ELECTRONICS
 Denmark DKr. 65.00 Germany DM 15.00 Greece Dra. 950 Holland Dfl. 14

February 1996 £2.10

Lorkable video sync design

New power amp concept

MathCad 6 reviewed

Video compression techniques

Notes on organ fones High power valve audio

Fractional-n synthesiser

Radio-code clock modules - 25% exclusive EW
$1 \quad 9$

PG-Based PLD Training System
 ONLY $£ 695.00$

THE PAL TRAINER

Until now, introducing students and engineers to the world of Programmable Logic Devices has been fraught with problems.
Not only has the necessary hardware to be laboriously assembled in bits and pieces, but suitable software and - equally important - supporting documentation has been, if anything, harder to source.
With the launch of THE PAL TRAINER system from Flight Electronics International, the entire problem has been neatly solved in one comprehensive hardware/software/documentation package...
....providing everything that the engineer and student needs for a thorough introduction to PLD's at a very realistic price.

COMPLETE \& COMPREHENSIVE

One of the main advantages of THE PAL TRAINER is its completeness. The board and accessory kit consists of: - The MPLDT-10 main unit - a sturdy metal-cased PCB containing both a GAL programmer and a test unit. There is also a separate demo area for use with the demonstration section of the manual.

- A PCPET interface card, which plugs into a free PC expansion slot, and connects to the main unit via a supplied API-37 cable. This allows rapid programming of the PLD, and greater flexibility than a serial link can deliver.
A 360 kb system diskette containing the board driver files.
- An external power line for use with the experiment section.
- Various connection lines and block jumpers.
- The comprehensive PAL TRAINER User's Manual. This has been written in precise, easy-to-understand English,
and takes the student right from unpacking and setting up the system, through a short demonstration program which runs without the need to do into PALASM and then, in a gentle step-by-step sequence, through 23 separate experiments.
- The complete PALASM software package, whose separate manual also contains a number of example programs. S/IMPLE, FAST, FRIENDIY
The design parameters of THE PAL TRAINER were that it should:
\square run on IBM XT, AT or compatibles $=$ with no need for ANY other hardware.
\square provide a complete training course, from initial logic design, to PC simulation, device programming \& testing.
\square be enjoyable, readily-understandable, but fully applicable to 'real-world' situations.
- include a top programming language - in this case AMD's PALASM Version 4, widely regarded as the PLD standard, Version 4, incidentally, can be linked to other schematic packages such as OrCad.

14 UNIQUE ADVANTAGES! \checkmark Superb Manual Everything in one box Save time \& money \checkmark Demo area provided $\checkmark 23$ worked experiments \square Menu drive for fast learning
\checkmark Includes PALASM $\checkmark 3$ simultaneous PLD's \checkmark Jumper wire linkage \checkmark Supports GAL16V8. \& GAL20V8
$\checkmark 3$ input, 4 output areas
\checkmark No tied up ports $\checkmark 4$ FREE GAL's $\checkmark 12$ month guarantee

LIKE TO SEE THE PAL TRAINER IN ACTION?
Nothing beats an actual hands-on experience of the system's completeness, ease of use, and flexibility.
Just call 01703227721 and order today! We operate a 'no strings' 30 days

USING THE SYSTEM

The two main parts of the PAL TRAINER are the programmer and the applications sections. Using the programmer section, up to 3 GAL devices are placed in ZIF sockets, and programmed from the PC using the supplied software. This lets you choose a particular PAL to emulate, loads a JEDEC file into memory (either generated from the PAL TRAINER's own software or any other appropriate software package), downloads the JEDEC file to the GAL, and even lets you 'view' the GAL once it has been programmed.

We accept:

Flight House Ascupart Street Southampton S014 1WP U.K.

Telephone:

VISA

(3)Flight demon.co.uk

Flight
ELECTRONTCS INTERNATIONAL LIMITED

Flight also make

TEL: 01703227721
FAX: 01703330039

Contents

102 VIDEO COMPRESSION TECHNIQUES

John Matthews outlines the techniques being used to cram more image information into less space and bandwidth, including MPEG, JPEG and H261.

110 HIGH POWER VALVE AUDIO

A KT88-based push-pull power amplifier forms part of Morgan Jones' discussion of high-power valve audio.

114 LOCKING ON TO VIDEO SYNC

Michael Cox has been designing with a highly integrated solution to sync pulse generation and video-signal genlocking, namely the SAA1101.

119 MODELLING CABLE

Analysing loudspeaker cables using Spice, Ben Duncan discovered that cable format can have an affect on audio quality.

124 NOTES ON FREE PHASING

Ian Hickman discusses his new solution on how to achieve a simple, cheap and highly stable oscillator for free-phasing electronic organ notes.

Special offer 25\% discount on PC interfacing Radio-Code receivers
 Read Radia-Code time transmissions into your PC, and control with atomic time precision, page 129.

FRACTIONAL-N SYNTHESIS
Cosmo Little reveals the benefits of a littleknown frequency synthesis technique that is cheaper than direct synthesis - and requires much less power.

136 DESIGNING CASCADE RC OSCILLATORS

Cascade RC oscillators are simple, stable, and offer very fast start up. David Griffiths explains how this configuration benefits from modern op-amp technology.

140 AUDIO POWER WITH A NEW LOOP
In Marcel van de Gevel's high-performance power amplifier, quiescent current is stabilised via feedback, using a non-linear common mode loop.
168 MATHCAD GETS A PLUS
Allen Brown looks at the latest release of Mathcad and its DSP analysis option

Regulars

COMMENT

Sound reasons for digital tv?

NEWS

Inter-satellite communication, polysilicon shortage, Boat-Show, 400Gbit/s fibre, Brain drain

RESEARCH NOTES

£32 million for holographic storage, Computing record that is rewriting atomic science, Laser makes better steel, Lasers take on a chilling role, Chaos benefits.

CIRCUIT IDEAS

Hf-to-vhf converter, Flasher for dogs, Frequency comparator with hysteresis, Control software flow through pc's serial port, Simple power flasher, Frequencydependant negative conductance, Returning local-oscillator crystals, linear square and triangle generator, Telephone line monitor, Edge detector/doubler, Low-battery monitor shuts down gracefully.

LETTERS

EMC, valve doubts, linear modulation, optical links, em fields and Foster-Seeley.

NEW PRODUCTS

Pick of the month - classified for convenience.

APPLICATIONS

Load-dump testing, Surge protection and Uncrackable electronic locks.

Cover - Hashim Akib

For the first time,
satellites have communicated without the intervention of a ground station - Update, page 92.

New laser-based sensor promises huge savings for steel makers - Research Notes, page 96.

Morgan Jones discusses designing valve audio power amplifiers capable of delivering more than the usual 10W - page 110.

MARCH ISSUE - ON SALE FEBRUARY 22

COMPONENTS \& SYSTENS

 FIOM IOSTS

System Components from ISO9001 Source Half Size ISA Single Board Computers 386SX-40 to 486DX4-100 with PC/104, 2 Serial Ports IDE \& FDD \& Printer Port and a variety of on-board functionality's: FLASH/ROM Disc. Cache. VGA CRT/Flat Panel Controller PC/104 Modules:
386 \& 486 CPUs, Solid State Disc, Isolated RS232/485 VGA CRT/Flat Panel Display \& SVGA Controllers PCMCIA types I, II \& III
System Enclosures with Passive Backplanes Colour \& Mono Flat Panel LCD Displays System Integration and Support

EMBEDDED C Agselicisimulitou

8051

C compiler, first released In 1991, now features
Easy to use interrupt support with register bank switching
IEEE floating point arithmetic
IEEE 695 source level debug output
integrated relocatable assembler
Simulator running under Microsoft Windows provides extensive support for the 8051 code development

68000

Our first Compller/assembler package
now supports floating point arithmetic
has been widely adopted by many OEM's to support their 68000 and 68307 hardware

CPU32

68020 C compiler/assembler, originally developed to accompany Motorola's 68020 and 68 ECO 20 evaluation models

Now supports the CPU32
68881 co-processor support
IEEE 695 source level debug output

[^0]

EDITOR

Martin Eccles 01816523128

EDITORIAL

ASSISTANT
Rob Allcock
01816528638
CONSULTANTS
Jonathan Campbell
Philip Darrington
Frank Ogden
DESIGN \&
PRODUCTION
Alan Kerr

EDITORIAL

administration
Jackie Lowe
0181-652 3614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-652 3620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
0181-652 3620

ADVERTISING

PRODUCTION

Christina Budd
0181-652 8355
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-652 8956
CLASSIFIED FAX
0181-6528956
SUBSCRIPTION
HOTLINE
01622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
01444445566
FAX
01444445447
NEWSTRADE
distribution
David G. Sanders
01816528171
BACK ISSUES
Available at $£ 2.50$
ISSN 0959-8332

Sound reasons for digital tv?

Unveiling the Government's Broadcasting Bill at the end of last year, Heritage Secretary Virginia Bottomley proudly proclaimed that "the rest of the world is watching," because Britain "will be the first major national market to go digital," and "we must look forward to a golden future".
Will this perhaps be a future in which Ms Bottomley's Press Office learns to use new fangled devices like the telephone and fax machine? My invitation to Ms B's briefing arrived by Christmas post - a day after the event. Others in the specialist press never heard anything.
Perhaps it was intentional. We might have spoiled Ms B's day by asking whether the British public will pay money to install the equipment they will need to pay more money to view the new digital services?
When Britain's two satellite services launched around five years ago, both Sky and BSB made the mistake of assuming that people would go out and buy a receiver, and then pay for a dish to be installed. BSB also assumed that viewers would pay a premium of several hundred pounds for MAC instead of PAL. Rupert Murdoch quickly woke up to reality, branded the brown goods trade "unable to sell a toaster" and employed hit squads to knock on doors, and install Sky systems on free trial. By the time BSB had stopped snoring, and started to organise one-stop installation, the station was collapsing into merger.
For at least a year, David Elstein of Sky has been talking about Sky's plans to transmit more channels, using digital technology. But there are clear signs that his station is now getting cold feet. Even if Sky could afford to give every viewer a free digital receiver - at a starting cost of several hundred pounds - the company would also have to reemploy the hit squads. They would then go up ladders and try to loosen corroded bolts to replace existing LNBs with Universal models that can receive Astra's new high frequency digital transmissions.

The BBC wants to lead the UK and Europe, and the world - into digital terrestrial television, starting in 1997. At a recent briefing Director General John Birt compared the transition from analogue to digital tv, with the switch from 405 line black and white to 625 line colour. DTTV offers wide screen pictures and digital sound, he revealed to us. Perhaps someone inside the BBC should tell Boss Birt that his existing analogue tv transmissions already carry Nicam digital stereo sound to 87% of the viewing population, and the other 13% is hoping they will one day get it too.
Birt also seems blissfully ignorant of the debate on wide screen television which has been running since long before the BSB fiasco, and Channel 4's recent decision to cut back on PAL Plus transmission. The British public has been offered wide screen sets for many years and steadfastly refuses to buy them. Indeed Birt admitted that although he has seen a widescreen set, he does not actually own one.
The parallel with the 405/625 line transition is fatuous. It took twenty years, not the fifteen Birt claims, and offered a completely new and dramatic upgrade - colour - at a time when there was very little electronic gadgetry in the shops. Today, consumers are sick to death of new developments and need a good reason to replace existing equipment.
Michael Grade of Channel 4 recently reassured on radio that viewers will not need a new tv set for DTTV, just a set-top digital adaptor. Perhaps one of Grade's staff could ask him how this will give the widescreen pictures which John Birt thinks viewers will see as the reason to go digital.
Presumably someone inside the BBC has a clearer vision than the boss. Hence the BBC's call for the Government to set a firm date for an analogue switch off. This will bully viewers into buying digital equipment whenever they make a new purchase. Based on the fallacious fifteen year 405/625

> "...we must look forward to a golden future"

change-over reference point, the BBC suggests a 15 year gate on analogue services. An extraordinary policy paper, submitted to the Heritage Department by Keith Boyfield and Brian Sturgess, suggests switch-off by 2006, just ten years away. As modern homes are full of tv sets and VCRs that can easily last ten years, this bright idea would succeed mainly in killing sales of all existing analogue equipment.
Ms Bottomley has settled for a review when half of Britain's households can get digital tv. If this means 50% transmission coverage it is a daft idea. If it means 10 million homes fully kitted out with digital tvs and vers, it compares with what happened over 405 shutdown, and makes sense. It's another of those questions the specialist press would have asked Ms B if her staff had learned to use a phone or fax machine.
There is, of course, a hidden agenda in all this. As broadcasters move from analogue to digital transmission, they release frequencies which the government can then sell. Anyone who can rush consumers into buying digital equipment will definitely be in the running for a big thank-you from the Treasury - and probably a nice little knighthood to go with it.
Barry Fox

[^1][^2]
Broins rorceo orerseos

Alack of vision at the UK Medical Research Council has driven overseas a multi-disciplinary group doing fundamental research on the brain.
The MRC refused to renew the position of the group's computer scientist jeopardising its future.
Late last year, the group moved to the specially established Institute of Neuro-informatics in Zurich, despite it having secured long-term funding and repeatedly expressing its wish to remain in the UK.
Group leader Kevan Martin says he feels no bitterness towards the MRC
but questions its decision making.
"Its vision is to the floor rather than the horizon," said Martin. "The MRC unit is directly supported by government; its whole purpose is to support high risk, long term research, and that is exactly what we are doing."
The MRC refused to comment.
The group is developing a hybrid digital-analogue visi architecture to model the neocortex - the bulk of the circuitry that makes up the brain.
"The neocortex is a rather fantastic general purpose processor, adaptable to many functions," said Martin.
"Understand its workings and you have achieved something fundamental."
The unit's achievements to date include collaborative work with the California Institute of Technology to create a silicon neuron that resembles closely the biological neuro cell.
And the unit has also constructed analogue vlsi devices that incorporate multiple neurons.
The MRC had wanted the group to pursue a more biological slant for the work. This meant there would be no funding for the analogue VLSI work. Roy Rubenstein, Electronics Weekly

Wired for Sea - electronics at the Boat Show

$S_{\mathrm{c}}^{\mathrm{a}}$ailing - that simple, centuries-old communion with wind and tide - is now one of the most high-tech sports in the world, and getting ever higher.
Nowhere is this more apparent than in round-the-world yacht racing, which communications companies seem to regard as an appropriate metaphor for their activities, as well as a proving-ground for their technologies. BT, having provided race communications for the Whitbread races, is now sponsoring one of its own, and took one of the largest stands at this year's Boat Show to proclaim the fact.
The BT Global Challenge involves 14 identical 67 ft yachts racing the 'wrong way' - i.e against prevailing winds and currents - around the world. Two of the boats are sponsored by other electronics companies, Motorola and Toshiba, and a third by a consortium of other telecomms companies.

Unluckily for BT, the fact that the
hulls are made of steel prevents a repeat of the digitally-compressed tv transmissions which were tried during the last Whitbread. These used Inmarsat A, which needs a much larger antenna - too big to mount away from the deck. This time the fleet will stay in touch via C-Sat, which provides e-mail and Internet, via a conical aerial no bigger than a vacuum flask, and hf ssb radio through Portishead.

Leisure sailors meanwhile are becoming increasingly reliant on electronics. Arguably the most significant launch product at this year's Boat Show was Admiralty charts on CDrom. ARCS - the Admiralty Raster Chart Service - as it is called, provides straightforward digital reproductions of the familiar paper charts, for use with pc-based navigating systems.

Two forms of display are possible: a 'life-size' close-up of a portion of the chart or a low-resolution overview

of the whole thing. As with the paper charts, different scales with differing amounts of detail are available.

Regular updating is available, also on CDroms, issued weekly, but with cumulative information so that just one set of data need be patched in, perhaps just prior to the summer cruise. Charts cost $£ 30$ each; update CDroms $£ 10$. One chart occupiees about 1 Mb of hard-disk space.

ARCS is already supported by PC Maritime's Navmaster Windowsbased system, alongside its existing vector-based Livechart cartography.

Elsewhere at the show, integration was this year's great leap forward. Surprisingly, it is only 21 years since the first autopilot was launched. Since then GPS has arrived and wind speed/direction, compass bearing and depth sounder have all been digitised. The result is - or can be - a proliferation of displays and complex harness of wires around the boat. The solution is an integrated system using a single cable with multifunction displays, which is what Autohelm has come up with in in ST80, the latest development of its SeaTalk System. Navico meanwhile has enhanced its own, similar Corus system with an inboard autopilot, Oceanpilot, capable of translating all this information into intelligent coursekeeping.

And if you should fall overboard, make sure you have your PLB7 with you. This tiny device by Sea-Marshall is an electronic beacon, transmitting on the Search and Rescue frequency, which will help your own boat, or a rescue aircraft to find you quickly.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Audlo Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very
best audiophile components, and our own engineering expertise, to best audiophlle components, and our own engineering expertise, to give you unbeatable periormance and unbelievable value for money. We have always led the field for easy home construction to protes sional standards, even in the sixties we were using easily assembied printed clicuits when Heathkit in America were still using tagboards Dinsdale and Bailey classics gives us incomparable design back ground in the needs of the home constructor. This simply means that building a Hart kit is a real pleasure, resulting in a piece of equipment that not only saves you money but you will be proud to own.
Why not buy the reprints and construction manual for the kit you are Interested in to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequen kif purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagsthip of our range, and the ideal powernouse for your unate hifi syster. prices. Unique design features such as fully FET stabilised powe prices. Unique design features such as fully FEt stabilised power
suoples give this amplifier World Class peflormance with starting clanity and transparency of sound, allied to the famous HART quality of components and ease of construction
Useful options are a stereo LED power meter and a versatile passive front end giving switched inputs, with ALPS precision Blue Velve low-noise volume and balance controls. Construction ts very simple and enjoyable with all the difficult work done for you, even the wiring Is preterminated, ready for Instant usel. All versions are avalable with Standard components or specially selected Super Audiophile components at $£ 29.60$ extra per channel, plus ú2.40 if you want to include Gold Plated speaker terminals.
K11008 Complete STANDARD Amplifier Kit., 395.21
K1100sC Cormplete SLAVE Amplifier Kit.. .
A1100SC Factory Assembled
.8499 .21
.833 .62
A1100sC Factory Assembled. 422.62
1100M Complete MONOBLOC Amplifier Ktt,
RLH11 Reprints of latest Amplifier articles
. 2261.20
K 1100 CM Construction Manual with full parts ilsts
"CHIARA" SINGLE ENDED
CLASS "A" HEADPHONE AMPLIFIER.

"Andante" SERIES 20VA AUDIOPHILE POWER SUPPLIES

Specially designed for exacuing audio use requiring absolute minimum noise, low hum field and total freedom from mechanical noise
this unit is a logical development from our highly successful 1550 series.
Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for any module requiring fully stabilised $15 v$ süpplies.
Two versions are available. K3550 nas $2 \pm 15 \mathrm{v}$ supplies and a single $5 v$ for relays etc. and can be used with our K1400 preamp and our K1450 R|AA pickup preamp, as well as other useful modules soon to
be introduced. The K 3565 is identical in appearance but only has the 15v lighter current supply for use with the K1450 RIAA pickup pre amplifier or "Chiara" headphone amplifier. K3550 Full Supply with all outputs. c93.75
c85.42

Now you can throw out those nolsy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range amplifiers. The improvement in track ine very top flight of World class incredible giving better tonal balance between channels and rock solid image stability. Motonsed versions have 5v DC motor. MANUAL POTENTIOMETERS
2-Gang 100K Lin. .
Gang 10K. 50K or 100 K Log.
-Gang 10K Special Balance, zero crosstalk and zero MOTORISED POTENTIOMETERS
OTORIED POTENTIOMETERS .. . 17.48
-Gang 20K Log Volume Control .e26.20 -Gang 10K RD Special Balance, zero crosstalk and less than 10\%
loss in centre position..e26.98

TECHNICAL BOOKSHELF

NEW! Another Classic by John Linsley Hood. "AUDIO ELECTRONCS" Following the enormous ongoing success of his "Art of Linear Electronics" the latest offering is the all-new edition of "Audio Underiying audio techniques and equipment is a world of electronics hat determines the quality of sound. For anyone involved in designing, adapting or using digital or analogue audio equlpment understanding electronics leads to far greater control over the reproduced sound. The subjects covered include tape recording, tuners, power output stages, digital audio, test instruments and loudspeaker crossover systerms. John's lifetime of experience and personal innovation in this field allow him to apply his gift of being so familiar with his subject that he can write clearly about it and make it both Interesting and comprehensible to the reader. Contaning 240 pages money at only ...

"THE ART OF LINEAR

 ELECTRONICS."The definitive wnear electonics and audio book by John Linsley Hood. This $300+$ page book will give you an unparaileled insight into the workings of all types of audlo circults. Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best sound. The vitues and vices of passlve and active components are examined and there are separate sections covering power supplies and the sources of nolse and hum. As one would expect from this writer the history and derivation of audio amplifier circuitry have an entire chapter, as coes test and measurement oquip
ment. Copiously illustrated this book is incredibie value for the amount of information it comtans on the much negiected field of linamount of information it compains on the much negiected fied of to din ear, as opposed to digital, elecironics. Indeed ork must be destined to this field. Latest reprinted edition with extended index. 1994344 Pages. $247 \times 190.1 \mathrm{Kg}, 0-7506-0868-4$. $£ 16.95$ "digital audio and compact disc technology" 0-7506-0614-2
INTRODUCINQ DIGITAL AUDIO CD, DAT AND SAMPLING. ISBN 1870775228

ISBN
"THE ART OF SOLDERN" £3.95
(4th Edn.) 0-9624-191-7-622.95 ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUCTION Ronald Wagner BKT6 LOU......................... 18.95 AAN INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE "LOUDSSPEAKERS FOR MUSICIANS" BP297 $£ 3.95$ "THE HART PRINTED CIRCUIT BOARD CONSTRUCTION GUIDE."

VALVE \& EARLY CLASSIC BOOKS

THE VTL BOOK David Manley BKVT1.................. 17.95 TION. G.Briggs. 1949 0-9624-1913-3..........................95 MULLARD TUBE CIRCUTTS FOR AUDIO AMPLIFIERS BKAA27
"THE WILLIAMSON AMPLIFIER." 0-9624-1918-4. 6.95 AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN GEC 1957, 1-882580-05-2 AUDIO ANTHOLOGIES, articles from Audio Engineering. Six voumes covering the days when audio wasyoung and valves were king. 8KAA3/1 to 6. All . . . AMPLIFIER" RLH12 RLH12. . Postage on all books, unless starred, is only u1. 50 per book, maxi costing No wa SPECIAL OFFER. All book orders over $\varepsilon 15$ will recelve a FREE John Linsley hood monograph entitled "Dlgital versus Analogue, Black Disks or Silve

SPECIAL OFFER
 PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its best? Our lates triple purpose test cassette checks thethree most important tape parameters without test equipment. Ideal when fitting new heads. A protessional quality, digitally mastered test tape at a price anyone
can afford. Test Cassette TC1D. Our price only.
$\Sigma 9.99$.

HC80 Replacement Stereo Cassette Head.
The excellent performance of modern cassette pecorders depends totally on the quality of the R/P head. Even the slightest amount o wear can Impair the frequency response and distortion levels. Ou HC80 is atop quality head from one of the foremost manufacturers
Japan, easily fitted to most standard stereo recorders fexcept Sony and will transtorm the most standard stereo recorders (except Sony that we buy these in vast quantities enabies us to offer them at the amazing price of only $£ 11.70$ each or 2 for $£ 17.60$. We also stock a range of other heads, Including '" reel-to-reel stereo heads.

SOLDERING

rese ize or moder components makes essentlal for good results. Everything we ofter we actually use in our own workshopsi. See our Lists for the full range. 845-820 XS240 ANTEX 240 v 25 w Soldening Iron. This is the ldeal Mutt-purpose ron as the but is designed to totally surround the element giving the best heat transfer. This excellent design also means that although it is small and handy enough for modern components its heating capac ty is better than larger irons of conventional construction. Excelion 845 -080 ST4 Lightweight Soldening Iron Stand. This has provision fo $845-080$ ST4 Lightweight Solderng iron Stand. This has provision for
the classic damp sponge for bit wiping95

HART SUPER AUDIOGRADE SILVER SOLDER.

Sart Auciograde Siliver Solder has been specially formulated for Tenous audiophile. Not only does it give beautiful easy-to-make mor designed to mert ar normal soldering tempera nee avolding the possibility of thermal damage to components or the need fect joints easy but eliminates the need for board cleaning atter ssembly
"TOWERS' INTERNATIONAL TRANSISTOR SELECTOR" 0.572.01062-1.
£19.95*
"AUDIO" FAWIISON. EP111.......................................
R.A.Penfold. BP267. $£ 3.50$
"THE LOUDSPEAKER DESIGN COOKBOOK" Vance Dickason
845-007 3mtrs 22SWG in Hart Mini Tube
845-008 100g. Reel Special Valve Grade. 20swg
45-009 100g. Precision PCB Grade, 22swg.
easy working

CMOS gates switch in 15ps
Toshiba has developed a
$0.15 \mu \mathrm{~m}$ gate c-mos structure based on a single gate that has a delay of only
15.4ps. This is claimed to be comparable to speeds normally achieved using a $0.1 \mu \mathrm{~m}$ c-mos process. Use of a single gate structure was introduced by Toshiba's UISI Research Laboratory to tackle the cost problem of mass producing the conventional c-mos dual gate structure of N-rype and P-rype polysilicon for the NMOS and PMOS gate electrode materials.

Satellites communicate for the first time

F or the first time, satellites have communicated with each other without the intervention of a ground station. The inaugural message was transmitted between Virginia and Hawaii via two Milstar military communication satellites.
Motorola's satellite mobile phone system Iridium is based on military satellite technology. Iridium satellites are in such low orbits that they can only 'see' a small part of the earth at any one time. To avoid the need for a large number of ground stations, Iridium messages will be relayed between satellites to a satellite with a view of a ground station.

- Japanese and American scientists have used a laser to establish two way communication between a satellite and Earth for the first time.

The US Jet Propulsion Laboratory used a 10W argon laser based ar its Table Mountain telescope in California to communicate with the experimental satellite ETV-VI, run by Japan's Communications Research Laboratory (CRL). Results from the test will be used to upgrade the optics on CRL's OICETS satellite due to be launched in 1998. The aim of the research is to let satellites in low earth and geostationary orbits communicate with each other optically.

Semiconductor makers could face polysilicon shortage

U
S market research firm Dataquest is predicting a shortage of polysilicon as semiconductor demand continues to grow and production capacity lags demand.

The shortage is predicted to hit semiconductor manufacturers in mid to late 1996 and could last as long as 10 months. But new polysilicon market capacity is reckoned to come online in 1997, which will let it catch up with demand.
"Silicon companies will have high market pricing power throughout the rest of this decade, and particularly in 1996 and 1997," said Clark Fuhs,
principal analyst for Dataquest. "For this reason we believe the silicon industry, which has been a historically lower-margin industrial business, will migrate to a business model that more closely resembles the other segments of the semiconductor ecosystem."

Dataquest also predicts a shortage of 200 mm wafers as companies prepare new fabs that use the larger format size. The 200 mm wafer shortage will begin in 1996 and will continue for much of the rest of the decade, peaking in 1997 and then again in 1999.

The firm estimates that 1995

Pace could loose its set-top lead to Pioneer

apanese consumer electronics J company Pioneer, is poised to snatch the title of "leading digital set-top maker in Europe' from under Pace Micro Technology's nose. Pioneer plans to mass produce boxes in Europe in early 1997 and does not feel that Pace poses a threat on the European market.
"Pace has been successful in the Asian area and Australia, but its success in Europe has been limited," said Stuart Liddle, business development manager.

However, Pace is not phased by Pioneer's claims, although its current market share of 95 per cent may soon be affected by it.
"We have seen Pioneer's announcements, but we can't comment," said one Pace spokesman.

Pioneer plans to ramp up production to up to 2 million units per year by 1998, with prices close $£ 400$. Its
demand for 200 mm wafers worldwide is 1.280 m wafers a month. This demand will almost double next year to reach 2.206 m wafers and the industry will require 5.213 m wafers a month by 2000 . However, the industry will only be able to supply 1.956 m wafers next year and 3.894 m wafers a month by the end of the decade. Dataquest points out that there is a mismatch of supply and demand. This has created a shortage of 100 and 125 mm wafer sizes, which should soon be solved.

And it predicts the most serious long term shortages will be in the supply of 150 mm wafers.
manufacturing of set-top boxes in Europe could involve the UK.
"It is very likely our manufacturing will be in Belgium but as far as the UK is concerned, at the moment it is still up in the air," said Liddle.

BRT to cost Racal $£ 30 \mathrm{mpa}$

Racal is faced with spending hundreds of millions of pounds to modernise British Rail
Telecommunications' (BRT) network.
Racal is to pay $£ 132.75 \mathrm{~m}$ acquiring BRT, which needs around $£ 30 \mathrm{~m}$ a year for the next three years to keep its existing PDH network up to scratch.
"BRT requires $£ 30 \mathrm{~m}$ per annum for the next three years, mainly for supporting network resilience and serviceability," said Rupert Hunte, strategic business development director for Racal Network Services, which is to incorporate BRT. Sveltana Josifovska, Electronics Weekly

HP New Colour Spectrum Analysers
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BF}+8553 \mathrm{~B}$. $\mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{c} 700$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{IF}+8538 \mathrm{RF}-100 \mathrm{KHz}$-1250Mc/s- 1900
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{IF}+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{F} 700$
Special Offer iust in from MOD Oty 40 HP8555A RF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$
HP $141 T+8552 \mathrm{BIF}+8555 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-£ 1200$
HP ANZ Units Avallable separately - New Colours - Tested
HP 141T Mainframe- £350.
HP8552B IF- E 300 .
HP8553B RF 1 KHz
HP8553B RF $1 \mathrm{KHzio} 110 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500$
$\mathrm{HP} 8555 \mathrm{ARF} 10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{F} 800$.
HP8555A RF $10 \mathrm{Md} / \mathrm{s}$ to 18 GHzS - E800
HP 8556 ARF 2 Hz to 300 KHzS - 250.
HP8443A Tracking Generator Counter $100 \mathrm{KH}_{2}$ - $110 \mathrm{Me} / \mathrm{s}$ - f 300
HPP445B Tracking Preselector DC to 18 GHz - f 350 .
HP 3580A 5 Hz - 50 KHz ANZ - $\mathrm{E} 750-\mathrm{E} 1000$.
HP3582A. 02 Hz to $25.6 \mathrm{KHz}-£ 2 \mathrm{~K}$.

HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GH} 2 \mathrm{Ott} 1+2+3-\mathbf{4 4 . 5 \mathrm { k }}$.
TEK 492P-50 KHz-21 GHz Opt $1+2+3-$ f5k.
TEK 4944AP $1 \mathrm{KC} / \mathrm{S}-21 \mathrm{GHz}-\mathrm{f} 7 \mathrm{k}$.
TEK 496P $1 \mathrm{KHz} 2-1.8 \mathrm{GHz}$ - -4 k k
TEK 5L4N $0-100 \mathrm{KHz}$ - E 400 .
TEK $7 \mathrm{LL} 5+\mathrm{L1}-20 \mathrm{~Hz}$-5Mc/s- E 700
TEK 75 + L3-Opt 25 Tracking Gen - 9900.
TEK 7L12-100KHz-1800 M C/s - 1 10
TEK $7 \mathrm{LI} 18-1.5-60 \mathrm{GHzs}-\mathrm{E} 1500$.
TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}-\mathrm{E} 750.12 .4 \mathrm{Ghzs}-40 \mathrm{Gh} 2 \mathrm{~s}$ with Mixers.
Tektronix Mixers are available for above ANZ to 60 GH 23
Systron Donner 763 Spectrum ANZ +4745B Preselector . $01-18 \mathrm{GHz}+$ Two Mixers $18-40 \mathrm{GHz}$ in Trainsit Case- E 3 k .
HP86730
HP8673D Signal Generator $05-26.5 G H z-f 20 k$
Systron
Systron Donner. 1618 M Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep Generator Synthesizer.AM FM 4-2500MC/s- 13.5 K .
ADRET 3310A FX Synthesizer 300 Hz-60MC/s - E 600 .
AP8640A Signal Generators - $1024 \mathrm{MC/s}$ - AM FM-
HP3717A 70 Mc /s Modulator - Demodulator $-£ 500$.
HP8651A RF Oscillator 22KC/S -22Md/s.
HP5 3168 U Universal Counter $A+B$.
HP6002A Power Unit 0-5V 0-10A 200 W .
HP6822A Biwolar Power Supply Amplifier.
HP461A-465A-467A Amplifiers.
HP81519A Optical Recelver DC-400 Mc/s.
HP Plotters $7470 \mathrm{~A}-7475 \mathrm{~A}$.
HPP10
HP3770 Amplitude delay Distortion ANZ.
HP8182A Data Analyser.
HP59401A Bus System Analyser.
HP62600 Power Unit O-10V 0-100 Amps.
HP3782A Error Detector.
HP3781A Pattern Generator.
$H P 3730 A+3737 A$
HP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - f 250
HP1058 Quartz Oscilator-E240
HP5087A Distribution Amplifier
HP6034A System Power Supply $0-60 \mathrm{~V} 0-10 \mathrm{~A}-200 \mathrm{~W}$ - $£ 500$
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2 \mathrm{Amp}$.
HP4275A Multi Frequency L.C. R. Mater
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyse
HP8150A Optical Signal Source
HP1630G Logic Analyser.
HP5335A Universal Counter $A+B+C$
HP59501B Isolated Power Supply Programmer.
HPP901A Modulation Meter AM - FM - also 8901 B .
HP5370A Universal Time Interval
HP5370A Universal Timee en nerval Counter.
Marconi TF $2370-30 \mathrm{~Hz}$-1 10MC/s 750 HM Output 12 BNC Sockets + Resistor for 500 HM MOD with Marconi MOD sheer supplied - 655
Marconi TF 2370 30Hz-110 Mds 50 ohm Output - $£ 750$
Marconi TF2370 as above but late type - f 850 .
Marconi TF2370 as above but late type B
Marconi TF2374 2ero Loss Probe $-f 200$
Marconi TF2440 Microwave Counter - 20GHz- $£ 1500$.
Marconi TF2442 Microwave Counter- $26.5 \mathrm{GHz}-£ 2 \mathrm{k}$.
Marconi TF2305 Modulation Meter- E 2.3 K .
Racal/Dana 2101 Microwaye Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - f 2 k .
Racal//Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
Racal/Dana 9303 True RMS Levelmerer+Head
TEKA6902A also A6902B Isolator $-£ 300-£ 400$.
HEK 1240 Logic Analyser - $£ 400$.
TEK FG5010 Programmable Function Generator 20Mc/s- 6600
TEK2465A $350 \mathrm{Mc} / \mathrm{s}$ Oscilloscope $-£ 2.5 \mathrm{k}+$ probes $-£ 150$ each
TEK CT- 5 High Current Transformer Probe- E 250 .
TEK J16 Digital Photameter + J6523-2 Luminance Probe - $\mathfrak{E 3 0 0}$:
TEK J16
TEK J16 Digital Photometer $+J 6503$ Luminance Probe $-£ 250$.
FLUKE 5102B AC-DC Calibrator - E4k.
FLUKE 1120 A IEEE- 488 Translator - E 250 .
Tinsley Standard Cell Battery $5644 \mathrm{~B}-\mathrm{E500}$.
Tinsley Transportable Voltage Refreence- f 500 .
FLUKE Y5020 Current Shunt- $\mathbf{E 1 5 0}$.
HP8080A MF + +8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps $+15400 \mathrm{~A}-\mathrm{E} 800$.
HP54200A Digitizing Oscilloscope.
HP 17729B C Crrier Noise Test Set. 01 - 18 GHz - LEF - $£ 2000$.
HP3311A Function Generator - $£ 300$.
Marconi TF2008-AM.FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250-$ tested to $£ 400$ as niew with manual - probe kilt in wooden carrying box.
HP Frequency comb generator type $8406-£ 400$. HP Frequency comb generator type 8406 - $£ 400$.
HP Sweep Oscillators type 8690 A \& B B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R.. HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Md} / \mathrm{s}-£ 500-£ 1000$.
HP Amplifier type 8447A -1-400 Mc/s $£ 200-$ HP8447A Dual - E 300 .
HP Frequency Counter type 5340 A - 18 GHz C 1000 - rear output f 800 .
HP $8410-\mathrm{A}-\mathrm{B}$ - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up -8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From $£ 1000$.
Racal/Dana 9301 A - $\mathbf{9 3 0 2}$ RF Millivoltmeter $-\mathbf{1 . 5 - 2 G H z}$ - $£ 250-£ 400$
Raca/Dana Modulation Meter type 9009
Marconi RCL Bridge type TF2700- 150.
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A - 6057A - 6056-£250-f $350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF 1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$.
Marsoni microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or Pl only $£ 600$. MF only $£ 250$.
Marconi distortion meter tree TF2331 - 150 TF23314 - £200
TEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS SAE FOR ENOUIRIES PHONE FOR APPONTMENT OR FOR DEMONSTRATON OF ANY ITES AVALLABLLTY OR PRICE CHANGE VAT AND CARRIAGE EXTRA

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD112ERR. Teil: No: (101244) 684007 . Fax: 651160

Holographic storage gets $£ 32$ million fillip

The next generation of data storage systems are likely to be holography-based if a $\$ 32$ Million programme and some of the biggest names in US electronics succeed in their aims.
Holography, where data storage uses lasers to store information as "pages" of electronic patterns within the volume of special optical materials, has looked like an attractive technology for some years. A million or more data bits can be placed on each page and thousands of pages can be stored in material no larger than a small coin. In this way holographic systems offer the possibility of compact devices
holding many trillions of bytes of information. Many commercial applications are envisaged, though one of the first users could be the military, looking for a system to help provide its soldiers and command centres with rapid access to the large amounts of information and visual images they expect to need to be successful in the next decade.
However, only recently have some of the essential components and technologies - such as those used in mass-market camcorders and portable computer displays - become available and affordable.
Now a joint university, industry and government consortium has begun to

Computing record that is rewriting atomic science

What do you suppose would be the result of setting a computer running continuously for two years to chew over a single problem, using 448 processors, each of which has about the same power as today's fastest PCs.
The answer is a glueball, and despite its rather unattractive name, scientists are delighted.
The point of the research was to calculate the properties of this elusive elementary particle already predicted by theory. In fact the properties were found to match those of a previously unidentified particle detected in several experiments carried out over the last 12 years. So two problems were solved at once and it only took four hundred million billion arithmetic operations.
The arithmetic was carried out on GFI1-a massively parallel computer designed and built specifically for these type of calculations at the IBM Watson Research Center by Weingarten in collaboration.
The IBM result resolves a long standing puzzle in particle physics. Although glueballs are predicted to exist by quantum chromo dynamics (qcd) - the fundamental theory of
nuclear interactions - none had ever before been positively identified in an experiment. It is now clear that glueballs are frequently created in particle accelerators, but have gone unrecognised, because the properties predicted for glueballs by qcd had not been found with sufficient accuracy.
The new qcd calculation provides the first accurate numerical values for the mass of the lightest glueball and for the rate at which it decays into several different combinations of more stable particles. Close agreement between these numbers and the observed properties of a particle named $f(1710)$ make its identification as a glueball practically certain.
So the glueball is now with us for ever.
Over the years we have been used to evermore exotic labels emanating from the minds of atomic scientists to identify their various building blocks. What a pity that this massive calculation - the largest single numerical feat in the history of computing - and the first instance of a particle's "discovery" by means of a computer, will also be responsible for marking the existence of a particle that sounds more like it has been dissolved out of an atomic scientist's ear.
develop the five-year, holographic data-storage system (hdss) programme.
The aim is to develop key components and integrate them into separate write-once and rewritable systems, with a capacity of a trillion bits or more and a data-throughput rate of at least a billion bits a second.
At the same time, a second programme - photo-refractive information storage materials (Prism), with many of the same participants, will work to develop opticallysensitive materials optimised for storing holograms.
The initial goals of the hdss project are to develop several key components for the system, including a high-capacity, high-bandwidth spatial light modulator used for data input; optimised sensor arrays for data output; and a high-power redlight, semiconductor laser. The hdss researchers will also investigate optical systems architecture, such as multiplexing schemes and access modes, data encoding/decoding methods, signal processing techniques, and the requirements of target applications.
Organisations involved in the programmes include, Stanford University, Carnegie-Mellon, IBM, Rockwell and GTE and several others.
The programme's ultimate goal is to integrate all the components into separately optimised systems that will demonstrate write-once and rewritable holographic data storage.

Potential applications for holographic data storage systems include satellite communications, airborne reconnaissance, high-speed digital libraries, rugged storage for tactical vehicles, and image processing for medical, video and military purposes.

Professor Lamertus Hesselink, Electrical Engineering, Stanford University, Stanford, California 94305-2245, USA.

AVALABLE NOW

The NEW full colour Sémiconductor catalogue

 The first edition of this new catalogue is now available from Farnell Components, with over 11,000 Semiconductor and Optoelectronic products from 110 leading Manufacturers.Latest Product Re eases

Semiconductors Integrated circuits mmm?m?

CALL NOW TO RECEIVE

 OUR FREE COPY. OR SIMPLY RETURN THE COMPLETED COUPON> Semiconductor
> birivare and Staties folutction

Optoelectronics and lidjeato's

Lasers make better steel...

Successful testing of a laser-based sensor, used to track the chemical conversion of iron and carbon into steel, has demonstrated the massive potential of a commercial device, promising huge savings for steelmakers.
The sensor package, developed at Sandia National Laboratories, in Albuquerque, contains two miniature video cameras, filters for controlling both the wavelength and the intensity of the light reaching the cameras,
laser diodes, coherent fibre optics for guiding images, single fibre optics for guiding laser light, and circuitry for controlling the filters. All the components are inserted into a compact package near the tip of an oxygen lance that is lowered into the furnace to control the steelmaking.
Sensors monitor temperature at the combustion zone and the bath surface where a blast of oxygen pushes aside thick, foamy slag. The lance instrument package also

Newly developed high-temperature sensing equipment, based on lasers, significantly cuts the cost of steel making.

...and take on chilling role

Two per cent efficiency for a process used to cool a solid might not seem anything to get steamed up about. But when that figure is shown to be 10,000 times better than that so far achieved for the much easier problem of cooling a gas, then the extent of the breakthrough made in optical

Input laser light is shown as the solid lines and fluorescence as the dashed ones. Violet-coloured areas indicate the regions where the fluorescent radiation is most intense. White areas are in the shadow of the dielectric mirrors. These shadowed regions are not completely free of fluorescent radiation, however, due to the band pass of the dielectric mirrors. Hence, a metal mirror and baffles are required to fully eliminate fluorescent-radiation heat loading of the object to be cooled.
refrigeration - using lasers to cool instead of heat - becomes much clearer.

For the first time, scientists are glimpsing the possibilities of constructing a solid-state optical cryo-cooler that could be used in cooling ultrafast computer circuits or for removing heat from electronics in outer space. Researchers are talking optimistically about 'optical refrigerators' being used in satellites to cool infrared cameras or in superconducting relays for cellular telephone calls, within only a few years.

The work is being carried out at the Los Alamos Laboratories, and the latest news is being seen as a major step forward toward the goal of creating a "Los Alamos solid-state optical refrigerator," or Lassor, which would cool electronic devices and scientific instruments to at least liquid nitrogen temperature, 77° above absolute zero - and eventually lower.

When light hits a solid object it usually deposits energy or heat. But under some circumstances, light can absorb energy from the microscopic thermal vibrations in the solid, so
collects real-time information on the bath height.

By implementing fast, real-time sensors in the steelmaking process, researchers hope to reduce the time for each 'heat', cut oxygen consumption, and improve the efficiency and reliability of the process from heat to heat.

The team is testing several infrared laser methods to measure the temperature, water content, ratio of carbon dioxide to carbon monoxide indicating how much carbon remains - and the presence of particles above the melt.

Carbon content is normally analysed later, before final metallurgy adjustments, and the final desired composition will vary for automotive sheet metal, steel plate, and other products.

Steel mills currently measure temperatures with single-use, platinum-alloy thermocouples, racking up about $\$ 2000$ per day for temperature checks.

Don Hardesty, Sandia Combustion Research Facility, Sandia National Laboratories, MS 0167 Albuquerque, New Mexico, 87185-0167, USA.
decreasing the object's temperature.
If an object excited by radiation at one frequency, can be made to emit radiation at higher frequencies, which carry more energy, the object cools.
In previous experiments, heating has always far exceeded cooling. But by using a tunable laser and modern fibre-optic materials, the researchers have managed to suppress the usual heating and make optical cooling dramatically apparent.
In effect the researchers have discovered how to use laser light to excite an object to special quantum states in which it can trap thermal vibrations but can't create them.

The experiments are actually the first demonstration of a new continuous-solid-state cooling process since the French watchmaker-turnedphysicist Jean-Charles-Athanase Peltier discovered thermoelectric cooling in 1834.
In their experiments, the Los Alamos scientists shined a beam of infrared light at a 6 mm -long sliver of ultra-pure glass impregnated with ions of the ytterbium.

Ytterbium ions radiate over only a single band of frequencies,

> Design for a fluorescent cryocooler that might be used in space. It is based on using an ytterbium-doped heavy-metalfluoride glass as the fluorescent cooling element.

frequencies that are much higher than the possible frequencies at which the glass could vibrate. So when the glass is pumped with laser light at the right
frequency, it is unable produce heat. The Los Alamos team managed to produce a cooling power that was a few percent of the absorbed laser
power. That's not a lot in terms of normal cooling devices. But it is quite respectable for cooling high-tech devices to extremely low, or cryogenic, temperatures.
Light for the Lassor would be provided by efficient, compact, highpowered diode lasers in a device with no moving parts and weighing only a 1 kg . The technique would be ideal for space, where the Lassors could cool a wide variety of detectors and instruments mounted on satellites.
Since they would be entirely solidstate, the devices would generate no vibrations and could survive for years in the harsh environment of space.
Ultimately, optical refrigerators may find homes in desk-top computers where they could enable superconducting circuits to operate hundreds of times faster than today's conventional electronics.

