Radio-code clock modules - 25\% exclusive EW discount

March 1996 £2.25
Volve preomplificers

Low-noise antenna amplifier

Accessing Internet

'Non-slewing' audio power
Charging circuits

Applying

 avalanche transistors
Transmission

 lines explained
1 0 0

190 DESIGNING VALVE PREAMPS

Mòrgan Jones details how to get the best from valves in hi-fi preamplifiers.

196 FRACTIONAL-N SYNTHESISERS

Cosmo Little discusses implementing the fractional- N synthesiser and shows how adding a second accumulator reduces low-frequency spurs.

202 SPEED CONTROL WITH SERVO OPTION

Designed for use with a 12 V motor, Matthew Hall's pwm speed controller is adaptable for use with a servo arm.

205 GATES CONVERT DC TO DC

Ian Forster has found that 74 AC logic gates - with their high switching speed and low output impedance - help make simple and cheap low-power dc-dc converters.

208 LOW NOISE ANTENNA PREAMP

In D Conway's low-noise, narrow band masthead amplifier, dual mosfets eliminate the balun, enhance overload capability and reduce harmonics.

212 TRANSMISSION-LINE PRINCIPLES

Bill Russell shows how transmission lines can be explained clearly and simply via basic measurement equipment and an artificial delay line.

216 HANDS-ON INTERNET

Using a working yet almost free demo version of PSpice as an example, Cyril Bateman runs through the practicalities of down loading software from the Net.

219 AVALANCHING TRANSISTORS

Ian Hickman has been looking at how ordinary transistors avalanche and at a couple of extremely rare devices specified for avalanche operation.

223 PUTTING THE POWER BACK IN

Design criteria for battery charger circuits are dictated by cell type, the application and operating conditions. John Lenk examines popular IC charger designs.

229 BUILDING BLOCKS OF TIME

Traditionally, Radio-Code time signal receivers have been expensive, selfcontained units, but now there are low-cost modules providing access to the raw time signal for well under $£ 30$.

244 COAXIAL CABLE CHOICES

Nick Wheeler discusses choosing the right combination of cable and connector.

256 NON-SLEWING AUDIO POWER

Giovanni Stochino shows how his 'non-slewing' technique can be applied to audio power with excellent results.

Regulars

 - - - - - - - - -
179 COMMENT

A computerised confidence trick.
180 NEWS
Government rejects electronics advice, Quarter-size PCMCIA, Road-toll trials, New semiconductor, Molecular diode.

185 RESEARCH NOTES

Single-electron switch, War robots, BoseEinstein condensate, Hearing mechanisms, Scientists rethink superconductivity.

234 CIRCUIT IDEAS

Inductance on a capacitance meter, Remote resistance measurement, Short and continuity test for coax, Measuring conductivity, RS232-to-RS485 PCpowered converter, Dual rail regulator, High-power, isolated switch,
Programmable voltage-to-time converter

247 NEW PRODUCTS

Pick of the month - classified for convenience.

252 LETTERS

Cable simulation response, Valve amplifiers, Internet integrity, EMC.

Cover - Hashim Akib

25 \% DISCOUNT

This high-performance 30V, 5A power supply is normally $£ 159$ excluding VAT and delivery, but EW readers can obtain it for just $£ 139$ fully inclusive. See page $\mathbf{2 1 0}$.

Radio-Code module offer
Galleon is offering EW readers discounts on modules designed for a variety of Radio Code receiving requirements. See page 232

APRIL ISSUE
 ON SALE MARCH 28

EW reader discount

Representing a very comprehensive guide to switching and linear power supply design, John Lenk's set of books is available to $E W$ readers at a 10% discount. See page 226

The Universal Programmer that stands-alone

with everything you need. Don't buy your next programmer until you see the 'Eclipse'

- Windows and DOS user interface
- Unparalleled in speed \& sophistication ideal for R\&D and volume production
- 96 to 256 pin drivers
- Programms PLDs, EPLDs, FPGAs PROMS. EPROMS, E/EPROMS, FLASH \& Micros
U Universal DIP, PLCC, PGA and OFP modules - no more socket adaptors
- Stand-alone or remote operation Europe's largest programmer manufacturer

call today on +44 (0) 1707332148 or fax +44 (0)1707 371503 for further information
All reade marks are acknowledged and respected

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 018।-450 0995 Fax: 0181-208 |44|

Integrated PCB \& Schematic Design System for Windows"

Quickroute 3.5 is a powerful.
affordable and easy to use integrated schematic \& PCB design system for Windows. With its multiple button bars, 'tool hints' and 'parts bin', Quickroute helps you to design quickly and efficlently

There are four different versions of Quickroute glving you a cholce of features \& price. Quickroute is avallable with multisheet schematic capture, auto-routing, 'engineering change (modification of a PCB from a schematic), copper fill, and a range of file import/export options. See the table for a selection of features
Prices are Designer ($£ 149$), PRO ($£ 249$) and PRO + ($£ 399$). The Personal edition is available for Just $£ 68$, but has the manual provided on disk as on-line help. Post \& Packing is $£ 5(\mathrm{UK})$, , 8 (EC), \&12 (World). VAT must be added to the total price.
..of all the products included here, this is my personal favourite... Really, thats all I have to say about Quickroute - it certainly gets my vote!

Review of QR 3.0 \& other products
Computer Shopper Nov 95

Tel/Fax 01614497101
Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge .
Stockport, SK6 5DD, U.K.
email info@quicksys,demon.co.uk

Prices and specifications subject to change without notice. All trade marks are acknowledged \& respected.

A computerised confidence trick
 Ithough I'm not particularly
 personal computer market. The
 that the hot PCs for the season

EDITOR

Martin Eccles
01816523128

CONSULTANTS

Jonathan Campbell
Philip Darrington Frank Ogden

DESIGN
Alan Kerr

EDITORIAL

ADMINISTRATION
Jackie Lowe
0181-6523614

E-MAIL ORDERS
jackie.lowe@)rbp.co.uk

ADVERTISEMENT

 MANAGERRichard Napier
0181-6523620

DISPLAY SALES EXECUTIVE
Malcolm Wells
0181-6523620
ADVERTISING
PRODUCTION
0181-6523620

PUBLISHER
Mick Elliott

EDITORIAL FAX
0181-6528956

CLASSIFIED FAX
0181-6528956

SUBSCRIPTION HOTLINE
01622721666
Quote ref INJ
SUBSCRIPTION QUERIES
01444445566
FAX 01444445447

NEWSTRADE
 DISTRIBUTION

David G. Sanders
01816528171

ISSN 0959-8332

Aancient I can remember quite clearly what one kilobit of program ram and a large helping of ingenuity could produce from the original Sinclair ZX8 I computer. It provided an object lesson in efficient programming. Working with such limited resources required absolute focus on the intended application for the program.
I also remember equally clearly that, as a former components editor on our sister publication Electronics Weekly, I wrote with some awe about the power of the MIPS R3000 risc architecture. This cache equipped microprocessor had been designed to run multitasking Unix at the heart of a high end graphics workstation.
Much has happened over the last 10 to 15 years, six of which I spent as editor of this magazine. But I am not sure that the progress I see around me is always in a forward direction. Having marvelled at the latest generation of games hardware and its astonishing polygon animation, it should have been no surprise to learn that the particular one that I was looking at used as its main processor the same workstation architecture in its $R 4000$ incarnation. There is no problem here. The games machine companies always said that they would eventually lead the way in the use of raw processing power and, being totally focussed on the trivial, we pundits never really believed them or paid much attention.
It is amazing what a singleminded application feeding into a mass market can achieve.
Comparing the performance of Sony's Playstation with that early ZX81, it is easy to see what the extra megaflops and megabits have achieved.

Not so with the Intel/Microsoft
combine regularly doubles the power of its offerings but without a commensurate doubling of utility. Microsoft continues to turn out sloppily programmed, convoluted and memory intensive software. Intel matches this with increasingly powerful general purpose microprocessors to make the inefficient software architecture run at halfway decent speed.
It is not even as though we need the dubious sophistication of the duopoly's latest offerings. The majority of business applications should require relatively modest memory and processor requirements; spreadsheets, wordprocessors, presentation graphics and networking involve relatively little data computation and manipulation. It shouldn't take 16 Mbits of ram, 133 MHz processors and a Gbyte of hard disk to run the things that you or I want to do - unless we are working in professional graphics.
Yet the Intel/Microsoft axis has pumped so much marketing money into persuading us all that computer gear more than a couple of years old is fit for nothing but scrap that it almost amounts to a confidence trick. It causes people and businesses to spend needlessly on upgrades while at the same time creating chronic inefficiency by forever trapping users on a perpetual learning curve.
Even the computer manufacturers are not immune from the effects of the duopoly's cavalier marketing. One household name PC maker found that it was unable to pay for the massive shipment of microprocessors and other chips which it had bought from Intel.
Being loaded with your money and mine, Intel simply turned the debt into a loan. The reason that the bill went unpaid in the first place was that the PC maker had gambled
would be 75 MHz Pentiums and geared up production accordingly. In the event, duopoly marketing ensured that the punters were demanding 100 MHz and 133 MHz machines. The loan allowed the PC maker to unload the 75 MHz machines at bargain prices, causing all sorts of people to lose out in the process.

And then there is the Internet. While much of the purpose which is supposed to drive this technolgoical hula-hoop verges on insanity, uses will emerge which make sense and virtually none will require intensive local processing. Thus

Games machines have advanced phenomenally - but have pcs made the same progress?
may be born the PC Killer, an Internet access appliance which allows users to do all the genuinely useful things of which the net is supposed to be capable, but without having to invest thousands of pounds in the latest Intel/Microsoft confidence crisis. A simple computer, fitted out with just enough memory and processing power to make sense of the Internet, may induce a change of thinking.

It is about time that we ignored the advertising and started to reconsider what we actually do with the machines which we purchase.
Frank Ogden

[^0]
Government rejects microelectronics advice

> The recommendations of the Government's high technology advisory panel highlighting the need for a microelectronics R\&D centre have fallen on deaf ears.

> The first 63 projects bidding for funding under the Technology Foresight initiative were named last week and the proposal to set up a university-based microelectronics centre providing R\&D and training support was not among them.

> Although the strong emphasis on multimedia and broadcast technologies in the IT projects is welcome, there is some surprise at the omission of the microelectronics bid.

> According to Neil Downie at semiconductor manufacturing
equipment and materials trade association JEMI (UK) there is a need for technology development and training support and companies were prepared to fund it. "Inward investors don't do R\&D here and we need to encourage them," said Downie.
One of the Government's IT advisors on the Foresight programme Ian Barron, founder of Inmos, said there was a need for a microelectronics R\&D house to support the high levels of inward investment by semiconductor manufacturers. "We need to maintain a source of expertise for inward investors to call on and use," said Barron.
The shortlisted projects were selected from over 500 involving
collaborations between industry and university research groups. The average size of the projects is $£ 4 \mathrm{~m}$, ranging from $£ 500,000$ funding for the smallest up to $£ 15 \mathrm{~m}$ for the largest. The winning groups will be named at the end of May.
There were just six projects named under the heading of Information Technology, Electronics and Communications (ITEC), they included the setting up of four UK centres of excellence in mobile communications, microsystems at the Rutherford Laboratory, broadcast and data mining at the University of Ulster. There were also projects looking at multimedia at Lancaster University and display technology at Thorn EMI's CRL.

Road toll trials: "No problem"

Department of Transport (DoT) has denied its motorway tolling trials, due to start in July, are in jeopardy following the decision of a second consortium to withdraw last week. The Tollway group, led by US firm Amtech and including Serco and WS Atkins, has pulled out just one week after Siemens announced its withdrawal citing lack of government commitment to a commercial system.

But the DoT says it expects a preliminary shake-out. "We are basically in discussion with many companies which want to participate in the trials and these discussions will go on for another six weeks. We'll know which companies will definitely participate in the trials in six weeks time," said a DoT spokeswoman.

However, the departures of

Siemens and Tollway could be followed by others if the UK trials do not begin on time. A number of the six remaining consortia prefer involvement in trials for a South Korean system, scheduled to begin this Spring.
But Tony Kellett, the technical director of Peek, the company leading the Tollstar consortium, believes competition will remain intense.

Small format memory-card imminent

Aminiature memory card a quarter the size of the PC Card (PCMCIA) format will appear in the summer as part of an initiative by electronics firms in Europe, the US and Japan.

Small format memory cards, due for summer appearance, will be a quarter the size of their PCMCIA predecessors.

The standard format, dubbed the Miniature Card, is expected to be small enough for use in cameras and audio equipment as well as notebook PCs. Details of the format, including interface specifications, will be released during February, with first products using the card expected in July.
Bill Howe, general manager for memory components at Intel, a leading member of the Miniature Card Implementers Forum, said: "We believe flash memory is the ideal storage medium for hand-held consumer devices and for bringing that data back to the PC for further use. We have several design wins for Miniature Card in hand and will ship product in the second quarter of this year".
Internal memory of up to 64Mbytes of either flash, DRAM or ROM will enable the cards to store image, text and voice data. Data transfer to the PC will probably be via a standard PCMCIA adaptor. The
ruggedised package with a pinless connector, at $38 \times 33 \times 3.5 \mathrm{~mm}$, is a quarter the size of PCMCIA cards.
The small format memory cards are expected to have applications in digital cameras, audio recorders, mobile phones and other consumer equipment.
Companies supplying the core semiconductor technology include Advanced Micro Devices, Fujitsu, Intel and Sharp. End user system support includes Compaq Computer Corporation, Hewlett Packard, Konica Corporation, Nokia Mobile Phones and Olympus Optical Company.
The Miniature Cards will compete against Compact Flash from SanDisk and the as yet unannounced Solid State Floppy Disk Card from Toshiba. Compact Flash however only offers flash memory and uses connector pins less suited for consumer systems.
Richard Ball, Electronics Weekly

Circuit board designers unprepared for EMC

DCB designers have a lack of knowledge concerning the new EMC Directive, according to a survey by Zuken-Redac, the pcb and multichip module CAD/CAM software company.

The survey of 135 UK printed circuit board designers showed that 94 per cent were unprepared for the EMC Directive even though 84 per cent were fully aware of the new regulations.

Zuken-Redac said most companies had not taken the opportunity to improve their designs with respect to emc in advance of January 1996, the starting date for complying with the EMC Directive.

Another worrying point is that 80 per cent of all pcb designs are carried out on pcs. However, there are few pc-based pcb CAD design tools with integrated emc design rules. Suppliers such as Zuken-Redac, VeriBest and Mentor Graphics are only now introducing the required tools.

Even though pcb designers do not necessarily have to make their products comply, they may be supplying to original equipment manufacturers, designing without emc in mind during the early stages can lead to rework and time-to-market delays later. In most cases this will cost a significant amount of time and hence money until emc design at the pcb level is more fully appreciated. Layout designers with no emc knowledge have no way of knowing whether their design is helping or hindering the final system in terms of emc.
Currently available design tools for emc can be roughly classified into predictive and analysis types. Tools using predictive and analysis techniques, such as Ultimate's EMC Expert or Zuken-Redac's EMC Adviser, now released for the pc, compare the design with a set of standard emc rules giving a qualitative rather than quantitative result, at the expense of some accuracy.

Modelling the emc characteristics of individual components on the pcb, such as carried out with Mentor's Quad Quiet, has the potential to give the most accurate results, but this depends on the accurate modelling of each device. The disadvantage here is the heavy processing overhead and only the fastest pcs can handle the work load. It may be that accurate emc analysis cannot be carried out on pc based systems.

New combined bipolar/fet switching device

Zetex has produced a novel device for high side switching from low side control signals.

The ZHD 100 'treeswitch' was originally designed for a specific automotive application but is now being offered for general sale.

The equivalent circuit is a p-n-p transistor with its base connected to the drain of an n-channel mosfet. This is very similar to an igbt, where the collector and source are also connected. Dave Casey, co-developer of the device said: "There is a parasitic igbt in the structure which we have suppressed."

The advantage of separating the collector and source is that the low saturation voltage of the transistor can be fully exploited. In saturation, the igbt becomes a diode with a voltage drop of about a volt. The source of the treeswitch can be taken more negative than the collector which allows the transistor to fully saturate down to a few millivolts.
The p-n-p transistor is made by diffusing n, then p structures into a p-type substrate.

The fet is diffused as a p-well, similar to the emitter, with an n-type island in it. The gate metallisation for the fet overlaps the n-island and the
main base n-type diffusion. It is insulated from the substrate by an oxide layer.

Pulling the gate positive with respect to the source attracts electrons into the p-type material below it which forms an n-channel between the base and source. This allows base current to flow and turns the transistor on.
The transistor has Zetex's matrix architecture which results in a low saturation voltage. The fet sits in the middle of it and is small in comparison, limiting the amount of current it can pass. This makes the fet approximate a constant current device, removing the need for a drain-base current limiting resistor.
The ZHD 100 is rated to switch half an amp at 80 V . At high voltages the device dissipation is predominantly from the 10 mA base current. If the full output current of the device is not required this can be reduced by adding a series resistor between the source and ground.
There are other high side switches on the market. Casey said: "The matrix architecture results in a very small chip compared with its competitors. The small chip leads to a low device cost."

Similar to an igbt, the new high-side tree switch has separate source and collector terminals. Small relative to the bit, the fet approximates a constant-current device, removing the need fora drainbase resistor.

Pentium P7 slips back

S
ources close to Intel report that the forthcoming P7 microprocessor, the successor to the Pentium Pro, will be delayed by as much as year and will not involve Hewlett-Packard to the same extent as was previously believed.
The P7, now code named the Merced, is likely to be launched in 1998, not 1997 as has been indicated earlier by Intel. Also HewlettPackard's involvement in Merced now seems to be to define the 64 -bit instruction set and software interfaces. Originally, HewlettPackard and Intel said they would both be
involved in the design of the chip.
The Merced will feature a new 64 -bit instruction set but it will also run $\times 86$ instructions in native mode rather than relying on emulation technologies. Hewlett-Packard is believed to be working on its own microprocessor design to support the same microcode.
The P7 delay could be a deliberate Intel ploy to give it more time to establish Pentium Pro in the marketplace. There is less pressure on Intel to bring out new microprocessor architectures since its competition is struggling.

Cellular phone speech and noise are improved by superconductors

Superconducting technology is being used in the US to improve the noise performance and voice quality of cellular phones.

Ameritech Cellular Services reported excellent results from the use of a cellular system radiofrequency filter incorporating superconducting devices from Illinois Superconductor. Ameritech said that use of the filter at the cell site, improved voice signals by more
than a third and was 10,000 times more effective at eliminating interference and signal noise.

The SpectrumMaster filter also allowed more cellular phone users to access the system and increased the receive path range. There were also fewer dropped calls and an increase in the number of usable channels. Ameritech said that the filter is especially effective at cell sites that have problems from interference,
either from buildings or from other radio signals. If other cellular phone system providers adopt the filter, it could open a major new market for superconducting materials and help drive the development of other superconductor based technologies.

High temperature ceramic superconductors continue to operate above the boiling point of nitrogen (77 K).

Poor demand for video games hits 3DO

ideo games console designer 3DO, said that its third quarter results will be worse than expected due to poor demand for video games systems during the recent Christmas season. 3DO said that it
will be forced to establish reserves against large inventories and a five million dollar charge due to changes in its business model which includes a focus on Internet related products. The troubled company
continues to struggle to establish its video game hardware in an increasingly competitive market that includes Nintendo, Sega and newcomer Sony with its PlayStation.

Speech secure enough for banking?

Cambridge-based speech recognition technology firm Vocalis, is to develop a speaker verification system for secure banking over telephone lines as part of the EUfunded CAVE (CAller VErification in banking and telecommunications) project.
The project's primary objective is to prove that speaker verification can be applied to financial transaction services, providing an initial level of protection.
"It is a pilot scheme acting as a demonstrator for the feasibility and
applicability of this technology. Banks have been very cagey and we have to prove that this technology is feasible," said Richard Winsky, senior research scientist at Vocalis.
CAVE is expected to last two years, after which the technology and the security provided by it will be upgraded. First field trials are expected within the year.
The actual deployment of speaker verification technology will await the outcome of the R\&D work in CAVE. The resulting system is to complement other security mechanisms.

Modem makers boosted by Internet connections

Upward spiralling numbers of Internet connections in the US, with consumers linking their pcs to online services, is good news for modem suppliers.
More than 18.6 million modems were shipped last year, generating revenues of about $\$ 5.8 \mathrm{bn}$, exceeding earlier expectations, said US market research firm International Data Corporation (IDC). The market grew 82 percent compared with 1994 shipments of 10.2 million.

The increased shipments, however, came at the expense of falling prices for almost all modem speed categories except in sales of top speed V. 34 ($28.8 \mathrm{kbit} / \mathrm{s}$) equipped modems
which held their sales value. The sales boom was led by U.S. Robotics, GVC and Hayes Microcomputer Products. IDC foresees continuing boom times for the modem industry for at least the next few years as the popularity of the Internet and online services continues to attract millions of new users and as modem owners upgrade to faster modems.

- US Robotics, the Illinois-based modem maker is reported to be planning a move into the market for consumer telephone hand sets, to offset falling prices which is squeezing margins in its core modem business.

SYNTHESISED SIGNAL SOURCE

an innovative design from an
established 'Off-Air' Company

- Custom designed chip set
- Sinewave output 0 dBm into 50Ω

CIRCLE NO. 104

- Can be run independently or genlocked to external source
- dc to 16 MHz in 0.1 Hz steps, with option 0.0001 Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available Models available October, contact us for prices
'OFF-AIR' FREQUENCY STANDARD

Variants from f249 ${ }_{\text {+Vat }}$

* Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$

Use it tor callbrating equipment that relies on quartz crystals.
TCXOs, vXCOs, oven crystals

- Prase locks to DROITWICH (rutidium controlled and traceable to NPL)
- For ADDED VALUE also phase locks to ALLOUIS (cesium
controled and traceable to OP - French eq to NPL)
- Bntish designed and Bntish manufactured

Output frequencles-
$10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$
Short term stabilty Short term stability - better than $1 \times 10^{-8}(1 \mathrm{sec})$ Typical $-4 \times 10^{-9}(1 \mathrm{sec})$ eiver, sine wave $2 \times 10^{\cdot 12}(1000 \mathrm{sec})$ outputs and 13 MHz output for GSM. Pnces on appicication.

TEST EQUIPMENT CRRCENO.ITI

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list
HALCYON ELECTRONICS vse
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

10 OUTLET DISTRIBUTION AMPLIFIER 4

A compact mains powered unit with one balanced input and ten AC and DC isolated floating line outputs.
Exemplary RF breakthrough specifications giving trouble-free operation in close proximity to radio telephones and links.
Excellent figures for noise, THD, static and dynamic IMD.

- Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences.
- Meets IEC65-2, BS415 safety.
*Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units "Stabilizers and Fixed Shift Circuit Boards for howl reduction *Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ "Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier "Peak.Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/ +6 dB drives and movements "Broadcast Stereo Coders.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG
Telephone: 01483-275997 • Fax: 276477

JOHN MORRISON SOFTWARE and OEH HARDWARE MODULES

PIC ICE II

NEW Enhanced PIC PROGRAMMER

In Circuit Emulator for

 PIC16C54-55-56-57-71 and 84 Replaces all 18 or 28 pin PIC's. All ports Bidirectional DSC2 output, RTCC input, on board A/D converter for PIC18C71. Supplied with PICDEV software suite, user manual, connecting leads and headers asrn, user sample files and hardware circuit projects.
£159.95

PIC 16C54, 16C55, 16C56, 16C57, 16C58A. 16C61, 16C64, 16C65, 16C71, 16C74, 16C84 16C620, 16C621, 16C622 and Memory Chips 24LC01, 24LC02, 24LC16, 24LC32, 24LC85
Centronics port interface, powerful editing software allows the user to Read, Write and Copy PIC16C84. Supplied with Editor Assembler software suite. Sample files and notes.
£99.95

MEGAPROM EPROM PROGRAMMER
EPROMS, E ${ }^{2}$ PROMS and FLASH memories
from 2 Kb to 8 Mb
INC. MICROCHIP 24L series.
Operates via host IBM PC and centronics port, uses standard printer cable, on board production quality ZIF socket.
$£ 99.95$

SMARTCARD/PIC CHIP PROGRAMMER

ON BOARD ISO 7816 INTERFACE, software runs on host IBM PC allowing the user to program SmanCards or PIC16C84's on a SmartCard emulator, also Programs PIC16C84 on a target board via an on board header. The perfect SmartCard development tool. Supplied with a full suite of software.
£79.95

EPROM EMULATOR

For ROM from 1 Kb to 32 Kb
Operates via host IBM PC and centronics port. uses standard printer cable. Very fast download to target board EPROM socket, operates with or without our development software suite

$£ 69.95$

DEVELOPMENT SOFTWARE

Develop software on your IBM PC for other Microprocessors, Controllers, PIC Chips etc. Each software suite has a fully Integrated Text editor, Assembler, Dlsassembler and Simulator included. Code can be downloaded directly to our emulators. All software supplied with operator instructions and sample code. MCS8051/52/552 - MCS8048/49 - PIC16C54/55/56/57 PIC16C71/84 - HD63/6809 - R6502 £19.95 ea

FAX: 01223441645

RAPID
Interactive development,
DATA LOGGER
easy to learn and
DEVELOPMENT
ready-made libraries with

MODULE

or without PCMCIA.

LESS HASSLE THAN

 1mA single battery supply,
THE TRADITIONAL

10-bit 8-ch A to D,
DESIGN PROCESS,
2 serial I/O, modem option,
YET TAILORED TO customisable logging software.

THE JOB

TDS2020CM + TDS2020

Triangle Digital Services Ltd Tel 0181-539 0285
Fax 0181-558 8110

Finally an upgradeable PCB CAD system to suit any budget ...

Board Capture

BoardCapture - Schematic Capture
Direct netlist link to BoardMaker?
Forward annotation with part values
Full undo/redo facility (50 operations)
Single-sheet, multi-paged and hierarchical designs
Smooth scrolling
Intelligent wires (automatic junctions)
Dynamic connectivity information
335
Automatic on-line annotation
Integrated on-the-fly library editor
Context sensitive editing
Extensive component-based power control
Back annotation from BoardMaker2

B) (0) OBOMMMCT

BoardMaker1 - Entry level
PCB and schematic drafting

- Easy and intuitive to use

Surface mount support
90, 45 and curved track corners
Ground plane fill
Copper highlight and clearance checking
BoardMaker2 - Advanced level
All the features of BoardMaker! plus
Full netlist support - OrCad, Schema, Jango, CadStar
Full Design Rule Chocking - mechanical \& electrical
Top down modification from the schematic
Component renumber with back annotation
Report generator - Database ASCII, BOM
Thermal power plane support with full DRC

Board Router

 BoardRouter - Gridless autorouter
Simultaneous muiti-layer routing

SMD and analogue support
 Output drivers - Included as standard
Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
Penplotters - HP, Graphtec, Roland \& Houston

- Photoplotters - All Gerber 3×00 and 4×00

Excellon NC Drill / Annotated drill drawings (BM2)

Tamen
Tsien (UK) Lid Aylesby House Wenny hoad Chaneris Cambridge PE16 δ UT

Single electron switches presage quantum computing

Many obstacles have to be overcome before we can make practical use of single-electron devices, and fundamental research is feverishly being carried out to this end around the world. But the ultimate goal, of developing devices whose principles of operation are quantum mechanical - progressing electronics far beyond the scalability and performance limits of conventional circuits - means the field is hot one for science.
The work of one team in the US gives a good indication of where we are in development of real single electron devices - and also gives a glimpse of what could be achieved.
M G Ancona and colleagues at the Naval Research Laboratory in the US noted that comparatively little attention has so far been paid to the development of circuit architectures capable of exploiting single-electron device performance at circuit level. So he has devised a set of principles for single-electron digital circuits (sedc) and then used these rules to design some circuits ('Design of computationally useful single-electron digital circuits', J App Phys, Vol 79, No 1, pp. 526-538).
For computational use, circuits require non-linear rather than linear operation, which means mixing control and data circuits. Since the data now are single electrons, some portion of the control must also operate on this level. To achieve this Ancona has devised a single electron switch (ses).
Physical basis for the the ses is direct electron-electron repulsion. The switch is composed of two circuits, a switching circuit and control circuit, made up of a number of islands. The circuits interact through a capacitor, and the principle is that repulsion makes it energetically unfavourable for islands 3 and 6 (see figure) to be occupied.
When the 'switching island', 2 , is occupied by an electron, the gate biases must cause this electron to transition, in a fully Coulomb-
blockaded manner, to island 4 if island 6 is occupied, and to island 3 if island 6 is unoccupied. In this way, the electron in the switching circuit would be under the control of the electron in the control circuit.
Ancona says he has discovered a number of capacitance and bias values that allow this switch to operate, though have not discovered the optimum as yet.
Ancona also shows how the switches could be linked together to make And/Or and Xor circuits, and 1 bit memories.

M G Ancona is at the Naval Research Laboratory, Washington, DC 20375, email ancona@estdsun4.nrl.navy.mil

Electron-level switching. This SES comprises two circuit interacting through coupling capacitor C. Basis of operation is electron repulsion which inhibits the simultaneous occupancy of islands 3 and 6.

Sun set: We will not be around to see it, but what will our Sun look like at its death? Images produced by Nasa's Hubble Space Telescope of planetary nebula NCC 7027 show remarkable new details of the process by which a star dies. Features captured by Hubble include faint, blue, concentric shells surrounding the nebula; an extensive network of red dust clouds throughout the bright inner region; and the hot central white dwarf, visible as a white dot at the centre.

The nebula is a record of a star's final death throes. Initially the ejection of the star's outer layers, when it was at its red giant stage of evolution, occurred at a low rate and was spherical. The photo reveals that the initial ejections occurred episodically to produce the concentric shells.

Hearing in two different ways

G
eorge Zweig at Los Alamos National Laboratory has spent a lot of time looking into ears. As a result he has shown that how we hear loud sounds is quite different from how we hear soft ones. Now his theories of the mechanics of hearing are opening new directions in acoustic research that could lead to better hearing aids, improvements in the technology of cochlear implants and further development of speechrecognition machines.

Cross-section of the human ear

 shows the inner ear and the cochlea, where sensory hair cells respond to vibrations and send impulses to the brain. Travelling waves, amplified by the hair cells, can be reflected back and forth in the cochlea, causing the ear to ring or whistle. (Graphic by Edwin Vigil)For loud sounds, the textbook understanding of hearing is essentially correct: sound waves enter the ear canal and vibrate the eardrum, whose oscillations are transmitted by the tiny bones of the middle ear to the inner ear, creating waves in the fluidfilled tubes of the cochlea. Sensory hair cells in the cochlea respond to motion of the fluid, generating electrical impulses that are interpreted by the brain as sensations of tone. Low-frequency tones excite hair cells further from the middle ear than do tones of higher frequency. Deafness is often associated with the destruction of hair cells.

For very quiet sounds, however, the ear is not just a passive receiver of sense impressions. Instead, the ear responds to and amplifies faint waves generated by soft noises.

Zweig, a physicist in Los Alamos' Theoretical Division, has recognised a symmetry governing behaviour of these waves in the cochlea and has developed an equation that describes what happens to these subtle travelling waves within the ear.
"Understanding how the ear functions has important implications for signal processing, for how you go about extracting information from many kinds of signals, not just speech and not just signals in the frequency range of hearing," says Zweig.

Back in the 70s his work led to the
discovery of the continuous wavelet transform, a way of displaying and extracting time and frequency information in a signal. Now, continuous wavelet transforms are used by other researchers in mathematics and engineering, with implications for a broad range of endeavours from music production to seismic testing to submarine surveillance.

Zweig hopes a clear picture of how the ear works also can help build better speech recognition systems. "When you look at how the ear responds to speech, what you see in it are the acoustic signatures or the resonant modes of the mouth, including how the vocal folds are moving in the throat. This is the kind of information you would need if you wanted to identify electronically whether one thing was being said rather than another, or who said it," says Zweig.
Zweig can also use his wave equation to explain common ringing in the ear. He shows that wave energy not transferred to the middle ear is reflected again and amplified again, combining with the original wave. This backward and forward wave amplification and reflection can set up a standing wave or resonance in the cochlea. If the process runs away with itself, the ear begins to whistle spontaneously.

Scientists rethink superconductivity

Could a new type of electron behaviour be responsible for 'high-temperature' superconductivity? A team at IBM has conducted an experiment to suggest that this could be the case, opening the door to the production of new high temperature superconductors with predictable properties. Eventually, scientists hope they will be able to to find superconductors that don't need to be cooled at all.
Superconductivity is believed to result from the ability of electrons to overcome their mutual repulsion and pair up in ways that enable them to pass unimpeded through the host material.
In recent years, two different types of electron behaviour have received significant support from theoretical physicists as possible keys to the mechanism of high-temperature superconductivity: ' s-wave' electron pairing where charge-induced vibrations in the
material hold the pairs together, and 'd-wave' where the electron magnetic spins are critical.
Conventional low-temperature superconductivity is caused by a well-understood form of s -wave pairing. But some scientists have been sceptical that this should be the starting point for theoretical explanations of the higher-temperature phenomena.
Unfortunately, past experiments to distinguish between s-wave and d-wave have given mixed results. Now Chang Tsuei, John Kirtley and co-workers at IBM's TJ Watson Research Center and at State University of New York campuses in Buffalo and Stony Brook have come up with the most convincing evidence yet for d-wave electron pairing. The result is expected to be a shift in research that could spawn superconductors designed to exploit d-wave pairing, and perhaps nearing the goal of room temperature operation.

MICROMASTER LV PROCRAMMER

The Only True $3 V$ and $5 V$ Universal Programmers

ce Technology's universal programming solutions are designed with the future in mind. In addition to their comprehensive, ever widening device support, they are the only programmers ready to correctly programme and verify 3 volt devices NOW. Operating from battery or mains power, they are flexible enough for any programming needs.
The Speedmaster LV and Micromaster LV have been rigorously tested and approved by some of the most well known names in semiconductor manufacturing today, something that very few programmers can claim, especially at this price level!
Not only that, we give free software upgrades so you can dial up our bulletin board any time for the very latest in device support.
Speedmaster LV and Micromaster LV - they're everything you'll need for programming, chip testing and ROM emulation, now and in the future.

Speedmaster LV
 4495

Programmes 3 and 5V devices including memory, programmable logic and $8748 / 5$ I series micros. Complete with parallel port cable, software, re-charger and documentation.

Micromaster LV

4625
As above plus support for over 130 different Microcontrollers, without adaptors, including PICs, 89C5I, 68HC705/711, ST6, Z8 etc.

8 bit Emulator card 125

Expansion card for Speedmaster LV/ Micromaster LV containing 8 bit wide ROM/ RAM emulator. Emulates 3 V and 5V devices. Includes cable and software. Configuration: $128 \mathrm{~K} \times 8$ expandable to 512 K by 8 .

16 bit Emulator card E 195

As above but containing 16 bit ROM/RAM emulator. Configuration: 128 K by $16,256 \mathrm{~K}$ by 8,2 by 128 K 8 , expandable to 512 K by $16 / 1024 \mathrm{~K}$ by 8 .

ICE Technology Ltd. Penistone Court, Station Buildings,
Penistone, South Yorkshire, UK S30 6HG
Tel: +44 (0) 1226767404 Fax: +44 (0) 1226370434
BBS: +44 (0) 1226761181 (14400, 8NI)

FEATURES

- Widest ever device suppart including EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PALs, MACH, MAX, MAPL, PEELs, EPLDs, Microcontrollers etc.
- Correct programming and verification of 3 volt devices.
- Approved by major manufacturers.
- High speed: programmes and verlfies National 27C512 in under II seconds.
- Full range of adaptors available for up to 84 pins.
- Connects directly to parallel port no PC cards needed.
- Built in chiptester for $\mathbf{7 4 0 0}, \mathbf{4 0 0 0}$, DRAM, SRAM.
- Lightweight and mains or battery operation.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

For a copy of our catalogue giving full details of programmers, emulators, erasers, adaptors and logic analysers call, fax or dial the BBS numbers below.

Bose-Einstein postulate is condensed

$A_{\text {breakthrough in the decades-long }}^{\text {US group looks to have made a }}$ effort to understand the rare state of matter known as the Bose-Einstein condensate (BEC). BEC, a mysterious quantum-mechanical state in which matter is coherent and has 'laser-like' properties, was first postulated more than 70 years ago by

Indian physicist Satyendra Nath Bose and Albert Einstein. It has been observed in liquid helium and superconductors, and more recently in semiconductors.
Now work of professor Wolfgang Ketterle and his colleagues in the Research Laboratory of Electronics (RLE) and the Department of Physics at Massachusets MIT is expected to allow scientists to move beyond demonstrating BEC to using it to study little-understood quantum mechanical effects.
BEC is achieved by chilling a gas of atoms to such a low temperature that the normal motion of the atoms is suddenly halted and they lose individual identity and display uniform behaviour as required by the rules of quantum mechanics. Because of this, scientists believe they may be able to study quantum effects on the rather large scale of several
Bose-Einstein condensation is a phenomenon in which a macroscopic number of atoms end up in the ground state of the trap. This means that we can produce a macroscopic system that exhibits quantum behaviour. This coherent state of matter is to 'normal' matter what laser light is to 'normal' light. The three images show the optical density of a dilute sodium gas as a function of position after the gas has been allowed to freely expand for several milliseconds. The images were taken at three different temperatures: one just above the transition temperature, one just below the transition temperature, and one well below the transition temperature. These 'time of flight' images show us the velocity distribution of our atoms. Above the transition temperature, as expected, the velocity distribution is a spherical gaussian. But as we cross the transition line, we see a sudden change. The distribution becomes bimodal, with two separate contributions from the ground state and from all other states. In the third picture, the temperature has been lowered enough so that most of the atoms are in the ground state, and the distribution looks gaussian again.
hundredths of a millimetre (atoms are 10,000 times smaller).
The MIT advance has been to obtain Bose-condensed atoms with a very much higher production rate than previously, and reaching this level in 9s, compared with the several minutes required by devices used in the other experiments.
Keys to the achievement were a special arrangement of laser beams to collect and cool the atoms and a unique magnetic trap that kept the atoms from escaping.
The result: a Bose condensate with about 500,000 sodium atoms
BEC is a ubiquitous phenomenon which plays significant roles in condensed matter, atomic, nuclear and elementary particle physics, as well as in astrophysics.
According to the MIT team: "The study of BEC in weakly interacting systems holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles, and may also advance our understanding of superconductivity and superfluidity in more complex systems."

For more information please contact professor Ketterle at MIT wolfgang@amo.mit.edu

War machine that won't stop

You might think "It doesn't get tired, it doesn't get hungry, it doesn't get sleepy - and it's expendable" sounds like a quote from Research Notes' favourite film The Terminator. In fact you wouldn't be far wrong. Because it is actually a project manager's chilling description of a prototype robot soldier that is currently being tested in the US.
'Sarge', being developed at Sandia National Laboratories, could well become standard battlefield equipment, serving as a 'force multiplier,' to increase soldier/Marine effectiveness and survivability. Its prime aim is to engage in remote surveillance, as evidenced by its full name - surveillance and reconnaissance ground equipment.
The final, complete tugv (teleoperated unmanned ground vehicle or 'tug-vee' to you, me and Norman Schwarzkopf) will be produced by the hundreds and put into the armed forces inventory. Individual or multiple robots will be assigned to infantry units and battalions.
Unlike the walking, talking, metal humanoid Hollywood robots with lasers for eyes, Sarge is a much simpler machine, and the latest in a long line of prototype
battlefield robots.
Its base platform is a commercial recreational 'four-wheeler,' a Yamaha Breeze, with the addition of a roll cage and four video cameras - two for surveillance and two for driving - on a pan/tilt platform.
Everything - steering, throttle, cameras can be remotely operated from a suitcasesize operational control unit miles away.

Sarge's predecessor, Dixie, had to be teleoperated via a 1200 -baud radio link. Coupled with the slow speed of its processor, that caused a 75 ms delay between user command and machine response. Operators had to drive ahead, or plan for what was coming up to compensate.
With Sarge, the lag time has been much reduced. Its command/response delay is approximately 20 ms , thanks to its much faster modern processors and communications equipment.
The developers hope that Sarge will make it unnecessary for a contingent of soldiers to have to go out on reconnaissance during combat, to determine the enemy's position and assess the situation.
Instead, the robot could be sent ahead, and images captured by its video cameras would
be relayed back. If there is an enemy ambush, the number of casualties would be less than one.
"Obviously, using a robot for surveillance is different from using a person," says project manager Bryan Pletta. "It's not going to be as good at some things as a person would be, with eyes and ears and a brain".
Gaining acceptance of the use of robotics among infantry soldiers may be a challenge too.
"Right now, using robotics is a pretty radical departure from the way they currently do things," Pletta says.
The next critical part of the project is the manufacture of eight to ten Sarge units to be given to infantry battalions, getting them involved in development up-front.
"The program will actually give them to infantry battalions and say, 'This is yours, keep it. Take it home, learn how to use it. Try and figure out what you could do with it if you had one,""
Take it home?

Bryan Pletta can be contacted at Sandia National Laboratories, Albuquerque, USA.

Your doorwey to EDA solutions

It doesn't matter whether you're a one-man design team, or a project leader for a major multinational, you still demand the best EDA tools for your application, along with technical support you know you can trust.

ARS Microsystems offers key design solutions across a broad range of technologies with price competitive windows-based software that makes the most advanced design techniques available to every user, and backed up with technical support from a team of EDA experts.

Contact ARS Microsystems NOW for your entry into a new world of EDA.

- VHDL Design Entry (lext \& graphical), Synthesis and Simulation rools from leading vendors including Data I/O, Model Technology, Synthesia and OrCAD.

CIRCLE NO. I $\$ 2$ ON REPIY CARD

- Analogue (PSpice) and Digital simulation of designs including multiple programmable devices on a single pcb.

CIRCIE NO. I $\$ 3$ ON REPLY CARD

- PLD/CPLD/FPGA \& boardlevel design software using Schematic Capture or HDL entry, supporting all major silicon vendors (Xilinx, Altera, Lattice, AMD, Cypress, Actel, Quicklogic, Atmel, etc.)

CIRCIE NO. IHA ON REPI Y CARD

- PCB Layout software with

Automatic placement, Automatic routing, design for manufacturing control, fast circuit options for the design of EMC compliant products.

[^1]ARS Microsystems Limited, Herriard Business Centre, Atton Road, Basingstoke, Hampshire, RG25 2PN. Tel: 01256381400 Fax: 01256381685 email: info@arsm.co.uk Web Page: http://www.arsm.co.uk

AUDIO
 valveDesigning preamps

> Morgan Jones details how to get the best from valves in hi-fi preamplifiers, but his article should prove equally useful to designers opting for transistors.

Preamplifiers receive a variety of signals at different levels, process them, and pass them to the power amplifier. They should do this without adding noticeable noise or distortion and they should be convenient to use.

Figure 1 is a block diagram of a typical pre-amplifier. Working back from the output, there is a line stage providing a limited amount of gain. This stage may be designed to drive long cables. It is preceded by the volume control and input selector; associated with this will probably be some form of switching to provide facilities for tape machines, which may, or may not, be buffered.
One of the sources to the selector switch will be an RIAA equalised disc stage, although many modern pre-amplifiers neglect this stage because it is so difficult to design. The excuse for this is that the longplaying record is obsolete. This may be so, but there are still many treasured collections of LPs that need
 to be played, so a proper pre-amplifier should include a disc stage.
The pre-amplifier only has to provide a very limited output voltage to the power amplifier; even the most insensitive power amplifiers will not require more than 4 or 5 V rms to drive them into clipping. This means that the line stage may be optimised for linearity, rather than headroom, but it will have to drive the capacitance of the output cable without loss of high frequencies. It may need to be able to drive power amplifiers of lower input impedance, such as transistor amplifiers.
Since the stage will be preceded by the volume control, the power amplifier will amplify all of its self-generated input noise, so we will need to ensure that this noise is minimised, the stage also requires a low output impedance, coupled with low gain which ought to be quantified.
Low capacitance screened cable has a capacitance of around 100 pF per metre. To avoid inducing hum from the power amplifier mains transformers into the pre-amplifier, it will probably be necessary to separate them by one metre. By the time the routing of the cable between the line stage and the input connector of the power amplifier has been allowed for, about 1.5 m of cable will have been used. This is equivalent to 150 pF . A valve amplifier will typically have input capacitance around 20 pF ,
so it should be possible to drive 170 pF .
In combination with the shunt capacitance of the cable, the source impedance forms a low-pass filter whose -3 dB cut-off we can calculate from;

$$
f_{-3 d B}=\frac{1}{2 \pi C R}
$$

It would be useful, however, to have the high frequency roll-off within the audio band to be far less than 3 dB . As a result, it is necessary to find out what $f_{-3 \mathrm{~dB}}$ corresponds to a given amount of loss at a given frequency,. This can be found from,

$$
f_{-3 d B}=\frac{f_{(d B \text { limi })}}{\sqrt{\frac{1}{10^{\frac{d B}{10}}}-1}}
$$

As an example of using this equation, we find that for 0.1 dB roll-off at 20 kHz , we require $f_{-3 \mathrm{~dB}}=131 \mathrm{kHz}$. It should be noted that this formula is only valid for a single high-frequency $C R$ or $L R$ network. We can now determine that for 0.1 dB loss at 20 kHz , driving 170 pF of capacitance, we need an output impedance of $7 \mathrm{k} \Omega$, and preferably less.
For a single low-frequency $C R$ or $L R$ network,

$$
f_{-3 d B}=f_{(d B \text { IImui) }} \sqrt{\frac{1}{10^{\frac{d B}{10}}}-1}
$$

Using this formula, 0.1 dB roll-off at 20 Hz corresponds to an $f_{-3 \mathrm{~dB}}$ of 3 Hz .

