FREE temperature indicator strips

INCORPORATING WIRELESS WORLD
April 1996 £2.25
Caticer from pylons?
Radon - and more. . .
Design an SSB outphaser
BT's caller ID via a PC

A new

 electronis device22bit a-fo-d for PC

Chopping a

 bridge brings benefitsLow-mass accelerometer

Now, tue Banu: Is over

Contents

Cover - Hashim Akib

276 POWER LINES,

 PARTICLES AND CANCERRecent reports have suggested that radon, focussed by power lines, could be linked to an increase of cancer in people living under power lines. Anthony Hopwood explains that there's more to it than that.

280 22BIT ANALOGUE-IN FOR PCS

Resolving analogue input to 22 bits on a pc is not simply a matter of selecting the right a-to-d converter, as Simon Bateson and Andrew Woodward explain.

286 FAST CHARGER FOR NICD AND NIMH

Benefiting from a new high-side switching device this economical circuit allows fast charging of both NiCd and NiMH cells.

290 DESIGNING RIAA VALVE PREAMPS

Morgan Jones' discussion of valve preamplifiers culminates in a no-compromise balanced RIAA preamplifier combining the benefits of valves and transistors.

313 TWO CHIP SMART ACCELEROMETER

Silicon micro-machining has been used to produce a small, low-mass accelerometer with relatively low cost and repeatable, temperature-stable output.

300 TRANSMISSION LINE PRINCIPLES

Bill Russell shows how rectangular pulses and a delay line simplify the explanation of how transmission lines work.

304 HANDS-ON INTERNET

Cyril Bateman discusses how Archie and Gopher help you search the Net for files.

306 DESIGNING AN SSB OUTPHASER

Outphasers for SSB transmitters demand accurate component values, but analyses for such circuits are rare, by David Gibson

296 ISSCC - THE HIGHLIGHTS
Roy Rubenstein reports on the world's top electronics innovation event.

317 TELEPHONE CALLER ID

Seggy Segaran looks at techniques used to relay the caller's telephone number to the destination 'phone.

341 CHOPPING BRIDGE
Basing a measuring bridge on a discrete chopper offers low-cost and high-stability

267 COMMENT

In the interest of the customer
268 NEWS
Panel minds language, Data protection for Internet, 1800 MHz access, Pentium Pro flaw, MathWorks Wavelet Toolbox PC security, 3D on PC

273 RESEARCH NOTES

Microactuator, Road rage, Quantum computing, Array design, Robot fingers, Universal remote control.

322 CIRCUIT IDEAS

Light measurement, Current-conveyor crystal oscillator, Servo driver, Motor driver, 24 V counter from 12V, Filters with no dc errors,
Linear phase detector.

330 LETTERS

V versus I feedback, Amplifier linearity, Component costs, Valve sound, Phase splitter, Windows, Question of the month, Foster Seeley detector, Sallen \& Key.

335 NEW PRODUCTS

Pick of the month - classified for convenience.

Obtain your free evaluation pack of one-fime temperature indicator strips: page 312.

World's first 42in flat display: see page 268.

25\% EW reader offer

Readers can obtain $\mathbf{2 5 \%}$ discount on a high-precision a-to-d converter and its PC software: see page 284.

Researchers at MIT have incorporated road rage into a computer model allowing them to predict traffic flow more accurately - page 275.

15\% DISCOUNT

Receive caller ID telephone numbers on your p c, log them and even manipulate them in Access EW reader offer, page 319.

```
MAY ISSUE
ON SALE APRIL }2
```


System Components from ISO9001 Source Half Size ISA Single Board Computers 386SX-40 to 486DX4-100 with PC/104, 2 Serial Ports IDE \& FDD \& Printer Port and a variety of on-board functionality's: FLASH/ROM Disc. Cache. VGA CRT/Flat Panel Controller PC/104 Modules:
386 \& 486 CPUs, Solid State Disc, Isolated RS232/485 VGA CRT/Flat Panel Display \& SVGA Controllers PCMCIA types I, II \& III
System Enclosures with Passive Backplanes Colour \& Mono Flat Panel LCD Displays System Integration and Support

CIRCLE NO. IUL ON REPLY CARD

CIRCIE NO. IOZ ON REPLY CARD

Integrated PCB \& Schematic Design System for Windows"

.. of all the products included here, this is my personal favourite... Really, thats all I have to say about Quickroute - it certainly gets my vote!"

Review of QR 3.0 \& other products
Computer Shopper Nov 95

Tel/Fax 01614497101

Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.
email info@quicksys.demón.co.uk
SYSTEMS

Quickroute 3.5 is a powerful.
affordable and easy to use integrated schematic \&
PCB design system for Windows. With Its multiple button bars, 'tool hints' and 'parts bin', Quickroute helps you to design quickly and efficiently

There are four different versions of Quickroute giving you a choice of features \& price, Quickroute is available with multisheet schematic capture, auto-routing, 'engineering change (modification of a PCB from a schematic). copper fill, and a range of file import/export options. See the table for a selection of features.

Prices are Designer ($£ 149$), PRO ($£ 249$) and PRO + ($£ 399$). The Personal edition is availabie for jus $\uparrow \varsigma 8$, but has the manual provided on disk as on-line help. Post \& Packing is $£ 5$ (UK), £8 (EC), £12 (World). VAT must be added to the total price.

PCB a Schematic Design	$\checkmark \times$	\checkmark	\checkmark
Schematic Caplure	\checkmark	\cdots	\cdots
Auto router		-	V
Design Rule Checking		\checkmark	M
Expon WM 8 \%ange		K	7
Export Gerber/NC. Drill		\checkmark	V
Exiendedibraties		\checkmark	K
Pongo - जerser mpor			2
Upare PCB Trom schematic			M
DXFE SPCE Expor			M
Copper fill			V

t to change without notice. All trade marks

In the interest of the customer

EDITOR

Martin Eccles
01816523128

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden

DESIGN

Alan Kerr

EDITORIAL

ADMINISTRATION
Jackie Lowe
0181-652 3614

E-MAIL ORDERS

jackie.lowe@|rbp.co.uk

ADVERTISEMENT manager

Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE
Malcolm Wells
0181-652 3620

ADVERTISING
 PRODUCTION

0181-652 3620

PUBLISHER

Mick Elliott
EDITORIAL FAX
0181-6528956

CLASSIFIED FAX

0181-652 8956

SUBSCRIPTION HOTLINE

01622721666
Quote ref INJ
SUBSCRIPTION QUERIES
01444445566
FAX 01444445447
t used to follow that what was good for the customer was good for profits. The customer must always come first. It is therefore surprising that the consumer software industry has a such bad record in this respect.
Of course, in any technology driven industry, such as computer software, customers have to be led somewhat. They have to be persuaded to give up their favourite DOS programme, for example, and move to something 'bigger and better', and in the long run it often really is a good move, in terms of speed and flexibility.
But that's not the real problem. What we have to contend with, quite frankly, is poor quality, over-selling and indifferent after sales service. The customer comes a poor second.
There's also little regard for the customer's equipment. Sloppy development results in applications requiring larger than necessary amounts of computer resources. Do programmes really need to be that big? Do we really have to have loads of ram? The software is delivered on a huge pile of disks, or increasingly on CD-rom. But the time is surely not far away when the setup instructions will read 'Place CD-rom \#1 into drive and press enter'.
Maybe part of the problem is the impressive software development tools available today such as Visual Basic, Delphi and Visual C++. They enable suprisingly fast development of new products, but this tends to bring about a false sense of confidence. Prototypes can be up and running in hours and lots of features can be bolted on. But the more features and facilities that a programme has the more meticulous the testing has to be. Development tools can have bugs as well! Inadequate test methodology often results in uncertain interaction between applications. There is surely an analytical way of predicting how applications inter-react.

There have been cases recently when clearly product had been released before it was ready. Every industry is subject to commercial pressures, none more so than software. But shipment of immature product can cause misery. For example, a recently marketed operating system did not contain all the
device drivers it needed for Soundblaster and some CD-rom drives. The 'Plug and Play' feature became a nightmare. One punter, I heard of, tried to load the software from CD-rom. Half way though it stopped because it didn't recognise the CD-ROM drive. It left him in a total state of limbo that took days to sort out. I somehow don't think that he was alone.
Some products are hyped to a dangerously high level, raising customer expectations, only to have them dashed later. Of course, the software world is highly competitive and fast moving. Millions of dollars can be made overnight with the right break. Recent examples are Netscape and the UK company who wrote some software that would bar child access to dubious parts of the Internet.
I've heard it said that the marketing costs for any software package start at around half a million pounds. It's hard to do it for less, which makes it high risk. But looking at it from the user point of view, we need to know whether the programme really will run on a 386 with 4 Meg of ram, for example, and what applications will it not work with? We should not have to rely on the software press to tell us these things.
Now a gripe about customer support. How often have you heard from a support line "We know about the bug, there are no real workarounds, but it will be corrected in the next version". And how long do you have to wait for an answer? Furthermore, companies who used to have free call facilities on 0800 are now migrating to the more lucrative 0898 lines at the customer's expense.
Coupled with this, companies only usually give 'Limited Warranties' with their software packages. These warranties cover the cost of the floppy disks and maybe the original cost of the software but little else. There is little or no liability if it doesn't work to your satisfaction. It would be
interesting if this situation could be tested in court to see if customer's 'statutory rights' were being upheld it would probably uncover a can of worms! Maybe the answer is some sort of code of practice whereby customers could obtain bug-fixes free of charge by mail or download for at least a year after purchase.
Any improvements in quality and customer service will inevitably cost money and companies will try pass it on to their customers in some way. But I think that it is a price worth paying. Software represents a large investment

for individuals and companies alike, and we are becoming more and more dependent on it.

Quite soon software will be available that will take decisions for us, called 'software agents'. What if they don't work properly! I think that there is still a 'start-up' and 'get rich quick' mentality in the software business. After all it's one of those few industries that even today can be started in the garage or spare bedroom. The focus is firmly on developing product as quickly as possible and getting it out of the door before anyone else does the same. Support does not really feature much.
However, the software industry has come a long way, and the lead needs to be taken by the large companies to improve customer service and set an example. Maybe survival will depend on it one day. Quality and customer service issues are not as glamourous as the technology, but they need attention - now.

Peter Marlow

NEWSTRADE
 DISTRIBUTION

David G. Sanders
01816528171

ISSN 0959-8332

Electronics World is published monthly. By post, current issue £2.35, back issues (if available $£ 2.50$. Orders, payments and general correspondence to L333, Electronlcs World, Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London WIP OAU 0171 261-5108.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH 16 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ years $£ 70.00$. Surface mail 1 year $£ 35.002$ years $£ 56003$ years $£ 80.00$ Air mail Europe/Eu 1 year
$£ 43.002$ years $£ 68.00$ ROW 1 year $£ 52.002$ years $£ 83.00$
Overseas advertising agents: France and Belgium: Pierre Mussard, 18. 20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lrd, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455 USA mailing agents: Mercury Airfreight International Ltd Inc, 10 (b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway N Postmaster. Send address changes to above. Printed by BPCC Magazines (Carliste) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR Typeset by Wace Publication Imaging 2-4 Powerscrott Road, Sidcup, Kent DAt 4 SDT,
Reed Business Publishing Ltd 1996 ISSN 09598332

Mosfets enhance video compression

M
osfets used directly as calculators could simplify video compression systems following work at the Defence Research Agency, DRA, in Malvern.
DRA has used a twin floating gate mosfet circuit as a vector quantiser to calculate the Euclidean distance between two points. The floating gate device, fabricated using standard foundry processes, exploits a characteristic that is comparable to the Euclidean distance metric.
Gillian Marshall, a member of the research team said: "With standard analogue systems feeding a digital signal processor (DSP), there is a large bottleneck at the analogue to
digital converter. The new vector quantiser does all the calculations in analogue, only converting the final compressed data to digital for transmission."
The benefits claimed for the approach include a computation rate 20 times that of typical digital signal processors and a power consumption that is less than one-tenth.
Applications that could benefit from the approach include video conferencing where large amounts of analogue information is transmitted down telephone lines, and cost sensitive systems where a fast A/D converter is too costly.
The scheme exploits the fact that
current through the fet is proportional to the square of the difference between the gate voltage and the threshold voltage. In turn, the Euclidean distance squared equals the square of the difference between an input point and a reference point. Hence, if the input point, represented as a voltage, is applied to the gate and the reference is the threshold, the distance measure is proportional to the device's current.
Various parts of the VQ have been constructed by the research team, and have worked well. However a full scale system will have to wait for further funding.

Chaos keeps communications secure

Chaos theory promises the ultimate in secure communications, enabling systems to emit signals indistinguishable from background noise.
Researchers at the University of Birmingham's school of electronic and electrical engineering have developed a communications system that chaotically encodes a digital data stream. At the same time, it hides the signal within a noise-like structure. This is desirable especially for military applications where the 'enemy' would not even know communications are taking place. Dr Jim Edwards, leading the research said: "Encoded signals may
look like noise, but are in fact deterministic if both the structure of the encoder and the initial conditions are known. Being short of one or both of these makes prediction difficult."
He further pointed out that traditional 'secure' systems are not in fact because enough information is available for signal reconstruction.
The chaos system offers enhanced security since the initial conditions must be known exactly. Any slight difference and the system quickly diverges. This is comparable with the chaos theory example that says weather cannot be predicted without knowing all the starting conditions which may include a butterfly's wings
beating in Australia.
The claimed bit error rate (BER) of the current system is 1 in 10,000 at a signal-to-noise ratio of 10 dB . The University is working on a system where an acceptable BER is obtained for negative signal-tonoise; in other words, the noise has more power than the signal. This would give truly undetectable communications.
Synchronising the transmitter and receiver, critical with chaotic systems, is not a problem according to Edwards: "Because the system is digital, it tends to self-synchronise." Richard Ball Electronics Weekly

Plasma displays for wall mount tvs. The first plasma displays suitable for use in tvs will be mass-produced by Fujitsu from October at an initial $\$ 5000$ price tag.
The displays are the world's only 42 in plasma panels available commercially. Although the company has had 21 in displays available for two years, they are considerably more expensive than crts and are not used by tv makers.
At 42in, however, the screens are bigger than crts and, naturally much thinner. Fujitsu's panel is only 75 mm thick, allowing a tv to be hung on the wall. The company is currently supplying panel samples to tv manufacturers, including Thomson, Nokia, Philips and Bang and Oluffsen in Europe.
Unlike thin-film transistor alternatives, plasma displays have a wide viewing angle and are therefore useful for public information displays as well as tvs.

3D graphics add-on for pcs

VideoLogic will be selling this summer a $£ 300$ add-on card that brings 3D picture realism to pcs. At the heart of the boards will be a 3D graphics processor which the UK company has developed in partnership with NEC.
The two companies have adopted an approach to 3D rendering which reduces the high speed synchronous dynamic ram buffer memory requirement, and removes a fundamental memory bandwidth bottleneck.
"The consequence of no longer requiring z-buffer memory can result in a $\$ 30$ to $\$ 60$ saving in s -d-ram cost," said Trevor Wing, VideoLogic's group marketing director.
In the PowerVR 3D rendering architecture, VideoLogic has removed the need for storing picture depth information in a z-buffer. Instead, it implements in real-time the necessary hidden surface calculations. According to Wing this is possible because the design uses an array of 32 processor elements which can operate on each pixel
independently.
The NEC chips will hit the market at the same time as another UKdeveloped 3D graphics processor, the Permedia from 3DLabs.
NEC has integrated the complete hidden surface and polygon texturing functions into two devices which require just 2 Mbyte of synchronous d-ram buffer memory. NEC will start sampling the first chips this quarter and a single chip version for the pc market will be available by the summer.
In contrast, 3DLabs' Permedia chip incorporates a 16 -bit z-buffer, and also has an overall s-d-ram requirement of 2 Mbyte . It is targeted at $\$ 300 \mathrm{pc}$ add-on card designs.
The first pcs to incorporate the NEC chip set will be launched next year, according to Wing, who added: "Two of the big three pc suppliers are already evaluating the 3D chips." VideoLogic has existing video partnerships with IBM and Compaq Computer.
Richard Wilson
Electronics Weekly

Slow but less volatile growth for semiconductors

$\mathrm{T}_{\mathrm{g}}^{\mathrm{h}}$he semiconductor market will grow more slowly, but with reduced volatility. So says Sergio Vicari, European application specific product manager of Texas Instruments. For Vicari the main source of growth will be computer sales: "The increasing electronic content of products, as well as emerging markets will also contribute."

He predicts that computer sales will rise from just under 100 million units in 1996 to some 200 million by 2000. The increasing semiconductor content is extrapolated from the trends over the past two decades. His figures show growth of 4.8 per cent per year in the eighties rising to 6.3 percent per year in the nineties.

What of the total semiconductor market? Vicari said: "It depends on the industry growth. Fifteen per cent per year will mean the market is $\$ 275$ bn by 2000,20 percent will take it to $\$ 350$ bn."

Digital signal processing chips is one of TI's core businesses and these come under Vicari's wing. "The driving force for dsp sales comes from wireless communication products and hard disc drives, but high efficiency motor controllers are likely to become a large sector."

Electric motors currently consume 50 percent of the world's electricity. dsp based controllers will double their efficiency, Green pressures and lifetime costing are making them popular in new installations.
"The DSP market grew 68 percent to $\$ 1.6 \mathrm{bn}$ in 1995 and I predict this will increase to $\$ 9.4$ bn by 2000 . During this time the unit cost of a DSP will drop from $\$ 12.2$ to $\$ 8.8$."
However, he admits the difficulty in predicting the DSP market: "The 1994 prediction for 2000 was between \$6bn and \$7bn."

MathWorks has announced a toolbox claimed to be the first product to make wavelet analysis a practical engineering tool.
In these photographs, wavelets have been used to compress and decompress fingerprint data with little degradation, and fractal signals are decomposed with various scales (stretches) of wavelet.
Wavelet transforms are an up-and-coming technique for data compression and analysis. They transform signals into a sum of small, overlapping waves and are claimed to be more effective for analysing non-continuous waveforms than traditional Fourier methods.

In addition to supporting advanced applications, the Wavelet Toolbox is said to offer engineers unfamiliar with wavelets an easy way to try out the transforms on their own problems.

Experts to pick design language

The protracted process of defining analogue circuit modelling extensions to the VHDL digital system design language reaches a crucial point this week. A panel of experts will be presented with two competing proposals for a language specification.
The IEEE 1076.1 language design committee is to ask independent experts and users to choose between the Jade language, championed by Mentor Graphics’ subsidiary Anacad, and the Opal alternative, supported by Analogy, Cadence and Compass Design.

The experts will make a choice by the end of March with a full Language Reference Manual, LRM, to follow by July. An IEEE ballot on the LRM could then be completed in the following six months.
Andy Patterson, Analogy's European technical director, said most arguments appeared to be supporting Opal and he was hopeful a firm choice would be made on schedule. "The committee is being spurred by the analogue Verilog efforts with VerilogA having been published this month," he said.

Non-slewing

Giovanni's article 'Non slewing power amplifier' in the March issue contained a couple of minor inaccuracies. In Fig. 1, there should be no 200Ω resistor in the right-hand CSA circuit. In Fig. 4, the unmarked resistor is $3.3 \mathrm{k} \Omega$. Apologies.

Pentium Pro flaw

n the same way that the famous Pentium flaw was first brought to public attention by an academic Professor Nicely - another professor from San Francisco State University has pointed out a flaw associated with the Pentium's successor - Pentium Pro.
Intel conceded last week that it had not responded properly to the professor but claims that the 'few complaints' it has received result from incorrect use.
The reported problems arise when the Orion chip-set is used with the Pentium Pro microprocessor in server applications.
According to Intel they only arise when certain add-on cards - which
are not recommended for use by Intel - are used in the application.

It was claimed that Pentium Pro servers made using the Orion chipsets were resulting in systems that operated at half the speed of previous generation Pentiums.
Intel concedes that the add-on cards can cause problems with the Pentium Pro/Orion combination resulting in sluggish performance but says there is nothing wrong with Orion and that it is not being re-engineered to speed up performance.
However, the company intends later this year, to launch a new chipset for use in Pentium Pro-based servers.

Campaign for anti-theft chips

In response to the fastest growing area lof crime in the UK, the magazine Computer Weekly has begun an antichip theft campaign bringing together the police, chip makers, insurance firms and computer manufacturers and buyers.
The idea of the scheme is threefold: to show computer owners how to secure their equipment, to lobby chip and module makers to mark their products, and promote anti-theft techniques.
The valuable parts of a computer are the simms and, to a lesser extent, the cpu. The police have already produced advice to computer owners to assist them in securing their property.
The real breakthrough will come with simms that are tagged or become unusable away from their host.
Metropolitan police commissioner

Sir Paul Condon said: "I truly believe that if consumer goods can be designed and manufactured so that they are useless to anyone other than the owner, then we could bring about a complete reversal of the figures."
Marking, tagging or putting intelligence onto the simm pcb would seem to be a waste of time as mobile phone thieves already 're-chip' their swag. This involves removing the identification prom from the phone and replacing it with one holding another identity. There is therefore no reason to believe that simm thieves could not transfer chips to new pcbs.
The need is for memory chip makers to incorporate some form of security device into the chips, but this seems unlikely until the voice of the user becomes impossible to ignore. Steve Bush, Electronics Weekly

1800 MHz access for cellular carriers

C
ellular operators Vodafone and Cellnet have succeeded in gaining access to radio frequencies in the 1800 MHz band - a move seen as crucial in their battle with newer operators Orange and Mercury One-2-One.
"This is important to us and we intend to use any spectrum for new products and areas (of coverage)," said a spokesman for Vodafone.
As well as reserving two 10 MHz blocks in the 1800 MHz band for possible allocation to Orange and Mercury at the end of 1997, the government intends to make two further 11.5 MHz blocks available to Vodafone and Mercury. This will be first access to the relatively under-populated 1800 MHz band for Vodafone and Cellnet which depend on the increasingly congested spectrum below 900 MHz for their analogue and digital GSM services.
"The government wants to set out a strategy for a fair allocation of spectrum on the basis of need between all four mobile phone operators," said science and technology minister Ian Taylor
Vodafone and Cellnet intend to move all users from their older and cheaper analogue networks to digital services by the year 2005. This will lead to greater congestion in the digital 900 MHz bands, as four out of five UK mobile phone users are connected to analogue networks.
As well as seeking proposals for new use of the 1800 MHz band the government will also make additional frequencies in the 900 MHz band available to the two operators.
Managing the move from analogue to digital is the biggest challenge for Vodafone and Cellnet who, like all operators, are facing falling profitability, according to market researcher CTT. RW, Electronics Weekly

In Brief

Interactive traffic information

Japan is to launch the world's first on-line interactive traffic information service that uses telephone lines in April this year. Dubbed Advanced Traffic Information Service (ATIS), the system will supply information to pcs and in-car units via land lines and cellular links.

Power pc off the desktop of IBM

In a review of the future of PowerPC, IBM is reported to have decided to de-prioritise the microprocessor as a cpu for desktop personal computers.
Instead, IBM is said to be concentrating on Intel's $\mathbf{x} 86$ for desktop pcs and is focusing its PowerPC effort on workstation and server applications and as an embedded microcontroller.

EMC testing backlog

EMC test houses are heavily oversubscribed - many up to six months in advance, now that the EMC directive is in force.
ERA Technology's civil test facility in Leatherhead is currently booked until August and SGS in Durham is full until July and both are working three shifts per day. Test slots are booked on a first come/first serve basis.
Any company committed to using test houses to CE mark their products, and expend their time slot with incomplete tests or a failed product, may find themselves out in the cold.

Windows for hand-helds

Several major computer and telecommunications companies are planning to introduce hand-held computer devices based on a secret operating system under development at Microsoft.
The operating system, code-named Pegasus, is Microsoft's third attempt to develop a small operating system based on Windows for use in handheld computers and smart telecommunications devices.
Microsoft is expected to unveil Pegasus by the middle of this year.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Audio kits and factory assembled units use the unique combina tion of circuit designs by the renowned John Linsley Hood, me very
best audiophile components, and our own engineering expertise, to best audiophile components, and our own engineering expertise, to
give you unbeatable performance and unbelievable value for money. give you unbeatable performance and unbelievable value for money. We have always led the field for easy home construction to professional standards, even in the sixties we were using easily assembled printed circuits when Healnkit in America were still using tagboards!
Many years of experience and innovation, going back to the early Many years of experience and innovation, gomgrack to the early
Dinsdale and Bailey classics gives us incomparable design back Dinsdale and Bailey classics gives us incomparable design background in the needs of the home constructor. This simply means inat
building a Hart kit is a real pleasure. resulting in a piece of equipment building a hart kit is a real pleasure. resulting in a plece of ea
that nol only saves you money but you will be proud to own. Why not buy the reprints and construction manual for the kit you are interested in to see how easy it is to buld your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range. and the ddeal powerhouse for your ultimate hifi system. This kit is your way to get uk performance at bargain basement pnces. Unique design features such as fully FET stabilised power
suoplies give this amplifier World Class performance with starting supplies give this amplifier Worid Class performance with starling
clarity and transparency of sound, alled to the famous HART quality of components and ease of construction. front end giving switched inputs, with ALPS precision Blue Vetvet low-noise volume and balance controls. Construction is very simpie and enjovable with all the difficult work done for you, even the wiring is preterminated, ready for instant use!. All versions are avalable with
Standard components or specially selected Super Audiophife comStandard components or specially selected Super Audiophile com-
ponents at $£ 29.60$ extra per channel, plus u 2.40 if you want to include ponents at $£ 29.60$ extra per chan
Gold Plated speaker terminals. Gold Plated speaker terminals.
K1100B Complete STANDARD A11008 Complete STANDARD Amplifier Kit.
A1100B Factory Assembled. ..
£395. 21

1100 M Complete MONOBLI. \qquad A1100M Factory Assembled. RLH 11 Reprints of latest Amplifier articles.
. $£ 333.62$

$\$ 422.62$
$£ 422.62$
$E 261.20$
E361.20
E320
Construction Manual with iul parts lists 5.50
"CHIARA" SINGLE ENDED CLASS "A" HEADPHONE AMPLIFIER.

This unit provides a high quality headphone output for 'stand alone use or to supplement those many power amplifiers that do not have a headphone faclity. Easily installed with special link-through teature ear toroidal supply. Housed in the neat, black finished. Hart minibox it features the wide trequency response. low-distontion and 'musicality' that one associates with designs from the renowned John Linsley Hood, Pre-terminated interconnecting leads and PCB mounted sockets prevent supply polarity reversal and on-board diagnostics provide visual indication of supply line integrity. Volume and balance controls are Alps "Blue Velvet" components. Very easily built, even by begin-
ners, since all components fit directly on the single pinted curcuit ners, sunce all components fit directly on the single prnted crrcuit boaro. The kir has very detaned instructions, and even comes win a comptementary roll of Hart audiograde silver solder. It can also be
supplied factory assembled and tested. Seling for less than the total supplied factory assembled and tested. Seling for less inan the total cost of an the components, in they were bought separately, this unit
represents incredible value for money and makes an
 K2100SA Series Aut.
components.
A2100SA Series Audiophile version, factory Assembled.
K3565 "Andante" Power Supoly Kit to suit "Chiara"
£112.46
$\varepsilon 149.46$ K3565 "Andante" Power Supply Kit to suit "Chiara" CM2100 Construction Manual. SPECIAL OFFER. Both units together Kit Form $\quad \Sigma 128.42$ Factory Assembled and Tested...................... ع184.92

"Andante" SERIES 20VA AUDIOPHILE POWER SUPPLIES

Specially designed for exacting audio use requiring absolute minimum noise. low hum field and total freedom from mechanical noise
this unit is a logical development from our highiy successtul 1550 thus uni
series.
Utilising linear technology inroughout for smoothness and musicality makes it the perlect partner for any module requining fully stabilised $\pm 15 \mathrm{v}$ supplies.
Two versions are avarable. K 3550 has $2 \pm 15 v$ supplies and a single 15 v for relays etc. and can be used with our K1400 preamp and our K1450 RIAA puckup preamp. as well as other useful modules soon to be infroduced. The K 3565 is identical in appearance but only has the
$\pm 15 \mathrm{v}$ lighter current supply for use with the K1450 AIAA pickup pre amplifier or "Chiara" headphone amplifier.
$K 3550$ Full Supply with all outputs. .
K3565 Power Supply for K1450 \& K2100... $£ 85.42$

Now you can throw out those noisy ill-matchec carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velver' range
components oniy used selectively in the very top filint of World class components oniy used selectively in the very top fight of wond clas ampiriers. The impoiter tonal balance between channels and rock solid image stability. Motonsed versions have $5 v$ DC motor. MANUAL POTENTIOMETERS
2-Gang 100 K Lin.
2.Gang $10 \mathrm{~K}, 50 \mathrm{~K}$ or 100 K Log

2-Gang 10K Special Balance. zero crosstalh and zero
Centre loss. . MOTORISED POTENTIOMETERS
2-Gang 20K Log Volume Control
. 117.48
2

TECHNICAL BOOKSHELF

NEW! Another Classic by John Linsley Hood. "AuDIO ELECTRON ICS" Following the enormous ongoing success of his "Art of Linea Electronics" the lates: offering is the all-new edition of "Audio Electronics". now entrely re-writen by the master himself.
Underlying audio techniques and equipment is a word of electronics Underlying audio techniques and equipment is a wordd of electronics ing, adapting or using digital or analogue audio equipment understanding electronics leads to far greater control over the reproduced sound. The subjects covered include tape recording, tuners, power output stages. algital audio, test instruments and loudspeaker crossover systems. John's lifetme of experience and personal innovation in this field allow him to apply his gitt of being so familiar with his subject that he can wite clearly about it and make it both interesting and oomprenensible to the reader. Containing 240 pages and over 250 line illustrations this new book represents great value for
money at only.

"THE ART OF LINEAR ELECTRONICS."

The detinitive linear electronics and audio book by John Linsley

 Hood. This 300 * page 600 k will give you an unparalleled insight into the workings of all types of audio circuits. Learn how to read circuit give the best sound. The virtues and vices of passive and active components are examined and there are separaie sections covering power supplies and the sources of noise and hum. As one would expect from thws writer the history and derivation of audio amplifier circuitry have an entire chapter, as does test and measurement equipment. Copiously iHustrated this book is increable value for the amount of information it contarns on the much neglected field of limear. as opposed to digital. electromics. Indeed it must be destined tobecome the standard reference for all who work or are interested in become the standard reference for all who work. or are interested in Pages. $247 \times 190.1 \mathrm{Kg}$. $0-7506-0868-4 E 16.95$
"DIGITAL AUOIO AND COMPACT DISC TECHNOLOGY" 0-7506-0614-2
INTRODUCING DIGITAL AUDO CO, DAT AND SAMPLING. ISBN 1870775228 ISBN
"THE ART OF SOLOERING" 0-85935-324-3. . $£ 7.95$
.53 .95
-TOWERS' INTERNATIONAL TRANSISTOR SELECTOR 0-572-01062-1
\&19.95*
"AUDIO" F.A.Wilson. BPI1
. $£ 3.95$
"HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT"
R.A.Penfold. BP267.
ickason.
(4th Edn.) 0-9624-191-7-6 E22.95* ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUC"AN INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE DESIGN" V. Capel, BP256 $£ 2.95$ "LOUDSPEAKERS FOR MUSICIANS" BP297 "THE HART PRINTED CIRCUIT BOARD CONSTRUCTION GUIDE.n ${ }^{n}$.....................

VALVE \& EARLY CLASSIC BOOKS

THE VTL Book David Manley BKVT1 17.95

 LOUDSPEAKERS; THE WHY AND HOW OF GOOD REPRODUC- "THE WILLIAMSON AMPLIFIER." $0.9624-1918-4$. . $£ 13.95$ AN APPROACH TO AUDIO FREOUENCY AMPLIFIER DESIGN. GEC 1957, 1-882580-05-2

ع18.95 AUDIO ANTHOLOGIES. artucles from Audio Engineering. Six voumes covering the days when audio wasyoung and valves were king!.
BKAA3/1 to 6 . Al "A SIMPLE CLASS A AMPLIFIER" J.L Linsley Hood M.I.E.E. 1969
 Postage on all books, unless starred, is only ùl 50 per book, maximum ú4.50 for any number, any sizel. Starred items are heavy books costing
No waitingl. All listed books are normally in2. 2.50 to send. SPECIAL OFFER. All book orders over C 15 will receive a FREE John Linsley hood monograph entitled "Drgital versus Analogue, Brack Disks or Silver?"

SPECIAL OFFER

PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its best? Our latest inple purpose test cassette checks thethree most important tape A professional quality, digitally mastered test tape at a pnce anyone can attord. Test Cassette TC1D. Our price only.

HC80 Replacement Stereo Cassette Head.
The exceilent performance of modern cassette recorders depends totally on the quality of the R/P head. Even the slightest amount o wear can impair the frequency response and distortion levels. Our HC80 is atop quality head from one of the foremost manufacturers in and will transform the pertormance over a worn head. Only the fact that we buy these in vast quantities enables us to offer them at the amazing price of only $£ 11.70$ each or 2 for $£ 17.60$ We also stock a range of other heads, including '" reet-to-reel stereo heads.

SOLDERING

The slze of modern components makes the right soldenng equipmen essential for good results. Everything we ofll we actually use in ou ANTEX 240 v 25 w Soldenng Iron. This is the ideal Multi-purpose iron as the btt is designed to totally surround the element giving the best heat transter. This excellent design also means that although it is small and handy enough for modern components its heating capaci ty is better than larger irons of conventional construction. Exceilen $845-080$ ST4 Lightweight Sodering Iron Stand. This has provision for

HART SUPER AUDIOGRADE

 SILVER SOLDER.Hart Super Audiograde Silver Solder has been specially formulated to the serious audiophile. Not only does it give beautitul easy-to-make joints but it is designed to melt at normal soldering temperatures avording the possibility of thermal damage to components or the need or special high temperature irons. A very low residue flux makes per fect joints
assembly.
345-007 3mtrs 22SWG in Hart Mini Tube 5.90 $845-008100 \mathrm{~g}$. Reel Special Valve Grade, . 13.90 845-009 1000. Precision PCB Grade, 22swg.
$845-110100 \mathrm{~g}$ Reel Superfine 24swg for ultra precise control and $845-110100 \mathrm{~g}$
easy working

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers
HP 141T $+8552 \mathrm{BIF}+8553 \mathrm{BR}-1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{E7} 70$
HP $141 \mathrm{~T}+8552 \mathrm{BIF}+8554 \mathrm{BRF}-100 \mathrm{KHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 900$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{f} 700$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B} \mathrm{IF}+8556 \mathrm{~A}$ RF-20Hz-300KHz-£700.
Special Offer just in from MOD Oty 40 HP 8555 A RF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$.
Special Offer just in from MOD Qty 40 HP8555A RF Un
HP141T $+8552 \mathrm{BIF}+8555 A 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-£ 1200$.
HP AN2 Units Available separately - New Colours - Tested
HP141T Malnframe - f 350 .
HP8552B IF- $\mathfrak{f 3 0 0}$.
HP8553B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}$ - 5500 .
HP8555A RF $10 \mathrm{MC} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{E} 800$.
HP8556A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP8445B Tracking Preselector DC to 18 GHz - $£ 350$
HP 35882 A .02 Hz to $25.6 \mathrm{KHz}-\mathrm{E} 2 \mathrm{~K}-\mathrm{E}$
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ-
HP8569B $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ - $£ 6 \mathrm{k}$.
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-\mathrm{f} 4 \mathrm{k}-\mathrm{f} 4.2 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2+3-£ 4.5 \mathrm{~K}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHzOpt} 1+2+3-55 \mathrm{k}$.
TEK 496P $1 \mathrm{KHz}-1.8 \mathrm{GHz}-$ £4k.
EK 496P $1 \mathrm{KHz}-1.8 \mathrm{GHz}-$ E4
TEK $5 \mathrm{~L} 4 \mathrm{~N} 0-100 \mathrm{KHz}-\mathrm{£} 400$.
TEK $7 \mathrm{LS}+\mathrm{L} 1-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-£ 700$.
TEK 7L5 + L3-Opt 25 Tracking Gen - $\mathbf{f 9 0 0}$.
TEK $7 \mathrm{~L} 12-100 \mathrm{KHz}-1800 \mathrm{Mc} / \mathrm{s}-£ 1000$
TEK 7L18-1.5-60GH2S - $£ 1500$.
TEK 491 10Mc/s-12.4GHzs-40GHzs - $£ 750$. 12.4 Gh2s-40Ghzs with Mixers
Tekronix Mixers are available for above ANZ to 60GHzs
Systron Donner 763 Spectrum ANZ + 4745B Preselector . $01-18 \mathrm{GHz}+$ Two Mixers 1840 GHz in HP8673D Signal Gene
Systron Donner 161 BB Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s - $\mathbf{~} \mathbf{3} .5 \mathbf{5}$.
ADRET 3310A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}$ - f 600 .
HP 8640 A Slgnal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - f 800
HP3717A 70Mc/s Modulator - Demodulator - $£ 500$.
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6825A Bipolar Power Supply Amplifier.
HP461A-465A-467A Amplifiers.
MP81519A Optical Receiver DC-400 Mc/s.
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ.
HP3770B Telephone Line Analyser.
4P8182A Data Analyser.
HP59401A Bus System Analyser.
HP6260B Power Unit O-10V O-100 Amps.
HP3782A Error Detector
HP3781A Pattern Generator
HP3730A +3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz-£250.
HP105B Quartz Oscillator - $£ 400$.
HP5087A Distribution Amplifier.
HP6034A System Power Supply 0-60V O-10A-200W - 5500.
4P6131C Digital Voltage Source +-100V $1 / 2$ Amp.
HP3779A Primary Multiolex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP1630G Logic Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C.
HP59501B Isolated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 8901B
IP5370A Universal Time interval Counter
Marconi MOD -

Marconi TF2370 as above but late type - fipu - $₹ 750$
Marconi TF2370 as above but late type Brown Case - £1000
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2440 Microwave Counter -20GHz - $£ 1500$
Marconi TF2442 Microwave Counter - 26.5
Marconi TF2305 Modulation Meter - E2.3k.
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$. $\mathrm{Hz}-20 \mathrm{GHz}$ - $£ 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards
Racal/Dana 9303 True RMS Levelmeter+Head - £450. IFFE - $£ 500$
TEKA6902A also A6902B isolator - $£ 300-\mathrm{f400}$.
TEK 1240 Logic Analyser - E400.
TEK FG5010 Programmable Function Generator $20 \mathrm{Mc} / \mathrm{s}$ - E 600 .
TEK2465A $350 \mathrm{Mc} / \mathrm{s}$ Oscilloscope - $\mathbf{£ 2 . 5 k}+$ probes - $£ 150$ each.
EK CT-5 High Current Transformer Probe- L250
TEK $J 16$ Digital Photo meter $+J 6523$-2 Luminance Probe - $£ 300$
ROTEK 320 Calibrator +350 High Current Adaptor AC-DC - $£ 500$.
FLUKE 5102 B AC -DC Calibrator - $\mathbf{£ 4} \mathbf{4 k}$.
FLUKE 1120A IEEE-488 Translator - $£ 250$.
Tinsley Standard Cell Battery 5644 B - $£ 500$.
Tinsloy Transportable Voltage Reference- f 500
FLUKE Y5020 Current Shunt f 50 .
FLUKE Y5020 Current Shunt- $£ 150$.
HP745A $+746 A$ AC Calibrator $-£ 600$.
HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps + 15400A - E800.
HP54200A Digitizing Oscilloscope.
HP11729B Carrier Noise Test Set. $01-18 \mathrm{GHz}$ - LEF - £2000
HP3311A Function Generator - $£ 300$.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{~K} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ tested to $£ 400$ as new with manual - probe kit
HP Frequency comb generator type $8406-£ 400$.
HP Vector Voltmater type $8405 A$ - $£ 400$ new colour
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} /$ s to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R.. HP Network Analyzer type 8407A + 8412A + 8501A - $100 \mathrm{~K} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-\mathrm{f} 1000$.
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{MC} / \mathrm{s} £ 200$ - HP8447A Dual - $£ 300$.
HP Frequency Counter type 5340A - 18GHz £1000-rear output £800.
HP $8410-\mathrm{A}-\mathrm{B}$ - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up - 8411a - 8412-8413-8414-8418-8740-8741-8742-8743-
Bral/Dana 9301A - 9302 R
Racal/Dana 9301A-9302 RF Millivoltmeter $-1.5-2 \mathrm{GHz}-£ 250-£ 400$
Marconi RCL Bridge type TF2700- $£ 150$.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A -6059A -6057A -6056 -£250-£350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$.
Martoni microwave 6600 A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-$ 40 GHz - $£ 1000$ or Pl only $£ 600$. MF only $£ 250$.
arconi - cistor meter type TF2331 - £150. TF2331A - £200.

Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 -S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7B92A
Gould J3B test oscillator + manual - $£ 150$.
Tektronix Mainframes - 7603-7623A -7613 - 7704A - 7844 -7904 - TM501 - TM503 - TM506 -7904A-7834-7623-7633.
Marconi6155A Signal Source - 1 to 2 GHz - LED readout - £400.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass -f 150.
Marcoll
Facnell power unit H60/50-£400 tested. H60/25-£250.
HP 8750 A storage normalizer -f 400 with lead + S. A or N,A Interface.
Marconi TF2330-or TF2330A wave analysers - £100-£150.
Tektronix - 7S 14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304- £250.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - f 600
Tektronix TM515 mainframe + TM5006 mainframe - £450-£850.
Farnall electronic load type RB1030-35- $£ 350$.
Racal/Dana counters - 9904 - 9905 - 9906 - 9915 - $9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-\mathbf{3 G H z}$ - $\mathbf{5 1 0 0}$ £450 - all fitted with FX standards
HP4815A RF vector impedance meter CN probe - $£ 500-£ 600$.
Marconi TF2091 no ise generator. A. B or C plus filters - $£ 100-\mathrm{f} 350$
Marconi $12017 \mathrm{~S} / \mathrm{G} 10 \mathrm{Khz}-1024 \mathrm{MHz}$. C plus inters - $\mathrm{E} 100-\mathrm{£} 350$
HP180TR, HP182T mainframes E 300 - 500 .
Philips panoramic receiver type PM7900-1 to 20GHz-£400.
Marconi 6700 A sweep oscillator +18 GHz Pl's avallable.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer $-\mathbf{~} 4 \mathrm{k}$.
HP8505 network ANZ $8505+8501 \mathrm{~A}+8503 \mathrm{~A}$.
Racal/Dana VLF frequency standard equipment. Tracer receiver type $900 \mathrm{~A}+$ difference meter
HP signal generators type $626-628$ - frequency 10 GH
HP 432A - 435A or B-436A - power meters + powerheads - Mc/s - 40 GHz - $\mathrm{f} 200-\mathrm{£} 1000$.
Bradley oscilloscope calibrator type 192 - $\mathrm{f6} 00$.
HP8614A signal generator $800 \mathrm{M} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$
MP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$.
HP 3325A syn function gen 20Mds - f1500.
HP 3336A or B syn level generator - $£ 500$ - $£ 600$.
HP 3586B or C selective level meter - $£ 750-£ 1000$
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{MC/s}-£ 400$.

HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2600 \mathrm{Mc} / \mathrm{s}$ - $5500-\mathrm{E} 2000$.
HP 8640 B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $£ 800 £ 1250$
HP 86222 BX Sweep PI-01-2.4GHz + ATT- 17750
HP 8629A Sweep PI-2-18GHz - £1000.
HP 86290 B Sweep $\mathrm{PI}-2-18 \mathrm{GHz}$ - C 1250 .
HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-\mathrm{£} 1 \mathrm{k}$.
HP 8620C Mainframe - £250. IEEE - f500.
HP 8615A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - $£ 1 \mathrm{k}$
HP 3488A HP - IB switch control unit - £ 500 + control modules various - $£ 175$ each.
HP 8160A 50Mc/s programmable pulse generator - $£ 1000$.
HP 853 A MF ANZ - $£ 1.5 \mathrm{k}$.
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - E 1500
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}$ - E 4 k .
HP 8569 B Analyser $.01-22 \mathrm{GHz}$ - £5k.
HP 3580 A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$.
HP 1980B Oscilloscope measurement systarn - $\mathbf{£ 6 0 0}$
HP 3455A Digital voltmeter - $\mathbf{£ 5 0 0}$.
HP 3437A System voltmeter - $\mathbf{f 3 0 0}$.
HP 3581C Selective voltmeter - $£ 250$
HP 5370A Universal time interval counter - $£ 450$.
HP $5335 A$ Universal counter $-200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 6034A System power supply - $0-60 \mathrm{~V}-0-10$ amps - $£ 500$.
HP 5150 A Thermal printer -f 250 .
HP 1645A Data error analyser - $£ 150$
HP 4437 A Attenuator - $£ 150$.
HP 3717A 70 Mc/s modulator- $£ 400$.
HP 3710A - $3715 A-3716 A-370$
HP 3710A - 3715A - 3716A - 3702B-3703B-3705A-3711A-3791B-3712A-3793B HP 3730A + B RF down converter -P.O.R.
HP 3552A Transmission test set - $£ 400$.
HP 3763A Error detector - £500.
HP 3764 A Digital transmission analyser - E 600 .
HP 37770 Amp delay distortion analyser - $£ 400$.
HP 3780A Pattern generator detector - 400.
HP 3781 A Pattern generator - $£ 400$.
HP 37818 Pattern generator (bell) - $£ 300$.
HP 3782 A Error detector - $£ 400$.
HP 3782 Error detector (bell) - $£ 300$
HP 3785 A jitter generator + recelver- $\mathbf{H 7 5 0 - £ 1 k}$.
HP 8006A Word generator - $\mathrm{f} 100-\mathrm{f150}$.
HP 8016A Word generator - $\mathrm{E}_{2} 50$.
HP 8170 A Logic pattern generator - $£ 500$.
HP 59401 A Bus system analyser $-£ 350$.
HP 59500A Multiprogrammer HP - IB - $£ 300$
Philips PM5390 RF syn-0.1-1GHz-AM + FM - £1000.
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - f 1500.