Chaotic approach to better electronics

To impose order on chaos - just takes a little more chaos. At least that's the conclusion of three US researchers whose work is forcing scientists to take a new look at the operation and interaction of both natural and artificial non-linear systems. Ultimately it could lead to methods for improving performance of electronic systems by exploiting variations in components.
William Ditto, at the Georgia Institute of Technology and colleagues John Lindner of The College of Wooster and Yuri Braiman of Emory University used computer simulations to study a variety of coupled non-linear systems, including a series of chaotic pendula and a system with a hundred identical oscillators. The systems exhibited chaotic behaviour over both time and space (spatio-temporal chaos), and the activity of each individual element could affect the behaviour of others.
To see what would happen if they increased the disorder and variability of the chaotic systems, the researchers made each pendulum a different length, and programmed each oscillator to respond in a slightly different way.
They expected to see even more disorder and even more turbulent behaviour. But what they got was organised behaviour patterns coming out of the systems. It seems that the
diversity or disorder provided a mechanism by which the systems could organise themselves.
How the process works to control chaos isn't fully understood yet, though it looks as if disorder may help move groups of chaotic elements into similar modes of behaviour. Neighbouring elements then begin to lock into the same mode, and "a local domino effect" spreads that behaviour. The result is an organised system of individual elements that repeats its behaviour in a complex but regular way
The work looks to have direct relevance to electronics - Josephson junctions for instance. A small dc voltage across such junctions, formed by separating two superconductors by a thin insulator, causes an ac current to flow. Because the frequency of the ac current is very sensitive to any ambient magnetic field, such devices. (called squids) can be used to measure extremely small magnetic fields. "Our figures of the spatio-temporal evolution of the velocities of arrays of coupled pendula can also represent the evolution of the currents across arrays of coupled Josephson junctions," Lindner told $E W+W W$.
More generally, the work has implications for any system consisting of arrays of identical or near-identical elements, such as vlsi circuits and ccd arrays.

It demonstrates that if the elements are coupled and are non-linear, than the behaviour of arrays of identical elements may be qualitatively different from the behaviour of arrays of slightly disordered elements.
"In fact, small amounts of disorder can literally chaos chaos to order," says Lindner.
The work may turn out to be related to stochastic resonance, a phenomenon in which adding noise to a system actually improves its ability to receive weak signals. Stochastic resonance is already finding applications in electronic systems, and Lindner believes engineers may one day use disorder to enhance performance of electronic systems.
"For certain non-linear systems, maybe you can not only get away with greater variability in your components, but maybe that's what you want," he explains. "A clever engineer may be able to exploit this basic phenomenon to lead to better devices. Surprising as that may sound, having a little inhomogeneity in a system may provide better performance if the elements are nonlinear."

[^3]As easy to use as a calculator but as powerful as a computer

A powerful set of basic functions statements and operators -over 230 in all - many larger computers don't have a se of basic instructions in this complete. - Advanced statistics functions enabling computations on up to 15 independent variables.

- Recursive subprograms and user defined functions.
- An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.
- A keyboard that can be easily customised for your specific application.
- HP-1L Interface pre-installed to create a system that can print, plot, store, retriev and display information. Control or read instruments or speak to other computers, 5000 bytes/sec. Built in ROM includes 46 separate commands. Interface to HP -1L, HP-1B, RS232C, GPIO or series 80. Includes connection cables.

SCAN BAR CODES FOR $£ 29.50$ HEWLETT PACKARD HP71B

Smart wand
Automatically recognises and decodes all major bar-code standards.

SPECIAL OFFER

Buy 2 Kits For $£ 59.00$
Other products at give-away prices
Numeric keypad for 'AT' computer
£5 + £2 Carriage (Carriage FREE if ordered with above)
INTERCONNECTIONS LTD
Unit 51, InShops, Wellington Centre, Aldershot, Hants GU11 5DB Tel: (01252) 341900 Fax: (01293) 822786

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopgate Street, Leeds LS I 4BB Tel: (0||3) 2435649 Fax: (0||3) 242688 I

> John Matthews outlines the techniques being used to cram more image information into less space and bandwidth.

Video technology consultancy
John Matthews is a research and development engineer at Teltec Ireland and is based at Dublin City University. Teltec Ireland is the National Programme for Telecommunications in Ireland and represents a partnership between leading third-level institutions and industry. The Teltec Video Coding Group at DCU has conducted extensive research in the area of low bit-rate video and image coding for telecommunications and multimedia applications. For further information, phone 353-1-7045759, fax 353-1-7045508 or e-mail john.matthews@teltec.dcu.ie.

Video COMPRESSION techniques

In recent years, advances in video compression techniques have been at the forefront of the multimedia revolution. The variety of video applications which are becoming available was clearly evident at this year's Telecom 95 show in Geneva, ranging from pc based conferencing systems to high-end video on demand products.
Multimedia is a general term covering the exchange of video, audio and data between people. New applications and products appear almost daily, and there are standards in the multimedia world to ensure that equipment and services from one manufacturer will operate successfully with similar equipment from other companies.
A number of standards are now firmly established, including JPEG, MPEG1, MPEG2 and H.320. Most video-conferencing systems over ISDN now conform to the ITUT H. 320 standard, although there are proprietary systems.

MPEG1 is used for audio/visual storage on cd. JPEG is used for still image transmission, while MPEG-2 is aimed at higher end broadcast systems. Apart from JPEG, these standards define the rules governing the compression of video and audio for storage or transmission.
This article looks at the video aspects of these standards. These new standards and compression algorithms have been developed to reduce the bandwidth required for video transmission. In addition, emphasis has been placed on defining methods which can be practically implemented This development has been coupled with progress in the hardware world, where highly integrated single-chip solutions for the algorithms have been brought to the market.
While the video standards have some common features - in particular the fact that they
all use discrete cosine transform - they are distinctly different and are geared towards different applications. For example, JPEG could be used for motion video applications, but it would never achieve the same real-time performance as H .261 . This is because it does not have inter-frame and motion compensation capability
Also, new standards will emerge, encompassing even more applications. For example, H. 263 is a video standard with many similarities to $\mathbf{H} .261$ (the video standard for H.320) which will enable good quality video conferencing over the ordinary telephone line. With MPEG-4, there will be new functions, coupled with improved compression ratios and picture quality.
In this article I outline the video standards already developed and summarise their differences and unique positions. In addition, I also review the up and coming standards.

Video compression fundamentals

Current standards - JPEG, MPEG and H. 261

- have a number of things in common. The most important of these is that they all use the discrete cosine transform, dct, in their algorithms. They each perform quantisation on the resulting dct coefficients, and implement run-length coding on those quantised coefficients, Fig. 1.
So what is dct? It is a mathematical transform which translates digital video datà from the spatial domain into the frequency domain. Typically, a coding algorithm will divide picture data into blocks of 8 -by- 8 pixels, where a pixel is a picture element with a value between 0 and 256 . It then performs the dct on each block. For each block of 8 by 8 pixels, the dct gives an 8 -by- 8 block of frequency components.
The rationale behind the dct is as follows: In

Second generation video coding techniques

Block-based coding methods have disadvantages - in particular blockiness in pictures and the inability to derive information on specific objects in the picture. But is there an alternative? Second generation video coding techniques have been the subject of much research in the nineties, and new techniques such as segmentation, model based coding and object based coding are under intense investigation.
Segmentation is a technique in which the image is described in terms of contours and texture. Contours are abrupt changes in the gray levels of the image, and texture can be thought of as the roughness of the image - or the shade transition across the image. So a segmentation based scheme will attempt to describe an image as textured regions surrounded by contours.
Model based coding techniques have been greatly influenced by progress in the fields of computer vision and computer graphics. The underlying motivation in model based coding is that an image is the projection of an illuminated 3-d object onto a 2-d plane. In object based coding an image is subdivided into objects and each object is described in terms of its shape, motion and colour.
In an object-based coding scheme, a source model provides an abstract means of describing the type of object in the picture. This source model defines the parameter which will be used to identify objects during image analysis. For example, an object might be rigid or flexible. The source model will also describe motion of objects i.e. fixed direction or arbitrary direction. So a picture is analysed and objects are identified. Each object is

Object-based image analysis. New techniques for coding of video signals are being investigated as an alternative to DCT
block based techniques.
One such scheme is object based coding, where objects are identified in a picture and are coded using their shape motion and colour parameters.

then described in terms of shape motion and colour, see illustration.
Of course, certain parts of the picture will not be classified as objects as they will not conform to the source model. These areas are classified as model failure regions, and might be encoded using a more traditional coding scheme. Among the objectives in an object based codec is to have a higher picture quality at comparable or lower bit rates than block based codecs. These objectives are helped by a number of factors.
The process of analysing an image to identify objects is an exhaustive one, but once the objects have been identified, it does not take a lot of information to describe them.
Furthermore the only motion vectors which are transmitted are those relating to objects.

Schemes are usually designed so that objects are bigger than the blocks which would exist in corresponding block based coding methods, so there is potential for saving on motion vectors. Thirdly, when an object has
been defined and is moving from frame to frame, very little update information may be required for that frame. So even though three parameters are necessary in object based schemes, as against two - motion and colour - for block based schemes, it is still feasible to operate such a scheme on a similar bandwidth.
A further feature of an object based scheme is that it should be able to classify the the objects, so optionally only the most important objects need be transmitted in a low bit rate channel. Editing would also be feasible in such a scheme.
At present, most hardware research in object based coding techniques is carried out using digital signal processors or similar devices. There is still a lot of work to be done both in the areas of algorithm definition and in the implementation of those algorithms in hardware. However, it is an area which is attracting much research interest, and this level of interest has been considerably enhanced due to the interactive features required in MPEG-4.

Fig. 1. DCT-based video coding scheme. The discrete cosine transform (DCT) is at the heart of the coding schemes used in MPEG, JPEG and H.261. This figure shows how an 8 by 8 block of data is extracted from a field of video data. Note the presence of significant low frequencies in the 8 -by-8 block of transform coefficients, with most of the higher frequencies going to zero after quantisation.

CONSUMER ELECTRONICS

File size of the JPEG original on the left is 1215 Kbyte while that of the version on the right, compressed with loss, is only 61 Kbyte .
the spatial domain, picture information is spread thinly over a large number of pixels. In the frequency domain, however, much of the picture information will be contained in the lower frequency components. As a result, it may be possible to discard some of the higher frequency components, without sacrificing too much picture quality.
Performing the dct on the video data typically concentrates much of the picture information into the lower frequency components. The det itself does not compress data. An 8-by- 8 block of pixel data will provide an 8 -by8 block of frequency components. The compression process starts with quantisation and run length encoding.
Quantisation is a process where each of the dct coefficients is divided by an integer and rounded towards zero. In a typical picture, many of the higher frequency components will have low values, so their output after quantisation will be zero. The quantisation integer is user definable, or is adaptable, its value being determined by a control loop. In most cases, users can control how much of the high frequency components they wish to neglect. This is the start of the compression process.
The quantised coefficients are then zig-zag scanned and run length coding, or rlc, is performed. Output of the rlc process will be the values of each non-zero components, preced-
ed by the number of zero valued coefficients before that component.
In most algorithms, further compression is achieved by the use of variable length coding, or vlc. Here commonly occurring strings from the run-length coding process are assigned short code words, while less common strings are assigned longer code words At this point, framing of the data can occur, so compressed data is now ready for transmission or storage.
In motion video, further techniques are used to remove redundancy from the data. The first of these techniques is prediction. Instead of coding and transmitting data for full frames, frame differencing is used. The encoder will code the difference between the current frame and a prediction of what that current frame should be.
The easiest method would be to simply subtract the last frame from the current frame and use the difference. However this method does not work well, because it doesn't take into account the error build up in the transmission channel. So each encoder has an inbuilt model of the decoder in a feedback path. It is therefore a decoded version of the last encoded frame which is used for prediction purposes.
To further eliminate redundancy, motion estimation and compensation is used. The predicted frame is refined to take into account the motion which is estimated to have occurred
between it and the current frame. This has the effect of making the predicted frame as similar as possible to the new incoming frame, so the frame difference will be minimised even further.
Most standards do not specify how to do motion estimation and compensation, so a trade off can be made between complexity and performance.

Still image coding - JPEG

Standard ISO10918, more commonly referred to as JPEG, defines the techniques to be used in the coding of still pictures.
JPEG is the most simple of all the standards under discussion. Because it caters for stills, there is no requirement for frame prediction or motion compensation, so it does not need a feedback loop. The forward process consists of dct, quantisation, zig-zag scan, and runlength and variable-length coding.
However, a number of different options in the JPEG standard, allow users to tailor their systems for different levels of compression and picture quality. Both lossless and lossy coding techniques are referred to.
In lossless coding, the picture can be rebuilt exactly as it was prior to coding. Lossless coding techniques in JPEG are not based on the dct, but are 'prediction' based. Lossless coding is very limited in the amount of compression
which it can achieve however. Imaging for medical purposes is an example of a situation where lossless coding is required
Lossy coding techniques are based on the dct. Among the options available are sequential coding, progressive coding and hierarchical coding.
Sequential coding is the simple dct process already discussed. Progressive coding, as the name implies, allows a progressive build up of picture quality. In this mode, the quantised coefficients are sent in stages. Initially the lower frequency components are stored or transmitted, followed by the higher frequency components.
Another method is to selectively increase the resolution of the coefficients, so that the mostsignificant bits are first processed, followed by the least-significant bits.
In hierarchical coding, resolution of the picture gradually builds up. The advantage of progressive and hierarchical schemes for JPEG is that they allow the user to select a variable quality level for a still picture. This is important, for example, if a JPEG picture is being transmitted from one location to another
If a slow transmission channel was used, then sending a very high resolution picture could take a long time. As a result, it might be desirable to send lower quality video. In a 'browse' type application, the receiver could then select specific stills and request those in greater detail.

Video conferencing and H. 261

The most relevant standard today for the video compression part of a conferencing system is the ITU-T standard H.261. Most commercially available systems available today use techniques outlined in H.261. The standard details the syntax for the coded bit stream and specifies how the decoder works.
Implicit in specifying the syntax and
decoder will be certain features of the encoder

Typically, since the video and audio must share the channel, there will be some trade-off between audio and video quality - especially at low bit rates. Normally in a single ISDN channel, $16 \mathrm{kbit} / \mathrm{s}$ would be required for audio, so $48 \mathrm{kbit} / \mathrm{s}$ would be left for video.
Video-conferencing systems based on pcs typically operate at lower bit rates, usually $64 \mathrm{kbi} / \mathrm{s}$. Bigger stand-alone systems usually operate at between 128 and $384 \mathrm{kbits} / \mathrm{s}$, and they benefit from the higher resolution of CIF data.
As with JPEG and MPEG, H. 261 is a dct based standard. Because it caters for motion video, frame prediction is used with motion compensation in the encoding process.
A reasonably simple motion estimation and compensation scheme is used. The current frame data is divided into 16 -by- 16 pixel 'macro-blocks', each of which is compared to other 16 -by- 16 blocks in the last decoded frame, to a displacement of plus or minus 15 pixels in each dimension.
A calculation, such as the sum of the absolute differences between each corresponding pixel in the 16 -by- 16 macroblocks is made. The nearby 16 -by- 16 block which gives the minimum overall difference is used to determine the best match. Motion vectors are then calculated based on this match, and these must be sent to the decoder.
The predicted frame is adjusted using the motion vectors, and frame differencing then takes place. In practice the predicted frame will be stored in memory, so the compensation can occur by modifying the memory addresses. Finding the motion vectors, however is a lengthy and computational process.
The variable length codes, produced by the encoder, are fed into the output buffer of the system. This buffer has a variable input rate, but also has a fixed output rate determined by
the bandwidth of the transmission channel. The amount of information entering the buffer must be controlled so that the buffer does not overflow. If the buffer overflows picture information is lost, and corruption occurs.
Buffer control schemes can range from being very simple to extremely complex. In simple terms, control is achieved by monitoring the buffer fullness, and adjusting parameters such as the quantisation values to maintain a steady input rate into the buffer. The system also decides whether or not to use frame prediction and motion compensation, and could also decide to drop the frame rate by skipping some frames.
Problems generally occur when there is sudden movement in the picture being encoded. Sudden or rapid movement is almost always a problem for a number of reasons. Firstly, the buffer level increases and can overflow. This happens because there is a larger frame difference due to the high degree of motion between scenes, leading to more quantised coefficients.
More generally the motion compensation can only deal with a limited amount of motion. The effect the viewer sees is a smearing on the screen where the movement is occurring, and jerkiness in the picture is often noticed - especially when frames have been dropped. These are probably two of the most annoying features in a system.
Another annoying feature is poor lip to speech sync, where lip movement and audio output do not exactly coincide. This is caused by different delays for the audio and video data through the system.

MPEG-1 and video CD

MPEG-1 is an internationally accepted standard for the compression of digital audio and video. The actual standard is an ISO-IEC stan-
 a typical H. 261 encoder. video by approximately $60: 1$. width of one ISDN channel.
dard and the term MPEG (Moving Picture Experts Group) comes from the group who started work on the standard. There are three parts to the standard: audio, video and system.
MPEG-1 was originally developed to provide a standard for the storage of audio and video on digital storage media. The standard is optimised for operation at about $1.5 \mathrm{Mbits} / \mathrm{s}$. This is significant because it is the data rate for an uncompressed cd and it is also suitable for digital audio tape.
Typically the audio takes about $192 \mathrm{kbits} / \mathrm{s}$ of this bandwidth, and some bandwidth is also needed for the system data stream. As a result; there will be approximately $1.15 \mathrm{Mbit} / \mathrm{s}$ available for video.

Certain requirements in accessing stored video and audio have played a large part in the development of this standard. Access to the stored material is important and facilities have been inbuilt for random access, fast forward and reverse, and reverse playback. The synchronisation of audio and video is also very important and error robustness is also inbuilt into the system.
Unlike video conferencing standards, MPEG tends to be quality controlled rather than bit rate controlled. Certain parameters are specified which give a certain quality level, rather than, say, setting the system to operate at a particular bit-rate such as the bandwidth of an ISDN channel.

There are significant differences between the encoding process used for MPEG1 and those used for H.261. In H. 261 for example, there are two types of frames, namely intra and inter but in MPEG-1, there are three types.
The intra frame in MPEG, called the I frame, is similar to the intra frame in other standards, and it is encoded without reference to other frames. One difference exists however: in an H. 261 system it is desirable to avoid any intra coding. In MPEG however, intra coded frames are needed because they provide the points at which random access can take place in the decoded video.
The inter frame in MPEG is like the one in H.261. Basically a prediction is made of the

Video colour spaces and resolutions

When people think of colour, the usually think of red, green and blue. These are the primary colours and any other desired colour can be obtained by adding the required amounts of these primary colours together.
Since the advent of television however we have made use of the fact that the eye is much less sensitive to changes in colour than it is to changes in brightness. So television signals are transmitted as a black and white signal plus two colour difference signals providing information on how much the colour varies from white. Because the eye is less sensitive to colour, the colour difference signals are transmitted using a lower bandwidth than the monochrome signal.
The black and white signal is also known as the luminance signal. It is usually referred to as the Y component. The colour difference signals are referred to as the U and V components and they tell how much red and blue exists in a picture. The combination of these signals is known as the YUV colour space. Since the total amount of red green and blue add up to the picture brightness, then the translation between YUV and gamma corrected RGB (referred to as $R^{\prime} G^{\prime} B^{\prime}$) can be calculated using the following matrix.

$$
\begin{aligned}
& \lceil Y\rceil\lceil 0.299 \\
& \mid 0.587 \\
& |U|=\mid-0.1147 \\
& \lfloor 0.289 \\
& \lfloor V\rfloor\left[\begin{array}{lll}
0.436 \mid R^{\prime} \\
0.615 & -0.515 & -0.1 \llbracket B^{\prime}
\end{array}\right]
\end{aligned}
$$

Note that even if the signals are transmitted in the YUV space, it will be necessary to be able to convert back to rgb for display on a video monitor.
Another important colour space is
YCrCb . This colour space was developed as part of the CCIR
Recommendation 601. This
recommendation defines the
"encoding parameter of digital
television for studios", and is a world

Table 1. Video resolutions for PAL originated signals						
Format	Y horlz.	Y vert.	Cr horiz.	Cr vert.	Cb horiz.	Cb vert.
CCIR-601	720	576	360	576	360576	
CIF	352	288	176	144	176144	
QCIF	176	144	88	72	8872	
SUB QCIF	128	96	64	48	6448	

wide standard for digital component video. Basically, YCrCb represent the same colour space as YUV, but the individual components in YCrCb are scaled and offset versions of the components in the YUV space.
CCIR-601 video specifies a $4: 2: 2$ sampling format, and this means that there are only half the number of samples for each of Cr and Cb per line of video as there are Y samples. So it is taking advantage of the fact that the eye is less sensitive to colour. In a line of digital video sampled at 27 MHz there will be 720 luminance samples and 360 each of the colour difference samples.
When generating of CIF and QCIF; even further redundancy is built into the colour difference sampling. The format is no longer $4: 2: 2$, but is now 4:1:1. This means that there is one Cr sample and one Cb sample for every four Y samples in the picture.
Table 1 gives the horizontal and vertical resolutions for CCIR-601; CIF, QCIF and sub-QCIF for. Given that most video coding systems will use CCIR-601 compatible video as their digital source, it is clear that generating CIF or QCIF from CCIR-601 represents significant compression by itself. Converting from CCIR-601 to CIF represents compression of $5: 1$, and converting to QCIF gives compression of $20: 1$.
The subsampling of the video signal to generate CIF or QCIF must be
implemented quite carefully. It is not sufficient to simply drop the pixels or samples which are not required, and if this is done artifacts can result in the picture due to overlap in the frequency spectrum of the signal: As a result, a process known as decimation is carried out on the video data. A similar process, interpolation, is usually carried out when upsampling CIF or QCIF data up to CCIR-601.
Decimation is a digital filtering process, and in such a process, the data is usually filtered first, and then resampled at the desired rate. In the case of interpolation, where the signal is being upsampled, the data is usually padded with zeros to bring it up to the desired sample rate and is then filtered. This happens in both the horizontal and vertical dimensions.
There is a number of choices for the hardware designer who is required to produce CIF or QCIF. The use of a digital signal processor is an option, but there are chip sets available to resample video. The GEC Plessey VP520 is a dedicated CCIR-601 to CIF/QCIF convertor and it can also convert back from QCIF/CIF to CCIR601. Other devices for decimating video are manufactured by Philips, Chips \& Technologies, Brooktree, Raytheon and Harris - and others.
current frame, and this prediction is motion compensated. The frame difference between this prediction and the actual current frame is taken, resulting in the predicted frame, P.
A third type of frame is used in MPEG-1, known as the bidirectional B frame. B. frames are interpolated from earlier and later I and P frames. The way these bidirectional frames are created affects both the ability to random access the video and the quality of that video.
The distance between I frames in a video stream affects the random access capability, while the distance between P frames affects the complexity of the system and the quality
of the video. Another interesting thing about MPEG- 1 is that frames are not always sent in the order that they are created, so the decoder will need memory to enable the decoder to construct bidirectional frames. See Fig. 3 for an idea of how this happens.

Coding for broadcast systems

MPEG-1 was optimised for CD-ROM at bit rates of about $1.5 \mathrm{Mbit} / \mathrm{s}$. The international cooperation to develop MPEG worked well, so follow-on work involved addressing broadcast television sample rates using the CCIR 601 recommendation. MPEG-2 was the result:

MPEG-2 is geared towards broadcast technologies, and examples of where it will find applications are catv, digital television, video on demand and DBS. For video-on-demand, trials have been carried out worldwide and ADSL networks were used in these trials.
MPEG-2 has different 'profiles' and 'levels' so its use can be tailored to a particular application. A particular profile will place limitations on the syntax of the encoded video, while a particular level will place limitations on parameters such as frame dimensions or sample rates.
Low level MPEG-2 involves the use of CIF

Hardware options for image compression

It could be said that design engineers are now spoilt for choice when it comes to the design of video circuitry. New chip sets are constantly entering the marketplace, catering for all of the established standards.
These chip sets are also becoming increasingly more highly integrated. So let us say you have just started working on video, and you wish to design a JPEG, MPEG or H. 261 circuit. Whose chips will you look at?
The diagram below shows some of the options your proposed system might comprise. Your first problem is digitising the video. It may need to be preprocessed or scaled. It is then coded and stored or transmitted. After the video has been decoded you may have to do some post processing, ie convert from CIF to CCIR and reconvert the signal to analog PAL for display on a monitor.
Alternatively you may wish to display the video on the pc , so the video signal must be merged with the rest of the graphics going to the screen. I will look briefly at some of the options available for these tasks since an exhaustive survey is beyond the scope of the article.
For digitising PAL signals and converting to CCIR-601, Philips, Brooktree or Raytheon all produce appropriate devices. These companies now offer highly integrated front end solutions, such as the Philips SAA7110 and the Brooktree Bt819: The SAA7110 needs almost no external components, producing square pixel CCIR compatible data, while the Bt819 allows scaling of video to one-thirteenth of its original size. Auravision also have a number of interesting devices, such as the VxP501, which allows video capture with scaling and also support MPEG/JPEG playback, For preprocessing, the GEC-Plessey VP520 is a dedicated bidirectional CCIR-CIF/QCIF convertor. Other devices are available which are geared to pc video, such as the Philips SAA7195
video memory controller or the Chips \& Technologies VideoPro chip set. Both devices are essentially video memory controllers which allow scaling of video for windowing.
For JPEG coding, options include devices from Zoran, LSI Logic, C-Cube and Winbond. Silicon to support MPEG1 is available from C-Cube, IC Works, SGS-Thomson, Hitachi, IIT and Winbond amongst others. For H.261, packages are available from C-Cube, IIT, GEC Plessey and Array Microsystems. The GEC Plessey chip set is a dedicated H. 261 coding/decoding chip set. Array Microsystems produce the Videoflow chip set, based on risc architectures. It is one of a number of chip sets which will support several standards, in this case JPEG, H. 261 and MPEG-1, and uses a highly parallel data flow architecture to allow multiple decoding when it accepts several bit streams.
The IIT VCP can be used in both H. 261 and MPEG-1 codec applications, and will. support MPEG-2 decoding. CCube has a range of devices which cover all the established standards including the CLM4200 H. 261 codec and the

CL480VCD MPEG1 system decoder. For MPEG-2 encoding both IBM and C-Cube announced devices this year.
Another option for codec development is that of digital-signal processing Texas Instruments released their C80 this year. The C80 contains four parallel processing signal processors with a risc master processor, an integrated video controller and claims 2 BOPs. performance.
If a composite PAL signal is required at the output of the system, again Philips, Brooktree and Raytheon should be considered, with each company having a range of encoders suited to different applications. Devices which are becoming more common in the market now are those which will accept video from an MPEG/JPEG decoder and will merge that video with the normal pc graphics for display on the monitor. The Auravision VxP501 was mentioned, It was designed with interfaces for Zoran and C-Cube JPEG and MPEG devices. Other companies which are strong in this area are Brooktree, Pixel Semiconductors, MCT, Trident and Philips.

Possible hardware requirements. A typical hardware video coding system will need to digitise analog video, and process that digital video using a JPEG, MPEG or H. 261 encoder. The.compressed video is then stored or transmitted. In PC based systems the decoded video will be merged with the other PC graphics for display on the monitor. In a stand-alone system, however, the output may be a PAL signal for display on a composite monitor.

Fig. 3. Transmission of MPEG 1 frames. MPEG-1 is particularly suitable for video $C D$, and is optimised for operation at around 1.5Mbits/s. It uses three type of frame, Intra, Prediction and
Bidirectional. In order to facilitate the MPEG-1 decoder, these are not transmitted in the same order as they are encoded. frames 1 and 4 are needed to decode 2 and 3, and frames 4 and 7 are needed to decode 5 and 6.
resolution with a bit rate for the encoded data up to $4 \mathrm{Mbit} / \mathrm{s}$, while main level studio tv applications will require CCIR 601 resolution. Most decoder chips will be capable of operating at main profile, but higher profiles could include features such as spatial scalability.
The syntax in MPEG-2 can be divided into two main categories. There is a scalable syntax and a non-scalable syntax.
The non-scalable syntax is structured as a super-set of MPEG-1, but there are extra tools for handling interlaced video. This is required for studio applications, because PAL and NTSC video sources are interlaced, i.e. two fields are interleaved to form a frame.
Typically MPEG-1 and H. 261 use CIF resolution. This is obtained by dropping one field per frame and and further dividing the remaining field. This lowering of video resolution causes a subsequent loss in video quality, so while its acceptable for pc conferencing systems, it is not suitable for studio broadcast.
When handling interlaced video, MPEG-2 allows a frame to be selectively treated as a single picture. Alternatively it allows the two fields to be coded individually. It there is a lot of motion in a picture, it is generally better to code the fields individually.
MPEG-2 incorporates all the functions available in MPEG-1, such as random access, fast forward and reverse and reverse playback. All MPEG- 2 decoders will in fact be able to decode an MPEG-1 bit stream.

The scalable syntax in MPEG-2 will find applications in transmission media which do not have constant bit rate. Asynchronous transfer mode, or ATM, is one such application.
There are three types of scalability in MPEG-2, namely signal-to-noise ratio, spatial and temporal. Each of these scalable extensions uses the concept of a base layer and an enhancement layer. The lower base layer is used for a basic video quality, and the higher enhancement layer is used to improve the quality already available from the lower layer. This is useful in applications such as transfer of video over an ATM network, or in general over a channel with a variable bit rate.
An error-robust channel can be used to transmit the base layer video. However, the enhancement layer could be transmitted over a channel which was not so error robust, or was likely to be congested. Since it is for enhance-
ment only, it does not affect the basic video quality if corrupted, or if it fails to reach the decoder

In temporal scalability, the base layer provides a basic temporal resolution (frames per second), and the higher layer is coded with temporal predictions for further enhancements. The enhancement layer for spatial scalability provides a coded difference signal based on an interpolated prediction of the lower layer. In the case of signal-to-noise ratio scalability error information produced in the encoding process might be used.

Video over the phone

In March 1995, the ITU-T accepted a new standard known as H.263. The title of this standard is 'Video coding for narrow telecommunications channels at $<64 \mathrm{kbit} / \mathrm{s}$ '. The H. 263 standard is geared toward use over the normal telephone line. It will be possible to implement it with a range of options up to and including use of a V. 34 modem at $28.8 \mathrm{kbit} / \mathrm{s}$ The umbrella standard for full audio-visual transmission in this way will be H. 234

It is expected that chips and products for H .263 will be available sometime next year. These products will probably be for the videophone market, or for pc users who need real time video communications but do not have access to ISDN.
H. 263 is similar to, but more complex than, H.261. Much of the work which was done to develop the standard had its origins in the H. 261 development. As with H.261, H. 263 uses block based methods for compressing and coding video signals.
The discrete cosine transform is used to derive frequency content information from the original spatial information. Quantisation, differential coding between frames, run length and variable length coding techniques then allow compression and coding. As with H.261, motion estimation and compensation can be used in the differential (Inter) coding process.
There are differences between H. 261 and H. 263 which allow H. 263 to operate more effectively at low bit rates. Firstly the picture format for H .263 is QCIF at 176 by 144 elements or sub-QCIF at 128 by 96 . Secondly the syntax is different, and improved variable length codes are used. The motion compensation is also different, with H. 263 allowing
half-pixel accuracy.
A significant difference between the two standards is the use of 'PB' frames in H. 263. The idea comes from the use of P and B frames in MPEG. Basically, a PB frame consists of two pictures coded as one.
The P frame is similar to the normal inter coded frame in H.261. The B frame is however derived using bidirectional prediction from the two adjacent P frames, fitting in between these two frames. Experimental work showed that without significant gain in bit rate, a much better picture quality was obtained using these PB frames.
When H. 263 products actually arrive to the marketplace, it is possible that there will be a requirement for at least the decoder to be back ward compatible with H.261. This may not present too much of a problem however, as H .261 can be seen to be a sub-set of this new standard.

The future - MPEG-4

The standards already described all use block based coding. In such coding, the image is decomposed into blocks which are encoded independently of each other. There are several problems and limitations attached to this approach. One is 'blockiness' in the picture. Another is the fact that objects in the picture are not defined, so a limited number of functions can be added to the system.

Work has already begun on a new standard, MPEG4, which will support new ways for communicating, accessing and manipulating audio-visual data. With an increasing trend towards wireless communications, and a demand for more interactive communication, many new requirements are arising in audio visual communications which are not catered for by existing standards.
One desirable feature in the new standard will be that of content based accessibility and manipulation. A user should be able to access and manipulate video based on its content. This may only be possible if new schemes are developed for the coding of that video.
Over the past few years, much research has been carried out using advanced coding techniques, such as object based coding, and it is possible that some of these techniques may be used in MPEG-4.
Because the development of this new standard is at such an early stage, no specific method for doing this has been decided. However a desirable coding scheme will be one which can identify objects in a picture and can track the movement of those objects.
It is hoped that MPEG-4 will enable many new uses for multimedia, such as the retrieval of information from on-line libraries. One can imagine being able to browse through a moving picture, clicking on an object in the picture - perhaps a book in a library or an item on a shelf - and being able to download more information on that item.
We are however still a long way away from this scenario - the MPEG-4 standard is not expected to be ratified until 1998.

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadivay, London NW2 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

KENWOOD

TEST \& MEASURING INSTRUMENTS A SUPERE RANGE OF OVER 100 QUALITYINSTRUMENTS. Available from B.K. ELECTRONICS

> In this extract from his
> book Valve Amplifiers, Morgan Jones discusses ways of designing valve audio amplifiers capable of delivering more than the usual low.

While the amplifier discussed last month was a good design, it has to be admitted that 10 W is not a great deal of power, and more may be required. The traditional way of doing this was to use a more powerful valve such as the EL34, or even the KT88. Another method is to use Class AB; using these techniques, we can obtain 50 W from a pair of EL34 or KT66s, or 100 W from a pair of $K T 88 \mathrm{~s}$. After this, we resort to transmitter valves at enormous cost.
The traditional method has disadvantages:

- Higher powered valves are invariably disproportionately more expensive.
- They use high supply voltages, which makes the smoothing capacitors expensive, and the HT supply a major safety hazard.
- Higher powered valves tend to need higher impedance anode loads, which makes the design of a good transformer difficult
- Transmitter valves have savage drive requirements, and often need a power valve as a driver.

Fortunately, there are several ways out of this dilemma,

- Lie about output power. In the late 1960s and early 1970s, some quite unpleasant audio amplifiers were made using transistors. Compared to the valve behemoths, these transistor amplifiers were very small and light, but they didn't actually sound any better. In fact, most sounded a lot worse so something was needed to make them sell. The one thing that early transistor amplifiers could do was to provide plenty of power, and as a result the power rating war started.
To make a truly powerful amplifier, a large power supply is needed, but this is expensive. Classical music generally has peaks of only a short duration, and few hi-fi enthusiasts listened to anything else. Amplifiers were designed that could manage higher output powers, but only for a very short time. This
allowed power ratings to be increased further, and the 'music power' rating was born.
Music power works like this. Measure the maximum output power at 10% distortion or the onset of clipping, with bursts of 1 kHz driving one channel only into a resistive load By this means, it is perfectly possible to convert a 20 W amplifier with a poor power supply into a 50 W model. If output is doubled to account for two channels, you can achieve a 100W amplifier. At least four fallacies were used in the previous argument.
- Build more efficient loudspeakers. This is an excellent solution, since inefficient loudspeakers frequently suffer from power compression. This is an effect whereby resistance of the voice coil rises due to temperature. As a result sensitivity is reduced until the coil cools down.
- Drive the loudspeakers more effectively. If drive units are driven by dedicated amplifiers preceded by an active crossover, many benefits result (Colloms, 1985). For the purposes of this discussion, it is sufficient to say that a two way loudspeaker system, driven actively by 10W amplifiers, will go surprisingly loud.
- Parallel output valves. This solution provides many advantages. If multiple pairs of paralleled output valves are used, HT voltage can be kept within safe bounds. This is the case even at 320 V if many pairs of $E L 84$ are used.
With each additional pair of valves, the transformer primary impedance falls, as does the turns ratio. This makes it easier to design a good quality component. Statistically, total anode current per side is better balanced as the number of valves is increased. Deliberate selection will improve this still further.

Driving higher power output stages
Whether they are composed of paralleled devices or not, higher powered output stages
always require more driver circuitry. When the Williamson was investigated - $E W+W W$ December 1995 it was found that it had a dedicated driver stage. However, the large total number of stages made stability a problem. Clearly, a better approach is needed. As before, listing the requirements will help solve the problem.

- A low output impedance to drive the increased input capacitance of the output valves - a cathode follower may be needed.
- Capability for providing a large output voltage with low distortion This invariably demands some form of a differential pair.
- Wide bandwidth and high gain are also desirable. This is because it would be preferable to use just one set of coupling capacitors, ensuring If stability. A cascode would be ideal, although a carefully designed pair of dc coupled differential pairs could be even better.

Putting these requirements together results in a cascode differential pair with direct coupled cathode followers. This design is sometimes known as the Hedge circuit after its

Fig. 1. Cascade differential pair with direct coupled cathode followers. Sometimes referred to as the Hedge circuit, this design differs because of the inclusion of cathode followers.
original inventor, although the original Hedge circuit did not include cathode followers (Hedge, 1956), Fig. 1.
The differential pair is not the ideal phase splitter, so extra care will be taken over this in order to obtain a good result. Anode load resistors should be matched, and generously rated to avoid drift. The constant-current sink should be made to have as high an output resistance as possible Also stray capacitance to ground from the cathode should be minimised to maintain a high impedance at high frequencies. Matching valves would be useful if possible.
Each pair of valves requires a separate heater supply. Sad, but true Cathode followers need around 200 V superimposed on their heaters. The upper pair of the cascode needs around 100 V , and the lower pair 0 V . Flirting with this rule will generate problems related to heater cathode insulation breakdown. Emission from the heater to the cathode will be summed with the intentional cathode current. You have been warned. The place to slug the dominant pole is at the upper anodes. Theoretically, a capacitor between the anodes does the job. In practice however, individual capacitors are necessary to ensure gain roll-off.

Fig. 5.33 Balanced input amplifier using differential pair and balanced feedback

As mentioned before, the only really satisfactory valve for use as the lower valve in a cascode is the E88CC. Any other type will waste ht.
Cathode voltage on the lower valves is usually quite low, typically around 2.5 V . This is insufficient to allow a constant current sink to operate linearly. For this reason, the tail of the sink is usually connected to a subsidiary negative supply.
Feedback from the output can be applied to a grid, which makes calculations of the feedback network much easier.

Power amps - a balanced alternative All of the amplifier designs discussed so far accepted an unbalanced input signal presented to the phase splitter. This generates a balanced signal to drive the push-pull output stage. If the pre-amplifier output is already balanced, there would not be a need for a phase splitter. Transmission of the signal from the pre-amplifier to the power amplifier in balanced form would give a great advantage in rejection of induced noise.

The only possible contender for a balanced input stage is the differential pair. But since the input signal is applied to both grids, we need to find a means of implementing global negative feedback. The solution is to add a small resistor in series with each cathode and the constant current source, and inject a balanced feedback signal to each cathode, Fig. 2.

Cathode resistors reduce the common mode performance of the differential pair because the cathodes are no longer tied tightly together. Because of this their value should be minimised - a 47Ω resistor is probably the lowest practical value.
Having set the value of R_{k}, resistor R_{F} can be calculated. Fortunately, this calculation is not nearly as traumatic as that for the 10 W amplifier, because the constant current source takes care of the dc conditions. Since each R_{k} causes such a small amount of local feedback it can be neglected.
If valve balance were perfect, there would be no signal voltage at the top of the constant current source. Therefore this can be treated as being at ground for the purposes of the following calculation. Output of the amplifier is no longer firmly ground referenced, and balances itself about the notional ground of the constant current source. Each leg of the output can therefore be treated as a signal, referred to this notional ground, of half the full output voltage.
The feedback $R_{\mathrm{k}}, R_{\mathrm{F}}$ combination is a simple potential divider where the lower arm is loaded by the valve's r_{k}, and the input signal to the divider is half the full output voltage of the amplifier. The required value of R_{F} can now be found using the normal feedback equation and the potential divider equation, without having to invoke Kirchhoff. However, it is essential that these resistors are accurate-
ly matched to avoid unbalancing the circuit. Resistors with a 0.1% tolerance are recommended.
The disadvantage of this arrangement is that the output of the amplifier now has the cathode voltage of the input stage superimposed on both its output terminals. This will not matter to the loudspeaker, even if the cathodes are at slightly different potentials. This is due to the small cathode voltage being heavily attenuated by the potential divider formed by R_{F} and the loudspeaker voice coil. Also, practical values of R_{F} would reduce the likely offset to 10 mV or less. However, it does mean that neither output of the amplifier may be connected to ground, because this would upset the bias of the input stage.

Further reading

Colloms, M, 'High performance loudspeakers’, 3rd edn. Pentech Press, London, pp. 188-206, 1985.

Futterman, J, 'A practical commercial output transformerless amplifier', Journal of the Audio Engineering Society October 1956.
Hedge, L B, ‘Cascade AF amplifier’, Wireless World, 283-87, June 1956.
Mullard, 'Tube Circuits for Audio Amplifiers', reprinted by Audio Amateur Press, Peterborough, New Hampshire, 1993.
Williamson, D T N and Walker, P J, 'Amplifiers and superlatives', Journal of the Audio Engineering Society, 2(2), 75-80, 1954.

B00KS

Valve amplifiers

Classic power amplifiers is just one of the subjects covered in a new book entitled Valve Amplifiers, from which the above article is extracted. With over 370 pages, Valve Amplifiers is written by Morgan Jones and covers,

- Circuit analysis
- Basic building blocks
- Components
- Power supplies
- Power and preamplifiers
- Construction
- Safery

Valve Amplifiers is priced at $£ 25$. Please add postage at $£ 2.50$ UK, $£ 5$ Europe or $£ 7.50$ worldwide. Send your request with a cheque or postal order made payable to Reed Business Publishing Group Ltd, to Jackie Lowe, Room L333, Quadrant House, The Quadrant. Sutton, Surrey SM2 5AS. If ordering by credit card, please quote card type, number and expiry date together with card-holder address. Post your order, fax on 01816528956 or e-mail it to jackie.lowe@rbp.co.uk.

Reference books to buy

For Audio Engineers

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

> Subjects include
> Recording, microphones and loudspeakers
> Digital audio techniques
> Basic audio principles
> Acoustics and psychoacoustics
> Audio and television studios and their facilifies
> Radio and telephony

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

For TV \& Video Engineers

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include

Fundamentals of colour TV
TV studios
High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and audio recording and playback
Teletext

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \qquad copies of the Audio Engineer's Reference Book, (ISBN 075060386 0)
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide £78. Please add vat at local rate where applicable.

Please supply me \qquad copies of the
TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$, Worldwide $£ 58.00$, Please add vat al local rate where applicable

Remittance enclosed £ \qquad
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333,
Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS
\qquad
\qquad

POST CODE

\qquad
DATE \qquad TEL \qquad

SIGNATURE
VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4% ltaly, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPIY YOUR REGISTRATION NUMBER BELOW |customers outside the EEC should leave this part blank)

VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Locking onto video sync

Abstract

Michael Cox has been designing with a highly integrated solution to sync pulse generation and video genlocking the SAAllol.

Table 1. Operating modes of the SAA1101 are selectable via three logic levels.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	SYSTEM
1	0	1	PAL B/G
1	0	0	SECAM
0	1	1	PAL M
0	0	1	PAL N
0	1	0	NTSC

n any video system in which two or more picture sources are to be combined - say, for mixing or special effects - the scanning generators of the picture sources have to be synchronous. This means that the scanning lines must start and finish together both across and down the screen.
If the system is a composite colour one, then the subcarriers in PAL or NTSC must have the same frequency and phase, to within a degree or two. In addition, in a PAL system, the positive and negative line alternation sequences have to be identical.
In older systems, a central sync pulse generator was used, giving timing signals to all sources. More recently, each source carries its own timing generator, which needs to be referenced to other sources in the system. This process is known as genlock.
The design described here produces multistandard line, field and composite sync pulses, all genlockable to an external composite-video reference.

Fig. 2. Connections to the SAA1101 simplified. Operating with just 10رA quiescent current from a single 5 V supply, the device can handle input clocks up to $\mathbf{2 4 M H z}$.

Fig. 1. Dividers within the SAA1101 allow not only separate and composite sync pulses to be generated, but also allow pulses to be generated for different iv standards.

The SAA1101 sync generator

At the heart of the sync generator board is a relatively new chip known as the SAA1101, Fig. 1. It is a 28 -pin device, available in 0.6 in spacing dil, or in small-outline sm package.
As Table 1 shows, by taking pins X, Y and Z to 0 V or to 5 V , Fig. 2, the device can be made to work in PAL, PAL M (Brazil), NTSC and SECAM. In addition the device can operate in 524 or 624 line sequential mode for non standard use, by taking a pin (NORM) to +5 V .
It can be set to maintain the frequency relationship between subcarrier and horizontal frequencies, or not. This allows the subcarrier and horizontal oscillators to be locked separately which speeds up the genlock process.