Once stages are cascaded, both high and low-frequency cut-offs begin to move towards the midband. For ' n ' stages, each with identical low-frequency cut-off, the cut-off frequency of each individual stage is related to the cut-off of the composite amplifier by,

$$
f_{-3 d B(\text { individual })}=f_{-3 d B(\text { composire })} \sqrt{2^{\frac{1}{n}}-1}
$$

Applying this formula to a three-stage ($n=3$) capacitor coupled amplifier, you will now find that the 3 Hz cut-off for the entire amplifier requires each stage to have a 1.5 Hz cut-off. The traditional value of $0.1 \mu \mathrm{~F}$ coupling capacitor into $1 \mathrm{M} \Omega$ grid-leak gives a cut-off of 1.6 Hz .
Traditional power amplifiers had input impedances of $1 \mathrm{M} \Omega$ or more; this is a useful impedance, because it allows a low value of coupling capacitor from the pre-amplifier. A value of 47 nF almost meets our 20 Hz 0.1 dB criterion, but 100 nF is better. Note that many modern valve amplifiers have an input impedance of $100 \mathrm{k} \Omega$,
requiring a $1 \mu \mathrm{~F}$ coupling capacitor.
A power amplifier input stage using a triode with a sensitivity of 2 V ms has excellent noise performance. But the higher gain of a pentode not only results in increased sensitivity -125 mV ms is common - but the intrinsically noisier pentode further worsens the already compromised signal to noise ratio.
Because of the previous low-frequency cutoff and noise considerations, valve pre-amplifiers should be designed to drive 2 V into $1 \mathrm{M} \Omega$ - even if it means modifying the power amplifier to achieve this match.
Typically, a sensitivity of around 250 mV rms is needed at the input of the line stage. This results in an A_{v} of 8 for the line stage, but it may be useful to have 3 dB to 6 dB more than this, to allow for unusually low recording levels. As a result, maximum allowable gain A_{v} is 16 , so an A_{v} of 12 would be fine.
This stage will be preceded by the volume control, which is discussed later. For the moment, it will suffices to simply state that it will probably be a $100 \mathrm{k} \Omega$ potentiometer, whose maximum output resistance will be $25 \mathrm{k} \Omega$.
The question of potentiometer output resistance is crucial, because it forms a low-pass filter in conjunction with the input capacitance of the line stage. Using the earlier argument of 0.1 dB high-frequency loss at $20 \mathrm{kHz}(-3 \mathrm{~dB}$ at 131 kHz), you can see that the maximum allowable input capacitance of the line stage is around 50 pF .
If the input sensitivity of the stage is around 170 mV , i.e. $2 \mathrm{~V} / 12$, and a signal to noise ratio of 100 dB or more is needed, then the self-generated noise of the stage referred to the input would be $170 \mathrm{mV}-100 \mathrm{~dB}$, which is $1.7 \mu \mathrm{~V}$. This is certainly achievable with triodes.
Together with the previous arguments, this results in a table of requirements as follows.

A_{V}	12
$Z_{\text {out }}$	$7 \mathrm{k} \Omega$ max.
$C_{\text {in }}$	50 pF max.
$V_{\text {noise }}$	$1.70 \mu \mathrm{~V}$
max.	
Output coupling	100 nF

A good design is a simple design, so you should check to see whether the common cathode triode such as the ECC82, a low μ triode will suffice Fig. 2.

A_{v}	15.5
$Z_{\text {out }}$	$7.7 \mathrm{k} \Omega$
$C_{\text {in }}$	30 pF

Gain is certainly satisfactory, as is the input capacitance due to Miller effect and strays. The output impedance however is a little over the required value. Although the output impedance is higher than the ideal, input capacitance is considerably less than the allowable maximum.
Reduced roll-off at this point compensates for the slightly

Fig. 1. A typical pre-amplifier selects input signals at different levels, processes them, and passes them to the power amplifier.
increased high-frequency roll-off at the output. Provided that great care is taken with the capacitive loading of the output cable, or the stage is converted to a μ-follower, this would be a satisfactory solution.
Sadly, the ECC82's octal predecessor, the 6SN7, would have an input capacitance of around 70 pF , because C_{ag} is 3.9 pF , and would therefore only be suitable if a $50 \mathrm{k} \Omega$ volume control could be tolerated.

Controlling volume

The volume control is an essential part of a pre-amplifier and should be treated with the same care as any other part of the design.
Human ears have a logarithmic response to sound pressure level, so if you want a volume control that has a uniform perceived response to adjustment throughout its range, you need to use a logarithmic potentiometer. This is the root cause of all our problems.
It is not a problem to make a linear potentiometer, all you need do is to deposit a strip of carbon of uniform width and thickness onto an insulator, put terminals at each end, and arrange for a contact to scrape its way round. In an attempt to produce a logarithmic law, the coating thickness is made variable; in deference to audio sensibilities, a pressed metal screening can is fitted, and two potentiometers are ganged together on one shaft. Making the coating thickness continuously variable would be expensive, so the logarithmic law is approximated by a series of straight lines, Fig. 3.
It is surprising how good a fit to the ideal

Fig. 2. Common cathode ECC82 triode stage suitable for preamplifier output use.
logarithmic curve can be made using only four different resistance tracks, but it will come as no surprise to you that this still results in steps in the response as the knob is rotated.
You would also expect the mechanically linked potentiometers to produce identical levels of attenuation all the way from 0 dB to 60 dB . Some of them are remarkably good, but the carbon track potentiometer's natural habitat is buried in the undergrowth of a television.
If quality is paramount, and a control that is not continuously variable is acceptable, a

[^2]
AUDIO

switched attenuator can be used. Such an attenuator has conventional resistors connected to a switch in order to control volume. Adherence to the logarithmic law can now be perfect, as can channel balance. Commercially made switched attenuators are available with resistors fabricated directly onto the ceramic substrate of the switch wafer. Their performance is excellent.

The practical disadvantage of the switched attenuator is that you can only have as many different volume levels as switch positions. Although rotary switches are available with 30 positions - as opposed to the more usual 12 this still limits us to 26 or 27 positions once an end stop is fitted.
For a normal volume control, it is often desirable to have a mute position, followed by
a -60 dB position, then uniform steps all the way up to 0 dB . Already 6 of the 30 positions have been used, so 60 dB divided by 24 steps gives 2.5 dB per step. This is too coarse, and commercial attenuators coarsen the lower levels to allow finer control at the upper levels, but this still only brings the basic step size down to 2 dB .
If you don't mind wiring individual resistors

Requirements for RIAA equalisation

This panel defines the requirements for a high-performance RIAA equalisation circuit.

- Low noise and no hum. It has to be admitted that valves are not as quiet as the latest generation of low-noise IC op-amps, but they can be made quiet if you use dc heater supplies. Pentodes are too noisy, and care is needed when using triodes.
- Constant input impedance. This might seem obvious, but many designs have failed to appreciate this requirement. Cartridge manufacturers design for a specific loading of resistance and capacitance. They use this to equalise mechanical deficiencies of the generator system. This is particularly noticeable for moving magnet designs such as the older Shure and Ortofon models.
- Accurate RIAA. It is unbelievable how many designs have incorrect RIAA equalisation - ancient and modern. This is either down to a failure to use the correct equations, or to appreciate the loading conditions.
- Low sensitivity to component variation. Valves age, and as they do so, their anode resistance rises. When a valve is replaced, neither the new value of r_{a}, or C_{ag}, may be the same as the old valve. Neither of these effects should noticeably affect the accuracy of RIAA equalisation.
- Good overload capability. But what capability is necessary? Using a Tektronix TDS420 digital storage oscilloscope, the dynamic range of LPs was investigated in conjunction with a high quality record playing system. The TDS420 was first used in 'envelope' mode to find maximum output of the cartridge, and monitored an entire day of listening to music. The largest musical peaks were found while playing a Mobile Fidelity pressing of

Beethoven's 9th Symphony. Before equalisation these peaks rose to +16 dB above the nominal $5 \mathrm{~cm} / \mathrm{sec}$ level, but clicks due to dust or scratches rose to about twice this level at +22 dB , Fig. 6 . Individual clicks were then captured, and it was found that the vinyl/cartridge tip mass resonance was being excited, producing an oscillation at 56 kHz for this particular moving coil cartridge, Fig. 7. If these ultrasonic signals were to overload the pre-amplifier, they would generate intermodulation products that would come back down into the audio band, and make the clicks much more noticeable.

- You should now allow for variable cartridge sensitivity of about 6 dB ; if you need more than this, the disc stage should be reconfigured. A good design should not operate permanently at its limits, so a further 6 dB margin is desirable. This gives a total of 28 dB in the audio band, rising to 34 dB or more at ultrasonic frequencies. Very few pre-amplifiers of any age achieve this requirement simultaneously with low noise.
- Worn/old discs generate more ultrasonic energy than a new disc. This may be due to dirt ground into the groove walls, or because they were played by a cartridge that mistracked, causing wall damage as the stylus flailed from side to side of the groove. Inadequate ultrasonic overload margin is the reason why some pre-amplifiers will make worn records sound unplayable, but a good pre-amplifier is able to extract the best from the disc.
- Low distortion. This is an obvious requirement, and is linked to overload capability.
- Low output impedance. Ideally, the stage should be able to drive cable capacitance, so that it can drive a tape machine, or be sited within the plinth of the turntable.

Fig. 4. Input selectors with switchable tape output. Attenuators and an RIAA equaliser preprocess the inputs to bring them to similar levels.
onto switches yourself, you can do rather better than 2 dB steps. It is necessary to design your pre-amplifier so well that all incoming signals arriving at the volume control are at precisely the same level. Additionally, the output of the pre-amplifier is perfectly matched to the power amplifier, and is only able to overload the amplifier on the last few steps of the volume control. This is feasible, and will allow you to use 1 dB steps.
Usually, you will also need a separate mute switch in addition to the volume control. This type of arrangement is surprisingly convenient, and a matched, truly logarithmic volume control is a pleasure to use.
Assuming that you have a pair of 30 -way, switches available to make a volume control, you need to calculate the values of resistors required. You could do this by hand, but a programmable calculator or computer makes life so much easier.
One form of switched attenuator is similar to the conventional potentiometer. It has a string of resistors from which you can take the appropriate tapping. The Qbasic Listing shown generates the resistor values for this attenuator; it is not a miracle of programming, but is quick and easy to use, and can easily be modified for different versions of Basic. It could also be made to run on a programmable calculator.
The program asks for the load resistance across the wiper. This is the grid-leak resistor of the following valve. It is tempting to try to use the potentiometer as the grid-leak, but this is poor practice, and can cause noise problems. It is also unnecessary, since the program accounts for its loading in designing the attenuator.
The final value given by this program is connected between the last useable switch contact and ground; it is often convenient to use one of the spare contacts on the switch as a ground terminal.
Ideally, an earthed metal screen should be fitted between the individual switch wafers in order to eliminate capacitive crosstalk between the stereo channels.

Selecting inputs

It is quite likely that you will have a number of alternative sources to the pre-amplifier, for example lp , cd, digital tv and radio. These will need to be selected to the volume control. You may also want to be able to record them onto tape, in which case you will need a tape loop, Fig. 4.

You will see that the arrangement is very simple. Incoming signals are routed through the input selector to the volume control via the tape monitor switch. This allows off-tape or source monitoring. The tape monitor switch should be of the on/off/on type in order to provide a centre mute position.
An unusual feature is the inclusion of a switch in the output to tape. All of the sources to the selector will be low impedance, and perfectly capable of driving the cable capacitance to a powered-up tape machine. As a result, a tape buffer is not required.
An unpowered tape machine, however, presents a non-linear load to the source. This load is in the form of unbiased transistor junctions, and may cause distortion. Most of the time, you will not be recording the source, so the tape output is switched off.
As the circuit stands, the rotary selector switch could suffer from crosstalk due to capacitance between adjacent contacts. On high-quality traditional pre-amplifiers, this problem was solved by having two switches. One selected the source, and the other deselected the short-circuit to ground on that source. Unfortunately, such wafer switches are no longer available, but a method that works almost as well is to use alternate contacts as inputs on a standard wafer switch, and connect the unused contacts to ground, which then guards the signal contacts.
A further advantage of the alternately grounded contacts is that if a tape loop is not required, the combined source/mute/tape switch may be dispensed with, since alternate positions of the selector switch provide the mute function, Fig. 5.

Criteria for RIAA equalisation

RIAA is the abbreviation for 'Recording Industry Association of America'. It is the worldwide standard for equalisation of 'microgroove' records, as opposed to the numerous standards for 78s. The European standard is known as IEC, and has an additional -3 dB point at $20 \mathrm{~Hz}(7950 \mu \mathrm{~s})$ on replay only in order to reduce rumble.
Most manufacturers of quality pre-amplifiers assume that their products will be complemented by equally good turntables, and that rumble will not be a problem, so they ignore the IEC recommendation. Their equalisation is therefore RIAA.
If power amplifiers were let down by their

Fig. 5. Capacitive crosstalk on the input selector is reduced by guarding. A further advantage of this is that if a tape loop is not required, the combined source/mute/tape switch may be dispensed with.
phase splitters, then the Achilles heel of the preamplifier must surely be the RIAA disc stage. The stage has to satisfy so many contradictory requirements at the same time that its design and execution is fraught with problems.
The 'Golden Age' of valves produced power amplifier designs that became classics. There are no classic RIAA stages; they vary from mediocre to plain awful.
Requirements for an RIAA stage are shown in the panel. The next stage is to consider a suitable topology. Constant input impedance and low noise requirements eliminate shunt feedback. Low noise also rules out the pentode. You are therefore left with a combination of triode stages having active equalisation determined by series feedback, or with passive equalisation. Each of these contenders may be further broken down into performing the equalisation all in one go, or splitting it over a number of stages.
To tackle the problem of RIAA equalisation,

Fig. 8. Passive RIAA de-emphasis network. This is the only feasible network for a valve pre-amplifier.

AUDIO

it is necessary to define RIAA equalisation. The equalisation is specified in terms of time constants; $75 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$, and $3180 \mu \mathrm{~s}$. The RIAA equation plus some spot results are given below.

$$
\begin{aligned}
& s=2 \pi f \\
& G_{s}=\frac{318 \times 10^{6} \times s}{\left(1+3.18 \times 10^{-3} \times s\right)\left(1+75 \times 10^{-6} \times s\right)}
\end{aligned}
$$

Frequency
(Hz)

Gain

10
(dB ref. 1 kHz)
+18.802
+17.592
20
+16.558
+15.657
40
+14.862
+13.509
70
+11.899
200
+8.418
300
+6.289
400
+4.778
500
+3.612
700
+1.862
1000
0
2000
-3.789
3000
-6.204
4000
-8.034
5000
-9.522
7000
-11.876
10000
-14.502
20000 -19.915
$30000 \quad-23.218$
$40000 \quad-25.605$
$50000 \quad$-27.474
From the table we see that considerable gain is needed at low frequencies, while high-frequency attenuation must continue indefinitely.
Because the high-frequency attenuation continues indefinitely, you can now exclude the series feedback 'all-in-one-go' topology. This is because the gain of this topology can only fall to unity. Although this failing can be exactly compensated after the feedback amplifier, it does mean that the response before compensation is rising. In turn, this means that ultrasonic overload capability within the amplifier is being compromised.
Because the 1 kHz level is around 20 dB below the maximum level at low frequencies, any 'all-in-one-go' passive network must have a minimum of 20 dB of loss, and probably more. This is because the network will have the grid-leak resistor of the following valve in parallel with it, which will cause additional attenuation. You will find that it is extremely difficult to design a pre-amplifier of acceptable noise and overload capability using such a network, so this topology can also be excluded.
If you decide to use either of the two previous topologies, the relevant formulae are given in the definitive paper by Stanley P. Lipshitz, 'On RIAA equalisation Networks', Journal of the Audio Engineering Society, 1979 June, Vol. 27, No 6, pp. 458-481.
Of the four possible networks that Lipshitz gives, these reduce to two for passive equalisation. Of these two, only one has a capacitor
in parallel with the lower arm of the network. This feature is important because it allows stray and Miller capacitance to be taken into account. It is therefore the only feasible network for a valve pre-amplifier. Fig. 8. Relevant equations for this passive network are,

$R_{1} C_{1}$	$2187 \mu \mathrm{~s}$
$R_{1} C_{2}$	$750 \mu \mathrm{~s}$
$R_{2} C_{1}$	$318 \mu \mathrm{~s}$
C_{1} / C_{2}	2.916

These numbers have not been rounded.
Remember that any grid-leak resistor in parallel with the lower arm of the network, or
non-zero output impedance of the driving stage, changes the effective value of R_{1} as seen by the network. Therefore, the values for the network must be calculated using the Thévenin impedance seen by that network. Likewise, any stray or Miller capacitance will need to be subtracted from the calculated value of C_{2}.
For any 'all-in-one-go' topology other than the above network, it is essential to refer to the Lipshitz paper, and read it thoroughly before embarking on design.
You are now left with only two possibilities for equalisation - split active, and split passive. The first job is to define how to split the equalisation. Fortunately, there is only one rational way to split the equalisation, and that is to pair the $3180 \mu \mathrm{~s}$ with the $318 \mu \mathrm{~s}$, but to perform the $75 \mu \mathrm{~s}$ separately.
The 75μ s time constant defines a low pass filter whose -3 dB point is at around 2122 Hz and rolls off at 6 dB /octave thereafter. This is an ideal filter for use early in the pre-amplifier since it allows high-frequency overload capability after that stage to rise at $6 \mathrm{~dB} /$ octave above cut-off. This is exactly what is needed.
It is usual to perform the $75 \mu \mathrm{~s}$ time constant passively following the input stage. This has the advantage of ensuring that the impedance seen by the cartridge is constant with frequency, apart from input capacitance, for which a value is usually specified by the cartridge manufacturer, Fig. 9.
The reason for choosing a passive network is that a series feedback amplifier cannot achieve an A_{v} of less than unity, and a shunt feedback amplifier would have noise problems.
Additionally, although it was not noted earlier, a feedback amplifier attempting this response would find its output stage faced with a heavy capacitive load. This capacitive

Fig. 9. Split RIAA de-emphasis. It is usual to perform the 75μ s time constant passively following the input stage. This has the advantage of ensuring that the impedance seen by the cartridge is constant with
frequency, apart from input capacitance.

load demands a large current at high frequencies, and would be equivalent to changing the ac loadline to a far lower value of load resistance. The result would be additional distortion before the feedback loop was closed.
Note that all of the previous observations are equally relevant to discrete semiconductor or IC based pre-amplifiers.
The $3180 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$ pairing defines a shelf response with a level variation of exactly 20 dB . Using IC op-amps it is equally convenient to perform this actively or passively, but with valves it is more convenient to use passive equalisation.
The preceding description allows you to define the optimum way of achieving RIAA equalisation in a valve pre-amplifier. Assume a passive $75 \mu \mathrm{~s}$ stage, followed by passive paired $3180 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$ over several stages of triodes. All you need now do is to define the topology and operating conditions of each stage, and calculate component values.
It is now possible to draw a block diagram of the pre-amplifier, Fig. 10. Note that the block diagram has completely ignored practicalities such as coupling, or decoupling, capacitors and grid-leak resistors. Nevertheless, it represents a simplicity of design to which we should aspire, i.e. dc coupling throughout. This ideal is achievable, but it is not ideal for the novice designer, you will need to be a little more cautious in your first attempt.

Morgan will discuss implementing the vaive RIAA stage, psrr and balanced preamplifiers in a second article.

Further reading

Lipshitz, S P, 'On RIAA equalisation Networks', Journal of the Audio Engineering Society, 1979 June, Vol. 27, No 6, pp. 458-481.
Wright, A, 'The tube pre-amp cookbook' 1994.

Fractional-N synthesisers

Abstract

Cosmo Little discusses implementing the fractional-n synthesiser, and shows how adding a second accumulator to the basic synthesiser system described last month reduces lowfrequency spurs.

In my first article, I discussed the basic frac-tional- N synthesiser with a single accumulator, and provided a simulation of its performance. In this article, I examine an modification to the method which uses a second accumulator to generate a different sequence of divisors. This important enhancement reduces the low frequency spurs seen in the previous simulation.
In addition, I discuss here some methods of implementing the fractional $-N$ synthesisers in hardware and software.

Two-accumulator fractional- N loop

Invented by Racal, this modification to the fractional- N loop is based on the idea that it is possible to change the frequency spectrum of the error waveform. This avoids the large discrete spurs that appear at low frequencies when generating a small fractional increment. This could be possible by dividing by a greater range of numbers based on N.
Obviously, it is feasible to divide by any number, provided that the average over a full cycle of accumulator additions - a maximum of the accumulator modulus - equals the required fractional divider.
Numbers are selected on the following basis. The loop filter is an integrator at low frequencies and as a result integrates the error voltage which builds up as a ramp as described last month. If a large negative error voltage is generated at the right intervals, the integrator can be reset to zero. This negative error voltage could be produced by dividing by $N+1$, and then immediately by $N-1$ at the next reference cycle.
Provided that a division by $N+1$ always has a corresponding division by $N-1$, the mean loop divisor has not been altered. As the normal control mechanism requires periodic division by $N+1$, the combination of the two controls results in divisions by $N-1, N, N+1$, and $N+2$.

I have never found this argument - ref 2, p201 - convincing as the error voltage is modified by the loop forward transfer response, not the loop filter. Forward transfer response is a constant multiplication by N at low frequencies. However the above algorithm certainly works, as will be seen later.
The second control may be implemented by means of a second accumulator, which accumulates the contents of the normal accumulator. These will be referred to as accumulators A and B. As an accumulator is an integrator, overflow of accumulator B can be used to initiate a correction cycle of division by $\mathrm{N}+1$ and $\mathrm{N}-1$.
A simple combinational logic function can be designed to combine the overflow state of both accumulators and the previous overflow state of accumulator B which must be stored in a latch.
Operation of accumulator B is shown in the document Program 1, as is the effect on the time error waveform. This waveform still has about the same peak to peak amplitude as that for the single accumulator fractional- N loop, but the peaks are only reached on pulses. These pulses contain less energy at low frequencies. If you make a mental average through the area of pulses, you will find that the main low frequency waveform is a triangle wave of much lower amplitude.
A correction waveform may be constructed for the two-accumulator fractional $-N$ loop, but the relationship to the contents of accumulator A is more complicated. The rule is that if B has overflowed in the previous reference cycle, then the value in accumulator A must be complemented - i.e. subtracted from the modulus.
A 5\% accuracy of the correction voltage has been assumed in the document, and all other parameters are the same as for the right-hand MathCad document in the last issue of $E W$. This allows the Fourier transforms of the error
voltages to be directly compared. But note different Y axis) The improvement is dramatic. The frequency range in both graphs extends to $f_{\text {ref }} / 2$, so a typical natural loop frequency would be 5 kHz . Frequency components higher than this are progressively filtered out.
Automatic correction of the correction voltage by synchronously rectifying the error voltage is possible for the two-accumulator loop. This turns out not to depend upon accumulator A at all, but only upon the overflow state of accumulator \mathbf{B}. The graph in the document shows that the function does work.
There is a possibility that other algorithms could result in even lower low frequency spurious content to the error voltage. You could divide by a larger set of integers, for example. Alternatively, there might be a better sequence of the set of four integers than that generated by the two accumulator implementation.

Implementation the fractional- N loop The lack of widespread use of the fractional- N technique may partly be due to the lack of any commercial large-scale-integration digital chip for implementing the accumulators and correction circuits required. This contrasts with the large number of single-loop synthesiser chips available, most with provision for controlling dual modulus prescalers, and having microprocessor interfaces for setting up the various internal dividers.
Figure 1 gives a possible block diagram for a single chip implementation of the two accumulator loop. Everything is included except the d-to-a converters for generating the correction voltage. Because of the difficulty of implementing the inverse scaling of the correction voltage with change of vco frequency, a simple latch is provided for controlling a d-to-a converter. It is assumed that the controlling microprocessor will calculate the scaling factor.
For many applications binary accumulators

Fig. 1. This block diagram suggesting how the dualaccumulator fractional- N synthesiser could be implemented on a single chip includes everything except the d-to-a converters for producing the correction voltage.

Fig. 2. It is possible to use a processor to calculate the dual-accumulator algorithm in real time if the reference frequency is not too high.
are adequate. This means that the output can only be an approximation to a decimal frequency. For some applications such as signal generators, binary-coded-decimal accumulators will be needed.
It is important that the phase detector used should have very good linearity at small phase offsets. Otherwise the error voltage from the phase detector will not match the correction voltage. Digital tristate phase/frequency detectors are very poor in this respect, and should only be used for initial acquisition. A sampling phase detector should be used for tracking. This approach is used in the GEC/Plessey range of chips.

Until a manufacturer decides to make a suitable lsi chip, low budget designers must look for other ways to implement the synthesiser. Single chip microprocessors are cheap, and are powerful general purpose logic machines. It is feasible to use a processor to calculate the two accumulator algorithm in real time provided that the reference frequency is not too high.

A possible block diagram is shown in Fig. 2. The processor must be synchronised to the overflow of the loop divider, either by an interrupt or by polling a port. The processor may take most of a reference cycle to calculate the next value of N and the appropriate error voltage does not appear at the phase detector output until the loop divider has finished a cycle. As a result, the correction voltage will need to be delayed internally to the processor
to keep it synchronised to the error voltage.
It is also assumed in Fig. 2 that the processor will scale the correction voltage output to the correction d-to-a converter, either by calculation of lookup table.
I constructed a prototype fractional- N synthesiser for an high-frequency receiver design about a decade ago. It was based on the two accumulator algorithm and used an 8041 slave processor to calculate the algorithm in real time. The reference frequency was 10 kHz , and the processor used double precision arithmetic to give 16 -bit accumulators.

The processor ran at 6 MHz , and the algorithm just fitted into the $100 \mu s$ available. The correction did not use d-to-a converters, but corrected the time errors before the phase detector by the use of binary increments of delay.

I used a miniature analogue delay line with four sections of $80,40,20$, and 10 ns . These sections were switched in and out of circuit using bipolar transistors. The prototype worked reasonably well, but it proved difficult to get the delays accurate. This method of directly correcting the time errors is worth considering as an alternative to the usual system of generating a correction voltage. A chip such as the Analogue Devices $A D 9501$ which provides 8 -bit resolution of delay with sub nanosecond resolution would seem ideal for the purpose. This correction system is shown in Fig. 2.

Microprocessors have advanced consider-

ably over the past decade, and it is likely that a 16 -bit digital signal processor could calculate the algorithm in $10 \mu \mathrm{~s}$, making possible a 100 kHz reference frequency. For even faster implementations, the processor could calculate the algorithm in advance, and store all the values of N and the correction in ram. The processor could then respond to an interrupt and output the next values in less than $l \mu s$.
A low-cost implementation is possible by using a single chip synthesiser with dual modulus prescaler control, and adding logic to delay the change of modulus from $P+1$ to P by up to three input cycles. This will change the overall division ratio. This idea is outlined in Fig. 3.
Programming of the ' N ' and ' A ' counters must be altered from the usual arrangement to ensure that the four divisors are available without requiring the ' A ' counter to be zero, as otherwise the logic would not work. A little thought will show that provided the ' A ' counter has a higher modulus than the prescaler, P, then programming for any four adjacent integers will always be possible.
This implementation would require only 1×2 bit and 1×8 bit port on the processor, and one spare interrupt. If sufficient ram was available to store the divisors and corrections, then the main system processor might have sufficient capacity to run the synthesiser as well.
One advantage of the ram storage technique is that decimal accumulators can be as easily programmed as binary. As the algorithm is calculated once only for each frequency change, the extra time required to calculate for decimal accumulators would not matter.

Predicting vco spurii

One final MathsCAD document is offered, Program 2. This 'document' calculates the level of the vco sidebands due to the fraction-al- N mechanism. It communicates with either Programs 1 or the right-hand MathCad document in the last issue of $E W$ using a data file, so the appropriate program should be run first. It is also necessary to design a sensible phaselocked loop using the phase-locked-loop MathCad document presented last month.
Loop time constants are copied across manually to Program 2. The document then calculates the voltage-controlled oscillator spurious sideband levels. The simplification is made that the voltage-controlled oscillator phase modulation index is small, so each component of the phase modulation of the voltagecontrolled oscillator only results in one pair of sidebands.

Cosmo is head of the if design, prototyping and consultancy company, RF Solutions, Penryn.

Further reading

Digital PLL Frequency Synthesisers, Ulrich L. Rhode, Prentice Hall.
Frequency Synthesis by Phase Lock, William F. Edan Wiley.
Frequency Synthesisers, Theory and Design Vadim Manassewitsch, Wiley.
Phase Locked Loops. Application to coherent receiver design, Alain Blanchard, Wiley.

Program 1. This MathCad document is for evaluating operation of the fractional-N synthesiser's second accumulator, designated B. It also shows how the time error waveform is affected.
Phase lock loop comparison frequency, $\mathrm{f}_{\text {ref }}=10^{3}$. Integer part of loop divider, $\mathrm{N}:=10$.
Fractional part of loop divider, $\mathrm{M}=\boldsymbol{1}$. Accumulator modulus. Modulo $=2^{\text {n }}$.
Corraction DAC modulus. DAC $:=2^{\text {a }}$.
 $\mathrm{f}_{\mathrm{VCO}}=1002734.375$

The nex two statiements form the
vectors of values in the two accumulators. $\quad A_{i+1}:=\bmod \left(A_{i}+M, M\right.$ Modula $) \quad B_{i+1}:=\bmod \left(B_{i}+A_{i+1}\right.$ Modulo $)$
Special vector functon definition, returns 1 if next entry in vector if
less than current entry. Serves 10 mark accumulator overfiows
11 index is <0 returns 0 .
14 index is <0 returns 0 .
OVFL($\left.V_{, j}\right):=\mathrm{if}\left(\mathrm{j}<0,0, i\left(\mathrm{~V}_{\mathrm{j}+1}<\mathrm{V}_{\mathrm{j}}, 1.0\right)\right)$
Logic section to create vector of divisors based on overllow of the two accumulators.
Order of statements is important
$\mathrm{N}_{\mathrm{D}_{1+1}}:=\mathrm{N}$
$N_{D_{1+1}}=\mathrm{if}\left(\mathrm{OVFL}(\mathrm{B}, \mathrm{i})=1, N_{D_{i+1}}+1, N_{D_{i+1}}\right)$
$N_{D_{1+1}}:=i f\left(\operatorname{OVFL}(B, i-1)=1, N_{D_{1+1}}-1, N_{D_{1+1}}\right)$
$N_{D_{i+1}}=i=i\left(\mathrm{OVFL}(\mathrm{A}, \mathrm{i})=1, \mathrm{~N}_{D_{i+1}}+1, N_{D_{i+1}}\right) \quad \quad \operatorname{mean}\left(\mathrm{N}_{\mathrm{D}}\right)=10.027818$
Graphs of accumulator content and loop divisor

Create vector of time errors due to non exact dimsion

$$
T_{\text {artor }_{i+1}}=\mathrm{T}_{\text {error }}+\mathrm{T}_{\text {ref }}-\frac{\mathrm{N}_{\mathrm{D}_{i+1}}}{\mathrm{r}_{\mathrm{VCo}}}
$$

Create correction voltage from accumulator A. Note thal Accumulator is trunceted to no of DAC bits.

Remove DC component from error vollage $\quad \mathrm{MV}:=$ mean $\left(\mathrm{V}_{\text {ater }}\right) \quad \mathrm{V}_{\text {cror }}=\overline{\left(\mathrm{V}_{\text {erour }}-\mathrm{MV}\right)}$
Graphs of tme erfor, correction, and voltage error

$$
\text { Founer transtorm of error voltage. Bin spacing }=f \text {.REFino of samphes }
$$

$$
\mathrm{G}=2 \cdot \operatorname{FFT}\left(\mathrm{~V}_{\text {ercol }}\right) \quad \text { bengh }\left(\mathrm{V}_{\text {aror }}\right)=2.048 \cdot 10^{3} \quad \mid \text { engith }(0)=1.025-10^{3}
$$

$$
j=0 . \operatorname{lengit}(0)-1 \quad \text { WRITE(frequacil) })=\text { izz } \quad \text { WRITEPRN }(\text { freq } 1)=0
$$

Spectrum of error vothage (y axis in vorts equ to peak vohage of a transformed sine wave)

Program 2. MathCad routine worksheet for calculating vco sidebands due to the fractional-N synthesiser's mechanism.

Loop fixed parameters:

op amp low trequency pole and open loop gain: $\boldsymbol{f}_{0}=10 \quad \quad A_{0}=100000$
loop filter component values: $\quad \mathbf{R 1}:=4700 \quad \mathbf{R 2}:=10000 \quad \mathbf{C 1}:=101 \sigma^{-9} \quad \mathbf{C 2}:=.5 \cdot 1 \sigma^{-}$
Phase detector gain constant (volts per radian) $\mathrm{Kp}_{\mathrm{p}}:=1.59$
VCO gain constant (radians per volt second) $\mathrm{Kv}:=50 \cdot 10^{3}$
VCO modulation pole $(\mathrm{Hz}) \quad \mathrm{f}_{\bmod }:=30.10^{3}$
Loop division ratio $\quad \mathrm{N}:=10$
Additional low pass pole (Hz) : $\mathrm{f}_{\text {pole }}=20000$
Data from previous fractional N calculabons:
$\mathrm{Hz}=$ READ (freqincl) \quad SPUR $=$ READPRN(freq 1) $\quad i:=0 \ldots$ last (SPUR)
$\mathrm{f}_{\mathrm{i}}:=\mathrm{i} \cdot \mathrm{Hz} \quad \operatorname{last}($ SPUR $)=1.024 \cdot 10^{3} \quad$ length $($ SPUR $)=1.025 \cdot 10^{3}$
calculated values $\quad t_{0}:=\frac{1}{2 \cdot \pi f_{0}} \quad t_{1}:=C 1 \cdot R 1 \quad t_{2}:=R 2-(C 1+C 2)$
$t_{3}: \mathbf{C} 2 \cdot R 2 \quad t_{\text {mod }}:=\frac{1}{2-\pi \cdot f_{\text {mod }}} \quad t_{\text {pole }}:=\frac{1}{2 \pi f_{\text {pole }}} \quad 3_{i}:=2 \cdot \pi \mathrm{jj} \cdot \mathrm{f}_{\mathrm{i}}$
 $G(s):=\frac{K p \cdot K v F(s)}{s} \quad B(s):=\frac{G(s)}{1+G(s) \cdot H} \quad H:=\frac{1}{N} \quad t_{\bmod }=5.30516 \cdot 10^{-6} \quad t_{0}=0.01592 \quad t_{1}=4.7 \cdot 10^{5}$

This graph is peak phase deviation of the VCO

vCO phase devation in ime domain

SBIEVEL := $\overline{\mathrm{Jl}(|\oplus \mathrm{VCo}|)}$

VCO single sideband spur

...we'll make you feel better.

Buying from your present supplier may feel like money down the drain. Buying from CPC is money in your pocket.
You get a choice of 39,000 quality products from over 300 leading manufacturers. At CPC we only stock quality products from quality manufacturers. All the biggest equipment names are represented in our catalogue including TDK, 3 M , Duracell, MK, Weller, Sony, CK etc

Over 27,000 companies get a better deal with us.
And the list is growing by the day. From our inception in 1967, we have enjoyed year on year growth, seeing our client base of 2,000 in 1986 boosted by a further 25,000 companies who have switched to CPC - and stayed!

The catalogue couldn't be easier to use.

Whether you are a service engineer, OEM, school or manufacturer, whatever your component needs, you'll find them all listed in our easy to use index and cross reference section: Audio products, batteries, computer products, hardware, motor control, semiconductors, surface mount, tools and original manufacturers spares are just some of the sections included

HEW
 Catalogue is now available

Ordering couldn't be simpler.

 Our sales office is open Monday to Saturday taking orders by phone, fax and post.Diamond Service means \quad CPCC 5 se.000 spure feer same day despatch is guaranteed.

Our frundfy staff urv
Representing the ulumate in customer service, CPC's Diamond Service ensures all orders received before 5.30 pm , are despatched the same day - guaranteed.

How to open

 an account today.Just pick up the phone, give us the details and the job's done. And once you're on our database we'll send you bulletins on all the latest products and great offers from CPC, four times a month.

10,000 NEW PFODUCTS

WEM/SECTOUS IncuDDing

Datacomms \& Networking
PCB Prototyping
Optoelectronics
Surface Mount
Motor Control

Free catalogue,

 free carriage.Once you've opened an account, we will send you a complimentary 1,700 page catalogue and with all orders over $£ 30$ carriage is absolutely free! S_{0}, if
 you want to stop your money going down the drain, call us today. Star-o- the-me torrage and handling leactives

Open YOUR account today, tel 01772654455 or fax 01772654466

Reference books to buy

For Audio Engineers

> Subjects include
> Recording, microphones and loudspeakers

> Digital audio techniques Basic audio principles

> Acoustics and psychoacoustics

> Audio and television studios and their facilities

> Radio and telephony

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

For TV \& Video Engineers

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include

Fundamentals of colour TV
TV studios
High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and audio recording and playback
Teletext

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \qquad copies of the
Audio Engineer's Reference Book, (ISBN 0750603860)
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide $£ 78$. Please add vat at local rate where applicable.

Please supply me \qquad copies of the
TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$, Worldwide $£ 58.00$, Please add vat at local rate where applicable.

Remittance enclosed $£$ \qquad
Cheques should be made payable to Reed Business Publishing Group Ltd
Please retum to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debir my credir card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad

POST CODE

\qquad
DATE \qquad TEL

SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPIY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

SPEED control with servo option

Designed for use with a 12 V dc motor, Matthew Hall's pwm speed controller is adaptable for use with a servo-arm mechanism.

This motor speed controller evolved from a need to be able control the speed of my 12 V electric drill while drilling pcbs and the like. Having an interest in radio control, I also wanted a design that could be actuated by a servo arm.

Design considerations

To suit my needs, the motor controller needed the following attributes.

- High efficiency
- Complete control via one drive shaft, i.e. fast through to slow forward rotation, fast through to slow reverse and stationary.
- No moving parts eg. reversing relays/switches etc. other than the drive shaft.
- When the controller is being actuated by a servo arm, the $+45^{\circ}$ moved by a typical radio-control servo will need to be mapped onto the full control range. Therefore provision to trim this mapping will be required.
- Performance maintained for small fluctuations in the supply voltage.
- Low cost

Regarding efficiency, it is widely accepted that pulsewidth modulation control is more efficient than a simple rheostat since very little power is lost in the switching components as they are either fully on or fully off. Pulse-width modulation control also has the advantage that higher torques can be achieved at low motor speeds when compared with rheostat control.

Table 1. Suitable driver mosfets - prices and sources.

Designation	Type	R $_{\text {DS(on) }}$	Price (each)	Distributor
$T_{4,6}$	BUZ11	0.03Ω	$£ 1.44$	Maplin
$T_{r_{4,6}}$	BUZ10	0.08Ω	$£ 0.80 / £ 0.65$	Maplin/Grandata
$T_{3,5}$	BUZ271	0.15Ω	$£ 2.15$	RS
$T_{3,5}$	MDT2955E	0.3Ω	$£ 1.97$	RS

Table 2. Truth table of voltages within the output circuit around $\mathrm{Tr}_{3.6}$.

$V_{[13]}$	$V_{[14]}$	Tr_{3}	Tr_{4}	Tr_{5}	Tr_{6}
low	low	off	off	off	off
low	high	on	off	off	on
high	low	off	on	on	off
high	high	off	off	off	off

Fig. 1a). Pulse-width modulation motor controller extending from full power reverse, through stop, to full-power forwards.

Hence, the design given here is based on pwm control.
Moreover, this design can generate high duty cycles and the motor switching components have low 'on' resistances. This leads to high efficiency at maximum speed so that nearly full power may be attained.
In this design, motor power is produced via a solid state complementary bridge driver, T_{3-6} on Fig. 1.
An optional alteration to the design appears in Fig. 1b. This makes the circuit fully compatible for control via a servo arm.
To keep the cost down, the only relatively expensive components in the design are output mosfets T_{3-6}. When choosing these transistors, a compromise needs to be made between low $R_{\mathrm{DS}(\mathrm{m})}$ and low price. In practice having a low $R_{\mathrm{DS}(\text { on })}$ is more important for motors requiring high currents. This is because whatever the on resistance of a switching mosfet, more power is dissipated in the device as the current through it increases.
With these considerations in mind, the Table 1 gives some possible types for T_{3-6} along with prices and corresponding distributors.

Circuit details

Resistors R_{1-6}, together with $V R_{1}, C_{1-3}, D_{1}, T_{r_{1}}$ and $T r_{2}$ form a linear sawtooth generator. Without $R_{4-6}, V R_{1}, C_{3}, T r_{2}$, and with D_{1} shorted, the circuit would function as a standard
unijunction transistor relaxation oscillator with a repeating cycle as follows.
Capacitors $C_{1,2}$ charge through $R_{2,3}$, the voltage at point [1] rising towards 12 V according to a negative exponential curve.
When the voltage at [1] reaches the peak point voltage of the unijunction device, the emitter becomes forward biased and the dynamic resistance between the emitter and base 1 drops dramatically to a low value. Capacitors $C_{1,2}$ are then rapidly discharged through the emitter.
When voltage at [1] drops below a critical value - usually about half the saturated emitter voltage for the given circuit - the unijunction transistor ceases to conduct and the cycle starts again.
The signal at point [1] is indicated in Fig. 2. With the improved circuit, comprising all the components, as the voltage at [1] rises, the voltages at [3] and [4] fall and rise respectively due to the increased conduction of $T r_{2}$.
The increase in voltage at [4] is effectively transferred to [5], since C_{3} relatively is large. This rising voltage at [5] makes $C_{1 \& 2}$ charge at a more constant rate, rather than progressively reducing which would occur if the linearisation components were omitted and the charging voltage was the 12 V supply.
Linearisation is further increased by the integrating network $R_{1} C_{1}$ which provides second order compensation for the nonlinearity of the wave form. By adjusting $V R_{1}$, a near-linear

Fig. 2. Waveform obtained using a sitandard unijunction transistor relaxation oscillator.

Fig. 3. Enhancing the relaxation oscillator produces a much more linear sawtooth.
sawtooth may be obtained, a positive ramp appearing at [4] and a negative ramp at [3].
A suitable inverting amplifier, $I C_{\mathrm{b}}$, then inverts, amplifies and shifts the voltage at [4] to a usable level, impedance and amplitude. Voltage at [6] therefore changes as per Fig. 3.
Diode-capacitor pairs $D_{3} C_{7}$ and $D_{2} C_{6}$ find the upper and lower bounds of the voltage at [6] respectively. The upper boundary appears at [8] and the lower at [7]. Op-amps $I C_{\text {bb\&c }}$ then act as voltage followers, lowering the impedance of the voltages at [7] and [8]. The voltages appearing at [11] and [12] can therefore be varied between the upper and lower bounds of the sawtooth at [6].
Potentiometer $V R_{3}$ is arranged such that when one wiper voltage is at the upper bound the other is at the lower and vice versa.
Op-amps $I C_{2 \mathrm{a}, \mathrm{b}}$ act as Schmitt triggers: for $I C_{2 \mathrm{a}}$, when the sawtooth voltage at [6] is greater than the voltage at [11] the output at [13] is high. The same applies for $I C_{2 \mathrm{~b}}$ and points [12] and [14].
Note that since the thresholds for these schmitt triggers are actually derived from the upper and lower bounds of the sawtooth waveform, very high duty cycles may be achieved at their outputs. This technique offers a significant improvement over the duty cycle attainable using standard monostables. In addition, should the sawtooth voltage at [4] and at [6] change by a small amount in amplitude or level, due to fluctuations in the supply voltage, the performance of the circuit will be maintained. This all helps to fulfil my first and fifth design considerations.
Note that $R_{17 \& 19}$ were introduced to provide a small amount of positive feedback, and therefore hysteresis in each schmitt trigger, to reduce any change or erratic triggering.
A simple truth table of voltages at points [13] and [14], Table 2, should help you understand the motor drive circuitry around T_{3-6}.
Clearly when $T_{3 \& 6}$ conduct the motor will move in one direction and it will move in the opposite direction when $\operatorname{Tr}_{4 \& 5}$ conduct.
Note that D_{4-7} and C_{9} are included purely to prevent the mosfets being destroyed by back emf, transient spikes, etc.

Near full power reverse
 reverse

Medium powe

Position of VR_{3}

Fig. 4. These timing relationships show how the pwm control sweeps from full-power reverse to full-power forward.

In order to show more detailed operation of the circuit, and to show that $V R_{3}$ corresponds to the full control range needed, I have produced a timing diagram/chart, Fig. 5. Sections
d, e, and f are particularly useful in this respect.