Tektronix R 7912 Transient waveform digitizer - programmable - $\mathbf{£ 4 0 0}$
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}-\mathbf{£ 1 k}$ - or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 1502/1503 TDR cable test set - $£ 1000$
Tektronix AM503 Current probe + TM501 m/frame - $\mathbf{f 1 0 0 0}$
Tektronix SC501 - SC502 - SC503 - SC504 os cilloscopes - 775 - f350.
Tektronix $465-465 \mathrm{~B}-475-2213 \mathrm{~A}-2215-2225-2235-2245-2246-£ 250-£ 1000$.
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS 6100 M - $£ 350$
Nicolet 3091 LF oscilloscope - $£ 400$.
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900.
Fiuke 80K-40 High voltage probe in case - BN-£100.
Racal Recorders - Store 4-4D-7-14 channels in stock - £250-£500.
Racal Store Horse Recorder \& control - $£ 400-£ 750$ Tested.
EIP 545 microw ave18GHz counter - $£ 1200$.
Fluke $510 A$ AC. ref standard $-400 \mathrm{~Hz}-£ 200$.
Fluke 510A AC. ref standard - $400 \mathrm{~Hz}-£ 20$
Fluke 355A DC voltage standard - $£ 300$
Wiltron 610 D Sweep Generator +6124
Wiltron 610D Sweep Generator +6124 C PI-4-8GHz- $\mathbf{~} 400$.
Wiltron 610D Sweep Generator + 61084D PI-1Mc/s - $1500 \mathrm{Mc} / \mathrm{s}-£ 500$
Time Electronics 9814 Voltage calibrator - $£ 750$.
Time Electronics 2004 D.C. voltage standard - $£ 1000$.
HP 8699 B Sweep PI YIG oscillator .01 - $4 \mathrm{GHz}-£ 300.8690 \mathrm{~B}$ MF - $£ 250$. Both $£ 500$
Schlumberger 1250 Frequency response ANZ - £1500.
Dummy Loads \& power att up to 2.5 kilowatts FX up 1018 GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors. B8KK Items in stock - ask for list.
W\&G Items in stock - ask for list.
IIEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENOUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA
ITEMS MARKEO TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCXETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Worls, 84 Whitehall Road East, Birkenshaw, Bradiorid BD112 2ER. Tel. No: (01274) 684007 . Fax: 651160

Signalling a rethink of array receiver design

|nnovative signal processing techniques developed by researchers at the University of Southern California are set to turbo-charge the performance of conventional array signal-receivers. The work carried out by Jerry Mendel and former USC doctoral student Mithat Dogan could well affect everything from how the military locates far-away submarines, to how we track objects in space, to how we design more efficient home antennas receiving signals from direct satellite broadcasts.
The invention works by combining 'higher-order statistics' with correlations of readings from adjacent detectors in an array. By returning to the fundamentals of physics and signal processing, the researchers have shown that, using the known geometry of an actual array, it is possible to compute correlations not only between pairs of physically present detectors, but also between a physically present detector and a non-existent, virtual detector. Or even between pairs of virtual detectors. This gives a small array of detectors a much larger scope.
Arrays are an attractive alternative to large dishes for picking up very faint signals. The method is to use a multitude of detectors, each one served by a much smaller radiation collector, and spread these detectors out in an array, either in a line, or in two or three dimensions.
Arrays can cover an area or volume far larger than any possible dish, and though the signal picked up by each detector is faint, engineers can construct the network so that the faint traces received by each individual site reinforce one another, creating an instrument that can perform like a single massive dish.
Mendel and Dogan's software, called a virtual cross-correlation computer, works only if the distance to the signal-producing target is large in relation to the size of the array of detectors. The detectors in the array must be tuned to a relatively narrow bandwidth too - listening to only a
limited range of sound pitches, light colours or radio frequencies.
Finally, the signal being received must be of a specific kind - namely, non-Gaussian. The Mendel-Dogan invention functions to suppress Gaussian signals and preserve nonGaussian ones.
If these three conditions are met and they frequently are in real-world sonar, radar and other array detectors - major improvements in performance are possible, according to Mendel. More targets can be located than before, closely spaced targets can be resolved, and interfering noise can be suppressed.
As well as improving the performance of existing array detectors, the virtual cross- correlation computer concept can be used to design new, more efficient antenna arrays. For example, a 20 -by- 20 planar array, which would normally require 400 elements, can be implemented with a 10 -by- 10 array using only 100 elements.
"But the technique also has an aesthetic appeal," says Mendel. "It uses the hidden, internal structure of a signal that is unknown, to, in effect, decode itself. It uses the characteristics of the array used to

Dhysicists at Caltech, Pasadena, have taken a step closer to quantum computing with testing of an optical gate whose output depends on the polarisation state of two photon inputs. Photons normally do not interact. But the team led by professor of physics H Jeff Kimble at Caltech, has found that they can be made to strongly influence each other when brought together with an atom inside an optical cavity.
To be useful in computing, any legitimate logic gate must display an essential feature called conditional dynamics, where the output must

Better reception from distant sources looks possible with the new approach to array design.

Jerry Mendel at USC has analysed exactly how a receiver array works.

Making photons interact is first step to quantum computer
 depend upon both inputs. In an optical

quantum logic gate, the output state of each photon must depend on the input state of both photons.
Kimble's group has showed strong conditional dynamics for an atom in an optical cavity formed by two highly reflective mirrors, one of which allows partial transmission of light. The scientists sent pairs of photons through the cavity, and investigated the states of the photons when they re-emerged, showing that the output state of each photon depended on the polarisation of both input photons.

Cont' d over...
detect this signal to bootstrap the array's efficiency. Even if it ultimately proves to have no uses at all, I find the technique highly satisfying to contemplate."

In effect, the cavity functioned as a rudimentary logic gate at the single photon level. Changing the photons' polarisation is analogous to flipping the bits in conventional computers.
This is the first demonstration of
conditional dynamics at the singlequantum level, and while many complex problems remain to be solved before even primitive networks of quantum logic gates could be built, the result is being seen as a significant first step in
quantum computing. Even if it doesn't lead to a practical route to quantum computing, the researchers say optical quantum logic gate will definitely have a role in specialised applications in optical communication.

Not a remote possibility

How we laugh as we remember those days when we used to have to pull ourselves up from our chairs and drag the 3 m or across the room to press the channel changer on the tv with a finger. Now we just reach for the remote control and... hang on, I know it's here somewhere.
Unfortunately, as increasing numbers of household devices and even light switches become remote controllable, keeping track of them all is becoming more and more difficult. Universal remote controllers are a great idea - if you have small fingers and a photographic memory for densely packed keyboards. But a researcher in the Department of Electronic Engineering, The Chinese

University of Hong Kong, has proposed a solution that could be easy to implement and simple to use.
In the system proposed by C S Choy, a temporary link is established between the remote control and the target appliance. So any further key presses are only recognised by that one device.
Typically, audio-visual system offer many functions sometimes calling for tens of keys on a remote control. Choy proposes dividing these into types, according to the nature of control, such as on/off, +/- volume, and numeric.
The resulting smart universal remove control could use an optimum number of programmable keys to
keep its bulk and complexity down. Through a learning process, each key could send out different commands according to the appliance being controlled.
So far Choy has built a remote controller, based on a Motorola 68701 with 2 K eprom, 192 bytes built in ram and three i / o ports, which he has used to control light switches.

But the concept could form the basis for a universal controller that is much simpler than anything currently around.

C S Choy is in the Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong.

Soft touch brings robot breakthrough

M
uch work has gone into designing robot grippers that are sensitive to force so that, for example, the robot can pick up an egg and hold it firmly without breaking it. Now two US researchers have found an answer that was easily to hand all the time robot fingertips.
The fingertips are actually an electrorheological fluid of particles of polymers suspended in a dielectric fluid. In
the presence of a strong electric field, their behaviour changes from that of a viscous, approximately Newtonian fluid to that of a plastic, with a finite shear strength as well as a viscous coefficient.
Prasad Akella and Mark Cutkosky had observed that the ability of human hands to make contact smoothly is partly due to fingertips that deform and dissipate energy. Taking this as their starting point, the two

workers have now produced their latest prototype fingertip that seems to reproduce that effect in a robot ('Contact transition control with semiactive soft fingertips', IEEE Transactions on Robotics and Automation, Vol 11, No 6, pp. 859-867).
The soft fingertip consists of a nonconducting rubber skin containing the fluid, with the electric potential applied across a series of plates oriented perpendicular to the skin surface. As the skin is pressed, er fluid is forced to flow between the plates with a resistance that varies with the applied voltage. A second membrane at the back side of the plates provides a restoring force that returns the system to a standard equilibrium configuration when unloaded.
Building a fingertip whose stiffness and damping properties can be directionally controlled still remains a challenge. Even so, the researchers report that the current generation of fingertips can provide compliance and damping that are very similar to human fingertips.

More information from $P N$ Akella who is now at the Manufacturing Center, General Motors Corporation, 30300 Mound Road, Warren MI 48090, USA or email at akella@gmr.com. The research was carried out in the Department of Mechanical Engineering and the Center for Design Research, Stamford University, Stamford CA 94305, USA.

Magnetism motivates microactuator research

R
esearchers into microelectroR mechanical systems (Mems) at the Berkeley Sensor \& Actuator Center (Bsac) have developed a powerful microactuator that uses magnetism as the actuating force and can be batchmanufactured in relatively simple processes.
Mems specialists Jack Judy, Richard Muller and Hans Zappe at Bsac report that their microactuator has so far demonstrated forces and displacements far larger than those generated by most electrostatic microactuators. In addition the microactuator can be be fabricated using conventional electroplating, lithography, materials and equipment.
Novel features of the technology are that actuation can be controlled by a remote magnet - a hand-held permanent magnet was used in some of the experiments - and that structures can be actuated in three dimensions: ie movement is not restricted to the plane of the wafer.
The microactuator itself is essentially a polysilicon cantilever beam, or flexure, onto which a magnet is formed at the free end. That magnet interacts with an external magnetic field, bending the flexure.
Fabrication is straight-forward in that the magnetic layer of NiFe layer is simply electroplated onto the silicon at the end of a process which is
already in use to produce chips of polysilicon resonant structures.
Using an external magnet to provide the actuating force means surface-tosurface interactions such as those found in linear and rotary variablecapacitance, and variable reluctance structures, are not required - so fabrication is easier.
The external magnet can also be used to activate many devices simultaneously - though that also means that control of independent microactuators will require miniaturised sources of magnetic fields, perhaps even on-chip sources.
So far the tip of an $800 \mu \mathrm{~m}$-long cantilever has been deflected over a distance of 1.2 mm and rotated through an angle greater than 180° under an imposed torque of 0.185 nNm ('Magnetic microactuation of polysilicon structures', Journal of Microelectromechanical Systems, Vol 4, No 4, pp. 162-169)
The team is hopeful that similarly fabricated magnetically-actuated microstructures might be applied to micromanipulators, microgrippers, magnetometers or microphotonic systems.

Jack W. Judy can be contacted at 497 Cory Hall 2041 Francisco, Apt. \#5 Berkeley, CA 94720-1770, USA or j.judy@ieee.org

Before application of the external magnetic field...

... while after the external magnet is applied the beam is deflected. Deflection is not restricted to the plane of the wafer.

Planners get ready for road rage

Road rage seems to be the most extreme example of an ever-increasing aggression on the highways. So how are road planners reconciling their computer models of happy 'model' drivers giving way at junctions with a cheery wave, to the reality of the bumper to bumper stand-offs which increasingly are the norm.
At MIT in the US, they might have an answer. Because MIT engineers have developed a state-of-the-art traffic simulator that actually mimics the behaviour different drivers, aggressive, careless, timid or fastand how they affect traffic flow.
The traffic simulator, which runs on a workstation, is called Mitsim for short (microscopic traffic simulator) and treats traffic as a set of individual vehicles, or particles, allowing each vehicle to move according to its own characteristics. The more common macroscopic simulator treats traffic like a fluid, assigning one set of characteristics to the entire stream of cars. Mitsim is more lifelike because it allows for differences in vehicles' movements as dictated by drivers' personalities.

As each vehicle enters the simulated road system, it grabs a packet of vehicle characteristics that determines how it will act in certain circumstances. Not only does each vehicle have a size, type, occupancy level and destination, it also has driver
characteristics. These include desired speed, propensity to yield to other vehicles, lane-changing behaviour and route decisions. There's even a driver impatience factor that makes each driver's choices more realistic.

Professor Denis Henshaw recently proposed that radon gas could be concentrated by high electromagnetic fields from overhead electricity supply lines. Radon causes lung cancer by ingestion of short-range alpha particles, whereas the cancer usually linked to pylons is leukemia, implying particles penetrating much deeper into the body. And if radon is highly significant, shouldn't there be a higher incidence of Leukemia in the West Country, where radon is more prevalent? There isn't. To test for radon, Prof. Henshaw tracked alpha particles. But could other factors have affected his results? Anthony Hopwood presents his case.

"The first suggestion that power lines might cause disease was made in 1976..."

| n my original feature in the November 1992 issue of Electronics World, I proposed that the electric and magnetic fields around power lines intensified natural background radiation in their vicinity.
My observations were based on many hours of measurement of the background ionising radiation close to overhead power lines over the period 1990-91 which happened to be close to the peak of solar cycle 22 sunspot maximum.
This was serendipitous because the effect is most marked at solar maximum, and the rather crude portable Geiger counter I used would not have detected any effect as the sun went off the boil in its approach to the present minimum of its 11 year cycle

Figure 1 shows the large change in solar activity expressed by the number of sunspots. This can also be measured as the solar flux at 10.7 cm wavelength. At maximum, the solar flux approaches 300 , whereas it is now around 70 - a change of over 400%
The first suggestion that power line routing might cause disease in populations close by was made in 1976 from studies in the Denver area - which happens to be a mile above sea level and therefore has less protection from the atmospheric layer. Since then, the debate has continued, but the necessary scientific proof of a credible disease mechanism has been absent.
There have been numerous theories to explain the increasing epidemiological evidence. Most have concentrated on intemal cel-
lular effects observed in the presence of alternating magnetic fields, and have involved free radicals, melatonin or chemical changes in the living cell. Other theories have suggested that the electrodynamic fields have damaged cell function by precipitating pollutants from the atmosphere. Some have suggested that electric and magnetic fields per se are damaging, and that a new disease mechanism is implicated.
There is no argument that electric power lines and distribution systems create strong electromagnetic and electrostatic fields in their vicinity. Overhead power lines are a highly visible source of this radiated energy. Some 'supergrid' lines carry up to 800A per phase at 440 kV and spread an electrodynamic footprint over 100 meters either side of the centre line.
There is also no argument that charged secondary atomic particles are influenced by ambient electric and magnetic fields. It was the alteration in the numbers of charged particles detected on my continuous cosmic ray monitor by the passage of electrically charged clouds that first gave me the idea of investigating whether the more intense electrodynamic fields round overhead power lines affected natural background radiation nearby.

"Why had no one noticed this (power line) effect before?"

The results were surprising. In simple terms, a horizontal geiger tube with an L/D ratio of about 13 and a low energy cut off at about 60 keV showed a background rate increase of up to three times either side of the line, compared with the rate outside the electrodynamic footprint.
Why had no-one noticed this effect before? There are two main reasons.
Firstly, only a third of the charged particle flux detected by the tube came from the sun, whose high energy particles were fissioned by collision with the atmosphere to give the 'cosmic drizzle' of lower energy charged particles reaching the ground. These low energy but still biologically damaging particles have been ignored by cosmic ray physicists because they were only interested in ultra high energy particles which could not be replicated easily on earth.
Secondly, environmental researchers were only concerned with picking up radioactive particles from pollution sources like Chernobyl, and deliberately set their Geiger tubes vertically upwards to minimise the nat-
ural background rate variation due to the sun, ground and changes in atmospheric pressure.
The key to my observations was to use a long thin Geiger tube aligned to the geomagnetic field as a coincidence detector to improve the detection statistics for down-coming solar particles against the background radiation from the ground.
> "For the first time, I could see the rate change as the sun rose..."

Textbooks suggest that typical rate variation in the UK due to solar emanations is about 3 per cent - a figure confirmed when I first set up the Geiger tube on a 7 metre pole with an east-west axis in June 1989. By October 1989, the rate variation stayed maddeningly around 3 per cent while the sun fulminated at solar maximum.
Turning the tube to a geomagnetic NS axis made a magical difference. For the first time I could see the rate change as the sun rose, and track active areas across the solar disc by the 14 day rate change they produced.
Interaction between charged particles and the geomagnetic field was also apparent during magnetic storms. During the great auroral display of $8 / 9$ November 1991, an individual auroral ray from the geomagnetic zenith passed over my detector and increased the count by about 20 per cent for the few minutes it was focussed on my sensor.
This may have been the first time that an auroral beam of particles has been detected on the ground.
All this - plus the continuous recording of atmospheric electric field alongside particle rate - led me to try and find whether power lines could alter the solar particle rate in their vicinity.
After publication of my results and conclusions in $E W+W W$, a debate started. The Swedish Radiation Protection Institute went out into the Scandinavian winter and found there was a background radiation anomaly near power lines.
Nearer home, the NRPB was more sceptical. It did carry out joint field tests with me with inconclusive results. Some of the tests were flawed because they did not include anticoin-: cidence counting on the multiple tube arrays. The real problem was that between my field work in 1990-91 and their tests in 1993, the solar flux had dropped by 70 percent so the effect was difficult to detect with relatively
unsophisticated sensors.
Since then, I have been working to improve my detector, as have the Swedes. Although it is early days, we now have two different types of sensor to plot any radiation anomalies near power lines.
My own instrument uses two closely matched independent Geiger tubes driving separate counters, as well as a coincident pulse monitor. Earlier work had suggested that the change in particle rate near a power line was most marked at the low energy end of the spectrum - below 100 keV .
At sunspot minimum, the mix of particles entering the atmosphere still varies with solar activity. Thề most sensitive ground level indicator of solar particle flux is the geomagnetic field. This is easily measured. Conditions are logged from 'quiet' to 'storm' on a K index published monthly for every three-hour period. Another index of incoming solar plasma is the ionosphere. Its condition can be monitored by recording changes in high-frequency radio propagation from day to day. These two indices, plus the rates from fixed particle counters produce a clear signal when extra particles are entering the atmosphere to suggest when field measurements are best made.
The twin Geiger tube detector now used has two matched tubes with an L/D ratio of about 12:1. One tube has a plastic protective case, and the other has one of copper to give a differential screening effect of about $4: 1$ at the low energy end of the spectrum.
Under 'quiet' conditions, the two tubes count within 2 per cent over several hours away from a power line. The rate variation between tubes stays within 5 per cent close to the 11 kV line crossing my garden under geomagnetically quiet conditions. When there is a geomagnetic disturbance, the balance changes, with a differential rate of at least 10 per cent in favour of the lightly screened tube.
The instrument has only been under test since the beginning of January, and with a quiet sun, there have been no major magnetic storms so the 10 per cent count differential is

Fig. 1. Large changes in solar activity over an eleven year cycle have been linked to a delayed eleven year cycle for breast cancer.
a reasonable result which can only improve as the new solar cycle gets into gear.
I mentioned earlier some of the other research in this field. Recently a paper was published by Professor Denis Henshaw suggesting that domestic wiring was able to concentrate alpha particle emitters like radon gas in its vicinity. The particles were detected using a sensitised plastic which is pitted by alpha particles, the standard method for detecting radon emanations.
> "...it is likely that they did not all come from radon"

Prof Henshaw proposed that the source of his particles was radon gas, which is certainly present in most homes. Given that the tracks were etched by alpha particles close to electric leads, it is equally possible that they did not come exclusively from radon. I suspect that his observations complete the penetrating particle fission chain which starts in the upper atmosphere and which I measured outdoors above 50 keV - the low energy cut off for my
> "Concorde... routinely reduces height if a solar flare occurs..."

Geiger tube charged particle detectors.
If this proves to be the case, there is a complete chain of potential ionising radiation cell damage from the sun to the wall socket.
So what other evidence is there that the sun can produce sufficient radiation to harm susceptible individuals? The atmosphere is a very effective screen which protects life on earth from the damaging emissions of the sun.
Solar background radiation exposure is already monitored for airline crews. Concorde, which flies higher than other commercial jets, has a solar particle monitor onboard and routinely reduces height if a solar flare occurs or particle rates exceed set limits.
I mentioned that charged solar particles are concentrated at high geomagnetic latitudes, and can be seen as aurorae when the magnetosphere intercepts solar plasma ejected during flares and coronal mass ejections. The geomagnetic intensification effect implies that so-

called radiation cancers should be more common in industrial nations at high geomagnetic latitudes.
Cancer statistics from the IARC seem to confirm this, Fig 2.
Further evidence implicating the sun comes from a Russian paper by T.P. Ryabyh and N.B. Bodrova in 1993 outlining a delayed solar cycle for breast cancer in women. Much earlier was the first paper linking power lines and cancer published in Denver USA in 1976. Its significance is that the 'Mile High City' is between $5-6000$ feet, where solar background radiation is at least four times that at sea level.
> "What is needed now is properly funded research..."

I am also sure it is no accident that the best statistics to date for a link between power lines and cancer come from Scandinavia which is highly electrified and at a high geomagnetic latitude.
What is now needed is properly funded research into the symbiotic reaction between electric power and background radiation using the best radiation metrology. In my opinion, the intensification of natural background radiation by the electric and magnetic fields associated with electrical installations provides the missing link between human cell damage and eventual disease in some people living and working under the aegis of the pylon.
The evidence is mounting, and won't go away.

More information

Photocopies of earlier articles on non-ionising radiation published in Electronics World are available from SoftCopy for $£ 7.50$ fully inclusive. Totalling 25 pages, these A4 copies comprise five articles from the Killing Fields series covering: introduction, biophysics, epidemiology, microwaves, politics and causes. Also included is Anthony Hopwood's 1992 article 'Radiation focused by power lines'. Send postal order or cheque payable to SofiCopy to 1 Vineries Close, Cheltenham, Gloucester GL53 ONU.

Graphic Displays

Source Level Debugger

Multi-Tasking Debugger

In Circuit Emulator Solutions For Any Budget

Illirill
The Emulator Specialists

WHY TRACE 32 IS SIMPLY THE BEST IN-CIRCUIT EMULATOR AVAILABLE

se. Wider 8/16/32 microprocessor support than any other in-circuit emulator
c. Integrated high level language debugger supports most 3 rd party compilers for C , C++, ADA, MODULA2, PASCAL and Assembly languages

- High speed link to PCs or Workstations via Ethernet LAN or fibre optic interface giving effective code transfer rates of up to $400 \mathrm{kbyte} / \mathrm{sec}$
i. Multitasking debugger support for PSOS, OSE, VRTX32, OS/9 also user configurable for special kernels

3. 'Free 3 year warranty' no hidden charges'

- A complete windowed interface development system: in-circuit emulator, 200 MHz timing analyser, pattern generator, comms analyser, port analyser, stimuli generator
e. BDM and ROM monitor debuggers available using the same interface

2. Up to 4 MFrame real-time trace buffer; unlimited hardware breakpoints; up to 16 MB dual ported emulation memory; full real time performance analysis and statistical functions with code coverage feature.
r. On-line $-1,000$ page fully integrated manual.

Processors Supported

68000 / / / 8 / 10
68302 / 306 / 307
68330... 336

68340, 68349, 68360
$68020 / 030$
68040 / 060
Power PC
68 HCl 6
68HCII-A...P
80186-EA...EC, XL
V20, V30, V40, V50, V53
80386 / 486SX / DX / EX / CX
80196
8051.

H8 / 500, 300, 300 H
90C100... 30
80C166/165/167/GOLD
Z80, Z180
NS32000
MELPS 7700 And many more

THE TRACE 32 - 100 YEARS IN THE MAKING - NO COMPROMISES

At Noral we are experienced at providing the right emulation solution and the Trace 32 from Lauterbach is the best there is; the result of over 100 man years development with its 4M Frame program trace, host system and network support, single intuitive user interface and upgrade flexibility - it's the ultimate solution.

If your requirements don't push the envelope to the limit however, we
can help too, with a complete range of solutions to suit any budget - we really are the emulator specialists.

Call now on 01254682092 for a microprocessor development solution that's cost effective, upgradable, offers the widest coverage and the best technical support.

22bit analogue-in

for

Abstract

Simon Bateson and Andrew Woodward run through the design stages needed for achieving very high resolution analogue-to-digital conversion via a PC's LPT port - and at a relatively low cost.

Alarge number of analogue-to-digital converter designs have been published in electronics journals, either as freestanding units or incorporated into other test and measurement equipment. These have mostly been of 8 -bit resolution, based on devices such as the ZN 425 , which can achieve sampling rates suitable for audio.
For even moderate measurement quality, 12 -bit converters are needed, such as the AD1674 which can achieve 10μ s conversion at around $£ 35$. Higher resolution and higher speeds are generally very expensive; the 'audio optimised' 16 and 18 bit converters have good linearity but less good dc characteristics.
Manufacturers provide cards to fit inside pcs for analogue input and output, but it is very difficult, hence expensive, to obtain optimal performance in the electrically noisy environment of a computer.
There are many applications where high resolution is required but speed is uncritical. Here, the 'voltmeter' a-to-d converters are appropriate and ICs like the 7106 and 7135 have provided excellent performance for many years.
Recently, the development of low speed, high resolution converters has moved forward and some devices offer extremely high sensitivity, resolution and self-calibration facilities. Analog Devices' AD7710AN is a sigma-delta analogue to digital converter with an on-chip programmable gain amplifier. Given a suitable environment, this device can achieve 22 bit resolution - the equivalent of 0.25 ppm .
In addition, the 7710 can provide total rejection of superimposed periodic interference and better than 16 bit non-linearity at over 15 samples per second. This sampling rate is ade-
quate for many process and experimental uses, making the converter relevant for mechanical, thermal and chemical sensors, panel meter applications and research.

Noise rejection

It is well known that integrating converters such as the voltage-to-frequency, delta-sigma and dual-slope types have the ability to reject periodic noise. They do this because the output is proportional to the average, integrated, input voltage over the measurement period.
If the measurement period is a multiple of the local supply waveform period, the converter rejects this frequency and its harmonics. For this reason, the dual-slope integrating converters used in ordinary digital panel meters all run at a similar speed, giving about three readings per second and rejecting both 50 Hz and 60 Hz interference.
The clock frequency must be an exact multiple of the line frequency or cancellation will be incomplete and errors will appear as before. A point that is often overlooked in the implementation of integrating converters is that they rely totally on the short-term stability of the clock oscillator.
Crystal and $L C$ oscillators fulfil all practical requirements, but c-mos inverter and other $R C$ oscillators must be carefully designed for low short-term drift and phase noise.
Noise pickup in the form of $50 / 60 \mathrm{~Hz}$ interference is very common in high-impedance sensors. Among these are ion-selective electrodes, clinical electrodes and piezo transducers as well as in low-level industrial sensors such as strain gauges and katharometers.
Noise is induced capacitively in highimpedance transducers and magnetically in low impedance circuits. Applying comput-

Fig. 1. Hardware-wise, the 22 bit analogue to digital converter circuit looks quite simple. The real trick to obtaining 22bit accuracy is in the layout and component choice.
erised data-collection systems in industrial plant or laboratory environment implies the interconnection of numerous mains-powered devices. Errors in input layout and grounding procedures can cause further problems and the resulting earth loop interference can be difficult to eliminate.
The successive approximation converter the most common type found in pc cards - is not inherently differential or able to reject cyclic noise. Although pickup can be reduced by standard techniques such as balanced transmission and filtering, once the signal contains cyclic noise, the only really effective converter is one with inherent ac rejection.
This article details the design of a practical implementation of the 7710 converter which connects conveniently to a standard Centronic printer port. The necessary control software for a pc is also detailed. For readers interested in constructing the unit, pcbs are available, as is a fully featured Windows controller detailed below.

Measurement principles

This design, Fig. 1, uses an external REF-03 reference for the maximum stability and minimal noise. The converter is a 'sigma-delta' or '1-bit' converter. It comprises a differential amplifier, an integrator and a comparator, Fig 2.

The system is a negative-feedback loop which tries to keep the net integrator charge at zero. It does this by balancing charge injected by the input voltage with charge removed by alternately applied positive and negative reference voltages

When the analogue input voltage is zero, the only charge source is via the switched reference voltages. Assuming ideal components, the resulting duty cycle of the modulator switch will be 50%. Changes in input voltage cause linearly proportional variations in duty cycle. In the AD7710AN, an on-chip digital filter derives a rolling average of the modulator duty cycle
An on-chip microcontroller allows software control of sampling frequency. The more clock periods available for the filter to calculate an average from, the closer to the true input the result will be. Consequently the converter gives its lowest noise and best resolution at low conversion speeds.

It is important to realise that, due to this averaging effect, a sudden change in input will not be reflected in an instantaneous output
change. At a sampling speed of 12 readings per second, the effective bandwidth is about 3 Hz . However, the inherent noise of normal signal sources means that faster measurements would be meaningless at the voltage levels measurable with this converter - the individual readings would differ significantly due to noise and would need averaging anyway
An additional facility of the converter is a programmable gain amplifier, pga, providing seven software programmable gains from 1 to 128. It is not really an amplifier, but uses multi-sampling to achieve the same effect Consequently it is extremely accurate.

Converter resolution and noise

Resolution of the converter is calculated by finding the standard deviation of a number of readings. For signals with a mean value of

Integrator

Fig. 2. Sigma-delta a-to-d converter principles. Theoretically, the '1bit' output can produce any desired resolution.
zero this value equals the rms 'noise' amplitude. The available dynamic range is then defined as the ratio of full scale deflection to rms noise. This was found in the production prototype to be around 132 dB or 22 bits at a unity gain, worsening to 105 dB or about 17.5 bits at a gain of 128 .
A converter capable of a practical resolution of around 22 bits must be built up with con-
siderable attention to sources of digitally induced noise. At a pga gain of 128 and with a typical reference voltage of 2.5 V , one bit corresponds to just over 2 nV and it is possible to reliably measure to $0.2 \mu \mathrm{~V}$ without external pre-amplification.

Circuit-board layout - in particular the power supply earthing sequence - is critical, which is why the pcb is being made available.

The digital filter has a $(\sin x / x)^{3}$ response, Fig. 3, and rejects noise frequencies lying within the notches. For the greatest possible rejection, it is possible to retune the filter periodically, under microprocessor control, to track the mains frequency. However, for most requirements, the fixed notch frequencies suggested below are more than adequate.
When correctly tuned, the converter will

Converter configuration and programming

For a full explanation of the facilities of the AD7710 family readers are referred to the Analog Devices data sheets. The chip incorporates a microcontroller which programs the digital filter and operates various mode switches in the converter. It is programmed with a 24 bit control word which must be sent completely, msb first, and which I have split into three bytes:

Byte	MSB	-	-	-	-	-
1	MD2	MD1	MD0	G2	G1	G0
2	WL	RO	BO	B/U	FS11	FS10
3	FS7	FS6	FS5	FS4	FS3	FS2

MD2, 1 and 0 set the calibration mode. Normally, on powerup and after calibration these read 000 and the device is in normal operating mode. The other modes of interest to us are as follows:
Bit pattern 001 instigates self calibration. The input selected by CH is shorted to analogue ground internally, a conversion run and the result stored as a zero offset coefficient: The input is then connected to $V_{\text {ref }}$ internally, converted and stored as a full scale coefficient. Calibration is then complete and the microcontroller uses these values when translating converter values for transmission. Due to thermal effects and contact potentials, there is a residual offset of a few microvolts between internal and external 'shorted inputs'. This is not important when the converter is used with a pc application program since extra coefficients can be saved by the program to remove the offset error. However, if perfect raw data is needed or if external signal conditioning is performed with drift-prone equipment, the 'system calibration' options are preferable. These are initiated by sending control words with the following mode bits:
Bit pattern 010 causes a system offset calibration. This would be sent after the external system input had been zeroed, for instance by grounding with a reed relay. The conversion result is stored as a zero offset coefficient and the converter returns to normal operation.
Bit pattern 011 causes a system full scale calibration. This would be sent after the external system input had been set to full scale, for instance by connecting to a reference voltage with a reed relay. The conversion result is stored as a full scale coefficient and the calibration is complete. Clearly any sort of signal source or conditioning can be included in this loop. In a transmission photometer, for example, zero could be a closed shutter and full scale, direct lamp illumination. By repeating system calibration every minute or so, long term drift of any component is eliminated. External system switching is facilitated in this board design by the output Darlingtons which can operate relays as needed.

G2, 1 and 0 set the PGA gain in a binary sequence, from 1 to 128 - the default at power-on.

CH is the channel select, $0=$ channel 1 which is the default at power-on. It should be appreciated that although the converter has two physical inputs it is not practical to use both continuously at full speed, nor is it sensible to use an analogue input multiplexer. The converter core needs to settle after a step change in input, unlike a successive approximation type, and this takes four measurement periods. If many inputs must be measured it is best to

	LSB
CH	PD
FS9	FS8
FS1	FS0

PD sets the power-down mode which stops conversion to reduce power consumption but retains calibration coefficients. It defaults to normal operation (0) at power-on.

WL controls the output data word length and defaults to 16 bits (the mosts significant, of course) at power on. When set to 1, all 24 bits are transmitted though the last few bits are normally noise.

R0 switches a $20 \mu \mathrm{~A}$ current source on pin 17 and is not used in this design.

BO switches a 100 nA current source to $A 1+$ input which would typically be used to detect whether a low resistance sensor such as a thermocouple had burnt out and become open circuit.
B / U sets bipolar or unipolar mode, defaulting to 0 (bipolat). It does not alter the converter analogue section at all, just the output coding which is binary in unipolar and offset binary in bipolar. With a +2.5 V reference, the unipolar differential input range is 0 to +2.5 V ; in bipolar it is -2.5 to +2.5 V .

FS11-FS0 is a 12 -bit value which must lie between 19 and 2000 and which defaults at power-on to 325 . The 10 MHz master clock is divided by this value and then by 512 to define the converter update frequency. Suitable decimal values for FS are 1562 (12.5 readings / second) and 1302 (15 readings per second). The filter notches occur at multiples of the update rate so 1562 will reject $12.5 \mathrm{~Hz}, 25 \mathrm{~Hz}, 37.5 \mathrm{~Hz}$, 50 Hz etc., while 1302 is appropriate for 60 Hz rejection. The ac response of the converter depends on the first notch frequency, such that the -3 dB frequency is $0.262 \times$ the first notch frequency. Hence with a 12.5 Hz update rate, the useable bandwidth is dc to 3.3 Hz . Note that noise increases with update rate and pga gain, reducing the dynamic range of the converter. The best combination of sensitivity and dynamic range occurs for a pga gain of 4 and an update rate of 12.5 Hz . In combination with instructions to set bipolar mode, perform a self-calibration and select channel 1 as input, the resulting control word is 0010100010000110 00011010 or, in hex, 2886 1A.
completely reject mains frequency interference to greater than 150 dB . However it cannot accept noise peaks far outside its common mode range without suffering modulator overload and consequent non-linear intermodulation. If high amplitude spikes do appear on the signal, some simple analogue filtering will also be needed.

Interfacing to a PC

Data communication with the $A D 7710$ is via a serial input/output pin, but several extra lines are needed to control data flow. For this reason, and since speed is not important, we found it most convenient to use a pc printer port with manually programmed serial communication. Analog Devices recommends that all digital lines to and from the converter are buffered. This was found to be essential, both to reduce noise-inducing transient currents from the converter and to prevent latchup if the data lines go high before the converter is powered.
High voltage 405014049 buffers are required. If ordinary c-mos gates or buffers are used, current passes through the input protection diodes to the supply rail which then powers up the digital side of the 7710 and sends it into scr latch-up. You will notice that spare gates in the 74 HCl 25 are used to drive a front panel led - not functional, just something to flash. Latch-up-inducing input current here is simply limited by a large resistor.
Naturally, the pc is not the only possible host; the prototype was used with an 8052based single-board microcontroller. The programming instructions shown in the Basic listing should make application to other systems quite easy. Table 1 is a list of pin functions as used by the pc and by the converter in this design.

Converter input impedance

The converter's programmable gain amplifier is a useful inclusion. However, it is important to understand that the input current taken increases at high gains as multiple sample are taken by the integrating capacitor. Hence the input impedance decreases and this can induce loading errors.
In many applications, the loading error will be constant and can be calibrated out of existence. However, when the source impedance varies with output as is the case with some deflection bridge circuits, the variation in loading error will induce non-linearity.
Integrated circuits are incapable of being produced to high levels of absolute accuracy, so the exact input impedance cannot be quoted. It is about $720 \mathrm{k} \Omega$ at unity gain, $360 \mathrm{k} \Omega$ at a gain of two and reaches a minimum of $90 \mathrm{k} \Omega$ at gains of eight and above.
Where high input impedance is important, for instance, pH electrodes, ionisation detectors and electrometers we recommend the use of an external buffer amplifier such as the AD549 'electrometer buffer amplifier'. This exhibits an extreme input impedance of $10^{15} \Omega$ and which can be incorporated into the selfcalibration loop as discussed below in order to eliminate drift.

Table 1: Connections between the Centronics port and 7710 converter.

D25	Centronics	PC 8255	Converter	PC port
connector	function	register line		
function				
Inverts!				

Notes: For LPT1, the 8255 port addresses are 888 (data) 889 (status) 890 (control). For LPT2, the addresses are 632 (data) 633 (status) and 634 (control). The link between C2 and S3 can be toggled and checked to verify hardware connection of the converter.

Analogue input connections

The IC has two inputs, either of which will operate over a wide range of voltages. For instance, the output of a strain-gauge bridge connected between 0 and 5 V can be measured on input 1 . The 2.5 V common-mode voltage is ignored and the pga gain can be set to 128 for microvolt resolution.
The common-mode range extends from +5 to -5 V . The pcb design makes the fully differential input 1 available directly and without protection on a 15 -way D 'multi-function' connector. Input 2 is fed via an attenuator from the D connector and also from separate input terminals or a front panel BNC connector.

Because of its grounded attenuator, input 2 is not differential. The attenuator division ratio is not exact due to the relatively low converter input impedance. This is overcome, of course, by the self-calibration facility. The full circuit diagram of the converter is shown in Fig. 2 which also clarifies the multiple power supply regulation.

Implementing self-calibration

Self-calibration is a facility which can be added to any microprocessor-controlled equipment, but which is generally reserved for highaccuracy systems. The commands for self-cal-
ibration are explained in the panel discussing the set-up and control word for the 7710. These commands result in a linear converter response.
Naturally, self-calibration does not imply traceable calibration or comparison with anything except the system's own reference. Thus, for instance, although the voltage reference used in this system has a very small guaranteed drift with temperature and time, it has a relatively wide initial voltage tolerance.
A typical ratiometric panel meter IC would inherently deliver a zero reading at zero input and a full scale reading when the input is equal to the reference - equal to minus one count, to be pedantic. This reference is typically 1 V or 100 mV , derived through a preset potentiometer from a bandgap voltage reference IC, the preset being adjusted to calibrate the meter.
A normal preset would not be sufficiently stable for this design. You can make a more stable system by connecting the REF-03 directly to the 7710 to make an 'approximately $0-2.5 \mathrm{~V}^{\prime}$ converter.
Data fed from the converter to the supervising pc are simply 24 bit numbers. The process of 'absolute calibration' is to apply zero volts and an accurate near-full-scale

PC ENGINEERING

voltage from a high-quality calibrator. Next, note the corresponding numerical values coming into the pc and insert appropriate conversion factors in the pc program to display correct absolute values.
These conversion factors can be held in an initialisation file. If the converter is incorporated in a larger system, overall system calibration can be done the same way and an initialisation file held for any set-up. This facility is fully utilised in the Windows application program to present a virtual instrument with relevant units - a strain gauge load cell output displayed in kg , for instance.

Non-linear calibrations, incorporating corrections for the well-known non-linearities of thermocouples, for instance, can be dealt with in a couple of ways. If the polynomial coefficients are known they can be included in the user's program. Alternatively, the system can be calibrated at several fixed points and the polynomial coefficients calculated by least squares curve fitting

Digital input/output facilities

As there are several spare lines available on the Centronics port and some space on the pcb it was thought well worthwhile to add a few
buffered digital inputs and outputs. There is little to say about these except that the MPSA14 can carry 300 mA and hold off 30 V which makes it capable of switching relays. Don't forget to add a recirculation diode across the coil.
A single protected digital input is included to allow external triggering. Its cost is negligible and it has been found very useful for automation experiments.
The 12 V regulated supply is also available to power external signal conditioning. It should not be misused as a robust bench power supply since if the $A D 7710$ analogue

This basic Basic routine allows communication between the 22 bit a-to-d converter and a PC via the printer port.

DECLARE SUB screenmeter (volts!)
DECLARE SUB Elash ()
dECLARE SUB digitalout (code)
DECLARE SUB digitalin (level\$)
DECLARE SUB convertersetup ()
DECLARE SUB setbit (port!, bit!)
DECLARE SUB clearbit (port!, bit!)
DECLARE SUB getword (adval)
DECLARE SUB waitconverter ()
COMMON SHARED dataport, statusport, controlport, outword, s\$
REM a program to test the Centronics converter functions
REM written on August 21995
REM printer port addresses for lpt1
dataport $=888$
statusport $=889$
REM only used for front panel red LED
controlport $=890$:
REM initial setup - _RFS, _TFS high, rest low
outword $=12$:
REM ******** Start of Program *********
OUT dataport, outword
waitconverter
convertersetup
screenmeter (0)
FOR $i=1$ TO 10: flash: NEXT
DO UNTIL INKEY\$
getword adval
REM omit for unipolar
adval $=$ adval -2 ^ 23 .
REM use $2^{\wedge} 24$ for unipolar
volts = adval * 2.5 / (2 ^ 23):
LOCATE 16, 27
PRINT "converter INPUT IS: ";
PRINT USING "\#.\#\#\#\#\#"; volts;
PRINT " VOLTS"
flash
LOOP
SUB convertersetup
mds = "001": REM mode; $001=$ int zero, self-calibration
pgs $=" 000 "$: REM PGA gain, set to $1 x$ here
ch\$ = "1": REM channel selection, set to channel 2
pds = "0": REM power-down, turned off
wl\$ = "1": REM word length, set to 24 bits
roS = " 0 ": REM RTD excitation current, turned off
bo\$ = "0": REM burn-out detection current, turned of f
bu\$ = "0": REM bipolar/unipolar, set to bipolar
f1\$ = "0110": REM first 4 bits of filter ' 6 '
$\mathrm{f} 2 \mathrm{\$}=$ "0001": REM middle 4 bits of filter ' 1 "
$\mathrm{f} 3 \mathrm{\$}=$ " 1010 ": REM last 4 bits of filter ' A '
$\mathrm{s} \$=\mathrm{md} \$+\mathrm{pg} \$+\mathrm{ch} \$+\mathrm{pd} \$+\mathrm{wl} \$+$
ro\$ + bo\$ + bu\$ + f1\$ + f2\$ + f3\$
REM filter is set here to $61 \mathrm{~A}=1562$ decimal
REM ie 12.5 Hz sampling rate
REM set up dataport with _RFS, _TFS high
OUT dataport, outword:
REM clears dataport bit 3, ie takes _TFS low
clearbit dataport, 3:
REM now clock out control word (24 bits)
REM by toggling SCLK line
FOR $\mathrm{i}=1$ TO 24
IF MID\$(s\$, i, 1) = "1"
dataport, 1
setbit dataport, 0: REM SCLK line
clearbit dataport, 0
NEXT 1
setbit dataport. 3: REM return _TFS high
END SUB
SUB clearbit (port, bit)
valbit $=2$ ^ bit
outword $=$ outword AND NOT valbit
OUT port, outword
END SUB
SUB digitalin (level\$)
S6 = INP(statusport) AND 64: REM comes in on line S6 IF S6 = 64 THEN level\$ = "low" ELSE level\$ = "high" END SUB
SUB digitalout (code)
REM this sends out a code from 0 to 15 on the Darlingtons outword $=$ outword AND 15: REM ensure top 4 bits are off outword = outword OR (code * 16) : REM place top 4 bits out OUT dataport, outword
REM this is a bit simple because it's not set bit by bit
REM so there will be an 'off' glitch every time.
END SUB
SUB flash
OUT controlport, 1: FOR $i=1$ TO 10000: NEXT
OUT controlport, 0: FOR $i=1$ TO 10000: NEXT
END SUB
SUB getword (adval)
waitconverter
adval $=0$
clearbit dataport, 2: REM take _RFS low
FOR $i=0$ TO 23
setbit dataport, 0: REM take SCLK high
IF INP (statusport) AND 32
THEN adval $=$ adval $+2 \wedge(23-i)$
REM read statusport bit 5 ,
Remadd its value to adval, MSB first
REM take SCLK low again
clearbit dataport, 0 :
NEXT
setbit dataport, 2: REM return _RFS high
END SUB
SUB screenmeter (volts)
SCREEN 12
LINE $(0,0)-(639,479)$, B
LINE $(100,100)-(539,379), 5, \mathrm{BF}$
LINE $(170,220)-(470,270), 0, B F$
LOCATE 11, 27
PRINT " AD7710AN BASIC TEST PROGRAM "
END SUB
SUB setbit (port, bit)
valbit = (2 ^ bit)
outword = outword OR valbit
OUT port, outword
END SUB
SUB waitconverter
notready:
IF INP(statusport) AND 16 THEN GOTO notready
END SUB
supply dips below the digital side for an instant it changes from a data converter into a thyristor and gets very hot.
Lines to the connector include current-limiting 22Ω resistors to provide some protection. Only a few tens of milliamps are available and decoupling capacitors will be needed on the external circuitry.