Genlocking

There is a wide requirement for a genlocking synchronisation generator. Any source, be it camera, video-disc player or test signal generator, may need to be lockable to an external reference signal.
A broadcast synchronisation generator in a studio may need to lock to an external source such as an outside broadcast. The locking pro-
cess must therefore cause minimal disturbance to viewers.
Normally, horizontal and subcarrier frequencies need to lock almost instantly, while two lines per field are dropped or added until coincidence of the vertical sync block is achieved. This method is rarely used now because of the almost universal use of frame synchronisers at studio inputs.
In a piece of equipment that is fed a reference signal all the time, it is acceptable to reset the vertical counter to achieve rapid field coincidence, Table 2. This philosophy is adopted in this design.

Design details

The starting point for the design is the type of reference signal that is to lock up the synchronisation generator. In this case, it has to be a colour composite signal. In practice, it is usually colour, black, which is 300 mV sync, with colour burst but no video.
Refer to main circuit pl17. Video input goes to a sync separator IC, the familiar LMI881. Note that it is driven by an emitter follower since it has a sync tip restorer that needs to be driven by a low impedance source.

The device also falters if the input, for whatever reason has low level sync, and a high level of burst. It slices the burst as if it is sync and causes chaos downstream of the separator. Hence a simple low pass filter has to be fitted to roll off the chroma before the separator.
Driving impedance requirements dictate that the filter is placed at the emitter follower input, and R_{3} / C_{33} form the filter. The separator produces a mixed sync output, and a clamp pulse output suitable for colour burst gating.

Vertical output is not so useful as its leading edge corresponds to the first serration in the broad pulse train. This comes too late to reset the field counter in the SAAI 101 synchronisation generator chip.
Schmitt buffer U_{2}, a 74 HC 14 , inverts the sync signal to drive the ECS input pin of the SAA1101. Another section of U_{2} integrates the sync to produce a field pulse whose leading edge occurs during the first broad pulse. Differentiating then produces a pulse of around $2 \mu \mathrm{~s}$ width. These pulses also feed the field reset pin, RR, of the SAA1101.

Internal counters

There are two sets of counters in the SAAIIO1. The first divides the 5 MHz clock to horizontal (15.625 kHz for PAL) and vertical $(50 \mathrm{~Hz}$ for PAL) pulse trains. The second divides from subcarrier (4.43361875 MHz) to F_{h}. This is then compared with the F_{h} derived from the 5 MHz clock to produce an error signal which corrects the 5 MHz clock until lock is achieved. Table 3 shows clock frequencies available by programming SAAIIOI inputs CS1 and CS2.

Table 2. SAA1101 modes.

LMO	LM1	Lock Mode
0	0	Subcarrier
0	1	slow, ext H ref
1	0	slow, int H ref
1	1	fast, int H ref, V reset

Table 3. SAA1101 clock frequencies.
CS CS Fck 625 lines 525 lines
01
$\begin{array}{lllll}0 & 0 & 160 & 2.500 \mathrm{MHz} & 2.517842 \\ 0 & 1 & 320 & 5.000 & 5.034964 \\ 1 & 0 & 960 & 15.000 & 15.104893\end{array}$
$\begin{array}{lllll}1 & 0 & 960 & 15.000 & 15.104893 \\ 1 & 1 & 1440 & 22.500 & 22.657340\end{array}$
When the synchronisation generator is free running, overall stability is that of the 4.433 MHz crystal oscillator. When it is locked, stability is that of the reference signal used for locking. Two pins on the SAAI101 chip, $L M_{0}, L M_{1}$, select the mode of operation, Table 2.

To engage the subcarrier to horizontal lock mode, both $L M_{0}$ and $L M_{1}$ need to be taken low. When a reference signal is present, a detector circuit takes $L M_{0,1}$ high, invoking the fast sync lock mode.
Because the slicer input of the separator chip has a sync tip restorer, absence of input makes the output go low. In the ordinary way, this leaves the ECS pin high. This is not a recommended operating mode, as it causes the device to continually slips fields. Accordingly, a resistor and diode, driven from the sync detector, clamp ECS in the low state when there is no locking input to the sync generator.
There are two possibilities for the 5 MHz clock oscillator - crystal control or $L C$ timing. For speed of pull in, the $L C$ type was chosen. The SAAIIOI carries two separate oscillators, both equally suitable for crystal or $L C$ stabilisation, Fig. 2.
The internal phase comparator of the SAA1IOI is an edge comparison type, with an output dc of 2.5 V .

Because $\mathrm{a}+5 \mathrm{~V}$ rail was available, a dc-to-dc converter is used to generate $\mathrm{a}-5 \mathrm{~V}$ rail for the error amplifiers and chroma demodulator circuits. Error amplifier outputs can then sit at a nominal 0 V , with the varicaps' other electrode taken to $\pm 5 \mathrm{~V}$ as necessary.

For the 5 MHz clock oscillator, an error amplifier is used, to act as a level shifter from the PH output pin to varicap D_{1}. It also provides a convenient point for a phase control. The error signal injects dc into the error amplifier, $U_{8 B}$, and shifts the sync edge timing plus or minus a few microseconds relative to the reference input. This is an essential function for integrating a camera or other video source into a practical system.
Smoothing of the error signal is carried out by a $C R$ network on the PH pin itself, and by a damping network on the error amplifier feedback loop. Variable inductor L_{5} is set for correct frequency working, and then finely adjusted to give 0 V on the H -Error test point.

Chroma recovery

- In years gone by, various tv receiver chips were available that would serve as subcarrier oscillators, phase-locked loops and identification recovery circuits. Sadly, it is now difficult to find such chips where subcarrier and PAL identification are available to the outside world.

As a result, we have to revert to first principles. The input reference signal is buffered by

Fig. 3. Limited chroma. In this design, chroma in the active line is not so important, but a constant-amplitude burst is useful.

Fig. 4. Chroma, demodulated using U axis carrier.

Fig. 5. PAL switch recovery basics.

Fig. 6. Recovered PAL switch signal.
an emitter follower and drives a very simple band-pass filter, L_{1} / C_{10}. This removes most traces of luminance. Chroma output is then amplified by an NE592, U_{5}, and limited by two schottky diodes, $D_{6,7}$, Fig. 3. We are not interested in the chroma during the active line, but a constant amplitude burst is useful.
The limited chroma signal is now demodulated by an $M C 1496 P, U_{6}$. Its carrier is derived from the oscillator within the $S A A 1101$. Recovery amplifier, $U_{8 A}$, delivers
baseband demodulated chroma to a sample gate, U_{7}, Fig. 4. Note that the recovery amplifier and error amplifiers are all sections of a quad BiFet op-amp, in this case, a TLO84.
The only reason for this choice is that they are cheap, they are reasonably easy to come by - and they work. The sample gate is an MC4053.
Output from the demodulator consists of alternate positive and negative burst pulses, together with any active chroma during line time. The gate is turned on during burst time, and storage capacitor, C_{12}, has a 7.8 Hz square wave on it, Fig. 5.

Fig. 7. Horizontal phasing - cancellation of sync on locking input by sync out from the sync generator, using the A-B display on an oscilloscope.

Fig. 8. Vector scope trace - subcarrier from sync generator is reference, and signal is locking input.

Fig. 9. Prototype sync generator and genlock board.

Error amplifier, $U_{8 \mathrm{D}}$, amplifies this further, and drives the varicap that pulls the subcarrier crystal oscillator into lock with the external reference.
As there is a large amplitude square wave at the chroma-error test point $T P_{4}$, Fig. 6, this is differentiated, sliced by $U_{8 \mathrm{C}}$, and used to steer the sync generator chip into coincidence with the PAL identification sequence of the reference input.

Subcarrier oscillator output is buffered by a section of another schmitt buffer, $U_{4 \mathrm{C}}$, and then filtered by an $L C$ circuit to give a subcarrier output. Buffer output is also used to drive the chroma demodulator. In this way, the output subcarrier phase is related to that of the reference.

Pulling the $L C$ filter circuit either side of resonance provides a simple means of varying subcarrier phase over a range of 180° or so. A similar adjustment to L_{1} (input chroma filter) although not highly recommended, will allow further adjustment.

Output stages

My application required negative going pulses at nominal $t \mathrm{t}$ l level. As the SAA1 101 outputs are all positive going, a schmitt inverting buffer such as the $74 \mathrm{HC} / 4$ is ideal.
Because the lowest possible clock frequency for the SAAIIOI is 2.5 MHz , waveforms derived from it can only be in multiples of 400 ns . The CCIR specification for mixed sync width is $4.7 \mu \mathrm{~s}$, whereas the SAA/ 101 gives $4.8 \mu \mathrm{~s}$. As sync is the most critical component - and the most easily measured - it is good practice to try to get it into the middle of the allowed range.
The diode/ $C R$ network between the mixed sync output of the $S A A / / O 1$ and the output buffer delays the leading edge of sync by about 100 ns , while doing nothing to the trailing edge. The result is a centre tolerance sync output of $4.7 \mu \mathrm{~s}$.
As already mentioned, the $74 \mathrm{HC} / 4$ makes a good subcarrier driver. By using capacitor taps on the resonant circuit, subcarrier output is several volts into low impedance.

Testing the prototype

It is necessary to check the functioning of the locking circuits. Check first that the two oscillators on the chip are running, and at roughly the right frequencies. It helps to have a dualtrace oscilloscope of at least 20 MHz bandwidth, and a vectorscope with external subcarrier reference input.
Keep one trace of the 'scope on the locking input, and look at the H error test point with the other. Adjust L_{5} until the oscillator comes into lock, and then set it finely to give 0 V at the test point.
Move to sync output, and set 'scope to A-B. It will be necessary to invert channel 2. The object is to cancel the sync on the locking signal with that from the synchronisation generator.
The H phasing control should be adjusted to bring the two sync signals into time coincidence when one sync cancels the other, Fig. 7.

Due to differences in rise times between the signals, small 'ears' may be seen at the edges, but when these are symmetrical, coincidence can be assumed.
Return 'scope to normal two channel working. Next, check the 'Demod Chroma' test point. It should bear some resemblance to the waveform shown, Fig. 4.
Move to the 'Chroma Error' test point, where a square wave at 7.8 kHz should be seen. Set $V C_{1}$ to make waveform symmetrical about 0 V . Connect the subcarrier output to the vectors cope reference input. Loop the sync generator locking signal through the vectors cope channel 1 input.
It helps if colour bars are used for the locking signal, as phase relationships can be seen clearly on the vector display. Check that

Components for the whole sync generator and

 genlock circuit.| Reference | Part |
| :---: | :---: |
| $C_{2.3}, C_{5}, C_{9,}, C_{29,30}$ | 100 nF , ceramic |
| R_{2} | 75R |
| R_{3} | 6 kB |
| $R_{4}, R_{10}, R_{28}, R_{34,35}$, | |
| R_{50-52}, R_{56} | 4k7 |
| C_{6} | 82pF, ceramic |
| R_{7} | 560k |
| $R_{8}, R_{20,21}, R_{26}, R_{29.31}$, | |
| R_{36}, R_{43} | 1kO |
| $C_{7,8,}, C_{4}$ | $1 \mu \mathrm{~F} / 35 \mathrm{~V}$ tant |
| $R_{9}, R_{1}, R_{45}, R_{53}, R_{59}$ | 10k |
| R_{11}, R_{6} | 47k |
| $Q_{1,2}$ | BC548, or equivalent |
| U_{1} | LM1881, Nat Sem or EL4581, Elantec |
| U_{2}, U_{4} | 74HC14, various |
| U_{3} | SAA1101, Philips |
| R_{12-16}, R_{42} | 100R |
| C_{10}, C_{15} | 100pF ceramic |
| $R_{18,19}, R_{22}, R_{46}, R_{60}$ | 2 k 2 |
| R_{23}, R_{25} | 470R |
| $R_{24}, R_{17}, R_{27}, R_{32,33}$ | 220R |
| R_{39} | 1 k 2 |
| $V C_{1.2}$ | 5-65pF, Murata ceramic |
| $R_{39}, R_{37}, R_{48,49}$ | $1 \mathrm{M0}$ |
| $\mathrm{R}_{40}, \mathrm{R}_{5}$ | 470k |
| R_{41}, R_{47} | 22k |
| U_{5} | NE592, Philips, |
| U_{6} | LM1496P, Nat Sem/Philips |
| 4 | MC140538, Motorola/Harris |
| U_{8} | TLO84, Texas, etc |
| C_{19}, C_{11} | 4 n 7 |
| $V R_{1}$ | 50k, $3 / 8 \mathrm{in}$ sq cermet |
| $D_{6,7}, D_{11}$ | BAT81, Philips |
| C_{20}, C_{24} | 22pF, ceramic |
| $\mathrm{C}_{26,27}$ | $47 \mu \mathrm{~F}, 16 \mathrm{~V}$ radial |
| L_{2} | $100 \mu \mathrm{H}$, axial, |
| $C_{18}, C_{1}, C_{22}, C_{31}$ | inF, ceramic |
| C_{28} | $10 \mu \mathrm{~F}, 25 \mathrm{v}$ radial |
| R_{54} | 680R |
| L_{4}, L_{3} | $15 \mu \mathrm{H}$, Toko, 7 mm variable |
| R_{44}, R_{55} | 3 k 3 |
| C_{21}, C_{13} | 470 nF , poly, 0.2 l in pitch |
| C_{25} | 470 pF, ceramic |
| $D_{4}, D_{1}, D_{1 A}$ | B8809, varicap |
| C_{32} | 220pF, ceramic |
| $R_{57,58}$ | 100k |
| C_{12} | 47nF, poly 0.2 in |
| L_{4} | $15 \mu \mathrm{H}$, axial |
| L_{5} | $47 \mu \mathrm{H}$, Toko, 7 mm variable, |
| X_{1} | $5 \mathrm{MHz}, 30 \mathrm{ppm}, 30 \mathrm{pF}$.
 IOD, EuroQuartz(if L_{5} not used) |
| D_{10} | led, red, 3mm |
| C_{14} | 12pF, ceramic |
| C_{33} | 10pF, ceramic |
| C_{17} | 2n2, poly, 0.2 in pitch |
| C_{23} | 39pF, caramic |
| C_{16} | 47pF, ceramic |
| $D_{9}, D_{2}, D_{5}, D_{8}$ | 1N4148 |
| χ_{2} | $4.43 \mathrm{MHz}, 30 \mathrm{ppm}, 30 \mathrm{pF}$ |
| All resistors are $1 \% 1 / 4 \mathrm{~W}$ metal film, (MR25) | |

Main circuit of the multi-standard sync generator and genlock. Composite, line and field signal outputs on the right are synchronised with reference composite video, applied at the left-hand side of the drawing.

COMPONENTS

adjusting the core of L_{3} rotates the vectorscope display, Fig. 8.
If a PAL coder is available, use the sync generator to provide all its service signals, and then try to cancel the output waveform with the locking input using the 'scope in A-B mode. If it proves impossible to cancel the burst part of the signal after adjusting the subcarrier phase, the PAL identification sequence is wrong.
It is worth switching the coder on and off a few times to check whether there is a random PAL sequence, or that it is always wrong. A random sequence suggest that the 7.8 kHz recovery circuit, $U_{8} \mathrm{C}$, is not operating correctly, and needs some attention.

Implementation

The prototype board was a double-sided board, 3.1 in by 5.5 in , with a double-row 10 pin 0.156 in pitch edge connector.

This defined the size and connections to the replacement. From Fig. 9 you will see that there is adequate space for all the circuitry, on a single pcb, without having to resort to surface mount components.
Lack of a negative rail in the wiring to the sync generator dictated the use of a Newport NME0505S dc-to-dc converter to provide a few milliamps at -5 V for the op-amps and transistor tails, U_{9} on the main circuit pl17.
The complete circuit diagram of the sync generator card is shown on page 117 .

Developing the generator

For use in a broadcast videotape editing environment, it may be necessary to pay attention to Sc / H phase.

In a PAL signal, subcarrier dot structure repeats over eight fields. In most applications, it is only necessary to respect the four field sequence which is defined by the 7.8 kHz PAL identification waveform.
For animation, or where invisible edits are needed, it is necessary to pay attention to the phase of subcarrier with respect to the leading edge of sync on line 1 of field 1 . When this relationship is within $\pm 20^{\circ}$, sideways motion on cuts is reduced to a minimum. To achieve this, it is necessary to have a further phase comparison circuit to sample subcarrier phase as stated, and to apply a correction to the H error amplifier.
In some cases, a high degree of subcarrier stability in the free running, i.e. non-genlocked mode may be needed. Most crystals bought off the shelf are cut (AT) with a temperature coefficient that is approximately zero at $25^{\circ} \mathrm{C}$.
If the board is in an environment that gets appreciably hotter, then the temperature coefficient gets larger, and the crystal drifts ever further off frequency. Temperature compensated crystal oscillators, tcxo, are available, but usually on extended delivery.
The other solution is to use or make a crystal oven. The crystal has then to be specified to work at $50^{\circ} \mathrm{C}$ or $75^{\circ} \mathrm{C}$, and will be cut to give
approximately zero temperature coefficient at that temperature. It will be power hungry perhaps requiring several watts - and will take some time to reach a stable temperature.
Other outputs available from the SAA1101, not used here, are,

- clamp pulse (sync tip)
- 7.8 kHz square wave.
- white measurement pulse.

In summary, the SAA1/01 is a significant improvement on its two-chip predecessor, but it is not a real one-chip synchronisation generator, However, it is unlikely that a true onechip solution would offer the same design flexibility.

Further reading.

Specifications of the world television systems can be found in a CCIR document, published by the Intemational Telecommunications Union (ITU) in Geneva.
Details of the NTSC system can be found in SMPTE Standard 170 M , obtainable from, Society of Motion Picture and Television Engineers, 595W. Hartsdale Avenue, White Plains, NY 10607, USA.
Details of the UK PAL I system can be found in "Specification of Television Standards for 625 line System I Transmission in UK", published 1992 by the Radio Communications Agency. Full details of the SAA $1 / 101$ chip will be found in the "Desk Top Video Handbook", published by Philips Semiconductors.

SEETRAX CAE RANGER PCB DESIGN WITH COOPER \& CHYAN AUTOROUTER

RANGER3 - DOS
- Windows\NT
$£ 2500$
£2900

Hierarchical or flat schematic linked to artwork. Unlimited design size, 1 micron resolution Any shaped pad, definable outline library Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC

COOPER \& CHYAN SPECCTRA autorouter (SP2)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber,
NC Drill, AutoCAD DXF*

Modelling

Ben Duncan demonstrates how the behaviour of audio loudspeaker cables can be simulated with increasing realism at audio frequencies.

Most circuit simulators include a transmission line part. The more sophisticated ones offer several ${ }^{1}$. But for cable lengths below a few hundred metres at 200 kHz , and pro-rata greater lengths at lower frequencies, cables do not behave like transmission lines ${ }^{2}$. Traditionally, performance has instead been modeled by a lumped network.

Lumped modelling

Figure 1 shows the simplest plausible $R-L-C$ lumped model, applied in three separate test circuits. Left and right elements are arranged symmetrically. This is done to approximate the fact that substantial cable capacitance is not normally experienced without some series resistance, esr, and inductance of the order of $1 \mu \mathrm{H} / \mathrm{m}$. These parasitics are similar to those found in a real capacitor.
Also, for simplicity, the model is a 'half section' where parasitic values in the return side (lower) have been 'fold-ed-around' into the send side. Overall, the sum of R_{s} is the total measured values of the send and return resistances in a real cable. This was a 2 m length of $2.5 \mathrm{~mm}^{2}$ two core PVC insulated flex, as is commonly used for connecting medium to high power amplifiers to full range and bass speakers. But the inductance is defined differently, as the send and return inductances at least partly cancel. Effective series inductance, ESL, is the same as transformer leakage inductance, and the total $2 \mu \mathrm{H}$ is split either side of the capacitance, which is simply the measured value.
In this test setup, the sine source's output impedance is set at $1 \mu \Omega$, so it
can drive the three loads with negligible interaction. On the right, these are a 5.6Ω resistor, which is the resistive portion of a nominal 8Ω speaker; then a 15in drive unit. In this macro, voice coil resistance is external - so it could be stepped. The third load is a macro of a typical two way speaker with passive crossover.
Figure 2 is a magnified view of the frequency response at each end. The top plot confirms that the response at the source is flat. Below, the other largely flat response is into the resistive load. At hf, it shows how the cable acts as a low pass filter, coming in above 10 kHz . This kind of response is often seen in catalogues for shielded cables. The response across the speaker models is more wild, and is a reflection of each speaker's impedance modulus.
With the 2 m of cable, the broadest variation is quite subtle at 0.13 dB . If the same cable was ten times longer and/or if two cabinets were wired in parallel, or if the resistance was higher,

Fig. 2. Effects predicted by the lumped model as seen on a $\pm 0.1 \mathrm{~dB}$ scale. On the right, the 8Ω resistance and two-way speaker cause hf roll off, incisive enough to be obvious even on a larger decibel scale. The loudspeaker frequency responses are just evident.

You can see that the 15 in bass driver resonates at 33 Hz , and the two way speaker's bass driver is doing the same at 73 Hz . At 4 kHz , the If/hf crossover point is clear from the abrupt phase, followed by a steep inductive rise. Above, the cable's low pass filtration cuts in.

Fig. 1. Working in MicroCAP IV, the sine source on the left is like a test power amp with infinite current and $1 \mu \Omega$ output source impedance, so it can drive into three different loads down three cable models without its output voltage being significantly modulated.
In the centre are three identical lumped speaker cable models, based on 2 m of mains cable. These are connected to (top) the resistive part of an 8Ω driver; a model of a 15 in bass driver; and (bottom) model of a two way hi-fi speaker. Inside these macros are R_{s}, L_{s} and C_{s} that closely simulate the swept impedance characteristics.

Fig. 3. Impulse response of the simple lumped cable model driving the three test loads does not tell us much more.

Fig. 4. Simulation permits differential measurements across lengths of cable that would be difficult or impossible in realspace. Here, the shark fins indicate the leading-edge energy in the pulse that appears across the cable - not the speaker.

Fig. 5. The test condition is as Fig. 4, but the signal is a sine wave burst, stopping at 2 ms where it is at 0 V . Due to phase shift in the cables, the signal at the speaker end at this instant has not reached 0V.
The lower graph shows the ensuing losses and damping behaviour across the cable with a log (transient dB) scale. The voltage scale represents current. While smaller than the large signal level (the 'barndoor'), these errors are in a sense infinite, relative to the zero volt stimulus.
the response variation would be much more prominent. Modelling can come into its own to demonstrate this. This plot highlights the fact that the penalty for inadequately low resistance - and inductance - cabling is not just power loss but also the superimposition of a spurious frequency response deviations.
For Fig. 3, the sine source is changed for $\mathrm{a}+10 \mathrm{~V}$ pulse with a 1μ s risetime, top left waveform, and transient analysis selected. The signal at the load end (offset slightly for clarity) is surprisingly well damped into the two-way speaker model, lower panel. This is because the speaker being modelled has a Zobel network across its input, which helps to make the loading appear resistive at high frequencies. Comparison with the 5.6Ω load resistor's response supports this. The 15 in bass speaker has no Zobel network. As a result it is dominantly inductive at the $1 \mu \mathrm{~s}$ rise time period (reciprocal of 1 MHz), and there is accordingly a small parasitic oscillation, confirmed by smaller timesteps.

Differential testing

In Fig. 4, the test signal is identical, but the measurement condition is now differential across the cable. As a result you can see a representation of the current drawn, both into the load and into the cable capacitance, and also the signal that is abstracted by the cable before it reaches the speaker
Differential testing is physically difficult to perform meaningfully with unshielded, speaker cables of any length. There is a risk of measuring rf contamination. Looping back the cable-under-test for short, noise free sensing connections also requires great care to avoid altering the cable's behaviour. In this simulation, the incoming signal is shown again in the top panel, as a timing reference. Now you can see that the error signal across the cable is practically the same for the 8Ω resistor and the two way speaker connections. The error for the bass speaker is much smaller as the inductance draws so little current on a pulse. As before, the oscillation tells us some of the parasitic elements are resonant.
In Fig. 5, the test condition is the same except that a two cycle sine wave burst has been substituted (upper panel). In the lower panel, the time scale is a magnified portion. A log scale has been selected so the behaviour can be seen over a 100 dB range (five decades). Looking at the 'barn door' centred on 1.15 ms , this is the usual appearance of a half a sine wave in logarithmic form.
In the upper panel, 2 ms is a zero volt point where the test signal ceases. In the lower panel, the same signal at the speaker ends is not at zero volts due to
phase shift. The different behaviours of the currents in each cable can be clearly seen. With the resistive load, the current damps immediately below the $1 \mu \mathrm{~V}$ level. The bass driver's current quickly damps to the level represented by 1 mV , after which is decays slowly. With the two-way speaker, the current oscillates before settling to the same 1 mV pedestal, after nearly 1 ms .

Deeper modelling

The lumped model so far is but a crude first order approximation. It corroborates with little of what critical music listeners hear when different speaker cables are tried. Practical speaker cables are stranded for flexibility. In the real world, copper soon oxidises, or forms other complex ("fractal') molecules on its surface, for example chlorides. Copper oxide is a definite semiconductor. As a result each strand has a longitudinal diodic connection with its neighbour. Below the conduction threshold, the oxide, which can be just a few atoms thick, forms a high value capacitor.
Occasionally and randomly, strands are shorted along the cable length, due to handling, bending and twisting. The only place where the strands are positively ohmically connected is at the connectors, and then only if the wire is soldered or properly crimped. In MicroCAP IV, a series of diodes called 'Oxide' were written into the diode library. They have forward thresholds in the tens of millivolt region, and breakdown voltages that are higher but on the same order.
Speaker wires have series inductance and yet must carry substantial peak current, commonly up to 5 or 10A and in some designs, over 100A. Music comprises many sine waves stopping and starting, but series inductance seeks to counter this. Worse, above 3 kHz , where transient accuracy is most needed, skin effect intrudes.
This is easy to visualise as highly local eddy current loops within the conductor which subtract from current flow at the interior. In turn, this forces the longitudinal, active current flow increasingly into the outside 'skin' of the wire. The outcome is an additional series impedance that rises at $+3 \mathrm{~dB} /$ octave. This may be viewed as 'the square root of an inductor'. In the green plot in Fig. 6, it is modelled using an L-C ladder network. A Laplace function source may be used instead, but only in ac analysis, where Laplaces' violation of causality is not a problem.
Cable insulation acts as a capacitor dielectric. Most affordable cables employ PVC insulation, which is highly polar and suffers high dielectric absorption. For this reason, PVC is not

Fig. 6. Two special 'Skin' macros were constructed using L-R ladder networks. Each represents the longitudinal, sectional inductance between strands or bundles of strands, in a stranded conductor. Distances are on the order of 0.3 mm section $\times 1 \mathrm{~m}$ long.
Here their Z versus frequency is compared to a pure 5 nH inductor which slopes at $+6 d B / o c t a v e$, exactly twice the rate of skin effect. With ordinary copper, skin effect can be seen coming in below 1 kHz , and being swamped by 'real' inductance above 70 kHz . With lenving's patented Supra ply, sectional skin effect is reduced and its onset is displaced over a decade up in frequency.

Fig. 8. Effects of dielectric absorption are clear immediately after the burst sinewave signal ceases (upper panel, arrowed). In the centre panel, voltage across the capacitance of an ideal cable falls to 0 V within $20 \mu s$ and at a uniform exponential rate.
However, the discharge of voltage across a PVC dielectric has a dual slope and it takes at least 1 ms , or 50 times longer, to come close to 0 V . The lowermost panel employs a log scale to show how it has only decayed to $33 \mu V$ in this time.
used by capacitor makers. In Fig. 7 PVC's dielectric absorption is modelled by hanging nested $R C$ networks from the 'explicit' capacitance, which is a 70 pF . Each 1 m section has three of these distributed symmetrically. Figure 8 compares the behaviour of PVC and a perfect dielectric.

Self-similar meshing

Figure 9 is an end-on view of wire which shows how a stranded (or solid) conductor can be divided into annuli of equal dc resistivity. Below, the four annuli are transformed into arbitrary, equal longitudinal sections, where coming down the Y axis represents depth-
towards-centre. Each annulus is simply in parallel at dc, but at hf, they are divided by skin effect.
The circuit fragment in Fig. 10 shows the beginnings of a higher order cable model. It serves to remind us that analog electronics is ultimately fractal (self-similar) as elements are repeatedly nested within each explicit R, L and C element. At the top left are the test source and control components. The top line is the outside of the conductor, and the first cable section begins with the $1 \mu \mathrm{H}$ inductance on the right of ' $V_{\text {in }}$ ' (this initial section omits skin effect for simplicity). Thereafter ' $L_{\text {sect }}$ ' is the series or longitudinal sub-inductance,

Fig. 7. The RC networks on the right are modeling dielectric absorption in a 0.3 mm length of the PVC. On the left, a sine source is connected via a time switch. The point following the switch is shorted after this time. As a result source impedance is zero. In the lower circuit, the stimulus and main capacitor are identical. Only the components simulating dielectric absorption are omitted.

Fig. 9. Top shows end-on view of a round, stranded conductor. Skin effect modelling requires annular sections to be mapped. down into two dimensions. For simplicity, annuli of equal longitudinal resistance, hence cross-sectional area are assumed, so the deeper sections are wider.
Lower shows the basic form of the two dimensional map. Each layer is isolated by skin effect. The kite-like device is my proposed component symbol designed to symbolise the cable's shrinking effective ohmic diameter under the curved surface. Signal flowing through 2, 3, 4 is in parallel with the skin (1) at dc but increasingly delayed for transients.
beginning at the wire's surface.
The circuitry below is deeper into the wire, with the skin effect component, as in Fig. 6, between each layer. In series is the inter-strand capacitance I_{sc} and the oxide diodicity (various oxide

Fig. 10. Realistic speaker cable modelling begins with the mesh of $R, L, P V C$ cap macros, oxide diodes and skin effect macros seen here. The Y axis is concentric depth, so the lowest layer, not visible hear, represents the innermost strand. At the top left, a second speaker macro is arranged as a control. It receives the same test signal but free of cable.
Between the test signal $(1 \mathrm{AC})$ and the cable onset is a network through which the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the output impedance of a typical power amplifier with high, global negartive feedback. The control speaker is grounded at the same instant.

Fig. 12. In the lenving cable, simple patented techniques prevent diodicity between strands, so each mesh section is simplified. The Skin-4 macro is the Blue (Jenving) plot in Fig. 6. One extra PVC capacitor covers increased capacitance, while $L_{\text {sect }}$ is cut by tenfold.
In a full-section model, $L_{\text {sect }}$ would be unchanged in effective value, but each would be strongly mutualled to its opposite number by appending 'mutual' statements.

Fig. 14. Here, the plain 2.5 mm cross-sectional cable model (Fig. 10) is driven into a pure 5.6Ω. Peak signal across the cable, green, is surprisingly large. It is about as large as with the speaker load (Fig. 11), but more quickly damped.

Fig. 11. Signal residue after the sinewave burst has stopped. The purple plot shows how signal across a speaker fed hypothetically without any cable immediately falls to 0 V . The speaker at the end of the cable sections is not so favoured, blue. Initial error is about $1 / 70^{\text {th }}$ of the historic peak input signal.
This is partly due to finite damping at the amplifier output, red. The green plot looks across the cable to show its dominant contribution. Clearly, with ordinary cable, the amplifier is loosing its grip on controlling the speaker's transient terminal voltage.

Fig. 13. Running the Fig. 12 model, showing how the decay error in the Jenving cable construction is much reduced, becoming comparable to the error tail of the power amplifier. This and Fig. 11 corroborate with Audio Precision dsp measurements taken on real cables ${ }^{4}$.

Fig. 15. Model of Jenving's Supra Ply cable correctly predicts an approximately 20 dB lower peak pertubation (-54 dB arrowed, lower, where the decay angle changes). The upper plot shows that after 3.0 ms , amplifier output error is of the same order or likely dominant.
diodes 1a, 1b, 1c). Some diodes are 'wild-tied' to other layers, representing a real speaker cable, twisted and crushed after treatment by humans.
Each layer has its own longitudinal sub-inductance, onto the neighbouring section. The shunt resistors ensure the Q of each ' $L_{\text {sect' }}$ ' is damped below infinity, to avoid unnecessarily prolonging simulation. Along the top line, the cable's shunt capacitance including the dielectric absorption and leakage resistance, is distributed about. Since this, like the lumped one, is a singleended model for simplicity, the capacitance is to ground. The cable comprises four longitudinal sections, ie. representing 4 m . The same Jensen two-way speaker model, as on the left, is connected after section four to ground.
Figure 11 shows the signal decay after a three cycle sine burst. The model is predicting a pre-referred error across the cable that is 1.5% of 1 V , or $1 / 66$ th of the peak signal level that did exist. Strictly, the error is very much higher, approaching infinity, for at least 1 ms , and this is what sensitive listeners
notice with music, when the slurring happens repeatedly.
In Fig. 12, the mesh values and skin macro have been adjusted to simulate an advanced cable construction, patented worldwide by Jenving of Sweden ${ }^{4}$. It has very high mutual inductance hence low loop inductance (' $L_{\text {sect }}$ '). Also, it is almost free from skin effect and has no diodicity. Hence it has negligible capacitance between strands. These parasitics are replaced by small resistances. Shunt capacitance is slightly higher but this has no ill effect on transmitting current pulses into speakers; it only concerns poorly designed power amplifiers.
Figure 13 shows how - excepting the sharp 'inductor spiking' for a few microseconds after 3.00 ms , which is a problem for the amplifier's negative feedback - the Jenving construction is 'smears less'. That is, it allows a given, typical loudspeaker load to damp much more quickly and tidily. Events in the $0-30 \mathrm{~ms}$ period after a given musical attack, can be highly audible, being in the 'early arrival' window before mask-
ing room reflections arrive.
Figure 14 and 15 complete the picture, confirming that ordinary cable can store enough energy to be the cause of much of the initial peaking in Fig 11. Verdict: Mr Nalty may have been right all along ${ }^{5}$.

References

1. B. Duncan, Mixed Mode Modelling, $E W+W W$, Sept ‘93.
2. F.E.Davis, Effects of cable, loudspeaker and amplifier interactions, J.AES, June '91. 3. M.O.Hawksford, The Essex Echo, Hi-Fi News, Aug '85, Aug \& Oct 86 and Feb 87. 4. B.Duncan, Loudspeaker cable differences - case proven, Proc.IOA Vol.17, Nov '95. Also in Studio Sound, Dec '95; and Stereophile (USA), Dec ‘95. 5. G. Nalty, 'Complex cables defy physics', $E W+W W$, Jan 94

JOHN MORRISON SOFTWARE and OEH HARDWARE MODULES

PICICE II

NEW Enhanced PIC PROGRAMMER

PIC 16C54, 16C55, 16C56, 16C57, 16C58A, 16C61, 16C64, 16C65, 16C71, 16C74, 16C84; 16C620, 16C621, 16C622 and Memory Chips 24LC01, 24LC02, 24LC16, 24LC32, 24LC85
Centronics port interface, powerful editing sofware allows the user to Read, Write and Copy PIC devices including data memory soth. ware suite. Sample files and notes.
£99.95

MEGAPROM EPROM PROGRAMMER

EPROMS, E ${ }^{2}$ PROMS and

FLASH memories
from 2 Kb to 8 Mb
INC. MICROCHIP 24L series.
Operates via host IBM PC and centronics port, uses standard printer cable, on board production quality ZIF socket.

£99.95

EPROM EMULATOR

For ROM from $\mathbf{1 K b}$ to $\mathbf{3 2 K b}$
Operates via host IBM PC and centronics port, Operates via host IBM PC and centronics por, uses standard printer cable. Very fast download
to target board EPROM socket, operates with or without our development software suite.

$\mathbf{f} 69.95$

ON BOARD ISO 7816 INTERFACE, software runs on host IBM PC allowing the user to program SmartCards or PIC16C84's on a SmartCard emulator, also Programs PIC16C84 on a target board via an on board header. The perfect SmartCard development tool. Supplied with a full suite of software.
£79.95

DEVELOPMENT SOFTWARE

Develop software on your IBM PC for other Microprocessors, Controllers, PIC Chips etc. Each software suite has a fully integrated Text editor, Assembler, Disassembler etc. Each software suite has a fully integrated Text editor, Assembler, Disassembler software supplied with operator instructions and sample code. MCS8051/52/552 - MCS8048/49 - PIC16C54/55/56/57 PIC16C71/84 - HD63/6809 - R6502 £19.95 ea

CROWNHILL ASSOCIATES LIMITED, PO BOX 845 WATERBEACH, CAMBRIDGE, CB5 9JS

Notes
 on free phasing

Needing a combination of simplicity, cheapness and very high stability, oscillators for free-phasing electronic organ notes make an interesting design challenge. Ian Hickman discusses his new solution to the problem.

Practical analogue circuit design is fraught with snags, compromises and difficulties. These are well illustrated by the subject of this article - keyed tone generators - such as might be used in the two tone alarm generator of an hf radio telephone or a hundred other applications.
One such application is tone sources in an electronic organ. There are two main varieties of electronic organ, namely divider organs, and free phase organs. Divider types use a digital 'top octave generator' to produce the twelve semitones of the equal tempered scale. All the intervals are, if not exact, at least very close, and of course 'set in concrete'.
Each semitone output is applied to a binary divider such as the seven stage CD4024 to provide the lower octaves. Advantages of this approach include cheapness and simplicity. It also produces an organ which is always in tune, but there are a number of snags as well.
With all twelve semitones of seven or more octaves available all the time, each individual note has to be passed when the corresponding key is pressed, or else blocked, by its own keying circuit. It is difficult to obtain sufficient attenuation when notes are not supposed to be sounding, leading to a residual background noise aptly described by the term 'beehive'. Also, square waves contain no even harmonics, so some combining of different octave outputs for each note is necessary if a convincing variety of pipe-like sounds is to be achieved, adding to the complexity. This is especially so where open diapasons are concerned.
However, for anyone wanting at least anything like the richness of sound provided by a real pipe organ, a major snag is the use of dividers to provide the various octave pitches. For example, if while sounding middle C an octave coupler is activated, then C^{\prime} - the \mathbf{C}
one octave above - will also start to sound. But since C was obtained by dividing C^{\prime} by two in the first place, the two notes are locked together and the octave is too perfect.
In fact, all you have done is to change the harmonic content of \mathbf{C} : if you didn't hear the

Fig. 1. One of the simplest audio oscillators or tone generators is based on the Wien bridge.

Fig. 2. Output of an oscillator based on Fig. 1 shows little distortion.
two notes starting to sound at different times, you would never know that there were supposed to be two separate notes sounding. For this reason more than any other there is still a lively interest in 'free phase' designs, despite the availability of palliatives such as phase modulated delay lines which try to 'unlock' the various octaves.

An oscillator for free phase designs

A true free phase organ needs a separate oscillator for each note of the rank - or for half that number using an ingenious scheme for sharing one oscillator for each adjacent pair of semitones. This is on the premise that normal music does not require both to sound at once ${ }^{1}$. For example, a flute stop would have 61 generators. The usual arrangement is C_{1}, - two octaves below middle C - to $\mathrm{C}^{\prime \prime}$ three octaves above.

On an 'eight-foot rank' - so called because eight foot is the length of the lowest pitch open flue pipe of the five octaves - middle C sounds at that pitch. On the other hand on a four-foot rank, middle C would sound the note C^{\prime}, and on a 16 foot rank, the note C ,. To simulate the richness of a pipe organ, several ranks of generators are needed, corresponding to the different stops on a real organ. Clearly, economy is a prime consideration in choosing an oscillator design, but equally important is stability. With 61 individual independent generators per rank, retuning would otherwise be an endless chore.

Oscillator options

In the past, many electronic organ builders have used $L C$ oscillators, the inductor using a gapped laminated core. This type of oscillator has the advantage of not needing a separate keying circuit; it performs its own keying function by switching the supply to the main-
taining transistor.
Output is taken from a point in the circuit where there is no change in dc level between the on and off states. This avoids keying thumps, while the smooth build-up and decay of the amplitude avoids the slightest suggestion of 'key clicks'. (These clicks plague many other designs of keyed oscillators and keying circuits). Many such ranks are still in use, but the size and cost of using $L C$ oscillators provides a strong incentive to seek alternative designs.
I decided to design a cheap simple. keyed oscillator needing no separate keying circuit. Instead it only requires a single-pole normallyopen switch for each key contact. Some published designs require, at each key, one changeover contact plus two normally open contacts. A single-pole normally-open contact is preferred to a normally closed option since the worst that dust can then do is to prevent a note from sounding when played. A normally closed contact can cause a note to be 'stuck on'.
One of the simplest possible oscillators consists of a Wien bridge and an op-amp, Fig. 1. Attenuation from the op-amp output to its non-inverting input via R_{1}, R_{2}, C_{1}, and C_{2} is infinite at 0 Hz and infinite frequency, and a minimum of a factor of three at the frequency given by $f=1 /(2 \pi R C)$, if $R_{1}=R_{2}=R$ and $C_{1}=C_{2}=C$. This forms the narrow band positive feedback path.
If attenuation in the broadband negative feedback branch via R_{3} and R_{4} is less than 3:1 the circuit will not oscillate. But if it is equal to (or due to the finite gain of the op-amp, slightly greater than) $3: 1$, then the circuit will oscillate. With no special amplitude stabilising measures, amplitude of the oscillation will build up until limited by the output hitting the supply rails. This causes little distortion if the

Fig. 3. Adding trimmer potentiometer R_{V} permits tuning of the oscillator without changing the aftenuation via the Wien network - provided the resistance of the pot track does not exceed a tenth of the reactance of $\mathrm{C}_{1} . \mathrm{R}_{1}=\mathrm{R}_{2}=100 \mathrm{k}$.
positive feedback signal at the non-inverting input barely exceeds the negative feedback at the inverting input, Fig. 2.
Surprisingly, using the circuit shown, with an LM324 op-amp, there is no audible change in pitch as the supply rails are varied from $\pm 3 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
To make a practical organ tone generator, some means of tuning is required, and this is by no means straightforward. Varying any one of R_{1}, R_{2}, C_{1} or C_{2} will change the frequency, but will also change the attenuation in the positive feedback path. Depending on which way the attenuation changes, this can cause oscillation to stop. Alternatively it results in limiting so hard that the signal verges on a squarewave.
A two-gang resistor will do the job, but this

Fig. 4a) A keyed sine-wave generator. Using cmos switches for keying results in cheapness and compactness.

b) Output waveform is basically sinusoidal, suitable for use directly for stops of the flute family, upper trace. Begin and end transients are smooth and free from any incidental dc shift, lower trace.
is hardly practicable on a one-per-note basis. Fortunately, as is so often the case in analogue circuit design where only a small parameter change is required, a little ingenuity can provide the solution, Fig. 3.
If reactance of the capacitor at the operating frequency is ten times the track resistance of the potentiometer, the voltage at B will be only 0.5% smaller than at A. Since these voltages are in quadrature, the voltage across the resistor will be a tenth of that across the capacitor. However, as the wiper of the pot is moved from A towards B, additional phase lag

Fig. 5a) Simple clipper circuit provides an approximation to a square-wave for simulating, say, a clarinet.

b) Comparing the 'square-wave', lower trace, with the input sine-wave.

c) Due to the limiting action of the diodes, the ending transient of the square-wave output is extended compared to that of the sine-wave.
is introduced onto the signal fed to the opamp's non-inverting terminal.
To compensate for this, maintaining zero phase shift from the op-amp's output to its non-inverting input, the frequency must fall. Due to the low Q of the $R C$ network (its $\mathrm{Q}=$ $1 / 3$), a small change in phase shift causes a much larger compensating change in frequency than would be the case with an $L C$ circuit.
At the operating frequency, the reactance of C_{1} equals R_{1}. So in Fig. 3, track resistance of the potentiometer should not exceed $10 \mathrm{k} \Omega$. This provides almost three semitones tuning range, while a $4.7 \mathrm{k} \Omega$ pot provides over one semitone.

A stable, tuneable oscillator

From my records I found that I developed this circuit in 1982, but I know that it has been independently derived by others ${ }^{2}$. It has a further advantage in that the wiper of the potentiometer feeds an op-amp input, ie a high impedance. Except in the case of wire-wound types, the resistance from one end of a potentiometer to the wiper plus that from the wiper to the other end, exceeds the end-to-end track resistance, due to wiper contact resistance.
Contact resistance is relatively less stable than the track resistance, so tuning by making part of R_{1} or R_{2} a potentiometer would be impracticable on stability grounds, quite apart from the incidental change in loop gain. As it is, C_{1}, C_{2} can be polystyrene types, available in E12 values at 1% or more cheaply 2.5% selection tolerance. Resistors should all be metal film types. Using polystyrene capacitors and metal-film resistors, long term stability of the oscillators should be adequate to ensure that only occasional retuning is necessary.
Over the temperature range $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, the breadboard circuit exhibited a temperature coefficient of $-0.02 \% /{ }^{\circ} \mathrm{C}$, using polycarbonate capacitors. Frequency shift with change of ambient temperature can be expected to be for all practical purposes - the same for all notes, provided of course that the capacitors used all have the same type of dielectric.

Designing a keyed oscillator

Having arrived at a stable, tuneable oscillator, it remained to add a keying facility, which can be achieved by altering the ratio of R_{3} and R_{4}. This has to be effected by the key contact, but the latter cannot be used to modify the component values directly, if - as is likely - it is required to add octave and suboctave couplers. These, when activated, sound the note an octave above, and/or an octave below each note played.
Richness of sound is increased and, because of the inevitable slight departure from exact octaves when using individual generators, creates a desirable chorus effect just as in a pipe organ. As a result, key switches should simply key a dc control signal, instructing the generator to sound when the corresponding key is
depressed. The circuit itself will be controlled by an electronic switch. Cmos switches are cheap and readily available and, like the LM324 op-amp, come four to a pack, for example the CD4016.
Figure 4a) shows such a keyed oscillator while Fig. 4b), upper trace, shows the output waveform, which is basically sinusoidal. Being so, it is suitable for use directly as the

Fig. 6a) Circuit for adding second - and other - harmonics to the sine-wave.

b) Output of the above circuit, lower trace, compared with the sine-wave input, upper trace.

c) Showing the fundamental at about 1.7 kHz , the second harmonic about 10 dB down about right for an open diapason - and many other harmonics. (10dB/division vertical, $2 \mathrm{kHz} /$ division horizontal, span $0-20 \mathrm{kHz}$.)

