
If you assume that the drivers and outputs come in complementary pairs with similar $V_{\text {be }}$ behaviour, then symmetry prevails and we need only consider one half of the output stage, so long as $V_{\text {bias }}$ is halved to suit. This assumes that the audio signal is symmetrical over time scales of seconds to minutes, so that equal dissipations and temperature rises occur in the top and bottom halves of the output stage. This seems a safe bet, but the unaccompanied human voice has positive and negative peak values that may differ by up to 8 dB , so prolonged a cappella performances have at least the potential to mislead any compensator that assumes symmetry.

In practice

Practical amplifiers of whatever output configuration almost invariably simplify matters to the ultimate by using only one sensor to establish $V_{\text {bias, }}$ usually in a $V_{\text {be- }}$-multiplier circuit. Temperature sensed is therefore at best a compromise, and the best sensor position depends crucially on the configuration chosen.
For the emitter-follower, both drivers and outputs have an equal influence on quiescent V_{q}, but the output devices normally get much hotter than the drivers, and their dissipation varies much more with output level. In this case the sensor goes on or near one of the output devices, thermally close to the output junction.
It has already been shown experimentally that the top of the TO3 can is the best place to
put it ${ }^{5}$. Recent experiments have confirmed that this holds true also for the TO 3P package, (a large plastic package like an enlarged TO220, and nothing like TO3) which can easily get 20° hotter on its upper plastic surface than does the underlying heatsink.
In the complementary feedback pair, the drivers have most effect and the output devices, although still hot, have only onetwentieth the influence. Driver dissipation is also much more variable, so now the correct place to put the thermal sensor is as near to the driver junction as you can get it.
The temperature sensors discussed here are physically distant from the driver junction, so thermal attenuation and delay errors complicate the situation considerably. In a future article I hope to show how these errors can be determined, and markedly reduced, by improving the thermal compensation system.

References

1. D Self, 'Distortion In Power Amplifiers' Part 5, p 1009, Electronics World, Dec 1993, (Production of low-order distortion by betadroop on 4Ω loading).
2. D Self, 'Trimodal Audio Power' Part 1, p 466, Electronics World, June 1995, (Low noise techniques. Measurements showing V_{q}, not I_{q}, is what counts).
3. D Self, As^{2}, but p 465, Electronics World, June 1995, (Efficiency improvement with lowvalue emitter resistors).
4. D Self, 'Distortion In Power Amplifiers' Part 5, p 1012, Electronics World, Dec 1993, (Varying the width of the crossover region alters the harmonics produced).
5. D Self, 'Distortion In Power Amplifiers' Part 6, p 42, Electronics World, Jan 1994, (Measurements showing top of TO3 can is hottest part of the output structure).

Hands-on Interneł

Cyril Bateman

 looks at circuit design simulators including alternatives for rf engineering.Fig. 2. All-in-One provides easy access to over 200 search engines. These are subdivided for convenience into major sub-headings, all with a consistent user interface. You can even track a UPS parcel delivery using this source.

Much of the value of Internet lies in its explosive growth combined with the ease and speed at which pages can be updated. Unlike the delays implicit with conventional publication, it is quite feasible to draft a Web page and publish it on Internet - all within one day. Hence site content and its essential 'URL' address frequently change.

With the exponentially growing number of Web pages now accessible on Internet being matched by the equally rapid introduction of new search facilities, structured search patterns are desired. This need is shared equally by electronic designers and students, so it should come as no surprise that some excellently coordinated search facilities are found at university (.edu) locations.

The University of Nebraska-Lincoln ${ }^{1}$ Electronics Shop Web Page reveals a wealth of information targeted to its students, but almost equally useful to designer engineers. Two documents should be printed out for reference, 'Electronic Design Software' and 'E.E. Internet Info Sites', in total fifteen pages giving access to preferred search engines, design software reviews, FTP and information resources.
As a contrast in styles, within two printed pages, CECl^{2} publish their famed 'Electronics Search FAQ' which provides links to nine Net search engines - eight not previously covered in this series, All-in-One, Findit, Gower.Net, Internet Sleuth, nLightn, Rice University, Search.com, Use It, Yahoo, Fig. 1.
This month 'All-in-One'3, which clearly demonstrates the volume of search methods available, is cho-

Fig. 1. Creative Engineering provides links to nine search tools. For the present this is still supplied as a no-cost service.
sen as a bookmark site. Its search page is conveniently organised into eleven major search categories. These present links to more than 200 search engines, all using a consistent user interface, Fig. 2.
While 'Archie' remains the preferred Internet system for locating and downloading software programs using the many FTP sites, Archie accesses Unix based archives, so cannot find all files. A special search engine 'FTPSearch' ${ }^{4}$ located at Trondheim, Norway can often be more effective, but it is better restricted to simply finding files, rather than finding and downloading.
With the variety of search engines now identified, Web users will adopt their personal favourite search site list. To save much searching for and typing in of frequently incomprehensible URL addresses, ones personal selection can be stored or 'Bookmarked' within the Web browser to be immediately available, saving much on-line time.

Simulation software

With the prevailing 'time to market' pressures, most development circuits need simulation before committing to a breadboard.
Circuit simulation software for low frequencies, also for digital circuits, is dominated by Spice based systems working principally in 'Time Domain'. In the first of this series, March 1996, I demonstrated, using FTP, how to download an evaluation version of the popular

Fig. 3. The lowest cost way to evaluate the PSpice software.
Can also be ordered by phone or fax.

PSpice simulator. The current Windows evaluation package totals almost 12Mbyte, so Microsim ${ }^{5}$, now offer this on cd rom, in addition to their FTP download site. This cd can be ordered from their Web page while on-line, by E-mail or telephone, Fig. 3.
While PSpice is an extremely popular package, it is expensive, so it might be beneficial to also evaluate demonstration versions of some of the many less expensive offerings. One such, highlighted in the 'Electronic Design Software' paper, is 'TurboSim'6, which presently is on special offer for $\$ 99$. It has a 1.1 Mbyte demonstration which is easily downloaded, Fig. 4.
At radio frequencies, frequency-domain simulation dominates, with 'Touchstone' ${ }^{7}$, and 'Super Compact' ${ }^{8}$, both being professionally accepted. The American Radio Relay League ${ }^{9}$, now offers The ARRL Designer Software v1.5-a sub-set of Super-Compact at the extremely attractive price of $\$ 150$ including an excellent 400 page manual and model libraries. Allow two months for surface shipment, Fig. 5.
A shareware 'front end' add on for ARRL Designer, called TuneKit ${ }^{10}$, designed to generate Net Lists and expedite design of signal handling filters, has been written by Max Froding, using Visual Basic. This too can be downloaded, see Fig. 6.
Another low-cost frequency-domain simulator, from the 'Electronic Design Software' paper, is the Academic Technologies NSW Australia RF system ${ }^{11}$. A demonstration version is available for your evaluation and the full package lists for only $\$ 99$ US.
Competing head-on with Touchstone and SuperStar Professional ${ }^{12}$, Optotek Ltd offers Mmicad v2.0 ${ }^{13}$ - a midcost frequency domain system with increased accuracy for ceramic multilayer capacitor simulation. Incorporating the CapCad software enhancement from Dielectric Laboratories Inc. it provides true distributed capacitor models. A demonstration cd, and textual comparisons with Touchstone and SuperStar, can be ordered on-line for this system.
Designed to ease the problem of adequately modelling ceramic multilayer capacitors in Spice simulations, Spicap is an interactive on-line tool on the AVX Corporation Web

Fig. 4. Why not try out the demo for this low cost alternative simulator? This package is currently on a very special offer.

Fig. 5. This excellent low-cost introduction to rf simulators is available to nonmembers. My copy, ordered by phone and credit card arrived 16 July - eight weeks after ordering.

Fig. 6. The latest ToolKit v2.5 offers extra features but download v2 first. Offers easy Net-List generation for ARD, provided it matches your needs.

Fig. 7. SpiCap provides easy interpretation of this maker's published capacitor data. Ensures improved accuracy of capacitor modelling using Spice simulators.

page ${ }^{14}$. It provides users with those Spice equivalent circuit parameters of impedance, esr, series inductance, series resonant frequency and effective capacitance - all as functions of applied frequency, temperature and dc voltage. Given either a single frequency or a restricted frequency-band simulation, Spice based simulators can now make allowance for frequency dependent capacitor variables, thus offering more realistic simulations. These same parameters could also be
used with frequency-domain simulators for rf, thus reducing the need for 'S Parameter' information, Fig. 7.
Readers interested in further exploring the merits of time domain versus frequency domain simulators, will find a wealth of unbiased and detailed discussion papers, including the latest Circuit Envelope simulator which combines both techniques, at the HP EEsof home page ${ }^{7}$ - the home of the Touchstone of software simulation system.

References

1. University of Nebraska-Lincoln http://www.engr.unl.edu/ee/eeshop 2. Creative Engineering Concepts http://www.eg3.com/srcnet.htm
2. All-In-One Search Page - http://www.albany.net/allinone 4. FTPSearch Trondheim Norway http://ftpsearch.unit.no/ftpsearch 5. Microsim Corporation -
http://www.microsim.com/freeeval.html
3. Island Logix - http://pages.prodigy.com/LJ/A/LJSN87A
4. HP EEsof - http://www.hp.com/go/hpees of
5. Compact Software Corporation - http://www.comsoft.com
6. American Radio Relay League - http://www.arrl.org/ard 10. Max Froding -
http://members.aol.com/maxfro/private/tunekit2.html 11. Academic Technologies -
http://www.OntheNet.com.au/~academic
7. Eagleware Corporation - http://www.eagleware.com
8. Optotek Ltd. - http://www.optotek.com
9. AVX Corporation - http://www.avxcorp/software

M\&B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopsgate Street, Leeds LSI 4BB Tel: (0||3) 2435649 Fax: ($0|\mid 3$) 2426881

and that's just

FEATURES

- 16/32 bit 68307 CPU for fast operation -Up to 1 Mbyte of EPROM space onboard - Up to 512 Kbyte SRAM space onboard - 32 Kbyte SRAM fitted as standar - RS232 serial with R5485 optio - MODEUS \& other protocols supported - Up to 22 digital vo channets
- 2 timerkounter/match registers
- PrC port or Mbus \& Watch dog facilties - Large Proto-typing area for user circuits - Up to 5 chip selects available
- Program in C. C+*, Modula-2 \& Assemble - Real Time multitasking Operating System - OS9 or MINOS with free run time license
- Manuŕa
- Manufacturing available even in low
- A full range of other Controllers ayailable
P.C. 'C' STARTER PACK AT ONLY $£ 295$ + VAT The Micro Module will reduce development time for Quick turnaround products/projects and with the P.C. 'C Starter pack allow you to start coding your application mediately, all drivers and libraries are supplied as tandard along with MINOS the real time operating ystem all ready to fun from power on. Kie ' stanter pack includes. AMicro Module with 128 Kbyte SRAM, PSU, Cables, Manuals, C compiler, Debug monitor ROM, Terminal program, Downloader, a single opy of MINOS. Extensive example software, and free nlimited technical support all for $\{295+$ VAT

[^3]
The OneStop solutions to process signal line protection

Din rail mounting radio frequency interference filter and transient voltage suppressor for voltage and current loop process signals For all two wire twisted pair applications Upgrading from light to full industrial EMC requirements Provides protection against the following: *Directly coupled RFI from such sources as invertor switching, electric motors, radio paging and signalling systems, broadcast transmitters, and locally high levels of radio frequency energy radiating from near by equipment (e.g. medical) *Electrostatic discharge
*Mains switching transients
*Fast transient/burst requirements

Also professional units operating from battery/external DC : The Balance Box - Precision mic/line amplifier Phantom Power Box - 48 Volt mic powering
Headphone Amplifier Box - Mic/line to headphone driver
Conford Electronics Conford Liphook Hants U30 7QW
Information line 01428751469 Fax 75.1223

TELFORD ELECTRONICS

> Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978

Letters to "Electronics World"
Quiadrant House, The Quadrant,
Sutton, Surrey, SM2 5AS

Motional feedback headphones explained

lan Hickman's motional-feedback headphones - Music in Mind, EW October '96 - are an ingenious piece of design work, but it was inevitable that, for a variety of reasons, they would fail to produce the desired results.
There are three basic cues available in a sound signal to indicate the source direction. As Ian indicates, one of these is the disparity in time of arrival at the two ears - which will be zero when the source lies on the mid line.
However, this cue is only accessible in sounds which possess distinct transients; most natural sounds do, but Ian's choice of a continuous sine wave for initial testing would have eliminated this potential source of information.
What would have been available was the phase difference between the ears, with one sampling 'further up the wave' than the other. Fortunately Ian had selected a rather low frequency test tone, so he heard the desired effect. As the wavelength shortens to about head size the phase difference represents an ambiguous cue and we seem to have evolved so as to be insensitive to interaural phase differences in frequencies above about 1500 Hz . At shorter wavelengths, diffraction around the head no longer occurs. Instead the head starts to become a significant obstacle in the wave path, so that the more distant ear receives a lower amplitude wave. The interaural intensity difference thus provides a useful direction cue in the region of the spectrum where phase differences can no longer be utilised. In the borderline region of frequencies we are not very effective direction judges, a fact capitalised upon by evolution. For example, ground-living, vulnerable pheasant chicks emit chirps of a frequency which their small-headed mother can easily locate. The broader headed fox in contrast has great difficulty in tracking down the sound source
If appropriate phase and intensity cues are provided in headphonedelivered sounds a sense of direction is achieved, although, as Ian Hickman indicates, the sounds tend to be 'lateralised' (move from side-to-side, but still in the head) rather
than 'localised' (perceived as being external). However, he was misinformed when told that the significant factor in externalisation was the effect of head movement. It is certainly important, but even more so are the effects of the pinnae (the outer ear flaps)
The most notable feature of ears is the intricate pattern of folds. They are not there to provide rigidity they serve to modify the sound Rather than delivering a single version of each wave, the folds in our ears produce multiple reflections, each delayed by a very brief interval. The delay is far too short to be perceived as an echo; instead the time delayed replications cause interference in the wave, with diffraction reducing the amplitude of some frequencies and enhancing others. The pinnae thus behave as comb filters, but with notch frequencies which depend upon the angle of incidence of the source. The colouration of the sound (equivalent to the rainbow colours produced by interference in an oil film) gives a unique indication of direction and a sense of 'outsideness'. As long as the sound source is broadband the brain is so effective at interpreting the colourations that a one-eared listener can make quite good direction judgements - computing the signal difference between the two ears is not essential in this task.
Most broadcast stereo material does not attempt to preserve phase differences between the channels (unless the programme is labelled 'binaural'). The direction cues are carried entirely by amplitude differences between the channels This works, because although in real life there is negligible headshadowing at the lower frequencies, the brain will use artificially induced amplitude differences to compute source direction. Ian's attempts to turn mono signals into stereo by introducing phase lag were reasonably successful, because the two channels retained equal amplitudes. With a stereo broadcast he was adding phase differences to signals which had conflicting amplitude differences. Under some circumstances time/intensity trading can take place: the brain can set loudness cues against phase difference and decide that the sound source is not displaced at all. However, if the pitch, delay and
intensity are not carefully defined it is impossible to predict what the perception will be.
Moreover, if lan was listening to an orchestra on a wide stage, some of the instruments should have started with phase differences, which aught to have decreased to zero as he turned his head to face them. By treating all the sounds equally he was compressing the entire orchestra into a heap in the middle of the platform - all very messy! Above all, his electronics didn't have ears; the pinnae must be modelled to achieve convincing effects.
I believe what Ian Hickman has attempted will become feasible, but it will require some fearsome dsp chips and a good deal of expense not least because we don't all have the same shaped heads and ears. Personalisation of the transfer functions will be required.

Dr PL N Naish

Department of Psychology
The Open University
Milton Keynes

Valves - in defence

Responding to Mr Linsley-Hood's rather strident summary dismissal of valve technology, I wonder if he would give us some distortion curves of comparably powered solid state and valve amps below the 2 W level. In my experience the solid state - excepting mosfets - amps always have a characteristic rise in distortion in the range below two watts. And since that is where Mr Linsley-Hood rightly observes most music reproduction occurs, isn't that a rather interesting difference between push-pull power amps using valves and solid state?
There is something about valve amplifiers that pleases many people - some very distinguished amplifier designers. \dagger.

The author's sidebar includes misstatements. My experience with a batch of $2 N 3055 \mathrm{~s}$ and that of the author is totally different. They are by no means identical in gain and vary far more widely than a batch of new valves. While it is true that valves deteriorate in use, we now live with far better voltage regulation and ancillary components than we had in the best days of the valve in the 50 s and 60 s .

Valve technology can and will be
aided by not only voltage regulation but by computer technology for achieving dynamic balance in pushpull pairs and possibly to offset some of the effects of ageing.
To complain that valves can be overdriven with resulting damage is scarcely a fault exclusive to valves. I know of almost no component that does not suffer from misuse.
As to problems with high voltages relating to capacitors, the catalogues I see offer much more reliable capacitors and at higher voltages.
I hope Mr. Linsley-Hood has not missed the fact that valve echnology flourishes in the former Soviet Union and that the USSR's entire aircraft and space technology was managed with valves. Further, their valves were not mere copies of those produced in the West. Russia's current space program involving the Mir space station is run entirely by valves.
Edward T. Dell, Ir
Audio Amateur Corporation
Peterborough,
USA
Hamm, Russel O., "Tubes Versus Transistors, Is There an Audible Difference?", Journal of the Audio Engineering Society, May 1973,
Vol. 21, No. 4, pp. 267-273.

Think and measure and...

I dislike arguing in public but Douglas Self's reply to my letter in the May issue cannot be ignored First he misunderstands what I was "challenging" him about and then goes on to be - in my opinion quite rude, based on these misunderstandings.
While I hold Douglas's technical articles in awe for his obvious understanding of theoretical research and development, it seems he cannot grant others similar respect if their ideas exceed his paradigms.
Contrary to his understanding, I hold no flag for the concept of " 10 mV diodes in copper wire"; but I observed a curious phenomenon and thought it would be interesting - and easy - for Douglas to try it himself, and to have his response. And if not " 10 mV diodes", then what?
That he doesn't try it is his business and in my opinion a loss of a chance to learn, but to suggest that slight variations on the effective

CHART AUDIO LEVELS

In-vision colour display or hard copy printout

PPM10 In-Vision PPM and Chart Recorder generates a display emu lating the well known coaxial TWIN movements for monitoring stereo audio levels and mono compatibility. Also: TWIN TWIN PPM comprising two PPMS boards, featuring inherent stability with law under microprocessor control, the unit gives simultaneous monitoring of A / B on red/green and M/S on white/yellow pointers. Manufactured under licence from the BBC.
\star Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz} \star$ Stabilizer frequency shift units for howl reduction $\star 10$ Outlet Distribution Amplifier \star Stereo Variable Emphasis Limiter \star Stereo Disc Amplifier PPM9, PPM5 hybrid and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements \star Broadcast Stereo Coders \star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz} \star$

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

CIRCLE NO. 129 ON REPLY CARD

Data Acquisition for your PC

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

| Hardware and software are supplied together as a package - no more | |
| :--- | ---: | ---: |
| worries about incompatibility or complex set-up procedures. Unlike
 traditional 'plug in' data acquisition cards, they simply plug into the PC's | Pdvanced data |
| parallel or serial port, making them ideal for use with portable PC's. | logging |
| Call for your Guide on 'Virtual Instrumentation'. | sotware. |

PicoScope
'Virtual instrument' software.

LETTERS

dumping on the speaker could make such a huge difference to the perceived distortion, and yet say that my new book (The SuperCables CookBook.) "should preferably contain facts" is laughabie
I would never presume to judge Mr Self's power amplifier designs without actually building them and using them to listen to music over a considerable period, but I can say as I have spent some 20 years successfully manufacturing speciality preamps - that his design in the July/August issue is a little behind the times. The use of large value electrolytics for input and stage coupling is unbelievable, and his choice of the 5532 , however quiet, shows that he cannot have done any serious listening. This IC has an unpleasant sonic signature that caused even budget mixing desk manufacturers to drop it years ago!
In my opinion, Douglas's other sparring partner Ben Duncan has written the book on IC based preamps; and his creations can make music, as do most valve designs.
To end, I'd therefore caution readers to look a little further before spending the time and money to build Mr. Self's latest design, at least if they are seeking musically satisfying result.
Allen Wright
Vacuum State Electronics Munich

ABd

Plating through for prototype boards

In answer to the question from Ian Tran regarding a plated-through-hole process for pcbs; I have a booklet which does a good job in describing the process and even goes so far as to give a list of chemicals and equipment needed.
I have used the process on a few projects which turned out quite well. The title of the work is "The PTH Process For Homebrewers". I no longer know the source of the booklet, but basically, the process goes like this:
Remember at all times - wear safety goggles \& safety gloves and follow safe chemistry procedures. You will be dealing with very dangerous chemicals
Start with a double-sided pcb blank with about $3 / 4 \mathrm{in}$ extra on one side. Mark and drill all holes. Drill a couple of $1 / 4$ in holes in the long end (used to hang the board in the electroplating solution).
Using 200 grit sandpaper, remove all burrs from the holes (important). Clean the board thoroughly with steel wool. Degrease the board with a sodium hydroxide solution (Lye)
Rinse well with clean water. Pre-etch the board with an ammonium persulphate etching solution for about 30 seconds. Rinse well with clean water.
Acid treat for 5 minutes in 10% sulphuric acid solution (reagent grade - not battery acid). Rinse well with clean water.
Acid treat for 5 minutes in 33% hydrochloric acid solution. Rinse well with clean water.
Sensitise the board in solution C for 10 minutes. Rinse well with clean water. Activate the board in Solution D for 5 minutes. Rinse in deionised water
for I minute.
Plate the board in electroless plating solution A / B for 10 minutes. Rinse well with clean water. Acid treat in 10% sulphuric acid for 1 minute. Electroplate in copper electrolyte solution mixture heated to $37^{\circ} \mathrm{C}$ at a current density of $\mathrm{ASF}=(\mathrm{L} \times \mathrm{W} \times 2) / 144 \times 30$. Suspend the board from the $1 / 4^{\prime \prime}$ holes drilled for this purpose. Do not let the plater connections and hardware used to suspend the board get into the solution. Do not use more than 6 V to generate the plating current. Use two phosphorised copper rods ($0.02-0.08 \%$ phosphorus) $3 / 4 \times 6$ in as the anodes. Pure copper is fine, but phosphorised rods give better results.
Plating rate will be about 0.00 lin per 36 minutes at $30 \mathrm{~A} / \mathrm{ft}^{2}$ (ASF).
Rinse well with clean water. Air dry the board (use a hair drier). From this point, use your regular photo process to sensitise, expose, develop and etch the final board pattern. When applying the photo resist, make sure you spray it inside the holes so the plating doesn't get etched away. When making the artwork, use component pads and vias without holes; this ensures the holes don't get etched out.

Supplies: Solutions A, B, C, D, and copper electrolyte solution may be obtained from Transcene Company, Inc., Route 1, Rowley, MA 01969 (USA), (617) 948 2501
Explain what you are trying to do; they will know exactly what you need
Phosphorised copper rod may be obtained from a well-supplied machine shop.
David Mason
USA

Used Equipment - GUARANTEED. Manuals supplied if possible.
This is a VERY SMAL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage.

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS. RG6 1PL Telephone: (01734) 268041 . Fax: (01734) 351696

- 80 Cl 888 EB Processor Clocked at 24 Mhz

ㅁ 128k Battery Backed RAM (512k option)

- 128k Eprom ($32 \mathrm{k}-512 \mathrm{k}$ options)
- 128 k 5 volt Flash Eprom (512 k option)
\square Real Time Clock (On board Battery)
- Watchdog Timer/Reset with Brownout detection
$\square 2$ Scrial Ports - 1 RS232. 1 RS232/422/485
- 8 Channel 12 bit ADC (optional)
- Direct Connection to Alphanumeric LCD Display - 48 Digital I/O lines
- Sct-up and Driver routines with Full C Souree Code

[^4]For lurther information
Call now - 01379644285 - Fax 650482
Please ask for our catalogue
Devantech Ltd - 2B/2C Gilray Road - Diss - Norfolk - IP22 3EU

cre CHELMER VALVE COMPANY

If you need Valves/Tubes or RF Power Transistors e.t.c. ...then try us!

We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 ORG, England
8י44-01245-355296/265865 Fax: 44-01245-490064

CIRCLE NO. 133 ON REPIY CARD

New from Crossware

ANSI C for Embedded Development

Our new range of Professional Standard C compilers protect your investment by conforming to the ANSI specification. In addition our target specific extensions will help you get the best from your embedded system.

To find out more about this new range of products, call us today or visit our Website.

68000

68020/CPU32

8051

One stop solutions for all your radio telemetry module needs.

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies

In other words, a partner like Wood \& Douglas. Founded on technical excellence, Wood \& Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood \& Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact.