Test program written in Basic

A listing is given for a minimal test program. This routine operates the converter by somewhat agricultural data transmission methods but it serves to illustrate the important points.
Initially, the parallel port is set up for normal action and no communication. The program waits for the converter to indicate readiness by taking /DRDY low. A 24 bit set-up word is sent to the converter by taking the transmit frame synchronisation signal /TFS low, setting TxDATA high or low and toggling serial clock line SCLK for each bit. After all 24 bits have gone /TFS is returned high.

Converter values are read in a similar fashion, by taking the receive frame synchronisation signal /RFS low and clocking data into the computer by toggling the SCLK line.
A possible cause of confusion when working with the parallel printer port is that the pc hardware inverts some of the lines. Because of this, a bit set in the output register may not come out of the socket high. Port lines chosen for this design are mostly non-inverting. Table 1 provides information on the port lines.

Summary

Ultra-high resolution, high accuracy analogue measurement used to be the preserve of very expensive and exotic equipment, supplied by companies like Fluke, Hewlett Packard and Solartron. While the extremes of quality measurement must stay with such companies, this hardware/software approach should provide performance in excess of most conceivable professional and amateur requirements - at a relatively low cost.

Note: pins marked $0-$ are on rear panel PC port connector pins marked $_$
are on front 'Multifunction Connector'
'Ext In' is very high impedance and needs external pull-up or pull-down resistor

Regulator and digital i/o for the 22bit a-to-d converter. Note that the regulators are fed from a separate dc power supply.

Exclusive 25\% discount for EW readers

Based on this article, the MPM ADC 22bit built and tested a-to-d converter normally sells at $£ 340$ but is available to EW readers at a special 25% discount price of $£ 255$ fully inclusive*
This self contained, high performance unit has two analogue inputs and connects directly to the PC's LPT port. It is supplied with:

- Win $3 . x / 95$ virtual-instrument software for logging, graphing, metering etc. - independent psu
- calibration to a high accuracy of 0.01%.
- anodised aluminium enclosure

In addition, the following items are available separately:

- Circuit board, double sided, with full solder mask and component identification, disk together with Basic routine and component/supplier lists - $£ 28$.
- Anodised, machined and printed front and back panels to suit specified standard enclosure - $£ 22$.
- Windows 3.1 x or Windows 95
application program with full virtual instrument facilities, data logging, experiment automation and data compatibility with all common applications, accompanied by a .dll file to incorporate ADC control into user programs - $£ 34$

Send cheque or postal order made payable to MicroPower Measurements to 4 Elwick Terrace, Hutton Rudby, North Yorkshire TS15 ODH. Phone 01642342266 or phone/fax 01642701786 . Please send all enquiries relating to this offer to the above address.
*Overseas readers should write to MicroPower Measurements for offer details.

Benefiting from a new high-side switching device - namely a Treeswitch - this economical battery charger allows fast charging of NiCd and NiMH and reduces 'memory effect' in NiCd cells.

Fast charger for NiCd and NiMH

Generally, nickel-cadmium cells, or NiCd cells, are trickle charged at 0.1 C for about 14 h ., Fig. 1. With better understanding of battery chemistry the trend is shifting towards rapid charging at higher rates -1 C and greater for example - especially in the professional market.
The new generation of 'smart charger' employs an ASIC, often in combination with a microcontroller to optimise battery management. The methods used to detect end of charge are $\mathrm{dv} / \mathrm{dt}$ inflexion, temperature and time.
We found that the monitoring of temperature to detect end of charge is as effective as the $d v / d t$ method, which can be a problem for NiMH as the inflexion point is not well

Fig. 2. With NiMH cells, charging characteristics show that the voltage fall at full charge is much less significant than with NiCd alternatives to temperature change is a more useful indicator of cell charge status.

Fig. 1. Charging characteristics of NiCd cells indicate that battery voltage starts to fall

defined, Fig. 2. However, as the $38^{\circ} \mathrm{C}$ end of charge temperature for nickel-metal-hydride cells, NiMH , is greater than the $35^{\circ} \mathrm{C}$, of NiCd cells, using the temperature-only method results in a slight undercharge for NiMH batteries.

Benefits of charge/discharge cycles

Figure 3 shows a circuit capable of charging four ' $A \mathrm{~A}$ ' size cells in series within lhr - less if the cells are not fully discharged. When rapid charging, the circuit supplies a 3 s charge, then 10 ms discharge current pulse. This repeated discharging during charging reduces or removes the memory effect of in NiCd cells cells.
At switch on, the charger defaults to trickle charging at 70 mA , so it can be used as a simple conventional charger. When $S W_{1}$ is
momentarily closed a 1.2 h timer is enabled and the charger goes into rapid charge mode, charging at a 1 C rate of about 1 A .
Temperature of the battery rises as it nears full charge. When it reaches $35^{\circ} \mathrm{C}$, the unit reverts to trickle charge and stays indefinitely in this maintenance mode - until $S W_{1}$ is closed again.
The prototype unit was set so that the timer was greater than that required to charge NiMH from zero depth of discharge. This ensured the cells would be charged to maximum, whatever the initial state of the cells.
The unit has been in use for some time and has successfully recharged both NiCd and NiMH cells - some of which would not hold charge using conventional trickle chargers. In fact, we observed that only cells showing signs of physical leakage damage could not be
recharged - others, even very old ones can be charged with varying degrees of success.
A unique feature of this circuit is the incorporation of a new device called a Treeswitch. Designated the ZHD100, this discrete semiconductor comprises a bipolar power device with a mosfet input (see panel). This topology enables the discharge circuit to be implemented easily.
For safety reasons, the unit will not allow rapid charging if there are any short circuit cells in the stack; it defaults to trickle charging.
A $12 \mathrm{~V}, 1 \mathrm{~A}$ power supply is suitable for driving the circuit shown. To charge larger capacity cells - C and D sizes for example - a psu with the same current capacity of the cell to be charged is recommended for lh fast charging.

Treeswitch - a bipolar high-side driver with mosfet input characteristics

'Treeswitch' is a term describing a new monolithic semiconductor structure combining the benefits of mosfet and bipolar transistor technology. Invented at Zetex, the device is a high-side switch fecturing high input impedance and bipolar transistor power switching characteristics.

Unlike most previous bipolar/mosfet combinations, the Treeswitch is a four terminal device. Initial products in the range, namely the ZHD 100 and ZDHD100, are single and dual high side switches operating from supply voltages to 80 V with continuous currents to 250 mA .

To achieve the integration in a rugged and costeffective manner the designers developed a new technology plafform - the structural integration of Zetex's matrix bipolar transistor technology and a mos input stage. The result is a patented bimos structure offering the combined advantages of a ground referenced standard logic level mos input with a $V_{e c}$ referenced low output voltage drop.

This seemingly simple integration task was complicated by conflicting process requirements and the presence of unwanted parasitic interactions, requiring extensive simulation and verification testing ta optimise the device performance.
The advantage of separating the collector and source is that the low saturation voltage of the tansistor can be fully exploited. This is in contrast to an igbt structure where the voltage drop is at least a volt.

Pulling the gate positive with respect to the source altracts electrons into the p-type material below it which forms an n-channel between the base and source. This allows base current to flow and turns the transistar on.

The transistor has Zelex's marrix architecture, which results in unusually low saturation voltage. The fet sits in the middle of it and is small in comparison, limiting the amount of current it can pass. This makes the fet approximate a constant-current device, removing the need for a drainbase current limiting resistor.

Housed in SOT223 or Zetex's SM8 packages, the first devices to be released are designed with ruggedness in mind, being able to switch over two amps depending on the duty cycle and drive supplied.

Photomicrograph of the Treeswitch - a four-terminal monolithic device combining the benefits of mosfet input impedance with bipolar switching characteristics.

At high voltages the device dissipation is predominantly from the 10 mA base current. if the full output current of the device is not required, this can be reduced by adding a series resistor between the source and ground.
Although there are other high-side switches on the market, co-inventor of the Treeswitch David Casey said: "The matrix architecture results in a very small chip compared with its competitors. The small chip leads to a low device cost."
Structure of the Treeswitch is shown below left, followed by an example of how the device soves components in a typical relay driving application.

All you need to know about power supplies

> Simplified design of switching power supplies Author John D. Lenk, 224 pages hardback
> Switching power supply basics
> Heat sinks for switching power supplies
> Inductors/transformers for switching power supplies
> Testing and troubleshooting
> Simplified design approaches

Simplified design of micropower and battery circuits
Author John D. Lenk, 254 pages paperback
Introduction to
micropower/battery design
Battery basics
Battery chargers
Single-cell circuits
Multicell circuits

Simplified design of linear power supplies Author John D. Lenk, 246 pages hardback

Linear power supply basics Heat sinks for linear power supplies Discrete feedback regulator basics IC linear regulator basics Linear supply testing and connections Linear supply design examples

Part of the EDN series for design engineers, these three books cover every aspect of power supply circuit design from battery charging to inductor choice. They are available individually or as a set of three with a discount of 10% on the normal retail price.

Please send me
\qquad copies of Simplified design of switching power supplies at
$£ 22.50$ ea.
\qquad copies of Simplified design of linear power supplies at $£ 22.50$ ea.
\qquad copies of Simplified design of micropower and battery circuits at
£22.50 ea.
__ sets of all three books at the 10% discount price of
£60.75 ea.
Postage*
£
Total £
*UK postage is $£ 2.50$ for one book and $£ 4.50$ for two books or the set of three.
Europe postage is $\mathbf{£ 5}$ for one book and $\mathbf{£ 9 . 5 0}$ for two books or the set of three.
Rest of world, courier is $£ 7.50$ for one book and $£ 13.50$ for two books or the set of three.

Name
Address \qquad

Method of payment (please circle):
Access/Mastercard Visa Cheque PO
Cheques made payable to Reed Business Publishing
Credit card No \qquad
Expiry Date \qquad Signed

Send this coupon, or a clear photocopy of it to Electronics World ediforial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS together with credit card type, number and expiry date, or postal order or cheque made payable to Reed Business Publishing. Alternatively you can fax your details on 01816528956 or send an e-mail to jackie.lowe@rbp.co.uk with ordering details.

Whmodels, radio-communications or general electronics, the one component you can't afford to be without is Electromail.
Electromail gives you instant access to Europe's largest stock of electrical, electronic and mechanical components.

- 60,000 product lines available ex-stock.
- All top brands, tested and approved by our engineers.

Order by Phone, Fax - 24 hours a day, 365 days a year.
1- Order lines manned 8.00 am . to 8.00 pm .

- Next day delivery available on request.
- Repair and Calibration service available.
(1) Nominal P\&P charge of only $£ 2.95+$ VAT on all standard delivery orders.
To find out more about Electromail, See the Internet
http://www.rs-components.com/rs/

Everything you need at the end of the phone!

SPECIAL OFFER

WINDOW STICKERS AND TRANSFERS
Claim one of our unique, limited edition "Bright Sparks
 Do It With Electromail" window stickers and transfers. We're giving away 6,000 of them. Simply place an order of any value, including orders for a catalogue, and quote reference EWWI. Please allow 28 days for delivery of your sticker and transter.

HURRY OFFER ENDS WHEN STOCKS RUN OUT

WIN

 A FANTASTIC PSION 3A POCKET COMPUTER Your chance to win this powerful 256 k memory PSION 3A pocket computer. To enter the prize draw simply recommend a friend you think would be interested in the Electromail service. No purchase is necessary. Send your friend's name, address and telephone number, plus your own together with your Customer Reference Number (if you have one) and tell us in not more than 20 words, why you would use Electromail. Applications can be sent by post or lax quoting reference EWW2. Full rules and conditions are available on request. Postal applications to: Amanda Johnston, D.P.N. 55 , Electromail, P.O. Box 33, Corby, Northants, NNI7 9ELFax Applications: FA.O. Amanda Johnston on Fax No 01536405555

All entries must be received at Electromail's office
 by 5.00 pm on Friday 3 st May to qualify. All qualifying entries will be included in the prize draw and the winner will be advised by post by 16 th June. This competition is not open to employees (or their families) of Electromail or associated companies, or public servants and members of government bodies or agencies involved in this promotion. No cash alternative is available and no correspondence will be entered into.The judges decision is final.
Electromail, P.O. Box 33, Corby, Northants NNI7 9EL.

AUDIO DESIGN

Designing valve RIAA preamps

An RIAA preamplifier, to last month's philosophy, needs three individual stages. A cascode or a μ-follower are both possibilities for the input stage, but initially, it is advisable to use a common cathode triode for simplicity. The second stage can be the same, but the third will need to be a cathode follower for reasons that will become apparent later. You can now draw a circuit diagram for the complete RIAA stage, Fig. 1.
The $75 \mu \mathrm{~s}$ hf loss is formed by the combination of R_{4}, R_{5}, and C_{3}, whereas the $3180 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$ pairing is formed by R_{8}, R_{9}, and C_{5}. The calculation of these components is simple, but you must remember to account for hidden components. Eaxmples of these are the output

> Delving further into valve preamplifier design, Morgan Jones shows how to produce a no-compromise balanced design combining the benefits of valves and transistors. Eaxmples of these are the output
impedance of the valve, and Miller input capacitance of the next stage in parallel with strays.

Calculation of $75 \mu \mathrm{~s}$ component values

The entire pre-amplifier is based on the $E 88 \mathrm{CC}$ dual triode, and for the dc conditions chosen for our common cathode triode input stage, r_{a} equals $6 \mathrm{k} \Omega$. This is in parallel with the $100 \mathrm{k} \Omega$ anode load resistor, so $Z_{\text {out }}$ is $5.66 \mathrm{k} \Omega$.
To calculate the capacitor needed for the 75μ s time constant, you need to find the total Thévenin resistance that the capacitor sees in parallel, as shown in Fig. 2.
For the moment, you can ignore C_{1}. It will be accounted for later. Capacitor C_{3} sees the grid-leak resistor R_{5} in parallel with the series combination of the output impedance of the preceding valve and R_{4}. As is usual, you will make the grid-leak as large as is allowed, so R_{5} equals $1 \mathrm{M} \Omega$.
You are now free to choose the value of R_{4}.

Fig. 1. Basic RIAA preamplifier stage incorporates two common cathode stages followed by a cathode follower.

Impedance $Z_{\text {out }}$ needs to be a small proportion of R_{4}, otherwise variations in r_{a} will upset the accuracy of the equalisation. Too large a value of R_{4} will form an unnecessarily lossy potential divider in combination with R_{5}. At high frequencies, capacitor C_{3} is a short circuit, and so the additional ac load on the input valve will be R_{4}. A good value for R_{4} is $200 \mathrm{k} \Omega$, and it has the bonus of being available both in 0.1% E96 series, and 1\% E24 series. Very few E24 values are common to the E96 series. In combination with R_{5}, this gives an acceptable loss of 1.6 dB , while not being an unduly onerous load for the input stage.
The capacitor now sees $200 \mathrm{k} \Omega$ and $5.66 \mathrm{k} \Omega$ in parallel with $1 \mathrm{M} \Omega$, giving a total resistance of $170.58 \mathrm{k} \Omega$ Dividing this value into 75μ s gives the required capacitance value of 440 pF , but you must subtract the stray capacitance of the next stage.
Gain of the second stage is 29 , and C_{ag} is 1.4 pF , so the Miller capacitance will be 30 times 1.4 pF which is 42 pF . In addition to this, the cathode, the heaters, and the screen are at earth potential, and will be in parallel with this capacitance. $C_{\mathrm{g}-\mathrm{k}+\mathrm{h}+\mathrm{s}}$ is 3.3 pF , and you ought to allow a few pF for external strays. A total input capacitance of 50 pF would be reasonable.
Total capacitance required is 440 pF minus 50 pF , or

390 pF , so a $390 \mathrm{pF} 1 \%$ capacitor is acceptable.
Earlier, the effect of coupling capacitor C_{1} was ignored, but this must have some effect on the Thévenin impedance seen by the 390 pF capacitor. You could use such a large value that its reactance was negligible compared to the $200 \mathrm{k} \Omega$ series resistor, but a more elegant method is to move its position slightly, Fig. 3.

The capacitor now only has to be negligible compared to $1 \mathrm{M} \Omega$. The $75 \mu \mathrm{~s}$ delay corresponds to a -3 dB point of approximately 2 kHz , so it is at this frequency that the values of other components are critical. At 2 kHz , a 100 nF capacitor has a reactance of approximately 800Ω, which is less than 0.1% of $1 \mathrm{M} \Omega$. If you had not moved the capacitor, you would have needed a value of 470 nF simply to avoid compromising RIAA accuracy.

Interaction problems

The second stage is direct coupled to the cathode follower, so you do not need to worry about interaction between a coupling capacitor and the $3180 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$ pairing. This is fortunate, since $3180 \mu \mathrm{~s}$ corresponds to 50 Hz , which is close to our 1 Hz cut-off. These time constants are sufficiently close that they would interact significantly.
The other reason for using a cathode follower is its low input capacitance. Any stray capacitance across the $3180 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$ pairing will cause an additional high frequency rolloff. In the 75μ s network, you were able to incorporate the value of stray capacitance into your calculations, but in this instance this is not possible, and it is therefore essential that stray capacitance is so small that it can be ignored. The full equation for the input capacitance of a cathode follower is,

$$
C_{\text {input }}=C_{a g}+(1-A) C_{g k}
$$

For a cathode follower, A_{v} approximates to $\mu /(\mu+1)$; for an E88CC, μ is approximately 32, resulting in a gain, an A_{v} of 0.97 . Capacitance $C_{\text {ag }}$ is 1.4 pF , and C_{gk} is 3.3 pF . The C_{gk} term is negligible at 0.1 pF , and so the input capacitance is virtually independent of gain at 8 pF - including an allowance for strays.
The equations that govern the $3180 \mu \mathrm{~s}$, 318μ s pairing are delightfully simple, $C R$ is 318×10^{-6}, and the upper resistor is $9 R$. Loss at 1 kHz for this network is 19.05 dB , Fig. 4 .
You should now check whether the 8 pF stray shunt capacitance is sufficiently small not to cause a problem. To do this, you need to employ a slightly circular argument.
First assume that it will not cause any interaction. If this is true, then the frequency at which the cut-off occurs will be so high that C in the network is a short circuit. If it is a short circuit, you can replace it with a short circuit, and calculate the new Thévenin output impedance of the network.
Since the ratio of the resistors is $9: 1$, the potential divider must have a loss of $10: 1$, and the output impedance is therefore one tenth of the upper resistor. If you assume that the upper resistor will again be $200 \mathrm{k} \Omega$ while neglecting $Z_{\text {out }}$ of the previous stage, the Thévenin resistance that the 8 pF stray capacitance sees at high frequencies is $20 \mathrm{k} \Omega$, this gives an hf cut-off of 1 MHz .
As a rough rule of thumb, once the ratio of two interactive time constants is $\geq 100: 1$, the response error caused by interaction is inversely proportional to that ratio. A ratio of $100: 1$ causes an error of approximately 0.1 dB .

Fig. 2. Determining RIAA's 75 $\mu \mathrm{s}$ time constant involves finding the fotal Thévenin resistance that the capacitor sees in parallel.

Fig. 3. Moving the coupling capacitor rightwards in the network reduces interaction.

Fig. 5. Practical valve preamplifier design featuring op-amps to increase power supply rejection ratio.

AUDIO DESIGN

In this example, the ratio of 1 MHz to the nearest time constant of $318 \mu \mathrm{~s}(500.5 \mathrm{~Hz})$ is $2000: 1$. You can now safely ignore interaction and go on to accurately calculate the values for the $3180 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$ pairing.
If the network were driven from a source of negligible resistance such as an op-amp, ideal values for the resistors would be $180 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$, since these are both members of the E24 series. The capacitor could then be 16 nF with only 0.6% error. Unfortunately, the source has appreciable output resistance, so you will again choose $200 \mathrm{k} \Omega$ as the upper resistor and accept whatever values this generates for the lower two components.
Since the second stage is identical to the first, output resistance is $5.66 \mathrm{k} \Omega$, making a total upper resistance of $205.66 \mathrm{k} \Omega$. The lower resistor will therefore be $22.85 \mathrm{k} \Omega$, and the capacitor 13.92 nF .
A resistance of $22.85 \mathrm{k} \Omega$ can be made from a $23.2 \mathrm{k} \Omega, 0.1 \%$ resistor in parallel with a $1.5 \mathrm{M} \Omega, 1 \%$. A capacitance of 13.92 nF can be inconveniently made from a pair of 6.8 nF in parallel with 330 pF . You can now draw a full diagram of the preamplifier stage with component values, Fig. 5.
Equalisation networks for RIAA invariably generate awkward component values, requiring much manoeuvring to nudge them accurately onto the E24 series.

Power supply rejection ratio

Although individual stages have been designed and interconnected to form an audio system, each stage requires power. Supplies are always derived from a common source.
No practical source has zero output resistance, although ac mains is a good approxi-
mation The issue of a common power supply with non-zero output resistance is crucial. It implies that as a given audio stage draws a varying supply current in sympathy with the audio signal, a voltage will be developed across the source resistance of the supply.
Although attenuated by individual stage rejection ratio, this voltage is now an input to all other stages. If power supply rejection ratio, psrr, is low while the signal gain between stages is high as in an RIAA stage, the loop gain via the power supply may be greater than unity. This results in oscillation.
Traditional power supplies used a shunt capacitor to define their source impedance, resulting in increased source impedance at low frequencies since,

$$
Z_{\text {source }}=\frac{1}{2 \pi f C}
$$

Therefore instability would be more likely at low frequencies, although the non-zero effective series resistance of the normally electrolytic supply capacitors could provoke highfrequency instability if not bypassed.
Modern designs use regulators giving excellent $Z_{\text {source }}$ down to dc. However, because the error amplifier must have a response falling with frequency in order to maintain its own stability, $Z_{\text {source }}$ is inductive and rises with frequency, and hf instability is a possibility.
Summarising, any practical common supply will always have non-zero output resistance. System stability is only maintainable if individual stages have sufficient psrr to that common supply. It is useful to define two new terms:

- Intrinsic pssr: the psrr due to the topology of an individual stage.

Both the MJE340 and the 317T must be mounted on, and carefully insulated from, a
substantial heatsink such as a piece of 3 mm thick aluminium angle extrusion.
Fig. 6. Practical 300 V regulated ht supply incorporating a floating 317 adjustable regulator.

Fig. 7. Using a rectifier and dc regulator for the 6.3 V heater supply eliminates hum problems associated with traditional ac heater drives.

- Common supply psrr: intrinsic psrr plus any added psrr - by whatever means - to the common supply point.
Any common cathode stage possesses intrinsic psrr by virtue of the potential divider formed by r_{a} and R_{L}, but an $E 88 \mathrm{CC}$ operated such that r_{a} is $6 \mathrm{k} \Omega$, and R_{L} is $100 \mathrm{k} \Omega$ only results in an intrinsic psrr, referred to the output, of 24 dB . Using the same valve as a μ-follower could improve this to 50 dB , a differential pair might improve the 24 dB figure to 64 dB depending on valve matching. Used as a cascode, the valve's 24 dB figure would be degraded to zero.
Any given stage may have its common supply rejection ratio increased by an arbitrary amount using individual filtering or regulation. Apart from expense, it does not matter whether the common supply rejection is made up mostly from intrinsic psrr, or added psrr via filters or regulators.
Extreme methods might even include individual mains transformers and supplies for each stage. This increases common supply rejection ratio to the ac mains, the common supply point. Use of a dedicated spur from the electricity supply company cable head would be a means of reducing $Z_{\text {source }}$.

A more elegant and considerably cheaper method of improving common supply rejection ratio is to add the high intrinsic psrr of an op-amp to stage intrinsic psrr by supplying each stage via a voltage follower op-amp. This was illustrated in the previous diagram. In order to obtain a low $Z_{\text {source }}$, a regulator is used at the common supply point, Fig. 6.

Practicalities and performance

For optimum performance, valve pre-amplifiers should have a 'standby' mode, whereby the heaters are supplied with approximately 63% of operating heater voltage. This ensures a minimum of gas molecules within the vacuum. These molecules become ionised when ht is applied, accelerating them to the cathode, resulting in stripping of the cathode emissive surface. As a result, they should be kept to a minimum. At switch-on, ht is applied, and the heaters are restored to full voltage, Fig. 7.
A dual colour led was fitted as a power indicator with its green led lit by the permanently applied heater supply, and the red led in series with the lower leg of the ht sink resistor for the op-amps. Switching the pre-amplifier on therefore results in an orange glow similar to the colour of a valve heater, but a pure red glow would indicate heater supply failure.
The preamplifier was designed to be as simple as possible while retaining quality. It works well. Paired with a Garrard 301 on a solid plinth, using an Ortofon Quattro moving coil cartridge in a unipivot arm designed and built by me, the complete LP system was comparable to a $£ 2,000$ cd-based system.

The balanced preamplifier

Although logic dictated optimum system topology for the RIAA stage, individual stage design is flexible. Audio stage complexity can usefully be traded against power supply com-
plexity for a given common supply psrr requirement. In this respect the differential pair is most useful and has the added bonus of reducing the number of coupling and decoupling capacitors required. This naturally leads to...

Balanced working and cables

Balanced working is commonly used in broadcast and recording studios to protect audio signals from external electromagnetic interference. It is particularly useful for low-level signals such as microphones.
A balanced source is simply one where each terminal of the source has balanced impedances to ground. Frequently, the only path to earth from the terminals is via stray capacitances, and the source is then floating. Connecting cables for balanced systems therefore have two signal wires or legs, and an overall screen to maintain this balance. The input stage of the following amplifier also has its stray impedances carefully balanced to ground and will either be a differential pair or a transformer.
When you immerse the connecting cable in an electromagnetic field, an identical noise current is induced into both wires. The series resistance of the cable is the same on each leg, and the shunt capacitances and resistances to ground are also equal, so the noise current develops a voltage of identical amplitude and phase on both legs at the amplifier input. This common mode signal is then rejected by the differential pair or transformer, whereas the wanted audio signal is differential mode and is amplified.
Typically, a moving coil cartridge produces approximately $200 \mu \mathrm{~V}$ at 1 kHz and $5 \mathrm{~cm} / \mathrm{s}$, but before RIAA equalisation, the level at 50 Hz is approximately 15 dB lower at $36 \mu \mathrm{~V}$. Achieving the goal of inaudible hum on a signal at this level is not trivial. The cartridge is a balanced device, so why unbalance it?

You should immediately rewire the output cable of the pick-up arm to maintain this balance by discarding any coaxial cable. The connecting cable from arm base to preamplifier should be replaced by a twisted pair, with overall screen, for each channel.
A cable construction I use has twisted pair covered with a braid electrostatic screen. Both cables are then threaded down one overall braid screen. Braiding also hold the cables together and further aids screening, while a nylon braid is fitted over the top to prevent handling noise.
The braid should not have voids, so most antenna cables are unsuitable. Broadcast quality video cable or multicore umbilical cable, are both ideal sources of non-voided braid. Once the plastic outer sheath has been removed, the braid will easily concertina off the inner conductors.
A professional quality metal bodied 5-pin DIN or XLR plug is ideal for connecting this cable to the preamplifier, although the cable entry will usually need to be enlarged. Ideally, the screen should be connected to mains earth at the pick-up arm end, but this is not quite so critical in a balanced system.
Incidentally, within the arm tube, most pick-up arms twist all four thin, non-screened wires from the cartridge together, because this makes the wire easier to handle. Crosstalk between channels would be improved by twisting channels individually as they pass down the arm tube, but retaining the four wire twist required for low friction as the wires pass through the bearings to the output cable.
This form of rewiring is especially beneficial for moving coil cartridges and will help hum rejection even if the preamplifier is unbalanced.

Basic preamplifier compromises

If you really want to achieve a significant improvement on the basic preamplifier, you will need to look closely at the fundamental design and reconsider some of the compromises that were initially made.

- Intrinsic psrr was not maximised.
- Individual anode currents were set quite low in order to minimise total current consumption, so that the preamplifier could be powered from an associated power amplifier. This meant that g_{m} for each stage was low, and noise was not minimised.
- Metal film resistors were used in the anode load resulting in excess noise, although most of this was shunted by r_{a}. To eliminate excess

30N Ce

Fig. 9. Implementing the 75μ s time constant in balanced mode.
noise, wirewound components should be used for any resistors with significant de across them.

- Individual stages were kept simple, but linearity was therefore not optimum.

The balanced preamplifier seeks to address all of the above points but does not place such a high priority on simplicity or cost, Fig. 8.

The input stage

In order to reap the full benefits of balanced working, a moving coil step-up transformer for 3Ω cartridges was especially designed for this preamplifier by Sowter Transformers of Ipswich. Correctly terminated, the first batch of type $8055 x$ had a frequency response that was flat $\pm 0.1 \mathrm{~dB}$ from 12 Hz to 100 kHz , while the high-frequency phase response was pure delay $\pm 1^{\circ}$ to 50 kHz .
The $8055 x$ transformer also has an electrostatic screen between primary and secondary and its stray capacitances to ground have been balanced. This results in excellent rejection of common mode noise on the connecting wires from cartridge to preamplifier.
The first stage has a semiconductor constant current sink to enhance common mode rejection and the grid-leak arrangement is a little unusual. If you were to assume zero winding resistance for the input transformer, then a grid-leak connected to one valve would also serve as the grid-leak for the other, so only one resistor is required
Since winding resistance is not zero, you move the single grid-leak to the centre tap of the transformer, which is a point of zero ac and dc potential. This assumes perfect transformer balance.
Any noise current passing through this resistor will develop a voltage that is applied equally to both inputs of the differential pair and will be rejected. If the resistor is large, then a larger noise voltage will be generated, and the input stage may no longer be able to reject it. This problem is solved by reducing the grid-leak resistor to 0Ω and connecting the transformer centre tap directly to ground.
Because the circuit is dc coupled, it has become necessary to include a dc balance control which should be set to equalise the anode voltages of the second stage.
The resistors marked AOT, for adjust on test, in the cascode constant current sources will only need to be set once for correct anode
voltages, since they correct for individual variations in $V_{\text {be }}$ and led voltage

Second stage and $75 \mu \mathrm{~s}$ time constant

 In order to direct couple the first stage to the second, the cathode of the second stage must be at an elevated voltage. It seems foolish not to use a constant current sink in this position.Initially, an E88CC triode constant current source was considered, but the calculated r_{a} of $200 \mathrm{k} \Omega$ was thought to be insufficient, so an ECF80 pentode was substituted. This increased r_{a} to $10 \mathrm{M} \Omega$. However, the ECF80 was then being operated very close to its maximum rating. As mentioned before pentodes are noisy. The final design therefore uses half of an $E 182 C C$, configured as a hybrid triple cascode.
Because the second stage valve is directly coupled to the first, the second stage does not have grid-leak resistors. You therefore avoid the 1.6 dB excess loss suffered in the basic preamplifier's 75μ s network.
The 75μ s time constant is achieved in a balanced fashion, with the shunt capacitor mounted directly onto the valve base with leads as short as possible in order to reduce stray capacitance. Similarly, the bodies of the series resistors are as close as possible to the valve pins. This means that they also perform the function of grid stopper resistors. The best way to understand the equalisation is to redraw the circuit as two unbalanced networks, Fig. 9.
The values for R and C are calculated exactly as before. However, observe that you could break the centre tap of our added capacitors away from ground, which would leave two capacitors in series. These can be replaced with a single capacitor of half the value. A noisy ground is now less able to inject noise into the audio signal.
An additional advantage is that there is now no dc across the capacitor, so a lower voltage rating may be used if desired. For this design it was convenient to use a series resistor of $150 \mathrm{k} \Omega$, thus needing a 220 pF capacitor between the grids to set $75 \mu \mathrm{~s}$.

Pairing 3180 and 318μ s

Since this pairing is achieved in a balanced fashion, the value of the capacitor is halved, and it has virtually no dc across it, which makes it much easier to find close tolerance components.
Because it was desirable to use a balanced $3180 / 318 \mu \mathrm{~s}$ pairing, twin cathode followers were required, resulting in a balanced output from the RIAA stage. Most power amplifiers are push-pull and therefore include a phasesplitter. In the light of this, why not keep the signal balanced all the way into the power amplifier, and discard the problematical phase splitter?

Volume control and output stage

The volume control now has to be balanced, using matched fixed series resistors and a variable shunt to form a potential divider. This has the disadvantage of a high output resistance
when set for a sensible input resistance and will cause hf loss if ignored.
The output stage uses a $6 S N 7$ configured to give A_{v} of 16 . Capacitance C_{ag} is 4 pF for the $6 S N 7$, so the input capacitance $C_{\text {in }}$ equals 68 pF , not including any allowance for strays. The series resistors have been set to $49.9 \mathrm{k} \Omega$, giving a 47 kHz hf cut-off, which is too low. To meet the 0.1 dB loss at 20 kHz criterion, you would need a $C_{\text {in }}$ of less than 19 pF . Alternatively, you would need to reduce the series resistors to $13.5 \mathrm{k} \Omega$, increasing the loading on the disc stage. One solution is to partially neutralise the $C_{\text {ag }}$ capacitance by adding capacitance from each grid to the opposite anode using small trimmer capacitors.
Note that neutralisation is positive feedback and if it is not applied with care, the stage will turn into an oscillator. For the range 1 to 3.5 pF , PTFE trimmer capacitors are readily available. If one of these trimmers is set with its vanes two thirds meshed, a capacitance of approximately 2.4 pF results. This is sufficient to reduce input capacitance to an acceptable value.
Ideally, a square wave should be applied between ground and one input of the volume control. The other input should be grounded and the second capacitor adjusted until the output waveshapes are matched as viewed on an oscilloscope. Layout is crucal here.

An alternative to neutralisation would be to revert to using an ECC82, which has an intrinsically lower C_{ag} and a slightly lower gain, thus reducing $C_{\text {in }}$. Whichever course is taken, the volume control must be as close as possible to the valve in order to minimise external stray capacitances. Unscreened wires must be used.

Constant current sinking

Although a 'ring of two' circuit could have been used as a sink for the first stage, each transistor would then have been operated at a very low voltage. But operating transistors at a low voltage is undesirable. It makes the circuit more susceptible to rf overload, due to the depletion region within the transistor being narrowed. This increases output capacitance. These factors demand the use of a subsidiary negative supply. A superior cascode constant current sink using if transistors can then be used, making a virtue out of a necessity.
Noise on the subsidiary supply must be minimised, so a choke input supply was chosen. Potentially, the reactance of the choke and the $10,000 \mu \mathrm{~F}$ smoothing capacitor form a resonant circuit. This resonance is critically damped by adding the 5.6Ω series resistor to the choke and transformer resistances.
The minimum current requirement of the choke is neatly solved by the use of a TL431 shunt regulator for each stage. This ensures that a constant current is drawn - even when the ht is switched off.

Further reading

Wright, Allen. 'The tube pre-amp cookbook' 1994
Morrison, J. C. 'Siren song: A phono preamplifier for hedonists.' Sound Practices, 1993, Number 3, P3-9; Number 4, P6.

There are less drastic ways to cut your costs.

Buying from this catalogue is one.

If you need to purchase quality products from a catalogue, with guaranteed next day delivery, but don't want to spend a fortune, you can always take drastic measures. However, there is a simpler way. CPC.
You get a choice of 39,000 quality products from over 300 leading manufacturers.
At CPC we only stock quality products from quality manufacturers. All the biggest equipment names are represented in our catalogue including TDK, 3 M , Duracell, MK, Weeller, Sony, CK etc.

Over 27,000 companies get a better deal with us.

And the list is growing by the day. From our inception in 1967, we have enjoyed year on year growth, seeing our client base of 2,000 in 1986 boosted by a further 25,000 companies who have switched to CPC - and stayed!

The catalogue couldn't be easier to use.
Whether you are a service engineer, OEM, school or manufacturer, whatever your component needs, you'll find them all listed in our easy to use index and cross reference section. Audio products, batteries, computer products, hardware, motor control, semiconductors, surface mount, tools and original manufacturers spares are just some of the sections included.

Ordering couldn't be simpler.

Our sales office is open Monday to Saturday taking orders by phone, fax and post.

Diamond Service means same day despatch is guaranteed.
Representing the ultimate in customer service, CPC's Diamond Service ensures all orders received before 5.30 pm , are despatched the same day - guaranteed.

How to open an account today.

Just pick up the phone, give us the details and the job's done. And once you're on our database we'll send you bulletins on all the latest products and great offers from CPC, four times

Free catalogue, free carriage.

Once you've opened an account, we will send you a complimentary 1,700 page catalogue and with all orders over $£ 30$ carriage is absolutely free!
So, if all you want to cut is costs, call us today.

CPC' 30,000 symurr fire
Our fhendy staf are Uner to wertip yea
a monh.

10,000 NEW NEW sectrous mcuoma
Datacornms \& Networking PCB Prototyping Optoelectronics Surface Mount Motor Control

CPC. Faraday Drive, Fulwood, Preston, Lancashire.

ISSCC the highlights

Roy Rubenstein reports on the world's top electronics innovation event - the International Solid State Circuits Conference.

Abstract

f there is one event in the world's electronics calender worth attending it is the International Solid State Circuits Conference - ISSCC - held in San Francisco. It is hard to imagine where else one could gain such a comprehensive overview of the latest analogue and digital circuit techniques and devices. 'Systems on a chip' was this year's conference theme. The opening session reviewed circuit design in the areas of multimedia, electronic imaging and TVs. The keynote speech, given by NEC's vice president for semiconductors, Dr Hajime Sasaki, addressed multimedia. That much-touted phrase, multimedia, embraces all the emerging applications that manipulate text, graphics and deo once encapsulated as ones and zeros. Personal computers form the present, most common embodiment of multimedia. Sasaki's belief is that multimedia will come to predominate in home and work environments. His presentation outlined the technology road map of the likely device that will be processing multimedia in the year 2010. His 'multimedia complex' device integrates and extends, common components found in present day PCs, namely the microprocessor, memory, three dimensional graphics accelerator and moving-image (such as video) processing circuitry. While such a device may appear an obvious development, what is perhaps less so is the technical challenges its accomplishment presents.

All-time top ten circuits

One of the traditions of the ISSCC is the evening session where a panel tackle such weighty issues as 'Is Electronic Imaging at a Watershed?' and 'What is the Best Memory Type for Graphics?'.
This year, by far the best attended session - and certainly the most entertaining - was one that set out to name the ten most significant analogue circuits and circuit techniques. The criteria used included the need to have influenced other circuits and still be relevant today.
The panelists, which included Minoru Nagata, director of Hitachi's Central Research Laboratory and Bob Pease, the analogue guru at National Semiconductor, each selected three. The audience also contributed suggestions and the overall list were then voted on.
The resulting analogue top ten is:

1. Bandgap reference/regulator
2. Differential pair
3. Translinear circuits
4. Current mirror/source
5. Switch capacitor circuits
6. Pole splitting compensation
7. Cascode
8. Negative feedback amplifier
9. The power cord!
10. Integrator
$0.07 \mu \mathrm{~m}$ geometries by the year 2010
First, Sasaki projected present trends for device parameters such as integration densities, processing performance and power consumption, to gauge the likely system-device in the year 2010.
By then CMOS feature size will be $0.07 \mu \mathrm{~m}$, allowing hundreds of millions of transistors to be integrated on a single integrated circuit. The most advanced process technologies used today have $0.35 \mu \mathrm{~m}$ feature sizes, achieving transistor densities up to ten million.
The intricacies involved in designing a 500 million transistor device is expected to be hundreds of times more complicated than that of present day microprocessors.
Looking next at processing performance, Sasaki observed that microprocessors have achieved an astonishing thousandfold improvement since 1980.
During that time, microprocessors have evolved instructions which when executed perform more than a single operation. Hence the emergence of microprocessor measures such as the millions of operations per second, or Mops, in addition to the traditional instructions per second metric, or Mips.

MIPS - slower growth

Sasaki believes that the astonishing Mips progress achieved to date will not continue since the instruction level parallelism that can be extracted from typical software code is rapidly being approached. He expects that in the next 15
years, an improvement of only a factor of 20 can be expected.

However, he sees no reason why the number of operations executed cannot progress at the staggering pace seen to date. Such progress will be achieved as multimedia function blocks are coupled to the main processing unit.

Extrapolating the processing trends, the multimedia complex can be expected to achieve 100 billion instructions/s and 1000 billion operations/s. To better gauge such a figure, Texas Instruments' most powerful multimedia processor, the TMS320C80, can attain a peak performance of 4 billion operations/s.
In tum, to sustain such processing rates the memory will need to supply the processing unit with tens of thousands of megabytes per second. Such transfer rates will not be possible between adjacent ICs, observed Sasaki, rather the memory will have to be integrated on-chip.
Yet a further challenge to be met is having the complex consume only 1 W , necessary if it is to be used in portable battery-powered equipment.
Even if progress in low power techniques is maintained until 2010, a further order of magnitude reduction has to be found if the stringent 1 W target is to met.

Interestingly, the solutions Sasaki outlined to attain such a multimedia complex, including integrating ample on-chip store and evolving present low power circuit techniques, were already in evidence in present papers at this year's ISSCC. Meeting the target specification will not be easy. As Sasaki puts it: "Developing the multimedia complex is a challenging target. We have so many things to do."

Variable voltage threshold techniques

CMOS has always been seen as a low power process technology. The success of VLSI, with the integration of millions of transistors on a device, has made CMOS hotter under its ceramic collar than it would like to be.
The most common approach to tackle device power consumption is by reducing its operating voltage. A recent example is the 433 MHz Alpha processor from Digital which operates its processor core at 2 V even though the device and its I/O is supplied with 3.3 V . And it still consumes 23 W .

With a reduced supply voltage comes a corresponding reduction in the voltage threshold, V_{th}. For CMOS, V_{th} is the voltage at which the device changes state.
Reducing $V_{\text {th }}$ of a transistor increases its speed. However, the downside is the exponential increase in leakage current, and hence standby power consumption.

At ISSCC, a number of papers highlighted approaches that vary V_{th}. All use a reduced V_{th} when high performance is required and a high $V_{\text {th }}$ in standby mode, when reducing leakage current is a primary concern.

One ISSCC example is a processor developed by Nippon Telegraph and Telephone (NTT) for mobile phones. The device is normally in one of two modes: strenuously active when digital encoding and decoding speech or, more commonly, in a sedate state awaiting a call.
The processor features a DSP core and an embedded processor. The DSP core is supplied with 1.1 V and is implemented in a low threshold voltage CMOS $\left(V_{\text {th }}=0.25 \mathrm{~V}\right)$, whereas the embedded processor is implemented using a higher threshold one.
In the wait mode the DSP is inactive; a high voltage MOSFET isolates it from the supply rail, drastically reducing its
leakage current. Here the embedded processor takes over.
Implemented using a higher threshold logic, the embedded processor has a corresponding lower standby current. Moreover, having less to do, it operates at a lower frequency, further saving power.
According to NTT, simply reducing the voltage from 3.3V to IV reduces the device's energy consumption by one third. Energy consumed being the appropriate measure for the handset. However, employing a multi-threshold logic scheme, energy consumption is reduced to one tenth overall.