Fig. 7. Circuit Fig. 6 modified to sound either of two adjacent semitones, according to which key is pressed. Addition of both R_{6} and R_{7} keeps the loop gain the same when S_{2} is closed, leaving the amount of clipping at the rails the same for either semitone (see Fig. 8a).
basis of stops of the flute family. Figure 4b), lower trace, shows the starting and ending transients. These are clean and smooth. Having no associated dc level shifts, they give complete freedom from key clicks and thumps respectively.

The note sounds when R_{5} is grounded via S_{1}, one section of a CD4016. In view of the supply voltage rating of this device, the circuit is run on $\pm 7 \mathrm{~V}$ rails instead of the more usual ± 12 or $\pm 15 \mathrm{~V}$. The $2.2 \mathrm{M} \Omega$ resistor of Fig. 4a) normally holds the control pin of S_{1} at -7 V , the key contact raising this to +7 V to sound the note.

The rate of build-up of the tone depends on how much greater than $3: 1$ is the attenuation from the op-amp's output back to its inverting input when the key is depressed. The rate of decay is set by how much attenuation is less than $3: 1$ when the key is released. As a result, by suitable selection of R_{3}, R_{4} and R_{5}, attack and decay times can be separately adjusted.

Although Fig. 4a) behaves like a high Q tuned circuit, this is only because the feedback is just too much or too little to allow it to oscillate. Where the frequency determining network has a high Q in its own right, for example an $L C$ oscillator, the build-up transient will generally be as fast as the decay - or faster if the maintaining circuit is heavily overcoupled.

Creating other tone colours

While a near sine-wave is fine for flute type stops, waveforms with higher harmonic content are needed to simulate many other pipe sounds. A near square-wave, with its absence of even order harmonics, is ideal for stops of the clarinet family. Figure 5a) shows a simple add-on circuit to provide it. One per note is required.

Figure 5b), lower trace, shows the 'squarewave', compared with the input sine-wave driving it, upper trace. Due to its rather smooth shape, the harmonics - especially the very high ones - roll off rather faster than a true square-wave, but it sounds very acceptable. Figure 5c) shows the ending transient, which - due to the limiting action of the diodes - is extended compared with the sinewave. In practice, this is of no consequence, provided it is smooth, well controlled and free
from clicks or thumps. The ear is much less sensitive to the end of a note than it is to its beginning.
For other types of sound, some second harmonic is essential, for example open diapasons. Being a quarter of a wavelength long, stopped diapason pipes are an exception, but even these, if of large square cross section tend to show some second harmonic.
Figure 6a) shows an interesting shaper circuit, originally published in an American magazine, and modified here with suitable component values for the available drive voltage. Figure 6b) shows the output voltage, lower trace, compared with the input sine-wave, upper trace.
Experimentation with the relative values of the four resistors enables a wide variety of waveshapes, and hence of harmonic contents, to be achieved. However, when even harmonics are introduced, the circuit reduces the area under positive-going half cycles more than under the negative-going ones. This means that it introduces a small dc component, which results in an offset at the keyed output relative to ground when sounding.
The result is a slight tendency to produce keying thump, mitigated somewhat by the fact that the driving sine-wave builds up and dies away gradually. This effect is found in nearly all schemes for introducing second harmonic, and the thump can be largely suppressed by passing the output through a high pass filter. The filter need not be provided on a one-pernote basis, but on the other hand one per rank cannot be effective over the whole keyboard.

Figure 6b) type tone generator outputs can therefore be combined on an octave basis, passed through an appropriate high-pass filter and the five filter outputs combined for feeding to further voicing and tone-forming filters. If passed through a high-pass circuit providing attenuation of the fundamental relative to the harmonics, a sound like a really fiery reed stop results.
By these means, three different stop types can be derived from a single rank of generators, but of course in no way does this make it equivalent to three independent ranks. Drawing two of the three stops together simply changes the harmonic content of a note. It therefore contributes nothing to the chorus
effect, whereas with two different speaking stops drawn on a pipe organ, two different pipes sound for each note.

Nevertheless, it is convenient to have three different tone colours available, even if drawing them in different combinations merely provides further different tone colours. In particular, one output can be voiced as a very loud stop and another as a quiet one. If the loud one were drawn, the quiet one would not be heard anyway - even on a real pipe organ.

Cutting cost and complexity

However simple the tone generator, the requirement for one per note per rank means a lot of circuitry is needed.
The scheme of reference 1 sharing a generator between two adjacent semitones is therefore very attractive, but that used a relaxation oscillator. Changing the pitch of a Wien bridge oscillator is not so simple however, as pulling the frequency of a relaxation oscillator. This is because, as noted earlier, while changing either R_{1} or R_{2} alone will change the frequency, it will also change the required ratio of R_{3} and R_{4}.

What is needed is a way of simultaneously changing both R_{1} and R_{2}, using - for economy - just a single pole switch, such as a single section of a $C D 4016$. Here again, as the parameter change required is a small percentage, one equal tempered semitone represents a 5.9% change in frequency - a little ingenuity can supply the answer, Fig. 7.

While the two additional resistors connected to switch S_{2} will marginally increase the frequency of oscillation when S_{2} is open, values can be found which will cause a further increase of exactly a semitone in pitch when it is closed. This occurs without changing the positive feedback level. As a result the degree of clipping is unchanged - compare the two semitone outputs in Fig. 8a) - leaving the harmonic content virtually unchanged, Fig 8b).

In 8 b), the semitone frequency separation of the two fundamentals is only just visible. However the separation becomes two semitones or about 12% at the second harmonic, and so on in proportion to the order of the harmonic. The starting and ending transients of the upper semitone are also unchanged, due to circuit arrangement maintaining the same

Fig. 8a) Two sine-wave outputs, a semitone apart.

b) As a consequence, amplitude and harmonic content of the circuit's sine-wave output is virtually the same for both semitones. ($10 \mathrm{~dB} / \mathrm{div}$ vertical, $2 \mathrm{kHz} /$ div horizontal, span $0-20 \mathrm{kHz}$.)

c) Delaying the removal of the semitone pitch change control signal to avoid chirp on end transient of the square-wave output when sounding the upper tone causes a hiccup in the ending transient of the upper tone sinewave output, audible as a slight key click.
degree of clipping for both semitones.
For experimentation purposes the actual frequencies were regarded as unimportant, the semitone shift being the essence of the exercise. But the two notes - in the region of 1700 Hz - correspond roughly to A" and A" flat. There is a small effect on the accuracy of the semitone change, depending on the setting of the tuning potentiometer. This amounts to a few cents more or less than a semitone with the tuning potentiometer at one extreme end of its range or the other, where one cent represents one hundredth of a semitone.
The two diodes in Fig. 7 are arranged so that either of the two adjacent semitone keys will close S_{1}. This causes the note to sound, but only when the key for the upper note is pressed will S_{2} be closed, giving the higher of the two pitches. If both keys are pressed at once, the upper semitone sounds. In some shared note schemes accidentally pressing both keys together causes a totally different, unrelated note to sound.
With the optional capacitor $(2 \mathrm{nF})$ absent, the pitch will revert to the lower semitone immediately the upper semitone key is released. Consequently, this causes the tail of the note to be at the lower semitone frequency. Strangely, this results in but the barest trace of key click on the sine-wave output, presumably because of the rapid decay of the tone, Fig. 4b). However, the decay of the square-wave output is much slower, due to the limiting action of the diodes, and this is clearly visible in Fig. 5c).
On the square-wave output, the pitch change during the ending transient of the upper semitone gives a much more obtrusive key click. The 2 nF capacitor suppresses this by delaying the return to the lower pitch when the key is released. The optional resistor (33 k) is necessary to control the capacitor charging current, otherwise a key click appears at the beginning of the upper semitone square-wave output.
Unfortunately, while the optional components suppress any key click on either semitone on the square-wave output, they create a very audible key click on release of the upper semitone sine-wave output. This is caused by charge injection in the switch circuit S_{2}, from the control input to that section of the CD4016.
With the capacitor delaying the opening of the switch, it now occurs when the sine-wave has all but died away. As the switch is connected directly to the op-amp's non-inverting input, it shock excites the oscillator into ringing - visible on the upper trace (upper semitone) in Fig. 8c). By comparison, the lower semitone sine-wave output is of course unaffected, lower trace.

Further enhancements

Charge injection in electronic switches is a well known phenomenon, and in later designs of switch ICs it has been greatly reduced, but these would be too expensive in the numbers required for this application.
Clearly there is scope for further development here. For example, the capacitor at the control input of S_{2} could be grounded not directly, but via another section of the CD4016. This additional section would be switched on when square-wave was selected, but not for sine-wave. All additional switch sections would have their control inputs connected together and controlled by the stop switches, being on for clarinet (square-wave) type stops but off for flutes (sine waves).
Having concentrated on the basic one-pernote, or one-per pair of notes tone generator, a word on controlling the generators from the keyboard will not go amiss. For a very simple organ of just one rank, key switches can control S_{1} for each note directly, and S_{2} - if using the shared generator scheme - via diodes as in Fig. 7a).

If it is desired to incorporate octave and suboctave couplers, this can be achieved by adding diodes and resistors. However the complexity increases alarmingly, especially with the shared generator scheme. It increases further if it is desired to have two or more ranks of generators with the option of sounding these at different pitches. As a result, for all but the least ambitious designs some other scheme is called for.
A microcontroller can be used to scan the keyboard and set or clear latches controlling S_{1}, and S_{2} if used, in accordance with the stops drawn. But a simpler approach is to employ one of the variations on the multiplex scheme, which has been described many times in the literature, for example Refs 3 and 4.

References

1. Shared note F-P oscillator, Dr. J H Asbery, Electronic Organ Magazine (Journal of the Electronic Organ Constructors' Society) No. 154, December 1994, pp 14, 15.
2. A Free Phase Organ, Dr. J H Asbery, EOM No. 145, March 1992, pp 8-13.
3. Electronic Organ Magazine, No. 98, page 12 4. Experimenting with Multiplex, T Hawkins, EOM No. 146, July 1992, pp. 12-15.

Exclusive 25% discount for $E W$ readers

Receive radio-code time signals on your PC

Plugging this radio-code receiver into your PC's COM port and running the dos and windows software supplied gives you access to the atomic-clock referenced 60 kHz time signal transmitted from Rugby. This signal is accurate to a second in a million years and corrected automatically for summer/winter time.
Based on a highly-tuned and reliable receiver module with antenna, the system automatically updates the PC's clock at switch on and at any other desired time. Under Windows, an icon is available signalling to the operator that the receiver is receiving the Rugby signal, and indicating the current time and date.

Applications include:

- research and development
- synchronising encryption-key changes
- broadcast transmission sync
- timing video monitoring in security systems
- controlling public and distributed clocks
- distributed timing for remote communications
- access control
- production monitoring
- linking remote networks
- data security

Time data received by the PC is via standard RS232 and well documented, allowing you to use atomic-clock referenced timing and date stamping in your own applications. Sending the ASCII letter o for example returns a 15 -character string representing hours, minutes, seconds, day of week, day of month, month, year and summer-time and receiver status.
Normally, the receiver module together with dos and windows software costs $£ 69.50$, or $£ 99.50$ for a version with in-built liquid-crystal display for time and date display. Until 15 March 1996, Galleon is offering these two products to EW readers at special 25% discount prices of $£ 52.13$ and $£ 74.63$ respectively.
All prices quoted are inclusive of VAT, but excluding $£ 2$ postage.

This module receives radio-code data and sends it to the PC via an RS232 link. From the COM port, RS232 time information can easily be incorporated into user applications. Software supplied as standard synchronises the PC clock and - under windows - displays time/date together with confirmation of the received signal.

February 1996 ELECTRONICS WORLD

The desk-fop version of the radio-code PC clock features two alarms and an integral display showing hours/mins secs or hours/mins day together with day+month, signal strength indications.

Access to atomic time accuracy

 via your PC .[^4]
Fractional-N synthesis

> Cosmo Little reveals the benefits of a little-known frequency synthesis technique that is cheaper than direct synthesis - and requires much less power.

Afractional $-N$ synthesiser is essentially a single-loop digital synthesiser where the loop divider has been modified to divide by an integer plus a fraction - instead of by an integer alone. In this way, extended frequency resolution is obtained.
Because division by a fraction is not possible, the divider approximates to the required fractional division ratio over a period of time.

In this first article I review the operation of the single loop digital synthesiser, and will consider the basic type of fractional $-N$ synthesiser. In the second article, we will conclude the review of fractional $-N$ techniques, and will look at practical implementations of the method. Both articles will be illustrated by MathCad simulations which will be made available to readers as the original MathCad documents. This will enable readers to experiment with the design of fractional- N synthesisers to suit specific applications.

Benefits of fractional- N

The fractional- N synthesiser is believed to have been invented by Hewlett Packard in the early eighties. It was used in a number of synthesisers - including the 3325A, which achieved micro-hertz resolution with only one phase-lock loop.
The same concept has been used in other instruments, such as the Marconi 2022 signal generator, and can be used as the high resolution loop in a multi-loop synthesiser which increases the possible frequency range into the gigahertz region.
Modern digital large-scale integration chips have generated considerable interest in the direct digital synthesiser, which has largely eclipsed the fractional- N technique. nevertheless, fractional $-N$ has many advantages, and is worth serious consideration by any designer faced with the task of producing a medium performance frequency synthesiser with small frequency resolution.
Fractional- N can be implemented much more cheaply than a direct digital synthesiser, or dds. It also uses much less power as it does not require fast logic or a fast video d-to-a
converter for the signal reconstruction.
This article reviews the different evolutions of the fractional- N synthesiser from the most basic idea of non constant division ratios in a digital phase-lock loop, pll, to the development of the two accumulator fractional- N loop with its division by a choice of four different integers and analogue correction.
Performance of the fractional $-N$ loop is well suited to simulation on a general purpose maths package, as its performance limitations can be investigated independently of performance limitations caused by the hardware implementation. In this article, analyses are supported by MathCad documents.
Initially, I will review the basic digital loop from a performance point of view, and discuss the basic trade offs between resolution, reference frequency suppression, phase noise, and tuning time. These relationships are not derived formally, as this has been done many times in existing literature.

Basic digital pll

Figure 1 is a block diagram of a single loop synthesiser. This will no doubt be fairly familiar to most readers. A voltage-controlled oscillator running at the desired output frequency, f_{0}, is divided by an integer, N.

Phase of the output frequency from the divider is then compared with the phase of a reference frequency, and the phase error is converted to a voltage error by the phase detector. This voltage error is processed by the loop filter, which is usually an integrator and zero, with one or more higher frequency poles.
Output from the loop filter is now used to correct the vco frequency to hold the phase error at the phase detector to near zero. This loop can be formally analysed to predict such behaviour such as loop stability, forward transfer function - which describes how closely the phase fluctuations of the vco follow those of the reference - behaviour of the loop to phase errors added to the vco signal, ie suppression of phase noise of the vco, and many other performance characteristics. I do not analyse the digital loop in detail here, but I
have included references to the details.
This is a summary of the most important performance trade offs:

Frequency resolution. This equals the reference frequency. Output frequency is $f_{\text {ref }} \times N$

Natural loop frequency. This is defined as the -3 dB point of the closed loop gain. It is an important parameter that affects several other performance measures. For generality it is best considered as a fraction of $f_{\text {ref }}$.

Note that the digital loop is actually a sampled data system. Phase comparisons are only available at the rate of the reference frequency. As a result, in theory, the loop frequency cannot be higher than $f_{\text {ref }} / 2$.

In practice, the loop frequency will need to be $f_{\text {ref }} / 10$, or even lower. The main reason for this will be to suppress leakage of unwanted high frequency signals from the phase detector. These occur at multiples of the reference frequency, and will phase modulate the vco, producing spurious sidebands.
Some phase detectors are better than others in this respect. The sample and hold detector is generally considered to have the lowest reference frequency feed through. However, the digital phase/frequency comparator is still used in a great number of single chip synthesisers. The choice of phase detector becomes important for another reason concerned with the fractional- N mechanism, so I will return to the discussion of phase detectors later.

Designing the loop

The natural loop frequency - and damping factor - may be calculated from the component values used in the type 2 , second-order loop filter. The circuit and equations are given in Fig. 2. Real implementations, however, always have additional poles, and the simplest way to find the natural loop frequency, and also the phase and gain margins, is to plot the closed loop gain and phase. This is easy with tools such as MathCad.

The op-amp is modelled as an amplifier with finite gain and one low frequency pole.

Component values in Fig. 2 for the fifth-order loop are entered. The loop divider (N), phase detector constant (Kp), and vco gain constant (Kv) are also entered. The document then plots graphs of closed loop gain and phase, forward gain, reduction of vco phase noise, and loop filter response. This enables estimates of natural loop frequency, loop stabili$t y$, reference frequency suppression, and vco phase noise to be made.
The natural loop frequency affects a number of performance tradeoffs of the digital loop. Those that are most important to synthesiser designers are phase noise, spurious sidebands, and tuning time.
Phase noise of the vco can be divided into two regions, frequency offsets well within the loop natural frequency, and frequency offsets well outside it. At frequencies well within the loop frequency, the vco is controlled by the reference frequency phase. Any phase fluctuation of the reference will appear on the vco output, multiplied by the loop division factor, N. In terms of sideband level, the increase in level from the reference to the vco will be $20 \times \log (N)$.
For example, if the reference has 100 Hz sidebands at a level of $-80 \mathrm{dBc}(80 \mathrm{~dB}$ below the carrier) due to phase modulation, and N is 1000 , then the 100 Hz sidebands will appear on the vco at a level of -20 dBc .

Exactly the same calculation applies to noise sidebands. In the example a reference phase noise level of $-80 \mathrm{dBc} / \mathrm{Hz}$ will be transferred to the vco at a level of $-20 \mathrm{dBc} / \mathrm{Hz}$. If N is very large, the vco may well end up with worse phase noise than if it was free running.

This in fact was the case in an early version of a low-cost signal generator made by a famous manufacturer. As far as I can remember, the vco operated at 160 MHz , with a comparison frequency of 100 Hz . In this case N would be 1.6 million, and the phase-noise multiplication factor 124 dB .

Within the loop bandwidth, which was only about 10 Hz , output of the signal generator had so much residual fm that it produced an audible wobble when used to test ssb receivers.

Alternative frequency synthesis techniques

Methods of frequency synthesis can be divided into a number of distinct types. Direct frequency synthesisers use only harmonic multipliers, mixers, and dividers to generate their output. No phase-locked loops are used. This type of synthesiser switches in a few $\mu \mathrm{s}$, but is extremely complicated, with a vast quantity of analogue circuitry. They are essentially obsolete. Interested readers are referred to the block diagram of the HP5105 in
reference 3.
Digital synthesisers use one or more digital phase lock loops, ie a phase-locked loop with a digital divider between the vco and the phase comparator. More than one loop is commonly used, with mixers inside and outside the loops. A huge variety of different configurations have evolved to provide small frequency increments with fast lock-up time and good phase noise. A large number of frequency synthesisers in
everyday use are single-loop types. This includes all domestic radios and tvs, and the great majority of commercial communications equipment operating in the vhf, uhf and Jow microwave bands. The use of multi-loop mixing types is mainly in laboratory instrumentation such as signal generators and spectrum analysers, and in hf transceivers.

The third type of synthesiser is the direct synthesisers. These
synthesise the output sinewave by outputting a sampled approximation of the waveform at a rate determined by a highfrequency clock. As all the circuitry is digital, it is suitable for large scale integration. This type is becoming more popular with the astonishing increase in density, and reduction in price, of LSI digital chips. A direct synthesiser may be used in a single loop with mixer configuration to provide small frequency increments with reasonable simplicity.

This made measurement of SINAD near impossible.
The manufacturer soon replaced this signal generator with a version that used a fractional $-N$ loop to avoid this problem.

Calculating phase noise

This digression all helps to illustrate the problems with digital loops with high loop division factors.
Note that reference noise must include divider noise and phase detector noise. If this is not done, it is possible to make a large error in the calculation of phase noise within the loop bandwidth. Reference oscillator phase noise will be reduced by the reference divider chain by the same factor $20 \times \log (R)$, where R is the total divider ratio.
For example, a crystal oscillator at 10 MHz may have phase noise of $-100 \mathrm{dBc} / \mathrm{Hz}$ at a 100 Hz offset. If this was then divided down to 100 Hz , you might assume that the phase noise at the divider output would be $-200 \mathrm{dBc} / \mathrm{Hz}$ from the above formula. But this would be incorrect, as the divider noise floor is unlikely to be below $-160 \mathrm{dBc} / \mathrm{Hz}$. For examples of divider and phase detector noise, see reference $1, \mathrm{p} 86$.
Outside the loop bandwidth the vco is uncontrolled by the loop - except for the unwanted reference frequency components which generate discrete sidebands. As a result phase noise reverts to that of the free running vco.
A loop with low reference frequency is used to obtain high resolution, and a low loop natural frequency suppresses reference frequency sidebands. But with such a combination, the phase noise may be too high to meet the designer's initial specification. Nothing can be done about this except to build a better vco.

Phase shift considerations

Spurious discrete sidebands have already been mentioned. These are generally caused by ref-
erence frequency leakage from the phase detector.
In an attempt to push the loop natural frequency higher, designers have come up with elaborate filtering schemes after the loop filter/integrator. These often take the form of twin-T notch filters tuned to the reference frequency and its second and even third harmonic.
These can be useful, but it is essential to consider the effect of the phase shift of these filters on the loop stability. This could be done using the MathCad document for the pll, by adding the s-plane transfer function of a twinT notch filter to loop filter function $F(\mathrm{~s})$.
Tuning time, which is the time to acquire phase lock after a new frequency has been programmed, is a very complicated parameter to analyse. This is because it involves non linear operation of the phase detector, with the loop initially slipping cycles during acquisition.
Phase detectors of the digital phase/frequency tristate comparator type will always acquire lock. Even if there is a large initial frequency difference, they always provide an output to pull the vco in the correct direction. They are almost always used in commercial single-chip digital synthesisers, although often an alternative phase detector is provided for use once the loop has locked.
Tuning time is always inversely proportional to the loop natural frequency. Some approximate formulae are given in Fig. 1.

Multi-loop synthesisers

To summarise, a single-loop synthesiser is simple and economical, but has serious performance problems when fine frequency resolution is required.
Many transceiver applications have fixed channel spacings of 12.5 or 25 kHz , and in these cases it is possible to design single loop synthesisers with vco frequencies up to 200 MHz with adequate performance.
The same applies to domestic radios where a

channel spacing of 9 kHz is used, in Europe , on the amplitude modulation broadcast bands, and a channel spacing of 100 kHz on the fm broadcast band. But what about a general coverage short wave receiver?
In this case the receiver will probably use up-conversion to a first intermediate frequency of 45 MHz , with a vco range of 45 to 75 MHz . At least 50 Hz resolution is required for ssb reception. A single-foop synthesiser will be terrible, as you can appreciate from the formulae provided.
The traditional solution is multi-loop synthesisers - synthesisers with mixers in the loop. These can be incredibly complicated. A circuit of an early Yaesu amateur transceiver is typical of Japanese transceiver design in the eighties. It uses four internal vcos - not including the output vcos - with four singlechip programmable divider/ phase detectors, five mixers, six fixed divider chips, and a mass of loop filters, low-pass, and tuned filters to try and control all the unwanted mixer products. To be fair to the Yaesu designers, current amateur transceivers use much simpler schemes, usually based on a direct digital synthesiser - dds - as part of a dual loop.
Direct-digital synthesis is a method of directly generating a sine wave output by accumulation of phase, table look up of the sine function, and reconstruction of the output with a d-to-a converter. Analysis of the dds would require another article, but it is not the universal solution to synthesiser design that some manufacturers of the chips might claim.
Due to the fast logic required - clock rates of at least four times the output frequency are required - and the fast d-to-a converter, prices of the chips are very high, around $£ 20$ to $£ 40$ for the dds chip, and about the same for the d-to-a converter. Spectral purity is a problem, especially if the output frequency is multiplied in a digital loop.

Fractional- N in practice

Figure 1 provides some insight into how the fractional- N technique works.
If the loop divider is changed at the end of each reference cycle, ie when the N counter overflows and reloads from its latch, the average value of N taken over many reference cycles may be made a non-integer value.
Frequency of the vco is still be given by $f_{\mathrm{vco}}=N \times f_{\text {ref }}$, but now N is no longer integer, giving us fractional frequency resolution.
As an example, if N is 100 , and $f_{\text {ref }}$ is 1 kHz , output frequency will be 100 kHz . If, every 10 reference cycles, N is changed to 101 for 1 reference cycle, the long term average of the loop divider will be $(9 \times 100+101) / 10=100.1$ and output frequency will be 100.1 kHz .
You may already have noticed the weakness of this idea. Assuming that a very-low loop natural frequency is used, the loop can be considered as if it were open. The vco is considered to be on exactly the correct frequency, ie 100.1 kHz .

Now, after the first reference cycle we will

```
Phase lock loop comparlson frequency fref = 10%. Integer part of loop divider N = 10
Fractional part of loop divider M =7. Accumulator modulus Modulo }=\mp@subsup{2}{}{8}\mathrm{ .
Correction DAC modulus DAC =2
```


Special vector function defintion that returns 1 if next entry
In vector is less than current entry, Serves to mark $\quad \operatorname{OVFL}(\mathrm{V}, \mathrm{j})=\mathrm{ir}\left(\mathrm{j}<0,0, \mathrm{i} f\left(\mathrm{~V}_{1+1}<\mathrm{V}_{\mathrm{j}}, 1,0\right)\right.$)
accumulator overllows. If index is <0, returns 0 .
Logic section to create vector of dinisors based on accumulator overfilow Order of these statements is important
$N_{D_{i+1}}=N \quad \quad N_{D_{i+1}}=i f\left(\right.$ OVFL $\left.(A, i)=1, N_{D_{i+1}}+1, N_{D_{i+1}}\right) \quad$ mean $\left(N_{D}\right)=10.027818$
Graphs of accumulator content and loop divisor

Create vactor of time errors due to non exact division.

$$
\mathrm{T}_{\text {error }_{\mathrm{i}+1}}=\mathrm{T}_{\text {error }}^{i}-\mathrm{T}_{\text {ref }}-\frac{\mathrm{N}_{\mathrm{D}}^{\mathrm{i}+1}}{} \mathrm{~F}_{\mathrm{VCO}}
$$

Create correction voltage from accumulator A.
Accumulator is truncated to no of DAC bits

Create error vollage vector at output of phase detector,
Phase detector constant assumed equal to 1.59
Note that correction voltage is assumed to be accurate to $5 \% \quad V_{\text {eror }}^{i}:=2 \cdot \pi \frac{e^{2}}{T_{\text {ref }}} 1.59-0.95$. Corr
Remove DC component from error voltage $\quad \mathrm{MV}=\operatorname{mean}\left(\mathrm{V}_{\text {error }}\right) \quad \mathrm{V}_{\text {eror }}=\overline{\left(\mathrm{V}_{\text {eror }}-\mathrm{MV}\right)}$
Graphs of time error, correction, and voltage error

Fourier transform of etror votage. Bin spacing $=\boldsymbol{f}$.REF/no of samples

mean(Rect) $=0.01245$
Left, simulation of the fractional-N loop with analogue correction. Right, a simple way to display the natural loop frequency. Component values in Fig. 2 for the fifth loop are entered as well as values for the loop divider (N), phase detector constant (K_{p}), and vco gain constant $\left(K_{v}\right)$. The MathCad document shows plotted graphs of closed loop gain and phase, forward gain, reduction of vco phase noise and loop filter response.

oop fixed parameters

```
op amp low frequency pole and open loop gan: }\mp@subsup{f}{0}{}=10\quad\mp@subsup{A}{0}{}=10000
loop fiter component values: R1=4700 R2 = 10000 Cl = 10. 1\mp@subsup{\sigma}{}{-9}\quad\mp@subsup{\textrm{C}}{2}{2}=.5\cdot1\mp@subsup{0}{}{-9}
Phase detector gain constant(volts per radian), Kp=159
VCO gam constant (radians per volt second), Kv= 50 10,
```



```
Loop division ratio, N}=1
Adational low pass pole(Hz), f}\mp@subsup{f}{\mathrm{ pole }}{}:=2000
Frequency sweep.
i. num \(=100 \quad \mathrm{r}_{\text {star }}=100 \quad \mathrm{r}_{\text {stop }}=1 \cdot 10^{\circ}\)
f
calculated values'
```


$\alpha(s)=\frac{K p \cdot K \cdot F(s)}{s}$	$H=\frac{1}{N}$	${ }^{1} \bmod =5.30516 \cdot 10^{-7}$	$\mathrm{t}_{1}=4.7 \cdot 10^{-5}$
$N(s)=O(s) \cdot H$	$B(s)=\frac{G(s)}{1-G(s)}$	${ }^{1} \text { pole }=7.95775 \cdot 10^{-7}$	$t_{2}=1.05-10^{\text {m }}$
$A(s)=G(s) \cdot H$	B(s) $\cdots \overline{1+G(s) \cdot H}$	${ }_{1} 0=0.01592$	13 =5.10

Pertormance graphs:
Modulus of closed loop gain

Phase of ciosed loop gain

Transfer function (output phase to reference phase)

have divided by 100 . The time required for the counter to overflow, and deliver the output pulse to the phase detector, will be $100 \times 1 / 100100$ or $999 \mu \mathrm{~s}$. The reference pulse or edge has a period of $1000 \mu \mathrm{~s}$. As a result, the first reference cycle has resulted in a time error of $I \mu \mathrm{~s}$ at the phase detector, the divider output appearing earlier. This corresponds to a phase error of 6.28 mrad .
The next reference cycle produces another incremental error of $1 \mu \mathrm{~s}$, giving a total error of $2 \mu \mathrm{~s}$. Errors build up until the tenth reference cycle, at which point a divide by 101 is carried out. Incremental error due to this division will be $-9 \mu \mathrm{~s}$, the divider pulse appearing later.
The total error is now zero. The error waveform is a sawtooth, with a peak-to-peak amplitude of just less than $1 / f_{\text {vco. }}$. In the example above, the range was from 0 to $9 \mu \mathrm{~s}$. In a real loop this would produce a net input to the loop integrator, and the phase of the vco would shift to ensure that the error waveform had no dc component.
The error waveform is a sawtooth with a period of 100 ms - 10 reference cycles - or a fundamental frequency of 100 Hz . This is equal to the gain in resolution of the loop. In order to filter out the error voltage, which would otherwise phase modulate the vco, it is necessary to reduce the loop bandwidth. As a result little is gained over using a loop with a reference frequency of 100 Hz in the first place.

Both cases are not quite the same, as in the
fractional loop phase comparisons are still at a 1 kHz rate. Also, the error voltage to be filtered out does not depend on the characteristics of the phase detector, as it does with reference frequency feed through.
Amplitude of the time error waveform is equal to the reciprocal of the vco frequency, and is proportional to $1 / N$. However, the loop will multiply the error voltage by its forward transfer function, which at low frequencies is equal to N. As a result the vco spurious sideband level will tend to be independent of N.

Cancelling error voltage

In order to make the fractional loop work properly, initially, some means of controlling the loop divider is needed to generate any required frequency increment. Secondly some means of cancelling out the error voltage in the loop is necessary.
Control of the divisor can be arranged by using an accumulator, with a phase increment added into it at the end of each reference cycle. When the accumulator overflows, the loop divisor is changed from N to $N+1$. Either a decimal or a binary modulus may be used. The value of the phase increment is called the fractional divider, or M. Output frequency is now ($N+M /$ modulus) $\times f_{\text {ref }}$.
This relationship can be verified by trying a few examples. If M is set to 1 less than the modulus, the accumulator will overflow on every reference cycle except 1 . The loop will
divide by $N+1$ for (modulus-1) cycles and then by N for 1 cycle.
Another situation that is of interest is when M is not a factor of the modulus. For example $M=7$ and modulus is equal to 100 . Now the accumulator will overflow on the fifteenth reference cycle, but will not contain zero. The time error waveform will be the sum of two sawtooths, one with a period of about fifteen reference cycles, and the other with a period of 100 reference cycles. The lowest frequency component will be $f_{\text {ref }}$ /modulus. If M is a factor of modulus, the lowest frequency will be $f_{\text {ree }} \times$ M/modulus.
Cancellation of the error voltage from the phase detector can be achieved easily since the contents of the accumulator can be considered as a binary - or decimal - integer exactly following the error waveform. Parallel output of the accumulator is fed to a d-to-a converter, its voltage is scaled appropriately, and it is added to the output from the phase detector. This exactly cancels the error voltage.
Now all the elements for the fractional- N synthesiser exist. Figure 3 gives a block diagram of one type of practical implementation based on discrete logic. Other implementations will be considered later.

Simulating analogue correction

Rather than analyse this circuit in detail in the text, it is easier to introduce the first of the two MathCad documents shown. This is a simulation of a fractional- N loop with analogue

Fig. 3. Basic fractional-n synthesiser with additional d-to-a converter for scaling the correction by $1 / \boldsymbol{f o u t}_{\text {out }}$.
correction. It should be fairly easy to understand to users of MathCad.
It is not possible to simulate a program loop with MathCad. Instead, the simulation must be made in a linear manner, proceeding from the start to the end of the document. The length of the simulation is set by the range variable ' i ', which must be a power of 2 so that the Fourier transform will work. The accumulator modulus is set to 256 , and the length of the simulation to eight complete cycles (2048).

Various vectors are generated, such as the vector of the accumulator contents and the vector of the loop divider. Most of these are illustrated by graphs. The effect of using a d-to-a converter to generate the correction voltage with a modulus less than that of the accumulator may be simulated. This is quite likely to be the case in a practical implementation of the synthesiser, when the accumulator modulus may be much greater than 256 .
The addition of the correction voltage to the phase detector output voltage is deliberately made in error by 5%. This is in order to make the rest of the document more interesting. Those of you with MathCad can verify that the correction does in fact exactly cancel the
error by changing the factor 0.95 to 1 .
The large graph is the Fourier transform of the error voltage as it is at the input to the loop filter. This graph does not directly predict the spectrum of spurious sidebands of the vco, as the error voltage will be modified by the loop forward transfer response.
The fractional frequency generated in this simulation is 2734.375 Hz . The major component of the error voltage is at this frequency and its harmonics. Smaller components are visible at spacing of 390.625 Hz which is $f_{\text {ref }} / 256$.
As the adjustment of the correction voltage. is very important for the elimination of spurious sidebands, it would be useful if there was a method of automatically balancing the error voltage to zero. This is in theory possible if we consider that the polarity of the error voltage will change if the correction is changed from too large to too small. As it stands the error voltage will always be balanced about 0 V to give the requirement that the input to the loop integrator has a mean of zero.
However if you synchronously rectify the ac error voltage using the most-significant bit of the accumulator, and then filter the resulting waveform, you get a de value proportional to
the unbalance of the correction. This may be used in a long time-constant feedback loop to correct the magnitude of the correction voltage. This idea is shown in Fig. 3, and is simulated in the last part of the document.
As I mentioned earlier, the magnitude of the required correction must be scaled by $1 /$ fout in order to keep the adjustment of the correction correct. This can be done by means of an additional multiplying d-to-a converter, Fig. 3.
This concludes the discussion of the fractional $-N$ loop operation. In a further article I will examine an important modification of the single accumulator fractional $-N$ loop which goes a long way to reducing spurious outputs - even without analogue correction.

References

1. Ulrich L., 'Digital PLL Frequency Synthesisers', Rhode, Prentice Hall. 2. William F. Edan, 'Frequency Synthesis by Phase Lock', Wiley.
2. Vadim Manassewitsch, 'Frequency Synthesisers, Theory and Design', Wiley. 4. Alain Blanchard, 'Phase Locked Loops. Application to coherent receiver design’

Programming Solutions

 Universal Programmer

 Universal Programmer
 - Uses standard pc printer port

 works with notebook and handbook $\mathrm{pc}^{\prime} \mathrm{s}$

- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc...
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Multi-Device Programmer

- EPROMs, E²PROMs, Flash EPROMs, Serial E²PROMs, PLDs, GALs, PEELs, EPLDs, MACHs \& WSI PSDs
Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Prices exclude VAT \& Delivery

Eprom Programmer
EPROMs, E2PROMs, Flash and $8748 / 51$ micros.
Fast programming algorithms. Simple colour menu operation.

EMULATORS • SIMULATORS • COMPILERS • ASSEMBLERS PROGRAMMERS • 80518085 Z8 $68020 \quad 77 C 82 \quad 80 C 552$ $320 C 25 \quad 68 H C 11 \quad 6301 \quad 6502 \quad 87 C 751 \quad 65816 \quad 280 \quad 6809$ PIC 7720 MIPS etc.

Designing cascade RC oscillators

Cascade RC oscillators are simple, stable, and offer very fast start up. David Griffiths explains how this long-established circuit configuration benefits from modern op-amp technology.

The new breed of dual op-amps with rail-to-rail output swing allows a very simple implementation of the $R C$ cascade oscillator.
In addition to the timing elements shown in Fig. 1, the cascade oscillator needs little more than three resistors and a single eight-pin IC, provided a stable supply voltage is available. Sadly, distortion performance is only around the $2-3 \%$ level - mainly third harmonic. However, those concerned with sensor instrumentation at fixed frequencies should welcome the following:

- Excellent stability of output amplitude, which is also highly predictable and has a very low temperature coefficient.
- Very stable timing relation, with ageing and

Fig. 1. In principle, the RC phase-retard cascade oscillator is similar to its CR phase-advancing counterpart.

Fig. 2. The common CR-network based cascade oscillator relies on phase advance.
temperature, between sine and square wave outputs, which is a boon in phase sensitive detection schemes.

- Almost instant start and settling characteristic, which allows burst operation of sensors to minimise battery power consumption.

The $R C$ cascade alternative

The above principles were expounded in Wireless World by L Nelson-Jones ${ }^{1}$. He concentrated not on the common high-pass $C R$ cascade, but on the less well known low-pass $R C$ scheme. As a re-cap, Nelson-Jones' introduction went along the following lines.
Figure 2 shows the more common cascade $C R$ phase advance oscillator. If the inverting gain of the amplifier exactly equals the attenuation of the cascade when it is giving 180° phase shift, then oscillations at that frequency will be sustained by this arrangement.
This still leaves the awkward problem of precisely controlling the gain to maintain stable oscillation amplitude. This could entail thermistor control, but then ambient temperature changes have a big effect on the amplitude, and it is difficult to avoid prolonged amplitude ringing at switch-on.
In my opinion, a Wien bridge oscillator with thermistor gain control beats this approach hands-down - especially if the amplification is arranged as virtual earth amplifiers giving ultra-low distortion as in the elegant scheme due to John Linsley Hood ${ }^{2}$.
Alternatively, gain control in Fig. 2 can be exercised with oscillation amplitude sensing or rectification. The ensuing voltage is then applied to vary the channel resistance of a fet used in the feedback path controlling amplifier gain. In my experience, this approach always seems to give more amplitude temperature coefficient than initially expected, as
well as increasing distortion.
The necessary 180° phase shift in the cascade can be equally well achieved via phase retardation generated by interchanging the positions of R and C to give Fig. 1. Again, the same less than ideal schemes could be used to try to control the gain at the critical value to maintain oscillation amplitude stability. However, Nelson-Jones' insight was that, if you primarily want amplitude stability and can bear some distortion, then it is much better to run the maintaining amplifier as near as possible as an ideal limiter.

Cascade transfer characteristics

Assuming that the maintaining amplifier is not clipping and has infinite input impedance combined with zero output impedance, the analysis is as shown in the equations panel. This gives mesh equations for both types of cascade.
In the phase retard case, if the cascade is driven at angular frequency ω at amplitude V_{1}, then the output amplitude V_{2} is related by,

$$
\begin{equation*}
V_{1}=V_{2} \cdot\left\{1-5 \alpha^{2}-j\left(\alpha^{3}-6 \alpha\right)\right\} \tag{1}
\end{equation*}
$$

where $\alpha=\omega R C$ and $j=\sqrt{ }-1$. When $\alpha=\sqrt{6}$, the imaginary term is zero and $V_{1}=-29 \times V_{2}$, showing the phase shift is 180°. Angular oscillation frequency is therefore $\omega=\alpha / R C$. That is, the phase retard $R C$ cascade oscillator will ideally oscillate at a frequency ' f ' given by,

$$
\begin{equation*}
f=\frac{\sqrt{6}}{2 \pi R C} \tag{2}
\end{equation*}
$$

As an aside, in the case of the phase advance cascade, the expression for the frequency at which the imaginary term is zero has the $\sqrt{6}$ on the bottom line. Despite this six-fold difference in frequency for the two configurations using the same R and C values, attenua-
tion at the 180° phase shift condition is again -29 , as expected from symmetry considerations.
Substituting $2 \alpha, 3 \alpha, 4 \alpha$ and 5α into equation (1) allows the attenuation to be calculated for the second, third, fourth and fifth harmonics of the oscillation frequency. This yields attenuation factors of 148.1, 443.6, 1004 and 1916 respectively, and shows a misprint for the third harmonic figure in the original article. This gives an attenuation of $5.1,15.3,34.6$ and 66.1 respectively compared to the attenuation of the fundamental at which oscillation can occur. These figures agree with those calculated by Nelson-Jones.

The ideal case

It is now appropriate to consider the ideal case where the inverting amplifier of Fig. 1 is given infinite gain and behaves as an ideal limiter with its output voltage only at one or other of two levels. The phase-retard $R C$ cascade is as a result driven with a square wave and the question arises as to the waveform that emerges from it. Using the harmonic attenuation factors calculated above and expressing the driving waveform as a Fourier series of harmonically related sinusoids, the output waveform can be calculated as follows.
Orthogonality of sines and cosines when integrated over a complete cycle means that a square wave of amplitude ' A ' can be represented by the Fourier series,
$\frac{4}{\pi} \cdot A \cdot\left[\sin \theta+\frac{1}{3} \cdot \sin 3 \theta+\frac{1}{5} \cdot \sin 5 \theta+\ldots\right]$

Fig. 3. With modern rail-to-rail-swing op-amps, this amplitude-stabilised RC oscillator achieves a sine-wave output of around 3.2 V pk-pk from a 5 V supply. Square-wave output is in antiphase relative to the sine wave.

This means that if the amplifier in Fig. 1 were ideally limiting between 0 V and +5 V supply voltage, then the amplitude of the fundamental harmonic contained 'in' the square wave is $4 \times 5 / \pi=6.37 \mathrm{~V}$. The fact that it should be greater than the swing permitted by the available power-supply voltage is intriguing.
An unforeseen time constant in an amplifying chain can knock the corners off fast rising edges. Knowing this, you might imagine that the corners just get progressively rounded off as the limited waveform progresses down the cascade. However, it does not happen like this because the repetition rate of the square wave is fast compared to the cascade time constants.
At the first capacitor down the chain you can see only a spiky sequence of exponential rises and falls, without any 'flat bits' left from the square wave. The waveform on the second capacitor is remarkably close to being triangular. As a result, it is initially surprising that
an oscilloscope shows a presentable sine wave at the end of the cascade.
The Fourier series shows that in the ideal case the third harmonic is the lowest distortion component that would be present and would have a third of the magnitude of the fundamental harmonic. We have already established that this third harmonic is subject to 15.3 times more attenuation in the cascade than the fundamental. As a result the third harmonic at the output only contributes 1 part in 45.9 to the signal, ie a distortion level of 2.18%. Calculation gives a fifth harmonic level of 0.3%, with relatively negligible amounts of higher harmonics.

