ELECTRONICS \& WIRDLISSS WORLD

JULY $1989 £ 1.95$

FFT analysis without tears

HF transceiver design

Switched mode power

Satellite earth study

IN DEPTH

Computing for electronics engineers

CAD software for PCBs, schematic capture and circuit modelling

CAD software reviews

TAYLOR RF/VIDEO MEASUREMENT INSTRUMENTS

MEASUREMENTS MADE EASY

UNAOHM EP741FMS FIELD STRENGTH METER/SPECTRUM ANALYZER	
Frequency Raņe:	38.9 MHz to 860 MHz , continuously adjustable via a geared-down vernie
Frequency Reading	TV Bands - 4 digit counter with 100KHz resolution FM Band - 5 digit counter with 10 KHz resolution Reading Accuracy: reference Xtal +1 - 1 digit
Function: TV Monitor	NORMAL: ZOOM\quadpicture only 2101 horizontal magnification of picture
Panorama:	Panoramic display of the frequency spectrum within the selected band and of tuning marker.
Panorama Expansion	Adjustable expansion of a
Analogue Measurement:	20 to 40 dB . Seatic measurement of received signal. Scale calibrated in dBuV (at top of picture tube) to rms value of signal leve!.
DC/AC Voltmeter:	5 to 50 V
Measurement Range:	20 to 130 dBuV in ten 10 dB atrenuation steps for all bands. . 60 to 130 dBuV in nine 10 dB steps for I.F.
Measurement Indication:	ANALOGUE: brighness stripe against calibrated scale superimposed on picture tube. The stripe length is proportional to the sync peak of the video signal.
Viden Outhut:	BNC connector. IVpp maximum on 75Ω
DC Output:	+12V/50mA maximum. Power supply source for boosiers and convene
TV Receiver:	Tunes in and displays CCIR systern I TV signals. Other standards upon reque
Additional Features:	(1) Video input 75Ω. (2) 12 V input for external car battery. (3) Output connector for sterco earphones.
PRICE:	$\mathbf{£ 1 3 4 4 . 0 0}$ nen, excluding V.A.T. and Carriage

| UNAOHM EP742 |
| :--- | :--- |
| FIELD STREN(\%TH METERR/SPECTRUM ANALYZER |

UNAOHM EH 1000	
TELETEXT AND VIDEO ANALYZER	
Function:	Eye Pattern: display of RF and video-frequency teletext signals by means of eye pattern diagrams both in linear representation and lissajous figures (0 and X). Line selection: display of video signals and line by line selection. Measurement of modulation depth. Teletext: monitoring of teletext pages.
RF Input:	Frequency Range: 45 to 860 MHz . Frequency synthesis, 99 channel recall facility. 50 KHz resolution, 30 channel digital memory. Level: 40 to 120 dBuV ; altenuator continuously adjustable. Indication of the minimum level for a correct operation of the instruments. Impedance: 75Ω. Connector type: BNC.
Video Frequenc. Input:	Minimum Voltage: $1 \mathrm{~V}_{\mathrm{Pp}}$. Impedance: 75Ω or $10 \mathrm{~K} \Omega$ in case of a through-signal. Connector type: BNC
Teletext Input:	Voltage: IVpp/75
Teletext Clock Input:	Voltage: $\mid \mathrm{Vpp} / 75 \Omega$. Measurement: Apenure of eye pattern: linear or Lissajous figures, selectable. Indication: directly on the picture tube. A calibrated scale shows percentage of eye pattern aperture. Error: the instrument invoduces an error of less than or equal 105% with video input and 20% with RF input. Jiter on regen'd clock: less than or equal to 25 ns . Line selector: Selection of any TV line between the 2nd and the 625th scanning cycle by means of a 3 digit thumbwheel switch.
Oscilloscope:	VERTICAL CHANNEL: Sensitivity: 0.5 to $2 \mathrm{Vpp} / \mathrm{cm}$. Frequency Response: DC to 10Mitz. Rise time: pre \& overshoot less than or equal 102%. Input Coupling: AC Input Impedance: $75 \Omega / 50 \mathrm{pF}$. TIME BASE: Sweep Range: 20 to 10 ms ($1.1 / 2$ frames); 32; 64/192us ($1 / 2 ; 1 ; 3$ lines). Linearity: $+/-3 \%$. Horizontal Width: 10 divisions: $\times 5$ magnification.
Price:	

JULY 1989

650
Oscilloscope offer. Buy a 20N1Hzoncilloscope and $3^{12}=$ digit multimeter for £288.

651 10W SMPS flyback converter (Ontrol chip for multiple rail switchang power supplies

655 Remote sensing from space.

 Liarth ohservation satellites could eclipse commens satellites in importance by the end of the century
661

Analogne Action. Making it work in silicon. Anatogue [C examined at the tramsistor level.

666
DIV'Pl. Brian I'rost concludes his introduction to programmable logic

FFT analysis without tears. A powerfut way of analysing the frecticncy domain.

Phase locked VFO for VIIF. Microprocessor controlled lacal oncittator system.

Multiplexing with photovoltaic relays. Bidirectional solid state relays for signal switching.

736 Inside digital television. The batest IT「 chassis takes into account digital video recording and satellite TV

IN IDEIPTH - The cad revolution.

Computer aided design and modelling is at the centre of design and development in larger companios. We review a selection of cad fools and explatn their use.

694

Designing with cad. Printed circuit board design and mantufacture is a mattaral area for computer-assisted methods.

699

Review - [P(13 Turbo. A layout tood for placing up to six laycrs of wiring on a $P^{\prime}(` \mid s$

Starting cead. An introduction 10 productivity tools.

706 Review - EE Designer III and Nettlister. Software packagen for PC B layout and design.

711

 High density l'Cl3 design. Unmg surface-momated componcots intooduces design prohlems.714
Review - Autosketeh. An object oriconted draw ing progratm for use with al laser printer.

715

Review - Fasy PC. A design tool for both circoit diagrams. and PCB .

721

Pitialls and possibilities.
Choosing the right hatrduare software combination for P'C 13 design is beset with difficulties.

723 Review (O))AS and P('S. Two modelling programs for use bs control and systems engineers
643 Comment. There is mohusiness in show besinces.
645 Rescauch notes. Supor-fist transistors out in the cold:
6ot Update News from around the electronics industry
671 New product classified. The at-aglance guide tocomponconts.
674 Applications summary. Codec fitters. modems and DTMI
676 ()n the house. Parliamentary electronics news.
682 Letters. Cold fusion. crossed fields and anti-gravity.
691 ($\mathrm{irc} u \mathrm{it}$ ideas. Low distortion atudio and other ideas
729 RF connections. Exploiting millimetre wates
732 Pioncers. Komrad $\%$ ase: father of computers.

In the next issue. New Wave
Microwates. The August issuc of Electronice de Wireless World will present a series of articles charting the rise and risc of microwate technology The advent of satellite hroateasting has changed the price structure of microwale technology dramatically. Microwates belong exclusively the military nolonger.

From Veptune, on 30 watts: Voyager-2 eruises into Research Notes, page $6 \not 48$.

Special offer to E®WW readers: for details of this 20M/Hz oscilloscoper and the digital multimeter which comes with it. turn to page 650).

Typiead P' 'based cad station with I'C IB design in progress. using PAINS-I' ${ }^{\prime} / 3$ from Wicrotel which is to be deseribed in a fillure issure.

ENTER 190 R REPLY CARI)

(1) HuF2-5-2 must beanamerd winnerm

Masterclass OSCILLOSCOPES For those who compare

With the phenomenol success of the HM205, with its Companent Tester feature, pioneered by Hameg, we now take pleasure in introducing the HM205-2. This improved version contans all the previous features, but has increosed capabilities in the following arecs:

Increased sompling rate of 5 MHz giving a digulal timebase range of $20 \mu \mathrm{~s} \mathrm{~cm} 105 \mathrm{~s} / \mathrm{cm}$, with outomatic refresh every sween
Dot joining tocility as a front panel push button, combines the waveform samples to form a solid coninuous trace

20 MHz onologue bondwidth for iull generol purpose applicat ons. providing any signol shape lorge

Memory of 1024×8 bits per chann provides high resolution coplure of complex signo!s. tar as long os requrec

A digital timebose of $5 s-2 \mu s$ per division makes it dossible ta see a solia picture of o signa from kilohenz "ight down to 05 Henz
Moximum sensitivity of 2 mV per division means even the smalles? signals con now be seen, triggered and siorec for careful eromingtion

beotuse at moqt it daservas the prize of the yeent

\square

74-78 Collingdon Street, Luton, Bedfordshire, LU1 IRX. Telephone (0582) 413174 Telex 825484
（ONSULTIN（EEDITOR
Philip 1 arrington EDITOR
Froun（）gelen
EDITT（RR－INDUSTRYINSIGIH
Cicoffrey Shater，B．Si

DEPUTYEDITOR
hartin Eick （1）－60／in is
（ ${ }^{(O M M U N I C A T I O N S E D I T O R ~}$ Richard l．anhle＇？ （11－601 301．39 HLLUSTRATION Roger（ionodman （1／－601 860）
IIISI（BN \＆PROI）UCTION Alon Kerr （1）－66） $\mathrm{B6} \% \mathrm{~F}$
ADVERTISEMENT MANAGER P＇anl kibche＇n （1）－801．3130）
SENIOR ：D DVERTISEMENT
EXECUTIVT Redruy Wordles

（I．．ISSHFIFO）SALESEXECLTTVE （hrisepher Ters （1）－66）303：
ADVFRTISIN（BPRODUCTHON Una Ruい $11 /-60186.89$
PUBBLISHIER
Stuchel）（ontors （1）－60／ば5こ I－ACSMME （1）－60\％se？

R1：1：1）
BUSINI：S
MUBIISIINC；

No business in show business

T＇he UK＇s largest electronics show，British Electronics Week，is over for another year．We hope that it will be the last．Opinion，perhaps，but a widely held one if the results of a straw poll among the people who attended and exhibited was anything to go by．

One couldn＂t possibly deny the sheer scale of the＂Week＂as the organizers like to call it．It occupies virtually the entire floor－space of Olympia for its three day duration．It has swallowed up the old ECIF event．much of Internepcon and a few others besides．One couldn＇t possibly think of not exhibiting or attending，or could one？

The opinion of the largest exhibitors：＂We spend $£ 50000$ putting the stand together and we don＇t really know what we get for the money＂．Of course they don＇t．They exhibit for the image．They＇ve already identified the major business prospects with a field sales force．

The smaller companies have to pay upwards of $£ 4000$ for their stands．They look for＂good＂enquiries and try not to think about the additional costs involved in keeping highly qualified people cooped up on a stand for a few days，touting for custom from visitors walking the aisles．
Then consider opinions from the visitors themselves．Some will work for large companies who can afford to send people down to the bottom half of the country．Others live in the South East and can reasonably endure the miseries of a short journey to Olympia．The remainder of the electronics industry has to do without the dubious benefits of British Electronics Week．

The event has now reached such a size that．unless you organize a visit very carefully．you have little hope in seeing all that you really wish to see and of meeting all the people you would really wish to meet．The situation has elements of Catch 22．You＇ve got to know what you want to see before you see it but you can＇t know what you want to see until you have．The earlier． smaller venues offered a showcase；the design engineer looking for ideas could wander around and see everything，not missing anything．The only consequences a visitor can now guarantee are mental numbness and aching feet．

The answer may lie in the staging of small，specialist shows，preferably on a regional basis．This merely reflects the way in which electronics professionals work．Most concentrate within a particular design area；for example．digital， micro，linear．The problems in attending distant venues remain and it seems unrealistic to expect small companies to exhibit at more than a couple of shows in any year．

It could be that you have just picked up the answer in the magazine you are now holding．The UK＇s technical press leads the world in its variety． specialization，content and readership．Electronics \＆Wireless World plans more than its fair share of coverage for electronics professionals．

IBM-PC I/O Cards

From £534*

(We are assuming that you already have an $\mathrm{IBM}^{\text {TM }}$ or compatible)

Thurlby's DS-PC Link package connects a Thurlby Digital Storage Adaptor to an IBM compatible, creating a flexible digital storage oscilloscope of great sophistication with a performance of instruments costing up to ten times as much!

The DS-PC Link comprises disk-based software and an interface cable to link the DSA and PC. It provides a fast, high resolution colour (or monochrome) waveform display, a full set of DSO facilities and special PC features, including disk-based storage, intelligent cursor control and hard copy output.

DSA524	Two channel adaptor 20MS/s	$£ 585$
DSA511	Two channel adaptor 10MS/s	$£ 395^{*}$
DS-PC Link	Interface Package	$£ 139^{*}$

Prices exclude VAT
Thurlby Electronics manufactures and distributes a wide range of electronic test equipment. Send now for the full data.

Thurlby

Burrel Road, St. Ives, Huntington, Cambs PE17 4LE Fax: 048064832 Tel: 048063570

There has never been a better fime to start using your IBM compatible PC for dafa acguisition
and control

The new selection from Fairchild offers an exceptionally wide range so you can get nearer than ever to your precise requirements
 ,
wide range

- over 60 models
- high quality
- software support in 7 programming languages
- IBM-PC/XT/AT compatible Call us today on 0421216527 for a free full colour product selector chart

Fairchild

Fairchild Litd Eostpoint Burgoyne Road Thornhill Southampton S02 6PB Tel:042121 6527 Fox:042121 6583

Super-fast transistor out in the cold?

Quantum electronics is a subject that's guaranteed to make many of us feel were beginning to lose touch with reality. Its main contention - that electrons are wates - somehow doesint seem to square with the familiar mental image of little back balls threading their waty through atomic lattices. And despite the fact that most of us were treated to liberal doses of the watve/particle duality of electromagnetic radiation at sehool. its analogue in electron behawiour seems remote.
Small wonder then that most of todays devieses exploit only the particle charater of the electron, relying as they do on diffusion or charge density modulation. Tunnel diode's and quantumwell devices are among the few exceptions. Yet theoreticians have known for some time that quantum effects hold out a tremendous potential for increased performance: in simple terms, waves are faster and cleaner than particles
One of the most interesting proposalls recently discussed (Appl.Phys.I.ett. Vol. 54. No 350) is a design for transis-

tors based on quantum interference between parallel waves of electrons. Its a bit like holography. in which small phase changes between two collerent beams of light lead to interference patterms or holograms. In the calse of the quantum transistor. the effective path length of one of two electron beams would be modulated by applying a voltage to a gate electrode. The iwo sets of waves arriving it the drain would then interfere constructively or destructively. depending sensitively on the gate voltage

So beautiful is the concept that you might be forgiven for wondering why you can't order such devices off the
shelf especially as their speed and noise performance would be exceptional by any standards.

The first major obstacle is that such a device would require a pair of electron beams with a high and consistent phase coherence. As yet this hasn't been unequivocally demonstrated in solids. the problem being that electrons continually interact with impurities, disfocations and lattice vibrations to prevent any sort of eoherence. except over extremely shorn distances.

Many theoreticians are now of the opimon that these difficulties can either be allowed for or eliminated loy operating the device at a temperature close to absolute zero. Gerhard Fasol of the Cavendish Laboratory (Nature Vol. 338 No ($\mathbf{2} 215$) thinks that the phase coherence length for electrons in gallium arsenide heterojunctions should be of the order of $5 \mu \mathrm{~m}$ at 0.1 K - a temperature too low even for liquid helium. So Sol's quantum interference transistor. whilst miraculous in theory. worald be impracticable at present.

Brew your own chips

If ultra-low temperatures are difficult to achieve, then ultra-tiny dimensions may prove the casiest route to exploiting quantum effects in electronics. Certainly there's a greatly renewed interest in lowdimensional structures such as quantum wells and super-lattices. But what about semiconductor particles in which quantization occurs not just in one dimension, but in three?

In very small colloidal particles. less than 100 nm in diameter, size quantization results in a new class of materials with properties intermediate between those of a single atom and those of a bulk solid. Confinement of electron-hole pairs leads to an increased conduction band-gap and hence interesting new propertics.

But if this sounds like another example of over-funded physicists tinkering around with bizarre and useless states of matter, it's worth noting that Nature may have already learned to exploit guantum semiconductors.
(‥T. Dameron et al. from the University of Utah have shown (Nafure Vol. 338. No 6216) that two varieties of yeasts can biologieally
synthesize cadmium sulphide crystals on this almost sub-microscopic scale. They do it ostensibly to get rid of cadmium, a substance that is normaily poisonous in its bulk form, by transforming it to quantum-sized crystals in which for.n it is stable and harmless to the yeasts.

When such crystals were extracted from the yeasts, the Utah researchers found that they were perfectly uniform in size and had extremely consistent physical properties.

Further research has shown that. far from being biological rarities, quantum-sized semiconductor crystals are probably quite common in nature.

More interesting still is the possibility that cells such as yeasts might be harnessed by man to grow the raw materials for a whole new class of electronic devices, especially solar cells, lasers and other optical devices. In fact it doesn't go beyond the bounds of reasonable speculation to imagine electronics raw materials that are brewed for their precise application as you or I would tailor other yeast by-products. . . a tin of Bootsburys. ReadiBrew and a good fermentation lock.

Ear on the universe

A sub-millimetre-wave telescope with a 10 metre diameter dish antenna has been designed to scan the heavens through what, up till now, hats been a closed window. It's a joint venture between the Max-Planck-Institut für Radioastronomie in Bonn and the University of Arizona.

Normally radion waves of less than a millimetre are strongly absorbed by water vapour in the atmosphere: so to work effectively the new telescope is to be installed next year on the 3300 m summit of Mount Graham, some 150 km from Tucson, Arizona. This places it above the bulk of the vapour and will enable it to get a clearer picture of millametre emissions from space

The teleseope, manutactured by two German firms, is reported (Dentescher Forschungsdienss Vol. $28 \mathrm{Nol} / 89$) to be virtually complete and ready for testing. The antenna surface is made from carbon fibre-reinforced material which deviates no more than 0.015 mm from a true paraboloidat any point.

When installed and working. the submilbimetre wave telescope will be used by astronomers to gain insight into what takes place inside optically-dense clocds of interstellar matter where, it"s thought. stars are born.

ENTER 45 ON REPLYCARD

8051 Project....?

For further information contact.
Cavendish Automation

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

Engineering in the blood

For those of us who feel squeamish at the thought of a spider crawling up our legs, how about a creepy-crawlie that gets inside the body and swims about in the blood stream? It's not a bad dream, nor even a good Hitchcock movie, just a sober project dreamed up by Professor Iwao Fujimasa and a team of engineers at Tok yo University.
If you recall the micro-robots being devised by the Massachusetts Institute of Technology for cleaning windows then this is just the same principle scaled down another couple of orders of magnitude. Fujimasa, whose work is being taken very seriously by companies like Toyota and Hitachi, believes that within ten years it will be possible to create micro-robots that can be injected into the body and which will be able to swim through the bloodsteam to the site of some obstruction or lesion. There they'll perform an operation by remote control and then swim away when the job is complete. So seriously is this bizarre prospect being taken that the Japanese Ministry of International Trade and Industry (MITI) is expected to contribute about $£ 20$ million to get the work under way.

In engineering terms the obstacles are phenomenal. Today's chips are much too large for the control and communications aspects of the micro-robot; sensors and power supplies are even more so. But the truly amazing prospects are those of micro-miniaturizing mechanical parts such as motors and gears. In the USA, gear trains have already been cut at sub-millimetre size by lithography, but the Japanese are actually planning to make micron-sized moving parts.

Fujimasa is confidently predicting that by the end of next year he will have a proto-type micro-robot capable of travelling around in the body and communicating its whereabouts. Later, but still within the foreseeable future, he expects to be able to add simple sensors for doing reconnaissance jobs around our innards. Thereafter it will be on-board micro-lasers to zap our clots and beam up our tumours. Utterly incredible, but it doesn't half give you a creepy feeling. .

Digging for cosmic answers

Europe's deepest mine shaft. the 1100 m Boulby potash mine in North Yorkshire will be the site of a feasibility study to detect the so-called missing mass or dark matter of the Universe. This material. which could comprise anything from tiny black holes to as-yet undiscovered subatomic particles. is thought by cosmologists to make up 90% of the Universe.

The reason for setting up the experimental detectors in a potash mine is guite simply that the depth of earth will form an effective sereen for the showers of spurious particles produced by cosmic radiation which would otherwise blind the equipment. Even at I 100 m the researchers, from six British universities and the Rutherford Appleton Laboratory. plan to line their $50 / \mathrm{mm}^{3}$ experimental cavern with further lavers of specially-developed screening mate-
rials possibly of lead or calt
If this preliminary study proves that the search for "dark matter' is worth pursuing and if the necessary funds are forthooming, then a full-scale experiment will get underway later this year. Special detectors will be developed to measure the recoil of an atom when its nucleus is hit by particles of the hypothetical dark matter.
Boully mine isn't by any means the deepest in the world. nor is this the only attempt ever made to find the missing mass of the Universe. Nevertheless if it succeeds, this work will go a long way to unravelling one of cosmology's greatest mysteries.

Researeh Notes is writuen bu John Whilsom of the BBC Wortd Service science triti.

Busking under the bridge?

Physical scientists throughout the ages seem to have enjoyed a certain dalliance with the musical arts, notably men like Herschel and Borodin. Even today, great minds expend vast amounts of energy and hours of computer time trying to re-compose Bach or make a perfect bassoon from old wardrobe panels.
One gentleman of this kind. whol confess has escaped my attention until now, was no less than Sir Charles Wheatstone (popularizer of the Bridge*). Sotheby's, whose annual sale of scientific instruments on May 5 was to have included nearly 50 items of Wheatstone memorabilia, ample evidence of his musical pursuits. Lot I6, an automatic harmonium chord transposition assembly, was accompanied by lot 27, a patent bellows fiddle. Or would have been, had not the whole Wheatstone collection been withdrawn from the sale following a legal dispute about its ownership. So you could still have a chance to bid when the matter is settled.

But new to me was the realization that this great Professor of Experimental Philosophy was also the inventor and perfector ofthe concertina!

[^0]

Sorne of Wheatstone's first bridges were on stringed instruments such as this Wheatstone \& Co. Harpe-Lute of 1810-1815, Lot I8 in Sotheby's sale catalogue. By the age of I4, in 1816, young Charles was already working at his uncle's music business at 4.36 Strand, London, where this and other insiruments were made and sold.

RESEARCH NOTES

From Neptune, on 30 watts

After an incredible twelve-year journey through imerplanetary space. America's Voyager-2 will rendezvous with Neptune on August 24. Already this hardy little spacecraft has sent back to Earth some amazingly detailed pictures of what is currently the most distant planet in the solar system.
When Voyager-2 was launched by NASA in 1977, the main object of the mission was to explore the two great planets Jupiter and Saturn and their various moons. Needless to say, even that involved an extraordinary feat. not just of planetary hallistics but also of data storage and transmission, especially when you consider that the radio range from Saturn is about $2 \times 10^{9} \mathrm{~km}$.

Saturn, however, wasnit to be the last planetary encounter for Voyager-2. Early in 1986 it went on 10 explore Uranus, together with its rings and five major moons. Uranus is so far away that. since its discovery 200 years ago by Willian Herschel, we ve learnt very little of this distant world except that it has a 'horizontal' axis of rotation and more-or-less rolls its way around the Sun!

What NASA never dared suggest at the time of its launch was that Voyager2 could theoretically make its way to the very edge of the Solar System and encounter Neptune (Pluto is currently orbiting inside Neptune's orbit). Yet, thanks to a rare planetary alignment that happens only once every 177 years. it was simply a matter of juggling with trajectories - a sort of interplanetary game of snooker. 'Simply' is perhaps the wrong word. for NASA likens the required degree of accuracy to that of hitting an atom from a distance of a few hundred metres.
Neptune is at present $4.5 \times 10^{\prime \prime} \mathrm{km}$ from the Sun, a distance at which it's over four hours' journey by any form of electromagnetic radiation. Any communication from NASA's deep space tracking network therefore takes around twice that time to be acknowledged. Tivo-way communication is achieved on S-band and X-band using two highly duplicated systems feeding two separate antemas.

The S-band transmitter consists of two redundant exciters and two redundant RF power amplifiers of which any combination is possible. Only one exciter-amplifier combination operates at any one time. Selection of the com-

Above: colour images of Neptune by Voyager-2, taken two hours apart, from about 309 million kilometres a way. Note the movement of the bright cloud feature which is consistent with a 17-18h rotation period. Below: NASA painting shows Neptune and its moon Triton just after Vovager's fly-hy on August 24, 1989.

bitation is by onboard failure detection logic within the computer command subsystem (CSS). with ground controt backup. The same arrangement of exciter-amplifier combinations makes up the X -band transmitting unit

One S-band and both X-band amplifiers employ travelling wave tubes. The second S-band unit is a solid-state amplifier. The S-band transmitter is capable of operating at 9.4 watts or at 28.3 watts when switched to high power and can radiate from both antemas. X-band power output is 12 watts and 21.3 watts. X-band uses only the high gain antenna.
All data is sent in digital form, slowed down when necessary by means of a belt-driven magnetic tape drive. Even

then. full resolution television pictures from Salurn required a frame read-out time of 144 seconds. As received on Earth, the data rate varies from 40bit/s to $115 \mathrm{kbit} / \mathrm{s}$ depending on its nature and the range of the craft. Slow it may seem. but it's no means feat to receive anything at all from a 30 watl transmitter at a range of four-and-a-half billion kilometres!

With only a few months and a few hundred thousands kilometres left to go to Neptune, NASA are keeping their fingers firmly crossed for Voyager-2. If the promise of these early pictures is anything to go by, one could soon be in for some spectacular shots from a distant world where the summer temperature rarely rises above $-220^{\circ} \mathrm{C}$.
Right: Voyager-2's launch aboard a Titan/Centaur- 7 on August 20. 1977.

Below: test model of Voyager-2 being checked in the Kennedy Space Centre's industrial area.

20 MHz FOR E288?

and we'll give you a $3^{1 ⁄ 2}$ digit multimeter as part of a very special offer from Electronics \& Wireless World

Q

- 20 MHz dual channel operation
- Trigger hold-off facilities
- $1 \mathrm{mV} /$ div Y1 and Y2 sensitivity
$100 \mathrm{~ns} / \mathrm{div}$ to $2 \mathrm{~s} / \mathrm{div}$ sweep rate
- Risetime less than 17.5 ns
- $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area
- Display accuracy better than $\pm 3 \%$

O 1 kHz internal calibrator
O X/Y operation using Y channels

- Special video signal trigger modes
- Two $\times 10$ probe kits
- Three year guarantee

The OS-7020 oscilloscope comes from the electronics giant Goldstar, a world class manufacturer of both professional and consumer electronics.

We have assured ourselves at Electronics \& Wireless World that this oscilloscope has an exceptionally high build quality and meets completely its stringent technical specification. Our judgement is backed with a three year guarantee. At $£ 288$ (inclusive of delivery \& packaging but exclusive of VAT) the instrument is
an absolute bargain. The inclusion of a high quality $3^{1 ⁄ 2}$ digit multimeter in the price makes this a very special offer.

To place your order, please send in a cheque for £331.20 (which includes VAT) to the address shown on the coupon. Atternatively complete the coupon with your credit card details or phone in your credit or charge card order on 01.6613130 (24 hours).

OS-7020 OSCILLOSCOPE ORDER FORM
Please send me the special ofter from Electronics \& Wireless World
\square I enclose a cheque/PO to the value of $£$ Please debit my credit account

Expriy date
\square Access \square Barclaycard Nisa \square American Express \square Diners Club
I Name. Mr. Mrs. Miss (Initials must be supplied).
made payable to Reed Business Publishing Ltd

Club

Address

Amount due 1
Amount due 2 . Signature
Please return to Electronics \& Wireless World. Room L301. Reed Business Publishing. Quadrant House The Quadrant. Sutton, Surrey SM2 5AS

Uethen

10W flyback converter

Multiple-output SMPSs must often provide independent auxiliary current sources for control and monitoring. The Siemens TDA 4814 uses a triangular current characteristic in self-oscillating flyback converters
 J. NATTRAS and S. WRIGHT

The flyback converter principle permits low-cost control of several auxiliary output voltages over a wide supply voltage range. Both applications shown in Fig. I have three outputs each protected against overload and shortcircuit. A 12V output powers the controt and monitoring logic of the main SMPS primary. Sincenoelectrical isolation is needed. it is further used for the power supply and control of the TDA $481+$ controlier. An isolated $15 V$ output supplies the control and monitoring circuitry of the SMPS secondary and a tightly toleranced and isolated 5-V output supplies any TTL logic

One of the converters shown exhibits an input-voltage range of 100 to +50 V . whilst the other will only operate at inputs greater than 250 V because of its undervoltage monitor: a thyristor is triggered via an additional isotated output to overcome the on-resistance and permit smooth capacitor charging at switch-on of a high power switchedmode power supply

TDA 4814 controller

Controlling the outputs with the TDA 4814 ensures protection against overvoltage and short-circuit. This is achieved by using the on-chip operational amplifier to control the first 12 V output. the remaining outputs being indirectly controlled by transformer winding ratios. (iood coupling is required to ensure voltage stability. The tolerances required at the $5 V$ output are achieved by designing the winding for a 7.5V output and adding a fixed voltage
regulator. The switching transistor in the primary side is driven directly from the chip
Switching transistor. Maximum drainsource voltage $V_{\text {かmm }}=V_{\text {Mm. }}+V_{\text {R }}$ where V_{k} is the flyback or demagnetisation voltage, in this case 151 V . Hence $\mathrm{V}_{\text {1Man }}=4.50+150=6(0) \mathrm{V}$

However this does not account for the voltage transients which oceur at switch-off. Hence, the BUZ 78 SIPMOS transistor ($\mathrm{V}_{13 \mathrm{man}}=8010 \mathrm{~V}, \mathrm{R}_{\mathrm{bam}}$ 8 ohms. $1,=1.5 \mathrm{~A}$) was selected as a suitable device
Transformer. The winding details shown in Fig. 2 show how the primary and secondary windings are enterleaved in layers. The EC35/17/10 transformer core (N 27) is large enough to take six windings while providing the required creepage paths. Good coupling is obtained when the start of each winding is on the same side, enabling the electric fiedd to be built up geometrically in the same direction.

Start-up. Resistors $\mathrm{R}_{2}-\mathrm{R}_{4}$ provide the necessary standby current with minimum input voltage: with maximum input voltage (450 V) there is no overpoading.

The standby current is that required by the standby function of the TIDA 4814 (maximum 0.5 mA). The undervoltage monitor (TAE 1453) requires a further 2 mA .

The TIDA $481+$ becomes fully operational once its threshold voltage has heen reached. An auxiliary trigger signal, possibly derived from the undervoltage monitor, starts the flyback conver-
ter which then draws the required current from the first winding

Auxiliary trigger. The atuxiliary trigger signal is provided by the internal start logic, which functions as a diac with a 20 V trigger voltage. The signal at O START is coupled via $\mathrm{R}_{1 \times}$ to the detector input. this signal being suppressed in normal operation by the low-impedance signal from the detector winding
Power unit. With SIPM(OS transistor Tr, conducting, current rises lincarly from zero and is measured via a series resistance. When a peak-current value given by the control amplifier is reached, transistor Tr_{1} is blocked. At this time. the potential at the detector input is high, matintaining the transistoroff state. Once the transformer has completely discharged the stored energy to the secondary side. the detector winding changes polarity and Tr_{1} is turnedon once again

In the event of a short-circuit, the voltages at the output windings will be low. The detector winding is designed such that these low voltages are sufficient for reliable triggering
Current detection. Low-pass filters C_{11}. R_{11}. C_{4} and saturation choke L_{+}are inctuded to reduce the influence of parasitic currents when the load current is low. This leads to continuous operation even at low loads and supply voltages below 300 V . A bias voltage of about 1010 mV at the comparator input $\left(R_{10} . R_{11}\right)$ eliminates the problem of neg itive voltages originating from the charging currents of the SIPMOS capacitances.

POWER SUPPLIES

Voltage limiting. The interteaved prim ary transformer windings give a wide tolerance to load distribution at the output windings. However a resistor-capactior-diode network is included to limit transients which may occur at switch-off

Smoothing. AC capacitors $\mathrm{C}_{11}, \mathrm{C}_{1 \downarrow}$ and C_{17} help 10 reduce the effects of high $\mathrm{d} /$ dt on the output electrolytics. Even so. high-frequency ripple will occur due to the equivalent series resistance. Small I-core chokes ($\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$) are included to smooth this high frequency ripple. As an example, under full load at output 1 . ripple is reduced from 2000 mV at $\mathrm{C}_{12} 107 \mathrm{mV}$ at C_{13}.

Undervoltage monitoring. Inclusion of ant undervoltage monitor (IC_{3}) in the flyback converter permits repetitive

Fig.2. Winding details of the transformer.

Fig. I. Comerter using TDA 481t has auxiliary supply and extended supply voltage range. Shaded circuitry provides undervoltage monitoring.

ARE SOFTWARE REVIEWS BIASED? WHY NOT FIND OUT FOR YOURSELF

Electronics \& Wireless World is looking for people who are prepared to undertake software and hardware reviews on a freelance basis. We're not interested word processors, spreadsheets and database. Our readers can get that sort of information from a million different places. We want to examine industrial and technical products aimed at the professional market. For instance PCB CAD, modelling, circuit analysis, board level products, etc.

Like you, we want to see unbiased reviews in our pages so you will have to show us your credentials. You will also need access to testbed equipment suitable for the task. Naturally you must be able to communicate the results of your work in jargon free English. In return, we will give you money. Not a lot but some. The fame and glory comes free.

If any of this appeals, then I would like to discuss the possibilities with you. Please contact Frank Ogden, Editor, on 01-661 3128. I shall then be able to give you an unbiased assessment of your potential as an E\&WW reviewer.

POWER SUPPLIES

triggering of a thyristor via an additional secondary winding (W_{6}). The thyristor is used to bridge the on-resistance for the current-limited charging of the SMPS primary smoothing capacitor. It would be triggered after switch-on once a minimum input voltage (e.g. 250 V) has been reached. Thyristor gate current is defined by R_{2+1}.

The TAE 1453 A is well suited as the undervoltage comparator due to its low power consumption. A small hysteresis is provided by R_{27} and R_{29}, whilst D_{10} is required as an additional reference. since the reference output of the TDA 4814 is inactive during standby. At an input level greater than 1.6 V . the comparator will block switching transistor $T r_{1}$ via the detector input of the TDA 4814.

Diodes $\mathrm{D}_{\mathrm{x}} \& \mathrm{D}_{4}$, limit the voltage from the detector winding to the operating voltage of the TDA 4814. This ensures reliable switch-off by the undervoltage monitor under any condition at the detector winding. A low level at the comparator output will not affect the trigger voltage due to the inclusion of diode D_{7}.