Cellular neural network

The world may have gone digital but for applications where high accuracy is not a requirement, an analogue approach can win hands down in terms of speed and power consumption. Moreover if implemented in standard CMOS technology, any requirement to integrate digital circuitry becomes straightforward.
The Katholieke University of Leuven, Belgium has adopted such an approach for telecommunications and analogue signal processing. Taking a cue from biological systems, it has produced a simple multi-cell analogue array suited to image manipulation and sensor data processing for applications such as robot arm control.
The device consist of a 20-by- 20 array of simple analogue cells that implements a cellular neural network. Each cell has an input, internal and output node, and is linked to its four nearest neighbours. A set of templates determine the weightings of the signals exchanged between cells. These, coupled with the input data, determine the state of the neural network once processing completes.
The University has developed a library of templates that can be used to program the device to perform a range of applications.
The cells operate in parallel and continuously in time. Moreover, being analogue, the cell circuits work at the full technology bandwidth (f).
Processing time is measured in time constants - multiples

Cellular neural network array. The analogue parallel architecture comprises an array of processing cells arranged in a 20 by 20 matrix. All cells execute in parallel and in continuous time. The device can perform such tasks as edge detection, hole filling and connected component detection.

of $4.8 \mu \mathrm{~s}$. The typical execution time of a non-propagating template is $9.6 \mu \mathrm{~s}$; for the worst case information propagating template it is $145 \mu \mathrm{~s}$.
The device's i/o circuitry can be clocked at 500 KHz ,

Single electron memory, proposed by Hitachi, promises terabit storage on one chip. It incorporates a 3 nm ultra-thin-film transistor exploiting the Coulomb blockade effect.
enabling the device to process up to 25 image frames/s.
While stressing that a direct comparison with a digital signal processor is not straightforward, the University nonetheless believes the array processor requires up to twenty times less energy (power-delay product) for a given computation.

Single electron memory cells

The highlight of last year's ISSCC was the emergence of 1Gigabit dynamic rams from Hitachi and NEC. This year Hitachi gave a glimpse of a development which promises storage densities one thousand times greater using single electron memory, or SEM.
Single electron memory has received considerable attention in recent years. First demonstrated at very low temperatures, room temperature has now been attained. The benefit of SEM is its ability to control a small number of electrons, promising reduced power consumption per transistor coupled with significantly greater integration levels due to each transistor's reduced size.
The SEM device uses a 3 nm ultra thin-film transistor which exploits the Coulomb blockage effect Electronics World, March 1996, p185. The effect works by confining a pool of electrons within a small region such that the stored charge energy is greater than the thermal energy of an external electron. Information is stored by trapping one or more electrons in the pocket and manifests itself in a constricted current.
Hitachi's accomplishment is to be the first to integrate a number of SEM cells to produce an 8 -by-8bit array. Moreover, by producing a working device, Hitachi has identified the obstacles to be overcome if volume manufacturing is to occur.
Hitachi's SEM has a 10 us write/erase time. This is faster than flash memory since the number of electrons to be stored or erased is a paltry five compared to 100,000 for flash.
The device's shortfalls include a retention time of between an hour and a day, unacceptably short for nonvolatile store..

120 MHz a-to-d converter in c-mos

Converting a complex envelope signal from rf to baseband, forming in-phase I and quadrature Q components, is a common requirement for radar and communications applications.
The traditional approach uses cosine and sine heterodynes to separate the I and Q components before being digitised
by matched a-to-d converters, Figure 1. At ISSCC Ericsson and Linköping University detailed a 120 Ms smples/s a-to-d converter that digitises the baseband components to an accuracy of 10 -bits.
The device uses a dual filter approach to separate the components, Figure 2. According to Linköping University,
implementing the filters using closely matched coefficient values allows its execution within the sampling circuitry of the converter. The consequence is a saving in circuit complexity and power in that the a-to-d conversion is performed at a more leisurely 2 MHz rather than at 120 MHz

Fig. 1. Classical method for in-phase and quadrature detection. Sine and cosine heterodynes access the complex envelope signal before each arm is low-pass filtered and digitised.

Fig. 2. New a-to-d converter samples at four times the intermediate frequency, undertakes analogue filtering and decimation before digitising the signals at baseband.

Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: 01756752857. 53-55 Main St, Grassington. BD23 5AA.

Relaying
 transmission line principles

Bill Russel demonstrates how rectangular pulses and an artificial delay line simplify the explanation of how transmission lines work.

Data position 0 div dTime $4.20 \mu \mathrm{~s}$ $1 / \mathrm{dT} \quad 238 \mathrm{kHz}$

> Data position 0 div
> dTime $\quad 8.40 \mu \mathrm{~s}$
> $1 / \mathrm{dT} \quad 119 \mathrm{kHz}$

Fig. 1. The $3 V$ input pulse appears at the output after $8.4 \mu \mathrm{~s}$, with some distortion due the lumped nature of the line, and evidence of a minor reflection at the input after $16.8 \mu \mathrm{~s}$. Output at tap 5 shows the 3 V incident pulse arriving after $4.2 \mu \mathrm{~s}$.

My previous article outlined a range of simple demonstrative measurements that can be made on an $8 \mu \mathrm{~s}, 8 \mathrm{k} \Omega$ artificial line fed from a sine-wave source.
This article examines the effect of applying rectangular pulses to a similar line, using basic test equipment. I constructed a simple bat-tery-powered pulse generator based on a 74 HC 14 hex schmitt trigger. Since the current drain is only a few milliamps, several hours use can be obtained after each charge.

Layout shown in the upper circuit on page 214 allows for three values of source resistance. The values used give a pulse width of about $2.5 \mu \mathrm{~s}$ at a repetition frequency of around 10 kHz .

With the source resistance set at $8 \mathrm{k} \Omega$, the pulse delivered to a matched line is 3 V . Measurements are made with channel 1 on the input and channel 2 on the output, or one of the line taps.

Measurement possibilities of this set-up well exceed the range required for a normal laboratory session. As a result, the examples shown here are limited to recording waveforms at the output or at tap 5. Principles that can be established are as follows
$8 \mathrm{k} \Omega$ source with $8 \mathrm{k} \Omega$ terminal resistance. Referring to Fig. 1, a rectangular pulse of 3 V amplitude travels progressively down the line at a speed of 0.84μ s per section with little attenuation but some distortion due to the lumped nature of the line. It is accompanied by a current pulse of amplitude $3 \mathrm{~V} / 8 \mathrm{k} \Omega$, which is 0.375 mA .
Some evidence of small reflection reaching the input after $16.8 \mu \mathrm{~s}$, due due to the reactive nature of Z_{0}.
$\mathbf{8 k} \Omega$ source with line open circuit. In Fig. 2, complete reflection of the incident 3 V pulse takes place at the open-circuit, producing a 6 V pulse. The reflected 3 V pulse reaches the input $8.4 \mu \mathrm{~s}$ later.
Inspection of outputs at taps 1 to 9 shows incident pulses arriving later and reflected pulses arriving earlier until they merge into the 6 V pulse at the termination. Note that the display shows only the voltage-time waveform at a particular point in the line, the horizontal axis being time delay in microseconds and not distance along the line. More on this later.
$8 \mathrm{k} \Omega$ source with line shorted. In Fig. 3 , the incident 3 V pulse is completely reflected at the short circuit with reversed polarity. This produces the required zero at the output, and appears at the input 8.4μ s later.

Data position 0 div
dTime $8.40 \mu \mathrm{~s}$
$1 / \mathrm{dT} \quad 119 \mathrm{kHz}$

Data position 0 div
dTime $8.40 \mu \mathrm{~s}$
$1 / \mathrm{dT} \quad 119 \mathrm{kHz}$
Fig. 2. Input shows incident 3 V pulse, together with a pulse of the same polarity and almost the same amplitude, reflected from the open-circuit termination after $16.8 \mu \mathrm{~s}$. Output shows a pulse of about 6 V amplitude, due to the combination of more or less identical $3 V$ incident and and reflected at the termination after $8.4 \mu \mathrm{~s}$. Output at tap 5 shows both the $3 V$ incident pulse after 4.2μ s, and an almost identical pulse reflected from the termination after $8.4+4.2=12.6 \mu \mathrm{~s}$. Inspection of outputs at taps 6 to 9 shows incident pulse arriving later and reflected pulse arriving earlier until they merge into the 6 V resultant at the termination.

Fig. 3. Input shows inversion of the incident 3 V pulse which is reflected at the output and appears at the input after $16.8 \mu \mathrm{~s}$. Output at the short is of course zero, but this can be represented as the combination of a 3 V incident pulse with its inverted reflection. This is illustrated by the output at tap 5 which has a 3 V incident pulse arriving after $4.2 \mu \mathrm{~s}$ together with an inverted 3 V pulse reflected from the termination after $12.6 \mu \mathrm{~s}$.

Data position 0 div

Data position 0 div
Fig. 4. Reflected pulse of amplitude 1 V appears at the input after $16.8 \mu \mathrm{~s}$. Incident 3V and reflected 1 V pulses combined results in a 4 V pulse at the termination. Both Incident and reflected pulses are resolved separately in output at tap 5.

Outputs at the tapping points resolve both incident and reversed reflected pulses. The results above show almost complete reflection of an incident voltage pulse at an open or short circuit. They also establish the sign or polarity of reflected pulses.

The following measurements of the magnitude of pulses reflected from loads of $2 Z_{0}$ and $Z_{0} / 2$ can be used to introduce the concept of reflection coefficient, and to deduce its value for any given mismatch ratio.
$8 \mathrm{k} \Omega$ source, $16 \mathrm{k} \Omega$ load. Figure 4 shows the $2: 1$ mismatch at the load end causes the 3 V incident pulse to be reflected as a pulse of 1 V with the same polarity, producing a 4 V pulse at the load.

Output at tap 5 shows incident 3 V and 1 V reflected pulses. These results indicate that a third of the incident voltage pulse is reflected without change of polarity at a mismatch ratio m of $2: 1$. This can be shown to agree with the simple formula,

Reflection coefficient $=\frac{m-1}{m+1}$
So far, no attention has been paid to the current pulses implied by the incident voltage pulse on an $8 \mathrm{k} \Omega$ line. This is because the measurement set up does not allow for their detection. Nevertheless a fair amount of information can be inferred from the known facts.

The current pulse which must accompany the incident voltage pulse of 3 V is $3 \mathrm{~V} / 8 \mathrm{k} \Omega$, which is $3 / 8 \mathrm{~mA}$. At the termination of $16 \mathrm{k} \Omega$, the voltage pulse rises to a combination of 3 V incident plus 1 V reflected without change in polarity giving a 4 V resultant pulse. Hence at the termination the resultant current must be $4 \mathrm{~V} / 16 \mathrm{k} \Omega$, which is $1 / 4 \mathrm{~mA}$.
It would seem reasonable to deduce that, at the termination, a third of the incident current pulse is reflected and inverted to produce a resultant terminal current pulse of $3 / 8 \mathrm{~mA}-1 / 8 \mathrm{~mA}$, producing the required $1 / 4 \mathrm{~mA}$.
$8 k \Omega$ source, $4 k \Omega$ load. Figure 5 demonstrates how measurements of input and outputs of a line with a $1: 2$ mismatch ratio m show a voltage reflection coefficient of $1 / 3$ with reversed polarity. By inference it can be deduced that the current reflection coefficient is also $1 / 3$ but with no change in polarity.

The results obtained can be used to establish some basic rules for a simple treatment of reflections at any resistive termination. As for the current waveforms, the inclusion of a 100Ω current sensing resistor in the return line of both input and termination allows a lot more information to be obtained. However, it is doubtful whether many students would be capable of appreciating the implication of much of this additional data - particularly in the cases where line is mismatched at both input and output ends.

Figures 6,7 show the voltage waveforms obtained for two of these conditions, and are included with brief comments as examples of situations which would normally be avoided.
$4 \mathrm{k} \Omega$ source mismatch, no load. The $4 \mathrm{k} \Omega$ source shown in Fig. 6 now delivers a travelling incident pulse of 4 V to the line During the transient phase, this pulse is completely reflected at

Fig. 6. Mismatch at the source results in the incident pulse delivered to the input being about 4 V rather than the 3 V with
a matched source. At the termination the incident pulse is completely reflected producing the pulse of almost 8 V at the open-circuit after $8.4 \mu \mathrm{~s}$, and arriving at the input after $16.8 \mu \mathrm{~s}$. Simplified arithmetic of the mismatched input suggests that a third of the reflected pulse will be absorbed - increasing the input amplitude to about 5.3 V and two-thirds, or 2.6 V , will be
inverted and reflected back to the output, arriving after a further $8.4 \mu \mathrm{~s}$. Output waveform shows the increased amplitude at the mismatched input, the large pulse at the open circuit, the 2.6 V pulse reflected from the input, plus the first of a series of reflections from output and input.

Data position 0 div dTime $16.80 \mu \mathrm{~s}$ $1 / \mathrm{dT} \quad 59.4 \mathrm{kHz}$

> | Data position 0 div |
| :--- |
| dTime $\quad 12.6 \mu \mathrm{~s}$ |
| $1 / \mathrm{dT}$ |
| 9.2 kHz |

Fig. 5. Reflected $1 V$ pulse, inverted, appears at the input after 16.8μ s. Combination of $3 V$ incident and $1 V$ inverted reflected pulses result in a pulse of 2 V at the termination. Both incident and reflected pulses appear on the output at tap 5.

Data position 0 div
dTime $16.80 \mu \mathrm{~s}$
$1 / \mathrm{dT} \quad 59.2 \mathrm{kHz}$

Data position 0 div
dTime $8.4 \mu \mathrm{~s}$
$1 / \mathrm{dT} \quad 119 \mathrm{kHz}$

Fig. 7. Worst case condition, where pulses reaching the open circuit are reflected as is, and those reaching the input suffer complete reflection and inversion. Output at tap 5 shows part the series of multiple reflections which then takes place.
the open-circuit producing an 8 V pulse, and the reflected 4 V pulse arrives at the mismatched input after $16.8 \mu \mathrm{~s}$.
Waveforms of Fig. 6 are steady state conditions and show no sign of a reflected pulse at the input. Instead, the input shows a final value of input voltage of about 5.3 V , plus an inverted pulse of about 2.6 V at the output after reflection from the input.

This suggests that when the transient 4 V pulse reaches the input mismatch, a third is absorbed increasing the input pulse to 5.3 V , and two thirds, or 2.6 V , is inverted and reflected back to the output.

Line mismatched at source. In this case, there is a direct connection to the pulse generator via a 50Ω resistor and the load is open circuit, Fig. 7.
Under worst-case conditions, pulses reaching the open-circuit are completely reflected as is. Reflected pulses reaching the input suffer almost complete reflection and inversion. Little, or none, of the pulse energy is absorbed by the generator, or load. The result is that a series of multiple reflections and inversions take place at the generator, accompanied by reflections without inversion at the load. Figure 7 shows part of this series.

Fig. 8. Adding such a display interface to the delay line allows successive taps to be sampled periodically and displayed as vertical deflections on an oscilloscope .

Extending the idea

Explanatory comments on the above measurements assume a lossless line, and draw on the simple arithmetic of the dc equivalent circuit of the generator, line and load. However, the interest generated encourages many to tackle more rigourous analyses.
For those of you requiring merely a simple introduction to the principles involved, a selection of the more basic measurements should suffice. I have given some thought to the possibility of producing a display in which the horizontal axis represents the voltage at each successive line tap and hence distance along the line.
This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.
The main requirement for such a display is that the amplitude of the voltage at the successive taps should be sampled periodically. These voltages should be displayed as a vertical deflection on the oscilloscope. For rectangular dc pulses, the sampled output can be passed direct to the oscilloscope.
In order to cope with dc pulses of both polarities, the sampling device must be operated in the analogue mode.
A prototype circuit along the lines of Fig. 8, uses a 4067 analogue multiplex/demultiplexer, driven by a 4029 counter. A 2 Hz clock is provided by a 40106 hex schmitt trigger. This device also provides a clock buffer and inverter for the terminalcount output to preset the counter to state 4 .
The counter and hence the demultiplexer cycles continuously from states 4 to 14 , giving 11 sampled lines. These lines are connected to the artificial line input and the 10 taps.
Channel I of the oscilloscope connects to the line input for triggering purposes only. The common output of the 4067 is simply connected to channel 2. The display is really a montage of the voltage time waveforms at a particular tap, updated at halfsecond intervals to the adjacent tap. It produces the illusion of incident pulses moving from left to right, and reflected pulses moving from right to left.
Where pulses meet, reinforcement or cancellation takes place depending of course on relative amplitude and polarity. The system is operated from a dual 7.2 V supply as shown. As a result, it imposes a limit of less than 7.2 V peak on the sampled input. This is ample to accommodate all waveforms shown in this article.
Used with a large display oscilloscope, a generator and an artificial line modified so that source and terminating resistors can be altered quickly by switches, this simplified display has proved surprisingly effective in summarising the working principles involved.

Further reading

Millman \& Taub, Pulse and Digital Circuits, Chap. 10.

Oops...

In last month's article please note the following corrections: the caption for Fig. 4. refers to the plots of Fig. 6, the caption for Fig. 5 refers to Fig. 4 and the caption for Fig. 6 refers to Fig. 4. In Fig. 11, input current is 0.5 mA , not 1 mA . Sorry.

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{\text {® }}$ Version 4 is a fully integrated schernatic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!

 Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if' scenarios and fine tune your designs painlessly.

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3

More Models

Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixect-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.
Electronics Workbench ${ }^{\text {TM }}$
The electronics lab in a computer ${ }^{\text {тм }}$

Order Now! Just £199* 44-(0)1203-233-216 RG Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF
Fax: 44 (0) 1203 233-210
E-mail: rme@cityscape.co.uk
Shipping charges UK $£ 5.99$. All prices are plus VAT. All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Lid., Toronto, Canada.

- 30 Day money-back guarantee.

> Cyril Bateman discusses how
> Archie and Gopher help you search for files on the Internet.

n order to use the File Transfer Protocol described in the last issue, two descriptions are essential - the location of the required file and the file name.
Internet is huge, and to locate specific files it is necessary to understand and use the established methods and protocols. The desired file can contain anything capable of storage in a computer. Obviously, program software is the most common. But the possibilities are almost endless, from the script of a Shakespeare play or the Dead Sea Scrolls to views from the Hubble telescope or a piece of music ${ }^{\text {l }}$.
If the file name is known, maybe only vaguely, its location is easy to find; however, the file name is usually unknown.
The one essential document 'Anonymous FTP: Frequently Asked Questions (FAQ) List' is available for down loading from a number of sites.
When you are equipped with FTP and a search tool, every facility becomes possible. As with most computer actions the most difficult part is starting out, which these articles seek to address.
For 'surfers' of the Internet, two different search engines are readily available - Archie \& Gopher. These are designed for use as 'local clients' on your personal computer. They are available as starter kits or you can down load them from Internet. By having access to Internet with FTP and carrying out the procedures described here, then all other packages can easily become accessible.

Searching with Archie...
The oldest search tool - Archie - is effectively a card index for FTP files. It was developed at McGill University, Montreal for searching all available Unix based computer archive sources of directories and file names. The name Archie is derived from archive ${ }^{1}$.

Fig. 1. Using Archie to search for the location of 'PSpice' software file. Search for 'PSpice' using the Archie server located at 'archie.uqam.ca.' in Canada. Note the 'aid memoir' display of used search strings.

Fig. 2. Using Archie to search for the location of 'PSpice' software file. Result of Archie search for 'PSpice' using the search string 'PSpice'. Interrogation of the highlighted file revealed two locations for the required software. These locations were used for the FTP example in the previous article.

Archie servers search all the 1000 plus Unix-based computers comprising the Archie database archive of FTP files. These servers are periodically automatically updated. In theory, all the servers hold the same information, but due to the updating sequences, this is not absolutely true.
Archie searches are restricted to a directory name or file name. This name can be incomplete, since Archie looks automatically for near matches, and certain 'wildcards' are allowed. Having located the desired file, either Archie or FTP can be used for the download, Figs 1 and 2.
All anonymous FTP sites, Unix and non-Unix based, are identified in the Anonymous FTP Sitelist, however since this is an extremely large listing, be prepared for a lengthy download session ${ }^{2}$.

... and later with the Gopher

The newer search tool - Gopher - was developed at the University of Minnesota in 1991. While Archie is a single line, single word search at the chosen server, Gopher is menu based, allowing more flexibility and by default searches the contents of all Gopher servers, which is known as 'GopherSpace'. Two variations are included in the search engine, Veronica developed at the University of Nevada and Jughead. Both support Boolean controls and multi word search strings, Figs 3 and 4.
To avoid excessive numbers of matches, Veronica and Jughead are best used with multi word search strings. While the desired Boolean controls can be specified, the default for two or more words assumes the implicit 'and ${ }^{3}$.

A Veronica search of the 5000 plus

Gopher servers, offers two predefined styles, Fig. 3.

- Find Gopher directories by title word(s) via $x x x$. This search will find only Gopher directories whose titles contain your specified search words. This is used to find major holdings of relevant information. Having selected a directory it can be 'opened' to show contents.
- Search GopherSpace by title word(s), via $x x x$. This search will find all types of resource whose titles contain your specified search words.

Jughead searches, like Archie, are restricted to individual locations and are distinguished from Veronica searches by the description 'Search GopherSpace AT $x x x$ ' as distinct from 'via $\mathbf{x x x}$ '.
Use of the multiword search with implicit 'and', together with the '*' wildcard permitted at the end of a partial word, can provide a tightly focused query and retum only the more relevant matches ${ }^{3}$.
Equipped with FTP, Archie, and Gopher, any publicly available Intemet FTP resource can be located and accessed for file transfer, since it is these protocols which form the basis of the various WWW search engines.

References

1. Surfing with intent, $E W \& W W$, June '95, pp. 488/492.
2. Anonymous FTP-FAQ. See panel,
'Frequently asked questions'.
3. How to compose Veronica Queries. See panel, 'Frequently asked questions'

Fig. 4. Using Gopher to search for the location of 'Archie Client' software file. Result of search using the multi word search string 'Archie PC Client'. Further searches using different search strings or different servers will be needed.

Frequently asked questions

Frequently asked questions articles, called 'FAQs' are readily available for all Internet activities, and should be the first point of reference for any help needed.
For this reason they are widely available, and can be obtained by 'E mail' requests, as well as from the relevant NewsGroups or by anonymous FTP.

Anonymous FTP FAQ

Newsgroups
news.newusers questions.
news.announce.newusers.
alt.sources.wanted.
comp.archives.
comp.archives.admin.
comp.sources.wanted.
alt.answers.
comp.answers.
news.answers.
FTP

$$
\begin{array}{ll}
\text { garbo.uwasa.fi } & \text { pc/doc-net/ft-list.zip } \\
\text { oak.oakland.edu } & \text { /SimTel/msdos/info/ttp-list.zip }
\end{array}
$$

Archie FAQ

FTP
archie.mcgill.ca
archie/pub/archie.faq

Gopher FAQ

Newsgroups
comp.answers.
news.answers.
FTP
rtfm.mit.edu /pub/usenet/news.answers/gopher-faq
Veronica. - how- to- query- veronica
Gopher:/Neronica.scs.unr.edu how-to-query-veronica

Fig. 3. Using Gopher to search for the location of 'Archie Client' software file. This illustrates just a few of the menu options available for a Gopher search. Note the two main search options discussed and the ready prepared popular Gopher servers. Many other servers throughout the world are also available from other menu selections. Note also the menus provided to supply the two required documents, 'veronica FAQ' also 'How to Compose veronica Queries'. Simply click on the highlighted selection to 'pop-up' the search box.

Designing an SSB Buphoser

> Outphasers for SSB transmitters demand accurate component values, but analyses of such circuits are rare. David Gibson not only presents such an analysis, but also explains how he has extended the outphaser's scope.

Fig. 1. 'Third method', due to Weaver and Turner. Lower sidebands in phase-quadrature at if are modulated onto an rf carrier, and summed. The unwanted sidebands cancel leaving an ssb signal. The same circuit is used for demodulation, where the salient point is the extremely low if of 1.8 kHz which eases the filtering requirements as explained in the text.

An algebraic analysis of an outphaser, also called a phaser or Hilbert transformer*, is difficult and is not often discussed - even in otherwise comprehensive filter textbooks. The component values are largely folk-lore, passed on from application to application.
You may say that 'if it ain't broke, don't fix it', but an analysis is useful for several reasons - not least because it allows you to check whether circuit values have been transcribed correctly. I have seen examples where this was clearly not the case.

In this article I present networks using opamps and simple first-order networks. These are easier to adjust than conventional passive second-order networks, as well as being easier to study. This makes it possible to design more accurate networks, or ones with a wider bandwidth for applications in music, audio effects. It also allows frequency shifting, which may required for applications such as spectrum analysis and sonar processing. In addition to presenting analogue networks, I show an example using digital signal processing techniques.
I will not give a detailed mathematical analysis due to its complexity. Most of my work was done with simple Basic programs which plotted phase and amplitude responses. Using this method I was able to tweak the component values to produce some very accurate filters. This method also made it easy to investigate the effects of component tolerances and drifts.

SSB modulation background

The heart of an single-sideband modulator or demodulator is a circuit with the ability to shift a range of frequencies from the audio band to rf, or if. The simplest way to do this is to amplitude-modulate the signal onto a carrier using a balanced modulator.
The unwanted sideband and any residual carrier are removed in a crystal filter. This method has an advantage, namely it is conceptually simple, but also has disadvantages.

It can be difficult set up the filters to adequately attenuate the unwanted sideband, and it is inflexible.
A second method is to use an 'outphaser' which is the subject of this article. There is also a third method. Before discussing the outphaser, I will say a little bit about this because, depending on the application, there is sometimes little to choose between these two methods.

The 'third' method

This third method for removing unwanted sideband and residuals was first described by Weaver in 1956, and modified by Turner, writing in Wireless World in 1973. In this method, Fig. 1, an audio signal is first modulated onto quadrature carriers at a fixed 'intermediate' frequency. The upper sidebands of the two channels are filtered out, leaving the lower sidebands which are in phase quadrature, Eqn 1

Fig. 2. Outphaser method. Audio input is shifted by 90° and modulated on to two quadrature carriers a). The signals are summed and the unwanted sidebands cancel. The outphaser can alternatively be placed after the modulators b). It is easier to construct a broadband 90° network at if than at audio (see text) but, when it comes to changing the rf, it is less flexible.

Fig. 3. First-order all-pass filters. a) Historical filter using transistor; b) Version for use at $r f_{;}$
c) Functional diagram;
d) Implementation with op-amp.

Fig. 4. Difference of one pair of first-order Filters
a) In an attempt to increase the usable frequency range, we utilise the difference between two filters.
b) The phase response of the two filters in a), and the difference of the two. The range of frequencies for which the phase difference is 90° can be improved further by cascading pairs of all-pass filters.
and similarly

$$
\begin{align*}
& \sin \omega_{m} t \times \cos \omega_{i} t=-\frac{1}{2} \sin \left(\omega_{i}-\omega_{m}\right) t+\frac{1}{2} \sin \left(\omega_{i}+\omega_{m}\right) t \tag{1}
\end{align*}
$$

and similarly
$\cos \left(\omega_{i}-\omega_{m}\right) t \times \cos \left(\omega_{c}-\omega_{i}\right) t=\frac{1}{2} \cos \left(\omega_{c}-\omega_{m}\right) t+\frac{1}{2} \cos \left(\omega_{c}+\omega_{m}\right) t$
Equations 1 \& 2 describe the 'third' method of ssb generation

The next step is to take the intermediate frequency signals and to modulate them onto quadrature carriers at rf - or more precisely, at the difference between the of and the intermediate frequencies, Eqn 2.

Each of the channels provides an upper and lower sideband at the final rf. The crucial aspect of this is the phase of the signals. From equn 2 you can see that, if the signals are added, the upper sidebands will cancel, leaving only the lower sideband. Likewise, if you subtract the signals you get only the upper sideband.

The advantage of this method is that, by using a fixed intermediate frequency, you ease the problems of filtering the unwanted sidebands. If you choose a very low intermediate frequency, then a simple audio low-pass filter will suffice.
However, the salient point of the Weaver method arises when demodulation is considered. The implementation in Fig. 1 can be used for demodulation simply by swapping the order of the two modulators. Alternatively it would be possible to demodulate directly to baseband, but this would require a highly selective filter to remove the unwanted sideband. The Weaver method uses an intermediate frequency within the audio band, at 1.8 kHz . By choosing the lowest possible intermediate frequency, so that the wanted signal "wraps round' at zero frequency, the filtering requirement changes from a band-pass filter to a simple low-pass audio filter. Additionally, the low frequency means that the filtering is less stringent, though with an eighth-order filter ($48 \mathrm{~dB} /$ octave) would still only give 24 dB attenuation at 2.1 kHz , from a cut-off at 1.5 kHz .

If the audio band is $300-3300 \mathrm{~Hz}$, the low intermediate frequency results in each channel having an upper if sideband at $2.1-5.1 \mathrm{kHz}$, which is filtered out. There is also a lower sideband extending from minus 1.5 kHz to plus 1.5 kHz .

The concept of a negative frequency can be confusing. Physically, it appears as a 'normal' 1.5 kHz , and the information that it is 'negative' comes from the relative phases of the two signal channels. The two channels contain information about the original upper and lower

If sidebands. By adding or subtracting the signals you can cause one or other of the sidebands to cancel out, providing the required information.
One aspect of the Weaver method is that the modulators have to be ac coupled to prevent dc bias from manifesting itself as a 1.8 kHz tone. The ac coupling means that there is a notch in the audio response. However, this can be made narrow enough to be un-noticeable.
The modification suggested by Turner in 1973 involved digital modulation techniques. The carriers can be square waves, and the modulators, certainly at low frequencies, can be transmission gates. At vhf it is possible to rely on the harmonic content of the square waves to generate the rf signal. Additional harmonics present throughout the circuit do not cause a problem because they either cancel out, or are filtered.
Sometimes, the audio demodulation is done with a stepped square wave. One implementation is known as a rotary mixer. The third, and some higher, harmonics are absent in a correctly stepped sine wave, which eases the filtering requirements. The size of the steps in the sine wave can be calculated using Walsh functions.
The Weaver/Turner technique was discussed by Hamilton in this magazine in 1993 and was used in a design by Dorey in 1994.

Phasing in SSB designs

As with the Weaver method, the basic idea behind the phasing method is to generate two double-sideband channels where one of the sidebands is in antiphase and can be cancelled out, Fig. 2. An rf carrier is modulated directly to produce the sidebands described below.

$$
\begin{align*}
& \underbrace{\sin \omega_{m} t}_{\text {audio signal }} \times \underbrace{\sin \omega_{c} t}_{\text {rf carrier }}= \\
& \underbrace{\frac{1}{2} \cos \left(\omega_{c}-\omega_{m}\right) t}_{\text {lower sideband }}-\underbrace{\frac{1}{2} \cos \left(\omega_{c}+\omega_{m}\right) t}_{\text {upper sideband }} \tag{3}
\end{align*}
$$

For the second channel the audio signa! is passed through a broad-band phase-shift network which alters its phase by 90° at all frequencies, without altering its amplitude. It is

Fig. 5. Difference of two pairs of first-order sections, example 1. Phase ripple is three over a 'bandwidth' of around 200 Hz to 5 kHz

Fig. 6. Two pairs of first order filters. Difference between the two outputs approximates to a 90° phase shift. The filter is described by the span (ratio $f_{2} / f_{1}, f_{4} / f_{3}$) and the spread $\left(f_{3} / f_{1}, f_{4} / f_{2}\right)$
then modulated onto a quadrature carrier to produce a further pair of sidebands.

$$
\begin{align*}
& \cos \omega_{m} t \times \cos \omega_{c} t= \\
& \frac{1}{2} \cos \left(\omega_{c}-\omega_{m}\right) t+\frac{1}{2} \cos \left(\omega_{c}+\omega_{m}\right) t \tag{4}
\end{align*}
$$

Now, by adding or subtracting the signals it is possible to cancel one or other of the if sidebands, Fig. 2a. It is also possible to swap the order of the components and use the phaseshift network at rf, Fig. 2b.
There is not a lot to choose between the Weaver and phasing methods. The Weaver method is slightly more complex in terms of circuitry and frequency control. However, the phasing method needs some accurate components in the rather special phase-shift network.
The phasing method can be used in applications other than 3 kHz audio. As I will show, a simple network can be used at rf, and the technique can be used to shift a wider band of frequencies - say 20 kHz audio - for music applications. A small shift of $5-10 \mathrm{~Hz}$ can be used to prevent 'howl-around', while a larger shift can be used for special effects.

Designing the phase-shift network

An integrator or differentiator achieves a 90° phase shift, but has a varying gain with frequency. For 90° phase shift and constant gain, a more complex network is required. It can be proved that a 'perfect' outphaser, which works at all frequencies, is physically impossible to construct \dagger. Thus, any network we construct must be a compromise.
Many outphaser designs of have appeared over the years. It is interesting to look at dif-
ferent designs and to trace their origins by the obscure component values they use - a sort of electronic equivalent of genetic markers. Some designs which have appeared in this magazine are due to Hickman (1991) who reviewed some outphaser and Weaver circuits; Hosking (1994) who described the so-called 'polyphase' network; and, most recently, Green \& Hosking (1996) who presented a polyphase receiver design.
The polyphase network is an old solution to the problem. It is something of a sledgehammer approach, which I will not discuss further here. Instead, I will show how an outphaser circuit can be built from simple op-amp filters to achieve varying degrees of sophistication.

First-order network

A simple first-order $R C$ low-pass filter has a phase shift of 45° at its -3 dB frequency, ω_{0}. Two networks would result in 90°, but the gain varies with frequency. However, by driving the 'bottom' of a first-order network with an inverted signal, Fig. 3, you can get a 90° shift at ω_{0} and constant gain. This response is called a first-order all-pass filter. An all-pass filter has a flat amplitude response, but the phase shift varies with frequency.

Figure 3 shows several ways of generating the response. Op-amps are cheap enough, so the method of Fig. 3d is the one I prefer. Resistors R_{1} and R_{2} set the overall gain, whilst R and C set the centre frequency to $\omega_{0}=1 / C R$. I don't want to include too much maths in this article, but it is useful to note that the transfer function, in complex frequency, is,

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{1-\frac{R_{2}}{R_{1}} j \omega / \omega_{0}}{1+j \omega / \omega_{0}} \tag{5}
\end{equation*}
$$

If $R_{1}=R_{2}$ then this expression shows a unity gain, and phase shift φ defined from,

$$
\begin{equation*}
\tan \frac{1}{2} \varphi=-\frac{\omega}{\omega_{0}} \tag{6}
\end{equation*}
$$

If the phaser were used at rf, Fig. $2 b$, in a direct-conversion radio, then its performance might well be satisfactory. The equation above
shows that, in the 50 m band, at 6 MHz , it is possible to maintain a 90° shift to ± 3 over a bandwidth of 600 kHz . However, a simple allpass filter is not adequate for use at baseband. With a centre frequency of 1 kHz , the variation in phase shift over the audio band of 300 Hz to 3 kHz would be an enormous -33° to -143°. We need to resort to higher-order sections, or to chains of filters, as I will now describe.

Multi-section filters

Instead of building a single filter with a phase shift of 90° it is easier to build a pair of filters where the difference in phase shift is around 90°. Figure 4 a shows an example. You could use two first-order filters, as in Fig. 3d, with centre frequencies of 400 Hz and 2500 Hz . Figure 4 b shows how the phase shift of each filter varies with frequency.
There is a band, centred at around 1 kHz , where the difference in phase shift is close to 90°. With this arrangement an accuracy of $\pm 3^{\circ}$ can be achieved from 630 Hz to 1600 Hz , or 2.5:1. This is still not large enough for speech, where perhaps $20: 1$ is required, so the principle needs to be extended, as demonstrated in Fig. 4, to higher-order filters.
A common configuration is to use passive second-order filters. It is very rare to see any analysis of such a circuit, though Walters, in 1986, went some way towards explaining the design process.
Occasionally, active second-order all-pass filters are seen. A classic one was presented by Holt \& Grey in 1967, and another version given by Gibson in 1992, but these are difficult to set up, and to analyse.

A historical reason for the use of passive second-order filters is that they were easier to construct than passive first-order filters. Fig. 3b gives an example. Nowadays, op-amps are cheap, and make life much easier because active first-order filters are simple and conceptually easier to analyse.

Required accuracy

Before discussing these enhanced filters, you need to obtain some idea of the accuracy required. Phase shift needs to be 90° and the amplitude difference between the outputs of the

Fig. 7.Difference of two pairs of first-order sections, examples 1-3.
two filter paths should be zero at all frequencies. Unless this is the case you will not achieve perfect attenuation in the unwanted sideband.
Obtaining an expression for the 'leakthrough' of the unwanted sideband is straightforward but intricate. You begin by defining the phase error between the two channels to be ϕ degrees. Assuming that one channel has a gain which is a fraction α too high, and the other is α too low.
Clearly it is always possible to represent the gains in this symmetrical way because the absolute gain is less important. Provided that α is 'small', i.e. less than 10%, you can write the ratio of the amplitudes as $1+2 \alpha$. Voltage attenuation in the unwanted sideband, V_{1}, can then be written (Gibson, 1992), relative to the voltage of the wanted sideband V_{2} as,

$$
\begin{equation*}
\frac{V_{1}}{V_{2}}=\sqrt{\frac{\sin ^{2} \frac{1}{2} \phi+a^{2} \cos ^{2} \frac{1}{2} \phi}{\cos ^{2} \frac{1}{2} \phi+a^{2} \sin ^{2} \frac{1}{2} \phi}} \tag{7}
\end{equation*}
$$

Now if ϕ is small too, say less that 10°, it is possible to approximate to,

$$
\begin{equation*}
\frac{V_{1}}{V_{2}} \approx \sqrt{\left(\frac{\pi}{360}\right)^{2} \phi^{2}+a^{2}} \tag{8}
\end{equation*}
$$

For example, if you can maintain the phase error to 8°, and amplitude α to 7%, then both errors contribute equally to the 'leak-through'. The unwanted sideband will be at a voltage level of $1 / 10.1$ of the wanted sideband, or -20 dB . An angle of 0.8° and an error of 0.7% would give -40 dB .
Note that you will need tight tolerance components in order to achieve this level of performance. Usually, the attenuation is obtained from a combination of rf filtering and outphaser performance. This results in a good overall response with neither item being critical.

A difference of two pairs

Figure 4 showed how you could use the difference of one pair of first-order filters. Extending this to two pairs of filters is

Fig. 8. Difference of two pairs of first-order sections, magnified central portion of response, component values from example 2 a .
straight-forward. Each of the pairs gives rise to a 'hump' in the phase response similar to that shown in Figure 4b. If you place the two humps at the correct separation in frequency,
their effects add to give a response with an almost flat top, Fig. 5.
Figure 6 shows how the outphaser is configured. There are four first-order all-pass fil-

Notes on the moths

Equation 6 , giving the phase shift for a single first-order all-pass filter, can be used as the basis for phase plots. If you are manipulating the equations on paper then equation 9 is a useful short-cut. Its derivation is as follows.
The two filters in the pair, Fig 4, have centre frequencies ω_{1} and ω_{2}. The phase difference, ϕ, comes from

$$
\begin{align*}
\frac{1}{2} \phi & =\frac{1}{2}\left(\varphi_{1}-\varphi_{2}\right)^{\prime} \\
& =\arctan \left(\frac{-\omega}{\omega_{1}}\right)-\arctan \left(\frac{-\omega}{\omega_{2}}\right) \tag{A1}
\end{align*}
$$

Making the substitutions for span and Ω discussed in the main text; taking the tangent of both sides of (A1); and recalling the identity:

$$
\begin{equation*}
\tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b} \tag{A2}
\end{equation*}
$$

produces equation 9 in the main text. This operation can be applied repeatedly as we chain the filter pairs, but the notation gets rather difficult to follow.

A full analysis should aim to give span and spread in terms of a specified phase ripple and 'bandwidth' rather than simply giving phase as a function of frequency. We can differentiate the expression to find the frequencies of the peaks of the phase response - the turning points of the curve

By specifying the phase shift at these points to be $1 / 2 \phi$ above 90°, and the central trough to be at $1 / 2 \phi$ below 90° it is possible to simplify the procedure - although it is still rather difficult. You could differentiate (9) directly, but it is easier to start with (6) and write,

$$
\begin{equation*}
\tan \frac{1}{2} \varphi=\Omega \Rightarrow \frac{d \varphi}{d \Omega}=\frac{2}{1+\Omega^{2}} \tag{A3}
\end{equation*}
$$

It is now possible to combine expressions for $d \varphi / d \Omega$ for each filter and set to zero to find the turning point. This is tedious and tends to indicate that a computer analysis would save time.

Footnotes

*That is, a device which implements a Hilbert transform. This is one of a number of integral transforms. The Fourier and Laplace transforms belong in this category.
\dagger Take a square wave and look at the phase and amplitude of all its harmonics. If the fundamental has unity amplitude then the amplitude of the resultant square wave is,

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots=\frac{1}{4} \pi
$$

Now shift each harmonic by 90° and try to reconstruct the waveform. You end up with a series of the form,

$$
1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\ldots \rightarrow \infty
$$

The sum increases logarithmically and does not converge, so the resultant amplitude of the waveform is infinite. Thus it is shown that a perfect outphaser cannot cope with this specific waveform. It can be inferred that it cannot cope with a generalised waveform, and so a practical 'perfect' outphaser cannot be constructed.
$\dagger \dagger$ Note that finding a flat-top response in the phase domain using multiple all-pass filters is similar to the more conventional problem of finding a flat-top in the amplitude domain when using multiple tuned circuits.
ters with centre frequencies f_{1}, f_{2}, f_{3} and f_{4}. These are arranged in two paths, and the wanted signal is the difference between the two.
If only the f_{1} / f_{2} pair were used, the phase difference would be the left hand 'hump' in Fig. 5. Using only the f_{3} / f_{4} pair would give rise to the right-hand curve. Overall phase difference is found by adding the responses to give the third curve on the graph $\dagger \dagger$.

One pair of 2nd-order filters

As I have said, traditional outphaser designs tend to use a single pair of passive secondorder filters instead of two pairs of active firstorder filters. A first-order network has several advantages over the more complex second-order network,

- It has unity gain, with $r_{1}=r_{2}$ so there is no need to set an accurate non-unity gain.
- It only has a single C so this can be chosen for cost and availability. You don't need to choose two accurately matched capacitors in E24 values.
- With C fixed, the only component which affects the centre frequency is R.
- The gain can easily be trimmed to unity by altering r_{1} or r_{2}.
- If - and only if - the gain is trimmed to unity, the phase-shift only depends on R and C. This 'orthogonality' makes simulation and analysis easier, as well as the setting-up.

Using two pairs of first-order filters

To describe the dual first-order filter of Figs 5 and 6 , I use two terms. The span is the ratio of the centre frequencies of the two filters which comprise a 'hump' in the phase response; i.e. f_{2} / f_{1} and f_{4} / f_{3}. The spread is the ratio of the centres of the humps themselves.
For a single pair of filters, Fig. 4 , you can write the phase shift in a similar way to (6), as

$$
\begin{equation*}
\tan \frac{1}{2}\left(\varphi_{1}-\varphi_{2}\right)=\frac{\sqrt{1 / \gamma}-\sqrt{\gamma}}{\Omega+\frac{1}{\Omega}} \tag{9}
\end{equation*}
$$

where Ω is ω / ω_{c} is the 'normalised' frequency and $\lambda=\omega_{2} / \omega_{1}$ is the span of the pair of filters, with $\omega_{\mathrm{c}}=\sqrt{ }\left(\omega_{2} \omega_{1}\right)$. When you try to extend the analysis to cope with two pairs of filters it becomes difficult to represent them concisely - especially when you want to use the equa-

Fig. 9. Circuit of outphaser using difference of two pairs of first-order networks (see text).
tions to find out what values of span and spread to use.
Fortunately, iterative computer techniques are now possible, and are just as valid. I used a set of small Basic programs to investigate the filters by 'trial and error'.

Filter examples

Example 1. The filter in Figure 5 is centred around 1000 Hz and the spread is 14 . Thus the two humps are at $f_{12}=267 \mathrm{~Hz}$ and $f_{34}=3742 \mathrm{~Hz}$, so that their ratio is $14: 1$, and the geometric mean, $\sqrt{ }\left(f_{12} f_{34}\right)$, is 1000 Hz . In other words, they are at the centre frequency multiplied and divided by $\sqrt{ }$ spread. Individual spans are both 4.36 so, similarly,

$$
\begin{array}{ll}
f_{1}=128.0 \mathrm{~Hz} & f_{3}=1792 \mathrm{~Hz} \\
f_{2}=558.1 \mathrm{~Hz} & f_{4}=7813 \mathrm{~Hz}
\end{array}
$$

where $\sqrt{ }\left(f_{1} f_{3}\right)=267 \mathrm{~Hz}, f_{3} / f_{1}=4.36$, etc.
Phase shift at the centre frequency of 1000 Hz is 87.48°, i.e. 2.52° below 90°. The peaks are at 92.66°. Response dips to 87° at 216 Hz and 4620 Hz . This could be loosely called the bandwidth because of the similarity to the useful response of a bandpass filter in the amplitude domain.

Examples 2 and 3. The difference between the peaks of the phase response curve, and the trough at the centre frequency could be termed the 'phase ripple'. It can be reduces by reducing the spread of the filter pairs. As this is done, the phase response becomes flatter, but it is no longer centred at 90°. It has to be corrected by adjusting the span. Figure 7 shows the effect of reducing the spread to 12 (Example 2) and to 9 . (Example 3), while reducing the span appropriately.
Notice that in Example 3, ripple is extremely low - almost within $1 / 4$ degree. Bandwidth howe ver is limited.