Modification for servo actuation

Problems will arise when driving $V R_{3}$ from a servo, since the typical angle of swing is $+135^{\circ}$ for a potentiometer, but only 45° for a servo.
Differential voltage $\mathrm{V}_{[10]}-\mathrm{V}_{[9]}$ therefore needs to be amplified using,

$$
\frac{V_{[9]}+V_{[\mid 0]}}{2}
$$

This is achieved by the modification as in Fig. 1b). Wiper voltages of $V R_{3}$ may be varied between the upper and lower bounds of the sawtooth waveform at [6], without using the full range of $V R_{3}$'s travel. The amount of travel used is dictated by the position of $V R_{4}$, and this can clearly be used to carry out the rimming outlined in the design considerations.
In practice the amplification introduced by $I C_{3}$ may need to be so high that the outputs of $I C_{3}$ will saturate, in order to provide the correct range of travel for the servo/ $V R_{3}$.
Under these circumstances R_{10} or R_{11} may require adjustment in order to reduce the gain provided by $I C_{[\mathrm{a}}$, allowing $V_{[9]}$ and $V_{[10]}$ to lie between the maximum and minimum output voltages of the op-amps $/ C_{4 \mathrm{a}}$ and $/ C_{4 \mathrm{~b}}$ -

We are making progress with the new version 5 of SpiceAge

- Rapid digital filter modelling with links to SuperFILTER digital and analogue filter synthesizer (optional extra)
- Non-linear magnetic modelling including ferromagnetic hysteresis
- Extended scope of Modelmaker (optional extra), the utility that synthesizes opamps, transformers, attenuators, bipolar, JFET and MOSFET transistor library models
- Other benefits from this mature product which enjoys dilligent maintenance and profes-
 sional support include: a new manual; new (rationalised) pin convention; faster calculating; larger circuits; tougher convergence; helpful customer base (for mutual problem solving and model sharing); widening third party support with links to schematic capture and synthesis programs (native schematic capture also available as an optional extra). Contact Those Engineers Ltd at 31 Birkbeck Road, LONDON NW7 4BP.
Tel: 01819060155 Fax: 01819060969 Email 100550.2455@compuservee.com

CIRCIE NO. 12 UON REPL Y CARO

Gates convert dc to dc

The 74 AC series of logic gates have a number of unique characteristics, including low static power consumption, very high speed and low output impedance. This makes them an useful building block for some simple and inexpensive power conversion circuits as described here.
These power conversion circuits can be considered as high frequency resonant impedance converters. Their Q is determined by the output impedance of the 74AC logic gate and the L / C ratio. This has the effect of multiplying the input 5 V swing to a higher level, which is then rectified to produce a stepped up positive or negative - or both - dc supply.
Two basic circuits are shown in Fig. 1a) and b). Components L_{1}, C_{1} and C_{2} are the resonant circuit, with D_{1} - or $D_{1,2}$ in the voltage doubling case - providing rectification, with C_{3} filtering the output ripple.
Output voltage against load current is shown for both circuits, equivalent to a $1.1 \mathrm{k} \Omega$ output impedance for the circuit of Fig. 1(a) and $4.5 \mathrm{k} \Omega$ for Fig. 1(b). Negative voltages can be generated by reversing the diodes.

Fig. 2. Logic power conversion applications. a) is useful as a serial-port driver while b can deliver up to $96 d B a$ from a piezoelectric sounder.

Ian Forster has found that 74AC logic gates with their high switching speed and low output impedance - make useful building blocks for simple and cheap lowpower dc-dc converters.

$L_{1} \quad 220 \mathrm{mH}$ TOKO axial
$\mathrm{C}_{1} \quad 100 \mathrm{n}$ ceramic 100 V
Sounder -35 mm piezo sound element in Helmholtz resonator

Figure 2a) shows the idea applied to serial data communications. Here a quarter of a 74 ACO 0 nand gate is used to generate either -10 V by power conversion or +5 V via L_{1} and R_{1}. The main limitation on speed is the value of C_{3}, which includes line capacitance; with the load shown the circuit was able to drive at an equivalent of 9600 baud.

Figure 2b) shows another way the high drive capability of the 74 AC gate can be used. Here the tuned circuit is formed by L_{1} and the capacitance of the piezoelec-
tric sounder disk. Capacitor C_{1} prevents dc being applied to the disc. With the disc mounted in an appropriate Helmholtz resonator, a very high sound level can be produced - in excess of 96 dBa .

Delivering up to 60 V

Figure 3a) shows a power converter high-side driving an nchannel mosfet as a 5 V switch. Mosfets with a p-channel structure tend to have higher on resistance than equivalent n-channel devices and are also more expensive.
In this circuit L_{1}, C_{1} and $C 2$ are
the impedance converter with D_{1} rectifying the signal. Diode D_{2} limits the voltage to avoid damaging the gate. In this example, smoothing of the rectified signal relies on the gate source capacitance, and R_{I} provides a discharge path to allow modulation. As shown, with a $10 / 5 \Omega$ load resistor, the on resistance of $T r_{1}$ was measured as 0.54Ω and modulation with a 50 kHz square wave at the control input gave a $1.27 \mu \mathrm{~s}$ rise and $3.1 / \mu \mathrm{s}$ fall time.
Figure 3b) shows a converter using a much higher impedance transformation and hence higher
output voltages. Under no-load conditions $\mathrm{V}+$ is 65 V and V - is -60 V . With a simultaneous $68 \mathrm{k} \Omega$ load, $\mathrm{V}+$ is 43 V and V - is -38 V .
For interest, I found that it was possible to light a neon lamp with this circuit.
Power conversion circuits using this principle have a number of possible advantages; they are cheap, flexible and, for use in communications circuits, both frequency stable and clock synchronous. This avoids problems associated with jamming of intermediate frequencies.

W/models, radio-communications or general electronics, the one component you can't afford to be without is Electromail.

Electromail gives you instant access to Europe's largest stock of electrical, electronic and mechanical components.

60,000 product lines available ex-stock.
(t) All top brands, tested and approved by our engineers.

Order by Phone, Fax - 24 hours a day, 365 days a year.
Order lines manned 8.00am. to 8.00pm.
(1] Next day delivery available on request.
(1) Repair and Calibration service available.
(1) Nominal P\&P charge of only $£ 2.95$ + VAT on all standard delivery orders.
To find out more about Electromail, See the Internet
http://www.rs-components.com/rs/

Everything you need at the end of the phone!

SPECIAL OFFER

WINDOW STICKERS AND TRANSFERS
 Do It With Electromail" window stickers and transfers. We're giving away 6,000 of them. Simply place an order of any value, including orders for a catalogue, and quote reference EWWI. Please allow 28 days for delivery of your sticker and transfer.

HURRY OFFER ENDS WHEN STOCKS RUN OUT

N/N

A FANTASTIC PSION 3A POCKET COMPUTER

Your chance to win this powerful 256k memory PSION 3A pocket computer. To enter the prize draw simply recommend a friend you think would be interested in the Electromail service. No purchase is necessary. Send your friend's name, address and telephone number, plus your own together with your Customer Reference Number (if you have one) and tell us in not more than 20 words, why you would use Electromail. Applications can be sent by post or fax quoting reference EWWI. Full rules and conditions are available on request. Postal applications to: Amanda Johnston, D.P.N.55, Electromail, P.O. Box 33, Corby, Northants, NNI7 9EL
Fax Applications: F.A.O. Amanda Johnston on Fax No 01536405555

All entries must be received at Electromail's office
 by 5.00 pm on Friday 31 st May to qualify. All qualifying entries will be included in the prize draw and the winner will be advised by post by loth June. This compectition is not open to employees (or their families) of Electromail or associated companies, or public servants and members of government bodies or agencies involved in this promotion. No cash alternative is available and no correspondence will be entered into. The judges decision is final.
Electromail, P.O. Box 33, Corby, Northants NNI7 9EL.

Low-noise antenna preamp

In D F Conway's low-noise, narrow-band masthead amplifier, input is shared

 between two mosfets. This eliminates the balun, enhances overload capability and reduces harmonic levels for high-level in-band signals.This amplifier is specifically designed to be connected to a balanced antenna input for reception of signals over a narrow band of about 2 MHz . It was originally designed as a mast-head amplifier for receiving weather satellite transmissions in the range of 137 MHz to 138 MHz . However, its centre frequency can be varied over a wide range by selecting suitable values for the tuned circuit components.
The amplifier has 28 dB gain and a low noise figure. It is powered from a $12-15 \mathrm{~V}$ supply, fed down the coaxial cable. Mast-head amplifiers are an effective method of enhanc-

Liutenant Commander D F Conway, ME(Elect), MIEE, MIPENZ, C Eng, psc, RNZN.

Fig. 1. Output signal amplitude for a signal swept from 0 Hz to 1 GHz . The hump at about 700 MHz is mainly due to self resonance of the dc blocking circuit used to isolate the supply voltage from the spectrum analyser input.

Fig. 2. Output signal amplitude for a signal swept from 100 MHz to 200 MHz . Frequency response is narrow and shows good roll off.
ing weak signals because they provide a gain stage at the antenna. Any loss that occurs between the antenna and the first gain stage adds directly to the noise figure of the entire antenna/receiver system.
Most single transistor amplifiers have an unbalanced input which requires the insertion of a balun between a dipole antenna and the amplifier. These have insertion losses of about 1 dB or more ${ }^{1}$ which is greater than the noise contribution of typical low noise amplifiers.

Parallel amplifiers

This amplifier uses two low-noise mosfets as parallel amplifiers to remove the requirement for a balun at the input and improve the dynamic input power range when compared to a single-device amplifier.
Sharing the input signal between two mosfets means that the amplifier will accept a 3 dB higher signal before overloading, compared with a single device amplifier. This in turn raises the third-order intercept point by 9 dB . The circuit looks similar to a long-tailed pair but the inclusion of by-pass capacitor C_{1} decouples the sources of both mosfets to ground.
To ensure even power sharing between the devices, it is important that both signal paths have the same characteristics. Balance is achieved by a symmetrical circuit layout and by the input and output inductors. The transformer action of these inductors compensates for any gain variations between the two mosfets. This is so effective that varying $R V_{1}$ over its full range has no observable effect on the amplifier's overall performance.

Implementation details

Correct operation of such a high-gain amplifier depends on good circuit layout and proper shielding. I constructed the amplifier on a double-sided pcb using surface mounted devices to minimise parasitic reactances.
The BF981 device is obsolete and has been repackaged as a BF991. I used the BF981 because the SOT-103 package can be mounted on its 'back' so that the rf signal paths through both mosfets were symmetrical.

Fig 3. Output frequency spectrum for a OdBm input at 137.5 MHz . Even at this high input level, the second harmonic is down 30 dB while the third is down 50 dB . Sweep frequency is $0-500 \mathrm{MHz}$.

Fig. 4. Output frequency spectrum for a -30 dBm input at 137.5 MHz . At this lower input level, the second harmonic is down 50 dB while the third is down 70 dB . Sweep frequency is $0-500 \mathrm{MHz}$.

Fig. 5. Plot of input signal level at 137.5 MHz versus the output levels of the fundamental, second and third harmonics. The $1 d B$ compression point occurs at about 5 dBm while harmonic suppression is good even at high input levels.

Shielding made of sheet steel was used to isolate the input and output signals and prevent oscillation.
Inductors are air cored, space wound using 18 swg enamelled wire. The centre tap is a short piece of wire soldered to the centre turm On the output transformer, the secondary winding is one turn that straddles the centre tap of the primary coil.
The setting up procedure consists of soldering a short link in place of C_{3} and measuring the supply current, which should be 10 to 20 mA . Replace the link with C_{3} and adjust $R V_{1}$ so that the supply current is now double the initial reading. Connect the antenna to the amplifier and adjust C_{4} and C_{5} to achieve maximum amplifier output at the desired input frequency.
Performance of the amplifier is fully recorded in the plots.

To summarise

This amplifier is suitable for receiving weak signals and is for use with a balanced antenna Its narrow bandwidth provides good reception in the presence of high level out-of-band interference. As a bonus, using two mosfets to share the load significantly reduces harmonic levels for high-level in-band signals.

Reference

1. Mini-Circuits rf/if Designers Handbook,
'92/'93 Section 14
 operation at 137.5 MHz .

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopgate Street, Leeds LS I 4BB Tel: (0||3) 2435649 Fax: (0||3) 242688 |

CIRCIE NO. 123 ON REPLY CARD

OATRON 1071 zutocal digital multumet

FLUKE 5100 B caritrator.................

SPECIAL OFFERS

TEST EQUIPMENT

TALCOR S27E frequency difference meter...
WAYNE KERR 3245 precision inductance analyser.................... 6500
ANRITSU MS6SA 2 GHz error decector.................. 61500
SG503/SG504 Cal sys

TEKTRONIX 521 A Vector scopes.

SCHLUMBERGER AF 4053 tone generator/modulator
AMBER MIOOBVSS hipot teste
MARCO \& GOLTERMAN PSSI9 level generator............................ 6550
MARCONI 695016910 O 10 MHz -20GHz RF power meter.
MARCONI TK23A VSWR indicator
MARCONI TF2334 zero loss probe......
EIP 371 IB GHz source lock ing mictery porable ...

 HP435B/8481A 10 MHz . 18 GHz RF power meter.....

EWreader offer 30V, 5A power supply

For a limited period, Vann Draper is offering over 25% discount on the 305 LDD - a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at $£ 159$ excluding VAT and delivery but it is available to EW readers filling in the coupon on the right at the 25% discount price of $£ 139$ - fully inclusive of VAT and delivery. Infinitely variable between 0 and 30 V - with coarse and fine controls and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10 mV . Its load regulation is also excellent, at typically $\pm 0.2 \%$.

Accuracy of the supply's dual 3.5 -digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at $5.5 \mathrm{~A} \pm 0.5 \mathrm{~A}$. When the overload circuit is activated, it causes both audible and visual alarms, reseltable via a push-button on the front panel.

Dimensions of the 305 LDD are 310 by 260 by 120 mm and its weight is 5.5 kg . Housed in a light-grey steel enclosure, the unit is built to comply with UL, CSA and TUV satery standards.

Features of the 305 LDD

0-30V fine and coarse adjustments 0-5A adjustable
 10 mV ripple
 Digital displays for V and I
 Continuous short circuit protection $\pm 0.2 \%$ load regulation

Use this coupon to order your 305 LDD
Please send me 305 LDD(s) at the fully inclusive special offer of $£ 139$

Name
Company (if any)
Address

Phone number/fax
Total amount
£..............

Make cheques payable to Vann Draper Electronics Ltd
Or, please debit my Master, Visa or Access card.
Card type (Access/Visa)

Card No
Expiry date
Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fox credit card details with order on 01162773945 or telephone on 01162771400 .
Address orders and all correspondence relating to this order to Vann Draper Electronics af Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE 18 2PL.

- Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Audio Knt and factory assembled unis use the unique combnabion of circunt designs by the renowned John Linsley Hood, the very est audiophile components. and our own engineering experitse. to We have always led the field tor easy home construction to professional standards, even in the sixtles we were using easily assembled primed cricuits when Heathkit in America were still using tagboards! Many years of experience and Innovaton, going back to the early Dinsdale and Baiey classics gives us incomparabie design background in the needs of the home constructor. This simply means that hat not only saves you money but you will be proud to own.
Why not buy the reprints and construction manual to the kit you Interested in to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequen kit purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Unsley Hood designed amplifer is the llagship of our range. and the ideal powerhouse for your utimate hifi system This kit is your way to get uk performance at bargain basemeni prices. Unique design reatures such as fully FET stablised powe supplies give this amplifier World Class penformance with starting clanty and transpancy of construction. of components and ease of construction,
Useful options are a stereo LED power meter and a versatile passive
front end giving switched inputs. with ALPS precision Blue Velvet tront end giving switched inputs. Writh ALPS precision Blue Velvet and enjoyable with all the difficult work done for you, even the winng is preterminated. ready for instant use!. All versions are avalable with Standard components or specially selected Super Audiophile com ponents at $£ 29.60$ extra per channel, plus ui 2.40 if you want to include Goid Plated speaker ferminals.
K11008 Complete STANDARD Ampliter Kit, $\mathbf{\Sigma 3 9 5 . 2 1}$ A1 100B Factory Assembled. K1100SC Complete SLAVE Ampilfer Kit. A1 100SC Factory Assembied. A1100M Factory Assembled.. A1100M Factory Assembled.......... £499. 21 K 1100 CM Construction Manual with ع422.62 £422.62
[261.20 E261.20
E329.20
"CHIARA" SINGLE ENDED CLASS "A" HEADPHONE AMPLIFIER.

This unit provides a high quality neadphone output for 'stand alone' use or to supplement those many power amplifiers that do not have the unit draws its power from our new Andante Ultra High Quality lin ear toroidal supply. Housed in the neat, black finished, Hart minibox It features the wide frequency response, low-distortion and 'musical ity that one associates with designs from the renowned Jotin Linsley Mood. Pre-terminated interconnecting leads and PCB mounted sock ets prevent supply polanty reversal and on-board diagnostics provide visual indication of supply line integnty. Volume and balance controls are Alps "Blue Velvet" components. Very easily bult, even by begin ners, since all components fit directly on the single printed clicuit board. The kit has very detailed instructions. and even comes with a complementary foll of Harr audiograde siver solder. if can also be cost of all the components, if they were bought separately this uni represents incredible value for money and makes an attractive and harmontous addition to any hifi system. K2100 Complete Kit
. 109.50
K2100SA Senes Audiophile version with selected audiophile components.
. $£ 112.46$
A2100SA Series Audiophile version. factory Assembied. .. $£ 149.46$ K3565 "Andante" Power Supply Kit to suit "Chiara". c85.42 CM2100 Construction Manual.

ع128.42
SPECIAL OFFER. Both unts together, Kit Form..
ع $£ 267.8$
"Andante" SERIES 2OVA AUDIOPHILE POWER SUPPLIES
Specially designed for exacting audio use requinng absolute mini-
mum noise. Iow hum figld and total freedom from mechanical noise this unit is a logical development from our highly successful 1550 series.
Utilising linear technology throughour for smoothness and musicality makes it the perfect partner for any module requiring fully stabilised $\pm 15 v$ supplies.
Two versions are available. K 3550 has $2 \pm 15 \mathrm{~V}$ supplies and a single 15 v for relays etc. and can be used with our K1400 preamp and our K1450 RIAA pickup preamp. as well as other useful modules soon to be introduced. The K3565 is identicai in appearance but only has the $\pm 15 \mathrm{v}$ lighter current supply for use with the
amplifer or "Chuara" headphone ampli
K3565 Power Supply for K1450 \& K2100..
.

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS

Now you can throw out those nolsy ili-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching realy is
incredible giving better tonal baiance between channels and rock incredible giving better tonal baiance between channels and rock MANUAL POTENTIOMETERS
2.Gang 100K Lin.
-Gang 10K 50 K or 100 K Log
ع15.67 2-Gang 10K. 50 K or 100K Log £16.40 MOTORISED POTENTIOMETERS
2-Gang 20K Log Volume Control 2-Gang 10K RD Specia
loss in centre position.

TECHNICAL BOOKSHELF

 NEW! Another Classic by John Linsley Hood. "AUDIO ELECTRON ICS" Following the enormous ongoing success of his "Ar of LinearElectronics" the latest offenng is the all-new edition of "Audio Electronics" the latest offenng is the all-new edition of "Audio Electronics", now entirely re-written by the master himself. Underiying audio techniques and equipment is a word of electronics that determines the quality of sound. For anyone involved in designing. adapting or using digital or analogue audio equipment understanding The subjects covered include tape recording, tuners, power output stages, digital audio, test instruments and loudspeaker crossover systems. Jonn's ifietime of expenence and personal innovation in this field allow hum to apply his gith of being so familiar with his subject that he can write clearly about it and make it both interesting and comprehensibie to the reader. Containing 240 pages and over 250 line llustrations this new book represents great value for money at onlys.

"THE ART OF LINEAR ELECTRONICS.

The defintive linear electronics and audıo book by John Linsley Hood. This $300+$ page book will give you an unparalleled insight into diagrams and understand amplifiers and how they are designed to give the best sound. The virtues and vices of passive and active components are examined and there are separate sections covering power supplies and the sources of noise and hum. As one would expect from this writer the history and derivation of audio amplifier circulty have an entire chapter, as does test and measurement equipment. Copiously filustrated this book is incredible value for the amount of information it contains on the much neglected field of linear, as opposed to digital, electronics. Indeed it must be destined to become the standard reference for all who work. or are interested in, this field. Latest reprinted edition with extended index. 1994.344°
"digital audio and compact disc tecmnology" 0-7506-0614-217.95* INTRODUCING DIGITAL AUDIO CD, DAT AND SAMPLING. ISBN $\begin{array}{r}\quad \\ \hline 7.95\end{array}$
THE ART OF SOLDERING" 0-85935-324-3. O TOWERS' INTERNATIONAL TRANSISTOR SELECTOR" 0-572-01062-1

19.95°
.$£ 3.95$

AUDIO" F.A Wilson. BP111
 HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT"

(4th Edn.) 0-9624-191-7-6 .E. C22.95 ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUC TION Ronald Wagner BKT6 INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE -... $£ 2.95$ "LOUDSPEAKERS FOR MUSICIANS" BP297 33.95 "THE MART PRINTED CIRCUIT BOARD CONSTRUCTION

VALVE \& EARLY CLASSIC BOOKS

THE VTL BOOK David Manley BKVT195 TION EAKERS; THE WHY AND HOW OF GOOO RED 88 MULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAA27
"THE WILLIAMSON AMPLIFIER." 0 -9624-1918-4 ... $£ 13.95$ AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN GEC 1957. 1-882580-05-2 AUDIO ANTHOLOGIES, articles from Audio Engineening. Six voumes covering the days when audio wasyoung and valves were king!
BKAA $3 / 1$ to 6 . All "A SIMPLE CLASS A AMPLIFIER" JLLLInsley Hood M.I.E.E. 1969. RLH12.
Postage on all books, unless starred, is only ut .50 per book, maxi mum u4.50 for any number, any slze!. Starred ltems are heavy books costing SPECIAL OFFER Insley Hood monograph entitled "Digital versus Analogue, Black Disks or Silver?"

SPECIAL OFFER
 PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give lis best? Our lates tinple purpose test cassette checks thethree most important tape parameters without test equipment. Ideal when fiting new heads a professional quality, digitally mastered test tape at a pnce anyone
can afford. Test Cassette TC1D. Our price only.
\&.

HC80 Replacement Stereo Cassette Head.

. PiP head.Even the slightest depend wear on the quality of the R/P head.Even the slightest amount o HC8O is atoo quality head from one of the foremost manutacturers in Japan, easily fitted to most standard stereo recorders (except Sony) and will transtorm the performance over a worn head. Only the fact that we buy these In vast quantites enables us to offer them at the amazing price of only $£ 11,70$ each or 2 for $£ 17.60$.
We also stock a range of other heads, including ${ }^{-3}$, real-*-reet stere We also

SOLDERING

The size of modern components makes the right soldering equipment essential for good results. Everything we offer we actually use in our own workshops! See our Lists for the full range. $845-820 \times 5240$ ANTEX 240 v 25 w Soldenng Iron. This is the ideal Multi-purpose fron as the bit is designed to totally surround the element giving the bes heat transfer. This excellent design also means that although it is small and handy enough for modern components its heating capac ty is better than larger rons of conventional construction. Excellen Value. $845-080$ ST4 Lightweight Soldering Iron Stand. This has provision to

HART SUPER AUDIOGRADE SILVER SOLDER.

Hart Super Audiograde Siver Solder has been specially formulated to the serious audiophile. Not only does it give beautiful easy-to-make joints but it is designed to melt at normal soldering temperature for special hlosh temoerature rmal damage to components or the need fect joints easy but ellminates the need for board cleaning atte assembly.

845-007 3mtrs 22SWG in Hatt Mini Tube 3.90
$845-008100 \mathrm{~g}$. Reel Speclal Valve Grade, 20 swg
845-009 100g. Precision PCB Grade. 22swg
..... 14.75
845-110 100 g Reel Superfine 24 swg for ultra precise control and

Relaying
 transmission line principles

Bill Russell shows how transmission line principles can be explained clearly and simply with the aid of basic measurement equipment and an artificial delay line.

Fig. 3. Signals for a onewavelength matched line. Output at the load, one wavelength from the input is in phase while at tap 5, half a wavelength from the input, the signal is 180° out of phase. In this and subsequent diagrams, the top waveform in each screen represents input voltage.

The concept of a travelling electromagnetic wave, and the ac voltage and current supporting the wave, has always been a difficult one to present in non-mathematical terms. Even in this age of computer simulation, students remain unconvinced, and ask if there is any simple way that they can establish the basic principles in the laboratory
In the past, it was usual for most teaching establishments to have a lumped component line, with a delay of 1 ms , a Z_{0} of around 600Ω, and often with small current-sensing resistors so that progressive voltage and current waveforms could be displayed on an oscilloscope. The real problem - that of simultaneously displaying voltage and current against time and distance along the path of the wave - is not truly solved. However, progressive measurements allow the phase lag and phase velocity to be established. Additionally, current and voltage distribution along the line can be recorded with different terminations.
Unfortunately, the large inductors required for such lines are difficult to accurately fabricate. They also introduce significant losses, which result in discontinuities along the line, heavy attenuation, and a characteristic impedance Z_{0}. Although Z_{0} may have the correct magnitude, it has a definite reactive component, making such lines unsuitable for simple introductory experiments.

Evaluating the delay line

The discovery of a set of early 1980s computer boards containing 12 -pin encapsulated $8 \mu \mathrm{~s}, 8 \mathrm{k} \Omega$ delay lines suggested a possible solution. A few simple measurements showed that these lines could be operated into a resistor of $8 \mathrm{k} \Omega$ at frequencies of 100 kHz to 200 kHz .
These lines produce negligible standing wave or attenuation The delay appeared to be generally about $8.4 \mu \mathrm{~s}$. Frequencies of

Fig. 4. Ignoring a small capacitive lead, the ratio of input voltage to current gives a nominal resistance equal to that at the termination one wavelength a way. This shows that the ratio of line voltage to current in a travelling wave is constant along the length of a matched line. Load is $8 \mathrm{k} \Omega$.

Fig. 1. Below, test set-up for the artificial lines. Simple resistive terminations of $Z_{o}, 2 Z_{o}$ and $0.5 Z_{o}$ are provided for each line.

Fig. 2. Above, this ac interface allows 50Ω signal generator output to be matched or mismatched to the line input. The 100Ω resistor in the return line monitors input current when required.

Fig. 5. In the half-wavelength matched line, outputs at the load and at tap 5 are 180° and 90° out of phase respectively.

Fig. 6. Half-wavelength matched line outputs at the load, top screen, and at tap 5, bottom screen, are lagging by approximately 90° and 45° respectively. Top waveform in each screen represents input voltage.

approximately $120 \mathrm{kHz}, 60 \mathrm{kHz}$, and 30 kHz allowed the lines to simulate one, half, or quarter wavelengths of uniform line. In addition each delay line had taps at each of the ten sections.
The initial exercise was to calculate the inductance and capacitance per section of the delay line using the simple theory of a lossless tine.

Delay per section for $T_{\mathrm{d}}=0.8 \mu \mathrm{~s}$ is $\sqrt{ }\left(L_{\mathrm{s}} C_{\mathrm{s}}\right)$
Characteristic impedance for $Z_{0}=8 \mathrm{k} \Omega$ is $\checkmark\left(L_{\mathrm{s}} / C_{\mathrm{s}}\right)$
Note that L_{s} and C_{s} are the inductance and capacitance per section. This gives:
$L_{\mathrm{s}}=T_{\mathrm{d}} Z_{\mathrm{o}}=6.4 \mathrm{mH}$ and $C_{\mathrm{s}}=T_{\mathrm{d}} / Z_{\mathrm{o}}=100 \mathrm{pF}$.
A second type of nominal delay, $4 \mu \mathrm{~s}$, and $\mathrm{Z}_{\mathrm{o},} 4 \mathrm{k} \Omega$, gave 1.6 mH and 100 pF . Since these values are easily practicable, discrete lines could be fabricated in place of the encapsulated ones obtained so fortuitously. The simple test panel for the artificial lines is shown in Fig. 1. Simple resistive terminations of $Z_{0}, 2 Z_{0}$ and $0.5 \mathrm{Z}_{\mathrm{o}}$ are provided for each line. Open circuit and short circuit options are also available

Making measurements

Measurements using sine waves are described first, since these can be carried out with a standard 0.2 Hz to 2 MHz function generator and a 20 MHz double beam oscilloscope. An ac interface, Fig. 2, allows the 50Ω output of the signal generator to be matched or mismatched to the input of the line. The 100Ω resistor in the return line monitors input current when required.
Initial measurements are carried out with source and terminating resistors set at $8 \mathrm{k} \Omega$. The waveform generator output is adjusted to give a sine wave of 8 V peak on the 200 to 200 kHz range. Frequency is adjusted around 120 kHz so that line input and output voltages on channel 1 and 2 are in phase.
The line is now equivalent to a transmission line of one wavelength and the voltage at each tapping point will establish the progressive phase lag over one wavelength, a slight indication of a standing wave, and a small attenuation over the ten sections. Figure 3 shows the output at the load end, and at the halfway point. This means that, as was to be expected, the artificial line is not entirely loss free, hence Z_{0} will have a reactive element.
Channel 2 is now moved to the line end of the 100Ω resistor and the sensitivity increased to display the line input current of the nominally matched line. The ratio $V_{\text {in }} / I_{\text {in }}$ gives the nominal value of line input impedance, and it will be noted that this is approximately $8 \mathrm{k} \Omega$ with current leading by a small angle. Figure 4 shows the input voltage and current for the matched one wavelength line.
Readjusting frequency - so that the line behaves as one half, and one quarter wavelength - enables the simple properties of these line lengths to be established. This is provided measurements are carefully recorded and processed. For the purpose of this article, measurements were made using a storage oscilloscope with plotter interface so that a hard copy of the waveforms could be obtained. A selection of these results is shown in Fig. 5 and 6.

Fig. 7. With a wavelength line, a $16 \mathrm{k} \Omega$ load results in a 2:1 mismatch at the end of the line, and inspection of the voltage at successive taps shows a 2:1 voltage-standing-wave having maxima at each end and in the centre (half-wavelength) and minima at quarter and three-quarter wavelengths from the input. The voltage/current at the input (8 V and 0.5 mA) gives a nominal input resistance of 16 k 2 - identical to that at the load, one wavelength away. Due to the 2:1 standing wave of current, the line voltage/current at the quarter and three-quarter wavelength points will thus be 4 V and 1 mA , giving a line resistance at these points of 4 k . This is more appropriately shown by the measurement on a line of electrical length quarter-wavelength as in Fig. 10.

Fig. 8. Loading of $4 k \Omega 2$ also results in a 2:1 mismatch, with a corresponding standing wave. This time minima of 4 V appear at each end and in the centre (halfwavelength). Input resistance is again equal to that at the termination i.e. $4 \mathrm{k} \Omega$ due to the standing wave of voltage and current: Line voltage to current ratio will be a maximum of 16 ks (8 V and 0.5 mA) at the quarterand three-quarter wavelength points, and a minimum of $4 \mathrm{k} \Omega$ (4 V and 1 mA) at the halfwavelength point.

Fig. 9. Due to the standing wave caused by the 2:1 mismatch, the voltages at input and load are minima of 4 V but are in antiphase. If monitored, input current would be maximum of 1 mA (input resistance $4 k \Omega$). At tap 5 - the quarter-wavelength point - the voltage is a maximum of 8 V and lags by 90°. Standing wave current at this point would be 0.5 mA (16k Ω).

Fig. 10. With a quarter-wave line, 16kS2 loading establishes 2:1 voltage and current standing wave on the quarter-wave line, with a voltage maximum (8 V) and a current minimum (0.5 mA) at the load end. Voltage minimum (4V) and current maximum (1 mA) occur at the input. This is a particular example of the so called 'quarter-wave transformer' in which the ratio of output to input resistance is proportional to the square of the standing-wave ratio, in this case $4: 1$.

Line properties

In order to establish the properties of a mismatched line, the input is readjusted to the frequency. This makes the line equivalent to one wavelength, and the line is terminated in $2 Z_{0}$ or $Z_{0} / 2$. Monitoring the voltage outputs at successive taps will indicate a 2:1 voltage standing wave on the line in each case with successive maxima and minima spaced at quarter-wave intervals. With a $16 \mathrm{k} \Omega$ load, voltage maxima occur at each end and in the middle (half-wave point), with minima at the quarter-wave and three-quarter-wave points. With a $4 \mathrm{k} \Omega$ load, a $2: 1$ standing-wave ratio is again produced but the relative positions of maxima and minima are interchanged.
Figures $\mathbf{7}$ and $\mathbf{8}$ show conditions at the input of these lines and by inference, conditions at successive 14 wave points can be deduced. Figure 9 shows the input, output at the load, and the output at tap 5 for a mismatched line of half-wavelength. Figures 10 and 11 are included to show examples of the traditional quarterwave matching section.
A second delay line used had characteristics of $4 \mu \mathrm{~s}$ and $4 \mathrm{k} \Omega$. Connected to the main $8 \mathrm{k} \Omega$ line and operated at a frequency which makes the 4μ s line equivalent to quarter-wave, a $2 k \Omega$ load caused a standing wave in the quarter-wave section and acts as a rough match for the main $8 \mathrm{k} \Omega$ line.
Due to the wide range of measurements provided by this delay line arrangement, the whole exercise is designed to be broken down into a progressive series of laboratory sessions. In this way practical expertise and theoretical understanding gradually increase and are mutually supportive. The use of artificial delay lines to measure the propagation of rectangular pulses will be examined in a further article.

Further reading

1. Ian Hickman, 'RF Reflections’, $E W+W W$ Oct 1993.
2. D.C.Green, 'Radio Systems Technology', Ch. 3, Transmission Lines.

Fig. 11. Again with a quarterwave line, $4 \mathrm{k} \Omega$ load establishes a voltage and current standing wave, with a voltage minimum (4V) and current maximum (1 mA) at the load, and a voltage maximum (8 V) and current minimum (1 mA) at the input. In this case, output and input resistances are in the ratio 1:4.

Fig 11. Again with a quarter. -

seetrax cae RANGER pCb design WITH COOPER \& CHYAN AUTOROUTER

RANGER3 - DOS
 £2500
 - Windows\MT £2900

Hierarchical or flat schematic linked to artwork.
Unlimited design size, 1 micron resolution Any shaped pad, definable outline library
Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC

COOPER \& CHYAN SPECCTRA
autorouter (SP2)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet,

HP-GL, Gerber,
NC Drill, AutoCAD DXF*

RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking,

Curved tracks, Clearance checking,
Simultaneous multi-layer auto-router

COOPER \& CHYAY SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

TRADE IN YOUR EXISTING PACKAGE TODAY

 WORID

+ WIREIESS WORID

MARCH 1995
FREE Circuit Ideas pocket book Part 1 Distartian from power-amp supplies
Winning power switching circuits Enhance RS232
Transmission lines explained
Tesla's ht generator
unque oter - ventirreadoul mmpardiure sensor

ELECTRONICS
 WORLD
 +WIRELESS WORLD

AUGUST 1995

20 Hz active subwoofer
Getting more from RS232
PC engineering: signal analysis
24 cm antenna
DSP demystified
Analogue signal processing
GPS designer's kit

ELECTRONICS WORLD
+WIRELESS WORLD

APRIL 1995

FREE Circuit Ideas pocket boak Part 2 ISDN - inside the world network Linsley-Hood's attenuator for audio Evidence for the slew-rate debate Self-funing $\mathbf{5 0 H z}$ filter for instrumentation

SEPTEMBER 1995

New audio power solution
Analogue design for a single-rail
MicroCap 5 reviewed
Nulling coil interaction
New balanced amplifier design Analysing fm noise

BACK ISSUES

Back issues of Electronics World are $£ 2.50$ in the UK and $£ 3.00$ elsewhere*. Price includes postage. Please complete the coupon and send with correct payment to: Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Note that all issues are subject to availability and please allow 28 days for delivery

Hexusive - 20% tiscount on lice mote ELECTRONICS WORLD

+ WIRELESS WORLD

Versatile s220 i/\% contraller for हi99
JUNE 1995
AUDIO SPECIAL
Tri-modal audio power
Microreflex full-range loudspeaker Audio power ICs exposed
Researching via the Internet
New concept in i/o control

OCTOBER 1995
FREE Circuit ideas pocket book
Sweeper for 0 to 200 MHz
IEEE488 testing made easy
Current probe for switching mosfets
Valve audio
Anolysing circuils via energy
DC circuit design

Elictronics WORLD

+ WIRELESS WORLD

xelusive - PCBs for Sell's taimodal anye
JULY 1995
PC Interfacing
Signal Centre reviewed
Coaxial cable analyser
Dual mirror for foster audio
Modulating linearly
Oscillator innovations
Kay Intarnol modem parts for undar flout
ELECTRONICS
WORLD

NOVEMBER 1995

FREE Zetex SV regulotor
Optoelectronics investigated
Isolate RS232
14.4 kbaud fax/data modem

Power and Class-C
Linsley-Hood noise reducer
Applying the ZR78L05 regulator

FR보코
With every two back issues ordered -
Engineer's Pocket Book Worth £4.95

Issue (Month/Year)	Quantity	Price	Total

Name

Address

Method of payment (please circle):
Access/Mastercard Visa Cheque PO
Cheques made payable to Reed Business Publishing
Credit card No
Expiry Date
Signed

Cyril Bateman runs through the practicalifies of down-loading software from the Net - using a working yet almost free demonstration version of PSpice as an example.

Having followed Doug Self's amplifier series, or Owen Bishop's introductory circuit design articles, you might have had a desire to learn PSpice hands on'. Buying the required software can be prohibitively expensive. The cost of down loading an evaluation copy from Internet, however might surprise you.
Over the past year, in the Internet Newsgroups targeted to Electronics and this periodical, interest in using circuit simulation has doubled. An Internet 'Gopher' search against 'PSpice' produced 258 'hits' compared with 143 in February 1995. ${ }^{1}$
Fundamental to circuit simulation is the 'device model' used with the simulation software. An op-amp could be described using the exact circuit description, but this would result in very large files and slow simulation, so most semi-conductor makers issue disks of simplified 'MacroModels' extracted using the PSpice 'Parts' software. For most users simulations produced in this way are sufficiently accurate.
Burr-Brown offer a disk - part No $A B / E-020 F$ - for the company's op-amp catalogue. It includes four levels of model topologies, 'MacroModels' and three improved levels. These culminate in 'Level IV: Simplified Circuit Models' describing the op-amp at the transistor level for the most accurate simulations. Disks are available on request from the relevant customer service departments for most manufacturers.

This article demonstrates File Transfer Protocol, FTP, using the Internet software included with

OS/2 Warp. Where possible actions needed using Windows or the Mac computer are also indicated - assuming you have access to a local FTP host.
Carrying out the quotes as shown should enable successful transfer of the PSpice software. The indicated costs assume BT costs at 3.5 p per minute and Service Provider costs at $£ 3$ per hour, using a 14400 baud or faster modem with off-peak transfers typically at $100 \mathrm{kbyte} / \mathrm{min}{ }^{1}{ }^{1}$
The best off-peak times are Saturday and Sunday momings
(a)

Fig. 1a) Logging on to a remote host, using anonymous ftp. Microsim.FTP(Windows only) 'ftp.netcom.com'.
1b) lastate.edu(dos/Windows/Mac) 'Klingon.ee.iastate.edu’. Hosts automatically respond with the correct drive set to its root directory.
Macro-models for use with PSpice

Analog Devices.	Spice Model Library.
Apex Microtechnology Corp.	Spice Models
Burr-Brown Corp.	Application Note AB/E-020F
Harris Semiconductor.	Analog Products.
Linear Technology Corp.	Spice models.
Texas Instruments Corp.	Mixed Signal Access
Useful Internet sources	
Internet Newsgroups	sci.electronics sci.electronics.design sciectronics.cad sci.electronics.basics sicielectronics.equipment sci.electronics.components

while America sleeps, however these times are used for file maintenance in the US (2-5am US local), hence the best times for large file transfers tend to be 10 am to 1 pm .

Constantly updating

The Internet is always changing, I recently down loaded a copy of PSpice Eval6.1 from,
-ftp.iastate.edu/pub/pc/p spice',

However on preparing this article, I found a message saying PSpice

Apex Microtechnology Corp.
Burr-Brown Corp.
Harris Semiconductor.
Linear Technology Corp.

Useful Internet sources
Internet Newsgroups sci.electronics
sci.electronics.design
sci.electronics. basics
sci.electronics.equipment
sci.electronics.components
had moved. An Archie search against 'PSpice' indicated two sources, relocated at 'klingon.ee.iastate.edu' and the new source at Microsim's FTP site 'ftp.netcom.com'.
Microsim's own source at 'ftp.netcom.com' offers the latest Windows evaluation version (6.2) of PSpice. This includes schematic capture, Optimiser and Polaris, in total around 12 Mbyte of self extracting zipped files. Its transfer cost is $£ 10.20$.
Address 'klingon.ee.iastate.edu' has a slightly older version of 6.2 split into floppy-sized files. These might be easier to down load - in total around 14Mbytes - and with a transfer cost of $£ 12.60$. To use these Windows versions you must have a suitable 'win32s' file. This is available from either site. Also, a minimum of a 386 with co-processor is needed, together with 8 Mbyte of extended memory, Dos 5 and Windows 3.1.
Address 'klingon.ee.iastate.edu' also has Mac and dos evaluation versions of PSpice, including 'pseval5.3' for dos which does not need a co-processor. While the dos versions do not have schematic entry, they have much smaller files, typically 2.5 Mbyte costing only $£ 2.25$ to down load. This is an ideal low-cost start to circuit simulation especially if your only access to FTP is by 'E-Mail'.

Logging on to the net

Having decided which version of PSpice you want, start up your local FTP host and log-on to the chosen site using 'anonymous' FTP, Figs 1a) and 1b).
Change to the correct 'remote' directory, capture the screen or print this directory for later use, transfer the appropriate text files, save to disk and log-off, Figs 2 and 3
Read the down-loaded text files; see Table.
Having read the text files, choose

Table. Files on the net relating to PSpice - and where to find them.			
Remote host	Microsim.FTP(Windows only)	lastate.edu (Dos/Windows/Mac)	
Log-on:	"ftp.netcom.com"	"klingon.ee.ia	tate.edu"
Remote Directory	"/pub/mi/microsim"	"pub/pspice"	
Text File	"message.txt"	(PC only)	(Mac only)
also	"wineval.txt"	"pspicftp.txt"	"pspicmac.txt"

which packages are needed and highlight these on the directory printout. Repeat the above log-on, select Transfer Mode Binary, select the required files and down load.
With large file sizes, if for any reason the transfer slows down unduly, wait for 2-3 minutes, or longer if much of the file has already transferred, to see if it restarts and/or regains speed. If not log-off and try for a less busy time

Limitations of the Pspice evaluation package

'PSpice', by Microsim Corporation, is the industry standard pc simulator and is available in several versions These range in price from $£ 115$ for the evaluation system with manuals to $£ 4200$ for the standard package.
With the evaluation package, circuit simulation is limited to circuits with up to 64 nodes, 10 transistors, two op-amps, or 65 digital primitive devices, or a combination thereof; 10 ideal transmission lines with not more than 4 non-ideal lines (lossy lines using RLGC parameters), 4 coupled lines; device characterisation limited to diodes; stimulus generation limited to sine waves; sample library of 22 analogue and 140 digital parts. Schematic capture is limited to single A4 page schematics, containing a maximum of 25 symbols, with a reduced symbol and package library set.
Manuals can be purchased from Microsim. Alternatively, should the on-screen 'Help' not suffice and a low cost option is needed, Spice - A Guide to Circuit Simulation \& Analysis Using PSpice by PW Tuinenga of Microsim Corporation might well suffice. ${ }^{2}$
later. Some packages provide auto logoff after a pre-selected inactive period for example five minutes, Fig. 4.
File-Transfer Protocol has two modes of file transfer. Text mode is restricted to printable characters, e.g. text only files, while binary mode transfers the full ascii set and is essential for program or zipped files.
A word of caution. If you are down loading Windows software from the Internet, always ensure you have a valid current backup of your disk before installing the package. From past experience, some sites do not supply the complete configuration routines. The new package works fine, but corrupts the system files, such that none of the old software works. Once more, back-up first so that you can easily restore if needed
Readers wanting more information on requirements for accessing the Internet should see reference 1 .

References

1. Surfing with Intent $E W \& W W$ June ' 95 pp. 488-492.
2. Spice - A Guide to Circuit Simulation \& Analysis Using PSpice by Paul
W.Tuinenga, Prentice Hall ISBNO 13
3.

Fig. 4. OS/2 warp internet 'dialler'. Note the horizontal 'speedometer' bar above 'Connected through...' showing the present transfer rate as a percentage of the 'peak' rate attained for this session. Numbers show actual rates in and out, quantity of data transferred and elapsed time 'on-line'. The data in/out rate is continuously updated as prior five seconds averaged, during this session.

If you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

[^3]Please supply \qquad copies of INTERFACING WITH C

Price $£ 14.95$
Please supply \qquad copies of
Disk containing all the example listings $£ 15.00$

Remittance enclosed $£$ \qquad
Interfacing with \mathbf{C} can be obtained from
Jackie Lowe, Room L333, Quadrant House,
The Quadrant, Sutton, Surrey, SM2 5AS
Cheques should be made payable to
Reed Business Publishing Group Lid
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners
Credir Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad
\qquad
\qquad

POST CODE \qquad
DATE \qquad TELE \qquad
signature
vat no.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

Working with AVALANCHE transistors

Abstract

On avalanching, a transistor can be made to produce extremely fast, high-current pulses. Ian Hickman has been looking at how ordinary transistors avalanche and at a couple of extremely rare devices specified for avalanche operation.