Performance of the flyback converter

Use of the TIDA $481+$ control IC in the flyback converter shows a reliable performance under all supply voltage and load conditions (Fig. 3). Good coupling of the windings by interleaving is indicated by excellent individual control characteristics. despite the need for creepage paths of a minimum of 5 mm . Continuous operation up to 300 V input is possible with the inclusion of base lond resistors ($\mathrm{R}_{22}, \mathrm{R}_{23}$). At higher imput voltages and with no further change in base load, intermittent duty will oecur during which the output voltages will remain within given tolerances.
The function of the base load is to limit the output voltage in the no-load condition. However, the available base load is sufficiently small that with a no-load condition at output 2 and other outputs heavily loaded, the upper tolerance threshold may be exceeded. Ilence, for more critical applications. an increase of the base load may become necessary. A good transformation performance is achieved when output 1 delivers at least 10% of the rated power.

The internal resistance of filter choke $L_{1}\left(0.2\right.$ ohms at $20^{\circ} \mathrm{C}$) will influence the control performance of output 1 . Taking the voltage directly from output 1 would clearly worsen the indirect control of the remaining outputs and produce control instabilities which may

Fig. 3. Transistor switching performance in full-foad operation af 300) supply voltage.

Fig.t. Dynamic performance of the converter with abrupt had changes.
occur as a result of further phase rotation in the control circuit. By further improving the overall performance of the controller the deviation of the steady-state output could be reached during load changes. However, this has not been pursued here as the dynamic
performance would be greatly affected byabrupt load changes.

These two application circuits demonstrate how versatile auxiliary power supplies can be built at low cost.
The atuthors are hoth with Sicmens Letd Electronies Components (iroup).

Remote sensing from space

Abstract

By the turn of the century, remote-sensing satellites could well eclipse comsats in their importance to the growing global community. Jeremy Cavanagh describes sensing techniques which are providing information about the Earth on a scale not previously possible.

Space-based remote sensing has its origins in military reconnaissance, weather forecasting and the Gemini-Apollo space programmes. Early in the space age, the military in America and the USSR recognized the potential for spying upon one another from space. So today we have secret Shutle payloads. public debate over the UK Government's attempted Zircon programme and veiled boasts that such satellites can
read a car number plate from 200 miles or so up. More useful was the deployment of cameras. from 1960 on, to photograph the Earth's weather. so revolutionizing forecasting. Finally. beautiful full colour photographs of the Earth's surface were taken from space during the first Gemini space missions and followed by the Apollo mission's - Planet Earth in a void' photos

The detail and colour of these photographs awakened people to the poten-
tial of looking at Earth from space. Space-based remote sensing now has applications in pollution control, agriculture, resource assessment. climatology. land use, archaeology and oceanography.

What is sensed?
Several frequency bands in the visible and infrared spectrum are available. together with microwave frequencies (Table 1). Using the visible and infra-

REMOTE SENSING

red spectrum depends upon the Earth's being a 'black-body' radiator. A black hody emits all the energy it absorbs (emissivity = 1). The Earth emits energy received from the Sun, also a 'black body

The wavelength at which the maximum energy is emitted depends on the temperature of the body. This is found from Wien's displacement law, $\lambda_{\text {max }}=$ a/T For the Earth this is approximately $10 \mu \mathrm{~m}$ at 288 K surface temperature which is in the thermal infra-red band

Plancks radiation law $\mathrm{E}=\mathrm{hf}$ gives the relationship for emission of radiation (E is the radiant energy and f its frequency; h is Planck`s constant). This equation for all wavelengths emitted per unit area translates to $\mathrm{E}=\mathrm{T}^{+}$or W/m.

However, not all wavelengths of visible to far infra-red pass through the Earth's atmosphere: different gases absorb different wavelengths

- Oxygen (O_{2} and O) absorbs wavelengths shorter than $0.1 \mu \mathrm{~m}$ while ozone absorbs wavelengths from 0.1 to $0.3 \mu \mathrm{~m}$ and $0.32100 .36 \mu \mathrm{~m}$.
- Carbon dioxide absorbs at $2.5 \mu \mathrm{~m}$
$4.5 \mu \mathrm{~m}$ and $15 \mu \mathrm{~m}$.
- Water absorbs at 0.6.2, 3 and $6 \mu \mathrm{~m}$. So sensors used in remote sensing are designed to "look" hetween these bands.

Orbits

You want to have the opportunity to gather information from anywhere on the globe. Two orbits allow his, the first being the geostationary orbit of 36 (10) 0 km distance. From this height. a

Above: London and the Thames estuary, in false colour (Landsat thematic mapper). Left: Bedford and the giant airship hangars at Cardington (Spot image, INm resolution). Previous page: Gulf of Suez (Landsat): widhh represented is about 90 km .

sensor such as a camera can image a large amount of the Earth's sphere. which the satellite faces 24 hours a day. Changes across large areas of the Earthis surface can be followed and the extent and impact seen as fast as the data can be transmitted received and processed. This is particularly valuable for weather satellites. The ESA Meteosat weather satellite. operated by the Eumetsat organisation. has scanners operating in the visible to thermal intra-red bands and a sensor for water vapour. It can image weather patterns 55° north and south of the Equator

The second orbit is the near-polar orbit which. at a height ranging from

Table 2. Some remote sensing satellites - current and planned.

Satellite	Country	Launch	Orbit	Applications
Landsat 5	USA	1984	Near-polar:	Land use, vegetation, geology, geomorphology, hydrology
Landsat 6 USA 1993 Near-polar:	Land use. agriculture, cartography, SPOT	France	1986	Near-polar.

Sun-synchronous orbit

REMOTE SENSING

radiometers by oscillations in the movement of the scaming mirror across the field of view. However, thermal and unshielded radiation noise can affect the image.

Active scanners. Microwave radar techniques are coming into wider use with the employment of synthetic aperture radar (SAR). Radar is not affected. of course, by bad weather over the Earth's surface.

The back-scattered return depends on factors such as the dielectric of the surface (e.g. wet or dry soil), the roughness or texture of the surface and its angle in relation to the pulse transmitted.

To achieve a ground resolution of 25×25 metres, SAR uses two techniques. A very short radar pulse is transmitted for resolution along a (typically) 100 km swath. The forward motion over the ground of the satellite synthesizes a much larger antenna than the satellite carries. SAR is side-looking radar, i.e. it does not look under the spacecraft straight down to the Earth's surface, but off-nadir to the side of the spacecraft.
Remote sensing by active microwave sensors is already eclipsing passive scan-

Thetford and the Little Ouse, on the Norfolk-Suffolk border. This and the other Spot image are copyright of the Centre National d'Etudes Spatiales (CNES) - see panel opposite.
ners for oceanography and future European satellites such as ERS-1 (ESA L-1989/90) are concentrating on microwave techniques. The difficulties in using an imaging SAR radar are the extremely high data rates (approximately $100 \mathrm{Mbit} / \mathrm{s}$) and the need to process this data in real time. This calls for the development of a SAR processor for use on board the spacecraft.

Other active scamners based on radar techniques used on remote-sensing
satellites are

- The scanning multichannet microwave radiometer flown on Seasat (1978) and the Nimbus-7 weather satellite. The SMMR can measure the temperature of the ocean surface. Seasat, operating for only four months in 1978. generated so much data about the ocean wave motion and its global effects that it is still being analysed today.
- The radar altimeter operates at Ku band and uses a $20 \mu \mathrm{~s}$ pulse to obtain precise measurements of the altitude of a satellite plus information ahout the Earth's surface.
- The Active Microwave Instrument intended for use on ESA's ERS-1 (1990) operates at 5.3 GHz using vertical polar-

Table 1. Satellite sensors and their capabilities.

Sensor	Mode	Band	Resolution (m)	Data rate $(\mathrm{Mbit/s})$	Quantization (levels)	Ground swath width. km
Thematic mapper	Passive	$7:$ visible to infra-red	30	80.34	256	185
Multi-spectral scanner	Passive	4: visible to Infra-red	82	15	64	185
HRV	Passive	4: visible to near Infra-red	20	25	$256(\mathrm{DPCM})$	60
SAR	Active	Ka to L	25	100	-	$80-100$
AMISAR	Active	6.3 GHz	$30 / 100$			8

ization for two modes: SAR image and SAR wave. for detailed monitoring of ocean areas inchuding mapping and the spectral andysis of ocean waves. mapping of ocean/sea ice boundaries and the imaging of land surfaces.

These sensors concentrate on imaging wide swaths of the Earth's surface. However, of increasing importance is vertical sounding of the atmosphere. N()AA weather satellites carry a high resolution infra-red radiation sounder: a stratospheric sounding unit: a microwave sounding unit: and an Earth ratialtion budget sensor. These are used to increase our knowledge of the structure and mechanism of the Farth: atmosphere. which is of vital importance to our understanding of the greenhouse effect. It was a weather satellite that first detected the depletion of ozone wer the Antarctic.

Data transmission

A scanner on a satellite cinl generate a hage amount of data. For example the thematic mapper generates 277 Mbyte of data per seene at 256 levels per pixel and seven bands! This has to be tramsmitted. receeved and stored multiplied by the number of scenes taken per day over a particular conntry, Spot (see Table 2) makes use of I)P (M for reducing the rate of data transmitted 25Mbit/s for its HRV in panchromatic mode.

The TM was carried on Landsat in a low Earth orbit so that it was possible to access the satellite from the ground only for relatively short periods of each day. If a particular organization needed information from Landsat then it could rely on its country's Landsat receiving station (there are 17 around the world) or it could buy the data from the commercial organization Eosat ia the USA. However NASA has deployed its TDRSS communication satellites at $+1^{\circ} \mathrm{W}$ and $171^{\circ} \mathrm{W}$ respectively in geostationary orbit to access almost in real time the data transmitted from landsat.

This huge amount of data generates problems in storage and processing. In Britain this is carried out by the National Remote Sensing Centre at Farnborough, which makes its services available on a commercial basis.

Image processing

Organizations can buy raw data or take advantage of facilities at the NRSC to look for particutar items of interest. Large organizations such as mining concerns. universities, or (iovernment bodies math have their own systems for processing and using data. Among the
image-processing systems run by the NRSC are (ems. an interactive system using "Gemstone" algorithm, for image alladysis. Also used is the LS-1() image processing system which is microcomputer based and not ansextensive.

Three technigues can be applied to raw data from a satellite to arrive at the information wanted. The first two are to compensitte for distortions introduced by the satellite system.
Geometric distortions are due to the spacecraft's imperfect mowement and orbit. Pitch. roll and yaw of the spacecraft. and changes in altitude and velocity affect "fitting the image to existing cartographic information. This involves modetling the spacecraft' orbit and backing this up with measurements of the spacecraft's pexition. Data from such sensors as Spot's HRV is suitable for 1:50\%0) scalle maps with $f(1)$-metre contours as Spot can produce stereoscopicimages.
Radionetric distortions are more complex becaluse they depend on scene and sensor. For example Spot: HRV sensor package has a vertical stripe occurring seven pivels down the image of about 3% in brightness variatoon on both sensors. HRV-1 also has less spatial resolution than HRV-2. This can be dealt with in a straghtformard manner because it is readily quantifiable. Other effect may be less casy to deal with: for example, haze or sub-pixel sized clouds affecting brightness, which need an estimation of their effect and occurrence.
Processing is pixel-based. Some of the techniques are

Photographs for this feature were kindly suppliec by Nigel Press Associates, of Edenbridge, Kent The NPA group specializes in acquisition, digital image processing, interpretation and mapping from satellite imagery for environmental and resource surveys. NPA is the UK representative of Spot Image SA. Further information from NPA on 0732-865023.

- ionage enhancement, involving contrast and edge-correction. Further enhancing takes in spatial and directional filtering of the data numbers making up the image. This takes the frequency spectar of the information to identify detail in an otherwise uniform image segment or scene. Such details can then be highlighted for display on a monitor. allowing the operator to pick out such thems als dried-out river heds:
- density slicing. where pixels in one or mere bands are identified as being close in value or density. So pixels representing water bodies may all be assigned a colour:
- enhancing areas of interest such as a stetch of vegetation and bare soil by taking ratios of different wavelengths that have a more consistent variation for vegetation than for soil:
- principal components analysis. a technique for finding a set of variables from the image data that are independent of each other. These components are separated out for display on a colour monitor.
- multispectral classification. which makes use of the differing reflectance curves of different surfaces having each a separate reflectance curve according to the spectral band of the sensor used.

The emphasis in developing interactive processing systems is on GiS (geographic information systems). In the form of an interactive data base. GIS combines space and aeriall remote seming data with ground truth and historical imformation, all fitted to cartographic data.

The future

Nore and more countries are setting up their own RS programmes as planning of resources becomes dependent on the multi-level knowledge RS can provide. This is shown by the numbers of countries building or planning their own RS satellites; Japan. Brazil, India, China. Canada is planning Radarsat for sealice studies: Britain. having maintained a consistent effort in such matters pulled out of this project after participating in the planning stages. In Europe. ERS-1 is being planned for 1990, while the ambitious Columbus space platform is being designed with every conceivable sensor device for both Earth and space remote-sensing in time for the year 2000.

> The author wishes to acknowledge the information and time given by personnel from the NRSC' and Imperial College's Centre for Remote Sensing.

CONNECTORS AND CABLES

CABLE ASSEMBLIES AND TEST LEADS MADE TO ORDER
Coaxial or Multiway. RF, video, audio and data

Double braid and tough PTFE coaxial cables.

Price guide: BNC 1.0 m lead only £3.50. Using high quality RG58, £6.20 using double braid PTFE, Data leads (D plugs etc) typically $£ 8.00$ for 6.0 m long.
Customers already include several universities and polytechnics, government departments, broadcasters and BT - Cellnet.

WAVEBAND ELECTRONICS 3 Lon Howell, Denbigh, Clwyd LL16 4AN. Tel: 0745712777.

ENTER 39 ON REPLY CARD

(E)EPROM PROGRAMMER 100 (E)EPROM and MICRO-CONTROLLER types...

THE MODEL 18 PROM PROGRAMMER

- All 1 Mbit EPROMS, Greenwich Instruments Emulators.

27C parts and EEPROMs now programmable!
Upgradable for future types
Desıgned, manufactured and supported by MOP in England Comprehensive User Manual.

32 and 40 pin devices require low cost socket adapter.
Supports our new EPROM Emulator as 2716 to 27512 EPROM

- Mapporis our new eowered unit external to your computer. without speed penalty
- Fast interactive algorithms automatically selected as appropriate.
- Two independent communications protocols built in. Use with:
any host computer with RS232 port and terminal emulator
our PROMDRIVER Advanced Features User Interface Package avalable for all MS-DOS and PC-DOS computers. NEW FAST COMMs - 1 Mbi PROMs programmed in about $2^{1 / 2}$ mins.
- Quick Pulse programming now avallable for suitable EPROMS - e.g. 2764s in 10 secs' - Limited version also available for CP/M computers.

Hundreds of satishied customers. As supplied to: BT Mercury. UKAEA. British Aerospace Thorn EMI. Mitel. Cosworth Engineering. British Gas, Kodak. Lucas. Ferrantı. Smiths Industries. Telecom Technology and major Universities and Colleges of Further Education. Please enquire about our other products:
EPROM EMULATOR
EPROM ERASER
PAL PROGRAMMER EPLD PROGRAMMER CROSS ASSEMBLERS
Telephone ACCESS orders welcome
[1] Phone for free information pack and price list - 0666825146 ELECTRONICS, UNIT 2, PARK ROAD CENTRE, MALMESBURY, WILTSHIRE, ENGLAND SN160BX.

Toroidal \& E.I. Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Mail Order Price List

prices inclusive of VAT \& Postage
$15 \mathrm{va} 9.12,30 \mathrm{va} 9.48$, 50 va 10.16 , 80 va 11.02, 120 va $12.23,160$ va $14.44,225$ va $16.37,300$ va $18.05,500 \mathrm{va}$ $26.46,625$ va 30.66 , 750 va 34.14 , 1000 va 49.40. Also available 1k2, 1k5, 2k, 2k5, 3k. Prices on request.
Available from stock in the following voltages: $6-0-6$, $9-0-9,12-0-12,15-0-15,18-0-18,22-0-22,25-0-25$, 30-0-30, 35-0-35, 40-0-40, 45-0-45, 50-0-50, 110, 220 , 240. Primary 240 volt.

Quantity prices and delivery on request
 Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425

ENTER 38 ON REPPLY CARI)

ENTER 41 ON REPLY CARD

Precision analogue signal processing

As digital signal processing advances in speed and accuracy, ever-increasing standards are demanded from analogac systems to keep pace. Improvements are sought in device parameters such as higher CMRRR, lower offset voltage and current with lower temperature coefficients. ete. These are achieved with well-thought-out circuit designs together with ingenious techniques employed during chip lavout and manufacture to optimize performance to a given process.

Most analogue designers will tell you that reaching the stage of having verified the circuit performance with a Spice simulation run is the ceasy part: the longest and hardest task is to translate that theoretical chip into a fabricated device that measures up to expectations.

Transistor matching. Mismatching between transistors causes problems and is the result of fabrication process variations, including mask resolution. doping level non-uniformities etc. The use of large area transistors reduces these process parameter uncertainties but at the expense of silicon "reaterstate". This compromise can be overcome by using a common centroid layout approach. a technigue which can be employed in matching the transistors of a long-tail

Fig. I. Matching techniques for B,JTs: (a) common centroid layout: (b) paralleling transistors to create al well matcherl long-tail pair.

(a)

Fig.2. On-chip resistor trimming of long-tail pair loads.
pair to minimize input offset voltage. Instead of simply two 13.JTs. four are laid out symmetrically, as shown in Figure1. Opposite pairs are parafleled so that diffusion gratients across the chip and also thermal gradents tend 10 be equal in both hatves of the long-tail pair: the effects then cancel.
On-chip resistor trimming. I inear analogue designs rely almost exclusively on the linear current-voltage relationship of resistors. Despite their diminishing numbers in today's generation of ICs they are still an extremely important circuit element. Parameters such as chosed-loop amplifier gain. (MRR of
instrumentation amplifiers etce are generally set by accurately-defined resistor ratios: and on-chip resistor trimming is an important production engineering facility neded in the manufacture of precision analogue ICs.

Two methods of resistor trimming are used. laser trimming and the selective short-circuiting or open-circuiting of trimming links in the circuit. Both techniques may be fully automated, but this inderiduat device attention adds considerably to the chip costs. Direet laser trimming is the more atceurate but more expensive method.

Manufacturers of high quality analogue products have invested heavily in developing laser trimming expertise. whech forms an integral and important part of the ir design and manufacturing base.
The second method of on-chip trimming invelves creating shorting links. using a technique called oenerLapping', or opening fusible links across fixed-value resistors. Figure 2 shows the resistive load of a long-tail pair made up with a binary weighted series of resistors. Trimming is done at the water probing stage (as it is for laser trimming) and the offeet is measured and redtued to a minimum by computer drivensignals to either short-circuit or opencircuit the trimming links.

Both of these transistor matching and resistor trimming techniques are employed in the (OP-27 (PMI) op-amp. which features a typical offset of 10 mV and a maximum of 25 mV .

AUTOMOTIVE ELECTRONICS: WHAT'S NEXT?

The market for atomotive electronics in general is only just begimning to open up. with predictions that 25% of the cost of the average car will be in electronics by the mid 1990)s. This presents the designer with quite a chatlenge, as the environment is relatively harsh. Equipment must be able to withstand the $-410^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and not be affected by vibration or electromagnetic interference.

The wiring harness in a car has increased dramatically in size over the last decade and there always seems to be yet another aceessory to add. An altractive alternative to the present wiring system. which requires a separate power line to
each electrical/electronic device. fed generally via the dasth-hoard comerols, is to wire each device to a common power ring. The device is fitted with a so-called intelligent power switeh that is activated only upon receipt of a uniquely coded signal, which may be sent wia the power ring. Texas Instruments development programme for a range of intelligentpower switches is nearing completion and they will be latunched later this year. As always seems to be the case with new developments. the industry is not in total agreement as to the protocol to be adoped for these multiplexed wiring syctems. We shall watch the dehate with in:erest!

Flexible alternative for analogue asic

Recently Exar has revolutionized the approach to semi-custom analogue design with the introduction of its Flexar linear arrays. The concept is intriguing. The architecture of the Flexar-array is based on a cell which is repeated throughout each array in series. This permits the duplication of the circuit layout, anywhere within an array or on related arrays, with unchanged characteristics. This repeated cell structure simplifies design compared with traditional semicustom linear arrays.

Each cell contains three 'twinsistors' flanked by two groups of resistors. The 'twinsistor' is a versatile multi-functional and multi-purpose component that can be configured. with appropriate connection of its nine contacts, into over twenty different active and passive functions including an n-p-n transistor, a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor, a diode, a resistor, a capacitor etc. The "twinsistor' is a composite device comprising a dualcollector p-n-p merged with a dualemitter, common-collector n-p-n.

In addition to the "twinsistor" there are two other composite elements. referred to as "padstor' and 'twinbooster'. Both are multi-functional and multi-purpose devices programmed by the particular interconnections made.

The "padstor" is located around the perimeter of the chip and is a bonding pad merged with a five-emitter n-p-n and a large area p-n-p. Not only can it drive loads when configured as a $\mathrm{n}-\mathrm{p}-\mathrm{n}$ or $\mathrm{p}-\mathrm{n}-\mathrm{p}$, but it can also be used as a large value capacitor for frequency compensation, a high voltage high current clamping diode and a resistor network

The 'twinbooster' is the third element in the Flexar-array stable and this device provides high power drive capability. It has a 32 -emitter n -p-n. merged with a lateral $p-n-p$ containing four collectors and three large emitters. The 'twinbooster', not available on all Flexar-arrays. is intended for coping with high current output demands; it can handle loads of up to 500 mA as an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and 25 mA as a p-n-p.

There are two Flexar-arrays: the Beta series launched in 1986 and now the Delta series, with the additional benefits of thin-film resistors, Schottky diodes, easier-to-use components and higher frequency operation to

GGHz. With Delta, Exar aims to challenge full custom-design. The fast turn-round, typically six months shorter than full custom, with very low comparative development charges low-risk designing and low unit cost make the Delta chip a strong alternative to full-custom for high-volume applications, such as automotive. consumer and dise drive markets.

As with gate-array development, when a successful module has been created, it is easy to replicate it elsewhere on the chip because of the identical matrix structure of the array For companies without expertise in analogue IC design. Exar provides a suite of software to run on IBM PC/AT machines, giving the designer so called 'soft cell' designs of standard analogue circuits that have already been characterized and verified. Soft cells available from Exar include most analogue system blocks - op-amps, comparators. phase-locked loops. peak detectors, precision rectifiers etc. Software is also available for experienced designers to develop their own analogue circuits, with
schematic capture, simulation and layout.

A further advantage of the Flexar system of semi-custom IC development is that it is perfectly feasible to design mixed-mode analogue and digital circuits on the same chip and relatively easy to do so.

Though at present Exar is the only company to offer an analogue asic facility, based on what could be termed an uncommitted lincar array approach. it is likely that competitors are looking rather jealously at Exar and will be seriously reviewing ways of producing something similar!

Both the Flexar series are B.IT arrays, which makes sense for many analogue applications: however it would be particularly useful to see an equivalent linear-array master-chip developed based on mosfet technology rather than BJT, since this would provide better packing density and compatibility with so many of the recent developments in digital electronics. Such a device would be ideally suited for mixed-mode analogue and digital applications.

Do vertical p-n-ps indicate a BJT revival?

Discrete designs with BJTs became so much more versatile with the availahility of complementary $p-n-p$ and $n-p-n$ devices. Unfortunately, IC processes are predominantly either $\mathrm{p}-\mathrm{n}-\mathrm{p}$ or $\mathrm{n}-\mathrm{p}$ n , with $\mathrm{n}-\mathrm{p}$-n devices preferred because of their higher frequency performance due to the higher mobility of electrons in silicon than of holes. On a p-type silicon slice, principally intended for vertical $n-p-n$ devices, $p-n-p$ are realized as lateral transistors: inherent in this structure is a device with poor β and f_{f}. This imbalance between the performance of $n-p-n$ and $p-n-p$ transistors has led designers into using convoluted tricks to keep the signal path to n-p-n transistors so as not to degrade performance. However, it is undoubtedly true that IC design would be much simpler and better if $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors were available with comparable performance to n-p-ns.

Several manufacturers, including PMI, Texas Instruments and Analog Devices, have reported technical de-
velopments enabling isolated highperformance vertical $p-n-p$ to be realized on a P-type silicon slice. This gives the designer the freedom to use elegant complementary $n-p-n$ and $p-n-p$ structures previously possible only in discrete circuit designs. Although this is a relatively recent development, several new devices are already appearing on the market that make use of this new freedom to use symmetrical complementary topologies. such as the new CLC+(0) current-feedback op-amp from Comlinear.
So much of what is new in electronies is driven by semiconductor process developments. The consequences of this particular advance herald a B.IT renaissance, and we shall soon see a range of new analogue circuit designs coming forward that exploit this development to the full.

[^1]
Non-destructive PCB current test

An outstanding piece of electronics design has resulted in a non-destructive method of current measurement in a PCB track. An instrument based on the technique will measure current in the range lmA to $\mid \mathrm{A}$ without breaking a track or lifting a component leg as demanded by conventional measurement methods.

The Track Current Meter. designed by the small British company Laplace Instruments. uses a combination of special measurement probes. chopping differential amplification and current nulling to determine current flow irrespeclive of conductor thickness.

The meter comprises two basic circuit sections: an highly sensitive DC amplifier measuring the voltage drop along a section of PCB track due to the current flowing in the conductor under test; a reference current generator controlled by the output of the DC amplifier which injects a current of a magnitude and direction sufficient to cancel out exactly the voltage drop measured in the conductor. The instrument provides a readout of the mirror current which is equal and opposite to the current flowing in the track.
While the operating principle is as

Cellular explosion

A report published by The Economist Intelligence Unit says the growth in the cellular market has exceeded even the most optimistic forecasts: 1988 saw a total of 500000 subscribers to the cellular networks generating a gross income of $£ 600$ million. The Unit goes on to predict that the subscriber base will triple to 1.5 million by 1992 , creating a billion pound industry.

The report, entitled Retail Business Special Market Survey, says that cellular will face increasing competition from other systems such as telepoint and radio paging. It claims that radio pagers have already caught on as a cheap method of alerting people, possibly with a simple message passing facility. It predicts two million users by 1995 rising from an existing base of 600000 .

The report sums up with an assertion that current systems and equipment will be obsolete by the end of the century, being replaced by integrated fax, voice and data transmission terminals.

simple as it is novel, the measurement of DC potentials in the microvolt range hass required some ingenuity on the part of the designer. David Maivedsley. The instrument requires twin contact electrode probes. An inner spring-loaded point measures potential while an outer fixed point provides the current injection. Successful measurement also re-
quires a combination of polarity chopping followed by all averaging circuit. It is worth noting that the instrument allows equipment under test to remain fully operational and that current measurements are unaffected by current flowing in adjacent tracks.

David Mawdsley"s company intends to sell the TCM-20 1 for $£ 485$.

A computer called horse

It is now possible to buy a multiprocessor system off the shelf using a system based on VME running Unix V. Called Equus, the prototype was developed by harnessing four Vitesse graphics systems from Cambridge Microcomputers with a rack of twelve 680130 processor cards. An ethernet link connects these to six Sun workstations and four Sun file-servers providing a standard interface to the system.

Equus is an operating system environment which runs computationally intensive applications across any number of distributed parallel processors. At its simplest, it allows the user to add extra processors into a single processor computer.
The system uses dynamic reallocation of resources while the program is running. The designers claim this to be a significant departure from transputerbased systems which cannot allow recontiguration.

Diamond window on the world

Researchers from Plesseys Caswell facility have developed a process to manufacture diamond film in layers over two inches diameter and $5 \mu \mathrm{~m}$ thickness.

The synthetic diamond layer makes a durable and transparent window for IR detection in missile targeting systems and burglar alarms operating in the 0.4 to $12 \mu \mathrm{~m}$ region. According to the workers involved in the development of the process, the polycrystalline layer offers
superior transmission properties to natural diamond because it produces less scatter than a single crystal

Manufacture involves the deposition of carbon from low-pressure methane gas plasma at temperatures below $800^{\circ} \mathrm{C}$, a very low temperature in comparison to those normally employed in the manufacture of synthetic diamond. The individual crystals measure in the region of 2 to $3 \mu \mathrm{~m}$.

Semiconductors on steel

A hybrid production process developed by the comms chip manufacturer Mitel uses stainless steel as the substrate medium. It offers all the benctits of the traditional ceramic hased product but has the added advantages of heat dissipation, strength and electromagnetic shielding. says the company.

Mitel says that the key to the technology is a dielectric material which matches the steel substrate to the thick film ink system.

Hybrid thin film circuits can now be built with multiple layers of circuit con-
neet using a new fabrication process from AT\&T

The process uses successive layers of polymer laid down on a conventional ceramic substrate which also acts as a thermal header. Each layer can contain a mix of standard thin film elements such as tantalum nitride resistors. fabricated capacitors and inductors. The increased amount of interconnect based on gold - allows a much improved packing density. The low-loss dielectric makes the process suitable for microwave and high frequency applications.

Calling the

According to its designers, the Northern Ireland Fire Brigade's new computerized call-out system is the most advanced in Britain and possibly in the world. From a central control room in Lisburn, County Down, operators can despatch staff and resources to incidents occuring anywhere in the provinces 5200 square miles. At present, the brigade responds to more than 25000 incidents per year, ranging from house and factory fires to road accidents and the occasional terrorist episode. Altogether, 59 fire stations and their vehicles are linked to the system, by telephone, private wire and VHF or UHF radio. Data communications are the dominant means of passing information to fire stations, but voice channels are available simultaneously over the private wire and radio circuits.

At the brigade's headquarters, the operators who receive alarm calls from the public are supported by a 350 Mbyte gazetteer of the province. With this, fires can be located accurately from the incomplete or garbled details given by an over-excited caller, or even from the number of a telephone call-box alone. When there is any doubt, the software offers a list of sound-alike addresses

fire brigade

Seen here is one of the control positions at Northern Ireland Fire Brigade's headquarters at Lisburn. Equal opportunities note: the giant wall-map status display, part of which is visible at top right, has 5000 lamps. All of them were wired up in the space of four days by a man with only one arm. He did his own cable-forming.
from which the operator can select the most probable. Also available onscreen is the Harwell chemical database: firefighters tackling a chemical spillage can receive directly from it a print-out of the special information they need. Touch-screen controls are extensively used, for rapid operation without mistakes.
Two Data General Eclipse minicomputers manage the system (one is on stand-by) and there is a third for training purposes. Two "shadow" control rooms are available in case the main one has to be evacuated. The system was designed and installed by International Aeradio (1AL), a subsidiary of British Telecom. IAL's next project of this kind, an even bigger one, will be in operation shortly - a call-out system for the London ambulance service.

Personal cell-phone

Motorola's pocket-sized 9800 X is the smallest cellular radiotelephone yet. Though it weighs only 305 g (including a slimline NiCd battery pack) it offers features to match much larger models. Among them is a facility to recall stored telephone numbers using names.

Channels covered include the full ETACS assignments, and the unit can be registered on both UK networks at once. RF power output is 0.6 W and a continuous talk time of 30 minutes is possible (or 75 minutes with the standard battery, which brings the weight up to 350 g). A range of accessories includes a car fixing kit and a mains power unit

Within the 9800 X . all main components are mounted on a single printed circuit board - RF components on one side, logic and audio on the other. A metal interlayer provides an isolating screen. The display is an alphanumeric led type: Motorola doesn’t consider its relatively heavy power consumption a problem since for most of the time it is blanked. Some 80% of the semiconductor devices are special types sourced by Motorola itself.

The telephone will be available this year in versions for all 900 MHz analogue cellular systems; the British model is ready now and carries a price tag of £2295

RS-232 multimeter

A five-digit multimeter from Fluke can be used under computer control using a built-in RS-232 interface. It accepts ASCII commands, interpreted by internal rom, which can control range, functions and calibration. A standard PC could be used to provide full remote control of multimeter function.

An optional software package allows the instrument to be incorporated into an automated testing environment. Captured data can be transferred into standard PC applications pack ages such as dBase or Lotus 1-2-3. The RS-232 port can also be used to address an external printer for hard copy.

The model 45 multimeter provides all the conventional multimeter functions. Additionally it has a dual display enabling comparative testing to be made. It costs $£ 459$

LCD digitizing tablet

The Japanese company Mitsubishi has combined an LCD display with a touchsensitive panel to create a selfindicating digitizing tablet. The screen/ aablet comprises an array of 640×400 pixels spread over an area $230 \times 145 \mathrm{~mm}$.

Working with a pressure stylus, the operator can display images as they are digitized. An external computer connects to the unit by a standard RS-232 port.

World's fastest synthesizer?

This is what Lyons Instruments claims for a direct digital synthesizer manufactured by the US company Sciteq. It says that the unit will hop over a bandwidth of 300 MHz in less than 20 ns , maintaining phase-continuous switching

Based on GaAs technology, it uses a central clock running at 640 MHz to produce a frequency range of DC to 300 MHz with a resolution of just under 10 Hz . The specification indicates a phase noise of $-105 \mathrm{dBc} / \mathrm{Hz}$ at 100 Hz offset when running at an output frequency of 150 MHz .

Hermetic optics

Hughes Aircraft has developed a hermetic packaging technique for optical fibre pigtails. The fibre lead-in uses a multi-layer jacket produced by first coating the silica fibre with aluminium as the fibre is being drawn. The aluminium layer then receives coatings of nickel and gold to aid the soldering process

DIY PLD

Brian J. Frost concludes his introduction to programmable logic devices with a design example and a look at PLD design tools.

Asan actual design example. consider a simple four-bit binary up-counter. The design eguations are casy to appreciate once the basic ruke of operation of the counter is ckear. There are two rules for counting. which for an up-counter are

1. The least-significant bit must toggle on cach clock.
2. Iligher bits must toggle only if the bits are fower order are all I. otherwise they must remain unchanged

From ruke 1 , implementing the leastsignificamt bit is simply a question of changing the pall)-type flip-flop operattion into a T-type or toggling, flip-flop. If the Q output of the flip-flop is comnected back to its () input it will toggle on each chock pulse and since we have this feedtack into the array, this provides our bit of the counter. We usually need a reset facility as wetl. so the equation for this bit () would read

$$
4^{\prime \prime} . \mathrm{d}=\operatorname{treset} \& y^{\prime}:
$$

Here the 1) input to the flip-flop for this bit is signified by the extension ". d" to the actuat output pin name "eno", and that the state of the actual output pin is used as an inpur on the right. Thus if Reset is not true. each new output state after a clock pulse will be the inverse of the fast state. Should Resel got trae. it takes precedence and sets the 1) input to 1). thus clearing the flip-flop to the rese condition on the next clock

From rule 2, the next higher bit, bit 1 . must loggle only when bit 10 is a 1 . Controlover this toggling is achieved by presenting its 1) input with either its own output (son thes not change) or its own output inverted (so that it does toggle). The decision for this "loggle or not" is based on the state of the previous bit. yw. This control over an inversion is conveniently represented by the exclusive-Or function which can be expanded into Ands and Ors if required. Here we shatl let the logic compiler do
the expansion for us and use the symbol \$ for the exclusive-()r function. Thus the definition for 4 , becomes

$$
y^{1 . d}=\operatorname{tresec}\left(y^{\prime} \mid \$ y l\right):
$$

For bits 2 and 3. the principle is identical and their equations just add another termeach time:

Note that Reset has appeared in all éguations.