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England Telephone: 01189811444 Fax: 01189811567 email: info@woodanddouglas.co.uk web site: http://www.woodanddouglas.co.uk

ELECTRONICS WORLD * Wirales worio

Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing With C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on \mathbf{Z} transforms, audio processing and standard programming structures, the new Interfacing with \mathbf{C} will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines.
Price £14.99.
Listings on disk - over 50k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with \mathbf{C}. Note that this is an upgraded disk containing the original Interfacing With \mathbf{C} routines rewritten for Turbo C_{++}Ver. 3. Price £15, or $£ 7.50$ when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C Version 5.1, is still available at the special price of $£ 7.50$. Phone 01816523614 for bulk purchase price.

Use this coupon to order

Please send me:

	Price	Qty	Total
Title	Enhanced Interfacing with C book @	$£ 14.99$	$\ldots . .$.
Enh. Inte....			
Interfacing with C disk @	$£ 15$	$\ldots . .$.	$£$.
Original Interfacing with C book @	$£ 7.50$	$\ldots . .$.	$£$.
Postage + packing per order UK	$£ 3.50$	$\ldots .$.	$£$.
Postage + packing per order Eur	$£ 7$		$£$.
Postage + packing per order ROW	$£ 12$		$£$.
Total			$£$.

Name

Address

Phone number/fax

Make cheques payable to Reed Business Publishing Group Ltd
Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)
Card No
Expiry date
Mail this coupon to Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS, together with payment. Alternatively fax full credit card details with order on 01816528956 or email them to jackie.lowe@rbp.co.uk. Orders will be dispatched as quickly as possible, but please allow 28 days for delivery.

Audio processing
 ON T H

Howard Hutchings discusses the C code needed to carry out audio processing functions on the peincluding flanging and chorus effect.

There are in mathematics a handful of principles which look so simple as to be worthless, but yet in practice are of the utmost importance and value. One such example is the principle of superposition - the unique relationship that connects sinusoidal signals and linear systems can be traced back to the property of frequency preservation.
Any signal represented in terms of its component frequencies will be processed by the system in a very simple way; only the amplitude and phase of the input components will be modified. This describes why the response of a linear system to a steady-state sinusoidal input is itself a sinusoid at the same frequency as the input.
This is an important observation which will

Fig. 1. The system diagram of a general digital filter combines a non-recursive section on the left and a recursive section on the right, in which the output $y(n)$ is multiplied by a series of coefficients $b(j)$ and added to the scaled and delayed input.
be developed in this article to produce a range of frequency-selective pc-based digital filters, designed to generate echo, phase flanging, reverberation and all-pass effects.
The software discussed in this article has been written in Turbo $\mathrm{C}++$. The listings are too long to publish here, but they are available; details later. Discussed in this article are the spectral performance of z-plane poles and zeros and their relevance to practical design.

Rational functions revisited

For analytical work and conceptual purposes it is often useful to transform the time-domain model of a signal or system into a function, composed of a ratio of polynomials; which may be subsequently investigated by examination of the locations of the poles and zeros. Evidently, there is no mathematical distinction between the transforms of signals and systems. Many signals of practical interest have rational transforms.
A systematic inspection of the table of Laplace transforms of commonly-used functions, for example, 'An Introduction to the Analysis and Processing of Signals', P. A. Lynn, 1989, pp. 251, reveals only one function ($\cos \omega t$) characterised in terms of both poles and zeros. Repeating this exercise, for a similar set of functions described by z-transforms, indicates an altogether different picture. Every function in Lynn's table except one, is characterised in terms of both poles and zeros.
Despite evidence of poles and zeros arising quite naturally in the transfer function development of analogue systems, the concept of impedance excludes a digital development. Unless the notion of poles, and particular relevance of zeros, in discrete lti systems is developed properly it will return to plague the thoughtful person.

Dismantling a digital filter

In this section, the intention is to develop a general difference equation, applicable to both

PC ENGINEERING

recursive and non-recursive designs, into a digital transfer function. This will help to establish expressions for both the amplitude ratio and phase response.
To understand the behaviour of discrete lti systems, it is useful to start by considering a general difference equation for modelling weighted delays written as,

$$
\begin{aligned}
& b_{0} y(n)+b_{1} y(n-1)+\ldots+b_{\mathrm{N}} y(n-N) \\
& =a_{0} x(n)+a_{1} x(n-1)+\ldots+a_{N} x(n-M)
\end{aligned}
$$

which has $M+1$ arbitrary coefficients scaling the input values, and $N+1$ arbitrary coefficients scaling the output values. It is customary to describe the computational realisation of the process, explicitly, in terms of the scaled, and delayed, input and output sequences

$$
y(n)=\frac{1}{b_{0}} \sum_{i=0}^{M} a_{i} x(n-i)-\frac{1}{b_{0}} \sum_{j=1}^{N} b_{j} y(n-j)
$$

where a_{i} and b_{j} are constants for all values of i and j, and b_{0} is non-zero. Such an algorithm will be described as causal and may be used to implement a digital filter in real-time, Fig. 1.
If N is greater than zero, the difference equation is 'recursive', since previous values of $y(n)$ are used in calculating the current output.

Table 1. ADC-42 Port map and programming model. Address Function

Base +0	End of conversion flag B7 going high.
Base +1	Upper 4 bits of data word B0-B3. Four MSB B4-B7 set to zero.
Base +2	Reading this address will start conversion. Also contains the low byte of the data word.
Base +3	D-to-a strobe, outputs 12-bit word.
Base +4	D-to-a low-byte register A.
Base +5	D-to-a high-byte register A.
Base +6	D-to-a low-byte register B.
Base +7	D-to-a high-byte register B.
Base +8	Port A, digital I/O.
Base +9	Port B, digital I/O.
Base +10	Port C, digital I/O.
Base +11	8255 control register.
Base +12	Multiplexer channel select B0-B4.
Base +13	Programmable interrupt source control.

Fig. 3. Circular buffer both before (a) and after (b) a sampling interval. The oldest sample is $T . N$ seconds old.

Base $+1 \quad$ Upper 4 bits of data word B0-B3.
Base +2 Reading this address will start conversion. Also contains the low byte of the data word.
Base +3 D-to-a strobe, outputs 12-bit word.
Base $+4 \quad$ D-to-a low-byte register A.
Base +5 D-to-a high-byte register A.
Base $+6 \quad$ D-to-a low-byte register B.
Base $+8 \quad$ Port A, digital I/O.
Base +9 Port B, digital I/O
Base +10 Port C , digital I/O
Base $+11 \quad 8255$ control register
Base +13 Programmable interrupt source control.

Fig. 2. Frequency response caused by phasing for different time delays. Reconsider this performance with the assistance of zeros on the circumference of unit circle.

When $N=0$, the difference equation is non-recursive and the processed output is composed exclusively of scaled input samples.
A chronic problem with abstract mathematical expressions of this form is that they tend, initially, to discourage rather than encourage further reading. Certain authors appear so completely out of touch with the real world to have 'forgotten' why digital filters exist; not for the purpose of mathematical manipulation but to remove certain frequencies and allow others through. Examine the index of your favourite dsp text. Carefully consider how the concepts of low-pass, highpass, band-pass and band-stop are developed and cross-referenced. Are you convinced?

Frequency-selective properties of zeros
Unlike certain of their analogue counterparts, the concept of z -
plane zeros figures prominently in the design of many selected discrete-time linear processors. A good grasp of the spectral properties and time-domain performance will greatly increase awareness of the special features and possibilities for design.
This is a useful opportunity to outline the characteristics of a family of non-recursive filters, formed by combining the current input to the filter with selected past inputs. Conceptually, this type of linear signal processing system is easy to understand in the time domain, and particularly revealing of the unique features of digital filtering in the frequency domain.
Discussions in this section will review the analytical signal processing principles and practical design parameters related to the performance of selected comb-filters. The natural emergence of 'notch' filtering will be shown.
To generate echo, $y(n)$, it is necessary to record or store a weighted signal, $B x(n-k)$ before releasing it a fraction of a second later, together with the present scaled input, $A x(n)$.

$$
y(n)=A x(n)+B x(n-k)
$$

If a complex signal is fed through a delay loop, all frequencies in the signal, whether low or high, are delayed by the same time. The effect of having the same time delay for all frequencies creates a different phase delay for different frequencies, since different frequencies have different wavelengths. For example, later discussions in terms of zeros, will show how a time delay of 2.5 ms will cause a 360° phase difference in a 400 Hz sinewave, but only 180° phase difference in a sinewave of 200 Hz . Thus a cancellation will occur at 200 Hz but not at 400 Hz . This would correspond to an attenuation at 200 Hz in the frequency spectrum of the signal.
The phase lag ϕ for any frequency f, for any given time delay τ, is given by

$$
\phi=2 \pi f \tau
$$

When two identical waves separated by a phase lag are added together, their sum is a wave whose amplitude depends on the phase lag. For example, if two waves, each of amplitude A, are added together in phase (ie $\phi=N \pi$, where $N=0,2,4,6, \ldots)$, the sum or resulting amplitude is 2 A . If the two waves are 180° out of phase (ie $\phi=N \pi$, where $N=1,3,5 \ldots$), they cancel out, so the resulting amplitude is zero. For angles between 0° and 180°, the resultant amplitude is between $2 A$ and 0 . For a given delay ϕ between two waves of amplitude A,

Fig. 4. Use two output ports and d-to-as to reconstitute the processed signal in the desired proportions, without software-based multiplication.

Fig. 5(a) Prototype reverberation generator, with weighted feedback.

$H(z)=1 /\left(1+-0.7500 z^{-10}\right)$ Radius of system poles is 0.971642
Fig. 5(b) Pole-zero diagram.

Fig. 5(c) Impulse response.

Fig. 5(d) Amplitude-ratio.
the resultant amplitude A_{R} of the waves summed is,

$$
A_{\mathrm{R}}=|2 \cos (\phi / 2)| A
$$

The absolute value of $2 \cos (\phi / 2)$ is taken because the amplitude is always positive.

Combining the two equations stated before gives,

$$
\dot{A}_{\mathrm{R}}=|2 \cos (\pi f \tau)| A
$$

This produces the frequency response as a function of frequency and time delay. The expression shows that the frequency response takes the same shape as a simple sine wave, with the negative peaks inverted. For long time delays, the distance between peaks on this sine curve is small. The opposite is true for short time delays.

Frequency responses

Figure 2 shows the frequency response curves for several different time delays, obtained
using the software available on disk. Frequency is plotted on a linear scale to show the regularity in the pattern of the characteristic response. The effects of the zeros positioned on the circumference of the unit circle are to generate variable rejection frequencies.
The characteristic frequency response of this linear processing system is that of a comb-filter, with multiple peaks and troughs distributed regularly throughout the frequency spectrum. This is due to the effects of zeros, located on the circumference of the unit circle, completely attenuating each frequency whose period is an integral multiple of twice the time delay.
For example, the principle of echo, obtained by adding the present input $x(n)$, together with the signal captured two sampling intervals previously, can be described by the difference equation,

$$
y(n)=x(n)+x(n-2)
$$

and represented by the transfer function
and each subsequent sample, up to and including the present input, Fig. 3.
In mathematical terms the procedure is to address the buffer modulo its size. Let the buffer have N cells, and allow the real-time program to write into the buffer once every T seconds, so that the cell of current interest was last addressed $T . N$ seconds ago. The data stored there will be $T . N$ seconds old.
Examine how the buffer was first initialised using a do-while construct. This ensures a delay of 4096 sampling intervals between the newest and oldest samples. What is needed to dynamically address each member of the array, is a software structure which will increment a counter modulo the length of the buffer.
In this case, $k=k+1$ was used to increment, followed by the modulo operation $x=k \% 4096$. Because the do-while construct executes the main body of the loop at least once before performing the test, the current and delayed data

$$
H(z)=Y(z) / X(z)=1+z^{-2}
$$

Equating the numerator to zero gives the position of the characteristic zeros.

$$
(z+j)(z-j)=0
$$

It is not difficult to show how the pair of conjugate zeros, at $z= \pm j$, are located on the circumference of the unit circle, in the z-plane, at frequencies of $f_{\mathrm{s}} / 4$ and $3 f_{\mathrm{s}} / 4$ respectively. Before considering this design further, it is interesting to confirm how this difference equation, with $f_{\mathrm{s}}=800 \mathrm{~Hz}$, will provide the frequency selective properties discussed previously.

Producing echo

The use of a numerical processor with memory to simulate the effect of a 'cavelike' environment allows considerable control over the parameters of the system. For example, to reproduce a delay of 0.2048 s in a system sampling at 20 kHz will require a delay line composed of 4096 cells (listing 2 on disk).
The historical record will consist of digitised audio stored in an array, configured as a circular buffer made up of 4096 cells. In other words, the design should set aside 4 K of memory, which will contain the oldest sample captured, 4096.T, seconds previously, Fig. 6. The spectral performance of the reverberator. (a) Scaling (T is the sampling interval) factor $g=-0.5$. (b) Scaling factor $g=0.5$.

Fig. 7(a) Visualising the performance of a phase flanging processor using a pole-zero diagram.
are respectively stored and output in a single pass of the loop. This offers a real-time overhead of less than $10 \mu \mathrm{~s}$ per computation, (listing 2 on disk).
The success of such a system in audio signal processing depends upon its ability to operate at ultrasonic speeds; that is, the rate at which the audio signal is digitized, processed, and output, must be well above the upper limit of the audible spectrum. Thus the speed of each of these procedures is critical. The operation of each will now be considered individually.

Together with the time-critical, synchronised high-speed programmed i/o and real-time processing controlled by the personal computer, the sampling rate of the a-to-d converter is also a most time-significant parameter. It must be fast, a conversion time of $50 \mu \mathrm{~s}$ or less is necessary to support successful audio processing.
The commercially available data acquisition board, Blue Chip model ACM-44, used here for the purpose of description, employs the Analog Devices AD7820, an eight-bit halfflash converter with a $1.56 \mu \mathrm{~s}$ conversion time. The present author recommends such a unit, or any industrial equivalent. It is probably faster than present requirements, but it need not be replaced when pc-based systems get faster, as they certainly will.
Slower peripherals used in conjunction with a faster processor will perform satisfactorily. For example, recently I have been using a PCL-818 data acquisition card which has a 10μ s conversion time 12 -bit a-to-d converter, and a $5 \mu \mathrm{~s}$ settling 12-bit d-to-a, with successful results on a 48650 MHz pc .
Returning to the original problem of echo generation. It is not difficult to see how the processed output is the scaled combination of the present and delayed inputs. To avoid the real-time overhead of software-based multiplication, necessary on account of scaling, it was decided to output the processed data through two separate d-to-a converters. The plan is to sample and process the input signal before generating two separate channels of audio output, Fig. 4.

By mixing the 'direct' and 'delayed' signals together across a potentiometer, it will be possible to reconstitute the two signals in any desired proportions; that is, the original signal

Fig. 7(b) Impulse response.
H(if)

Fig. 7(c) Spectral performance.
with pronounced echo, or no delay at all, depending on the position of the wiper.

Reverberation

It has already been outlined, using zeros, how the time-domain performance of an echo generator can be modelled by

$$
y(n)=A x(n)+B x(n-k)
$$

Thus, if a single pluck of a guitar string, a unit pulse, generates the system response TWANG... TWANG, that is identified as an echo. Applying feedback to a delay loop, to be followed by subsequent developments into closed form will now introduce the relevance of poles, in order to described an elementary, but important, modification to generate multiple echoes, reverberation. The unit pulse will generate the impulse response TWANG, TWANg, TW Ang,... twang, which may be modelled by

$$
y(n)=A x(n)+B y(n-k)
$$

The amount and quality of reverberation that occurs in a natural environment is influenced by: the volume and dimensions of the space; and the type, shape and number of surfaces that the sound encounters. The amplitude of any sound is reduced by an amount that is inversely proportional to the distance it travels; therefore the reflected sounds not only arrive later, but they have smaller amplitudes than the direct sound. This means that the impulse response will have a decaying envelope, as will be shown.
It is generally accepted that characterisation of reverberation is particularly difficult, because the quality of reverberation cannot be quantified objectively. Four parameters which may be correlated with the perceived quality of reverberation are: the reverberation time, the frequency dependence of the reverberation time, the time delay between the arrival of the direct sound and the first reflected sound, and the rate of build up of echo density.

The reverberation time indicates the amount of time required for a sound to die away to

Listing 1. All-pass filter designed to generate chorus effect. It samples i / p through a-to-d o/p through dual d-to-a converters. Loop time is 0.2048 s , reverberation time is 1.89 s .
\#include<stdio.h>
\#include<conio.h>
\#include<dos.h>
\#define BASE 768 \#define M 4096 void main(void)
char key;
unsigned int i, $k=0, x=0$;
int contents, output, temp;
int input_data[M];
int output data[M];
textmode (C80);
textbackground(1);
textcolor(14);
clrscr();
gotoxy $(6,4)$;
cprintf("Digital Filter designed
to generate Reverberation") ;
gotoxy $(6,6)$;
cprintf("y[n]=g.y[n-k]+x[n
-k]-g.x[n]");
for (i $=0 ; i<=M$; $i++$)
input_data[i] $=0 ; /$ * Flush
buffers */
output_data[i] = 0 ;
\}
outportb(BASE,1);
/* Select I/P Channel */
for(; ;
fo
outportb (BASE $+2,0)$;
/* Start conversion */
contents $=$ inportb (BASE +
2);
output $=0.7$ *
(output_data[x] - contents) +
input_dāta[x];
outportb(BASE + 4, output);
/* Write to port DIRECT */
input_data $[x]=$ contents;
output_data[x] = output;
/* Store incoming data in
a circular buffer */
k ++;
$\mathrm{x}=\mathrm{k}$ \% M ;
${ }^{5}$
while (k < M);
outportb(BASE
5,input_data[x]);
/* Write to port DELAY */
if (k \& 8192)
(
$k=M$;
\}
/* End of main */
\}
$1 / 1000(-60 \mathrm{~dB})$ of its amplitude after the source is removed. The choice of -60 dB represents a convenience inherited from early researchers of room acoustics.
The relationship between reverberation time

Fig. 8(a) All-pass filter flow diagram.

Fig. 8(c) Pole-zero configuration shown for $k=10$.
and frequency will be described later.

Defining delay times

The delay time is the amount of time that elapses between receiving a direct sound and its first reflection. A long delay of 50 ms or more can result in distinct echoes, whereas a very short delay of 5 ms or less can contribute to the listener's perception that the space is small. A delay in the range 10 to 20 ms is found in many concert halls.

Following the initial reflection, the rate at which the echoes reach the listener begins to increase rapidly. A listener can distinguish differences in echo density of up to a density of one echo/ms. The amount of time required to reach this threshold is typically 100 ms . This time is approximately proportional to the square root of the volume of the room, so that small spaces are characterised by a rapid build up of echo density.
In a recursive comb-filter, Fig. 5a, the input signal enters a delay line. When it reaches the output, it is fed back to the input after being multiplied by the scaling factor g. The time that it takes to circulate once through the delay line is identified as the loop-time. The looptime is the product of the delay introduced by the delay line, k, and the sampling interval T. Listing 3 on the disk helps visualisation of the pole-zero configuration, impulse response and amplitude-ratio for various delays, k, input by the user, Fig. $5(\mathrm{~b}-\mathrm{d})$.

Consider the performance of the prototype reverberator,

$$
H(z)=1 / 1-g z^{-k}
$$

When a unit pulse is applied to the input, the impulse begins to propagate in the delay line. The output of the filter is zero until, after $k T$ seconds, the impulse emerges from the delay line. At this time the output of the filter is the impulse with unit amplitude. Meanwhile, the impulse is multiplied by the scaling factor g

and fed back into the delay line with amplitude g. The process continues; a pulse is output every $k T$ seconds, and each pulse has an amplitude that is a factor of g times that of the preceding pulse. The modulus of the scaling factor must be less than unity for the filter to be stable, typically written as $|g|<1$, which places the poles inside the unit circle.

Fantasia revisited?

Recursive designs generally make use of poles situated close to the unit circle. The use of limited word lengths may result in small errors in the coefficients of the time domain recurrence relationship, effectively causing the system poles to move outside the unit circle. Do you remember the fate of the sorcerer's apprentice who experimented with feedback using the magic broom, sweeping water from the magic pump, which he was unable to control? A more judicious choice of pole locations might have resolved the problem.

The impulse response decays exponentially as determined by the parameters chosen for the loop time and g. Values of g closest to unity give the longest delay times. To obtain a desired reverberation time $\left(T_{\mathrm{r}}\right), \mathrm{g}$ can be calculated, given the loop time (τ), from the relationship,

$$
T_{\mathrm{r}} / \tau=-3 / \log _{10}(g)
$$

This parameter is probably one of the most important in characterising the performance of the acoustic environment. It is of some interest to note a few practical figures. A cathedral, for example, might have a reverberation time of about 5 s ; a typical home living room less than Is. For the purpose of this discussion it will be sufficient to note that a reverberation time of 1.9 s is considered suitable for the best concert halls.
I will now detail the relationship between the parameter g and the frequency response of the discrete LTI system $H(z)$ (listing 3 on disk). Two cases must be considered.

Case A:

$$
H(z)=1 / 1-g z^{-k}
$$

The location of the poles is given by the roots of the equation:

$$
\begin{aligned}
& z=g^{1 / k} \exp (j 2 \pi m / k) \\
& m=0,1, \ldots k-1
\end{aligned}
$$

Expressed as a power series in z^{-k}, this can be written as the unipolar impulse response,

$$
H(z)=1+g z^{-k}+g^{2} z^{-2 \mathrm{k}}+g^{3} z^{-3 \mathrm{k}}+\ldots
$$

Case B:

$$
H(z)=1 / 1+g z^{-k}
$$

The location of the poles will be given by the roots of the equation:

$$
z=g^{1 / k} \exp (j(2 m+1) \pi / k)
$$

Fig. 9. For audio applications, the signal to be filtered is first band limited to prevent errors due to aliasing. The processed output is low-pass filtered to remove the effects of sampling. A MAX275 configured as a 4th order Butterworth gave excellent results, together with a low component count.
$m=0,1, \ldots k-1$
Expressed as a power series in z^{-k}, the alternating characteristic of the impulse response follows quite naturally,

$$
H(z)=1-g z^{-\mathrm{k}}+g^{2} z^{-2 \mathrm{k}}-g^{3} z^{-3 \mathrm{k}}+\ldots
$$

The comb-filter is so named because its steady-state amplitude response, is considered to resemble the teeth of a comb. The spacing between the maxima of the teeth of the comb is equal to the natural frequency

$F_{0}=1 / k T$

Referring to the amplitude ratio, Fig. 6, the depth of the minima, $1 /(1+g)$, and the height of the maxima, $1 /(1-g)$ are determined by the choice of g, values close to unity yield more extreme maxima and minima.
My routine for this (listing 4 on disk) functions as a real-time reverberation system, with parameters: $g=0.5, T=25 \mu \mathrm{~s}, T_{\mathrm{r}}=1.02 \mathrm{~s}$.

Phase flanging

Typically, digital filters are designed to obtain a specific steady-state amplitude response; although developments in this section will detail the performance of discrete LTI systems designed to realise a particular impulse response. The effects described will include echo and phase flanging.
Flanging is an effect created by adding together two identical signals separated by a very short time interval. If the time delay is typically less than 25 ms , the ear is usually unable to resolve the direct and delayed signals into two separate and distinct sounds. Instead, a complex sound is heard, described by Bartlett (1970) as "A hollow swishing, an ethereal effect, something like a jet plane without all the roars and rumblings". O'Haver (1977) identifies the signal processing effect as 'resonant' or 'twangy'.
Claiming that with speech or solo singing it gives a voice doubling effect, as if two people were speaking in synchronism. Six-string gui-
tars are reminiscent of twelve-string instruments and concert pianos sound like 'honkytonks'. Bartlett claims it can be applied most effectively to drums and identifies a number of contemporary recordings in which flanging is most pronounced and audible. Itchycoo Park by the Small Faces is my favourite.
It has already been discussed how the consequence of having the same time delay for all frequencies creates a different phase delay for different frequencies. Such an idea can be extended, and the audio effect made more pronounced, by causing the 'delay' to change continuously in real-time. This will cause the frequency response of the comb filter to sweep through the audio spectrum in real-time.
The linear signal processing operation is called 'phase flanging', and can be imposed on sounds by using a delay line whose delaytime can be varied on a sample-to-sample basis. (This processing operation is visualised with the assistance of listing 5 on disk). The performance of the system is characterised by the transfer function,

$$
H(z)=1+z^{-k}
$$

Initially, the program requests the delay parameter k. This will be an integer. The program then computes and plots the associated: pole-zero diagram, impulse response and Fourier transform. Use the monitor graphics to follow the dynamic behaviour as the parameter k is decremented, hit any key to view the next time-frame. Fig. 7 shows the effect of making $k=8$.

On the disk, listing 6 contains the details of a pc-based real-time system designed to produce phase flanging; the delay loop is made up of a circular buffer composed of 4096 cells, the sampling interval $T=20 \mu \mathrm{~s}$.