Fig. 1. Maximum permitted avalanche current versus pulse width for the ZTX415, for the specified reliability.
have been fascinated by avalanche transistor circuits ever since I first encountered them in the early 1960s. They have probably been known since the earliest days of silicon transistors. I have never heard of them being implemented in germanium.
One important use for avalanche transistors was in creating extremely fast, narrow pulses to drive the sampling gate in a sampling oscilloscope. Such oscilloscopes provided, in the late 1950s, the then incredible bandwidth of 2 GHz . At that time, other oscilloscopes were struggling, with distributed amplifiers and special cathode ray tubes, to achieve a bandwidth of 85 MHz .
Admittedly, those early sampling oscilloscopes were plagued by aliased responses and, inconveniently, needed a separate external trigger. But they were steadily developed over the years, providing, by the 1970s, a bandwidth of $10-14 \mathrm{GHz}$
The latest digital sampling oscilloscopes provide bandwidths of up to 50 GHz , although like their analogue predecessors they are limited to displaying repetitive waveforms, making them inappropriate for some of the more difficult oscilloscope applications, such as glitch capture.
The basic avalanche transistor circuit is very simple. A version published in the late 1970 s apparently produced a $1 \mathrm{Mpulse} / \mathrm{s}$ pulse train with a peak amplitude of 11 V , a half-amplitude pulse width of 250 ps and a 130 ps rise time ${ }^{1}$. It achieved this with a 2 N2369 - an unremarkable switching transistor with a $500 \mathrm{MHz} f_{\mathrm{t}}$ and a $C_{\text {obo }}$ of 4 pF .
The waveform, reproduced in the article, was naturally captured on a sampling oscilloscope.

The avalanche circuit revisited
Interest in avalanche circuits seems to have
wavered a little after the 1970s. Perhaps this was due to the fact that the limited number of specialised uses for which the devices are appropriate resulted in the spotlight always resting elsewhere.
A problem with designing an avalanche transistor circuit is the absence of transistor types specifically designed and characterised for this application. But this situation has recently changed, due to the interest in high power laser diodes capable of producing extremely narrow pulses. Applications for such lasers include range finding, Pockel cell drivers and streak cameras.
Two transistors specifically characterised for avalanche pulse operation, types $2 T X 413$ and ZTX415, have recently appeared ${ }^{2}$, together with an application note ${ }^{3}$ for the latter
The avalanche transistor depends for its operation on the negative resistance characteristic at the collector. When the collector voltage exceeds a certain level, somewhere between $V_{\text {ceo }}$ and $V_{\text {cbo }}$, depending on the circuit configuration, the voltage gradient in the collector region exceeds the sustainable field strength, and hole-electron pairs are liberated. These are accelerated by the field, liberating others in their turn. As a result, the current

Fig. 2. Simple high current avalanche pulse generator circuit, driving a laser diode.

rises rapidly, even though the voltage across the device is falling.
The resultant 'plasma' of carriers results in the device becoming almost a short circuit, and it will be destroyed if the available energy is not limited. If the current in the avalanche mode, $l_{\text {USB }}$, and the time for which it is allowed to flow are controlled, then reliable operation of the device can be ensured, as indicated in Fig. 1 for the ZTX4/5.
From the diagram, you can see that for 50 ns wide pulses, a pulse current of 20 A can be passed for an indefinite number of pulses without device failure. This is provided of course that the duty cycle is kept low enough to remain well within the device's 680 mW allowable average total power dissipation $P_{\text {tol }}$.
Figure 2 shows a simple high-current avalanche pulse generator, providing positive going pulses to drive a laser diode. Peak current is determined by the effective resistance of the transistor in avalanche breakdown plus the slope resistance of the diode.
As both the preceding parameters are current dependent, it is not easy to determine accurately just what the peak value of current is. In practice however, this is not an insuperable
difficulty. Energy dissipated in the transistor and diode is simply equal to the energy stored in the capacitor. Since, given the value of the capacitor and the supply voltage, the stored charge is known, the pulse width can be measured and the peak current estimated.
If, in a particular circuit, the avalanche- and diode-slope resistances are unusually low, the peak current will be higher than otherwise, but the pulse width correspondingly narrower. Charge passed by the transistor is limited to that originally stored in the capacitor at the applied supply voltage.

Implementing the avalanche device

Having obtained samples of the ZTX415, I decided to investigate the performance in a variant of Fig. 2. This variant provides nega-tive-going pulses, but substitutes a resistive load for the diode to allow quantitative measurements to be recorded.
First I produced a high-voltage source, giving up to 800 V off-load. A voltmeter was included, and for versatility, the transformer's low voltage windings were also brought out to the front panel, Fig. 3.
The test set up is shown in Fig. 4a), the
high-voltage supply being adjusted as required by the simple expedient of running the power supply of Fig. 3 from a variable voltage transformer, of the type commonly known under its trade name of Variac.
With the low value of resistance between the base and emitter of the avalanche transistor, the breakdown voltage will be much the same as $B_{\text {VCES }}$, the collector-emitter breakdown voltage with the base-emitter junction short circuit. With no trigger pulses applied, the high-voltage supply was increased until pulses were produced. With the applied high voltage barely in excess of $B_{\text {VCES }}$, the pulse-repelition frequency, prf, was low and and the period erratic, as was to be expected.
With the voltage raised further, the prf increased, the free running rate being determined by the timeconstant of the collector resistor and the 2 nF capacitor. This free running mode of operation is not generally useful, there being always a certain amount of jitter on the pulses due to the statistical nature of the exact voltage at which breakdown occurs. The high voltage supply was therefore reduced to the point where the circuit did not free run, and a 10 kHz squarewave trigger waveform applied.
The pulses were now initiated by the positive edges of the squarewave, differentiated by the 68 pF capacitor and the base resistor, at a prf of $10 \mathrm{kpulse} / \mathrm{s}$. On firing, the collector voltage drops to near zero. This causes a negativegoing pulse to appear across the load resistor, which consisted of a 47Ω resistor in parallel with a 50Ω load. The latter comprised two 10 dB pads in series with a 50Ω 'through termination' (RS type 456-150). It was mounted at the oscilloscope's Channel 1 input socket and connected to the test circuit by half a metre of low-loss 50Ω coaxial cable. The cable presented a further 50Ω resistive load in parallel with the 47Ω resistor.

Performance observations

Drop in collector voltage can be seen to be almost the full 250 V of the supply, Fig. 4 b), lower trace. However, the peak voltage across the load resistor - upper trace - is only around -180 V . This circuit provides a negative-going output, unlike that of Fig. 2.
The lower amplitude of the output pulse was ascribed to the esr - equivalent series resis-

Fig. 4. a) Test set-up used to view the pulse produced by an avalanche transistor.
b) Upper trace, voltage across load, effectively $50 \mathrm{~V} / \mathrm{div}$ (allowing for 20 dB pad), $0 \mathrm{~V}=1 \mathrm{~cm}$ down from top of graticule, $50 \mathrm{~ns} /$ div; lower trace, collector voltage, effectively $50 \mathrm{~V} / \mathrm{div}$ (allowing for $\times 10$ probe), $0 V=1 \mathrm{~cm}$ up from bottom, $50 \mathrm{~ns} / \mathrm{div}$.

Fig. 5. Circuits producing square output pulses; a), negative-going output pulses and b), positive-going pulses both using coaxial lines; c), negative-going pulses using a lumped component delay line.
tance - of the 2 nF capacitor, which was a foil type, not specifically designed for pulse operation. This is confirmed by the shape of the pulse. Its decay is slower than would be expected from the 50 ns timeconstant of the capacitor and the 25Ω load, plus transistor slope resistance in avalanche breakdown. This emplasises the care needed in component selection when designing fast laser diode circuits.
Peak pulse voltage across load corresponds to a peak current of 7.25 A and a peak power of 1.3 kW . However, the energy per pulse is only $1 /{ }_{2} C V^{2}$, where C is 2 nF and V is 250 V , namely some $63 \mu \mathrm{~J}$, including the losses in capacitor esr and in the transistor. This represents a mean power of 630 mW , most of which will be equally divided between the 47Ω resistor and the first of the two 10 dB pads, which is why the prf was restricted to a modest 10 kHz .
In Fig. 4b), the lower trace shows the drop across the transistor during the pulse to be about 16 V , giving an effective device resistance in the avalanche mode of $16 / 7.25$ or about 2.2Ω. Thus, given a more suitable choice of 2 nF capacitor, over 90% of the available pulse energy would be delivered to the load.
In Fig. 2, though, the laser diode slope resistance would probably be less than 25Ω, resulting in a higher peak current, and an increased fraction of the energy lost in the transistor.
Ringing on the lower collector trace in Fig. 4 b) is due to the ground lead of the $\times 10$ probe; it could be almost entirely avoided by more careful grounding of the probe head to the circuit. As it also caused some ringing on the upper output-pulse trace, the probe was disconnected when the upper trace was recorded, Fig. 4b) being a double exposure with the two traces recorded separately.
At present, I cannot explain the negative underswing of the collector voltage, starting 200 ns after the start of the pulse, before the collector voltage starts to recharge towards +250 V .

Squaring the output

The shape of the output pulse from circuits such as Figs 2 and 4a), a slep function followed immediately by an exponential decay, is not ideal: for many applications, a square pulse would be preferred. This is simply
arranged by using an open-circuit delay line, in place of a capacitor, as the energy storage element.
When the avalanche transistor fires, its collector sees a generator with an internal impedance equal to the characteristic impedance of the line. Energy starts to be drawn from the line, which becomes empty after a period equal to twice the signal propagation time along the length of the line, as described in Ref. 4.
Figure 5 shows three such circuits, a) and c) producing negative-going pulses and b) positive going. If a long length of line is used,
to produce a wide pulse, then version b) is preferable to a), since it has the output of the coaxial cable earthed. In a), the pulse appears on the outer of the cable, so the capacitance to ground of the outer - which could be considerable - appears across the load.
If a wide negative-going pulse is desired, then an artificial line using lumped components as in c) can be used. Here, the lumped delay line can be kept compact to minimise its capacitance to ground.

Where exceptional pulse power is required, ZTX4 15 avalanche transistors can be used in series to provide higher pulse voltages as in
 current pulses.

DESIGN BRIEF

Fig. 7a) Circuit of an avalanche pulse generator using a BFR91 transistor with a 97 cm line length. b) Output of a); upper trace, output pulse, $10 \mathrm{~ns} /$ div, $1 \mathrm{~V} /$ div, $\mathrm{OV}=$ centre line; lower trace, collector voltage, $20 \mu \mathrm{~s} / \mathrm{div}, 10 \mathrm{~V} / \mathrm{div}$, ov = bottom line

Fig. 8a) Circuit of an avalanche pulse generator using a BFR91 transistor with a 22 cm line length. b) Output of a); output pulse, at $1 \mathrm{~ns} /$ div, $>1 \mathrm{~V} /$ div, indicated rise time 1.5 ns .

Figs 6a) and b). Alternatively, they can be used in parallel to provide higher pulse currents as in c).

A high speed version

Rise time of the negative-going edge of the output pulse in Fig. 4b) was measured as 3.5 ns , or 3.2 ns , corrected for the effect of the 1.4 ns rise time of the oscilloscope. This is a speed of operation that might not have expected from a transistor with a minimum f_{t} of 40 MHz and a maximum $C_{o b}$ of 8 pF , but this emphasises the peculiar nature of avalanche operation of a transistor.
An obvious question was; could a substantially faster pulse be obtained with a higher frequency device? Low-power switching transistors, being no longer common in these days of logic ICs, the obvious alternative is an rf transistor, which will have a high f_{t} and a low value of C_{ob}. I therefore decided to experiment with a $B F R 91$, a device with a $V_{\text {CEO }}$ rating of 12 V and an f_{t} of 5 GHz .
I built the circuit of Fig. 7a) using a length of miniature 50Ω coaxial cable, cut at random from a large reel. It turned out to be 97 cm . Given that the propagation velocity in the cable is about $2 / 3$ the speed of light, the cable represents a delay of 4.85 ns and so should provide a pulse of twice this length or, in round figures, 10 ns .
In the upper trace, Fig. 7b) shows that the circuit produced a pulse of width 10 ns and amplitude 5 V peak, into a 25Ω load, delivering some 200 mA current. Oscilloscope settings were $10 \mathrm{~ns} / \mathrm{div}, 2 \mathrm{~V} / \mathrm{div}$ with a centre line of 0 V . The lower trace shows - again using a double exposure - the collector voltage at $20 \mu \mathrm{~s} / \mathrm{div}, 10 \mathrm{~V} / \mathrm{div}$ and 0 V at the bottom of the graticule. With circuit values shown, at
the 20 kHz prf rate used, the line voltage has time to recharge virtually right up to the 35 V supply.

Effects of a shorter line

I repeated the experiment, this time with the circuit of Fig. 8a). Line length was reduced to 22 cm , some other component values changed and the prf raised to 100 kHz . The output pulse is shown in 8 b), at $1 \mathrm{~ns} /$ div horizontal and more than $1 \mathrm{~V} /$ div vertical, the VARiable Y sensitivity control being brought into play to permit the measurement of the 10% to 90% risetime. This is indicated as 1.5 ns , but the maker's risetime specification for a Tektronix 475 A oscilloscope, estimated from the 3 dB bandwidth, is 1.4 ns .
Rise times add rms-wise, so if you were to accept these figures as gospel, it would imply an actual pulse rise time of a little over 500ps. In fact, the margin for error when an experimental result depends upon the difference of two nearly equal quantities is well known to be large.
When the quantities must be differenced rms-wise rather than directly, the margin of error is even greater. As a result, no quantitative certainty of the rise time in this case is possible, other than that it is probably well under 1 ns . Unfortunately, a sampling oscilloscope does not feature among my collection of test gear.
This raises the intriguing possibility that this simple pulse generator might be suitable as the sample pulse generator in a sampling addon for any ordinary oscilloscope, extending its bandwidth for repetitive signals to several hundred megahertz, or even a gigahertz.

For this application, it is important that the sample pulse generator can be successfully
run over a range of repetition frequencies. With an exponential approach to the supply voltage at the firing instant, there is the posibility of jitter being introduced onto its timing, due to just how close to the supply voltage the collector has had time to recharge, Fig. 7b), lower trace.
The way round this is to use a lower value of collector resistance returned to a higher supply voltage. This ensures a rapid recharge, but the midpoint of the resistor is taken to a catching diode returned to the appropriate voltage just below the breakdown voltage. The collector voltage is thus clamped at a constant voltage prior to triggering, whatever the repetition rate.

References

1. Vandre, RH, 'An ultrafast Avalanche transistor pulser circuit', Electronic Engineering, Mid October 1977, p. 19.
2. 'NPN Silicon Planar Avalanche Transistor ZTX413' Provisional Data Sheet' Issue 2, March 1994 and 'NPN Silicon Planar Avalanche
Transistor ZTX415 Data Sheet' Issue 4, Nov 1995.
3. 'The ZTX415 Avalanche Transistor', Zetex plc, Apr 1994.
4. Hickman, I, 'RF Reflections', $E W+W W$, Oct 1993, pp. 872-876.

Figures 1, 2, 5 and 6 are reproduced courtesy of Zetex plc.

Putting the power back in

Abstract

Design criteria for battery charger circuits are dictated by cell type, the application and operating conditions. In this extract from Simplified design of micropower and battery circuits John Lenk examines the characteristics of popular IC controllers.

The first step in designing charging circuits must be to look in detail at an IC that provides fast-charging for popular NiCd/NiMH batteries. Maxim MAX712/713 controllers can fast-charge batteries from a dc source at least IV higher than the maximum battery voltage.
One to sixteen series cells can be charged at rates between one-third of the battery capacity, i.e. C/3 and four times capacity, or 4C. A voltage-slope-detecting a-to-d converter, timer, and temperature-window comparator determine charge completion.
The ICs (Figs. 1, 2, 3 and 4) are powered by an on-board +5 V shunt regulator and draw a maximum of $5 \mu \mathrm{~A}$ from the battery when not charging. A low-side current-sense resistor allows the battery-charge current to be regulated while still supplying power to the load.
The MAX712 terminates fast-charge by
detecting zero voltage-slope while MAX 713 uses a negative voltage-slope detection scheme. Both ICs are available in sixteen pin DIP and SO packages. An external power p-n-p transistor, blocking diode, three resistors, and three capacitors are the only required external components.
For high-power charging requirements, the ICs can be configured as a switch-mode battery charger that minimises power dissipation.

Basic operating principles

The ICs provide charging by forcing a constant current into the battery in one of two operating states: fast-charge or trickle-charge. During fast-charge, the current level is high, and once full-charge is detected, the current reduces to the trickle-charge state. The ICs monitor three variables to determine when the battery reaches full charge: voltage slope, bat-
tery temperature and charge time.
Full-charge state are determined by the IC's timer, voltage-slope (V) detector, and temperature comparators, and its voltage and current regulator controls output voltage and current, and senses battery presence.
In a typical battery-charging sequence, Fig. 5, when the batteries are already inserted before application of power, initially the IC draws negligible power from the battery.
When power is applied to DC IN, the power-on reset holds the IC in trickle-charge. Once the power-on reset signal goes high, the IC enters the fast-charge state as long as the cell voltage is above the under voltage-lockout (uvlo) voltage of 0.4 V per cell. Fast-charging cannot start until the battery voltage divided by number of cells exceeds 0.4 V .
As soon as the cell voltage-slope becomes negative, the fast-charge is terminated and the IC reverts to the trickle-charge state. When power is removed, the device draws negligible current from the battery.
Temperature may be used to control charging too, Fig. 6. The ICs can be configured so that either voltage-slope or temperature detects full-charge.
On a cold day, the battery pack may be too cold for fast charging. During the initial peri-

Fig. 2. Typical operating circuit for fast-charge controller. This circuit benefits from a $22 k \Omega$ resistor between BATT- and TEMP and 68 k between $V_{\text {LIMIT }} / R E F$ and TEMP. A 10 nF capacitor over R_{2} may also be necessary.

Fig. 1. MAX $712 / 713$ used as a fast-charge controller.

Fig. 3. Pin connections for fast charging with a MAX $\mathbf{M} 12 / 713$.
od the ICs will remain in the trickle-charge state, and when the battery temperature exceeds the limit set by THI (pin 5), the ICs will again revert to trickle-charge.
It is possible that the battery will be inserted into an already powered-up IC (Fig. 7). To begin with, the charger output voltage will be regulated at the number of cells times $V_{\text {LIMIT }}$ (pin 1) and the IC will be in the trickle-charge state. But on insertion of the battery, the IC will detect current flow into the battery and switch to fast-charge.
Once full-charge is detected, the IC will revert to trickle-charge. If the battery is removed, the IC will remain in trickle-charge, and the output will once again be regulated.

Powering the ICs

The ICs are inactive with the wall cube unplugged, Fig. 2, drawing a maximum of $5 \mu \mathrm{~A}$ from the battery. Diode D_{1} prevents the collector-base junction of $T r_{1}$ from conducting
current into the DRV (pin 14). With the wall cube connected, R_{1} charges C_{1}. When C_{1} charges to +5 V , the internal shunt regulator sinks current to regulate $\mathrm{V}+$ to 5 V , and fastcharge commences. The IC remains in fastcharge until one of the three fast-charge termination conditions is triggered.
If DC IN exceeds 20 V , a cascode connection can be added in series with the DRV pin Fig. 8. This will prevent the DRV pin abso-lute-maximum ratings from being exceeded. Resistor R_{1} in Fig. 8 is selected to pass 5 mA at the minimum DC IN voltage.
Total power dissipation of the IC must not exceed the absolute maximum specifications for the device, Table 1. The difference between maximum DC IN voltage and minimum DC IN voltage determines power dissipation in the IC.
Maximum current into $\mathrm{V}+$ is maximum DC IN voltage -5 V) divided by R_{1}. Dissipation, due to the shunt regulator, is five times the maximum current into $V+$. Sink current into the $\mathrm{DR} V$ pin also causes power dissipation.

Fast charging

The IC enters the fast-charge state under one of the following conditions:

Upon application of power with battery-current detection (GND, pin 13) voltage less than BATT-, pin 12; voltage and TEMP, pin 7, higher than TLO, pin 6; and the cell voltage higher than the WLO voltage.

Upon insertion of a battery with TEMP, pin 7 , higher than TLO, pin 6 , and lower than

Fig. 5. Charging sequence when batteries are already inserted. Once the power-on reset signal goes high, the IC enters the fast-charge state.

Fig. 6. Temperature can be used to detect a full charge.

PIN	NAME	FUNCTION
1	VLIMIT	Sets the maximum cell voltage. If VLIMIT is tied to $\mathrm{V}+$, the battery terminal voltage (BATT + - BATT-) will not exceed $1.65 \mathrm{~V} \times$ (number of cellls); otherwise, it will not exceed VLIMIT \times (number of cells). Do not allow VLIMIT to exceed +2.5 V , unless tied to $\mathrm{V}+$.
2	BATT+	Positive terminal of battery
3,4	PGMO, PGM1	PGMO and PGM1 set the number of series cells to be charged. The number of cells can be set from 1 to 16 by connecting PGM0 and PGM1 to any of V + REF, or BATT-, or by leaving the pin open (see Table 2).
5	THI	Trip point for the over-temperature comparator. If the voltage on TEMP rises above THI, fast charge ends.
6	TLO	Trip point for the under-temperature comparator. If the MAX712/MAX713 powers on with the voltage on TEMP less than TLO, fast charge is inhibited and will not start until TEMP rises above TLO. TLO must be set below the minimum operating temperature of the charger.

PIN	NAME	FUNCTION
7	TEMP	Sense input for temperature-dependent voltage from thermistors
8	$\overline{\text { FASTCHG }}$	Open-drain fast-charge status output. While the MAX712/MAX713 fastcharges the battery, $\overline{\text { FASTCTHG }}$ sinks current. When charge ends and trickle charge begins, FASTCHG stops sinking current.
9, 10	PGM2, PGM3	PGM2 and PGM3 set the maximum time allowed for fast charging. Timeouts from 33 minutes to 264 minutes can be set by connecting to any of V_{+}. REF, or BATT-, or by leaving the pin open (see Table 3). PGM3 also sets the fast-charge to trickle-charge current ratio (see lable 5).
11	CC	Compensation input for constant current regulation loop
12	BATT-	Negative terminal of battery
13	GND	System ground. The resistor placed between BATT- and GND is used to monitor the current into the battery.
14	DRV	Current sink for driving the external PNP current source
15	V+	Shunt regulator. The voltage on $\mathrm{V}+\mathrm{is}$ regulated to +5 V with respect to BATT-, and the shunt current powers the MAX712/MAX 13.
16	REF	2.0 V reference output. Sources up to 1 mA .

Fig. 4. Pin descriptions for a fast-charge controller.

Fig. 7. Charging sequence when batteries are inserted in powered-up IC. When the battery is inserted, the IC detects the current flow and switched to fast charge.

Fig. 8. DRV pin cascode connections where DC IN exceeds 20 V .

THI, pin 5; and the cell voltage higher than the UVLO voltage.
Resistor $R_{\text {SENSE }}$ sets fast-charge current into the battery. In fast-charge, the voltage difference between the BATT-, pin 12, and GND, pin 13 , is regulated to 250 mV . Sink current to DRV, pin 14, increases if the difference between pins 13 and 12 falls below 250 mV .
Fast-charge current $I_{\text {FAST }}$ is 250 mV divided by $R_{\text {SENSE }}$. For example, with an $R_{\text {SENSE }}$ of $250 \mathrm{~m} \Omega$, fast-charge current is 1 A ,

Trickle charge

Circuits within the IC set trickle-charge current by increasing the current amplifier gain.
When a fast-charge (IFAST) rate $\mathrm{C} / 2, \mathrm{C}$, 2 C , or 4 C is used, a $\mathrm{C} / 16$ trickle-charge rate is selected automatically, Table 2. Other fastcharge rates can be used, but the trickle-charge current will not be exactly C/16. For simplified design, use a rate of $\mathrm{C} / 2, \mathrm{C}, 2 \mathrm{C}$, or 4 C , depending on recommendations of the battery manufacturer.
Some manufacturers recommend a lower trickle-charge rate for NiMH batteries. Figure 9 shows a circuit that can reduce tricklecharge to less than $\mathrm{C} / 16$. When the circuit is in trickle-charge mode, some of the current is shunted around the battery because ${T r_{2}}^{2}$ is tumed on. Select the value of R_{7} as follows:

$$
R_{7}=\left(V_{\mathrm{BATT}}+0.4 \mathrm{~V} /\left(I_{\mathrm{TRICKLE}}-I_{\mathrm{BATT}}\right)\right.
$$

where $V_{\text {BATT }}$ equals battery voltage when charged; $I_{\text {TRICKLE }}$ equals the IC trickle-charge setting and $I_{\text {BATT }}$ equals the desired battery trickle-charge current.

Table 1. Maximum ratings and characteristics for fast-charge controllers.
ABSOLUTE MAXIMUM RATINGS

$V+$ to BATT.	$-0.3 \mathrm{~V},+7 \mathrm{~V}$	REF Current . 10 ma
BATT- to GND	$\pm 1 \mathrm{~V}$	Conlinuous Power Dissipation ($\mathrm{A}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
BATT + to BATT-		Plastic DIP (derate $10.53 \mathrm{~mW} r^{\prime} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW
Power Not Applied	$\pm 20 \mathrm{~V}$	Narrow SO (derate $8.70 \mathrm{~mW} / \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . . .696 .80{ }^{\text {c }}$ W
With Power Applied	The higher of $\pm 20 \mathrm{~V}$ or	CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\prime} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 800 mW
	$\pm 2 \mathrm{~V} \times$ (programmed cells)	Operating Temperature Ranges:
DRV 10 GND	$-0.3 \mathrm{~V},+20 \mathrm{~V}$	MAX71_C _ . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
FASTCHG to BATT-	$-0.3 \mathrm{~V},+12 \mathrm{~V}$	MAX71_E_ _ . $44^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
All Other Pins to GND	$-0.3 \mathrm{~V},(\mathrm{~V}++0.3 \mathrm{~V})$	MAX71_MJE . $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
V+ Current	100 ma	Storage Temperature Range $6.65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DRV Current	100 mA	Lead Temperaturs (soldering, 10sec) $+300^{\circ} \mathrm{C}$

absolute maximum rating condrions for extended periods may attect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(1 v_{+}=10 \mathrm{~mA} . T_{A}=\right.$ TMin to $_{\text {I }}$ TMAX, unless otherwise noted. Reler to Typical Operating Circuit. All measurements are with respect to
BATT- not GND.) BATT. nol GND.)

PARANETER	CONDITIONS	MIN	TYP	MAX	UNTTS
V+ Voltage	$5 \mathrm{~mA}<1 \mathrm{v}+<20 \mathrm{~mA}$	4.5		5.5	\checkmark
$\mathrm{lV}+$ (Note 1)		5			mA
BATT+ Leakage	$V_{+}=0 \mathrm{~V}, \mathrm{BAT} \mathrm{t}_{+}=17 \mathrm{~V}$			5	$\mu \mathrm{A}$
BATT+ Resistance with Power On	PGM0 $=$ PGM1 $=$ BATT,$- \mathrm{BATT}+=30 \mathrm{~V}$	30			$k \Omega$
C1 Capacitance		0.5			$\mu \mathrm{F}$
C2 Capacitance		5			nF
REF Voltage	OmA < IREF < 1mA	1.96		2.04	V
Undervoitage Lockout	Per cell	0.35		0.5	V
External VLIMIT Input Range		1.25		2.5	V
THI, TLO. TEMP Input Range		0		2	V
THI, TLO Offset Voltage (Note 2)	OV < TEMP < 2V. TEMP voltage rising	-10		10	mV
THI, TLO, TEMP, VLIMIT Input Bias Current		-1		1	$\mu \mathrm{A}$
VLIMIT Accuracy	$1.2 \mathrm{~V}<\mathrm{VL}$ IMIT $<2.5 \mathrm{~V}$ $5 \mathrm{~mA}<1$ DRV $<20 \mathrm{~mA}$. PGMO $=$ PGM1 $=\mathrm{V}_{+}$. 30		30	mV
Internal Cell Voltage Limit	VLIMIT $=\mathrm{V}_{+}$	1.6	1.65	1.7	V
Fast-Charge VSENSE		225	250	275	mV
Trickle-Charge VSENSE	PGM3 $=\mathrm{V}+$	1.5	3.9	7.0	$m \vee$
	PGM3 $=$ open	4.5	7.8	12.0	
	PGM3 = REF	12.0	15.6	20.0	
	PGM3 $=$ BATT -	26.0	31.3	38.0	
Voltage-Slope Sensitivity (Note 3)	MAX713		-2.5		mV / A per cell
	MAX712		0		
Timer Accuracy		-15		15	\%
Battery-Voltage to Cell-Voltage Divider Accuracy		-1.5		1.5	\%
DRV Sink Current	$V \mathrm{VRV}=10 \mathrm{~V}$	30			$m A$
FASTCHG Low Current	VFASTCHG $=0.4 \mathrm{~V}$	2			$m \mathrm{~m}$
$\overline{\text { FASTCHG }}$ High Curfent	V FASTCHG $=10 \mathrm{~V}$			10	$\mu \mathrm{A}$
AD Input Range		1.4		1.9	V

Note 1: The MAX712/MAX713 are powered from the $V+$ pin. Since $V+$ shunt regulates to +5 V . R1 must be small enough to allow at
No 2 . Iasts 5 ma of Currint int ihe $V+$ pin.

Regulation loop

The regulation loop controls the output voltage between the BATT+ and BATT- terminals, and the current through the battery, via the voltage between BATT- and GND.
Sink current from the DRV pin is reduced when the output voltage exceeds the number of cells times $V_{\text {LIMIT }}$ or when the battery current exceeds the programmed charging current. The regulation loop provides the following functions:
When the charger is powered, the battery can be removed without interrupting power to the load.
If the load is connected as shown in Fig. 2, the battery current is regulated regardless of the load current (provided that the input power source can supply both).

Voltage loop

The voltage loop sets the maximum output voltage between the BATT + and BATT- pins. If $V_{\text {Limit }}$ is set to less than 2.5 V , then the

Table 2. Trickle-charge rate for fast-charge controllers.

PGM3	Fast charge	Trickle charge
rates	current V+	(ITRICKLE $)$

Fig. 9. Reducing trickle charge for NiMH batteries

All you need to know about power supplies

Simplified design of switching power supplies Author John D. Lenk, 224 pages hardback Switching power supply basics Heat sinks for switching power supplies
Inductors/transformers for switching power supplies
Testing and troubleshooting
Simplified design approaches

Simplified design of

 micropower and battery circuits Author John D. Lenk, 254 pages paperbackIntroduction to
micropower/battery design Battery basics Battery chargers
Single-cell circuits
Multicell circuits

Simplified design of linear power supplies Author John D. Lenk, 246 pages hardback

Linear power supply basics Heat sinks for linear power supplies Discrete feedback regulator basics IC linear regulator basics Linear supply testing and connections Linear supply design examples

Part of the EDN series for design engineers, these three books cover every aspect of power supply circuit design from battery charging to inductor choice. They are available individually or as a set of three with a discount of 10% on the normal retail price.

John Lenk is an established writer of international best sellers in the electronics field and author of more than eighty books on electronics. Together, John's books have sold over 2 million copies in 9 languages.

Please send me

\qquad copies of Simplified design of switching power supplies at
£22.50 ea.
\qquad copies of Simplified design of linear power supplies at £22.50 ea.
\qquad copies of Simplified design of micropower and battery circuits at £22.50 ea.
\qquad sets of all three books at the 10% discount price of
£60.75 ea.

Postage*	$\boldsymbol{£}$
Total	$\boldsymbol{£}$

*UK postage is $£ 2.50$ for one book and $£ 4.50$ for two books or the set of three. Europe postage is $£ 5$ for one book and $£ 9.50$ for two books or the set of three. Rest of world, courier is $£ 7.50$ for one book and $£ 13.50$ for two books or the set of three.

Name
Address

Post Code

Method of payment (please circle):
Access/Mastercard Visa Cheque PO
Cheques made payable to Reed Business Publishing
Credit card No \qquad Expiry Date \qquad Signed

Send this coupon, or a clear photocopy of it to Electronics World editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS together with credit card type, number and expiry date, or postal order or cheque made payable to Reed Business Publishing. Aliernatively you can fax your details on 01816528956 or send an e-mail to jackie.lowe@rbp.co.uk with ordering details.

- IF THE VIIMIT PINIS TIED TO V+ THEN THIS NODE ACTUALLY EQUALS 1.65 V

Fig. 10. Current regulation loop for fast charge controller.

NOTE: FOR ABSOLUTE TEMPERATURE CHARGE CUTOFF, T2 NDD T3 MAY BE REPLACED WTH STANDARD RESISTORS

Fig. 11. Controlling charge cut-off with NTC thermistors.

Fig. 12. Controlling charge cut-off with battery thermistor.
maximum BATT+ voltage, referred to BATT-, is $V_{\text {LIMIT }}$ multiplied by the number of cells as determined by PGMO, PGM1 connections. If $V_{\text {LIMIT }}$ is tied to $V+$, then the maximum BATT+ voltage, referred to BATT-, is 1.65 V multiplied by the number of cells, PGMO, PGM1.
When the battery is removed, tbe IC does not provide a constant current. Instead, it regulates BATT + to the maximum voltage, as determined above.
The voltage loop is stabilised by the C_{3} filter capacitor. A large filter capacitor is required only if the load is supplied by the IC in the absence of a battery. In this case, set C_{3}, in farads, as follows:

$$
C_{3}=\left(50 \times I_{\mathrm{LOAD}}\right) /\left(\mathrm{V}_{\mathrm{OUT}} \times \mathrm{BWVRL}\right)
$$

where BWVRL equals loop bandwidth in Hz (10,000 is recommended); C_{3} is greater than $10 \mu \mathrm{~F} ; I_{\text {LOAD }}$ equals external load current in A , and $V_{\text {OUT }}$ equals programmed output volt age ($V_{\text {Limit }}$ times the number of cells).

Current loop

In the current-regulation loop, Fig. 10, stability of the current loop is set by capacitor C_{2} at the CC terminal. To get the exact value for C_{2}, calculate the current-regulation loop bandwidth (BWCRL) using transistor characteristics ($\beta, f_{\mathrm{T}}, g_{\mathrm{m}}$, etc.). For simplified design, use the transistor $T r_{1}$ types and capacitor C_{2} values shown in Fig. 2.
The ICs dissipate power because of the cur-rent-voltage product at the DRV pin, which is part of the current loop. Power dissipation shown in the absolute maximum ratings, Fig. 3 - must not be exceeded.

Voltage-slope cut-off

The a-to-d converter inside both the MAX712 and MAX7I3 has 2.5 mV resolution and stores cell voltage at sampling intervals (t_{A}) determined by the PGM2/PGM3 connections.
At two t_{A} intervals, the voltage difference between t_{A} intervals is obtained to determine the cell voltage versus time. Each a-to-d conversion is averaged over five, to filter out noise. Because the battery current is kept constant by the regulation loop - even when there is a varying external load - the conversion results are accurate.
The MAX712 terminates fast-charge when a conversion result is equal to, or less than, its predecessor. The MAX713 terminates when a conversion is at least 2.5 mV less than its predecessor. This is the only difference between the two.

Temperature-charge cut-off

Charge cut-off can be controlled with ntc thermistors, Fig. 11. The same-model thermistor should be used for T_{1} and T_{2}, so that both have the same nominal resistance. Voltage at TEMP is 1 V (referred to BATT-) when the battery is at ambient temperature.
The threshold chosen for TLO determines the temperature below which fast-charging is inhibited. If TLO is greater than TEMP, when

Fig. 13. Basic switch-mode connections.

Fig. 14. Switching wave-forms for basic charger circuit.

Fig. 15. Sony Radio ac adapter AC-190, 9V $d c, 800 \mathrm{~mA}$.
the IC starts up, fast-charge will not start until TLO goes below TEMP. The threshold chosen for THI sets the point at which fast-charging terminates. As soon as the voltage on TEMP rises above THI, fast-charge ends and will not restart after TEMP falls below THI.
Cold-temperature charge inhibition may be disabled by removing R_{5}, T_{3}, and the $0.022 \mu \mathrm{~F}$ capacitor and tying TLO to BATT.
To disable the entire temperature-comparator charge-cut-off mechanism, remove T_{1}, T_{2}, $T_{3}, R_{3}, R_{4}, R_{5}$, and the associated capacitors then make the following connections: TEMP to REF, THI to $\mathrm{V}+$, and TLO to BATT-.
Some battery packs may come with a tem-
perature-detecting thermistor connected to the negative terminal of the battery pack. In this case, use the connections shown in Fig. 12. Thermistors T_{2} and T_{3} may be replaced with standard resistors if absolute temperature charge cutoff is acceptable.

Switch-mode operation

Switch-mode operation, Fig. 13, is used for

Fig. 16. Sony CD player ac adapter AC-96N, $9 \mathrm{~V} d c, 600 \mathrm{~mA}$.

Fig. 17. Panasonic modern ac adapter $K X-A 11,12 \mathrm{~V}$ dc, 500 mA .

Fig. 18. Three NiMH cells charged with MAX712.

Fig. 19. Three NiMH cells charged with MAX713.
applications where power dissipation of the pass transistor cannot be tolerated. An example is where heat-sinking is not feasible or is too costly). The appropriate circuit uses the error amplifier at the CC pin as a comparator, with a 33 pF capacitor adding hysteresis.
Figure 13 is configured to charge two cells at IA. Higher charge currents and greater numbers of cells can be accommodated by changing the 0.25Ω sensing resistor, and connections PGM0-3.
Switching waveforms, Fig. 14, associated with the circuit show that the arrangement cannot service a load while charging.
Switching frequency can be decreased by increasing the value of the capacitor connected between CC and BATT. Note that the two capacitors connected to the CC pin must be placed as close as possible to the pin and the leads must be as short as possible. The CC node is a high-impedance point - capable of producing high voltages - so logic lines must not be routed near the CC pin.

Line-voltage operation

Consumer-product ac-to-dc wall cubes typically consist of a transformer, a full-wave bridge rectifier, and a capacitor.
Typical characteristics, Figs 15-17, show substantial 120 Hz output-voltage ripple. So when selecting an adaptor for use with the $712 / 713$, the lowest dip in the wall-cube voltage during fast-charge should be at least IV higher than the maximum battery voltage.

Battery charging example

Figures 18 and 19 show the results of charging three AA 1000 mAh NiMH batteries from Gold Peak (part number GP/000AAH) GP Batteries at a 1 A rate using the 712 and 713 .
The circuit from Fig. 2 is used, but with temperature control as shown in Fig. 11. Conditions were:

DC IN uses a Sony AC-190 which is a 9 V dc at 800 mA ac-to-dc adaptor, Fig. 15.
PGM0 is $\mathrm{V}+, \mathrm{PGM}$ l is RTEF,
PGM2 is REF, and PGM3 is REG.
$R_{1}=200 \Omega, R_{2}=150 \Omega, R_{\text {SENSE }}=250 \mathrm{~m} \Omega$
$C_{1}=1 \mu \mathrm{~F}, C_{2}=0.01 \mu \mathrm{~F}, C_{3}=10 \mu \mathrm{~F}$,
$V_{\text {LIMIT }}=$ REF
$R_{3}=10 \mathrm{k} \Omega, R_{4}=15 \mathrm{k} \Omega$,
T_{1} and T_{2} are both part \# 13A 1002 (Alpha Thermistor 001 800-235-5445).
If R_{5} and T_{3} are omitted then TLO $=$ BATT - .
Absolute maximum rating for the BATT+ input voltage must be limited by external circuits, Fig. 20, when DC IN is not applied.
Current-sense resistor $R_{\text {SENSE }}$ causes a small efficiency loss during battery use. The efficiency loss is significant only if $R_{\text {SENSE }}$ is much greater than the internal resistance of the battery pack. The circuit in Fig. 21 can be used to shunt $R_{\text {SENSE }}$ whenever power is removed from the charger.
Figure 22 shows a circuit used to indicate charger status, with logic-level outputs, and Fig. 23 shows a led drive circuit that indicates charger status.

Fig. 20. Connections for high cell counts.

Fig. 21. Connections to shunt-sense resistor when output power is removed.

Fig. 22. Connections to indicate charger status via external logic circuitry.

Fig. 23. Connections needed to indicate charger status via light-emitting diodes.

Part II will show how to use the MAX7121713 and other ICs in practical circuits designed for specific charging applications and cell

Building
 blocks of time

Traditionally, Radio-Code time signal receivers have been expensive, selfcontained units, but now there are low-cost modules providing access to the raw time signal for well under $£ 30$.

Radio controlled clocks - allowing access to a time reference accurate to a second in a million years - are proving more and more popular. A considerable fall in price has led to the sale of over $6,000,000$ radio controlled clocks and radio time receiver chips in Europe - in the last twelve months alone.
In the near future, it is likely that radio controlled time receivers will replace traditional clocks in many commercial, personal time keeping and control applications.
Currently, radio controlled time is used for, heating system timing, accurate time stamping of data, encryption of data and digital signatures and synchronising clocks to an accuracy of milliseconds. It is also used for setting the time on fax machines, video recorders, wrist watches, etc.

What is time?

Time is no longer calculated by observing the stars but 'synthesised' in a laboratory. In Britain this is the responsibility of the National Physics Laboratory.
Every minute, the National Physical Laboratory, NPL, transmits a time telegram as a binary coded decimal signal. This contains the time, the date and the calendar day. NPL is part of an international network, each making a contribution to co-ordinated universal time. This means that world-wide, all clocks agree to the nanosecond.
Earth loses around 5 ms a day. To ensure that solar and atomic times remain the same, laboratory time is reset approximately once a year.
MSF is the call sign of the NPL time code transmitter. Anyone can make use of the signal transmitted. Equipment require is a facility to receive and condition the time telegrams, and a receiver with a suitable tuned antenna. A receiver module measuring just 7 mm by 24 mm is shown in the photograph at the end of this article.

MSF's time telegram

Every minute, the MSF transmitter at Rugby transmits a data stream containing time information. The first second of every minute contains 'fast code' information relating to the minute in which it is transmitted. Timing is governed by Co-ordinated Universal Time.
The remaining 59 seconds contain 'slow code' information as UK time relating to the minute following that in which it was transmitted.

Table. 1. Time telegram of MSF transmitter - binary code for seconds 17 to 30 and data for March 1996.

Seconds			
0	Fast Code	Not used in modules	
1	DUT1 Code	Not used in modules	
$2-16$	-		
17	year (tens)	80	year 00-99, bcd
18	year (tens)	40	
19	year (tens)	20	
20	year (tens)	10	
21	year (units)	8	
22	year (units)	4	
23	year (units)	2	
24	year (units)	1	
25	month (tens)	10	month 01-12, bcd
26	month	8	
27	month	4	
28	month	2	
29	month	1	
30	day of month (tens)	20	day of month, bcd
31	day of month (tens)	10	
32	day of month	8	
33	day of month	4	
34	day of month	2	
35	day of month	1	
36	day of Week	4	day of week 1-7, bcd
37	day of Week	2	
38	day of Week	4	
39	hour (tens)	20	hour 00-23, bcd
40	hour (tens)	10	
41	hour (units)	8	
42	hour (units)	4	
43	hour (units)	2	
44	hour (units)	1	
45	minute (tens)	40	minute 00-59, bcd
46	minute (tens)	20	
47	minute (tens)	10	
48	minute (units)	8	
49	minute (units)	4	
50	minute (units)	2	
51	minute (units)	1	
52	always set to "0"	0	
$53-58$	always set to "1"	1	
59	always set to "0"	0	

Fig. 1. Example of how date information is encoded in the MSF transmission. This represents March 1996.

Fig. 2. Key building blocks of the Radio-Code receive module set. These can be used to build anything from a basic received producing the raw data stream up to a stand-alone Radio Code clock.

Carrier frequency of the time telegram is 60 kHz . The amplitude is switched off at the beginning of each second, for 100 ms or 200 ms ; these periods are the so-called second markers. The short ones, at 100 ms , correspond to a zero bit, i.e. binary 0 , and the long ones, 200 ms , to one bit, binary 1 .
At the switch over to the next minute bits 52 to 59 are set permanently to 10000001_{2}. This sequence is unique and identifies the following minute marker, second 00 . Table 1 shows the format of the MSF time telegram.
The Radio-Code receiver modules discussed in this article only decode the slow code, using the data starting at second 17 and extending to second 59 . Numbers are represented in the binary-coded decimal form, i.e. decimal 9 d becomes binary 1001_{b}.
For transmitting the complete time and date, it is sufficient to have 35 bits. The hour decimals for example only require two bits. They can only have the value $0_{16}, 1_{16}$ or $2_{16}=00_{2}, 01_{2}$ or 102 . For the year, this has been confined to two digits, so 96 represents 1996. Figure 1 shows the seconds 17 to 30 with the data March 1996.

Decoding the time signal

There are many circuits for decoding the UK's MSF time signal. The modules outlined in Fig. 2 have the advantages of small size, low cost and high sensitivity. They also have a highly tuned antenna. The receiver modules contain all the support electronics, tuned crystal, etc, required to receive the MSF time signal.

All that is needed to reconstitute the slow code, exactly as broadcast by Rugby, is an antenna.
As an alternative to the receiver module, it is possible to buy the chip at the heart of the module. This allows the user to select a quartz filter for receiving time signals from the UK's MSF transmitter, Germany's DCF signal, USA's WWVB, Switzerland's HBG and Japan's JG2As. Antennas tuned for these signals are also available.

Receiving MSF

Receiver modules contain a very sensitive straight through receiver IC with an open-collector n-p-n output. A block diagram of the receiver module IC is shown in Fig. 3.
The very low bandwidth of about 10 Hz is achieved by using, a 60 kHz crystal filter. This guarantees good suppression of disturbances on other frequencies. The high impedance input represents a very small load for the antenna which maintains it quality.
Internally, the radio frequency is rectified and used for both gain regulation and to represent the envelope of the radio frequency. Rectified radio-frequency voltage is compared to a threshold level and the comparator result output.