Implementating the design

Because of the attenuation in the cascade and the need for it to be lightly loaded, a buffer amplifier is needed as well as the limiter. These could both be driven in parallel by the

RC Cascade oscillator performance

Measurements on a number of units oscillating at about 400 Hz and using the LMC660 and AD822 op-amps have shown an ac amplitude temperature coefficient around the $10-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ level. This occurred over excursions of $25^{\circ} \mathrm{C}$ above and below ambient temperature, in addition to that imposed by the tempco of the supply voltage. As a result, for many measurement situations, there is no need to use ratiometric techniques to compensate for drifts in the carrier amplitude. This
allows you to base an adequately stable calibration on simply measuring the output voltage from a sensor.
As might be expected from the toggled nature of the driving waveform and passive shaping, the circuit start-up and settling are very rapid indeed. At switch-on, the uncharged timing capacitors hold the output of I_{1} low, ensuring that the limiter output goes high.
After a delay of about one and a half oscillation periods, output of $I C_{1}$ is high enough to toggle the limiter and the oscillation cycle
starts. Observations on an analogue oscilloscope suggest that after two further cycles the amplitude has settled to within 1% of its final value. This gives a total start-up time of around three cycles.
At frequencies up to about 1 kHz , this circuit shows remarkably good constancy of phase relation between the sine and square wave outputs without having to use a comparator for $I C_{2}$. As a result a space saving dual op-amp can be used.
An AD822AN based oscillator, again running at
about 400 Hz , was carefully examined in this respect. It showed less than 0.2° shift change between the sine and square waves for a $30^{\circ} \mathrm{C}$ rise in circuit temperature above ambient. Similarly good longterm stability can be expected, making this oscillator useful for applications with phase sensitive detection.
Since expected distortion is not good, examination of this aspect has been limited to using a passive Tee to filter out the fundamental and check that amplitude of the residue is consistent with the theoretical predictions.
cascade output, but it seems better to drive the limiter from the buffer amplifier. This increases the overdrive to speed up the transitions, Fig. 3.
A single supply voltage rather than dual is shown because positive line regulators or references tend to have better constancy of output than their negative line counterparts. This is important in maintaining the ac amplitude stability which is a prime feature of this oscillator.
Op-amp $I C_{2}$ performs the limiting function and must have an output which can swing to within a few millivolts of its supply voltages. Resistors $R_{2,3}$ are of equal value and as a
result fairly closely establish the mid-point voltage between these output limits. If these resistors are 1% tolerance, then the tolerance on the mid-point voltage is also 1% - as the resistors are equi-valued. This is more than good enough in view of other imperfections in the circuit.
My first reaction was to decouple the midpoint of $R_{2,3}$ to 0 V with a large capacitor to provide a low impedance reference voltage. But the resistance of R_{1} in parallel with R_{2} can be used to define the appropriate gain needed in the buffer amplifier - as well as generating the correct reference voltage for the limiter. This also ensures dc coupling round the oscil-

Cascade oscillator equations

The generalised cascade gives the following mesh equations:

$$
\begin{align*}
& V_{1}=I_{1}\left(Z_{1}+Z_{2}\right)-I_{2} Z_{2} \tag{3}\\
& 0=-I_{1} Z_{2}+I_{2}\left(Z_{1}+2 Z_{2}\right)-I_{3} Z_{2} \tag{4}\\
& 0=I_{2} Z_{2}-I_{3}\left(Z_{1}+2 Z_{2}\right) \tag{5}
\end{align*}
$$

Adding equ.(3) $\times Z_{2}$ to equ.(4) $\times\left(Z_{1}+Z_{2}\right)$ eliminates I_{1}, yielding,
$V_{1} Z_{2}=I_{2}\left\{\left(Z_{1}+2 Z_{2}\right) \cdot\left(Z_{1}+Z_{2}\right)-Z_{2}{ }^{2}\right\}-I_{3} \cdot Z_{2}\left(Z_{1}+Z_{2}\right)$
Substituting l_{2} from equ.(5) into equ.(6), and putting,
$I_{3}=\frac{V_{2}}{Z_{2}}$
eventually yields :
$V_{1}=V_{2}\left\{\left(\frac{Z_{1}}{Z_{2}}+5\right)\left(\frac{Z_{1}}{Z_{2}}\right)^{2}+6 \frac{Z_{1}}{Z_{2}}+1\right\}$
In the CR phase advance cascade, Fig. $1, Z_{1}$ is given by C at angular frequency ω and Z_{2} by R, yielding,
$V_{1}=V_{2}\left\{1-\frac{5}{\omega^{2} C^{2} R^{2}}+\frac{j}{\omega C R}\left(\frac{1}{\omega^{2} C^{2} R^{2}}-6\right)\right\}$
The imaginary term is zero when $\omega=\frac{1}{R C \sqrt{6}}$, giving $V_{1}=-29 V_{2}$.
In the RC phase retard cascade of Fig. 1,

$$
\begin{equation*}
V_{1}=V_{2}\left\{1-5 \omega^{2} R^{2} C^{2}-j \omega R C\left(\omega^{2} R^{2} C^{2}-6\right)\right\} \tag{9}
\end{equation*}
$$

Writing $\alpha=\omega R C$, the phase shift θ given by,
$\tan ^{-1} \theta=-\left(\frac{\alpha^{3}-6 \alpha}{1-5 \alpha^{2}}\right)$
indicating 180° phase shift when,
$\omega=\frac{\sqrt{6}}{R C}$.
lator loop, enabling the circuit to be used down to low frequencies limited only by practical values for timing resistors and capacitors.
As we have already calculated that the amplitude of the fundamental component driving the cascade is 6.37 V , and know that it is attenuated by a factor of 29 in the network, the buffer amplifier is presented with a signal of $0.22 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$. With R at $100 \mathrm{k} \Omega$ and R_{1} and R_{2} at $15 \mathrm{k} \Omega$, gain of the $I C_{1}$ stage is 14.3 , giving a sinewave output of $3.2 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$.
Because of the gain of the $I C_{1}$ stage and the comparatively high resistor values used, care needs to be taken to reduce unintentional capacitive coupling from the square wave to the input of $I C_{1}$. If this is not done, the sinewave output will be adorned with spikes where the limiter toggles. A sensible layout, with a grounded pcb trace to guard this fed back voltage, is all that is needed.
If output from the cascade is $0.22 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$, then the junction of R_{2} and R_{3} must be going up and down by the same amount. This would seem at first sight to be a hopeless reference voltage for the limiter. However, when output of the cascade is in mid-excursion it must ideally be at +2.5 V , since it is fed by a $1: 1$ squarewave of amplitude 5 V . Under these conditions, no current will flow in R_{\mid}since the junction of R_{2} and R_{3} is already at +2.5 V by virtue of the current flowing through these resistors from the supply line. This is exactly the correct condition to toggle the limiter.

Op-amp criteria

Since load on $/ C_{2}$ is greater than $100 \mathrm{k} \Omega$, it is likely that any op-amp with rail-to-rail output capability will limit its output within some 10 mV of 0 V and +5 V under these conditions. As a result, it would be satisfactory in this respect. However, $I C_{2}$ also needs to come out of saturation quickly from either limit and to slew rapidly in either direction at the same rate.
The new (dual) $A D 822 A N$ seems a good choice in these respects, but the older (quad) LMC660C has worked well in a production run. As for the +5 V regulator, there is much to be said for the LP2950ACZ-5.0. Housed in a TO-92 package, this inexpensive low-drop out type offers $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical temperature coefficient. It is however essential to remember to decouple its output as detailed in the data sheet.

Considerations for higher frequencies

 With performance at frequencies where the propagation delay in $I C_{2}$ becomes significant compared to the cycle time, it should be noted that this delay is equivalent to a phase lag. As a result the cascade does not need to produce a full 180° phase shift to satisfy the Barkhausen criterion for oscillation that there be 360° phase change round the complete feedback loop. This means oscillations will always occur at frequencies somewhat less than that predicted by equation (2).Accordingly, attenuation of the fundamental through the cascade will necessarily be somewhat less than the value of 29 implied by
equation (1) and give more output swing from the buffer amplifier than might otherwise be expected.
With an $A D 822 A N$ at frequencies up to about 500 Hz , discrepancies from the ideal due to circuit delays are not large. At 400 Hz the sinewave output amplitude is about 5% larger than given by simple theory with about a 5° shift between the sine and square waves. However, as noted earlier, the temperature coefficient of the amplitude and phase shift is still admirably low
With timing element R at $30 \mathrm{k} \Omega$ and C at 1 nF , oscillation occurs at about 10 kHz . However, the phase shift between sine and square waves is now such that in a phase sensitive detection scheme you would have to use a separate comparator to generate a good switching reference from the sinewave.
Time delay around the oscillation loop produces an equivalent phase shift such that oscillation occurs at only 75% of the frequency given by equation (2) and the reduced attenuation through the cascade gives some 75% greater output than at low frequency, requiring that R_{1} be reduced to about $68 \mathrm{k} \Omega$. While these figures are consistent with the (awkward) equations, it is much easier to do a bit of trial and error under these conditions rather than try to calculate the degree of trimming needed.
With this degree of non-ideality, you might expect the amplitude temperature coefficient
of the output to be very poor. But while it is worse than at low frequencies it is still acceptable for many applications. Output of a trial unit with an AD822AN increased by just 1% for a temperature rise of $30^{\circ} \mathrm{C}$ above ambient, ie about $0.03 \% /{ }^{\circ} \mathrm{C}$. At 25 kHz this only increased to about $0.06 \% /{ }^{\circ} \mathrm{C}$.
Because of the dc coupling in the amplitude maintaining and stabilising loop, operation down to very low frequency is possible. With timing element R at $10 \mathrm{M} \Omega$ and C at $2.2 \mu \mathrm{~F}$, the resulting oscillation period of 60 s is probably near the practical limit, as electrolytic capacitors can not be used because of their leakage currents.
Start-up and oscillation at this frequency, Fig. 4, was captured with a logging dvm and can be seen to be as described for audio frequency operation. Sinewave amplitude and frequency were well within the limits set by the 1% resistor tolerances and the precision of measuring and selecting equi-value timing capacitors. This is no surprise since the opamps behave close to the ideal under these conditions.
If the oscillator output must be symmetrical about 0 V , this is easily achieved by using dual $\pm 5 \mathrm{~V}$ supplies, albeit with a reduction in the amplitude temperature cofficient, as discussed earlier. Increased swing now required from the limiter takes longer with the slew rate of a given op-amp. This somewhat increases delay

Fig. 4. Start-up characteristic of a 60 s period RC cascade oscillator demonstrates extremely fast stabilisation.
around the maintaining loop and, as a result, the errors arising from this mechanism.

Acknowledgements to the directors of Chelsea Instruments for their permission to publish this work.

References

1. L. Nelson-Jones. Wireless World, p536-539, November 1965.
2. J. L. Linsley Hood. Wireless World, p51-53, May 1981.

Data Acquisition for your PC

Pico's Virtual Instrumentation enable you to use your computer as a variety of

Audio power with a new oop

In Marcel van de Gevel's high-performance power amplifier, quiescent current is stabilised via feedback, using a non-linear common-mode loop.

n a conventional class (A)B amplifier, quiescent current through the output devices depends on temperature differences between the output devices and a temperature sensor. The temperature sensor is usually mounted on a heat sink.
Due to thermal resistance from the output devices to the heat sink, and thermal capacitance of the heat sink, there are large differences in temperature after a sudden change in power dissipation. Hence, quiescent current of an audio amplifier changes every time the music volume changes. Non-optimal quiescent current causes extra distortion known as transient crossover distortion ${ }^{1}$.
Designers of operational amplifiers sometimes use a different technique for class (A)B biasing known as non-linear common-mode loop, or class-AB control loop ${ }^{2}$. However, circuits described in reference 2 , and in many other articles, are not suitable for a discrete amplifier. This is because they use IC techniques like emitter-area scaled transistors.
With a different kind of non-linear network,
however, it becomes possible to use non-linear common-mode loops in an almost wholly discrete audio power amplifier. With this technique, thermal problems like thermal runaway and transient crossover distortion can be avoided as can quiescent current adjustment.
Further, the technique can be applied to common-emitter or mixed common-emitter/common collector output stages, or their mos equivalents.

Designing the output stage

A simplified schematic of the output stage is depicted in Fig. 1. Voltage source V_{1} produces about 10 V above the output voltage, so that the gate of $T r_{13}$ can swing above the positive supply rail.
The circuit may seem rather asymmetrical, having a source follower for the positive side of the signal and a common source stage for the negative side. However, both mosfets are current driven. Under current drive, source followers and common source stages behave almost identically, Fig. 2.

Fig. 1. Simplified output stage of a power amplifier incorporating a non-linear common-mode loop. The circuit may look
asymmetrical, but the source follower and common-source stages behave similarly when current driven.

The class-AB control loop - a non-linear common-mode loop - consists of a non-linear network around $T r_{21,22}$, and $T r_{24,25}$, a current mirror with two outputs $\operatorname{Tr}_{15-18}$ and output mosfets $T r_{12,13}$.

When current through $T r_{13}$ or $T r_{12}$ becomes too small, the current through $T r_{21}$ or $T r_{24}$ increases respectively. Gates of both mosfets are charged by the current mirror until both currents are again large enough. When the currents through both mosfets become large símultaneously, currents through $T r_{21}$ and $T r_{24}$ become small.
Now, the bias currents of the previous stage are larger than the currents through the current mirror and the gates of both mosfets are discharged until the smallest current becomes small enough. When currents through the mosfets are of the same order of magnitude, they both have an influence on the non-linear network and a smooth transition from one output device to the other is realised.

Quiescent current is about 100 mA . When the current through one output device is large, current through the other device is still about 45 mA , indicating that my amplifier is clearly a non-switching type.
The influence of the class- AB control loop on the difference between the drain currents of $T r_{12,13}$, and thus on output current, is kept as small as possible by always driving both mosfets equally. When the current through one mosfet is at its minimum, and the normal dif-ferential-mode loop tries to discharge its gate further, the common-mode loop responds by increasing the currents through the current mirror.

The gate of the other mosfet now charges quicker than it would have had current through the mirror not increased. In other words, the drive current of one output mosfet is passed on to the other when this is necessary. In this way, sudden changes in gain similar to the g_{m}-doubling effect - are prevented.
Components $C_{\text {cmpl-4 }}$ and $R_{\text {cmpl-2 }}$ improve stability of the non-linear common-mode loop.

Amplifier circuitry

One channel of the amplifier is shown in Fig. 3, and the protection circuit and power supply in Fig. 4. I built a stereo amplifier, consisting of two channels with a common protection circuit and power supply. Output mosfets of both channels are mounted with electrical insulation on a $1 \mathrm{~K} / \mathrm{W}$ heat sink.
In the protection circuit, $T r_{37}$ has its own star-shaped heat sink, $60 \mathrm{~K} / \mathrm{W}$ or less. The other transistors do not require heat sinking. A modified bootstrap network comprising R_{25}, $D_{14,15}$ and C_{10} corresponds to V_{1} in Fig. 1.

In order to keep the current controlled during clipping, recovery from clipping, slewing, switch-on and switch-off, the gates are always discharged when currents through the current mirror are small. For this reason, $R_{12,14}, D_{8}$ and R_{33} and R_{24} have been incorporated into the circuit.
An anti-saturation circuit comprising Tr_{14} and $D_{18,19}$ prevents saturation of the current mirror. Without this circuit, a 5 A current spike flows through $T r_{13}$ and $T r_{12}$ for a few microseconds during recovery from clipping.
The normal differential-mode feedback loop
consists of the differential pair $\mathrm{Tr}_{2,3}$, phase splitter $T r_{9}$, common base stages $T r_{10,11}$, output mosfets $\operatorname{Tr}_{12,13}$ and the feedback network comprising $R_{4,5}$ and C_{5}.

Major poles in the loop

Without frequency compensation, the normal feedback loop has three major poles, ie poles that have an important influence on high-frequency behaviour. Circuits can have several major poles, sometimes referred to as dominant poles. However, this can cause confusion as 'dominant pole' is often used to describe the very lowest pole ${ }^{5}$.
Capacitances between the bases and emitters of $\boldsymbol{T r}_{2,3}$ and $\boldsymbol{T r}_{9}$ contribute two major poles. In the output stage, the high-frequency transfer is mainly determined by the gate to drain capacitance - the third major pole. This capacitance acts as a Miller capacitor, causing open-loop output impedance to drop to a few ohms. It also makes the high-frequency transfer of the last stage less sensitive to the widely varying transconductance factor of the output mosfets.

In theory, the three major poles could be moved into their desired positions - for example, three equal negative real poles or third-order Butterworth positions - with two compensation networks ${ }^{6}$. Unfortunately, simulations with a pole-zero extraction program and a root locus program show that the influence of all the non-major poles and zeros together is too large. As a result, a less subtle approach is necessary.
Heavy pole-zero compensation in the second stage comprising L_{1}, R_{13} and C_{7} reduces the number of major poles to two. This is

> Fig. 2. By redrawing the circuit and applying a Blakesley transformation, the source follower on the left is shown to be equivalent to the common source stage with the extra current source on the right. As long as the current gain factor of the mosfet is much larger than unity, the influence of the extra current source is negligible.

Mosfets versus bipolar transistors

Mosfets are used because of their typically large current-gain factor and good high-frequency behaviour. Readers who have read Self's article on mosfets and bipolar transistors ${ }^{3}$ might think it foolish to choose mosfets, so I shall explain why his arguments do not apply in this case.
As Self correctly points out, mosfets have a lower transconductance than bipolar transistors - a major disadvantage in some circuits. However, the transconductance does not matter much when the output devices are current driven, as they are in my circuit. Current gain on the other hand has a direct influence on loop gain, and should be large.
Self also says that the sudden transition from a zero to a quadratic voltage to current transfer gives nasty corners in class-B gain plots. However, whether the voltage-to-current transfer of the output devices starts in a smooth way or not does not matter in my circuit. Output devices do not determine how the current is divided between the two sides of the output stage.
Further, the voltage-to-current transfer of a real mosfet starts
in a much smoother way than the voltage to current transfer of a PSpice power mosfet. Designers of low-power mos circuitry know that mosfets do not switch abruptly from an 'off-state' to the quadratic, strong inversion, region.
At low gate-source voltages, mosfets are in the so-called weak inversion or sub-threshold region, where gate-source voltage to drain current transfer is exponential ${ }^{4}$. As gate-source voltage rises, the mosfet's transfer gradually changes from exponential to quadratic. The range where the transfer is neither exponential nor quadratic is known as the moderate inversion region.
For example, measurements of a BUZ71A power mosfet show that the mosfet is in weak inversion from below $1 \mu \mathrm{~A}$ up to about 10 mA . The mosfet is in moderate inversion from about ten to a few hundred milliamps. PSpice simulation of an IRF240 mosfet using a PSpice library file shows no weak or moderate inversion regions at all, which is physically impossible. Unfortunately, there is no BUZ7IA model in this library.

ANALOGUE DESIGN

achieved by covering the pole of the first stage and lowering the bandwidth. Capacitor C_{5} generates a zero in the feedback network which pulls the root locus well into the left half plane. In the closed-loop response the two major poles almost end up on the negative real axis.
Output filter L_{2}, R_{47} and $C_{13}{ }^{7}$ decreases the influence of strange load impedances and suppresses spurious high-frequency signals picked up by the loudspeaker leads. The input filter formed using $R_{1,2}$ and $C_{1,3,4}$, suppresses high-frequency signals and prevents slew-rate limiting when the amplifier is subjected to unrealistic test signals like square waves. The response of this filter is approximately a second-order Butterworth one, with a cut-off frequency around 140 kHz .
Experimentation has shown that the amplifier is stable with an 8Ω load, a loudspeaker load and an unrealistic but often used $8 \Omega / / 2 \mu \mathrm{~F}$ test load.
The circuit around the TL071 is a dc bias servo loop, which gives a sec-ond-order Butterworth high-pass response with C_{2} and R_{3} - at least when output impedance of the preamplifier is zero. Damping of the response increases when output impedance is not zero.

Protection network

The circuit around $\operatorname{Tr}_{19,20}$ is a simple protection network. When output current is greater than about 10 A , this thyristor-like structure triggers and turns off the output stage. It remains turned off until the amplifier is switched off for around thirty seconds and then switched back on again.
The collector of Tr_{2} connects to another protection circuit, Fig. 4, which responds if current through T_{2} is less than a quarter or greater than three quarters of the tail current. This will only occur if the amplifier is clipping or if the amplifier has broken down, otherwise feedback keeps the signal levels small.
Transistors $\operatorname{Tr}_{27-32}$ comprise a dual current window comparator - dual, because both channels of a stereo amplifier have one common protection circuit. If current through $T r_{2}$ has a too large or small a value for longer than about $20 \mathrm{~ms}, C_{15,16}$ discharge, the output relay switches off and three-

Fig. 3. Entire schematic of one channel of the non-linear common-mode loop power amplifier.
colour led D_{36} turns red. This process protects the loudspeakers and provides a warning.
When the amplifier clips, the three-colour led emits yellow/orange light for about a second. If it clips severely for prolonged periods, the output relay turns off and the led turns red. This is done because the harmonics generated by the clipping amplifier are not good for the tweeters. A few seconds after the volume of the signal is reduced, the output relay turns on again and the led turns green.
As usual, protection circuitry prevents switch-on and switch-off plops from reaching the loudspeaker. The time needed to charge $C_{15,16}$ determines the switch-on delay with R_{68} and C_{14} the switch-off delay.

Measurement results

Total harmonic distortion at 10 kHz and 16 W into 8Ω - about 80% of maximum power was measured to be about 0.006%, dropping to 0.0025% at 10 W . The -3 dB points of the
frequency response were about 1.1 Hz and 143 kHz .
A simplified Quad/Baxandall-like subtractive test ${ }^{8,9}$ showed that the distortion on a real music signal was much smaller than 0.1%. With these methods, the desired signal can be attenuated without attenuating noise and distortion. With about 60 dB suppression of the signal, the residue still sounded like music rather than distortion so the distortion level must be well below -60 dB or 0.1%.

References

I. T. Sato, K. Higashiyama and H. Jiko,
'Amplifier transient crossover distortion resulting from temperature change of output transistors', AES preprints for 72nd convention, Oct 1982 2. Johan H. Huijsing and Frans Tol, 'Monolithic operational amplifier design with improved HF behavior', IEEE Journal of Solid-State Circuits,
vol. SC-1i, no. 2, Apr 1976.
3. Douglas Self, 'Fets versus bjts the linearity competition', EW+WW, May 1995, pp. 387-388 4. Yannis P. Tsividis and Ken Suyama, 'Mosfet modeling for analog circuit CAD: problems and prospects', IEEE Journal of Solid-State Circuits, vol. 29, no. 3, pp 210-216, Mar 1994
5. D. Self, private communication, 1995
6. Ernst Nordholt, 'Design of high-performance negative-feedback amplifiers', Elsevier, Amsterdam, 1983, republished by the Delftse Uitgevers Maatschappij, Delft, 1993
7. A. N. Thiele, 'Load circuit stabilizing networks for audio amplifiers', Journal of the Audio Engineering Society, Vol. 24, no. 1, Jan/Feb 1976, pp. 20-23, published earlier in Proceedings of the MEE Australia, vol. 36, no. 9, September 1975, pp 297-299
8. A. R. Collins, 'Testing amplifiers with a bridge', Audio, Vol. 25, Mar 1972, pp 28, 30 and 32 9. P. Baxandall, 'Audible amplifier distortion is not a mystery', Wireless World, Nov 1977, pp 63-66

|f you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Please supply \qquad copies of INTERFACING WITH C copies of
Please supply \qquad Disk containing all the example listings $£ 15.00$

Remittance enclosed $£$ \qquad
Interfacing with C can be obtained from Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to
Reed Business Publishing Group Ltd
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad

POST CODE \qquad
DATE \qquad TELE \qquad

SIGNATURE

SuperFILTER synthesizes Active, Passive and Digital FIR\IIR filters and ports to SpiceAge for
 Windows ${ }^{T M}$ for a complete analysis.

Super FILTER Version 3 for Windows provides the following features.

1. Choice of specifying parameters for desired response includes gain \& phase coordinates, graphical (mouse tracing response), poles and zeroes in S and Z planes and Laplace transfer function coordinates.
2. No order limits of cascaded filters - applies to digital, active and passive types.
3. Types available include Butterworth, Chebyshev, Elliptic, Bessel, Realpole, Gaussian, Linear phase, Inverse Chebyshev, Digital Hilbert FIR, Differentiator, Raised cosine, Squared root raised cosine of LPF, HPF, BPF, APF, Notch filters.
4. Minimum specification of suitable op amps for achieving active filter performance.
5. Analysis of components' sensitivity using Monte Carlo method for analogue filters.
6. Analysis of effect of register characteristics on digital filters and D to A converters.

7. Analysis of inductor losses for passive filters.
8. Defining digital FIR filters by gain using the Remez Exchange algorithm.
9. Supports behavioural modelling within SpiceAge for Windows synthesizing more than 150 topologies
10. Graphic display of the realized versus the ideal filter with best fit options taken from a comprehensive fand user controllable) library of preferred component values.
"This is a stunning program that will save and save again."
For further details and demonstation disk, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969, CompuServe 100550, 2455.
CIRCLE NO. 122 ON REPLY CARD

RADIO MODEM

\star MPT 1329 licence exempt.
\star Range $10-20 \mathrm{~km}$ in free space or 1 km in buildings.
\star Half duplex asynchronous transmission at 4800/ 9600 bits/sec.
\star Serial interface with baud rates of 1200,2400 , 4800 and 9600.
\star 4K of buffer memory.
\star Predictor/corrector error checking.
\star Automatic repeater mode to extend range.
\star Station addressable.

- Analogue and digital interfaces.
\star Low power battery operation.

Warwick Industrial Electronics Ltd The Manor Aston Flamville Leicestershire

Tel: 01455233616 Fax: 01455233179

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Hf-to-vhf converter

T
This converter, added to a multimode amateur 2 m transceiver, forms an economical method of receiving hf signals.
Design is conventional in form. A single-transistor local oscillator and frequency tripler provides the 140 MHz to the mixer; almost any small-signal vhf bipolar transistor
could be used here, but the BFX44 worked well in the original circuit. Correct adjustment of L_{1} and the 1040 pF trimmer to resonate at 140 MHz is crucial
Again, almost any dual-gate mosfet will work in place of the BRF84 as the mixer. Since the receiver used has a narrow-band front end, mixer
output needed no tuning and was successful in spite of much 7 MHz activity in the evenings. If necessary, either an 8 MHz low-pass filter or a $4-6 \mathrm{MHz}$ tuned circuit should be suitable.
Peter Parker (VK1PK)
Garran, ACT
Australia

Simple converter to allow reception of hf signals on a twometre transceiver.

YOU COULD BE USING A IGHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Surplus always wanted for cash!
 LOW COST PC's
 SPECIAL BUY
 AT 286
 $40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram

LOW COST 486DX-33 SYSTEM
Many other options avalable - call for details. £399.00
$51 / 4^{\prime \prime}$ or $31 / 2^{\prime \prime}$ from only £18.95!
present prime product al industry beating low prices! All units (unless
stated) are BRAND NEW or removed from often brand new equil
HARD DISK DRIVESdrive with Industry standard SMD Intefface. Ulitra hi speed
trans fer and accesss times, replaces Fulitsu equivalent model.

Only	525.00 (E)
31/2" FUJI FK-309-26 20 mb MFM I/F RFE	£59.95 (C)
31/2" CONNER CP3024 20 mb IDE I/F (or equiv)RF	£69.0
$31 / 22^{\text {c }}$ CONNER CP3044 40 mb IDE I/F (or equiv.	£69.
$31 / 2$ " RODIME RO3057S 45 mb SCSI I/F (Mac \& Acorn)	¢99
$31 / 2^{\prime \prime}$ WESTERN DIGITAL 850 mb IDE I/F Brand New	£185.0
$51 / 4$ MINISCAIBE 342520 mb MFM IIF (or equiv.)	£ 49
SEAGATE ST-238R 30 mb RLL I/F Refurb	£69.
$5 \%^{\circ}$ CDC $94205-5140 \mathrm{mb} \mathrm{HH}$ MFM I/F RFE tested	
	£195

THE AMAZING TELEBOX

DC POWER SUPPLIES

Virtually every type of powe

 supply you can imagine. Over
IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK VIDEO MONITOR SPECIALS
One of the highest specification - monitors you will ever see Mitsubishi FA3415ETKL 14" SVGA Multisync colour monitor with fine

LENT ititle used condtion.
Tin \& Swivel Base $£ 4.75$

Extemal cables for other types of computers CALL

5000 Monitors from stock !!!
HERCULES, EGA, CGA, VGA, SVGA - 6 to 26 "

+ Many special items - CALL with your needs !

Just In - Microvitec 20" VGA (800 x 600 res.) colour mo
Good SH condlition - from $£ 299$ - CALL for Info
PHILIPS HCS35 (same style as CMB833) attractively styled 14 colour monitor with beth RGB and standard composite 15.625
Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses.
Will connect direct to Ampga and Atari BBC computers. Ideal for ail video monitoring / securlty applications with direct connectlon
to most colour cameras. High quality with many features such as used condition- fully tested - guaranteed Only £95 (E)
Dimensions: W14 \times H1234 $\times 15 / 2^{2} \mathrm{D}$.
PHILIPS HCS31 Ultra compact 9 " colour video monitor with stan-
dard composite 15.625 Khz video input via SCART socket. Ideal dard composite 15.625 Khz video input va SCART socket. Idea
for all monitoring / security apolications. High quality, ex-equipmen fully tested \& guaranteed (possible minor

Only £79.00 (D)

Only £125 (E)
20" $22^{\prime \prime}$ and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors,

 complete win Pation tid EXCELLENT Iitlo used condition with full 90 day guarantee
20"....£135 22"....£155 26"....£185 (F)

SPECIAL INTEREST ITEMS

2 kW to $400 \mathrm{~kW}-400 \mathrm{~Hz} 3$ phase power sources - ex stock Broadcast Electronics inc FX30 FM exciter 80-108 MH SMM 8230 Type 1 , Token ring base unit driver
BM 53 MF50 Token ring distribution pan lobe modules AIM 501 Low distortion Oscillator $9 H z$ Ho 1033 Khz , IEEE HP APOLLO RX700 system units
HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts
HP6264 Rack mount variable 0-20V @ 20 A metered PSU
HP54121A DC to 22 GHz tour channel test set
HP7580A A1 8 pen HPGL high speed drum plotter
Marconi 6310 Proarammable 2 to 22 GHz sweep
EG-NG Brookdeal 95035 C Precision lock in amp OTC Ltd 1550 SM Stabilised IR laser calibration Ling Dynamics 2 kW programmable vibration test system Computar 16 mm CCTV auto iris lenses 'C' mount - NEW Keithley 590 CV capacilor / voltage analyser
Racal ICR40 dual 40 channel voice recorder system
Roken 80-250 240 v single phase flow solder machine
Mann Tally MT645 High speed line printer
INTEL SBC 486/133SE Multibus 486 system. 8 Mb Ram Zeta $3220-05$ AO 4 pen HPGL fast drum plotters 2eta $3220-05$ AO 4 pen HPGL fast drum plotier Motorola VME Bus Boards \& Components List. SAE / C
Trio $0-18$ vdc linear, metered 30 amp b
Fujitsu M3041D 600 LPM printer with network interface
Perkin Elmer 2998 infrared spectrophotometer
VG Electronics 1035 TELETEXT Decoding Margin Meter Andrews LARGE 3.1 m Satellite
Thuriby LA 160 B logic analyser
Sekonic SD $150 \mathrm{H} ~ 18$ channel digital Hybrid chant recorder
Densei MUD 0185 AH 1 KVa UPS system with batts NEW
System Video 1152 PAL waveform monitor
System Video 1152 PAL waveform monitor
Test Lab -2 mtr square quietised acoustic test cabinets

19" RACK CABINETS

Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price!
\qquad Optima Enclosures Ltd. Units feature
designer, smoked acrylic lockable front door, and louvered removable side panels. Fully adjustable internal fixing struts, ready punched
for any configuration of equipment mounting socket switched malns distribution sirip make these racks some of the most versatile we have ever sold. R Overall dimensions are: $771^{1 / 2^{\prime \prime}} \mathrm{H} \times 321 / 2^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as OPT Rack 1 Complete with removable side panels. $£ 335.00$ (G) 32U - High Quality - All steel RakCab

Sold at LESS than a third of makers price
A superb buy at only $£ 195.00$ (G)

Over 1000 racks - 19" $22^{\prime \prime} \& 24^{\prime \prime}$ wide 3 to 44 U high. Available from stock !! Call with your requirements.
 TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the expents MicroTouch - but sold at a price below cost II System consists o connected to an electronic controller PCB. The controller produces imple serial data containing positional X \& Y co-ordinates as 10 where a finger is touching the panel - as the finger moves, the data matrix resolution of 1024×1024 positions over the entire screen size !! A host of available translation software enables direct concomputer un-trained etc etc. Imagine using your finger with applications for this amazing product are only limfted by your appifcationstior Complete system including Controller Power supply and Data supplied at an incredible price of only: $£ 145.00$ (B)

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Memory Expansion Board. Full length PC-X Card is fully selectable tor Expanded or Extended (286 processo and above) memory. Full data and driver disks supplied. RFE
Fully tested and guaranteed. Windows compatible. $£ 59.95$ (A1)
Half length 8 blt memory upgrade cards for PC AT XT expands
Half length 8 blt memory upgrade cards for PC AT XT expands
memory either 256 k or 512 k in 64 k steps. May also be used
SIMM SPECIALS
$1 \mathrm{MB} \times 9$ SIMM 9 chip 120 ns
1 MB 99 SIMM 3 chip 80 ns $£ 23.50$
$1 \mathrm{MB} \times 9$ SIMM 3 chip $80 \mathrm{~ns} £ 23.50$
1 MB $\times 9$ SIMM 9 chip $80 \mathrm{~ns} £ 22.50$

FANS \& BLOWERS

EPSSN TYPE $61260 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{v}$ DC
MITSUBISHI MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 v \mathrm{DC}$ MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 V$ DC $£ 5.2510 / £ 49$

Issue 13 of $\mathcal{D} i s p l a y ~ N e w s$ now available - send large SAE - PACKED with bargains!

-ELECTREINHES-

CIRCUIT IDEAS

Flasher for dogs

This circuit uses a single, momentary contact, push button to turn an led flasher on and off.
$I C_{1 \mathrm{a}}$ and $I C_{1 \mathrm{~b}}$ with R_{1} form a bistable. Capacitor C_{1} charges, via R_{2}, to the opposite logical state of the input of $I C_{\text {la }}$. When the switch is closed, C_{1} forces $I C_{1 \mathrm{a}}$ to change state. Positive feedback through the two gates then stores the new state.
Oscillation of $I C_{1 \mathrm{a}}$ and $/ C_{1 \mathrm{~b}}$, when the switch is closed, is prevented by keeping resistor $R_{\text {। }}$
significantly lower in value than resistor R_{2}.
IC $C_{1 \mathrm{c}}$ forms a gated oscillator and is the only reason for using two input nand Schmitts in the circuit. D_{1} and R_{4} make the oscillator low output period shorter than the high period.
$I_{\text {Id }}$ corrects the polarity of the output and the two transistors act as a buffer. Transistor Tr $_{2}$ will drive up to a couple of dozen leds providing the battery will stand it. Transistor $T r_{1}$ can be omitted if
only one led or two leds are used, but R_{5} may need to be reduced.
Quiescent current was under one microamp in the prototype. To maintain this, and allow $I C_{1 \mathrm{c}}$ to operate correctly, C_{2} must be a low leakage type.
The original design was powered by two AAA cells and drives six leds on a collar so that I can locate my errant dog during night-time woodland walkies!
Steve Bush
Epsom

Frequency comparator with hysteresis

A phase-locked loop IC, the PC74HCT4046, forms the core of the comparator and provides hysteresis.
Potentiometer $V R_{1}$ sets the voltage on the IC's voltagecontrolled oscillator, C_{1} and R_{1} being the timing components. Vco output goes to one input of the phase/frequency comparator and input f_{i} to the other. Output of the
comparator goes to the circuit output via a low-pass filter and by way of the feedback resistor R_{f} to the bottom of R_{1}.
When the input is at a lower frequency than the vco output $F H$, the comparator output is low; when it exceeds the vco output, the reverse applies and the voltage at the junction of R_{1} and R_{v} increases, decreasing the current through R_{1},
since the voltage at pin 11 equals that at pin 9 .
This decreasing current lowers the vco frequency $F L$, so that $F H-F L$ is the hysteresis.
$F L / F H=1-V_{\mathrm{C} 2} /\left(V C O_{\text {in }}\left(1+R_{\mathrm{f}} / R_{\mathrm{v}}\right)\right)$
where $V_{\mathrm{C} 2}$ is a function of R_{2} and R_{f}.
W Dijkstra
Waalre
The Netherlands

Frequency comparator provides hysteresis adjustable by resistor values.

COMPUTERICS

TMS 9900 NL-40 PULLS .
MC6802 PROCESSOR .. $£ 2$ ea
TMS 320 $£ 5$ TMS320 1 SHOT................. $£ 3$
MX16C450 UEART.
P8271 BBC DISC CONTROLLER CHIP EX EQPT
2817A.20 (2K×8) EEPROM ex eqpt. ..
D41256C-15 256Kx1 PULLS ... 9 FOR £
P8749H MICRO.
D8751.8 NEW.
UK48Z02.20 2ER
USED 4164-15...
BBC VIDEO ULA
FLOPPY DISC CONTROLLER CHIPS 1771
FLOPPY DISC CONTROLLER CHIPS 1772
8000-8 PROCESSOR NEW
ALL USED EPROMS ERASED AND BLANK CHECKED
2716-45 USEO.
... $£ 2$ 100/£1
... $£ 2100 / \Sigma 1$
2732-45 USED
27 C 256 -30 USED
1702 EPROM EXEQPT
114 EX EOPT 50 4 ... 2
264-15 日k STATIC RAM EX EQPT .. 70p
Z80A SIO-O..
$12631 / 2$ DIGIT LCD DRIVER CHIP
2816A-30 HOUSE MARKED........ HM6167LP-8
68000-10 PROCESSOR
8255-5
14 CMOS (RCA 5114).
ZN427E-8.
2708 USED

27C256-26 USED
\qquad

REGULATORS

M338k
M323K 5V 3A PLASTIC
M350K (VARIABLE 3A).
78H12ASC 12V 5A
M317H TO5 CAN
M317T PLASTIC TO2zo variable
LM317 METAL
7812 METAL
7812 METAL
$7805 / 12 / 15 / 24$
$7905 / 12 / 15 / 24$
7905/12/15/24
CA3085 TO99 variable reg
78 HGASC $+79 H$ GASC REGULATORS M123 ST93 5V 3A TO3 REGS UC3524AN SWITCHING REGULATORIC M2950ACZ5.0...

CRYSTAL OSCILLATORS

307.2 KHZ 1 M 000000 1M8432 2M457600 3M6864 4M000000 5MOOOOOO 5M06800 5M760000 6MOO0000 6M1440 7M000000 3M 4 M 3818 16M500 17 M 625600 18M00000 18M432 19M050 19 M 2418 19M440 20 M 000 20M0150 21 M 67622 M 118423 M 58724 MO 000 25M1748 25 M 175 25M1889 27M + 36M 27M00000 28M322 32M000000 32M0000 "S/MOUNT 33M3330 35M4816 38M 100 40 M 00041 M 53942 M 00000044 M 44444 M 90044 MO 04 M 00000 50 M 0055 M 00056 M 0092064 M 00000066 M 667 76M1 80MO 84MO...

CRYSTALS

32K768 1MHZ 1M8432 2M000 2M1432 2M304 2M4576 3M000 3M2768 3M400 3M579545 3M58564 3M600 3M6864 3M93216 4M000 4M190 4M194304 4M2056 4M433614 4M608 4M9152 5M000 5M6688 6MOOO 6M041952 6M200 6M400 7M37280 8M000 8M06400 8M448 8M863256 8M8670 9M3750 9M8304 10M240 10M245 13M000 13 M 270 13M875000 14 M 00014 M 31814 M 755014 M 7456 15M0000 16M000 17M625018M432 18M432 20 M 00021 M300 21M400M15A 24M000 25M000 26M995 BN 27M045 RO 27M095 OR 27M145 BL 27M145 YW 27M195 GN 28M4696 30 M4696 31M4696 31 M4696 34M 368 36M75625 36M76875 36M78125 36M79375 36 M 8062536 M 8187536 M 83125 36M8437 38 M 5004 M 000 51 M05833 54M1916 55M500 57M7416 57M7583 69M545 69M550

TRANSISTORS

MPSA92.
2N2907A

BC107 BCY70 PREFORMED LFADS ull spec Clll spec.......... 2N2907 PLA3BC, BC308B | BC5 2907 PLASTIC CROPP SHORT LEADS |
| :--- |

POWER TRANSISTORS

TEXTOOL ZIF SOCKETS

 DUALINLINE DEVICES . . COUPLING SUPPLIED.............. $2 / 51.50$

MISCELLANEOUS

 $12^{\prime \prime} \times 7^{\prime \prime}$, WEIGHT 48Kg each, RUBBERISED CASE, GAULTLETED TUBULAR PLATE CONSTRUCTION, FORDEEP CYCLE, HIGH CURRENT USE, MADE FOR BRITISH NAVY 800 CELLS
AVAILABLE, PHONE FOR PAICING ALSO AVAILABLE FILLED \& CHARGED
Narrow angle intra red emitter LED55C.
IM6116M-2L surface mount 1000 availab
Z808 PIO 7000 available $£ 1$ each, aty. price.
CNY65 OPTO ISOL 3000 available.
OPTO ICS also avallable TLP550 TLP666GF
price
$\begin{array}{r}.2 \\ 21 \\ \hline 1\end{array}$

68 way PLCC SKT 1500 available..
200FPOSTAGE LS93C54P-3 senal Eprom 10,700 available $£ 1,600$ /ot, $£ 25 / 100, ~ £ 1 / 3$
MINIA (Quad 741)
TLO71 LONOIS
AGUE 36 D
10/51

7000 u 25 v SP
D.....

4 for E1

WITCHED MODE PSU 40 WATT UNCASEDOT............. £30/4000 $5 A+12 V 2 A, 12 V 500 \mathrm{~mA}$ FLOATING

20R 2.5W WIREWOUND RESISTOR 60 K AVAILABLE
CMOS 555 TIMERS
550/1000
2/ $\mathbf{\Sigma 1 . 5 0}$ M7 PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT $\sum 2$ ea EUROCARD 28 .SLOT BACK PLANE 96/96-WAY.
PTHPCB

UROCARD 96 WAY EXTENDER BOARD
£10 ea
290× 100 mm . 161296 -WAY ABIC SOCKET PCB RIGHT

$£ 1.30$
$£ 1.30$
DIN 4161296 .WAY AB/C SOCKET WIRE WRAP PINS.
DIN 41612 64-WAY AC PLUG PCB RIGHT ANGLE.
DIN 4161264 -WAY A/B SOCKET WIRE WRAP (2 -ROW BODY) ...
BT PLUG +LEAD
MIN, TOGGLE SWITCH 1 POLE CJO PCB TYDe.
CD MODULE sim. LMO18 but needs 150 to 250 V AC for display
40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$.....
$6-32$ UNC $5 / 16$ POZI PAN SCREWS
5/21

6 -32 UNC $5 / 16$ POZI PAN SCREWS
$\begin{array}{r}\text { E1 } \\ \text { £10 } \\ \hline\end{array}$
PUSH SWITCH CHANGEOVER
RS232 SERIAL CABLE D 25 WAYMALE CONNECTORS
25 FEETLONG. 15 PINS WIRED BRAID + FOL SCREENS
AMEAICAN 23 PIN CHASSIS SOCKET
NEW ULTRASONIC TRANSDUCERS 32 kHz
POWERFUL SMALL CYLINDRICAL MAGNETS
BNC 500 HM SCREENED CHASSIS SOCKET.
SMALI MICROWAVE DIODES AE1 OC1026A.......
DIIL. SWITCHES 10 WAY 18 -WAY $80 \mathrm{p} 4 / 5 / 6$-WAY
180VOLT IWATT ZENERS also 12 V \& 75 V
MIN GLASS NEONS
RELAY 5V 2-oole changeover looks like RS 355-741 marked STC
47WBost.
IINIATURE CO-AX FREE PLUG RS $456-07$
INIATURE CO-AX PCB SKT RS 456-093
400 MEGOHM THICK FILM RESISTORS... 4 .POLE RELAY....
STRAIN GAUGES 40 ohm Foil type polyester backed baico grid

Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-267
HALL EFFECT IC UGS3040 + magnet... 1
pole 12 -way rotary swheh
AUDIO 1 ISS LM $380 \mathrm{LM} 386 . . .$.
55 TIMERS $£ 1741$ OP AMP
ZNA14 AM RADIO CHIP.
COAX BACK TO BACK JOINERS.
NDUCTOR $20 \mu \mathrm{H} 1.5 \mathrm{~A}$...
$125^{\prime \prime}$ PANEL FUSEHOLDERS
2V1.2W small w/e lamps fit mosi modern cars
STEREO CASSETTE HEAD..............
MONO CASS. HEAD E1 ERASE HEAD
HERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
RANSISTOR MOUNTING PADS TO-5/TO-18 $5 / 1000$
TO-3 TRANSISTOR COVERS
PCB PINS FIT 0.1 " VERO.

0.3 micas + bushes

Large heat shrink sleeving p.