PLDs - WHY YOU SHOULD BOTHER

Programmable logic devices are set to move into areas where conventional logic has seemed inviolate, and although traditional logic families are likely to exist for many years yet, the developing PLD technology will be regarded by more and more desig. ners as the less painful solution to their design problems once their initial learning phase is complete. The wider acceptance of such devices that follows this learning will fuel in turn the generation by manufacturers of ever more innovative PLD products and design tools.

From this sequence it might seem that we could goon adding more bits to the counter very easily, but a limitation arises from the number of product terms. (0) which each equation expands. When compiled for the basic pals, cach hit in a binary counter will require one product term per control function (e.g. Resed. Preset. Hold ete.) plas a number of product terms equal to the binary order plus 1. limiting the popular pals to around cight bits. This limitation can be avoided either by using special pats that have exclusive-(or gates available placed before the D-type flip-flop, or by partitioning the counter into several shorter combters and interlinking them viat "count enable" signal.

The philosophy behind this example of a simple binary up-counter is applicable to atl counter designs. and a downcomerter can be designed jusi as casily by reversing rule?

However simple the principles 1 have just outlined. a justifiatbe comment is that to create a simple counter in this manner seems rather more painful than just picking a readily avaitable TTL part. But becaluse counting is so common a requirement. a number of example counter designs are supplied with any logic compiler and it is more usual to modify one of thesce examples to your requirements than to create a new design each time from the ground up. The reward of a PLI)-based counter design is the ease with which one can incorperate additional leatures ofer those found in the TTL standard designs: for example. counters with control inputs that allow them to shift their contents left or right as well as count. This is the area where pals become particularly useful. since many of the complex M1si LSI functions with high numbers in the TYI. range turn out to need exta signal conditioning logic before they can be used within your application. A PLD can be programmed to provide just the signal polatity that gou requite and becomes even more attrative when pins need to be re-arranged to suit a P(B layout.

For those like myself who can exist for really quite a long time without feeling the need to write a bookean equation, ways have been developed in which high-level syntix can be used with common logic compikers to express these counting operations in a much more dired way by regarding counting ats one defined serpuence of a state machine

State machines

A state machine is any logic system that proceeds through a defined sequence of states under the influence of external inputs, its previous state, and a clock. Much software exceutes in this way. with its sequential instruction-controlled flow and its programmability working bugethertoprovide a very flexible tool.

A logic-based state machine call proside the same level of flexibility ats a
software routine hut at a much higher speed where the control "branching" is performed not by software testing of input hits. hut by logic states that follow sequences dependent upon inputs at the time the sequencer was chocked.

As an example of the application of a PL.D-based state machine a very highspeed data acquisition system may require an A-to-D converter to have its result awaited. transferred into local ram followed by an atho-increment on (6) the next address and at re-triggering of the A-to-D for the next measurement. (yele rattes below 1μ s would not be possible using a software technique. yet a logic state machine can be programmed from a list of the A-to-I) control signals (trigger. busy, read. chip select ete.) and the memory control limes to issue these in a fixed seguence at very high speed. A clock of SoMliz would not be excessive

Because of the usefulness of state machines for counting and seguencing applications. many logic compilers provide syntax for their definition. The CUPL notation is

PRESENT name_of_present__rate 1F input I true

NEXT name of _state_p
IFinput_? true
NEXT name of state Q
One can see the similarity to the If... Then expressions of high-level languages.

To see how easy this makes the expression of al counter design. Fig. 10 shows a decade counter with control inputs for up. down and clear. and with a carry output.

The design starts with declaring the pin numbers to use for inputs and outputs together with their names and polarities. Then follows a definition section where eath state of the 10 possible counts is given a name ($\left.S_{1}, S_{\mid \ldots}, S_{9}\right)$ and the the names Up. Down and Clear aredefined.

The actual design is in the Sequence statement where each "present" state is shown leading to one of (in this case) three possible "next" states. corresponding to incrementing. decrementing or clearing the coumter.

How much TTL to replace

Deciding on partitioning - where a design needs to be split up into smaller logicall blocks - can be difficult. And perversely. the flexibility of PID)s can make it more so. With traditional TIL design. circuitry grew around the availahle parts: and partitioning concerned
only which parts of the design were to be split on to other circuit cards within a card frame.

With PLDs, partitioning is not only about fitting a larger design into more than one device. but it is important not
to lose the PI.D's flexibility in so doing. For example. consider a simulated. proven design which fully occupies one 1618 pall, i.e. all 10 inputs and eight outputs are used. A decision, based on whether any further feallures are likely

to be reguired. must he made as 10 whether this implementation of the design is satisfactory since if additional ouputs are required, the resulting additional IC would display a modification no more attractive than a TTL design. Further outputs can be added by using a larger pal device - for example the 24 -pin 201.10 with 10 outputs - and leaving the extra two unconnected

Another solution is to lay out a PCl 3 to take a 24 -pin 0.3 inch wide package with $\mathrm{V}_{\text {ce }}$ to pin 24, to earth pin 12 as if for the larger pal devices, but then to earth pin 10 . This footprint will accommodate either 20 -pin or 24 -pin pals with no PCB modification and with only one lost input on the larger device.

Designs often require more than just a few extra pins on one device. A good designer will partition a PLD design such that not only are uncommitted inputs and outputs available within each of the several PLDs, but that logic functions are grouped within each PLID so as to minimize interconnections and to contain the "domino effect" of any future changes to the design within as few PLDS as possible. Such a reduction of the intercomnections between the PLDs is well repaid. not only through a tidier design, but because each interconnecting link frees two PLD pins. Consideration must also be given to the end use of the design: for example, a protorype system should offer many more spare connections than a final. tested design aimed at minimizing cost.

Larger counter designs eat up the available architecture of PLDs because the higher order count bits require more product terms. (Ors) than the device has. In this case if a PLD with larger internal organization is not feasible the counter design will need to be split between devices.

One technique which sometimes pays off is to make sure that you have spare TTL functions available which the pal cannot provide. For example a combinatorial pal is supplemented with an external uncommitted flip-flop that can be roped in should it be required. ensuring that Murphy is frustrated at an early stage in the design.

Interestingly, software techniques can provide pointers toward good PL.D partitioning. There are a number of parallels between a well-structured. modular piece of software and a wellpartitioned PLD design. Good soft ware has individual modules (each PLD) with well controlled parameters (signals in and out) without complicating crosslinking and changes in the main flow (such as Goto).

Fortunately, as with software writing. any partitioned design - however inelegant - will function once debugged. and the experience that defines your own future partitioning rules is quickly achieved. The choice of PLDs is then wide: number of devices. their size, number of pins. power consumption technology and of course cost

As with microprocessor programming, having the right tools makes for efficient use of PLDs. PLDs are now almost universally designed using software tools and programmed on specific hardware. Both merit a closer examination.

Software design tools

The earty days of programmable logic were often spent with a dedicated programmer box which applied the necessary programming voltages to one specific type of part and where the device program was often entered using manuat switches. Although apparently costeffective. this approach was only acceptahle for devices with a small number of bits to be programmed and it could still lead to errors in programming. Even then, the user still had to code his logic requirements into the bits to be programmed. further increasing the risk of incorrectly translating the equations into fuses to be blown

A few years ago, software tools began emerging which would accept a simple document file written with the reguired

PLD logic equations and. acting much like any other software language compiler. would translate these equations together with a knowledge of the intended PLD into the bits that required programming. This had the advalntage that the user could specify names for pins. vastly increasing the readability and documentation of a design as well as allowing a fast-turn-around to minor changes.

Tolay, these software packages fall into three basic categories:

1. Shareware. Several manufacturers have developed software that supports their devices and in some calse also supports general architectures. so allowing its wider application. Examples are AMID/MMI's "PAL ASM" and Signetic's "AMAZE". which are available for basically the cost of the discs. The quality of such software is quite high and offers many of the facilities of the traditional up-market CAD pack ages.
2. Non-specific general purpose logic CAD software. To cover as many as possible of the PLDs in the marketplace. several software packages cover al wide choice ol devices. for example CUPL and ABEL (see the reference list last month for more details). The libraries of these packages are regularly updated with new designs as they become available. and their relatively high cost is attributed to features such as power-

PLDs-THE FUTURE

Programmable logic devices have a very bright future. Many popular devices have been with us for a long time, but their volume of use is increasing rapidly; most general distributors' catalogues now include them.

At the same time, manufacturers of conventional logic families have realised that there will come a time when users choose a PLD route for their design and therefore they need to be positioned ready to offer in that market As a result, several alliances have now been formed between high-volume logic semiconductor manufacturers and the often smaller, more innovative PLD manufacturers. The programmable logic marketplace is likely to become much more competitive.
The greatest potential would seem to be for UV or electrically erasable devices which are rapidly increasing in their internal density. This increasing capacity benefits the user in two ways. Firstly, new device configurations can be designed that are very flexible in the logic functions that they replace: for example, registers can be buried within the device, freeing pins for i/o tasks. Secondly, devices can be designed as "supersets" of existing smaller fixed architecture parts. As an example of the latter, one device that is gaining much present popularity is the 16 V 8 .

This 20 -pin device, usually electrically erasable, can be programmed to act as one of 20 or more dedicated pal devices; i.e. it can mimic combinational or registered pals including devices that have mixed outputs (16 R4 etc). It does this by offering a prog. rammable output cell on each output pin that is defined when the programming equipment loads the type of device to be used, allowing isers with existing pal logic designs to us he l6V8 with no modification. Marketr s Generic Array Logic, or GAL, it adds her buzzword to the logic vocabulary.

For the flat seems likely that within two or thre ars PLDs will evolve into standard lar shitectures and grow until they reach, a ass, the complexity level at which ASICs w being offered some two or three years ago. This will allow whole PCBs of conventional logic to be replaced by just one PLD; and it will be then that design verification techniques such as logic simulation learnt now on the simpler PLDs will return the greatest rewards.

Another area showing significant growth is that of PLDs designed specifically around certain functions that end-users tend to repeat often. As an example, the new IBM Microchannel bus architecture used in the
ful logic minimization, "hot-line" support. thorough simulation etc. Many packages also incorporate conversion utitities enabling designs made using other software to be converted.
3. Other manufacturer-specific software. Some PLDs with newer architectures are so specific that their manufacturers have written software dedicated to them which exploits the advantages inherent in their design. In many cases (PLD) sequencers for example) this software is also available as shareware at low or zero cost. In other calses the manufacturer has chosen to incorporate software intended to aid the user in entering his requirements, for example where devices from the TTL family cim be specified: the software then converts these to the PLD design.
Some software packages permit the graphical entry of TTL components in circuit diagran form, and so present a very friendly user interface. This diagram is then converted into logic equations by the software and on into a fuse map for the intended PLD. Whilst this is an excellent process for straightforward designs, remember that there is no substitute for an understanding of the processes involved in fitting the design to the PLDD, and that you will certainly need such an understanding should problems occur.
In atl case though, the eventual output is a JEDEC file that contains in-
formation in the form that can be read by the device programming equipment.

Programming equipment

Many devices for programming Pl.Ds are on the market and on the surface they appear similar to eprom programmers. Indeed their task is a related one. to set individual bits in the device being programmed to states as defined by a downloaded pattern file.
Unlike eproms though. PLDs differ widely in pin connections. programming algorithms and technology: and this forces many manufacturers to dedicate an item of programming equipment exclusively to certain types of PLDD One reason for this is that bipolar pals (such as the 16L8) and other devices based on fuse technology can require up to 0.5A to fracture the fuses in a manner guaranteed to meet the manufacturer"s specification. By contrast, the eratsable PLDs now appearing use eprom and earom technology in c-mos where the programming process requires raised pin voltages that must be restricted in their slew rates to avoid the risk of c-mos latch-up. The significant difference in programming electronics that this demands has led to lower cost programmers designed either for "pal programming" (probably bipolar fuse types) and "EPLD programming" (the newer erasatble types). This makes it very important to examine their speci-
latest PCs requires significantly more in teraction between the main processor and an expansion card that uses the bus. Several manufacturers such as Altera have tailored PLDs to Microchannel bus applications where the PLD contains "hard" nonprogrammable circuitry that implements the defined bus functions and registers but also contains "soft" programmable features such as decoder outputs, interrupts and handshakes that the end user can customize to his own use. In this way not only are many traditional ICs saved, but so too is the effect of designing.in quite complex bus specifica. tions.
Other PLDs with a bright future are those designed for sequencing. These can be thought of as similar to a reduced instruction set processor, but with very little memory: they are designed to perform small but fast sequencer loops to control a subsystem of logic. The common requirement for counting. jumping and testing at speeds in excess of software capability has resulted in several manufacturers offering PLDs that are specifically designed to be flexible in this mode, and often come with their own assemblers and software tools.
Another example of a PLD device that is increasing in popularity is the logic cell
array, or LCA, manufactured by AMD. This device is an array of configurable logic blocks, each one containing some combinatorial logic, a flip.flop and control logic. A PLD design using this device is based on programming the required logic within the blocks and also the routeing used to connect signals from input pins, through logic blocks and out again. The flexibility of this architecture comes from the ease with which logic can be cascaded without using valuable package pins, so "burying" logic within the device. There is an increase in propagation delay using this technique, since the internconnection is performed using relatively high-resistance silicon "wires" instead of metal, but development is concentrating on minimizing this.

An interesting development for the future is that of devices that can be programmed in circuit This relatively new concept relies on equipment that can connect to one or two reserved device pins and load a fuse map into the PLD using a serial technique. As well as being a useful prototyping aid, this has the advantage that devices can be flow-soldered with the other PCB components without having yet been programmed. It also allows PCB devices to be field-upgraded without the need to design them into sockets.
fication in detail to establish which devices they cannot program. since this limitation may not be discovered until later.

Several manufacturers specialize in "universal programmers". These are sophisticated devices that are designed to handle PLDs with a wide range of pin voltage, current and slew-rate reguirements and which are configured internally to suit the specified device. Such equipment usually handles eproms, eprom-based microprocessors and proms as well.

Which tools are best?

Unfortunately the answer to this question is not a simple one. since your particular requirements reduce the options available.
None of the tools currently available. however full of windows. menus and circuit diagrams. releases the end user from the need to understand the basic principles involved. and there will always be a need for an adequate understanding of how your design is actually overlaid on the architecture of a given device. Although this understanding is only fully tested when errors are reported to you by a soft ware or programming process. it does help you to avoid creating errors in the first place.

Software that allows schematic entry does tend to look very attractive since the circuit diagram concept is immbediately recognizable to the user; but be aware that unless the error reporting incorporates really positive suggestions about curing problems - almosi to the extent of doing it for you - you are still not spared the basic learning curve. As a result, regard such software for what it is -a convenient "front end" for user entry.

If you have no previous experience of PLDs. or equipment or tools for handling them, the need for a learning curve makes the low-cost shareware approach quite adequate as a starting point. PALASM from AMD/MMI for example, is available from several distributors for under $£ 20$ and supports all the common pal devices. But it has enough features to allow you to decide more objectively on purchasing a more comprehensive sofiware package (such as CUPL or ABEL) once your needs are clearer.

Again, the cost of programming hardware can be kept low with the purchase of a programmer that is designed only for simple pal devices. Straightforward programmers designed for serial connection to a PC are readily available for under $£ 4(0)$.

THE ORIGINAL SURPLUS WONDERLAND!

SPECIAL PURCHASE
 V22 1200 baud modems

We got a tremendous buy on further stocks of this popular 1200 baud modem - we can now bring them to you at haff last adverteed pricel Fully BT approved unit, provides standard V22 high speed data comm, which at 120 ops , can save your phone bill and connect tme by a staggening 75% Ulira slim 45 error diagnostics. Sync or Async use; speech or data switching; bult In 240 v malns supply and 2 wre connection to BT. Units are in used but good conditlon. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask
and at this pricell
ONLY $\mathbf{~} 69(0)$

MONITORS

COLOUR MONITORS

Decce $16^{-6} 00$ sertes budget range colour monitors. Features Include PIL tube, an atfractive teak style case and guaranteed 80 colu mn resolution, features which are only normally seen on colour monitors costing 3 times our prical M is absolutely ready to connect to a host of computer or video ou puts. Manulacturers day full RTB guarantee
Decce 80 RGB TLL and sync Input for BBC and similar type
Interlace etc.
Decce 80 COMPO 75 ohm composite video Input with Integra audio amp \& speaker. heal for use with voeo recorder or ou Telebox ST, or any other audio visual use.

Any type only C 99.00 (E)
HI-DEFINITION COLOUR MONITORS
Brand new Centrontc 14° monitor for IBM PC and compatbles at a lower than ever pricel Completely CGA equivalent. Hh-res Mitsubushi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz ondwith A super monltop in atractive style moulded case.Fun 90 day guarantee. Only 149 (E) $20^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Supertly made UK manutacture. PIL all solid state colour

FLOPPY DISK DRIVES
 BARGAINS GALORE!

NEW $51 / 4$ inch from $£ 29.95$!

Massive purchases of standard $51 / 4^{*}$ drives enables us to present prime product at Industry beabing low proesi All uruts
(unless stated) are removed from otten brand new equipment and are fully tested,aligned and shipped to you with a 90 day guarantee and operate from $+5 \mathbf{z}+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector. SHUGART SA405. BRAND NEW TANDON TM100-2A IBM compatible DS TANDON TM101-4 80 Track DS
CANON, TEC elc.DS half helght.Stat
 1 (B) $31 / 2$ INCH BRAND NEW AT $£ 19.95$!! Never betore seen price for a $31 / 2^{\prime \prime}$ drtve. Standard size be leved track SS Canon. Brand new and packaged - mint conditlonl 40

CHOOSE YOUR 8 INCH!
Shugart 800 801 SS refurbished \& tested
Shugart 851 double sided returbished \& tested Mhl subl ani M2884-63 double sided s

SPECIAL OFFERS!!
Dual $8^{\prime \prime}$ drives with 2 megabyte capadity housed in a smart case with bullt In power supplyl Only E499.00 (F)
End of line purchase scoopl Brand new NEC D2246 8* 85 megabyte of hard disk storagel Full CPU control and Inctustry megabyte of hard disk storagel Full CPU control and industry standard SMD Inter ace. Ulira hi speed transier and access ume eaves the good old ST506 Intertace standing. In mint conditlon

COOLING FANS

Hense apoctiy 110 or 240 volts for AC tans.

THIS MONTH'S SPECIAL!

WRITE FOR OUR EIGHT WEEKLY BARGAIN SHEET \& GET ON OUR MAILING LIST FREE!

Very high res, fully cased,mains powered $14^{\prime \prime}$ green screen monitor
 gtar e screen \& swivelfal base. The very latesit echnciogy at the very fow

 st pricet Fully compatible PC type input to plug divect to HERCULES card outputs, enabing superb graphics and resolution at give away prices!l The many features include aux +5 \& 12vDC output's to power at least 2 dist8125.00(E)

ع250.00((

260ㄴ․ x
 20"....£155 22"....£170 26"....£185 (ค)

MONOCHROME MONITORS

Motorola M1000-1005" black 8 white compact chassis measur

 Ing only $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 220$. Ideal for CCTV or compute applicavions. Accepts standard composite or indivdual H 8 V syncs. Needs 12vdc at only 0.8a. Some units may have minor screen blemishes. Fully tested with 30 day guarantee and full 92 mm data. cased as above In attractive moulded desk standing 4 inch swivel. Dim $12 \times 14.5 \times 26 \mathrm{~cm}$. JVC 751 ultra compact chassis monitor for 12 vdc 0.7 a . DIm 1 $\times 14 \times 18 \mathrm{~cm}$. Simple DV data induded to convert to composite $20^{\prime \prime}$ Bleck \& white monitors by Aztek, Cotron \& National. All solid state, fully cased monitors ldeal for all types of AV or CCTV applications. Standard composite video Inouts with integral audio amp and speaker. Sold in good used condition - tully tested
IBMKEYBOARD DEAL

A replacement or backup keytooard for IBM PC. PC-XT o PC.AT, all in onel it has a switch on the rear to convert betwen
modelsi LED indicators for Caps, Scroll \& Num Locks. Standard modelsi LED Indicators for Caps, Scroll \& Num Locks. Standard 10 tunctionkeys plus 56 on the main bank and 19 on the keypad,
85 in all. Made by NCR for the Engllsh 8 US markets. Absolutely 85 In all. Made by NCR tor the Engllsh 8 US markets. Absolutely standard. Brand new \& boxed with manual and key template for user slogans on the tunction keys. Attractive beige,grey and
cream firish, with the usual retractabie legs undemeath. A cream flrish. with the usual retractable legs underneath. A
generous length of curly cord, terminating in the standard 5 pin

COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the famous Elnstein. The TPC2000 Professional 3 piece system comprises: Quality high resolution Green 12° monitor. Sculphred 92 key keyboard and plimh unit comaiming Z80A CPU and al contron circults. PLUS Integral TEAC 5.2580 track double sided disk drives. Generous other features tndude dual 8 ill expansion port, 64 K ram and Serial and parallel outputs, full expansion port, 64 K ram and ready to fun software. Supplled covered by our famous 90 day guaramee and Price ...only........โ299 (E)

only $£ 69.00$ EaCH
 (E)

3 Inch AC. $11 V^{-1}$ thick
$31 / 2$ inch AC ETRI slimiline. Only 1^{10} thick AC $110 / 240 \mathrm{v} 1 \mathrm{Vn}^{-}$thick Round. $31 / 2$ thick. Rotron 110 v DC 1" thick. No. 812 for $6 / 12 \mathrm{v} .81424 \mathrm{v}$. OC 12v. 19 mm thick. DC 12v. $12 \mathrm{w} 11 / \mathrm{Z}^{-1}$ thick
RECHARGEABLE BATTERIES

LEAD ACID

Mainterance tree sealed long life, all type A300.

 12 volts 3 amphoursE13.95(A)
\& $9.95(A)$
E $5.95(A)$

SPECIAL OFFER!

100 amp/hours at 6 voht! Brand new Chionde Powersate or uninterruptable power supples, portable power sour NICKEL CADMIUM
Quallty 12v 4ah cell pack. Originally made for the Technicololor video company. Contalns 10 GE top qualty D nicad cells In a mart robust case with a DC output connector. Ideal tor por able equipment. Brandnew.
Ex equipment NICAD cells by GE. Removed from equlpment and in good, used condition: D size 4 ah

SPECIAL SINTERIEST 6 for 88 (B)

Raca-Redac real tme colour dratting PCB layout system. In DEC VAX11/750 inc. 2 Meg Pam DZ and full documentation, in brand new conditoni
Large Calcomp plotter
CHEE AH Telex machine.
.5kw 115 v 60 hz power source.
Wayne Ker r RAZ00 audio real tme freq.res, analyser Tedtronics 1411/R PAL TV test signal slandard. Ver satek V80 Printer plotter DEC LSI1/02 CPU board

All power suppiles operate trom 220-240vac. Al power upplies are BRAN. NEW Unless stated. We have ग other types ranging from $3 v$ to 10 kv always in stock.
Byte Drive BD301Dual output 5vdc @ 1.6 amp 812 vdc @ amp. Perfect for disk drives. Has standard Molex sockets, Attracvely encased. Dim $15 \times 12 \times 7 \mathrm{~cm}$. \quad ع19.50(B) Plessey PL. 122 fully enclosed 12 vdc 2 amp . Regulated and AC-DC Linear PSU with outputs of $-5 v$ @ $5.5 \mathrm{a},-5 \mathrm{v}$ @ 0.6 a (B) $24 v$ @ 5 . Fi $\begin{array}{ll}\text { Power One PHC } 24 \mathrm{vdc} 2 & \text { a. Linear \& regulated } \\ \text { Bosher } \\ \text { E49.50(C) } \\ \text { E19.95(B) }\end{array}$ Boshert 13000 swich mode ldeal for drives or complete system 21@6a,+12v @ 2.5a, -12v @ $0.5 a$ and $5 v$ 0.5a. Dim 5. Boshert 13085
Boshert 13085. Same as above but outputs of $+5 v @ 6 a,+24 v$ @ $1.5 a,+12 v @ 0.5 a,-12 v$ @ $0.5 a$.
Greendale 19ABOE 60 watt switch mode outputs $-5 v$ (@6a.85(B) @1a.12v@1a+15v@ (a Dim $11 \times 20 \times 5.5 \mathrm{~cm}$. Aemoved rom equipment and tested. Conver AC130-3001. High grade VDE spec. Compact 130 watt switch mode Outputs $-5 v$ (@) $15 \mathrm{a}-5 v$ @ $1 \mathrm{a}-12 \mathrm{v}$ @ 6a. Dim6.5 $27 \times 12.5 \mathrm{~cm}$. Reg price $£ 1901$ Ours new... $£ 50.95$ (C) Farnell G6/40A Compact $5 v 40 a$ switch mode and fully endosed.
Famell G24 5 S As above but 24 v @ 5 a . $140.00(\mathrm{C})$
E95.00(C)
SPECIAL EXPERIMENTERS PSU'S
Built to BT's igorous standan. uppled orperimentanon. EPSU1. $+5 v 2 a, 12 v 1 a,+24 v$ a. 45 v fully floating 50 ma . EPSU2 $i+5 \mathrm{v} 6 \mathrm{a},+12 \mathrm{v} 1 \mathrm{a},-12 \mathrm{v} 0.5 \mathrm{a} \&$ ers.30-70vdc input.Parts alone valuel
£16.95(C) EPSU2.
19.95(C)

FLASH!

Lowest ever priced 8 mhz PC.AT 286 clone with 20 mb hard disk and one $5.25^{\circ} 360 \mathrm{k}$ floppy. Complete with a regular type keyboard and very hi-res 14° mono green screen monitor and Hercules graphic card. Guaranteed for 90 daysI ONLY £799.00 (E)

WRITE FOR ITEMS YOU DON'T SEE, OUR SHOP AND WAREHOUSE ARE FULL TO BURSTING!

THE AMAZING TELEBOX!

Converts your colour monitor into a QUALITY COLOUR TV!!
0
V SOUND
\& VIDEO
TUNER!

Brand new high qualty, fully cased, 7 channel UHF $\bar{P} A \bar{L} \bar{T} V$ iuner system. Unit slmply connects to your TV aenal sockel and colour video monitor tuming same into a abulous colour TV. Dont worty integral audio amp for driving a speaker plus an auxillary output or Headphones or HI F system etc. Many other leatures: LED Status indicator, Smant moulded case, Malns powered, Built to Supplied BRAND NEW with full 1 year guarantee
Tetebox ST for composite video input monilors C29.95(B)

NOT sultable for IBM clone type colour montors.

BRAND NEW PRINTEAS

Epeon MX-80 F/T One of the most popular printers around Bi-directonal printing with full logic seeking. 9×9 dot matinx for
enlarged,bold,condensed eic. Standard parallet interface. Brand tabel removed from front. Harkdes fractor,fantold and individual paper. OK with IBM PC and most others. A tremendous buyl ع129.00 (E)
Hazeltine Esprint small desktop. 100 cps with RS232 and
standard parallel. Full pin addressable and 6 user selectable tonts. Up to 9.5° paper. Sheet \& tractor feed. E149.00(E) Centronics 150 series. Always known tor their reliabilly in contimuous use - real workhorses in any environment. Fast 150 cps with 4 fonts and choice of interfaces.
150-SN up to 9.5° paper...
$150-$ SW up to 14.5^{-}paper.
Specity whether serial or parallel required. CALL FOR THE MANY OTHERS IN STOCK INCLUDNGG DAISY WHEELS.

Visi our Shop - Technical hep always on hand plus many un-advertised specials. You can buy a colour television for as Iltie as E29! Come and join the gang at 215 Whitehorse Lanel o

DGPLHY

> ALL ENQUIRIES
> 01-679-4414
> Fax-01-670-1927
Tolox 894502

Active

ASIC

C-mos arrays. Three new members of the HDC003, 006 and 011 . offering 3000. 6000 11000 gates respectively The HDC echnology allows over 70\% gate use channel-ess sea-of-gates architecture offers $300 p s$ delays (with a fan-out of two). minimal chip dimensions Motorola, 0296 395252

A-to-D and D-to-A converters 16 channel A-to.D-to.A 12 bit converter

rovides both A-to-D and D-to-A convers microsecond. plus parallell 0 and a The 12 bit A-to-D converter and 16 chanr multiplexer has a typical conversion time used beiween A sample-and-hole cirer converter Amplicon Electronics 0273

Eight-bit. 200Msample/s flash converter

 butput at $200 \mathrm{Msample} / \mathrm{s}$ with 250 MHz fullpower and 400 MHz small-signal bandwidths. which allow low-distortion sampling of 100 MHz Nyquist frequency signals Additional benefits include accurate sampling of high.frequency signals without high-speed externat sample hold is used an sampling of signals beyond the NyquistData acquisition board. The DT2809 an
IBM PC XT AT.comparible data-acquisition
oard can measure the outputs of eight of one another, and is capable of 16 -bit otal converter performs analogue. ime the board is powered up Data Translation. 0734793838

Eight-bit D-to-A converter. The Plessey

 (ZN438) has input latches to facilitate updatıng from a datd bus and a buffer amplifier to give low analogue output impedance Other features include a 1 microsecond setting fime totrimmable 25 V bandgap ref
compatibihty and commercial and military
temperature ranges RR Electronics 0234
Discrete active devices
Tuning diodes, MSI Electronics announces its high Q suriace-mount and stripline packaged single-chip and back-to-back abrupt-type tuning diodes. Minımum reverse voltage is 31 V and they are avallable with a 4 V capacitance from I 8pF to 100 pF The 125 Elyon Electronics 08834791600

Linear integrated circuits Bipolar op-amp. The AD708 dual bipolar thset leatures 25 microvolt maximum Celsius maximum 03 microvolt per degree Maximum offset voltages and ditts are matched to within 25 microvolts and 03 microvolts per degree Celsius
Analog Devices. 093225320

Fast current-feedback op-amp. The PMI microsecond at unity gain. $500 \mathrm{~V} /$ microsecond at a gain of 10 . and draws a
supply current of only 45 mA per ampliter Bandwidth is 90 MHz Current-loop amplifier are used in exactly the same way as voltage feedback amplifiers, but offer major performance advantages Jer

Hybrid dip VCO. Vectron modeI VC-373 is a non-crystal-controlled, voltage-controlled osciliator providing a range: HCMOS output is available up to

40 MHz Deviation is $\pm 10 \%$ standard with octave deviation optional Linearity is $\pm 10 \%$

Memory chips
ASIC memory. PUMA llis an asic ceramic
memory which can carry flash orom.
eeprom. UV eprom and static ram and be
eeprom. UV eprom and static ram and be conigured by the user to provide up to four
megabits of memory in 816 or 32 -bit wide
words Memory configurations are changed through "select" pins which enable users to by using the chip-select pins as address line
Hybrid Meniory Products 091.2580690

C.mos 64 K prom. The CY7C 266 by Cypres

 Semiconductoris a high.speed. low-powerc-mos 64 k prom that offers standard eprom
pinout With a maxımum access time of 55 ns the CY7C266 dissipates 440 mW . which is arranged as $8192 \times 8 \mathrm{bit}$ anit is housed in a choice of packages which cat be equipped with an er dsure window Pronto Electronic CD-rom. Digital's RRD40 Compact Disc rom

PASSIVE EQUIPMENT

Passive components
Standard size. SM mica capacitor. This
ceramic. with the added benefit of SMT FW package sizes SM01 $73 \times 14 \mathrm{~mm}$ and SM02 $3 \times 58 \mathrm{~mm}$, line up with industry-standard Height above the board is? 8 and 35 mm respectively A capacitance range of 4 pF up 02000pf is made in voltazes between 63 and 1000 V DC Ashcroft Technology. 0493 ,

Surface-mount trimmer pots. The

potentiometers by Tocos is designed for surface mounting The resistance of the devices, which measure $38 \times 4.5 \times 22 \mathrm{~mm}$ anges trom 500 st to 500 k st and they have travelis 250 and maximum operatıng trave is 250 and maximum operating
torque is 300 gcm BDL 0628530607

Leadless electrolytic capacitor. The NAC , in eless.surlace mounted. avalable in preferred values from 01 $220 \mu \mathrm{~F}$ with working voltages from 40 to 50V DC and an operational temperature range from -40 to +105 C The series is packaged in a cylindrical aluminum casing measuring ondy $4 \times 6 \mathrm{~mm}$ 'or values from 0 1 04μ, and $63 \times 6 \mathrm{~mm}$ tor values betwee 851341

Metallized-film capacitors. Panasonic has capacitors the ECQ.B series polyester film/ foll and the ECQ-V series stacked metallized film capacitors At 63V DC. the two ranges
togetrer offer a range of 0000
HB Electronics. 0204385361

Interference-suppression capacitors. intenged for use in acros, the line $\lfloor\mathrm{X} \mid$ and especially where high pu se voltages of more than 12 kV can be experienced The PME 20 ange offers capacitance va ues from 0.01μ F to 022μ F and a e rated a 300 V
(X1) RIFA.EVOX (UK) Ltc. 02036.3100

Low-voltage electrolytics. Two anges of and EKX series have bern designed for use in switched-mode powe supplies Both
serie's are polarized, rad al-leaden devices serie's are polarized, rad al-leaded devic
and are avalable in values from 10 to $220 \mathrm{C} \mu \mathrm{F}$ Voltage ratings of 10.1 15. 2540 or $63 \mathrm{~V} D \mathrm{c}$ can be specified, and the capacitors have particularly low impedance over the Roedersten. 021.6436888

RF attenuators. A range of high-כower RF attenuators, covering the $0-25 \mathrm{GHz}$ equency band is available in standard attenuation values of 3 to 60 dB dt 12 to 20 W hes, are avaliable with type "N connectors

- Model 8212 or "BNC' connectors - Model - Model 8212 or "BNC' connectors - Model 8211 Impedance is 501! Te
Instruments, 062873933

Connectors ard cabling
Capacitor collet sockets. A complete line wh $03 \mathrm{~m}(762 \mathrm{~mm}) 04 \mathrm{n}(1016 \mathrm{~mm})$ and $6 \mathrm{n}(1524 \mathrm{~mm})$ row-10-row pitch givesa
as standard The use of capacitor sockets is surges and eliminates the need for a separate capacitor on the PCboard. Aries Electronics (Europe). 0908260007