Antenna design

At 500 km from the radio station, field strength of the MSF signal is about $1 \mathrm{mV} / \mathrm{m}$. At this distance the antenna gives an output voltage of about $50 \mu \mathrm{~V}$, but the receiver needs only $1 \mu \mathrm{~V}$ for good signal demodulation .
The connection between receiver IC and antenna should be as short as possible with the bar axis of the ferrite antenna oriented at right angles to the direction to the radio station. Antenna output voltage is directly related to the cosine of this angle. This means there is a wide range of angle in which good reception is possible, but only a narrow range with no reception when the axis points directly to the radio station.
As mentioned, the antenna is best mounted close to the receiver. Where this is impractical an active antenna is used. The active antenna contains a receiver module and a ferrite antenna in a plastic package.
The antenna should be as short as possible. If the length of the antenna is over 20 cm , the cable capacitance increases the antenna resonant circuit capacitance and lowers the resonant frequency.

Microcontroller modules

A radio receiver module is available for producing a battery powered radio clock unit or an alarm-clock radio. It is designed to drive an liquid-crystal or led display via static shift registers

Antenna MSF
Part No. FTM02010

Fig. 7. MCM Radio module forms the heart of a stand-alone Radio-Code controlled clock system with alarm and switching capability.

without multiplexing.
The micro controller within the module is four bit device and it decodes the demodulated time telegram from the receiver modules. The controller also translates the time signal for different formats.

Serial i/o via RS232

A second module is available to facilitate accessing of the time signal on a computer. The MCM RS232 is designed for applications in which a host computer receives the exact time information via a serial interface.
The advantage of this module compared to direct host decoding of receiver output is the presence of exact time information all the time. Once synchronised, the controller predicts the incoming time information so that it can send out the translated RS232 data stream synchronously with the incoming of signal.
There is also a switching output. Switch on and off times can be set by the host computer. If the switching output is connected to a mains switch the host computer can turn itself on and off by setting the appropriate switch on and switch off times.
An application showing the MCM RS232 serial interface and the EM2 MSF receiver modules is shown in Fig. 6.
An application circuit for the radio-controlled clock kit with active antenna is shown in Fig. 7

Fig. 6. PC-interfacing Radio-Code clock incorporating an active antenna for increased sensitivity and enhanced MSF reception.

Exclusive 25% discount for $E W$ readers

Receive radio-code time signals on your PC.......................

Modules for Radio Code

The EMI, connected to the MSF passive antenna, receives the 60 kHz Rugby signal and outputs the slow code comprising seconds 17 to 59 . Operating from a 3 V supply, the EMI has an antenna input, supply pins, a keying input and an open-collector MSF output. Quiescent current in standby is less than $1 \mu \mathrm{~A}$.
MCM RS232, combined with an EM1 receiver and antenna, feeds decoded time information to a computer via RS232 via its internal microcontroller. MCM Radio, designed for stand-alone applications, forms the heart of a Radio-Code clock with LCD or LED read-out. This module includes alarm facilities.
Plugging a radio-code receiver into your PC's COM port and running the dos and windows software supplied gives you access to the atomic-clock referenced 60 kHz time signal transmitted from Rugby. This signal is accurate to a second in a million years and corrected automatically for summer/winter time.
Based on a highly-tuned and reliable receiver module with antenna, the system automatically updates the PC's clock at switch on and at any other desired time. Under Windows, an icon is available signalling to the operator that the receiver is receiving the Rugby signal, and indicating the current time and date.
Time data received by the PC is via standard RS232 and well documented, allowing you to use atomic-clock referenced timing and date stamping in your own applications. Sending the ASCII letter o for example returns a 15 -character string representing hours, minutes, seconds, day of week, day of month, month, year and summer-time and receiver status.

Normally, the receiver module together with dos and windows software costs $£ 69.50$, or $£ 99.50$ for a version with in-built liquid-crystal display for time and date display. Until 15 April 1996, Galleon is offering these two products to EW readers at special 25% discount prices of $£ 52.13$ and $£ 74.63$ respectively.
All prices quoted are inclusive of VAT, but excluding $£ 2$ postage.

This module receives radio-code data and sends it to the PC via an RS232 link. From the COM port, RS232 time information can easily be incorporated into user applications. Software supplied as standard synchronises the PC clock and - under windows - displays time/date together with confirmation of the received signal.

The desk-top version of the radio-code PC clock features two alarms and an integral display showing hours/mins secs or hours/mins day together with day+month, signal strength indications.

Access to atomic time accuracy

 via your PC
Applications include:

- research and development
- synchronising encryption-key changes
- broadcast tranismission sync
- timing video monitoring in security systems
- controlling public and distributed clocks
- distributed timing for remote communications
- access control
- production monitoring
- linking remote networks
- data security

Ordering details

Please send your order to Galleon Systems Ltd, together with payment. Alternatively fax credit card number, type and expiry date with order on 0121608 4477 or telephone Galleon on 0121359 0981. Iff possible, include a daytime telephone number with your order. Address orders and all correspondence
relating to this order to Galleon Systems Lid, Aston Science Park, Love Lan Birmingham B7 4BJ.
*Overseas readers can also obtain this discounl but details vary according to country. Please ring, write or fax Galleon Systems.

THE ORIGINAL SURPLUS WONDERLAND!
THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS wanted for cash!

Surplus always
 LOW COST PC's
 SPECIAL BUY
 AT 286
 $40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram
 LIMITED QUANTITY only of these 12Mhz HI GRADE 286 systems Made in the USA to an industrial specification bosard PSU and EGAA video card with single $51 / 412.2 \mathrm{Mb}$ floppy disk drive \& integral 40 Mb hard disk drive to the front. Real time clock
 | Optional Fitted extras: VGA graphics card 1.4 $\mathrm{Mb} 31 / 2^{n}$ floppy disk drive (instead of 1.2 Mb) | |
| :---: | :---: |
| 1.4MO $31 / 2$ tioppy (isk drive (instiad NE2000 Ethernet (thick, thin or twisted) network card | $\begin{aligned} & { }_{8}^{\varepsilon 19.95} \\ & \varepsilon 39.00 \end{aligned}$ |
 LOW COST 486DX-33 SYSTEM

 Many other options avaiable - call for details. $£ 399.00$ (E)
FLOPPY DISK DRIVES $312^{\prime \prime}-8^{\prime \prime}$

$$
51 / 4^{\prime \prime} \text { or } 31 / 2 \text { " from only } £ 18.95 \text { ! }
$$

$31 / 21$ Panasonic JU363/4 720K or equivalent RFE	£24.95(B)
$31 / 2$ " Mitsubishi MF355C-L. 1.4 Meg . Laptops only	E25.95(B)
$31 / 22^{\prime \prime}$ Mitsubishi MF355C-D. 1.4 Meg . Non laptop	ع18.95(B)
$51 / 4 "$ Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE	ع18.95(B)
51/4" Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFE	£22.95(B)
51/4" BRAND NEW Mitsubishi MF501B 360K	E22.95(B)
Table top case with integral PSU for HH 51/4" Flopp or H	£29.95(B)
8"Shugart 800/801 8" S $^{\text {S }}$ refurbished \& tested	£195.00(E)
$8{ }^{\text {8 }}$ Shugart $8108^{\prime \prime}$ SS HH Brand New	E195.00(E)
8"Shugart $8518^{\prime \prime}$ double sided refurbished \& tested	£250.00 E
Mitsubishi M2894-63 8" double sided NEW	£275.00 E)
Mitsubishi M2896-63-02U 8" DS slimline NEW	£285.00 (E)
Dual 8 " cased drives with integral power supply 2 Mb	¢499.00(E)

HARD DISK DRIVES

THE AMAZING TELEBOX

\qquad made by makers such as MICROVITEC, ATARI, SANYO, SONY,
COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite coption of TV channels not normally receivable on most televichannels. TELEBOX MB covers virtually ail television frequencies
VHF and UHF including the HYPERBAND as used by most cabl ideo systems. For complete compatibility - even for monitors with-

DC POWER SUPPLIES

Virtually every type of power
supply you can imagine. Over
O,OOO Power Supplies Ex Stock
Issue 13 of $\mathcal{D i s p l a y ~ N e w s ~ n o w ~ a v a i l a b l e ~ - ~ s e n d ~ l a r g e ~ S A E ~ - ~ P A C K E D ~ w i t h ~ b a r g a i n s ! ~}$

ALL MAIL \& OFFICES
Open Mon-Fri 9.00-5:30

FAX 01816791927

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving \&100 cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER
 "High accuracy, resolution and bandwidth performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5-digit 1705 multimeter resolves down to $10 \mu \vee, 10 \mathrm{~m} \Omega$ and $0.1 \mu \mathrm{~A}$ and has a basic de accuracy of 0.04%. Frequency measured is 10 Hz to 120 kHz with an accuracy of 0.01% and resolution to 0.01 Hz . Capacitor and true rms measurements are also featured.
Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly $£ 100$ 'best circuit idea' award and £25 awards for each circuit published.

ETOONTNNTR

Inductance on a capacitance meter

Using this circuit, you can measure inductance by means of a capacitance meter. It offers the advantage over a gyrator in that the inductor is earthed.

$$
\begin{aligned}
& Y=\mathrm{j} \omega L /\left(R_{8}+\mathrm{j} \omega L\right) \times(V+Y) \\
& Y=\mathrm{j} \omega L V / R_{8} \\
& U=2 V-(V+Y)=V-\mathrm{j} \omega L V / R_{8}
\end{aligned}
$$

Since $V / I_{\mathrm{in}}=\left(R_{8} R_{1}\right) / j \omega L$, which is a capacitive impedance,

$$
\begin{aligned}
I_{\text {in }} R_{1} & =V-U \\
I_{\text {in }} & =\mathrm{j} \omega L V /\left(R_{8} R_{1}\right) \\
1 / \mathrm{j} \omega C & =\left(R_{8} R_{1}\right) / \mathrm{j} \omega L \\
C & =L /\left(R_{8} R_{1}\right)
\end{aligned}
$$

Making R_{8} and $R_{1} 1 \mathrm{k} \Omega$ presents a 1 H inductor as $1 \mu \mathrm{~F}, 10 \mathrm{mH}$ as 10 nF , etc.

Marco Trinci

Montecatini Terme
Italy

Without calculation, this circuit measures
inductance in terms of capacitance, while allowing the inductor to be earthed.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers
HP141T +8552 B IF +8553 B RF -1 KHz - $110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 700$

HP 141T + 8552B
Special Offer just in from MOD Oty 40 HP8555A RF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$.
HP141T + 85522 I I +8555 A 10Mc/s-18GH2S - 1 1200.
HP ANZ Units Available separately - New Colours - Tested
HP 1417 Mainframe - $£ 350$.
HP8552B IF - £300.
HPRS53B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 200$
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500$
HP 8555 A RF 10 Mcs to $18 \mathrm{GH} 2 \mathrm{~S}-£ 800$
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-£ 800$
HP 8556 A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}$ - $£ 300$
HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-£ 350$
HP3580A $5 \mathrm{H}_{2}-50 \mathrm{KHz}$ ANZ - $£ 750-£ 1000$
HP3582A . 02 Hz to $25.6 \mathrm{KHz}-£ 2 \mathrm{k}$.
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ- f 6 k.
$\mathrm{HP} 8569 \mathrm{~B} 10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ - 6 k .
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-£ 4 \mathrm{k}-£ 4.2 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2+3-£ 4.5 \mathrm{k}$
TEK 492 P $-50 \mathrm{KHz}-21 \mathrm{GHz}$ Opt $1+2+3-$ E5k.
TEK 494AP $1 \mathrm{KC/S}-21 \mathrm{GHz}$ - f 7 k .
TEK $496 \mathrm{P} 1 \mathrm{KHz}-1.8 \mathrm{GHz}$ - E 4 k .
TEK 5L4N O-100KHz - £400.
TEK $7 \mathrm{~L} 5+\mathrm{L1}-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-\mathrm{E7} 00$
TEK 7 LS + L3-Opt 25 Tracking Gen - f 900.
TEK $7 \mathrm{~L} 12-100 \mathrm{KHz}-1800 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1000$.
TEK 7L12-100K Hz-1800 Mc/s- $£ 100$
TEK $7 \mathrm{~L} 18-1.5-60 \mathrm{GHzs}-\mathrm{f} 1500$
TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}-\mathrm{E} 750$. 12.4Ghzs-40Ghzs with Mixers.
Tektronix Mixers are available for above ANZ to 60 GHzs
Systron Donner 763 Spectrum ANZ - 4745B Preselector $.01-18 \mathrm{GHz}+$ Two Mixers $18-40 \mathrm{GHz}$ in Transit Case - £3k.
HP8673D Signal Generator .05-26.5GHz - £20k.
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep Generator Synthesizer AM FM 4-2500 Mc/s - $£ 3.5 \mathrm{k}$
ADRET 3310 A FX Synthesizer 300 Hz - $60 \mathrm{Mc} / \mathrm{S}$ - E 600 .
HP3717A 70Mc/s Modulator - Demodulator - $£ 500$ -
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200 W.
HP6825A Bipolar Power Supply Amplifier
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC-400Mc/s
HP Plotters 7470A-7475A
HP37704 Amplitude Delay.
HP3770B Telphone Linay Distortion ANZ
HP8182A Data Analyser.
HP59401A Bus System Analyser
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector.
HP3781A Pattern Generator
AP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - £250
HP5087A Distribution Amplifier.
HP6034A System Power Supply 0-60V 0-10A-200W - £500.
HP6131C Digital Voltage Source+-100V $1 / 2 \mathrm{Amp}$.
HP4275A Multi Frequency L.C.R. Meter.
HP3779A Primary Multiplex Analyser
HP3779C Primary Multiplex Analyser
HP8150A Optical Signal Source
HP5316A Universal Count
HP5335A Universal Counter $A+B+C$.
HP595018 Isolated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 8901B
HP5370A Universal Time Interval Counter.
Marconi TF2370-30Hz-110Mc/s 750 HM Output 12 BNC Sockets + Resistor for 500 HM MOD with Marconi MOD Sheet supplied - E 650 .
Marconi TF2370 30Hz-110MC/s 50 ohm Output - E750
Marconi TF2370 as above but late type - $£ 850$.
Marconi TF2374 Zero Loss Probe - £200.
Marconi TF2440 Microwave Counter - 20GHz - $£ 1500$
Marconi TF2442 Microwave Counter - 26.5GHz - $£ 2 \mathrm{k}$
Marconi TF2305 Modulation Meter - £2.3k
Racal/Dana 2101 Microwave Counter - 10 Hz -20GHz - $£ 2 \mathrm{k}$
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
TEKA6902A also A6902B Isolator $-£ 300-£ 400$.
TEK 1240 Logic Analyser - £400.
TEK FG5010 Programmable Function Generator 20 Mc 's - $£ 600$
TEK2465A 350 Mc 's Oscilloscope - $£ 2.5 \mathrm{~K}$ + probes - $£ 150$ each.
TEK CT-5 High Current Transformer Probe - 250.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - $£ 300$.
TEK $J 16$ Digital Photometer + J6503 Luminance Probe - $£ 250$.
FLUKE 5102 AB AC-DC Calibrator $-£ 4 \mathrm{k}$.
FLUKE 1120A IEEE - 488 Translator - $f 250$
Tinsley Standard Cell Battery 5644 B - $£ 500$.
Tinsley Transportable Voltage Reference - $£ 500$
FLUKE Y5020 Current Shunt - $£ 150$.
HP745A+746A AC Calibrator - $£ 60$
+15400 A - 6800 .
+1 Prin
HP11729B Carrier Noise Test Set.01-18GHz - LEF - £2000
HP3311A Function Generator - £300.
Marconl TF2008 - AM-FM signal generator - also sweeper - 10 K c/s - 510 Mc/s - from E250 tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type 8406 - $£ 400$.
HP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz al so $18-40 \mathrm{GHz}$. P.O.R HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-\mathrm{f} 1000$.
HP Amplifier type 8447A - $1-400 \mathrm{Mc} / \mathrm{s} \mathrm{f} 200-\mathrm{HPB447A}$ Dual - $£ 300$.
HP Frequency Counter type 5340A-18GHz £1000-rear output $£ 800$
HP 8410 - A - B - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up -8411a-8412-8413-8414-8418-8740-8741-8742-87438746 - 8650. From $£ 1000$.
Racal/Dana 9301A - 9302 RF Millivoltmeter $-1.5-2 \mathrm{GHz}$ - $£ 250-£ 400$.
Racal/Dana Modulation Meter type 9009
Marconi RCL Bridge type TF2700- $£ 150$.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 £ $250-\mathrm{E} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$
$40 \mathrm{GHz}-\mathrm{f} 1000$ or PI only sweep osc., mainirame with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or Pl only $£ 600$. MF only $£ 250$.
Marconi distortion meter type TF2331-£150. TF2331A - $£ 200$.

Tektronix Plug-Ins 7A13-7A14-7A18-7A24- خA26-7A11-7M11-7S11-7010-7S12-S1
-S2-S6-S52-PG506 - SC504-SG502-SG503-SG504-DC503-DC508-DD501-- S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 --
Gould J3B test oscillator + manual $-£ 150$.

- 7704A - 7844 - 7904 - TM501 - TM503 - TM506 7904A - 7834-7623-7633.

Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ + high pass + low pass - $£ 150$
Marconi TF2163S attenuator - 1GHz. £200.
Farnell power unit H60/50-£400 tested. H60/25 - $£ 250$.
Racal/Dana 9300 RMS voltmeter - E 250 .
HP 8750A storage normalizer - £400 with lead + S.A or N, A Interface
Teltronix - 7S 14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304-£250
HP 5065A rubidrum vapour FX standard - $£ 1.5 \mathrm{k}$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner - signal generator 1702 - synthesized to 1GHz - AM/FM - $£ 600$
Tektronix TM515 mainframe + TM5006 mainframe - $£ 450$ - $£ 850$.
Farnall electronic load type RB1030-35-£350.
-
E450- all fitted with FX standards
Marconl TF2092 noise receiver. A, B or C pluse - $\mathbf{1} 500-\mathrm{E} 600$.
Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$.
Marconi $2017 \mathrm{~S} / \mathrm{G} 10 \mathrm{Khz}-1024 \mathrm{MHz}$.
HP 180 TR , HP182T mainframes $£ 300$ - 5500 .
Philips panoramic receiver type PM7900-1 1020 GHz - $\mathbf{£ 4 0 0}$.
Marconi 6700 A sweep oscillator +18 GHz Pl's available
HP8505A network ANZ + 8503A S parameter tesi set + 8501A normalizer - $£ 4 \mathrm{k}$
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter
type 527E + rubidium standard type 9475 - $£ 2750$.

Bradley oscilloscope calibrator type 192 - $\mathbf{E 6 0 0}$.
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$
P1P 3325 A synal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$
HP $3336 A$ or B syn level generator - $£ 500$ - $\mathbf{- 6} 60$
HP 3586B or C selective level meter - $\mathbf{E 7 5 0 - £ 1 0 0 0 .}$
HP 3575A gain phase meter 1 Hz - $13 \mathrm{Mc} / \mathrm{s}$ - $£ 400$
HP 8683D S/G microwave 2.3 - 13 GHz - opt 001 - 003 - $£ 4.5 \mathrm{k}$
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2600 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500-\mathrm{E} 2000$
P 8640 B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - £ $800-\mathrm{f} 1250$
HP 86222 BX Sweep PI-01- $2.4 \mathrm{GHz}+$ ATT - $£ 1750$
HP 8629 A Sweep PI- $-18 \mathrm{GHz}-£ 1000$.
HP 86290 S Sweep PI $-2-18 \mathrm{GHz}-£ 1250$.
HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-£ 1 \mathrm{k}$
HP 8620C Mainframe - £250. IEEE - £500.
HP 8615 A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - f 1 k
4P 8601A Sweep generator. 1 - $110 \mathrm{Mc} / \mathrm{s}-£ 300$.
IP
HP 853A MF ANZ - £1.5k
HP 8349A Microwave Amp 2-20GHz Solld state - $£ 1500$
HP 3585A Analyser 20 Hz - $40 \mathrm{Mc} / \mathrm{s}$ - E 4 k .
HP 8569 B Analyser .01 - 22GHz- 5 Ek.
HP 3580A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$.
HP 1980 O Oscilloscope measurement system - $£ 600$.
HP 3455 A Digital voltmeter - $£ 500$.
HP 3581 C Selective voltmeter - $£ 250$.
HP 5370 A Universal time interval counter - $\mathbf{£ 4 5 0}$
HP 5335A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-5500$.
HP 5328A Universal counter $-500 \mathrm{Mc} / \mathrm{s}-£ 250$
HP 6034 A System power supply $-0-60 \mathrm{~V}-0-10 \mathrm{amps}-£ 500$.
HP 5150 A Thermal printer - $£ 250$.
HP 1645A Data error analyse
HP 3717 A $70 \mathrm{Mc} / \mathrm{s}$ modulator - $\mathbf{~} 400$
HP 3710A-3715A - 3716A - 3702B-3703B-3705A-3711A-3791B-3712A-3793B
microwave link analyser - P.O.R.
HP 3552A Transmission test set - £400.
HP 3763 A Error detector - $£ 500$.
HP 3770 A Amp delay distortion analyser - $£ 600$.
HP 3780 A Pattern generator detector - $£ 400$.
HP 3781 A Pattern generator - $£ 400$.
MP 37818 Pattern generator (bell) - $\mathbf{f 3 0 0}$
HP 3782A Error detector - $£ 400$.

HP 8006A Word generator - $\mathrm{f} 100 \cdot \mathrm{E} 150$.
HP 8016 A Word generator - $£ 250$.
HP 8170 Logic pattern generator - E500.
HP 59401 A Bus system analyser - E 350 .
HP 59500A Multiprogrammer HP-IB - $£ 300$
PM5390 RF Syn-0.1-1GHz -AM + FM - f1000.
S.A. Spectra 1

Tektronix TR503 + TM503 tracking generator - 0.1 - 1.8 GHz - £1k - or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 577 Curve tracer + adaptors - $£ 900$.
Tektronix $1502 / 1503$ TDR cable test set - $\mathbf{~ 1 1 0 0 0 .}$
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - 775 - 350
Tektronix 465-465B-475-2213A-2215-2225-2235-2245-2246-£250-£1000
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS6100M - $£ 350$
Nicolet 3091 LF oscilloscope - $£ 400$.
Racal 1991-1992-1988-1300 Mc/s counters - $5500-£ 900$
Fluke $80 \mathrm{~K} \cdot 40 \mathrm{High}$ voltage probe in case - BN - $£ 100$.
acal Recorders - Siore -
EIP 545 microwave 18 GHz counter - f 1200 .
Fluke 510A AC ref standard - $400 \mathrm{~Hz}-£ 200$
Fluke 355A DC voltage standard - $£ 300$.
Wiltron 610 D Sweep Generator $+6124 \mathrm{C} \mathrm{PI}-4-8 \mathrm{GHz}-£ 400$.
Witron 610 D Sweep Generator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
Time Electronics 9814 Voltage calibrator - $£ 750$.
Time Electronics 9811 Programmable resistance - E 600
HP 86998 Sweep PI YIG oscillator $.01-4 \mathrm{GHz}-£ 300$.
.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays - attenuators -
B\&K hems in stock - ask for list.
W\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock -Farnell - HP-Weir - Thurloy - Racal etc. Ask for list.
IIEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABIUTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EOUIPMENT-VALVES-PLUGS AND SOCXETS-SYNCROS-TRANSMITTING AND RECENING EQUIPMENT ETC.
Johns Ratio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradiord BD11 2ER. Tel. No: (101244) 684007 . Fax: 651160

Remote multichannel resistance measurement

This low-power circuit measures the value of remote resistive sensors using any type of connection such as wire, infrared or ultrasonics; I use a vhf radio link.
With a UMC UM3758-108AM encoder/decoder, it is possible to transmit 8 -bit data combined with 10 address bits. Depending upon the logical level on the mode input, the circuit acts as a decoder or encoder. In this application, the address bits are hardwired high and the measuring resolution is limited to 6-bit, for reasons explained later.
In encoder mode, the $T x / R x$ pin transmits the address/data information as long as power is supplied. A built-in $R C$ oscillator, needing only R_{9} and C_{9}, provides clocking; matching of the encoder/decoder's oscillator frequencies is not too critical; 5% resistors will suffice.
Serial data is supplied to the Rx input in decoder mode, where it is examined bit by bit as received. Only if two successive address/data combinations match is data transferred to the output data pins D_{1-8}, which latch the data until the next valid data is being received. The Tx/Rx out pin switches low if data matches, returning high after two successive unmatched address words.
System timing is controlled by $I C_{1}$, a 74 HC 4060 . The positive-going edge of the $Q 5$ output of $I C_{1}$ triggers an enable signal, the duration of which is adjustable by P_{1} about
every 60 s, depending upon R_{1}, R_{2}, C_{1}. At the start of this enable time, the counter in $I C_{4}$ is reset to zero by the positive-going edge of the oscillator enable signal via C_{3}, R_{4}. Diode D_{8} gates the $I C_{4}$ clock signal, pulling down the clock input to disable counting. During the enable time, a sensor-dependent count is reached on the outputs Q_{4-9}.
Be careful to avoid overflow, by selecting the right combination between the enable time and the $I C_{4}$ oscillator frequency, which depends on the sensor used.
At the end of the oscillator enable time, the falling edge of $I C_{5 \mathrm{~b}} \mathrm{Q}$ output triggers $I C_{5 \mathrm{a}}$ to switch on the power supply for both the UM3758 and the transmitter. To be sure that a minimum of three address/data codes are transmitted, the transmitter on time, adjustable by P_{2}, is $250-300 \mathrm{~ms}$. Raising the UM3758 oscillator frequency makes it possible to use an even shorter transmitter time, but bear in mind that the receiver must be capable of detecting this signal. A lowloss, dual P-channel mosfet, a Siliconix S/9933DY with $R_{\mathrm{gs}}<0.2 \Omega$, switches the transmitter/encoder supply.
To prevent any current flow through the data input of $I C_{2}$ when it is powered down, the counter outputs of $I C_{4}$ are connected via diodes D_{1-6}. Because of the internal architecture of the $U M 3758$, an open input will be seen as logical 1 , so there is no need
to use pull-up resistors.
Logic levels of data bits D7 and D8 are user selectable to allow the use of four transmitters on the same frequency without changing decoder address lines in the receiver. A small difference in transmitting interval will prevent most of the interference when more than one transmitter is used.
Powered by a 3.6 V lithium cell, the transmitter logic draws less than $100 \mu \mathrm{~A}$, transmitting current depending upon the type of transmitter used, although overall power consumption is still low because of the short transmitting time. A telemetry system based on this design has been in use by our institute since early 1994 to study activity and feeding behaviour of the red deer. As the resistive element we use an electrolytic tilt sensor. I built the circuit using surface-mounted components but, except for the S/9933DY, they are also available in through-hole form. Willem van der Veer
Institute for Forestry and Nature Research Wageningen
The Netherlands.

References

UM3758 series data sheet, UMC Europe,
Amsterdam, The Netherlands. Telephone: 0031-20$\cdot 6970766$.
Little Foot series manual, Siliconix Ltd, Newbury, Berks RGI4 5UX. Tel. 01344-485757.

CRYSTAL OSCILLATORS

307.2 KHZ 1 MO 00000 1M8432 2M457600 3M6864 4M000000 3M372800 7M5 8M00000 9M216 10M000 t0M0 12M000000 14 M 318个4M3818 16M00 17M625600 18M00000 teM432 19MO50 19M2 19M440 20 M 00020 MO 15021 M 67622 M 118423 M 58724 M 0000 25M1748 $25 \mathrm{M} 17525 \mathrm{M} 188927 \mathrm{M}+36 \mathrm{M} 27 \mathrm{M} 0000028 \mathrm{M} 322$ 40M000 44 M 53942 MO 0000044 M 44444 M 900 44MO 48 M 0000 50 M 0055 M 00056 M 0092064 M 00000066 M 667 76M 180 MO

CRYSTALS

32K768 1MHZ 1M8432 2M000 2M1432 2M304 2M4576 3M000 3M2768 3M400 3M579545 3M58564 3M600 3M6864 3M93216 5M0688 6M000 6M041952 6M200 6M400 7M37280 8M000 8M0 8M448 8M863256 8M8670 9M3750 9M8304 10M240 10M245 10M368 10M70000 11 M000 11M052 11 M 98135 12M000 12M5 13M000 13M270 13M875000 14M000 14M318 14M7450 14M74 15M0000 16MOOO 17M625018M432 18M432 20M000 21 M300 21M400M15A 24M000 25 M000 26M995 BN 27 MO 045 AD 27 M 095 OR 27M145 BL 27M145 YW 27M 195 GN 28M4696 30M4696 31M46 36 M 9062536 MB 1975 36M83125 36 M 8437538 M 90048 M 000 51M05833 54M1916 55M500 57M7416 57M7583 69M545 69M550 96 M 000 111M800 114 M 8120 M 000

TRANSISTORS

MPSA92
BC107 BCY 70 PREFORMED LEADS
full spec.
BC557, BC238C, BC308B
EC5488 SHORT EADS
-

POWER TRANSISTORS
2SC1520 sım BF259
TIP 141/2 £1 ea TIP $112 / 42 \mathrm{~B}$
SLASTIC 3055 OR 2955 SIM TIP 1
BUZ31 POWER FET TO-220 200V

TEXTOOL ZIF SOCKETS

28 PIN USED.................... 40 PIN NEW............... DUAL INLINE DEVICES. COUPLING SUPPLIED $2 / \varepsilon 1.50$

KEYTRONICS
FAX. 01279-757656 PO Box 634
BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

MISCELLANEOUS

 2 VOLT 920 A/hr LEAD ACID CELLS, UNUSED, UNFILLED 18° HIGH TUBULARPLATE CONSTRUCTION, FOR DEEP CYCLE. HIGH AVAILABLE, PHONE FOR PRICING ALSO AVAILABLE FILLED \& CHARGED
Narrow angle infra red emitter LED55C.
Z800 PiO 7000 available $£ 1$ each, aly. price
CNY65 OPTO ISOL 3000 available...............
OPTO ICS also avallabie TLP550 TLP666GF

$30 / 50 \mathrm{p}$
50p
68 way PLCC SKT 1500 avalable
XISOFPOSTAGE STAMP COMPRESSION TRIMMER............ ©1
LM324 (Uuad 741) ...
MINIATURE FERAITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$
INO71 LC NOISE OP AMP
TL071 LO NOISE OP AMP.
TL081 OP AMPE
47000 .
5 for $£ 1$
12 way dil Sw5 for
SWITCHED MODE PSU 40 WATT UNCASED OTY. AVAILABLE +530 $5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING

CMOS 555 TIMERS.
250/1000
ICMT126CPLCMOS $31 / 2$ DIGIT LCD DRIVER CHIP.........................2ea
LITHIUM CELL $1 / 2$ AA SIZE...........................2FOR $£ 1$
PASSIVE INFRA RED SENSOR CHIP + MIRROA + CIRCUIT £2 ea
"PROTONIC 24 VARIBUS" $16.7^{\prime \prime} \times 5^{\prime \prime}$ FIBREGLASS MULTILAYER
EUROCARD 96 -WAY EXTENDER BOARD ...
ᄃ10ea
DIN 4161296 -WAY ABBC SOCKET PCE RIGHT
DIN 4161296 WAY ABCC SOCKET WIRE WRAP PINS DII 41612 64-WA AC SOCKET WIRE WRAP PIN
DIN 41612 64-WAY AC PLUG PCBRIGHT ANGLE
DIN 41812 64. WAY AB SOCKET WIRE WRAP (2 -ROW BODY
BT PLUG +LEAD
MIN. TOGGLE SWITCH 1 POLE C/O PCB TYP LCD MODULE sirm. LM018 but needs 150 to 250 V AC for display
40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$. 40×2
$6-32 \mathrm{U}$
NUTS
PUSH
RS2
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS
25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCAEENS $£ 5$ ($£ 1.30$) AMERICAN 23 PIN CHASSIS SOCKET $2 \Omega 1$ WIRE ENDED FUSE SO 25A.
NEW ULTRASONIC TRANSDUCEAS 32 kHz POWERFUL SMALL CYLINDRICAL MAGNETS
BNC 500 HM SCREENED CHASSIS SOCKET... BNC 50OHM SCREENED CHASSIS SOCKET.
SMALL MICROWAVE DIODES AE 1 OC $1026 A$

$$
\begin{aligned}
& \text { D.1.L. SWITCHES 10-WAY } £ 1 \text {-WAY } 80 \mathrm{p} 4 / 5 \\
& 180 \mathrm{O} \text { IT T WATT ZENERS also } 12 \mathrm{~V} 85 \mathrm{~V} \text {... } \\
& \text { MIN GLASS NEONS. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MIN GLASS NEONS } \\
& \text { RELAY 5V 2-pole changeove loks like RS } \mathbf{3 5 5} \mathbf{- 7 4 1} \text { marked STC }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MINIATURE CO-AX FREE PLUG RS } 456.071 \\
& \text { MINIATURE CO-AX PCB SKT RS } 456.093
\end{aligned}
$$

$$
\begin{aligned}
& \text { MINIATURE CO-AX PCB SKT RS } 456 \cdot 093 \text {. } \\
& \text { PCB WITH 2N2646 UNIJUNCTION WITH } 12 \mathrm{~V} \text { 4.POLE RELAY. } \\
& \text { 400 MEGOHM THICK FILM RESISTORS.... } \\
& \text { STRAIN GAUGES } 40 \text { ohm Foill type polyesier backed balco grid }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Linear Hall effect IC Micro Switch no } 613 \text { SS4 sum RS } 304-267 \\
& \text { I2.50 } 100+£ 1.50
\end{aligned}
$$

$$
\begin{aligned}
& \text { HALL EFFECT C UGS3040 } \\
& \text { \& pole } 12 \text { way rotary swith ... } \\
& \text { AUDIO ICS LM } 380 \text { LM } 386 \text {.... } \\
& \text { S55 TTMERS } 1741 \text { OP AMP }
\end{aligned}
$$

$$
5.50100+£ .5
$$

$$
\begin{aligned}
& \text { COAX PLUGS nICe Ones............ } \\
& \text { COAX BACK TOBACK JOINERS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { INDUCTOR } 20 \mu H 1.5 A \text {......... } \\
& \text { 1.25" PANEL FUSEHOLDERS }
\end{aligned}
$$

$$
\begin{aligned}
& 1.25^{\circ} \text { PANEL FUSEHOLDERS } \\
& 12 \mathrm{~F} \text {. } 1.2 \text { W smail w/e lamps ht } \\
& \text { STEREO CASSETTE HEAD }
\end{aligned}
$$

$$
\begin{aligned}
& \text { STEREO CASSETTE HEAD. } \\
& \text { MONO CASS. HEAD } \$ 1 \text { ERASE HEAD. } \\
& \text { THERMALL CUT OUTS } 507785120^{\circ} \mathrm{C} \text {... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THERMAL FUSES } 220^{\circ} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} \text { 15A } \\
& \text { TRANSISTOR MOUNTING PADS TO-5/TO-18. }
\end{aligned}
$$ 40k U/S TRANSDUCERS EX-EQPT NO DATA

…........ $\mathbf{\Sigma 1}$

$$
\begin{aligned}
& 555 \text { TIMERS \& } 1741 \text { OPA } \\
& \text { ZN4 } 14 \text { AM RADIO CHIP } \\
& \text { COAXPLUGS mCe ones }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THERMAL CUT OUTS } 507785120^{\circ} \mathrm{C} . . \\
& \text { THERMAL FUSES } 220^{\circ} \mathrm{C} / 21^{\circ} \mathrm{C} 240 \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TO. } 3 \text { TRANSISTOR COVERS. } \\
& \text { PCBPINS FIT } 0.1^{*} \text { VERO. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PCBPINS FIT } 0.1^{*} \text { VERO } \\
& \text { TO-220 micas }+ \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TO-200 micas + bushes } \\
& \text { TO-3 micas + bushes... }
\end{aligned}
$$

Large heassis plug filter 10A.
POTS SHORT SPINDLES $2 K 510 \mathrm{~K} 25 \mathrm{~K} 1 \mathrm{M} 2 \mathrm{M} 5$
LM2332 CONST. CURRENT I.C
BNC TO AMM BINDING POST S SM RS 455-961 BANOOLIERED COMPONENTS ASSORTEO Rs Cs, ZENE....
LCD MODULE 16 CHAR $\times 1$ LINE (S............................... $£ 5 / 1000$
OPI1264A 10 kV OPTO ISOLATOR LOVE STORY' CLOCKWORK MUSICAL BOXMECHANISM
Telephone cable clips with hardened pins...
$10,000 \mathrm{~F}$ 16V PCB TVPE 30 mm DIA 31 mm
EC CHASSIS FUSED PLUG B LEE L2728
EC CHASSIS FUSED PLUG B LEE L2728..
2A CERAMIC FUSE 1.25° QB
46 WAY IDC RIBEON CABLE 100 FOOT REEL
20 mm PCB FUSEHOLDER
ASTEC MODULATOR VIDEO + SOUND UM1287
BARGAAPH DISPLAYB RED LEDS
NE567 PHASE LOCKEDLOO
NE564,
P6749
P6749H USED WIPED
IA2432 SHARP 12 LED VU BAR GRAPH DRIVER

DIODES AND RECTIFIERS

A115M 3A G00V FAST RECOVERY DIOD
1N54148 3A 1000V...
4/81
$8 / 51$
1N4004 SD4 1A 300 V
100.51 .50

1N5401 3A 100 V ..
100/3
IN5819RL 20K Ex stock $000+10 \mathrm{p}$
BY254 800 V 3 A
6A 100 V SIMILAR MR75
1 A GOOV BRIDGERECTIFIER
4A 100V BRIDGE.
6A 100V BRIDGE.
10A 200V BRIDGE...
25A 200 V BRIDGE E2...
2KBP02 IN LINE 2A 200V BRIDGE REC
KBPC304 BRIDGE REC 3 A 400 V
8/51

SCRS

PULSE TRANSFORMERS $1: 1+1$
181.25

MEU21 PAOG. UNIJUNCTION

-
 TRIACS
 DIACS 4/E1

NEC TRIAC ACOBF 8 A 600 V TO220 5/\&2 100/ع30

BTA 08-400 ISO TAB 400 V 5 mA GATE

PHOTO DEVICES
HI BRIGHTNESS LEDS COX24 RED ... 5/E1
SLOTTED OPTO-SWITCH OPCOA OPB815 £1.30

TIL81 PHOTO TRANSISTOR
TIL 38 INFPA RED LED.
4N25, OP12252 OPTO ISOLATOR
PHOTO DIODE 50P...
MEL12 (PHOTO DARLINGTON BASE NC)
LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{EL}$....
100/E6
FLASHING RED LED 5 mm 50 p
HIGH SPEED MEDIUM AREA PHOTODIODE RS651-995
OPTEK OPB745 REFLECTIVE OPTO SENSOR
£10 8

REDLED - CHROME BEZEL
 OPII IOB HI VOLTAGE OPTO ISOLATOR

3/51
STC NTC BEAD THERMISTORS
G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$ OIRECTLY HEATED TYPE,
FSZ2BW NTC BEAD INSIDE END OF $~^{\prime \prime}$ GLASS PROBE RES $20^{\circ} \mathrm{C}$ © A13 DIRECTLY HEATED BEAD THE RMISTOR ik res. ideal for audio Wien Bridge Oscillator ...
CERMET MULTI TURN PRESETS $3 / 4$
10R 20R 100 R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100 K

IC SOCKETS

14,16,182024/28,40-WAY DILSKTS
32-WAY TURNED PIN SKTS.
SIMM SOCKET FOR 2×30-wa
£1 per TUBE
$\varepsilon 2$ per TUBE

POLYESTER/POL YCARBCAPS
$330 \mathrm{NF} 10 \% 250 \mathrm{~V}$ AC X 2 RATED PHILIPS TYPE 330
$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$
ع20/100
$2 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{~m} / 66 \mathrm{n} 10 \mathrm{~mm}$ rad
$20 / 51100 / \mathrm{E} 3$
$100 / \mathrm{E} 3.50$
1000n 2500 radiai 0 mm
$2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad $15 \mathrm{~mm} . \quad 100 / \mathrm{I}_{2}(21$
10 n 33 N 47 n 250 V AC \times rated 15 mm ... $10 / \mathrm{I}$
$1 \mu 600$ V MIXED DIELECTRIC .. 50 pea

$0.22 \mu 900 \mathrm{~V}$ X2 A N
$4 / \Sigma 1$

RF BITS

AWFITERS SW62 2 W661 PLESSEY SIGNAL TECHNOLOGY
379.5 MHZ... 10 for 11
FX3286 FERRITE RING IO 5 mm OD 10 mm

ASTEC UM 1233 UHF VIDEO MODULATORS (NO SOUND) 1250
MARCONI MICHOWAVE DIODES TYPES DC2929, DC2962. $£ 1.50$
MARCONI MICHOWAVE DIODES TYPES DC2929, DC2962,
DC4229F1F2
XTAL FILTEAS 21 M4 55MO
for 50 ea

RED 10-110pF GREY 5-25pF SMALL MULLARD 3 FOR 50p $£ 10 / 100$
TRANSISTORS 2N4427, 2N3866... 80p ea
CERAMIC FILTERS 4M5/6M/9M/10M7
FEED THRU'CERAMIC CAPS 1000pF... $10 / \Sigma 1$
 BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL
P2N2222A PLASTIC
. $\mathbf{1 0 / / 5 1}$

EOUIV MHW $066 A-3$ RF IN 40 mWO O/P $6 \rightarrow 8 \mathrm{~W} 840 \rightarrow 910 \mathrm{mHz} \ldots £_{3} \mathrm{e}$
MONoLTHHIC CERAMIC CAPACITORS

100n ax short leads. 100/E3

QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPE M312...................... $\mathbf{\Sigma 1}$ ea HOLDEAS 60p ea
6V 50 watt

They don't
come much simpler than this one. Three electrical
components
test a coax.
cable for shorts and continuity,
provided you
have
remembered to isolate the sockets.

Short and continuity test for coaxial cable

$W^{\text {ith three components, you can }}$ test a coaxial cable for inner and outer continuity and short circuits between them.
Led 1 lights for inner continuity and led 2 when the outer is in one piece. If there is a short, neither led lights, since they are both across the
cable, short-circuit current being limited by R_{1}. To resolve the ambiguity of both leds being out for shorts and open circuits in inner and outer, disconnect the cable and touch the outers to the socket shells.

S Roberts

Bude, Cornwall

Measuring conductivity

T
o measure the contact resistance of physiological electrodes, current density must be kept below the threshold of feeling and be low enough to avoid polarising the electrodes.

In the instrument shown here, the reference current comes from the Howland current pump based on the INA105, which takes its 60 Hz input from the display backplane drive, PR_{2} setting the output current at $1 \mu \mathrm{~A}$.

Voltage across the electrodes $\left(R_{\mathrm{X}}\right)$ is rectified by the $A D 736$ and displayed. Measuring range is $0.1 \mathrm{k} \Omega$ to
$199.9 \mathrm{k} \Omega$.
A G Birkett
London SE22

Conductivity meter uses a current pump to supply constant $1 \mu \mathrm{~A}$ to the contact resistance to be measured. Resulting voltage is digitally displayed.

CIRCLE NO. 123 ON REIL I (ARI)

TOROIDAL TRANSFORMERS

High Quality Low Prices
In addition to our standard range we will be pleased to quote
for your special requirements
PRICE LIST

		Quantity Price Excludlng VAT \& Carriage				
VA	Mail Order	$2+$	$10+$	$25+$	$50+$	$100+$
15	14.59	10.21	7.69	5.69	5.52	5.35
30	16.04	11.23	8.45	6.25	6.06	5.89
50	17.83	12.48	9.40	9.95	6.74	6.53
60	18.02	12.61	9.49	7.02	6.82	6.61
80	17.98	12.60	9.49	7.02	6.81	6.60
100	21.07	14.74	11.11	8.21	7.96	7.72
120	21.54	15.08	11.35	8.39	8.15	7.89
150	25.98	18.19	13.70	10.12	9.82	9.53
160	23.83	16.68	12.56	9.28	9.00	8.73
225	30.10	21.07	15.87	11.73	11.39	11.04
300	34.32	24.02	18.09	13.38	12.98	12.58
400	46.19	32.32	24.35	17.99	17.47	16.94
500	50.48	35.34	26.61	19.67	19.09	18.51
625	53.09	41.36	31.14	23.02	21.24	20.57
750	58.39	44.23	33.30	24.62	23.89	23.17
1000	78.80	55.16	41.54	30.70	29.80	28.89
1200	82.45	57.72	43.46	32.12	31.17	30.23
1500	105.10	73.63	55.40	40.94	39.74	38.53
2000	114.45	96.13	72.39	53.51	51.93	50.36
2500	163.04	114.13	85.94	63.51	61.64	59.79

These prices are for 240 volt primary and two equal secondar ies with $8^{\prime \prime}$ colour coded fly leads.
Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)
Mail order prices include vat and postage.
Please do not hesitate to telephone or write with your particular requirements.