Ok US TRANSDUCERS EX-EOPT NO DATA
M234Z CONST. CURRENT I.C

ONC TO 4MM BINDING POST SIM RS 455.961
MIN PCB POWER RELAYS 10.5 V COIL 6 A CONTACTS 1 pole cio
BANDOLIERED COMPONENTS ASSORTED RS. CS, ZENERS
LCO MODULE 16 CHAR X I LINE (SIMILAR TO HITACHI LM10)
OPI1264A 10kV OPTO ISOLATOR
LOVE STORY CLOCKWORK MUSICAL BOXMECHANISM
MADE BY SANKYO.
Telephone cable clips with hardened pins ... $0,000 \mathrm{UF} 16 \mathrm{~V}$ PCB TYPE 30 mm DIAx 31 mm EC CHASSIS FUSED PLUG B-LEE L2728 ...
$2 A$ CERAMIC FUSE $1.25^{\prime \prime}$ QB.................
46 WAY IDC RIBBON CABLE 100 FOOT REEL
20 mm PCB FUSEHOLDER.,
EC CHASSIS FUSED PLUG B-LEE L2728.
ASTEC MODULATOR VIDEO + SOUND UM1287 $\quad .5 / \Sigma 1$
BARGRAPH DISPLAY \& RED LED
NE564..............
L084...
R2432 SHARP 12 LED VU BAR GRAPH DRIVER

DIODES AND RECTIFIERS
A115M 3A G00V FAST RECOVERY DIODE
1N5407 3A 1000 V .
$4 / 81$
1N4148............. 0.11 .5

1N5401 3A 100V
iN58 19RL 2OK Ex stock
BA158 1 A 400 V tas
BY254 800 V 3 A.
BY254 800V 3A...
6A 100V SIMILAR MR751
1A GOOV BRIDGE RECTIFIER
4 4 100V BRIDGE.
6A 100V BRIDGE...
10A 200 V BRIDGE.
10A 200V BRIDGE.......
25A 200 V BRIDGE $£ 2$....
2KBP02 IN LINE 2A 200V BRIDGE REC
8Y29

SCRS

PULSE TRANSFORMERS $1: 1+1$ TICV106D 800mA 400C SCA $3 / 2$
MEU21 PROG. UNIJUNCTION MEU21 PROG. UNIJUNCTION

TRIACS

NEC TRIAC ACOBF 8A 600 V TO220 5/E2 100/230 BTA 08-400 ISO TAB GOV 5mA GA TRAL2230D 30A 400V ISOLATED STUD.................................... 90 p TRIAC 1A B00V TLC 381 1T 16k AVAILABLE 5 FOR $£ 1815 / 100$

PHOTO DEVICES

HI BRIGHTNESS LEDS COX24 RED .. 5/51
SLOTTEO OPTO-SWITCH OPCOA OPB815
TILB1 PHOTO TRANSISTOR.
TIL 38 INFRA REDLED
4N25, OP12252 OPTO ISOLATOR
PHOTO DIODE 50P.
MEL 12 (PHOTO DARLING TON BASE TVC)
LED's RED 3 or 5 mm 12/51
LED's GREEN OR YELLOW $10 / \mathrm{E}$
HIGH SPEED MEDIUM AREA PHOTODIODE RS 651.095 100/£40 OPTEK OPB745 REFLECTIVE OPTO SENSOR RED LED - CHROME BEZEL..............
OPII $10 B$ HI VOLTAGE OPTO ISOLATOR

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K. G24 20K, G54 50K, G25 200K. RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE... 1 ea
FS22BW NTC BEAD INSIDE END OF 1 GLASS PROBE RES $20^{\circ} \mathrm{C}$
A 13 DIAECTUY HEATED BEAD THERMISTOR 1 k res ideal for I 1 ea
audio Wien Bridge Oscillator................... $£$ ea
CERMET.MULTI TURN PRESETS $3 / 4^{\prime \prime}$
10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K
200K 500 K 2 M
IC SOCKETS
14/16/18/20/24/28/40-WAY DIL SKTS.
$\$ 1$ per TUBE
8-WAY DIL SKITS
2 per TUEE
3 for $£ 1$
SIMM SOCKET FOR 2×30-way SIMMS
POLYESTER/POLYCARB CAPS
$330 \mathrm{NF} 10 \%$ 250V AC X2 RATED PHILIPS TYPE 330 £20/100 $100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$.. 0/51 100/§3 10N/15n/22N/33N/47N66n 00023.50

100 n 250 V radial 10 mm
100 n 600 V Sprague axial 10 I 1
100 n 600 V Sprague axial 10/£1 $100 / \mathrm{F} 6$ (£1)
$2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2,2100 \mathrm{~V}$ rad 15 mm
$100 / \mathrm{c} 10$
$10 \mathrm{~N} / 33 \mathrm{~N} 47 \mathrm{n} 250 \mathrm{~V}$ AC x rated $15 \mathrm{~mm} . .$.
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm}$ rad
$0.22 \mu 250 \mathrm{~V}$ AC $\times 2$ RATING
.. 50 pea
.. $100 / \varepsilon 6$

RF BITS
SAW FILTERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY
379.5 MHZ

ASTEC UM1233 UHF VIDEO MODULATORS (NO SOUND) 1250 for 12

MARCONI MICROWAVE DIODES TYPES DC2929, DC2962,
DC4229F 1/F2
XTAL FILTERS 21 M 455 MO
XTALFILTERS 21M4 55MO ... es es

RED 10.1100F GREY 5-25pF SMALL MU LARD
TRANSISTORS 2N4427, 2N3866...
3 FOR 50p $810 / 100$
CERAMIC FILTERS 4 M $5 / 6 \mathrm{M} / 9 \mathrm{M} / 10 \mathrm{M}$
FEED THRU' CERAMIC CAPS 1000 pF .-................................... 60p e日
6 SL610 ... TELEDYNE RELAYS 2 POLE CHANGEOVE..................................
(BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL
$+.85$

P2N2222A PLASTIC
. $5 / \mathrm{s} 1$

EQUIV MHW $806 A-3$ FF IN 40 mW O/P $6 \rightarrow 8 \mathrm{~W} 840 \rightarrow 910 \mathrm{mHz}$. \& 8 ea
MONOLITHIC CERAMIC CAPACITORS

100n ax thong leads.
$100 / 25$
QUARTZ HALOGEN LAMPS

Control software flow through pc's serial port

M^{2}any pc application programs use special defined keys (for example $\mathrm{Alt}+\mathrm{R}$) to select different procedures. In the manufacturing environment, sometimes it is inconvenient to access the keyboard directly.
For instance, an application program may define 'push any key to repeat test'. It makes more sense to use just a regular push button rather than a keyboard. The diagram below shows how to use the pc's serial port to connect eight push buttons. Pushing any one of those buttons will lead the program to a specified application procedure.
This power-less approach is controlled via a C program - right.
Yongping Xia
Torrance
USA

This circuit reads eight buttons through the pc's serial port.
\#include <dos.h>
\#include <conio.h>
\#include <stadio.h>
\#define MCR 4 /* modem control register */ \#define MSR 6 /* modem status register */
void app_1(void)/* your 1st application * \{

$$
\text { printf("button } 1 \text { is pushed"); }
$$

void app_2(void)/* your 2nd application */
§
printf("button 2 is pushed"):
void app_3(void)/* your 3rd application */ !
print("button 3 is pushed");
void app_4(void)/* your 4th application */ !
printf("button 4 is pushed") void app_5(void)/* your 5th application */ \{
printf("button 5 is pushed"):
void app_6(void)/* your 6th application */
printf("button 6 is pushed")

```
void app_7(void)/* your 7th application */
```

 printf("button 7 is pushed")
 void app_8(void)/* your 8th application */
printf("button 8 is pushed");
\}
void main(void)
int base_address $1=0 \times 3 \mathrm{fB}$;/* COM1 address */

```
int data1, data2;
dol
    clrscr();
    outportb(base_address2+MCR, 0x01);
                                    * set COM2's DTR high and RTS
```

low */
delay(1)
data1-inportb (base_address2+MSR)/16;
delay(10);
data2=inportb (base_address2+MSR)/15;
if (datal==data2)
1
switch(data2)
case 0x08:app_1();
break;
case 0x02:app_2 ();
break;
case 0x01:app_3!);
break;
case 0x04:app_4 \};
\}
outportb(base_address $2+\mathrm{MCR}, 0 \times 02$);
/* set COM2's DTR low and RTS
high */
delay(1);
datal=inportb(base_address2+MSR)/16;
delay(10);
data2=inportb (base_address2+MSR)/16;
if (data1==data2)
switch(data2)
case 0x08:app_5();
break;
case 0x02:app_6 (1;
break;
case 0x01:app_7();
break;
case 0x04:app_8();
)
delay (200)
\}while(!kbhit()) ;/* hit any key to quit

Simple power flasher

For a simple task, a simple circuit. - This is a flasher circuit for a mains-powered lamp. Initially, the capacitor is discharged and starts to charge through the $3.3 \mathrm{k} \Omega$ resistor, triggering the scr. The lamp therefore comes on and stays on while current from the capacitor sustains the scr. As the capacitor discharges, the lamp goes off,

Using a 60 W bulb, frequency is around 1.1 Hz at nominal mains voltage and temperature, decreasing slightly with a 25 W lamp; duty cycle ratio is $1: 1$. Capacitance largely determines frequency and it may be found that a different gate resistor is needed for other scrs.

D Di Mario

Milan

Italy

Frequency-dependent negative conductance

urrent conveyors do not suffer from the bandwidth restriction with feedback seen in common op-amps, so that this fdnc is able to work at much higher frequencies. Further benefits of using cc amplifiers include stability with inductive and capacitive loads.
Input impedance is $-\omega^{2} B$, where $B=R_{1} R_{2} R_{3} C_{1} C_{2}$.

K L Sunil Kumar

Visakhapatnam
India

Using current conveyors instead of op-amps in this fdnc increases its bandwidth and improves stability with reactive loads.

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion "Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements.
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $-20 \mathrm{~dB}, 10 \%$).
*Advanced Actlve Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizer frequency shifters for for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifiers *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/ +6 dB drives and movements "Broadcast Stereo Coders.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

and that's just

FEATURES

16/32 bit 68307 CPU for fast operation
Up to 1 Mbyte of EPROM space onboard
Up to 512 K byte SRAM space onboard
32 Kbyte SRAM fitted as standard

- R5232 serial with R5485 option
- MODBUS \& other protocols supported
- Up to 22 digital I/O Channels
- 2 timer/counter/match registers
- 'LC port or Mbus \& Watch dog facilities

Large Proto-typing area for user circuits
Up to 5 chip selects available

- Program in C. C+*, Modula-2 \& Assembler Real Time muntrasking Operating System
- OS9 or MINOS with free run time license option
- Manufacturlng available even in low voiumes
- A full range of other Controllers available
P.C. 'C' STARTER PACK AT ONLY 295 + VAT The Micro Module will reduce development time for quick turnaround products/projects and with the P.C. 'C' Starter pack allow you to start coding your application immediately, all drivers and llbraries are supplied as standard along with MINOS the real time operating sytem all ready to run from power on.
The 'C' Starter pack includes: A Mlcro Module with 128 Kbyte SRAM, PSU, Cables, Manuals, C compiler, Debug monitor ROM, Terminal program, Downloader, a single Copy of MINOS. Extensive example software, and free unllmited technical support all for $£ 295$ + VAT.

Cambridge Microprocesso Systems Limited
Unit 17-18, Zone ' D ', Chelmsford Aoad Ind. Est.,
Great Dunmow, Essex, U.K. CM6 1XG
Phone 01371875644 Fax 01371876077

your Hard disk BAck!

If you have never lost a file, never ran out of disk space or love re-installing software, don't read any further.
Backer ${ }^{\circledR}$ is a high performance back-up system designed specifically for the home user. For less than the price of most PC games, you can store up to 1.5 Gbytes of data on a single VHS video tape, the equivalent of $3 \mathrm{CD}-$ ROMs. Backer ${ }^{(8}$ utilises your existing video recorder to transfer data from your hard disk at up to 9 Mbytes per minute
faster than many of the significantly more expensive tape streamers.

- Free up extra disk space by archiving less. frequently used files
- Protect important files by

Exc: VAT
keeping back-up copies FISA VIS

- Transfer data between

PCs, copy hundreds of Megabytes quickly and easily

- Runs under Windows ${ }^{\text {s }}$ in the background, allowing you to continue working with other applications
- Uses low cost standard video tapes
- Comprises of an expansion card and easy-to-use software
- State of the art sophisticated error correction ensures reliable operation
- Back-up selected files or the whole hard disk

Order now by ringing 0160674330 quoting your Access, Visa or Switch number. Alternatively send a cheque or postal order for £42.45 (*£39.95 inc. VAT + P\&P $£ 2.50$) along with details of which magazine you saw this advertisement and the specification of your PC to: Danmere Technologies Ltd., Whitehall, 75 School Lane, Hartford, Northwich, Cheshire CW8 1PF.

Reliability - "Backer passes this test with flying colours,"
"Backers top transfer rate of 9 Mb per minute runs rings around the 1.8 Mb per minute most tape streamers can manage. "Frightfully good stuff.

PC Format - December'95
"Extraordinarily good value product."
"A must for the data conscious."
PC Home - December "95
Distributor enquires welcome.

Danmere

Backer
The PC hard disk back-up system
Danmere Technologies Ltd., Whitehall, 75 School Lane, Hartford, Northwich, Cheshire CW8 1PF

Retuning local-oscillator crystals

|n a receiver using a crystal-tuned local oscillator, changing channel frequency requires the crystal to be fine tuned to produce the same IF. This circuit assists in the process.
A reference frequency of 10.7 MHz , generated by a simple crystal oscillator, is coupled capacitively to the mixer by simply putting the end of its output coaxial cable, near the filter.
If an unmodulated signal is now
injected at the receiver input, a nominal 10.7 MHz IF is produced which beats with the 10.7 MHz reference oscillator output, the beat being heard at the receiver output. Adjusting the local oscillator for zero beat gives the correct lo frequency. Use the circuit for either single or double conversion superhets.
Glyn Roberts
Walsall
West Midlands

Basic single conversion superhet receiver

Beat oscillator helps to retune crystal-based receivers to different channels.

Telephone line monitor

Exploiting the tendency exhibited Eby some n-p-n transistors to oscillate when connected in reverse, this circuit uses one to monitor a telephone line and give warning of untoward activity. In normal operation, the circuit has no effect on telephone calls, taking abuse such as reverse voltages, spikes and wrong connections in its stride.
Normal conditions show as a rapidly flashing green led, which stops flashing when a call is made or received. A high-pitched sound shows that reverse polarity is
applied on the line side and the connection of another telephone in parallel or a short circuit on the line side sound fades and the led stops flashing. Disconnection or a blown fuse gives a low-frequency tone for nearly two minutes.
Conversation triggers the led every few minutes and ringing or dialling causes it to flash at a different frequency. Normally, the speaker is virtually out of circuit to provide privacy.
D Di Mario
Milan
Italy

Linear square and triangle generator

Constant-current charging and discharging linearises the triangular output from a 555 -based function generator.
When the timer output is at V_{cc}, the timing capacitor charges through the p-n-p transistor current mirror. As the ramp reaches $2 V_{c c} / 3$, the 555 output goes to ground and, since the capacitor voltage is now higher, the capacitor discharges through the n-p-n current mirror until the ramp reaches $V_{\mathrm{cc}} / 3$. Charging current is adjusted by R. Output frequency is variable up to 2.1 MHz .
Lee Szymanski
Stamford
Lincolnshire

Telephone monitor gives an indication of fault conditions or unusual activity on the line.

MARCH 1995
FREE Gircuit Ideas pocket book Part I Distortion from power-amp supplies
Winning power switching circuits Enhance RS232
Transmission lines explained Tesla's ht generat or

AUGUST 1995
20 Hz octive subwoofer
Getting more from RS232
PC engineering: signal analysis
24 cm ontenno
DSP demystified
Analogue signal processing
GPS designer's kit

Suk rimoun a ichr wequancy matar ar under ye ELECTRONICS WORLD

+ WIRELESS WORLD

APRIL 1995
FREE Circuit Ideas pocket book Parl 2
ISDN - inside the world network Linsley-Hood's attenuat or for audio Evidence for the slew-rate debate Self-tuning $\mathbf{5 0 H z}$ filter for instrumentation

ELECTRONICS WORLD

+ WIRELESS WORLD

SEPTEMBER 1995

New audio power solution
Analogue design for a single-rail
MicroCap 5 reviewed
Nulling coil interaction
New balanced amplifier design
Anolysing fm noise

BACK ISSUES

Back issues of Electronics World are $£ 2.50$ in the UK and $£ 3.00$ elsewhere*. Price includes postage. Please complete the coupon and send with correct payment to: Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Note that all issues are subject to availability and please allow 28 days for delivery

ELECTRONICS
WORLD

+ WIRELESS WORLD

JUNE 1995
AUDIO SPECIAL
Tri-modal oudio power
Microreflex full-range loudspeaker
Audio power ICs exposed
Reseorching vio the Internet
New concept in i/o control

OCTOBER 1995
FREE Circult Ideas pocket book
Sweeper for 0 to 200 MHz
IEEE488 testing made easy
Current probe for switching mosfets
Valve audio
Analysing circuits vio energy
DC circuit design

ELECTRONICS
WORID

+ WIRELESS WORLD

xelusive -
PC Interfacing
Signal Centre reviewed
Coaxial cable analyser
Dual mirror for faster audio
Modulating linearly
Oscillator innovations

EIECTRONICS
WORLD
+ WIRELESS WORLD

NOVEMBER 1995
FREE Zetex 5 V regulator
Oploelectronics investigated
Isolate RS232
14.4kbaud fax/dat a modem

Power and Class-C
Linsley-Hood noise reducer
Applying the ZR78L05 regulator

Issue (Month/Year)	Quantity	Price	Total
Name			
Address			
		Post Code	
Method of payment (please circle):			
Access/Mastercard Visa Cheque PO			
Cheques made payable to Reed Business Publishing			
Expiry Date	Signed		

Edge detector/doubler

|n a similar manner to that of the Icircuit by Mike McGlinchy (Aug. 1994 Circuit Ideas), this circuit responds to both transitions of square input, but this one is selfclocked and a little simpler, although it does have one extra IC.
Delay $R_{D} C_{D}$ gives control of
output pulse width t_{w} and may be split between sections a and b of the 74 HC 86 to equalise propagation delay, allow smaller components or increase pulse width.
It is essential to use cmos logic because of the source-current
limitation to R_{D} when positivegoing and the logic zero threshold when negative-going. Values in the table are for a 10 V supply.

John A Haase

Colorado State University

Edge detector producing output pulses on both transitions of the input at fin/2 and 2fin, positive or negative.

Low-battery monitor shuts down gracefully

A fter detecting a low-battery tcondition, this circuit allows a definite time for emergency housekeeping tasks before shutting down a controlling processor, rather than waiting until battery voltage decreases further. Current drawn while quiescent is a few microamps, so that discharged cells are protected. Accurate voltage monitoring, achieved by the close tolerance of a comparator threshold, allows the battery-low warning to be positioned exactly on the knee of the NiCad discharge characteristic.
Low-dropout linear regulator IC_{1} supplies 250 mA to the output power line, dropping only 350 mV at $200 \mathrm{~mA} ; \mathrm{IC}_{2}$ is a dual comparator $/ \pm 1 \%$ voltage reference. If the fraction of the battery voltage at the junction of R_{1} and R_{2} falls below the internal 1.182 V reference voltage, OUTB goes high, serving as a warning and also charging C_{1} through R_{3}. When the voltage at pin 3 rises to the reference voltage, ouTA shuts IC_{t} down. To obtain $\pm 25 \mathrm{mV}$ of hysteresis, make $R_{4} 49.9 \mathrm{k} \Omega$ and R_{5} $2.4 \mathrm{M} \Omega$.
If, for example, R_{3} is $1 \mathrm{M} \Omega, C_{3}$ is
calculated by $V_{\mathrm{th}}=V_{\text {OUTB }}\left(1-e^{-r / \tau}\right)$, where $V_{\text {OUTB }}$ is 4.9 V and τ is $R_{3} C_{1}$ For a Is delay, τ is 3.6 s and C_{1} is $3.6 \mu \mathrm{~F}$. Alternatively, a standard $3.9 \mu \mathrm{~F}$ gives a delay of around ls ; use a low-leakage type. During shutdown, C_{1} becomes charged and
needs about 6s to discharge when operation resumes.
Craig Falkenham and
Larry Suppan
Maxim Integrated Products Ltd
Theale
Berkshire

On detecting low battery voltage, this very frugal circuit issues a warning signal and shuts a power line down after a precise time interval, rather than after the usual, somewhat indefinite time taken for the battery voltage to decrease even further.

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK
 Tele: +44 (0115) 986 4902/
 +44 (0115) 986404124 hr answerphone Fax: + 44 (0115) 9864667

 EATON 2075 NOISE GAIN ANALYSER + 7618E NOISE GENERATOR

$$
\begin{aligned}
& \text { 10Mhz to } 1800 \mathrm{Mhz} \text { without External equipment, with } 7618 \mathrm{E} \text { to } 18 \mathrm{Ghz} \\
& \text { Max Input to }+20 \mathrm{dbm} \text {. Noise Measurement } 0-30 \mathrm{db} \pm 0.05 \mathrm{db} \\
& \text { Gain Measurements }-20 \mathrm{db} \text { tp }>50 \mathrm{db} \pm 0.2 \mathrm{db} \text { with } 0.01 \mathrm{db} \text { resolution } \\
& \text { Frequency range of } 207510 \mathrm{Mhz} \text { to } 1800 \mathrm{Mhz} \text { (tunes to } 1900 \mathrm{Mhz}) \pm 0.5 \mathrm{Mhz} \\
& \text { Resolution to } 0.1 \mathrm{Mhz} \text {. Noise }<7 \mathrm{db}+0.002 \mathrm{db} / \mathrm{Mhz} \text {. Input VSWR }<1.5: 1 \\
& \text { EMC Specs to MIL-STD } 461, \mathrm{CE} 03 \text {, RE02, CISPR/II, VDE } \\
& \text { EMS Specs to CS01, CS02, CS06, RS03 } \\
& \text { Supplied with Case and "Topics in Noise" Manual }
\end{aligned}
$$

HIOKI 8830 Memory Hi-Corder

Large LCD Display (640×2000 Pixels) with Electro Luminescent Backlight
Cont Real Time, Memory Record, Hi-Speed X and Cont XY Record Modes Trigger facility adjustable in 1% steps. Samples at 500 kps to 125 K word Memory Floating Analog inputs at 100 Mohms ins at 500 V DC. 128 K RAM Channel Specs: 4 Analog or 3 Analog +8 Logic or 2 Analog +16 Logic or 1 Analog +24 Logic or 32 Logic Channels. $0.01 \% \times$ Accuracy. Supplied Including Leads and Manuals. Mint Condition

RF Equipment

SAYROSA 252 Automatic Modulation Meters. 0-100Khz 0-100\% to 2Ghz f195
RACAL DANA 9009 Modulation Meters $0-100 \mathrm{Khz} 0-100 \%$ to $2 \mathrm{Ghz} \mathbf{£ 1 9 5}$ MARCONI TF2603 RF Milli Voltmeters to $1.5 \mathrm{Ghz} \ldots 1 \mathrm{mV}$ to 3 V fsd. Only $\mathbf{f} 60$ RACAL DANA 9301 True RMS RF Milli Voltmeters ... 1 mV to 3 V fsd. Only $\mathbf{£ 1 3 5}$ RACAL DANA 9302 True RMS RF Milli Voltmeters as 9301 above. Only $\mathbf{£ 1 6 0}$ FARNELL TM8 True RMS Sampling RF Voltmeter ... 1 mV to 3 V to $1 \mathrm{Ghz} \mathbf{£ 2 2 5}$ RACAL DANA 9915 Digital Counters ... 10Hz-520Mhz .. 8 Digit LED. Only $\mathbf{£ 7 5}$ RACAL DANA 9921 Digital Counters ... 10Hz-3Ghz ... 9 Digit LED. Only $\mathbf{£ 3 7 5}$ MARCONI TF 2018 Signal generators $80 \mathrm{Khz}-520 \mathrm{Mhz}$... AM/FM/CW. Only $\mathbf{£ 9 9 5}$ MARCONI TF2018A Signal Generators £1150
MARCONI TF 2022 Signal Generators 10Khz-1Ghz. AM/FM/CW. Only £1695 WAVETEK 1080 Sweep Generators with 1905 Display. 1 Mhz-1000Mhz 0-70db ref in 0.1 db steps. Only $\mathbf{£ 4 5}$

KIKUSUI PLZ700 Digital Electronic Loads 4-60V @ 0-140A (700W) £375
KIKUSUI PLZ150 Digital Electronic Loads 4-60V @ 0-30A (150W) £250 HEME 1000 LCD Clip-on AC/DC Ammeters $\mathbf{f} 75$
Edgcumbe 30A Analog AC Ammeter/Noltmeters $\mathbf{£ 4 5}$ Huntron Trackers $£ 125$

TEK Oscilloscope Specials

TEK 2210 Digital Storage Oscilloscopes ... 50Mhz Analog Bandwidth ... 20Ms/s digital sample rate. With $19^{\prime \prime}$ rack mounts. LAST ONE. Only $£ 550$
TEK 2245 150Mhz Oscilloscope 4 channels with Cursors etc. MINT Condition ... ONE ONLY ... £845

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage
All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty

LETTERS

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Reflections on optical links

In his article "Reflections on Optoelectronics' in the November issue, Ian Hickman says that increasing the gain of the photodiode amplifier by 40 dB extends the range of the optical link by a factor of 100 , for example from 2 m to 200 m . I don't agree with this assertion.
Assume, for the moment, in terms of linear units rather than decibels and consider Fig. 12a) of the article. Amplifier A_{2} has a voltage gain of 100 , so if we transfer the oscilloscope probe from the output of A_{1} to the output of A_{2} and we want to observe the same signal amplitude, than the current produced by the photodiode has to be reduced by a factor of 100 .
Current produced by the photodiode is proportional to the incident light power, which therefore has to be reduced by the same factor.
A ratio of $1: 100$ in incident light power corresponds to a ratio of $10: 1$ in distance, so Fig. 12c) displays the
simulated output of A_{2} at a range of 20 m rather than 200 m .
If we want to argue in terms of the sometimes deceiving decibel, we have to point out that the photodiode is a non linear transducer which can be thought as made up by an electrically linear receiving antenna followed by a quadratic detector.
The antenna establishes a linear relation between the alternating electric field associated to incident light and the voltage produced; the detector establishes a linear relation between the dc current produced by itself and the mean square of the altemative voltage produced by the antenna.

In fact, as the incident light power is proportional to the square of the relevant altemative electric field, we can verify the linearity of the relation between the dc current produced by the photodiode and the incident light power.

So a 20 dB loss in the incident light power (relevant to a $10: 1$ distance ratio) causes a 40 dB loss in the signal current, just recovered by
amplifier A_{2}
To recover the signal loss due to a 100:1 ratio in distance, the amplifier A_{2} should have to gain 80 dB ;
unfortunately at a range of 200 m the output signal of A_{2} would appear as totally buried by noise since the signal to noise ratio was just enough at a range of 20 m , as displayed by Fig. 12c).
Carlo Carli
Ferrara
Italy

Clarified linear
 modulation

In his letter of Dec 1995 concerning my article 'Modulating Linearly' July 1995 - Mr West makes the point that "intermodulation products are usually generated at the power amplifier final stage".
I entirely agree, indeed, the second paragraph of the article runs "In an hf ssb transmitter, it is likely to be the transmitter power amplifier output stage that is principally responsible for... intermodulation
products." It goes on to point out that as clean a test signal as possible is desirable for test and
measurement purposes.
Nevertheless, it is true that hf ssb power amplifiers only produce the amount of intermodulation products commonly observed, because they are permitted to do so by current regulations 25 dB below either tone for R3E, J2E and H3E without privacy device; 35 dB with privacy device and for A3E, B8E, R7B, B7B and B7W, per CCIR
Recommendation 326.
There is no incentive for manufacturers to produce 'cleaner' power amplifiers, bearing in mind that this would involve extra costs.
However, if this were necessary, the required techniques are already to hand. The Polar Loop technique ${ }^{1,2}$ was intended to permit the use of ssb with 5 kHz channel spacing at vhf, should this standard ever be introduced. Power amplifier intermodulation products of 55 dB below either tone were demonstrated, and the principle

But EMC testing is not required

In Letters, Dec. '95, Chris Bore makes an interesting point regarding emc emissions. He appears, however to be misinformed on the emc directive requirements. Equipment does not have to be tested - contrary to what many test houses would have you believe.
Conformance can be shown by submitting a Technical Construction (TCF) to notified body, or you can self-certify if you are confident that it meets the standards.
Secondly, common sense shows that 2 W is not sensible limit for input power. The point of emc is to stop interference to radio communications. A device radiating more than a few tens of milliwatts on a broadcast or communications band would clearly see interference.
However, it is still reasonable to assume that devices using sufficiently low power could not emit over the test limits - digital watches for example.
The same would apply to items using low clock speeds and slow logic, as radiated emissions are only measured above 30 MHz for most products. If you can show calculations to justify this, you could use the TCF route or selfcertify on this basis - there would be no need for a change in the regulations.
Still on the subject of emc, l've found a very cheap way of assessing emissions. From a ham radio shop, for less than $£ 300$, you can get a scanning receiver covering 1 MHz to 1 GHz with a signal strength meter. This is obviously not very accurate, but it does tell you everything
needed for development work - ie are there emissions, if so where, and if I make a change does the level go up or down? If you cannot 'hear' your product on this, it is reasonable to assume it won't interfere with anyone else's.

Mike Harrison

Loughton
Essex

EMC critique deserved

Chris Bore's letter regarding emc and low power circuits has already received some comment in another trade journal, namely Electronics Weekly.
Criticism of his thesis has given examples such as oscillators or a photographic flash gun which could produce interference at spot frequencies. And one way of checking an IR remote control is to listen for the interference it can induce into an am radio at zero range.
However, his main point deserves sympathetic consideration for any low power item whose only interference output (if any) would be white or pink noise. After all, the measurement band is up to 1 GHz .
As Mr Bore said, let someone competent do the calculations, and come up with some useful figures, including allowance for power delivered to load. The 2 W must be power available to cause interference and represent device inefficiency.

R J Higginson

Edgbaston
Birmingham

Arguments on EMC partly right

I think that Chris Bore's arguments are sound when cw or quasi-cw rf signals are being generated from conventional power supplies. Forty years ago, a young graduate showed, to his joy, how to generate short pulses of 10 kV and 200 kA using a modest 1 kW for less than one minute from the mains. It soon became necessary to measure these pulses, and in a short time conducted interference pulses of 10000 V and 100 A (105 W) were easily but inadvertently produced. Pulsed power has moved into everyday use - for example high power lasers, and electric traction. As the rise time approaches ins or less, the possibility of radiating an appreciable part of the pulse power from leads only a few centimetres long becomes likely in bad designs. Switched mode power supplies are using ever faster and shorter pulses and have internal pulse powers exceeding their average input and output powers.
I must admit to having enjoyed this subject, especially the challenge of separating a $10^{12} \mathrm{~W}$ source from a diagnostic of $10^{-6} \mathrm{~W}(180 \mathrm{~dB})$. But now that emc regulations have moved into the third of the "Three Cultures", I am thankful at not having to justify it in terms of the European regulations.

E. Thornton

Gloucester

Reference

1. Maurice Ramsey, 'Three Cultures', Physics World, p72, Aug 1994. (UK Institute of Physics).
would be directly applicable at hf.
The same sort of reduction in odd order intermodulation levels could be achieved by the related Cartesian Loop system, which I believe was also developed at Bath University.
These techniques require the resolution of a sample of the transmitter output into its real and imaginary components at intermediate frequency in order to close the loop. This naturally requires a fair amount of kit, so in the absence of mandatory regulations requiring that sort of performance, it is not surprising that extensive use has not been made of these schemes.
In the mid 'eighties, I developed a simpler arrangement, which was applied to a ISOW broadband hf power amplifier module. The latter was designed to be multicoupled up in stages, to provide various powers up to 1 kW PEP ${ }^{3}$. This also reduced the third order intermodulation products to 60 dB or more below PEP.
Even with this degree of transmitter output stage linearity, it remaịns true that the main use for an ultralinear modulator is in test and measurement For any out of band intermodulation products produced by the modulator will usually be adequately suppressed by the following sideband filter. The exception is where modulation is
performed without a sideband filter, for example by quadrature modulation.
However, I cannot agree that odd order intermodulation products add to the intelligibility of speech per se Indeed they degrade it. The improvement in hf communications in difficult conditions arises from the fact that, with a very poor signal to noise ratio, the degradation due to intermodulations is more than offset by the improved signal to noise ratio broughi about by the increased average radiated power. The instantaneous compression provided by intermediate-frequency clipping followed by a second sideband filter - compared with the slower compression provided by a VOGAD - is very effective at emphasising the quieter components of speech such as unvoiced consonants particularly sibilants - which otherwise get lost in the noise.

References

1. Petrovic V and Gosling W, 'Polar Loop Transmitter', Electronics Letters, 1979, 15,(10),pp. 286-8.
2. V Petrovic and C N Smith, 'The Design of VHF SSB Transmitters' IEE Conference on Communications Equipment and Systems, April 1982, pp. 150-5.
3. 'Single Sideband

Transmitters', UK Patent 2209639B granted 1 May 1991, assigned to
Siemens Plessey Electronic Systems Ltd.
lan Hickman
Waterlooville
Hampshire

Complete loony

I am fairly sure that loonier minds than mine will point out that Morgan Jones' valve power amplifier design shown on page 27, January is flawed.
The "concertina" phase splitter concept works adequately at low frequencies but falls over in the higher ranges: the splitter anode presents a much higher drive impedance than that of the cathode mirror. While signal levels look the same at low frequencies, the Miller effect present with high gain, high capacitance audio power pentodes knocks off the sharp signal edges in the top half of the circuit. It is much better to use a double triode virtual earth phase split circuit which produces a symmetrical output in every respect.
But it is all academic really. Who but a complete loony suffering from terminal nostalgia would seriously consider valves for anything? Which is probably the reason that Mr Jones
didn't consider dynamic output mpedance... But then it takes one to know one.
Frank Ogden
Consulting Editor

Fields and health

In his response to Roger Coghill's etter - EW + WW May, 1995 - your correspondent Colin Davidson offers o ensure that the IEE will give the widest possible publicity to any evidence concerning possible relationships between low-level, low-frequency electromagnetic fields and health - $E W+W W$ Dec, 1995.

There is indeed, abundant evidence of the existence of a direct relationship between all forms of electromagnetic field and living tissue. The demonstration of this relationship relies on concepts of coherent polyphase computation rather than on crude measures of field strength.
It is principally governed by a bilinear modulo-four arithmetic as an expression of phase conjugate quadrature rather than by decimal mathematics. The IEE would be well advised to study the subject of bioelectronics with close attention, since the ultimate expression of these effects is that of heuristic

LETTERS

electromagnetic resonance as the driving force of evolution.

The Institution should therefore contact the Department of Health or Sir John Maddo, editor of Nature, to whom much relevant information has already been supplied. BEP Clement
Clement Neuronic Systems Powys

Sallen \& Key misread?

Before accusing me of departing from the truth, or at least of drawing wrong conclusions, Mr. Skirrow (Letters, December) would have done well to read my November letter more carefully, even to repeat my simple experiment. The distortion figures I tabulated were measured with no capacitors at all in circuit. I did not try the $5532 \mathrm{op}-\mathrm{amp}$, but anyone interested could easily do so. It just seemed odd to me that after all these years the $\mathbf{S} \& K$ circuit continues to appear in data-sheets without a health waming.

I also wrote to one of the American op-amp manufacturers, and have since heard that the explanation is thought to be the variation of input bias current with common-mode input level. I have also heard from one or two interested readers who have detected audible distortion in S\&K circuit.
Mr Skirrow criticises my use of 110 k resistors, saying that 3 k 3 would be optimal, but not why. No doubt 3 k 3 would reduce distortion, because of the very effect I reported, and probably make it negligible for many applications. But why put up with this constraint - and the cost of larger capacitors - when a better circuit is available?
The replacement Rauch 1 kHz circuit referred to in my previous letter is shown here, nominal $\mathrm{Q}=1.47$, and F_{0} gain unity. It adds no detectable second harmonic ($<2 \mathrm{ppm}$) and uses capacitors easily available in polystyrene.
A. D. Ryder

Bolton
Lancashire

Foster-Seeley related?

Your recent articles on valve amplifiers and Richard Brice's article on the Seeley-Foster discriminator, Dec 1995, have awakened interest and nostalgia. I built a Williamson
amplifier while still a student at university, and a valve fm tuner a few years later. Though at the time grasping their essential operating principles, my main memories were of not really understanding the operation of the fm discriminator. Time may not have fully solved the latter problem.
Richard Brice's equivalent circuit for the loosely coupled IF transformer bears a remarkable resemblance to a disastrously designed pulse transformer in which the leakage inductance $L(1+k)$ greatly exceeds the primary inductance -kL.
I found it academically interesting to try to explain the 90° phase shift discussed in his article without resorting to his more rigorous analysis. Clearly, when closely (perfectly) coupled the leakage inductance is zero and $A B$ in his figure represents the primary inductance and the identical reflected secondary inductance of the perfect transformer. Input and output voltages will be in phase.
When loosely coupled, $\mathrm{AB}(-\mathrm{kL})$ represents the low valued coupling inductance of the intermediatefrequency transformer, the voltage across which drives the right-hand side of the equivalent circuit. This latter consists of a series resonant combination of capacitance C and
inductance $\mathrm{L}(1+\mathrm{k})$ whose overall series impedance is zero.
There is however a loss term, the right-hand parallel resistance R, which I would transform into the time honoured series equivalent series resistance r, in series with L and C.
Voltage generator AB therefore sees to its right-hand side a pure resistance r, and a current will flow in phase with $V_{A B}$. This means that the current through L and C at resonance is in phase with $V_{A B}$. I assume that r, though small, is larger than $j \omega \mathrm{~K} L$, and does not significantly load the coupling inductance. The voltage across L (or C) will be 90° out of phase with the current through them so there will be a 90° phase shift between points A and C.
Coupling inductance $\mathrm{k} L$ is in series with the primary inductance L on the left-hand side and their voltages will therefore be in phase. Hence, providing the coupling inductance is not appreciably loaded, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$, will be 90° out of phase.
Nostalgically, after about 10 years, the transistor arrived and the mono Williamson was replaced by a stereo pair of Tobey and Dinsdales. The phase-locked loop took over the fm discriminator after a further couple of decades.

E. Thornton.

Gloucester

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

A-to-D and D-to-A converters

12-bit a-to-d. Analog's AD9042 analogue-to-digital converter samples at $41 \mathrm{Msample} / \mathrm{s}$ minimum while giving true 12-bit performance with a spurious-free dynamic range of 80 dB at half the sampling rate; intermodulation distortion is 90 dB at the Nyquist frequency. Power consumption is 575 mW from a single 5 V supply. The device is made in Analog's XFCB technique, which is extremely fast complementary bipolar. Analog Devices Ltd. Tel., 01932
266000; fax, 01932247401.

Discrete active devices

6.4 GHz power fets. Hewlett-Packard has the $/ M 5964-x L$ series of internal matched gallium arsenlde power fets (Imfets) to operate in the $5.9-6.4 \mathrm{GHz}$ comms band. Typical output is over 4 W and the devices contain internal matching networks. Hewlett-Packard Ltd. Tel., 01344 366666; fax, 01344 362269.

Fast diodes. BAS family diodes from ITT provide extremely fast switching and are extremely versatile. These extreme diodes have forward voltages of 1 V at 100 mA and 1.25 V at $200 \mathrm{~mA}_{\text {, }}$ with reverse breakdown at 120 V 250 V . Power dissipation is 200 mW at $25^{\circ} \mathrm{C}$. ITT Semiconductors. Tel., 01932336116 ; fax, 0193233148.

Linear integrated circuits

Multiplexers. Analog's ADG608/609 are eight-channel and differential fourchannel multiplexers for $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. Economy is served by the provision of an on resistance of under 30Ω and less than 0.5 nA leakage current, so making them usable in precise circuitry that often requires several more components. Power consumption lies between $0.1 \mu \mathrm{~W}$ and $1.5 \mu \mathrm{~W}$, depending on supply, and operation is free from latch-up to 100 mA or more. There are also $A D G 438 F / 439 F$, with eight single-ended channels and four differential inputs. Both devices are fault-protected, but without the usual loss of performance. Analog Devices Ltd. Tel., 01932 266000; fax, 01932 247401.

Memory chips

Flash proms. EDI has a range of flash simm and plec modules based on a standard JEDEC 80-pin simm or 68 -pin plcc arrangement, with a 32-bit data bus in capacities up to 32 Mb .

The proms work on 5 V and give both more board space and increased memory up to 256 Mb , with access times of 100-150ns. EDI (UK). Tel., 01276472637 ; fax, 01276473748.

Microwave components

Coaxial attenuators. Atlantic
Microwave's new range of
attenuators comprises SMA, 2.92 mm and Type N units for frequencles from zero to 40 GHz . Attenuation is from 0.5 dB to 60 dB , with accuracy at 30 dB of $\pm 0.75 \mathrm{~dB}$. Rating is 2 W at $25^{\circ} \mathrm{C}$ and versions with cooling fins to handle up to 50 W . They are normally male/female in-line, but can be male/male or female/female and there is a hexagonal body section, if required, to allow accurate setting of coupling torque. Atlantic Microwave Ltd. Tel., 01376 550220; fax, 01376 552145.

Travelling-wave-tube amplifier. Thorn Microwave Devices announces the PTX7439 amplifier, which uses a $9-10.5 \mathrm{GHz}$ (other frequencies to order) travelling-wave tube matched to an encapsulated, switched-mode power supply. The amplifier is designed for battery-powered and airborne use, offering an efficiency of 30% minimum at a power output of 45 dBm . Built-in circuitry allows monitoring of correct operation. Thorn Microwave Devices Ltd. Tel., 0181 5735555; fax, 01815691839.

Broad-band klystrons. TMD has two new klystrons for future airborne systems, featuring small size, high efficiency and phase stability in vibration and shock. PT5184 produces 50 kW at 5% bandwidth in X band with 1.5 kW of average power, periodic permanent-magnet focussed, although a solenoldally focussed version Is being developed that will produce 100 kW peak and 5 kW average output. PT6470 gives 1-3kW peak at 2% bandwidth in X band at a very high duty ratio. Thorn Microwave Devices Ltd. Tel., 0181 5735555; tax, 01815691839.

Optical devices

Wafer inspection. For the
Inspection of silicon wafers at high magnification, Vision Engineering
has introduced a wafer loader for its 5E Dynascope optical inspection system. It uses the WED Semiconductor Wafer Handler for rapid operation and precise positioning of wafers before cutting and encapsulation. Vision Engineering Ltd. Tel., 01483 223417; fax, 01483223297.

PASSIVE

Connectors and cabling

Printer connectors. Fujitsu's FCN$240 R$ series of parallel PC-to-printer connectors conform to IEEE P1284-C standards, European CE Mark and the CG standard and are a direct replacement for Centronics connectors. They are protected against emi and esd. There are rightangled sockets for pcb mounting and plugs come with light plastic shells or die-cast covers. Rating is
1 Adc/240Vac with a contact resistance of $30 \mathrm{~m} \Omega$; insulation resistance is 1Gת. Inelco Ltd. Tel., 01734810799 ; fax, 01734810844.

Comms cable. Montrose/CDT of Massachusetts has a new line of pairs-in-metal-foil cable designed to comply with new crosstalk standards. Each palr is individually shielded by the foil and the whole braided overall with a pvc or zero-halogen jacket. EMAXX 300 shows a -55 dB performance at 300 MHz , while EMAXX 400 gives the same attenuation at 400 MHz . The cables are smaller than comparable types. Montrose/CDT. Tel., 001 (508) 791 3161; fax, 001 (508) 7939862.

Mains/phone/data services. Rendar offers an integrated electrical services system to enable 'Plug-and-go' installation of the three types of service in an office complex, based on two, four and six gang UK and IEC socket styles with variable orientation and a choice of switching and fuse options. Rcd, med and filter modules are available for protection against earth leakage, overcurrent and transients and the system is easily adapted in the light of future needs.

Synchronous dram. Designed to match 64-bit memory bus
band width, two synchronous
drams from Smart can be
used to make main memories
to run faster than any
previously available. They are
organised as 1 M by 64 and
2 M by 64 and offer a
throughput of $900 \mathrm{Mbyte} / \mathrm{s}$,
both being 168 -pin
unbuffered dimms with serial
presence detection. Smart
Modular Technology
Tel., 01908234030
fax,01908 234191

Rendar Ltd. Tel., 01243 866741; fax 01243841486.

Displays

Colour icd controller. For colour liquid-crystal displays, a controller card from Inelco allows the display of 22981 colours. It has 512 K of dram on board and comes with utility software. Since the video bios is userprogrammable, driving parameters such as refresh rate and resolution can be varied to suit. A SmartMap facillty allows the intelligent conversion of colour to a grey scale in text mode to solve the problem of applications being optimised for colour crts. The card fits any 16-bit, ISA-compatible slot. Inelco Ltd. Tel., 01734810799 ; fax, 01734810844.

Filters

Relay filters. Solid-state filters contribute enough $150-400 \mathrm{kHz}$ noise to come between the domestic EN50081-2 and the industrial EN50081-2 standards. Relay maker Crydom has introduced relays with filters to suppress this noise in single and three-phase applications, simply being connected across incoming line or phases. One filter suffices for several relays at currents over 15A. Noise reduction at 50A is from $70 \mathrm{~dB} \mu \vee$ to $35 \mathrm{~dB} \mu \vee$ at 150 kHz and to
$40 \mathrm{~dB} \mu \mathrm{~V}$ at 250 kHz at 30 A . Crydom Europe. Tel., 0181763 0550; fax, 01817630499.

Hardware

PC card cover. Molex's Snapper is a one-piece, stainless-steel cover for PCMCIA PC cards that needs no epoxy or tape to fit the card to the frame. It is usable with Types I and II cards in such applications as modems needing shielding. No heat or pressure is needed; a small arbor press closes and secures the cover, which is complete with 68 -circuit standard interface connector, grounding clips and i/o connectors, also available with solder tails. A range of cable assemblies and $1 / 0$ connectors is available and other kits for different PC cards. Molex Electronics Ltd. Tel., 01420 477070; fax, 01420478185.

Shielded touch screens. Lucas Duralith resistive touch screens provide electrostatic and magnetic interference shielding. They comply fully with emc legislation, now mandatory, and will protect the screen and other components against

EMC filters for 3-phase. FN 258 is a filter for three-phase industrial frequency inverters with a universal voltage rating of 480 V by Schatiner, meeting EN 133200 and the American UL 1283. The filters are in nine variants for currents from 1 A to 180 A and, since its temperature rating is $10^{\circ} \mathrm{C}$ nigher than usual, it can be used in most conditions without de-rating Two-stage filtering provides for output cables up to 75 m in length. Schaffner EMC Lid. Tel., 01734 770070; fax, 01734 792969.

discharge from an external object - a finger - charged to several kilovolts. The emi shielding not only protects the screens but reduces emissions. Anders Electronics plc. Tel., 0171 3887171; fax, 01713872951.