Terminal blocks. The CTB 1300 series of flame retardant, plug.in interiocking termina blocks can be plugged flush to the PCB. mm pich pinstrip vertically. on to the 5 mm pitch pin strip. They are rated at 6 A .
250 VAC and accept up to $2.5 \mathrm{~mm}^{2}$ wires 250V AC and accept up to $2.5 \mathrm{~mm}^{2}$ wires

High tension connector. This 2 mm touch srated at 15A The recommended operating emperature range is between 70 and - 10 C The socket, manufactured from brass. machined and gold-plated has a deep insulating shroud giving a breakdown voltage to VDE standards of 9.5 kV Mult. Contact

Displays
Graphics plasma displays. These displays onsist of an AC gas-discharge plasma pane characteristic and driver circuitry The neon orange display is presented against a black background and provides a brightness of $110 \mathrm{~cd} / \mathrm{m}^{2}$ with a contrast ratio exceedin
20 I FPF 8050 HRUM features a display matrix of 640×640 dots with an effectiv display area of $211 \mathrm{~mm} \times 132 \mathrm{~mm}$ and the
FPF 8050 HRUK, a 640×640 dot matrix unt fultsu Microelectronics. 062876100

Instrumentation
Digital multimeter. Gold Star madel DM
voltage accuracy of 0.05%, all ranges having
alternat ting and direct voltage to 750 V and
1000 V to $10 \mu \mathrm{~V}$ resolution. and alternating and direct current to 20A with a resolution 01μ A Resistance measurement goes fro 873434

Digital panel meter. The DPM. 8100 can be
providing $A C$ DC amperes and volts sead out. or recalibrated to display engineering It provides automatic zero and polarity

rejection. display hold capability and true

 differential or single-ended input AndersProgrammable attenuator controller. A now avalable for micros in conjunction with Flann programmable attenuators and phas shifters Setting times for the attenuators 60 dB are achieved. Phase shifters fan 50 . repositioned from 0 to 360 in 320 ms
Microwave instruments $0208 \mathrm{Tm77}$

Handheld multimeter. The GDM 111 is a ncludes capacitance of its eight functions The multimeter, whic also includes diode testing and semiconduct of 05% The 29 ranges, which include DC voltage up to IkV and $D \mathrm{DC} / \mathrm{AC}$ current up to 10A are selected by a single iotary control Probes are included in the purchase price of $£ 4995$, and an optional carrying case is als
available Global Specialities. 0234217856

Digital storage oscilloscope. The SO40 an analogu real time display. has two imput channels an a storage capacity of $4 \times 2 \mathrm{~K}$ or $1 \times 8 \mathrm{~K}$ All our of the stored signals can be displayed simultaneously Grundig Electronic. 0911

Clip-on ammeter. The 2000 AC is a basic wide-range. Hall-effect instrument Designe to be hand held. its jaws clip round a to be hand held. its jaws clip round a
conductor to enable measurement of the current carried The design of the Jaws permits current measurement on circular $22 \times 60 \mathrm{~mm}$ rectangular section. Three current ranges are provided $0.20 \mathrm{~A} .0-200 \mathrm{~A}$ and 0.2000 A Accuracy is $\pm 1 \%$ of range The frequency range of the instrument is 15 Hz

Digital/analogue oscilloscopes. Tektronix 2230,2221 and 2220 are the first digital storage oscilloscopes to include non-storage measurement to 100 MHz (2230) and 60 MHz (2221/2220). As a DSO, the 2220 supports sample, peak-detect and average modes; the 2221 and 2230 also support accumulated peak detect. All three models have a sampling rate of $20 \mathrm{Msample} / \mathrm{s}$ with 8-bit vertical resolution and in repetitive torage mode of up to 2 Gsample/s. IR Group. 0753580000

Waveform tester. A multi channe waveform analyser that simplifies a wide range of measurements in mechanical and electromechanical applications, the Tektronix 2510 is designed to periorm complex waveform analysis. Features include record lengths to 256 K points and card modular expansion up to eight acquisition channels per analyser Additionally, a simple spreadsheet-style user Aterface fully integrates control of waveform acquisition. storape analysis and data management. Tektronix UK, 062846000

Pen recorder. The Hioki 8601 batter powered pen recorder offers single-channe inkless recording on a 15 m -long pressure sensitive paper roll. The four chart speeds are 1 and $2 \mathrm{~cm} / \mathrm{s}$ and l and $6 \mathrm{~cm} /$ minute. Zero can be positioned at any point on the 20 mm wide recording paper. Seven input ranges give 100,200 and 500 mV and 1,2,5 and 10 V full scale sensitivity. Frequency response is 80 Hz and the input resistance a ixed 1 Mn Universal instrument Services. 0533750123

Power Supplies

1000W power supply. Powermag Al 000 is l 1000 W single output, switch-mode power supoly in $5 \times 8 \times 10$ in standard package Outputs include $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V DC Advance Power Supplies. 027955155

DC-DC converters. A series o economically.priced miniature DC.DC converters. with both single and dual outputs, is manutactured by SCl (Semiconductor Circuits Inc.). The DPU series of single and dual-output unregulated converters offers efficiencles up to 80%;
short-circuit protection: an operating range of $-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ wh no derating: and an LC input filter to reduce the reflected ripple. Pascall Electronics. 01 . 9790123

DC/DC converter. Vicor -Megamodules" are compact, chassis-mountine converters available in ratings from $50-600 \mathrm{~W}$. which can be combined to achieve mult \cdot-kilowatt power ratings. With an operating frequency of up to 3 MHz and efficient thermal packaging, the overall efficiency of the Megamodules reaches 85% and their power density is up to 27W per cubic inch, depending upon the model. Powerline Electronics, 0734868567

Production test equipment
Component test system. A bench-top component test system. the CT1000, offers functional and parametric testing of linear components including op-amps
comparators, voltage regulators and opto couplers. The user sets the test limits and conditions using simple menu-driven offware running on the system PC which controls the instrumentation and processes the test results Antron Electronics, 025 ? 737191

Radio communications products
HF/SSB transceiver. The 2230 synthesized. 100 watt HF/SSB transceiver is engineered for mobile. portable and fixed.station service in hostile, bush and desert environments Combining keypad frequency entry with rotary-switch selection of 15 memory channels, the AEL 2230 operates in USB LSB, CW. AM and FSK modes. The keypad may be detached from the front panel, with operation then as a conventiona
channellized transceiver on up to 15 spot requencies. AEL Communicatlons. 0293 785353

Switches and relays

Alternative to dip switches. Alfa Bridge is a ow-protile, 254 mm -oitch |umper, which can be used as a low-cost alternative to dip
switches. The jumpers simply slide over a pair (or more) of pins from the unshrouded
header The pin passes through the umper lowin hasses staced up and cross matched. It is available in three versions. single, in-line and bus-bar, from 2 to 20 positions. Digitran, 0076361600

Programmable waveguide switches and drivers. A senes of programmable waveguide switches and drivers is designed or use in instrument. laboratory or ATE applicaticns. The switches, with an optional or 3 channel rotor, offer high repeatability and reliability A precision stepper motor provides programmable switch positioning via a switch driver unit, Flann Microwave Instruments, 02087717

Metric rotary switches. Metric versions of the Grayhill Series 50/51 rotary switches have a $4 \mathrm{~mm} \times 25 \mathrm{~mm}$ shatt, and are rated for 200 mA at 28 V DC, or 150 mA at 115 V AC, for 25000 cycles. The Series 50 features a 36° angle of throw with up to two poles, the Series 51 a 30° angle of throw with up to four poles. Both series are available in solder-lug and PC. mount versions. Highland Electronics 0444645021

Sealed diaphragm switch. The Series $14 \$$ as a seal design using a membrane, which effectively excludes dust, liquids and arborne contaminants from the electrical contacts. It features ITW's registered Butterfly contact mechanism to provide high eliabilty and a current-carrying capability o 20 A at 480 VAC The contacts themselves consist of a high mass of solid silver with a semi-refractory design. ITW Switches, 0705

Heme 2000 AC clip-on current meter
Transducers and sensors Optical transducers. Type DP500 is a series of high-resolution, non-contacting, optical panel-mounting encoders, named "Digipot". Designed to convert input rotation and direction into real-time digital data, the DP500 encoder ofters extremely low torque and the ability to cope with continuous speeds up to $10000 \mathrm{rev} / \mathrm{min}$. providing 500 pulses per revolution to generate 1440 cod changes every full rotation. Control Transducers, 023421704
Load cell. The ELF. 500 series of load cells from Entran could be the smallest in the world, with a diameter of 0.5 in and a thickness of 0.110 in . The devices are available in tension, compression or both modes and ofter measuring ranges from 116 up to 1001 l . Temperature compensation covers the range of $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. but can be extended. These low deflection devices provide outputs of up to 250 mV FS measuring static or dynamic forces at frequencies to 20 kHz . Entran, 034478848

Rotational impulse-signal emitter

Rosiged to convert shatt revolutions into

 electrical signals, the model $G 080$ rotary impulse emitter is a small. mechanically divenelectrical contactor which produce electricalimpulses in accordance with the earing impulses in accordance driven shatt and the contact breaker. IVO Services 095964884Temperature transmitters. The SEM 15. series of temperature transmitters now
includes $0-200^{\circ} \mathrm{C}$ versions as standard. The units are designed for use with two three-wire platinum resistance detectorsto BS 1904 or DIN 43760 . Status Instruments 0684296818

- FREE HOTEL BOOKING SERVICE

SEMINARINFORMATION

- EXHIBITOR AND PRODUCT INFORMATION
- FREE PARKING
again, all the elements needed to maintain its position as the North's leading Electronics Exhibition....50: whether you're buying, selling, contracting, manufacturing, using or researching; it's certainly going to be the one Exhibition where you'll be absolutely positive of making the right contacts!

27th-28th-29th JUNE 1989

CALL THELEETRONEX'89 INFOLINE
0532332021
TO RESERVE YOUR EXTRA TICKETS NOW!

.,.make the positive connection

By road, rail or air you'll find Leeds and Leetronex '89 so accessible.
London and many European cities are within day-visit range by air into Leeds Bradford Airport, the Intercity Station is quite literally a five minute drive from Leetronex " 89 and the Leeds inner Ring Road, which connects with the M1 and M62 motorways, runs directly alongside the Exhibition Centre. It couldn't be easier to make the connectionand, if that's your intention, then please accept the Complimentary Ticket below.....we look forward to seeing you at Leetronex '89. In the meantime if you need any further information just call us on the Leetronex ' 89 Infoline

27th 28th 29 th JUNE 1989 ION CENTRE AT THE UNIVERSITY OF LEEDS EXHIBITIONCI OF ORGANISED BY THE DEPARTMENT OF

THENORTHSPREWIERELEGTRONCS EXHIEBIION
ORGANISED BY THE DEPARTMENT OF ELECTRICAL \& ELECTRONK ENGINEERING UNIVERSITY OF LEEDS LEEDS . LSZEJT TELEPHONE: O532 $332021 \cdot$ CONTACT:OENNIS BROWN

APPLICATIONS SUMMARY

* MC145564 and MC145567 only
\dagger Switched capacitor

PCM codec filter

This ISDN voice/data terminal is from an advanced data sheet on Motorola's MC145554 series pulse-code modulation codec filters. Each device in the family performs voice digitization and reconstruction as well as the band limiting and smoothing required in PCM systems.
There is no specific description of this circuit in the note, but there are details of how the 145554 operates and further circuits for an ADPCM transcoder and a single-party channel unit. Motorola, Macro Marketing, Burnham Lane, Slough, Berkshire. (06286-4+22.

Why is a compactdisc player like a satellite modem?

In an article with at title like the one above you would expect to find a fair comparison between a $C D$ player and a satellite modem. AMD's DSPatch Newsletter No 10 contains such an article but satellite modems are hardly mentioned; the only mention comes in the last paragraph which tells you that data can be corrupted by both random and burst errors in satellite communications channels and CD pick-up systems alike.

However, details of how the CD player data system works make up for the over-adventurous title. Crossinterleave Reed-Solomon coding, data framing and oversampling are all outlined in the article. There is also a run-down of advantages that accrue from using the ADSP210 family DSP chips and a note that there is an entire section on multi-rate digital filtering in the ADSP210x Family Applications Handbook, Volume Two

Other articles in the newsletter describe a 16 bit PCM audio d-to-a converter, disk-drive head positioning using a digital signal processor and highresolution data conversion in general. Below is an extract from the newsletter on an interesting signal/array processing system called SP20 and manufactured by Sigmet and Lassen Research. The SP20 is capable of between 20 and 400 Mflops depending on its configuration so it is suitable for radar and image processing applications.

High-speed signal array processing

Signal processing has traditionally required the speed associated with hardwired electronics which. by their nature. are inflexible, fixed-program systems. The SLR SP-20) signal/array processor takes full advantage of this technology: it has compurational rates an order of magnitude higher than comparable systems. yet supports a general-purpose architecture capable of high pertormance in a variety of applications.
The $\mathrm{SP}^{-2(0)}$ is designed for performing repetitive. computationally-intensive algorithins for applications such as remote sensing (e.g., radar. lidar. sonar. satellite). image processing or numerical modelling. Use of an SP-20 together with a low-cost to mid-range host computer, yields the performance of a much more expensive system.

Analog Devices. Station Avenue Waloon-on-Thames, Surrey KTI2 IPF (1932-2.32222.

Choosing a PGA

Suggestions on how to choose the right programmable gate array are given in AMD's brochure Programmable Gate Arrays - The Perfect Solution for the Imperfect World. Among subjects broached are cost, why user programmable devices are useful. why you should program your own devices rather than let them be programmed by the vendor. and risks and compromises associated with PGAs.
There is also a table of devices available from AMD in the brochure and notes on software. PGA design and the design cycle. AMI), The Genesis Centre, Garren Field, Science Park South, Birchwood. Warringlon WA3 7BH. 0925828008.

Dual-tone multiple frequency on a microcontroller

Assembly-language software for producing DTMF on COP820C/840C controllers is listed in Application Note 521 from National Semiconductor
Since the 820/840 controllers only have one timer, the problem with producing DTMF on them is that three different times need to be handled - the two selected frequencies and the 100 ms DTMF duration. One or possibly two. of the timings can be handled by the timer but the remaining one or two need to he dealt with in software

The solution described in the note consists of 78 bytes of code logether with 32 bytes of look-up table. It relies on dividing the 100 ms duration by the half periods for each of the eight frequencies and then examining the respective high and low-band quotients and remainders shown in the table. National Semiconductor. The Maple. Kembrey P'ark. Swindon. Wiltshire SN2 6UT. 0793-6141 11

	Freq. 0.5 P Hz	Half period in $\mu \mathrm{s}$	Half period	$100 \mathrm{~ms} / 0.5 \mathrm{P}$	
				Quotient	Remainde
Low band freq's	697	717.36	717	139	337
	770	649.35	649	154	54
	852	586.85	587	170	210
	941	531.35	531	188	172
High band freq's	1209	413.56	$\begin{aligned} & 414 \\ & (256+158) \end{aligned}$	241	226
	1336	374.25	374	267	142
			$(256+118$		
	1477	338.52	$\begin{aligned} & 339 \\ & (256+83) \end{aligned}$	294	334
	1633	306.18	$\begin{aligned} & 306 \\ & (256+50) \end{aligned}$		244

Statistics and anti-statistics

Is there a relationship between particle physics and politics? Just as a muclear particle has its counterpart, ant antiparticle, each statistic produced by a politician leads to the appearance of an anti-statistic. and quantum theory ensures that two statistics relating to the same subject can never be the identical.

This was evident during a debate which expressed concern at the trade deficit in electronics, and the increasing skills shortages in high technology. when Paddy Ashdown, the Democrats leader, began to focus a beam of antistatistics on to the Government benches.

In 1979 there was a trade surplus of 0.5% of GIDP in high-technology products, which by 1989 had become a deficit of £2. 19 billion. Between 1971 and 1985. out of five major OECD countries. only the UK's percentage of (iDP spent on R\&D) dropped (from 1.8% to 1.5%, whilst civil R\&D) dropped from 0.73% to 0.5%); in terms of patents, the UK's share has fallen
sharply (26% of all European patents in 1963: to 16% by 1985) and the UK is the only OECD country whose numbers of applications for USA patents has fallen. In terms of skills, by 1993, the UK will be short of 100000 ITT staff. and that the UK rates 17th out of the top 20 OECD countries for the number of those staying in fuli-time education over the age of 16 (the Japanese have 95% stay-on rate the UK 32%): and for every 10 (10) population of the top OECD countries, the UK has the fewest scientists and engineers working in R\&゙)
"Too selective", said the Government. which unselectively noted that recent high-tech investments by I'ujitsu. Toyota and Bosch amounted to $£ 1.2$ billion. Indeed, capital investment in a high-tech industry such as chemicals was fl . + billion. the trade surplus on electronic radars was $£ 700$ million. capital investment in IT was up by 44%. and in 1988.113 M alone added $£ 2$ billion to the positive side of the trade equa-

Parallel thought processing

An intriguing conundrum concerning Fylingdales early warning station surfaced during an exchange between Archie Hamilton, Minister of State for the Armed Services, and Labour's Andrew Bennett. How was the Minister sure, Bennett asked, that the USA would provide all information from the early warning station to the UK authorities, if the USA thought that a UK government would independently fire its Trident missiles? No problem, replied the Minister, we receive information in
parallel, "so there is no question of one nation having it and giving it to the other".

But what about the interpretation of data? Although there was a principle of mutual corroboration, no guarantee was given to the House that such corroboration would result in an agreed interpretation of events. Thus, it is theoretically possible for the UK's interpretation to be so different from the USA's that the UK might want to fire off its Trident independently. Mmmmm!
tion. With respect to the skills shortage 50% extra technical graduates would be produced by the engineering and technology programme, and YT'S now has a technical component.
With so many statistics, claims and counter-claims. the hectic final stages resulted in Eric Forth, the minister responsible for technology, describing the Democrats" leader as "glib". "waving something which wats halfway hetween a wand and a panacea" and offering "fratudulent proposals". It all goes to show that when statistic and anti-statistic collide cold fusion rekeases much energy in the form of heat.

More support for defence exports

Defence exports from the UK over the last three years have totatled $£ 13$ billion and electronics forms a significant part of that total. Could the UK export more if the resources of the Defence Export Services Organisation (DIESO) and cmbassy staff abroad were more effectively used?

The answer from a recent National Audit Office Report is a definite yes". Its study showed that DESO's and embassy staff did not usually have sufficient business or marketing experience. and that high staff turnover in DES() made communications between staff and exporter difficult. Resources, the NAO) found, were targeted at the larger companies. with the result that there was too little support for the smaller company in defence electronics. To assist exporters further. DESO should computerize its complex and cumbersome manual database. Both embassy and DESO should, the NAO reported. apply specific performance measures to ensure that their effectiveness and efficiency was not impaired.

The NAO managed one unsubtle hint: it noted that exporters "welcomed the NAO's own survey". and "such surveys should be a regular feature" of DESO's and the attaches future work.

National Audit Office, Report by the Comptroller and Auditor (iencral. Minister of Delence: Support for Defence Exports". I IC 3113 ISBN $01023038^{\circ}+$, 5.5 .60 from 1 IMSO .
Noles onthe llonseare by (hri, Pomoder.

UNBEATABLE PRICES

GREAT OFFERS ON TRIED AND TESTED USED EQUIPMENT

COMPUTERS

 IBM PC－ATE 512Kb RAM．20Mb hard disk． 80286 inc monitor／adaptor
PLOTTERS

Gould 6320 10－pen，A3，IEEE
Hewlett Packard 7220T 8－pen．A3，RS232 Hewlett Packard 7440A－2 8－pen，A4．HPIB

SPECTRUM ANALYSERS

Hewlett Packard 70001A System mainframe He wlett Packard 70205A Grachics display Hewlett Packard 70900A Local oscillator Hewlett Packard 70902A IF section， $10 \mathrm{~Hz}-360 \mathrm{kHz}$ Hewlett Packard 70904 A RF section， 100 Hz －2 9GHz Hewlett Packard 70905A RF section， $50 \mathrm{kHz}-22 \mathrm{GHz}$ Hewlett Packard 8569A Spec analyser，10NHz－22GHz Hewlett Packard 8903A Distontion analyser．100）kHz Marconi 2370 Spectrum analyser． 110 MHz Marconi 2373 Frequency extender for 2370 to 1．25 GHz

NETWORK ANALYSERS

Hewlett Packard 3577A Network analyser，5Hz－200MHz Hewlett Packard 85024 Transmission／Reflection Set DC－1．3GHz
Hewlett Packard 8503A S－Parameter set．DC－1．3GHz Marconi 6500 Amplitude Analyser， 126 GHz

LOGIC ANALYSERS

Hewlett Packard 1630G 65－channel．100MHz Hewlett Packard 1650A 80 －channel． 100 MHz Philips PM3551A70 75 －channel， 300 MHz Tektronix 122548 －channel， 100 MHz

OSCILLOSCOPES．REALTIME

Philips PM3267 100MHz dual trace scope DC power source facility
Philios PM3295 350MHz dual trace cursors Tektronix 2215 60MMz dual trace scooe Tektronix 2445 150MHz 4 channel scope OSCILLOSCOPES－DIGITAL Gould 5110 100MHz．1MHz sampling Philips PM3320 200MHz，200MS S．XY output Hewlet！Packard 54100A 1GHz．40MS／s Tektronix 221050 MHz ．20MS／s

POWER SUPPLIES

Aplab TIS250／1000 AC Power Source，1000 VA

Farnell AP60－50 60V／50A Power Supoly Hewlett Packard 6038 A 60V 10 A Power Supply HPIB Lambda 422 40V／／A Power Supply

$£$	950
$£$	900
$£$	1,200
$£$	200

Marconi 2871 Data Communications Anälyser
Tektronix 1502 T0月 C
Tektronix 1502 TDR Cable Tester，2，000R：

Hewlett Packard 9836A 128KD RAM，iwin drives HPIB £ 4,750 Hewlett Packard 98508A HP310．MO RAM RS232．HPIB \＆ 3,500

〔 1,250
\＆ 300
£ 1,400
£ 350

METERS
Anritsu ML518A5 Field Strength Meter，520MHz Avo Model 8 Mk 4 Analogue Multimeter
Bruel \＆Kjaer 2426 Electronic Volimeter， 500 kHz Hewlett Packard 3455A 6 ＇／2－digit ACDC Vollmeter Keithley $58041 / 2$－digit．Micro－ohmmeter

Solartron $70555^{\text {²}}$／2－digit DMM，GPIB
\＆ 450

MAINS DISTURBANCE ANALYSERS

£ 1,500
Aurora Glitchguard Power Line Monitor
1650 BMI4800 Surge／3－phase Monilor
5.150 Dranetz 808 Power Demand Analyser
£ 1,000 Sension DPR－2 Demand Profile Recorder \＆ 800
£ 2,650
， 200
〔 3，200
RECORDERS
Micromovements 10120A 10－channel UV Recorder
₹ 1,500
£ 2，300 Solantron，3530A Orion Alpha，200－channels
built in printer aid data cantridge
£ 2.750
Walanabe MC6623－6Z 6－chamnel Chant Recorder
£ 1,450
Yokogawa 3033－13 A3 Single－channe／Recorder
1，500 Yokogawa 308830 －channel Multipoint Recordet
\｛ 1,200

GENERATORS

£ 1,500
Hewlett Packard 8656A 100kHz－290MHz RF Sig Gen
£ 2,500 Hewlett Packard 8340A 10MHz－25．5GHz Sweeper Hewlett Packard 8082A DC．250MHz Pulse Generator Marconi 6159 12．4－18GHz AM－FM sig Source \＆1，350 Phillos PM5193S 50MHz Sjmith Function Gen
［ 4,650
£ 4,500 Tektronix PG508 5－50MHz，20V p－p（requires mainirame）\＆ 950
£ 2,750
£ 1,250 Wavetek 16650 MHz Pulselfunction Cenerator

TELECOMMS TEST

\＆ 950 Wandel \＆Goltermann PFI PCM Bit Error Rate Set£ 2,000 Hewlett Packard 3776A PCM Terminal Test Set．CCITT £ 4，250 Hewlett Packard 4948A Transmission Impairment Measuring Se！CCITT Marconi 2955 Radio Communications Test Set

$$
\text { £ } 5,000
$$ £ 5,000

$$
£ 1,500
$$

DATACOMMS TEST

Atlantic Research \＆600 Protocol Analyser，19．2\％bops，X． 25 § 2，950

$$
\text { £ } 5,500
$$

$$
\text { E } 8,000
$$

$$
\text { £ } 1,360
$$ Hewlett Packard 4952A Protocol Analyser，64kbos．

〔5，000
£ 3，950〔 3，950

All prices advertised are exclusive of carriage and VAT．
Warranty period 12 months on all equipment（except computers MDS－ 3 months）
IMMEDIATE DELIVERY－ALL EQUIPMENT EX－STOCK．

FOR FURTHER INFORMATION TELEPHONE

LONDON 0753580000 MANCHESTER 061－973 6251 ABERDEEN 0224899522

fft ANALYSIS

FFT ANALYSIS WITHOUTTEARS

There has been a virtual explosion in the use of FFT techniques and equipment within the past 10 years in almost all branches of engineering and science. The driving force has been the availability of very powerful FFT instruments at steadily reducing prices as the cost of computing power and speed drops.

But what about the expertise to drive these instruments? Most practising engineers and technicians were trained in an era when the Fourier series was only mentioned in passing and FFT analysers were almost unheard of. To make matters worse, most magazine articles and academic courses approach the subject from a mathematical or theoretical point of view. Although this approach is obviously important and is indeed essential in some areas, it is not really what the engineer wants to know when struggling to decide which instrument to buy, or how to obtain the best results, or how to interpret results.

This article is based on an intuitive. non-mathematical approach to explain how FFT analysers work. how to choose the right one for your application, and how to get the best out of it.

SIDE EFFECTS

FFT analysers are powerfut and useful machines, but as with powerful drugs. their use can have potentially destructive side effects which must be anticipated and allowed for. Examples are leakage, the picket-fence effect, and aliasing.

In frequency analysis, aliasing is not just an minor irritant or muisance: it can be a source of major errors and must be completely avoided. This is because aliases cannot in general be distinguished from 'real' signals in the frequency domain. It is therefore vital that proper anti-aliasing filters are used for all serious FFT analysis.

To understand the other side effects. it is important to grasp two basic concepts about how the FFT analyser operattes. Firstly the basis of the FFT techni-

FFT analysis is a powerful tool which, nevertheless, conceals a number of traps for the unwary. DavidMawdsley of Laplace Instruments exposes them and shows how to tame FFT analysers

Fig. I. Windowing. The signal at (a) is seen through a "window" at (b). If the signal is repeated for ever, as at (c), the signal seen by the FFT analyser is that shownat (d).
que is derived from the discrete Fourier transtorm, or DFT. The important word here is discrete. It means that the process works on discrete samples of the signal and displays the results in the frequency domain as discrete points, so the results are not in the form of a continuous spectrum, but as points or "lines" with gaps in between.

The second point is that the analyser works on only a short length of the signal. This is called windowing, because the analyser sees the signal through a window, and cannot see anything either side of the window. Now the Fourier technique assumes that the signal is continuous. To satisfy this requirement, the windowed signal is assumed to repeat itself continually, i.e. the windowed signal fully represents the true signal and therefore repeating it continuously should not be a problem:

or should it? (Fig. 1). In general, major discontinuities exist at the window edges, are assumed to be part of the true signal and are therefore transformed into the frequency domain. leading to false results. What form will this distortion of the results take?

A simple way to visualise the effect is to look at the discontinuities in the apparent signal' as a modulation of the original signal. The effect appears every window width T and its frequency is therefore //T. Now, modulation causes sidebands in the frequency domain. appearing at $f \pm \mathrm{F}$, so one would expect to see similar effects on the FFT results. This is precisely what happens. The effect of windowing is to caluse shoulders or sidelobes to appear either side of the peaks. Some of the energy in the signal is leaking away into these sidelobes, which is where the term leakage comes from. How can this effect be prevented?

WEICHITINC;

One way would be to avoid the discontinuities by arranging for the window length to be an exact multiple of the signal period. The problem is that (a) most real signals contain more than one fundamental frequency and (h) on most analysers the window length is not adjustable. This means that we have to accommodate these discontinuities in some way. In practice, the effect is suppressed by using 'weighting'

Weighting is a function applied to the samples of the signal prior to processing by the FFT algorithm. So far, all samples have been considered equal, and have a weighting of one. This is called rectangular weighting. Other weightings have been derived which reduce the importance of the samples at the edges of the window, and correspondingly increase the importance, or weight, of the samples toward the middle. Many such weightings exist, the most common being I lann, flat-top and Hamming.

The effect of these weightings is to

- reduce the discontinuity to zero
- modulate the signal by the 'shape" of the window
- reduce the sidelobe height in the freguency domain, and
- increase the effective bandwidth.

Increased handwidth? This needs a little explanation. The bandwidth we are talking about is that of each point in the frequency domain. In a perfect system. each point would represent a perfect band-pass filter of very small width and with virtually brick-wall characteristics either side. However, in practice the

Fïg.2. Leakage due to windowing. Energy from the signal F_{0}, has "leaked" into the side lobes.
filter has a finite width and a finite cut-off slope, which characteristic determines the selectivity of the system.

Now the time and frequency domains have an inverse relationship. If we look at the window shapes in the time domain, it is clear that the maximum effective window width is obtained with the rectangular window. All other windows can intuitively be seen to have a reduced effective width (think in terms of the 3 d 13 points). Reduced width in the time domain is equivalent to increased width in the frequency domain. So the effect of windows other than rectangular is to increase the bandwidth of each frequency point. Therefore this effectively reduces the ahility of the FFT analyser to resolve close components. It also reduces what is called the picket lence effect.

To understand this, recall that the FFT process is discrete. It calculates the frequency content of a signal in terms of discrete points in the frequency domain. So, for instance, if we have a 400 -line FFT analyser working on a 20 kH Hz span. then there will be a line every $5(0) \mathrm{Hz}$, at 50.100 .150 Hz . What happens if a single

Fig. 3. In the special case of the window length being an exact multiple of the signal period, as in (a), repeating the window recreates the original signal.
frequency of say. 125 Hz is present? In a perfect system. it would not appear because it falls between two frequency lines. This is the picket-fence effect, so called because we do not see the frequency domain fully, but only as narrow slots separated by areas we canoot see properly. In reality, because each line has a finite bandwidth, and these overlap. frequencies which fall between lines are seen as components in the adjacent line, but at reduced magnitude. The wider the bandwidth of the system, the less reduction in magnitude is seen. Rectangular weighting gives a worst-case reduction of 3.9 dB . whilst Hann gives 1 . tulb.

Thus you can see that the selection of the right equipment, the correct modes. weighting and other controls, are vital toensure the integrity of the results.

Vibration analyis. As an example of the use of weighting. consider the ultimate vibrationgenerator - the helicopter.

「ake a lightweight structure, balance a tery powerful engine somewhere near the top of it and connect it to a gearbox with many power take-off points, all requiring different gear ratios. Put a huge fan on top of all this, which takes virtually all the power of the engine to drive, and has variable angle of incidence and long. flexible blades as well. Attach a long stick to the back, put another fan on the end of it and drive it from the gearbox via a long shaft with another gearbox at the far end. Hang various accessories all over it (antennas. landing gear, missiles, some crew members, etc.) and fly through the air at speeds in excess of 10 omile/h. What happens. . .?

Well, imagine driving a car fitted with all-steel wheels. Bits fall off. The crew cannot read their instruments. Ancillary equipment fails. Critical equipment fails. The fatigue life of the machine suffers.

Fig. 4. The idealized band-pass filter at (a) is, in practice, more like that shown in (b).

Question: what can be done about it? Answer: eliminate each possible source of vibration.
Problem: how to detect which of the hundreds of possible sources are the significant ones?
Answer: do a frequency analysis of the vibration.

The helicopter is a fixed-speed machine. The engine and rotors run at a constant speed within a tolerance of around 1% and, in general, each source has its own characteristic frequency. Helicopter manufacturers issue charts showing those frequencies for all their models. By checking vibration freguencies against those charts, the sources can be immediately located. By extending this principle to do vibration analyses periodically and monitoring the results for trends. an early warning of any problems in bearings. gearboxes or rotors can be detected. The next generation of helicopters will almost certainly have an FFT-based monitoring system built in, complete with accelerometers to measure vibration and electronics to perform continual in-flight FFI analysis and warn the pilot of any significant changes in the vibration spectrum. Such equipment is already in use on a limited scale with some manufacturers.

But what are the practicalities of performing vibration (frequency) analysis on helicopters today? The starting point must be a vibration transducer. These days. small piezoelectric accelerometers are almost universally used for all vibration measurements. Tri-axial units are available which will
give outputs in all three axes simultaneously if you have the equipment to cope with three channels. Obviously. equipment which is portable. small and battery-powered is essential. Lugging lginch-rack equipment on and off helicopters has been done, but it's not to be recommended. One perfectly viable option is to use a special data logger or recorder to record the vibration on the helicopter and perform the analysis later when back at base. To define the reguirements for the analysis itself we must look initially at the type of signal being analysed. The signal tends to be noisy and consists of the following components

- Steady components from engine. gearbox etc. often at a relatively low level(amplitude).
- Fluctuating steady signals (!), signals which are of fixed frequency but can vary in amplitude significantly over periods of several seconds. The main rotor vibrations and aerodynamic effects are examples of this type.
- Random noise caused by aerodynamic buffeting, mechanical and electrical equipment etc.
Next. look at the results needed Obviously the main objective is to detect and accurately measure the amplitude of all significant vibration components. On helicopters some of these are quite closely spaced. Some are harmonically related, but many are not. Amplitude is important and it needs to be output scaled in units of (typically) velocity. Things which are not so critical are the detection and measurement of low-level components, wide dynamic range or frequencies above 10 kllz .

These requirements dictate that we
use the analysers in the following way.
The effect of random noise is reduced to an insignificant level by using averaging in the frequency domain. Any steady signals, even if completely buried in noise, will be revealed if sufficient averages are performed. Because the signal is essentially stationary. linear averaging is used.

Those signals which vary with time can be averaged out to provide a steady. meaningful level. Again linear averaging is used with up to 128 updates.

The reguirement to measure amplitude directly in terms of engineering units means that linear vertical scaling is used. l.ogarithmic scaling would complicate such measurements and its main advantage, increased dynamic range, is not reguired.

Because amplitude measurement is critical in this application, the window function (i.e. weighting) used should be one which minimizes the picket fence effect. Suitable weightings are therefore those which give a wide handwidth.

In certain cases, the freguency resolution may not be sufficient to separate closely-spaced components. In these cases frequency zoom may be necessary to increase the resolution. The penalty for using zoom is time. For instance, zooming to give a resolution of 0.11 lz with 32 averages means waiting for five minutes before getting one result (and helicopters cost several hun(dred pounds per hour to fly).

As you can judge from the above, getting the right results is not just a case of buying the fanciest piece of kit in the catalogue, plugging in and watching the screen. FFT analysis is a powerful machine, but you have to know how to drive it or you will end up in a spin.