TEST \& MEASURING INSTRUMENTS A SUPERE RANGE OF OVER 100 GUALITY INSTRUMENTS. Available from
B.K. ELECTPONICS
M-AM Signal Generators Timing Analyser * Video Noise Meter

* Distortion Meter * Waveform Monitors
- Vectorscopes $\$$ Audio Generators $\$$ Wow and Flutter Meters $\$$ Electronic Voltmeters
* Digital Multimeters * Function Generators \star Frequency Counters \star Bus Analyser
* Resistance Atteruator * Dscilloscopes * Fully Programmable Digital Storage Dscilloscopes * Regulatedㅁ.C. Power Supplies
A free, 50 page colour brochure, including price list, is available on request. Please make your request on company headed notepaper, by post or byfax, to:

B.K. ELECTRONICS sOUTHEND-ON-SEA, Essex, S52 6TR.
 Tol: 0170e-527578 Fax: 0170e.420e43

- 80 C 188 EB Processor Clocked at 24 Mhz
$\square \quad 128 \mathrm{k}$ Battery Backed RAM (512k option)
$\square \quad 128 \mathrm{k}$ Eprom ($32 \mathrm{k}-512 \mathrm{k}$ options)
$\square \quad 128 \mathrm{k} 5$ volt Flash Eprom (512k option)
\square Real Time Clock (On board Battery)
- Watchdog Timer/Reset with Brownout detection
- 2 Serial Ports-1 RS232, 1 RS232/422/485

ㅁ 8 Channel 12 bit ADC (optional)
\square Direct Connection to Alphanumeric LCD Display
$\square 48$ Digital I/O lines
\square Set-up and Driver routines with Full C Source Code
FAST START - Use our Full ANSI compatible Embedded C Compiler for super fast application development. Supplied complete with Editor, Compiler, Assembler, Linker. Embedded Debug and comprehensive Manual. you can compile and download and bla Generate ROMable Code direct, no struggling with .EXE conversions or messing around with reset code. Just $£ 595$

For further information

Call now - 01379644285 - Fax 650482
Devantech Ltd - 2B/2C Gilray Road - Diss - Norfolk - IP22 3EU

CIRCUIT IDEAS

RS232-to-RS485 PC-powered converter

needed to control settings on machines, which have RS485 ports, by means of a laptop PC, which has

RS232. Since no power supply was available, it had to come from the serial port but, since there is
insufficient power on most serial ports to supply an RS485 driver I developed this circuit.
Transistor Tr_{1} inverts the signal on the RS232 TX pin, buffering it from the A line. B is at around 2.4 V , held by the zener, since the RS485 is differential. Transistor Tr_{3} is a level converter to RS232 and Tr_{2} prevents data from echoing to the RX pin when the PC transmits.
Power from DTR and CTS is smoothed by the $22 \mu \mathrm{~F}$ capacitor and the lnF capacitors reduce noise, where this is necessary.
Eight controls can be daisy-chained at 19200 baud, if MAX487 low-power RS485 drivers are used; with
75ALS 176 drivers it still works at 19200baud on three controls. In fact, it was intended for only one driver. K Guy Wilkinson
Bromsgrove, Worcester

Sense, but not sensibility for negative rails

A small modification to the standard negative half of a dual power supply regulator improves ripple performance and tracking.
Normally, the sensing voltage for the negative regulator comes from a resistive chain strung between positive and negative rails. Here, it is retumed via R_{1} to the common reference point. With $R_{1,2}$ scaled suitably, an adjustment of the potentiometer between 0 V and 2.5 V gives a $V_{\text {out }}$ change from 0 V to 30 V .
With this circuit, the negative output showed increased stability with reference to both 0 V and the positive rail and, on a 2 A load, ripple is less than 0.5 mV and a 1 kHz switching waveform came out square. Tracking between the two rails is within 50 mV . The filter formed by R_{1} and C_{1} removes any chance of ripple being injected into the reference from the negative rail.
Gregory Freeman
Nairne, South Australia

No-compromise oscilloscope probe

n most situations, the standard 10:1 oscilloscope probe, equalised by a few picofarads, works well but, when looking at
fast waveforms, it can distort the picture, as shown in the bottom trace on a 20 ns pulse.
For this kind of work, a

properly matched transmission line is the answer; anything else produces reflections.
Part of the circuit is a resistive pad, still dividing the input by a factor of ten, but terminating in 50Ω to absorb reflections; the 270Ω resistor swamps the gate output impedance. The top trace shows the result.
Nick Wheeler
Sutton, Surrey

Compensated pad, top trace, shows much improved performance,.over standard oscilloscope probe. Extra 8μ s delay on standard probe is due to greater length of coax.

New mini waterproof TV camera $40 \times 40 \times 15 \mathrm{~mm}$ requires 10 to 16 vols at 120 mA with composite video output (to feed imo a video or a TV with a SCART plug) it has a high resolution of 450 TV lines Verical and 380 Lines to bright sunlight operation and a pinhole bens with a 92 degree field of view, it focuses nown to a few out) High quality stepping motor kits (all including stepping motors) 'Comstep' independent control of 2 stepping motors by PC (Via the parallel port) with 2 motors and sofware .. Kit £67.00 Ready built $£ 99.00$	SL952 UHF Limiding amplifier LC 16 surface mounting AM27502...................................... 11.25 each ($90 \mathrm{p} 100+$) CD4007UB $10 \mathrm{p} 100+(6 \mathrm{p} 1000+$) Sinclair tight gun terminated wiit a jack plug and PPS clip gives a signat when pointed at 50 Hz fic kering light with output wave form chart. DC-DC convertor Reliability model V12P5 12v in $5 v$
	our counter used 7 digit 24 WERTY keyboard 58 key go
Stepper kit 4 (manual control) includes 200 step stepping	0.9uf 250 vdc 18 p each
Hand held ransistor analyser it tells you which Iead is the base, the collector and emitter and if it is NPN or PNP of fauly. \{33.45,	
LEDs 3 mm or 5 mm red or green . . 7 peach yellow 11 p rach cable vies 1 p each 25.95 per 1000 . $£ 9.50$ per 10,000	
10,000 Rechargeable Batteries	
AA (HP7) 500mAH ... 50.99 AA 500 mAH with solder	
C2AH with	
1/2AA with solder	
Standard charger charges 4 AA cells in 5 hours or 4Cs or Ds in $12-14$ hours $+1 \times \mathrm{XPP}^{3}(1,2,9$ or 4 cells may be tharged at a time)	tart capacitor (dialectrol sype contain$\$ 5.95$ or $£ 49.50$ for 10
High power charger as above but charges the Cs and Ds in 5 hours. AAs, Cs and Ds must be charged in $2 s$ or	
Nickel Metal Hydryde AA rells high capacity with no memory. If charged at 100 ma and discharged at 250 ma or less 1180 mAH capacity (lower capacity for high discharge rates).	
Special offers, please check for avalability. Sikk of $42 \times 16 \mathrm{~mm}$ Nicad batteries $171 \times 16 \mathrm{~mm}$ dia with	
5 button cell 6 V 280 mAh battery with wires (Varta $5 \times 250 \mathrm{DK}$	
Shaded pole motor $240 \mathrm{Vac} 5 \mathrm{~mm} \times 20 \mathrm{~mm}$ shaft $80 \times 60 \times$ 55 mm excluding the shaft $£ 4.95$ each	
	1D 27256 -3 Eproms 22.00 each £1.25 1004
115 v AC B0v DC motor $4 \times 22 \mathrm{~mm}$ shaft 50 mm dia $\times 60$ long body (excluding the shaft) it has a replaceable thermal £4.95 cach ($£ 9.95100+$	nac delux ant-glare stalic control panal window size
fuse and brushes 54.95 cach ($\mathbf{5 9 . 9 5 1 0 0 + \text {) }) ~}$	
LM 3 37k T03 case variable regulator.. f1.95	
GaAs FET low leakage current $\mathrm{S8873}$,	
All products advertised are new and unused unless otherwise stated. Wide rage of CMOS TTL. 74HC 74F Linear Transistory kits. Rechargeable batteries, capacitors, toole etc always in stock. Please add $£ 1.95$ towards p\&p. VAT included in all prices.	
JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa Orders (01246) 211202 Fax: 550959 callers welcome 9.30 am to 5.30 pm Monday to Saturday	

CIRCIE NO. 132 ON REPLI CARD

KESTREL ELECTRONIC
 COMPONENTS LTD

ش All items guaranteed to manufacturers' spec.
~ Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.60	1.80	628128LP-85	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.60	2.80
27C256-15	2.20	1.70	6264LP-10	2.60	1.75
27C512-15	2.20	1.70	MM58274CN	4.90	3.75
27C010-15	3.95	2.80	ULN2003A	0.43	0.30
27C020-15	6.00	4.25	7805	0.32	0.25
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.95	7406	0.35	0.23
8255AC-2	2.00	1.45	7407	0.35	0.23
Z80A CPU	1.80	1.00	74HC244	0.35	0.24
LM317T	0.50	0.40	74HC245	0.35	0.24
75176BP	1.35	0.85	74HC373	0.35	0.25
68w PLCC skt	0.90	0.70	74HC374	0.32	0.25

$74 \mathrm{LS}, 74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey, England CR8 4HA

Tel: 0181-668 7522. Fax: 0181-668 4190.

COMIPONENTS \& SYSTEMS

FROM IOSIS

System Components from ISO9001 Source Half Size ISA Single Board Computers 386SX-40 to 486DX4-100 with PC/104, 2 Serial Ports IDE \& FDD \& Printer Port and a variety of on-board functionality's: FLASH/ROM Disc. Cache. VGA CRT/Flat Panel Controller PC/104 Modules:
386 \& 486 CPUs, Solid State Disc, Isolated RS232/485 VGA CRT/Flat Panel Display \& SVGA Controllers PCMCIA types I, II \& III
System Enclosures with Passive Backplanes Colour \& Mono Flat Panel LCD Displays System Integration and Support

2c Chandos Road, Redland

Bristol, BS6 6PE
Tel: 01179730435
Fax: 01179237295

CIRCIE NO. 133 ONREPLI CARD

EMBEDDED C ASSEMBELYSIMLLATION

8051
C compller, first releosed in 1991, now features:
Easy to use Interrupt support with register bank switching - IEEE flooting point arithmetic
- IEEE 695 source level debug output
Integrated relocatable assembler
Simulator running under Microsoft Windows provides extensive support for the 8051 code development

68000

Our first Compller/assembler package
now supports flooting point arithmetic
has been widely adopted by many OEM's to support their
68000 and 68307 hardware

CPU32

68020 C compiler/assembler, originally developed to accompany Motorola's 68020 and 68 ECO20 evaluation models

Now supports the CPU32
68881 co-processor support
IEEE 695 source level debug output

[^4]
High-power, isolated switch

This switching circuit is controlled by logic-level input, handles high power and the output is isolated from the control circuit.

Optical isolation is normal, but a separate supply would have been needed for the mosfet drive; for that reason, a transformer provides the isolation, since drive is now provided by the control circuit.

Output from the oscillator $I C_{1 \text { (a) }}$ is
gated by $I C_{1(\mathrm{~b})}$ in response to the input. Transistor $T r_{1}$ and the output stage $\operatorname{Tr}_{2,3}$ drive the transformer, which is on a small ferrite toroid, its secondary providing the mosfet drive, after rectification by the schottky diodes, which have a low forward voltage. The 560Ω resistor presents a low source impedance for rapid mosfet switching.

Keep the transformer primary and
secondary well separated for a high breakdown voltage; leakage inductance is unimportant, since losses can be offset by an increased turns ratio.

Phil Denniss

Department of Plasma Physics
University of Sydney
NSW
Australia

Programmable voltage-to-time converter

Programmable frequency divider used to form a voltage-to-time converter, in which output period represents input voltage.

A sa step towards a v-to- t programmed frequency divider that produces an output frequency of $f_{\text {in }}$ divided by the binary input, also generating a repetitive output sequence depending on the binary input.
The circuit shows a four-bit circuit. Clock signals drive the counter, whose output at some point coincides with the binary input, coincidence being detected by the gating circuit, which produces a rising pulse edge to trigger the 74121 multivibrator for a wider pulse. Timing components are chosen to cover the duration of the clock period. Output, the clock frequency divided by the binary input, consists of the Anded clock and multivibrator output.
To form a voltage-to-time converter, use an 8-bit circuit of the form in Fig. 1, as shown in Fig. 2, where the 8 -bit analogue-to-digital converter provides the binary input to the frequency divider. Output is the period of the divided clock frequency, which corresponds to the input voltage of the a-to-d converter.

K Balasubramanian
 Cukurova University
 Adana

Turkey

You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals.
The TiePieSCOPE - HS508 is supplied complete with user manual, software, and two probes.

Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)

ฉO 28 Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ Tel.: (01480) 460028 - Fax: (01480) 460340
TiePie engineering, The Netherlands
\triangle P.O. Box 115, 8900 AC LEEUWARDEN

- Battenserreed 2, 9023 AR JORWERD

Tel.: (31) 515415416 - Fax: (31) 515418819

There's a variety of coaxial cable and connector types available. Nick Wheeler discusses how to choose the right combination.

The simple, flexible, laboratory connector uses one of a small number of cable types. Some 49 types are listed in the American Radio Relay League (ARRL) handbook. These vary widely in overall diameter and performance. This article is intended to help in selecting the right type of cable, together with appropriate end connectors.

General considerations

While a coaxial connector assembly has much in common with a good-quality screened audio connector - and is often used for this purpose - it is designed for use as a radio-frequency transmission line. Its characteristic impedance, Z_{0}, is proportional to $\log b / a$, where b is the inner diameter of the outer conductor and a is the outer diameter of the inner conductor. If a coaxial connector assembly is driven from a source whose output impedance is Z_{0} and terminated in Z_{0}, then the input sig-
nal will appear almost unchanged at the termination.
There will be a slight reduction in amplitude due to losses, and the signal will be delayed by the time it takes to traverse the length of the line. This is longer than the time taken to traverse the length of the line in free space. Thus in free space the velocity of propagation is some $30 \mathrm{~cm} / \mathrm{ns}$ whereas in typical lines it is $20-27 \mathrm{~cm} / \mathrm{ns}$.

Coaxial structures

The centre conductor of a coaxial cable may be solid or stranded. For anything other than permanent fixed installations such as television down leads, stranded types are essential. All other things being equal, a solid conductor will be slightly less lossy than a stranded one.
Air is the ideal insulator, but this can only be achieved over short lengths. Next best is airspaced PE (polyethylene). Suitably spaced PE

Fig. 1. Simple circuit providing a reliable 50 2, 10ns pulse source for assessing the performance of a transmission line. Connecting a 100 MHz oscilloscope provides good test results.

Table 1. Velocity factors of common coaxial cable insulators

Air space PE washers	0.89
Air space PE voids	0.86
Foam PE	$0.79-0.80$
Solid PTFE	0.7
Solid PE	0.66

washers keep the central conductor in position. In a different form of air spacing, the insulator has longitudinal voids so that in cross section it looks like a spoked wheel. This is very nearly as good as the washer approach and is much cheaper to make. It is commonly used for satellite down leads, and also for tv down leads.
Down leads used for reception usually have a Z_{0} of 75Ω. This can be shown to be less lossy than otherwise physically similar 50Ω cable. The lower impedance cable has better power handling capability and is nearly always used for transmitting and receiving applications. It is also easier to match 75Ω cable to typical antennas.
Next in order of merit is foam PE, followed by PTFE and finally the cheapest - solid PE. Velocity factors associated with these materials are shown in Table 1.
There are three types of outer conductor. The first is a solid metal tube, invariably of copper, and in large sizes over 1 cm , corrugated. Clearly such cables are not designed to be flexed repeatedly.
The next - and the most common - type uses copper braid, sheathed with PVC to minimise corrosion and damage.
Braided sheath is not completely leak-proof. Small amounts of power can escape and be radiated, constituting a loss and possibly an EMI problem. Also, strong incident radiation may permeate the cable, causing interference.
Cables are available which include a layer of copper foil wound without gaps between the braid and the insulator. These can achieve sig-
nificantly better performance than braid-only cables - but at considerably higher cost.

Limitations of coaxial cable

Coaxial cable has an upper limit of usable frequency other than that imposed by insulator losses. This is due to higher order propagation modes, analogous to those found in waveguides. These set in at wavelengths shorter than

$$
\lambda=\pi(a+b) /(2 \sqrt{ } \mathrm{~K}) \quad \text { (Ref. 2) }
$$

Where K is the dielectric constant of the insulator.
Applying this, approximately, to RG58 cable, which is commonly used for laboratory hook-up connectors, gives,
$a=1 \mathrm{~mm}$
$b=2.92 \mathrm{~mm}$
$\mathrm{K}=2.3$ for PE
As a result, λ is 4.06 mm , or about 65 GHz . It is unlikely that this phenomenon will be encountered in ordinary laboratory work. Note that in some electronic warefare search receivers, this may be a frequency of interest. Applying this formula to PTFE-insulated RG405 cable yields a slightly higher frequency, and is specified to 18 GHz .
There is another limitation, more likely to be encountered, but only in connection with transmitters or other high power if sources. As we are dealing with transmission lines, mismatch will produce current and voltage nodes and antinodes along the line. Under extreme conditions these can lead to voltage breakdown or local overheating.
An open circuited line is just as liable to cause damage as a short-circuited one.

Connectors for coaxial cables

Three main professional series of connectors are SMA, BNC and N-Type. Electrically, TNC is a close equivalent to BNC. The SMB and SMC series are miniature SMA types, but note that SMB connectors are not positively retained. A circular spring provides a weakly retained push-fit action, useful for laboratory work.
Ideally, the following examples should not be chosen for rf work.

- UHF connectors: poor performance in all respects.
- Phono: as the name implies, these are intended for audio but often used for video.
- Television down-lead types: these are not a good choice. Most rely on a solderless connection between the centre conductor and the tubular centre pin.

There is a comprehensive range of 'Interseries adaptors'. These allow you to access virtually every type from BNC.
The full range of BNC accessories and connectors is only available in 50Ω form, but the more commonly used parts also come in 75Ω form. These look identical, except that the 50Ω plug and socket is slightly larger than the

World's smallest surface-mount coaxial connectors

Designed for use in communications applications, these ultra-miniature low-cost SC connectors require only $11.5 \mathrm{~mm}^{2}$ of board space and stand no more than 3 mm high when connected.
These 50Ω Murata connectors accept two coaxial cable diameters of 0.8 or 1.2 mm and their maximum vswr is 1.2 in the DC to 3 GHz range. Maximum contact resistance is $15 \mathrm{~m} \Omega$ while minimum insulation resistance is $500 \mathrm{M} \Omega$.
75Ω alternative. Note that mixing connectors of different impedances can cause damage.
In addition to the wide range of adapters, there are Z_{0} terminators. These can be either 'stop end' or 'through' types. The latter can save a lot of trouble when terminating at, say, an oscilloscope input. In addition 'through' attenuators are available.
Crimped cable attachments are quick and simple. Provided a cable strain relief is used these terminations are also durable. Clamp types impose only gentle forces on the outer braid and a good life is obtainable without the need for a strain relief. If a fault does occur, the connector can be disassembled and remade.
The most common clamp and crimp connectors suit 5 mm cable outside diameter. This should be regarded as the default size. Stripping coaxial cable is a difficult process but special tools are available.
Crimp tools cost upwards of $£ 70$. Such tools form the sleeve into a uniform hexagonal shape. Much cheaper tools designed for fitting spade-type connectors to power cables will not suffice.

N -Type connectors appears on equipment intended for use above 1 GHz . The Type 1 can only be used with URM67 or RG 213 U cable. They are both reasonably flexible at 10.3 mm oulside diameter.
For laboratory bench use the Type 2 free plug can be used with 5 mm URM43 or URM 76. These parts are specially made to introduce the minimum possible Z_{0} discontinuities. They are characterised up to 10 GHz .

SMA connectors are physically small and are available in crimp or clamp form. They are also made for assembly by soldering to RG402 and RG405 semi-rigid cable. In this form of assembly they are rated up to 18 GHz .
Much of the circuitry of professional equip: ment operating above 1 GHz consists of modules. These modules are often from different manufacturers, neatly plumbed together with semi-rigid coaxial cable and terminated with SMA connectors. The small size of these connectors often justifies their use in lower-frequency applications.
There are several useful parts in the SMA, series intended for direct mounting on pcbs. These can be used to provide detachable links to front-panel mounted connectors.

Testing for performance

In my view, there is no better way of testing a transmission line than feeding it with a pulse sourced from the correct Z_{0} and observing the effect across a correct termination at the other end. A 100 MHz or better oscilloscope is advisable to avoid measurement errors.
There are many sources of suitable pulses. I used a variant of the circuit on page 61 of $E W$, Jan. 96. This is the box marked PG on Fig. 1.
A logic-one pulse of less than 10 ns duration in response to tl drive is needed. A problem here is that a single logic gate cannot drive a 50Ω line directly. The device used must be able to sink or source 100 mA .
In Fig. 1, PG produces logic-one pulses of about 10 ns duration at a pulse-repetition frequency of 2 MHz . These are applied to all six

Fig. 2. Test results for a length of PTFE insulated miniature coaxial cable. Upper trace, input signal of approximately 1.2 V . Lower trace, showing acceptable results: a loss of 0.37 dB and delay of 5 ns
inputs of a hex inverter. The outputs are all paralleled via 300Ω chip resistors.
Making the assumption that the output impedance of a gate in the one or zero state is zero, we then have a 50Ω source. A possible part is 74 ACl 1004 .
A 74AC004 will also suffice. If it is loaded with 50Ω, the transmitted signal will be inverted with a peak amplitude of $V_{\mathrm{cd}} / 2$. This is passed down a short length of 50Ω line to a resistive splitter comprising a star connection
of three 16.666Ω resistors ($3 \times 50 \Omega$ in parallel) One of the two outputs feeds an oscilloscope input in parallel with a 50Ω termination. The second port goes to the connector assembly under test. The other end of the assembly under test feeds the other oscilloscope input, where it is properly terminated with 50Ω.
Figure 2 is the result of such a test, on an 87 cm length of PTFE insulated miniature coaxial cable terminated with SMA 'free' plugs. The upper trace is the input and is of a peak amplitude of 1.2 V . This result is close to $V_{\mathrm{cc}} / 4$, accounted for by the effect of the paralleled matching resistors and the splitter.
The output has a peak amplitude of 1.1 V , representing a loss of 0.37 dB , or $4.3 \mathrm{~dB} / 10 \mathrm{~m}$. This falls between the $3.6 \mathrm{~dB} / 10 \mathrm{~m}$ at 100 MHz and $19 \mathrm{~dB} / 10 \mathrm{~m}$ at 1000 MHz quoted for this cable, which seems reasonable.
There is a delay - estimated at 0.4 ns between the output of the splitter and the channel-one input of the oscilloscope. This must be added to the 5 ns delay scaled from the oscillogram.
Making the necessary corrections leads to a velocity factor of 0.53 , which is too low for the known figure of 0.7 for PTFE. However, it is near and making measurements to an accuracy of 1 ns with a 100 MHz oscilloscope is questionable anyhow.
In any case the cable is clearly fit for laboratory use. Undulations in the upper trace are obviously due to reflections. The amplitude of these undulations is approximately 0.1 that of
the main pulse, suggesting a standing wave ratio of about $1: 1.2$, which is normally insignificant.

In summary

Although there is a bewildering array of cables, plugs and sockets available, new designs should be based on the SMA, BNC and N -Type connectors. As for the cable, this should be RG174A or RG316/U, which suit SMA and appropriate BNC types.
Unless compactness is important, then URM76 or the slightly cheaper RG58C, 5 mm outside diameter, are the cables to choose. These suit BNC clamp and crimp connectors and also N -Type, type 2 free plugs. All other N-Type free parts require the use of URM 67 or RG213U. Most other cable sizes upwards of 5 mm outside diameter can be terminated in BNC, but none of these has any pronounced advantage over those already mentioned.
There are 75Ω cables specifically intended for television and satellite down-lead applications. A limited range of BNC plugs and sockets are available in 75Ω form. Almost all 75Ω cables are solid-core, intended for one-off installation.

Further reading

American Radio Relay Handbook. (A good source on this subject, held in the reference section of most large libraries)
Services Textbook of Radio, Vol 5 (Long out of print, but good on line theory).

Electronic Designs Right First Time?

Active and Passive Filter Design - FILTECH -

From only $£ 145$!

Affordable Electronics CAD

EASY-PC Professional: Schematic

Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR. Prices From:	\$375.00	£195.00
ANALYSER III: Linear Analogue Circuit Simulator Prices From:	\$195.00	£98.00
LAYAN: Electro-magnetic layout Simulator. Include board parasitics in your Analogue simulations.	\$950.00	£495.00
PULSAR: Digital Circuit Simulator Prices From:	\$195.00	£98.00
Z-MATCH: Windows based Smith-Chart program for RF Engineers. Prices From:	\$275.00	£145.00
FILTECH: Active and Passive Filter Design Prices From:	\$275.00	£145.00
We operate a no penalty upgrade pollcy. Technical support is FREE FOR LIFE. special prices for Education	US\$ prices include Post and Packing	Sterling Prices exdude P\&P and VAT.

Number One Systems

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR, UK.

NEW PRODUCTS

Please quote "Electronics World" when seeking further information

ACTIVE

Discrete active devices

High-voltage igbt. The first device to be available from Motorola's nonpunchthrough, high-voltage, insulated gate bipolar transistor family will be the MHPM1A1200A120C5, which will cost about $\$ 1000$ in small quantities. The family will contain devices rated at up to 1200 A at 1200 V and is intended for motor drives, power conversion and welding. The package consists of a copper baseplate with multiple copper substrates; since these devices exhibit a positive temperature coefficient, they can be paralleled for higher currents, so that a number of modules can be produced using only a few, smaller, die sizes. Motorola Inc. Tel., 001602 244-3831; fax, 001 602 244-6002.

Digital signal
 processors

Audio processor. TDA1548T from Philips is an audio processor incorporating Bitstream filters for digital de-emphasis, volume and tone control, with Bitstream d-to-as and headphone amplifiers, providing a single-chip solution to all the functions needed for CD, MD and DCC personal stereo players. It is compatible with $\mathrm{I}^{2} \mathrm{~S}$ or Isb-justified serial input data and puts out a 1.7Vpk-pk audio signal into 32Ω Gothic Crellon Lid. Tel., 01734 788878; fax, 01734776095

Electronic trimmers. AKM AK9813/9844 are single-chip electronic trimmers for voltage control input, replacing mechanical types or eeprom/muitiple d-to-a circuitry. 9813 has 12 channels (9844 four), control being effected by a simple microcontroller. Output range is ground to supply voltage and there is a power-down mode. DIP International Ltd. Tel., 01223 462244; fax, 01223467316.

Linear integrated circuits

Video d-to-a. SAA7167 YUV-to-RGB video digital-to-analogue converter is an addition to Philips's Desk-TopVideo chipset and converts digital video to analogue rgb, mixing the output with an external analogue rgb channel to merge digital video sources with standard VGA graphics, thereby doing away with the need to access the computer's frame store memory. Together with the SAA7131 FMPEG decoder the new chip allows
the production of cheap video playback cards for Pcs. In addition, the chip will handle various input formats, on-chip colour keying between video and rgb inputs, $\mathrm{I}^{2} \mathrm{C}$ bus control and direct drive to a monitor. Philips Semiconductors (Eindhoven). Tel., 003140 722091; fax, 003140724825.

High-current driver. Driving highspeed signals into low-impedance loads, Analog's AD815 driver has differential input and output, enabling it to replace multi-chip designs in asynchronous and high bit-rate digital subscriber links and other twistedpair cable driver functions, as well as in video distribution. Output is 400 mA at 40 Vpk -pk differential and the device will deliver up to 1Apk. Analog Devices Ltd. Tel., 01932 266000; fax, 01932247401.

Memory chips

Fast srams. EDI's snappily named EDI8F32128LPBAC is a low-power, $55-100 \mathrm{~ns}, 128$ by 32 sram in a JEDEC 68 -pin pack. It is pincompatible with the ED/17F32128 flash unit, but has a battery backup and an industrial-temperature version. EDI (UK). Tel., 01276 472637; fax, 01276473748.

Microprocessors and controllers

Low-cost, 64 blts. IDT's Orion R4640 embedded microprocessor, available in $80 \mathrm{MHz}, 100 \mathrm{MHz}$ and 133 MHz verslons, is designed for 64 bit performance 'at a 32 -bit price', having a 64 -bit core and 32 -bit interface. Its features include a twoway associative, 8 Kb instruction cache, an 8 Kb data cache, power saving, a static core and wait instructions for stand-by. Speed is measured at 175dhrystone. Associated chips are the R4761 memory controller and R4762 PCI bridge. Integrated Device Technology. Tel., 01372 363734; fax, 01372378851.
$6 \times 86100 \mathrm{MHz}$ processor. The Cyrix $100 \mathrm{MHz} 6 \times 86$ superscalar,
superpipelined processor is available for immediate delivery. It was formerly known as the MI processor, is compatible with the $\times 86$ instruction set and shows a benchmark performance figure of 678 on the Norton System Information v8.0, said to be considerably in excess of that for the 133 MHz Pentium. Flashpoint, the supplier, also offers a
motherboard from DTK with up to
128 Mb of ram, three PCl slots and five ISA slots. Flashpoint Technology. Tel., 01753538715 ; fax, 01753
538733.

Passive components

S-m electrolytics. Sanyo's SM Series OS-CON surface-mounted electrolytic capacitors are meant for automatic insertion and reflow soldering. They use an organic electrolyte, which affords a life expectancy of 220 years (1), a frequency range approaching that of film types, self regeneration after excessive loads, low esr and stable leakage current. Values are $1-150 \mu \mathrm{~F}$ at $6.3-20 \mathrm{~V}$, the largest can size being 8.8/8.8/13mm. Inelco Ltd. Tel., 01734 810799; fax, 01734810844.

Uhf chip capacitors. Syfer high-Q surface-mounted chip capacitors cover the $0.47 \mathrm{pF}-1 \mathrm{nF}$ range, a 10 pF component in the 0805 size taking up 2 mm by 1.2 mm of board space, although rated at 100 V and having a $\pm 5 \%$ tolerance. Esr at 1 GHz is 0.2Ω; Q at this frequency is 50 and rises to 200 at 100 MHz . Flint Distribution. Tel., 01530 510333; fax, 01530 510275.

Accurate Al-foll capacitors. Resindipped aluminium-foil capacitors from Sang Jing are claimed to be the ideal replacement for tantalums, now experiencing a shortage, since they have tight specifications, have good temperature characteristics and are reliable. Leakage current is 0.01 CV or $0.5 \mu \mathrm{~A}$, whichever is larger; working voltages are $6.3-50 \mathrm{~V}$; and values 0.1 -

Optical devices

Blinking leds. Elcos offers surface-mounted feds that blink and four-pad multicolour types - the CR range, all on ceramic substrates. Blinking versions contain a blink ic whose frequency is trimmable by resistance or capacitance. All types have a wide viewing angle and a flat-top package for use in light-plpe application. There are also the red/green/blue types which, when correctly driven, will display any coiour, including white. Flint Distribution. Tel., 01530510333 ; fax, 01530 510275.
$470 \mu \mathrm{~F}$ in tolerances of 10% or $\pm 20 \%$ Europa Components \& Equipment plc. Tel., 0181-953 2379; fax, 01812076646.

Precision ceramic capacitors. NPO multilayer ceramic capacitors offer very narrow tolerances for use in impedance matching in hf communicatlons equipment. New production techniques have reduced the cost of these devices and this series provides tolerances of $\pm 0.1 \mathrm{pF}$ in values of less than 2.7 pF , with $\pm 0.05 \mathrm{pF}$ available on request. They are suitable for wave or reflow soldering. Philips Components. Tel., 003140722790 ; fax, 003140 724547.

Cermet trimmer. BI Technologies introduces the Model 23 Series of 4 mm surface-mounted, single-turn cermet trimmer pots in sealed packages, which withstand infrared or convection reflow processing and cleaning. T-cross slots are provided for adjustment and the devices come in both J-hook and gull-wing styles. Standard range is $10 \Omega-2 \mathrm{M} \Omega$ at 20% tolerance. Bl Technologies Lid. Tel., 01384442393 ; fax, 01384440252.

Audio products

Ceramic speaker. Meant for use in cellular telephones, Pedoka's ST20PR piezoelectric speaker has a sensitivity of $104 \mathrm{~dB} \pm 2 \mathrm{~dB}$ at 1 kHz , 1 Vrms at the input and $1.6 \mathrm{k} \Omega$ series resistance. It is 2.1 mm thick and 21 mm in diameter and has an HP series connector on 30 mm of 32 awg wire; other connectors can be supplied. Pedoka Ltd. Tel., 01462 422433; fax, 01462422233.

Notebook audio. From IBM, the PCMCIA Advanced Audio Adaptor, a PCMCIA device to add good quality stereo recording and playback to portable computers with a Type Il expansion port. It provides output to headphones or speakers, accepts joystick input and has an electret microphone for recording; it is compatible with most games that need Soundblaster support. DIP Systems. Tel., 01483 202070; fax, 01483202023.

Hardware

Emc racks. Barton Engineering has a range of emc racks for best performance at 1 GHz of 70 dB . They have full-length, lockable metal doors with detachable hinge pins and fourpoint locking; and drilled air wave guides for up to four fans. These racks consist of only ten parts. Rfi seals are beryllium copper, lowcompression, clip-on contacts on the doors and monel mesh on the sides. Finish is textured paint over nickel and the frame is nickel-plated. Barton Engineering and Export Ltd. Tel., 01227 272141; fax, 01227771653.

Test and measurement

150 MHz digital oscilloscope. Hitachi Denshi's newest digitising oscilloscope, the VC-7524, has a bandwidth of 150 MHz and samples at 100 Msample /s on each of four channels simultaneously. Memory is 2Mbyte per channel. Additions to the facilities of its forerunner, the VC-7124, are long and split memory, compressed display, 4000 times magnification, storage of 2000 triggered events, single-shot and slow-roll modes and glitch function to enable amplitude and time frame of an event to be measured. In the long memory mode, the whole 2Mbyte memory is compressed and displayed to a screen capacity of 1 Kbyte . Other features, too numerous to mention here, are incorporated. Hitachi-Denshi (UK) Ltd. Tel., 0181202 4311; fax, 01812022451.

A/d multimeter. Two ranges of handheld multimeters by AVO have a dual display to give simultaneous viewing of volts/frequency, current/frequency, conductance and resistance. Two models in the M7000 series are in tough cases with rubberised holsters for industrial use, one of them being of 0.2% accuracy and the other 0.3%, with a switchable choice of 4000 or 40000 counts. M8000 models provide true rms $\mathrm{dc}+\mathrm{ac}$ and ac voltage readings and both are accurate to within 0.08%. Capacitance and diode test are included on all models. Avo International Ltd. Tel., 01304 502101; fax, 01304207342.

Digital handheld multimeter. Di-loG's DL-297T is a 400 -count digital multimeter with a 43-segment bar graph and a $\times 10$ zoom. It autoranges to provide V, I, R, true rms, frequency, temperature, continuity and diode testing capability. Accuracy when reading voltage is within $\pm 0.3 \%+1$ digit. Facilities are offered for max/min measurement against stored references. Di-loG Ltd. Tel., 01707 375550 ; fax, 01707393277.

Digital delays. An improved version of the 9650A Dightal Delay Generator is announced by EG\&G. There is a

better communications link and a new panel with an alphanumeric display; a shut-down memory retains current settings. Trigger is internal or external to 2 MHz and produces four independently variable delays from zero to 100 ms and two difference outputs; pulse widths are $30 \mathrm{~ns}-1 \mathrm{~ms}$. A "scan" mode produces increasing delays and a burst of pulses can be generated. EG\&G Instruments Ltd. Tel., 01734773003 ; fax, 01734 773493.

Thermal imager. ThermaCAM is a small, portable infrared imager for testing boards, components and assemblies. It uses a focal-plane array camera, has a 256 by 256 pixel display in colour, 12 -bit digital storage in PCMCIA cards, colour viewfinder and interchangeable lenses. Video or TIFF files can be sorted and viewed inside the camera and the software allows Windows-based analysis. The camera array is maintained at a constant temperature by a microcooler. Inframetrics Infrared Systems Ltd. Tel., 01256 50533; fax, 0125650534.

Transducer calibration. For the rapid calibration of transducers, HBM has the DMCplus Digital Measuring Amplifier, with which the input quantity and output signal are processed to present on a PC screen the calibration curve, using HBM software. The curve is printable and saved as archive. HBM United Kingdom Lid. Tel., 0181-420 7170; fax, 0181-420 7336.

Flatbed recorders. Yokogawa's LR120 Series of flatbed recorders are available with one or two pens and only take up 320 by 323 mm of bench space. Chart width is 200 mm and recording speed is selected or programmed in the $1 \mathrm{~cm} / \mathrm{h}-60 \mathrm{~cm} / \mathrm{min}$ range. Input is 1 mV isd to 300 V dc and versions are available for current measurement, ac and temperature measurement. Operation is Y / T or $\mathrm{X} \mathcal{Y}$ and an RS 232 interface allows remote control and data logging, a

Multi-purpose tools. Three very desirable SOG toolkits from Jensen. The Paratool is the top one, with pliers, wire-cutter, file, awl, knife blade, serrated blade, scale and a can-opener, all in one folding tool. The other two, Toolclip and Micro Toolkit are scaled-down versions with screwdrivers, but they all fold up very small. So far as we are aware, they are not associated with the Swiss Army. Jensen Tools. Tel., 0800833246 (free); fax, 01604785573.
software package giving viewing and analysis by PC. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494 535002.

Literature

CPC. Combined Precision Components has produced a monthly product supplement and a weekly offer list of 20 pages containing details of reduced prices. The 1996 catalogue of 1600 pages is also available. Combined Precision Components plc. Tel., 01772654455 ; fax, 01772654466.

Electrospeed. Connectors are a major content of Electrospeed's now colour catalogue, including those from Molex, Cinch, Hirschmann, Thomas \& Betts and Multi-Contact. Other increased sectlons are those for emc and filtering, batteries and chargers. Electrospeed. Tel., 01703644555 ; fax, 01703610282.

IDT. Company and product data from IDT now comes in a number of ways: CD-roM; WWW; and fax. The CD uses Adobe Acrobat to display and print pages, including data sheets; the Web (http://www.idt.com) presents almost as much data and is updated dally, more information being also retrieved using anonymous ttp to ftp.idt.com/docs/docid.ext. Sales are on eurosales@idt.com. For

Neanderthals not on line, there is Fax-on-Demand, offering all but manuals, which are too big. Call +1 -408-4928341. Integrated Device Technology. Tel., 01372363734 ; fax, 01372 378851.

Bruel \& Kjaer. A 9-page brochure from B\&K introduces an 'integrated approach' to the measurement of sound and vibration and describes the company's capability in the software field, which enables the production of dedicated programs for specific application. Bruel \& Kjaer (UK) Ltd. Tel., 0181954 2366; fax, 0181954 9504.

PIC handbook. A new edition of Microchip's Embedded Control Handbook for the PIC 16/17 family of field-programmable, eight-bit microcontrollers and memory is available. It includes over thity new and revised application notes and software code for specific applications. There are also schematic and timing diagrams and maths routines. Arizona Microchip Technology Ltd. Tel., 01628 851077; fax, 01628850259.

Snap switches. Cherry has a new publication describing the $D G$ range of snap switches, which measure 12.8 by 5.8 by 6.5 mm and switch up to 3 A

Automatic cable cutter. Mil-
Tech's Autocutter is a programmable, self-feeding cable, wire and extrusion cutter that takes material up to 100 mm wide, Including ribbon cable, thin wire, plastic extrusions and rubber mouldings, special sections being handled by custom versions of the machine. Requirements are a single-phase supply and compressed air at 80 psi. MilTech. Tel. and fax, 01477 571864.
at 125 Vac or 2 A at 30 Vdc . Cherry Electrical Products Ltd. Tel., 01582 763100; fax, 01582768883.

Fluke. The 250-page 1996 instrumentation catalogue from Fluke, is now available free. The company's products cover a very wide range of measuring instruments, latest additions being the Multi-product calibrator and a range of digital storage/analogue oscilloscopes in the Combiscope range. Fluke UK Ltd. Tel., 01923240511 ; fax, 01923 225067.

Materials

Cleaning solution. Electrolube has a new solution, Printasolve, to remove ink from surfaces such as printer rollers, ink jets and franking machines. It is effective for solvent and oil-based inks, is economical in use and poses no threat to the ozone layer. Available in 400 ml aerosols, it is sprayed onto a cloth or bud and applied to the surface, following which an Electrolube Air Duster helps drying. Electrolube Lid. Tel., 01734 403014/031; fax, 01734403084.

Production equipment

Solder-wave measurement. From Alpha Metals comes the Solder Wave Optimiser, a portable instrument to measure both board/wave data and temperature in wave soldering. Data shown includes dwell time, immersion depth, contact length and conveyor speed, preheat, maximum minus preheat temperature, maximum preheat slope and maximum slope over the wave. It also indicates wave-to-board parallellsm, all data being down-loaded to a PC. The unit is simply passed through the soldering operation and collects all the data in one pass. Alpha Metals. Tel., 0181 6656666; fax, 01816654734.

Fluld dispenser. $1 \& \mathrm{~J}$ Fisnar produces a finger switch fitted, by means of a Velcro band, to barrels,

cartridges and soft tubes, allowing precise fingertip fluid dispensing from the company's DSPE 501A pressure dispenser as an alternative to the more common foot switch. Intertronics Ltd. Tel., 01865842842 ; fax, 01865 842172.

Pcb coordlnate measurement. Maxtascan 100 coordinate measuring machines by Graticules are claimed to reduce the time to check hole size and position by over 80%, or from three days to half a day. Since the system has a cad interface, raw data files may be used without editing or translation. With a bed size of 1 m square, the machine handles two average board of 450 by 250 mm , measuring the average 3000 dimensions in two hours to within 25μ accumulative and $\pm 5 \mu$ repeatability. Associated software is Windowsbased. Graticules Ltd. Tel., 01732 359061; fax, 01732770217.

UV light source. The Dymax LightWelder 3010-EC is a high-power, high-intensity ultraviolet light source for the curing of adhesives, coatings and encapsulants. Either manual (pedal) operation by timer and footpedal or automatic via interfacing to dial tables, turrets etc. is possible. Intertronics Ltd. Tel., 01865842842 ; fax, 01865842172.

Power supplies

Electron beam power. A new series of electron beam power supplies is introduced by AP\&T; the first being the Carrera V, a 5 kV (less than 1% ripple) type for electron beam deposition in film coating. The switched-mode design includes arc detection and recovery, which operates within 3 ms , rapidly enough to leave constant emission control and melt unaffected. An arc rate monitor protects equipment in the vacuum chamber against multiple arcs. No water supply is needed, since the unit is air-cooled. Advanced Products and Technologies Lid. Tel., 01865 724863; fax, 01865725831.

Tactile keyswitch. TACT ECO from Secme is a low-cost tactile keyswitch taking up only 6 mm square of the board and
standing 4.3 mm or 5 mm off it. A moulded insert prevents flux buildup during soldering. Operation is momentary with a Sharon click for touch
feedback; ratings are 12 V and 50 mA , with a contact resistance of less than 100 ms . EAO-
Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.
$50 \mathrm{~W} \mathrm{dc}-\mathrm{to}$-dc. Features of Abbott's NB series of 50 W dc-to-dc converters are a total size of 1.5 by 3 by 0.4 in and 90% efficiency. Outputs of $2-28 \mathrm{~V}$ are available from inputs of $14-40 \mathrm{~V}$ and interfaces for paralleling, sync., enable/disable and 'power good' are included, different pin arrangements being optional. Abbott Electronics Ltd. Tel., 01233623404 ; fax, 01233 641777.

LV dc-to-dc converter. From Semtech, the SC1630CS low-voltage, 120 kHz step-up converter to drive external power switches in highervoltage and power application. Only six further components are needed to form a step-up arrangement to obtain an 80% efficiency and a few more for a step-down type to give 86% efficiency at 2 A and $300 \mu \mathrm{~A}$ quiescent. Output voltage can be set internally to 5 V or externally to an arbitrary value. Input is 7 V , switch-off current $105 \mu \mathrm{~A}$, shut-down mode current $7 \mu \mathrm{~A}$, stabilisation 0.6% Vout and regulation $2.5 \% V_{\text {out }}$ Semtech Ltd. Tel., 01592 773520 ; fax, 01592774781.

Sla chargers. In both rack-mounted and cased versions, the SM family of chargers for sealed lead acid batteries can also be used as power supplies for other equipment, thereby being usable for powering pcs or floating 12 V and 24 V batteries up to 100 Ah .

They are protected and can be used in series or in parallel to provide up to 250 W , under 1% ripple and with a universal input in the 95-277Vac range. Electrospeed. Tel., 01703 644555; fax, 01703610282.

Bench supply. CPX200 from Thurlby Thandar is meant for those who need $0-35 \mathrm{~V}$ and 10A, but not necessarily at the same time. Output power of this dual supply is 175 W per output, maximum current being adjusted in a switched-mode regulator as voltage decreases; 35 V at 5 A to 17.5 V at 10A. Outputs work in constant-current or constant-voltage mode with auto crossover and mode indication. They can be connected in serles or parallel. Thurlby Thandar Instruments Ltd. Tel., 01480412451 ; fax, 01480 450409.

150W, rack-mounted. Weir has a plug-in, rack-mounted unit in a $3 \cup$ by 14 HP panel containing a three-output, 100W convection-cooled (150W force-cooled) supply, approved to all manner of safety and emc standards and working over the $90-254 \mathrm{~V}$ input range with no tap changes. The HSS 103 is completely enclosed, has a panel-mounted IEC socket, switch and mains fuse. Weir Electronics Lid. Tel., 01243 865991; fax, 01243 868613.

Power to the Pentium. Semtech's MP60 series of 35 W switching dc-todc converters have a connector conforming to Intel's voltage regulator specification for the P6 processor. They supply 10A continuously at 2.9 V and addltional functions can include a 'Power good' signal, output enable and upgrade present, and programmable output voltage from 1.5 V to 3.6 V . Semtech L.td. Tel., 01592 773520; fax, 01592 774781.