All-pass filter, chorus effect

Reverberation is a repetitive echo, made more pronounced if the time delay between reflections is shorter than a single echo. By adding the present non-delayed input to weighted previous inputs, the signal will re-cycle through
the processor until it becomes inaudible. Typically, the intention is to obtain smooth sounding reverberation, free of repetitive echoes.
To avoid the reverberant ringing, colouration of the sound, associated with the equispaced peaks of certain comb filters, it will be useful to consider the theoretical performance and practical behaviour of the following allpass filter, designed to generate a chorus effect. A suitable system function $H(z)$, designed to achieve a more natural sounding reverberation is formed by subtracting from the output a portion of the input,

$$
H(z)=z^{-\mathrm{k}}\left(1-g z^{+\mathrm{k}} / 1-g z^{-\mathrm{k}}\right)
$$

Investigated as the convolution of two sequences, which separately characterise the non-recursive comb filter and recursive lowpass filter, this interesting all-pass system embodies the computational advantages of recursion. For example, once a signal has been applied to the input of the system, the reverberation time (T_{r}), can be several orders of magnitude greater than the delay time (τ), giving effectively much longer memory, than the number of taps.
It is rewarding to reconsider the performance of this particular filter from a steadystate perspective and pole-zero model, Fig. 8. The pole-zero model geometrically illustrates the all-pass nature of the filter. The effect of each pole (resonance) being offset by a radially displaced zero (notch) relative to the circumference of the unit circle. The steady-state amplitudes of the spectral components of the sound will not be altered. Of course this does not mean the filter is transparent to signals as inspection of the phase and impulse response reveals.

The details of the real-time software are in contained in Listing 1 (listing 8 on the disk). The analytical choice of the amount of delay and amplitude scaling are likely to remain subjective. Listing 1 utilises a delay of 4096 samples together with a scaling factor g equal to 0.7 , to produce a reverberation time of 1.89 s at a sampling frequency of 40 kHz . As previously outlined, by generating two channels of audio output, the 'direct' and 'processed' it will be possible to control the amount of reverberation developed across the loudspeaker using the balance potentiometer.

Hardware requirements

To run the real-time programs detailed in this article, will require a pc-based 8088 processor, or generic equivalent; with from 1 K to 6 K bytes of programmable memory, an 8 -bit input port connected to a fast 8-bit analogue to

Fig. 10. The DSP system must include an anti-aliasing filter before the a-to-d and a low-pass signal reconstruction filter after the d-to-a. Ensure the $-3 d B$ frequency is identical in both filters.
digital converter, and a latched 8 -bit output port connected to a digital to analogue converter. An additional output port and digital to analogue converter will be required for stereo applications.
Several different manufacturers now market general-purpose data acquisition boards, these usually include a multi-channel a-to-d converter, one or more d-to-a converters, and a programmable clock as standard features, with options such as programmable gain, variable sampling rate and direct memory access.
The general scheme for a pc-based audio signal processing system is shown in Fig. 9. To avoid errors due to aliasing, the continuous signal to be numerically processed is first band-limited by an analogue low-pass filter, before being converted into digital form by an a-to-d converter. The input data is manipulated mathematically by a numerical signal processor, and then converted back into analogue form by a d-to-a. Finally the sampled analogue output is further low-pass filtered to remove unwanted high-frequency components.
Although computer programming takes a good deal of time and effort, nowadays it is usually taken for granted and the code kept separate from the main document. Many of the listed programs are lengthy on account of the accompanying text and graphics and for this reason are available on disk.
However, the central message of this article has been how to utilise relatively long delays in real-time audio processing. For that reason it was considered appropriate to detail a short listing showing how the delay is organised within a circular buffer. On each pass of the loop, the program refreshes two buffer registers: input_data[x] and output_data[x] with the current sampled input, $x(n)$, and current processed output, $y(n)$, respectively.

Blue Chip ADC-42 data transfer

The principal component of the digital signal processing system described here is a commercially available data acquisition board that fits in one of the expansion slots of the pc. Additional hardware will be required to process the bipolar audio signal, normally, an anti-aliasing filter and dc offset circuit prior to unipolar a-to-d conversion. Following manipulation in the pc, the sampled output of the d-to-a will be reconstructed through a low-pass filter before being amplified and developed across a loudspeaker.
A typical analogue input-output board designed for bus compatibility might occupy a total of fourteen bytes of memory. These memory locations will usually include a multichannel a-to-d converter, one or more d-to-a converters, and a number of i / o ports as standard features.
Several manufacturers now supply generalpurpose data acquisition boards. I have used the PC-Lab Card PCL-818, the Blue Chip ACM- 44 detailed in the text, and the Blue Chip Technology general-purpose i/o card $A D C-42$, used here for the purpose of description.

Software on disk

The following listings are available on pccompatible disk for $£ 14.99$ - fully inclusive. Please send cheque or postal order to Audio C, EW Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Listing 1. Graphical amplitude-ratio and phase response of rational z-function. Listing 2. Real-time echo generator written in Turbo C++, generates a delay of 0.2048 s .

Listing 3. Computer-managed instruction designed to visualise the performance of a reverberator. The software written in Microsoft C plots the pole-zero diagram, impulse response and amplitude-ratio on the monitor. The user can vary the parameter k to observe the effect on spectral performance.
Listing 4. Real-time reverberator written in Turbo C+t, designed to generate a reverberation time of 1.02 s .
Listing 5. Computer-managed instruction designed to visualise the dynamic performance of a phase flanging processor. The software written in Microsoft C will plot the position of the characteristic zeros, the impulse response and the amplitude-ratio for a selected value of delay (k). Thereupon the effects of decrementing the delay are visualised using the monitor graphics.
Listing 6. Real-time flanging system written in Turbo C++, the sampling interval is $20 \mu \mathrm{~s}$ and the circular buffer is composed of 4096 cells.
Listing 7. Real-time all-pass filter written in Turbo C++, designed to generate a chorus effect. Parameters $g=0.7$, number of cells in circular buffer $=4096, T=25 \mu \mathrm{~s}$ and

The Blue Chip board can be given instructions, and have information read from it, using for example, the port-mapped Turbo \mathbf{C} functions: outportb and inportb respectively. The comparable Microsoft C functions are outp and inp. The Base i/o address set at the factory is $0 \times 300_{16}$. To avoid bus contention this is selectable throughout the prototyping region, $\left(0 \times 300-0 \times 31 \mathrm{~F}_{16}\right)$. If this port-mapped space is already monopolised, a reasonably safe range of addresses is $\left(0 \times 200-0 \times 21 \mathrm{~F}_{16}\right)$.
The analogue input section features a soft-ware-controlled multiplexer giving access to 16 single-ended, or 8 differential channels. Full-scale input voltage is link selectable in the unipolar ranges $0-5 \mathrm{~V}$ or $0-10 \mathrm{~V}$. Bipolar provision is provided with link selectable: $\pm 2.5 \mathrm{~V}, \pm 5.0 \mathrm{~V}$ and $\pm 10.0 \mathrm{~V}$ ranges. Analogue to digital conversion is achieved using the Analog Devices $A D 7572 A$, a 12 -bit succes-sive-approximation converter. Software control is straightforward; strobing the a-to-d by simply reading the data input port starts conversion, which is completed in $10 \mu \mathrm{~s}$. This may be followed by an optional 'flag-test' to determine end-of-conversion.

Provision for digital to analogue conversion is provided by two 12 -bit converters, (AD7537) the output voltage being in the range $0-10 \mathrm{~V}$ full-scale. In addition, the board provides a single 8255 PPI offering 24 inputoutput lines through three ports.

Before data transfer can begin, the interface must be set up. In this particular case the initialisation procedure includes selecting the required channel number $(0-15)$ by writing to Base +12 . Next, the start conversion is initiated by reading Base +2 . The resultant data is of no consequence and may be discarded. Conversion is complete when bit 7 of Base + 0 goes high. It is good practice to set up a polled-loop to monitor for e.o.c. To recover the 12-bit word accessed in two parts it will be necessary to, firstly, read Base +1 for the four msbs of the high byte result. The card automatically puts zeros into the four lsbs. The low byte result is obtained by reading Base + 2. Finally, it will be necessary to reconstruct the 4 and 8 bits into a 12 -bit data word prior to digital filtering in the pc.
The relationship between low-pass filtering, sample rate and aliasing will now be briefly reviewed.
A sampling frequency of 20 kHz restricts the bandwidth of the digital signal processor to 10 kHz if aliasing is to be avoided. An idealised band-limited filter with a well-defined passband of rectangular shape is needed when operating close to the Nyquist frequency. However, such a filter is not practically realizable and a compromise is required. Elementary first-order low-pass filters are inadequate for this application because the high frequency rate of 'roll-off' is not steep enough.
A satisfactory approximation to the "brickwall' characteristic is provided by a secondorder Butterworth filter. This gives a maximally flat response in the pass-band, a sharp corner frequency and a reasonably rapid transition to the attenuation band. A unity-gain Sallen and Key design was satisfactorily used as an anti-aliasing and signal reconstruction filter, Fig. 10. Following the practical discussions of (O'Haver, 1978), the -3 dB frequency of both filters was designed to be $1 / 4$ of the sampling frequency.

References

Bartlett B. (1970), Journal of the Audio Engineering Society. Vol. 18. No. 6.
Blesser B. \& Kates J. M. (1978), Digital Processing of Audio Signals, in Applications of Digital Signal Processing. Oppenheim, ed. Prentice-Hall.
Dodge C. \& Jerse T. A. (1985), Computer Music. Schirmer.
Foster C. C. (1981), Real Time ProgrammingNeglected Topics. Addison-Wesley.
Lynn P. A. (1989), An Introduction to the Analysis and Processing of Signals. Macmillan. Third edition).
Moorer J. A. (1977), Signal Processing Aspects of Computer Music. Proc. IEEE. Vol. 65, Part 8.
O'Haver T. (1978), Audio processing with a microprocessor. Byte. Vol. 3, No. 6.
Steiglitz K. (1974), An introduction to discrete systems. Wiley.

Take a look inside the ELECTROMAIL catalogue and you're in for a surprise. If you're looking for Electronic Components, Electrical Equipment or Mechanical Tools, with over 60,000 product lines, there's a whole galaxy of choice.

Electromail is one of Europe's largest stockists dedicated to the Home Based Professional and Electronics Enthusiast.

The fully comprehensive catalogue provides detailed descriptions, full technical information and (in most cases) colour pictures of each product to make selection easy.

Our orderline staff are light years ahead in friendly and efficient service and above all, they're committed to helping you find exactly what you need.

You'll find our despatch just as advanced, with a nominal p\&p charge and range of delivery options to suit, even a Sonic Screwdriver* won't take an age to materialise.

Simply telephone or fax your order anytime between 8.00 am and 8.00 pm Monday to Friday Earthtime.

So - whatever your current project, anywhere in the universe, save yourself time, call Electromail.

WITH OVER 60,000 Products Inside

* Not available on this planet

Telephone 01536204555 or Fax 01536405555.

The Service For Home Based Professionals and Electronics Enthusiasts

Do you have an original circuit idea for publication?
We are giving £100 cash for the month's top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5 -digit 1705 multimeter resolves down to $10 \mu \mathrm{~V}$,
$10 \mathrm{~m} \Omega$ and $0.1 \mu \mathrm{~A}$ and has a basic de accuracy of 0.04%. Frequency measured is 10 Hz to 120 kHz with an accuracy of 0.01% and resolution to 0.01 Hz . Capacitor and true rms measurements are also featured.
Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly $£ 100$ 'best circuit idea' aword and $£ 25$ awards for each circuif published.

Precise current regulator

C
ontributions by Brotton and

- Bradbury' and Baert ${ }^{2}$ gave rise to this circuit, which is a combined voltage regulator and voltage-tocurrent converter using the Zetex ZR78LO5 voltage regulator and an LM324.
Normal output of the regulator is 5 V , this being increased in this application by the inclusion of $R_{1,2}$ to lift the ground input by 2.2 V , giving 7.2 V output - often used for battery charging. Positive and negative regulators are separated by the transformer windings and can therefore be referred to ground to give $\pm 5-20 \mathrm{~V}$ output.
For current conversion, two opamps are used as followers to provide the input impedance, current mirrors formed by the other two op-amps and transistors being driven by the supply currents I^{+}and I^{-}of the op-amps to give $I_{\text {out }}=I^{+}-I^{-}=\left(V_{1}-V_{2}\right) / R$. Choose R to give the required current. Resistors
in the current mirrors should be 1% types.
Kamil Kraus
Rokycany
Czech Republic

References

1. D Brotton and D Bradbury. Managing power. Electronics World + Wireless World, November 1995, p. 917.
2. D Baert. Electronic Design, 1984, vol.2, p. 320.

Positive and negative regulated voltage and current source.

Electric whisker

ith this electric field detector, you can probe for buried cables or pipes to a depth of $3-5 \mathrm{~cm}$ and detect the field of an appliance.
The 'probe' is the gate lead of a BF245C fet, a $33 \mathrm{M} \Omega$ resistor being soldered to it where it enters the transistor with as short a lead as possible; cover the probe with spongy plastic to avoid contact with a surface. A 1.5 m length of coaxial cable connects the high-impedance section to the amplifier, in which the output transformer was, in the original, salvaged from an old transistor radio. Volume is adequate and a 33Ω pot could be inserted in the transformer output, if required. To improve directionality, connect a 5 cm metal screen as shown.
Aside from detecting fields, you can use this device as a telephone monitor: just bring the probe near a cable and hear the conversation - and the noise. It also works as a microphone by putting a bit of kitchen plastic film, used as a membrane, between your mouth and the probe. Tape the output and hear it later; quality is surprisingly good.
D Di Mario
Milan
Italy

Deglitcher for more stable switching power supplies

Many switching power supplies use an $R C$ circuit to suppress the current glitch, which is the result of diode reverse charge and parasitic capacitances in the circuit. The remedy is not particularly successful, however, because the $R C$ widens the glitch, as well as decreasing its height, as shown in the left-hand circuit.
On light loads, the switching
waveform is so narrow that its width is little more than that of the glitch, widened by the $R C$. The internal comparator of the ic may now try to work during the negative slope of the pulse and cause erratic behaviour. Increasing the $R C$ time constant in an effort to avoid this can throw the baby out with the bath-water, the switching pulse disappearing with the glitch.

The new circuit solves this problem. The positive slope of the gate pulse turns on $T r_{1}$ through C_{1}, reducing the current during the glitch. This greatly improves stability at low loads. The values shown work for most converters from 20 W to 400 W .

Francesc Casanellas

Barcelona
Spain

Alternating voltage division

Two alternating voltages produce an ac output proportional to one divided by the other, the proportion being adjustable. Accuracy can be as high as $\pm 1 \%$ with well chosen components. Amplifiers $\mathrm{A}_{1,2}$ and $\mathrm{A}_{3,4}$ form two rectifiers for inputs $V_{\mathrm{in} 1,2}$, the second amplifier of each pair being alternately inverting and noninverting as dictated by the diodes
$D_{6,3}$ and the $\pm 0.7 \mathrm{~V}$ output of the first stage. The outputs are, therefore always positive-going.
Amplifiers $\mathrm{A}_{5,6,7,8}$ form a directvoltage divider, giving an output $\mathrm{kIV} V_{\text {in } 1} / / V_{\text {in } 2} 1$, where k is adjusted by VR_{1}. A voltage of $1-30 \mathrm{mV}$ is inserted by VR_{2} to avoid the embarrassment of a zero voltage from $V_{\text {in1 }}$, but this does introduce a bit error when $V_{\text {in } 2}$ is small.

The rest of the circuit is a dc-to-ac converter, which gives an output of $\mathrm{k} \mathrm{V}_{\text {in1 }} / V_{\text {in2 }}$ with inputs of the same or opposite polarities.
Rather better performance can be obtained when the LM324 op-amps are replaced by LM308s and the transistors by 2 N 2920 s .
Jihai Zhang
Hangzhou, China

Smoke alarm removes power

There are occasions in which smoke alarms, while working to order, are ineffective because the sound is drowned by other noise or because people are unable to react for a variety of reasons. Again, relaying the alarm to the fire station imposes a delay during which the fire can take a hold. This circuit sounds an alarm in the normal way, but also disconnects power to electrical equipment, which is often responsible for the fire.
For example, in a laboratory where equipment undergoes extended, 24 -hour testing, smoke on the alarm activates the piezoelectric transducer, the voltage across that being used to control a solenoid to break the supply circuit and, possibly, take more positive action such as turning on sprinklers.
A variation would be to allow an scr to pass a 30 mA earth current so that an earth-fault switch would disconnect the supply.

Scott Arnesen

Oslo
Norway

Staircase generator with burst control

A
sa visual aid to distortion estimation on an oscilloscope, a sinusoid is virtually useless, unless the distortion is gross. On the other hand, a staircase waveform readily shows quite small amounts of distortion and its steps may be used as markers to indicate an approximate level of the distortion.
This is a fairly standard circuit, but with some unusual features. A variablefrequency oscillator drives an up/down binary counter, the outputs being used in a digital-to-analogue converter followed by an op-amp output to give the staircase.
Weighted resistors to supply the
currents from the octal buffer used as the converter are arranged so that only one value is needed, being combined in series or parallel to give an $R / 4, R / 2, R$ and $2 R$ sequence, on the assumption that the cmos outputs approach the supply rail closely enough for accuracy. Potentiometer $R V_{4}$ ensures that the summing node of the summing op-amp is precisely centred between the rails for best linearity of staircase.
In the tone-burst circuit, it is essential that burst switching occurs exactly at zero dc level to avoid dc shift on switching. In this case, the most significant bit of the counter is used as the trigger, which is as good
as one can get. Tone switching is obtained by switching the whole converter on and off with the tri-state control, rather than trying to switch a small analogue signal. To get the on and off times, a low-frequency variable oscillator is used, the transistors avoiding the diode drop commonly found in the
charge/discharge path of the timing capacitor.
A regulated 5 V supply is essential for amplitude stability: a 7805 works well and an LM317 even better.

Sujit Liddle

New Delhi
India

Charger for dry cells or NiCds and batteries

AIternate charge and 20\% discharge cycles enable this circuit to cope with most cell types or batteries, regardless of the number of cells in series or the battery voltage, so long as transformer and fet limits are not exceeded.
For a higher charge rate, use a fet giving a greater saturation current, adjusting the values of $R_{2,3}$ to give the new fet bias voltages.
Bob Philp

Luxembourg

COMPUTER ICS

TMS 9900 NL-40 PULS
S9900 NEW AMD EQUIVALENT
MC6802 PROCESSOR

P8271 BBC DISC CONTROLLER CHIP EX EOPT 2
817A. 20 (2K X 8) EPROM ex eqp
P8749H MICRO
D8751-8 NEW
MK48Z02-20 ZERO POWER RAM EOUIV 6116 LP
USED 4164.15.
BBC VIDEO ULA
3051 MICRO
FLOPPY DISC CONTROLLER CHIPS 177
FLOPPY DISC CONTROLLER CHIPS 177
8000-8 PROCESSOR NEW
HD6384-8
27 C 4001 USED EPROMS
1702 EPROM NEW
2114 EX EOPT 50 p 4416 EX EOPT
280A 510.0
$1263^{1 / 2}$ DIGIT LCD DRIVER CHIP
816A-30 HOUSE MARKED
USED TMS2532JLe2.50
HM6167LP-8
68000-10 PROCESSOR
255-5
114 CMOS (RCA 5114)
ZN427E- 8
27C256-26 USED

REGULATORS

M323K 5V 3A PLASTIC
M323K 5V 3A METAL
M350K (VARIABLE 3A)
78H12ASC 12V 5A
LM317H TO5 CAN
LM317 METAL
7812 METAL 12 V
7805/12/15/24
CA3085 TO99 variable res
78HGASC + 79HGASC REGULATORS
LM123 ST93 5V 3A TO3 REGS
UC3524AN SWITCHING REGULATOR IC
78 L12 SHORT LEADS
CRYSTAL OSCILLATORS
307. 2 KHZ 1MOOOOOO 1M8432 2M457600 3M6864 4MO00000 5M000000 5M06800 5M760000 6M000000 6M1440 7M00000 14 M 31814 M 381816 M 00 17M625600 18M00000 18M432 19M050 19M2 19M440 20 MO 00 20M0150 21M676 22M1184 23M587 24M0000 25 M 1748 25M175 $25 \mathrm{M} 188927 \mathrm{M}+36 \mathrm{M} 27 \mathrm{MO} 0000$ 28M322 32M000000 З2M0000 *S/MOUNT З3M 3330 35M4816 38M100 40M000 41M539 42M000000 44M444 44M900 44MO 48 M 0000050 MOO 55 M 00056 M 0092064 M 00000066 M 66776 MI

CRYSTALS
32K768 1MHZ 1M8432 2M000 2M1432 2 M304 2 M 4576 3M000 3M2768 3M400 3M579545 3M58564 ЗM600 3M6864 3M93216 4M000 4M190 4M194304 4M2056 4M3361 4M280 8M000 SM000 BM448 8M863256 8M8670 9M3750 9M8304 10M240 10M245
10M368 10M70000 11 M000 11 M052 11 M98135 12M000 12M5 13M000 13M270 13M875000 14M000 14M318 14M7450 14M7456 15M0000 16M000 17M6250 18M432 20 M000 21M300 21 M400M15A 24M000 25 M 00026 M 995 BN 27 M 045 RD 27 M 095 OR 27 M145 BL 27M145 YW 27 M 195 GN 28M4696 30 M4696 31 M4696 31 M4696 34M368 36M75625 36M76875 36M78125 36M79375
36M80625 36M81875 36M83125 36M84375 38M900 48M000
 96 M 000111 MBOO 114 MB -

TRANSISTORS

MPSA92
2N2907A
BC477. BC48
BC107 BCY70 PREFORMED LEADS
full spec
BC557.
BC557, BC238C, BC308B
2N2907 PLASTIC CROPPE
BC548B SHORT LEADS
POWER TRANSISTORS
OC29
2SC1520 sim BF259
Ki 100/e22
TIP $141 / 2$ \& 1 ea TIP $112 / 42$
RF620 TO-220 12A 200
SE9301 100 V IDA DARL SIM TIP121
PLASTIC 3055 OR 2955 equiv 50p
10/E1

TEXTOOL ZIF SOCKETS
28 PIN USED 64 WAY SHRINK DIP SKT TEXTOOL 264.1300-00 1.78mm SPACING ON PCB WITH 4 mHz RESONATOR SINGLE IN UNE 32 WAY CAN BE GANGED FOR USE WITH ANY DUAL INLINE OEVICESCOUPLING SUPPLIED $2 / 21.50$

MISCELLANEOUS

25A SOLID STATE RELAY 2400 V AC ZERO VOLTS SWITCHING $£ 10$ XENON STROBE TUBE
Narrow angle intra red emitter LED55C
CNY65 OPTO ISOL 3000 available
68 way PLCC SKT 100 available 51 each
12500F POSTAGE STAMP COMPRESSION TRIMMER $4 / \Sigma 1$
MINATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$
LO71 LO NOISE DP AMP
47000 u 25v SPRAGUE 36 D
4 for $£ 1$
12 way dil sw $£ 3$ tor $\varepsilon 1$
-WTCHED MODE PSU 40 WATT
$5 A,+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING
220R 2.5W WIREWOUND RESISTOR 6OK AVAILABLE
£50/1000
CMOS 555 TIMERS2/E1
PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT 52 ea EUROCARD 96-WAY EXTENDER BCARD
ea
OIN 4161296 -WAY AB/C SOCKET PCB AIGHT ANGLE IN 161296 . WAY AB/CI SOCKET WIRE WRAP PINS
1.30

DIN 41612 64-WAY AC PLUG PCB RIGHT ANGI
DN 4161264 -WAYAB SOCKIT WIPE WRAP (POW BOD BT PLUG + LEAD

AMERICAN $2 / 3$ PIN CHASSIS SOCKET
NEW ULTRASONIC TRANSDUCERS 32 kHz POWER SMALL CYLINDRICAL MAGNETS SMAL! MICROWAVE DIODES AE1 OC1O26A

$$
\text { OL. SWICHES IO-WAY EI B-WAY BUD } 4 / 5 / 6 \text {-WAY }
$$

$$
\text { 180VOLT I WATT ZENERS also } 12 \mathrm{~V} \text { \& } 75 \mathrm{~V}
$$ MIN GLASS NEONS

aع

NHATURE CO-AX FREE PLUG RS 456-07 PCB WITH 2N2646 UNIJUNCTION WITH 12V 4.POLE RELAY . \& STRAN GAUGES K FLLM RESISTORS

1 pole 12-way rotary swich $\quad2_{2} .50100+£ 1.5$
AUDIO ICS LM380 LM386 .
ZN4 14 AM RADIO CHIP
COAX PLUGS nice ones
INDUCTOR 2O $\mu \mathrm{H} 1.5 \mathrm{~A}$
1.25 inch PANEL FUSEHOLDERS STEREO CASSETTE HEAD
MONO CASS. HEAD $\& 1$ ERASE HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$

TO. 3 TRANSISTOR COVERS
TO-220 micas + bushes
TO- 3 micas + bushes.
pack
IEC chassis plug fiter 10A
POTS SHORT SPINDLES 2K5 10 K 25K 1 M 2M5
40k US TRANSDUCERS EX-EQPT NO DATA
LM234Z CONST. CURRENTI.
ENC TO 4MM BINDING POST SIM RS 455-961
BANDOLIERED COMPONENTS ASSORTED RS. Cs. ZENERS
LCD MODULE 16 CHAR. X I LINE (SIMILAR TO HITACHI LM1O). ES OP11264A 10kV OPTO ISOLATOR......... £1.35 ea 100 + £1 ea LOVE STORY CLOCKWORK MUSICAL BOX MECHANISM Telephone cable clip

2A CERAMIC FUSE 1.25 inch OB
10/E1
WAY IDC RIBBON CABLE 100 FOOT REEL
ARR
$.5 / \Sigma 1$
IEC CHASSIS FUSED PLUG B-LEE LZ 1281287 ASTEC MODULATOR VIDEO + SOUND UM1287

NE567 PHASE LOCKED LOOP
TL.084
4/51
10A CORCOM MAINS RFI FILTER EX. EOPT $\varepsilon 2100+\varepsilon 1.50$

DIODES AND RECTIFIERS

Al ISM 3A GOOV FAST RECOVERY DIODE
1N5407 3A 1000 V .
1N4148..
1N4004 SD4 1A 300V.
IN5401 3A 100V.
1N5819RL 20K Ex stock.
BY254 800 V 3 A .
BY254 800 V 3 A .
6A IOOV SIMILAR MR751
IA GOOV BRIDGE RECTIFIER
$4 A$ IOOV BRIDGE
6A 100V BRIDGE.
10A 200V BRIDGE.