Example 2a. Of the above two examples, let us suppose that Example 2 looks like a suitable filter to build. The procedure is as follows. Firstly, note that all the examples used a centre frequency of 1000 Hz . The individual sections of Example 2 have centre frequencies of,

$$
\begin{array}{ll}
f_{1}=142.9 \mathrm{~Hz} & f_{3}=1715 \mathrm{~Hz} \\
f_{2}=583.1 \mathrm{~Hz} & f_{4}=6997 \mathrm{~Hz}
\end{array}
$$

If you want to alter the overall centre from 1000 Hz you can scale these frequencies. However, you do not need to do that for this example. Using E24 resistors you can get close to these frequencies:
$f_{1}: 1.0 \mathrm{M} \Omega+110 \mathrm{k} \Omega \& 1 \mathrm{nF} \Rightarrow 143.4 \mathrm{~Hz}$
$f_{2}: 270 \mathrm{k} \Omega+3.0 \mathrm{k} \Omega \& 1 \mathrm{nF} \Rightarrow 583.0 \mathrm{~Hz}$
$\mathrm{f}_{3}: 91 \mathrm{k} \Omega+1.8 \mathrm{k} \Omega \& 1 \mathrm{nF} \Rightarrow 1715 \mathrm{~Hz}$ $\mathrm{f}_{4}: 22 \mathrm{k} \Omega+750 \Omega \& 1 \mathrm{nF} \Rightarrow 6996 \mathrm{~Hz}$

Figure 8 shows the central portion of the phase response on an enlarged scale. The slight asymmetry of the curve is due to the errors caused by the resistor approximations. The response is only very slightly different from that predicted by Example 2.
Figure 9 shows a circuit diagram of the complete outphaser. The filters R_{1} / C_{1} to R_{4} / C_{4} use the values from the list above. The resistors should be 1% metal film with a low temperature coefficient. The capacitors should be polystyrene 1% parts.
Unmarked resistors are all equal in value, say $100 \mathrm{k} \Omega$. They should be 1% metal film or, possibly 2% thick film resistor packs, for which the temperature tracking will probably be good. The op-amps should have a low input current, for example BiFET types, or you will need to consider the effect of bias currents.
Filter inputs must be driven from a low impedance source so as not to affect the gain or phase response.

Next time...

In the concluding part of this article I will look at the effect of component tolerances, which can be significant. I will go on to look at outphasers built from three and four filter sections. These can have an extremely flat top, or a very wide bandwidth. I will conclude by looking at a digital filter implementation of an outphaser.

Further reading

Dorey, Frank, (1994), 'Direct conversion SSB receiver', Electronics World + Wireless World, 100(1702). Sept. 94, pp. 743-747.
Green, Rod \& Hosking, Richard (1996), High performance direct conversion, Electronics World, 102(1718), Jan. 96, pp. 18-22.
Gibson, David, (1992), SSB modulation review, Cave Radio \& Electronics Group Journal, 8, pp1216, June 1992, British Cave Research Association. Hamilton, Nic, (1993), Third method, fourth explanation, Electronics World, 99(1695), April 93, pp. 278-284.
Hickman, Ian (1991), Circuits, systems \& standards: ICs simplify design of single-sideband receivers, $E W+W W, 97(1668)$, Nov. 91, pp. 939-943.
Holt \& Grey (1967), in Proc. IEE, Dec 67, p187
Hosking, Richard (1994), Polyphase SSB, $E W+W W, 100(1696)$, March 94, pp. 202-206. Lockhart, G.B. \& Cheetham, B.M., (1989), BASIC Digital Signal Processing, Butterworth
Turner, A.J., (1973), Single-sideband suppressed carrier generation - modification of the 'third method' made possible by the use of integrated circuits, Wireless World, 79(1455), Sept. 73, pp. 453455.

Walters, L.C., (1986), Improved Hilbert transformer for S.S.B. speech, $E W+W W$ 93(1602), pp20-24, April 1986.
Weaver, D.K., (1956), A third method for the generation and detection of single-sideband signals, Proc. I.R.E. 44(12), pp. 1703-1705.

Eight year EW index Hard copy or disk

Includes over 600 circuit idea references Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.
The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 - volumes 94 to 101 inclusive - and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each. The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 k ram and a hard disk.
Even though the disk-based index has been expanded significantly from five years to eight, its price is still only $£ 20$ inclusive. Please specify whether you need $51 / 4 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Hard copy Electronics World index Indexes on paper for volumes 100 and 101 are available at $£ 2$ each, excluding postage.

Ordering details

The $E W$ index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquiries about photocopies, etc,
please send an sae to SoftCopy Ltd at the address below.
Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserv.com. Please make cheques payable to SofiCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

Interactive SPICE

Stop Waiting for your simulation results! Experience the power and Immediate Satisfaction of IsSpIcE4!

- DOS, NEC

ICAP/4, The Virtual Circuit Design Lab, is a completely Integrated system with schematic entry, the isSPICEA native analog and mixed mode simulator, extensive SPICE model libraries and powerful graphics post-processing.

- Analyse and Simulate all types of designs with IsSpicE4, the First and Only Interactive Native Mixed Mode SPICE 3 Simulator
- System, Board, and IC level
- Analog, Digital, Sampled-Data, Mixed Mode, Behavioural elements
- Power, ASIC, RF, Mechanical, Physical, Thermal applications
- AC, DC, Transient, Distortion, Temperature, Monte Carlo, Noise, Sensitivity, Optimisation, and Fourier analyses
- Works with all popular schematic entry systems!
- Graphically Driven and Easy To Use
- Support \& Service - FREE, EXPERT, UK BASED AFTER SALE SUPPORT, Web \& CompuServe Forums
- Affordable, Prices from $£ 450$ to $£ 2,300$

Technology Sources Ltd

Falmouth Avenue, NEWMARKET
CB8 OLZ, UNITED KINGDOM
Tel. 01638-561460
Fax 01638-561721
E-mail: aaj74@dial.pipex.com

Ask us for a FREE Working SPICE Simulation Kit!

Free to Electronics World readers: irreversible temperature indicators

ATP Instrumentation is offering an evaluation pack comprising five irreversible temperature indication strips - completely free to Electronics World readers.
Called Thermostrips, these light, thin indicators consist of one or more heat-sensitive squares or dots. The centre of the indicator dot turns black once the temperature rating shown next to the dot is reached. The change to black is irreversible, so the strips become a permanent record of the upper temperature threshold of a component or piece of equipment.
To aid in maintaining of a piece of equipment, for example, Thermostrips applied for the usage period can be removed during servicing and attached to the service report as evidence of correct functioning. They can also be used to help detect whether goods returned under warranty have been subjected to overheating.
Performance of the strips is not affected by contact with solvents, gases, steam, etc. Because of their size and the way they operate, Thermostrips can be the only practicable way of measuring peak temperature in situations where equipment cannot be watched round the clock, or on moving parts, etc.
Accuracy of the strips is $\pm 1^{\circ} \mathrm{C}$ for ratings to $100^{\circ} \mathrm{C}$ and $\pm 2 \%$ for ratings above.
To obtain your evaluation pack comprising:
One single-segment strip with a $40^{\circ} \mathrm{C}$ threshold
One triple-segment strip for 40,43 and $46^{\circ} \mathrm{C}$
One five-segment strip covering 60 to $82^{\circ} \mathrm{C}$
One eight-segment strip covering 77 to $116^{\circ} \mathrm{C}$
One four-segment mini-strip for $66,71,77$ and $82^{\circ} \mathrm{C}$
..simply fill in the reply coupon between pages 320 and 321 , apply a stamp, and send the card to ATP Instrumentation.

To obtain details of the range of temperature strips that ATP Instrumentation supplies, write to Tournament Way, Ivanhoe Industrial Estate, Ashby-de-la-Zouch, Leicestershire LE65 2UU, or telephone 01530416876 ,
fax 01530560373.

Comprehensive instrumentation cafalogue

In addition to temperature strips covering the range 40 to $260^{\circ} \mathrm{C}$, ATP also supplies a vast range of instrumentation, including:

- timers
- weighers
- chart recorders
- multimeters
- pH meters
- humidity detectors
- vibration meters
- dew-point indicators
- light meters - power supplies.
- Air flow meters

Send your request for a free catalogue on company letterhead to ATP's address shown above.
KENWOOD
TEST \& MEASURING INSTRUMENTS A SUPERB RANGE OF OVER 100 GUALITYINSTRUMENTS. Available from B.K. ELECTRONICS

FM-AM Signal Genefators (Colour Pattern Generators *Video Signal Analyser * Video Tirming Analysen Video Noise Meter
\star Distortion Meter * Waveform Monitors
Meters \star Electronic Voltmeters
*Digital Multimeters A Function Generstors \star Frequency Counters \star 日us Analyser

* Resistance Attenuator \star Oscilloscopes \star Fully
Programmable Digital Storage Oscilloscopes * RegulatedD.C. Power Supplies
A free, 50 page colour brochure, including price list, is available on request. Please make your request on company headed notepaper, by post on by fex, to:
> B.K.ELECTRONICS Unit 1 Comet Way SOUTHEND-ON-SEIEA Eввех, Sse
> Tol: 01702-587578

EMBEDDED C ASSEUBELYSIMLLATION

8051

C compiler, first released in 1991, now features:
Easy to use interrupt support with reglster bank swltching IEEE foating point arithmetic

- IEEE 695 source level debug output

Integrated relocatabie assembler
Simulator running under Microsoft Windows provides extensive support for the 8051 code development

68000

Our first C compller/assember package
now supports flocting point arithmetic
has been widely adopted by many OEM's to support their 68000 and 68307 hardware

CPU32

68020 C compiler/assembler, originally developed to accompany
Motorola's 68020 and 68 ECO 20 evaluation mode's

- Now supports the CPU32
- 68881 co-processor support
- IEEE 695 source level debug output

[^0]
Two-chip smart accelerometer

Benefits of this accelerometer - designed using silicon micromachining - are small size, relatively low cost and repeatable, temperature-stable output. Diedrik de Bruin and Ed Koen of EG\&G IC Sensors explain.

Fig. 1. The accelerometer die's footprint is 3.4 mm by 3.4 mm . Piezo-resistive transduction provides a relatively high output.

The signal-conditioned accelerometer described here offers many advantages. Manufactured using silicon micromachining, the sensor element has proven reliability. Being wholly monolithic, the signal conditioning circuitry needs no external components and thick or thin film technology.
Both sensor and signal conditioning chips are hermetically packaged together in a ceramic leadless chip carrier. Output parameters are trimmed electrically after packaging. The chip carrier can be mounted in several orientations to allow measurement of acceleration either perpendicular to or in plane with the mounting surface.

Accelerometer overview

Currently the majority of signal conditioned accelerometers are packaged using hybrid technology. Thick or thin-film resistors are used to set parameters such as offset and sensitivity to the desired values.
This approach results in relatively bulky designs with non-uniform mounting configurations. The user is often required to carry out additional mechanical work, such as designing a mounting bracket.
The accelerometer design discussed here is intended to not only lower the cost of the accelerometer, but also the reduce implementation costs. This is accomplished by mating a silicon micromachined sensor die to a signalconditioning IC in a ceramic leadless chip carrier.
The two-chip approach allows the sensor and signal conditioning chips to be optimised and avoids the yield losses associated with complicated single-chip designs. The accelerometer is compatible with automated pc board assembly while offering multiple mounting options.

Sensor element

The accelerometer structure, Fig. 1, measures 3.4 mm square. A seismic mass and four flexures are formed using bulk micromachining processes. Bulk micromachining technology was chosen over surface micromachining
because the entire thickness of the silicon wafer can be used for the seismic mass, resulting in a higher sensor output.
Each of the four beams contains two implanted resistors, interconnected to form a Wheatstone bridge. When the device undergoes an acceleration, the mass moves up or down, causing four of the resistors to increase and the other four to decrease in value. This results in an output voltage change proportional to the applied acceleration.

Eight resistors are interconnected such that the effects of any motion other than that caused by an acceleration in the primary direction are cancelled out. Piezoresistive transduction provides a relatively high output level with low impedance and good linearity. As a result, it is not necessary to include signal conditioning electronics on the same chip as the sensor to obtain good performance.

Silicon top and bottom caps attach to the section containing the seismic mass and the beams. These serve several purposes. Precision gaps are etched into the caps to provide air damping to suppress the resonance peak of the structure. Because the part is critically damped, the response is flat up to several kilohertz - independent of temperature.
Small elevated stops on the top and bottom caps limit the motion of the mass to a fraction of the deflection at which fracture occurs. The mechanical structure does not wear and mechanical latch-up cannot occur. The top and bottom cap form an enclosed cavity around the seismic mass, protecting it against contamination which may obstruct its motion.
Because the three sections are bonded together at the wafer level in the clean room the cavity is free of particles and is protected from particulate contamination during the final chip dicing and assembly operations.
Lastly, the top cap is used to enable testing of the accelerometer in the absence of acceleration ${ }^{1,2}$. The over-force stops on the top cap have been enlarged and a metal electrode has been deposited on them. This electrode is connected to a bond pad.
When a voltage is applied between the elec-
trode and the silicon of the seismic mass, an electrostatic force moves the mass toward the top cap. This results in a change in output voltage proportional to the sensitivity and to the square of the applied voltage. It is thus possible to generate an 'acceleration' using an external voltage and to check the functioning of the mechanical structure as well as the electronics.
The accelerometer has been qualified for, and used in, air bag crash detection systems and proven to be very reliable.

Signal conditioning circuitry

Signal conditioning circuitry is made in $1.5 \mu \mathrm{~m}$ cmos technology. Signals are processed by differential amplifiers throughout most of the circuit in order to minimise common mode effects and noise.
Switched capacitor circuitry is used to save space and because high accuracy gain stages can be made easily. The -3 dB bandwidth of the signal conditioning electronics is about 3 kHz . The accelerometer is intended for 5 V operation with an output voltage in the $0.5-4.5 \mathrm{~V}$ range.

Processing the signal

The accelerometer has a differential output with source impedance of around $4 \mathrm{k} \Omega$ and full scale output voltage of about $\pm 50 \mathrm{mV}$. The off set voltage, i.e. output at zero applied acceleration, may vary a few millivolts over the temperature range of -40 to $85^{\circ} \mathrm{C}$. Also, the full scale output decreases over temperature by about $-1900 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The signal conditioning circuitry converts the differential signal into a single-ended signal in the $0.5-4.5 \mathrm{~V}$ range while compensating for temperature-related signal variations. As a result, the accelerometers are interchangeable with a total error of less than 5%.
The signal path is shown in block diagram, Fig. 2. Output signal of the accelerometer die is processed by the following stages:

- The first stage provides a high impedance load for the sensor and amplifies the signal to maximise the dynamic range during subsequent processing. Offset of the sensor is eliminated by adding a voltage generated by a d-to-a converter. This converter is controlled by a digital word representing the programmed offset value.
- The temperature coefficient of offset (tco) of the sensor is compensated by adding a voltage which is controlled by digital words representing the temperature and the programmed tco value. Both the offset and tco voltages are derived from the supply to ensure that the signal remains ratiometric with supply voltage.
- Signal gain can be varied by changing a capacitor ratio using a digital word. The gain can be varied in a $5: 1$ range to allow for different full scale specifications.
- The sensor's temperature-coefficient of sensitivity, tcs, is compensated in the next stage.

Sensitivity decrease over temperature is compensated by increasing the signal gain linearly with temperature. This method was chosen over a circuit using constant current excitation of the sensor because of the required voltage overhead of the current source. The sensor is now powered with the entire available supply voltage, maximising its signal.

- Output bias voltage can be set to either 0.5 V or 2.5 V by connecting an input pad on the chip to ground during assembly of the part. This allows signals to be processed with either a bipolar or unipolar range.
- A two-pole passive filter removes signals generated by the internal oscillator and switched capacitor networks. Switching noise is further minimised by having separate digital and analogue internal supply lines and by the differential signal processing.
- A low impedance output for driving resistive and capacitive loads without influencing the signal is provided by the final stage. The output enters a high impedance state if the device is not addressed.

Error detection functions

Because the accelerometer is intended to be used in safety-critical applications, such as airbag deployment, several features are incorporated to detect a failure of the accelerometer or circuitry.
It is important to prevent floating signals because the resulting output voltage might look like a crash signal and activate the air bag. Such signals could be caused by a discontinuity between the sensor and the circuit or by a malfunction of the sensor itself. Small current sources have been added between each of the signal inputs and the positive supply.
In case one or both of the inputs are open, output voltage is forced to the positive supply. In addition, two window comparators monitor the voltage at both inputs. If the voltage at one or both inputs exceeds the allowed range, an 'alarm' output pin is made high. This output can be monitored by a microprocessor to alert the user to a malfunction of the sensor.
In addition, the sensor has a built-in self-test function which allows the seismic mass to be

Fig. 2. In the accelerometer's signal conditioning circuitry, the first stage is a high-impedance preamplifier buffering the piezo-resistive element's output.

Number of sensors	Required number of lines Non- multiplexed	
2	4	6
4	10	8
9	20	10
16	34	12
25	52	14

CS $=$ Column Select
AL = Alarm output
OUT = Signal output
Fig. 3. Control signals and i/o lines are structured so that multiple accelerometers can be accessed via the same bus.
moved by means of an externally applied voltage. This allows the entire device to be tested, including the mechanical structure of the sensor and the signal conditioning electronics.
By applying a voltage to the bond pad that is connected to the self-test electrode, the output will exhibit a voltage change which is proportional to the full scale output, in contrast to
other self-test schemes where the output change is fixed. This makes it possible to verify not only complete malfunction of the device but also a parametric error, giving a better indication of a partial or a developing failure.

Accessing the device

Addressing capabilities have been incorporated in the signal conditioning electronics in the form of row-select and column-select digital inputs.
Both input lines must be high for the accelerometer to be selected. If one or both of the select lines are in the low state, the signal and alarm outputs are in a high impedance 'tri-state' mode. This allows the outputs of multiple accelerometers to be connected together, Fig. 3, eliminating the need for ana\log multiplexers and reduces wiring.
The reduced number of wires is an advantage if four or more devices are needed in a system. The following table shows the number of lines - including supply and ground required in a measurement system with sen-

Fig. 4. Stiffness and low mass of the accelerometer's surface-mount package helps keep its resonant frequency high.

Fig. 5. Orienting three sensors in this way forms a tri-axial accelerometer.
sors used in non-multiplexed and multiplexed mode. The digital control lines could be driven by custom designed logic, a card that plugs into a computer, or the i / o port of a microprocessor.
The digital inputs and outputs used during testing and trimming are disabled if the device is not selected, and can therefore be bussed together. This greatly simplifies the test hardware if the accelerometers are characterised and trimmed in an array configuration.

In the case of single-sensor operation, or if multiplexing is not desired, the row and col-umn-select inputs can be left open. Internal pull-up current sources ensure that the accelerometer is selected when these inputs are not connected.

Electrical trimming

Optimal trim values for offset, tco, gain and tcs are different for each sensor. Often a network of thick or thin film resistors is used to set these coefficients. In that case, the desired resistor values are set by laser trimming after characterisation of the untrimmed sensor. This requires a separate trim operation using expensive equipment.
Any additional packaging steps done after trimming, sealing the substrate in a housing, for example, could change the characteristics of the sensor resulting in sensitivity or offset errors. Furthermore, trimmable resistors and the conductive traces connecting them to the electronics take up space and limit the available packaging options.
To avoid these disadvantages the trimming is done internal to the signal conditioning IC. The trim coefficients for offset, tco, gain and tcs are stored in binary registers which are connected to d-to-a converters that manipulate the signal.
In contrast to some designs that require an additional eeprom containing the coefficients, the storage registers are on the same chip as the signal conditioning electronics. The storage registers are made in fuse technology to assure data retention in safety-critical applications.
Before trimming data is permanently programmed into the fused registers, the accelerometer can be operated using data stored in volatile ram registers. This allows for the characterisation of the sensor and electronics during manufacturing in order to extract the required coefficients for offset, tco, gain and tcs.
Fuse trimming is handled by circuitry inside the signal conditioning IC and requires no external equipment. The digital i / o used for characterisation and trim consists of a serial input and a serial output line and a clock input for synchronising the data entry, which uses a 16-bit protocol.
All digital i/o lines are available after final packaging. This allows the accelerometer to be trimmed as the last manufacturing step. Because the data transfer is serial rather than parallel, the pin count is not the limiting factor for the package size.
Packaging details

The package is a leadless chip carrier measuring 0.530 in by 0.300 in and is 0.150 in thick. It is manufactured by screening tungsten interconnect traces onto ceramic layers which are then stacked together and fired.
The accelerometer die and signal conditioning IC are mounted into the package cavity and connections are made from the die to the package with gold-wire bonds. A gold plated Kovar lid is then soldered to the package using a $\mathrm{Au} / \mathrm{Sn}$ preform. This provides a hermetic seal which will withstand the rigorous environmental requirements of the automotive and military industries.
Reliability is increased with respect to many other designs because of the reduced number of components. No external components such as capacitors are needed for operation. Stiffness and low mass of the package helps to keep its resonant frequency high. Inputs and outputs needed for operation of the accelerometer and for characterisation and trim are brought out fo contact pads on the side and on the bottom of the package, Fig. 4.
Mounting surface 2 is on the opposite side from the metal lid. Because electrical contact can be made on two surfaces and because of the aspect ratio of the package, it is possible to mount the package either flush with or perpendicular to the board.
In many cases accelerometers need to be mounted at a 90° angle with respect to the circuit board. This normally requires additional brackets and is not compatible with automated manufacturing. The ceramic package allows the accelerometer to be mounted on the pcb using automatic placement equipment, reducing manufacturing cost and saving space.
Another possible application is to make a tri-axial accelerometer by mounting two accelerometers perpendicular to the board and one in parallel, Fig. 5. Dimensions of this fully signal conditioned tri-axial accelerometer is only 0.73 in by 0.53 in by 0.30 in .
The accelerometer is available in several g ranges to cover many applications such as ride control, airbag deployment - both frontal and side impact - fusing and arming, vibration monitoring and general instrumentation.
In addition, it is possible to adapt the device to specific customer needs.

This article is based on a paper presented at Sensors Expo, Cleveland Ohio; contact http:llwww.sensorsmag.com

References

1. Self-testable Accelerometer Systems.

Henry V. Allen, Stephen C. Terry and Diederik W. de Bruin, Proceedings of IEEE Micro Electro Mechanical Systems, IEEE catalogue no 89TH0249-3, February 1989, pp. 113-115. 2. Accelerometer Systems with Built-in Testing. Henry V. Allen, Stephen C. Terry and Diederik W. de Bruin, Abstracts of Transducers '89; The 5th International Conference on Solid-State Sensors and Actuators, June 1989, pp.148-149.

COMPUTER ICS

HO6384-8.
E2 100/51
2716-45 USEO.

27C512 USEO .
1702 EPROM NEW
2114 EX EOPT
6264.158 K ST
280A SIO-O.
$71263^{1 / 2}$ DIGIT LCD ORIVEA CHIP.. 8

8255-5.

WD16C550-PC UART ... 5
27C256-26 USED
REGULATORS
LM323K 5V 3 A PLASTIC
LM323K 5V 3A METAL
79H12ASC (VARIABLE 3A).
LM317H TOS CAN
LM317T PLASTIC TO220 variable
7812 METAL 12 V 1A
$7805 / 1219524$
CA3085 TO99 variable re
78HGASC+79HGASC REGULATORS
LM123 ST93 5V 3A TO3 REG
78L12 SHORT LEADS.

MISCELLANEOUS
 XENON STROBE TUBE

UM61 angle infra red emitter LED55C
CNY65 OPTO ISOL 3000 avalable
2/21
DPTO ICS also avallable TLP550 TLP666GF
68 way PLCC SKT 1500 availab 1250pF POSTAGE STAMP COMPRESSION TAIMMER £1... $£ 1$ each LM324 (Quad 741)...................................
MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$
TL071 LO NOISE OP AMP
TLOB1 OP AMP.
47000 U 25v SPRAGUE 36 .

2 way dil sw 5 for E !
ONF
...30/4000
SWITCHED MODE PSU 40 WATT UNCASED OTY. AVAILAB1/4000 $5 A_{1}+12 \mathrm{~V} 2 \mathrm{~A} .12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING
220R 2.5W WIREWOUND RESISTOR $60 K$ A AILABABLE
c9.95 (£2)
23 AA LITHIUM cells as used in compact cameras......................2/21.50
PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT $£$ ea
EUROCARO 28-SLOT BACK PLANE 96/96-WAY £25 өa
EUROCARO 96 -WAY EXTENOER BOARD
$90 \times 100 \mathrm{~mm}$
DIN 41612 96-WAY AB/C SOCKET PCB RIGHT
DNG 4
DIN 41612 96-WAY AB/C SOCKET WIRE WRAP PINS. DIN 41612 64-WAY AC SOCKET WIRE WRAP PINS
DIN 4161264 -WAY ABB SOCKET WIRE WRAP (2-HOW BODY
MIN. TOGGLE SWITCH 1 POLE c/O PCB type
LCD MODULE sim. LM018 but needs 150 to 250 VAC for display

... $£ 10$
 RS232 SERIAL CABLE D25 WAY MALE CONNECTORS

25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS

AMERICAN $2 / 3$ PIN CHASSIS SOCKET NMAC LIST PRICE $£ 30$
WIRE ENDED FUSES $0.25 A$
NEW ULTRASONIC TRANSDUCERS 32 kHz .
BNC 500 HM SCREENED CHASSIS SOCKET
SMALL MICROWAVE DIODES AE1 OC 1026A
DIIL. SWITCHES 10-WAY E1 8 -WAY $80 \mathrm{p} 4 / 5 / 6$-WAY
180VOLT IWATT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V}$

47WBost

MINIATURE CO-AX FREE PLUG RS $456-071$
MINIATURE CO-AX PCB SKT RS 456-093
PCB WITH 2 N 2646 UNIJUNCTION WITH 12 V 4 . POLE RELAY
400 ME GOHM THICK FILM AESISTORS
STRAIN GAUGES 40 ohm Foil type polyester backed balco grid
ELECTRET MICROPHONE INSERT
Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-267

1 pole 12 -way rotary switch AUDIO ICS LM380LM386
 555 TIMERS $£ 1741$ OP AMP

 ZN414 AM RADIO CHIP COAX PLUGS HICE ONES............COAX BACK TO BACK JOINERS
INDUCTOR $20 \mu \mathrm{H} 1.5 \mathrm{~K}$............
1.25" PANEL FUSEHOLDERS STEREO CASSETTE HEAD.
MONO CASS. HEAD \&1 ERASE HEAD
$50100+$ $25 \mathrm{M} 174825 \mathrm{M} 17525 \mathrm{M} 188927 \mathrm{M}+36 \mathrm{M} 27 \mathrm{MO} 000028 \mathrm{M} 322$
 50 M 0055 MO 0056 M 00920 64M000000 66M667 76M1 80 MO

CRYSTALS

32K768 1MHZ 1M8432 2MO00 2M1432 2M304 2M4576 3M000 MM 5 M0688 6 MO 6 K 8M448 8M863256 8M8670 9M3750 9M8304 10M240 10M245 13M000 13M270 13MB75000 14 M 000 14M3 14814 M 7450 14M7 15M0000 16 M 00017 M 625018 M 432 18M432 20 M 00021 M 300 21 M400M15A 24M000 25M000 26M995 BN 27 M045 RD 27 M095 OR 27 M145 BL 27M145 YW 27M 195 GN 28M4696 30M4696 31 M4696 31 M4696 34M368 36M75625 36M 76875 36M78125 36M79375 51 M05833 54M1916 55M 500 57M74 1657 M7583 69 M 54569 M 550 96 M 000 1 11 M 800 114M8 120 MOOO
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
HERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$
RANSISTOR MOUNTING PADS TO-5/TO-18........................... $83 / 1000$
TO. 3 TRANSISTOR COVERS
PCB PINS FIT 0.1" VERO
TO- 3 micas + bushes.
Large heal shrink sleeving pac
IEC chassis plug fiter 10A
POTS SHORT SPINDLES 2K5 10 K 25 K 1 M 2M5
40k U/S TRANSDUCERS EX-EOPT NO OATA
M3352 10MV/degree C.
BNC TO 4MM BINDING POST SIM RS $455-961$
MIN PCB POWER RELAYS 10.5 V COIL 6A CONTACTS 1 DOle e
BANDOLIERED COMPONENTS ASSORTEDR. Cs. ZENERS
LCD MODULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHI LM10) ... E5 OPIT1264A 10kV OPTO ISOLATOR.................. $\Sigma 1.35$ ea $100+\Sigma 1$ өa 'LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM ToE BYANKYO
Telephone cable clips with hardened pins
ECCHASSIS FUSED PLUG B-LEE L2728
2A CERAMIC FUSE $1.25^{\circ} \mathrm{OB}$

WAYIDC RIBBON CABLE 100 FOOT REEL
IEC CHASSIS FUSEO PLUG B-LEE L2728...
ASTEC MODULATOR VIDEO + SOUND UM1287
BARGRAPH DISPLAY 8 RED LEDS
NE567 PHASE LOCKED LOOP

NE564
IR2432 SHARP 12 LED VU BAR GRAPH DRIVER

PIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE
1N5407 3A 1000V..
1N4004 SD4 1A 300V.
1N540; 3A 100V.
IN5819RL 20K Ex $00 / 81.50$
$100 / 3$

N5899R- 20K Ex stock
BY 254800 V 3 A ...
BY255 1300 V 3 A
6 A 100 V SIMILAR MR 751
1A 600 V BRIDGE RECTIFIER
4A 100V BRIDGE
6A 100 V BRIDGE.
10A 200V BRIDGE
25A 400V BRIDGE £2.50
…........................... $10 / 222$

SCRS

PULSE TRANSFORMERS $1: 1+1$... 51.25
TICV 106 D 800 mA 400 C SCR 3 El
MEU21 PROG. UNIJUNCTION
$00 / 815$
$-\quad 3 / 21$
TRIACS
DIACS 4/\&1

TXAL225 BA 500V 5 mA GATE..........
BTA 08-400 ISO TAB 400 V 5 mA GATE

PHOTO DEVICES

HI BRIGHTNESS LEDS COX24 RED
SLOTTED OP TO-SWITCH OPCOA OPB815.
TIL81 PHOTO TRANSISTOR
TIL38 INFRA RED LED
4N25, OP 12252 OPTO ISOLATOR
PHOTO DIODE 50P........................
LED's RED 3 or 5 mm 12 I I....
50p
$100 / 86$
LED's GREEN OR YELLOW 10/E1 ...100/266
FLASHING RED LED 5 mm 50 p ..
HIGH SPEED MEDIUM AREA PHOTODIODE RS $651 \cdot 995$.
OPTEK OPB745 REFLECTIVE OPTO SENSOR............................. $£ 1.50$
RED LED-CHROME BEZEL.................................
MOC 3020 OPTO COUPLED TRIAC

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K, G24 20K. G54 50K. G25 200K, RES $20^{\circ} \mathrm{C}$
 FS22BW NTC BEAD INSIDE END OF 1" GLASS PROBE RES $20{ }^{\circ} \mathrm{C}$
2000. A13 DiA
A13 DIPECTLY HEATED BEAD THERMISTOR 1k res. Ideal for
audio Wien Brage Oscillator .. as
CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$

IC SOCKETS
\$4/16/18/20/24/28/40-WAY DIL SKTS $£ 1$ per TUBE 3-WAYDIL SKITS... TUBE SIMM SOCKET FOR 2×30-way SIMMS.

POLYESTER/POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X 2 RATED PHILIPS TYPE 330

$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$
$10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm}$ rad
100 n 600 V Sprague axial $10 / \mathrm{I}$
100 n
$2 \mu 2160 \mathrm{~V}$ rad 22 mm . $2 \mu 2100 \mathrm{~V}$ rad $\$ 5 \mathrm{~mm}$.
$10 \mathrm{n} / 33 \mathrm{~N} / 47 \mathrm{n} 250 \mathrm{~V}$ AC x rated 15 mm
1μ GOOV MIXED DIELECTRIC
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm},{ }^{7} \mu 022 \mathrm{~mm} \mathrm{rad}$
$0.22 \mu 250 \mathrm{~V}$ AC X2 RATING

RF BITS

SAW FILTERS SW662SW661 PLESSEY SIGNAL TECHNOLOGY

ASTEC UM 1233 UHF VIDEO MODULATORS (NO SOUND) 1250
STOCK..50
MARCONI MICROWAVE DIODES TYPES DC2929. DC2962.
DC4229F1/F2

F GREY 5-25pF SMALL MULLARD
RED 10-110pF GREY 5-25pF SMALL MULLARD
2 to 22pF... 5 FOR 50p $£ 10 / 100$

CERAMIC FILTERS 4M5/6M/9M/10M7
FEED THRU CERAMIC CAPS 1000 FF
6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVE
6 VOLT TELEOYNE RELAYS 2 POLE CHANGEOVER £2
2N2222 METAL $5 / \mathbf{E l}^{1}$

2N2369A. sci
74NIV TACS CAR PHONE O/P MODULE
EQUIV MHW806A. RFIN 40 mW O/P $6 \rightarrow$ OW $840-910 \mathrm{mHz} \ldots53$ ee
MONOLITHIC CERAMIC CAPACITORS

100 n 50 V 2.5 mmor 5 mm
$100 / 54.50$
.. $100 / \mathrm{Kb}$

QUARTZ HALOGEN LAMPS

£20/100
100/53.50

Telephone caller

> Uses, standards, devices and receiver design for Caller ID - the system that allows you to see the number of the person phoning you - are discussed by Seggy Segaran.

TThe term Caller ID is used to describe the transmission of the caller's telephone number when the telephone rings. This service was introduced by BT at the end of 1994, along with two receiver units.
The CD50 is a stand-alone battery powered unit with display, that can store details of 50 calls. The Relate 1000 with combined telephone, is much more sophisticated. Not only can it display the number, but it uses a local directory to look up the name of the caller. It also allows the easy redialling of any of the received numbers.
Currently, the service from BT only delivers the caller's number, the time and date. The enhancement of the service to deliver name has not yet taken place. There is no time scale from BT for this to be available. If the call is from a pay-phone or from abroad, then the text 'payphone' or 'international' is sent. Calls from a significant number of telephones are still delivered as 'number unavailable', presumably because these are connected to older exchanges.
Privacy is an important consideration. Calls from 'ex-directory' lines are delivered as 'number withheld' and so are all calls prefixed with 141 . This ensures anonymity for those that require it.
The Caller ID service is only connected on request and there is a quarterly charge. However, the benefits of Caller ID as described below, will surely more than offset this modest charge.
For the domestic user, the service allows screening of incoming calls, which is espe-
cially useful during quality family time. Only expected calls or those from close family members need be answered immediately.
The Caller ID device can also be used as a complement or a replacement for an answering machine. It will record the number of those that tend to hang up as soon as the answering machine message starts to play, and also record the number - even if the call is not answered. The Relate 1000 allows quick redialling of any of the numbers in the calls log.
For the small business user, the Caller ID service is invaluable. Taxi firms and pizza delivery services are regularly abused by pranksters. With the CD50, a simple check of the caller's telephone number with a verbal confirmation can sort these out.
Voluntary organisations can identify malicious callers. They can also identify calls from vulnerable people in trouble, such as emergency calls from disabled or elderly callers. For the tradesman, it allows potential enquiries to be followed up from callers reluctant to use the answering machine.
However, the real benefit to businesses come, when the Caller ID information can be presented to the com port of a pc. This allows the logging of large numbers of calls, instant look up of customer details using the telephone number as a key, and verification of customer identity when releasing sensitive information, such as bank account details.
On another front, the number information can be checked against a stored list of numbers before allowing access to a database, thus providing an effective 'anti-hacking' device.

Companies employing a mobile team, such as cleaning or security staff, can request them to call in from their various sites at the start and the end of their duties. This verifies attendance and time spent at each site. The beauty

Useful addresses

Solwise, Princes Court, Princes Avenue, Hull HU5 3QA. Tel: 01482 473899, Fax: 01482472245 . Full catalogue on, hitp://www.demon.co.uk/solwise/

Mitel Semiconductors, Mitel Business Park Newport, Gwent NP6 4YR. Tel: 01291 430000, fax: 01291436389.

Consumer Microcircuits, 1 Wheaton Road, Witham, Essex CM8 3TD. Tel: 01376 513833, fax: 01376518247

Useful standards

BT:SIN 227: BT Analogue Caller Display Service-Service deseription. BT:SIN242: Calling Line Identification Service: TE requirements.
Available from: Regulatory Services Unit, Room 134, 2 City Forum, $250-258$ Ciry Road London ECIV 2TL. Tel: 0800318601 , CTA:TW/P\&E/312: Terminal requirements for Caller Display Services, available from: Alan Jones, TeleWest Communications Group, Unit 1, Genesis Business Park, Albert Drive, Woking, Surrey GU21 5RW. Tel: 01483750900

Fig. 1. Timing details for Bellcore's standard for caller ID: data-link layer, on-hook data transmission. Among the first used, this standard was first available in the US.
of this use is that, as the telephone call does not have to be answered, there are no call charges incurred.

Caller ID - history and standards

The Caller ID service was first introduced in the US, based on a series of standards from Bellcore. The information is coded using fre-quency-shift keying signals, fsk, using the Bell 202 standard. This used a 1200 Hz signal for a mark, and a 2200 Hz signal for a space.
On call arrival, a single ring burst is sent by the exchange, followed by a burst of fsk signal. The data is preceded by a Channel Seizure signal - comprising alternating marks and spaces - and a mark signal. This allows the fsk receiver to synchronise to the data, and to provide immunity against noise spikes. The sequence of events on call arrival is shown in Fig. 1.
The initial ring burst is used by receiving units as a 'wake up' signal. Since these units are battery powered, low power consumption is paramount. The design of the various Caller ID receiver ICs allows the receiver to be placed in a standby mode, with just the ring detector powered. In this mode, current consumption is down to tens of microamps.
On a ring signal being detected, the rest of the IC is powered, and the fsk data is decoded. Since this is done in one or two seconds, and the IC then goes back to low power mode, battery life of a year can be achieved.

BT's Caller ID service

This started off with the Bellcore system as its model but diverged along the way. One new requirement for the BT service was that it should be possible to pass information to the
receiving unit, without alerting the phone user. The information was for metering and message waiting status. This precluded the use of the ring signal as being the initial alert signal.
Reversal of line polarity was decided upon as the initial alerting signal. So the 'no ring' call would be presented as line reversal, data, followed by another line reversal. A normal call on the other hand, would be presented as line reversal, data and then ringing.
However, the ringing signal served the purpose of 'wetting' the cable joints, prior to fsk signalling. As there is negligible current flow during a line reversal, the 'wetting pulse' was to be supplied by the receiving unit, before the transmission of the fsk signal
To ensure that this 'wetting pulse' was applied correctly and in synchrony with other units on multiple installations, another signal was introduced. This was the Tone Alert Signal, or TAS, and was a dual tone of 2130 Hz and 2750 Hz . After receipt of this, the 'wetting pulse' was to be applied. To ensure good impedance matching during fsk data transmission, the BT standard also calls for an ac impedance during this state.
In addition to the above changes, the BT specification uses V23 frequencies for the fsk signals, which involves 1300 Hz for the mark and 2100 Hz for the space. The sequence of events for this is shown on Fig. 2. The BT specification also allows for a number of new features to be implemented, and has built in some flexibility for future expansion.
The Caller ID service implemented by cable tv companies is closely modelled on the Bellcore service, in that a single burst of ringing is used to initiate the data. However, V23 frequencies are used for the fsk data and there
is also some allowance in the application layer for future expansion.

Design of a pc device

To exploit a niche in the market for Caller ID devices, a project was initiated to produce a unit that would meet two key objectives. First it would allow Caller ID data to be decoded from the telephone line, and presented to the com port of a PC. Secondly, it would supply a Windows utility that would,

- Display call details on the screen as the telephone rings
- Allow name look-up from a pre-programmed directory
- Log all calls in a database format for processing later.

The unit had to be compatible with BT and CTA Caller ID standard and would have to be priced at under $£ 50$ to reach the home pc user. With these objectives in mind, the design of the product commenced. After a period of study, the following key design decisions emerged.
First was the choice of Caller ID receiver IC: newly available were two ICs that were capable of meeting both the BT and CTA standards. One was the MT8843 from Mitel Semiconductors and the other was the FX602 from Consumer Microcircuits Ltd. They both had ringing and line reversal detection capability and also circuits for the detection of tone alert signal.
The MT8843 was chosen as samples of these were available earlier. Having decided to make the unit compatible with both standards, the actual wetting pulse and ac impedance cir-

Fig. 2. BT SIN 242: data-link layer, on-hook data fransmission, as used for caller telephone number identification throughout most of the UK.
cuits were made optional to save cost. The sensitivity of the receiving circuits were increased to compensate for this.

Powering of the device from a COM port was a key design target, as this would result in lower unit cost. This was made possible by careful design and power management.
To implement the critical timing of the BT standard, to carry out the power management, verification of received data and the serial communication, a Microchip PIC device was used. In addition, a single crystal of 3.579 MHz was used as a clock for the PIC and MT8843 devices to keep costs down.
Visual Basic was chosen for the design of the software as this allowed software to be developed quickly and still allowed very professional screens to be displayed to the user.
A block diagram of the electronics is given in Fig 3. A sample of the Window with call details is shown in Fig 4. Following the above decisions and subsequent detailed design, the project was successfully completed and the device, CID-PC1 is now available from SOLWISE at a cost of $£ 45-00$.

Fig. 3. Block diagram of Tele Products' CID-PC1 Caller ID unit, design for interfacing to the PC.

Summary

Caller ID presents many benefits to domestic and business users. The potential of Caller ID
to business users is obvious once the information can be presented to a PC. Above are details of the design of such a unit.

About the author

T. Segaran is the founder of Tele-products Ltd. The company specialises in the design and manufacture of telecommunications test equipment and the design and approvals of Telecom products. The company has a Caller ID simulator amongst its range of test instruments. This is capable of simulating most Caller ID standards from around the world
Before founding Tele-Products T. Segaran worked for Standard Telephones and Cables and at Tunstall Telecom as a Section Leader. He has been instrumental in a number of successful product launches including the early Viscount telephone, the Piper Lifeline, the Minstrel, React, Duet and Converse range of telephones.

Caller ID on a PC - exclusive EW reader offer

Seggy Segaran's Caller ID design, allowing callers' numbers to be read, logged and manipulated on a PC, is being made available to EW readers at a special 15% discount price until 17 May. This self-powered unit is supplied complete with Windows driver software incorporating three key features:

- On receipt of a call, the software produces a Windows pop-up menu with the caller's identification, which can then be cut and pasted.
- Calls are logged in the software's own data base for later manipulation.
- The software's own dara base is Microsoft Access compatible.

Normally, the Tele-Products CID-PC1 sells for £45, excluding VAT and carriage. For the duration of the offer, EW readers can oblain the unit for $£ 48.87$ - fully inclusive of software, VAT and first-class recorded postage. Simply fill in the coupon below and post it to Dept 74, Tele-Products Ltd, Unit A8, Parkside Commercial Centre, Terry Avenue, York YO2 IJP. Tel 01904659583 , fax 01904611465.

8

Please send me CID-PC1 Caller ID units for the PC, for which I enclose a postal order or cheque payable to TeleProducts Lid for the amount $£$

Name

Address
\qquad
\qquad
\qquad
\qquad

Post Code

Daytime tel

Don't miss out!

Place a regular order with your newsagent for your own copy of Electronics World. And be entered into our Free Prize Draw! one reader a month will win...
In April A FREE 11-piece tool kit and a FREE copy of "Oscilloscopes" by Ian Hickman, worth $£ 16.99$ In May A FREE 11-piece tool kit and a FREE copy of "Modern CMOS Circuits Manual"
by R M Marston, worth $£ 14.99$
In June A FREE 11-piece tool kit and a FREE copy of "Analogue Circuits Cookbook"
by Ian Hickman, worth $£ 19.95$
To enter the draw simply fill in the form opposite, ask your newsagent to sign it when you place your regular order for Electronics World and send the forms to: Marketing Department, Electronics World, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Name Address

Telephone number
Signature

Newsagent

Newsagent's address

Newsagent's signature

RADIO DATA MODULES MODEM TRANSCEIVERS

UK, E.E.C, Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australia Wherever you are, we have a module on the right frequency for you ! New 1: TXR-XXX-DTR100

Only $55 \times 23 \times 15 \mathrm{~mm}$

Low Voltage Transmitters Simplify Interfacing]
-Available UK Approved MPT 1340418 MHz - Exportl-ETS-300-220, 433.92 MHz

Reduce Component Count, Cost, Size \& Power Drain

- Twice as fast as the - A version, up to $20,000 \mathrm{bps}$.
- 3 V or 5 V Drives directly from a PIC output Port III *

TXM-418-F Transmitter

Exclusive : South Arrican Modulas on 403 MHz

*TXM-403-A, SILRX-404-A, RXM-403-A *

* High Quality FM system > 120M Range *

Evaluation Kits Available *
No Price Surcharge

- Eg : 1000 + TXM's Only £5.95 Each *

VHF Modules for UK, Australia and Beyond !