Embedded PC chassis. IMS announces the MBPC-641 Microbox chassis of about the size of a shoe box to contain an embedded industrial PC controller safely and in a small space. It has a four-slot PC/AT bus backplane, a 65 W power supply with fans and a number of connectors for i / o. There is a range of plug-in 286/386/486 cards with solid-state disks to fit the chassis, with three slots spare. Integrated Measurement Systems Ltd. Tel., 01703 771143; fax, 01703704301.

Test and measurement

Surge testing. A surge generator from Seaward, the THOR tests electrical and electronic equipment for surge immunity by replicating large surges of the type caused by power bursts, lightning and some other sources. Outputs are selectable from 0.5 kV to 4 kV at up to 16 A and an oscilloscope connection is provided. The unit is controlled by a microprocessor to give easy operation and a library of test routines. Seaward Electronic Ltd. Tel., 0191586 3511; fax, 01915860227.

Non-contact profile measurement. UBM offers the UBR200 non-contact measurement system, which can be used with a Microfocus optical sensor to replace the stylus in a profilometer, so reducing the risk of damage and increasing speed of measurement. No modifications are necessary and the system works exactly as before. Microfocus automatically controls lens position to maintain focus on the object's surface and a second system monitors lens position, which is a replica of the surface profile. Two ranges are produced: $\pm 500 \mu \mathrm{~m}$ and $\pm 50 \mu \mathrm{~m}$, the laser power being selected to match. Advanced Products and Technologies Ltd. Tel., 01865724863 ; fax, 01865725831.

Laser fault finder. ME301 by the Spanish company Molher Electronica is a visual fault locator using a laser to find several types of fault in optical fibres, emitting a red glow to indicate a point of high loss in the fibre caused by tight bends or crimps, bad connections, poor spllices or breaks, and will identify fibres. Output is selected for cw , low-power cw and a 2 Hz pulsed slgnal, the selection being indicated by a led. A timer can be selected to allow five minutes of operation. Molher Electronica sa. Tel., 0034146225 62; fax, 0034146553 82.

Gas monitoring. The cost of area gas monitoring for health and
building applications is reduced by CBISS's Intelligent Sampling System Mk 2, which collects samples of up to four gases in eight areas. Since that is equivalent to 32 monitoring points, the cost is brought down to $£ 140$ per point. Gas comes in through ptfe or nylon tube to the central analyser, which allows alarms and data logging to be carried out centrally without the use of additional modules. Auto-zero and calibration are incorporated and detector fauits are shown and their results ignored. Windows software for data acquisition is supplied. A wide range of gases can be detected. CBISS Ltd. Tel., 0151 3431543; fax, 01513431847.

Analogue/digital dmm. From Di-ioG, the DL-295 digital multimeter, which measures voltage, current, resistance, frequency to 200 kHz and temperature in the $-40^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$. In addition to the 3.75 -digit readout, there is also a 43-segment analogue bar-graph display with a 'zoom' facility for precise readings. Other facilities are a comparison function between reference and measured values, lowest and highest readings over time and a hold facility. Di-loG Ltd. Tel., 01707375550 ; fax, 01707 393277.

Function generators. Yokogawa FG200/300 are synthesised function generators with touch-screen control. The FG200 series has sweep and modulation on two independent channels at $0.000001 \mathrm{~Hz}-15 \mathrm{MHz}$ and up to $\pm 10 \mathrm{~V}$, the $F G 300$ types also providing arbitrary sweep and waveform definition. All waveform parameters can be set independently for the two channels. An extra on the FG300 instruments is a floppy drive for waveform output or input. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494535002.

PC-to-storage-oscilloscope module. Converting a PC into a 22 kHz digital storage oscilloscope, the Allison O-Scope takes the form of a module to connect to the printer port and software. Features include a spectrum analyser mode and the normal facilities offered by the PC for saving traces and printing can be used. Allison envisages the O-Scope being used in audio, data logging, car electronics and the like. Allison Technology Corp. Tel., 001800980 9806; fax, 0017137774746.

Am/fm signal generator. The Topward 80152 MHz frequency generator offers both amplitude and frequency modulation at a cost of £159. Its features include $5 \mathrm{mV}-20 \mathrm{Vpk}$ output on sine, square, triangular, ramp and pulse waveforms, a polarity inversion switch, variable dc offset and variable duty ratio on ramps and pulses. There is an internal 400 Hz modulation oscillator, with provision for an external source. Tandem

Keypad for lefties. If you are bored with the number pad on the right of your keyboard, try the Cherry G80-3700 - one that can go anywhere. It is a separate pad to link directly with ordinary IBMcompatible keyboards by way of a PC pass-through port. It has the usual number pad keys, plus four programmable function keys. It is claimed to be of benefit for left-handed operators. Cherry Electrical Products Ltd. Tel., 01582 763100; fax, 01582 768883.

Technology Ltd. Tel., 01243 576121; fax, 01243576119.

Literature

Test gear. TTi has a new catalogue of other people's instruments - a range of equipment from the world's makers, including oscilloscopes, power supplies, audio analysers, video test equipment and mains analysers. Manufacturers include Tektronix, Stanford and Hitachi. Thuriby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480. 450409.

Power components. A new $150-$ page catalogue is produced by Pico, containing details of surface-mounted and plug-in transformers and inductors, dc-to-dc converters and power supplies. The transformer section has a wide selection of audio and ultra-miniature components. Ginsbury (UK) Ltd. Tel., 01634 290903; fax, 01634290904.

Panel meters. Europa Components has produced a 20 -page catalogue of Crompton Greaves DIN standard panel meters, which meet the DIN57411 sheet 1NDE0411 pt1, proving that not only are speclication names becoming longer, but that these meters are suitable for very harsh surroundings. Main product is the S100 range, which is adaptable to most requirements, being of movingiron and moving-coil types, conforming to all manner of other speclfications, all contained in glassfilled polycarbonate cases with a black bezel. Europa Components \& Equipment plc. Tel., 0181-953 2379; fax, 0181-207 6646.

Modems and GPS. Rockwell offers a 50-page handbook and guide to its range of modems and Global Positioning System devices, boards and evaluation products. It contains a
glossary of terms in the telecomms, datacomms and navigation fields. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Telecomms. A short catalogue from Stanford Telecom gives details of products in the areas of demodulation and spread-spectrum asics and boards, frequency synthesiser boards and subsystems, forward error correction at up to $45 \mathrm{Mb} / \mathrm{s}$ and digita communications. BFI IBEXSA Electronics Ltd. Tel., 01622882467 ; fax, 01622882469.

Computer-based instruments.
National has a catalogue of software and hardware to form instrumentation and industrial automation based on the use of computers. In over 600 pages, the catalogue is in six sections: software, data acquisition, GPIB, VXI/MXI, industrial
communications and customer education. National Instruments UK. Tel., 01635 572400; fax, 01635 523154.

Three books on VMEbus. Three reference books and an 'edited highlights' from a market report on the

Slotted opto-sensor. Omron believes its EESX 1101 range of transmissive, slotted optosensors to be the smailest avallable. The whole thing is only 4.3 by 4 by 5 mm and led and phototransistor each fit into a width of 1.15 mm , leaving a 2 mm wide slot. A Fresnel lens focuses the led output on the detector to give a high current. Devices are of two kinds: a standard phototransistor or a photo-ic output for improved switching speed, the latter having an amplifier and regulator, with a Schmitt. Omron Electronics Ltd. Tel., 0181450 4646; fax, 01814508087.

VMEbus are available from Vita Europe. There is a product directory to about 3000 products from around the world, a 300-page handbook for engineers and programmers and the VME64 specification for 8 to 64 bit parallel-bus architectures. All the books cost around $£ 35$ and the report is free. VITA Europe Ltd. Tel., 01329 841272 ; fax, 01329846166.

PIC guide. Polar Electronics has updated the Beginners Guide to the Microchip PIC, but it is still at the old price of £19.95 from catalogue companies such as Maplin, Farnell, RS and Rapid. It is now spirally bound to lay flat and contains information on hardware and software design, assembly and debugging. The price includes a disk of useful design software. Most of the new information presented is on the 16 Cxx family. For volume purchases, speak to Ian Ewin or Peter Greenslade at Resource, Polar Group on 01525858200 , fax: 01525858101.

Wire, cable and tubes. Alpha Wire introduces the Master Catalogue, which takes the form of a guide to the selection and specification of wire, cable and tubing for the electronics industry. In 400 pages, the publication is in ten sections and includes shrinkable tubing, coaxial cables, lan cables, and all kinds of more familiar products such as hook-up wire. There are also 38 pages of technical data, including information on cable shielding. Alpha Wire Ltd. Tel., 01932 772422; fax, 01932772433.

Materials

Tamper detection. Electrolube offers Bloc'Lube, which gives the game away when someone who shouldn't attacks a screw or tuned coil. It is applied to the component, remaining tacky for a while until final adjustment is made and drying brittle, so that any further attempt at adjustment cracks it and shows. You can get most of it off with a screwdriver and any bits left with a solvent. Electrolube Ltd. Tel., 01734 403014/031; fax. 01734 403084.

Solder paste. Loctite's new solder pastes are particularly formulated for use in precise, miniature circuitry. The 3824,3825 and 3828 are of natural rosin, mildly activated and exhibit 0.2 mm 'slump' on 0.7 mm pads after an hour at room temperature. No cleaning is needed after reflow soldering and the wet strength is retained for long periods. Loctite UK Ltd. Tel., 01707 821000; fax, 01707 821200.

Printers and controllers

Thermal printer. A 42-column version of Epson's M-TS60 thermal printer, the M-TS63, is now available. It operates in both directions to print two
lines at the same time at a rate of 2.4 lines/s. In spite of the width and high speed, the unit's price is only 70% that of comparable printers. The unit measures less than 10 cm wide and comes with a serial RS-232C board to provide a paper feed switch, self test, 5 V power supervisor and head-jam and motor-stall protection Able Systems Ltd. Tel., 01606 48621; fax, 0160644903

Another thermal printer. Fujitsu claims the world paper speed record for its FTP600 series thermal line dot printers at $100 \mathrm{~mm} / \mathrm{s}$, running at 40% of the power needed by earlier types. The printers are available in 21 n , 3 in and 4 in versions, producing 480,640 and 832dots/line. FTP621/631/641 are produced as mechanisms only or complete with interface or as a set with microcontroller and gate array. Paper cutting mechanisms are offered. Inelco Ltd. Tel., 01734 810799; fax, 01734810844

Production equipment

Hot jet handpiece. The Royel 100 hot jet handpiece is suitable for reflow soldering or solder paste reflow in surface-mounting application, shrinking tubing and component test. It can be operated from a variable air flow and digital feedback-controlled power unit such as the HJ1000 or one of the Royel workstations. An N-type thermocouple gives continuous readout of air or gas temperature. Production Equipment Sales Ltd. Tel. 01323811694 ; fax, 01323811528.

Power supplies

Micropower dc-to-dc converter. SC1652CS from Semtech is a converter designed for Icd bias contrast application, having an 87\% efficiency. It is an inverting type driving an external switch to generate programmable negative voltages, output being scaled to -40 V or more by two resistors. Quiescent current is $80 \mu \mathrm{~A}$ or $0.7 \mu \mathrm{~A}$ when shut down. Semtech Ltd. Tel., 01592 773520; fax, 01592774781

100W dc-to-dc converter. Abbott's SMH50 and SMH100 modules complete the family of 200 kHz single and dual output converters of 50,100 and $200 / 280 \mathrm{~W}$ ratings, with complementary emc filters, transient filters and ac/dc front end modules. Standard input is $18-36 \mathrm{~V}$ and outputs cover the $2-48 \mathrm{~V}$ range. There is no current de-rating up to $100^{\circ} \mathrm{C}$. Abbott Electronics Ltd. Tel., $01233623404 ;$ fax, 01233641777.

Low-loss regulators. Input/output difference voltage of Sanken's SI3001 N ic voltage regulators is 1 V and power dissipation 1.5 W with no heat sink; output current is 1.5A. Protection against over current, too high an input voltage and overheating. The series is

suitable for use when a constant output voltage is needed without on/off control. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932 246622

Lower-cost switchers. Calex says its new 100W switched-mode power supply, while retaining all the advantages possessed by that type of design, now costs about the same as an unregulated transformer type. its output is $24 \mathrm{~V}, 5 \mathrm{~A}$ and is proof agains shorts; ripple less than $50 \mathrm{mVpk}-\mathrm{pk}$; regulation less than 1% overall; and mains buffering greater than 20 ms at 5 A . The supply conforms to the relevant interference, emission and safety standards. Calex Electronics Ltd. Tel., 01525 373178; fax, 01525 851319.

Lamp transformers. Meant to drive the cold-cathode fluorescent lamps used in flat-panel displays, transformers by Coiltronics come in power ratings of $2.5,4,6$ and 14 W in a variety of mounting styles. They are usable with floating or tied-secondary designs and give up to 30 mA at $40-80 \mathrm{kHz}$. Output is sinusoidal and emi/rfi consequently low. Microelectronics Technology Ltd. Tel. 01844278781 ; fax, 01844278746.

DC-to-DC converters. Melcher's IMR family of converters offers ranges of 3 , 6 and 15 W and is for use in reasonable environments. Single or double outputs are $5 \mathrm{~V}, 12 \mathrm{~V}$ or 15 Vdc
and input range is $2: 1$. The smallest unit comes in a 24 -pin dil package, the other two being in 2 in square modules, both types having standard pinouts. Open and short circuit protection is provided and i/o isolation is 500 Vdc . Melcher Ltd. Tel., 01425 474752; fax, 01425474768.

Switches and relays

Solenold. BLP's new PED Series 66 is a low-cost device sulted to uses in which a high force:stroke ratio is needed, but where there isn't much space. It measures 30 by 16 by 14 mm , has a $3 W$ continuous rating and pulls a load of 0.1 kgf at 10 mm stroke; 1.1 kgf at 1 mm . Colls are for 5 , $6,12,24$ and 48 V and the solenoids are available in push and pull versions. BLP Components Ltd. Tel., 01638665161 ; fax, 01638660718.

Television components

Character generator. From Philips, the PCA8516 stand-alone on-screen display generator, which allows the display of up to 256 high-resolution characters from a font contalning 253 custom characters. On a 12 by 18 dot-matrix area, the device displays Japanese and Chinese writing systems and adjacent cells can be combined vertically and horizontally to make icons and semi-graphics. It is programmable to suit all common television scan formats. Philips Semiconductors (Eindhoven). Tel., 00 3140722091 ; fax, 003140724825.

Transducers and

 sensorsBending actuator. For large displacements at low voltages, Philips offers the CMA (ceramic multilayer actuator), which is a piezoceramic strip with electrodes to cause it to bend under applied voltage and actuate external equipment such as valves. Since the piezo layers are very thin, drive voltages from 10 V to 60 V produce electric field strengths up to $3 \mathrm{kV} / \mathrm{mm}$; conventional types of actuator would need up to 1 kV to give the same field strength. Speed is higher and the device is smaller than is usual, requiring only voltage drive and therefore much less power. Philips Components. Tel., 003140 722790; fax, 003140724547.

Linear actuator. Electro-Thrust is a linear actuator combining the simplicity of a pneumatic type with the precision of a mechanical cylinder. It is programmable, repeatable to within $\pm 0.013 \mathrm{~mm}$ and comes in stroke lengths in the $50-1000 \mathrm{~mm}$ range Velocity can be controlled to speeds up to $1250 \mathrm{~mm} / \mathrm{s}$ at thrusts of up to 7200 N . The actuators are available in frame sizes of 32,50 and 80 mm in nine metric ISO mounting styles. The range of leadscrew pitches and drive ratios makes for easy matching to an application, as do the four rod end choices. Parker Hannifin plc, Digiplan Division. Tel., 01202 699000; fax, 01202695750

Vision systems

Stereo vision. Sundance has a dual digital video interface module, the SMT318, to provide stereo vision in embedded systems. It provides a digital data-capture node for TMS320C4X TIM-based systems and can be used as the interface to two digital cameras. The two interfaces give a peak acquisition bandwidth of $60 \mathrm{Mbyte} / \mathrm{s}$ and linking them gives a single 16 -bit interface. Independent control of each channel is provided and there are 10 general-purpose, programmable i / o lines. The interface can be used with Pulnix, Dalsa and EEV cameras. Sundance
Multiprocessor Technology Lid. Tel., 01494 431203; fax, 01494726363.

COMPUTER

Computer board-level products

Pentium motherboards. Cosworth from Apricot, is an ISAPCI motherboard for the full Pentium Pro family, the relevant sockets, clock and bus speeds up to 66 MHz being provided. There is on-board memory of up to 1 Gbyte in 3.3 V dimms and a Cirrus Logic Alpine GD543x or 544x chip set copes with graphics. Dualmode PCI IDE ports with two sockets are provided for hard disks or Atapi CD-rom drives. Apricot Computers Ltd. Tel., 0121717 7171; fax, 0121 7173692.

Data acquisition

Plug-and-play. A new multi-function data acquisition board from National, the 1 Ms sample/s AT-MIO-16E-1 is plug-and-play ISA-compatible and uses the company's E Series architecture to eliminate jumpers, switches or potentiometers. There are 16 single-ended inputs, 16 pseudodifferential inputs with a shared common or eight 12 -bit full differential inputs; two analogue outputs have 12 bit resolution, eight digital i/o lines sink 24 mA on each line and there are two 24 -hour counter/timer channels. National Instruments UK. Tel., 01635 572400; fax, 01635523154.

Data communications

Wireless lan chipset. Harris introduces a four-member chipset, Prism, for 2.4 GHz direct-sequence, spread-spectrum, wireless lan systems, to be used as the core of transceivers for Type II PCMCIA and ISA network adaptor cards for $4 \mathrm{Mb} / \mathrm{s}$ working. Features offered include a esistor-programmable filter, programmed timers and threshold levels in the baseband processor. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276682323.

Development and evaluation

Rom emulator. Nexus's ROMbox is a rom emulator designed to assist code and hardware development by

allowing rom image downloading at $200 \mathrm{~kb} / \mathrm{s}$ from a PC, and also by providing aids to debugging of both hardware and software. Trace unctions are Included for address matching and a bidirectional link obviates the need for an extra serial port for development. Up to 16 ROMboxes can be daisy-chained on a single cable to support 128 buses. The unit can be plugged into a 32 -pin or 28 -pin rom socket and adaptors are available for plec sockets, the connection to the PC parallel port being by a single cable. Two versions have memory of 1 Mb and 4 Mb . Nexus Electronics Ltd. Tel., 01223 576100; fax, 01223576619.

Device drivers. A Windows tool from AR, DriveWay-51, is launctied as "the fastest way to generate device drivers for the 8051 family". It is produced in association with the Israeli company AiSys and allows integration of onchip peripherals into designs, automatically producing documented and tested driver C source code for each 8051 peripheral. Test functions and documentation are generated automatically, as is an on-line data sheet on the chip's peripherals, modes, registers and pins. You will need 5Mbyte of hard disk space and 4 Mb of memory. IAR Systems Ltd. Tel., 01719243334 ; fax, 0171 9245341

Computer peripherals

RS-485 as GPIB. National's GPIB 485CT-A is an external box that makes a computer with an RS-485 port behave as a full-function IEEE 488.2 controller, an RS-485 devlce appearing as a GPIB device, the system being effective over a distance of up to 4000 ft . National also announces the PCI-GPIB, a plug-in GPIB instrument control board for computers with PCI bus running Windows 95. It handles data transfer rates to $1.5 \mathrm{Mbyte} / \mathrm{s}$ and implements the HS488 GPIB protocol for programmed i/o transfers at 3.7Mbyte/s or more. With this board, a computer is able to monitor and control several thousand pieces of equipment. National Instruments UK. Tel., 01635 572400; fax, 01635 523154.

Software

Waveform generator. Thurlby Thandar introduces a Windows-based package, WaveForm DSP, to support arbltrary waveform generation on the Model TG1010 function generator, which is a 10 MHz direct digital synthesiser. The package creates, analyses and edits waveforms, which have been made by any combination of drawing, mathematical expression, output from a dso, or taken from a library or pasted from other applications; waveforms may be drawn by mouse and smoothed with curve-fitting algorithms. It switches easily from the time to the frequency domain, both possessing editing, drawing and library features. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480450409.

Computer security

Data protection. Jetico, Inc., of Finland, produces the BestCrypt+ data protection system for PC compatibles, which is said to provide the most secure storage and yet offer easy access control to the encrypted data on disk, where it behaves transparently to an authorised user from any applicatlon program. The hardware is an add-on board and the software contains Control Panel for MS-DOS and Windows. Encryption is by means of the Russian Federal standard GOST 38147-89, which is, apparently, well known as an uncrackable algorithm, being 10^{50} times more uncrackable than the American standard. And it isn't any good trying to guess a password, because they have thought of that, too, and made it impossible to get it even by looking over someone's shoulder. Jetico Inc. Tel., 00358-31-316-5215; fax, 00358-31-316-5901. e-mail jetico@sci.fi

Finally an upgradeable PCB CAD system to suit any budget ...

Board Capture

BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker?
- Forward annotation with part values
- Full undo/redo faclity (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Conlext sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker?

BoardMaker

BoardMaker 1 - Entry level

PCB and schematic drafting

- Easy and intultive to use
- Surface mount support
- 90, 45 and curved track comers
- Ground plane flli
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMakerl plus
- Full nellist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

BoardRouter - Gridless autorouter
Simultaneous multi-layer routing

3013

SMD and analogue support

- Full interrupi, resume, pan and zoom while routing

Output drivers - Included as siandard
Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript

- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00

Excellon NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further information on
Tel 01354695959
Fax 01354695957

tsien
ほ

Microelectric Training and Development Systems PIC and 51 Series

Systems comprise of the following:
In-Circuit Emulator, Integrated windowed Full Function Editor, Assembler, Simulator, Down-loader, programmers calculator and tools. Plus leads, power supply, logic probe etc. contained in a custom-case.
Training systems contain a full set of modules and a complete set of coursework (to BTEC/GNVQ Level 3). TEC Funding Available to offset purchase costs.
Development systems include programmers and full speed in-circuit emulators.

Please call or fax for a full datapack
Kanda Systems, Lisburne House, Pontrhydygroes, Dyfed SY25 6DX.
Telephone: 01974 282670. Fax: 01974282356
Distributors Wanted!

C-PDRT
 The way forward in embedded development systems!

No more EPROM programming or emulation during software development.

Compiled C code can be uploaded directly into FLASH EPROM from a PC again \& again \& again \&

C-PORT based systems can accept in-field software upgrades from floppy - no EPROM changing.

So whether you're new to embedded micro-systems or an experienced hand, you'll find C-PORT unbeatable.

Features include:-

- 80C552 $\mu \mathrm{P}$ - C Compiler - 60k FLASH program space - 59k SRAM data space - 256 Bytes EEPROM - ${ }^{2} \mathrm{C}$ Bus - RTC - 24 additional I/O lines - RS232 - 1k additional space.
Clinical Engineering
Tel: +44 (0)151 7064202 Fax: +44 (0)151 7065803

Load dump generators for emc testing

Automotive generators that cope with the new ISO 7637 standard and the more stringent emc test requirements in a modern car are the subject of Schaffner application note INSO002.
Entitled Discussion on load-dump generator designs and suitability for automotive EMC testing, the note describes how NSG500x emc test generators are of use in evaluating automotive emc.
Transient and burst generators typically need to generate very fast rise times and short pulse widths. A typical transient generator is shown in Fig. 1.
Pulse shaping components are typically passive components - capacitors, inductors, resistors - because current solid state technology cannot generally provide the pulse shape control with the rise times and energies involved. As a result of this output
resistance R_{i} is typically specified as a variable value to allow for some control over the energy delivered to the equipment under test $-R_{\mathrm{L}}$ in Fig. 1. This mechanism however provides very limited energy control on the output. If you take the case where $R_{\mathrm{L}}=R_{\mathrm{i}}$ it is clear that half the pulse energy is dissipated internally in the generator rather than the equipment under test, or eut. In addition pulse amplitude at the eut would be half the value programmed.

In the case of the load dump generator for the NSG5000, because rise times and pulse width requirements are in the millisecond region, this pulse generator is based entirely on solid state technology. This means pulse shape and energy content, delivered to the eut, are fully programmable. As a result, test pulses delivered to the load can be much more predictable. This provides the user

Fig. 1. Simplified block diagram of a transient generator. Both transient and burst generators typically have requirements for generating very fast rise times and short pulse widths.

Fig. 2. Simplified schematic of the NSG 5005 operating in current mode. An in-line sense resistor develops a feedback voltage to control the pulse amplifier.
with test modes previously not possible with traditional passive circuit designs.

Operating modes

The instrument is intended for three basic modes of operation, one of which is current mode output.
This mode of operation could be considered a new departure in terms of the type of pulses and pulse specifications that are presently specified in the ISO 7637 standard. However, outputting a current pulse shape is a much more accurate representation of what actually happens with a load dump from an alternator in a modern automobile.
An in-line sense resistor is used to develop a feedback voltage to control the pulse amplifier, Fig. 2. The value of this resistor-is very small so it does not dissipate a significant amount of energy.

In this mode the pulse shape would normally be defined into a short circuit. Once the eut internal resistance is low enough to allow the maximum programmed peak current to flow then the pulse shape programmed will be replicated exactly at the output. Voltage developed at the output terminals, ie the equipment under test, is determined by load impedance R_{L}.

Maximum output voltage available from the NSG5005 is 200 V so the unit will clamp around this level if no other limiting device is present in the test circuit. A more common situation would be to include a centralised load-dump suppressor in the test harness to the eut, Fig. 3. Again this also helps to represent the environment that the eut might meet in the automobile more accurately.
If the eut load represents a high inductance or capacitance then the current shape may be distorted from that programmed.
The note also describes the normal voltage mode output and the voltage mode with external R_{i} resistance unit. Maximum performance limits of the NSG5005 being a maximum pulse amplitude of 200 V , pulse width of 500 ms and a maximum current of 200A.
An appendix describes how pulse shape characteristics depend on the eut load and how quickly it drains energy from the generator.

Schaffner EMC Ltd. Ashville way, Molly Millar's lane, Wokingham, Berkshire. Tel, 01734770070 , fax, 01734792969.

Surge protection solutions

Transient voltage protection products are the subject of a data and applications manual from Protek Devices. Dedicated to engineering solutions for the transient environment, the manual is split into five

$\mathrm{V}_{\text {ov }}$ - Signal Operating Voltage - Volts
Capacitance in protection devices can be a source of significant signal attenuation.
sections covering tvs diodes, Discrete TVS diodes, power tvs assemblies and high power surge suppressor modules. The fifth section covers application notes.
An interesting device designed to protect interfacing equipment from induced lightning or switching transients is detailed in section 4. Called the CX 12LC module, the device is a two stage, hybrid surge protector with a low clamping voltage, high energy handling capabilities and an operating data range up to $100 \mathrm{Mbit} / \mathrm{s}$. It is designed for high data rate applications over the operating voltage range of a computer.
Coupling capacitors inserted across the data line must be very low to prevent signal distortion or loss of data on the LAN network. The diagram (left) shows a comparison of two protection products inserted in the data line for transient voltage protection. The bottom line is for the CX 12LC, and the top line is for
a more standard device. Due to the drastic change in capacitance of the product, top line, signal distortion, loss of data or even access to the computer may be a problem.

Protek Devices, 2929 Fair Lane, Tempe, Arizona 85282, USA, Tel, 602-431-8101, fax; 602-431-2288.

In a typical data line application, as shown, video and serial data transmission lines are susceptible to lightning strikes and surges from ac power lines. The CX 12LC is designed to protect against such surges.

'Uncrackable' electronic lock

C
laimed to be the world's first unpickable electronic lock, the dynamic key alarm micro DKAI - from Electronic
Research and design Ltd lends itself to many security applications.
The device is particularly applicable to keyless lock designs relying on radio transmission. Such lock systems have traditionally been unsuitable for high-security applications.
Detailed in its technical data brief, the $D K A l$ is said to incorporate levels of security that have only recently become technically feasible. The system includes generation III military type encryption techniques based on the manufacturer's time-based multi-level encryption technology. This is said to be uncrackable - even by the most advanced 'grabber predictors'.
When originally programmed, a base time seed code is generated. This is different for every key and forms the start time-seed. This seed is then clocked in real time and a proportion of the encryption
mechanism is 'weighted' by the current time seed variables. These variables are constantly
changing. This means that the encryption engine parameters are changing all the time. Together

with the third level encryption on encryption coding techniques (multi level), this combines to make it impossible to calculate/predict consecutive codes. Even with knowledge of the multi-level encryption algorithm, it would still be impossible to decode the current time based multi-level encryption code without the knowledge of the current time seed. This can only be known by that particular key's run-time file in the decoding to which it was initially synchronised.
Conversely, because the decoder has an identical run-time file and the same moving time seed, it is able to de-encrypt the incoming code and observe any comparison, see diagram.
The brief also details the device's specifications, alarm features and diagnostics.

Electronic Research and

 Development, K\&K House, Station Approach, Rickmansworth Road, Watford, Herts, WD1 7LU. Tel. 01923 240525, fax 220011.
Electronic Designs Right First Time?

Active and Passive Filter Design - FILTECH -

From only £145!

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR. Prices From:	\$375.00	£195.00
ANALYSER III: Linear Analogue Circuit	\$195.00	$£ 98.00$
LAYAN: Electro-magnetic layout Simulator. Include board parasitics in your Analogue simulations.	\$950.00	£496.00
PULSAR: Digital Circuit Simulator Prices From:	\$196.00	$£ 98.00$
Z-MATCH: Windows based Smith-Chart program for RF Engineers. Prices From:	\$276.00	£146.00
FILTECH: Active and Passive Filter Design Prices From:	\$276.00	£146.00
We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Speclal prices for Education	US\$ prices include Post and Packing	Sterling Prices exclude P\&P and VAT.

Number One Systems
Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR, UK.

For Full Information Please Write, Phone or Fax.
email: sales@numberone.com
Tel: +44 (0) 1480461778 , Fax: +44 (0) 1480494042 Usa

New Minila	82 Specinal Orerers
 is filted with a 9 wirel lead (12 2n in gnd and vidifo $10+899.32+\mathrm{YAT}-\varepsilon!104.95$	 Sinclair light gun tur minated win a jack p plug and ppo dip gives a tigignal when poined at 50 Hz fickering light DC--DC convertor Reliabicity model 112 ips $12 v$ in $5 v$ 200 ma out 901 N input to output Isolation with
High qualisy stepping moor kist fall including stepping motors) Comsstep independent control of 2 stepping sofiware PC (Via the parallel pon) with 2 moxors and	
rinterface A A kil .	
4 (manual	
base, the collector and demiter	$15 \mathrm{p} \text {. } 1000 \mathrm{ol} 101$
	2500
60	
${ }_{\text {1/2AA with }}$	
$\underset{\text { IROMAH }}{\text { AMA }}$	$100+3.5 \mathrm{sp} . . .1000+$
andard charger charges 4 AA cells in 5 hours or 4Cs or Ds in 12.1 hours + $1 \times$ PPs ($1,2,3$ or 4 cells may be charged al a time)	Solidg no prbbs) resisuors very low inductance ideal for $R F$
charged ar aime) - .	ach
	a range of 0.25 ws 0.0 .5 w . Iw and 2 w sold carbon
Oma or less 1100 mANH capacity (lower capacity for h discharge rales) E. 75	P.C. 400W PSLC(Intel p Prat $201095-001$) with standard mains inlet/outlet connectors on back and swith on
rd\& blackicals	E26.00 each
body (excluding the shaft) it has a replaceable thermal fuse and brushes............ $\mathbf{4 . 9 5}$ each ($\mathbf{E 3 . 9 5} 100+$)	Inmax delux antrghare satiticontrol paral windous size menitor with hook \& bop tape pads 87.95 each
	93
Wide range of CMOS producte advertised are new and umused unless othe MOS TTL 74HC 74F Linear Transistora kits. Rechargeable batieries, capacitors, tools etc always in stock. Please add $\mathbf{E 1 . 9 5}$ towards p\&ep. VAT included in all prices.	
JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa Orders (01246) 211202 Fax: 550959 callers welcome 9.30 am to 5.30 pm Monday to Saturday	

CIRCLE NO. 134 ON REPLY CARD

S D Just Take Two Steps to do Your Measurement

You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals.
The TiePieSCOPE - HS508 is supplied complete with user manual, software, and two probes.
Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)

$\boxtimes 028$ Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ Tel.: (01480) 460028 - Fax: (01480) 460340
TiePie engineering, The Netherlands \triangle P.O. Box 115, 8900 AC LEEUWARDEN
Battenserreed 2, 9023 AR JORWERD

PC ENGINEERING

MATHCAD gets a plus

Allen Brown found the latest release of Mathcad a significant step forward. But was he equally pleased with the DSP Function-Pack soption?

The well known maths software package Mathcad has recently been upgraded to version 6 , and renamed Mathcad Plus 6. Version 6 is an enhancement of version 5 with some very interesting developments -

Fig. 1. A new feature of Mathcad Plus 6 is the inclusion of Quicksheets. Each one gives an example of how a Mathcad function can be used. This example shows how the first derivative can be obtained.

Fig. 2. Program loops and structures can be included in a Mathcad object; they have similar constructs as found in traditional programming languages.
not least the ability to execute program loops. In addition, Mathcad is one of the few 32 -bit programs that runs under Windows 3.1. It also runs under Windows 95 , albeit with a patch program.
The new version retains the basic initial design of using the pc screen as a scratch pad where the user is able to express and solve equations, draw graphs and construct tables. The package makes most of these tasks relatively easy. It is also able to perform analytical operations via the Maple Library. Although this feature was introduced a few version ago, it still remains as a powerful and useful feature of the package.
Newcomers to the software will probably find the immense array of functions and options bewildering. It is not a software package that the new user will learn overnight. It will probably take you several weeks to master it. However there are a number of design features, in addition to the normal help menus, that will help you gain an insight into the package's potential.
Because of its very general nature, Mathcad can be used by anyone who has a need to manipulate numbers or perform modelling tasks. To add to its appeal, the package can be bought with a variety of 'function packs' that contain functions developed for
specific applications. In this review I will be looking at the signalprocessing function pack.

QuickSheets for faster learning

One innovation introduced into Mathcad Plus 6 is the concept of the QuickSheet. It is well known that one of the most effective methods of learning is through the use of examples and this is the principle employed in the QuickSheet facility. The user is provided with a table of contents, each entry leads to a further menu and eventually to an example of how a function is used. An example is shown in Fig. 1 illustrating how the derivative function is operated.
Examples, showing how the various functions and operations work within Mathcad, can be viewed. More importantly, many of the examples are easy to follow

Programming methods

 One of the problems with previous versions of this package was its inability to perform programs with conditional loops. In version 6, this deficiency is remedied by the introduction of a set of programming functions. These include 'for', 'while', 'if', 'break' and 'otherwise'. They are evoked from the programming constructs palette and an example of how the program is
Signal processing function pack

The makers of Mathcad provide many special purpose function packs. One of particular interest to electronics engineers is dedicated to signal processing.

Each pack is a collection of special functions compiled into a dynamic linked library (DLL) that is accessed by the software. Although the SIGNAL-PROCESSING PACK comes with a small booklet which lists the functions, when installed a Signal Processing Electronic Book is loaded on the PC.

All information regarding the operation of the pack is accessible by entering the 'Electronic Book'. This provides numerous examples of how each function in the pack can be used. Having an electronic book dispenses with the need for yet another paper manual. If you want copies of specific pages from the electronic book, you merely print them as required. The only irritating aspect of the Mathcad's electronics books is the pale blue font which makes them difficult to read.
Sixty four functions in the signal-processing pack fall into the following categories,

- Transforms
- Spectral analysis
- Time series analysis
- Spectral analysis
- Digital filtering.

Fast Fourier transforms and inverse FFTs already form part of the Mathcad package and the signal-processing pack have several spectral analysis functions that complement these. These include cepstrum, for finding harmonics in spectra, costr, sintr and cosine and sine Fourier transforms. There is also a discrete Hartly transform which is similar to the Fourier Transform except it does not use complex maths.
A number of window functions are available for shaping input data before any spectral analysis is performed on it. These are important for resolving small spectral peaks lying in the shallows of much larger ones.
Although many of the functions are useful one has the feeling that they could be easier to use and this is particularly true of the digital filter functions. These operate in a rather strange manner. Normally the user will known what the stop band attenuation is, the pass band ripple and the transition frequency width between the bands. Filter design software should then provide the number of coefficients (number of filter taps) and value of the coefficients.
In the signal-processing pack, the user is expected to provide the number of coefficients. Not only that but once the coefficients have been generated there is no
direct, easy method for displaying the transfer function of the filter. The user needs this to determine whether the filter satisfies the specifications. To add to the confusion, the coefficients generated are larger than unity. As a result, they do not lend themselves to easy quantisation for implementing on fixed point DSP chips (see Fig. 7). This makes me wonder whether an engineer was consulted when the signal-processing pack was designed

To make matters worse, there are no functions for designing elliptical filters. This is a nuisance since this type of filter is used frequently for sharp cut-off filters with minimal tap count.

Fig. 7. Mathcad's signal-processing function pack has functions for designing digital filters. However when the coefficients of an infinite impulse response (IIR) filfer are displayed, the format is not immediately useful to a digital filter designer.
constructed in shown in Fig. 2.
Also shown, as an insert, is the programming palette. The while statement is very useful for iterating a loop until a condition is met at which point the program stops executing. As an extra safeguard the break function can be included to ensure that the loop terminates in the event of the normal exit condition not been satisfied.
As with other programming languages, loops can be nested within other loops to give several variable dependencies. It does however take a while to get used to the programming technique. As with all programming languages, it is necessary to think of your problem in terms of the language constructs. But first you must be very familiar with the operation of the constructs.

Handling non-linear differential equations

One of the exciting aspects of Mathcad Plus 6 is the facility for solving nonlinear differential equations numerically. Although Mathcad has been a very effective tool for modelling linear processes,
most real world problems are nonlinear. Man has a history of trying to impose linearity upon nature which is intrinsically nonlinear.

The principal function for tackling nonlinear differential equations is 'rkfixed'. This function evokes the fourth-order Runge-Kutta algorithm which can be used to solve any order, and even systems, of nonlinear differential equations.
Figure 3 shows how the function models relaxation oscillations in a semiconductor laser. There are other algorithms available in the package and their application depends on the nature of the nonlinear differential equations to solve, and on the accuracy of the required solutions. In general, systems of nonlinear differential equations can be classified as 'smooth', 'slowly varying' and 'stiff'. The function for tackling smooth systems is bulstoer, after Bulirsch-Stoer, and for slowly varying is Rkadapt, a modified version of the Runge-Kutta algorithm. Stiff systems can be solved by using 'stiffb', again after Bulirsch-Stoer, or 'stiffr' after Rosenbrock.
Solving nonlinear differential
equations can be achieved provided the user has knowledge of the initial conditions. If this information is not available, it may be possible to use the 'sbvla' or the 'bvalfit' functions which employ 'boundary value' techniques.
Given partial knowledge of a

Fig. 3. One of the powerful tools found in the new version is the option of solving nonlinear differential equations. In this example the relaxation oscillations of a semiconductor laser are modelled. As the phonon density P increases the electron density N decreases and vice-versa.

Fig. 4. Mathcad uses a symbolic calculator to perform analytical evaluations of equations. This figure shows a few examples of what can be done with the calculator.

Fig. 5. Customary $3 D$ plots can be generated with Mathcad, but their ease of construction could be improved. Not only that but object rotation to obtain a different perspective is not at all convenient.

Fig. 6. For imaginative users, Mathcad now has the provision for generating video clips which can show how a plotted function changes as one of the variables is allowed to change from frame to frame.
problem these functions allow you to determine appropriate initial conditions that can be used in the application of functions just mentioned. Collectively these functions form quite an impressive arsenal with which to solve differential equations.

Symbolic calculations

Mathcad 6 Plus retains the ability to solve equations symbolically. It uses
the Maple engine from the Canadian company Waterloo. Its performance is usually quite impressive. When the pc is configured for 32-bit disk access, the speed of execution of the 'symbolic calculator' is surprisingly fast. Its popularity in education goes without saying. Judging by the falling standards in mathematical skills by students entering universities, this aspect of the package will be seized on with great enthusiasm.
The software is able to perform a whole array of symbolic processing operations including integration, polynomial expansion, simplification, partial fraction expansions and many other general symbolic algebraic functions. However, sometimes the symbolic expansions do not perform even on simple expressions.
I had to conclude that it mostly provides an answer but not always. Figure 4 illustrated a number of symbolic operations that were successfully performed by Mathcad.

Graphing and plotting

Graphing options offered by Mathcad are not too dissimilar to those offered in general purpose graphics packages. These days, high quality data plotting software is freely available. As a result, the package has a lot in common with most graphics packages - contour plots, polar plots, three dimensional solid modelling with rotation and bar charts.
However, it should be mentioned that producing a surface plot is not as easy as I would like. It is still necessary to construct a matrix beforehand, which is not the most intuitive method of generating a threedimensional plot.

On the whole, facilities for generating and manipulating threedimensional plots are rather clumsy. An example of a colour coded parametric plot is shown in Fig. 5. There is also a provision for importing images, however this facility is by no means free of problems as it failed to function properly. Not all bit-mapped images are recognised.
An interesting addition in the new version is the option to generate animation plots. This feature employs the Microsoft multimedia facilities for video clips, .AVI files.
Figure 6 shows how easy it is to create an animation. A function is defined with a variable called FRAME. Once the animation has been evoked a dialogue box appears, on the right of Fig. 6, where the range of FRAME is defined. The user also chooses the number of frames per second.
Once the plotting area has been selected, the animation process begins.

Five screen captures from an AVI file produced by MathCad illustrate the package's animation capability.

The frames are then compiled into .AVI video, Fig. 6, top left, and played at will. This could be useful for dynamic solid modelling to illustrate vibration modes in something like an optical fibre.
The software is quite impressive when solving simultaneous equations using the lsolve function. Solving simultaneous equations boils down to solving the matrix equation,

$$
x=A^{-1} v
$$

For example, if this represents 500 simultaneous equations with 500 unknowns, v, and 500 solutions, x , Mathcad takes just over 14s to solve it when running on a 120 MHz Pentium, representing 28 ms for each unknown element in x. Bearing in mind that the matrix A contains a quarter of a million floating point elements, it can be said that the pc has come of age for computational operations.

Solving simultaneous equations is a frequent requirement for statistical work. In the new version, there is also
a substantial range of statistical functions. Should the need arise to import or export data to and from Windows applications, the package has a facility for creating dynamic data exchange, DDE, interfaces. This is a useful component if the user is interested in using Mathcad to process data direct from a data acquisition card in real-time.

Summing up

Looking at all the features that Mathcad Plus 6 has to offer, one wonders what the next version will have in store. There could be improved 3 D plotting. It still remains a very well designed software product that will continue to find appeal amongst many different kinds of users. Whether you want to perform simple calculations or quite involved nonlinear modelling the package is a very approachable product.
The user guide has passed through several iterations and the volume for the new version is an invaluable document for any user - experienced
or otherwise. The 694 page guide contains many examples and is very readable. It certainly complements the help file.
My enthusiasm for the signalprocessing function pack however is not so forthcoming. Although it has many useful functions, many lack functionality and are basically unwieldy and difficult to use. These days there are many software packages for designing and analysing digital filters. Unfortunately the signalprocessing function pack falls far short of most of them.

Availability

Adept Scientific Micro Systems Ltd, 6 Business Centre West, Avenue One, Letchworth SG6 2HB, Tel. 01462480055, fax 01462-480213. Price Mathcad Plus 6, £395 excluding VAT, Signal Processing Function Pack, $£ 195$ excluding VAT. Educational discounts are available in some cases.

KESTREL ELECTRONIC COMPONENTS LTD

\& All items guaranteed to manufacturers' spec. ~ Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.60	1.80	628128LP-85	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.60	2.80
27C256-15	2.20	1.70	6264LP-10	2.60	1.75
27C512-15	2.20	1.70	MM58274CN	4.90	3.75
27C010-15	3.95	2.80	ULN2003A	0.43	0.30
27C020-15	6.00	4.25	7805	0.32	0.25
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.95	7406	0.35	0.23
8255AC-2	2.00	1.45	7407	0.35	0.23
Z80A CPU	1.80	1.00	74HC244	0.35	0.24
LM317T	0.50	0.40	74HC245	0.35	0.24
75176BP	1.35	0.85	74HC373	0.35	0.25
68w PLCC skt	0.90	0.70	74HC374	0.32	0.25

74LS, 74HC, 74HCT Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices

> 178 Brighton Road, Purley, Surrey, England CR8 4HA Tel: 0181-668 7522. Fax: 0181-668 4190.