25A 400V BRIDGE E2.50
BY297.
KBPC304 BRIDGE REC $3 A 400 \mathrm{~V}$ $10 / \Sigma 18$
$10 / 2_{22}$

SCRS

PULSE TRANSFORMERS $1.1+1$. $\mathbf{\Sigma 1 . 2 5}$
MEU21 PROG UNIJUNCTION
3/21

TRIACS DIACS 4/E1

NEC TRIAC ACOBF BA 600V TO220...............5/E2 100/530
TXAL225 8 A 500 V 5 mA GATE.
BTA $08-400$ ISO TAB 400 V 5 mA GATE.
TRIAC 1A B00V TLC381T 16k AVAILABLE
TRIAC 1A BOOV TLC381T 16k AVAILABE 5 FOR ci. 55 ea

РНОТО DEVICES

HI BRIGHTNESS LEDS COX24 RED
SLOTTED OPTO-SWITCH OPCOA OPB815
TILS1 PHOTO TRANSISTOR
TIL38 INFRA RED LED.
4N25, OP12252 OPTO ISOLATOR
PHOTO DIODE 50P
MEL12 (PHOTO DARLINGTON BASE N/C)
LEDS RED 3 or 5 mm 12/L)....
LEDS GREEN OR YELLOW $10 \mathrm{\varepsilon} 1$
FLASHING RED LED 5 mm 50 p ..
IGH SPEED MEDIUM AREA PHOTODIODE RS651-995 . . £10 ea
OPTO SENSOR.
OPI110B HI VOLTAGE OPTO ISOLATOR
MOC 3020 OPTO COUPLED TRIAC
STC NTC BEAD THERMISTORS
DIRECTLY HEATED TYPE ea FS22BW NTC BEAD INSIDE END OF 1 hch GLASS PROBE RES $20^{\circ} \mathrm{C} 200 \mathrm{~A}$.
A13 DIRECTLY HEATED BEAD THERMISTOR ik res. Ideal for
audio Wien Bridge Oscillator
CERMET MULTI TURN PRESETS $\frac{3}{4}$ inch OR 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100 200K 500 K 2 M .

IC SOCKETS

14/16/18/20/24/28/40-WAY DIL SKTS
£1 per TUBE
8-WAY DIL SKTS
32-WAY TURNED PIN SKTS

POLVESTER/POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHILIPS TYPE 330 $20 / 100$
100n, 220n 63 V 5 mm 20/81 100/83
On/15n/22n/33n/47n/66n 10 mm rad
00 n 250 V radial 10 mm .
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm} \mathrm{rad}$
品

```
\(.22 \mu 250 \mathrm{~V}\) AC X 2 RATING
\(0.22 \mu 900 \mathrm{~V}\).
```


RF BITS

SAW FILTERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY
379.5 MHZ $£ 1.50$ ea

FX32a6 FERRITE RING ID 5 mm OD 10 mm 10 for $£ 1$
ASTEC UM1233 UHF VIDEO MODULATORS (NO SOUND) 1250

C4229F1/F2.
XTAL FILTERS 21M4 55M0 \&1 еа еа
ALL TRIMMERS . .
RED 10-110PF GREY 5-25pF SMALL MULLARD 5-105pF
RED 10-110pF GREY 5-25pF SMALL MULLARD 3 tor 50 p £10/100
TRANSISTORS 2N4427, 2N3866
$\therefore8_{80 \text { ea }}^{80 \text { ea }}$
CERAMIC FILTERS 4 MS/G/M/9M/10M77....................60p ea
FEED THRU' CERAMIC CAPS 1000 pF .
SL610.
6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER $£ 5$

P2N2222A PLASTIC.
2N2369
4N16 TACS CAR PHONE O/P MODULE
MONOLITHIC CERAMIC CAPACITORS
10n 50 V 25 mm .
100 n 50 V 2.5 mm or 5 mm . $100 / \mathrm{I} 6$
100 n ax short leads. 100/23
oon ax long leads
100 n 50 V dil package 0.3 inch rad 00/E5

QUARTZ HALOGEN LAMPS
2V 50wath LAMP TYPE M312 \&1 ea HOLDERS 60p ea

MOONSHINE BIBLE 270 page book covering the production o alchond from potatoes, nce. grains etc Drawings of simple no NEW HIGH POWER MINIBUG With a range of 800 metres more and up to 100 hours use from a PP3 inis will be popular! Bug measures less than 1° squarel $£ 28$ Ret LOT 102 .
SINCLAIR CE MOTORS We have a new ones available without gearboxes at 550 ref LOT25
BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step gulde to building wind generators. pubication gives step by step gulde to building wind generators.
Amed with this publicaton and à good local scrap yard could make you self sutficient In electricityl $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector, top qually suitablefor all 286 / $386 / 486$ etc $£ 10$ ref PCKB. 10 for $£ 65$.
TRACKING TRANSMITTER range $1.5-5$ mlles. 5,000 hours on AA batteres, also transmits info on car direction and motion!Works with any FM radio. 1.5° square. £65 ref LOT101
ELECTRIC DOOR LOCKS Complete lock with both Yale lock and 12v operated deadlock (keys Included) £10 reí LOT99 GALLIUM ARSENIDE FISHEYE PHOTO DIODES COMplete with suggested dicults for long range communicationsliswitching £ 12 complete.
SURVEILLANCE TELESCOPE Superb Russian zoom telescope adjustabie from 15x to 60x! complete with metal inpod (imposible to use without this on the higher settings) 66 mm lense, leather carrying case $£ 149$ rel BARE9
WIRELESS VIDEO BUG KIT Transmits video and audio signais from a minature CCTV camera (included) to any standard terevision! All the components including a PP3 battery will fit into a cigarette packet with the lens requinng a hole about 3 mm diameter. Supplied with telescopic aerial but a piece of wire about 4^{\prime} Iong will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use. E99 REF EP79. (probably not licensablei) CCTV CA 1 ERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$. 30 grams. 12 V 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output is $1 \mathrm{v} p-\mathrm{P}(75 \mathrm{ohm})$. Works directly into a scart or videc input on a N or video IR sensitive $£ 79.95$ ref $E F 137$.
IR LAMP KIT Suitable for the above camera enables the camera to be used in total darkness! £5. 99 ref EF 138.
REMOTE CONTROLTANDATA TD1400 MODEMI VIEWDATA Complete system compnsing $1200 / 75$ modem, auto dialler, Infrá red remiote keyooard, (coutd be adapted for PC use?) psu, UHF and RGB output, phone lead, RS232 output, com posite
outbut Absolute barcain for parts alonellç9.95 ref BAR33
9 WATT CHIEFTAN TANK LASERS
Dauble beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drive unlts for alignement. 7 mile range, full circuit diagrams, new price $£ 50,000$? us? $£ 349$. Each unit has two gallium Arsenide injection lasers, 1×9 watt. $1 \times$
3 watt. 900 nm wavelength, 28 vac , 600 hz pulse frequency. The units 3 watt. 900 nm wavelength, $28 \mathrm{vac}, 600 \mathrm{hz}$ pulse frequency. The units
also contain an electronic receiver to defect rellected signais from also contain an electronic recerver to detect rellected signais
targets. ilve or more units $£ 299$ ea. $£ 349$ for one. Ref LOT4.

TWO WAY MIRROR KTT Includes special adhesive film tom ake two way mirror(s) up to $60^{\circ} \times 20^{\circ}$. (glass not inciuded) includes full instructions. £12 ref TW1
NEWLOWPRICED COMPUTERNORKSHOP/HLFIRCB UNITS Complete protection from faulty equipment for everybody! Inline unit its in standard (EClead (extends itby 750 mm), fitted inless than 10 seconds, resettest button, 10A rating. $\mathbf{£ 6} 99$ each ref LOT5. Or a pack of 10 aí $£ 49.90$ ref LOT6. Hyou want a box of 100 you can have one for $£ 250$!

RADIO CONTROLLED CARS FROM $£ 6$ EACHII! Ali retums from famous manufacturer, 3 types available, single channel (left,right, forwards, backwards) $£ 6$ refLOT1. Two channel with more features $£ 12$ ref LOT2.

THOUSANDS AVAILABLE RINGIFAX FOR DETAILS! MAGNETIC CARD READERS (Swipes) E9.95 Cased with flyleads, designed to read standard credit cards! they have 3 wires coming out of the head so they may write as well? complete with control elctronics PCB. just £9.95 ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you
information on setting up different businesses, you peruse these at information on setting up different businesses. you peruse these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sell) the manuals as much as you like! £14 ref EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Usein horizontal or vertcal COIN. OPERATED TMER KIT
COIN OPERATED TIMER KIT Complete with conslot mechanism, adjustable time delay, relay output. put a coinslot on anything you llkel TV,s, videos, fridges, orinks cupboards. HIFI. takes 50 p's and $£ 1$ coins. DC operated. price just $£ 7.99$ rel BAR27. ZENTTH $900 \times$ MAGNIFICATION MICROSCOPE Zoom. metal constructon, builtin light, shrimp farm, group viewing screen. lots of accessories: £29 ref ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ rel BAR34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data nence $\varepsilon 4,99$ ref BAR67
MIGHTSIGHTS Modet TZSA with infra red illuminator, views up to 75 metres in full darkness ininfrared mode, 150 m range, 45 mm lens, 13 deg angle of view, focussing range 1.5 m toinfinity. 2 AA batteries required. 950 g w eight. $£ 199$ ref BAR61. 1 years warranty
LIRUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line, $99 \times 24 \mathrm{~mm}$ £2.99 ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1 110 MM N EWTONLAN REFLECTOR T ELESCOPE
Russian. Superb astronomical 'scope, everyhing you need for some

WOL Y ERHAMPION BRANCH NOW OPEN AT WORCESTER ST

details £249 rel TAL-1
CENTRAL POINT PC TOOLS Award winning sonware, 1,300 virus checker, memory optimiser, disc optimiser, fle compression.
low level formatimng, backup scheduler, disk defragmenter, undelete. Iow level formating, backup scheduler, dilsk defragmenter, undelete,
4 calculators, D base, disce edlor, over 40 view ers, remote comp uting, 4 calculators, D base, disce ecltor, over 40 view ers, remote comp uting,
password protection, encnption, comprehensive manual supplied password protection. encrypt.
etc $£ 25$ ref lot 973.5^{\prime} disks.
GOT AN EXP ENSIVE BIKE? You need one ofour bortle alams. they look like a standard water botre, but open the top. Insert a keyto activate a motion sensor alamm built inside. Fits all standard bottle GOTAN EXP ENSIVEANYTHING?Youneed one ofour cased vibration alams. keyswith operated, fully cased just it it to vibration alams. keyswich operaled, fuly cased just it tit 10
anything from videos to caravans, provides a years protection from 1 anything from videos to caravans, provides a years prote
PP3 battery. UK made. SALE PRICE E4.99 REF SA33.
DAMAGED ANSWER PHONES These are probably beyond repar so just $\mathbb{4} 4.99$ each. BT response 200 machines. REF SA30. COMP UTER DISC CLEAROUT We are len with a lot of software packs that need clearing sowe are selling at disc value only 50 discs for $£ 4$, thats just $8 p$ each! (our choice of discs) $£ 4$ ret $E P 66$ IBM PS2 MODEL $160 Z$ CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $£ 9.95$ re1 EP67 DELL PC POWER SUPPLIES 145 watt. $+5,-5,+12,-12$. DELL PC POWER SUPPLIES 145 watt. $+5,-5,+12,-12$,
150x $150 \times 85 \mathrm{~mm}$ complete with swith. fyeads and IEC socket. $150 \times 150 \times 85 \mathrm{~mm}$ compleete with
SALE PRICE E9,89 ref EP55
1.44 DISC DRIVES Standard PC 3.5" dives but retums so they will need attention SALE PRICE 54.99 ref EP68
1.2 DISC DRNES Standard 5.25° difives But retums so they will need attenton SALE PRICE NOW ONLY E3.50 ref EPG9
PPJ NICADS Unused but some storagem arks. $£ 4.99$ ret EP52 DELL PCPOWERSUPPLIES (Customer retums) StandardPC psu's complete with fy leads case and fan. $+12 v,-12 v,+5 v,-5 v$ SALE PRICE E1.99 EACH worth tifor the bits alonel refDL1. TRADE PACK Of 20 € 29.95 Rel DL2
GAS HOBS ANDOVENS Brand new gas appliançes. perfect for small flats etc. Basic 3 burner hob SALE PRICE E24.99 ref EP72. Basic small buill in oven SALE PRICE E79 ref EP73
RED EYE SECURTTY PROTECTOR 1,000 watt outdoor PIR Switch SALE PRICE E6. 99 ref EP57
ENERGY BANK KTT $1006^{6} \times 6^{\circ}$ ov 100 TA A panels. 100 diodes. PASTEL ACCOUMTS SOFTWARE
PASTEL ACCOU NTS SOFTWARE, does everything for all sczes ofbusinesses, inductes wordprocessor, report wniter, window ing.
networkable up to 10 stations, multiple cash books et. networkable up to 10 stations. multiple cash books etc. 200 page comprehensive manual. 90 days free technical support (01342 -
326009 try Defore you buyl) Current retall price is E 129 , SALE 326009 try before you buyl) Current
PRICE $£ 9.95$ rel SA 12 . SAVE $£ 120!!!$
COMPLETE PC 200 WATT UPS SYSTEM TOp of the range UPS system providing protection for your computer system and
valuable sotware against mains power fuctuations and cuts New valuable sotwware against mains pow er fuctuations and cuts. New and boxed. UKmade Provides up to 5 mins running itme in the event of complete power falure to allow you to run your system down
Correctly LAST FEW TO CLEAR AT E49 SAVE E30 ref LOT61 COrrectly. LAST FEW TO CLEAR AT E49 SAVE E30 ref LOT61 BIG BROTHERPSUCased PSU, 6 v 2 A ouput, 2 m op lead, 1.5 m input lead. UK made. 220v. SALE PRICE E4.96 REF EP7

Check out our WEB SITE

http://www.pavillon.co.uk/bull-electrical RACALMODEM BONANZAI 1 Raca MPS $12231200 / 5$ modem, telephone lead, mains lead, manual and comms software, the cheapest way onto the nenl all this for just $£ 13$ ref DEC13.
4.5 mw LASER POINTER. BRAND NEW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket clip (which also aets as the onjoff switch.) About 50 metres range! Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments etc. just E39.96 ref DEC49 TRADE PRICE 28 MIN 10 PIECES

BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70% of sufferers Drug free pain reief, safe and easy to use can be used in sonjunction with analgesics etc. E49 Ref TEN/1
cher
PC PAL VGA TO TV CONVERTER Convents a colour TV Into abasic VGA screen. Complete with builtin psu, lead and s/w are.. Ideal for laptops or a cheap upgrade. Supplied in kit form for nome
EMERGENCY LIGHTING UNIT Complete unit with 2 double

- some of our products mat be unlicensable in the ur

BULL ELECTRICAL

MAll. ORDER ERHIN CAEII, PO OR CHEOME

14.: 0127323500

14×01273 323077
A-mail bullepavilion.couk
buib floodlights. built in charger and auto switch. Fully cased. 6 V 8 AH lead acid req'd. (secondhand) £4 rel MAG4P 1
YUASHA SEALED LEAD ACID BATTERIES Two sIzes currently available this month. 12 V 15 AH atE 18 refLOTs and 6 v 10AH (suitable for emergency lights above) at just $£ 6$ ref LOTT.
ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE•PRICE JUSTT E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solarpanel w ith diode and 3 metre lead fitted with a cigar plug. 12 v 2 watl $\mathrm{E8.99}$ REF SA 25 MICRODRNE STRIPPERS Small cased tape dives ideal fo stripping. lots of useful goodies including a smart case, and lots of components. SALE PRICE JUST E4.99 FOR FIVE REF SA26 SOLAR POWER LABSPECLAL Youget TWO $6^{\circ} \times 6^{\circ}$ ov 130 mA solar cells, 4LED's, wire, buzzer, swith plus 1 relay or motor. Supero value hit SALE PRICE JUST $£ 4.99$ REF SA27
RGB/CGAEGATTL COLOUR MONTORS 12° in good condition. Back anodised metal case. SALE PRICE E49 REF SA 16 B PLUG IN ACORN PSU 19 V AC 14w, £2.99 REF MAG3P 10 13.8V 1.9A PSU cased with leads Just $£ 9.99$ REF MAG10P3 UNNERSAL SPEED CONT ROLLER KTT Designed by us for
the C5 motor but ok for any 12 v motor up to 30 A . Complete with PCB the C5 motor but ok for any 12 vomotor up to 30 A . Comple
etc. A heat sink may be required. $\mathbf{\Sigma 1 7 . 0 0 ~ R E F : ~ M A G 1 7 ~}$
PHONE CABLE AND COMPUTER COMMUNICATIONS PACK kit contans 100 m of 6 core cable, 100 cable clips, 2 line difivers with RS232 interlaces and all connectors etc. Ideal low cost method of communicating between PC s over along distance utilizing VIEWDATA SYSTEMS made by Phillips
VIEWDATA SYSTEMS made by Phillips, complete with intemal 1200 / 5 modern, keyboard, psu etc RGB and composite oubuts
menu driven, autodialler etc sALE PRICE menu driven, aulodialler etc. SALE PRICE E12.99 REF SA18
AIR RIFLES . 22 As used by the Chinese army for trainingpuposes
so there is a lot aboull 339.95 Ref EF 78.500 pelle ets $£ 4.50$ ref EF80 so there is a lot aboutI $£ 39.95$ Ref EF 78 . 500 pellets $£ 4.50$ ref EF80.
PLUG IN POWER SUPPLY SALE FROM $£ 1.50$ Plugs in to 13A socket with outputlead. three types avaliable gvdc 150 m A $£ 1$. 50 ref SA19, Svdc $200 \mathrm{~mA} £ 2.00$ ref SA20, $6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 2$ ref SA21. VIDEO SENDER UNTT. Transmits both audio and video signals From either a videocamera, videorecorder. TV or Computer etc to any standard TV set in a 100 rangel (tune TV to a spare channel) 12 V DC PD. PInce is $£ 25$ REF:
"MINATURE RADIO TRA ASCENERS A pair of walkie talkies with a range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. $2 \times P$ PP3 req'd. $£ 30.00$ pr.REF: MAG 30 -FM TRANSMITTER KT housed in a standard working 13A adapterll the bug runs directy ofithe mains solasts foreven whyp ay £700? or price is $£ 15$ REF: EFE2 (kkt) Transmits to any FM racio. *FM BUG BUILT ANDTESTED supenor design tokit. Supplied to detective agencies. 9v battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WTTH COINSLOT MECHANISMS onginally made to retail at£79 each, these units are designed to convert an ordinary phone into a payphone. The units have the looks missing and sometimes broken hinges. However they can be adapted tor therronginal use
something eise?? SALE PRICE JUST E2.50 REF SAZ3
GAT AIR PISTOL PACK Complete with pistol, darts and pellets £ 12.95 Rel EF 82 B extra pellets (500) $£ 4.50$ ref EF 80 .
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130mA. SALE PRICE E4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ 1 MAC5P131deal for expenimenters 30 m for $£ 12.99$ rel MAG13P

MIXED GOODIES BOX OF
 MIXED COMPONENTS WEIGHING 2 KILOS

4×28 TELESCOPIC SIGHTS Suitable for all air intes, ground lenses, good light gathering properties. $£ 19.95$ ref R \boldsymbol{R}.
GYROSCOP ES Rememberthese? well we have found a company that sill m manufactures these popular scientific toys. perfect gif or for educational use etc. $\mathbf{E 6}$ ref EP70
HYPOTHERMIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket. refiects more than 90% of body heat. Also suitable for the Tol blanket. refiects more than 90% of body heat. Also sul.
construction of two way mirrors! $£ 3.99$ each ref O LL041.
LENSTATIC RANGER COMPASS Oil filled capsule, strong LENST ATIC RA NGER COMPASS Oil filled capsule, strong
metal case, large luminous points. Sight Iline with magnitying viewer. metal case, large luminous points, Sigh
50 mm dia, $86 \mathrm{gm} . \mathbf{£ 1 0 . 9 9}$ ref O K 604 .
50 mm dia, $86 \mathrm{gm} . £ 10.99$ ref OK604.
RECHARGE ORDINARY BATTERIES UP TO 10 TMES! With the Battery Wizard! Uses the latest pulse wave charge system
to charge all popular Drands of ordinary Dattenes AAA. AA. C. . four to charge all popular brands ofordinary battenes AAA. AA, C. D. four
ata time! Led system shows when battenes arecharged. aulomatically at a tume! Led system shows when battenes arecharged. autom atically
rejects unsultable cells, complete with mans adaptor. BS approved. refects unsutable cells, c,
Price is $£ 21.95$ ref EP 31 .
TALKING WATCH Yes, Hactually tells you the bme at the press of a button. Also features a voce alamm that wakes you up and tells you what the ome is Lithium cell induded. $£ 7.99$ ref EP 26 .

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevent even the most responsible of dnvers from los ing theirlicence! Adustable audible alamm with 8 flashing leds gives instant waming of
radar zones Detects $X K$ and K a bands 3 mile range radar zones. Detects X,K, and Ka bands. 3 mile range, 'over the hill Can pay for itself in Just one day! $£ 79.95$ ref EP3.
Can pay for itself in Just one day! $£ 79.95$ rer EP3.
$3^{\prime \prime}$ DISCS As used on older Amstrad machines, Spectum plus3's etc $£ 3$ each ref BAR400.
STEREO MICROSOPES BACK IN STOCK RUssian, $200 x$ complete with lenses, lights, filters etc etc very comprehensive
microscope that would normally be around the $£ 700$ mark, our price
is west feg (ful money back quarantee) full detailis in catalocke FOR CASH
BUYERS DIRECT LINE 0802660377 FREECATALOGUE 100 PAGE CATALOGUE NOW AVAILABLE, 5OP STAMP OR FREE ON REGUEST WITH ORDER.

ACTIVE

A-to-D and D-to-A converters

24-bit delta-sigma a-to-d. From Burr-Brown, the ADS1210/1211 widerange, delta-sigma a-to-d converters with 24 -bit resolution, using a single 5 V supply. 1210 is a single-channel type and 1211 a 4 -channel multiplexed device. Both have an SPIcompatible synchronous serial interface and two-wire control mode for low-cost isolation. Both also offer the 'turbo' mode to allow the selection of oversampling ratio to suit the application, from sampling at 20 kHz to give 21 bit at 10 Hz to sampling at 320 kHz to achieve 20 bit at 1 kHz . Burr-Brown International. Tel., 01923 233837; fax, 01923233979.

A-to-d for video. AKM's AK5482 is a 10 -bit, 20 MHz pipeline analogue-todigital converter for use in the digitising of still colour video images such as photographs or scans. The 3 V device offers differential linearity of $\pm 0.5 \mathrm{lsb}$ and integral linearity of ± 1.5 Isb. Power consumption is 50 mW at 20 MHz . DIP International Lid. Tel., 01223462244 ; fax, 01223467316.

Linear integrated

 circuitsBias stablliser. To stabilise the blas current of $n-p-n$ bjts or n-channel fets Motorola's MDC5000T1 in an SOT143 package allows the controlled device to have its emitter or source grounded while still working with a stable collector or drain current. It is mainly meant for use with if stages on a low supply voltage, but is suitable for use with any linear stage to avoid the need for emitter/source bypassing while providing better control of bias over temperature and device parameter variations. Motorola Semiconductors. Tel., 01355 565000; fax, 01355234582.