- UK, 173 MHz to MPT1344 \& MPT1328 Licence Exempt * - Miniature Low Cost $1 \& 10 \mathrm{~mW}$ Transmitters
173.500 MHz Transmitters \& Transceivers for Australia *
- PCB mount or canned, Superhet Receivers *
 RXM-403-A

Low Cost Meter Reading Transcelvers on 183.8875 MHz "
 We have over 60 models / frequencies of radio module in stock Please contact our sales office for a free catalogue.
Radio - Tech Limited, Overbridge House, Weald Hall Lane Thornwood Common, Epping, Essex CM16 6NB. Sales +44 (0) 1813688277 Fax +44 (0) 1813613434 Int'I +44 (0) $1992576107 \mathrm{Fax}+44$ (0) 1992561994

MARCONI 2370 Spectrum analyser

$\mathbf{3 0 H z}-110 \mathrm{MHz}$ Frequency range 1Hz Resolution/phase lock tuning Digital storage with dual display Built-in tracking generator 9 digit frequency counter $\mathbf{8 8 5 0}$ + carriage/vat
Includes $\mathbf{3 0}$ day unconditional warranty M\&B Radio, 86 Bishopgate Street, Leeds LS1 4BB Tel: (+44) 01132435649

Fax: $(+44) 01132426881$

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TESTEQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopgate Street, Leeds LSI 4BB
 Tel: (OI I 3) 2435649 Fax: (OI I 3) 242688 I

SPECIAL OFFERS

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TII PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5 -digit 1705 multimeter resolves down to $10 \mu \mathrm{~V}$, $10 \mathrm{~m} \Omega$ and $0.1 \mu \mathrm{~A}$ and has a basic dc accuracy of 0.04%. Frequency measured is 10 Hz to 120 kHz with an accuracy of 0.01% and resolution to 0.01 Hz . Capacitor and true rms measurements are also featured.
Recognising the importance of a good idea, Thuriby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly $£ 100$ 'best circuit idea' award and $£ 25$ awards for each circuir published.

E100 WINNFR

Night/day light measurement in one range
 the technique is inherently proof

S
S ince the NORP-12 cadmium sulphide photo-conductive cell obeys a precise log-law $\left(\log \left(R_{\mathrm{p}}\right)=\right.$ $4.630-0.6761 \log (L)$, where R_{p} is the cell resistance at Llux), a low-biascurrent op-amp with a log-diode in the feedback loop will give an accurate light reading from moonlight to sunlight in one range. Furthermore,
against overload and is inexpensive. Op-amp A_{1} drives a $100 \mu \mathrm{~A}$ meter, on which zero is equivalent to 0.1lux and full scale to 10^{4} lux. Since $\log 2$ is 0.301 and $\log 5$ is 0.699 , the meter scale may be calibrated in a 1-2-5 sequence in these proportions. If a laboratory standard lamp is available,

calibrate the meter at llux and 1000lux by the trimmers $V R_{1}$ and $V R_{2}$; if not, first replace R_{p} with $42.7 \mathrm{k} \Omega$ and then 400Ω, these being the resistance values from the NORP-12 data sheet which does not, of course, allow for tolerances.
Diode D_{2} provides a temperaturecompensated back-off for the darklevel current at D_{1} anode, R_{x} and R_{y} trimming the conformance of D_{1} to the \log-law. Other types of silicon diode such as the OA 202 would improve performance at low current and the 1 N4002 at the high end, but the $I N 4148$, well shielded from light, is a good compromise.
The NORP-12 has a spectral response similar to that of the human eye, peaking at 550 nm ; for a response at infrared, a silicon diode, using similar circuit, would be better. C I D Catto
Cambridge

CIRCLE NO. 126 ON REPI Y CARD

Finally an upgradeable PCB CAD system to suit any budget ...

BoardCapture - Schematic Capture
Direct netist link to BoardMaker2
Forward annotation with part values
Full undo/redo facility (50 operations)

- Single-sheet, multi-paged and hierarchical designs

Smooth scrolling
Intelligent wires (automatic junctions)
Dynamic conneclivity information
Automatic on-line annotation
Integrated on-the-fly library editor
Context sensitive editing
Extensive component-based power control Back annotation from BoardMaker2

BoardMoker

BoardMaker1 - Entry level

PCB and schematic dratting

- Easy and Intuitive to use
- Surface mount support 695
-90, 45 and curved track corners - Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMakeri plus
- Full nellist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic Component renumber with back annotation
Report generator - Database ASCII, 80 M Thermal power plane support wlth full DRC

Bodre Router

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support

Full interrupt, resume, pan and zoom while routing
Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (BM2)

Edge-triggered, set/reset bistable device
(a)

(c)

Edge-triggering a S / R bistable device avoids spurious resets when input pulse width is unknown.
f the widths of set or reset pulses applied to a standard S / R bistable device (a) are unknown, the state of affairs shown in (c) at Q_{1} and $/ \mathrm{Q}_{1}$ can occur, where the reset pulse arrives during the set pulse; reset has no effect on Q_{1}, but produces an unlooked-for pulse on $/ Q_{2}$. In addition, the next set pulse will be ignored, since Q_{1} is already high.
Since the circuit in (b) responds only to negative edges at the set and reset inputs, the output is as shown at (c) in Q_{2} and / Q_{2}.

Giorgio Delfitto

University of Padova, Italy

Simple servo driver

This simple circuit drives model servo motors in response to the turning of a potentiometer.
Half the 74 HC 221 dual monostable is used as a free-running oscillator, producing narrow trigger pulses for the second half of the monostable, whose output is a train of standard servo pulses about 18 ms apart, variable in length by the potentiometer from 0.8 ms to 1.24 ms . The potentiometer therefore controls the servo.
R G Sutherland
Woking
Surrey

Crystal oscillator using a current-conveyor

Audio current conveyor, in negative resistance configuration, used to drive a crystal at up to 5 MHz .

APA630 second-generation audio current conveyor, used to provide negative resistance, fulfils all the requirements of a crystal oscillator circuit: high bandwidth, optimum drive level, low damping to retain high crystal Q and good input/output isolation. Crystals in the $31.25 \mathrm{kHz}-$ 5 MHz range have been used in the circuit shown.
Transistors $T r_{1,7}$ form the current conveyor, bias current for all transistors ($I_{\text {bias }}$) being set by R_{2}, according to
$I_{\text {bias }}=\left(V_{\mathrm{EE}}-2 V_{\mathrm{BE}}\right) / R_{2}$
Resistor R_{2} driving the current mirror $\operatorname{Tr}_{6,7}$. Positive feedback from the high-impedance output Z and the high- Z input Y causes the input resistance at the low- Z input to become R_{in} is $-R_{1}$, so that, if the ess of the crystal R_{X} is equal to $R_{1}-R_{5}$, the
circuit oscillates. Resistor R_{5} is not essential, but does set the best crystal current.
Output comes from the AUX pin, which gives good isolation and offers a point for level adjustment. Resistor R_{4} allows adjustment of V_{6}, the potential into the buffer stage according to,

$$
V_{6}=\left(I_{\text {bias }} R 3-V_{\mathrm{EE}}\right) R_{3} /\left(R_{3}+R_{4}\right),
$$

oscillation increasing until the collector/base junction of Tr_{5} becomes forward-biased, reducing the magnitude of the negative resistance at point X .
For a 1 MHz crystal with a R_{x} of $85 \Omega, V_{\mathrm{cc}}=V_{\mathrm{EE}}=15 \mathrm{~V} ; R_{1}=100 \Omega$; $R_{2}=R_{3}=9.1 \mathrm{k} \Omega ; R_{4}=75 \Omega$; and $R_{5}=10 \Omega$. Oscillation amplitude is 75 mV .

Dan Stiurca

Romania

Data Acquisition for your PC

Pico's Virtual Instrumentation enable you to use your computer as a variety of

 software

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes $4,8,16 \& 32$ bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& $\mathrm{Z} 80 / 180,68000,80 \mathrm{C} 196$, H8$500 \&$ Z280.

ECAL is either available for a single processor family or all families.

Single processor version $£ 295$ Multiprocessor version.... £395

Overseas distributors required

OEMA Ltd.,
7 \& 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489571300
Fax: 01489885853

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for $16 / 32$ bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator £475
Quantity discounts of up to 50\% male ECAL software ideal for education.

24 V electromechanical counter from 12 V

Having a number of 24 V counter mechanisms and a 12 V controller, it was necessary to produce a suitable interface. This circuit performs that function with no great power dissipation and with less interference radiation than other methods.
With the driver off, the input is at $12 \mathrm{~V}, T r_{1}$ is cut off and there is no current to the counter coil. Capacitor C_{1} charges through R_{3} to around 11 V
about 11V, which should be enough to hold the mechanism in, with reduced steady-state dissipation.
The time constant is chosen to suit a 250 ms drive every 3 s , but may be varied for any use. A snubber diode is not necessary, since the driver collector never exceeds the supply voltage.
Gerald D Pye
Ipswich
Suffolk
via D_{3} and no further current flows in the circuit.
As the driver comes on, $T r_{1}$ base current flows in R_{2} and the top end of the counter coil goes to almost 12 V . Diode D_{1} conducts and clamps the top end of C_{1} to about 1 V , its bottom end and that of the coil going to about -10 V , so that the coil sees enough voltage to energise it. As the charge on C_{1} decays, the counter still sees

12 V -to-24V converter to drive 24 V counter coils from 12 V , with the incidental advantages of reduced power dissipation and interference.

One op-amp dc motor driver

Used widely in the field of robotics, this current source produces a 2.5 A output from a 6.25 V input, using only one power op-amp and one power resistor.
Feedback from both ends of the $3 W$ current-sensing resistor $R_{\text {sc }}$ got to the op-amp inputs, which is forced to maintain the current through R_{sc}, calculated to be,

$$
I_{\text {out }}=\left(V_{\text {in }} / R_{\text {sc }}\right)\left(R_{2} / R_{1}\right) .
$$

Choosing $R_{2}=R_{4}=10 \mathrm{k} \Omega$ and $R_{1}=R_{3}=100 \mathrm{k} \Omega, R_{\mathrm{sc}}$ is 0.25Ω to give an output of 2.5 A for a 6.25 V input.

$$
R_{\mathrm{sc}}=0.65 / I_{\mathrm{out}}(\mathrm{~A})-0.01 .
$$

Resistors R_{1-4} should be $1 \%, 0.25 \mathrm{~W}$ types and the op-amp should be on a heat sink; the OPA511 has an insulated case and needs no isolation. \checkmark VidyalaI, K Rajasree and V Sivanand
Cochin University of Science and Technology, India

Motor driver for robots. This is more economical than most, needing less in the way of heat sinking and only one produces 2.5 A for a 6.25 V input.

Active, low-pass filters with no dc errors

In the arrangement illustrated, the op-amp in this lowpass, maximally flat Butterworth filter is blocked from the signal path by capacitors, this makes its offset and input current irrelevant. Two-pole, three, four and fivepole versions have been built and offer the further advantage that they use fewer components than more conventional circuits. The op-amps can be operated from a single supply, if required.
No free lunches, though: theoretically, they must work

One of a family of maximally flat low-pass active filters, in which the op-amps are dc-blocked and which are more economical in components than other designs.
into an open circuit, a requirement that can be met either by including a follower to the output or doubling the value of the input resistor and inserting an equal value to ground. This halves the dc gain and needs a purely resistive, and fairly critical, load
To take the three-pole version shown, let p equal j , work backwards from a 1 V output to find the input e.

$$
\begin{aligned}
v_{1} & =-p \quad i_{1}=p^{2} \\
v_{2} & =v_{1}-\left(p+i_{1}\right)=-2 p-p^{2} \\
i_{2} & =p\left(1-v_{2}\right)=p+2 p^{2}+p^{3} \\
e & =1+p+i_{2}=1+2 p+2 p^{2}+p^{3}
\end{aligned}
$$

So the transmission T is,

$$
T=\frac{1}{1+2 p+2 p^{2}+p^{3}},
$$

and magnitude $|T|$ is,

$$
\begin{aligned}
|T| & =\frac{1}{\sqrt{\left(1-2 \omega^{2}\right)^{2}+\left(2 \omega-\omega^{3}\right)^{2}}} \\
& =\frac{1}{\sqrt{1+\omega^{6}}}
\end{aligned}
$$

If R and C values are unknown, make one component unity and the two resistors equal. This still leaves four unknowns, so other component values are possible. It turns out that if all three capacitances are unity, so are the resistances.
McKenny W Egerton
Owings Mills, Maryland, USA

EW reader offer 30V, 5A power supply

For a limited period, Vann Draper is offering over 25% discount on the 305 LDD - a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at $£ 159$ excluding VAT and delivery but it is available to EW readers filling in the coupon on the right at the 25% discount price of $£ 139$ - fully inclusive of VAT and delivery. Infinitely variable between 0 and 30 V - with coarse and fine controls and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10 mV . Its load regulation is also excellent, at typically $\pm 0.2 \%$.

Accuracy of the supply's dual 3.5 -digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at $5.5 \mathrm{~A} \pm 0.5 \mathrm{~A}$. When the overload circuit is activated, it causes both audible and visual alarms, resettable via a push-button on the front panel.

Dimensions of the 305 LDD are 310 by 260 by 120 mm and its weight is 5.5 kg . Housed in a light-grey steel enclosure, the unit is built to comply with UL, CSA and TUV safery standards.

Features of the 305 LDD

$0-30 \mathrm{~V}$ fine and coarse adjustments $0-5 \mathrm{~A}$ adjustable 10 mV ripple
 Digital displays for V and 1 Continuous short circuit protection $\pm 0.2 \%$ load regulation

Use this coupon to order your 305 LDD

Please send me 305 LDD(s) at the fully inclusive special offer of $£ 139$

Name
Company (if any)
Address

Phone number/fax
Total amount
£..............

Make cheques payable to Vann Draper Electronics Litd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)

Card No
Expiry date
Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 01162773945 or telephone on 01162771400 .
Address orders ond all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE 18 2PL.
*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vonn Draper Electronics

Virtual-capacitance timer and filter

An op-amp and five other components bootstrap a capacitor to make a $200 \mu \mathrm{~F}$ component from $0.1 \mu \mathrm{~F}$.
Left is shown a low-pass filter having a time constant of 10 s , determined by $R \times C \times R_{1} / R_{2}$. Since bootstrapping also increases the effects of op-amp bias current and input offset voltage, R_{4} reduces dc following error to around 10 mV , its value being greater or less than that of

Bootstrapping a smallish capacitor to achieve a 10 s time-constant lowpass filter and 500s timer.
R_{1}, depending on the sign of the offset; it is bypassed to ensure stability.
In the right-hand diagram, using a fet op-amp allows an increase in the amount of bootstrapping to about 10^{3}, giving the effect here of a $2200 \mu \mathrm{~F}$

capacitor. Used with a 555 timer, and depending on how well the CA3140 offset voltage can be coped with, a time of $400-600 \mathrm{~s}$ can be obtained to within $\pm 1 \%$ repeatability.
W. Gray

Farnborough, Hants

Linear phase detector from two op-amps

Two op-amps and two fets form an analogue linear phase detector.
An input reference square wave switches on and off the two switching

fets, which configure the first op-amp into an inverting amplifier when the fets are on and a non-inverter when they are off, both with unity gain. If the input signal, shown as a sinusoid, is in phase with the reference, the output of the op-amp is, effectively, a full-wave-rectified version of the input to give the maximum positive circuit output when filtered by the output op-amp. When the input is 90° out of phase,

 MARCH 1995
FREE Gircult Ideas pockeł book Part I Distortion from power-amp supplies Winning power swifthing circuits Enhance RS232
Transmission lines explained
Tesla's ht generafor
FI FCTRONICS
WORLD

+ WIRELESS WORLD

AUGUST 1995
20 Hz active subwoofer Gelting more from RS232
PC engineering: signal analysis
24cm antenna
DSP demystified
Analogue signal processing
GPS designer's kit

ELECTRONICS WORLD + WIRELESS WORLD

APRIL I995
FREE Circuit Ideas porkef book Part 2 ISDN - inside the world network Linsley-Hood's aftenuator for audio Evidence for the slew-rate debate Sell-funing $5 \mathbf{O H z}$ filter for instrumentation

ELECTRONICS
WORLD

+ WIRELESS WORLD

SEPTEMBER 1995
New audio power solution Analogue design for a single-rail MicroCap 5 reviewed Nulling coil interaction New balanced amplifier design Analysing fm noise

BACK ISSUES

Back issues of Electronics World are $£ 2.50$ in the UK and $£ 3.00$ elsewhere*. Price includes postage. Please complete the coupon and send with correct payment to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Note that all issues are subject to availability and please allow 28 days for delivery

Exelusivo - 20\% discount on tex motor
+WIRELESS WORLD

Versatile $2220 \mathrm{i} / \mathrm{o}$ controller for $\sqrt{109}$
JUNE 1995
AUDIO SPECIAL
Tri-modal audio powe
Microreflex full-range loudspeaker Audio power ICs exposed
Researching via the Infernet
New concept in i / o control
30KU - 104 melimeter with transistor tester
ELECTRONICS WORLD

+ WIRELESS WORLD

OCTOBER 1995
FREE Gircuit ideas porket book Sweeper for 0 to 200 MHz IEEE488 testing made easy
Current probe for switching mosfets
Valve audio
Anclysing circuits via energy DC circuit design

CTMONTS
ELECTRONICS WORLD

+ WIRELESS WORLD

JULY 1995
PC Interfacing
Signal Centre reviewed
Coaxial cable analyser
Dual mirror for faster audio
Modulating linearly
Oscillator innovations
Koy Intornol mon lem ports or under 80
ELECTRONICS WORLD

NOVEMBER 1995
FREE Zetex $5 V$ regulator Oploelectronics investigated Isolate RS232
14.4kbaud fax/data modem

Power and Class-C
Linsley-Hood noise reducer
Applying the ZR78L05 regulator

Issue (Month/Year)	Quantity	Price	Total

Name
Address

Post Code
Method of payment (please circle):
Access/Mastercard Visa Cheque PO
Cheques made payable to Reed Business Publishing

Credit card No

I versus V feedback

Surely current feedback, cfb, is much closer to the correct drive of a loudspeaker voice coil than voltage feedback, vfb, is?
Driving force on the coil is very simply expressed by,

$F=\beta . i . l . \sin \alpha$

with wire length l, α a constant, and $\boldsymbol{\beta}$ flux density, so F is proportional to i.
A similar relationship between voltage and force cannot be written easily, due to the many ill defined terms that compose voice coil impedance.
Apart from the main resonance region, voice coil back emf is negligible, so voltage feedback is also unrelated to voice-coil velocity.
In reply to Mr Allison's query in the December issue, I can say I have tested cfb on two different designs, one low ultra-linear push-pull of EL84 in 1961 and one 18W with AD159 transistors in 1964.
Not equipped at the time with sound level measuring apparatus, I had to rely on my ungolden hearing for comparisons with identical amplifiers wired for vfb . No elaborate double-blind protocol was
necessary to note the marked differences in tonal responses.
In both modes, 20 cm wideband loudspeakers from several French makers were tried.
Speaker designs with curved generatrix cones, such as Supravox T215 and GeGo 'Supersoucoupe', lacked treble response with vfb, but gave very clean and sharp treble with cfb .
On the other hand, models with dual cones - Princeps, and Audax T21PA12 for example - while displaying sufficient - if unnatural treble response in vfb , sounded very harsh and metallic in cfb.
Clearly the cause of treble roll off in vfb is the voice coil rise in impedance above 2 or 3 kHz , mainly due to the inactive coil turns in front of and behind the magnetic gap. This impedance rise limits the drive in vfb , however in cfb it only limits the maximum available power before clipping.
While little difference in medium response between vfb and cfb was audible, the other evident feature of cfb was boomy bass, due of course to a totally undamped main resonance. This is certainly the principal drawback of this mode, as to my knowledge no simple acoustic means allows for efficient damping of the main loudspeaker resonance.

Fig. 1. Basic voltage-feedback configuration.

Fig. 2. Current feedback.

Fig. 3. Composite arrangement combining voltage and current feedback.

My solution at the time, to try and get the best of both worlds, was to depart from pure cfb , by insuring constant-gain gradual change from vfb at low frequencies to cfb at high medium and treble, Fig. 3.
It would be most interesting to repeat these experiments with modern amplifiers and full testing capabilities.
Jean Claude Baumeister
Chantraine
France

Hazy linearity notions?

I would like to comment on Mr Kiyoleawa's hazy notions in the January '96 issue Letters column. I was glad to see Mr Kiyoleawa confirm that a linear increase of power fet g_{m} with drain current is a poor basis for making a linear stage. What is really required is linear variation of I_{d} with V_{gg}. It may be possible to partly cancel fet squarelaw distortion by push-pull operation. But this can only work in Class-A, when both upper and lower output devices are conducting at the same time.
Economic necessity and energy conservation mean that most amplifiers are Class-B, and to date there is no practicable compromise between these two modes. If fets can only give acceptable linearity in Class-A, then this is not much of a recommendation for them.
I am unable to understand the contention that an fet output stage can have a 'lower' open-loop output impedance, presumably compared with a bipolar version. Field-effect transistor g_{m} is always much lower than for bipolars, and so this would appear to quite impossible.
A 1Ω output resistance is much too high. It may only have a small effect on loudspeaker damping, but will certainly cause unwanted frequency response variations because of the varying impedance curve of the speaker.
Having done a great deal of practical emc testing recently, I can assure Mr Kiyoleawa that radiofrequency entry via speaker cables is a non-problem - at $3 \mathrm{~V} / \mathrm{m}$ and between 30 and 1000 MHz , anyway. The presence of an output inductor may be the critical factor here; at any rate it is no reason to abandon global negative feedback.
I'm afraid that Mr Kiyoleawa has
not quite appreciated the action of the voltage-amplifier stage transistor. The impedance at its collector is strongly frequency dependant, halving with each octave as local negative feedback through $C_{\text {dom }}$ increases, and crippling its linearity with a dead load of $5 \mathrm{k} \Omega$ will not alter this fact. I think it will be difficult to find a driver/output pair with a combined h_{fe} of 10,000 at practical current levels; but if the object is, as it appears to be, the avoidance of global negative feedback, then this line of thought is a dead-end anyway.
I have made solid-state amplifiers where the output stage worked openloop, and the practical result is severe distortion of a unpleasantly jagged kind. I cannot believe that anyone - Subjectivist or otherwise would find this preferable to the very low thd levels obtainable from a blameless amplifier with global negative feedback.
According to the Toshiba application notes ${ }^{1}$, igbts consist of an fet controlling a bipolar power transistor; I have no information on the linearity of these devices, but the combination does not sound promising.
The most discouraging aspect is the presence of a parasitic bipolarjunction transistor that turns the device hard on above a critical current threshold. This inbuilt self destruct mechanism makes overload protection an extremely critical matter; it seems unlikely that igbts will prove popular for audio amplification.
Douglas Self
London

Reference

1. Langdon, S, ‘Audio amplifier design-s using IGBTs, MOSFETs, and BJTs', Toshiba Application Note X3504, V. 1 Mar 1991.

Does component choice make a difference?

I enjoy EW's audio articles, but the statement by Reg Williamson in his Dec ' 95 audio preamp article is a little strange to me. I must say that 'audio grade' components are sometimes far too expensive and results are doubtful. I am a technician myself and also sceptical about 'audio grade' components. 8 CAVANS WAY BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773 Mobile: 0860400683 (Premisas athueted close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

TELNET

CIRCLENO. 130 ONREPLY CARD

We are making progress with the new version 5 of SpiceAge

- Rapid digital filter modelling with links to SuperFILTER digital and analogue filter synthesizer (optional extra)
- Non-linear magnetic modelling including ferromagnetic hysteresis
- Extended scope of Modelmaker (optional extra), the utility that synthesizes opamps, transformers, attenuators, bipolar, JFET and MOSFET transistor library models
- Other benefits from this mature product which enjoys dilligent maintenance and profes-
 sional support include: a new manual; new (rationalised) pin convention; faster calculating; larger circuits; tougher convergence; helpful customer base (for mutual problem solving and model sharing); widening third party support with links to schematic capture and synthesis programs (native schematic capture also available as an optional extra). Contact Those Engineers Ltd at 31 Birkbeck Road, LONDON NW7 4BP.

Tel: 01819060155 Fax: 01819060969 Email 100550.2455@compuservee.com

But there is a big but. Recently I built a d-to-a convertor using Crystal Semiconductors' latest 20 bit device, the CS4329. My power supply uses LT1085CT and LTIO33CT regulators. The power supply capacitors are Rubycon Black Gate FK and NX types and Sanyo Os-Con types. These are 'exotic' components and rather expensive.
The overall sound performance with these capacitors is so much better than a LT1085/LT1033 based power supply using good quality and normal priced Elna RSH capacitors. Using Keith Jarrett's 'Köln Concert' as reference music, you can easily tell which power supply is 'playing' The soundstage is so much improved. Jarrett's piano really 'sings'. In my opinion there is no doubt that the BGs and Os-Cons improve the sonic overall
performance of a system; my ears are me tell me so.
Keep up the good work,

W. de Haan

Leiden, The Netherlands

Agreeable distortion

'Valve sound' is essentially subjectively agreeable distortion. An analogy is the measurable sensation of travelling in a vintage Bentley rather than in a modern mid-range Ford, which is noticeably better in most respects - if not at all.
However, there is one difference cost. Preferred output valves cost upwards of $£ 20$ each.
Morgan Jones' excellently presented article - Jan '96-exhibits at least one flaw, however, as many of the resistance values arrived at by parallelling are within a fractional percentage of standard values. For example $330 \mathrm{k} \Omega$ in parallel with
$22 \mathrm{k} \Omega$ is $20.625 \mathrm{k} \Omega$. A near value in the E96 range is $20.5 \mathrm{k} \Omega$ - less than 1% off. If cost is no object, this is the way to do it.
I worked with valves for many years and came to accept that their characteristics varied widely from part to part. Anybody who used the EF50 will remember this. There is no point in attempting exact design where key parameters can differ by as much as 20%.

In any case, the principal feature of valve amplifiers is that they include an output transformer. If one takes a good solid-state amplifier and includes a 1:1 output transformer within the feedback loop one will achieve much the same effect.
Of course, valve and solid-state amplifiers driven near to or past saturation will sound different, but if one is any sort of a purist this is not a region in which one operates. Vast power capability overkill is an essential feature of hi-fi usage

Nick Wheeler

Sutton
Surrey

Valve
 misunderstanding

As a designer of valve amplifiers since 1950 I have read with some disbelief the article by Morgan Jones in Electronics World January 1996 and the subsequent correspondence in the February and March issues. Both Morgan Jones and Frank Ogden seem to not understand the operation of the concertina phase splitter.
This circuit does not have the alleged difference in frequency response at the anode and cathode terminals. If the anode and cathode outputs are analysed separately then, of course the anode output resistance is high and the cathode output resistance relatively low as shown by Morgan Jones in his March 1996 letter. However when both outputs are loaded simultaneously with equal capacitances the output voltages remain equal throughout the audio frequency range.
This can be understood intuitively since the anode current is the same as the cathode current so when the two impedances are equal (i.e. equal resistances and equal capacitances) then the output voltages must be equal at all frequencies. It is obvious that the tendency for the anode voltage to decrease more rapidly as the frequency is raised is fully compensated by the by-passing effect of the cathode loading capacitance.
The circuit behaves as if the

Best rf article '95

Entries for this challenge are currently being evaluated. We hope to be able to make an announcement about the winner in next month's issue.
output resistance at both ports is much the same as the source resistance of a cathode follower using the same valve and cathode load resistance. It can be shown that the effective output resistance used to determine the frequency response at both outputs is,

$$
R_{o}=\frac{r_{o} R_{L}}{r_{a}+R_{L}(\mu+2)}
$$

Needless to say the 'build-out' resistor spoils this inherent wideband balance of the concertina phase splitter.

There is another error in the
Morgan Jones article in the January 1996 issue where he attempts to balance the signal currents of the input stage and the concertina. The concertina signal current is approximately grid voltage divided by cathode resistance thus the anode load of the input stage should be roughly equal to the concertina cathode resistance and not cathode resistance plus anode resistance as stated.
M.H. McFadden

Belfast

Reference

1. 'Radio Designer's Handbook' F. Langford-Smith p. 329 Fourth Edition. Published by Wireless World 1953.

Shame about the error

At present I am particularly interested in the subject of valve audio amplifiers. While not having sufficient detailed information on valve characteristics at hand to check all the calculations in the January's valve power amplifier article, I was disappointed to find a clear error in the calculation of the values for the feedback resistor and the input stage cathode resistor. While the circuit diagram indicates a 4Ω output load, the calculation is based on 8Ω.
Speakers with 3Ω or 15Ω coils were common before the advent of the 8Ω speaker. This made a dual secondary winding on the output transformer popular, giving an output impedance of 4 or 16Ω. My calculations show that with a 4Ω load, a cathode resistor of 964Ω is required, and a feedback resistor of 1728Ω; with 16Ω loads they should be 753Ω and 3456Ω respectively.
The method of calculating the feedback capacitor was not explained, but this should be less critical than the resistor values, and it should be adequate to adjust this proportionately
The required values could be obtained in the case of each resistor
by using two parallel resistors of standard values as in the article, values as follows:
Stephen Cole
Winscombe
Avon

I can't hear you

For once I find myself in agreement with Ben Duncan, on the issue of the suitability of Windows (Review of Micro-CAP V, $E W+W W$ Sep '95). It seems absurd that professional pc users should be saddled with a software package that appears to be a re-invention of an operating system designed in the early seventies for children. Windows is ok for the novice user, but without much doubt anybody with a modicum of experience with a standard keyboard would find it more efficient than a mouse. Windows is, in my opinion, poorly documented, slow, cumbersome and not very logical, and a running joke among my computer literate friends. Unfortunately it is difficult to get by without it, and maintain compatibility
To load and run Windows at an acceptable speed requires no less than a 486 - most pcs in our department are 386 s - at least 8 Mb of ram and a large fast hard disk. This hardware is only now becoming acceptably cheap, but Microsoft would like us to move up to Windows 95 with even greater demands on our hardware. To quote one John McCormick, "Why would anyone in their right mind use Windows for anything? You can always buy a slower computer if yours is too fast!" (from "It's not a Bug, It's a Feature!" by David Lubar).
Unfortunately that is the end of good news for Ben. In his article 'Simulated attack on slew rates' ($E W+W W$, April '95) Ben boldly states on p. 307 that "...the headroom is demonstrably safer for drive units and ears alike - no matter how counter-intuitive this seems" in the course of his justification of very high slew rates and the reproduction of "...music transients above 165 V ...". Ben opened the piece by outlining the high frequency nature of the sound "during an Iron Maiden gig" engineered by a colleague.
New Scientist reports (p5, 27 Jan ' 96 No. 2014, Australian edition) that "rock concerts are more likely to damage your hearing than listening to a personal stereo or going clubbing", according to French hearing specialist Christian Meyer-Bisch. This conclusion is the result of a study of 1364 people, and
it is the high frequency content of rock that is identified as the major cause. "Rock is much tougher on the ear at high frequencies than classical music. When played at the same volume on a CD player, the music of heavy metal bands, such as Iron Maiden, is far louder at high frequencies than a piece of Vivaldi" (I think that should be "a piece by Vivaldi", I doubt that there would be many pieces of Vivaldi left). The situation is much worse at rock concerts because of the much higher power.
Ben is quite wrong. It is sensible to keep listening levels moderate, particularly for extended periods and especially for high frequencies. There is no good reason to believe that high slew rates are less damaging to the ears. In fact the reverse is more likely to be true. Higher sound levels are more likely to increase that risk of permanent hearing loss. Ben would be well advised to keep some of his 'counter-intuitive' ideas to himself lest he - and his colleague with Iron Maiden - become the target of litigation from deaf concert goers. Phil Denniss
University of Sydney
Australia

Cable rejection

If I manage to get a common-mode rejection of 3000 dB does this mean the end of the universe, and we all get sucked into an audio black hole? (We all know that black noise is the equal absence of noise $/ \mathrm{V} \mathrm{Hz}$).
On a more realistic note, I find a cable tolerance of a couple of percent to be optimistic; have you measured a cable that has been on the road for six months or so, trodden on, run over, stretched over balconies and generally abused. Have you measured, in real life, such a cable? There is no mention of other cables such as star-quad, or multicore.
Many fixed installations use the Krone IDT method, or similar, involving overall screened cable with say 48 different signal pairs all with various levels of signal and impedance imbalance. I've used this system a few times. Implemented with care, provides a competent way of installing audio systems.
Just simulating a single cable seems very simplistic. These days you have to consider the whole system, although a basic understanding of common-mode rejection ratio is essential.
Although I have not been involved directly with professional audio for a couple of years I found that:

- In practice you cannot beat the 5534 differential amplifier for a line receiver with a couple of 22 pF trim capacitors for trimming commonmode rejection ratio. The single opamp differential stage is fine for local use.
- The SSM2142 is a poor device with not very good output common mode rejection, and its relatively noisy. Porter produced a far superior balanced output stage, published in EW ca 1989. This had a cm rejection ratio of at least 60 dB across the audio bandwidth - even built on veroboard.

Please can Ben Duncan stop pushing Microcap and SSM devices - and stop living in SimCity? Martin Criffith Compuserve

Summing up Foster Seeley

I was interested in the article on the Foster Seeley detector in your Dec issue.

I feel the author makes heavy weather of its operation. A qualitative description of the operation of the circuit is as follows: - The primary voltage \& the voltage injected into the secondary circuit are in phase - as with all transformer circuits.

- At resonance, current in the secondary circuit is in phase with the injected voltage; this is more easily seen if the secondary circuit is drawn as a series circuit.
- Output voltage across the tuning capacitor lags this current by 90°. - Thus, the accessible primary and secondary voltages differ by 90° at resonance, as normally drawn in analyses of the circuit.
- Off resonance, the phase of the current to the injected voltage varies, so varying the phase of the output and primary voltages.
- As a side issue, an rf transformer cannot usefully be double-tuned primary and secondary - if it is tightly coupled. The two capacitors are just in parallel.
Regarding the ratio detector, I prefer to regard it as a sampling circuit. The voltage across the secondary switches the diodes on at its peak; and at that instant, they pass the instantaneous value of the primary voltage to the af output point (where it is stored by the capacitors, when the diodes cease to conduct). At resonance, this primary voltage is zero at the peak of the secondary, because the two are in quadrature; off resonance, it varies to give the af output.

I hope these points may help some who find the operation of the circuit difficult to picture from the bare analysis.
J.W.E. Jones

South Australia

Sallen \& Key disadvantages

Following recent correspondence on the Sallen and Key filter configuration, I would like to remind readers of a further weakness in the practical implementation of the low-pass configuration. The signal passes through a resistor and then has a path, through the supposed 'feedback' capacitor, to the filter output. If the op-amp output
impedance is extremely low - which we assume - then this signal path is effectively shunted to ground
In reality, however, the output impedance of an op-amp rises with frequency as the open-loop gain falls. It can reach many tens or even hundreds of ohms. Then, highfrequency components of an input signal can leak through to the output.
This failing can be plotted on even the student version of PSpice, where the filter attenuation plot reverses at high frequencies, passing noise and distortion components of the drive signal. It does not occur with the low-pass Rauch filter.

Simon Bateson,

Hutton Rudby
North Yorkshire

HIP WMered

Any queries?

If you have any electronics-related questions that you have not been able to find an answer to, why not see if other readers can answer them? Simply write to me, the editor, at the address on page 267 , fax 01816528956 , or e-mail
martin.eccles@rbp.co.uk.

Can you answer this?
Could one of your readers explain to me a phenomenon connected with the distribution of lines of magnetic flux, of strength,

$$
H=\frac{N I}{2 \pi r}
$$

around a single length of wire carrying a dc current of 1 A . With this wire passing through a card at right angles to the wire; if soft iron filings are sprinkled around the wire magnetic lines may be observed which form concentric circles around the wire with spaces between them.

My question is this: has some form of standing wave been set up in the spacing between 'crests'? Being a wavelength the speed of which may be expressed as:

$$
\sigma=f_{0} \lambda m s^{-1}
$$

where, were it not for friction would represent the speed of a
magnetic field of strength H with frequency f_{0} where f_{0} is the frequency of electrons moving around a closed circuit the direction of propagation, as with Huygens wave theory being at right angles to the tangent, of each circular path, i.e. radially. A wire being taken as the simplest and most easily analysed configuration.
Dust tube analogy. If lycopodium powder is placed uniformly within a tube and a pure note of frequency f sent down the tube, disturbances would be set up which if in antiphase with the reflected wave would cause the powder to respond by 'clumping' in heaps at the points of little disturbance, i.e. at rarefactions. This analogy is used to consider the concentric lines of force around a single turn of wire.
I would appreciate any information you may be able to supply me with.
Terence George Heatley London

"Your low cost route to embedded 8051"

Programming support tor the following devices: Genenc 8751/8752 mecrocontrollers from Intel \& Philips Atmel $8951 / 8952$ FLASH replacements for the 7751/8752
Atmel 1051/2051 20-pin FLASH 8051 microcontroller Serial EEPRO
Serial EEPROMs familes: $24 \mathrm{Cax} .93 \mathrm{Cxa} 59 \mathrm{Cax}, 25 \mathrm{Cxx}$
(optional extra)

MICRO-PRO 51
"Hardware/software upgradeable programmer for the 8051 family" - Accepts up to 40 pin DIL directly via Aries ZIF socket

- Surface mount and PLCC package adaptors available as optional extras
- Atmel 8951/8952 \& 1051/2051 ICE cables available as optional extras
- Field programmable hardware to allow future upgradeability
- Fast PC parallel port based design

£110
(Restricted to 2 K total program code, SMALL model only)

ー SOFTWARE

KEIL C51 PK LITE
"The complete Ansi-C development environment for the 8051"

- Optimising Ansi-C compiler
- dscope 51-8051 software simulator \& source level debugger
- uVision-Integrated Windows based C51 project management system
- Support for most 8051 derivatives eg. Atmel, Intel, Siemens etc.
- Numerous microcontroller language extensions for the fastest, tightest code

Embedded C51 Starter Systems for the $\mathbf{8 0 5 1}$ family

"Everything you require to develop an embedded 8051-based project in C" - MICRO-PRO 51 device programmer

- KEIL C51 PK LITE - Sample Atmel FLASH microcontrollers
- Full suite of C51 demonstration software

Atmel 8051 FLASH Microcontroller Aange

	8951	8952	1051	2051
FLASH code ROM	4 K	8 K	1 K	2 K
RAM	128	256	64	128
$1 / 0$	32	32	15	15
Timer/Counter (16 bit)	2	3	1	2
Serial Port	YES	YES	NO	YES
Interrupt Sources	5	8	3	5
Pins (DIL/PLCC)	$40 / 44$	$40 / 44$	20	20
Special leatures		Timer 2	Comparator	Comparator

895X-ST (ONLY £215)
 Comes complete with samples of Atmel 8951 and 895240 pin microcontrollers XO51-ST (ONLY £199)

Comes complete with samples of Atmel 1051 and 205120 pin microcontroviers
Equinox Technologies, 229 Greenmount Lane Botton BL1 5JB. Lancashire. ENGLAND Tel: (01204) 492010 Fax: (01204) 494883 int. dialling code (UK +44 1204) E-mail: sales@equintec.demon.co.uk Web Page: www.demon.co. ukkequintec All prices exclusive of VAT and carriage.

CIRCIF NO. 132 ON REPI YCARD

LENTECOOKE

UNIT 5, SOUTHALL ENTERPRISE CENTRE, BRIDGE ROAD SOUTHALL, MIDDLESEX UB2 4AE, ENGLAND
 TEL: 01818139946 FAX: 01815742339

ACTIVE

A-to-D and D-to-A converters

Delta-sigma d-to-as.

Two 20-bit, stereo digital-to-analogue converters by Crystal Semiconductor, the CS4327/9 handle an infinitely adjustable sample rate of $1-50 \mathrm{kHz}$. The 4329 uses switched-capacitor analogue, low-pass filtering to give clock-jitter tolerance and a 105 dB dynamic range at 20 -bit resolution and 112 dB s:n ratio; thd + noise is -97 dB . CS4327 gives 98 dB dynamic range, 110 dB s:n and -90 dB thd+noise. Sequoia Technology Ltd Tel., 01734 258000; fax, 01734 258020.

Linear integrated circuits

Video amplifier. EL4093 from Elantec is a complete, dc-restored video amplifier subsystem, providing accurate dc restoration, 300 MHz bandwidth and $1500 \mathrm{~V} / \mu$ s slewing. It contains a current-feedback amplifier and a s/h amplifier to stabilise video performance, providing signal acquisition in one line scan. If the ttlcompatible hold input is low, the s / h is used to null the dc offset of the video amplifier; when high, it stores the correction voltage on the hold capacitance to maintaln dc correction during the next line scan. METL. Tel., 01844278781 ; fax, 01844278746.

375 MHz buffers. MAX4178/4278

(single) and MAX496/497 (quad) closed-loop buffers have fixed gains of +1 or +2 , give a 70 mA output minimum, an output swing of more than $\pm 2.5 \mathrm{~V}$ into 50Ω and tolerate a 70 pF load without oscillating. 4178 and 496 have the +1 gain, a 375 MHz bandwidth to $-3 \mathrm{~dB}(80 \mathrm{MHz}$ at -0.1 dB) and slew at $1400 \mathrm{~V} / \mu \mathrm{s}$, while the other two exhibit 275 NHz at -3 dB , 120 MHz at -0.1 dB and a slew rate of $1500 \mathrm{~V} / \mu \mathrm{s}$. Supply curent is 8 mA /channel and differential phase and gain are 0.01° and 0.01%; input voitage offset is 0.5 mV and input noise $5.6 \mathrm{nV} / \mathrm{JHz}$.
Maxim Integrated Products UK Ltd. Tel., 01734 303388; fax, 01734 305511.

Memory chips

32bit flash proms. EDI high-speed, high-density flash SIMM and PLCC modules have a 32-bit data bus in capacities to 32Mbit. They are available in single or dual form, organised as 128 K by 32 and 256 K by 32 in either package; the 512 K by 32 devices as SIMMs only. Micro Call

Ltd. Tel., 01844 261939; fax, 01844 261678.

1M sram. Toshiba'sTC55V1664/1864 1 Mbyte, $0.4 \mu \mathrm{~m}$ cmos srams offer 15 or 12 ns access times, wide bandwidth and 3.3 V operating voltage, with performance equivalent to that of 5 V devices. Toshiba Electronics UK Lid. Tel., 01276 694600; fax, 01276 694800.

Microprocessors and controllers

Mixed-signal controller. Microchip's PIC14000 is compatible with the PIC16/17 architecture, and has 4 K by 14 eprom and 192byte of ram. Its $5 \mathrm{Mips}, 8$-bit risc core gives 35 singleword instructions, 20 MHz operating speed, six internal and five external interrupt sources, eight levels of hardware stack and 38 special function hardware registers. The $16 \mathrm{~ms}, 16$-bit a-to-d converter is accompanied by two multi-range converters, a low-voltage detector, temperature sensor, voltage control and a 4 MHz clock. The device is supported by the PICMaster development and emulation system. Arizona Microchip Technology Ltd. Tel., 01628851077 ; fax, 01628 850259.

Optical devices

Low-current isolator. ISP817 from Isocom is an optically coupled isolator that takes a drive current down to 0.5 mA , while still producing a high output current - current transfer ratio is 70% at 0.5 mA and 100% at 1 mA . Forward saturation voltage is 0.4 V and i/o voltage isolation is 7.5 kV . Isocom Components Ltd. Tel., 01429 863609; fax, 01429863581.

PASSIVE

Transformers. Clairtronic transformers in both chassis and pcb mounted types are available from Electrospeed. The units are made in flame-retardant UL94V-0 material, are designed to meet
EN60742/60950 safety requirements and are 100% tested for safety factors. Chassis-mounted types have a single primary and dual secondaries, the series comprising units rated at 6VA-50VA. Pcb types have two secondaries rated at 3VA12VA. Electrospeed. Tel., 01703
644555; fax, 01703610282.
Chip resistors. From the Taiwanese company Yageo comes sub-miniature 0402 chip resistors for both flow and reflow soldering. There is a full range,

from $1 / 16 \mathrm{~W}$ to 1 W types in values from $10 \Omega 2$ to $10 \mathrm{M} \Omega$. Easby Electronics Lid. Tel., 01748850555 ; fax, 01748 850556.

Chlp capacltors. A new range of chip capacitors on 4 in diameter reels containing as few as 500 pieces, made by miniReel, come in 0805 and 1206 chip sizes in values from 1 pF to $2.2 \mu \mathrm{~F}$ and using COG, X7R, Z5U and Y5V dielectrics, depending on value. Flint Distribution. Tel., 01530 510333; fax, 01530510275.

Power electrolytics. A useful life of 10000 hours is quoted by Philips for the PLL-SI 058/059 series of snap-in electrolytic capacitors, which tolerate temperatures from $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. Capacitance range is $33-47000 \mu \mathrm{~F}$ at $\pm 10 \%$ and at voltages of $10-100 \mathrm{~V}$ and $200-400 \mathrm{~V}$. These units are charge and discharge proof. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734 776095.

High C, high voltage, small size. Wima MKS2 capacitors are particularly useful for decoupling, values available including $0.01 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}, 3.3 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ in a 5 mm pitch encapsulated package and rated at 50 Vdc or 30 Vac . Tolerances are $\pm 20 \%, \pm 10 \%$ and $\pm 5 \%$. Europa Components \& Equipment plc. Tel., 0181-953 2379; fax, 0181-207 6646.