V-525 Cursor measurement 50 MH real time ascilloscope

- 2 Channel
- CRT Readout of Key Parameters
- Cursor Measurement of $\Delta V, \Delta t$ and $1 / \Delta t$
- $1 \mathrm{mV} /$ div Sensitivity
- Max Sweep 20ns/div
- Alternate Magnification
- DC Offset Function
- Signal Delay Line and TV Sync.

Expect more from Hitachi

In a word, reliability
13 Garrick Industrial Centre,
Irving Way, London NW9 6AQ
Telephone: 01-202 4311. Telex: 27449
ENTEK 20 (ON REIPLY (CAED)

A powerful control computer hased on the new Hitachi $6303 \mathrm{Y}^{\circ}$ and high level language Firth. 100 mm , 72 mm . 30 K botes RAM. 16 K dictionary R. 1 M PROM. 2 Sates botes EEPROM. 16K Forth. You can attach 6t key keybard. LCD and IC bus peripherals. Built in are interrupts. multitasking, time of day clock, watchdog timer, full screen editor and symolic asembler. 32 paralle and two serial ports. Single power supply and low power 3 mA operational mode.
1 off 194.95 including mancal and non-volatile R.d.d.
vas
Triangle Digital Services Ltd 100a Wood Street, London E17 3HX
Telephone 01-520 0442 Telex 262284 Iquote M0775) Fax 01-509 3263 ENTER I5 ON REPILY (ARI)

R.ร.т. LANGREX R.s.T. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers. Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056

LETTERS

Cold fusion

Radical scientific discoveries have a propensity for creat ing scepticism, and the Fleischmann and Pons fusion cell is certainly no exception. During the early 1900s, Bohr. Einstein and others suggested that atoms could be stimulated to enmit energy, but it was 19 (r) before the first laser appeared!

If the cold-fusion device fails todeliver its promise, the purge of ridicule might also inhithit the discovery of an 'avalanching' effect for radioactive decay! Many physicists will insist that the natural rate of radioactive decay cannot be influenced by external means. However. nuclear dogma has enjoyed frequent reinterpretation over the years, particularly after Mosshatuer's discoveries in 1958.

Nuclear avalanching will resolve the fission waste problem, by converting longlived isotopesintocompact power sources. whilst
simultaneously transforming fuel slugs into safe non-active elements. The nucleonic turnkey for this process will be found within the observed phenomenat of nuclear physics and the technique will change our world more radically than cold-fusion

experiments!

C. Bruce Sibley

Waddington
Lincolnshire

Crossed-field antenna

Allow me to congratulate Messrs Kabbary. Hately and Stewart (EWW, March 1989, pp 216-218) on their very amusing April Fool article! It's a pity it was published a month too soon.

They have almost persuaded one that a simple modification could make the humble dipole into a super-efficient radiator. Like good conjurors they cleverly hid their trick: firstly, by concentrating on the H-field produced by displacement currents, they made one almost forget that ordinary currents also produce li-fields: secondly, by setting up an analogy between addition and the logical Or (top of p.217) they made one almost forget that terms might cancel as well as add. Hence, the reader was made tooverlook the possibility that the H-field due to
the current in the feed-wire to the upper ID-plate of their crossed-fieddantenna (Fig.6.) might cancel the field due to the displacement current hetween the D-plates.

Unfortunately they seem to have missed the hest trick of all. If. by rephasing one of the drives, we phase-reverse one of the factors making up the
Poynting vector S, then we change the direction of S itself. So, instead of having power flowing outwards, we can make it flow inwards. Thus we shall have an inexhaustible source of energy which might make even Professors Fleischmann and
Pons green with envy!

William G. Chambers

Department of Electronic and Electrical Engincering. Kings College.
London.

Ohm tune

I note from Ed WW May p+49
Martin Eccles' report on the declining value of the standard Ohm.

This does not bode well for Mrs Thatcher's Ohm ownership policy!
C.J. Itarris.

Weoley Castle.
Birmingham.

Anti-gravity and cold fusion

As David Williams (EWW Letters. p. 415. April. 1989) says, it certainly is reasonable to dispute the anti-gravity claims, if one has not seen the demonstration of the phenomenon. Towitness a heavy flywheel subjected to at gentle forced precession and lifted by Professor Eric Laithwaite's little finger in a smooth non-vibrating fashion has overcome my incredulity. To have the result confirmed by two separate precision weight measurements. one mechanical (the Strachan machine) and one electronic (the Kidd machine). is confirmation that Professor Laithwaite is not superhuman. It is due time that those interested in the technological opportunities provided by this phenomenon brought it under their own scrutiny, as there is little to be gained by interested onlookers. including myself. giving vent to their personal opinions.

However, until atuthority rules on this subject, it may help to draw attention to something else that has a possible connection and has just hit the news, namely the cold-fusion process discovered by Professors Fleischmann and Pons.

Rather than venture my own opinions. I point to the 1966 edition of a hook written by Professor Sir Harrie Massey, F.R.S. . entitled Tre New Age in Physics' (puthlished by Elek Books). The title was probably about 25 years aheind of events. On page 149 he discusses antigravity and says:

- One possibility, which cimnot be ruled out at the present stage, is that of a repulsive force of gravity between matter and anti-matter. We cannot yet say whether as piece of matter exerts a gravitational attraction or repulsion on a piece of antimatter - we do not know whether anti-protonstend to fall downwards or upwards. The nature of the force of gravity is still so obscure that no reliable answer can yet be given from theory:
A few lines further on p. 150 . he discusses The New Acther and the presence of negative mass protons and neutrons as well as mu-mesons in the vacuum itself.

Now having regard to my articleon 'Anti-gravity electronics in the Jamuary 1989 issue of EWW', readers will see that I questioned the universal validity of Newton's Third Law of Motion (as related to the law of conservation of momentum). I have received many letters from protessors andothers, taxing me on these opinions. But let ussee if the book cam shed light on the subject. I quote front his chapter entitled The Strangest ()ne of All at page 253:
"This is hy no means an isolated example. These two features are present in all beta-
radioactive phenomena-there is an apparent disappearance of energy and the conservation of angular momentum appears to be violated. Attemptswere made for many years to detect the energy which was not taken up by the product nucleus and the emitted electrons. but all without success... It was natural toenguire whether in betadecay phenomena, the conservation of momentum also breaks down. 1 his is difficult to inverstigate hecause
of the small energy taken up hy the product nucleus.
Nevertheless it wits established in later experiments that this further conservation rule also appeared to fail.
Readers may wonder about the -isolated example" just referred to. It concerned the decay of the triton into helium 3 and an electron. The energy shed to the electron did not fit the Einstein formula for the loss of mass involved in this nuclear process. The triton is formed by two deuterons fusing to create a triton and a proton. Note also that two helium 3 nuclei can fuse to decay into two protons and helium 4 . There are no neutrons involved.

The point of interest is that the cold-fusion process reported by Professors Fleischmanmand Pons is stated tooccur with negligible nettron production. This, then, means that the decay process raises the mysterious issues of energy balance and force balance just discussed and we do see our entry into al new age in physics. an age in which we can face up to the prospect of anti-gravity and new aether technotogy. However. sceptics relying on what they have been taight, without reference to what is accepted as inexplicable. will need to be dragged into that new age. Sadly. that drageffect doescomply with Newton'slaw and sets up opposing forces Which resist those trying to drive us forward.

Finally, concerning cold fusion". is it not curious that EWW published an article by Carll). Adams an recently as January 198's. on what is effectively "cold fission"? Had "cold fusion" been predicted as well, critics would have pointed to the very substantial energy needed to bring deuterons close enough to fuse and said that it was impossible for this to work at normal temperatures. I would then have drawn attention to my discussion of the deuteron binding energy in my 1969 book 'Physics without Einstein' (Sithberton, P.O. Box 35. Southampton), because I show that electronscan bind protons togetherinanatomic nucleus. This is also the theme of my paper 'The Theoretical Nature of the Neutron and Deuteron at p. 129 of the Hadronic Journal. July 1986. It does not surprise me. therefore, to hear that deuterons
can be fused in a palladium cathode, bearing in mind the presence of free electrons in a metal conductor and the background vacuum activity of those elusive mu-mesons
H. Aspden.

Department of Electrical Engineering.
The University
Southampton.

Feedback and fets in audio power amplifiers

I am surprised that, in the above article by Ivor Brown in Fehruary 1989, the Otala criterion ${ }^{1.2}$ for the prevention of transient distortion in amplifiers is still being used. (Erno Borbely also used this criterion in a mostet power amplifier design ${ }^{3}$.) Thiscriterion requires that the open-loop bandwidth of an audio feedhack amplifier he at least equal to the upper audio freguency limit (usually $2(0 \mathrm{kHz}$). This criterion, which was introduced by Otala in the early 1971s, caused something of a revolution in feedhack amplifier design, with many
manufacturers moving to reduce negative feedback in their amplifiers to satisfy this criterion.

However, by the late 1971s and early 1980), it was shown both theoretically and experimentally by Jung. Cordell andothers ${ }^{4.7}$ that open-loop bandwidth and feedhack factor have no direct bearing on the transient distortion performance of an amplifier. and that the relevant parameter is the amplifier's slew rate. Specifically, to avoid transient distortion (slew-rate limiting). the slew rate of an amplifier must be greater than or equal to the "slew rate" of the highestamplitude, highest-frequency sine-wave signal that must be transmitted at the output of the amplifier. Since distortion progressively increases as the slew rate limit is approached. the amplifier"s slew rate should be somewhat greater than the minimum value to minimise distortion products

In conclusion. consistent with the normal stability requirements, large amounts of negative feedback can be applied around an amplitier, thereby securing the benefit of reduced
harmonic distortion. It is time that this "high feedhack is bad. low feedhack is good" philosophy be latidorest. Otala was wrong. Let us not perpetuate hiserror.
Stephen Ciift.
Trinidad and Tohago Telephone (${ }^{\circ}$)
Port of Spain.
Prinidad, WI

References

1. Otala, M., Transient Distortion in Transistorized Audio Power Amplifiers. IEEE Transactions on Audio and Electro-Acoustics, vol. AU-18. pp 234-239. September 1970. 2. Leach. W.M. Transient IM Distortion in Power amplifiers. Audio.pp 34-41, Fehruary 1475.
2. Borbely. E.. High-power. high-quality amplifier using mostets. Wireless World. pp 69 75. March 1983 4. Jung. W. (i.. M.L. Stephens. C.C. Todd. Slewing Induced Distortion and Its Effect on Audio Amplifier Performance with Correlated Mcasurement Listening Results AFS Preprint No. 1252 presented at the 57 th AESConvention. I os Angeles. MAy 1977.
3. Cordell, R,R. . Another View of TIM. Audio. pp 38-49. Fehruary 1980, pp 39-41. March 1980.
4. Garde, P.. Transient Distortion in Feedback Amplifiers. J. of the Audio Enginecring Society. Vol. 26. No 5.pp 314-321, May 1978. 7. Cherry, E.M.. Transient Intermodulation Distortion Part 1: Hard nonlinearly, IEEE Transatctions on Acoustics. Speech and Signal Processing. wol. ASSP - 29. No2. pp137146. April 1981

In his letter in the May 1989 issue. Douglas Self appears to state that the only detrimental effects caused in audio amplifiers by the use of large amounts of negative feedback and "heavy dominant-pole compensation" are due to slew-rate limitations. These he dismisses as a "nonproblem"

I do not agree with tnis view and ask you to consider the amplifying system shown it Fig. 1 . Assume that the low-level amplifier is perfect and introduces nodistortion. and that the output amplifier is operatedinclass 13. Thisan

extreme case, but it will serve to illustrate my argument.

Consider the switch in the lower position, so that there is overall I)('feedhack on the system to stabilise the operating conditions, but owing to the very large capacitor. no signal feedhack. With a sinusoidal input, the output waveform will appear as in Fig. 2(a) als the input goes through zero. Now throw
the switch and increase the input signal level to ohtain the same output amplitude, and assume that the presence of the signal feedback removes all crossover distortion from the output. If this is to happen, the output from the low-level amplifier must look as in Fig. 2(b) with an intunitely fast step in the waveform, implying that this part of the circuit must have intinite bandwidth and

slew-rate.

In practice, operating in class Al3, the crossover distortion will not be as severe, but since it occurs during only a small part of each signal cycle, the output of the low-level amplifier with its correcting "steps" will have fo contain frequency components much higher than the signal frequency. If the frequency response of these stages is falling in the addio range due to a dominant-pole compensation network, this cannot happen. Therefore, effective cancellation of the crossover effects in the output stages is not possible.

As I say in my article in the February 1989 issue, hipolar output stages generate a lot of high-order harmonics when operated inclass AB. The limited-handwidth feedback will become less well able to recfuce them as the order is increased. In practice, they do fall in amplitude as the frequency increases, which tends to

TCS 240

A new top quality temperature controlled 50 Watt power imon available in 240V. 115 V , 100 V or 24 V yet measuring only 22.4 cms long.

- 200° to $450^{\circ} \mathrm{C}$ temperature range

- Analogue

Proportional control
within $\pm 1 \%$

- Up to $450^{\circ} \mathrm{C}$ in 60 seconds
- Ceramic heater element
- RTD sensor

Weal for Production,
Maintenance, Repair or educational work.

FOR

PRECISION SOLDERING ...

2 Westridge industial Etate. Tavistech. Devon PLIS 80E
Tel: (0822) 613565 Fax: (0822) 617538 Tetex: 9312110595 AEG

[^2]
LETTERS

compensate for the reduced effect of the feedback: hence the frequently seen spectrum with all the odd "crossover" harmonics appearing to have about the same amplitude.

In a system with a large loop gain, the feedback will always attempt to make the output an exact but enlarged copy of the input. With limited bandwidth in the low-level stages this becomes increasingly more difficult as the frequency rises. In an attempt to provide the necessary correcting steps. some relatively large transient signals may appear in the carly stages. With poor design involving low-current stages and large compensatingcapacitor values. slew-rate could te a problem.

In my design. the use of fets considerably reduces the crossover distortion problem and also enables a wideband lowlevel amplifier to be used, so that the full amount of feedback is present throughout the audio range. In this situation the distortion created in the output stage is not too important, as it is effectively removed by the feedback. With a voltage gain of about ten in the output stage, its THD exceeds the 0.1% figure quoted by Mr Self for his circuit. However. his design uses hipolar drivers which appear tooperate inclass AB and so will not help the crossover situation. With no information about the rest of the circuit. comparison is not possible.

Further articles on my design are in preparation to include circuit details of the prototype together with experimental waveforms and spectra. With the Editor's permission these should be published in due course Ivor Brown.
Department of Electrical Engineering and Electronics. Brunel University.

Feed forward

In your February issue, Ivor J.A. Brown writes in his paper
"Feedback and fets in audio power amplifiers" about the feedforward principle: "Addition of the inverted error signal to the output of the main amplifier is not easy to arrange.

However, this principle. also known as 'adding of the missing part' can very well be arranged in an audio power amplifier. All you

have to do is to connect the loudspeaker to the 'plus' (or 'hot') connectors of two amplifiers. The loudspeaker is then driven by the difference of the two power signals. Mr Brown's Fig. 3 can then be implemented as illustrated here.

In this design, amplifier II, although it is only handling small signals, has to deal with large loudspeaker currents and will probably be as expensive as main amplifjer l. However, a symmetrical circuit can be designed in which two equivalent amplifiers each deliver 50% of the power to the loudspeaker, while at the same time each amplifier produces a signal that compensates for the distortion produced in the other amplifier, using the principle of "adding of the missing part. Petervan der Wurí
Bosrand
Geldrop
Netherlands

Ball-bearing motor

The ball-bearing and shatt configurations described in Stefan Marinov"s April article do have features which could be expected to make them operate as motors. Take, for example, an arrangement with a rotatable outer cylinder. two ball races and a fixed shaft of two insulated sections, with a voltage applied betweenitsends
If the outer cylinder is initially clamped, current flowing axially along the shaft. well removed fromether race, will hate a fairly uniform azimuthal distribution, but near the race will be channelled towards the points of contact of the ball bearings. If now the outer cylinder is steadily rotated, the channels will try to follow the movement of the points of
contact. i.e. they will swing in the direction of rotation, but with a time lag. Thus they become somewhat curved. by all amount which is greater. the greater the speed of rotation. As a result the current develops a circumferential component near the race. which gives rise to an axial magnetic field over the space occupied by it. This interacts with the radial currents flowing through the individual ball bearings, producing a torque on the race whose sense is such as to make it rotate faster. Consideration of the currents along the outer cylinder shows that they are distorted so as to have a focal circumferential component flowing in the opposite sense. The axial field produced by this alsotends to make the race rotate faster. Thus. if the outer evlinder is now allowed to rotate freely it will begin to speed up, and as it does so the driving torque will increase further

On this interpretation there is no electromagnetic torque acting on the outer eylinder. which moves instead in response to the rolling friction between it and the individual ball bearings. The balls rotate as they roll, so that at every point on each ball there is a current oscillating in both magnitude and direction at a frequency a few times the frequency of rotation of the outer evlinder. This could be a significant factor in limiting the ultimate speed of the motor. The mechanism outlined is one which allows the motor tor run on AC C.l Coleman

Cirove
Oxfordshire
I was most amused be Stefan Marinores article and your report, and decided it was: phenomenon that could only be observed on the lst April!

My copy of EWW didn't arrive untilafter that date and by the time l"d reached the article it was the Sth April: nevertheless. I was sointrigued that I decided to try it with a couple of ball bearings ex EMI tape recorder pressure roller. Yes. indeed - 10 ms surprise it worked until the connecting wires to the car batterv melted with clouds of rubber and PVC fumes

I tried then on my welding transformer. Again, yes. and it ran until things got too hot for comfort: the race outer shells had tempered to a light straw colour hut it still ran freely when cool.

Whilst it is an interesting phenomenon I cant see it having a serious future but it does aler us to the nearly instantaneous thermal deformation in moving machinery that few people have ever considered todate
Ralph L. West.
Villereal.
Lotet Caronne
France.

Anti-gravity electronics

I wonder if many of your readers remember the Dean Drive of the early 19601s? This was the subject of USA patent No. 2.886. 986 . entitled "Sustem for converting Rotary motion into
Unidirectional motion."
It was a purely electromechanical device. employing timed reciprocal shifting of centres of revolution. In the computer world, there were rumours of an electronic version. But of that possibility, neither papers nor articles ever became public. Public interest faded when some (US government?) agency. took a belated second look at the Dean Drive, and it just dropped out of sight. As I understand the situation, under USA patent law, all patents are investigated for possible "defense" use. The Dean Drive hadoriginally passed as innocuous, perhaps potty
Some time later. I did see a possible utilisation. It was during one of the early near-space-walk experiments, when space was still considered tobe news worthy. An astronat was shown to be using a power tool to drive a bolt head. There was no rotary reaction, hut contra-rotating weights could assist there

The significant point was the way that the astronaut did not move bactiwards. He had no means of foreing the tool to stas on the bolt head! "0107" bachpack jets were not then being used. In my circle. it was assumed that the Dean Drive was being used

This patent was brought to public notice by a series of articles in the magazine Astounding Scionce fätion. which is now called Analeg Scicnce Fotand Fت゙ction, and continues topublish new and speculative sicence. The Dean Drive was the catuse of lotson speculation and comment in "Brass Tacks" - the letters page... regarding its use as at spate drive and other more cerrestrial applications.
Philip Lonsdale.
Hillbrow.
Republicof South Alrica.

Motion through the ether

Though in his May article E.W Silvertooth doesn't say in so many words that Special Relativity cannot aceount for the Sagnace effect, he manages fo leave the strong impression that it cant. In fact it is normally interpreted in terms of the 1)oppler Shiftagenerated in radiation reflected from moving mirrors (including beam splitters).

If the Sagnate ring is to provide a practicable system for measuring rates of rotation, then the difference between the phase shifts for beams travelling clackwise and eounter-chechwise round the loop must be virtually unaffected by any linear motion common toall parts of the system, i.e. to the heam splitter. source. and phase-shift detector. as well as to the mirrors (see the insel box on page 438). This property certainly holds if Spectal Relativity is valid. However the expression for the differential phane shift derived fromether theory (calculation supplied) containsa term linear in V_{1} e. the component of the common velocity along the line joining the two mirrors. In other words, if a laser gyrobased on a Sagnate ring is mounted in an aircraft with its plane horizontal and with the mirror-to-mirror path perpendicular to the heading of the aireraft, then according to ether theory the
gyro wouk be expected to respond not onlv to rotation of the arreraft about its sertical axis but alsoto anvesdewass drift it might show relative to the ground arising from the presence of a cross-wind. Some gyro!

Silvertenthstates that ringlaser gyros are now in usc for navigation. If 5 o. hisown interpretation of his measurements is certainly untenable. The effect he obserses rebative to the direction of anisotropyof the + K revidaal radiation from the "hig bang" are large, in marhedeontrast to the results of the recently reported experiment by Riin et all, which setsal very low limit to the anisotrophy of the velocity of light in the laboratorn relative to this direction. In principle the Silvertooth experiment is the more direet of the two, but unlike the other it involves a mechanical transation in which the movementuof the photocathode of the photomultiplier D) and of the offect reflecting mirror MH ($p+37$) must match to within a fraction of a micrometre. Still it* hard to imagine a syatematic error in the drive mechanism linked to the stellar rather than the solar day

He referstoerrors in navigation systems controlling satellite communication, and! remember Dr Murrav making a similar point in this journal some vearsago. If such erromatre believedtuexist it in perhaps. time the systems were described in the open literature in sufficient detail for out siders to consider them
C.F. Coleman
(irove.
Oxfordshite

Reference

R. Riis. I. A. Andersen, N. Bjerre, and (). Poulsen. Phy Ref. Ictters 60(1988)81-8t

Whether E.W. Silsertoxth's claim to have disprosed the theory of relativity (E\&WW'. May. 1989) is confirmed or not the underlving principle of the apparatus he describes is certanly the origin of number since it is of exactly the same form an the Tower of Hanoi problem. Clearly, as multiple (optical) path propragation under spread-spectrum conditions. the same mechanism will be found literallyeverywhere one looks.

Since the Tower of llanoi problem can be vatced in termsol Gray (reflected binars) ende. it followsthat the sisible enviromment is already code. d in binary. Moreover, this, and similar problemsare related to I Gamiltonian pathwaysand therefore represent mimimalenerge whtions. Thisleadson to the supposition that phase is quantied which, on reflection. seemstohate heen a massive errer afomisson in theoretical physics.
B.IE.P. Clement.

Crickhowell.
Pows.

Radio data system

I write to thank voufor publishong the alowe articles (Februars and March. 1989). They hate enabledme toidentily the sutuce of interference which has been ruining the reception of stereoradio in my home and car

It appears that the $57 \mathrm{~h} \| \mathrm{I}$ data signal is getting into the steren decoder, with disastrous resalts. The interference is he ard as a rushing norise very like the cound of hteamescaping from a boiler saferverale

It in annowing that the 13 BC should lee allowed toratesmit RDS in a manner which is not compatible with existing. recently purchased receivers. I ame certain that I am not alorm in having :ocodure this curse and! suggert two powible methods of putting an end to the nuisance.

The lirst alternative in that the BCC shoukfecace transmitting RIDS and not resume until it hat developeda meams which is compatible u ithexisting equipment. In defatult of this. you should publish a circuit for a filter toremove the offending signall betore the multiplex stereogets to the stereodecoder. Andren Conper.
Northflect.
Kent.
I was sorry to hear of the reception difficulties experienced by Mr Cowper which the attributesto the transmission of RDSS. I thina. howerer, thisismery untikels to be the surce of his problen:

Compatibility is for the broadeanter, a very important aspect of ans new derelopnient and was antessential element in the derelopment of RDSS. RDS conforms to welle extablished
(CIR provisionsfrom supplementary sub-carriers: both older and newer receiver designs. almost without exception, arecompatible with thisenhanced feature of FM tramsmissions.

The impairment described by Mr ("owper can result froma number of other causers. In areas whichare wery generously served with FM signals, such an Northfleet. receivers can sulfer fromonerloading which result in intermodulation products being generated. Severe multipath reception cam also result in effects similar to those described. Without specific details of the receiver. or the acriad invallation uned. it is not possible to identify the specific catuse with certaint!

However. lor atfixed installation, carefal attention to ateral type and positioning would be worthwhile and. in the case ol powible overload, the use of an attenuator could be beneficial

Should he be unsuccessful in wercoming his reception difficulties, which I am confident atre not callued by RISS, \& woutd be pleased toreceive more details from him and offer what further assistance l can.
Mick (ileale.
Awistant Head of Engine ering Information Department. 1313C

RIDS is an agreed European Broadcasting Union and C(1)R utandard, and isdesigned to be completely compatible with receptiononexisting non-RDS radios. Since 1987. the 1BA has wo far installed RIDS encoders at 31 independent local vites. after first having carried out extensive
 fromour experience. We are not anare of am! prohlems having rebulted totisteners with existing monobor tereoreceivers.

I would suggest that the difficulties being experienced by Mr con per are likely to be due toreceiver overloading in the presence of large numbers of strong signals (Wrotham is just at keu milesaway). Steren
reception is much more prone to the effects of signal overloading tham in mono. Whatever the camse. 1 am confident that it is not RIS!
Patul Cardiner.
Principal Engineering Information ()fficer. IBA

VHF OSCILLATOR

Phase-locked VFO for VHF

Tim Forrester describes an advanced oscillator which forms part of a dual-band, multi-mode VHF transceiver.

The initial requirement was to produce a transceiver which could receive anywhere between 50 and 70.5 MHz and transmit in the bands 50 52MHzand 70) - 70.5 MHIz .
Inevitably, a microprocessor wals included to do all the house-keeping work such as scanning the controls. driving the synthesizer, frequeney display, and
band switehing etc. From the outset the design was about producing a transceiver with excellent radio performance.

Fig. I. Dual-band transceiver for 50 MHz and 70MIHz. The phase-locked oscillator and microprocessor control stages are outlined in Fig.2. Aim of the design was to produce a transceiver with excellent radio performance.
and not about a radio with average performance but with an all-singing. dancing microprocessor system (as is often the case)

First of all. I decided that the tuning must have the "feel" of a VFO. i.e. the minimum tuning step size from the synthesizer must not be greater than 20 Hz . Any step size greater than this is too easily detected by the ear. To be

VHF OSCILLATOR

Fig.2. PLL, microprocessor and CW Iransmit oscillator for the dual-band transceiver. The processor is a 6805.

Fig.3. Dual-hand transmit-receive converter and master VCO.

sure of a smooth VFO-like tuning response. I eventually decided upon a resolution of 10 Hz as being a good compromise between complexity and resolution.

In the early stages of the design of the Pl.L., I considered a direct digital synthesis (DDS) approach. This would have had the benefits of very low phase noise and a very good tuning resolution. perhaps down to 1 Hz step size. Unfortunately, though, at the time of starting the design the cost of fast digital adders and the other associated digital circuits made the use of a DDS oscillator prohibitively expensive. However, the cost of chips for DDS is falling rapidly. Plessey Semiconductors has announced an integrated circuit DIDS device, which is capable of operating at up to 500 MHz with a switching time of something around 10 ns . No doubt devices such as this will eventuatly replace most conventional PLLs; but at present this particular device costs about $£ 600$ and is not yet freely avaitable as a production item.

In this design the PLL would. ideally, enable the radio to operate over the range of 50 MHz to 70.5 MHz , with no gaps in the coverage. However, to keep the design simple to align, and to avoid the use of tracking fitters and other complications in the actual RF signal path. I decided to restrict the coverage

10 just the amateur bands. Thus the PLLL could operate at around 60 MHz and use low-side injection for 70 MHz operation, and high-side injection for 50 MHz operation

An additional benefit of restricting the tuning range was that the PLL had only to cover 3.4 MHz in total to tune both the 50 and 70 MHz bands. This enabled the PLLL's performance to be optimized over a narrower bandwidth. thereby making its overall design easier. If the PLL had been required to work over the entire tuning range of 50 to 70.5 MHz , inevitably some circuit parameters (such as VCO sensitivity) would have varied, causing the phase noise and/or the lock-in time to degrade.

For these reasons, combined with the need for tracking filters (to remove the unwanted in-band image response caused by the 10.7 MHz first IF with its continuous coverage from 50 to 70 MHz). I have restricted the tuning range so as to be able 10 use easilyadjustable bandpass filters to select the desired product from the mixer.

Trade-offs

Designing a PLL with a resolution of 10 Hz and good phase noise performance is not too difficult if cost and complexity ate not limiting factors.

However in the present case certain compromises had to be made. The first was in the method of obtaining the 10 Hz resolution.

It is fairly easy to design a synthesizer with a step size of say 10 kHz , with reasonable performance, without resorting to complex multiple loops. This design. however, needed a resolution of 10 Hz , which could not be achieved by a simple single-loop design.
After looking at several different schemes I decided on a basic digital PLL. resolution of 100 Hz . and to achieve 10 Hz resolution by interpolation. This interpolation is achieved by slightly shifting the PLL's reference crystal. To understand how the resolution of 10 Hz is obtained, it is best to break the operation of the PL.L into sections (Fig.2).

PLLL 1 is a conventional PLL. operating between 20 MHz and 29.99 MHz in 10 kHz steps. The only oddity in the design is the mixing down of the VCO signal from $\mathrm{T}_{\mathrm{r}_{20}}$ with the 10.24 MHz reference signal. The purpose of this mixing process is to enable IC_{211} to operate on the signal directly without the need for a prescaler. The output of this PLLL is divided down by 100 in $I C_{11}$ to produce a signal of between $20(1)$ and 299.9 kHz in 100 Hz steps. This signal is used as the basic 100 Hz digital increment in the PLLL and is fed to $I C_{12}$, a

low-frequency phase comparator operating in the range $2(0)$ to 300$) \mathrm{klz}$.
Plel. 2 is another conventional Pled. hut this time operating in 100 kH Hz seps: it uses the same 10.24 MHz reference ats Plol.I. Transistor lr_{32} is a V(C) operating in the oomilzz region, whose output is split between IC ${ }_{15}$ and IC 13 . The output to IC 15 is divided by 10 to be within range of $\mathrm{IC}{ }_{1 s}$. which is the divide-by-N and phase comparator device PLLI.2's frequency is chosen such that it heterodynes with the master V() to produce a signat in the range of $2(1)$ to 299.9 kliz . For instance if the offet Pla. is set 1061.5 Milz , and reference frequency se by PILII is 200 kl lz, then the master V(O) has to be on 61.7MHz to be in phase lock. If the frequency of the 2(olkilz reference (generated by Pl.I.I) were to change by, say, 100112. then the master V() would have to change by Iow Iz totrack it

To ensure that the master PI.L. locks up yuickly, a steering voltage from the VC() in PILI. 2 is applied to the master VCO such that the zorkliz phase comaprator has only to fine-tune the frequency. This stering voltage from the
offset V() ahso ensures that the master $V^{\prime}()$ is within the capture range of the $200-299.9 \mathrm{kHzphatse}$ comparator.

The final 10 taz resolution is obtained by slightly varying the crystal reference frequency of $10.2+\mathrm{Milz}$. An analoguc control voltage is used to change slightly the bias voltage on 1) 2t $^{\text {w }}$, which in turn shifts the reference frequency: this vol. tage is generated by an eight-bit digital-to-analogue converter on the microprocessor circuit board. As only a total of only 10 voltages are required (0) Hz oto (9)llz shift), only the four most significant bitsof the lo-to-A are used.

Control of the PLL

This method of heterodyning the master V(O) with another PLL to produce a signat in the region of 200ktiz for phase locking has been used for several years. But with the advent of single-chip PILL. devices such as the Motorola MC145150 series, it has become increasingly casy (o) implement. thereby avoiding the masses of discrete logic which would have heen previously needed.

Programming the Plat osciltator to
the desired frequency is achiesed by 18 parallel lines from the microprocessor via level shifters fo IC is and IC 2 . Parallet programming is adopted in preference to the more usual serial method to make initial lesting of the PI.L easy without the need for a special serial interface. If seriad programming is preferred. to lessen interconnections and improve overall reliability, then IC is and $1 C^{\circ}$ now oould be replaced with IC' type MCIL5155. A serial driver routine would then have to be added to the microprocessor program. hecause the number crunching in the processor is all parallelarithmetic.

W'ith a design such as this, combined wi:h an If offse of 10.7 MHz which can be on either side of the local oscillator. there is no casy or direct relationship between the eventual operating frequency of the radio and the data reguired to program the synthesizer. It would be possible to design some form of discrete logic circuitry to drive both the Pl_L ascillator and the frequency read-out but this would be rather complex and inflexible. A much better solution would be to use a microprocessor

Indeed, using a microprocessor allows a much greater flexibility in both the design and implementation of the control functions.

Software

The processor is a Motorola 6805 , which offers good facilities for control functions, while at the same time being easy to program. In addition, since the processor can be single-stepped through its code, it is easy to debug the code by simply monitoring the state of the address and data lines.

Processor control was initially broken down into a number of basic modules which would form the basis for driving the synthesizer and frequency read-out. Subsequent subroutines would make use of these driver routines.
Any module or subroutine would have to restore the conditions of the processor's internal registers, before passing control back to the parent routine. Data would be passed between modules by each routine taking an input from one location in ram, processing it as required before writing it to its particular output location. This method could be considered wasteful of memory space, but does lessen the possibility of data being incorrectly processed.

The first module simply takes data from a location in ram and outputs it to the synthesizer. The data in ram is initially written to a particular location by the program itself, and contains the digits required to program the synthesizer to a particular frequency. Another module operates on the same source data as the synthesizer driver module. This module was designed to drive the frequency read-out. taking into account the IF offset and frequency band in use.

The frequency read-out driver module has a fair amount of number crunching to perform, and is therefore broken down into a number of subroutines.

For the tuning control I selected a cheap and readily available rotary encoder, whose outputs are two square waves in anti-phase. This encoder needs only a very simple logic circuit to detect the direction in which the tuning knob is being rotated and at the same time generate an interrupt to the processor. This enables the interrupt routine to update the frequency data and call up the driver programs previously described.

The interrupt routine of the tuning control also scams the front panel controls to determine in what step size the frequency is to be altered. The interrupt
routine is in turn broken down into sub-routines. This was necessary as the tuning rate could be $10,100,1 \mathrm{k}, 10 \mathrm{k}$ or 12.5 kHz per step. Routines are therefore needed to add or subtract these amounts to the datal operated upon by the driver routines.

Included in the interrupt routines are limits on the frequency data, to ensure that the radio is not tuned out of band. and that the tuning wraps around at the bandedges.

Also included are memory and scanning routines which enable the radio to scan spot frequencies on either band, automatically switching from band to band as required.

A further feature of the software is the ability to operate cross-band: that is to tramsmit on one band, then receive on the other. The control line which switched band pass filters in the radio was already being controlled by the program; and it was therefore an easy task to test the state of the transmit and receive band buttons, before outputting data from the appropriate ram location to the driver routines.