Rf cascodes. Motorola's MRF1C0916 900 MHz generatpurpose cascode SOT-143 amplifier is designed with internal chip-bias circuitry and off-chip matching for greater adaptability. Frequency range is $100-2500 \mathrm{MHz}$ with an output power of 2.3 dBm at 1 dB gain compression and a $2.7-5 \mathrm{~V}$ supply. Small-signal gain is 18.5 dB typical at 850 MHz and reverse isolation 44dB typical. Tel., 01354688040 ; fax, 01354688248.

Microprocessors and

controllers

Process controlier. Athena's XT32 Series of panel-mounted process controllers is a $1 / 32$ DIN microprocessor-based Indicating type providing dosed-loop control of temperature or other quantities characterised by a linear input. It offers on-demand auto tuning and takes input from K, J and T thermocouples, rtds or linear inputs from other devices. There is a large display, dual output, selectable input, alarms and 'bumpless' auto/manual transfer. Hysteresis is adjustable and the quantity displayed is selectable. Athena Controls Lid. Tel., 0161 4853536 ; fax, 01614853537.

Microprocessor reset. Maxlm has the MAX6315 microprocessor-reset chip, which emits a reset signal when the supply voltage falls below a preset internal threshold, maintaining the reset for a programmed, fixed time after the supply is restored. Thresholds are available in 100 mV increments between 2.5 V and 5 V and there are four reset times from 1 ms to 1120 ms . The device ignores short transients and it includes a debounced manual-reset input. Maxim Integrated Products UK Ltd. Tel., 01734 303388; fax, 01734305511.

Motors and drivers

Pwm motor controller. UC3638, by Unitrode, provides control of torque, velocity or position in dc motors, and drives Class-D amplifiers for audio and uninterruptible power supplies. It contains all necessary dircuitry to generate an error signal and to modulate two bi-directional pulse trains in proportion to the error signal magnitude and polarity. Its features indude a programmable, high-speed triangle oscillator, a differential current sensing amplifier with a gain of five, an error amplifier, pwm comparators, open-collector and $\pm 500 \mathrm{~mA}$ totempole outputs. Unitrode (UK) Ltd. Tel., 0181-318 1431; fax, 0181-318 2549.

Oscillators

Clock osclllators. Hy-Q's new range of osclllators is sald to address the shortcomings in quality and delivery found in other makes. Three standard temperature ranges of 0 to $70^{\circ} \mathrm{C},-30$ to $75^{\circ} \mathrm{C}$ and -40 to $85^{\circ} \mathrm{C}$ are available in stabilities from $\pm 100 \mathrm{ppm}$ to $\pm 15 \mathrm{ppm}$ at frequencies in the $1-70 \mathrm{MHz}$ range. Output is compatible with HCMOS and ttl and there is a tri-state option at no extra cost. Hy-Q international (UK) Ltd. Tel., 01223 834444; fax, 01223 834589.

Lowest-cost PICs. One-timeprogrammable, 8 -bit
microcontrollers,
PIC16C923/924 are said to be the lowest-cost devices of their type. They combine an 8 MHz clock speed and 500 ns cycle time with a 4 K -by-14 on-chip eprom program memory and 176 by 8 general-purpose registers. They also have 60 special function hardware registers, an 8 -level deep hardware stack, interrupt, 25 i/o pins, pwm output and an SPI//2 C synchronous serial port, in additon to a 5 -channel, 8 -bit a-to-d converter and a programmable Icd timing module. This new PIC16C9XX family is supported by the PICMASTER development system. Arizona Microchip Technology Ltd. Tel., 01628 851077; fax, 01628850259.

Power semiconductors

Mosfet drlver. A half-bridge, n channel power mosiet driver, the LT1336 from LInear Technology, has an on-board boost switching regulator to maintain high-side gate drive voltage at high duty cycles, including $93 \%-100 \%$. The top-side driver is a floating-gate drive with no direct ground path, using rails up to 60 V , and the internal boost switching regulator generates the floating highside driver output voltage at 10.6 V above the high-voltage rail to ensure enhancement of standard threshold mosfets. The device will drive into 10,000pF. Micro Call Ltd. Tel., 01844 261939; fax, 01844261678.

PASSIVE

Passive components

Dual varicaps. Zetex's ZDC833A is a dual variable-capacitance diode in one SOT-23 package. The dlodes exhibit a hyperabrupt $C N$ characteristic and show a large capacitance change for a small voltage input. Typical capacitance is 33pF and capacitance ratio 5 minimum for a $2-20 \mathrm{~V}$ voltage. Q factor is a minimum of 200 at 50 MHz and 3 V reverse bias, which represents a series resistance of 0.5Ω. Matching of diodes in one package is within 0.25\%. Zetex plc. Tel., 0161-627 5105; fax, 0161-627 5467.

Surface-mounted resistors. Ralec surface-mounted chip resistors come in a range of sizes from 0603 to 2512, with values down to 0.01Ω and in tolerances from 5% to 0.5%. The resistors are on a high-alumina substrate, the resistance element being of epoxy-coated ruthenium oxide, with nickel and solder-plated terminals. Legacy Distribution Lid. Tel., 01243533041 ; fax, 01243 536772.

Audio products

Stereo a-to-d. AK4320, an AKM 1-blt stereo digital-to-analogue converter, operates at three sampling frequencies: $32,44.1$ and 48 kHz , and two master clock frequencies of 256 and $38 f_{s}$. It has a 20 -bit oversampling filter and switched-capacitor filtering for the output. Dynamic range is

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

100dB; s:n ratio 110dB. DIP International Ltd. Tel., 01223 462244: fax, 01223467316.

Connectors and cabling

Surface-mount connectors. PAK-5 board-to-board, surface-mounted connectors by Robinson Nugent have 'floating' contacts on the receptacle to take up torsional and up to 0.3 mm of lateral position errors. The connectors come in sizes from 20 ways to 100 ways in 0.5 mm pitch. Stacking heights are $3-8 \mathrm{~mm}$ and a positive click is provided by the locking mechanism to achieve resistance to vibration and shock. Insulation

Optical/electrical connector. Radiall makes the BOC $1 / 2$ series of connectors for installing single-mode optical cable or mixed optical and electrical links in harsh conditions; the watertight system has been used for retransmitting hdiv
programmes. Two units are made: the BOC1, with a screw
locking method, has four channels to be fitted with all optical or mixed optical/electrical channels in any arrangement; BOC2 takes two of each type of channel and uses a push-pull locking system. Cables from 7 mm to 11 mm diameter may be used. Optical insertion loss for a plug/adaplor/plug connection is 1.2 dB and for a plug/receptacle 0.6 dB . For electrical channels, rating is 16 A and $8 \mathrm{~m} \Omega$ contact resistance. Transradio Ltd. Tel., 0181-997 8880; fax, 0181-997 0116.
resistance is $1000 \mathrm{M} \Omega$, dielectric withstand 150 V ac, current rating 0.2A per contact and rated voltage 60 V ac or dc. Robinson Nugent (Europe) Ltd. Tel., 01256 842626; fax, 01256842673

Displays

Tough monitors and terminals. Production samples of the Regisbrook ruggedised display monitors and terminals are now available. They can be fitted with any led or electroluminescent display, an integral analogue touch switch and support electronics and power supplies. These monitors have line drives to allow connection to remote analogue and digital sources at a distance of over 50 metres - soon to be 100 metres. Packaging is stainless steel or powder-coated metal, a plastic seal rendering the equipment waterproof, even when partly submerged. Regisbrook Group Ltd. Tel., 01235 554433; fax, 01235 528971.

Graphic Icd. Epson's SEK 1018 BOA graphic Icd module has a viewing area of 97.12 -by- 74.08 mm and is not much bigger overall, taking 2 mA without the backlight and 20 mA with it on. A SEK 1330 lcd controller is in the package and is compatible with 80 series and 68 -series microprocessors Hero Electronics Ltd. Tel., 01525 405015; tax, 01525402383.
10.3in colour Icd. Densitron Perdix announces its new display screen, which costs less than any of its others. LMG8343E-DF2 is a 10.3 in , 640 by 480 type, the whole package measuring 264 by 183 by 10.5 mm and has a ccfl backlight to give a surface brightness of $75 \mathrm{~cd} / \mathrm{m}^{2}$ and contrast ratio of $30: 1$. Response time is 270 ms . PCX535 is a matching vga
controller. Densitron Perdix. Tel., 01959700100 ; fax, 01959700300

Filters

Video filters. Faraday announces a range of single-in-line active video filters. Having a cut-off rate of 1.45 , they are low-pass, phase-equalised designs intended as antialiasing and reconstruction filters in video and data conversion. Pass-band widths are 2 MHz to 20 MHz and the devices have high input, low output impedances or as specified by the customer. Gain is selectable at OdB or 6dB. Faraday Technology Ltd. Tel., 01782661501 ; fax, 01782630101.

Hardware

Chip coolers. Chip coolers with fans and heatsinks by Sanyo Denki in the San Ace MC range are designed for use with cpus such as the Pentium family, but are equally at hone with other types of semiconductor such as dsp circuitry and power devices. They come in four sizes between 45 mm square and 66 -by- 62 mm , each being available for 5 V or 12 V supplies. Coolers are quiet at around $28 \mathrm{~dB}(\mathrm{~A})$, locked-rotor protection is present and an alarm output is provided. EAOHighland Electronics Lid. Tel., 01444 236000; fax, 01444236641.

Emc-compllant chassis. Elma's Series D pc chassis is a complete enclosure, ready to use, designed to meet 89-336 EWG requirements without compromising appearance and cost. It is 4 Y high, 84T wide and 448 mm deep and is available in versions with four or eight slots. Aperture size is smaller and a CEmarked power supply is fitted. Overpressure cooling is used, outlets being designed to ensure cooling of all slots and, in particular, the hard disk drive; a temperature sensor controls the fan speed and an alarm is fitted. Radiatron Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Membrane Illumination. Wasp is now able to provide various type of illumination for front-panel membranes. Leds can be incorporated into the flexible membrane or, for overall lighting, leds or filament lamps can be spread about the membrane and the light conveyed by light paths in the membrane to glve a uniform output. For low-level light, an electroluminescent layer is sandwiched in the membrane. Wessex Advanced Swltching Products Ltd. Tel., 01705 453711; fax, 01705473918.

Cabinet cooling. The Meech-ARTX Control Cooler prevents cabinets full of electronics from overheating, being a low-cost air-conditioning system powered by factory compressed air
and having no moving parts. It will provide cooling capacity of $2500 \mathrm{Btu} / \mathrm{h}$ which represents a cabinet of 1.8 by 1.8 by 0.6 m and is an alternative to a blower method of cooling with its attendant risk of air-blown dust; it is mounted in a standard knockout to keep IP65 rating. Operation Is by the conversion of compressed air into two streams, hot and cold, the hot stream exhausting to atmosphere and the cold, which is $34^{\circ} \mathrm{C}$ colder than the supply, goes into the cabinet to be distributed by a manifold. MeechARTX Ltd. Tel., 01993 706700; fax, 01993776977.

Computer sale. If you consider your computer to be in peril, you will welcome this safe. It is designed to take mini-towers up to 350 mm high, 220 mm wide and 500 mm deep, is made from 2 mm thick steel and has a seven-lever lock on the inset door. Its hinges are concealed and the safe is of welded construction, a dog-bolting arrangement preventing the removal of the door unless it is first unlocked. In the event that an unusually dogged thiel decides to walk off with the safe itself, it has holes in the floor to take bolts. Ventilation is provided. Intek Electronics Ltd. Tel., 01352 810603; fax, 01352810403.

Test and measurement

Digital/analogue audio analyser. Rohde \& Schwarz has the UPL audio analyser for analogue and digital or combined audio analysls, having generators and analysers for dualchannel measurement and an integrated pc which therefore needs no keyboard or monitor. Functions include FFT analysis, jitter analysis, interface testing, programmable filtering, automatic test sequences and drivers for all commercial printers. Results are processed by the internal pc, which stores them for later use. Rohde \& Schwarz UK Lid. Tel., 01252 811377; fax, 01252811447

Thermal imager. ThermaCAM SC1000 from Inframetrics gives fullscreen temperature measurement to within $\pm 2 \%$ or $2^{\circ} \mathrm{C}$. Improvements mean that the camera uses less power, a standard camcorder battery lasting two hours with a battery belt for twelve hours as an option, and a new colour viewfinder provides better resolution; there is also a 4 -in colour Icd viewfinder option. The 12-bit video output interfaces with company's ThermaGRAM PRO 95 Windows 95based software to allow a number of storage and analysis functions. Lens and filter options are many, one of them being a $15 \mu \mathrm{~m}$-resolution microscope. Inframetrics Infrared Systems Ltd. Tel., 01256 50533; fax, 0125650534.

Clip-on milllammeter. mA-2000 from F W Bell provides non-contact current measurement of ac and dc.

Measuring ranges of this 3.5 -digit, hand-held instrument are $0-200 \mathrm{~mA}$ and $0-2000 \mathrm{~mA}$ ac or dc up to 100 kHz and an analogue output is included for oscilloscope or recorder. Resolution is 0.1 mA and accuracy 1% of reading on dc, $2 \%-4 \%$ for ac, depending on frequency. Magnetics Consultants. Tel., 0191-528 4408; fax, 0191-515 2837.

Emc testing. Seaward has a range of instruments for emc testing, the latest member of the family being the Orb harmonics and flicker meter, which is for conformance test of single-phase equipment at up to 16A, carrying out Class A, B and C Fourier harmonics test up to the 40th. Also in evidence: the Thor surge generator, testing for immunity to emi to IEC 1000-4-5, again for conformance testing. Its range of output voltages simulates surges of the type caused by lightning and other sources, the software enabling its use by technicians. Sceptre is a pc-controlled spectrum analyser for the $150 \mathrm{kHz}-450 \mathrm{MHz}$ range of emissions, equipped with a line stabiliser. Finally, the Mace mains interference simulator,
microprocessor-controlled to give three test routines in the one instrument. Seaward Electronic Ltd. Tel, 0191-586 3511; fax, 0191-586 0227.

Literature

ITT on CD-rom. Integrated circuits, discrete semiconductors and Hall sensors from ITT are all described on a new cd-rom catalogue for pcs and Macs, which also shows data sheets. Graphics and text may be printed out and may be copied to other,
compatible software packages for inclusion in users' own documents. For screen dlsplay, the CD contains a copy of Adobe Acrobat Reader 2. The cd has not ousted paper, which is to continue. ITT Semiconductors. Tel., 01932336116 ; fax, 0193233148.

Servoamplifiers. Copley's new catalogue contains information on 60 brush and brushless ampliffers for motion control, in powers from a few watts to 20 kW , and accessories including transformers, power supplies and mounting hardware. A range of techniques is employed: tachometer, encoder, resolver and Hall feedback, some of them multiaxis types, and there are low-cost types. The company's pulse-width modulated power amplifiers are also described. Copley Controls. Tel., 001 617329 8200; fax, 0016173294055.

Clean rooms. Cleaning the clean room is not, apparently, simply a matter of skipping round with a duster and a can of spray polish. So esoteric is it, in fact, that MVI has produced a video on the subject: Preparing to clean the clean room not only shows how it should be done and how to
prepare the materials, but also how to prepare the people who are going to do it. Micron Video International Lid. Tel., 01705 670550; fax, 01705 670543.

Snap-action switches. Matsushita has a new brochure to describe a range of snap-action switches which have their mechanism sealed in rubber and the terminals in epoxy resin to IP67/IP50. Ratings are 3A at 250 V ac to 1 mA at 24 V dc , life span being over 500,000 operations. Pinplunger, hinge lever or roller lever actuators are available. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908231599.

Materials

Flexible ferrite. Flexible film of ferrite polymer composite, made by Siemens, makes it possible to produce cores of exotic shapes, previously not realisable. For, example, reticulated flange cores for car immobilisers or non-welding pot cores for inductive proximity switches can all be made from the material. Now there is a film developed by Siemens and Matsushita which uses the ferrite shielding effect for emc applications. Other advantages of the film include magnetic stability, lightness and mechanical strength. At $25^{\circ} \mathrm{C}$, relative initial permeability is 9 ; rel. dissipation factor <0.005 at 10 MHz and <0.4 at 1 GHz ; resistivity 500Ω and specific dielectric constant 700 , both at 1 kHz . Free samples may be obtained from Siemens Response Centre on 0345000 444. Siemens plc. Tel., 01344 396313; fax, 01344 396721.

Production equipment

Braid cutter. If, when cutting polyester braided sleeving, you find that it instantly turns itself into a mass of fibres, here is the answer. Sealsnip looks like a hacksaw, but the 'blade' is a hot wire that cuts all sizes of sleeving up to 30 mm and gives the cut a neat, welded edge. There is a separate transformer for mains power and spare hot wires are provided. Systems and Electrical Supplies Lid. Tel., 01734 873461; fax, 01734 752124.

Power supplies

Ups management. All Fiskars's uninterruptible power supplies are now complete with software to manage its affairs during a long power cut. LanSafe III or FailSafe III packages saves all data and performs a graceful shutdown of the system even when work has not been saved or if the computer is unattended. On detecting a power cut, the systems can handle fax and e-mail and will monitor, test and re-boot automatically. The package consists of the ups and a cd-rom with the

software, installation data and on-line help. Fiskars Electronics Ltd. Tel., 01734 306600; fax, 01734305868.

Pentlum power. MP55C by Semtech is a voltage regulator module for the Intel P55C processor, which fits existing socket headers and integrates regulator, heatsink, capacitors, resistors and 30 -pin connector in a form specified by Intel. The P55C uses split-voltage supplies and the use of the regulator avoids the need to redesign power supplies for up-dating a motherboard. Semtech Ltd. Tel., $01592773520 ;$ fax, 01592 774781.

Hybrld regulators. Allegro announces a family of swltched-mode dc-to-dc converters using hybrid ic techniques. STR-7000 and STR-7100 series and the Sl-8020 controllers are available for outputs of $5,12,15$ and 24 V at 6 A and 12 A . Input range is 11 40 V for the 5 V units and $30-50 \mathrm{~V}$ for 24 V types. Separate chopper excitation is used and there is provision for adjustable constantcurrent protection and externally-set foldback overcurrent handling. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932246622.

Thrifty regulators. Toko intends its new range of regulators, the TK112/113AM series, for use in equipment spending much of its life on standby, an on/off control reducing consumption to $0.1 \mu \mathrm{~A}$. Voltage drop is 0.16 V at 60 mA . Output voltages are available in the $1.5-5.5 \mathrm{~V}$ range, in steps of 0.5 V . Cirkit Distribution Ltd. Tel., 01992 444111; fax, 01992 464457.

Bus regulator. UC382 by Unitrode is a 2 A , low dropout (450 mV at 3A) linear regulator having a very fast

Fibre termination. JTK-4000 Universal Fibre Termination Kit, from Jensen, combines a basic kit of tools and supplies, which may be extended with tools specific to a given type of installation. Any techniques or connectors may be used. There is also the Benchtop Fibre Tool $K h$, which is intended for the termination of AMP Light Crimp fibre connectors. Jensen Tools. Tel., 0800833246 (free); fax, 01604785573.
transient response that, with a $3 \mathrm{~A} / \mu \mathrm{s}$ output current transient, passes only 12 mV output voltage change. Separate bias and $V_{\text {in }}$ pins are provided, the latter supplying the output transistor only. The 5 -pin package allows Kelvin sensing, eliminating the effects of lead and trace resistance. Output voltage is 1.2-5V. Unitrode (UK) Ltd. Tel., 0181 318 1431; fax, 0181-318 2549.

250W, quad output. From Astec, the LPQ250 series of BABT-approved, quad-output, 250W supplies, all with power-factor correction and contained in a U-channel extrusion. Inputs can be ac or dc at $85-264$ and $\mathbf{1 2 0 - 3 7 0 V}$ respectively. Two models provide three low-voltage rails each with an adjustable floating output of $\pm 5-25 \mathrm{~V}$. There is an emi filter and power-fail and remote inhibit faclities, as well as full protection. Chloride Powerline. Tel., 01734868567 ; fax, 01734 755172.

375W, pfc supplles. Power-One's PFC 375 series of power supplies are now CE-marked, taking in the Lowvoltage Directive and the 89/336/EEC directive. All have power-factor

Please quote "Electronics World" when seeking further information

correction and optional fans and are contained in a package measuring 266.7 by 127 by 63.5 mm . They are fully regulated with remote sensing on the main output, up to four outputs being of $5-48 \mathrm{~V}$ and, unusually, 24 V 10A. PowerOne Europe. Tel., 01769 540744; fax, 01769540756.

Radio communications products

$1.8-2.4 \mathrm{GHz}$ power amplifiers. Three amplifiers from Anglia cover the 1800 2400 MHz PCN/PCS communications bands. ACAM 7690 is a mainspowered, rack-mounted type having a minimum power output of 10 with 1 dB compression and flatness of $\pm 1 \mathrm{~dB}$, power gain 40 dB and third-order intercept point at 52dB. ACAM 7915 is a cased version, using 15 V at 5.5 A , and covers $1700-2000 \mathrm{MHz}$ with minimum power gain of $30 \mathrm{~dB}, \pm 1 \mathrm{~dB}$ flatness and third-order intercept at 50 dBm . ACAM7963, for $1800-2000 \mathrm{MHz}$, is cased, using 15 V , and having a minimum output power of $5 \mathrm{~W}(1 \mathrm{~dB}$ compression) and minimum power gain of $20 \mathrm{~dB} \pm 1 \mathrm{~dB}$. Anglia Microwaves Ltd. Tel., 01277630000 ; fax, 01277631111

Switches and relays

Monitor relay. In those processes using multi-element heating, it is often necessary to ensure that all elements are carrying current. For this task, Crydom offers the SMR System Monitoring Relay, a standard 25A, 50 A or 90A relay modified to take intelligent monitor circuitry to check current flow, line voltage, relay control voltage and other quantities. If a fault is present, an alarm output is activated and a led indicator shows. Crydom Europe. Tel., 0181-763 0550; fax, 0181-763 0499.

Double relay for cars. Siemens' Double Mini Relay is meant specifically for use in cars for immobilisers, sun roofs and seat adjusters. It has two separate 12 V coils, the changeover contacts carrying 20 A at 12 V dc . The pcbmounted case is 17 by 16 by 13 mm . B\&R Controls. Tel., 01279 443351; fax, 01279415481.

Televislon components

Channel 5 retuner. In what seems to be an obvious answer to the problem of retuning many millions of video recorders and other equipment to avoid interference from Channel 5 television, Pace has introduced a reluner module that shifts the television signal to an unused part of the spectrum (channel 69) also providing a bonus by way of gain. The device plugs into a mains wall socket and connects by standard coaxial plugs and sockets. Pace Micro Technology. Tel., 01274 537082; email, andrew.bone@pace.co.uk.

Transducers and sensors

Diff. pressure transducer. HBM's Digibar range of digital pressure transducers now includes a differential type, the PDE300, which has both digital readout and a form of analogue display, including $\mathrm{min} /$ max storage and trend. Ten ranges cover 100 mbar to 2 bar and the transducer is sultable for either battery power or two and three-wire ($4-20 \mathrm{~mA}$) techniques, which give an analogue output for transmission to other locations and also lifmit relays for equipment control. HBM United Kingdom Ltd. Tel., 0181-420 7170; fax, 0181-420 7336.

Pressure transducer. Endevco offers the 8544-300M11, which is a plezoresistive pressure transducer that will work at temperatures up to $177^{\circ} \mathrm{C}$, being designed to operate inside engine transmissions; its Teflon cable is impervious to automatic transmission fluid. Temperature compensation is internal. Range is 0 $300 \mathrm{lb} / \mathrm{in}^{2}$ and the device copes with burst pressure to $1000 \mathrm{lb}_{\mathrm{l}} \mathrm{in}^{2}$; output is 100 mV full scale. Endevco UK Ltd. Tel., 01763 261311; fax, 01763 261120.

COMPUTER

Software

ChipLab for Windows. Data I/O has introduced a Windows interface for the ChipLab project programmer that also works with the company's 2700 programming system and will be made available for use with other Data I/O programmers shortly. The interface removes any need to consult handbooks and re-learn the system at each session, since t is completely intuitive and prompts are available at each step. Requirements are a 386 or better, 2Mbyte of extended memory, a 3.5in floppy drive, a parallel port, vga and at least 5Mbyte on the hard disk. Data I/O Ltd. Tel., 01734 440011; fax, 01734448700.