Connectors and cabling

Stackable board connector. To connect boards in a parallel stack at varying distances, Harting Elektronik offers the har-mik connector system, which uses male connectors of a constant height and female connectors of different heights Harting Elektronik Ltd. Tel., 01604 766686; fax, 01604706777.

Mixed-signal ICs
Sensorlactuator. Dallas announces the DS2407, addressable switch ic, a sensorlactuator to perform closed-loop control from a PC via an RS-232 link. The sensor responds to a stimulus and inpuls it to the PC, which arrives at a decision and instructs the actuator to switch on or off, all over a twisted-pair wire of up to 300 m in length, which includes powerfor the chip; driver software provides GUls on the PC screen running something like LabView. Many such ics may be connected to the same wire to be controlled by a central PC, since each ic has its own serial number on-chip. Dallas Semiconductor Corporation. Tel., 0121-782 2959; fax, 0121-782 2156.

Board-mating connectors. Samtec make connectors to join printed boards together at right-angles or parallel to each other. They are available with surface mounting or through-hole terminations and on pin pitches of $1.27 \mathrm{~mm}, 1.27$ by 2.54 mm and 2 mm . Samtec UK Ltd. Tel., $01236739292 ;$ fax, 01236727113.

Chip carriers. Plastic-leaded chipcarrier sockets by Data I/O, provide reliable mounting for ic programming in middle to high-volume production. The sockets are available for the company's 2900, 3900 and UniSite programmers and fit the receptacle on the programmer, replacing programming adaptors. Data I/O Ltd. Tel., 01734 440011; fax, 01734 448700.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

Cable-to-cable connector. Framatome introduces the Trim Trio SMS Qikmate, which connects two free cables of widely varying diameters, strain relief being incorporated. Moulded hoods are provided and there is provision for polarising the sockets with extra pins. Framatome Connectors UK Ltd. Tel., 01582 475757; fax, 01582476203.

Displays

CRT shielding. Magnetic shielding material for colour monitors is produced by Ad-Vance Magnetics to address the requirement for alternating and static field shielding in heavy industry and laboratories where higher than usual fields are experienced, of the order of $10-50$ oersted. It is available in 0.64 mm sheet and is usually used in two or three layers to reduce a static field of 45 oersted, for example, to 0.16 oersted near the centre of the enclosure. Ginsbury (UK) Lid. Tel., 01634 290903; fax, 01634290904.

Filters

Emc filters. Three new ranges of equipment filters by MPE are to protect against incoming and

Self-assembly emc test

 chamber. For emc testing, Seaward's Easi-Screen is a lightweight emc test compartment in kit form for assembly. Attenuation is better than 60 dB . Construction is of polyester/copper/nickel shielding fabric with steel and veneer door and particle board and sheet steel floor. A 16A mains filter and distribution system with an isolator is provided, as is powered ventilation, coaxial inputs and a 60 mm waveguide. The chamber is easily dismantled for storage. Seaward Electronic Ltd. Tel., 0191-586 3511; fax, 0191-586 0227.outgoing interference at power inputs and cover 1-15A. General-purpose do types are 100 Vdc rated, while the ac filters and mains-input types for switched-mode supplies are rated for 250 Vac at $50 / 60 \mathrm{~Hz}$. All use feedthrough capacitors and can be bulkhead mounted to help meet the EMC Directive at high frequencies. A catalogue is available. MPE Ltd. Tel., 01371875071 ; fax, 01371875037.

Hardware

Power backplanes. 13-slot C and D sized, 12-layer VXIbus backplanes from Vero can handle powers of more than 3 kW . The 9 U size has dual OV ground busbars and four laminated power busbars for low-impedance power distribution or seven voltage rails. The $6 U$ size has two of each. Both conform to the latest VXIbus specification. All sizes have decoupling capacitors in the termination area and additional positions for decouplers at each slot position. Vero Electronics Ltd. Tel., 01489780078 ; fax, 01489780978.

Command panel. Rittal offers the VIP 6000 housing for machine tool controls and process control stations. It takes all the common control systems and is available with a keyboard housing or tray, the housing being designed to take a machine control panel or a keyboard, the keyboard tray holding a standard keyboard. Screw channels on a 25 mm matrix are provided for individual layout design and there is easy access from the rear. Rittal Ltd. Tel., 01709704000 ; fax, 01709 701217.

PCMCIA kit. Molex has the Snapper kit, which contains all the bits and pieces needed to make a PCMCIA card. The resulting card is compatible with both PCMCIA and JEIDA standards; the Type II kit containing a black plastic frame, a stainless steel snap-on cover, a 68-

contact surface-mounted connector and a 15 -position 1.27 mm -pitch input/output connector. The Snapper cover only needs a small arbor press to close and seal the unit.
Electrospeed. Tel., 01703 644555; fax, 01703610282.

Test and measurement

Clamps. Northern Design says it has the biggest selection of clamp-on current probes in the civilised world, from the Micro 2000 finger-operated miniature device for $1 \mathrm{~mA}-200 \mathrm{~A}$ measurements, to the P Series for measurements to 3000A. The range of jaw sizes covers conductors from 15 mm cables to 120 by 50 mm bus bars. Output can be ac or dc voltage or current to accuracies of 0.25% in the miniature versions or Class 1 for the bigger types. Northern Design (Electronics) Ltd.Tel., 01274 729533; fax, 01274721074.

Microwave test. MI's 6250 Series millimetre wave reflectometers extend the insertion and return loss measurement performance of the 6200 microwave test set. Model 6255 multiplies the output of the 6200 to give frequencies in the $50-75 \mathrm{GHz}$ range (V band), while the 6256 produces frequencies from 75 GHz to 110 GHz (W band). Marconi Instruments Ltd. Tel., 01438 742200; fax, 01438727601.

Network analyser. Rohde \& Schwarz introduces the ZVR vector network analyser family which, among its other virtues, is modular in form for simple future upgrading.
Measurement time is under 120μ s per test point, which allows over 25 sweeps/s with 200 points and over 130 dB dynamic range with a 10 Hz if bandwidth. There are three family members, all with integral generator, test set and multi-channel receiver, and the two lower-priced units can be upgraded to perform as the most expensive one. Rohde \& Schwarz UK Ltd. Tel., 01252 811377; fax, 01252 811447.

150 MHz dso. From Metrix, the OX2000 150 MHz , four-channel, programmable digital storage oscilloscope, which can capture data at up to 200Msample/s in single-shot mode and to 50Gsample/s for repetitive waveforms. Input sensitivity is 2 mV -10V/div and sweep speed $2 n s-50 \mathrm{~s} / \mathrm{div}$. A PCMCIA slot allows long-term storage and a colour VGA output port is provided, as well as interfaces for printing or connection to a PC. Metrix Electronics plc. Tel., 01384 402731 ; fax, 01384402732.

GPIB multimeter. Model 1705GP from Thurlby Thandar is a GPIB version of the 1705 dual-display multimeter, possessing IEEE-488 and RS-232 interfaces, either of which controls the meter functions and reads back results from the display or the built-in data logger. This 4.5 digit instrument counts to 12000, has a $10 \mu \mathrm{~V}, 10 \mathrm{~m} \Omega, 0.1 \mu \mathrm{~A}$ resolution and direct voltage accuracy of 0.04%. Main and secondary displays show two simultaneous readings and the secondary one will show measurement units, the results of calculation, two different parameters of one signal or two different signals. Thurlby Thandar Instruments Ltd. Tel., 01480412451 ; fax, 01480450409

Audio monitor. Audix's ARM audio monitor is now in a new version with 24 stereo inputs instead of twelve; it is meant for on-air broadcast use. There are separate buffered and control outputs for an internal mono cue speaker, an external stereo loudspeaker and stereo headphones connected to the panel's jack. There is an external communications input to inject feeds to the cue speaker. Audix Broadcast Lid., Tel., 01799 542220; fax, 01799541248.

Spectrum analyser. Advantest's $R 3263$ spectrum analyser is intended for use in digital moblle communications. It is small and light,
but provides comprehensive facilitles in the $9 \mathrm{kHz}-3 \mathrm{GHz}$ range, with selectable bandwidth from 300 Hz to 5 MHz . The screen is a 6.5 in colour tft type displaying a 100 dB range of levels at a horizontal resolution of 1000 points. There is gated and delayed sweep and a timing function to 20μ s for burst measurement and one keystroke starts fully automatic test sequences. Two PCMCIA slots allow storage, set-ups and test programs. Rohde \& Schwarz UK Ltd Tel., 01252 811377; fax, 01252 811447.

Literature

Display panels. Thin-film transistor, active-matrix Icd panels by NEC are the subject of a new brochure, which shows types from a 6.5 in unit for instruments to the new 1280 by 1024 pixel, 13 in panel for monitors. The brochure contains a section to explain the operation of tft active-matrix displays. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908 670290.

Valves. A note from Billington Export offers its 1996 catalogue, which contains cross-referencing data, and points out that the company has the

Production equipment

Pcb test. Polar's Toneohm family of low-cost printed-board shortcircuit fault locators is extended to include the 550A and 850A, which provide $0-40 \mathrm{~m} \Omega$ ranges for short-circuit tracing on boards with wide tracks, The 850A also has current tracing for shorts on bus-structured boards; both are usable on bare or loaded boards. In use, probes are moved along the tracks while a tone guides the user to within a few millimetres of the fault. All data is presented on a 3.5 -digit lcd. Drive is voltage limited to avoid damage. Polar Instruments Ltd. Tel., 0148 53081; fax, 0148152476.

SV811 power triode from Svetlana and the improved Chinese 300 B with graphite anode. There is also a separate crt catalogue and both are free. Billington Export Ltd. Tel., 01403 784961; fax, 01403783519.

Alarms. Roxburgh's complete range of audible alarms and indicator lights is described in the 1996 catalogue, now available. Components included are magnetic buzzers and transducers, piezoceramic transducers, pcb and panel alarms, among which is the Sonitron range. There is also a catalogue on the range of Rafi electromechanical components - switches, lamps and keyswitches. Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724 281650.

Floppy catalogues. Minicat Ltd has a compression technique that will put 200 colour images and 1000 pages of text on a 3.5 in floppy disk - about 450 times as much as usual. The company also offers an interactive slideshow facility with fade transitions for conferences, running under Windows. MíniCat Ltd. Tel./fax, 01923 823633.

Hitachi on CD-ROM. A new CD-ROM data book from Hitachl covers the H8 series of microcontrollers and the Supert family of 32 -bit risc devices, the disc being effectively equivalent to 19,000 pages of data. Macintosh and Windows users can read the disk. Hitachi Europe Ltd. Tel., 01628 585163; fax, 01628585160.

Materials

Liquid resist. Electra announces Photrak, which is a liquid photoimageable etch and plate resist for high-resolution pcbs; it can be applied to give 1 mil resolutlon. Using standard 5 kW equipment, exposure time is $15-20$ seconds and with 7 kW , 10 seconds. The material increases developer and stripper bath life by 100%. Application is by screen printing, curtain coating, electrostatic spray or roller and the formula is suitable for use with acid and alkaline etchants, as well as with acid goldplating solution. Electra Polymers and Chemicals Ltd. Tel., 01732 811118; fax, 01732811119.

Printers and controllers

Thermal printer. Able Systems has the Ap1000, a panel thermal printer in a clear plastic case so that the amount of paper left is visible. It comes in 24 or 42 column form and gives a speed of 96 characters/s, bidirectionally. A full IBM character set is provided. Able Systems Ltd. Tel., 01606 48621; fax, 0160644903

Board inspection. Alpha Hi-Check $500 Z$ is an accurate, non-contact method of inspection and
 the size of filter capacitors required. The voltage feedback technique used eliminates the current sensing resistor commonly used. A soft start feature is incorporated. Micro Call Lid. Tel., 01844 261939; fax, 01844261678.

SOT-23 voltage reference. MAX6120 from Maxim is said to be the first micropower, 1.2 V three-terminal reference in this package. It is meant for 3 V equipment where battery saving is essential and is a low-power alternative to two-terminal shunt devices, since its supply current of $70 \mu \mathrm{~A}$ maximum is independent of input voltage. Maxim Integrated Products UK Lid. Tel., 01734 303388; fax, 01734305511.

10W, open-frame supplles. Toko's SW10 series of 10 W ac/dc openframe supplies stand only 18 mm off the board and take up 65 by 70 mm of board space. Input is universal -$85-246 \mathrm{~V}$ ac - and the units give a single output of $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ or 24 Vdc , led status indication and a fine output adjustment being standard. Closed-frame types are available Melcher Ltd. Tel., 01425 474752; fax, 01425474768.

Rapid-response FORS. If
uninterruptible power supplies look likely to be interrupted, Fiskars Power Systems will instantly leap to attention and send in the cavalry. FORS
(Fiskars On-line Remote Service) is a

Navigation systems
PCMCIA GPS. Using only 650 mW , Rockwell's NavCard LP PCMCIA Global Positioning System receiver is a five channel unit tracking up to nine satellites to give position, direction and speed, mainly for land vehicles and marine use. It is complete with an'integrated antenna, removable to allow the use of an optional remote antenna. Software includes CityTracker for urban navigation. If a differential receiver is available, the unit accepts imput to improve position resolution to 10 m from 100 m . Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.
system whereby the company keeps tabs on its ups units in the field 24 hours a day by way of modems and GSM links, automatically and remotely inspecting all systems, listening for alarms and collecting the relevant data if it thinks it sees a problem. If it does, it calls out the duty engineer and gives him all the necessary data although he can call for more if he wants to. The service is avallable for Fiskars PowerServer 30/40 UPS9000/10000 systems. Fiskars Electronics Ltd. Tel., 01734 306600; fax, 01734305868.
2.5W SOT-23 rectifiers. Microsemi's Powermite family of small semiconductor devices now includes a 2.5 W , fast 1 A schottky rectifier, due in part to the design of the surfacemounted package. Its metal base wraps round each side of the device to increase the heat flow to the board Its success is demonstrated by its ablity to cope with an 8.3 ms surge of 70A. Solid State Supplies Ltd. Tel., 01892 836836; fax, 01892837837.

Switches and relays

Photovoltaic relay, IR has increased its family of photovoltaic relays for Type II PCMCIA fax/modem cards with the PVO402P, which is only 2 mm high and consists of a double-pole, normally open, solid-state device incorporating both relay and ring

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information
detector. Input/output isolation is 3.75 kVrms . Output stage is a Hexfet circuit. International Rectifier. Tel., 01883713215 ; fax, 01883714234

SM dip switches. Grayhill offers the Piano-style and standard-profile spdt, spst and 2pst dual-in-line switches in surface-mount form, made from material to withstand infrared reflow soldering. Roxburgh Electronics Ltd. Tel., 01724281770 ; fax, 01724 281650.

Windows '95 keyboard. Cherry's Windows '95-compatible keyboard, the G83-6105, is a 105-key device with three dedicated keys on the spacebar row: an applications key to pop up the content menu (equivalent to the right mouse button in some applications); and left and right keys for the user interface and its shortcuts. Its membrane switch combined with a rubber sheet, whose domes are individually moulded to provide a uniform response, give an improved action in any position. Cherry Electrical Products Ltd. Tel. $01582763100 ;$ fax, 01582768883.

Reliable keypads. Oil from the fingers is kept from Lucas rubberised keypads by means of a layer of polyester in Duralith barrier switches These are polyester half switch consisting of a contact layer, screened contacts and a spacer layer A range of options includes a choice of tactile response and pcb substrates. Lucas Control Systems Products. Tel., 01535 661144; fax, 01535661174.

Quiet, solld-state relays. Solid-state relays, by Laser Energy, in the ECO range 'totally eliminate' additive radio frequency interference, meeting VDE 0871 well enough to class the device as noise-free. Current handling is 10 100A and forward voltage is reduced to enable a reduction in heat sink size. No additional filters are needed. Campbell Collins Ltd. Tel., 01438 369466; fax, 01438316465.

Keylock switches. Grayhill's Series 03 range of low-cost keylock switches is now available in the UK, a range that includes multi-level security switches and basic on-off types. There is an on-off model measuring 0.6 in in diameter, a two-position dpd switch, a three-position progressivecontact switch and a multi-level type giving four-operator security and limited access to switch positions Switches have ratings of 1-2A at 240 V ac. EAO-Highland Electronics Ltd. Tel., 01444236000 ; fax, 01444 236641.

Octal bus switch lcs. Bus switches in the FST $3 x x x / 32 x x x$ families serve to solve the problems associated with shared memory and multiple processors in common buses without additional propagation delay, timing skew, noise or power consumption. Quiescent current is typically $0.1 \mu \mathrm{~A}$. Integrated Device Technology. Tel., 01372 363734; fax, 01372378851

Pot. switches. Eco switches by Omeg come in rotary and push-push varieties and are meant to mount directly onto the company's 16 mm ECO potentiometers. The rotary switches are produced in ratings of 1 A and 4 A at 250 V , in single and two pole types and terminated in pcb pins or tags. Push-push models are 10A, 250 V units and are also available as modules for other manufacturers. Power rating of both types is 0.25 W in linear ranges of $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ and 0.12 W for non-linear types from $4.7 \mathrm{k} \Omega-470 \mathrm{k} \Omega$. Omeg Ltd. Tel., 01342 410420; fax, 01342316253.

Attenuator relays. Teledyne's RF300 relays are small (7 mm high), are emishielded and handle high frequencies and are therefore suitable for use in uhf attenuators. Rf signal repeatability is $241 \pm 0.1 \mathrm{~dB}$ from zero to 3 GHz . Teledyne Electronic Technologies Tel., 0181-571 9596; fax, 0181-57 9637.

Keyboard switches. Providing a snap action and a satisfying feel, NSF Keylite keyboard switches come in various colours and designs and posses momentary or latching action They accept one or two leds and are fitted with lugs resistant to solder creepage and gold/silver-plated contacts. Designs in the range include half key, stepped, paddle, sloping and illuminated types. Lucas Control Systems Products. Tel., 01535 661144; fax, 01535661174.

Trip amplifiers. Providing relay contact at preset ac and dc levels UltraSlim Pak trip amplifiers from Weidmuller Klippon are easily configured, with setpoints from 10 mV to 200 V ; input currents are 1 mA to 100 mA ac or dc. Isolation between input, output and power supply is provided and the two output relays are in spdt form and rated at 120Vac or 24 Vdc . Weidmuller (Klippon Products) Ltd. Tel., 01795580999 fax, 01732844444

Transducers and sensors

Slotted sensors. Omron has added to its range of optoelectronic switches a number with increased slot widths of 8 mm . EE-SX1070/3070/4070 are configured as phototransistor, photoic (light off) and photo-ic (light on) respectively, all with resolution to 0.5 mm . The photo-ic versions have an amplifier and Schmitt to give high output for direct drive of other circuits; frequency response allows 3000 operations per second. Omron Electronics Ltd. Tel., 0181-450 4646; fax, 0181-450 8087.

Displacement transducers. Monitran's new linear differential displacement transducers are for use in applications where they must withstand pressures up to $6000 \mathrm{lb} / \mathrm{in}^{2}$ or 400bar. MTN/P units can be used inside hydraulic and pneumatic cylinders to act as feedback devices for actuator control. They are in stainless steel and come in measuring ranges of $\pm 25 \mathrm{~mm}$ to $\pm 500 \mathrm{~mm}$, giving
de or current-loop output. Monitran Ltd. Tel., 01494816569 ; fax, 01494 812256.

Magnetic field sensor. Designed to detect and measure a changing magnetic field, the Zetex ZMY2ON now tolerates disturbance fields up to $30 \mathrm{kA} / \mathrm{m}$. It takes the form of thin-film magnetoresistive permalloy in a Wheatstone bridge arrangement to give an output proportional to the field. An internal magnet in the E-line or SOT223S package counteracts unwanted external disturbances to allow measurement down to $0.1 \mathrm{kA} / \mathrm{m}$. Bridge resistance is $1.7 \mathrm{k} \Omega$ and output is $12-22 \mathrm{mVN}$ at $0-1 \mathrm{MHz}$. Zetex plc. Tel., 0161-627 5105; fax, 0161-627 5467

Rotary sensor. Control
Transducers's WPM absolute rotary position sensor is completely selfcontained and uses the MystR conductive plastic for long life with excellent linearity ($\pm 0.075 \%$) and resolution. It is contained in a 22 51 mm anodised aluminium housing for servo mounting. Control
Transducers. Tel., 01234 217704; fax, 01234217083.

COMPUTER

Data communications
V. 34 modem. Rockwell's RCV288ATFW/SP modem chip is a complete V. 34 design offering $115.2 \mathrm{~kb} / \mathrm{s}$ data and Group 3 fax, voice and speakerphone facilities; it needs no external controller. Adpcm coding and decoding allows digital storage using 2-bit or 4-bit compression and $7200 \mathrm{blt/s}$ decompression, while the voice mode supports business audio and Rockwell's integrated communications system programme for digital phone answering, voice annotation and audio file play and record. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256332810

Little transceiver. STD-300 from Circuit Design is a 50 by 28 mm narrow-band radio data transceiver intended to add telemetry to portable data terminals such as data loggers and card readers. Its high selectivity programmable pil-synthesised transmitter stage and a sensitive double superhet synthesised receiver allow a reliable range of 1 km at a data rate of $2400 \mathrm{~b} / \mathrm{s}$. It operates in the 434 MHz band and is compatible with ETS-300-220; spurious emissions are at less than -60 dBm and under 200 nW to adjacent channels. Low Power Radio Solutions Ltd. Tel., 01993709418 ; fax, 01993708575.

Modem modules. SocketModoms are a pin-compatible range of modem modules, including a low-power 2400bit/s data-only type up to a V.32bis type providing data, fax and voice. Also in the range is the TDED300 parallel interface, an ISA-bus

Industrial notebook. A joint GE/Lockheed/Martin
Marietta/Mitac project produced the MNB series of heavy-duty notebook computers for use in unfriendly surroundings. It has either a 486D X2 66 or a 486DX4 100 processor with 4 Mb dram and a $520 \mathrm{Mb}, 2.5$ in removable hard disk. Led displays of various types can be provided, with provision to connect an external VGA monitor. There are two PCMCIA slots for Types I or II cards and a standard ISA or two PC104 cards can be used internaily. The whole thing is in a cast aluminium chassis and enclosure. Kerry Technology Ltd. Tel., 01825 766776; fax, 01825768020.
card to go in a pc's 8 -bit card slot, hosting any parallel socketModem. A demonstration board has a speaker and a socket for DAAs. Telecom Design Communications Ltd. Tel. 01256332800 ; fax, 01256332810.

Data logging

Portable logger. A new, portable data logger, the SA32 from Martron, has on-board data-processing functions, takes 33 input channels and measures voltage, current, resistance and temperature. Sampling speed is 50 measurements per second on each channel to a resolution of $1 \mu \mathrm{~V}$ and with an accuracy of 0.01%. The instrument will create up to 68 mathematical data channels from the original data. Software runs with Windows, dos, Modbus and J-bus Martron Instruments Ltd. Tel., 01494 459200; fax, 01494535002.

Mass storage systemsSolid-state file cards. IBM's cards provide users of portable computers with an alternative to magnetic disks for PCMCIA memory modules. Two forms of card, PCMCIA Type I and II both have a standard PCMCIA-ATA interface and capacity up to 40 Mbyte . They use a single 5 V supply at less power than disk drives, an advantage over the drives being that there are no delays. Disadvantages of firstgeneration flash memory cards are avoided by the use of a controller chip and dram buffers to avoid the need to erase memory before storing data DIP Systems. Tel., 01483 202070; fax 01483202023.

PIC our TOOLS for Value and Performance

- Programmers from only $£ 89.00$
- Simulators
- Real-fime Emulators with Bond-out Chipsets for: PIC 16C5X/61/620/621/622/64/65/71/73/74/84
- Large Range of Adapters and Profo-Boards
- Parallax PASM, MPASM or Byte Craff C Code

MIIFORD INSTRUMENTS

UK-Ireland Distributors for Parallax Development Tools and the BASIC Stamp Tel: 01977683665 Fax: 01977681465

KESTREL ELECTRONIC COMPONENTS LTD

\& All items guaranteed to manufacturers' spec.
if Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.60	1.57	628128LP-85	8.30	7.10
27C128-15	2.40	2.20	62256LP10	3.60	2.60
27C256-15	2.20	1.65	6264LP-10	2.60	1.75
27C512-15	2.20	1.85	MM58274CN	4.90	3.75
27C010-15	3.95	2.75	ULN 2003A	0.43	0.28
27C020-15	6.00	3.80	7805	0.32	0.25
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.95	7406	0.35	0.23
80C552-5-16	10.50	7.50	7407	0.35	0.23
Z80A CPU	1.80	1.00	74 HC244	0.35	0.21
LM317T	0.50	0.40	74 HC245	0.35	0.21
75176BP	1.35	0.75	74 HC373	0.35	0.21
68w PLCC skt	0.90	0701	74 HC374	0.32	0.21

Phone for full price list
All memory prices are fluctuating dally, please phone to confirm prices

> 178 Brighton Road, Purley, Surrey, England CR8 4HA

Tel: 0181-668 7522.Fax: 0181-668 4190

CIRCIE NO. 136 ONREPL Y CARD

AGENTS WANTED WORLDWIDE

FOR AN EXPANDING
COMPANY WHO
MANUFACTURES FAN SPEED CONTROLS. WE MANUFACTURE 3A, 5A, 10A ELECTRONIC SPEED CONTROLS. Also 1A, 2A, $2.5 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}, 7 \mathrm{~A}, 10 \mathrm{~A}$ STEPPED 1 \& 3 PHASE CONTROLS. WE ALSO MANUFACTURE THERMOSTATS, HUMIDISTATS \& ENVIRONMENTAL CONTROLLERS

FOR FURTHER INFORMATION CONTACT
AIRTEX CONTROLS
8 DUNBOYNE IND PK DUNBOYNE CO MEATH REP OF IRELAND
PHONE: + 35318251085 FAX: + 35318252008

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 0RG, England
な-44-01245-355296/265865
Fax: 44-01245-490064

S D Just Take Two Steps to do Your Measurement

You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals.
The TiePieSCOPE - HS508 is supplied complete with user manual, software, and two probes.

Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)

$\bowtie 028$ Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ Tel.: (01480) 460028 - Fax: (01480) 460340
TiePie engineering, The Netherlands \triangle P.O. Box 115, 8900 AC LEEUWARDEN
Battenserreed 2, 9023 AR JORWERD

Darren Heywood's chopping approach to measuring bridge design results in an unusual combination of low cost and high stability.

Fig. 1. Designing a transducer amplifier with a gain of 1000 should be easy, given an op-amp with a high input impedance and a gain of a few million.
was challenged by a friend to design an high-sensitivity amplifier circuit for a transducer. My choice was to connect the transducer in a Wheatstone bridge configuration.
Output span from the transducer was just 0 to 5 mV . This meant that the signal would have to be amplified by at least 1000 in order to bring the signal to workable levels, ie $0-5 \mathrm{~V}$.
I started the design by simply setting the resistor ratios $R_{\mathrm{f}} / R_{\mathrm{i}}$ on a 741 op -amp to yield the required gain, Fig. 1. But the configuration was unstable and would not null. Furthermore, I noticed that by simply blowing a little air over the circuit, the output would suddenly drift towards either supply rail and saturate.
Consulting the data sheets revealed that the drift gradient for a 741 was in the region of approximately $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. A simple calculation exposes the problem. Assume a change of say $5^{\circ} \mathrm{C}$ referred to the op-amp input. This means a $\Delta V_{\text {offset }}$ of $100 \mu \mathrm{~V}(5 \times 20)$ or 0.1 mV . Multiply this figure by 1000 and you get 0.1 V at the output due solely to temperature change. Another contributory factor to drift in the circuit is the type of resistors used. Carbon types for instance have a drift of approximately 300 ppm while metal film types exhibit approximately 50 ppm . Moreover, when soldering the resistors onto a circuit board, a thermocouple is created due to Seebeck effect and noise levels inherent in the circuit change with temperature.

The obvious solution to the temperature drift problem would seem to be to obtain an opamp with a very low drift figure. The OP27 has a drift rate of just 1 to $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, depending on the part-number suffix.
Inserting the new op-amp into Fig. 1 reduced the drift problem, but the output still varied to unacceptable levels. I began to realise that a totally different circuit concept was required - namely a chopper amplifier*.
Designing a circuit exhibiting near-zero drift is one challenge, but is it possible to incorporate chopper technology into a 4 -to- 20 mA system? Signal transmission relying on current change is superior to an equivalent based on voltage because current operation minimises line loss. Current loops are widely used in both instrumentation and digital transmission systems, Fig. 2.

Implementing the chopping bridge

You should first decide on an overall feedback system. I chose voltage-to-current feedback, Fig. 3. Assuming $V_{\text {is }}$ drops slightly due to the resistance-temperature transducer increasing, the op-amp responds by increasing its output.

[^1]

In turn, voltage across R_{f} starts to increase and $V_{\text {os }}$ decreases until $V_{\text {is }}$ equals $V_{\text {os }}$ and equilibrium is reached.
For the op-amp, it is desirable to have high gain and lowest possible drift. This ensures temperature stability and improves resolution. Selecting a high gain 'off-the-shelf' op-amp achieves good resolution, but not temperature stability.

This dilemma forces the use of chopper amplifiers, which normally means added complexity, extra components and increased costs.

Supplying the bridge

To provide a reference, a temperature compensated voltage source is needed with low output impedance and low current consumption. The $L M 723$ voltage stabiliser, $I C_{1}$ of Fig.

4, is very cheap, widely available, and contains a 7.2 V temperature compensated voltage reference capable of sourcing up to 20 mA . In addition, it has a high gain op-amp, a pass transistor capable of sinking 150 mA , a current limit transistor and a zener diode - all for approximately 40 p .
A 24 V supply is needed while the 723 voltage reference is about 7.2 V . If the 7.2 V reference is used as the op-amp psuedo ground, then $I C_{2}$ can swing approximately $\pm 7 \mathrm{~V}$. This leaves approximately 10 V for external line and measurement resistance. Hence approximately 15 V divided into 20 mA equals 750Ω and 1200Ω minus 750Ω leaves 450Ω for external resistances.
The feedback system around $I C_{2}$ is a hybrid type. You may think that the gain is set with
this feedback system,

$$
A_{v}(C L)=\frac{R_{6}}{R_{3}} \times\left(1+\frac{R_{7}}{R_{8}}\right)
$$

But at the gain demanded from $I C_{2}$ the above equation fails. This problem occurs because,

$$
A_{v}(C L)=\frac{A_{v}(O L)}{\left(1+B A_{v}(O L)\right)}
$$

ie $A_{\mathrm{v}}(C L)$ is approximately $A_{\mathrm{v}}(O L)$.
If you check out the gain/frequency response curves as given by the manufacturers, they reveal that in open loop mode, the LM308 outputs 110 dB gain at approximately 10 Hz and rolls off at the first order rate of

Fig. 4. Full circuit of the chopping bridge amplifier with 4-20mA currentloop output.

Modulator and AC amplifier

$18 \mathrm{~dB} /$ decade thereafter. Why control gain with just resistors? You can control it with frequency as well. The above then demonstrates that the chopping frequency is most important.

Oscillator design choice

This application needs an oscillator with a low current consumption and that remains at a stable frequency even if the 24 V supply is varied from 24 V down to say 15 V . It must also swing from the supply to ground to ensure $I C_{2}$'s common mode input range is maximised. It must also have a 180° complement output.
The simplest choice is to use another 308 since it consumes only $300 \mu \mathrm{~A}$. Notice that $/ C_{3}$ is powered by $V_{\text {REF. }}$. This clamps $I C_{3}$ to maintain fixed stable frequency. Output of $I C_{3}$ is
then fed into $T r_{3}$ and $T r_{2}$, the latter being driven by Tr_{3}. Both drains are connected to the positive supply rail.
At 24 V , the two zener diodes limit the common mode range to about 16 V to reduce stress on the mosfet gates. Note that bipolar transistors connected in astable mode with $390 \mathrm{k} \Omega$ load resistors as $T r_{3}$ and $T r_{2}$, take too long to switch off.
One improvement that may possibly be made here is to connect $T r_{3}$ and $T r_{2}$ in bistable mode, using $I C_{3}$ as the driver. In this way, Tr_{3} and $T r_{2}$ outputs would have ideal overlapping switching times.

Modulation and demodulation

First, the modulation system used is synchronous. This simplifies the circuitry and
maintains excellent restoration of the amplified signal.
Assume $T r_{1}$ and $T r_{4}$ are both off, $T r_{5}$ is on, and there is slightly less potential at the inverting input than the non-inverting input if $I C_{2}$. This means that C_{2} will have a slightly greater charge stored than C_{1}.
Now, Tr_{1} and $T r_{4}$ are both on, Tr_{5} is off, C_{1} and C_{2} are both rapidly shunted together and because C_{1} has slightly less charge than C_{2}. A small difference charge is forced into $I C_{2}$ inverting terminal. This causes $/ C_{2}$'s output to swing negative and equalises at some point via the feedback resistors. At the same time Tr_{4} shunts C_{3} to ground which negatively charges C_{3} from $V_{\text {REF }}$ point of view.
At this point, Tr_{1} and $T r_{4}$ are both off, $\operatorname{Tr}_{\mathrm{s}}$ is on and C_{1} now has a negative difference

charge and as such, current is pulled from $I C_{2}$ inverting terminal. This causes $I C_{2}$'s output to swing positive until equilibrium is again reached via feedback.
Both positive and negative output pulses are equal in magnitude but opposite in polarity. During the positive pulse, Tr_{5} is about 5Ω and thus the positive pulses from $I C_{2}$ are sampled and stored in C_{5}.
Due to the previous negative cycle, C_{3} was charged from ground and thus positive only amplified pulses which are referenced to ground are passed onto or into R_{19} / C_{s}. By charging C_{3} from ground, level shift from $V_{\text {REF }}$ to ground is accomplished. Remember that $I C_{2}$ output swings around its psuedo ground $V_{\text {REF }}$.
Notice that C_{1}, C_{2} and C_{3} isolate $I C_{2}$'s quiescent point so $I C_{2}$ is allowed to drift. Also, increasing the dc signal on the inverting terminal of $I C_{2}$ to above that of the non-inverting terminal causes a phase change at the output of $I C_{2}$. This produces dsb suppressed carrier modulation!

Current amplifier

To produce the current amplifier, $I C_{1}$ is simply connected as a unity gain voltage buffer. Current gain, however, is determined by the current flowing through R_{21}. The smaller R_{21}, the higher the current gain.
Note the internal pass transistor within the 723 is providing the current gain and not the amp. The amp simply controls the current very accurately. Diodes D_{2} and D_{3} lift the turn on level to 1.2 V . This is done because the KA723 op-amp does not saturate at exactly ground. All the above means 4 mA , or zero, begins at around 1.2 V and ends at around 2.4 V , i.e. 20 mA .

The bridge system

Referring to Fig. 3 , assume for a range of 0° $100^{\circ} \mathrm{C}$, the rtd's resistance changes from 100Ω to 139.02Ω. Also assume that 100Ω represents 4 mA and 139.02Ω represents 20 mA .
In my bridge configuration, an increase in rtd resistance causes $V_{\text {is }}$ to fall. Due to feedback, the amplifier increases current output across R_{27} and R_{23} until the selected feedback resistances $R_{\mathrm{S}} / R_{\mathrm{E}}$ equalise the change. Thus $V_{\text {is }}$ is always approximately equal $V_{\text {os }}$ and is true for any feedback system.
The higher the open-loop gain the less the error between $V_{\text {is }}$ and $V_{\text {os }}$. Again assume that the rtd is $100 \Omega, V_{\text {is }}$ equals $V_{\text {os }}$ and the system draws 4 mA . Now, the rtd begins to increase in value so voltage $V_{\text {is }}$ starts to fall. Voltage $V_{\text {os }}$ follows $V_{\text {is }}$ because the system is closed loop, Fig. 5.
If the rtd carries on increasing then at some point the system will reach 20 mA . In theory, any zero/span ratio can be achieved. Here are the equations governing the system calibration under static conditions are,

Fig. 6. Examples of bridge connections for two resistance-temperature transducers with different characteristics.

$$
\begin{aligned}
& \Delta V_{o s}=\frac{1.632 R_{E}}{R_{S}+R_{E}} \\
& \Delta V_{i s}=\frac{V_{R E F} R_{Z}\left(R T D_{U}-R T D_{L}\right)}{\left(R T D_{L}+R_{Z}\right)\left(R T D_{U}+R_{Z}\right)} \\
& V_{o s}=\frac{R_{S} V_{R E F}-0.408 R_{E}}{R_{S}+R_{E}} \\
& V_{i s}=\frac{V_{R E F} R_{Z}}{R T D_{L}+R_{Z}}
\end{aligned}
$$

and the limitation equations are,

$$
\begin{aligned}
& \Delta V_{O}=\frac{1.632\left(V_{R E F}-V_{O S}\right)}{V_{\text {REF }}+0.408} \\
& \frac{R_{S}}{R_{E}}=\frac{1.632 V_{O S}+0.408 \Delta V_{O}}{\Delta V_{O} V_{R E F}}
\end{aligned}
$$

Note that system span is controlled by R_{25} plus R_{26}, R_{S} and R_{E} are span alignment resistors only and zero is controlled with R_{Z}. For any given calibration, $\Delta V_{\text {os }}$ must equal $\Delta V_{\text {is }}$ and $V_{\text {ostart }}$ must equal $V_{\text {istart }}$. Also, $\Delta V_{\text {is }}$ must not exceed approximately 9 mV . This is due to the maximum current that can be drawn by the bridge.
For any given zero/span range, $\Delta V_{\text {is }}$ should always be as large as possible - why attenuate then amplify? Reducing resistor R_{23} narrows the span, however the equations supplied have to be amended slightly. I have provided two calibration scenarios. Bridge Fig. 6a) is $0^{\circ} \mathrm{C}=4 \mathrm{~mA}$ to $55^{\circ} \mathrm{C}=20 \mathrm{~mA}$, while the bridge illustrated in Fig. 6b) is $0^{\circ} \mathrm{C}=4 \mathrm{~mA}$ to $11^{\circ} \mathrm{C}=20 \mathrm{~mA}$.

Dynamic loop performance

Unfortunately, I did not have the equipment needed to maximise speed via damping. However, you must remember that we are trying to amplify thermocouples and rtds which have an inherently slow response speed of approximately 10 to 15 seconds. So if the system is slightly overdamped, performance is not downgraded.
The system loop's dynamics and bandwidth are set via R_{19} and C_{5}. I chose these values to coincide with a -3 dB of 7 Hz . This is ten times less than the switching frequency. This is well within the criteria of the sampling theorem.
At very narrow spans $I C_{2}$ has to produce higher gains and as such becomes too slow to respond to the induced error caused by KA723 pin 5. Thus no overshoot occurs at narrow span demands. Switching frequency was selected upon the above criteria.
The loop is guaranteed to be conditionally stable. The only unstable condition that can occur is if the input signal approaches 70 Hz and is in phase with the switching (chopping) frequency. This is highly unlikely to happen.
Capacitor C_{4} was inserted between the inputs of $I C_{2}$ to limit overshoot, slowing $I C_{2}$ down slightly during wide span conditions.
Diode D_{1} protects against reverse polarity supply connection.

Summary

Components for the bridge amplifier are well under $£ 5$ yet open-loop gain is in excess of 48000 and temperature stability is excellent. Noise is also low since the circuit is narrowband.
I have shown here what can be achieved with an alternative bridge topology and that high performance need not mean expensive components.

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Subjects include

Recording, microphones and loudspeakers
Digital audio techniques Basic audio principles Acoustics and psychoacoustics Audio and television studios and their facilities
Radio and telephony

Invaluable reference work for anyone involved with audio from broadeast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international feam of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

For TV \& Video Engineers

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include

Fundamentals of colour TV
TV studios
High definition TV
Satellite broadcasting
Distribution of broadband
signals
TV receiver servicing
Video and audio recording and ployback
Teletext
The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \qquad copies of the Audio Engineer's Reference Book, (ISBN 0750603860)
Fully-inclusive price-UK $£ 77.50$, Europe $£ 83$, Worldwide $£ 93$. Please add vat at local rate where applicable.

Please supply me \qquad copies of the
TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$, Worldwide $£ 58.00$, Please add vat at local rate where applicable.

Remittance enclosed $£$ \qquad
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows: Access/Master Barclay/Visa Amex Diners

Credit Card No \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad

POST CODE \qquad
DATE \qquad TEL

SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% lialy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPIY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject ta change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

HOWARD HUTCHINGS
f you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Credit card orders accepted by phone. Call 01816523614.

Please supply __ copies of
INTERFACING WITH C
Price $£ 14.95$
Please supply \qquad copies of
Disk containing all the example listings $£ 15.00$
Remittance enclosed $£$ \qquad
Interfacing with C can be obtained from Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to
Reed Business Publishing Group Ltd
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad
\qquad
\qquad

POST CODE \qquad
DATE \qquad TELE

SIGNATURE

VAT NO

SYNTHESISED SIGNAL SOURCE

an innovative design from an established 'Off-Air' Company

- Custom designed chip set
- Sinewave output 0dBm into 50Ω
- Can be run independently or genlocked to external source
- dc to 16 MHz in 0.1 Hz steps, with option 0.0001 Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available Models available October, contact us for prices

‘OFF-AIR’ FREQUENCY STANDARD

CIRCLE NO. 140

- Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
- Use it for calibrating equipment

TCXOs, vXCOs. oven crystals

traceable to NPL
For ADDED VALUE aiso phase locks to All OUS (cosi Fontrolled and traceable to OP - French ea to NPL) British designed and British manufactured
Options avalable include enh anced receiver, sine wave

Output frequencies -
$10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ Short term stability - better than $1 \times 10^{8}(1 \mathrm{sec})$ Typical $-4 \times 10^{-9}(1 \mathrm{sec}$ Long term -tends to
$2 \times 10^{-12}(1000 \mathrm{sec})$ $2 \times 10^{-12}(1000 \mathrm{sec})$
Callfor 1 Oft-Air' Standard fist

TEST EQUIPMENT ClrcifNo. in
We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

HALCYON ELECTRONICS vSA

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR
SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites

- General purpose professional reception $4 \mathrm{kHz}-30 \mathrm{MHz}$
- -10 dB gain, field strength in volts/metre to 50 Ohms .
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise - 150dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version
* Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$. Stabil izer and Frequency Shifters for Howl Reduction \star Stereo Variable Emphasis Limiter $3 \star 10$-Outlet Distribution Amplifier $4 \star$ PPM10 In-vision PPM and chart recorder \star Twin Twin PPM Rack and Box Units. \star PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and meter movements Broadcast Stereo Coders \star Stereo Disc Amplifiers * Peak Deviation Meter.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, GU6 7BG.
Telephone: 01483275997 . Fax: 276477.

JOHN MORRISON SOFTWARE and OEM HARDWARE MODULES

PIC ICE II

NEW Enhanced PIC PROGRAMMER

In Circuit Emulator for PIC16C54-55-56-57-71 and 84 Replaces all 18 or 28 pin PIC's. All ports Bi directional DSC2 output, RTCC input, on board A/D converter for PIC18C71. Supplied with PICDEV software suite, user manual, connecting leads and headers asrn, user sample files and hardware circuit projects.

$£ 159.95$

PIC 16C54, 16C55, 16C56, 16C57, 16C58A, 16C61, 16C64, 16C65, 16C71, 16C74, 16C84, 16C620, 16C621, 16C622 and Memory Chips 24LC01, 24LC02, 24LC16, 24LC32, 24LC65
Centronics port interface, powerful editing soft ware allows the user to Read, Write and Copy PIC devices including data memory in PIC16C84. Supplied with Editor Assembler soft ware suite. Sample files and notes £99.95

MEGAPROM EPROM PROGRAMMER

EPROMS, E ${ }^{2}$ PROMS and FLASH memories from 2 Kb to 8 Mb
INC. MICROCHIP 24LC01-65 Memory
Operates via host IBM PC and centronics port, uses standard printer cable, on board production quality Z1F socket

£99.95

NEW EEPROM PROGRAMMER

Programs all EEPROMS. Driver software runs on an host IBM PCMSDOS 3.1 or higher, connects to the parallel port, also detects 12 C bars or the Microware $3 / 4$. This small neat unit has facillites for programming or copying in Intel, Hex Microchip or BIN formats, with user variable programming speeds for all devices.
£49.95

$\mathbf{£ 6 9 . 9 5}$

EPROM EMULATOR

For ROM from $\mathbf{1 K b}$ to $\mathbf{3 2 K b}$
Operates via host IBM PC and centronics port, uses standard printer cable. Very fast download to target board EPROM socket, operates with or without our development software suite.