40W/in ${ }^{3}$ dc-to-dc. UPM converters from Amplicon Liveline use a synchronous rectlifier buck regulator optimised for 5 V inputs. Power and control electronics are on separate boards to obtain improved thermal performance and isolation of the control circuitry from heat sources. The devices are meant to provide $2.5-3.6 \mathrm{~V}$, fixed or programmable, from a 5 V input at $40 \mathrm{~W} /$ cubic inch power density and 90% peak efficiency. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 01273 570215.

Radio communications products

Linear amplifiers. Pacific Ampllier Corporation's range of if linear amplifiers covers the $1 \mathrm{MHz}-2 \mathrm{GHz}$ range and includes power amplifier sub-systems, power modules and low-cost lab. amplifiers. The PAC205 is a remotely controlled feediorward base station for the Special Mobile Radio band of $935-940 \mathrm{MHz}$, while the PAC221 is a broad-band gain block for the $746 \mathrm{MHz}-930 \mathrm{MHz}$ cellular and telephony bands. Intermodulation is low at -60 dBc and
-30 dBc respectively, for output powers of 80 W and 30 W . Anglia Microwaves Ltd. Tel., 01277630000 ; fax, 01277631111.

Microwave amplifiers. Wessex has a new series of PCN and PCS microwave power amplifiers in modular form, in instrument cases or in rack-mounted versions. Bands covered are $1.805-1.880 \mathrm{GHz}$ or $1.930-1.990 \mathrm{GHz}$ with a gain of 29 dB minimum (gain in band $\pm 1 \mathrm{dBpk}$-pk) to give 43 dBm output power. They are unconditionally stable and protected against open or shortcircuits and can be provided with cooling fans. Harmonics are 50 dB down; spurii -70dBc. Wessex Electronics L.td. Tel., 0117 9571404; fax 01179573843.

Protection devices

Transient suppression. For the surge protection of low-voltage semiconductors, from 2.8 V to 4.5 V , Semtech's four-layer enhanced punchthrough diodes are said to possess advantages over silicon avalanche types in having a leakage current of $10 \mu \mathrm{~A}$ and capacitance of 50 pF . Esd protection is to 15 kV , peak pulse current is 30A and maximum clamping voltage at $1 \mathrm{~A} 4.3 \mathrm{~V}, 4.9 \mathrm{~V}$ and 6.5V. Semtech Ltd. Tel., 01592 773520 ; fax, 01592774781.

Snubber diodes. Fast-recovery, high-power diodes by IR are intended as snubbers for gate turn-off thyristors and possess a softrecovery characteristic to avoid voltage splkes and ringing, which cause high power dissipation and misfiring of the switch. Devices in the SD103 N-RXX - SD453 N-RXX set are packaged as studs and there are others in disc form and as isolated modules. International Rectifier. Tel., 01883713215 ; fax, 01883714234.

Switches and relays

Hf relays. Matsushita's RK/RG highfrequency relays have either one or two changeover contacts and imposes an insertion loss of less than 0.3 dB at 900 MHz . Power consumption is 200 mW - less when pulse driven - and can be made to latch with one or two coils. Size is $20.2 / 11.2 \mathrm{~mm}$, standing off 9.7 mm . Matsushita Automatlon Controls Ltd. Tel., 01908 231555; fax, 01908 231599.

5 GHz reed relays. Coto Wabash (US) offers a range of small, surfacemounted reeds handling 5 GHz slgnals with less than 60ps rise times with less than 0.2 dB insertion loss at 1 GHz . Size is 9.3 by 4.6 by 4 mm . Coil is for 5 Vdc , is of 150Ω resistance and $10^{10} \Omega$ insulation resistance, glving a switching speed of under 0.5 ms . Contact rating is 3 W . Coto Europe. Tel., (Netherlands) 003145 320838; fax, 003145320838.

Secure keyboards. Banging repeatedly with a hammer, while unusual as a method of testing

electronic equipment, was used to prove Lucas's new membrane switch panels, claimed to be 'vandal-proof'. Exposed areas such as bezel and key tops, are of stainless steel; below is an elastomeric pad to seal the membrane switch against cleaning fluids, moisture and dust. The sub-panel is of injectionmoulded plastic or a laminate of pcb, aluminium and/or stainless steel. The type of hammer is unspecified. Lucas Control Systems Products. Tel., 01535 661144; fax, 01535 661174.

Photovoltaic relay. PVG612 by IR is a new member of its microelectronic photovoltaic relay family, switching up to $60 \mathrm{Vac} / \mathrm{dc}$ at 1A (2A on dc) with only 5 mA drive. It is a single-pole. normally open switch, the output Hexfet being optically isolated from the control circuit. International Rectifier. Tel., 01883 713215; fax, 01883714234.

S-s relays. Solid-state relays in Crydom's PF range handle 10Arms at $40^{\circ} \mathrm{C}$ ambient. They are controlled by a logic-level signal and operate from $280-660 \mathrm{~V}$ mains, being optically isolated to 4 kV , VDE certlfied to EN 60606-1 with UL approval. Inrush current can be as high as 250A at a $\mathrm{d} v / \mathrm{d} t$ of $500 \mathrm{~V} / \mu \mathrm{s}$. Crydom Europe. Tel., 0181763 0550; fax, 0181763 0499.

Transducers and
 sensors

Absolute shaft sensor. Control Transducers has a range of absolute measuring sensors, which are effectively industrlal rotary potentiometers using the Mystar plastic material for long life and reliablity. A three-wire connection to the controller is needed. Design is such that axial and radial shaft play is taken up without effect on accuracy or life. Control Transducers. Tel., 01234 217704; fax, 01234217083.

Waverider evaluation. GEC Plessey's DE6003 digital radio transceiver is now supported by Waverider a DE6003
evaluation kit, which consists
of two transceivers, a user
guide and an installation disk.
It connects to a laptop or desktop computer via the parallel port and includes device drivers to allow use with Windows for Workgroups, Novell Netware or any TCP/IP networking software. The result is a 2.4 GHz frequencyhopping transcelver with a range of 200 feet in a typical office, offering a $625 \mathrm{~kb} / \mathrm{s}$ data rate. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734 776095.

COMPUTER

Computer board-level products

VGA module. Datasound
Laboratories has a mezzanine module for the Chameleon credit-card-size embedded PC The CLIO-200 uses stack-through connection to the host processor and provides 1024/768/16 or $800 / 600 / 256$ pixel resolution for crts and also support for Icds, el plasma panels and colour stn, tft, Icd el or plasma flat panels. Support for special types of display can be provided. Datasound Laboratories Ltd. Tel., 01462 675530; fax, 01462 482461.

Fast analogue input. From Pentland Systems, the MPX203 40Msample/s analogue input board, giving 8 -bit resolution on $\mathrm{a} \pm 1 \mathrm{~V}$ analogue input. The board is configurable in software and supports both scanner and continuous acquisition modes.

Outputs from the on-board fifo and converter are accessible at the VME interface. Pentland Systems Ltd. Tel., 01506 464666; fax, 01506463030.

Computers

Rack-mount computer. AMC offers the AMC614 computer, which is intended to be part of ISA, PCI or EISA systems in telecomms or industrial use, taking a choice of PC/AT compatible backplanes including a 14 -slot ISA, a 14 -slot EISA or combination ISAPCI or EISA/PCI types. Advanced Modular Computers Lid. Tel., 01753 580660; fax, 01753 580653.

Industrial workstation. AWS-822 from IMS is an industrial computer with a 14 in colour crt display and sealed front-panel membrane keyboard. It has eight 16 -blt ISA slots and comes with 286, 386,486 or Pentium processor, is adequately fancooled and has a disk mounting assembly for floppy and lin high hard drives. Integrated Measurement Systems Ltd. Tel., 01703 771143; fax, 01703704301.

Portable workstations. Logic Instrument S.A. introduces the Tetra range of portable workstations for industrial and scientific use. Using
processors from 486DX2-66 to the P90, the computers have five fulllength slots for ISA, EISA and PCl cards, three drive bays and either colour or mono screens. Chassis is plated aluminium for rfi and emi protection, in an ABS outer case. Power comes from either mains or a car battery. Logic Instrument S.A. Tel., 00331398996 22; fax, 00331 34280050.

Data communications

Infrared receiver. Unitrode's UCC5340 BICMOS, micropower ir receiver is the first of the Air Llght series, incorporating a limiter to provide a wide dynamic range in which it complies with the Infrared Data Association requirements of $1 \mathrm{~cm}-1 \mathrm{~m}$. Bandpass filtering improves $\mathrm{s}: \mathrm{n}$ margins for $2.4 \mathrm{~kb} / \mathrm{s}$ to $114 \mathrm{~b} / \mathrm{s}$ operation and reduces device recovery time, allowing direct interfacing with IrDA-compatible detector diodes. Output drives a 40pF load at cmos/ttl level. Unitrode (UK) Ltd. Tel., 0181318 1431; fax, 0181 3182549.

LocalTalk tx/rx. LTC1324 from Linear Technology is a 5 V micropower LocalTalk transceiver, taking 1 mA in use and $1 \mu \mathrm{~A}$ when shut down. No emi filters are needed,
since the device possesses a 400 ns slew-rate mode of operation for data rates of less then $250 \mathrm{~kb} / \mathrm{s}$. Receiver and driver, both differential, have a choice of active-high or active-low enable pins to three-state the outputs. Esd protection is to $\pm 10 \mathrm{kV}$. Linear Technology (UK) Ltd. Tel., 01276 677676; fax, 0127664851.

Development and evaluation

PIC development. Microchip offers the PICMASTER-17B universal incircuit system, a development tool for the PIC17C4X microcontroller family. It runs on PCs under Windows and includes an emulator control pod, a target-specific emulator, the PROMATE programmer, a PC hostinterface card, emulation control software, demo hardware and software and documentation. Arizona Microchip Technology Ltd. Tel. 01628 851077; fax, 01628850259.

Programmers

Universal modules. Stag has a range of removable modules for the Eclipse universal programmer to take fpga, pga, quad flat pack and shrink dip devices. The universal pga socket handles all fpga and pga devices up to 208 pins as standard, 256 pin
drivers accessing each pin of the pga socket for true universality. Stag Programmers Ltd. Tel., 01707 332148; fax, 01707371503.

Software

Statistics for Windows. Genstat, a general statistics software package, is now available for PCs running Windows, using the familiar Windows facilities and providing a number of additions to the standard analyses. It provides pre-configured analyses in the normal Windows manner and also via a command line and takes data from Excel and other spreadsheets Nag Ltd. Tel., 01865 511245; fax, 01865310139

OS for embedded PowerPC. The Swedish company Enea Data is about to introduce a version of it OSE Delta real-time operating system for Motorola PowerPC MPC821/860 processors, to include dynamic memory management, integrated error handling and automatic process supervision. It is a distributed system meant for use in embedded non-stop and fault-tolerant systems such as telecomms; applications in OSE for $68 x x x$ processors will be portable to the PowerPC. Reflex Technology Ltd Tel., 01494 465907; fax, 01494 465418.

Used Equipment-GUARANTEED. Manuals suppiled if possible.
This is a VERY SMAL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units £I6. VAT to be added to Total of Goods and Carriage.

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (01734) 268041 . Fax: $(01734) 351696$

Valve amplifiers made clearer

In the editing of the second extract from my book 'Valve Amplifiers', the precise need for the cathode build-out resistor in the concertina phase splitter was not made clear. When originally conceived in 1982, the purpose of the build-out resistor was to equalise the output resistances, reduce imbalance, and thereby reduce distortion.
However, when tested with square waves, I found that removing the build-out resistor caused a coggle on the leading edge of the waveform, which could not otherwise be eradicated. Each output of the phase spliter forms a low pass filter with any shunt capacitance, and since these capacilances are likely to be similar, the output resistances should also be similar to preserve highfrequency balance; hence the coggle when the build-out resistor was omitted. So although the build-out resistor was originally included to improve 1 kHz distortion performance, it has been retained to improve transient response.
Various observers have
commented that the output impedances are not equal, and that when the stage drives a real load, its balance will therefore be compromised, although none of them have offered any analysis to show what these impedances might be, or what remedial action should be taken.
Looking into the cathode, we see R_{k} down to ground, in parallel with r_{k} the anode path to ground;

$$
r_{k}=\frac{R_{a}+r_{a}}{\mu+1}
$$

Substituting;

$$
Z_{\text {out }}=\frac{R_{k} \frac{R_{a}+r_{a}}{\mu+1}}{R_{k}+\frac{R_{a}+r_{a}}{\mu+1}}
$$

Simplifying, and noting that $R_{\mathrm{a}}=R_{\mathrm{k}}=R_{\mathrm{L}}$;

$$
Z_{\text {oul (cathode) }}=\frac{R_{L}\left(R_{L}+r_{a}\right)}{R_{L}(\mu+2)+r_{a}}
$$

Looking into the anode, you will see R_{a} to the ht rail; which is ac ground, in parallel with the cathode path to ground;

$$
r_{a}^{\prime}=(\mu+1) R_{L}+r_{a}
$$

Substituting;
$Z_{\text {out }}=\frac{R_{L}\left((\mu+1) R_{L}+r_{a}\right)}{(\mu+1) R_{L}+R_{L}+r_{a}}$
Simplifying;
$Z_{\text {oun(anode) }}=\frac{R_{L}^{2}(\mu+1) R_{L} r_{a}}{R_{L}(\mu+2)+r_{a}}$

If we inspect this equation, we see that the terms involving μ are the only significant terms, and that if is reasonably large, then $(\mu+1)=(\mu+2)$, so that the output impedance reduces to R_{L}
The cathode output impedance has to be calculated fully, but generally gives a value of about $1 \mathrm{k} \Omega$. It is because the ratio of output impedances is so large, that it is essential to equalise them, in order to maintain high-frequency balance. To a first approximation, a build-out resistor in the cathode equal to the load resistance would be required.
Gain to anode or cathode can be calculated;

$$
A=\frac{\mu R_{L}}{R_{L}+r_{a}^{\prime}}
$$

Where

$$
r_{a}^{\prime}=R_{L}(\mu+1)+r_{a}
$$

giving;

$$
A=\frac{\mu R_{L}}{\mu R_{L}+R_{L}+2 r_{a}}
$$

But very little error results from;

$$
A \approx \frac{\mu}{\mu+1}
$$

Because of this low value of gain to the anode, Miller capacitance is very low, and the stage has wide bandwidth.
It is usual to direct couple to the anode of the input stage, and let that determine the dc conditions of the stage, resulting in the saving of a coupling capacitor and a low frequency time constant. By doing so, a pair of triodes achieves about 6 dB greater gain than any phase splitter solution based on the differential pair.
It is true that the concertina has a higher output impedance than a differential pair solution, but this was used to advantage in my design
by making this the dominant pole, which meant that further slugging (shunt capacitance) actually improved high-frequency balance, as it reduced the effect of variations in input capacitance in the output valves.
On a historical note, the term 'build-out' resistor derives from BBC practice in equaliser design for analogue music lines. Individual half-section equalisers would ofien be used to reduce the complexity of the complete equaliser, but their output resistance was no longer 60052 , so a 'build-out' resistor was added to avoid disturbing the next section.
Regrettably, there is a typing error (my fault) in Fig. 4, where the output power is specified as 10 W into 4Ω; it should be 8Ω.

- I always enjoyed Frank Ogden's editorial when he contributed to the 'Comments' column, but 1 found it rather sad that he resorted to abuse in his letter in the February 1996 issue - after failing to spot that my design already accounted for the very object of his criticism.
As to who would seriously consider valves for anything, I would ask that he visit a specialist hi-fi shop, or a show, and see how many (British) valve amplifiers are for sale. The demand exists, so the product is made.

Morgan Jones

Southampton

Valve prejudice?

Frank Ogden's flippant assertion that only "a complete loony suffering from terminal nostalgia would seriously consider valves for anything" (Letters, February) betrays him as a devout Philistine. The absurd notion that all past wisdom is rendered obsolescent in the face of technological advance is simply juvenile. The 'Soviet Union' presented a shining example of this folly and look where that got us.
Is Mr. Ogden seriously suggesting that musicians the world over are all sick, demented, or just plain stupid?
The idea that 'new' is inherently better than 'old' is more in tune with adolescent truculence than with any considered intelligence. Please, Frank, don't use science as an excuse for your prejudices - it does neither you, nor us, nor science, any favours.
Simon Yorke
County Durham

Cable communication

Ben Duncan's article about loudspeaker cables in the February's issue was illuminating and highlighted very well the problems of the design and modelling of transmission lines.
The lumped model has its limitations, but Ben Duncan has applied it well. The model he has used describes a quarter wave section of 66Ω cable operating at. 10 MHz , but at high audio frequencies it is a good approximation of two metres of 300Ω cable. This is a good basis for the analysis that followed but is tricky to modify to see the effects of different cable types.
A better approach for this task is to use the distributed model, available in Spice simulators. For simple scenarios such as that considered here, the difference is small until alternative cable impedances are considered. With a $2 \mathrm{~m}, 300 \Omega$ cable modelled the high frequency roll-off is indeed still present. It is a natural consequence of the end-to end impedance transformation and consequent mismatch which takes place when a transmission line reaches an appreciable fraction of a quarter wavelength. The greater the intrinsic mismatch, the worse the loss.

A better cable. To prevent this, and make the whole system flat in the frequency domain, the solution is to make the cable the same impedance as the loudspeaker -8Ω. The impedance of the loudspeaker is then presented unchanged to the amplifier output at all frequencies and there is no roll-off. The response is flat up to the frequency at which the line starts to support non-TEM modes - several GHz. Perhaps counter-intuitively, the value of the shunt capacitance increases considerably to achieve this match. Interestingly the extensive speaker cables which place the two conductors far apart to reduce capacitance, are doing the worst thing possible for frequency response.
Attempts have been made in the past to produce cables of low impedance by weaving enamelled wire together, but they have vanished, presumably because chafing caused short circuits. It is actually quite easy to make reliable low impedance cables for yourself. The impedance does not have to be a particularly accurate 8Ω, merely
somewhere near.
Adlesive copper tape about 18 mm wide is available from many stockists and is mainly used for electromagnetic shielding. A good sized reel can be had for about $£ 10$.
The copper tape is stuck on each side of a soft plastic strip, about 1 mm thick, to form a sandwich. The hole is then insulated with some

Comparator ground
tough plastic. The brown PVC tape used for packaging is suitable. The diagram shows a cross section of the cable. Connections to each end can be soldered with short pieces of thick wire. This assembly will lie tlat under a carpet. In terms of the corrosion difficulties for stranded cables by the article, this has none of these, and being flat the skin essentially negligible. The cable will contribute only its resistive term to the circuit.

Make the cable disappear. If you really want to remove your loudspeaker cables from the equation, the answer lies within the power amplifier. Most designs use negative feedback, taken from as close to the loudspeaker terminals as possible. This guarantees the most uncompromised voltage source possible at that point. The loudspeaker cables then degrade this to an extent dependant in their length and quality.
Power supply designers have known the answer to this problem for years. Even the simplest designs usually offer remote sensing terminals to guarantee the accuracy of delivery at the load rather than the supply terminals. They generally have a configuration that allows the
user the choice of high accuracy with a bi-wired remote sensing setup, or by omitting the second pair of wires, the standard accuracy with the cable impedance degrading performance.
With an audio amplifier - which is just a fast ac power supply - this can be achieved with couple of simple modifications.
The feedback sensing point, which is used to define the location of the net voltage source, is coupled back to the comparator circuit with a resistor, usually several kilo-ohms. This sensing point can be moved by the addition of extra resistors and biwiring to the loudspeaker. The precise value of the feedback resistors is not critical as long as it is the same in both channels.
The effect of a change is merely on gain, pro rata to the change so the addition of a few ohms - 10Ω is about right - will not change performance. Provided the bi-wiring is used, the new resistors can be shorted out and have no effect at all. The junction of these two resistors is taken to the far end of the speaker cable with a second wire, effectively moving the sensing point for the negative feedback all the way up to the speaker.
As far as the resulting driving

Creative fiction

Circuit simulators are extremely powerful tools-for investigating electronic scenarios. I have always thought it too obvious to need saying that relying wholly on simulation can lead you off into deep error unless you do regular reality checks with real circuitry to ensure your model is not fallacious. I was wrong; it does need saying.
While I must decline to give Duncan's article 'Modelling Cable' in the February 1996 issue the full dissection it deserves, I feel it only right to reassure people who are appaled at the prospect of loudspeaker cables made up from a Sargasso Sea of 10 mV threshold diodes. I believe the simple experiment shown below clears up the point.

A Blameless power amplifier delivers 50 W into an 8Ω load, at 0.001% thd at 1 kHz . The load return path is the cable under test A-B. This was initially 4 m of multistrand copper - not tinned-copper - mains-cable. and the voltage drop across it was 140 mV rms at 1 kHz . I think it is clear that if the multi-strand cable was a cats-cradle of 10 mV 'mystery diodes', then under these conditions some at least of them would be turning on and off and would severely degrade the

linearity. This would be particularly noticeable at the strand ends C, D etc, which are not formally connected to B, and according to Duncan make "occasional and random contact" along the length of cable. In actual fact they make intimate and continuous contact in any normal cable.
None of this happens. It is not possible to measure thd to 0.001% on a 140 mV signal due to noise limitations, but the thd residual at points at C, D etc, is identical to that at B, at the measurement noise floor of 0.007%. Clearly this is just a noisier version of the Blameless amplifier distortion. No extra diode distortion of any kind is detectable; this holds across the 20 Hz 20 kHz band.
Above 2 kHz the voltage drop increases due to cable inductance; by 10 kHz the level is 10 dB up, rising at $6 \mathrm{~dB} /$ octave. This confirms my view that in most circumstances the series resistance and inductance of a loudspeaker cable are the only significant parameters. If you are trying this experiment, then don't leave the cable wound on its reel; not only will this increase its inductance, but the steel reel-centre will produce spurious third-harmonic distortion.
This is good evidence that Mystery Diodes do not exist. There is also the point that a copper-oxide rectifier has a forward voltage drop of $300-600 \mathrm{mV}$, and I can find no evidence in solid-state physics that cupreous oxide could ever give a diode effect at such a low voltage as 10 mV .
It remains true that an ounce of experiment can dispose of several long tons of speculation.

Douglas Self

London

Insulating tape

impedance is concerned there is no cable. The same can be done with the ground side of the cable into the comparator circuit. The topology of this section is more likely to change from design to design and it may be that such a point is not accessible. In that case, you will have to settle for just half a solution.
Feedback wires can be omitted without compromise of the original quality, but have a care. Either disconnection or reversal of the main cable with the external feedback in place will result the smell of burning 10Ω resistors. Donald Pearce Hampstead

Internet integrity

The number of Internet users continues to grow at a significant pace. Users have the facility to call down virtually any page from this massive database and also have the opportunity to create their own Web pages. How much thought has been given to the integrity of the data which can be accessed from the net? Can we really believe that all we read has not been corrupted by a determined hacker first? With all the high grade of technical data available, is it right that we should accept its authenticity without question? The very openness of t.he net should be questioned.
Interesting enough, I have recently read that a new encryption technique using a one pad key is awaiting the grant of its patent. It was promised that this would then be passed into the public domain. If business users are intent on passing sensitive information over the net, then a secure form of encryption is an absolute necessity.
Geoff Lewis
Canterbury
Kent

More current drive

I noted the letter by J.R. Allison (Bradford) in the December edition. He comments on the use of current feedback in audio amplifiers, or 'current-drive' as I prefer to call it in a system context. I should point out that this subject has been investigated in the 1980s at Essex University by Dr Paul Mills, a then research student under my supervision but now with Tannoy.

Aspects of this subject were also investigated by David Birt, then with the BBC Designs Department. Rather than discuss the merits - and problems - of current drive, I would like to draw your readers' attention to the following publications:
${ }^{\text {'Distortion reduction in moving-coil }}$ loudspeaker systems using currentdrive technology', Mills, P.G.L., Hawksford, M.O.J., JAES, vol. 37, no. 3, ppl29-148, Mar '89.
'Transconductance power amplifier systems for current-driven
loudspeakers', Mills, P.G.L.,
Hawksford, M.O.J., JAES, vol. 37, no. 10, pp809-822, Oct '89.
'Transient analysis: A design tool in loudspeaker systems engineering', 80th Convention of the AES, Montreux, paper 2338 (E8), Mar '86.
'Loudspeaker power amplifiers with load-adaptive source', Birt, D., JAES, vol.36, no.7,8, pp552-61, July/Aug '88.

I should point out that a two-way
active system was designed and built as part of the research programme. The high-frequency channel used pure current drive while the bassmidrange used a combination of current drive and servo technology using velocity sensing to control damping. Paul Mills has also more recently designed a sub-woofer loudspeaker for Tannoy using current-drive techniques.
At Essex since the mid 1980s, we have also investigated digital techniques for crossover design where precision crossover and drive unit correction functions can be implemented in the digital domain. This can result in a loudspeaker with a near-perfect impulse response, where both amplitude and phase responses are corrected.
Of course, the actual loudspeaker must be appropriately designed to benefit from this technology - see Audio Physic 'Tempo' or 'Virgo' for examples of good design practice.
Also - and of equal significance much of the analogue processing can be eliminated with high-grade d-to-a converters being interfaced directly to the power amplifiers. The
elimination of much of the analogue circuitry including passive crossover networks and pre-amplifiers, together with band splitting across multiple d-to-a converters and power amplifiers, is in my view a revelation. It represents one of the most important contributions of digital technology to sound reproduction.

Redundant analogue amplifier stages only downgrade audio performance. On the other hand, products such as the Meridian 565 offer digital gain control, digital tone controls and surround-sound modes. They also operate efficiently in both analogue and digital worlds. As a bonus, the dual phase-locked loop of the 565 lowers jitter from digital sources.
In the near future we can also look forward to the power d-to-a converter which could eliminate the need for analogue power amplifiers as we currently know them.
In my view, the future of audio technology is about to change dramatically, and with the coming of high-capacity cd with multi-channel sound*.
Finally, I hope that the
technological changes that digital processing offers will put to rest the rather protracted and nonconvergent debates on analogue circuitry especially power amplifiers, that continue to appear in these pages, much of which is soon to be of only historic interest, at least at the leading edge of audio. The fact is all analogue circuits are flawed for numerous reasons and each must be judged as a complete entity, circuit diagrams are only part of the story. A technology that eradicates these area of uncertainty is far more likely to succeed when properly engineered.
Although I am fascinated by analogue circuit design and I have more than my fair share of controversial views, the more I learn of it the less I want to use it. Of course, treating all circuits including digital as an analogue process has its merits, but that is a different story.
Professor M Hawksford
Centre for Audio Research and Engineering
*Acoustic Renaissance for Audio (ARA) proposal web pages: http://www.ibmpcug.co.uk/~meridian/ara/

Electromagnetic clarification?

Requirements of standards vary, but in particular, EN55011 specifies a voltage maximum, a distance and an antenna. This appears to be fine when the current measurement from the specified loop antenna, with its factors, is converted to a voltage. The resultant voltage can then be refereed to the standard for a pass or fail.
Fine so far. It is when one makes a measurement at 30 m distant from the source, with a loop antenna, at a frequency of less than 2 MHz that I see a problem.
This measurement will be in the near field, with a current measuring device. How, then, is to be converted to a voltage when the voltage and current relationship is not established, as it is in the far field?
I consider the far field to be around $1 / 5$-wave length distant of the source and the relationship in the far field to be, in simple terms, $1 \mathrm{~V} /$ /metre to $0.00265 \mathrm{~A} / \mathrm{m}$ or a correction factor of $\log 20377$, or 51.5 dB .

M J Nicholas

Bournemouth
Dorset

Electro-magnetic confusion

The recent correspondence on electromagnetic compatibility in your February issue, barely touched on the growing electromagnetic pollution of the environment.
There seems to be a tendency to ignore the effects of broadband 'hash' on unfashionable parts of the electromagnetic spectrum. The fact that most pes blot out radio reception on nearby long and medium-wave $(150 \mathrm{kHz}-1.5 \mathrm{MHz})$ radio receivers is dismissed as unfortunate. But then the preferred band for 'serious' radio listening is fm.
The truth is that we are drowning in a sea of electromagnetic pulses from electronic light ballasts, domestic appliance controls and television and pc displays and systems - and nobody cares.
This off-hand attitude to radio interference now extends far up the broadcast spectrum. We are shortly to be exposed to channel 5 , which will occupy uhf channels $34-39$. According to my frequency allocation list, the band $606-614 \mathrm{MHz}$ in that sector was allocated for radio astronomy. The jamming of research radio reception does not end there. Electronics World readers may recall that the search for intelligent life elsewhere in the galaxy was recently stalled by a microwave oven in the observatory kitchen. Its a moot point whether intelligent life had anything to do with the signals.

I fear it will take some spectacular computer system crashes due to rogue electromagnetic pulses to convince the slew-rate junkies, terabyte nerds, surfers and vhf anoraks currently in the ascendant that limiting electromagnetic pollution by improving the design, construction and screening of radiating equipment is in everyone's interest.
Anthony Hopwood
Upton-upon-Severn
Worcestershire

Early EMC

Electromagnetic compatibility is widely regarded as something invented in Brussels a few years ago, that became a legal requirement at the beginning of this year. In fact, controls on emission have been around for some forty years, one of the first being the requirement for 'suppression' of the ignition systems of petrol engines to minimise interference with Band I 405-line television transmissions.
Control of immunity in volume-produced products, however, is often considered to have been introduced only a decade or so ago, as a result of interference from amplitude modulated citizen's band transmissions.
It is interesting therefore, to note that in the Dec 1971 issue, WW reproduced an item from The Marconigraph of sixty years previous concerning a patent issued to Capt. H. J. Round. This is not only the earliest reference to a 'valve' in the The Marconigraph, but also perhaps the earliest example of improvement of immunity.
For readers who do not have either of those issues to hand, the invention consists of a reversed-polarity diode connected in parallel with the diode detector of a simple detector-only receiver. Both diodes are provided with variable reverse bias and the reversed-polarity diode is biased off for signal reception. The amount of bias, and its polarity, are not well defined. However, a 'powerful atmospheric discharge' forces both diodes to conduct. This results in a great reduction in detection efficiency, due to the low 'back resistance', as well as heavier damping of the parallel tuned circuit. As a result, no sound, or probably only a weak click, is heard in the earphone.
As might be expected from the ingenious Captain, this two-pronged attack is clearly likely to be more effective than just connecting the 'crash diode' across the tuned circuit.
John Woodgate
Rayleigh
Essex

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK Telephone: +44 (0115) 986 4902/ +44 (0115) 9864041 24hr answerphone Fax: + 44 (0115) 9864667
 FRANKLIN/WAVETEK 3600

3 phase Power Line Disturbance Monitor
$50-800 \mathrm{~V} 40-800 \mathrm{~Hz} 1$. . 2 . or 3 phases . . 3 Inputs . LED Readout with Printer Cased As New Condition $£ 795$

DRUCK DP107

Leak rate indicator LCD Display of Differential Pressure (0-3000.0 pa) Leak Pressure (0-3000.0 pa) and pressure ($0-10.000 \mathrm{psig}$)
Complete and Cased with Manual in As New Condition £150
Also . . Limited Oty (Only available with the DP107)
Cased Adaptor Kit (incl Pump) £45
COLE T1085 Power Line Monitor
Monitors \& Records Mains Voltage and Frequency Detects \& Records Spikes and Transients with internal printer Cased with manual £95

Signal Generators

A Small selection of the Sig' Gens we have available HP 8640A ($40 \mathrm{Khz}-55 \mathrm{Mhz}$) AM-FM-CW. £650 Marconi TF2018 Synthesised (80Khz-520Mhz) AM-FM-CW £995 Marconi TF2018A Synthesised ($80 \mathrm{Khz}-520 \mathrm{Mhz}$) AM-FM-CW £1095 Marconi TF2022 Synthesised (10Khz-1000Mhz) AM-FM-CW £1695 (Also . . Versions of 2022 available March . . . Please Phone) Audio . . IF . . RF . . Pulse . . Function . . Waveform . . You Name it . . we SHOULD Have It

TESTO 451 Digital Instant Action Anemometer + Thermometer with 9540 Dual Action Probe (only 0.5" diameter)
Multi Function Large LCD Readout . . . Hand Held . . . Very Modern $0.4 \mathrm{~m} / \mathrm{s}$ to $60 \mathrm{~m} / \mathrm{s} 80 \mathrm{ft} / \mathrm{min}$ to $9999 \mathrm{ft} / \mathrm{min}-30^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C} 22^{\circ} \mathrm{F}$ to $280^{\circ} \mathrm{F}$ Supplied in As New Condition with Telescopic Extension and Booklet 3 Only Available $£ 425$
ETA 3000 Solid State Anemometers
$0-3000 \mathrm{ft} / \mathrm{min}$. . Solid State Sensor (Only 0.5" diameter) . . 3 Extensions Supplied Cased in As New Condition ... Only $£ 75$
DATA ACQUISITION 7050 Instrumentation Cassette Recorders
4 Track incl 3 x "Vibration" Amplifiers \& 1 x"FM" Amplifier . . Remote or Local operation LCD Readout . . internal Filters . . Voice TalkOver . . Shuttle facility . . Logic Control Mains/Battery Operation . . . Cased . . . Only £425
LO-KATA NAVTAX 2 Navigation \& Message System . . Incl Printer and Supply . . $\mathbf{£ 1 9 5}$ GENERAL RADIO 1602-B UHF Admittance Meter . . $\mathbf{4 0}$-1500Mhz. Complete . . Boxed . . $\mathbf{£ 1 2 5}$ ALSO . . Large Range of Oscilloscopes . . Digital Counters . . MultiMeters Changing Daily . . Please Phone for stock information

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME

All Prices are Ex VAT \& Carriage

Non-slewing

audio power amplifier

> Advancing his 'non-slewing' technique, which enabled an instrumentation amplifier capable of $\pm 1000 \mathrm{~V} / \mathrm{\mu s}$, Giovanni Stochino now applies the principles to audio power amplification.

In a recent article ${ }^{1}$ some high slew rate voltage feedback amplifier architectures were presented and discussed. A virtually nonslewing 50Ω power amplifier configuration was finally proposed, where high speed is accompanied with low input offset voltage and noise, as well as with low total harmonic distortion in the audio frequency range.
In this article I show how the same basic principles, embodied in Fig. 9^{1}, with appropriate adaptations, can be applied to the design of high performance audio power amplifiers.

Non-slewing amplifier performance

In non-slewing architectures, as explained in the previous article ${ }^{1}$, all main slewing mechanisms are virtually eliminated. Therefore, when the input signal is within the common mode input voltage range, the current at the output of both input and intermediate gain stages, is always controlled by the differential input voltage $V_{\mathrm{d}}=V_{1}-V_{2}$.
Figure 1 allows us to compare the performance of a non-slewing amplifier, nsa, with a similar yet conventional and slewing architecture, or csa. For clarity, only the input and intermediate stages are detailed, while the output stage is shown in the form of an ideal voltage follower.
Biasing currents are the same in both nsa and csa configurations. The results of Spice simulation for an input stimulus consisting of a 10 kHz square wave with a superposed high frequency sinusoidal voltage of 500 kHz are shown in Fig. 2.
It is apparent that the non-slewing architecture has no visible transient intermodulation distortion, while the conventional configuration shows clear signs of the presence of inter-
modulation distortion due to slewing times T_{f} and T_{r} - both of about $7 \mu \mathrm{~s}$.
In Fig. 3, transfer curve I_{b}, which is the intermediate stage output current, versus V_{d} is shown for both $I_{\mathrm{B}}=0$ and $I_{\mathrm{B}} \neq 0$.
Three regions of operation are identified:
I - input and intermediate stage in class-A operation;
II - input stage in class-AB, intermediate stage in class-A operation;
III - input and intermediate stage in class-AB operation.
Transconductance $g_{\mathrm{m}}=I_{\mathrm{b}} /\left(V_{1}-V_{2}\right)$ in these regions is approximately as follows:

$$
\begin{equation*}
g_{\mathrm{m}}(\mathrm{I})=2 /\left(R_{\mathrm{e}}+2 V_{\mathrm{T}} / I_{\mathrm{A}}\right) \text { (small signal) } \tag{1}
\end{equation*}
$$

where $V_{\mathrm{T}}=k T / q$ is the thermal voltage of around 25 mV at ambient temperature, and,

$$
\begin{align*}
& g_{\mathrm{m}}(\mathrm{II})=2 /\left(2 R_{\mathrm{e}}+R\right) \tag{2}\\
& g_{\mathrm{m}}(\mathrm{III})=1 /\left(2 R_{\mathrm{e}}+\mathrm{R}\right) \tag{3}
\end{align*}
$$

Maximum positive and negative current $I_{\mathrm{b}(\max)}$ at node B is defined by the maximum input voltage $V_{\max }=V_{\mathrm{EBO}}+V_{\text {be(on) }}$ that should never be exceeded, according to the following relationship:

$$
\begin{gather*}
\mathrm{I}_{\mathrm{bmax}}=\left(V_{\text {max }}-2 V_{\text {be(on }}\right) /\left(2 R_{\mathrm{e}}+R\right) \\
\quad=\left(V_{\mathrm{EBO}}-V_{\text {be(on })}\right) /\left(2 R_{\mathrm{e}}+R\right) \tag{4}
\end{gather*}
$$

Here, voltage $V_{\text {EBO }}$ is the rated base-emitter reverse voltage of input transistors. If, for instance, $V_{\mathrm{EBO}}=6 \mathrm{~V}, R_{\mathrm{e}}=50 \Omega$ and $\mathrm{R}=200 \Omega$, equation (4) yields 18 mA . This value, added to I_{B}, is enough to sustain a rate of change still linear - of $\pm 160 \mathrm{~V} / \mu \mathrm{s}$ across a capacitance

Performance of the 'non-slewing' amplifier.

Test conditions: ambient temperature $=20^{\circ} \mathrm{C} ; V_{c c}=V_{\mathrm{ee}}=55 \mathrm{~V}$ regulated.

- Gain=30dB
- Output power $20 \mathrm{~Hz}-20 \mathrm{kHz}, 110 \mathrm{~W} / 8 \Omega ; 180 \mathrm{~W} / 4 \Omega$
- Small signal -3dB bandwidth, 800 kHz (at node F before output inductor)
- Input offset voltage, 4 mV
- Maximum output voltage rate of change, $\pm 170 \mathrm{~V} / \mu \mathrm{s}$ (at node F)
- Overload recovery time (up to 300% input overload) ≤ 120 ns
- Distortion, see Table 1.

Table 1. THD+noise of circult in Fig. .4, bandwldth 80 kHz .

$V_{\text {out }}\left(V_{\text {pp }}\right)$	thd+noise(\%)		thd+noise(\%)	
	8Ω load		4Ω load	
	1 kHz	20kHz	1 kHz	20kHz
10	0.004	0.016	0.004	0.050
20	0.003	0.020	0.004	0.040
40	0.003	0.030	0.008	0.040
60	0.003	0.040	0.009	0.050
80	0.004	0.045	0.010	0.060

thd + noise instrumentation $=0.002 \%$

NSA

Fig. 3. Full range transter curve of I_{b} versus V_{d} in the nsa architecture.

CSA

Fig. 2. Spice simulation results demonstrate the absence of visible TIM in non-slewing architectures. (a) is $\left(\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right) / 2,(b)$ is output of non-slewing amplifier, V_{0}, and (c) is output of conventional slewing amplifier, $\mathrm{V}_{\mathrm{o}} 1$.
of 150 pF at node B, which is a realistic value in an audio power amplifier.
It is worth noting again that this maximum rate of change is not to be confused with the non-linear slew rate limitation due to input and/or intermediate stage overdrive phenomenon in csa architectures.
The remaining problem in this type of nsa configurations, as well as in all other high slew rate class- AB architectures, is associated with the large full scale non-linearity due to classAB operation, as is apparent from Fig. 3. This
can leave a residue - although rather low of transient intermodulation products, even when overall feedback is applied to the amplifier. Additionally this limits large signal linearity at high frequency where loop gain is reduced for reasons of loop stability.
An effective way to further limit the already low transient intermodulation distortion in non-slewing audio power amplifier architectures, is to set the bias current of input and intermediate stages so that class-A operation is retained with actual music programs at the

-

Fig. 4. Detailed circuit diagram of a viable non-slewing audio power amplifier.

margin of about two is recommended. This also takes into account the current contribution needed to drive the output stage and to make up for component tolerances.
In principle, this solution promises very good thd and transient intermodulation distortion performance with normal audio programs. At the same time, it is capable of assuring the very low - if any - transient intermodulation distortion offered by nonslewing architectures, should unexpectedly fast and/or large input transients occur, as maintained by Duncan ${ }^{3}$.

Non-slewing, high power audio amplifier architecture

Figure 4 shows the complete circuit diagram of a possible implementation of a non-slewing audio power amplifier, designed bearing in mind the above considerations. If compared with the 50Ω power amplifier of Fig. 9^{1} discussed in my previous article, it contains some minor changes.
Firstly, cross coupling resistance R is reduced to 200Ω to improve full range linearity of the input stage and increase its maximum available output current. Current shifting component I_{S} has been increased accordingly to 8 mA , while I_{A} has been kept at 2 mA .
To reduce power consumption of current source transistors $T r_{18}$ and $T r_{21}$, zener diodes D_{1} and D_{2} have been added. Furthermore, the output stage is built around a double pair of high-power complementary mosfets. These are the IRF 640 and IRF 9640, from International Rectifier.
Each power mosfet can dissipate 125 W of power and provide more than 20A peak current. Therefore, the amplifier can safely drive very low impedance loads, provided the output mosfets are adequately heat-sinked.

Transistors $T r_{11-16}$, which serve as low output resistance push-pull drivers, are capable of providing the high peak currents needed to drive the high and non linear input capacitances of power mosfets. This can amount to about 800 pF worst case each. Peak output current limitation is set to about 40A by zener diodes D_{5} and D_{6}, but a 3-4A fuse has to be inserted at the amplifier output for safe continuous operation.
Due to the high gate-source voltage needed to drive mosfets into full conduction, maximum output voltage swing is limited to about 12 V from the supply rails. This results in reduced amplifier efficiency. If needed ,better efficiency can be obtained by operating power mosfets with separate supply rails of $\pm 45 \mathrm{~V}$.
Output stage bias current is set by adjustable shunt regulator, $I C_{1}$, and by trimmer $R V_{1}$. This component has to be set to its maximum before applying power to the amplifier and adjusting bias current of $\operatorname{Tr}_{23-26}$. A suitable value for total mosfet bias current was found to be about 200 mA . Unless otherwise stated, resistors are $300 \mathrm{~mW}, 1 \%$ metal film types.
Measured performance of the amplifier prototype, which is in good agreement with simulation data, is shown on the first page of this article.

Further developments.

In the last few months I have investigated whether better results can be attained in terms of both maximum rate of change and thd in high slew rate audio power amplifiers configurations.
Figure 5 illustrates the further evolution of the basic power amplifier circuit structure depicted in Fig. 4, which I am currently working on. In comparison with Fig. 4, where the intermediate stage current gain is low (1 to 2), Fig. 5's topology features an intermediate stage with high low frequency current gain, equalling $R_{\mathrm{b}} / R_{\mathrm{e}}$ for $R_{\mathrm{b}} / R_{\mathrm{e}}<\beta$.
With component values shown in the figure, this gain amounts to 45 . The expected advantages are increased low frequency open loop gain - and hence lower thd for the same closed loop gain - and potentially higher speed, since the current available at the intermediate stage output is larger than the corresponding current in Fig. 4's architecture.
From Fig. 5 you will find that,
$I_{\mathrm{ah}}\left(V_{\mathrm{d}}=0\right)=I_{\mathrm{al}}\left(V_{\mathrm{d}}=0\right)=0$,
therefore bias current I_{B} is equal to,
$\left[V_{\mathrm{BI}}-V_{\mathrm{be}(\mathrm{on})}\right] / R_{\mathrm{e}}=9 \mathrm{~mA}$.
Available peak current is defined by $V_{\text {ah }}$ and
$V_{\text {al }}$ peak value, ie $V_{\text {a(pk) }}$, via the relationship $I_{\mathrm{b}(\mathrm{pk})}=\left[V_{\mathrm{a}(\mathrm{pk})}-V_{\mathrm{be}(\text { (on })}\right) / R_{\mathrm{e}}$.
In the interests of reliability, this peak current has been limited to about 60 mA , by means of the diode clamping networks at the collector of input transistors. These limit $V_{\mathrm{a}(\mathrm{pk})}$ to about 2.8 V . With this high peak current value it is now possible to sustain slew-rates of $\pm 400 \mathrm{~V} / \mathrm{\mu s}$ across a 150 pF total capacitance at the input node of the output stage.
I cannot provide measurement results yet, however, Spice simulations confirm the above theoretical predictions.
For the moment, I can report the simulation results shown in Fig. 6, which demonstrates the frequency response - magnitude and phase - the square-wave response and the square+sine wave response. They prove the stability and clean response of the amplifier even with a severe $8 \Omega / 0.5 \mu \mathrm{~F}$ load impedance. In addition, they show the absence of any visible transient intermodulation distortion.

References

1. Stochino, G, ‘Ultra-fast Amplifier', $E W+W W$, Oct 1995, pp.835-841.
2. Self, D, 'High Speed Audio Power’, EW+WW, Sep 1994, pp.760-764.
3. Duncan, B, 'Simulated Attack on Slew Rates', $E W+W W$, Apr 1995, pp. 303-309.