Emc guidance. Expert Consultant from Seaward is upgraded to keep up with the latest European Directive on electromagnetic compatibility. The

Data communications

Radio modem. Radio Data
Technology's RM 9600
transceiver is said to be the world's fastest medium range, low-power radio modem, meant for use in wireless data and control links. It is a 500 mW unit, working at 9600 baud with forward error correctlon to allow programming and down-loading at the normal operating speed of a pc. The transceiver has both RS 232 and RS485 serial ports, so that the unit may be used for logging or for full-function, IEEE. compliant control. Operation is single-frequency, half-duplex in bands of up to 32 channels between 406 MHz and 470 MHz . Output power is adjustable in the $50-500 \mathrm{~mW}$ range to minimise interference. Radio Data
Technology Ltd. Tel., 01376 501255; fax, 01376501312.
package is Windows-based and provides knowledge about emc and the implications of the directive for design of electronic equipment, test standards and routes to conformance. In addition, the program has been modified to ease its use and understanding. Minimum requirements: $3865 \times 25 \mathrm{MHz}$; Dos 5.0; Windows 3.1. It also needs an 800 by 600 graphics card and 10 Mbyte of free hard disk. Seaward Electronic Ltd. Tel., 0191-586 3511; fax, 0191-586 0227.

EN61000 testing. Voltech announces EN61000 Windows-based software to test equipment for EN61000-3 (EN60555) conformance. The standard is to do with current distortion and voltage fiuctuation in ac power lines that may be caused by electrical equlpment and this software allows all relevant tests to be performed quickly. It is meant for use with Voltech's PM3000A NPL-certified power analyser, software controlling both analyser and ac test source. Tests include steady-state and fluctuating harmonics, voltage change and voltage flicker, and there is an automatic Class D waveform check. Voltech Instruments Ltd. tel., 01235 861173; fax, 01235861174.

Surplus always THE ORIGINAL SURPLUS WONDERLAND!
THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS

LOW COST PC's

SPECIAL BUY

'AT 286
$40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram

condition complete with enhanced keyboard, $640 \mathrm{k}+$	
Oplional Fited oxtras: VGA graphics card	

LOW COST 486DX-33 SYSTEM Fully featured with standard simm connectors 30 \& 72 pin. Supplied
with keyboard, 4 Mb of RAM, SVGA monitor output, 256 k cache and integral 120 Mb IDE drive with single 1.44 Mb

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

51/4" or $31 / 2$ " from only £18.95 !

 guarantee and onyepated fiom standard sholtages and are of standard 3% " Panasonic JU363/4 720 K or equivalent RFE 31/"M Mirsubishi MF355C

 " BRAND NEW Mihsubishl MF5010 360K
${ }^{\text {g }}$ Mirtsubishi M2994-63 8" couble sided NEW
Mitsubishi M2896-63-02U
8" DS Slimine NEW

HARD DISK DRIVES

 CONNER CP 304440 mb IDE I/F (or equiv.) RFE WESTERN DIGITAL 850 mb IDE I/F Brand New MINISCRIBE 342520 mb MFM I/F (or equiv.) RFE SEAGATE ST-238R 30 mb RLL I/F Refurb HP 9754 B 850 Mb SCSI RFE tested

THE AMAZING TELEBOX

The TELEBOX is an attractive fully cased mains powered unit, con-

 made by makers such as MICROVITEC, ATARI, SANYO, SONY video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most televi-slon receivers" (TELEBOX MB). Push button controls on the fron panel allow reception of 8 tully tuneable off air UHF colour television TV operators. A composite video output is located on the rear panel for direct connection to most makes of monitor or desktop computer
video systems. For complete compatibility - even for monitors with-
out sound - an Integral 4 watt audio amplifier and low level Hi Fi TELEBOX ST for coulded as standard. TELEBOX STL as STbut fitted with integral speaker
$\$ 36.95$
$\mathbf{8} 9.50$ TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner $\mathbf{\& 6 9 . 9 5}$ For overseas PAL versions state 5.5 or 6 mHz sound specitication.

DC POWER SUPPLIES

Virtually every type of powe
supply you can imagine. Ove

IC's -TRANSISTORS - DIODES

OBSOLETE- SHORT SUPPLY - BULK
$, 000,000$ items EX STOCK

VIDEO MONITOR SPECIALS
 One of the highest specification monitors you will ever see

 specificdition
 Tin \& Swivel Base $£ 4.75$ Only £119

19" RACK CABINETS

Superb quality 6 foot 40U

 Virtually New, Ultra Smart Less than Half Price! Top qualOptilal
dosioner

Only $£ 125$ (E)

$$
20^{\prime \prime} 22^{\prime \prime} \text { and } 26^{\prime \prime} \text { AV SPECIALS }
$$

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept WW. 32 Biggin Way Upper Norwood LONDON SE19 3XF

Precise

frequency generation

Nick Wheeler shows how you can derive almost any desired frequency up to 5 GHz with quartz precision.

Fig. 1. The '161, shown here dividing by 7, has four program inputs for division to 16.

Fig. 2. Output versus clock input for Fig. 1.

wth the exception of a few national standard broadcasts and satellite navigation systems, virtually all radio transmitters and many receivers derive their frequency control from quartz crystals. The frequencies are those of the crystal, or its harmonics, or are produced by voltage controlled oscillators, or vcos. With the vco, frequencies are compared, after digital division, with low frequency crystal oscillators. This is now the preferred method for most applications.

Cheap and accurate crystals are mass-produced for clocks and television applications and can be recognised in catalogues by the fact that the frequency is specified to four or even six decimal places. In this article I shall show how such crystals can be used to control almost any frequency

General considerations

The phase locked loop, or plI, can take many forms. Possibly the most convenient form is based on the HC4046 ic. The 4046 actually contains a useful vco, operable to about 15 MHz , but this is not further considered below. Basically all systems work by comparing the phase of two pulse trains of the same nominal frequency to produce the voltage which is applied to the vco. If the vco drifts, this voltage changes and is arranged, in the manner of a servo loop, to return the vco to the correct frequency. There are two generally recognised approaches to phase comparison.

Phase comparison

Phase comparison between two pulse trains requires that the pulses be evenly spaced. This rules out the use of division schemes that, while the number of pulses output over a period may average out at the required number, and can therefore be counted, are unusable for
pulse-by-pulse comparison. Comparators are usually described as type 1 or type 2 .
Type 1 comparators require that the compared pulse trains require to be of close to unity mark-space ratio. In this case the comparator can be based on an exclusive-or gate.This is no problem where every divider chain has a divide-by-two last stage. Type 1 comparators are simple and have good noise rejection.
Type 2 comparators operate on pulse edge comparisons and are therefore insensitive to duty ratio. Many useful divider chains have duty ratios which have duty ratios equal to the division ratio. A type 2 comparator will work on a pulse train suitable for a type 1, but not vice versa.
In this article I shall only discuss how these two pulse trains, one derived from the crystal and the other from the vco, can be produced. There is a full coverage of pll design in ref. 1.
The question of accuracy needs to be considered. Ordinary, affordable, crystals are commonly specified to an accuracy of 50 parts per million, or sometimes at 20 ppm . This is inconsistent with specifying the actual frequency to six decimal places. What this means in practice is that provided the division ratios chosen are accurate to within 20 ppm then the resultant system is as accurate as can be expected.

Methods of implementation

Given that the end result desired is a particular frequency then by far the easiest method is to obtain a crystal which has a fundamental frequency which is a binary sub-multiple of the desired figure. Then a chain of a suitable number of divide-by-two stages is all that is required. If the desired frequency is below 100 MHz this can usually be done with an AC part followed by an HC part. When the AHC family becomes readily available, these parts
are very nearly as fast as the $A C$ types.
However, this convenient solution will almost always call for a non-standard crystal. These are readily available but have to be specially cut which takes time and, for small numbers, is relatively expensive. But always look in your supplier's catalogue to see if you are in luck, not necessarily exactly but within 20 ppm . Also, a specially cut crystal will be subject to the faster ageing which affects new crystals whereas manufacturers presumably schedule the production of standard frequencies so that the worst of the ageing occurs before release.
For desired frequencies above 100 MHz prescalers, which currently use emitter-coupled logic, ecl, will be required.

Table 1 lists some available types.
Achieving the required scaling factor Cheap, accurate crystals are commonly available in the $2-10 \mathrm{MHz}$ range whereas phase comparison is more painlessly done in the hundreds of kilohertz region. So we arrive at the requirement that $\mathrm{X} / n_{1}=O / n_{2}=F$, where X is the crystal frequency, O is the oscillator frequency and F is the operating frequency of the comparator.
To make what follows general I shall assume that O is greater than 100 MHz necessitating the use of one of the prescalers listed above. This means that $n_{2}=P \times n_{3}$, where P is one of the available prescaler factors.

If the phase comparator is to operate at,say, 250 kHz then crystals in the $2-10 \mathrm{MHz}$ region will require n_{1} to lie in the range $8-40$. Counters in this range can easily be made to operate at any integer value, in many cases using only one ic. They can also be made to work at many non-integer values. This is discussed below.
The high cost of the two divide-by-four prescalers means that they can only seriously be considered for use in the gigahertz region.

Frequencies and division ratios

It is not reasonable to contemplate the following method without the use of a computer. There are four variables in this problem, given the required value of output frequency. They are, in the terminology used above, X, the crystal frequency, n_{1}, the crystal frequency division ratio, P, the prescaler ratio and n_{3}, the post-prescaler division ratio.
A usable program takes the form of four nested FOR/NEXT loops which try all possible values of these variables against the criterion that X / n_{1} lies within the range of $O / P / n_{3}$ \pm the tolerance in ppm. A pc-compatible with a 75 MHz Pentium executes a typical program in 35 seconds. If the desired frequency can be achieved exactly this will generally be possible with a large number of combinations of X , P and n_{3}. It is necessary to detect this in order to prevent the printer outputting reams of paper.
'All possible values' take the form of lookup tables of readily available crystal frequencies, entered directly from a suppliers catalogue, possible values of P as noted above and

Table I. ICs for dividing oscillator frequencies between OHz and 5 CHz .

Type	Maker	Max freq	Min freq	Div Ratio
IFD-53010	H-P 1	5.5 GHz	0.15 GHz	4
IFD-53110	H-P 1	3.5 GHz	0.15 GHz	4
SA 703 N	Philips			
SA 702 N	Philips	1.1 GHz	DC 3	1.1 GHz
DC 701 N	Philips	1.1 GHz	DC	$64 / 65 / 7 / 12$
SP $680 \mathrm{~B}^{4}$	GEC Plessey	575 MHz	10 MHz	$64 / 65128 / 129$
			$10 / 11$	

Notes

(1) Formerly Avantek.
(2) Other manufacturers offer equivalent parts.
(3) Minimum slew rate $32 \mathrm{~V} / \mu \mathrm{s}$.
(4) This part has a tt-compatible output.

All the others only have ecl output levels.

sensible integer values for n_{1} and n_{3}.
If the program yields an odd number value for n_{1} or n_{3} then it may be necessary to add a divide-by- 2 at the end of both chains, if a Type 1 phase comparator is to be used.

I ran an extremely lengthy program - taking 24 hours - which established that well over 95% of all frequencies between 100 MHz and 1200 MHz can be synthesised to better than 20 ppm accuracy from at least one of the available crystal frequencies listed below. If the required frequency is an integer number of

Table 2. Megahertz values of the more readily available crystals.

2.2476	2.5	3	3.2768
3.567	3.577	3.579545	3.582
3.6864	3.7	4	4.096
4.194304	4.433619	4.608	4.9152
5.12	6	6.144	6.5536
7.3728	8	9	10
10.24	10.245	10.5	10.6985
10.7	10.7015		

megahertz then some 85% of cases will be a 'direct hit' ie there will be zero tolerance other than that of the crystal, of course) The remainder - non-integer targets - all fall within the 20 ppm range.

Frequencies shown in Table 2 will be recognised as having widespread application in television, communications and clocks. As a result they are cheap and, since they come
from long production runs, can be expected to be accurate and stable.

Non-integer division ratios

If a solution with a good enough tolerance does not emerge, then a non-integer division ratio can be considered. This ratio will be the result of dividing one integer by another.
It should be said right away that one is here venturing into a potential minefield. It is possible to set up many non-integer dividing circuits, but many of the simpler solutions involve interpolation by analogue means such as delay lines or monostables.
Other solutions result in output pulse trains which, while the pulse count is indeed a noninteger function of the input frequency, have the property that the pulses are unevenly spaced and of differing lengths. Phase comparators cannot work on such inputs unless both are the same, which is unlikely.
It is easy to double the frequency of a pulse train, simply by using an inverter to produce positive (or negative) going signals twice per cycle. At this point an analogue element is necessary to generate pulses of half the duration of those in the original train. Again, this is easy and in the case of Type 2 comparators is undemanding. What this does mean, however, is that a limitation is placed on the range of frequencies which will work properly with a given arrangement of analogue timing parts.
The double-frequency, or if necessary a fur-
ther multiplied train, can now be divided by one of many easily achieveable integer ratios to produce a non-integer sub-multiple of the original. The result will almost always be suitable for Type 2 comparison only. Suitable doubler circuits can be found in the Circuit Ideas Pocket Books, available via EW.

Using the $x \times 161$

The literature contains many references to counters. but the approach which I have found almost universally usable is that based on the synchronous .x. $/ 6 /$. As the CLEAR function is not used in these circuits.$: 1 / 163$ parts may be used interchangeably. For applications up to 25 MHz clock rate the HC type should be used. The AC type is good up to over 100 MHz but should not be used unless necessary since the very rapid switching can cause emc problems. Both circuits work with HC and AC parts down to a few kilohertz clock rate. Though I have never tried this. the old CD40/61. with its maximum clock rate of 2 MHz with $5 \mathrm{~V}_{\text {DD }}$ might even be better in this respect. These parts are still readily available.
The 161 part. described in Texas Instruments terminology, is a programmable four-stage binary counler. It can be,

- Cascaded, without glitch problems, up to 18 MHz in the HC version.
- Be hard-wired to yield any division ratio from I to 16 per chip.

The four programming pins. A,B,C and D have weights of 1.2.4 and 8 respectively. If the sum of the weights of those pins wired High is N. then the division ratio is $(16-N)$.
Figure 1 shows the a circuit with A and D wired high (B and C low). Uniformly spaced output pulses at $\mathrm{F}_{\text {CLOCK }} / 7$ can be seen in the oscillogram of Fig. 2.
In the $/ 6 /$ part all transitions occur on the positive-going edge of the clock pulses. hence the duration of each of the output pulses, at the ripple-carry output, pin 15. is the clock period. A pulse train of this kind is suitable for Type 2 phase comparators.
Two wa/h/ parts cascaded will yield all the binary division ratios up to 256 at the Q outputs, or, using the circuit of Fig. 3. every integer ratio up to 241. This circuit is taken from reference 2 but it will be found in practice that the division ratio is given by: $D=(256-N-15)$.
Where N is the sum of the weights of those programming pins which are high. The weights of the pins of $I C_{2}$ are $16,32,64$ and 128. The circuils of Figs 1 and 3 have been thoroughly tested and the division ratios are as noted above. The output pulse will have a duration of one clock period. regardless of the value of D.

Conclusions

I have shown that unless you are very unlucky, almost any desired frequency can be synthesised accurately from commonly available as opposed to specially cut crystals. The higher the frequency the more likely this is to be so. since there is scope for dividing the vco frequency by larger integers while still maintaining a reasonable frequency of operation for the phase comparator.
The approach chosen is only made possible by the fact that fast pc compatibles are now readily and cheaply available.

References

1. The Art of Electronics, Horowitz and Hill
2. Don Lancaster, TTL Cookboak, Sams

Finally an upgradeable PCB CAD system to suit any budget ...

 Board CoptureBoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
$E 395$
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker

BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount support
- 90,45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCll, BOM

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (8M2)

RADIO DATA MODULES MODEM TRANSCEIVERS

UK, E.E.C, Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australla. Wherever you are, we have a module on the right frequency for you I UHF Transceiver for the World! - 400 to 500 MHz Versions*

- Range up to 5 Km -

Only $55 \times 73 \times 15 \mathrm{~mm}$

Compact Size ideal for Hand Helds - UK, North Armerican, Australlian ${ }^{\circ}$ - MPT, I-ETS \& FCC Approval ${ }^{\circ}$ - Up or 64 selectable channels ${ }^{*}$

Starter Kit only £299.95

Low Cost High Speed Bata Transmitters; UK, EEC and Beyond!

-Available UK Approved MPT1340 418 MHz

- Export I-ETS- $300-220,433.92 \mathrm{MHz}^{\circ}$

Reduce Component Count, Cost, Size \& Power Drain * - Operate to 20,000 bps

Transceiver also available with up to 40 K data rate *
 Licence Exem ot Spread Spactrum on 2.45chir

With up to 1 MBit data rate, RSL85 interface and 100 mW of output power these units are ideal for many high speed industrial or office data transfer applications. Even compressed colour video may be transferred. Price £480.00 each or starter kit for only $£ 799.95$
VHF Modules for UK, Australla and Beyond I - UK, 173 MHz to MPT 1344 \& MPT 1328 Licence Exempt * - Miniature Low Cost or canned 1 \& 10 mW Transmitters ${ }^{\text {b }}$
173.500 MHz Transmitters \& Transceivers for Australia \& RSA - PCB mount or canned, Supemet Receivers ${ }^{*}$

- Low Cost Meter Reading Transceivers on 183.8875 MHz *

Radio - Tech Limited, Overbridge House, Weald Hall Lane Thornwood Common, Epping, Essex CM16 6NB.
Salas +44 (0) 1892576107 Fax $+44(0) 1992561994$ Tachnical Support +44 (0) 1992576114 Internet: htip:/hww.radio-tech.co.uk

CIRCLE NO. 141 ON REPLY CARD

PCB Designer

For Windows 3.1, ‘95 or NT
Amex/Access/Delta/Visa

Also available from,
South Africa: JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00. Phone/FAX: (051) 223744
France: Telindel, Quartier Les Pradets, Chemin des Veys, 83390 Cuers. Phone: 94286667

OWN PRODUCTS...

OSCILLOSCOPES

Over 34 models including: Digital, Analogue and Portables. Bandwidths from 5 MHz to 150 MHz . Sophisticated triggering, single and dual timebases, Multiple channels and large memory Dso's. Prices start from $£ 235$ ' (20MHz 2 Channel £399)

POWER SUPPLIES

Four separate ranges comprising of 40 models from low cost analogue displays to the latest high performance digital units. Providing up to 250 volts and 120 amps with Master-slave, RS 232 and GPIB are available on many models, as are optional rack mount facilities.

AUDIO VIDEO RF Audio Oscillators, Analysers Wow and Flutter, Millivolt Meters and Distortion Meters Pattern Generators, Vectorscopes, Waveform Monitors Video Analysers and Noise Analysers.
Five models of AM/FM Standard RF Generators offering a highly stable frequency range of 10 KHz to 2 GHz with digital readouts for Level, Frequency, Modulation and Memory address.

GENERAL PURPOSE
Frequency Counters, Function Generators plus a complete range of accessories to complement the complete range of instruments.

...NOW YOU CAN DO THE SAME

If you like the idea of working with the best, contact us, we can provide brochures with a complete specification for all our measurement products.
Kenwood UK Led, Kenwood House. Dwight Road, Watford WD1 8EB, England

$$
\begin{aligned}
& \text { TEL: +44 (0)1923 } 218794 \\
& \text { FAX: +44, (0)1923212905 }
\end{aligned}
$$

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Audlo Kits and factory assembled units use the unique combination of circuit designe by the renowned John Linaley hood, the very best audiophile componente performance and unbellevable value for money, We heve perioys lod the field for easy home construction. Wo havo slonal standards, even in the slxtios we were uelng eselly assembled pilnted circuits whon Hoathflt in American were still using tagboardsl Many years of experlence and Innovation, going back to the early Dinsdale and Balley claselce glves us incomparable design background in the needs of the home constructor. Thls simply means that bullding a Hart ktt is a real pleasure, resulting in a plece of equipment that not only saves you monoy but you will be proud to own.
Why not buy the reprints and construction manual for the Klt you are Interested in to see how easy it is to bulld your own equipment the HART way. The FULL cost can be credthed against your subsequent kit purchase.

'AUDIO DESIGN' 80 WATT POWER

AMPLIFIER

This fantastic John Linsley Hood designed amplifier is the flag. ship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get $£ K$ performance at bar-
gain basement prices. Unique design features such as fully gain basement prices. Unique design features such as fully
FET stabilised power supplies give this amplifier World Class performance with starting clarity and transparency of sound, allied to the famous HART quality components and ease of construction. Standard model comes with a versatile passive front-end giving switched Inputs, with ALPS precision "Blue Velver fow-noise volume and balance controls, no need for an external preampl
Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-terminated, ready for instant usel All versions are available with Standard components or specially selected Super Audiophile components and Gold Plated speaker terminais and all are also available factory assembled.
K1100 Complete STANDARD Stereo Amplifier Kit. . . . $£ 415.21$
K1100S Complete SLAVE Amplfier Kit K1100S Complete SLAVE Amplifier Kit $£ 353.62$
K1100M Complete MONOBLOC Amplifier Kit
$\mathbf{2 l 1 . 2 0}$ K1100M Complete MONOBLOC Amplifier Kit
RLH11 Reprints of latest Amplifier Articles. 8271.20
81.80
$K 1100 \mathrm{Cm}$ Construction Manual with full parts lists.
$\begin{array}{r}\text {. } 81.80 \\ \text {. } \\ \hline\end{array}$

'CHIARA' HEADPHONE AMPLIFIER

Hlghest quality, purpose designed, 'single ended' class ' A '
headphone amplifier for 'stand alone' use or to those many power amplifiers that do not have a headphone facility. Easy installation with special signal signal link-through feature, the unit uses our 'Andante' Ultra High Quality power supply. Housed in the neat. black finished, Hart minibox it features the wide frequency response, low-distortion and 'musicalify' that one associates with designs from the renowned John Linsley Hood. Volume and balance controls are Alps "Blue Velver" components. Very easy to bulld, the kit has very detailed valuable personal listening option and an attractive and harmovaluable personal listening option and an atractive and harmoK2100 Complete Kit
. 112.50
K2100SA 'Series Audiophile' version with selected audiophile
components. $£ 115.45$ CM2100 Construction Manual
.$£ 2.50$

AUDIOPHILE POWER SUPPLIES

The HART "Andante" serles power supplies are specially designed for exacting audio use requiring absolute minimum Utilising linear technology throughout for smoothness and Utilising linear technology throughout for smoothness and
musicality makes it the perfect partner for any module requiring musicality makes it the perrec
fully stabilised $\pm 15 \mathrm{~V}$ supplies.
There are two versions, K3550 has $2 \pm 15 \mathrm{~V}$ supplies and a single 15 V for relays etc. K3565 is identicai in appearance and has $1 \pm 15 \mathrm{~V}$ Both supplies are in cases that match our 'Chiara' and K1450 Pickup reamp.
K 3550 Full Supply with all outputs .
K3565 Power Supply for K1450 or K2100
£84.42

VISATON® SPEAKER KITS \& DRIVE UNITS
New to the UK, VISATON offer a range of speaker kits and drive unite that glve the home bullder access to units and deslgns that are unrlvalied for qually, porformance and value. Thelr deslgns are very well known In Germany, where they are based, and over 25 years they have bult up an enviabie reputation for high quaity sound. All their designs come from the World, backed up by the very latest In computerised test equipment. This qually of research faclility, added to design collaboration with malor universitios and high end magazines, produces producte of Impeccable performence and value that are the beet avaliable to the home speaker bullderl. See our lista for the full range of kits and drive unlts.

ASM 100 ACTIVE SUBWOOFER MODULE

This atractive module consists of a low pass filter and power amplifier ready for you to mount in a suitable subwoofer cabinet. The combined unit can then be combined whany new or existing hifi or home cinema speaker
bass punch missing from most setups.
The ASM 100 module comes as a ready-to-mount unit on a solid diecast aluminium trame/heatsink. Input signal can be at line or speaker level for easy system integration. There are three separate stereo inputs at line level and the unit will use any signal presented or mix all inputs to add bass to any signal. The speaker level inputs are used by simply wiring the unit In parallel with the existing speakers to provide them with strong bass support. Crossover frequency can be selected to 50,100 or 200 Hz and the bass level can be adjusted by a front panel control. The it is present. prawings are included tree for the ctand $418 \times 380 \times 303 \mathrm{~mm}$ cabinet With its powere 125 watt output and versatile filtering the ASM 100 is the ideal uniwatt output and versatile filtering the ASM 100 is the ideal unir ASM 100 Module, complete with IEC mains lead, instruction and ASM - W20 cabinet drawings. Pt. No. V7000. ... $£ 185.29$ W 200 S 20 cm Long Drive unlt for use in ASM - W 20 cabinet.
E36.88
The AS
The ASM 100 and the Audio Design 80W Amplifier are on demonstration at Wilmsiow Audio's new premises in Boughton Astley near Leicester. Tel 01455286603

ALPS 'Blue Velvet'

PRECISION AUDIO CONTROLS

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velver' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving betron channels and rock solid mate stable versions have 5 v DC motor.