Microprocessor hardware

The 6805 microprocessor contains two PIAs. 112 bytes of ram and a clock generator. To interface the processor to the rest of the ratio, one PIA is used as an input output bus. while the other PIA is used to enable various signals on to the PIA bus. Extra circuitry is included to de-bounce the rotary encoder and to generate interrupts when either the tuning knob is operated or the power supply falls below about 10 volts. If an interrupt is generated by low power supply volts, the processor is shut down and all present settings saved in the processor'sinternal ram.
When the processor is shut down it draws only a fraction of a milliampere of supply current, which is provided by a back-up battery.

Fuller denals of this design will appear luter in publicutions of the RSGBB.

Have fame, wealth and public recognition passed you by? We could change that!

You might not yet have been immortalized by having an SI unit named after you but there is still time. The first step to general acclaim has to be publication of your work, possibly in the magazine that you are reading.

Electronics \& Wireless World wouldn't exist if it were not for people who are prepared to report on the unusual, the intriguing and the out of the ordinary in the technical world around them. We want you to write about it for us.

If you've got something to say, then I would be pleased to listen. And it can be a rewarding experience. Drop me a line or give me a call on 01-661 3128.
FRANK OGDEN
Editor

Speaking telephone keypad for the blind

A low-cost speech processor IC and a speech rom vocalize the dialled number in a modified electronic telephone for the blind. The circuit gives an audible output when each digit is keved, which is a useful confirmation of the number dialled.

When a digit is dialled, the dial pulse output. DP. of the 2560) pulse dialler outputs a pulse train, the number of pulses depending on the number dialled. Output pulses are counted by a four-bit binary counter (7493) which connects to the address lines of the (1256 speech processor

The pulse dialler gives a $\overline{\text { ntre }}$ output shown in the timing diagram, for muting the receiver during the dial pulsing. This output is used to trigger a negative-edge triggered monostable of 10 ms pulse width.

After a digit is dialled, there is a pause during which the MUTE output goes high. The inverted nurfe signal latches the counter value in the binary counter into the four-bit $7+116$ latch. This transition triggers the left-hand monostable device whose output pulse is inverted and used to load the address into the speech processor using the $\overline{\text { ALD }}$ input. Output of the first monostable device triggers the second monostable section on its negative edge to obtain a 10 m s pulse: this is inverted and used to reset the binary counter and the
lateh. Thus both the counter and the latch are reset during the inter-digit pause.
The 0256 speech processor is cabable of synthesizing speech or complex sounds using its stored program. Within the 0256 . a microcontroller controls data flow from the SPR-16 speech rom to the digital filter. the concatenation of the word strings necessary for linking speech elements together and the amplitude and pitch information to excite the digital filter. The pulse-width modulator in the speech processor creates a digital output which is converted to an analogue signal when filtered by an external low-pass filter. Addresses from the $7+116$ latch feed a 2 K by 8 -bit rom (SPR-16) and data is extracted for the speech processor arithme-

tic logic unit for coefficient transfer. Coefficients are then manipulated via a "vocal tract model" block in the form of a 12 -pole digital filter. Bits are then pulsewidth modulated from digitized waveforms to analogue sinewaves.

The Al. strobe pulse given to the speech module enables the speech to reach a transducer through a passive filter.
V. Lakshminarayanan Centre for Development of Telematics Bangalore India

Hybrid audio preamplifier with low distortion

One of the main drawbacks of vacuum triodes, when used in the commoncathode configuration, is their high output impedance when a high gain is requested. The usual solution is to use two triodes for each stage, with the second one connected as a cathode follower or in a shunt-regulated pushpull configuration.

This circuit - a hybrid audio gain stage - achieves a low output impedance and a low distortion using only one half of an ECC88 dual-triode and a solidstate buffer formed by Tr_{1} and Tr_{2}. The triode operates in constant-current mode by the bootstrap connection (C_{i}) to improve linearity and achieve the maximum gain, in spite of the relatively low supply voltage and of the lack of the usual cathode capacitor.

Typical applications for this circuit include fooss headphone driving and line stages in vacuum tube preamplifiers. Measurements on this stage show a gain of $30 \mathrm{~dB}, 10(0 \mathrm{~V} / \mu \mathrm{s}$ slew rate, $270 \Omega 2$ output impedance and 0.15% distortion at lkHz with a $10 \mathrm{Vpk}-\mathrm{pk}$ output signal and loks load (mainly second harmonic).

Having no overall feedback, the circuit is virtually free from instability (even when capacitively loaded) and transient intermodulation distortion. However, the application of 10 dB of negative feedback (smaller diagram) reduces the output impedance below 100)s and the distortion well below 0.1%, with a gain of 2() dB , which is a typical value found in line amps.
Patolo Palazzi
Cervignano
Italy

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

Telephone: 01-445 2713/0749

ENTER 12 ON REPLYCARI)

UNIT 3A, 25 RANDALSTOWN ROAD, ANTRIM, CO ANTRIM, N. IRELAND.
Telephone: (08494) 66734. Telex: 74667. Fax: (08494) 68745
Manufacturers and designers of high quality toroidal transformers to specifications VDE 0550, BS415 Class 2 and IEC65 Class 2.
Prices quoted are lots of 100 (VAT not included). Prices firm to October '89.

15VA - £4.70
120VA - £6.70
625VA - £13.80
30VA-£5.18 160VA - £7.57 750VA-£22.60
50VA - £5.52 225VA - £8.40 1000VA - £37.20
80VA - £6.00 300VA - £9.40
100VA - £6.56 500VA - £12.50
Prices quoted are for primary voltage 110, 120, 220, 230, 240.
For additional primaries please add 4% to price for the following:
120/120, 220/240, 110/110, 115/115, 110-120/110/120.

AGENTS WANTED - ALL COUNTRIES

With 4ε years' experience in the design and manufacture of several hundrea tho 1 sand transtormers we can supply

AUDO FREUUNGY TRAMEFORMERS OF

 EIEIM TYPEYOUNAMEIT! WE MAKEIT!
OUR ZANGE INCLUCES:
Misrophone transformers (all types? Mcrophone Spitter/Combiner ransformers. Inpur and Output transformers Diect Injection transformers for Guitars. Mulit-Secondary outptt transformers Brijging tranzformers. Line transwormers. Line tra 1 sformers to B.T. Isolaing Test Specilicatior. Tapped impedance matching transfommers. Grarr ophone Pickup transformers Audio Mixing Desk ransformers all types). Minikture transformers. Microminature transformers ${ }^{3}$ or PCB mouning. Experimenter transjormers. Utra low fraquency transformers. Ulira linear and ether transfermers for Valvg Amplifiers up to 500 watts. induct ve Loop transforme's. Smoothrg Chakes. Fiter Inductors, Amplifiers to 100 volt line transformers (from a f3w watts up to 1,030 watts), 100 volt line transfo mers to speakers. Speaker matching ranstormers (all povers), Column Loudspeaker transformers up to 300watts or more.
We can design fer RECJRDING QUALITY, STUDIO QUALIT, HI-FI QUALITY OR P.A. QUALITY. DUR PRICES AREFIGHLY COMPETITIJE AND WE SUPPLY LARCE OR SMALL QUANTIT ES AND EVEN BINGLE TRANSFORMERS. Nany standard types are in stock and normal Jispatch times are short and se cisible.
OUZ CLIENTS COVER A LARGE NUMEER OF BROADCISTING AUTHORI IES, MIXIIGG DESK MANUFACTUREFS, RECORDING STUDIOS, HHFI ENTHUSIASTE, BAND GRCUPS AND FUBLIC ADDRESS FIRMS Export is a speciality and we lave ojerseas clients in the COMMONMEALTH, EEC, USA MIDDLE EAST, eE.

Send for our questionnairs which, when completed, enables us to post quotasions by return.

S OWTER TRRNSFORMEFS

PO Box 36, lpswich IP1 2EL, England. Phones 0473 252794 \& 0473 219390Telex: 987703 G Fax: 0473236188

ENTER 8 ON REPLY (ARI)

ENTER 13 ON REPLY CARD

Designing with cad

> Computer-aided design of printed-circuit boards on a PC is becoming commonplace. Mike Walsh, a cad consultant, describes the process.

Until about seven years ago, computer-aided design facilities were limited to the large design departments of multinational companies. This limitation was due, in the large part, to the high cost of the computing power required by cad programs. The introduction and rapid adoption of the personal computer, however. influenced a sudden surge in the number of cad applications availahle at a price well within the reach of even the smallest company: the innovative design of these products offered close to mainframe facilities on the humble PC

DESIGNCYCLE

Nearly all the activities that the average enginer indulges in when designing a circuit or product can be enhanced by the use of cad, as can be seen in Fig. 1 . Indeed. some disciplines have only become practicable because of cad. l.et us consider a typical design for a moment and mention the application of alutomated methods at each step.

Normally, the engineer would construct a hlock diagram of his design before deciding how to implement each function. Schematic capture systems invariably offer a hierarchical approach. allowing unlimited levels of "black boxing" down towards the component-level circuit diagram. Verifying that the circuit works to specification conventionally requires the huilding of a prototype and subsequent bench testing. The cad approach tackles this requirement hy using a simulation of the circuit - cither analogue or digital as appropriate. Modern circuitry often uses roms and PLDS to implement glue logic: constructing fuse maps by hand is a tedious and error-prone operation and is much better automated. The design may also contain asics (applicationspecific integrated circuits) and many manufacturers now offer tools which allow their design to be carried out by
the engineer using a Personal Computer.

Production requires that a PCB be designed and again, a range of packages is availatle to assist in this task. Assembly of the design into a casing or rack has implications with regard to heat dissipation. Thermal analysis packages can provide an early indication of potential dissipation problems which would otherwise cause malfunction or poor reliability. Finally, the product has to be tested and even here, tools are available to automate the task.

Although, as can be seen, the compu-
ter can help at every stage, one more important point should be appreciated: that of integration. In many cases, each of the tools mentioned above is integrated with the others in such a way that there is a flow of data possible between them. This is one of the major benefits of cad, since it minimises the chance of errors creeping into the design process. To best appreciate this facility we might regard the schematic as the "documentation" or "specification" for the rest of the design. Under no circumstances may we alter design data anywhere other than in our schematic.

Fig. I. Traditional and computer-aided design processes compared.

TRADITIONAL METHODS

CAD TOOL METHODS

Thus, if the schematic is correct every thing else must be correct. This is, of course, an ideal and most cad systems allow a less formal interaction to better match a designer's more normal working methods.

To see how each activity discussed above benefits from the application of cad I will elaborate on the principal advantages to be gained in each discipline. There are, incidentally, one or two seeming disadvantages at various points, but these usually turnout to be a matter of changing one's thinking process to accommodate new methods of working.

Schematic capture. At the start of most designs comes the imitial sketching of the circuit on paper. either directly at the component level or using a blackbox representation. Hand drawn schematics are then either tidied up or often, completely redrawn by a different department. When using a cad system in this environment an ideat method is to design directly on the screen. dispensing with the manual approach completely. This ideal is often not followed precisely since the brainstorming approach to circuit design is often quicker and easier, using traditional methods. But, the sooner the design is entered on to the cad system. the sooner one can get the benefits of all the supporting tools. Thus a certain amount of discipline is necessary to try and minimise the paper and pencil exercise. since it represents a duplication of effort. Most schematic-capture systems provide a means of abstracting information in the form of a hierarchy. Each layer or level of the circuit can contain black boxes representing circuits at a lower level: Figure 2 shows an example of this type of construction. For large

Fig.2. The hierarchical method of information capture. Four levels of the hierarchy are shown, starting with the circuit at (a) and ending at (d) with a composite symbol incorporating several (a) circuits. The final diagram using symbols as at (d) is uncluttered with unnecessary detail.
designs this representation is extremely advantageous, since large amounts of detail which may otherwise cloud the understanding of the circuit can be hidden inside the boxes. Features available from the cad system allow traversal upand down the hierarchyat will

The new user often finds capturing the schematic time consuming when compared with more traditional methods. The important point to grasp here, however, is that not only is the result a quality hard-copy plot. but that a database of information about the design is being built. Thus, at the expense of some extrat time, the information which will be used by the rest of the cad process has been stored by the computer.

Libraries. During schematic capture frequent use will be made of standard schematic symbols such as gates, transistors and resistors. A selection of these components is normally provided by the manufacturer of the cad product, but the user should be wary of the size of library supplied, since creating new symbols can be time consuming; some lower-cost systems are supplied with a few hundred symbols - some with several thousind. There is frequently the need to create new symbols. however, since designs often use innovative components that the cad manufacturer may not have anticipated in his libraries. There is usually a fully graphical
approach available in the system to fulfil this task and various items of "intelligence" are normally added to enable the symbol to convey all the information required to other sections of the cad system

Netlists. Not all of the schematic data is normally required by the other elements of the system; for example, most of the graphical data is simply for human recognition. Todrive the rest of the design process, it is usually enough to have a list of components and their associated connections. This type of structure, called a netlist. is derived by processing the schematic database and may either be held in the machine as ASCII text or as a binary data base. Figure 3 shows a simple schematic and its related netlist.

Fig.3. A simple schematic diagram and its associated netlist.

Electrical checking. The first benefit one receives from having patiently entered the schematic is the ability to chect all sorts of electrically related items; for example, that no outputs have been shorted together or that there are no floating inputs or that pull-up resistors have been added to open collector outputs - and so on. High-end systems are able to provide additional facilities such as fan-in and fan-out checking of logic gates.

Simulation. Both analogue and digital circuits can be verified for correct operation by using the appropriate simulator. The traditional method of breadboarding a design to test it is no longer a necessity. Indeed. in the case of asic designs it is not even practical to verify the functioning of the circuit in this way.

MAKING ELECTRONICS C.A.D. AFFORDABLE

TINY-PG

Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?
Have you access to an IBM PC/XT/AT or clone inc Amstrad 1640 \& 1512 or Archimedes with P.C. Emulator?
Would you like to be able to produce PCB layouts up to $17^{\prime \prime}$ square? With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range . 002 to 531 "?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes?
That can be used for surface mount components?
With the ability to locate components and pads on grid or to .002" resolution?
With an optional auto via facility for multilayer boards?
With the ability to create and save your own symbols?
That can be used with either cursor keys or mouse?
That is as qood at circuit diagrams as it is at PCB's?

- Which with EASY-PLOT and EASY-GERB can output to pen-plotter or photo-plotter (via bureaux)
Where you can learn how to use it in around an hour?

- THAT ONLY COSTS £95+VAT (TINY-PC), £275+VAT (EASY-PC)

SMITH CHART PROGRAM
2 WATH
CIRCUIT ANALYSIS BY COMPUTER ANTMEB
For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.
Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES
MICROSTRIP, STRIPLINE and WAVEGUIDES.
The program takes account of TRANSMISSION LINE
LOSS. DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.
Z-MATCH is supplied with a COMPREHENSIVE USER
MANUAL which contains a range of WORKED
EXAMPLES
$£ 130$ for $P C / X T / A T$ etc.
£ 65.00 for BBC B, B + and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512, 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER 11 " - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadboarding and thousands of pounds worth of equipment.

£195 for PC/XT/AT etc.

£130 for BBC, B, B+ and Master

All prices Ex-VAT
WRITE OR PHONE FOR FULL DETAILS:- REF WW

Harding Way, St Ives, Huntingdon Cambs, PE17 4WR
Tel: St lves (0480) 61778 (4 lines)
We provide full after-sales support with free telephone 'hotline help' service.
Software updates are free within 6 months of purchase date

Number One Systems Ltd

Digital simulators. The operation of the circuit is emulated by applying a series of stimuli (input signals) to a computerised model of the circuit clements and evaluating the response; the simulator software has algorithms within it that can emulate the behaviour of the gates in the design. Many simulators can only model a small range of "primitives" such as Nand, Nor and Inverter in this way and cad suppliers will provide libraries of models which build up the simulation of more complex elements like counters or registers from these primitives. Alternatively, the user may create his own models. The accuracy of the models supplied or constructed is of paramount importance, since a behavioural inconsistency will cause the simulation results to be incorrect.

It may seem at first sight that simulators only need to be able to handle logic states of 0 and 1 , but this would limit their effectiveness unnecessarily. In the case of a tri-state driver circuit. for instance, the simultor must also emulate the high-impedance state with, for example, a Z level. There are several other situations where the aceuracy of the simulation call be enhanced by defining other states such as resistive or supply strength and. finally. an unknown or " X " state is usually used when the simulator is unable to compute the exact state. Thus, the caprabilitios of commercial simulators are often described in terms of the number of states they can handle. Low-end products start at between 6 and 12 states and go through to the high end of 32 or greater states. Table I shows the states and levels used by a commercial 12-state product. Simulators of this type will normally also handle timing and can identify errors such as setup or holdtime infringements for flip-flops or latches.

Table 1. States and levels for a 12 state simu-

 lator.| Level | High | Low | Unknown |
| :--- | :--- | :--- | :--- |
| Supply | S1 | SO | SX |
| driving | O1 | OO | OX |
| resistive | R1 | R0 | RX |
| high-Z | Z1 | Z0 | ZX |

A word of caution, however: simulation at the one extreme can show design problems that no amount of bench work ever would and, in this case, the techniyue is extremely valuable. But, at the

Mixed-mode simulators. In an ideal world, a mixed analogue/digital circuit would be simulated as a whole using a composite or mixed-mode simulator. In practice, such simulators are rare and require considerable computing power. so the PC user will normally find himself testing the digital and anallogue portions of his circuit separately.

PLD DESIGN

Programmable logic devices have become an economic and popular way to

Fig.t. I typical isothermal display from a thermal-analysis package - Thermax, fromP-C.CDEDA.
other extreme, an inexperienced or careless user who accepts blindly the results that a simulator gives can rum into deep trouble. Simulators are, after all, only giving an approximation of the way a circuit will behave and are clearly unable to react to the external influences which a reall design needs to tolerate, such as power-supply variations and noise effects. Thus, the designer must still follow good engineering practice in his design methods.

As a general rule, simulation should not be used as a way to synthesize logic only to analyse it.

Analogue simulation. Complex analogue circuits can be a nightmare to design and test particularly when one is faced with verifying performance over temperature and component tolerance. This is one region where the analogue simulator can be invaluable. Such products use iterative, numerical techoniques to solve the complex equations deseribing the circuit and can then produce a range of results such as transient or frequency-response data or voltagetransfer functions. Analysis over a range of temperatures can quickly show design problems and so-called Monte Carlo analysis can show the circuit's sensitivities to component tolerance.

Once again, simulations of this sort are only ats good as the models supplied. Modelling in this case refers to the types of model used to represent active devices and the range of devices that have been characterised with this model. Some simulators also provide special tools to allow the user to develop his own models.
reduce the IC count in designs. Miscellancous logic functions can be "mopped-up" into one or more PLDs. thereby reducing space and cost and increasing reliability. As PLDs have matured into relatively complex devices, various tools have been developed to allow the design engineer to implement his requirements quickly and accurately. These programs provide the designer with the ability to define his logic reguirement in terms of what could be considered a high-level language using truth table and/or statemachine syntax. The PLD program will then be able to derive the correct fuse maps to implement the functions required. Logic minimisation algorithms are frequently included in this type of program to allow the user to concentrate on the result and let the program determine methods of achieving it efficiently. Simulation of the completed PLD is also normally provided. although it may not necessarily be integrated with the simulation tools above.

PCB DESIGN

Probably the one area where most products exist to computerise the task in question is that of printed-circuit board design. The very low-end products offer what we could call an "electronic taping' facility. meanning that the traditional technique of laying tape down on to Mylar has been duplicated on the computer, with the added advantages of casy editing and redesign. Medium to high-end products offer much, much more in terms of a wide range of interactive editing functions. facilities to work with ground planes, multilayer board capability and surface-mount technology support. Additionally. many products now provide automatic placement and automatic routeing tools as well as
real-time short-circuit detection and even real-time design-rule checking. Once again, the power of the cad approach derives from the integrated design cycle. where the PCB design function accesses the initial database constructed from the schematic.

Good PCB design tools normalty have the ability to drive pen plotters and photoplotters for the creation of artwork and the derivation of suitable data 10 drive automatic dritling machines and automatic insertion equipment.

THERMAL ANALYSIS

A topic that many designers ignore or leave to triat and error is the thermat performance of the hoard. either alone or as part of the final assembled product. Until recently no suitable atutomated tools were available to address this topic. Whilst not of importance to everybody, poor thermal design can have an adverse affect on the performance and reliability of a product. Products are available for use on the PC which allow the user to generate isothermat maps for the board in question when considered either in a twodimensional manner or in full 3-D. Figure 4 shows an example of the out put available from a product of this type.

TESTING

Lastly comes the subject of verification of production pieces. Again. the integrated approach can be of assistance since much of the information about the location of components and tracks can be derived from the PCB database. The test patterns should also be obtainable from the results of the simulations which have, of course. characterised a fully functioning system. It is simply a case of massaging the data to produce a tester program.

PLATFORMS

I think that a fell introductory comments on the types of machine being utilised in the field of electronic cad are in order at this point. By far the largest number of products are intended for use on dos-based Personal Computers, although there are certainly useful products to be found rumning on Apple equipment and even the BBC micro. In general though. cad programs are demanding on the resources needed to run them expeditiously. Ram, disc capacity and operating speed affect the resulting performance: thus, the latest 25 MHz (or even 33 MHz) 80386 machines with plenty of memory will provide the optimum system. But this general statement
needs some clarification: if an application is relatively undemanding, in terms of, say, size of schematics or PCBs, and if the cad system is not going to be used day in day out. then a more modest approach is perfectly adequate.

Atso. designers of cad products running under dos are always faced with a limitation of 640 K memory and normally take special measures to create their databases in a compact matmer. They also understand that only retatively few users will be using state-of-the-art hardware and are at pains to implement program operations as efficiently as possible.

Many of the tasks the cad user performs are graphical in nature: that is. sitting at the terminal drawing a schematic or P CB . The resolution of the display and the capabilities of the graphics card driving it are of great importance here. A low resolution will produce "chunky" graphics and the screen will only be capatle of showing a small area of whatever is being viewed. A poor display is tiring to view and frequent pans and zooms will be required if the resolution is low. Once again, it depends very much on the application as to whether this is a problem. A workable range of resolutions is from the EGA standard of $6+(0) \times 350$ to the very high end of 1280×1024.

This article has attempted to show how cad may be utilised in the design flow of a typical electronic product from concept to production. As we have seen. almost every area can be enhanced in term of throughput. reliability and accuracy by the application of the PC-hased design system. The integration of the various tools that go to make up the end-to-end design approach is also very important to obtain consistency of operation and to minimise translation errors. There are many sustems on the market that address individual items in this design flow and other systems that address groups of design steps. The potential user should be aware by now that the more heavily integrated the application. the easier it will be to get optimum performance and have available a range of upgrade paths as requirements grow. Thus. when embarking upon the initial purchase of a cad system or even upgrading from one product to another. time spent evaluating the integration of the system well spent.

Mike Walsh runs his own independent cad consultancy specialising in training, software development and support of electronic cad products.

P
CBTURBO V2 is instagraphic's second-generation design and draughting software package for printedcircuit boards.
The demonstration software did not have the full functionality provided by the retail version. Component libraries were not included, only three of the main ment options were usable and all of the output options were intentionally disabled. including storage of constructed components and trial layouts. However, the facilities provided by the package were sufficient to demonstrate the capabilities of the retail package and to identify its limitations.

PCBTURBO V2 is a specialised draughting tool for the production of between one and six layers of circuit wiring on a single hoard. The maximum board size that the system can deal with is 32 in by 32 in although, at maximum scaling, the display screen provides only 32 in by 15 in .

A library of standard component drawings is provided with the retail software but. if the demonstration software is representative. all 14 -pin dil devices will use the same component model. Pin numbers are not provided and the wiring connections cannot be specified explicitly. All wiring connections are made mannally and there is no user reference for identifying individual wires.

Getting started

If the computer configuration matches the requirement, then installation is quite simple. The hard disc must be drive C : because the software specifies the directory structure and the path internally.
There is ample storage space on two floppy dises for the demonstration software, so that with a little reorganisation of the files it could be run on a twin floppy disc system. The full version includes component libraries and will need the hard disc capacity for storing finished layouts.

Batch files are provided for automatic installation and a further batch file sets up the path structure, loads the device drivers and invokes the program.

PCBTURBO V2

A specialised tool for 32 -in square boards of up to six layers

Display screen resolution

The package can work with CGA graphics. but the resolution is not adequate for professional use and the four colours available from a CGA palette are not enough to distinguish individual layers when they are superimposed on the screen.
Two EGA screen formats are available: the first requires 64 K byte of screen memory and provides a resolution of $6+(0 \times 200$ pixels in a range of 16 colours; the second uses 256 K byte of screen memory and provides a resolution of $6+(0 \times 350$ pixels in the same colours.
A board length of 32 in accommodated on a single screen provides a resolution of $32 / 6+0=0.05 \mathrm{in}$. which is insufficient to display small-diameter holes or thin tracks at this scale

Six distinct drawing scales are provided, the smallest devoting the whole screen area to a view of $0.6 \mathrm{in} \times 0.3 \mathrm{in}$ of board space - this provides a maximum resolution of $0.6 / 640=0.00+\mathrm{in}$. Working at this resolution produces very satisfactory results.
Screen scale factors of 4 or 5 provide a working compromise between available resolution and sufficient hoard space to display several adjacent components.

Some visual aspects of the scaling were noticeable - circles appeared oval and short fat components rotated into long thin ones. Changing from EGA 256 K to EGA64K altered the aspect ratio of the Demo board. None
of these effects distort the output and they are preferable to a loss of resolution.

PCB design facilities

Separate layers are provided for silkscreen printing and for copper circuits on each side of the board; these four layers can be extended to eight with four additional internal wiring layers. Each layer is displayed in a different colour and layers may be superimposed in any mixed combination. The display colours used for each layer are not selectable

The silk-screen layer is used to specify the outline of a board. components then being positioned on the board with their

Fig.3. Component placement for a simple board.
terminal pads. Layers are then wired up manually or hy using the autorouter.

Relative positioning of the components determines the track lengths. Wire crossings can be largely avoided by routeing horizontal tracks on a different layer to the vertical tracks. Each conducting liver may be plotted out separately for PCB production

The output plots obtainable include: silk-screen plot: top and bottom side plots: a drilling drawing: top and bottom solder-resist masks: internal layer plots: and a multilayer plot. The outputs can also be recorded in computer tiles for record purposes or for sending out to a bureau for plotting.
Design notes may be recorded in the system using the builtin word processor.

EQUIPMENT REQUIRED

Prospective PCBTURBO V2 users need a minimum of an IBM PCXT or compatible, with 640 Kbyte of ram, a 10 MByte hard disc, one 5.25 in floppy-disc drive, one RS232 serial port and an EGA graphics adaptor with compatible colour monitor.

A mouse or tracker-ball pointing device is required for easy graphics-screen manipulation and for making selections from the pop-up menus. Atternatively, the arrow keys can be used for menu selection or for locating the cursor. Software drivers are provided for a number of serial pointing devices. A high-resolution device is required for graphic output.

Operating features

The top line of the screen can display the $\mathrm{X}-\mathrm{Y}$ co-ordinates of the cross-wire cursor position, as measured from the bottom left comer of the largest viewing area. It can also show the current position of the cursor relative to a local origin at the centre of the viewing screen. This latter facility is a convenient ruler for measuring distances in Imperial or metric units.

When the scale of the display is changed. the centre of the field of view on the new screen is placed at the position of the cursor on the previous screen. The screen can be "adjusted" in position at the current scale. The planning facility moves the view in steps of half a screen size to left and right and up and down. As soon as this is realised it is no longer difficull to appreciate where the screen is located on the board

The pop-up menu windows provided are excellent. However, it is more convenient to use the pointing device for graphics and the arrow keys for menu selection.

Autorouteing appears to have been a recent development - its facilities are not available on manually positioned tracks. Separate 'ratsnest' lines are first drawn manually, directly between the terminal points. The autorouter is then activated to re-arrange those lines so that they avoid the obstacles on the straight path between the ends. The atutorouter is not infallible and any lines that it is unable to deal with must be removed and re-arranged manually

When a new PCB is being laid out, a silk-screen layer is used to define the board outline. Positioning prepared component outlines on this layer automatically provides, and displays. the associated pads on another layer. A menu facility called 'Windows' is used to capture components in a square net so that they may be moved about on the hoardand copied.

Part of demonstration board, "roomed", of Instagraphics" PC Turbo V2.
sive precalculated layout: it simply redraws a differemportion of the layout each layer in turn.

Minor problems

The tracks are made up from straight segments, with adjacent segments iotated about the centre of the track width. One result of this is that the wider tracks can have some severe notches in them at the corners. These should be "patched" up, at high magnification. with tiny track segments to maintain the current rating of the track.

Fig. 6. Rest of routeing completed mamu- ally.

It can be difficult to erase lines if they have been wrongly placed

The Track Resize and Break facilities did not work on the demonstration pachage

There were the usual minor discrepancies between the manual and the actuat system behaviour - for example, the book said Ctrl-F6 would erase an are. whereas the footnote on the sereen said|D]

In practice. the layouts and tracking will be prepared from a circuit diagram
for simple boards and from a wiring list for more complex ones. A wiring list would be an ideal input medium for a package of this kind; the computer could provide a data base which stored component pin-out information

Value for money?

To use the package, you will need at least $£ 120$ () for the computer system and a minimum of $£ 6(0)$ for the simplest plotting device. The software itself retails for £695. Thus. an investment of at least $£ 2500$ is needed. Offsetting this against labour costs would not be difficult to justity if artwork for more than a few PCBs has to be produced.

Facilities provided by the package are limited to the production of artwork. Circuit design and development is il separate activity which has to be completed before the attwork can be started.

However, the pachage performs a useful function, and it will speed up the production process. It will find a ready market in the smaller electronics companies who need the services that it can provide at prices they can afford.

It can be operated by technical staff who do not have the extensive knowledge of circuits and components that is needed for the fult design process. R.L.

PCB Turbo V2

Instagraphic Ltd

 Ashfield Industrial Estate Low Hall Road Horsforth, Leeds LS18 4EF 0532589893
A VERY AFFORDABLE PCB CAD SYSTEM

Professional high quality PCB CAD SYSTEM at a Price you can afford.

The complete package consisting of Protel Autotrax PCB Autorouting Software, Protel Schematic Design Software, Amstrad PC2086 30Mb Hard Disk with a $14^{\prime \prime}$ High Resolution VGA Monitor and a Roland DXY1200 Electrostatic Paper Hold A3 Flat Bed Plotter, including a set of Plotter Pens and Cables in the package price of $£ 3485.00^{*}$.
For and additional $£ 350.00^{*}$ the package would include an Amstrad 228640 Mb Hard Drive with a $14^{\prime \prime}$ High Resolution VGA Monitor (in place of the 2086 Computer). Software Available Ex Stock from only £245.00*

PROTEL ALTOOTRAX at E695.00 is an affordable. precision design tool that improves productivity for occasional and expert users alike. It streamlines the $\mathrm{P}(\mathrm{IB}$ layout processes while providing powerful interactive design automation. plus generates professionally accurate PCB Artwork. outputs to a wide range of Printers. Pen Plotters plus Photoplotter with Pull Down Menus for case of usc.

A comprehensive library of Through-Illole d Surface Mount Devices is included with ALTOTRAX. plus the designer can casily create new or modify existing Devices.
Runs on MSDOS 640 K machines with support for Hercules. CGA. ECiA. VGA monitors \& MS Mouse.

Evaluation Packs Available.
Available Ex Stock.

PROTI:I EASYTRAX at £245.00* is a very affordable. casy to use precisoon design tool that generates professionally accurate PCB Arwork. With support for a wide range of displays. plus Photoplotiers. Pen Plotters. I aser and Dot Matrix Printers all as standard. NOT IEXPI:NSIVE OP'TIONS. with Pull Down Menus for ease of use. With an L"pgrade path availahle to ALITOTRAX

A comprehensive library of Through-Ifole Devices is included with IEASYRAX. plus the designer can easily create new or modify existing Devices
Runs on MSDOS 640 K machines with support for Ilercules. C(iA. EGiA. VG.I monitors \& MS Mouse.

Evaluatoon Packs Avalable.
Avalatice IE, Stoch
 when used with PROTIEI ALIOIRAX. forms the front end of powerful PCB design sustem with "Dedicated (AD" performance. AL"TOTRAX transforms SCHI:MATIC 3.16 Net lists into finished PCB desıgns using automatic and interactive track routing and component placement. with Pull Down. Menus for case of use.

Comprehensive libraries of over 3200 components are included with SCIIB:MAITC 3.16. Plus the designer can caslly create new or modify existing components. with the powerful graphic component editor.
Runs on MSDOS 60 K machines with support for Hercules. C (GA, I:GA. V(BA monitors \& MS Mouse

İvaluation P'acks Avatatle
Avalahle IEx Stock.

J.A.V. ELECTRONICS LIMITED

Unit 12A. Ifeaton Street. I)enton. Manchester. M. 3 3R(,
Tel No: 061-320-7210 Fax No: 061-335-(0119
*Excluding Delivery and VAT. Prices are for a limted period only

UK [J:strhutor for PROTEL (AD) Software.
Adanced System Centre for AMSTRAI) (omputers \& Peripherals Man Dealer for R()I A.NI) Plotters
Dealers for SACIE Accounts and Busness Software. HROTHIER, OKI MICROI INE \& EPSON Printers.

Starting cad

If you are about to take the plunge into computer-aided design techniques for electronics, start here: Mark Pavitt of Microtel has the water wings.

Computer-aided design (call) has been with us now for several years and, as with all techmological advances. has matured with a process involving many brave fallures. These have sadly led to many conceptions and misconceptions that serve only to choud the real issues for the newomer. The fact is that cad is a reality which no engineer can afford to ignore. It is therefore the objective of this discussion to present it resume for the engineer who is about to become involved in ead. The first element in any such discussion must be a deffinition of ohjectives.

Objectives of a cad system

The first objective of a cad system is to achieve an improvement in design efficiency. This begins with the capability to emulate the traditional tools of the manual designer. A computer can casily reproduce the function of such aids as rulers, compasses and set-squares, but can additionally provide tools which have no manual anatogy. When combined with a user interface which provides immediate access to extensive information about the design and allows casy editing of such information, an improvement in design efficiency is bound to result. The manipulation of information is undoubtedly one of the great strengths of cad systems and this keads to a far belter overlap between the activities of the design process. An engineer may wish, for example, 10 complete eritical layout features before passing the design on to a PCB layout artist. With cad, this is simply a question of transferring the bayout between two computers. The final feature of a cad system which improves design efficiency is the atutomation of design tasks. which range from simple tools for the atutomatic numbering of components to the advanced toots now available for athomatically designing the actual hayout of a circuit.
A second objective when installing a cald system is to improve the quality of a design. The old adage that computers never make mistakes may not be entirely true, but is certainly a major aspect in the use of cad to improve yuality. The
system can monitor the designers progcess according to a set of design rules and identify potential infringements. which can range from the connection of two output pins to the placing of tracks tooclose together.