SURVEILLANCE TELESCOPE Superb Russian zoom telescope adjustable from $15 \times$ to $60 \times$ x complete with metal tripod
(imposible to use without this on the higher settings) 66 mm lense. (imposible to use without this on the 1
leather carrying case $£ 149$ ref BARE9
RADIATION DETECTOR SYSTEM Designed to be wall mounted and connected into a PC, idealfor remote monitonng, whole'
buliding coverage etc. Complete with detector, cable and software. buliding coverage etc
$£ 19.95$ ref BAR75.
WIRELESS VIDEO BUG KTT Transmits video and audio signals from a minature CCTV camera (included) to any standard
televisionl All the components Including a PP3 battery will ft into a television: All the components including a PP3 battery will fit into a
 suif give a range of up to 100 metres. A Single PP3 will probably give
s. less than 1 hours use. E99 REF EP79. (probably not licensable!) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$, 30 grams, 12 V 100 mA . auto electronic shutler, $3.6 \mathrm{~mm} / 2$ ens, CCIR, 512×492
pixels, video output is $9 \mathrm{vp} \mathrm{p}(75 \mathrm{ohm})$. Works directy into a scatt or pixels, video output is $\mathrm{V} P$-p (75 ohm). Works directly into a s
video input on a N or video. IR sensitive. $£ 79.95$ ref EF 137 . IR LAMP KT Surtable for the above camera enables the camera
o De used in total darkness! £5.99 rel EF138.
REMOTE CONTROLTANDATA TD1400 MODEM/ VIEWDATA Complete system comprising $1200 / 5$ modern, auto dialler, infra red remote keytoard, (could be adapted for PC use?)
psu, UFF and RGB output phone lead RS232 output composite Output. Absolute bargain for pants alonelikg.95 rel BAR33.
9 WATT CHIEFTAN TANK LASERS Double Deam units designed to it in the gun barrel of a tank, each unit has two semi full circult diagrams, new price $£ 50,000$ us? £349. Ring for info. TWO WA Y M IRROR KT Indudes special adhesive film to make
instructions. £12 ref tW1. AMPLIF IERSAssembled PCB transmitters. 4 types available, 12.6 vdc 90 watt $1.5-30 \mathrm{mhz} 75$ onm in/out FM/AM $£ 75$ ref RF1
12.6 vdc 40 watt $50-200 \mathrm{mhz} 50$ ohm in/out FM/AM $£ 65$ re' RF2 12.6 vdc 40 watt $50-200 \mathrm{mhz} 50 \mathrm{ohm}$ in/out FM/AM $£ 65$ ré RF2
28 vdc 125 watt $9.5-30 \mathrm{mhz} 75$ ohm in/out FM/AM $£ 85$ ref RF3 $28 v d c$ c 125 watt $1.5-30 \mathrm{mhz} 75 \mathrm{ohm}$ in/out FM/AM £85 ref RF3
28 vdc 100 watt $50-200 \mathrm{mhz} 50$ ohm iniout FM/AM $£ 75$ ref RF4 A heat sink will be required, ring for pnce and availabillty. If you intend using these as audio transmitters you will need a also need a preamp. Complex module available at E 40 rel RF5. COMPUTERWORKSHOP/HLFI RCB UNTS Complete protection from fauty equipment for everybodyl Inine unit tits in standard IEC lead (extends it by 750 mm), nhed in less than 10 RADIO CONTROLLED CARS FROM £7 EACH!!!!
THOUSANDS AVAILABLE RING/FAX FOR DETAILSI MAGNETIC CARD READERS (Swipes) £9.95 Cased with fiyleads, designed to read standard credit cards' they have 3 wires coming out of the head so they may write as well? complete with
control elctronics PCB. u ust $£ 9.95$ ref BAR31 controf elctronics PCB. just $£ 9.95$ ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different Dusinesses, you peruse these at certificate enabiling you to reproduce (and sell) the manuals as much as you likel $£ 14$ ref EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in horizontal or vertical mode. Complete with strap $£ 7.99$ ref BAR
COIN OPERATED TIMER KT Complete with coinslot mechanism, adjustable bime delay, relay output, put a coinslot on anything you like! TV.s, videos, tidges, drinks cupboards. HIFl.
takes 50 p's and $£ 1$ coins. DC operated, price just $£ 7.99$ ref BAR27. ZENTH 900 X MAGNIFICATION MICROSCOPE Zoom, metal construction, built in ight, shrimp farm, group viewing screen, lots of accessories. £29 ref ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ rel BAR34 PLASMA SCREENS $22 \times 310 \mathrm{~mm}$, no data hence $E 4.99$ ref BAR67
NIGHTSIGHTS Model TZS4 with infra red illuminator, view s up to 75 me tres in full darkness in infrared mode, 150 m range, 45 mm lens, 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA battenes equired. 950 g weight. $£ 210$ ref BAR61. 1 years warranty M EGA AIR MOVERS 375 cubic feet per min!, 240 v 200 watt. $2,800 \mathrm{pm}$, reversable, $7^{\circ} \times 7^{*}$ UK made, new, Aluminium, current list price about £ 180 ours? £ 29.95 rel BAR35.
LIQUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line, $65 \times 14 \mathrm{~mm} £ 1.99$ ref SM1612A 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm}$ £3.99 ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL- 1110 MM N EWTONIAN REFLECTORTELESCOPE Russian. Superb astronomical 'scope, everything you need for some senous star gazing! up to $169 \times$ magnification. Send or fax for further details $£ 249$ rel TAL-
GOT AN EXPENSIVE BIKE? You need one of ourbotte alarms, they look like a standard water bottle, but open the top, Insert a key to activate a motion sensor alarm builtinside. Fits all standard bottle GOT AN EXPENSIVE ANYTHING? You need one of our cased vibration alarms, keyswitch operated, fully cased just fit it to anything from videos to caravans, provides a years protec
1 PP3 battery, UK made. SALE PRICE $£ 4.99$ REF SA33. DAMAGED ANSWER PHONES These are probably beyond repair so just $£ 4.99$ each. BT response 200 machines. REF SA30. COMMODORE GAMES CONSOLES Just a few of these left o dear at $£ 5$ ref SA31. Condition unknown.
COMPUTERDISCCLEAROUT We areleft with lotof software packs that need clearing sowe are selling atdlsc value only! 50 discs or $£ 4$, thats just 8 p eachll(our choice of discs) 64 ref EP66 IBM PS 2 MODEL $160 Z$ CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $£ 8.95$ ref EP67

WOLV VRHAMP ON BRANCH NOW OPEN AT WORCESTER SI WHLMMTON ILL 01902.22039

1.44 DISC DRIVES standard PC 3.5" dives but retums so they will need attention SALE PRICE $£ 4.99$ rel EP68
1.2 DISC DRNES Standard 5.2° dnves but retums so they will need attention SALE PRICE NOW ONLY $£ 3.50$ ref EP69 PP3 NICA DS Unused Dut some storage marks. $£ 4.99$ ref EP52 DELL PC POWER SUPPLIES (Customerretums) Standard PC psu's complete with fly leads, case and fan. $+12 v,-12 v,+5 v,-5 v$ SALE PRICE E1.99EACH WO
OF 20 E29.95 Ref DL2.
GAS HOBS ANDOVENS Brand new gas appliances, pertectior
GAS HOBS ANDOVENS Brand new gas appliances, perfect for small fiats etc. Basic 3 burner hod SALE PRICE $£ 24$
Basic smal bullt in oven SALE PRICE E79 ref EP73
Basic Small bulli in oven SALE PRICE E79 reI EP73
RED EYE SECURTTY PROTECTOR 1,000 watt outdoor PIR
switch SALE PRICE E6.99 ref EP57
ENERGY BANK KT $1006^{\circ} \times 6^{\circ} 6 \mathrm{~V} 100 \mathrm{~mA}$ panels, 100 dilodes, onnecton details etc. $£ 69.95$ ref EF 112
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses. Induces wordprocessor, report wnter, windowing, networkable up to 10 stations, multiple cash books etc. 200 page
comprehensive manual.90days free technical support (0345-326009 trybetore you buy!) Current retail price is $£ 129$, SALE PRICE $£ 9.95$ ref SA12 SAVE E120III
MINIMICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ sq SALE PRICE E2. Ref SA 13.
12V2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standardIEC socket) and 2 m lead with plug. 100-240 IP. E6.99 REF SA 15 .
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable soffware agalnst mains power fluctuations and cuts. New and boxed. UK made Provides up to 5 mins running tme in the event of complete power failure to allow you to run your system down
correctly. LAST FEW TO CLEAR AT E59 SAVE $£ 30$ reI SEP 149P1 SOLAR PATH LIGHTS Low energy walkights powered by the sunl built In PIR sothey w ork wheny ou walk past. Indudes solarpanel \& rechargeable bat SALE PRICE $£ 19.95$ REF EP62
BIG BROTHERPSU Cased PSU, 6 v 2 Aouput, 2 m oplead. 1.5 m
input lead, UK made,z20. SALE PRICE E4.99 REF EP7

(al)
 Check out our WEB SITE

http://www.pavilion.co.uk/bull-electrical RACALMODEM BONANZA! 1 Racal MPS $12231200 / 75$ modem, elephone lead, mains lead, manual and comms software, the cheapest way onto the netl all this for just $£ 13$ ref DEC13
4.5 mw LASER POINTER. BRAND NEW MODEL NOW IN STOCK!, supplied in fully built form (looks like a nice pen) completa with handy pocket clip (which also acts as the on/off switch.) About 60 metres rangel Runs on 2 AAA batteries. Produces thin red beam Ideal for levels, gun sights, experiments otc. Just $£ 39.96$ ref OEC49 TRADE PRICE $£ 28$ MIN 10 PIECES
BULL TENS UNT Fully Duilt and tested TENS (Transcutaneous Electrical Neve Stimulation) unit, complete with electrodes and full Instructions. TENS is used for the relief of pain etc in up to 70% of
sufferers. Drug free pain retief, saie and easy to use, can be used in sumierers. Drug reee pain reier, sare and easy to
conjunction with analgesics elc. E49 Ref TEN/1
COMPUTER RS232 TERMINALS, (LIBERTY)Excellent quality modern units, (like wyse 50, s) $2 \times$ RS 232,20 function keys, 50 thro to 38,400 baud, menu dnven port, screen, cursor, and keyboard setup menus (18 menu's). £29 REF NOV4.
RUSSLAN MONOCULARS Amazing 20 times magnification, coated lenses, carryng case and shoulder strap. $£ 29.95$ REF BAR73 PC PAL VGA TO TV CONVERTER Converts a colour TVInto abasic VGA screen. Complete with builtin psu, lead and s/w are..Ideal abasic VGA screen. Complete with buitinpsu, leadand sware..I deal
for laptops or a cheap upgrade. Supplied in kit form for home for laptops or a cheap upgrade. Supplie
assembly SALE PRICE G25 REF SA34
EMERGENCY LIGHTING UNT Complete unit with 2 double bulb floodilights, built in charger and.auto switch. Fully cased. 6v 8 AH ead acid req'd. (secondhand) $£ 4$ rel MAG4P1
SWINGFIRE GUIDED MISSILE WiRE. 4,200 metre reel of uttra thin 4 core insulated cable, 281 bs breaking strain, less than 1 mm thickl Ideal alarms, intercoms, dolls house's etc. $£ 13.99$ ref EP51 ELECTRIC CAR WINDOW DE-ICERS Complete with cable. plug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARG ER $155 \times 300 \mathrm{~mm}$ solarpanel with diode and 3 metre lead fitted wht a cigar plug. 12V 2watt. ce.99 REF SA25. ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, $60-100$ flashes a min. $\mathbf{E 6 . 9 9}$ REF SA 158 . 24v AC 96WATT Cased power supply. New. £9.99 REF SA40 MILTARY SPEC GEIG ER COUNTERS Unused anstraightiom Her majesty's forces SALE PRICE E44 REF SA16
-SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UE
BULL ELECTRICAL

4 4. $012 \% 32307$

MICRODRNE STRIPPERS Small cased tape dives ideal for stripping, lots of useful goodies including a smart case, and lots
components SALE PRICE JUST E4.99 FOR FNE REF SAZ6 COLAR POWER LAB SPECLAL You get TWO6. $\times 6^{\circ} 6 \mathrm{~V} 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supert value kit SALE PRICE JUST E4.99 REF SA27
RGB/CGAFEANTTL COLOUR MONTORS 12° in good condition. Back anodised metal case. SALE PRICE E49 REF SA16B PLUG IN ACORN PSU 19V AC 14w, £2. 99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op ieads 17v OC 900 mA ourput. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCH MEDES PSU +5 V © 4.4A. on/off sw uncased. selectable mains input. $145 \times 100 \times 45 \mathrm{~mm}$ E3.99 REF MAG7P2 13.8 V 1.9A PSU cased with leads. Just $£ 9.99$ REF MAG10P3 UNIVERSAL SPEED CONTROLLER KTT Designed by us for the C5 molor but ok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may De required. $£ 17.00$ REF: MAG17
PHONE CABLEAND COMPUTER COMMUNICATIONS PACK Kit contans 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating between PC 's over along distance utilizing methor of communicating between PC sover a
the serial ports. Complete kit $\ddagger 8.99$. Ref comp
VIEWDATA SYSTEMS made by Phillips, complete with intemal 1200 r. 5 modem, keyboard, psu etc RGB and composite outputs, menu diven, autodialler etc. SALE PRICE $£ 12.99$ REF SA18
AIR RIFLES . 22 As used by the Chinese amy fortraningpuposes, so there is a lot aboutl $£ 39.95$ Rel EF78. 500 pellets $£ 4.50$ ref EF80. PLUG IN POWER SUPPLY SALE FROM \&1.60 Plugs in to 13A socket with outputtead. three types available, $9 v d c$ ref SA19, 9voc $200 \mathrm{~mA} £ 2.00$ ref SA20. $6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 2$ ref SA 21. VIDEO SENDER UNT. Transmits both audio and video signals from either a video camera, video recorder, TVor Compulere etc toany standard iv set in a 100 range (tune TVo a spare channel) $12 v 0 C$
Op. Price is $£ 15$ REF: MAG15 $12 \forall$ PSu is $£ 5$ extra REF: MAG5P2 -MINATURE RADIO TRA NSCENERS A pair of walkie talkies witha range up to 2 kmin open county. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. induding cases andearp'ces. $2 \times P$ P3 req'd. E30.00 pr.REF: MAG30
"FM TRANSMITTER KTT housed in a standard wording 13A adapter!! the bug runs directyy oft the mains so lasts foreven why pay £700? or pice is $£ 15$ REF:EF62 (kit) Transmits to any FM radio, -FN BUG BUILT ANDTESTED superior design to ktt. Supplled to detecive agencles. 9v battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WTH COINSLOT MECHANISMS onginally made to retail at E 79 each, these units are designed to convert an ordinary phone into a payphone. The unts have thelocks missing and sometimes broken payp hone. The unts have the locks missing and someumes broken
hinges. However they can be adapted for their onginal use or used for hinges. However hey can beadapted or thero
somemining
else? SALE PRICE JUST $£ 2.50$ REF SA23
GAT AIR PISTOL PACK Complete with pistol, darts and pellets GAT AIR PISTOL PACK Complete wilh pistol, dart
£12.95 Ref EF82B extra pellets (500) $£ 4.50$ ref EF80.
$£ 12.95$ Ref EF828 extra pellets (500) $£ 4.50$ ref EF 80 .
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLARRANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 MA . SALE PRICE E4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for 54.99 ref MAGSP13ideal for expenimenters 30 m for $£ 12.99$ rel MAG13P1 MDED GOODIES BOX OF
MIXED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST $\mathbf{E} 5.99$
4×28 TELESCOPIC SIGHTS Sutable for all air niles, ground lenses. good light gathering properties. $£ 19.95$ ref R \boldsymbol{R}.
RATTLE BACKS Interesting things these, small plece of solid perspex like material that it you try to spin It on the desk it only spins one way' in factifyou spin it the 'wrong' way it stops of its ow naccord and go's back the other way! $£ 1.99$ rel GVJJ01.
GYROSCOPES Rememberthese? well we have found a company that still manufactures these popular sdentfic toys. perfect giff or for educational use etc. $\varepsilon 6$ rel EP70
HYPOTHERMIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket, reflects more than 90\% of body heat. Also suitable for the construction of two way mirrors! $£ 3.99$ each rel O/L04
LENSTATIC RANGER COMPASS Oil filled capsule, strong metal case, large luminous points. Sight line with magnityng viewer.
50 mm dia. $86 \mathrm{gm} . £ 10.99$ rel $\mathrm{O} K 604$.
RECHARGE ORDINARY BATTERIES UP TO 10 T MESI With the Battery Wizard! Uses the latest pulse wave charge system to charge all pop ular brands of ordinary battenes AAA, AA, C, D, four ata timel Led system shows when batteries arecharged, automatically relects unsultable cells, complete with mans adaptor. BS approved. Price is $£ 21.95$ ret EP31.
TALKING WATCH Yes, it actually tells you the time at the press of a butlon. Also features a voice alarm that wakes you up and tells you what the time is! Lithium cell induded. $£ 7.99$ ref EP26.

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevent even the mostresponsible of drivers from losing their licence! Adjustable audible alarm with 8 flashing leds gives instant warning of radar zones. Defects X, K. and $K a$ bands. 3 mile range, "over the hill' aroundbends' and 'reartrap faclives.micro size 1
SANYO NICAD PACKS $120 \mathrm{~mm} \times 14 \mathrm{~mm} 4.8 \mathrm{~g} 2$
for cordess phones etc. Pack of 2 just $£ 5$ ref EP78. ah suitable
3" DISCS As used on older Amstrad machines, Spectrum pluss's etc $£ 3$ each rel BAR400.
STEREO MICROSOPES BACK IN STOCK Russan, 200x complete with lenses, lights, filters etc etc very comp renensive is just $£ 299$ (full money Dack guarantee) full details in catalogue. Rel
WE BUY SURPLUS STOCK FOR CASH
BUYERS DIRECT LINE 0860425692

FREECATALOGUE

100 PAGE CATALOGUE NOW available, 50P STAMP OR FREE ON REGUEST WITH ORDER.

PORTABLE X RAY MACHINE PLANS Easy to construci plans on a simple and cheap way to buld a home X-ray machine! Eflective device, X -ray sealed assemblies. can be used for expenmental purposes. Not a toy or for minors! $£ 6 /$ set. Ref FIXP 1 TELEKINETIC ENHANCER PLANS Mystify and amaze your Uses no clectncal mormechancal honnections Uses no electncal or mechanical connections, no special gimmicks throducesposive magic shows, party demonstrations or serious research \& Ea/sel Ref FTTKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This dala shows several ways to put subjects under your control. Included Is a fult yolume reference text and seyeral construction plans that when assembled can produce highly efrecteve stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only. by those expenenced in its use. $£ 15 /$ set. Ref $F / E H 2$
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an antigravity effect. You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate. £ 10/set Rel FIGRA1
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, expenment with extraordinary HV effects, 'Plasma in a far St Elmo's fire Corona, excellent science profect or conversation piece. E5/set Rei F/BTCin $G 5$
COPPER VAPOUR LASER PLANS Produces 100 mw visible green light. High coherency and spectral quality simiar to
Argon laser but easier and less costly to build yet far more efficient. Thispartculardes ign was developed at the Atomic Energy Commision of NEGEV in Israel. £10/set Ret F/CVLI
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into Indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party Hstening and bugging. $\varepsilon 6 /$ set Ret FN59.
PULSED TV JOKER PLANS Litte hand held device utilises pulse techniques that with completely dilsupt TV picture and sound! BODYHEAT TELESCOPE PLANS Higly BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living
bodies, warm and hotspots, heatleaks etc. Intended for secunty. law bodies, warm and hotspots, heatleaks etc. Intended for secunty, a aw
enforcement. research and development. etc. Excellent security enforcement. research and development. etc. Excellent secuitity
device or very interesting science profect $£ 8 /$ set Ref $F / B H T 1$. device or very interesting science prolecti £ 8 /set Ret
BURNING, CUUTING CO2 invisible beam of heat capabie of burning and meting materials over a considerable distance. This laser is one of the most efficient, converting 10% input power into useful output. Not only is this device a workhorse in welding. cuttong and heat processing matenials butit is also a likely candidate as an effective directed energy beam
weapon agalnst missiles, alrcraft, ground-to-ground, etc. Partide weapon agalnst missiles, alrcraft, ground-to-ground, etc. Partide beams may very well utillze a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particles The device is easily applicable to burning and etching wood, cutting. plastics, textiles etc $£ 12$ /set Ref $F / L C 7$.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity, amazing gift. con
set Ref FIANT IK
ULTRA SONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides. Many cleaning uses LB1
ULTRAHIGHGAIN AMPISTETHOSCOPICMIKESSOUND AND VIBRATION DETECTOR PLANS Ulirasensitve device enables one to hear a whole new world of sounds. Listen through walls, windows, floors etc. Many applications shown, from law enforcement. nature listening, medical heartbeat. to mechanical dences. £6/set Rel F/HGA7
ANTI DOG FORCE FIELD PLANS Highly effectve circulit produces ime vanable puises of
cannot tolerate $£ 6 /$ set Rel $\mathrm{FDOOG2}$
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. E12/set Ref F/LLIST1
CRAW
CRAWLING INSECT ROASTER PLANS Harmless high frequency energy pulses destroy pests as they crawl into the energy field! $£ 4 /$ set Ref F/RCR 1
LASER LIGHT SHOW PLANS Doit yourself plans show three methods. $£ 6$ Ref $\mathrm{F} / \mathrm{LLS} 1$
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and batiery capaaty with extemal controis. £6/set Ret F/PSP4
INFINTY TRANSMITTER PLANS Telephone line grabbert room monitor. The ultmate in home/office secunty and safety! simple to usel Call your home or orice phone, push a secret tone on your
telephone to access either. A) On premises sound and voices or B) telephone to access either: A) On premises sound and voices or B) Existing conversation with break-in capability for emergency messages. $£ 7$ Rel FITELEGRAB
BUG DETECTOR PLANS Is that someone geting the goods on you? Easy to construct device locates any hidden source of radio energyl Snitifs out and finds bugs and other sources of bothersome BD1
ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $£ 5$ ref $\mathrm{F} / E M L 2$ ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI £5/set Ret FIEMA1
PARABOLIC DISH MICROP HONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostile premises, Uses satelite technology to gather distant sounds and focus themto our uitra sensitive electronics. Plans also show an optional wireless link system. £8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATORPLANS Opera

WOL XERTAMPTON BIEACH NOW OHEN AT WORUTSTIER SI W114M1TON 1H1. 0190220139

MINI FM TRA NSMITTER KIT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover $63-130 \mathrm{Mhz}$. Works with a comm on gv (PP3) battery. 0.2W RF. $£ 7$ Ref 1001
ELECTRONIC SIREN KIT Impressive 5 wattpoweroutu t. Ideal or carbike alarm etc. 6 - 12 y dc max current 1 A , 1.2 khz £6 Ref 1003 3-30V POWER SUPPLY KTT Variable, stabilized power supply for lab use. Shor circuitprotected. sultable for profesional or amateur use 24v 3A transformer is needed to complete the kit. £ 14 Ref 1007 1 WATT FM TRANSMITTER KTT Supplied with piezo eiectic microphone $8-30 \mathrm{vdc}$. At $25-30 \mathrm{v}$ you will get nearly 2 wattsl $£ 12$ ret
1009 .
FM/AM SCANNER KTT Well not quite, you have to turn the knod your self but you will hear things on this's radio that you would not hear on an ondinary radio (even TV). Covers 50 - 160 mhz on both AM and FM. Built in 5 watt amplifier, inc speaker. $£ 15$ ref 1013
MOSQUTO REPELLER KTT Modern way to keep midges a bay! Runs for about a month on one 1.5 v battery. $£ 7$ Ref 1015.
3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel, 1,200 w power handling. microphone Included. $£ 14$ Ref 1014
MOTORBIKEC YCLE TREM BLER ALARM KIT Adjustable sensiturty. preset alami time, auto reset. Could be connected to horn
etc. $£ 12$ Ref 1011 . etc. $£ 12$ Ref 101
0-6 MINUTE TMER KIT adjustable, will switch up to 2A mains. Perfect for alams, photography, etc. $£ 7$ Ret 1020.
4 WATT FM TRANSMITER KTT Small but powerful FM transmitter, 3 RF slages, microphone and audio preamp Included. £20 Ref 1028
STROBE LIGHT KTT Adjustable from 1.60 hz (a lot faster than conventional strobes). Mains operated. £16 Ref 1037
ULTRASONIC RADAR KTT Ideal as amovement detector with a range of about 10 metres, automate your cat fapl 12 V dc . 15 Ret 049
LIQUID LEVEL DETECTOR KTTU Useful for tanks, ponds, baths,
rain alam, leak detector etc. Will switch 24 mains. $£ 5$ Rel 1081 .
COMBINATION LOCK KIT 9 key, programmable, complete with keypad, will switch 2 A mains. 9 g dc operation. $£ 10$ ref 1114 . PHONE BUG DETECTOR KIT This device will warn you it somebody is eavesdropping on your Π ne $\varepsilon 6$ ' ref 1130
ROBOT VOICE KTT Interesting circult that distorts your vorcet adjustable, answer the phone with a differentvoice! $12 \mathrm{vdc} £ 9$ ref 1131 TELEPHONE BUG KT Small bug powered by the 'phone line, starts transmitting as soon as the phone is picked upl $£ 8$ Ret 1135 . FUNCTION GENERATOR KTT Produces sinusoidal, saw tooth and square waves from $20-20 \mathrm{khz}$, separate level controls for each shape. Will produce all 3 together. 24 vac . 16 rel 1008
3 CHANNEL LIGHT CHASER KT 800 watts per channel, speed and direction controlssupplied with 12 LEDS (you can fittracs instead to make bit mains, not supplied) $9-12$ vdc $£ 17$ ref 1026 . 12 FLOU RESCENT LAMP DRVER KTT Lightup 4 loottubes from your car batteryl ov 2a transtormer also required $£ 8$ ref 1069. VOXSWTTCHKTS Sound activated switchideal for making bugging tape recorders etc, adjustable sensitivity. $£ 8$ ref 1073.
INCAR SOUNDTO LIGHT KIT Putsome atmosphere in your car with this mini 3 channel sound to light. Each channel has 6 led's. $£ .10$ ret 1086.
TW HI FI AMPLIFIER KTT Useful, powerful, ideal for audio systems, intercoms etc. 12-18vdc $£ 7$ ref 1025.

0
 Check out our WEB SITE

http://www.pavilion.co.uk/bull-electrical
PREAMP MDXER KTT 3 input mono mixer, sep bass and treble controls plus individual level controls. 18 vdc . input sens 100 mA . $£ 15$ ret 1052.
METAL DETECTOR KTT Range $15-20 \mathrm{~cm}$, complete with case, 9vdc. E8 ref 1022.
SINGLE CHANNEL SOUND TO LIGHT KTT Mains operated, add rythum to your party for only $£ 8$ ref 1006.
SOUNDEFFECTS GENERATOR KTT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects trom birr chips to sirens. Complete
to your projects for jusi $£ 9$ ref 1045 .
GUTAR PREAMP KTT Complete with tone controls, small enough to ft in any guitar, based on TLOB2 IC, $9-12 \mathrm{Vdc} £ 8$ Ref 1091
to fit in any guitar, based on TLOB2 IC, 9 - 2 IVCc $£ 8$ Ref 1091 .
16 WATI FM TRANSMITER (BUILT) 4 stage high power, preamp, required 12 -18vdc. can use ground plane. yagi or open dipoie. £69 ref 102
TELEPHONE AMPLIFIER KIT Very sensitive amplifer which uses a pickup coll (supplied) will let you fallow a conversation with out holding the 'phone. $£ 11$ ref 1059.
HUMIDTTY METER KTT Bulds into a precision LCD humidity
BULL ELECTEICAI
250 PORT LAND ROAD, 10 LL, SUSSLE
BNO SOT, (ISTABUISIID OV Y LARB). AM ORDER TERMS CASIU, POOR CHEQUR WHH ORDER PHUS E P\&F PKO YAT
Wh,
IE 0.01273203500
HA , 01273, 32017
E-mail bull@payilion.co.uk
meter, 9 ic design, pcb, Icd display and all components included. $£ 49$ PC TMER KT Four channel ouput controlled by your PC, will swlich high current mains with relays (supplied). Software supplied so you can program the channels to do what you want whenever you want. Minimum system configeration is $286, \mathrm{VGA}, 4.1,640 \mathrm{~K}$, serial port, hard dnve with min 100k free. £24.99
DNINING RODS Expensive technology cannol challenge the fool proof artofwater divining. passed down from generaton togeneration proornit water ivining., passeddown form generatontiogeneration I't's divinely simple! £4.99 a pair ref Eß3.
HUGE BUBBLE MAKING KT You'll be amazed at the the size of the bubbles you can acheive with this bubble making kit. Once you have got the knack it is possible to make bubbles of up to 40 feet ion £.11.99 ret E/9.
FM CORDLESSMICROPHON E This unitis an FMbroadcasting station in minature, 3 transistor transmitter with electret condenser mic + fet amp design result tin maximum sensibivity and broad frequency response. 90.105 mhz . 50.1500 kz , 500 foot range in open country $\rho \mathrm{P} 3$ batery required. $\Sigma 15.00$ ret 15 P 42 A
MAGNETIC MARBLES They have been around for a number of years but sill give nise to curiosity and amazement. A pack of 12 is jus E3.99 rel GIRRO
STET HOSCOPES A fulty functioning stethoscope for all those intricate projects Enables you to listen to motors. pipes, heartheats. walls, insects etc. $£ 6$ ref MAR6P6.
NICKEL PLATING KTT Proffesional electroplating kit that wil transform rusting parts into showpieces in 3 hours! Will plate onto steel, iron, bronze, gunmetal. copper, welded, siver saldered orb bazed bints. KIti includes enough to plate 1,000 sqinches. You will also need a 12 v supply, a container and 212 v light bulbs. £ 39.99 ref NIK39. SHOP WOBBLERSISmail assemblies designed to take D siz batteries and 'wobble' signs about in shops! £3.99 Rel SEP4P2.
OMRON ELECTRONIC INTERVALTMERS.
NEW LOW PRICES TO CLEARII"
Minature adjustable timers, 4 pole c/o output 3A 240 v
HY1230s, 12 VDC adjustable from $0-30$ secs $£ 4.99$ HY1210M, 12vDC adjustable from 0-10 mins. $£ 4.99$ HY1260M, $12 v D C$ adjustable from $0-60$ mins. $£ 4.99$ HY2460M, 24 VAC adjustable from $0-60 \mathrm{mins}$. $£ 2.99$ HY243H, 24 VAC adjustable from $0-3$ hours. $£ 2.99$ HY2401S. 240 v adjustable from $0-1$ secs. $£ 4.99$ HY2405S. 240 v adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240 v adjustable from $0-60$ mins. $£ 6.99$ DRIN KING BIRD Remember these? hook onto wine glass (sup. piled) and they dink, standup.dnnk, standup ETC! £4 each Rel EF1 SOLAR POWER LAB SPECLAL You get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, swith plus 1 relay or motor. Supert value kit just $£ 5.99$ REF: MAGGP8
BUGGING TAPE RECORDER Small voice activated recorder uses micro ca ssette complete with head phones. $£ 28.99$ relMAR29P1 PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10
POWER SUPPLY fuly cased with mains and op leads 17v DC 900 mA output. Bargain price $£ 5.99$ ret MAG6P9
9v DC POW ER SUPPLY Standard plug in type 150 ma 9 VDC with lead and $D C$ power plug. pnce for two is $£ 2.99$ ret AUG3P4.
13.8 V 1.9 A psu cased with leads. Just $£ 9.99$ REF MAG10P3

INFRA RED REMOTE CONTROLLERS Onginally made for h spec satellite equipment but perfect for all sorts of remote contro projects. Our dearance price is just $£ 2$ REF: MAG2
MAINSCABLE Precut black 2 core 2 metre lengiths ideal fo COMPOSTEVIDEOKT Conve AUG2P7
COMPOSTE VIDEO KT. Converts composite video into sepa
rate H sync. V sync, and video, $12 \vee \mathrm{DC}$, E8.00 REF: M rate H sync. V sync, and video. $12 v \mathrm{DC}$. $£ 8.00$ REF: HAGBP2. UNIERSAL PC POWER SUPPLY complete with ny eads, switch, fan etc. 200 w at $£ 20$ REF: MAG20P3 ($265 \times 155 \times 125 \mathrm{~mm}$). GYROSCOPE About $3^{\prime} \mathrm{high}$ and an excellenteducational toy for al ages! Pnce with instruction booket £6 Ref EF 15 ,
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ 4 dnive connectors 1 mother board connector. 150 watt, 12 y fan. ie inlet and on/otis switch. £12 Ref EF6.
VENUS FLYTRAP KIT Grow your own carni vorous plantwith this simple xio $£ 3$ ref EF34
TWEETERS
TWEETERS 2 - diameter good quality tweeter 140 (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3Pa $6^{\prime \prime} \times 12$ " AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130mA Bargain pnce just $£ 5.99$ ea REF MAG6P12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MACSP 13 Ideal for experimenters! 30 m for $£ 12.99$ ref MAG 13 P 1 ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed togetherl belived to cause rain! $£ 3$ a pair Ref EF29. When rubbed togethen belived to cause rainis3 a pair Ret EF29, 3' by 1' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700$
watts, aluminum frame, screw temminals, $£ 44.95$ ret MAG45.
Wars, aluminum rame, screw terminals. $£ 44.95$ ret MAG45.
ELECTRONIC ACCUPUNCTURRE KTT Buildsinto an electronic version instead of needies! good to experiment with. $£ 7$ ret $7 P 30$ SHOCKING COIL KT Buld this litte battery operated device into all sorts of things, also gets worms out of the ground! $£ 7$ ref 7 P36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and flies! 50 m range $£ 6$ ret EF2.
HIGH POWER CATAPULTS Hinged am brace for stability tempered steel yoke, super strength latex power bands. Departure Speed of ammuniton is ine
BALLON MANUFACTURING KTT Bittish made, small blob blows into a large, longlasting balloon, hours offunif .3 .99 refG//E99R

WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

[^5]
CLASSIFIED

ARIICLES WANTED

> WE WANT TO BUY!!
> IN VIEW OF THE EXTREMELY
> RAPID CHANGE TAKING PLACE
> IN THE ELECTRONICS
> INDUSTRY, LARGE QUANTITIES
> OF COMPONENTS BECOME
> REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749
> FAX 0181-445-5702

$\star \star$ WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured. TELFORD ELECTRONICS Phone: 01952605451 Fax: 01952677978

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 0181-6841166
FAX: 0181-684 3056

WANTRED

TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.
HTB ELEKTRONIK Alter Apeler Weg 5
27619 Schiffdorf, Germany Tel: 004947067044
Fax: 004947067049

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M \& B RADIO 86 Bishopgate Street Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

ELECTRONICS

 VALVES \& SEMICONDUCTORSPhone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD

 170 Goldhawk Road, London W12 8HJ England.Tel: 01817430899
Fax: 01817493934

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $£ 80$. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 gEZ. Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER E50 plus VAT

ARIICLES FOR SALE

* * FORSALE * * Hewlett Packard HP54120T 20GHz Digital Storage Oscilloscope mainframe and a HP54121A 4 mainframe and a HPs4
The unit is in excellent condition and is complete with comprehensive manual
Offers are invited
KFS DISTRIBUTORS LTD
Tel/Fax: 0121-440 2900

KL Systems

Microcontroller based electronic contro systems. Specialising in the application of Zilog Z8 technology. Software, hardware and consultancy. $\mathbf{Z 8}$ devel opment system available for $£ 100$.

Tel: 01642480620 or see Interner for further details. http://www.wp. com/KLsystems

SURPLUS SALE

THIS MONTH'S SALE INCLUDES:Spectrum Analysers, Oscilloscopes, Signal Generators, Voltmeters, Power Units, Frequency Counters, Receivers, Transmitters, Ex PMR Equipment, Photographic \& Video Equipment, Components, \& Miscellaneous items etc.

ALL EQUIPMENT IS SOLD AS SEEN. ALI. PRICES EXCLUDE V.A.T. NO MINIMUM ORDER.

RING TODAY FOR THIS MONTH'S CATALOGUE.

SURPLUS ELECTRONIC COMPONENTS AND EOUIPMENT
We also welcome the opportunity to quote for complete factory clearance

B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLEPORT, CAMBS.
Phone: ELY (01353) 860185
Fax: ELY (01353) 863245

CLASSIFIED

FAX 01816588956

ARTICLES FOR SALE

\square
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB
Tel: (+44)01243545111/2 Fax: (+44)01243542457
CIRCIE NO. IH6 ON REPLI CARD

INDEX TO ADVERTISERS

	$P A G E$		PAGE		PAGE
Airlink	239	Halcyon	183	Quickroute	178
Anchor	255	Hart	211	Ralfe	IBC
BK Electronics	239	Ice	187	Seetrax	214
Bull	260,261	Iosis	241	See	178
CMS	184	JPG	241	Stag	251
CPC	200	Johns Radio	235	Stewart	Surrey
Cricklewood	178	Kestral	241	TDS	183
Crossware	241	Keytronics	237	TDS	184
Crownhill	183	Langrex	239	Telford	195
Dataman	OBC	M \& B Radio	209	Those	206
Devantech	239	Milford	251	Tie Pie	204
Display	233	Noral	189	Tsien	243
Electromail	207	No 1 Systems	246	Ultimate	184
					IFC

Eight year EW index Hard copy or disk

Includes over 600 circuit idea references Whether as a PC data base or as hard copy, SoffCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 - volumes 94 to 101 inclusive - and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.
The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 k ram and a hard disk.
Even though the disk-based index has been expanded significantly from five years to eight, its price is still only $£ 20$ inclusive. Please specify whether you need $51 / 4 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Hard copy Electronics World index Indexes on paper for volumes 100 and 101 are available at $£ 2$ each, excluding postage.

Ordering details

The $E W$ index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquiries about photocopies, etc,
please send an sae to SoftCopy Ltd at the address below
Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242241455 , or e-mail at 100556.112@compuserv.com. Please make cheques payable to SoftCopy Ltd - not $E W$ or Reed Business Publishing. Please allow up to 28 days for delivery.

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

New Flight Electronics International Catalogue Set

You now have access to the world's latest: * Electronics Training Equipment \star Microprocessor Training Equipment * Test and Measurement Equipment * PC Cards via "Flight's" latest catalogue set. We are specialists in the provision of innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.

Our extensive range covers every need, call today for your free catalogue set
CIRCIE NO. IHB ON REPLY CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test $\&$ Measure ment need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

NEW CATALOGUE

The new 1996 National Instruments Instrumentation Reference and Catalogue is available now. Discover how to develop integrated systems for test and measurement and industrial automation. Includes details of over 500 software and hardware products for PCs and workstations. Includes valuable tutorials on data acquisition and instrument control.

NATIONAL INSTRUMENTS
Tel: 01635523545
CIRCLE NO. 1+9 ON REPLY CARD

CIRCLE NO. 150 ON REPIY CARD

1995 MASTER PRODUCT CATALOGUE NOW OUT!
Test and instrument control solutions. 48 pages of full description and technical data on our own range of salutions to your PC and PS2 interfacing problems: IEEE488 (GPIB) * DIO * Timer/Counters * RS232 RS4221485 * A/D * D/A * plus Opto solated versions. New Parallel/Serial RS232, Opto Dual RS232. Motion Control, Converter and Repeater for 1995! SO 9001 Quality guarantee \sqrt{d} K design and manufacture 6 month no-quibble warranty Telephone hotline support \downarrow Competitive pricing on the page δ Intelligent solutions 8 friendly service \checkmark BRAIN BOXES
Unif 3 W Wavertree Boulevard South Wavertree Technology Park Liverpool L7 9PF Tel: 01512202500 Fax: 01512520446 CIRCIE NO. 151 ON REPI Y CARD

HP141T 1.25GHz system (6552B, 8554B) HP8557A 350 MHz (fited in 182 C maintrame) HP3580A 5 Hz -50 KHz audio requency spectum
anayser
HP3582A audio trequency th analyser dual.channel HP8568A high-specification 1.5 GHz spectumm anayser MARCON 2386100 Hz -26.5GHz (in 1 Hz steps!) TEKTRONX 49221 GHz portable specturm analyser, with options $12 \& 3$ and complete with waveguide mixer set (and diplexer) to cover $18-40 \mathrm{GHz}$
MARCONIINSTRUMENTS

- ralfe electronics •
exclusively
professional T\&M (C)
- 36 Eastcote Lane • South Harrow - Middx HA2 8DB • England -

§1250 £1500

DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, ROMA (06) 87190254

DATRON 1065 digital multimeter all ranges plus IEEE
£75010 £1250
IESTEQUIPINENT

15000 BRUEL \& KJAER 1023 sine generator BRUEL \& KJAER 1027 sine random generator BRUEL \& KJAER 2619 preamplifier complete with $1 / 2^{11}$ mic
BRUEL \& KJAER 2619 preamplifier complete with $1 / 2^{\prime \prime}$ mic
BRUEL \& KJAER 2511 vibration meter (field set with 1621 filter)
BRUEL \& KJAER 2307 level recorder
BRUEL \& KJAER 2317 portable level recorder
BRUEL \& KJAER 2607 measuring amplifier
$£ 1000$ £1500 $£ 600$

2019A synthesized AMFM signal gen $80 \mathrm{KHz}-1040 \mathrm{MHz}$
£2000
2305 modulation analyser $50 \mathrm{KHz} \cdot 2.3 \mathrm{GHz}$ 2828A2829 digital simulator/analyser 2382 specturmanalyser hispeec $100 \mathrm{~Hz}-400 \mathrm{MHz}$ 2955 r radic communicabons lest sets - LATEST 'B' mooels
2926 TV generator \& insetter (NTSC variant) 6460,6421 power meter \& sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$ 6500 amplitude anayser ciw 2c 6514 wavegurde detectiors 6960 microwave power meter with 6910 power sensor $10 \mathrm{MHz} \cdot 20 \mathrm{GHz}$
QA2805A pem regenerator lest set
TF2910/4 non-lineard distortion (video) test set
TF2910 TV interval timer

SPECIAL OFFER THIS MONTH ONLY ON HEWLETT PACKARD DIGITAL TRANSMISSION TESTERS, PROTOCOL ANALYSERS

Examples: HP37724A SDH/PDH portable test sets-

 Condition as new, price $£ 5000$ (were listing at ca $£ 20 \mathrm{~K}!$) - also 37772A optical interfaces available for STM-1, £1500 (list over 6K).
SPECIAL OFFER THIS MONTH ONLY
 ** HEWLETT PACKARD 8673M ** synthesized signal generators $\mathbf{2 - 1 8 G H z}$ (Similar model to 8673B but coverage as above) Few only available at $£ 6,000$. (Will be listing at $£ 7,500$)

64000-SERIES MDS:
64700A, MAINFRAMES WITH: 64747B, 64771G, 64703A, 64704A, 64751A, 64172B, 64748A, 64748C, 64787B, 64604A, 64783A, 64172B, 64746J, 64744A/C/E, 64780A.

SEND FOR COMPLETE LISTING AND QUOTATION

[^0]: Electronics World is published manthly. By post, current issue $£ 2.35$, back issues (if ovailable $£ 2.50$.) Orders, payments and general carrespondence to L333, Electranles World, Quadrant House, The Quadrant, Sution, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made poyable to Reed Business Publishing Group
 Newstrade: Distributed by Markefforce (UK) Lid, 247 Tottenham Court Road London WIP OAU $0171261-5108$.
 Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566. Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ years $£ 70.00$. Surface mail 1 year $£ 35.002$ years $£ 56003$ years $£ 80.00$ Air mail Europe/Eu 1 year $£ 43.002$ years $£ 68.00$ ROW 1 year $£ 52.002$ years $£ 83.00$

 USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions Office 205 E. 42nd Street, NY 10117.
 Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing LId,
 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Tlx 23827. USA mailing agents: Mercury Airfreight International LId Inc, 10 (b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway N Postmaster. Send address changes to above. Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estote Carlisle. Cumbria, CA2 7NR Typeset by Wace Publication Imaging 2-4 Powerscrolt Raad, Sidcup, Kent DAI 4 SDT
 Reed Business Publishing Lid 1995 ISSN 09598332

[^1]: CIRCIE NO. 145 ON REPIY CARD

[^2]: Listing: QBasic routine for calculating potentiometer tap resistors.
 CLS
 $A=0$
 $B=0$
 $\mathrm{N}=0$
 PRINT "This program calculates individual values of resistors between"
 PRINT "taps of a potential divider string."
 PRINT "How many switch positions can you use";
 INPUT S
 PRINT "What step size $(d B)$ ";
 INPUT D
 PRINT "What value of load will be across the output of the potentiometer";
 INPUT L
 PRINT "What value of potentiometer is required";
 INPUT R
 DO UNTIL $N=S-1$
 $Y=\left(\left(R-L / 10^{\wedge}(-A / 20)\right)+\operatorname{SQR}((L / 10 \wedge(-A / 20)-R) \wedge 2+4 * R * L)\right) / 2$
 $C=R-Y-B$
 PRINT A; "dB "; C; "ohms"
 $B=B+C$
 $A=A+D$
 $N=N+1$
 LOOP
 PRINT A; "dB "; R - B; "ohms."

[^3]: Credit card orders accepted by phone. Call 01816523614.

[^4]: Further information from:
 CROSSWARE PRODUCTS
 St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS , uk
 Tef: +44 (0) 1223 421263, Fax: +44 (0) 1223421006
 BBS: +44 (O) 1223421207 ($8-N-1$), internet: sales@crossware.com

[^5]: 100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE ON REGUEST WITH ORDER.