MANUAL POTENTIOMETERS

2-Gang 100K Lin

2-Gang 10K 50 K 100K and 250 K 15.6
2-Gang 10K Special Baiance, zero crosstalk and zero centre loss48

MOTORISED POTENTIOMETERS
2-Gang 20K Log Voiume Control. $\varepsilon 26.20$ and less than 10% loss in centre positon $£ 26.98$

32W VALVE AMP TRANSFORMERS

Special set of toroidal transformers, 2 output \& 1 mains for the "Hot Audio Power" valve amplifier design described in the Oct 1995 issue of "Wireless World". Total Wt 4.8 Kg Special price Photocopies of Article by Jeff Macaulay $£ 2$.

FIESTA 30" SPEAKER KIT
An Uhra High Efficiency speaker, specially suitable for Valve Amplifers.
Specially selected as the ideal partner for the new John Linsiey
Hood 15 W Valve Sound Amplifier, or indeed any actual valve amplifier, the FIESTA 30 features the astonishing efficiency and sensitivity needed to achieve a satistying sound level from amplifiers of limited power output.
To complement the sound purity of such amplifiers a tull three 300 mm (12") woofer 200 mm (87) mid-range and high quality horn tweeter in a vented bass reflex enclosure.
All these drive units have been carefully selected for their indivldual virtues, and collective excellence, the tweeter for instance being a high end unlt with exceptional pulse reponse as a result of its combination of Kapton former, aluminlum diaphragm and aluminium voice coil.
Nominal Power Rating is 150 W , Max. Power 250W, Impedance 89, Mean Sound Pressure all parts to make a palr of all parts to make a palr of parts. Crossover units are factory assembled, ready to fit.
KIt No. LK5963 Per Pair.
8424.93

TECHNICAL BOOKSHELF

"AUDIO ELECTRONICS" Jotn Linsley Hood.. $\Sigma 18.99$
Hood atest edition with "THE ART OF ELECTRONICS" Horowtz \& Hill "DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY 0.7506-0614-2
" 17.95 INTRODUCING DIGITAL AUDIO CD, DAT AND SAMPLING ISBN 1870775228 27.95 "ACTIVE FILTER COOKBOOK" DON Lancaster 19.95 "THE ART OF SOLDERING" 0-85935-324-3 83.95 TOWERS' INTERNATIONAL TRANSISTOR SELECTOR 0-572-01062-1.
"HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT" R. A. Penfold BP267
"THE LOUDSPEAKER DESIGN COOKBOOK" Vance Dickason (5th Edn)
ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUCTION Ronald Wagner BKT6 "THE ELECTROSTATIC LOUDSPEAKER DESIGG COOKBOOK" Roger P. Sander 1995.
COOKBOOK"Roger P. Sander 1995 $£ 24.95$ -25.95
"AN INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE
DESIGN" V. Capel BP256 2.95 "LOUDSPEAKERS FOR MUSICIANS" BP297 53.95 "THE HART PRINTED CIRCUIT BOARD CONSTRUCTION
GUIDE" . 2.50 GUIDE"

C2.50 "VALVE AMPLIFIERS" Morgan Jones 1995/6 $\mathbb{E 2 4 . 5 0}$ THE VTL BOOK David Manley BKVT1.
LOUDSPEAKERS; THE WHY AND HOW OF GOOD REPRODUCTION G. Briggs 1949

MULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS

 BKAA27 "THE WILLIAMSON AMPLIFIER O-9624-1918-4 86.95AN APPROACH TO AUDIO FREOUENCY AMPLIFIER AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN GEC 1957 . AUDIO ANTHOLOGIES, articlos from Audio Engineering. SIx AUDIO ANTHOLOGIES covering the days when audio was young and valves were kingl BKAA3/1 to 6 Al $£ 13.95$ each "A SIMPLE CLASS A AMPLIFIER" J. L. Linsley Hood "A SIMPLE CLASS A AMPLIFER" J. L. Linsley Hood 1969 RLH12 ..
"THE RADIOTRON DESIGNERS HANDBOOK" (CD). ع49.00 "PRINCIPLES OF ELECTRON TUBES" H. D. Reich PH.D
"27.95
£15.50
Postage on all books, unless starred, is only 22 per book. maximum $£ 4.50$ tor any number, any sizel Starred items are books are normally In stock!

Our List of these and many other Kits \& Components is FREE in UK. Ask for your copy now. Overseas customers are very welcome, but PLEASE SEND 2 IRCs if you want a list sent surface post, or 5 for Airmail.
Ordering is easy. Simply write; telephone or fax your order anytime. Let us know what you require, with your name, address, cheque or credit card number and expiry date. Your daytime phone number is useful in case we need to get back to you. Further information on all our kits is given in our FREE lists. Overseas/rade orders are welcome and we can send anywhere in the World. Post on UK Orders up to $£ 20$, and most books, is $£ 2$, over $£ 20-£ 4.50$. Express Courier $£ 10$. OVERSEAS postage - please enquire.

Hybrid power amplifier

Abstract

Wim de Jager's hybrid 40W power amplifier combines the sound quality and dynamic range of valves with the high voltage amplification, low distortion and dc coupling offered by solid-state drivers.

My hybrid power amplifier, which I call Vacusolid, consists of a solidstate phase splitter driving the pushpull valve output stage. It features an op-amp based integrator to avoid dc offset problems in the toroidal output transformer.

Push-pull valve output stage

A push-pull output stage is more expensive than a single-ended stage, but it offers a number of important advantages. Firstly, it provides much more power. According to Philips' 1965 data books, a class AB push-pull output amplifier with two $E L 34$ s operated as pentodes can deliver an output power of up to 100 W - about eight times as much as that from a single-ended stage. This is due to class $A B$ operation in conjunction with the high heat capacity of the electrodes, which allows the maximum nominal dissipation to be exceeded during signal peaks in this class of amplifiers. A proviso is that the bias current must be carefully chosen to avoid cross-over distortion.
A second advantage is that - if due attention is paid to accurate dc balance - there is no dc bias in the output transformer. This is due to the opposition of the magnetic fields in the primary windings. Furthermore, even harmonics cancel out if the output valves are carefully matched, leading to low open-loop distortion. This benefit is found especially with triodes but also to an extent in 'ultra-linear' designs. Finally, push-pull valve output

Fig. 1. Harmonic distortion - triode and pentode compared.
stages have a high supply-voltage ripple rejection. In the ideal case - identical output resistance in both output valves, primary windings of output transformer fully balanced - the ripple on the supply voltage is completely suppressed. This is another reason for using well matched output valves.

Triode, pentode or ultra-linear design? Figure 1 shows the distortion characteristics of a triode and a pentode. You will see that d_{2}, the second harmonic, is dominant in the case of a triode.
Since the second harmonics cancel out in push-pull operation, triodes give very low global distortion here. An additional advantage is that resonance of the output transformer, due to the leakage inductance and the winding capacitance, is effectively damped by the low output impedance of the triode. On the other hand, triode-based designs have the disadvantage of a low efficiency.
Push-pull output stages with pentodes give higher efficiency but also higher distortion, because d_{3} is dominant in these valves. Stability with ac is poor too, because the high output impedance of a pentode means low damping of transformer resonance.
'Ultra-linear' designs give a compromise between triode and pentode operation by connecting the screen grids of the pentodes to an output transformer tap - preferably the 40% point. This yields about 65% of the maximum output power of a pentode output stage, while keeping the distortion and output impedance just about as good as with triodes.

Conventional phase splitter

The phase splitter delivers the two equal and antiphase input signals needed to drive the push-pull output stage. You could of course use a conventional valve design for this purpose, like that shown in Fig. 2. A high R_{k} in the common cathode circuit gives a good approximation to current-source operation. If

Wim de Jager is at University of Twente, Enschede, The Netherlands
the two anode resistances are matched, a balanced output is obtained.
The left-hand control grid is driven by a pentode preamplifier with dc coupling, while the right-hand control grid is grounded for ac via C_{1}. Voltage amplification is fairly low, because of the low μ of the triodes.
A typical valve amplifier incorporating such a valve-based phase splitter is described in reference 1 . The low gain of the phase splitter means that a three-stage design is needed here, especially if part of the open-loop gain is used for global feedback.

Phase splitter with pnp transistors

The amplification factor μ of a bipolar transistor is typically about 30 times that of a tri-

Fig. 2. Conventional phase splitter, $R_{\boldsymbol{k}}=68 \mathrm{k}$, $R_{a}=100 \mathrm{k}, \mathrm{A}=V_{o} / V_{\mathrm{i}}=25$, thd $=1.8 \%, V_{o}=25 \mathrm{~V}_{\text {rms }}$.

Fig. 3a. Solid-state alternative to Fig. 2.

Fig. 3b. Improved solid-state phase splitter reduces distiortion and reduced influence on outpout gain.
ode. Maximum voltage gain can thus in principle be bigger too, allowing us to reduce the overall size of the amplifier from the conventional three stages to two.
Figure 3a shows a solid-state altemative for the circuit of Fig. 2. By opting for pnp transistors here, we make it possible to use the collector potentials of $T_{1,2}$ as the negative control-grid voltages for the output valves.
Using dc coupling in this circuit renders the inconvenient coupling capacitors found in a conventional valve-based design obsolete. The basic version of this circuit has two drawbacks, however. Firstly, distortion is about 25% at 90% full drive - much more than that of the output stage, and thus unacceptable. Secondly, the gain is coupled with the dc output level: if you adjust I_{1} or R_{c} to change the setting of the output valves, the gain will change too.

Both these problems can be solved by modifying the circuit as in Fig. 3b. This works as follows. Collector currents of $\operatorname{Tr}_{3,4}$ activate $\operatorname{Tr}_{5.6}$ via $R_{\mathrm{b}}, R_{\mathrm{b}}$ ' and Tr_{7}, which is connected in common-base configuration. As regards the dc setting, you then have $I_{C}\left(T_{3}\right)=I_{C}\left(T r_{5}\right)$ and $I_{C}\left(T_{4}\right)=I_{C}\left(T_{r_{6}}\right)$. When $T r_{3}$ and $T r_{4}$ are at full drive, $\mathrm{I}_{\mathrm{C}}\left(\operatorname{Tr}_{5}\right)$ and $\mathrm{IC}\left(\operatorname{Tr}_{6}\right)$ remain roughly constant, ie this configuration operates as a current source. The dc level of V_{0} and V_{0} can be adjusted with the aid of $V_{\text {ref }}$. The maximum value of R_{b} is limited by the maximum permissible voltage drop across R_{b}, due to the base currents of $T r_{5}$ and $T r_{6}$.

We chose $R_{\mathrm{b}}=100 \mathrm{k} \Omega$ in this design. As a result of this choice - and other factors $-V_{0}$ is about 1.5 V positive with respect to $V_{\text {ref. }}$. This voltage can be used to adjust the desired negative grid voltage of the output valve without affecting the gain appreciably.
Gain, $A=V_{0} V_{i} \equiv 800$, is mainly limited by the μ of $T r_{3}$ and $T r_{4}$, and is slightly reduced by R_{b} and R_{b}. Emitter degeneration from R_{e} and $R_{\mathrm{e}}{ }^{\text {. }}$ is used on $T r_{5}$ and $T r_{6}$ to raise the output impedance and hence gain. Thanks to the low current modulation in Tr_{3} and Tr_{4}, this circuit has a distortion of about 0.5% at 90% full drive - about a factor 50 better than the circuit of Fig. 3a.
Summarising, the high gain, low distortion and possibilities of dc coupling and dc adjustment offered by this circuit make it very attractive as the driver for a push-pull output stage. It also avoids the disturbances due to filament hum and microphony which can be troublesome in valve preamplifiers.

The integrator circuit

Use of toroidal transformers in the output stage ${ }^{2}$ can give a large power bandwidth and improved stability of the global-feedback loop. Much of th is is due to their low leakage inductance. However, a toroidal transformer is more sensitive to core saturation due to dc bias than a transformer with conventional E/I laminations.
Direct coupling of a high-gain preamplifier aggravates the dc offset problem, and makes negative dc feedback necessary. In order to sense the cathode current of the output valves,

Fig. 4a. Op-amp based integrator used to provide dc negative feedback.

Fig. 4b. Integrator with a differential input.
cathode resistances are included in the circuit. These resistances are dimensioned to give a voltage drop of 400 mV at 40 mA (10W). This choice gives a voltage which is large enough for accurate processing, while limiting the mutual conductance of the output valve due to the current feedback to about 10%.
I decided to use an active integrator with an op-amp to provide the negative dc feedback, in view of the high dc gain and low dc offset required. The principle of this integrator is shown in Fig. 4a.
The ac transfer from (1) to (3) in this circuit, with (2) grounded, is given by $\mathrm{A}(1) \rightarrow(3)=-1 / \mathrm{j} \omega R C$ while that from (2) to (3), with (1) grounded, is $\mathrm{A}(2) \rightarrow(3)$, which is $1+1 / j \omega R \mathrm{C}$. Presence of the additive term 1 in the second equation is a disadvantage for the intended application. This is because the output signals to the integrator are distorted due to the class $A B$ operation of the output stage: if the amplifier is near full drive, these signals have more or less a single-sided rectified waveform. At low frequencies, as well as dc, negative feedback is produced.
If signal (1) has a transfer function different from signal (2), this leads to distortion. The choice of very large values of R and C - representing a large time constant - can reduce the transfer at low frequencies. But the results are still unsatisfactory because of the presence of the additive term 1.
Using large time constant has another important disadvantage: the dc negative feedback is also active if the amplifier is overloaded. This gives a correction signal for dc balance which is much larger than under normal drive conditions. The result is a long recovery time: it takes the amplifier a long time to return to a normal setting after it has been overloaded.
An alternative here is to use an integrator circuit with differential input, Fig. 4b. By adding two resistors of value $2 R$ and a capacitor of C oproduces the transfer functions,

$$
\begin{aligned}
& \mathrm{A}(1) \rightarrow(3)=-1 / 2 j \omega R C \\
& \text { and, }
\end{aligned}
$$

$\mathrm{A}(2) \rightarrow(3)=1 / 2 \mathrm{j} \omega R C$.
This integrator circuit suppresses low-frequency ac signals effectively, so that good

Photos 1, 2. Top and bottom views of the prototype power amplifier. Mounting the valves directly on the chassis offers benefits.
results are obtained with moderate values for R of $50 \mathrm{k} \Omega$ and C of 100 nF .

The complete amplifier

Figure 5 shows the complete amplifier. It is built round an ultra-linear push-pull output stage with two EL34s, an Amplimo type VDV3070PP toroidal transformer and a 470 V power supply.

With an 8Ω load, maximum output power is more than 40 W . Closed-loop gain is practically equal to R_{27} / R_{24}, i.e. 100 . It follows that input sensitivity is typically 150 mV rms. The output stage is driven by the solid-state phase
splitter described above, to which two extra emitter followers, $T r_{1}$ and $T r_{2}$, have been added to increase input impedance and reduce the voltage drop across R_{3} as a result of the base current of T_{1}.
Resistors R_{4} and R_{7} make sure that the bias currents of $T r_{1}$ and $T r_{2}$ are not too low. This would impair the hf performance. Emitter degeneration, involving R_{5} and R_{6}, improves the input-stage dynamic range. Zener diode D_{3} included in the voltage divider is used to determine the negative grid voltage, to make the set value more independent of variations in the negative supply. Resistors $R_{30,31}$ limit the
risk of parasitic oscillations in the output stage, but are only effective if mounted close to the control-grid terminals.
The differential-input integrator circuit described above delivers a signal to the base of $T r_{2}$ - the inverting input - via the negative feedback network. The op-amp does not work as well at higher frequencies, when signal distortion and noise may be produced at the output. To stop these signals from influencing the inverting input, an extra low-pass filter comprising R_{26} and C_{5} is included in the β network.
The dc value of $\beta, R_{24}\left(R_{24}+R_{25}+R_{26}\right)$, gives a control range of about $\pm 650 \mathrm{mV}$ at the base

Fig. 5. The 'Vacusolid' hybrid 40 W power amplifier uses transistors for phase splitting, an IC integrator for feedback and valves for

of T_{2}. This is more than enough to compensate for the offset of the preamplifier and the output stage, and the voltage drop across R_{1} due to the base current of $T r_{1}$. The power supply for the first part of the circuit $(\pm 50 \mathrm{~V})$ is stepped down to the value required for the opamp ($\pm 15 \mathrm{~V}$) with the aid of the parallel stabilisation ($R_{28}-D_{4}$ and $R_{29}-D_{5}$).

Supplying power

The circuit diagram of the power supply is shown in Fig. 6. The Amplimo type 7N607 toroidal transformer used here has a 340 Vac ht winding. After rectification with 4×1 N4007 in a bridge circuit, this gives a dc voltage of 470 V .
It is important to realise that this voltage, together with the current delivered by the transformer, is potentially lethal: users used to the low voltages of solid-state circuitry tend to forget the dangers of touching the live parts of valve-based equipment. Another hazard arises within the first minute or so after the amplifier is switched on. Until the cathodes of the output valves have fully warmed up, not enough current flows through the valves to discharge the HT capacitor if the circuit should be switched off at this early stage. This hazard can be avoided by including a 3 W metal film $100 \mathrm{k} \Omega$ shunt resistor in the circuit.
Supply voltages for the preamplifier are obtained by single-sided rectification from the 40 Vac winding. Fairly large capacitors are used in connection with the single-sided rectification.
In order to protect the cathode filament insulation against puncture due to electrostatic charges, the filament current winding is grounded on one side.
Photos 1 and 2 show the prototype's housing. It is important to mount the valves vertically to prevent cathode sagging. I mounted the valve bases directly on the chassis rather than on the printed-circuit board, due to the high filament currents, high voltage, heat problems and the possibility of parasitic oscillation.

References

1. Jones, M., Classic valve power, Electronics World + Wireless World, Dec. 1995, pp. 1034-1038.
2. van der Veen, M., Theory and Practice of Wide Bandwidth Toroidal Output
Transformers, preprint 97th AES Convention, Nov. 1994, San Francisco.

Technical support

The output and power-supply transformers, special fuses, ht capacitor $(2 \times 50 \mu \mathrm{~F}, 500 \mathrm{~V})$, matched EL34 valves, valve bases and printed-circuit boards are all obtainable from Amplimo, Vossenbrinkweg 1, Delden, The Netherlands, Fax. No. +31 74 3763132).

Fig. 6. Power supply circuit comprising ht at the top for the valves - lethal don't forget $\pm 50 \mathrm{~V}$ for the phase splitting circuit and 6.3 V for the valve heaters.

Performance of the hybrid power amplifier
Control range of cathode current is $10-90 \mathrm{~mA}$. The operating point was chosen at 40 mA , at which setting the negative grid voltage is about 35 V . At full drive, the output signal of the preamplifier is clipped at -50 V . However, no current flows through the valves at -50 V , so this does not affect performance adversely
Screen-grid dissipation is
$470 \mathrm{~V} \times 5 \mathrm{~mA}=2.35 \mathrm{~W}$ (max. permissible 8 W), while anode dissipation is $470 \mathrm{~V} \times 35 \mathrm{~mA}=16.45 \mathrm{~W}$ (max. permissible 25 W). Class A power in this setting is max. 8 W for 8Ω.

- DC offset at cathode resistances $<2.5 \mathrm{mV}$ ($<0.625 \%$)
- Negative feedback factor=5.6 (15dB) - Loudspeaker damping factor=10 (1 kHz)
- Input voltage at 40 W output power $=170 \mathrm{mV}$ rms.
- THD $=0.5 \%$ at $40 \mathrm{~W}, 8 \Omega, 1 \mathrm{kHz}, 1 \%$ at $40 \mathrm{~W}, 8 \Omega, 10 \mathrm{kHz}$
- Max. output power at 1 kHz , thd $=1 \%=44.6 \mathrm{~W}$ at $8 \Omega, 37.8 \mathrm{~W}$ at 4Ω
- Signal-noise ratio $=95 \mathrm{~dB}\left(104 \mathrm{~dB} \mathrm{~B}^{\prime} \mathrm{A}^{\prime}\right.$ weight).
- Small-signal If $(-3 \mathrm{~dB})$ cutoff $<10 \mathrm{~Hz}$, indicating that the CMRR of the integrator circuit (22 dB at 16 Hz) and chosen values of R at $50 \mathrm{k} \Omega$ and C at 100 nF give good results.
- LF cut-off point at 40 W is 30 Hz .
- HF - 3 dB cut-off $=35 \mathrm{kHz}$.

Frequency compensation used, $C_{3}=C_{4}=100 \mathrm{pF}$ and $C_{13}=15 \mathrm{pF}$, limits bandwidth to the value indicated above. The excellent stability obtained is illustrated in the measured squarewave response with open output, Photo 3 , at 8Ω, Photo 4 and at 1μ F, Photo 5.

Photo 3. Square-wave response $(2 \mathrm{kHz})$ with open output.

Photo 4. Square-wave response $(2 \mathrm{kHz})$ at $R_{L}=8 \Omega$.

Photo 5. Square-wave response $(2 \mathrm{kHz})$ at $C_{L}=1 \mu$ F.

OC TO DC CONVERTERS
DRM58 input 10-40vdc output 5V 8A £15 DRM128 input 17-40voc output 12 V 8A $£ 50$ DRM158 input 20-40voc output $15 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM248 input $29-40 \mathrm{voc}$ cutput $24 \mathrm{~V} 8 \mathrm{~A} £ 40$ ORS 123 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS 153 input $20-4$ Vvdc output $15 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS243 input $29-4$ OVdc output $24 \mathrm{~V} 3 \mathrm{~A} £ 15$ SOLID STATE RELAYS
CMP-DC-200P 3-32vdc operaton, O-200vdc 1 A $£ 2.50$ SMT20000 3 3-24vdc operaton. 28-280vac 3A £4.50 ZRA 6025 F 28-280vd/ac operation. 28-280vac 25A $£ 7.00$ 200 WATT INVERTERS Nicely cased units 12 v input 240 N output 150 watt continuous, 200 max. EA9 ref LOT62
6.89W HELIUM NEON LASERS New units, $£ 65$ Tef LOT33 COINSLOT TOKENS You may have a use for these? mixes bag of 100 tokens $£ 10$ ref LOT20.
PORTABLE X RAY MACHINE PLANS Easy to construc Plans on a simple and cheap way to build a home X-ray machine
Effective device, X-say sealed assemblles. can be used for Effective device, X-say sealed assemblles. can be used for
experimental pupposes. Not a toy or for minors! $£ 6 /$ set. Rel F / XP. TELEKIN ETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent means or cause. Unends by creating motion win yetproducesp ositivemolon and eflect. Excellent tor scienceprojeds.
magic shows, party demonstrations or serious research $\&$ magic shows, pary demonstrations or serious resean
development of this strange and amazing phyctic phenomenon. E4/sel Ref F/TKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This datashows several ways to put subjects under your control. Included is a ful volume reference text and several construction plans that when assembled can produce highly effectuve sumuli. This material must
be used cautiously. It is for use as entertainment at parties etc only. be used cautiously. It is for use as entertainment at pa
by those expenenced in its use. $£ 15 /$ sel. Ref F FEH2.
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electical phenomena that produces an antgravity effect. You can actually build a small mook spacesthip out of simple materiais and withort any visible means- cause it to levitate.
$£ 10 /$ set Ref $/ / G R A 1$. £10/set Ref F/GRA1.
WORLOS SMALLEST TESLA COILIIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, expeniment with extraordinary HV effects, 'Plasma in a jar'. St Elmo's fire. Corona, exceelent science project or conversation piece. E5/set Ref F/BTCiLG5.
COPPER VAPOUR LASER PLANS Produces 100 mw o visible green light. High conerency and spectral qualiiy similar to Argon faser but easier and less costly to build yet far more effident Thispartculardesign was developed atthe Atomic Energy Commision of NEGEV in Israel. $£ 10 /$ set Ret F/CVL
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indeclpherable noise that cannot be
understood without a seciond matching unit. Use on telephone to understood without a second matching unit. Use on telephone
prevent third party listening and bugging. $E 6$ /set Rel FNS. PULSED TV JOKER PLANS Litte hand held device utillses puise techniques that will completely disrupt TV picture and sound works on FM too! DISCRETION ADVISED. £8/set Ret FTJJ.
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect thepresence of living Dodies, wam and hol spots, heatle aks etc. Intended for security, law enforcement, research and development, etc. Excellent secuity BURNING, CUTTING CO2 LASER PLANS Projects an BURNING, CUTTING CO2 LASER PLANS Projects an
invisible beam of heat capable of burning and meltong matenals over invisible beam of heat capable of burning and meltong matenals over converting 10% inputpower into useful oup ut. Not only is this device a workhorse in welding, cutting and heat processing materials but it is aiso a likely candidate as an effective directed energy beam weapon against missiles, aircratt, ground-to-ground, etc. Particie beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particies. The device is eastly applicable to buming and etching wood, cutting, plastcs. textles ete $£ 12$ sset Ref FILCT
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity. amazing gin, conversation piece, magic trick or science project $£ 6$; set Ret F/ANT1K.
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides Many cleaning uses for PC boards, jewllery. coins, small pants etc. £6/set Ref FNLB1.
ULTRAHIGH GAIN AMPISTETHOSCOPICMIKEISOUND AND VIBRATION DETECTOR PLANS Ulirasensitive device enables one to hear a whole new word of sounds. Listen through Walls, windows, floors etc. Many applicatoons shown, from law entorcement, nature listening, medical heantbeat, to mechanical
devices. E6/set Rel $F / M G A 7$ dences. $E 6 /$ set Rel $\mathrm{F} / \mathrm{HGA}$ G
ANTI DOG FORCE FIELD PLANS HIghly effective circuit produces time variable pulses of
cannot tolerate $£ 6 /$ /sel Ref $F / D O G 2$
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises wilhout gaining access. $£ 12 /$ set Ref F/LLST1
LASER LIGHT SHOW PLANS Doit yourself plans show three methods. $£ 6$ Ref FILLS 1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with exterma controis. E6/sel Rei F/PSP4
INFINTTY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ulimatein home/office security and satety' simple to usel Call your nome or ofice phone, push a secret tone on your telephone to access either: A) On premises sound and voices or B) Existing conversation with break
messages. $£ 7$ Ref $F T E L E G R A B$.
messages. $£ 7$ Ref FTELEGRAB.
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy' Snifts out and finds bugs and other sources of bothersome