An adjunct to the quality issute is that of design maintenance. Since very fen designs are completed from concept to hardware without modification, a stringent set of documentation standards is a

Fig. I. Placement routine. Partial manual placement is shown att (a), while (b) shous. full placement with comnection density map and histogram.
repuirement. A change at the circuit diagram stage, for example, will have implications for the layout and probably for tahular documentation such ats the parts list as well. Maintaining documentation is notoriously prone to hasman error in manual systems, hut is at task which is casily attomated in an integrated cad system.

The final key objective in the use of cad is the improvement in communicattions which can be achieved with computers. Since all the information for a design is contaned in some form of
database it can be easily disseminated among the design team. where information can be atutomatically extracted in its. most useful form. The other great advantage in this form of storage is that. being in a machine-readable format, it is relatively easy to generate output in a form which can be used to automate the manufacture of the hardware. Outputs suitable for driving photoplotters. numerically controlled (N(`) drilling machines and automatic test equipment are all possible using card.

Terminology

The best way to introduce electronic cad and the inevitable associated jargon is (1) consider a design example. The first task is clearly one of imput: the designer:s ideas must be communicated to the system. In cad, this is known ats "schematic capture" and is simply the generation of a schematic diagram which represents the circuit. A typical schematic-capture package offers the designer a libary of parts which he or she may select and place on the sereen. Once the parts have been placed, a pointing device such as a mouse may be used to draw in the connections antil a complete circuit schematic has been created. This graphical representation of the circuit must next be converted into a precise connectivity specification known as a "netist". The term "net" (or "node") is used to describe a group of comnections within a design. For example, the "ground net" specifies atl points in the circuit which are connected to ground. The nettist assembles all nets and parts together into a format suitable for transfer into the next module of the cadsystem.

Athough the vast majority of electronic designs are constructed on printedcircuit boards, the concepts behind electronic layout apply equally to hybrids and even IC design. Having taken in the netlist. a typical layout package will present the designer with a display showing the required parts with connectivity identified by straight lines between pins. At the outset no particular placement is established and, typically. the parts are stacked up on top of each other (Fig.1). The first task which must

TELECOMMUNICATION TRAINING EQUIPMENT

Full range of Training Equipment inc-uding:

- ANALOGUE \& DIGITAL COMMUNICATION

CIRCUIT \& SYSTEMS

- FIBRE OPTICS
- MICROWAVE
- TELEPHONY
- RADAR

For more information contact:
LAB-VOLT (UK) LTD.

4A Harding Way
St. Ives Industrial Estate
Huntingdon,
Cambridgeshire
PE17 4WR
Tel: (0480) 300695. Fax: 0<80 61654

PINEAPPLE SOFTWARE
 PCB and CIRCUIT DESIGN CAD SYSTEMS

Pineapple Software don't offer all the computer aided design systems currently available, but we do market a range of systems which we have tested and consider to be the best value for money over the low to medium price range. We also offer a high degree of after sales service including artwork facilities if required.

PCB DESIGN and CIRCUIT DRAWING SYSTEMS
At the lower end of this range of software are כur popular BBC computer products. PCB and $P C B / A R$ are two $P C B$ design packages to run on a standard une xpanded $B B C$ micro. PCB is a manual track routing package at only $£ 85.00$. and PCB/AR is a full autorout ng system at $£ 185.00$. We also offier DIAGRAM II. a very powerful schematic drawing package for the BBC at only $\{55.00$.
For PC compatibles we suggest EASY.PC which is a connbined PCB and schematic drawing package with many ddvanced features and really good value at $£ 27000$
Top of the range is PCB TURBO V2. This package combines a schenlatic drawing system with a PCB range designer which includes a fully interactive autorouter
Other features include:

1. Board size up to $32^{\prime \prime} \times 32^{\prime \prime}$ with up to six layers.
2. Pop-up menu driven with help screens available at all stages
3. Up to nine user-delinable text sizes.
4. Extensive library of components and symbols supplied.
5. Output to pen plotter, photo plotter dot-matrix printer. or file
6. Input via mouse. trackerball. digitiser. or keyboard.
7. Minimum step size. $001^{\prime \prime}$. minimum track width .003

These are fust a few of the powerful features of this package which must be considered excellent value for money at $£ 695.00$. A free demo disc is available for PCB TURBO V2.

PRICE LIST			
PCB for BBC PCB/AR for BBC DIAGRAM II for BBC MITEYSPICE for BBC	$\begin{array}{r} 85.00 \\ 185.00 \\ 55.00 \\ 119.00 \end{array}$	ECA-2 Spice. Age LCA.]	$\begin{array}{r} 675.00 \\ \text { from } 70.00 \\ 350.00 \end{array}$
EASY.PC PCB TURBO V2	$\begin{aligned} & 270.00 \\ & 695.00 \end{aligned}$	$\begin{aligned} & \text { DXY } 1100 \\ & \text { DXY } 1200 \\ & \text { DXY } 1300 \end{aligned}$	$\begin{array}{r} 625.00 \\ 865.00 \\ 1025.00 \end{array}$
Marconi RB2 Trackerball	from 45.00	Elonex range of computers	phone

CIRCUIT ANALYSIS SYSTEMS

Again. a ange of systems s available BBC and Archimedes computers are supported by MITEYSPICE a powertul ard easy to use A.C. and D.C. circuit analysis program at $£ 119.00$ For PC s and compatibles ECA. 2 is probably the most powertul analogue circuit simulator avallable. Circuits with up to 500 nodes may be analysed with worst case and 'Monte Carlo checks to show Ilkely limits in produrtion runs. At $£ 675.00$ this program can pay tor itself in a very short tume in terms of saved development costs
A recent introduction into our ranje is a budget priced package called SPICE AGE This is available in four modules starting at $£ 70.00$ and comprises module 1 for frequency response analysis, model 2 for D.C. analysis, mrodule 3 for transients and module 4 for Fourier analys:s The program runs under the GEM environment and is amazingly quick and easy to use. It is supplied with a large library of ready to use components
Finally, we have LCA.1. which is a logic analyser program priced at $£ 350.00$. This allows any type of logic circuit to be analysed. ML and CMOS devices may be mixed and allowances are made for fan outs and min. max delays etc. In graphics mode the program will make your PC look fust like a 22 channel logic anałyser

HARDWARE - COMPUTERS AND PLOTTERS

As well as supplying CAD software we can also supply the necessary hardware for those starting from scratch. We supply the full range of Roland plotters at very competitive prices and we also supply the full range of the exceflent Elonex computers. Discounts are avaliable for those purchasing complete packages. A typical package might consist of the following

1. PCB TURBO V2

2. Roland DXY 1100 plotter
3. Elonex PC 286 M with 20 Mb hard disc 1.2 Mb floppy 640 k ram. EGA VGA monitor, mouse. GEM etc.

Package price - $£ 2.495 .00$

Please add 15% VAT to all prices
Please write or 'phone for more details about any of the above software Trade enquiries welcome.
be confronted is therefore the placing of the parts within the design outline. A basic cad package will offer a manual capability which is analagous to the traditional process. while more advanced packages may offer tools to automate the task.

Once placement is complete. the point-to-point connections (known as the ratsnest) must be converted into physical conductors. I.ike placement. this may be done either manually or automatically (or a combination of the two). Typically. design-critical tracks such as high-speed signals or power connections must be routed manually at the outset. An autorouter may then be used to complete the bulk of the conneetions. Finally, manual alterations may be required to complete and optimise the layout.

The final stage of the layout process is the generation of the output necessary to produce the hardware, which is generally known as computer-aidedmannfacture (cam). The required output may he of three different types. Firstly, artwork must be generated. This includes photoplotted artwork delineating the conductor scheme for photo-lithography and pen-plotted artwork for design record and assembly purposes. Additional artworks maty also be required for items such as a component silkscreen or solder-resist mask on a P'CB. The second type of output that is needed is the statistical information pertaining to the design. This might include parts lists. job dimensions, tayout area, component density and drilled hole count. Finally, output is reguired to automate the production process. Control of NC drilling machines, pick-and-plate and automatic test equipment is possible.

This overview has illustrated each stage of the design process in general terms. It is now appropriate to discuss the concepts involved in more detail. The discussion will be divided into two parts: schematic capture and layout.

Schematic capture

As 1 have satid, schematic capture is the process of converting a designer's ideas into a circuit schematic. There are two fundamental approaches to this process. The first of these is the sheet methodology, in which the display becomes a sheet of "electronic paper". The design is then assembled into a set of such sheets, which are exactly analogous to drawings laid out on a desk. Connectivity may be defined between sheets using a suitable schematic symbol so that circuit elements on different
sheets become connected within the netlist.

The second approach is the hierarchical methodology. The concept of the sheet is the same, but the sheets are stacked up on top of each other with hierarchicat access between them. This means that circuit primitives may be defined at a low level in the hierarchy and are subsequently organised at higher levets until the top level constitutes a simple block diagram of the design.

Another feature which characterises a schematic-capture package is its library organisation. Each entry in a schematic library contains detailed information about a part: this includes not only a graphical symbol, but also electrical information such as input and output identification (to offer a checking capability) and implied connections such as power and ground which maty not actually appear on the diagram.

While the methodology and library form the hub of a schematic-capture package it is completed by a set of tools for the organisation and connection of parts. either emulating manual design aids or offering unique cad functions. An example of such a function is the ability to define a group of parts and manipulate the whole group at ones.

In addition to a powerful set of tools. the user interface of a schematiccapture package may offer certain feat tures for the atutomation of design tasks. A macro capability is one such feature. This allows a set of operations to be organised into a sequence which call be replaced at a single keystroke. Using this technique , laborious command sequences cam be easily automated.

Layout design

A layout package takes ans its input a netlist (either manually generated or derived from a schematic-capture package). The design is then processed using a set of tooks for component manipulattion and connection. Finally, output is generated in the form of artwork. CNC datatiles and design documentation.

A layout package in its basic form allows the user to create and organise a design database through a graphical interface. This database is organised as a set of levels which may be individually or globally maniputated. It is important to distinguish between a database level and an electrical tayer, since confusion between the two often arises. An electrical tayer is a conductor plame within the design. Hence single layer, double layer and soon. In comtrast, a database level is a design plane which may contain not only conductor information but
also virtually any graphical information pertaining to the design.

Having defined the nature of a cad database, it is necessary to consider the organisation of the information within it. There are three object types to consider: graphicat objects, electrical objects and part objects. Purely graphical objects are used to complete the presentation of the design and include dimensioning lines. alignment symbols and free text. Electrical objects are also represented graphically, but have some form of electrical significance. such as tracks. copper areas and the board outline. Finally, part objects define the actual components in the design. A part definition inchedes both graphical information to identify the footprint of the part and electrical information such as pin assignment for power connections and gate information. which is used by certain automatic routines which will be discussed later.

Fig.2. Length minimisation - before (a) and afler (b).

Placement. The first set of tools which the layout designer is likely to encounter is the placement set. The placement of a layout is in many ways the most critical part of the design process, since errors at this stage will have a detrimental effect on the track layout stage tater. The key concept in the placement task using cad is that of connection length. As a general ruke. the designer will atways attempt to minimise the connection path between components. This may seem obvious. but there are certain subtleties associated with cad which are important. Consider the ratsnest display, which is a set of connections defined by the netlist. But consider further a multi-connection net suct as $\mathrm{V}_{\text {c }}$. The connections to the $V_{\text {ia }}$ net are pre-defined by the netlist in all order that may well not be ideal for the particular placement scheme chosen by the designer. Figure 2 shows how a cald system can automatically reorganise the connections to mimimise the comnection length. (learly, this has no effect on the connectivity but is a critical
indicator towards the routeability of a design. The concept of automatic length minimisation may be extended to that of pin and gate swapping - a feature which allows input pins to logic devices to be swapped to reduce connection length. Whole gates may even be swapped around in the design in an attempt to achieve the shortest connection scheme.

The process of placement begins with design-critical items such as edge connectors, high-voltage parts, thermally critical components and RF devices. These must always be placed mannally by the designer and fixed in place so that no automatic function can subsequently move them. The remainder of the parts may be placed either manually or atutomatically.

Routeing. Once placement is complete.

the next phate of the design is the conversion af the conncetions into tracks. When performed manually the operation of a cad system is closely analogous to the use of tape in at convernlional layout. The great advantage which cad offers is the speed and accuracy of manual track placement. Editing is also considerably simpler, with modifications being yuickly and éasily made to().(0) in resolution.

The atternative tomanual routcing is. of coursc, athorouteing. Unfortunately. there are many misconceptions surrounding atorouteing tools, and opinions vary from the deeply suspicious to the devotedly enthusiastic. The truth is that what an attorouter can do for you depends very much on what you need.

Although there are several different approaches 10 atutorouteing. there is one concept which binds all routers together. This is the use of layout feat ture cost. All routers use a system of feature cost to assess the feasibility of a proposed route. As the name implies. the feature-cost system assigus a notionall cost to the various features of a route
and gencrattes a total cost by adding each feature up. The route with the lowest total cost is then chosen from the various alternatives. Costed features typically include: vias, routeing in the non-prefered direction. routcing in dense areas of the layout and routeing between adjacent component pins. Fïgure 3 shows set-up for attorouteing.

What destinguishes different autorouters is the way in which the feature-cost concept is applied. The vast majority of routers operate on a grid and calculate the cost of each route for successive grid points. The difference between routers lies in the quatification of connections. which is the process by which the router seleces the order in which to perform its function. In practice several passe's are performed which have costs optimised for different types of connection.

The routeing process that has been described so far is present on the vast majority of atotorouters. There are. however. certain refinements which have achieved popularity in more advanced atutorouteing tools. The first of these is the "rip up and re-try" algorithm, which uses the costed-maze principle. but includes the capability to correct carlier mistakes by removing previously routed tracks which are causing an obstruction, routcing new tracks and then re-routeing the ripped-up tracks. This approach has a far greater chance of achieving 100% completion of the layout.

The finall role of the layout module is (t) generate the necessary outputs that are required to fabricate the hardware: in this operation. the organisation of the database into levels is of key significance. Features from different levels can be merged to assemble the information that is required for each output process. A drilling detail, for example. may take pad symbols from one level, a board outline from another and a title block from yet another.

The ultimate extension of these principles is the integration of the design database into a manufacturing environment. ()utput from the layout packige could be used to control automatic production and lesting equipment. while maintaining a record for the stock-control and accounting departments. Figure 4 shows the sclection.

Practical comsiderations

So far, the discussion has dealt with the operation and facilities of electronic cad systems. There are however, certain important practicalities which must be considered when initially investigating cad, the first of these heing hardware.

The CPU in a cad system may be judged according to two primary factors: processing speed and memory capacity. In the context of cad, the clock speed of a CPU offers a good indication of the actual processing speed, since cad makes extensive use of integer operations rather than using floating-point arithmetic. By the same token, arithmetic co-processors may well not offer a significant advantage. The only area where this guideline does not apply is in the field of simulation, which most definitely does require a powerful floating-point capability.

Fig. -3. Sirategy set-up window for an autorouter.

Fig 4 . Selection menu for output to a plorter.

Memory capacity is. of course, the limiting factor in the database size and is therefore significant in the complexity of designs that may be tackled with a particular system. Autorouteing is a particularly memory-intensive atetivity, since it offen requires several words per grid point. (On a (0.02singrid, a four layer. 6×6 bin layout might lypically require around limbyte of ram.

The next item of hardware to be considered is the display. This is, of course. an important feature of any cad system, but electronics cad has slightly different requirements to its mechanical counterpart. A full-colour display is a virtual necessity, since this is the most effective way of identifying different layers, but outright graphical resolution

■(IIIdIIICAD

is not of primaty importance. This is because, unlike mechanical drawings. electrical designs consist primarily of simple. geometrical objects.

Finally, the input and ourput devices must be considered. On the input side. a pointing device of some kind is a great time saver. The majority of systems use the humble mouse with great effect. but digitizing tablets and lightpens may provide usefulalternatives. For output, the minimum requirement is a dot matrix primter. While this may be used primarily for printing statistical information. some systems support the output of graphics for checking purposes. If a beller graphicaloutput is required. then a pen plotter is essential. This is particularly useful when generating schematic hard copy and can also provide good results for tavouts. The final artwork gencration for photo-lithography. however, requires the use of a photoplotter. which is the only way to ensure dimensional correctuess. In view of the cost of photoplotters (1ypically several tens of thousands of pounds) most cad users take advantage of ploting bureaux. which can accept job files in machine-readable format.

A second consideration when investigating cad is learning time - very importamt whenevaluating a system and forming all important requirement for most prospective users. If the system is to be used primarily by a single "expert". then the training time regured to learn a complex packige may be justified by the advanced capabilities of the system. If. on the other hand, the system is for the use of several less skilled operators who may only use it occasionally. then it is quite probably worth sacrificing complexfeatures for calse of use

Another consideration in cad is the issue of interfacing. The shortcomings of so called "standards" in hardware imerfaces are well known and are no less prevalent in software systems. When evaluating a package the interfaces should be clearly identified and tested for their integrity.

The final issue in a cad evaluation is simply one of capability. It is important to establish exactly what cad can and cann do. This must always be seen in the context of the requirement. but one single principle always applies: cad is quite literally a design aid and must be recognised as such. Cad will never replace engineers and skilled layout artists. It acts. rather. as a productivity tool. Seen in this context, the benetits will become clear to anyone contemplating using computers as part of their design effort.

Nettlister and EEDesigner III

Two packages for PCB design from Racal-Redac and Betronex Elektronik

RACAL-REDAC NETTLISTER

This program accepts imput from the heyboard. mouse or both in any combination. There are two menu pancls, one for control and one to add to the display. These pull down at the top right corner and toggle. At other times they are out of sight. A message bar across the top announces the current function and requests action when necessary. There is a full set of ten general actions called by the function keys.

A schematic is buitt up and the resulting lile(s) can be ouput to a plotter, a printer a network and to bavoutgenerating software. It does not produce lavouts itself, but the schematic. data files and parts list are completed within the pachage. The data is intended to be passed to Cadstar or certain other programs for generating PCB conductor layers. resist layers and print screens. Cadstar is available with or without an autorouter and in versions for PC-AT and 801886 machines.

The box contains five $51 / 4 \mathrm{in}$ or three $31 / 2 \mathrm{in}$ discs. a two-volume reference manual. a study course in paperback. and keyboard templates. The latter comprise a moulded plastics frame for the $83 /$-hekey keyboard and a sheet of sticky labels which have to be cut up and stuck on to the 101/2-key keyboard. In my experience sticky labels either dry up and drop off. or they go stimy and make a mess. A small point, maybe but it hits your eye every day. They aren't even in sequence. Every one has to be cut up separately.

Installation takes a few minutes only. The user has to modify CONFIG.SYS to include ANSI SYS and the optional MOUSESYS, and it is convenient to add a path to the new subdirectory in AUTOEXEC.BAT. If a proprietary
graphics card is in use. and if network software is required the drivers have to be added to AUTOEXEC.BAT. Instructions for this are explained in detail. including the use of EDL,IN. for those not familiar with DOS level working.

The first dise has an installation routine which catls the dises in tum and copies them to the hard dise in a subdirectory REDAC. When they are all loaded a configuration menu appears for the selection of the appropriate display printer and mouse drivers. Netlister's own CONFIG.EXE can be called at any time to reconfigure the system. The space occupied on the hard dise is about 1.6 Mbyte in 115 files. Finatly the user is advised to create a working sub-dirctory of his/her own and tologentoit.

Self study course

The self study course is very well put together. Three fold-out diagrams are found at the back and can be seen at all times; if it would stay flat it would be perfect. The reader can skip the section dealing with the creation of symbols. but it is well worth following because it is extremely detailed and leads the student gently into the look and feel of the system. The later section on the creation of a schematic gradually moves

The operating environment is an IBM PC-XT, PC-AT or compatible with 512 Kbyte ram and DOS 2.0 or later, or one of the IBM PS-2 range of computers. The software supports CGA, EGA, VGA and seven display cards by other manufacturers, including high-resolution models. It supports IBM or Microsoft mouse and 17 pen plotters. Files can be created to interface with other plotters. It will output graphics to an Epson FX series or IBM Proprinter or equivalent dotmatrix printer. Parts lists are plain ASCII and go to any printer.
faster，laking eartier work as needing less and eventually no further explana－ tion．There are a few minor onissions． which I resolved immediately with the reference manual．The company claims that one to one－and－a－half days work completes the course，and 1 found this estimate generous．

The manuals are organized in sec－ tions．Appendices are not at the back of the book but at the end of the relevant section，als are the error message ex－ planations．There is no index but all the menu choices appear in the table of contents．Each hats a new page

Fig．I．Vedlister：a bi－directional shift register．executed in discrete logic and reduced in sale to put the whole dranwing on screen at once．Text would be too small，and it is replaced by small rectangles of appropriate size．The larger rectangles represent hierarchical drawings．one of which is shown in
Fig．2．
There are few idiosyncrasies．One is the terminat numbering on the symbols． which is untike any real component． The componem numbering is substi－ tuted when components are assigned later．It allows the use of a symbol for more than one component．and facili－ tates component substitution．but does the operator need to know？Another is found in the library： P 12 V and N 5 V and the rest are imtuitive supply rail sym－ bols，so why does the 5 V supply have to use VCC？It takes two or three minutes only to ald the P5V symbol to the library．Incidentally．the parts library only lists digital ICs．I included an edge connector：when preparing an output file for PCB layout the programme asked for a mame and number，which I was able to bypass by entering 500－a random shot．When the parts list was printed out another library number had heen substituted．suggesting that the part had been recognized after alt．

The overall impression is one of con－ siderable user－friendliness．There is a relatively small number of menu selec－

Fig．2．Netlister：hierarchical drawing， with the ment box displated．There are four of these in the whole circuit，each stored separately on dise wilh its own name．
tions．and one easily learns their pur－ pose and location．One calls a program－ me from the DOS command line for each major function．in effect a third unwritten menu．Other programmes in the Nettister suite create parts lists． data for PCB bayout preparation and so on by question and answer．Anyone who can read a circuit diagram ought to commence productive work on the second day．

Initializing provides for one invisible and eight visible line types．Five of the visible lines．once laid down，are pro－ tected．To alter them one first converts to an unprotected type．These line types apply to text as welt as graphics．There are cight assignable line widths，and defauli valuescan be changed．

The working area is limited to 8192×8192 I）SUs（datia structure un－ its）．which aredefinable．In addition the working grid and the optional displayed grid can each be defined by intervals of a

Fig．3．Vettlister：screen dump of the original drawing used to generate the hirearchical bon of Fig．2．Selling the screen dump going caused total loss of the screen display．I had to do a system reset when printing was completed．
number of DSUs．Symhols and connec－ tions are located on the intersections of the working grid．Moving the symbol takes the test with it and rubber－hands the connections．Substitution of sym－ bols preserves connections according to the system sown numbering．Labelsare automatically incremented ats they are supplied：quad gates started ．A incre－ ment to ．．D and so on．

Commands are selected by their ini－ tiat letter or the mouse．Routeing is either by mouse or by stepping with the arrow heys．A toggle selects either grid point size or fine DSU－sized steps． There is an automatic back－up at irregu－ lar intervals which seem to be tied to the exit form individuat operations．

The libraries can hold up to 1023 symbols（ 236 listed in the manual but 252 claimed by the directory display function）and up to 5280 parts descrip－ tions（759）listed．counting 7400 and 7＋LSOO als different）．No micro－ processor chips are included．hut there are a few memory chips in sizes up to 64Kbyte．There is a large selection of TTL family devices：I only noticed one onission from among those I have used．

There will almost certainly be occa－ sions when new components have to be created and anded to the libraries．and there is a symbol creation program and library editor．Symbol create has two menus like the schematic programe． and some of the choices are the same． Learning one is good preparation for the other．The symbols used are the traditional ones．D－shaped And gates andsoon．

Graphics are serviceable but curves are a bit ragged．The cursor has a curious way of attracting attention：it gives a double wink every hall second or so．which tooks random until one stu－ diest．

The program supports up to 20 levels of hierarchy．This is usefut when trying to keep everything on screen．or when

reducing large schematics to several small slieets for al manual. At the top layer one creates a box containing a circuit from another sheet. The program takes the user through this in suchat way that all terminals are matehed between the two. The circuit for the box call have further boxes in it. and so on. An existing hierarchical file can be used in a new place; the program extracts all the terminal data from that file and so saves a lot of time
It is possible to draw two identical components one on top of another: I did it with an hierarchical box. The parts list is correct when the part numbers are the satle. but the PCB data preparation program pours out an enormous number of errors. which don't help if you aren't aware that there are superimposed components.

Figure 1 shows an exercise example, a hidirectional shift register in discrete logic, reduced to put it all on-screen. The text is replaced by rectangular boxes in the same colour to indicate the area covered. Figure 2 is the contents of an hierarchical box. with the add menu displaved. The other menu is the control menu. The circuit used for the hierarchical box was dumped to the printer (Fig. 3).

Although the box which arrived was shrink-wrapped, it contained neither registration card nor help telephone number. The fomer may have been an omission. the latter is probably unnecessary, but it does make one feel abandoned. A.B.

NETTLISTER
Racal-Redac Ltd
Green Lane
Newtown Industrial Estate
Tewkesbury, Gloucestershire
GL20 8 HE 0684294161
$£ 495$

EE DESIGNER III

Input to this system is by mouse. There is no choice most of the time. A narrow menu at the right hand side is visible at all times, a message bar across the top expands the short litle of the menu selection when it is highlighted and another bar at the bottom displays typed entries and other data. All the features of the program (and there are many) are avaitable through the menu sustem.

The operating environment is an IBM PC-XT or PC.AT or compatible with 640 Kbyte ram and a hard disc. LIM (Lotus Intel Microsoft) expanded memory is supported, and I would say required. Extended memory is not supported. The mouse may be one of four types. Graphics may be CGA. EGA, or one of five proprietary adapters. For hard copy, five families of dot-matrix printer and five families of piotter are supported. It will drive a tape punch for NC drilling machines.

Beside the initial data capture the programme generates schematics and PCB layouts, does digitat and analogue simulations and prepares data fields for a varrety of purposes. The graphics are generally good. but the dark blue found in the simulation graphs is difficult to see and I didn't find a way to change it. Other graphics allow changes of colour. All the data can be sent to printers and plotters as required. and oupput files can be prepared for a Gerber photoptotter and for PSPICE

This program is idiosyncratic in a variety of ways. As one who is naturally at home with a keyboard. I don't use a mouse. For this program I had to go out and buy one. On powering up. the first menu selection can be made only with a mouse. The function keys are used less than with Netilister and no templates are supplied. Second. there is an enormous number of menus. One catn step through five or six. sweeping up or down each time. to perform a simple action. and then one has to step back again. White there is a large number of commands. some are duplicated or nearly so in different menus. and other menus aren't full. Third, the manuals are not arranged in a manner conducive to finding the answer to an immediate problem. All of this is very hard on the newcomer.

Software installation requires a good book. It took me two and a half hours" continuous disc reading. At the end of it all I had was a new CONFIG.SYS (the old renamed) and six new subdirectories. Two were for my creations. While the other four between them held 1999 files. I jest not. Very roughly, it occupies 6.5 Mbyle of disc space. The first system disc hats a batch tile to load the system and the first library dise has the same for the library. System configuration is by menu.

Tutorial

The tutorial can really only scratch the surface of this amount of softwate. In two places at the start the student is instructed not to use any commands

Fig. I. EE Designer III: A wo-transistor todls amplifier designed at the console. The voltage figures are the result of a DC simulation, which assumes all component values are exact. One can simulate, adjust and simulate again until satisfied.
other than those indicated, and to adherestrictly to the method of working described. In other words. the wrong key can land one in trouble. Some menus do not allow one to return without doing something. and this can catuse confusion.

The hackup system ensures that nothing is lost ; it operates at intervals of less than one minute and beeps white doing so. There are two beep tones about four octaves apart, the upper one being a warning and the lower an acknowledgement. I am used to working in silence, but I quickly adapted.

The graphicat facilities correspond to those avaitable in Nettister. and are similar for both schematic and layout preparation.
The tutorial uses a disc in drive A and not the installed library material. One can destroy this with ease. The commonly-used graphics commands are exercised, and a digital example is built up. Symbol creation is covered, and simulation. The digital simulation uses the exercise example, while analogue simulation uses three very simple examplesalready present on dise.

There is a good reason why the andlogue examples are ready made: finding the data required is no easy task. One component I wanted was the analogue power supply (reference © E). In the update manual there was a list of PSPICE primitives with some equivalems. There was a \$E listed. That is the nearest ! found 10 @E (I rang the hot line for that). The only index is in the Reference Manual, not at the end. and not up to now containing many of the key words I have sought. The contents list uses paragraph numbering, and the index. page numbering.

The mode of advancement is well summed up by the final remark in the tutorial: "The best method is "trial and error". Many changes have been made to the software since the manual was written, and the screen messages sometimes use different words. Crossreferencing is hampered. 1 am told there is a new manual in preparation. which will. I hope, resolve these problems The copyright message "1987" on each page identifies the old manual.
With use. the menu entries make more sense, but idiosyncrasies remain. Why does it deposit a junction point if a corner is created and moved on to another segment of the same net, when it doessit if an existing comer is moved on to another segment of the same net? (you can add them separately). Why are comers not avaitable in the same menu

Fig.2. EE Designer III: AC simulation of the circuit in Fig. I. I couldn't change the deep blue colour, which was not easy to read when light fill on the screen. The fall in gain at IIF is due to the parasitic capacitances in the models used.
as those used to lay down connections? One is supposed to rulbber-band connections from terminal to terminal. and then change menus to sort it out. During connecting. espectally if designing at the console. one might easity find that another component is reguired. Ht takes five menu changes each way to go and get it. Ht.all adde up to a kot of clicking and swishing

This is a programme for engineers. One can design at the keyboard. do at simulation. and switch back to modify the design as often as needed to arrive at the desired result. Having done that. one can prepare a PCB layout with up 10 twelve layers of conductors. and solder mask and silk screen for each of the two sides (1 tried only two!). There is all atutorouter which will accommodate whatever the designer fixes in advance. or tracks can be laid down manually. It is possible to alter the circuit at this stage. as for example to use spare gates and save a pachage of inverters. and
feed the change back to the schematic It is also in order to change a schematic and feed the change forward to an existinglayout.

These facilities lay traps for the unwary. It is apparently possible to transfer from the schematic generating section to the layout section with the schematic still residemt. Saving from here overwerites an existing layout file of the same name if you let it. and bang goes the layout. I saly apparently because, in retrospect, it seems the only way I could have lost half a day's work.

The maximum ploting area is $800 \times 8010 \mathrm{~mm}$. and the area to be used is specified in absolute measurements. metric or imperial. Component data is referenced through a tile with the extension DEV. There are 12 categories of line and text indifferent colours, and 16 colours are used for the 12 track latyers. masks and silk screens. There are 16 trace widths, seven text sizes and pad details all presettable and with defaults. There are macrofacilities for sections of both schematics and layouts. I saved a macro consisting of a coit and a capacitor, which took a quite remarkable number of dise accesses to complete. For some reason the simulator regarded these as undefined when 1 used them. probably becaluse I took the macro from one of the preset tutorial exercises.

The . DEV files hive their own subdirectory holding 1168 files. Each device has its own file. and provides links to other files with symbol and package ousline datia which is shared. There are facilities to create new symbols and device files. and the content of these tiles is explained in some detail.

Figg.3. EE Designer III: decade counter, in discrete logic. This is a modified form of the tutorial exercise.

Once a feature of the programme has been uncovered, it is seen als powerful and useful. Figure 1 depicts a discrete amplifier using two transistors. Voltages shown are the result of a DCC simulation. The AC simulation produces the data for the curves of Figure 2.

The phatse range is limited to 360°. with a choice of four starting values 180° apart. Intervals of 90° would he more useful, but phase overrun simply causes a switch across the diagram.

Time domain simulation (TD) is also provided. I wass sure the data must be tucked away somewhere and I made it a crusade to find it. The chapter dealing with TD barely mentions input. There is a parameter entry described in the tutorial book and one is aware that to atscribe parameters one must seled the component on the schematic to attach the datia. The symbol is all.

Entries like \$E (and loothers) won't do Model datal can't be attached. In the update manual I found a gencrator for analogue simulation. with a simulation code of -7 . and in another platee at -7 entry had the memonic ω G in brackets after it. the only one in the list so annotated. I find in the library a schematic symbol file @G.SCH. The schematic capture doesn't loadit. There are detailed instructions for creating a DEV file, but they hang if no ligeout symbol is provided. Another possibility is the dise model edit I came across in the analogue simulation group. This lists a voltage generator, precisely is required. which allowed me to create a file on dise with the parameters for sine or pulse waveforms. But no symbof to hang them on.

At 11.30 pm the hot line isn topen. At one point I entered the voltage generator definition sequence from the edit dise model menu selection after entering TD. I instructed it to load the model I had written, and the menu on screen came up with no exit - everything else. but no exit. I had to do a general reset to get out.

Next daly it turns out that the entry required is @G. I now understand the displayed message about DEV or (") symbol. I started a simulation, which hung. Clearly some of my data requires overhatul. My deadline for photographs passed, so theress no illustration of a time-domain simulation. Subsequent processing of the file branded my * m_{a} as undefined, and it wouldn't accept a definition. I also tried the dise model edit from the TD menu again. and \mid still meeded a general reset to get out. I also find that if 1 do a model edit from the main analogue simulation menu before going to TD (the same menu comes up) 1 get a return function. Furthermore, it will now go through the motions of a simulation, producing a table of (incorrect) data. It does look als though ! will get there in the end but I can't report that at this stage

|illadilicad

I describe this episode in detail as it is an example (albeit one of the worst) of the trial and error needed to get to grips with the program.

Figure 3 is a decade counter in discrete logic. Figure 4 is the corresponding layout for a two-sided board produced by the autorouter. I straightened a couple of tracks after the routeing and optimizing. which removes unnecessary vias. on the principle of try everything but the layout and component placing (fixed the connectors) is the programs.

Fig.t. EE Designer III: layout lior a two-sided primted circuit board. It can be displayed with trace widths to scale, as here, or with uniform thin lines. Components, except the connectors, and the traces were all placed antomatically by the programme.

There are 1 wo digital simulation routines: the second being more comprehensive with a number of discrete components included in the repertoire. and some other improvements. The first was used to simulate the counter, with the results shown in Figs.5.6. The flip flops catn be preset for the start, or randon settings can be provided by the programme. The figures illustrate two randon starts. Where memory chips are involved. memory data can be pre-

Fig.6. EE Designer III: screen dump of a further simulation run of the circuit simulated in Fig.5. This dump did not affect the display.