DEVELOPMENT SOFTWARE

Develop software on your IBM PC for other Microprocessors, Controllers, PIC Chips atc. Each software suite has a fully integrated Text editor, Assembler, Disassembler and Simulaior included. Code can be downloaded directly to our emulators. All software supplied with operator instructions and sample code. SMARTCARD DEVELOPMENT PACKAGES MADE TO ORDER
MCS8051/52/552 - MCS8048/49 - PIC16C54/55/56/57
PIC16C71/84 - HD63/6809 - R6502 E19.95ea

Please add $£ 1.75$ for P\&P to UK mainland.
CROWNHILL ASSOCIATES LIMITED, PO BOX 845 WATERBEACH, CAMBRIDGE, CB5 9JS

SURVEILLANCE TELESCOPE Superb Russian zoom telescope adjustable from $15 x$ to $60 x$ complete with metal tripod (imposible to use without this on the higher settings) 66 mm lense eather carrying case $£ 149$ ref BAR69
RADIATION DETECTOR SYSTEM Designed to be wall mounted and connected into a PC, ideal for remote monitoring, whole building coverage etc. Complete with detector, cable and software E19.95 ref BAR75
WIRELESS VIDEO BUG KIT Transmits video and audio signals from a minature CCTV camera (included) to any standard elevisionl All the components including a PP3 battery will in into a cigarette packet with the lens requiring a hole about 3 mm diameter Supplied with telescopic aerial but a piece of wire about $4^{\prime \prime}$ long will sill give a range of up to 100 metres. A single PP 3 will probably give less than 1 hours use E99 REF EP79. (probably not licensablel) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams. 12 100 mA . auto electronic shutter, 3.6 mm F2 lens. CCIR, 512×492 pixets, video output is $1 \mathrm{v} \mathrm{p}-\mathrm{p}(75 \mathrm{ohm})$. Works directly into a scart or video input on a tv or video. IR sensitive. E79.95 ref EF137.
IR LAMP KIT Sutable for the above camera enables the camera to be used in total darkness! $£ 5.99$ ref EF 138.
REMOTE CONTROLTANDATA TD1400 MODEM/ VIEWDATA Complete system comprising $1200 / 75$ modem, auto dialler, infra red remote keyooard, (could be adapted for PC use?) psu, UHF and RGB output, phone lead, RS232 output, composite output. Absolute bargain for pars alonellis 9.95 ref BAR33

9 WATT CHIEFTAN TANK LASERS
Double beam units designed to fit in the gun barrel of a tank, each unit Double beam units designed to ft in the gun Darrel of a tank, each unit 7 mile range. full circuit diagrams, new price $£ 50,000$? us? £349 Each unit has two gallum Arsenide injection lasers, 1×9 watt, $1 \times$ 3 watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulsefrequency. The units 3 watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulsefrequency. The unit targets. five or more units $£ 299$ ea. $£ 349$ for one. Ref LOT4.

TWO WAY MIRROR KTI Indudes special adhesive film tomake wo way mirror(s) up to 60
NEW HIGH POWER RF TRANSMTTTERS

AMPLIFIERS

2.6vdc 90 watt 1.5-3 .6uc 40 . 50 . 28 vdc 125 watt $15-30 \mathrm{mhz} 75$ onm infout FM/AM $£ 65$ ref RF 28 vdc 100 att $50-200 \mathrm{mhz} 50 \mathrm{ohm}$ in/out FM/AM $£ 75$ ref RF A heat sink will be required, ring for price and availability. If you intend using these as audio transmitters you will need a also need a preamp. Complex module avallable at $£ 40$ ref RF5 COMPUTERNORKSHOP/H1FI RCB UNITS Complete protection from faulty equipment for everybody! Inline unit fits in standard IEC lead (extends it by 750 mm), fitted in less than 10 seconds, resethest button, 10A rating. £9 each Ref MM5

RADIO CONTROLLED CARS FROM £6 EACHII!! All retums from famous manufacturer 3 types avallable, single channel (left,right,forwards, backwards) $£ 6$ ref LOT1. Two channel with more features $£ 12$ ref LOT2. Two channel proportional (plug in crystals etc) $£ 35$ ref LOT3.

THOUSANDS AVAILABLE RING/FAX FOR DETAILS! MAGNETIC CARD READERS (Swipes) £9.95 Cased with fyleads, designed to read standard credit cards! they have 3 wires coming out of the head so they may write as well? complete with control elctronics PCB. just $£ 9.95$ ret BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN DEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these a your leisure using the text editor on your PC. Also Included is the certificate enabling you to reproduce (and sell) the manuals as much as you like! £14 ref EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use In horizontal or vertical Ote Complete with strap $£ 799$ ref BAR1
COIN OPERATED TIMER KIT Complete with coinslo mechanism, adjustable time delay, relay output, put a coinslot on anything you like! TV.s, videos, fridges, drinks cupboards, HIFI akes 50 p's and $£ 1$ coins. DC operated, price just $£ 7.99$ ref BAR27 ZENTTH $900 \times$ MAGNIFICATION MICROSCOPE Zoom metal construction, built in light, shrimp farm, group viewing screen, ots of accessories. £29 ref ANAYLT
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLASMA SCREENS $\mathbf{2 2 2 \times 3 1 0} \mathbf{m m}$, no data hence $\mathbf{E 4 . 9 9}$ re BAR67
NIGHTSIGHTS Model TZSA with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150 m range, 45 mm lens 3 deg angle of view, focussing range 1.5 m to infinity. 2 AA batterie equired. 950 g weight. $£ 199$ ref BAR61. 1 years warranty
LIQUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line, $99 \times 24 \mathrm{~mm}$ £ 2.99 ref SM1623A
20 character 2 line, $83 \times 19 \mathrm{~mm}$ £ 3.99 ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC4640A TAL-1110MM NEWTONLAN REFLECTORTELESCOPE Russian. Superb a stronomical 'scope, everything you need for some senous star gazing! up to 169x magnification. Send or fax for furthe details 2249 ref TAL-1
GOTAN EXPENSIVE BIKE? You need one of our botte alarms they look like a standard water bottle, but open the top, insert a key o activate a motion sensor alarm builtinside. Fits all standard bottie canlers, supplied with two keys SALE PRICE E7.99 REF SA32 GOT AN EXPENSNE ANYTHING? You need one of our GOT AN EXPEN

WOUVERHAMITION BRANEH NOW OPEN AT WORCESTER ST W'HA MPTON TLI 0101222039

PP3 battery, UK made. SALE PRIGE EA.99 REF SA33
DAMAGED ANSWER PHONES These are probably beyond repair so just $£ 4.99$ each. BT response 200 machines. REF SA30. COMPUTER DISC CLEAROUT We are left with a lot of sofware packs that need cleaning so we are seling atdisc value only! 50 discs for $£ 4$, tha1s just 8 p each! (our choice of discs) $\varepsilon 4$ ref EP6 6 IBM PS2 MODEL 1602 CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $\mathbf{6} 9.95$ ref EP67 DELL PC POWER SUPPLIES 145 wat, $+5,-5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, nyeads and IEC socket. SALE PRICE E9.99 ref EP55
1.44 DISC DRIVES Standard PC 3.5° drives but retums so they will need attention SALE PRICE 64.99 rel EP68
1.2 DISC DRNES Standard 5.25° drives but retums so they will need attention SALE PRICE NOW ONLY E3.50 ref EP69
PP3 NICADS Unused but some storage marks. £4.99 ref EP52 DELL PC POWER SUPPLIES (Customer retums) Standard PC pSu's complete with fiy leads, case and fan, +12v,-12v, $+5 \mathrm{~V},-5 \mathrm{~V}$ SALE
PRICE $£ 1.99 \mathrm{EACH}$ worth it or the bits alone! rei DL1. TRADE PACK PRICE 1.99 EACH w orth
OF 20 E29.95 Ref DL2.
GAS HOBS ANDOVENS Brand new gas appliances, perfect for small flats etc. Basic 3 burner hob SALE PRICE E24.99 ref EP72 Basic small builh in oven SALE PRICE $\mathbf{E 7 9}$ ref EP73
RED EYE SECURTTY PROTECTOR 1,000 watt outdoor PIR switch SALE PRICE E6.99 ref EP57
ENERGY BANK KIT $1006^{\circ} \times 6^{\circ}$ 6v 100 mA panels, 100 diodes, connection details etc. £69.95 ref EF 112.
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, ind udes wordprocessor, report writer, windowing, networkable up to 10 stations. multiple cash books etc. 200 page comprehensive manual. 90 days free technical supporl (0345-326009 try before you buyl) Current retall price is E129, SALE PRICE 99.95 ef SA12. SAVE $£ 12011$
COMPLETE PC 200 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power fluctuations and cuts. New and boxed. UK made Provides up to 5 mins running time in the event of complete power failure to allow you to run your system down correctly. LAST FEW TO CLEAR AT £49 SAVE E30 ref LOT61 BIG BROTHER PSUCased PSU, 6v 2A output, 2 m op plead, 1.5 m input lead, UK made, 220v. SALE PRICE E4. 99 REF EP7

Check out our WEB SITE
http://www.pavilion.co.uk/bull-electrical RACALMODEM BONANZAI 1 Raca MPS $12231200 / 75$ modem, elephone lead, mains lead, manual and comms software. the cheapest way onto the nell all this for just $£ 13$ ref DEC13.
4.6mw LASER POINTER. BRAND NEW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket clip (which also acts as the on/off switch.) About 60 metres rangel Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments eto. just $£ 39.96$ ref DEC49 TRADE PRICE \& 28 Min 10 PIECES

BULL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70\% of sufferers. Drug free pain relief, safe and easy to use. can be used in conjunction with analgesics etc. £49 Ref TEN/1
RUSSLAN MONOCULARS Amazing 20 times magnification coated lenses. carrying case and shoulderstrap. .29 .95 REF BAR73 PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with builininpsu, lead and s/w are.. Ideal for laptops or a cheap upgrade. Supplied in kit form for home assembly. SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodlights, built in charger and auto switch. Fully cased. 6v 8Ah lead acid req'd. (secondhand) £4 rel MAG4P1
YUASHA SEALED LEAD ACID BATTERIES Two sizes currently available this month. 12V 15AH atf 18 ref LOT8 and 6 V 10AH (suitable for emergency lights above) at just $£ 6$ ref LOT7
ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. 12v 2watt. E8.99 REF SA25 ECLATRON FLASH TUBE As used In police car flashing lights etc, full spec supplied, 60-100 liashes a min. E6.99 REF SA 158.

BULL ELECTRICAL

BN3 SOT (ISTAB IISIED 5O VIMRS)

THL: 01273 203503
HAX $0123 \mathrm{3} 330 \%$
IV mail bull Gpaillonico.uk

24v AC 96WATT Cased power supply. New. £9.99 REF SA40 MICRODRNE STRIPPERS Small cased tape drives ideal for stripping, lots of useful goodies including a smart case, and lots components. SALE PRICE JUST E4.99 FOR FNE REF SAZ6 SOLAR POWER LAB SPECLAL YOu get TWO $6^{*} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kt SALE PRICE JUST $\mathbf{E 4 . 9 9}$ REF SA27
RGBICGAVEGATTL COLOUR MONTORS 12° in good condition. Back anodised metal case. SALE PRICE E49REF SA $16 B$ PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 13.8V 1.9A PSU cased with leads Just £9.99 REF MAG10P3 UNNERSAL SPEED CONTROL LER KTT Designed by us for the C 5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
PHONE CABLE AND COMPUTER COMMUNICATIONS PACK kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating between PC's over a long distance utilizing the serial ports. Complete kit $£ 8.99$. Ref comp
VIEW DATA SYSTEMS made by Phillips. complete with intemal 1200 /5 modern, keyboard, psu etc RGB and composite outputs, menu driven, autodialler etc. SALE PRICE E12.99 REF SA 18
AIR RIFLES . 22 As used by the Chinese armyfortraining puposes so there is a lot aboutl $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80 PLUG IN POWER SUPPLY SALE FROM £1.60 Plugs in to 13A socket with outputlead. three types available, 9vde 150 m AE 1.50 ef SA19, 9vde $200 \mathrm{~mA} £ 2.00$ ref SA20, $6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 2$ ref SA21 VIDEO SENDER UNTT. Transmits both audio and video signals rom either a video camera, videorecorder, TV computer eic ioany standard TV set in a 100 ' range! (tune TV to a spare channel) 12 VDC
op. Price is $£ 15$ REF: MAG15 12 v psu is $£ 5$ extra REF: MAG5P2 Op. Price is $£ 15$ REF: MAG15 12 V PSu is $£ 5$ extra REF: MAG5P2
"MINATURE RADIO TRANSCENERS A pair of walkie talkles witha range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$ induding cases and earp'ces. 2xPP3 req'd. £30.00 pr.REF: MAG30 *FM TRANSMITTER KIT housed in a standard working 13A adapter!? the bug runs directyy off the mains so lasts forever why pay $\mathbf{~} 700$? or pnce is $£ 15$ REF: EF62 (kit) Transmits to any FM radio *FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. 9 v battery req'd. $£ 14$ REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WITH COINSLOT 耑ECHANISMS originally made to retail at 79 each, these units are designed to convert an ordinary phone imto a
payphone. The units have the locks missing and sometmes broken payphone. The units have the locks missing and sometmes broken hinges. How ever they can be adapted for their onginal use
something else?? SALE PRICE JUST $£ 2.50$ REF SA23
something else?7 SALE PRICE JUST $£ 2.50$ REF SA23
GAT AIR PISTOL PACK Complete with pistol, darts and pellets £12.95 Ref EF82B extra pellets (500) £4.50 ref EF80
6"X12" AMORPHOUS SOLAR PANEL 12V $155 \times 310 \mathrm{~mm}$ 130 mA . SALE PRICE E4. 99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99 ef MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1

> MDXED GOODIES BOX OF
> MIXED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST $£ 6.99$
4×28 TELESCOPIC SIGHTS Suitabie for all air rifies, ground enses, good light gathering properties. $£ 19.95$ ref R/J
RATTLE BACKS Interesting things these, small piece of solid perspex like matenal that it you try to spin it on the desk it only spins one way! in fact if you spin it the 'wrong' way it stops of its own accord and go's back the other way! $£ 1.99$ ref GI/JO1
GYROSCOPES Rememberthese? well we have found a company that still manufactures these popular scientific toys, perfect gitt or for ducational use etc. $\varepsilon 6$ ref EP70
HYPOTHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised oil blanket, reflects more than 90% of body heat. Also suitable for the construction of two way mirors! £3.99 each ref O/L04
LENSTATIC RANGER COMPASS OIf filled capsule, strong metal case, large luminous points. Sight line with magnifying view er 50 mm dia, 86 gm . $£ 10.99$ ref OK 604
RECHARGE ORDINARY BATTERIES UP TO 10 TMESI With the Battery Wizard! Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four at a time! Led system shows when batteries arecharged, a utomatically ejects unsuitable cells. complete with mains adaptor, BS approved. Price is $£ 21.95$ ref EP31.
TALKING WATCH Yes, it actually tells you the time atthe press of a button. Also features a voice alarm that wakes you up and tells you a button. Also features a voice alarm that wakes you up

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevent even the mostresponsible of divers from losing their tlcence! Adjustable audible alamm with 8 flashing leds gives instant waming of radar zones. Detects X, K, and $K a$ bands, 3 mile range, "over the hill around bends' and 'reartrap facilities.mIcro sizejust $4.25^{\circ} \times 2.5^{\circ} \times .75^{\circ}$ Can pay for Itself in just one day! $£ 79.95$ ref EP3.
SANYO NICAD PACKS $120 \mathrm{~mm} \times 14 \mathrm{~mm} 4.8 \mathrm{v} 270 \mathrm{maH}$ suitable for cordless phones etc. Pack of 2 just $£ 5$ ref EP78.
3" DISCS As used on older Amstrad machines, Spectrum plus3's etc $£ 3$ each rel BAR400.
STEREO MICROSOPES BACK IN STOCK Russian, 200x microscope that would normally be around the $£ 700$ mark, our price just $£ 299$ (full money back guarantee) full details in catalogue. R 95/300

> WE BUY SURPLUS STOCK FOR CASH
> BUYERS DIRECT LINE 0860425692 FREECATALOGUE
> 100 page catalogue now
> AVAILABLE, 5OP STAMP OR FREE ON REGUEST WITH ORDER.

200 WATT INVERTERS Nicely cased units 12 V input 240 v output 150 watt continuous, 200 max. $£ 49$ ref LOT62.
6.8MW HELIUM NEON LASERS New units, $£ 65$ ref LOT 33 COINSLOT TOKENS You may have a use for these? mixed bag of 100 tokens $\varepsilon 10$ ref LOT20.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine! Effective device, X-ray sealed assemblies. can be used for experimentai purposes. Not a toy or for minorsl $£ 6 /$ set. Ref $F X$ XP 1. Triends by creating moton with no known mpparent means or cause Thends by creating moton with no known app arent means or cause.
Uses no electrical or mechanical connections, no special gimmicks yetproducespositive molfon and effect. Excellent for science projects, yeiproducespositivemotonand effect. Excellent for science projects,
magic shows, party demonstrations or serious research \& magic shows, party demonstrations or serious research
deveiopment of this strange and amazing phychic phenomenon. Eev/set Rei FITKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembled can produce highly effective stmull. This material must
be used cautiously. It is for use as entertainment at parties etc oniy, be used cautiously. It is for use as entertainment at pa
by those experienced in its use. $£ 15 /$ set. Ref FEEH2.
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an antigravity effect. You can actually build a small mock spaceship out of
simple materials and without any visible means-cause it to levitate. simple materials and without any visible means- cause it to levitate. E10/set Ref FIGRA1.

WORLDS SMALLEST TESLA COILLIGHTENING

 DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', St Eimo's fire, Corona, excellent science project or conversation piece. £5/set Rel F/BTC1/G5.COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to
Argon laser but easier and less costly to build yet far more efficient. Argon laser but easier and less costly to build yet far more efficient.
Thisparncul ard esignwas developed at the Atomic Ene rgy Commusion This paroculardesignwas developed at the Atomic Ene rgy Commu sion of NEGEV in Israel. $£ 10 /$ set Ref F/CVL 1.
VOICE SCRAMBLER PLANS Minature solid state system furns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone
prevent third party listening and bugging. $£ 6 /$ set Ref FNS9. prevent third party listening and bugging. $£ 6 /$ set Ref FNS9.
PULSED TV JOKER PLANS Litte hand held device utilises pulse techniques that will completely disrupt TV picture and sound
works on FiM tool DISCRETION ADVISED BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spors, heat leaks etc. Intended for security, law enforcement, research and development, etc. Excellent security device or very interesting science project. £8/set Ref F/BHT1
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melong materials over
a considerable distance. This laser is one of the most efficent, a considerable distance. This laser is one of the most efficent, converting 10\% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials but it is also a likely candidate as an effective directed energy beam
weapon against missiles, aircraft, ground-to-ground, etc. Particle weapon against missiles, aircraft, ground-to-ground, etc. Particle
beams may very well utlize a laser of this type to blast a channel in beams may very well utilize a laser of this type to blast a channel in
the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicable to burning and etching particles. The device is easily applicable to burning
wood, cutting. plastics, textiles etc $E 12$ set Ref FAC7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity, amazing git, conversation piece, magic frick or science project. £6/ ULTRASONIC
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize
liquides, Many cleaning uses for PC boards, jewllery, coins, small liquides, Many cleaning uses
parts etc. $£ 6 /$ set Ref FNLB1.
parts etc. 6 /set Ref FNLB1.
ULTRA HIGHGAIN AMP/STETHOSCOPICMIKE/SOUND AND VIBRATION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new world of sounds. Listen through walls. windows, floors etc. Many applicatons shown, from law enforcement, nature listenin
devices. $£ 6 /$ set Ref $F / H G A 7$
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs LASER BOUNCE LISTENER SYSTEM PLANS Allows you LASER BOUNCE LISTENER SYSTEM PLANS Allows you
to hear sounds from a premises without gaining access. $£ 12$ set Ref rusti
LASER LIGHT SHOW PLANS Doll yourself plans show three
methods. $£ 6$ Ref FILLS1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with extemal controls. E6/set Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ultimate in home/office security and safety! simple to usel Call your home or ofice phone, push a secret tone on your telephone to access either A) On premises sound and voices or B) Existing conversation with break-in capability for emergency messages. $£ 7$ Ref FTTELEGRAB.
BUG DETECTOR PLANS Is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy' Sniffs out and finds bugs and other sources of bothersome interfe
BD1.
ELECT ROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $£ 5$ ref F/EML? ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI $£ 5 /$ set Ref F/EMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources In 'hard to get' or and focus them to our ultra sensitive electronics. Plans also show an optional wireless link system. £8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATORPLANS Operates on 9-12vdc, many possible experiments. £10RefF fMVM7/

WOTVERHAMPTON BRA NCH NOW OPEN AT WORCESTER ST WTHA MPION TM1 0101222039

INFINTTY TRANSMITTERS The ultimate 'bug' fis to any

 phone or line, undetectable, listen to the conversations in the room from anywhere in the worldl 24 hours a day 7 days a week! just call the number and press a button on the mini controller (supplied) and you can hear everythingl Monitor conversations for as long as you choose $£ 249$ each, complete with leads and mini controllerl ReLOT9. Undetectable with nomal RF detectors, fitted in seconds, no LOT9. Undetectable with nomal
SWITCHED MODE PSU'S 244 watt, $+532 A_{1}+126 A_{1}, 50.2 A$,-
120.2 A . There is also an optional 3.3 v 25 A rail available. $120 / 240 \mathrm{vi}$ P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Suitable for PC use ($6 \mathrm{~d} /$ drive connectors $1 \mathrm{~m} /$ board). £ 10 ref PSU1
VIDEO PROCESSOR UNTS?/6v 10AH BATTS/12V 8A TX Not too sure what the function of these units is but they certainty make good strippers! Measures 390X320X 120 mm , on the front are controls for scan speed, scan delay, scanmode, loads of connections on the rear. Inside $2 \times 6 \mathrm{v} 10 \mathrm{AH}$ sealed lead acid batts, pcb's and a 8 A ? 12v torroidial transformer (mains in). Condition not known. may hav one or two broken knobs due to poor storage. £17.50 ref VP2
RETRON NIGHT SIGHT Recognition of a standing man at 300 m In $1 / 4$ moonlight, hermatically sealed, runs on 2 AA batteries, 80 mm F1. 5 iens, 20 mw intrared laser included. $£ 325$ ref RETRON
MINI FM TRANSMITTER KIT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover 63-130 Mhz. Works with a common 9v (PP3) battery. 0.2W RF. £7 Ref 1001
3-30V POWER SUPPLY KT Variable, stabilized power supply for lab use. Short circuit protected, suitable for profesional or amateur use 24v 3A transformer is needed to complete the kit. £14 Ref 1007 mic. \&-30vdc. At $25-30 \mathrm{v}$ you will get nearly 2 wattsl $£ 12$ ref 1009 . mic. 8-30rdc. At $25-30 \mathrm{v}$ you will get nearly 2 wattsl $£ 12$ ref 1009 .
FM/AM SCANNER KIT Well not quite, you have to turn the k not yourself but you will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on both AM and FM. Built in 5 watt amplifier, inc speaker, $£ 15$ ref 1013.
3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel, 1,200 w power handling, microphone included. £14 Ref 1014.
4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 R
STROBE LIGHT KIT Adiustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. E16 Ref 1037
LIQUID LEVEL DETECTOR KITUseful for tanks, ponds, baths rain alarm, leak detector etc. Will switch 2A mains. £5 Ref 1081. COM BINATION LOCK KIT 9 key, programmable, complete with keypad, will switch 2A mains. 9v dc operation. $£ 10$ ref 1114.
PHONE BUG DETECTOR KIT This device will wam you if somebody is eavesdropping on your line. £6 ref 1130
ROBOT VOICE KIT Imeresting circult that distorts your volce! adjustable, answer the phonewith a different voice! 12vac 59 rel 1131 TELEPHONE BUG KIT Smail bug powered by the 'phone line starts transmitting as soon as the phone is picked upl £8 Ref 1135 3 CHANNEL LIGHT CHASER KT 800 watts per channel speed and direction controlssupplied with 12 LEDS (you can fit triac instead to make kit mains, not supplied) 9-12vdc £17 ref 1026. 12VFLOURESCENT LAMP DRNER KIT Light up 4 foot tubes from your car battery! 9v 2a transformer also required. $£ 8$ ref 1069. VOX SWITCH KIT Sound activated switchideal for making bugging lape recorders etc. adjustable sensitivity. £8 ref 1073

http://www.pavillon.co.uk/bull-olectrical
PREAMP MDXER KT 3 input mono mixer, sep bass and trebie
PREAMP MIXER KT 3 input mono mixer, sep bass and trebie
controls plus individual level controls, 18 vdc , input sens 100 mA . 1515 controls p
ref 1052.
METAL DETECTOR KIT Range $15-20 \mathrm{~cm}$, œmplete with case, vdc. £8 ref 1022
SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects to your projects for just $£ 9$ ref 1045
16 WATT FM TRANSMITTER (BULLT) 4 stage high power, preamp required $12-18 \mathrm{vdc}$, can use ground plane, yagi or open dipole. £69 ref 1021
HUMIDTTY METER KTT Bulds into a precision LCD humidity meter, 9 ic design, pcb, Icd display and all components included. $£ 29$ PC TMER KIT Four channel outut contralled by your PC, will switch high current malns with relays (supplied). Sontware supplied so you can program the channels to do what you want whenever you want. Minimum system configeration is 286 , VGA, 4.1.640K, senial -some of our products may be unhicensable in the uk

BULL ELECTRICAI

Y 14 ORDER TERME CASII, RO OR CMEQU

HEL.012 73203500
FAX 01273323077
E-mail bull@paviloncouk
port, hard dive with min 100 k free. £24.99
DNIN ING RODS Expensive technology cannot challenge the foo proof art of water divining, passed down from generavon togeneraton Seeing is believing. Use in the home, garden, countryside or deser It's divinely simplel $£ 4.99$ a pair ref $E ß$.
HUGE BUBBLE MAKING KIT You'll be amazed at the the size of the bubbles you can acheive with this bubble making kit. Once you have got the knacki its possible to make bubbles of up to 40 feetlong. £ 11.99 ref E/9
FMCORDLESS M ICROPHONE This unitis an FM broadcasbing
station in minature, 3 ransistor transmitter with electret condenser slation in minature,
mictret amp desgn resultin maximum sensititity and broadfrequency mictiet amp desgn resultin maximum sensit vity and broadirequenc PP3battery required. £ 15.00 ref 15P42A.
MAGNETIC MARBLES They have been around for a number of years but still give rise tocuriosity and amazement. A packof 12 is just E3. 99 rel GI/R20
STETHOSCOPES A fully functioning stethoscope for all those Intricate projects. Enables you to listen to motors, plpes, hearmeats, walls, insects etc. $£ 6$ ref MAR6P6.
NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting parts into showpieces in 3 hours! Will plate onto steel, Iton, bronze, gunmetal, copper, welded, silver soldered or brazed joints. Kitincludes enough to plate 1,000 sqinches. You will also need a 12 v supply, a container and 212 v light bulbs. £39.99 ref NIK39. Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12vDC adjustable from 0.30 secs. $£ 4.99$ HY1260M, 12 vDC adjustable from $0-60$ mins. $£ 4.99$ HY2405S, 240V adjustable from $0-5$ secs. £4.99 HY24060m, 240N adjustable from $0-60$ mins. $£ 6.99$ BUGGING TAPE RECORDER Small voice activated recorder uses micro cassette complete with headp hones $£ 28.99$ refMAR29P1 POWER SUPPLY fully cased with mains and o/p leads 17 V DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
9v DC POWER SUPPLY Standard plug intype 150 ma 9 V DC with lead and DC, power plug. price for two is $£ 2.99$ ref AUG3P4.
COMPOSTTE VIDEO KIT. Converts composite videointo sepa ate H sync, V sync, and video. 12v DC. £8.00 REF: MAG8P2. FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ inlet and on/off switch. $£ 12$ Ref EF6.
VENUS FLYTRAP KIT Grow your ow ncarnivorous plantwith this simple kit E3 ref EF34.
6"X12" AMORPHOUS SOLAR PANEL 12v $155 \times 310 \mathrm{~mm}$ 130mA. Barga n price just $£ 5.99$ ea REF MAG6P12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAGSP13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1 ROCK LIGHT S Unusual things these, two pieces of rock that glow when rubbed togetherl belived to cause rami£3 a pair Ref EF29. 3' by 1' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, aluminium frame, screw terminals, £44.95 ref MAG45.
ELECT RONIC ACCUPUNCTURE KITBuilds Intoan electronic version instead of needles! good to experiment with. $£ 7$ ref 7P30 SHOCKING COIL KIT Build this itte battery operated device into all sorts of things. also gets worms out of the ground! $£ 7$ ref 7P36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and fies! 50 m range $£ 6$ rel EF2
HIGH POWER CATAPULTS Hinged am brace for stability lempered steel yoke, super strengith latex power bands. Departure speed of ammunition is in excess of 200 miles per hour! Range of over 200 metresl $£ 7.99$ ref R/9.
BALLON MANUFACTURING KTT British made, small blob blows Into a large, Ionglasting balloon, hours offunl £3. 99 ref GIJE99R 9-0-9V 4A TRANSFORMERS, chassis mount $£ 7$ ref LOT19A 2.6 KILOWATT INVERTERS, Packed with batteries etc but as they weigh about 100kg CALLERS ONLYI \&120 M EGA LED DISPLAYS Build your self a clock or something with thesemega 7 seg displays 55 mm high. 38 mm wide 5 on a pcb for just £4.99 ref LOT16 or a bumper pack of 50 displays for just $£ 29$ ref

CLEARANCE SECTION, MINIMUM ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.
2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR 340 AT LEAST 200 CAPACITORS (SAME VALUE 98 P REF BAR 342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUT BREAKERS, OUR CHOICE TOCLEAR 99P REF BAR 335 MICROWAVE CONTROL PANELS TO CLEAR E2 REF BAR 329 2 TUBES OF CHIPS (2 TYPES OUR CHOICE) gOP REF BAR 305 2 TUBES OF CHIPS(2 TYPES OUR CHOICE) 9OP REF BAR305 HELLAUROVERELECTRICHILAMPLEVELIERE2REFBAR31 HELLALROVERELECTRIC H/LAMPLEVELLERE2REF BAR311 LARGE MAINS MOTORS (NEW) TO CIEARAT 75P REF BAR 310 LARGE MAINS MOTORS (NEW) TO CLEARAT 75P REF BAM
MODEMS ETC FOR STRJPPING $£ 2.50$ EACH REF BAR324 MODEMS ETC FOR STRIPPING $£ 2.50$ EACH REF BAR 324
110 V LARGE MOTORS (NEW) TO CLEAR AT 50 P REF BAR 33 110V LARGE HOTORS (NEW) TO CLEAR AT 50P REF BAR33 OODULATOR UNIT UNN GX4000 GAMES COSOLES JUST E4 REF BAR320
SMART CASED MEMORY STORAGE DEVICE, LOADS OF BTS INSIDE, PCB, MOTOR, CASE ETC. BUMPER PAGK OF
COMPLETE UNTTS TO CLEAR AT E250(FOR 5) REF BAR 330. COMPLETE UNTTS TO CLEAR AT E250(FOR 5) REF BAR 330. 2 CORE MAINS CABLE 2M LE NGTHS PACK OF 4 E1 REF BAR 337 PC USERBASIC MANUALS, LOADS OF INFO. £1 REF BAR30 PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR341

[^2]
CLASSIFIED

ARTICLES WANTED

WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE

 IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702
**WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured.
TELFORD ELECTRONICS Phone: 01952605451 Fax: 01952677978

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED

TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.
HTB ELEKTRONIK Alter Apeler Weg 5 27619 Schiffdorf, Germany Tel: 004947067044
Fax: 004947067049

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity.

Prompt service and cash M \& B RADIO
86 Bishopgate Street Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD

170 Goldhawk Road, London W12 8HJ England.
Tel: 01817430899
Fax: 01817493934

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTDD

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $£ 80$. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ.
Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER E50 plus VAT

! TEST EQUIPMENT WANTED !

SMALL OR LARGE QTY, WORKING OR NON WORKING WE PAY THE BEST PRICES FOR YOUR EXCESS INVENTORY! FAX YOUR INVENTORY LIST TODAY FOR AN INSTANT QUOTE PROMPT PA YMENT AND FAST SERVICE ARE OUR CORPORATE POLICY LOTHAR BAIER ELECTRONIC TEST EQUPMENT, MICROWAVE TECHNOLOGY BLUMENSTRASSE 8 D-95213 MUENCHBERG/GERMANY PHONE: +49925192163 FAX: +4992517846

ARTICLES FOR SALE

SURPLUS SALE

THIS MONTH'S SALE INCLUDES:-

Spectrum Analysers, Oscilloscopes, Signal Generators, Voltmeters, Power Units, Frequency Counters, Receivers, Transmitters, Ex PMR Equip, Photographic \& Video Equipment, Components, \& Misc Items etc. ALL EQUIPMENT IS SOLD AS SEEN. ALL PRICES EXCLUDE V.A.T. NO MINIMUM ORDER.
RING TODAY FOR THIS MONTH'S CATALOGUE
WANTED
SURPLUS ELECTRONIC COMPONENTS AND EOUIPMENT

We also welcome the opportunity to quote for complete factory clearance
B. BAMBER ELECTRONICS

5 Station Road, Littleport, Cambs.
Phone: Ely (01353) 860185
Fax: Ely (01353) 863245

CLASSIFIED

SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243545111/2 Fax: (+44)01243542457 CIRCLE NO. 146 ON REPIY CARD

OPERATING \& SERVICE MANUALS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243545111/2 Fax: (+44)01243542457 CIRCIENO. 1+7 ON REPLY CARD

Field Electric Ltd Unit 2, Willows Link, Stevenage, SG2 8AB
Tel: 01438353781 Fax: 01438359397 0836640328
AUDIO, COMPUTER, COMMUNICATIONS, TEST \& PAOFESSIONAL VIDEO HARDWARE PURCHASED, SOLD. STOCK LIST AVALLABLE, PLEASE RING.
QTY = DISCOUNT \& OVERSEAS
ENQUIRIES WELCOME.

ZED was a superb editor for Gemini CP/M systems. Who wrote it? Please phone Rodncy Harris 01-734 876641. 83 ELECTRONICS WORLD back issues May 87 through Jan 95. London NW. Lot for 100. Buyer collects. 0181 9092423.

WANTED: Tektronix 7603/13/23 mainframe with plug-ins (non)working, manuals. Send your offer to M.S' Nielsen, Højkær 35 6.TV 2605 Brøndby, Denmark; or call/fax +45 36 474158.

WANTED: AVO model 8 Mk1 or Mk2 with broken movement. 01326312901.

WANTED: W.S. 18 W.S. 62 suitcase sets (50E) crypto equipment, German WW2 gear for museum purposes only. Lashe R. Otterstad, PO Box 73, Ljan $\mathrm{N}-1113$ Oslo, Norway.
MICROCHIP PICMASTER EMULA TOR, $16 \mathrm{C} 5 \mathrm{X}+71$, PODs, $£ 1,550$. Ice Tech Micromaster Universal program mer, $£ 370$. Philips OM4282 R.F.I.D. transponder development system, £280. 01295810859.

PAIR OF LOWTHER PMG units boxed, suitable for horn design in December issue, £150. Tel. 01295 810859 .
ELECTRONIC COMPONENTS. Large quantity new passive, active. cabinets, power supplies, etc, etc, etc, $£ 225$ ono. Would suit enthusiast. Wilmslow 01625527282 .
SMALL selection of aircraft starter motors, DC generators and rotary converters. Possibly suit electric vehicles, etc, $£ 5$ to $£ 50$ depending on condition and type. Tel. Bristol 0117979883.

Consider

Your costs to continue to stock
UNW ANTED SURPLUS
EXCESS
OBSOLETE STOCKS OF:
ELECTRONIC-ELECTRICAL COMPONENTS \& ACCESSORIES

RELEASE for
PAYMENT IN ADVANCE - OF COLLECTION
contact

K.B. Components,

21 Playle Chase, Gt. Totham, Maldon, Essex, CM9 8UT
Tel:- 01621893204 Fax:- 01621893180 Mobile:- 0802392745 REGISTER TO RECEIVE MONTHLY PUBLISHED STOCK LISTS AT NO CHARGE OF ALL EXISTING NEW, UNUSED, STOCKS OF ALL COMPONENTS AND ACCESSORIES.

INDEX TO ADVERTISERS

\left.| | PAGE | PAGE | | | |
| :--- | ---: | :--- | ---: | :--- | ---: |
| Airtex Controls | 339 | Johns Radio | 272 | Radio Tech | 321 |
| BK Electronics | 312 | JGP | 334 | Ralfe Electronics | IBC |
| Bull Electrical | 348,349 | Kestral | 339 | Robinson Marshall | 303 |
| Chelmer Value | 339 | Keytronics | 316 | | |
| Crownhill Associates | 347 | Labcentre | 299 | Stag Programmers | 266 |
| CPC | 295 | LCE | 334 | | 347 |
| Crossware Products | 312 | | M \& B Radio (Leeds) | 321 | Technology Sources |$\right] 311$.

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW!
CIRCIENO $118 O$ NREPI + CARO

A regular advertising feature enabling readers to obtain more information on companies' products or services.

NEW CATALOGUE

The new 1996 National Instruments Instrumentation Reference and Catalogue is available now. Discover how to develop integrated systems for test and measurement and industrial automation. Includes details of over 500 software and hardware products for PCs and workstations. Includes valuable tutorials on data acquisition and instrument control.

NATIONAL INSTRUMENTS Tel: 01635523545

CIRCIE NO. 117 ON REPLYCARD

1995 MASTER PRODUCT CATALOGUE NOW OUT!
Test and instrument control solutions. 4θ pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems: LEEE488 (GPIB) * DIO * Timer/Counters * RS232 RS422/485* A/D * D/A "plus Opio
Isolated versions. New Parallel/Serial Isolated versions. New Parallel/Serial
RS232, Opto Dual RS232, Motion Control. Converter and Repeater for 1995
ISO 9001 Quality guarantee \downarrow
UK design and manufacture \downarrow
36 month no-quibble warranty \checkmark
Telephone hotline support $/$
Competitive pricing on the page δ
Intelligent solutions 8 friendly service BRAIN BOXES
Unif 3f Wavertree Boulevard South
Wavertree Technology Park Liverpool L7 9PF
Tel: 01512202500 Fax: 01512520446 CIRCIE NO. 119 ON REPI Y CARD

HP8557A 350 MHz (fitted in 182C mainframe)
HP3580A $5 \mathrm{~Hz}-50 \mathrm{kHz}$ audio trequency spectrum analyser £750 to £1250
HP3582A audio frequency ftt analyser dual-channel £2000 HP8566A high-specification 1.5 GHz spectrum analyser
§7500
MARCONI $2386100 \mathrm{~Hz} \cdot 26.5 \mathrm{GHz}$ (in 1 Hz steps!) $£ 15000$ AVCOM-portable 2 in stock, 1 GHz . No other details at this time.
TEKTRONIX 49221 GHz portable spectrum analyser, with optlons 1283 , and complete with waveguide mixer set $1 \&$ diplexer) to cover $\mathbf{1 8 - 4 0 G H z}$
£7000

MARCONI INSTRUMENTS

20918A synthesized AM/FM slgnal generator 80 kHz .
520 MHz
2019A synthesized AM/FM signal gen $80 \mathrm{kHz}-1040 \mathrm{MHz}$
2305 modulation analyser $50 \mathrm{kHz}-2.3 \mathrm{GHz} \quad £ 2500$
2828A/2829 digital simulator/analyser

2955 B radio communications test sets - LATEST 'B' MODEL
2926 TV generator \& inserter (NTSC variant) $\quad \begin{aligned} & \text { \& } 500\end{aligned}$
$6460 / 6421$ power meter \& sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$ £ 350 6514 waveguide detector for use with 6500 -scalar analyser $26-40 \mathrm{GHz}$
6960 microwave power meter with 6910 power sensor $10 \mathrm{MHz}-20 \mathrm{GHz}$
OA2805A. pcm regenerator test set $£ 900$

TF2910/4 non-linear distortion (video) test set TF2910 TV interval timer
ralfe electronics TEL (+44) 0181-422 3593 • FAX (+44) 0181-423 4009

HEWLETT PACKARD

1640B serial data generator £500 3561 A dynamics signal analyser (opt 01) 3764A digital transmission analyser £2000 3335A synthesizerflevel generator $£ 2000$ 3400A voltmeter, analogue $10 \mathrm{~Hz}-10 \mathrm{MHz}$ £250 3235A switch/test unit 3324 A synthesized function generator $£ 2000$ 3456A digital multimeter £750
3580A audio frequency spectrum analyser $£ 750$ to $£ 1250$ 3581C selective voltmeter £1250
3582 A dual-channel spectrum analyser $0.02 \mathrm{~Hz} \cdot 25.5 \mathrm{kHz}$ £2000
3779 D primary multiplex analyser $£ 3000$
4140 B pA/meter, DC voltage source £4000
4339A high resistance meter c/w lead set 16117B £2000 4275A multi-frequency Icr meter £3500
435B microwave power meter, analogue £400
5334 B frequency counter w option 010 high-stab \& Channel C
£1500
5386 A 3 GHz frequency counter $£ 1500$
54100 A 1 GHz digitizing oscilloscope £2250
6012A power supply 0-60V 0-50A 1000W £650 6033A system power supply 0-20V 0-30A £1000 6253 A dual power supply 0-20V 0-1A twice \quad £250 6443 B power supply $0-120 \mathrm{~V} 0-2.5 \mathrm{~A}$ §400
6825 A bipolar power supply/amplifier -20 V to $+20 \mathrm{~V}, 0-1 \mathrm{~A}$
8007 B pulse generator 100 MHz £950
8018A serial date generator $£ 1000$
8082 A pulse generator 250 MHz £2000
8111A pulse generator $20 \mathrm{MHz} \quad\{1250$
816A slotted line $1.8-18 \mathrm{GHz}$ with 809 C \& 447 B probe
$£ 500$
8444 A tracking generator with option $059 \quad$ £1250 8568 A spectrum analyser $100 \mathrm{~Hz} \cdot 1.5 \mathrm{GHz} \quad £ 7500$ 8656 B synthesized signal generator to $990 \mathrm{MHz} \quad £ 3000$ $8673 \mathrm{M} 2 \cdot 18 \mathrm{GHz}$ synthesized signal generator $£ 7500$ 87510 A gain-phase analyser $100 \mathrm{kHz}-300 \mathrm{MHz} \quad £ 6500$ 8901A modulation analyser with option 02/010 £3500 8903A audio analyser
J2215A FDDI portable multimode test set $\Sigma 2000$
£1500 £1000 J2219A/J2171A 486-based colour screen option network advisor £4000
J2309A ethernet'token ring interface (for J2302A advisor)
£3000

HP37724A SDH/PDH portable test sets -

Condition as new, price $£ 5000$ (were listing at ca $£ 20 \mathrm{~K}!$) - also 37772A optical interfaces available for STM-1, £1500 (list over 6K)

* SPECIAL OFFER THIS MONTH ONLY *
 ALL ORDERS FOR ADVERTISED EQUIPMENT RECEIVED THRU APRIL WILL BE ISSUED WITH CALIBRATION CERTIFICATION BY INDEPENDENT LABORATORY AT NO EXTRA CHARGE Just quote reference WWapril96

- ralfe electronics

 exclusively professional T\&M(C)SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. ALL FULLY LAB-TESTED AND NO-QUIBBLE GUARANTEE

Powerful,

 Portable
Programmers

-ompare the Dataman 54 with any -other programmer and you'll see why it's the world's undisputed number one. S4 is capable of programming 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, BOOT-BLOCK FLASH, PICS, 8751 Microcontrollers and more. 54 also emulates ROM and RAM as standard! $\$ 4$ is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you ail this plus a three year guarantee?
Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48

Our new Dataman-48 programmer adds Pinsmart(8) technology to provide true no-adaptor programming kigh a to 48 -pin DIL devices. Dataman-48 connects
straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!
As with 54 , you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.
The current device library contains over 1500 of the most popular logic and memory devices including GALs, PALS, CEPALL, RALs, 8 and 16 -bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGAS, PICs and many other Micro-Controllers. We even include a 44 -pin universal PLCC adaptor.
If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP, SDIP as well as memory emulation pods.
Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

The Dataman Challenge Try the Dataman S4 or Dataman-48 without

 obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming loollox. we will refund your money in full.C4 IKLIGENT UM/UERSAL PROGRAMMER

Credit $\|\|\|$

Card Hotline 01300320719
Orders rececived by 4 pm will normally be despatched same day, Order today, get it tomorrow:

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorset DT2 0AE. UK Telephone +44/0 1300320719 Fax +44/0 1300321012 BBS +44/0 1300321095 (24hr) Modem V.34/V.FC/V.32bis
Home page: http://uww.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com

[^0]: Further information from
 CROSSWARE PRODUCTS
 St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS, UK Tel: +44 (0) 1223 421263, Fax: +44 (0) 1223421006
 BBS: +44 (0) 1223421207 ($8-\mathrm{N}-1$), Internet: sales@crossware.com

[^1]: *At $£ 1.33$ in 100 offs, the MAX427 op-amp has a drift of $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. In similar quantities, the $\mathrm{C} C 17650$ chopper amplifier is $£ 2.30$ while the MAX420 chopper is $£ 3-\mathrm{Ed}$.

[^2]: WE BUY SURPLUS STOCK FOR CASH
 BUYERS DIRECT LINE 0860425692
 FREE CATALOGUE
 100 PAGE CATALOGUE NOW
 AVAILABLE, 45P STAMP OR FREE
 ON REGUEST WITH ORDER.