WOUTERHAMPTON BFANCH NOW OHEN AT WORCESTER ST W1IAMPION TEL. 01902.22039

inter B01. BL

ELECTROMAGNETIC GUN PLANS Proects a metal object a
considerable distance requires adult supervision $£ 5$ ref F /EML2.
ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE
ELECTRIC MAN PLANS, SHOCK PEOPL
TOUCH OF YOUR HAND! $£ 5 /$ set Ref FFMMA1.
PARABOLIC DISH MICROP HON E PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostile premises. USes satellite technology to gather distant sounds and focus them 10 our uitra sensitve electronics. Plans also show an optional wireless link system. £8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{Vdc}$, many possible experiments. $£ 10$ Reff FHVM7/ TCL4.
INFINTY TRANSMITTERS The ultmate 'bug' fits to any phone or line. undetectable, listen to the conversatons in the room from anywhere in the wondl 24 hours a day 7 days a week) just call the number and press a button on the mini controller (supplied) and
you can hear everthingl Monitor conversations for as long as you you can hear everything! Monitor conversations for as long as you
choose $£ 249$ each, complete with leads and mini controler! Ref choose $£ 249$ each, complete with leads and mini controlen Ref
LOTg. Undetectable with normal RF detectors, fited in seconds, no LOT9. Undetectable with normal
batteries required. lasts forever!
SWITCHED MODE PSU'S 244 watt. $+532 \mathrm{~A},+126 \mathrm{~A},-50.2 \mathrm{~A},-$ 120.2A. There is also an optional 3.3 v 25 A rail avallable. $120 / 240 \mathrm{~V} / \mathrm{l}$ P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC Inlet Sutable for PC use (6 d/dive connectors 1 m Doard). § 10 ref PSU1.
VIDEO PROCESSOR UNITS?/GV 10AH BATTS/12V 8A TX Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$. on the front are controis for scan speed, scandelay, scan mode, loads of connections 12 v toroi dial transformer (mains in). Condition not known, may have 12 v toroidial tran sfomer (mains in). Condition not known, may hav
RETRON NIGHT SIGHT Recognition of a standing man at 300 m
in $1 / 4$ moonilight, hematically sealed, runs on 2 AA batteries, 80 mm F1.5 lens, 20 mw infrared laser induded. $\mathbf{E 3 2 5}$ rel RETRON.
MINI FM TRANSMITTER KTT Very nigh gain preamp, supplied complete with FET electret microp hone. Designed to cover 88-108 Mhz Dut easily changed to cover $63,130 \mathrm{Mhz}$. Works with a common Minz but easily changed 10 cover 63 - 1001 .
gv (PP3) battery. 0.2 W RF. $£ 7$ Ref 1001.
3-30V POWER SUPPLY KTT Variable, stablized power supply forlab use Short circuitp protected, suttable for profesional or amateur torlab use Shor circuir protected, sultable for protesional or amateur
use 24 v 3 A transformer is needed to complete the kit. $£ 14$ Ref 1007 . use 24v 3A transformer is needed 10 complete the ki. \& 14 Ref
1 WATT FM TRANSMITTER KTT Supplied with plezo eleatic mic. 8 -30vdc. At $25-30$ y you will get nearly 2 watts $£ 12$ ref 1009 . FM/AM SCANNER KTT Well not quite, you have to turn the knod your self butyou will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on both AM and FM. Built in 5 watt amplifier, inc speaker. $£ 15$ ret 1013.
3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel, 1,200 w power handling, microphone Included. $£ 14$ Ref 1014
4 WATT FM TRANSMTTER KIT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp included. transmitter, 3 R
E20 Ref 1028 .
STROBE LIGHT KT Adjustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. £16 Ref 1037.
COM BINATION LOCK KT 9key, programmable, complete with keypad, will switch $2 A$ mains. $9 v$ dc operation. $£ 10$ ref 1114. PHONE BUG DETECTOR KT This device will warn you If somebody is eavesdropping on your line. $£ 6$ ref 1130 .
ROBOT VOICE KTT interesting circuit that distonts your vace! adjustabie, answer the phone with a different voice! $12 \mathrm{vdc} £ 9$ ref 1131 TELEPHONE BUG KT Small bug powered by the phone line, starts transmitting as soon as the phone is picked upl $£ 8$ Ref 1135 3 CHANNEL LIGHT CHASER KT 800 watts per channel,
speed and direction controlssupplied with 12 LEDS (you can fit tiacs speed and direction controlssupplied with 12 LEDS (you can fit tria
instead to make kit mains, not supplied) $9-12 \mathrm{vdc}$ £17 ret 1026 . 12V FLOURESCENT LAMP DRNER KTTLightup 4 foottubes from your car battery' gv 2a translomer also required. $£ 8$ ref 1069. VOXSWITCH KIT Sound activated switchideal form aking bugging tape recorders etc, adjustable sensitinty, £8 ref 1073.

Check out our
WEB SITE
http://www.pavilion.co.uk/bull-electrical
PREAMP MDXER KTT 3 input mono mixer, sep Dass and treble controls plus individual ievel controls, 18 vdc , input sens 100 mA . $£ 15$ ref 1052.
BULL ELECTRICAL

W
TEL: 01273203500
FAX 01273323077
E-mail bull@pavilionicouk

SOUNDEFFECTS GENERATOR KTTProduces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects o your projects for just $£ 9$ ref 1045.
16 WATT FM TRANSMTTER (BUILT) 4 stage high power, preamp required $12-18 \mathrm{vdc}$, can use ground plane, yagı or open HUMIDITY METER KTT Builds into a precislon LCD humidity HUMIDITY METER KIT Bulds into a precision LCD humidity meter, 9 ic design, PCD, Icd display and ail components PC TMER KIT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you w ant whenever you want. Minimum system configeration is 286 . VGA, 4.1,640k, senal port, hard drive with min 100k free, £24.99
FM CORDLESS M ICROPHON E This unitis an FMbroadcasting station in minature, 3 transistor transmitter with electret condenser mic+fet amp design resultin maximum sensitivity and broadfrequency response. $90-105 \mathrm{mhz}, 50-1500 \mathrm{hz}, 500$ foot range in open countryl PP3 battery required. $£ 15.00$ ref 15P42A.
MAGNETIC MARBLES They have been around for a number of years but still give rise to curiosity and amazement. A pack of 12 is just E3. 99 rel GI/R20
NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting Parts into showpieces in 3 hoursl Will plate onto
steed, iron, bronze, gunmetal,copper, welded, silversaderedorbrazed steed, iron, bronze, gunmetal, copper, welded, silver soldered or brazed
joints. Kiti includes enough toplate 1,000 sqinches. You will al so need a 12 v supply, a container and $2 \mathbf{1 2 v}$ ight bulbs. $£ 39.99$ ref NIK39. Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12vDC adjustable from $0-30$ secs. $£ 4.99$ HY1260M, 12vDC adjustable from 0-60 mins. $£ 4.99$ HY2405S, 240 V adjustable from $0-5$ secs. £4.99 HY24060m, 240V adjustable from 0-60 mins. £6.99 BUGGING TAPE RECORDER Small voice activated recorder uses micro cassette complete with headp hones $\mathbf{2 2 8 . 9 9 \text { ref MAR29P1 }}$ POWER SUPPLY fully cased with mains and op leads 17 V DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
9v DC POWER SUPPLY Standard plug intype 150 ma 9v DC with lead and DC power plug. price for two is $£ 2.99$ ref AUG3P4.
COMPOSTE VIDEO KIT. Converts composite video into separate H sync. V sync, and video. 12v DC. $£ 8.00$ REF: MAG8P2. FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ 4 dive connectors 1 mother board connector. 150watt, 12v fan, iec inlet and on/of switch. £12 Ref EF6
VENUS FLYTRAP KIT Grow your own carnivorous plant with this simple kit £3 ref EF34
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} ~ 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P 12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAGSP 13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1 ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together! belived to cause rain!£3 a pair Ref EF29. 3' by 1 ' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, aluminium frame, screw terminals, £44.95 ref MAG45
ELECT RONIC ACCUPUNCTURE KIT Bulds intoan electronic version instead of needles! good to expenment with. $£ 7$ ref 7P30 SHOCKING COIL KTT Build this litte battery operated device into all sorts of things, also gets worms out of the ground! $£ 7$ ref 7 P36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and flies: 50 m range $£ 6$ ref EF2.
HIGH POWER CATAPULTS Hinged arm brace for stability. tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 miles per hourt Range of over 200 metres! $£ 7.99$ rel R/9
BALLON MANUFACTURING KIT Bntish made, small blob blows into a large, longlasting balloon, hours offun! £3. 99 ref GIIE99R 9-0-9V 4A TRANSFORMERS, chassis mount $£ 7$ ref LOT19A. 2.6 KILOWATT INVERTERS, Packed with batteries etc but as they woigh about 100kg CALLERS ONLYI £120. MEGA LED DISPLAYS Build your self a clock or something with these mega 7 seg displays 55 mm high, 38 mm wide. 5 on a pcbfor just £4.99 ref LOT16 or a bumper pack of 50 displays for just $£ 29$ ref

CLEARANCE SECTION, MINIMUM ORDER £15, no technical details available, NO RETURNS, TRADE WELCOME.
2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR340 AT LEAST 200 CAPACTORS (SAME VALUE 99P REF BAR342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUTT BRÉAKERS, OUR CHOICE TOCLEAR 99P REF BAR 335 WICROWAVE CONTROL PANELS TO CLEAR E2 REF BAR 329 2 TUBES OF CHIPS(2 TYPES OUR CHOICE) 90P REF BAR305 LOTTERY PREDICTOR MACHINE!! JUST E 1.50 REF BAR313 HELLA LROVERELECTRIC H/LAMP LEVELLERE2REFBAR31 SINCLAIR C5 16 " TYRES TO CLEAR AT JUST 75P REF BAR318 LARGE MAINS MOTORS (NEW) TO CLEARAT 75P REF BAR310 MODEMS ETC FOR STRIPPING $£ 2.50$ EACH REF BAR324 110V LARGE MOTORS (NEW) TO CLEAR AT 50P REF BAR332 MODULATOR UNITS UNKNOWN SPEC JUST SOP REF BAR323 GX4000 GAMES COSOLES JUST E4 REF BAR320
SMART CASED MEMORY STORAGE DEVICE, LOADS OF BITS INSIDE, PCB, MOTOR, CASE ETC. BUMPER PACK OF 5 COMPLE TE UNTS TO CLEAR AT EZ 50(FOR 5) REF BAR 330. 2CORE MAINS CABLE 2 M LENGTHSPACK OF 4E1REF BAR337 PC USEREASIC MANUALS, LOADS OF INFO. £1 REF BAR3OA PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR341
3 M 3CORE MAINS CABLE AND 13A PLUG. 60P REF BAR 325
WE BUY SURPLUS STOCK
FOR CASH
BUYERS DIRECT LINE 0802660377
FREE CATALOGUE
100 PAGE CATALOGUE NOW avallable, 45P STAMPS.

CLASSIFIED

> WE WANT TO BUY!!
> IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS.

Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 ($£ 50$), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $£ 80$. Ask for a free copy of our wanted List.
BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ. Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER $£ 50$ plus VAT

WANTED

TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc Factory Clearance, Prompt Service and Payment.

HTB ELEKTRONIK

 Alter Apeler Weg 527619 Schiftdorf, Germany Tel: 004947067044 Fax: 004947067049

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M \& B RADIO 86 Bishopgate Street Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2QP TEL: 0181-684 1166 FAX: 0181-684 3056

$\star \star$ WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured.
TELFORD ELECTRONICS
Phone: 01952605451 Fax: 01952677978

ARIICLES FOR SALE

Consider.

Your costs to continue to stock
UNWANTED SURPLUS . . . EXCESS
OBSOLETE
STOCKS OF:
ELECTRONIC-ELECTRICAL COMPONENTS \& ACCESSORIES
RELEASE
for
PAYMENT IN ADVANCE
OF COLLECTION
contact

K.B. Components,

21 Playle Chase, Gt. Totham, Maldon, Essex, CM9 8UT
Tel:- 01621893204 Fax:- 01621893180 Mobile:- 0802392745 REGISTER TO RECEIVE MONTHLY PUBLISHED STOCK LISTS AT NO CHARGE OF ALL EXISTING NEW, UNUSED, STOCKS OF ALL COMPONENTS AND ACCESSORIES.

Memory Simms

256K £2.50 each Min Cty 4 - $£ 10$ 512K £5.00 each MIn Cty 2 - £10 1 MB e14.00 each

256K DRAM
HY53C256LS- 10
TMS4256-10L MB81256-10 MCM6256-10 MN41256A - 08 1 MB
V53C104P-12 GM71C4256A-80 M514256-10 KM44C256AP - 10 MN41C4256-08

EPROMS

 $1 \mathrm{MB}-£ 2.00$ 512K-E1.25 256K- ع1.00 128K - ع0.75 64K - 80.50 32K - ع0. 40 16K - £0.35TMM2063P -1S61C64A-20N UT4264-20
$\Sigma 1.50$
$\Sigma 1.20$
$1000^{\prime} s$ MORE COMPONENTS IN STOCK - PLEASE CALL
ALL ITEMS PRE-USED AND TESTED MINIMUM ORDER CHARGE $£ 10$ ALL TTEMS EXCLUDE VAT@ 17.5% CREDTT CARDS WELCOME

WOODVILLE L'ID TEL:01923213350 fAx:01923211650

> Farnel 60MHz DTV60 Oscilloscope B/Star M1000 1GHz Froze/Counter B/Star J2000 0.1 Hz-2MHz Sig/Gen RS $610-461$ 30V/2A Digital FS RS208-541 0-275V/2A Variac Haplin Gold $100 \mathrm{KHz}-450 \mathrm{MHz}$ Sig/Gen Haplin Gold $10 \mathrm{Hzz}-100 \mathrm{KHz}$ Sig/Gen Weller PS20 + TCP24 PS + Iron + Stand

> Farnell 501-529 Fume Extractor RS 424.658 IC Leg Former RS 607-134 Axia Lead Ben/Cutter Groatmoor Radial Lead Cutter Eclipse Automatic Wire Cutter Eclipse Rotary Wire Stripper + Dies Sarturius $0-2 \mathrm{~kg}$ Component Counter ALL GOOD CONDITION Tel: 01722326649

ADVERTISERS PLEASE NOTE

For all your
future enquiries on cidvertising rates

Please contact
Malcolm Wells on
Tel: 0181-6523620
Fax: 0181-652 8956

CLASSIFIED

ARTICLES FOR SALE

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB, U.K. Tel: (+44)01243545111/2 Fax: (+44)01243542457 CIRCIE NO. $1+4$ ON REPLY CARD

OPERATING \& SERVICE MANUALS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB, U.K.
Tel: (+44)01243545111/2 Fax: (+44)01243542457
CIRCLE NO. 145 ON REPLY CARD

INDEX TO ADVERTISERS

Anchor Surplus
Bull Electrical
Chelmer Valve
CMS
Conford Electronics
Crossware Products
Dataman
Devantech
Display Electronics
Electromail
Equinox Technologies
Field Electric
Halcyon Electronics
Hart Electronic Kits
ICE Technology
Jenving
Johns Radio
JPG Electronics
Kenwood
Keytronics
PAGE822886, 901829 Telnet869 Tsien

880 846

IBC Stewart of Reading 846
870846 Surrey Electronics
846 Technology Sources 839869
896 Telford Electronics
867
854837 Those Engineers
841
824 Tie Pie Engineering 835
894
895 Ultimate Technology 826
885 Wood \& Douglas 871
832
Labcenter Electronics 866
Milford Instruments IFC
Niche Software 895
Number One Systems 852
PICO Technology 869
Quickroute Systems 818
Radio-Tech 895
891 Robinson Marshall 837, 839 904

ANRITSU MS42OJ 10 Hz -30MHz network'spectrum analyser

TEKTRONIX 49221 GHz portable spectrum analyser,

 options 1, 2 and $3 £ 6500$ or $£ 7500$ with multiplexor and mixers to 40 GHzHP3585A 40MHz, high specification
HP8702B lightwave component analyser (options 006/011) 6 GHz
HP8557A/182T 350MHz

EST
41
YRS
DISTRIBUZIONE E ASSISTENZA ITALY. TLC RADIO, ROMA (06) 871902

1640B serial data generator 3764A digital transmission analyser 3335A synthesizer/level generator 3235A switch/test unit
3324A synthesized function generator $33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz , with driver 11713A
As above but 18 GHz set
3581C selective voltmeter
37790 primay multiplex analyser
37915A intertace cad
379000 signalling test set with 2×37915 A interface cards $£ 550$
4140 pA meter, DC voltage source $£ 4000$
4272A multi-frequency Icr meter
435B microwave power meter, analogue 5386 A 3 GHz frequency cóunter 54100 A 1 GHz digitizing oscilloscope, now Inc $2 \times 1 \mathrm{GHz}$ active probes 54502 A dlgital oscilloscope $400 \mathrm{MHz} 400 \mathrm{MSa} / \mathrm{s}$ 80078 pulse generator 100 MHz 8018A serial data generator 8082 A pulse generator 250 MHz 8111A pulse generator 20 MHz 8146A optical tdr, with options $2 / 3 /$ plug-In 81465 SH (single-mode)
816A slotted line $1.8-18 \mathrm{GHz}$ with $809 \mathrm{C} \& 447 \mathrm{~B}$ probe 8444A tracking generator with option 059 $86222 \mathrm{~A} 8620 \mathrm{C} 10 \mathrm{MHz}-2.4 \mathrm{GHz}$ sweep generator 87510 A gain-phase analyser $100 \mathrm{kHz}-300 \mathrm{MHz}$ 8753A 3 GHz vector network analyser J2215A FDOI portable multimode test set J2219A 486-based, colour option main-frame J2219A/J2171A 486-based colour screne option network advisor
FARNELL SSG2000 synthesized signal generator $10 \mathrm{~Hz}-2000 \mathrm{MHz}$

ISO9002 ACCREDITED STOCKIST

 MEASUREMENT \& TEST EQUIPMENT2018 synthesized AM/FM signal generator $80 \mathrm{kHz}-520 \mathrm{MHz}$
2019 synthesized AM/FM signal gen 80 kHz -1040MHz 2305 modulation meter
2828A/2829 digital simulator/analyser 2955 radlo communications test set $6460 / 6421$ power meter \& sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$ 6514 waveguide detector for use with 6500 -scalar analyser $26-40 \mathrm{GHz}$ TF2910 TV interval timer

PHILIPS PM5167 1mHz-10MHz function generator RACAL-DANA 9300 milli-voltmeter RACAL-DANA 9301A true RMS RF milli-voltmeter E1250 SCHLUMBERGER 7081 precision voltmeter 8.5 digits £2000

2500

WANDEL \& GOLTERMANN WM30 level tracer WANDEL \& GOLTERMANN PJM-4S jitter meter for SONET \& SDH
£350 WAVETEK 23 synthesized function generator $0.01 \mathrm{~Hz}-12 \mathrm{MHz}$
WAVETEK 1067 opt $5221-500 \mathrm{MHz}$ sweep generator WAYNE KERR 3220 20A bias unlt (for 3245 inductance analyser)
TEKTRONIX AM503/P6303 current probe

SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. ALL FULLY AB-TESTED AND NO-QUIBBLE GUARANTEED

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

New Flight Electronics International Catalogue Set

You now have access to the world's latest: * Electronics Training Equipment * Microprocessor Training Equipment

* Test and Measurement Equipment
- PC Cards
via "Flight's" latest catalogue set.
We are specialists in the provision of innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.

Our extensive range covers every need, call today for your free catalogue set.

CIRCIE NO. 155 ON REPLY CARD

NEW CATALOGUE

The new 1996 National Instruments Instrumentation Reference and Catalogue is available now. Discover how to develop integrated systems for test and measurement and industrial automation. Includes details of over 500 software and hardware products for PCs and workstations. Includes valuable tutorials on data acquisition and instrument control.
NATIONAL INSTRUMENTS Tel: 01635523545

CIRCLE NO. 156 ON REPLY CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illus trated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measure ment need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

CIRCLE NO. 157 ON REPIY CARD

NEW JENSEN TOOLS CATALOGUE

Colourful new Catalogue, hot off the press from Jensen Tools, presents unique new tool kits for service/support of
communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench acccessories, static control, technical manuals and more.

Ring 0800833246 or Fax 01604785573 for a free copy. Jensen Tools, 10-12 Ravens Way, Northampton NN3 9UD

 Bretuentiry

MICRO-PRO 51
Stisisof the art programmer for the 803: Tfanili'

- Programming suppurifor the entire Atriel 188 C and 895 microcontoller fanilis?
 DElliv duj) denatives
- Field prognimmabla hardwara ensures future devide fuppor! Order code: MP51-SYS

The World's Most Powerful, Portable Programmers

 other programmer and you'll see why it's the world's undisputed number one.

S4 is capable of programming 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard!

S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Orders received by 4pm will normally be despached same day.
Order today, get it tomorrow!

S4 GAL module

Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.
t 195
VAT

The Dataman Challenge
Try the Dataman $S 4$ or Dataman- 48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your moncy in full.

Dataman-48

Our new Dataman-48 programmer adds PinSmart® technology to provide true no-adaptor programming right up to 48 -pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with 54 , you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

The current device library contains over 1800 of the most popular logic and memory devices including GALs, PALs, CEPALs, RALs, 8 and 16 bit EPROMs, EEPROMs, PEROMs, FLASH, BOOTBLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Microcontrollers. We even include a 44 pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP and SDIP. The Dataman- 48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

[^0]: Electronics World is published monthly. By post, current issue $£ 2.35$, back issues lif available $£ 2.50$. Orders, payments and general correspandence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tix: 892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group Newstrade: Distributed by Markefforce (UK) Ltd, 247 Tottenham Court Road London WIP CAU $0171261-5108$.
 Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ years $£ 70.00$. Surface mail 1 year $£ 35.002$ years $£ 56003$ years $£ 80.00$ Air mail Europe/Eu 1 year $£ 43.002$ years $£ 68.00$ ROW 1 year $£ 52.002$ years $£ 83.00$

 Overseas advertising agents: France and Belgium: Pierre Mussard, 18.20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455 USA mailing agents: Mercury Aiffeight International Itd Inc, $10 \mid \mathrm{b})$ Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahwoy NJ Postmaster. Send address changes to above
 Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR
 Typeset by Wace Publication Imaging 2-4 Powerscrott Raad, Sidcup, Kent DAt 4 SDT,

[^1]: C51 STARTER SYSTEM ORDER COUPON
 pLEASE PRINT CLEARLY
 Please send me one C5I Starter System at £149 excluding VAT
 and $£ 8$ postage and packing, for which I enclose a total of £184.48.
 Your name.
 Company (if applicable)
 Address ..
 \qquad
 Phone number................................Fax.
 Credit card No

 Card type: Visa Mastercard Expiry date

 Readers without credit card should make their cheque payable to Equinox Technologies and send it to Equinox Technologies at 229 Greenmount Lane, Bolton BL1 5JB, tel. 01204 491110, fax 01204 494883. Equinox will endeavour to dispatch next day, but please allow 28 days for delivery.

[^2]: "Weigh everything; and trust no man." Vannoccio Biringuccio, pioneer metallurgist, c. 1520 AD .

[^3]: 『id5 Cambridge Microprocessor Systems Limited
 Unit 17-18, Zone ' D ', Chelms ford Road Ind. Est.
 hone 01371875644 Fax 01371876077

[^4]: FAST START - Use our Full ANSI compatible Emhedded C Compiler for super fast Embedded Debug and comprehensive Manual. you can compile and dounload and he in Embedded Debug and comprehensive Manual. you can compile and downoad and he in
 the Debugger with a single keypress - or back in the editor at just the right place, Generate ROMable Code direct, no struggling with EXE conversions or messing around with reset code. Just £595.