PIC our TOOLS for Value and Performance

MIIFORD INSTRUMENTS
UK-Ireland Distributors for Parallax Development Toois and the BASIC Stamp Tel: 01977683665 fax: 01977681465

SURVEILLANCE TELESCOPE Supert Russian zoom telescope adjustable from 15x to $60 \times$! complete with metal tilpod (imposible to use without this on the higher settings) 66 mm lense leather carrying case $£ 149$ ref BAR 29
RADLATION DETECTOR SYSTEM Designed to be wal mounted and connectedinto a PC, Ifeal for remote monitonng, whole building coverage etc. Complete wth detector, cable and software WIREL
WIRELESS VIDEO BUG KT Transmits video and audio signais from a min nature CCTV camera (included) to any standard televisionl All the components inciuding a PP3 battery will fit into a cigarette packet with the lens requiring a hote about 3 mm diameter. Supplied with telescopic aerial but a piece of wire about 4' long will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use $\mathbf{C 9 9}$ REF EP79. (probably not licensable!) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams. 12 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output is 1 v $p-p$ (75 ohm). Works directy into a sc
video Input on a N or video. IR senstive. $£ 79,95$ rel $E F 137$.
video input on a virvideo. IR sensitive. $£ 79,95$ rel EF137,
IR LAMP KT Sutable for the above came ra enables the camer to be used in total darknessl E 5.99 rel EF 138
TANDATA TD1400 VIEWDATA Complete system comprising modem, infra red remote keyboard, DSU, UHF and RGB output. phone lead, RS232 output, composite output £9.95 ref BAR33. MAGNETIC CARD READERS (Swipes) E9.95 Cased with fiyleads, designed to read standard credit cards! they have 3 wires ilyleads, designed to read standard cresit cards they have 3 wires
coming out of the head so they may write as well? complete with coming out of the head so they may wnie as
comtrol elt ronics PCB. just $£ 9.95$ ref BAR31
PANORAMIC CAMERA OFFER Takes douple width photographs using standard 35 mm film. Use in horizontal orvertica mode. Complete with strap $£ 7.99$ ref BAR1
COIN OPERATED TIMER KT Complete with coinslot mecharism, adjustable ime delay, relay outut, put a coinsict on anything you likel TV.s, videos. fridges, drinks cupboards. HIFI. takes 50 's and $£ 1$ coins. DC operated, price jusi $£ 7.99$ ref BAR27.
ZENTH $900 \times$ MAGNIFICATION MICROSCOPE ZOom ZENTH $900 \times$ MAGNIFICATION MICROSCOPE Zoom. metal constructon, buitr in light. shnimp farm, group viewing screen, lots of accessones. £29 ref ANAYLT
LUBTEL 1660 Tiwin lens Russian $21 / 4^{\circ}$ sq rellex camera supplied with two free rolls of colour film, fip up magnifer, 3 element 4.5 lens. $£ 19.99$ rel

AA MICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ rel BAR34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data hence E 4.99 ref BAR87
NIGHTSIGHTS Model TZS4 with infra red illuminator, view s up to 75 metres in full darkness in infrared mode, 150 m range 45 mm lens, 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA Datterie 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA
required. 950 g werght. $£ 210$ ref BAR 61.1 years wartanty
FILIN-1 150 m range. 15 deg angle of view. focusing 10 m -infinity. $£ 179$ ref BAR62. A separate infra red light is available at $£ 30$ ref AR63
WHITE NIGHT SIGHTS Excellent professional nig hit sight. small, hand heid with camollaged carrying case $£ 325.1$ years warranty.
MEGA AIR MOVERS 375 cubic feet per mini, 240 v 200 watt. 2.800 pm , reversable, $7^{\prime \prime} \times 7^{\circ}$ UK made, new, Aluminium, current lis price about £180 ours? £29.95 ref BAR35.
LIQUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line, $65 \times 14 \mathrm{~mm} £ 1.99$ ref SM1612A 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM 1623 A 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL- 1110 MM NEWTONLAN REFLECTORTELESCOPE Russian. Supert astronomical'scope, everything you need for some serious star gazing! up to 169x magnification. Send or fax for furt he GOTAN EXPENSI
GOT AN EXP ENSIVE BIK ETY You need one of our botte alarms. they look like a standard water bottle, but open the top, insert a key to activate a motion sensor alarm bultinside Fits all standard bott
carriers, supplied with two keys SALE PRICE E7.99 REF SA32. camiers, supplied with two keys SALE PRICE E7.99 REF SA32.
GOT AN EXPENSIVE ANYTHING? You need one of o GOT AN EXPENSIVE ANYTH ING? You need one of our
cased vibration alams, keyswitch operated. fully cased just tit it to cased vibration alams, keyswitch operated. fully cased just fit it to
anything from videos to caravans, provides a years protection from 1 PP3 battery. UK made. SALE PRICE $£ 4.99$ REF SA33.
DAMAGED ANSWER PHONES These are probably beyond repair so just $£ 4.99$ each. BT response 200 machines REF SA30. COMMODORE GAMES CONSOLES Just a tew of these left to clear at $£ 5$ ref SA31. Condition unknown.
COMPUTER DISC CLEA ROUTWe are lef with a iot of softw are packs that need clearing sowe are selling atdl sc value only! 50 discs for £4, thats just 8p each!!(our choice of discs) E4 ref EP66 IBM PS2 MODEL 1602 CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $£ 9.85$ ref EP6 DELL PC POWER SUPPLIES 145 watt. $+5 .-5 .+12 .-12$. $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyleads and IEC socket
SALEPRICE SALE PRICE E9.99 ref EP55
1.44 DISC DRIVES Standard PC 3.5° dnves but returns so they will need attention SALE PRICE 64.99 ref EP68
1.2 DISC DRNES Standard 5.25° drives but retums so they will need attention SALE PRICE $\mathbf{E} 4.99$ ref EP69
PP3 NICADS Unused but some storage marks. $£ 4.99$ ref EP52 DELL PC POWER SUPPLIES (Custorner retums) Standaro PC psu's complete whit fiy leads, case and fan, pack of two psus SALE PRICE E5 FOR TWOII rel EP61
GAS HOBS ANDOVENS Brand new gas appliances, perfect io small flats etc. Basic 3 bumer hob SALE PRICE $£ 24.99$ ret EP72 Basic small built in oven SALE PRICE E79 ref EP73
BITS AND BOBS We have a quantity of cased modems multiplexers etc different specs butideal strippers. ©4 each ref EP63 RED EYE SECURTTY PROTECTOR 1,000 watl outdoor PIR switch'SALE PRICE $£ 9.99$ ref EP57
ENERGY BANK KTT $1006^{\prime} \times 6^{\prime \prime}$ 6v 100 mA panels, 100 diodes connection details etc. E 69.95 ret EF112.
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses. includes wordprocessor. report writer windowing, networkable up to 10 stations, multiple cash books etc.
200 page comprehensive manual. 90 days free technical suppon 200 page comprehensive manual. 90 days free technical support
($0345-326009$ try before you buyl) Current retall price is $\mathbb{£ 1 2 9 .}$ (0345-326009 try before you buyl) Current
SALE PRICE $£ 9.95$ ref SA12. SAVE £120॥l

WOH. LRHAMPTON BRANCH NOW OPEN AT WORCESTER ST WHAMPION TH1 01902.22039

MINI MICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ Sq SALE PRICE E2. ReI SA13

 REUSEABLE HEAT PACKS. Ideal for fishemen. outdoor enthusiasts eldenty or infim, waming food, drinks etc. defrosting plpes etareuseable up to 10 times, lasts for up 108 hours per go, 2,000wh energy, gets up to 90 degC. SALE PRICE 99.95 REF SA29 12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (Includes standard IEC socket) and 2 m lead with plug. $100-240 \mathrm{VIP}$. E6.99 REF SA 15. PC CONTROLLED 4 CH ANNEL TIMER Control (ondof times etc) up to 4 items (8 A 240 veach) with this kn. Complete with Softw are, relays. PCB etc. $£ 25.99$ Ref $95 / 26$COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power fuctuations and culs. New and boxed, UK made Provides up to 5 mins running tme in the event of complete power failure to allow
correcty. SALE PRICE Just E 9.00 .
Correcty. SALE PRICE Just C89.00.
SOLAR PATH LIG MTS Low energy walkights powered by the sun! built In PIR so they work when you walk past. Indudes solar pane \& rechargeabie bat SALE PRICE $\in 19.95$ REF EP62
 input lead, UK made, Z20v. SALE PRICE E4.99 REF EP7

http://www.pavilion.co.uk/bull-electrical
RACALMODEM BONANZA! 1 Raca MPS 1223120075 modem, terephone lead, mains lead. manual and comms softwa
cheapest way onto the nell all this for just $£ 13$ ref DEC13.
4.5 mw LASER POINTER. BRAND NEW MODEL NOW IN sTOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket clip (which also acts as the on/off switch.) About 50 metres rangel Runs on 2 AAA batteries. Produces thin red beam Ideal for levels, gun sights, experiments etc. just $£ 39.96$ ref DEC49 TRADE PRICE $£ 28$ MIIN 10 PIECES
BULL TENS UNT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70\% of sufferers. Drug free pain relief, sate and easy to
conjunction with anaigesics etc. $£ 49$ Ref TEN/1
conjuncton with anaigesics etc. E49 Ret TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern unlis, (like wyse 50, s) 2xRS232, 20 function keys 50 thro to 38,400 baud, menu driven porn, screen, cursor, and keyboard setup menus (18 menu's). £29 REF NOV4.
RUSSLAN MONOCULARS Amazing 20 times magnlicayon, coated lenses, carrying case and shoulder strap $£ 29.95$ REF BART3 PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen Complete with built in ps u, lead and s Nare..Ideal for laptops or a cheap upgrade.Supplied in kit form for home for laptops or a cheap upgrade. Supplie
assembly. SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNT Complete unit with 2 double EMERGENCY LIGHTING UNT Complete unit with 2 double bulb floodlights, buill in charger and auto S witch.
lead acid req'd. (secondhand) $£ 4$ ret MAGAP11.
SWINGFIRE GUIDED MISSILE WIRE, 4,200 metre reel of ultra thin 4 core insulated cable, 281 bs breaking strain, less than 1 mm thickl Ideal alams. intercoms. dolls house's etc. $£ 13.99$ ref EP51 ELECTRIC CAR WINDOW DE-ICERS Complete with cable plug etc SALE PRICE JUST E4.99 REF SA28
ASTEC SWTCH ED MODE PSU BM4 1012 Gives +5 © 3.75 A . +12@1.5A, -12@. 4A. 230/110, cased. BM41012 $£ 5.99$ ref AUG6P3. AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solarpanel with diode and metre lead fitted with a cigar plug. 12v 2watt. E8.99 REF SA25
TOP QUALTTY CENTRIFUGAL MAINS MOTORS SALE PRICE2 FOR JUST £2.60 REF SA38
ECLATRON FLASH TUBE As used in police car fashing lights etc. full spec supplied, $60-100$ fashes a min. $\mathbf{E 6 . 9 9}$ REF SA 15 . 24 V AC 96WATT Cased power supply. New. £9.99 REF SA40 MiLTTARY SPEC GEIG ER COUNTERS Unused anstraightiom Her majesty's forces. SALE PRICE E44 REF SA16
MICRODRINE STRIPPERS Small cased tape dirves Ideal for stripping. lots of useful goodies including a smart case, and lots of COMPOR POWER LAB SPECLAL You get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 SOLAR POWER LAB SPECLAL You get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 mA
solar cells, 4 LED's. wire, buzzer, switch plus 1 relay ormotor. Supet solar cells. 4LED's, wire, Duzzer, switch plus 1 re
value kit SALE PRICE JUST E4.99 REF SA27
RGB/CGA/EGAITLL COLOUR MONTORS 12° in good condition. Back anodised metal case. SALE PRICE C 49 REF SA16 PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fuly cased with mains and op leads $17 v \mathrm{DC}$ 900 mA output. Bargain price $£ 5.99$ rel MAG6P9
900 mA output. Baryan price £5.99 ret MAG6P9
ACORN ARCH MEDES PSU +5 V © 4.4A. on/off sw uncased,
-some of our products mat be unlicensable in the uk
BULL ELECTRICAL

we GMOW, 10 ,
上LL, O1 23203501
$14 \mathrm{X} 012732307 \%$
H-mailsullopayilwa.co.ut
selectable mains input. 145×100×45mm E3.99 REF MAG7P2 13.8V 1.9A PSU cased with leads. Just £9.99 REF MAG10P3 200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC into either 110 v 240 V AC. Fuly cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy dutypowerlead, cigar plug. AC Oute tsockel. Auto overtoad shutdown, auto short circult shut down, auto input over voltage shutdown, auto input undervoltage shut dow (with audible alarm), auto temp control unit shuts down H overheated and sounds audible alarm. Fused reversed polarity prolected ouput frequency within 2%, voltage within 10%. A well built unit at ankeen price. Just $£ 64.99$ ref AUG65. UNNERSAL SPEED CONTROLLER KT Designed by us for the C5 motor but ok for any 12 V motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating between PC's over a long distance. Complete kit £8.99.
VIEWDATA SYSTEMS made by Phillips, complete with intemal $1200 / 75$ modem, keyboard, pSu etc RGB and composite outputs, AIR RIFLES . 22 As usen
 PLUG IN POWER SUPPLY SALE FROM $£ 1.60$ Plugs in to 13A socket with outpullead. three types available. 9 vdc 150 mAE 1.50 el SA19, 9vdc 200 mA \& 2.00 re1 SA20, 6.5 vdc 500 mA £ 2 rel SA21. VIDEO SENDER UNT. Transmits both audio and video signals from either avideo camera, video recorder. TV or Computer etc to any tandard TV set in a 100' range! (tune TV to a spare channel) 12 V DC -FM CORDLESS MICROP HONE Small hand held unit with a 50 ' range! 2 transmit power levels. Reas PP39v battery. Tuneable io any FM receever. Price is $£ 15$ REF: MAG15P1
-MINATURE RADIO TRANSCEINERS A pair of walkie talkies with a range up to 2 km in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$.
Induding cases and eapp'ces. $2 \times P \mathrm{P} 3$ req'd. $£ 30.00$ pr.REF: MAG 30 -FM TRANSMITER KT housed in a standard working 13A adapter! the bug runs directy of the mains solasts forevent why pay £700? or price is $£ 15$ REF: EF62 (kit) Transmits to any FM radio. "FM BUG BUILT AN DTESTED superior design to kt. Supplied to detective agencies. $9 v$ battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WITH COINSLOT M ECH ANISMS originally made to retal atE79 each these units are designed to convert an ordinary phone into a
payphone. The units have the locks missing and sometimes broken payphone. The units have the locks missing and sometimes broken
hinges. However they can be adapted for theironiginal useor used for hinges. However they can be adapled for their riginal use or used for something else?7 SALE PRICE JUST E2.50 REF SA23
GAT AIR PISTOL PACK Complete with pisto, darts and pellets $£ 12.95$ Ref EF82B extra pellets (500) $£ 4.50$ ref EF80.
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL
130 mA . SALE PRICE E4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ef MAG5P 13ideal for expenmenters 30 m for $£ 12.99$ ref MAG 13 P 1 MDED GOODIES BOX OF
MIXED COMPONENTS WEIGHING 2 KILOS
YOURS FOR JUST £6.99
4×28 TELESCOPIC SIGHTS Suitable for all air nfles, ground enses, good ight galh
RATTLE BACKS Interesting things these, small plece of solid perspex like material that ity you try to spin it on the desk it only spins
one wayl in fact ifyou spin it the 'wrong' way it stops ofits own accord one way' in fact ifyou spin it the 'wrong' way it st
and go's back the other wayl E 1.99 ref GI//J01.
GYROSCOP ES Rememberthese? well we have found a company that still manufactures these popular scientific toys. perfect gifh or for educational use etc. $£ 6$ ret EP70
HYPOTHERMIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket, refects more than 90% of body heat. Also suitable for the constuction of two way mirors! $£ 3.99$ each ref O /.041.
LENSTATIC RANGER COMPASS oil filled capsule, strong metal case, large luminous points. Sight line with magnifying viewer metal case, large luminous points. Sis
50 mm dia, $86 \mathrm{gm} . £ 10.99$ ref O 604 .
RECHARGE ORDIMARY BATTERIES UP TO 10 TMES: With the Battery Wizard! Uses the latest pulse wave charge system 10 charge all popular brands of ordinary batteries AAA, AA, C, D, fou ata time! Led system shows when batteries are charged, automatically rejects unsuitable cells,
Price is $£ 21.95$ ref EP 3
TA
TALKING WATCH Yes, it actually tells you the time at the press of abutton. Also features a voice alam that wakes you up and tells you
what the time is Luthium cell included. $£ 7.99$ ref EP 26 .
hat the ome is! Luthlum cell Induded. $£ 7.99$ ref EP26.
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsible of dnvers from losing theirlicencel Adjustable audible alarm with 8 nashing leds gives instant waming of radar zones. Detects X, K, and $K a$ bands, 3 mile range, 'over the hill 'around bends' and 'rear trap facilites. micro size fust $4.25^{\prime \prime} \times 2.5^{\circ} \times .75$ Can pay for itsell in just one day' $£ 79.95$ ref EP3.
SANYO NICAD PACKS $120 \mathrm{mmx} \times 14 \mathrm{~mm} 4.8 \mathrm{v} 270 \mathrm{maH}$ suitable for cordless phones etc. Pack of 2 just $£ 5$ ref EP78.
3" DISCS As used on older Amstrad machines. Spectrum plus3's tc $£ 3$ each ref BAR400.
STEREO MICROSOPES BACK IN STOCK Russlan, 200x complete with lenses. lights. filters etc etc very comprehensive
microscope that would nommally be around the $\varepsilon 700$ mark, our pnce is just $£ 299$ (full money back guarantee) full details \ln catalogue Ré 95/300.
SOLAR POWERED CAR VENTILATOR Simply fits along the 100 of the glass in a side window and provides a constant supply of resh air in hot sunny conditonsl keeps your car cool in summe 19.95 ref sivent.

WE BUY SURPLUS STOCK FOR CASH
FREE CATALOGUE

> 100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.
> CIRCLENO. 139ONREPLY CARD

PORTABLE X RAY MACHINE PLANS Easy to construc plans on a simple and cheap way to build a home X-ray machine!
Etiective device X-ray sealed assemblles can Effective device, X-ray sealed assemblles. can be used for
experimental puposes. Not a toy or for minors! £6/set. Ref F/XP1. experimental puiposes. No a toy or for minors !E6/se1. Ref FIXP9.
TELEKINETIC ENHANCER PLANS Mystity and amaze your friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no spedal gimmicks yetproducespositive motonand effed. Excellent tor scienceprojects,
magic shows, party demonstrations or serious research \& magic shows, party demonstrations or serious research \&
development of this strange and amazing phychic phenomenon. development of this
E4/set Ref FTKE1.
ELECT RONIC HYPNOSIS PLANS \& DATAThis data shows several ways to put subjects under your control. Induded is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be used caubously. It is for use as entertainment at parties etc only, by those experienced in its use. $115 /$ set. Re/ F/EH2.
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple elecincal phenomena that produces an antigravity effect. You can actually build a small mock spaceship out of gravity effect. You can actually build a small mock spaceship out of simple materials and
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, expenment with extraordinary HV effects, 'Plasma in a jar', St Elmo's fire, Corona, excellent sclence project or conversation plece. £5/set Ref F/BTC1/LG5.
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to Angon laser but easier and less costly to build yet far more efficient. This parbiculardesign was developed at the Atomic Energy Commision of NEGEV in Israel. £10/set Ref F/CVL 1.
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. £6/set Ref FNS9.
PULSED TV JOKER PLANS Litte hand held device utilises pulse techniques that will completely disrupt TV plature and sound works on FM too' DISCRETION ADVISED. £8/set Ref FTJJ.
BODYHEAT TELESCOPE PLANS Highly alrectional long range device uses recent technology to detect the presence of living bodies, wam and hot spots, heat leaks etc. Intended for security, law enforcement. research and development, etc. Excellent security device or very interesting science project $£ 8 /$ set Ref F/BHT1.
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance. This laser is one of the most efficient, converting 10\% input pow er into usefuioutput. Not only is this device a workhorse in welding, cutting and heat processing matenals butit
is also a likely candidate as an effective directed energy beam is also a likely candidate as an effective directed energy beam
weapon against missles, aircraft, ground-to-ground, etc. Partide beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicable to burning and etching parucles. The device is easily applicable to burning
wood, cutting, plastics, textiles etc £12/set Ref F/C7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity, concept. Objects float in air and move to the touch. Defies gravity,
amazing gift. conversation piece, magictrick or science project. $£ 6 /$ amazing gift. conv
set Ref F/ANT1K.
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides. Many cleaning uses for PC boards, jewllery, colns, small parts etc. $£ 6 /$ set Ref FNLB1
ULTRAHIGH GAIN AMP/STETHOSCOPICMIKE/SOUND AND VIBRATION DETECTOR PLANS Ulirasensitive device enables one to hear a whole new world of sounds. Listen through walls, windows, floors etc. Many applications shown, from law enforcement, nature listening. medical heartbeat, 10 mechanitai devices. E6/set Ref F/HGA7
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of
cannot tolerate $£ 6 /$ set Rel cannot tolerate $£ 6 /$ set Ref F/DOG2
LASER BOUNCE LISTENER
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises w/thout ganning access. $£ 12$ set Ref CRAWLING INSECT ROASTER PLANS Harmless high frequency energy pulses destroy pests as they crawl into the energy field! $£ 4 /$ set Ref F/RCR1
LASER LIGHT SHOW PLANS Do it yourself plans show three methods. £6 Ref F/LLS1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with extemal controls. $56 /$ set Ref F/PSP4
INFINITY TRANSMITTER PLANS Teiephone line grabber/ roommonitor. The ultimate in home/ofice security and salety! simple to usel Call your home or office phone, push a secret tone on your telephone to access either. A) On premises sound and voices or B) Existing conversation with break-in capability for emergency Existing conversation with break
messages. $£ 7$ Ref FTTELEGRAB.
BUG DETECTOR PLANS Is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy' Snifts out and finds bugs and other sources of bothersome interference Detects low, high and UHF frequendes, £5/set Ref F/ ${ }^{801}$
ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $£ 5$ ref F/EML2. ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI $£ 5 /$ set Ref F/EMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostile premises. Uses satellite technology to gather distant sounds and focus them to our ultra sensitive electronics.
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDCOUTPUT GENERATORPLANS Operates on $9-12 \mathrm{vdc}$, many possible experiments. £10 RefF/HVM7/ TCL4.

WOI VERHAMPTO N BRANCII NOW OUEN AT WORCESTER ST WIIMMION IM1. 0190222139

MINI FM TRANSMITTER KT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover 63 - 130 Mhz . Works with a common 9v (PP3) battery. 0.2W RF. £7 Ref 1001.
ELECTRONIC SIREN KIT Impressive 5 watt power output. Ideal for carbike alarm etc. 6-12v dc max current 1A, 1.2khz £6 Ref 4003. 3-30V POWER SUPPLY KIT Variable, stablilized power supply for lab use. Short circuit protected, suitable for profesional or amateur use 24y 3A transfommer is needed to complete the kin £ 14 Ref 1007 1 WATT FM TRANSMITTER KIT Supplied with plezo electric microphone 8 -30vdc. At $25-30 \mathrm{v}$ you will get nearly 2 watts! $£ 12$ ret 1009.

FM/AM SCANNERKIT Well not quite, you have to turn the knob your sel butyou will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on both AM and FM. Builh in 5 watt amplifier, inc speaker. £15 ret 1013.
MOSQUTO REPELLER KTT Modem way to keep midges at bay! Runs for about a month on one $1.5 v$ battery. $£ 7$ Ref 1015 3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel. 1,200w operated, separate sensitivity adjustment for each cha
power handling, microphone included. 114 Ref 1014.
MOTORBIKE/CYCLE TREMBLER ALARM KIT Adjustable sensitivity. preset alam tme, auto reset Could be connected to horn etc. $£ 12$ Ref 101
0-5 MINUTE TMER KIT adjustable, will switch up to 2A mains. Perfect for alarms, photography, etc. $£ 7$ Ref 1020.
4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp included. £20 Ref 1028.
STROBE LIGHT KIT Adjustable from 1.60 hz (a lot faster than conventional strobes). Mains operated $£ 16$ Ref 1037.
ULTRASONIC RADAR KIT Ideal as a movement detector with a range of about 10 metres, automate your cat flapt 12 v dc. $£ 15$ Ref 1049.

LIQUID LEVEL DETECTOR KT Useful for tanks, ponds, baths, rain alarm, leak detector etc. Will switch 2A mains. £5 Ref 1081 COMBINATION LOCK KIT 9 key, programmable, complete with keypad, will switch 2A mains. 9v dc operation. $£ 10$ ref 1114
PHONE BUG DETECTOR KIT This device will warn you if somebody is eavesdropping on your line. $£ 6$ ref 1130. ROBOT VOFE KIT Interesting circuit that distorts your voice! adjustable, answerthe phonewith a differentvoice! 12 vdc£ 9 ref1131 TELEPHONE BUG KIT Small bug powered by the 'phone line, starts transmitting as soon as the phone is picked upl $£ 8$ Ref 1135. FUNCTION GENERATOR KIT Produces sinusoidal, saw tooth and square waves from $20-20 \mathrm{khz}$, separate level controls for each shape. Will produce all 3 together. 24vac. $£ 16$ ref 1008 .
3 CHANNEL LIGHT CHASER KT 800 watts per channel, speed and direction controlssupplied with 12 LEDS (you can fit triacs instead to make fot mains, not supplied) $9-12 \mathrm{vdc} £ 17$ ref 1026. 12VFLOURESCENT LAMP DRIVER KITLight up 4 foottubes 12VFLOURESCENT LAMP DRIVER KIT Light up 4 foottubes from your car battery! 9v 2a transiormer also required. \&o ref
VOX SWITCH KI Sound activated switchideal formaking bugging tape recorders etc, adjustable sensitivity. $£ 8$ ref 1073.
INCAR SOUNDTO LIGHT KIT Put some atmospherein yourcar with this mini 3 channel sound to light. Each channel has 6 led's. £10 ref 1086.
TW HI FI AMPLIFIER KIT Usefu, powerful, ideal for audio systems, intercoms etc. 12-18voc $£ 7$ ref 1025.

Check out our WEB SITE

http://www.pavilion.co.uk/bull-electrical PREAMP MIXER KIT 3 Input mano mixer, sep Dass and treble controls plus individual level controls, 18 vdc , input'sens 100 mA . $£ 15$ ref 1052.
METAL DETECTOR KIT Range $15-20 \mathrm{~cm}$, complete with case. gvac. E8 ref 1022.
SINGLE CHANNEL SOUND TO LIGHT KIT Mains operated, add rythum to your party for only $£ 8$ ret 1006.
SOUNDEFFECTS GENERATOR KIT Produces sounds ranging
from bird chips to sireris. Complete with speaker, add sound effects to your projects for just $£ 9$ ref 1045
GUTTAR PREAMP KIT Complete with tone controls, small enough to fit in any guitar, based on TLO82 IC, 9-12vdc £8 Ref 1091. 16 WATT FM TRANSMITER (BUILT) 4 stage high power, preamp required 12-18vdc, can use ground plane, yagi or open dipole. $£ 69$ ret 1021.
TELEPHONE AMPLIFIER KIT Very sensitive amplifier which uses a pickup coil (supplied) will let you foll ow a conversation with out holding the 'phone. £11 ref 1059.
HUMIDITY METER KTT Builds into a precision LCD humldity
BULL ELECTRICAL

WII ORDER PUCE E3 YE P PIUS VAT

14i: 01273203510

1. 2×01273.323077

E-mail bull(opavilionicouk
meter, 9 Ic design, pcb, Icd display and all components included. $£ 49$ PC TMER KIT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you want whenever you want. Minimum system configeration is 286, VGA, 4.1,640k, serial port, hard dnve with min 100k free. £24.99
DNINING RODS Expensive technology cannot challenge the fool proof art ofw aterdivining. passeddown from generation to generaion. prof art of weter divining, passeddown nom gen eration togene raion.
Seeing is believing. Use in the home, garden, countryside or desert. it's divinely simplei E4.99 a pair ref E 3 .
HUGE BUBBLE MAKING KT You'll be amazed at the the size of the bubbles you can acheive with this bubble making kth. Once you have got the knackitis possible to make bubbles of up to 40 teetlong £11.99 ref E9.
FM CORDLESSMICROPHONE This unitis an FMbroadcasting station in minature. 3 transistor transmitter with electret condenser
mict fetamp design result in maximum sensitivity and broad frequency mic+fet amp desgn resultin maximum sensitivity and broadfrequency response. $90-105 \mathrm{mhz}, 50-1500 \mathrm{hz}, 500$ toot range in open country! PP3 battery required. $£ 15.00$ ref 15P42A.
MAGNETIC MARBLES They have been around for a number of years but still give
$£ 3.99$ ref $\mathrm{GI} / \mathrm{R} 20$
STET HOSCOPES A fully functioning stethoscope for all those intricate projects. Enables you tollisten to motors, pipes, heartbeats, walls, insects etc. 66 ret MAR6P6.
WICKEL PLATING KIT Profesional electroplating kit that will translom rusting parts into showpleces in 3 hours! Will plate onto stee, iron, bronze, gunmetal, copper, welded, silver soldered or brazed Joints. Kit Includes enough to plate 1,000 sqinches. You will alsoneed
a 12 V supply, a container and 212 v light bulbs. $£ 39.99$ ref NIK 39 . SHOP WOBBLERSISmall assemblies designed to take D size batterles and 'wobble' signs about in shops! £3.99 Ref SEP4P2 OMRON ELECTRONIC INTERVAL TMERS.
****NEW LOW PRICES TO CLEARII!
Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12 VDC adjustable from $0-30$ secs. $£ 4.99$ HY1210M. 12vDC adjustable from $0-10 \mathrm{mins}$. $£ 4.99$ HY1260M, 12 vDC adjustable from $0-60$ mins. $£ 4.99$ HY2460M, 24VAC adjustable from $0-60$ mins. $£ 2.99$ HY243H, 24 VAC adjustable from $0-3$ hours. $£ 2.99$ HY2401S, 240 N adjustable from 0.1 secs. $£ 4.99$ HY2405S, 240 V adjustable from 0.5 secs. $£ 4.99$ HY24060m, 240 V adjustable from $0-60$ mins. $£ 6.99$ DRIN KIN G BIRD Remember these? hook onto wine glass (supplied) and they drink, standup.drfink, standup ETCI $£ 4$ each Ret EF1 SOLAR POWER LAB SPECLALYou get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 mA solar cells, 4LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit just E5. 99 REF: MAG6P8
BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with headphones. $£ 28.99$ re'MAR29P1 PLUG IN ACORN PSU 19V AC 14 w , $£ 2.99$ REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17v OC 900 mA output. Bargain pnce $£ 5.99$ rel MAG6P9
9v DC POWER SUPPLY Standard plugin type 150 ma 9 VCC with lead and DC power plug. price for two is $£ 2.99$ ret AUG3P4. 13.8 V 1.9 A psu cased with leads. Just $£ 9.99$ REF MAG1OP3 INFRA RED REMOTE CONTROLLERS Onginally made for hl spec satellite equipment but perfect for all sorts of remote control spec satelite equipment bit perfect for ant sorts of
projects. Our dearance price is just $£ 2$ REF: MAG2
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPOSTE EIDEO KIT. Converts composite videointo separate H sync. V sync, and video. 12 v DC. $£ 8.00$ REF: MAG8P2. UNNERSAL PC POWER SUPPLY complete with flyeads, switch, fan etc 200 w at $£ 20$ REF: MAG20P3 ($265 \times 155 \times 125 \mathrm{~mm}$). GYROSCOPE About 3 3 high and an excellent educational toyfor all ages! Price with instruction booket $£ 6$ Ret EF 15 .
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 divive coinnềtors 1 mother board connector. 150 watt, 12 V fan, lec inlet and on/oriswith $£ 12$ Ref EF6.
VENUS FLYTRAP KIT Grow your ow ncarnivorous plantwith this simple tit $£ 3$ ref EF34.
TWEETERS 2^{-}diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 $6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130mA Bargan price just $£ 5.99$ ea REF MAG6P 12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ rel MAG5P13 ideal for experimenters' 30 m for $£ 12.99$ ret MAG13P1 ROCK LIGHTS Unusual things these, wo pieces of rock that glow when rubbed togetheri belived to cause rainliz a pair Ref EF29 3' by 1' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, aluminium frame, screw terminals, $£ 44.95$ ret MAG45. ELECTRONIC ACCUPUNCTURE KTT Builds into an electronic version instead of needles! good to experiment with. $\mathbf{£ 7 \text { ref } 7 P 3 0}$ SHOCKING COIL KTB Build this itte battery operated device into all sorts of things, also gets woms out of the ground! $£ 7$ rel 7 P36. FLYING PARROTS Easily assembled kit that Duilds a parrot that actually flaps its wings and fiest 50 m range $£ 6$ ref EF2.
HIGH POWER CATAPULTS Hinged am brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammuniton is in excess ol 200 miles per hourf Range of over 200 metres! $£ 7.99$ ref R/g.
BALLON MANUFACTURING KTT Bntish made, small Dlod BALLON MANUFACTURING KI Bnitish made, small Dlob
blowsinto a large, longlasting balloon, hours offun! $£ 3.99$ refG//E99R

WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE ON REGUEST WITH ORDER. CIRCLE NO. 134 ON REPL Y CARD

CLASSIFIED

ARICLIE WANIED

WE WANT TO BUY!!
 IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

* \star WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured.
TELFORD ELECTRONICS Phone: 01952605451 Fax: 01952677978

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's. Langrex Supplies Limited
1 Mayo Road Croydon
Surrey CRO 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M \& B RADIO 86 Bishopgate Street Leeds LS1 4BB Tel: 01132435649 Fax: 01132426881

ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR

 ELECTRONICS LTD170 Goldhawk Road, London W12 8HJ England.
Tel: 01817430899
Fax: 01817493934

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS

Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $£ 80$. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ. Tel: 01403784961 Fax: 01403783519 VISITORS STRICTLY BY APPOINTMENT.

MINIMUM ORDER 550 plus Vat

ARIICLES FOR SALE

FOR SALE - MULTICORE CABLE Various lengths of 8 way heavy duty Sound Cable, also 100 m lengths of 4 way Data Cable, plus 500 m RG62 a/v Offers. (01707) 263953

KL Systems

Microcontroller based electronic control systems. Specialising in the application of Zilog Z8 technology. Software, hardware and consultancy. $Z 8$ development system available for $£ 100$.

Tel: 01642480620
or see Internet for further desails. http://www.wp. com/KLsystems

SURPLUS SALE

THIS MONTH'S SALE INCLUDES:Spectrum Analysers, Oscilloscopes, Signal Generators, Voltmeters, Power Units, Frequency Counters, Receivers, Transmitters, Ex PMR Equipment, Photographic \& Video Equipment, Components, \& Miscellaneous items etc

ALL EQUIPMENT IS SOLD AS SEEN. ALL PRICES EXCLUDE V.A.T. NO MINIMUM ORDER.

RING TODAY FOR THIS MONTH'S CATALOGUE.

WANTED

SURPLUS ELECTRONIC COMPONENTS AND EOUIPMENT
We also welcome the opportunity to quote for complete factory clearance
B. BAMBER ELECTRONICS 5 STATION ROAD, LITTLEPORT, CAMBS.

Phone: ELY (01353) 860185 Fax: ELY (01353) 863245

CLASSIFIED

ARTICLES FOR SAIE

INDEX TO ADVERTISERS

	$P A G E$		$P A G E$	$P A G E$	
Anchor Surplus	155	Halcyon	145	Quickroute Systems	90
BK		Hart	93	Ralfe	IBC
Bull Electrical	109	Interconnections	101	Seetrax	118
Clinical Engineering	172,173	Iosis	90	Smart	135
CMS	163	Johns Radio	95	Stewart of Reading	166
Cricklewood	151	JPG	166	Surrey	151
Crossware	109	Kanda	163	Stag	101
Crownhill Associates	90	Kestral	171	Telford	109
	123	Keytronics	149	Telnet	158
Danmere	151	M B Radio	101	Those	145
Dataman	OBC	Microlease	157	Tie Pie	167
Display	147	Milford	171	Tsien	163
Farnell	97	Number One	166	Ultimate Technology	99
Flight	IFC	Pico	139	Warwick	145

Eight year EW index Hard copy or disk

Includes over $\mathbf{6 0 0}$ circuit idea references
Whether as a PC data base or as hard copy, SoftiCopy can supply a complete index of Electronics World articles going back over the past eight years.
The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 - volumes 94 to 101 inclusive - and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.
The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 k ram and a hard disk.
Even though the disk-based index has been expanded significantly from five years to eight, its price is still only $£ 20$ inclusive. Please specify whether you need $51 / 4 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Hard copy Electronics World index Indexes on paper for volumes 100 and 101 are available al $£ 2$ each, excluding postage.

Ordering details

The $E W$ index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquiries about photocopies, etc,
please send an sae to SoftCopy Ltd at the address below.
Send your order to SoftCopy Ltd., 1 Vineries Close, Cheitenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserv.com. Please make cheques payable to SoftCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

New Flight Electronics International Catalogue Set
You now have access to the world's latest: * Electronics Training Equipment * Microprocessor Training Equipment * Test and Measurement Equipment - PCCards via "Flight's" latest catalogue set. We are specialists in the provision of innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.
Our extensive range covers every need, call today for your free catalogue set. CIRCLE NO: 142 ON REPLY CARD

NEW Feedback T\&M Catalogue
 The latest edition of the Feed-

A regular advertising feature enabling readers to obtain more information on companies' products or services.
 back Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue wlll sove your problems, send for a copy NOW!

CIRCIE NO. 143ON REPIY CARD

1995 MASTER PRODUCT

 CATALOGUE NOW OUT!Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems: IEEE488 (GPIB) * DIO *Timer/Counters * RS232 * RS422/485 * A/D * D/A * plus Opto Isolated versions. New Parallel/Seria RS232, Opto Dual RS232, Motion Control, Converter and Repeater for 1995 ! ISO 9001 Quality guarantee UK design and manufacture 36 month no-quibble warranty Telephone hotline support $/$ Competitive pricing on the page \checkmark Intelligent solutions 8 friendly service γ BRAIN BOXES
Unif 3f Wavertree Boulevard South
Wavertree Technology Park
Tel: 01512202500 Fax: 01512520446
CIRCLE NO. 145 ON REPL Y CARD

- ralfe electronics •

HP144T 1.25GHz system (8552B.8554B) 18 GH z system 1
HP8557A 350 MHz ((ited in 182 C mainframe) HP3580A 5 Hz -50KHz audio frequency spectrum analyser HP3582A audio trequency thanalyser dual-channel HP8568A high.specticication 1.5 GHz spectrum analyser MARCON $2386100 \mathrm{~Hz}-26.5 \mathrm{GHz}$ (in 1 Hz steps!) TEKTRON X 496P $1.8 G \mathrm{Hż}$ spectrum analyser, GPIB programmable TEKTRONIX7L12 1.8 GHz , w tracking gen \& mainframe 7622 A
£1250
£1500 £1500 $£ 75010 £ 1250$ £2000 $\$ 2000$ $£ 7500$ £15000 £4500 $£ 2000$

2019A synthesized AM.FM signal gen 80kHz-
1040 MHz
$£ 2000$
2305 modulation analyser 50 kHz -2.3GHz 2828A2829 digital simulatorfanalyser 2382 spectrum analyser hi-spec $100 \mathrm{~Hz} \cdot 400 \mathrm{MHz}$ 2386 spectrum analyser, thi-specification, $100 \mathrm{~Hz}-26.5 \mathrm{GHz}$
2926 TV generator $\&$ inserter (NTSC variant) $6460 / 6421$ power meter \& sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$ 6500 amplitude analyser ciw 2c 6514 waveguide detectors 6960 microwave power meter with 6910 power sensor $10 \mathrm{MHz}-20 \mathrm{GHz}$
OA2805A pcm regenerator test set
TF2910/4 non-linear distortion (video) test set
TF2910 TV interval timer

- 36 Eastcote Lane • South Harrow - Middx HA2 8DB • England -

DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, ROMA (06) 87190254

1640B serial data generator 3561A dynamics signal analyser (opt 01) 3764A digital transmission analyser
3312A function generator
3400 A vottmeter, analogue $10 \mathrm{~Hz}-10 \mathrm{MHz}$ 3580 A audio frequency spectrum analyser 3581C selective voltmeter
3582 A dual-channel spectrum analyser $0.02 \mathrm{~Hz}-25.5 \mathrm{kHz}$ 37790 primary multiplex analyser
4140 B pA meter, DC voltage source
41800A active probe $5 \mathrm{~Hz}-500 \mathrm{MHz}$
4339A high resistance meter ciw lead sef 16117B 4275A multi-frequency lor meter
4951C protocol analyser with 1817A pod 5334 B trequency counter w option 010 high-stab 5386 A 3GHz frequency counter 54100 A 1 GHz digitizing oscilloscope 6012 A power supply $0.60 \mathrm{~V} 0-50 \mathrm{~A} 1000 \mathrm{~W}$ 6114 A precision power supply unit $0-20 \mathrm{~V} / 2 \mathrm{~A}, 20-40 \mathrm{~V} / 1 \mathrm{~A}$ 6253A dual power supply 0-20V 0-1A twice 6443B power supply 0-120V 0-2.5A 6825A bipolar power supply/amplifier -20V to $+20 \mathrm{~V}, 0-1 \mathrm{~A}$
8007 B pulse generator 100 MHz
8018A serial data generator 8082A pulse generator 250 MHz 8111 A pulse generator 20 MHz 816 A slotted line $1.8-18 \mathrm{GHz}$ with 809 C \& 447B probe 8349 B microwave amplifier $2-20 \mathrm{GHz}$ 8444A tracking generator with option 059 85024A active probe
85032B N-type calibration kit
8568 A spectrum analyser $100 \mathrm{~Hz} \cdot 1.5 \mathrm{GHz}$
8640 B signal generator w opt $01 \& 03$
(variable audio osc \& rpp)
87510A gain-phase analyser $100 \mathrm{KHz}-300 \mathrm{MHz}$
8901A modulation analyser with option 02/010
8903A audio analyser
£500
£5500 [2000 £2000

SPECIAL OFFER THIS MONTH ONLY ON HEWLETT PACKARD DIGITAL TRANSMISSION TESTERS, PROTOCOL ANALYSERS

Examples: HP37724A SDH/PDH portable test sets-

 Condition as new, price $£ 5000$ (were listing at ca $£ 20 \mathrm{~K}!$) - also 37772A optical interfaces available for STM-1, £1500 (list over 6K).4957PC PROTOCOL ANALYSER CARDS 4972A LAN PROTOCOL ANALYSER 4995A LANPROBE II £500 EACH (LIST>£2K) J2219A? J2170A, NETWORK ADVISOR 8157A OPTICAL ATTENUATORS $1200-1650 \mathrm{~mm}$ £ 1000 EACH

64000-SERIES MDS:

64700A, MAINFRAMES WITH:
 64747B, 64771G, 64703A, 64704A, 64751A, 64172B, 64748A, 64748C,
64787B, 64604A, 64783A, 64172B, 64746J, 64744A/C/E, 64780A.
SEND FOR COMPLETE LISTING AND QUOTATION

The World's Most

Powerful,

 Portable Programmers-ompare the Dataman 54 with any -other programmer and you'll see why it's the world's undisputed number one. 54 is capable of programming 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12 V FLASH, BOOT-BLOCK FLASH, PICS, 8751 Microcontrollers and more. 54 also emulates ROM and RAM as standard! 54 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?
Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48

Our new Dataman-48 programmer adds Pinsmarte technology to provide true no-adaptor programming righ 10 48-pin DIL devices. Dataman- 48 connects
straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!
As with 54 , you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.
The current device library contains over 1500 of the most popular logic and memory devices including GALs, PALS, CEPALS, RALs, 8 and 16 -bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Micro-Controllers. We even include a 44 -pin universal PLCC adaptor.
If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP, SDIP as well as memory emulation pods.
Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

The Dataman Challenge

Try the Dataman 54 or Dataman-48 without obligalion for 30 days. If your do not agree that these are the most effective. mast useful, most versatile additions youl can make to your programming toolbox, we will refund your moncy in full.

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorset DT2 0AE. UK
Telephone +44/0 1300320719 Fax +44/0 1300321012 BBS +44/0 1300321095 (24hr) Modem V.34/V.FC/V.32bis
Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com

[^0]: Further information from
 CROSSWARE PRODUCTS
 CROSSWARE PRODUCT
 tt John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS , UK el: +44 (0) 1223421263 , Fax: + 44 (0) 1223421006
 BBS: +44 (O) 1223421207 (8 - N-1), Internet: sales@crossware.com

[^1]: Electronics World + Wireless World ls published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group. Newstrade: Distributed by Marketforce (UK) Lid, 247 Tottenham Court Road London W1P OAU 0171 261-5108 Subscriptions: Quadrant Subscription Services, Oaklield House,
 Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ years $£ 70.00$. Surface mail 1 year $£ 35.002$ years $£ 56.003$ years $£ 80.00$ Air mail Europe/Eu 1 year $£ 43.002$ years $£ 68.00$ ROW 1 year £52.00 2 years $£ 83.00$
 USA: $\$ 52.00$ alrmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

[^2]: Overseas advertising agents: France and Beigium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080.

 T1x 23827.
 USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJJ Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate,
 Carlisle. Cumbria, CA2 7NR
 Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

[^3]: John Lindner is Associate Professor of Physics, The College of Wooster, Wooster, OH 44691, USA.
 jlindner@chaos.wooster.edu

[^4]: Use this coupon to order your Atomic radio Clock
 Please send me

 \squarereceiver module(s) at the discount price of $£ 69.50^{\ddagger}$ each. receiver module(s) with built-in Icd display for time and date display at the discount price of $£ 99.50^{\ddagger}$ each.
 ${ }^{\ddagger}$ Both versions are VAT inclusive and come complete with dos and Windows software Postage
 $£ 2.00$
 Total amount
 £
 Name
 Company (if any)
 Address

 Phone number/fax
 Make cheques payable to Galleon Systems Ltd
 Or, please debit my Visa or Access card.
 Card Type \square Access Expiry date
 \square Visa.
 Card No
 Please mail this coupon to Galleon Systems Ltd together with payment. Alternatively fax credit card details with order on 01216084477 or telephone on 01213590981 . Address orders and all correspondence relating to this order to Galleon Systems Ltd, Aston Science Park, Love Lane Birmingham B7 4BJ.
 *Overseas readers can also obtain thls discount but details vary according to country. Please ring; write or fax Galleon Systems.