Fig.5. EE Designer III; wav eforms for the circuit of Figure 3 calculated by the digital simulator. Initial conditions were set at random by the simulator. The row of figures is defined by assigning node voltages to bits in a word, in this case those giving the value of the count.
loaded. The tables of data produced by atl the simulation routines caln also be saved in a file or dumped

The simulation routines permit insertion of user-coded routines. I haven't tried this but it seems a powerful feature.

The data in the schematic can be used to generate a bill of materials which includes costings. A file of data for each component is saved once entered, and can be modified when necessary. Three price levels are covered according to quantity

This programme tackles the electronic design process in its entirety. Its facilities cover circuit design. Simulation and PCB artwork and tape generation. Since the last printing of the manual. much new material has been added.

IIt the past most components were hoth fixed and electrically connected to the PCB by passing the terminal lead-outs through holes in the board. then soldering to a copper pad. This techmotogy is often referred to as "through-hole" and has. within the past two years. been largely superseded by SMT (surface-mount iechnology)
SM P (Fig. 1) provides major benefits by increasing paching densities over conventional through-hole technology by at least a factor of three: it also introcluces cost savings due to reduced component count and board areat. However. SMT imposes severe constraints on the mantiacturing and production cycle and demands a high level of atutomation.
Electrical inter-connection between the component terminals is made by strips of copper on the surface of the board. the spaces between the tracks forming the electrical isolation. All component terminals which connect to a piece of copper can be considered to form a common "tree" or "net". Where there is a high density of tracks on the board. then the number of layers of copper can be increased.
So. how does the engineer go about transferting his schematic drawing to the varrious copper layers. and how did PCB design technology develop to cope with the changing demands of SMT? The first step is to capture the circuit datat in a sutitable format: a tist of components used with their outlines and pad positions. plus a "netlist" which details the point-to-point connections which form the trees or nets mentioned

High-density PCB design

Abstract

The advent of surface-mount technology has led to the need for extremely closely packed boards. Bob Sadowski of Racal Redac looks at the techniques now available to the designer.

abowe with details of the track width to be used. This data cem be generated mamatly or as ath output from a cad (computer-aidedderign) -chematic captureststem (Fig.2).

Most carty design were (and some still are!) produced mannally on a dratuing board by baying down strips of tape to represent the copper interconnections after the componemt footprints had been placed in position. different colour tape being placed on separate overlaid sheets of tracing paper to signify the different layers. Engineers mas stifl oceasionally be heard refermeng to a "red and blue" artwork. which was commonly used to denote a two-layer design. To ensure some degre of atcuracy, the design was latid out to a barge saale and then reduced photographically to produce the true-scale artworks used to manufacture the hoard.

There are three major problems with this manual appoath: accuracy, connectisty and post-processing. Imagine that the yecification for the design lays down a minimum spating between

Fig. I. Surface mounting allows greater packing density than through-hole mounting. but needs automation in design and production.
tracks of 0.0210 in . Even designing at a scale of $10: 1$ would require that the designer manually position the tracks with a minimum spacing of 0 . 2 O(O) Win to guarantec contormatnes. Reducing the design scale factor or setting the track spacing rule to a more realistic level of (1).01) in makes the bavout engineer's joh very difficult!
Manataining the original connectivity of the netlist is also difficult: it relies upon the dexterity of the P' 13 lavout engineer to ensure that the tape is firmly fixed to the backing paper and that tracks line up between lavers: the engineer must also remember to add pads (0) represemt "via" holes. Modifying a layout, where the PC ' 3 layout engineer may have to relocate a corponent and re-route existing tracks. introdaces a major rivk that short or open circuits may be introduced.
Finally. when it comed to peostprocessing the design to extract manufacturing data, for example hole drilling data or the information tor a solderresist mask, the manual method has a wery wide margin of error.
P (13 cad systemsprovide ann invallababe design toot to overcome these problems. and atho to allow engineers to produce complex multi-layer designs which are beyond the capability of manual methods. Six-andeight-layer boardsare now commonplace, with occasional spectalis: applications demanding over 50 lavers! Tounderstand how using P $P^{(B B}$ cad can achieve such bencfits, we firs: need to review the design process, which can be split simply into three sections: preparation of data, component placement and track routeing.

Data preparation

As outlined athove, the most essential data reguired for a PC'B design is a tistof the parts to be used and their component footprints. together with a neelist of the commectivity of the design. Scnematic capture packages (Fig.2) available within most modern cad systern allow the user to capture his chematic diagram on screen using customisathe parts and shapes libraries and produce anerlist atumaticatly.

Figg.2. From a laymul like this, a metlist is gemerated.

In using atch at cad sy:stem. however. it is neccensars to ypecify additionat data which the manuat designer might take forgranted. This data inctudes the spaceing ruler on what track-to-track. track-to-sad and pad-to-pad dearances are allowed: the sizes of component pads and their ansociated drills for throughhole designs: the size and thape of pad bariants to be used for different soldering technologies: the sizen of text item: the size and thape of the board: and. not leatimportant. What colour hould be

Fig.3. Component placement can be either random. as seen on the left. or according to the Manhattan algorithm, show n on the right. The improvement is obvions.
used to display all these items on the computer screen!

In practice, most of this data does not vary from one design to the next and can be stored in a default file, thus simplifying the layout engineer's job.

Component placement

Once the basic design information has been fed into the PCB cad system. the next task is to place the components within the board outline (see Fig. 3). Although this sounds simple. it is actually the most important part of the design process, since bad component placement may make it impossible to route - that is to position the connecting tracks on - a layout which could otherwise be easily routed.

To achieve the optimum placement. the layout engineer needs to take advantage of all of the cad tools available to minimise connection length (the sum of the point-to-point or pythagorean connections for all nets) and produce the best pattern for routeing. However, these tools must be used in a sensible and logical way.

Automatic component-placement tools vary widely, from simple routines which merely fill up the available space
with no consideration of the routeing pattern. to those which use artificial intelligence techniques to determine the order, rotation and position of each component. even taking into account the ahility to automatically flip or mirror SMT components from one side of the board to the other. The layout engineer still needs to exercise discretion and run these routines as a number of passes to optimise machine time. grouping together components, such as memory devices, which are logically inter-connected. Running more and smaller passes of a routine is more effective in terms of both man and machine resources (that is, the PCB layout engineer takes less coffee breaks!)
As an example, consider the negative biased Manhattan algorithm used in the automatic placement tools within Cadstar, Racal-Redac's PCB cad system running on IBM-compatible PCs (Fig.4. heading). This algorithm attempts to emulate the placement process by applying weighting penalties to selected groups of connection types (e.g. bus signals): this ensures that components commonly connected by those signals are placed together, in logical order, in
a clear area of the board where a minimum number of cross-overs will be created. Similarly, components with few common inter-comections with other devices will be placed in any available area of the board where their potential track lengths will be minimised.

Use of the Manhattan algorithom ensures that the resulting placement will provide a routeing pattern with the orientations of connections biased toward the X and Y ases, which simplifies routeing. The ability to selectively bias the connection pattern is particularly useful before routeing power tracks on conventional through-hole boards. when an un-biased minimisation of the connection nets woukd produce a more random, and hence more difficult, pattern to route.

The connection pattern can be further optimised be running automatic pinand gate-swap routines (Fig.5). These routines swap compatible pins or gates. or exchange equivalent gates within and between compatible parts, to minimise the length and cross-over of connections. The types of swap allowed for each part type are defined in a library. the data being extracted from data books supplied by the part manufacturers.

Since these changes alter the connectivity pattern of the design. they should all be stored automatically by the PC13

Fig.5. Optimising the layout by pin and gate swapping. The effect of swapping is shown below.
cad system so that they can subsequently be back-mounted to the schematic drawing by manual or automatic means.

The result of using these placement tools is to reduce the total connection length within a design sometimes by over 25%, which results in a much simpler pattern for routeing. In some cases, however, the PC'B layout engineer may wish to produce a nonoptimised connection pattern, for example on an analogue design using high-speed logic, where specific connectivity must be maintained to minimise crosstalk. In such circumstances, the ability individually to optimise connection nets or components with respect to their position is very important.

Track routeing

After a number of iterations, the PCB layout engineer will be satisfied with the component placement and connection flow, and will be ready to hegin routeing. Important decisions must be taken on how many track lavers are required. how many additional layers are required for power or screening planes, and how the track layers should be biased by routeing axis.

Deciding how to build the board at this stage requires a measure of experience, a pinch of information and a twist of luck. since making the wrong decision can be very expensive in both development time or production cost. Trying to squecze tracks on to two layers where four are really required will either lengthen (perhaps infinitely!) the design cycle, or compromise the design rules by forcing the engineer to use lower track widths or track-to-track spacings. The alternative, to add additional layers, is complicated by the fact that track layers are normally manufactured in pairs. so increasing the cost disproportionately. Some cad systems provide a board-status report which provides essential information such as the board area, component-to-board density ratio, number of equivalent lCs, etc. to assist the layout engineer in his decision. Figure 6 shows a high-density PCB layout designed and routed using a modern PC-based cad system.

Deciding whether to bias the routeing axis on a layer will depend on the types of components used, the soldering method to be used and the connection density. All routers, manual and automatic, find it much easier and faster to route a board using biased layers. Most through-hole boards using dip technology are routed with paired layers of X-hiased and Y -biased tracks (Fig.7).
Assuming that the board will be wave

Hig.6. A high-density PCB designed by means of a PC'-based system.
soldered, then the solder side is biased to run in the axis of the direction of travel over the solder wave, to minimise spikes and short circuits. The decision to allow unbiased routeing is usually forced on the layout engineer when SMT components are used. since they call require track entries from all four points of the compass (dips are usually X or Y biased, not both), and can in addition be placed on the board in any orientation or on either side, to optimise the connection pattern. SMT also implies finer track widths with smaller spacing requirements: whereas a "typical" dip board will use ().01 in tracks and 0.11 in spaces, an SMT board may use 0.01) Hin tracks with 0.006 in spaces!

When the track density is high or when a muxture of technology types are used, then the type of autorouter used is critical. Autorouters can be separated into two broad categories: cell-based and gridless.

Cell-based routers work on a grid principle whereby all obstacles (pads. existing tracks. copper area, text etc.) are mapped on to the grid points which are marked as either blocked or unblocked. When routeing a track, the router searches for unblocked points which will form a path between the source and destination of the connection. Tracks are placed on the grid points on the assumption that there are no off-grid obstacles; to properly map off-grid obstacles the resolution must be increased by lowering the routeing grid.

For example, to map a one-inch square board on a routeing grid of 0.2 in would require storage of 36 grid points for each layer: doubling the resolution to 0.010 in increases the number of grid points to 121 per layer. while running on a routeing grid of 0.001 in - the resolution of the majority of PCB cad systems - increases the number of grid points to overone million per layer!
Memory availability within the design system and constraints on run times
impose a practical limitation for gridded routers on either the routeing grid or the physical size of the design. An added complication is that gridded routers have difficulty routeing designs where the routeing gird is less than the sum of the track size and track-to-track spacing, which makes them ineffective on mixed-technology boards where the variable component-pin pitch means that the majority of pins will be off-grid. increasing the possibilities for error.

Giridess routers operate on the principle of storing all objects and design parameters as absolute entities in a list. Since the gridless router understands the absolute size and position of all obstacles. it can follow their contours (Fig.8), allowing for specified spacing rules: this produces a much higher track density with no spacing errors.

Fig.7. Two layers of a board layout using X and Y biasing.

Fig.8. (iridless routeing produces a higher track density.

Some of the more competent routers have the ability to "rip up and retry" individual routes to find alternative paths when the going gets tough. The Bloodhound autorouteing algorithm. as implemented on both workstations and PCs in Racal-Redac's Visula Plus and Cadstar software suites, has additional intelligence which allows it to "push aside" groups of existing routed tracks in busy areas to clear a way for the new track, much as a manual designer would

ICldallicad

do (hut the software does it much faster).

When routcing is complete smoothing passes must be run to minimise the number of track segments. optimise the track density and minimise the number of vias. Optional mitreing (45 degree cornering) helps to produce a more reliable and manufacturing hoard. The gridless router may require more system memory initially than a gridded router. but the requirement does not increase with the resolution. making gridless routers the only real choice for mixedtechnology and high-density SMt designs.

Manufacturinglinks

A good PCl3 cad system will provide major bencfits when it comes to posit processing the design data to produce consistent, high-quality documentation for manufacture In addition to individual plots of each electrical hayer to produce the copper etch patterns, todays PC-based cad systems can often provide the reguired data for silksereen. solder resist, paste mask, NC drill etc. in the appropriate format for pen plotters photoplotters or as paperpunch tapes. Any modifications to the PCB bayout then only require that the designer produce new output tiles to reflect the design changes.

More advanced workstation-based EDA systems should also be able to provide direct-drive data for atutomatic assembly tools and atutomatic test equipment.

It is generally the case that the capabilities of PCB cad software packages atre reflected in the price. However. it should be borne in mind that cad is supposed to be an aid to the designers: it should not become the master. Most of adesigners time will be spent in interaction with the system. so it must be technically competent. user friendly. but most of all it must allow YOU to control IT

CADSTAR
 Racal-Redac Systems
 Greentane
 Newtown Industrial Estate
 Tewkesbury
 Gloucester, GL20 8HE

0684294161 £4500-£12000

AutoSketch

An object-oriented drawing package, providing output to a laser printer

Autodesk, the makers of the cad drawing package. AutoCad, inroduced this product some years ago to fill a gap it the market. AutoCad is a full-featured, professional, expensive drawing package. capable of threedimensional work and with a host of features

For the single user or smatl husiness looking for something to draw occasional or less-complicated material and not requiring 3-1) capabilities. AutoCad is way over the top in most respects. not least the price, which can exceed the cost of the hardware it is run on. AutoSketch filled that gap. being a 2-D drawing package with sufficient tealures for everyday use. As AutoDesh put in the manual. you can get your feet wet in cad without drowning in a sea of commands and options. Having battled (unsuccessfully) with AutoCad on a few occasions, I totally agree with that concept
The progratil still maintains compatibility with AutoCad in terms of file format. so that you could later upgrade and still be able to use any drawings produced in the lower-cost pachage
AutoSketch is obiect oriented. That is. it holds all the information on the lines. circles and other material that you draw as a series of mathematical descriptions. When you later change their size, the resulting image is a true scaled up or down version of the original. And any drawings semt to a primer. be it a laser. ploter or dot-matrix. are printed at the maximum resolution the device is capable of.

Simplet drawing packages. often termed 'paint' packages. use bitmapped images. These deal in individual pixels. ustally at the same resolution as the screen display. The problems come when vou want io scale such an image. either on the screen or in print if you make it larger, the pixels making up the image are also scaled up. giving a ragged appearance. If you make it smaller. detail often vanishes when the resolution of the printing device or screen is no longer an integral multiple of the original image

Operating environment

Installation is easy and the program will run on just about anything. If you have a choice of equipment, go for something with a coprocessor fitted - Autodesk supplies two versions of the program on the master discs. One is speed-enhanced with the program code tailored to specifically use the coprocessor - you cannot use the speed. enhanced version without one fitted. Autodesk claims that it performs up to 10 times faster than the standard version without a co-processor and I can validate this claim 100%. It will run with 512 K of memory, but 640 K is better, since you can produce more complex drawings, and you use it with any display from CGA up. CGA gives the worst screen resolution and is hard on the eyes, so go for VGA. EGA or Hercules (in that order) if you can. A hard disc is useful but not mandatory, since it will run quite happily on a dual floppy setup, and there is no copy protection.

Needless to say, you need a mouse or other pointing device (such as a trackerball, joystick or graphics tablet) to make real use of the program. It will work with the keyboard arrow keys but you end up taking all day to do a simple drawing.

No problems of this nature exist with AutoSketch and. once you master the interface, you can expect high-guality output. especially if you have a laser printer or penploter

AutoSketch's start-up main screen is emply except for a status line at the bottom and a menu line at the top. Memus drop down in the fastion famitiar to any Mac or GEM user. and a continuous display of memory usage by percentage keeps you informed of how large your drawing is. The main menu options are Draw. Change. View. Assist. Settings. Measure and File, from where all operations are conducted. Each has further sub-menus with everything being fairly intuitive to use

As you would expect. AutoSketeh can draw and mamipulate virtually any object you catre to draw, and on up to 10 layers. It produces spline and ordinary curves. polygons. lines. arcs. circles together with text. and you can move. copy. rotate, mirror image. size and stretch just about anything. Small draw-

ings, such as circuil symbols, can be saved and later retrieved into any other drawing to save time. I had some difficulty with the sizing function. which seems extraordinarily sensitive to mouse movement. making an ohject a lew millimetres wide expand and disappear off the screen very easily. The lack of any resident on-screen ruler facility makes it very difficult to relate to the size of objects you are drawing on the sereen, forcing you to watch the
co-ordinate display all the time It is possible to make a sort of ruler hy using the atu-dimensioning facility, but this is inconvenient.

The most frustrating aspect of AutoSketch is its manual. While this runs to 116 pages and is very informative, it is also very difficult to use. Autodesk have gone for a narrow AS format with a rather wide perfect binding. To lay it open and flat for reference is impossible without breaking the spine. Then when
you try 10 close it, it pops open again. just like the well-read piges in a copy of Lady Chatterley's I over.
While the program is well designed and, for the price, a bargain, it is more stited to drawings of the architectural and similar types than electronics. For schematics and certainly printed-circuit board design, a program designed specifically with those applications in mind makes life easier. Many of AutoSketch's functions are redundant in such applications, and it lacks many of the useful features present in software such as EASY-PC. reviewednexi. A.B.

[^3]
Easy PC

A "manual" package for board design and circuit drawing, which copes with up to eight track layers.

Number One Systems, the UK manufacturers. supplied us with both a complete working package and a demonstration version of EASY-PC. The complete package consists of one main component, EASY-PC itself, and two optional subsidiary programs: EASY-PLOT and EASYGERB. EASY-PLOT is a postprocessor for primting stored PCB or schematic dise files on a HewlenPackard plotter or any device capable of understanding HPGL (HewlettPackard Graphics Language) instructions. EASY-GERB is a photo-plot post processor. converting disc files into GERBER photo-plot format - this is stored on dise then downloaded to a photo-plonter at a suitable bureau. The latter component of the package was not reviewed.

There is also a lower-cost option called TINY-PC. This is amed at the hobbyist and works in machines with only 256 K of memory. but at the price of speed. Although all files/libraries are compatible a typical operation such as Zoom, laking tivo seconds on EASY-

PC. takes 25 seconds on TINY-PC. Incidentally. a maths coprocessor makes no difference to the speed of execution of any of this program's facilities.

EASY-PC is not an automated package in the sense that it makes any layout decisions on the user's behalf. You still have to lay out and design the printed circuit board manually. But this is a much easier process. especially when alterations are called for, than the classical pen and ink or sticky tape procedures. The same applies to schematic design. essentially no different to the computer. since the process involves the same idea of placing and linking objects. So, what can EASY-PC do. and why is using it an advantage over traditional methods?
The main features are:

- up to eight track layers available:
- up to two silk screen layers:
- automatic generation of solder resise master:
- selectiable pad and irack sizes:
- true track width/pad size shown on screen;

- full library facilities:

- output to dot-matrix primter (plotter optional)
For the average small electronics business or one-man band these facilities are probably more than adequate many people will never need to produce more than the two layers required for a double-sided PCB. Having designed many PCBs in the past, of varying complexity. I must admit that a package like this would have been of great help. had a suitable PC been available at the time.

The manual is a short. A4, loose-leaf production. taking the approach of running through a tutorial using supplied exampled files. It is competent and 10 the point. running to 39 pages with an index. plus technical information, library contents and lists of error messages.

Once you run the program and choose your stirtup mode (PCB layout or schematic diagram) EASY-PC presents an uncluttered startup screen with a rectangular outline representing the largest size it call handle - a board or
piece of paper 17 inches square. Along the top of the screen are three small blocks used for popping down menus. The left controls mostly editing functions, such as New Track, New Pad, Edit Pad etc., while the centre looks after operations performed in Block mode, such as printing and reversals. The right menu contains mosily commands affecting the screen appearance such as Pan, Zoom, Scale, Grid and Cursor size.
Many of the menu commands have keyboard equivalents, either using function keys or letter keys, sometimes in combination with Shift. This approach is usually quicker than relying entirely on the mouse, since one hand is generally free anyway when using a mouse.

EASY-PC does have one bad point in its choice of a cancel key for certain operations. The majority of PC graphics programs use the Escape key and/or the right-hand button of the mouse as an abort or cancel key; this program adopts this approach when using menus, but most of the time the right-hand mouse button acts as a confirmation key, such as when laying down tracks. This became extremely frustrating, since I spend most of my time working with two other graphics packages that take the opposite and more normal approach.

Designing a printed-circuit layout is very easy once you do get the hang of the keys. With the optional snap grid shown and set to the standard spacing of 0.1 or 0.2 in , you can start designing. The basic library is extensive, including all the standard dit and SMD pad outtines with each symbol coming with both pads and a silk-screen overlay outline for the component. Some of the more exotic symbols are a P'GA68 pingrid aray and a EUROcard outline (more libraries are available from the manufacturers). On-screen, the silk screens and pads appear white, with tracks in different colours depending on the layer selected - using two layers, the first layer shows as blue with the second in red, although you can change this and many other settings via a defaults menu.

Placing a symbol is simply a matter of selecting it from the library, then moving it around and pressing Esc to confirm the placing. It is a shame that the symbols do not move as you move the mouse as with most graphics programs each time you move you need to press Enter or the left mouse button to see the repositioning. Compare this with track laying where there is an optional rubber band feature that shows you where the track is currently placed before you

Operating environment

It should be said that you really need a mouse to use EASY-PC packages effectively. Although all will function using the keyboard and cursor control keys, operation is smoother, faster and altogether easier with a mouse. Like all good programs, EASY-PC allows you to adjust the mouse response to suit your own preference.

Until recently, EASY-PC used the CGA graphics mode with its fairly low resolution for all work. As a README file now indicates, there is an EGA version supplied with much higher resolution - you can use this on any machine with an EGA or VGA adaptor and was the choice for this review. Unless your equipment budget prevents it, an EGA screen is without question the best choice for work like this. With CGA, the screen resolution is 320×200 pixels, while for EGA it is 640×350 - the difference is readily apparent in the screen shots shown here.

dropit.

Within the $17-$ in square maximum, the PCB can be of any size. A zoom feature with seven levels aids design, as does the pan facility, using the mouse or keyboard. One striking feature is the speed of redraw when panning or zooming - even without a maths coprocessor this is fast. A quick check of the programonan XT PC gave a slower but still respectably quick redraw.

Once the symbols are down, adding the pads is easy - select New P'ad from the menu (or press F4) and drop them down. Sizes are selectable from 0.010 in to 0.3 in and the program will place them on all lavers or just the current one.

Fig. I. Two-layer EASY-PC screen shot from EGA display.
Fig.2. Typical schematic drawing

Laying tracks is perhaps the easiest, rather than the most complex operation. The first press of the left mouse button establishes the origin which. if the grid snap is on, will be the nearest pad to the cursor, while subsequent presses establish the next point or node of the track. Only when you press Esc or the right mouse button does the track become permanent - if you get into trouble, the Edit function lets you delete or change nodes at will. In accordance with good PCB design. EASYPC's default is to allow only-right angle or 45° angles in running tracks, although you can change this to allow any angle you need to do this when drawing schematics rather than PCBs. The

Fig.3. User defiaults screen used to select displayed layers and other screen defiaults.
optional rubber-band feature lets you see where a track is heading at all times (in white rather than the colour of the current layer) as you move the mouse about and I found this feature speeded up track laying immensely.
Track widths are variable at any time, even in the middle of a track run if, for instance, you are running between two IC pins. The available widths are 0.002 in (the standard default) to 0.531 in, the latter being useful for laying ground planes quickly. All size changes are reflected accurately on screen within the limits of the display resolution, but are obviously seen best using an EGA or VGA adaptor.

White designing a multi-layer board, you can instantly change from one layer to the next if you need to. There is even an automatic "via-hole" option to link a track from one layer to the next - as you change layers a prompt asks whether you want a via-hole laid down. If you answer Yes, a default-size 0.035 in via pad appears, linking you to the next layer, from where you can continue.

A somewhat more complex operation is editing tracks, although not as complex as the manual warns. It is possible to add sections to tracks without laying

Versatile...

Packed with high performance features for tough performance requirements, the superb new 4000 series from SOAR offers exceptional value fcr money.

SOAR Digitel multimeters provide a wide range of capabilities, covering general purpose applications in research and development, p-oduction line service and mair-tenance use. The 4030 series up to tie high aecuracy $4 \frac{1}{2}$ digit DMM's is complementec with some economic models which include hanc held as well as bench-type multimeters.
0.3\% basic D.C.V. accuracy.

- futo power down.

Relative and data hold functions.
I. Custom 4000 A/D convertor

- Frequency test
- 40 segment analog Bar Graph

Impact resistant case.
Vibration, dust, grime and splash proof.

High speed auto ranging and sampling

Plus (ME-4050)
Unrivalled accu-acy of 0.1% D.C.V. - Direct temperature test facility.

- Min/max memories.

For further details and full colour test and measurement eq⿴ipment catalogue, contact the sole U.K. distributors:-

TEL (0455) 283486. FAX (0455) 283912. TELEX 342523 SOLEX.
down the whole track again, and even to drop a section of an existing track down to a new layer using via-holes if you run into layout problems
Text options are extensive in the same way as for pads and tracks with full editing facilities. You can add text to either copper or silk screen layers, and in varying sizes from 0.05in to 0.4 in high, with the line widths composing the characters variable from 0.005 in 100.05 in. Text is also rotatable in 90° angles.

Once your layout becomes complex, it is easy to change the screen display to show only a single layer, or the upper silk screen or just the pads as required. This would probably only be necessary for boards with more than three layers. since the colours make it relatively simple to see what is going on, even with the majority of a complex board displayed at once.

There are many more options within the various menus to aid the PCB design. These include repeat and block move/edit facilities, lext flip (mirror image), and the ability to create new symbols for permanent storage in the library.

If, as is likely with a complex design. you lose track (!) of the exact size or layer location of a pad or track, you can easily check it using the Status function. After selecting the offending item for editing, pressing the grey + key on the right of the keyboard displays a status line at the bottom of the screen showing pertinent data - for a track, this would be the Layer, Width. Current Node. and Total number of nodes in the track.

All of EASY-PCs defaults are userdefinable if the supplied settings do not suit you. For instance, with Drawing defaults, you can change any of the pad sizes through a range of 128 possible values. altering both the outer diancter and the hole size. Any changes are stored in a lookup table that is stored with each layout. so you can have different defaults for different PCB designs if needed.

The above has covered PCB design -EASY-PC is very suitable for drawing schematic diagrams athough, as mentioned earlier, you cannot use these in any way for later automatic PCB design, such as through the production of Ne Lists. A matching symbol library for schematics contains all the usual C, R, L and transistor symbols. plus over 40 logic symbols and 16 often-used labels. such as +5 V and EARTH. Drawing a schematic is really no different from designing a PCB as far as program usage is concerned. It is simpler, however. and you don't have to worry about

Fig. 4. Drawing defaults screen used to define track and pad widths.
layers since these are fixed in this mode.
Throughout any design work, EASYPC prompts you periodically to save your work. This backup function is time based. and defautis to 10 minutes. Easily changeable, it can also be turned off if it annoys you. There is also an efficient backup system which, although using lots of disc space, does ensure you should never lose your work. Three files are kept at all times - the current file. and the two versions before that. So, if you make a really bad error like deleting half of a layout and then saving it, you should still be able to recover it via the third oldest copy.
Once design is over, you need to produce hard copy of the output. The basic version of EASY-PC supports any dot-matrix printer capable of $1 \mathrm{BM} /$ Epson graphics in either 9- or 24-pin modes. Using a 9 -pin printer with output scaled at $2: 1$ (or higher) for subsequent photo-reduction, the results could be acceptable for many production johs. although hetter results are obviously obtained from a 24 -pin printer. The examples in this article show what can be obtamed from a 9-pin printer. reduced down from $2: 1$. I would have expected to see a laser printer driver of some kind. since these machines are now reatistically priced and becoming more common.
When printing, you can choose which layers to print, the scale of the output (from $1 / 4$ to $\times 4$) and the density, such as Draft. Normal or Bold. 1()-in or 15 -in platen printers are catered for, as is the smatlest line-feed increment of $1 / 180$ th or $1 / 216$ th of an inch, depending on the age of your printer. When printing double-sided PCB masters, you obviously need to be able to mirror image the bottom layer before printing - this is done using the block mode facility on the selected layer hefore selecting print.
Two very useful options are the ability to print the pads only (perhaps for a
drilling master template), and to produce a solder resist master. The latter prints the pads only, enlarging the outline by a selectable amount and filling in the drill holes

For higher quality the separate EASY-PLOT option allows output to any plotter capable of accepting HPGL commands - this covers the majority of those on the market including the ubiquitous HP7475A used for the examples reproduced here of both PCB and schematic design.

Again. virtually any of the seltings are user-definable from the area plotted and pen speed/size. 10 a choice of whether the pad drill holes are to be filled or not. The latter option has a major effect on print time, and unless you are producing a single-sided PCB master where the holes are needed to spot the drill, producing hole outlines takes an awful lot of plot time and is usually unnecessary.

Besides outputting direct to the plotter on COM1: or LPTL: you can elect to save to a file. The latter is especially useful if you require several copies of an artwork. since you do not have to go through the post-processing process preceding each plot. If the plotter has sheet feeder or uses continuous paper, it would also be possible to print overnight using a dos batch file to process several different files consecutively.
A.B.

EASYPC
Number One Systems Ltd, Harding Way,
Somersham Road,
Stlves,
Cambridgeshire PE17 4WR 048061778
$£ 316$

Those Engineers Lio The UK's leading suppliers of circuit simulation software					
Product	Functionality	M/c	0/5	Recommendation	Prue
ECA. 2	Analogue circuit simulator Allows etfects of different components to be investigated - more effectively than by bench testing. Very high specification program includes Monte Caflo \& Worst Case toler. ancing. Fourter analysis of transients. Non-linear components characterised by breakpoints or polynomial functions.	$\begin{array}{\|l\|} \hline \text { PC } \\ \text { XX AT } \\ 386 \\ \text { 386 } \\ 256 \mathrm{k} \\ \text { RRMI } \\ \mathrm{Mac} \end{array}$	$\begin{aligned} & \text { oos } \\ & 2.0 \\ & \text { or } \\ & \text { later } \end{aligned}$	Betheved to be the most powerful PC based analogue circuit simulator avaitiable Regularly upgraded Interiaces to many schematic drawing pachages	$\begin{array}{ll} \text { S675 } & \text { (speciat } \\ \text { ter:ns } & \text { for } \\ \text { education- ask } \\ \text { for ECA.2S) } \end{array}$
Prot $\mathrm{D}^{\text {d }}$	HP \& Houston plotter diver for ECA. 2 high quality output	$\begin{aligned} & \text { As } \\ & \mathrm{ECA} \end{aligned}$	$\begin{aligned} & \text { As } \\ & \mathrm{ECA} \end{aligned}$	Lets ECA. 2 produce yout brochure curves Defore you have even bull the circult	[55]
EC.ACE	Sub set of ECA.2: retains DC. AC, and transient analysis with nonlinearities modelle d Dy diodes	$\begin{aligned} & \text { As } \\ & \text { ECA } \end{aligned}$	$\begin{aligned} & \text { As } \\ & \text { ECA } \end{aligned}$	Low cost intro to ECA. 2. Upgrade path to ECA. 2 available.	2199
LCA. 1	Logic Circuit Analyser; a new sis ter program to ECA. 2 Produces logic analyser-style output traces (up to 68 signal traces) and incorporates delay and nestable macros.	$\begin{aligned} & A S \\ & E C A \\ & \text { ECA } \end{aligned}$	$\begin{aligned} & \text { As } \\ & \text { ECA } \end{aligned}$	This new program from Those Engineers will encourage thorough investigation of problem areas in cir. cuits. True cose saver.	2350
MIIEYSPICE	Analogue circuit smulator incorporates non-lineal quiescent handling and small.circuil $A C$ analysis. Full Ebers.Moll birpolar transistor tepresentation. new transformer model and graphics display - up to 26 parameters	BBC.B Ach- ime des (ext spec.)	$\begin{array}{\|l\|l} \text { DFS } \\ \text { ADFS } \\ \text { Na } \\ \text { tive } \\ \text { OS } \end{array}$	Established reaching standard; Mitey Spice on Archimedes is startling $200+$ node capacity: almost in stant calculation: Im mediate development of complex cricuins	f. 19 (special terms for edu cation; - please ask us)
SPICE \bullet AGE	Analogue circuit simulator in GEM environment Avaliable in modular form covering 1-Frequency response 2-DC quescent analys 15 3- Transient analysis 4-fourier analysis	$\begin{array}{\|l\|} \hline \text { PC } \\ \text { X AT } \\ 386 \\ 512 \mathrm{~K} \\ \text { RAM } \\ \text { mouse } \\ \text { des ble } \end{array}$	DOS 20 or later	Licensed GEM sup. plied at no extra cost Module 1 Additional modules Full program Multhuset Pro version	$\begin{aligned} & \sum_{200} \\ & \sum_{107} \\ & \sum 225 \\ & \text { Plase ash us } \end{aligned}$
mima net	Small-signal analogue circuit analysis with schematic entry of circuits \& extensive output options including symthests of transter function polynomial. Snith chart. Bode, etc. Butterworth and Chebychev fitter desigh incorporated.	$\begin{aligned} & \text { HP } \\ & 200 \\ & 303 \\ & 400 \\ & \text { series } \\ & \text { W/5 } \end{aligned}$	$\begin{aligned} & \text { Basic } \\ & 2.3 \\ & \text { or } 4 \end{aligned}$	Outstanding program for RF designers or control engneers who need to trum transfer functions Program is quite exceptional for its ease-of use.	1850
Program A	Systerns design aid analysis prog. ram with numeric entry of transfer functions or direct linh to MIMANET. Multiple inpuls. noise refection modelting and graphical outpuls are provided.	$\begin{aligned} & A_{A}^{A} \\ & \text { MMA } \\ & \text { MET } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { As } \\ \text { MIMA } \\ \text { MET } \end{array}$	Use Program A with MIMA NET to develod your PLL fiters and so on	2850
CODAS	Single- -nput control system simulator represents non linearities and transport delays Transient re. sponse, foot locus. Nyquist. Nichols and Bode plots all avalable.	$\begin{aligned} & \mathrm{BBC} \\ & \mathrm{~A}:=\mathrm{hi} \\ & \mathrm{R} \\ & \mathrm{X} A \mathrm{AT} \end{aligned}$	$\begin{array}{\|l} \text { DFS } \\ \text { emul } \\ \text { Dos } \\ 20 \\ \text { or } \\ \text { later } \end{array}$	Ideal for control en gineers. Very illuminat ung program for leaching control theory.	$\begin{aligned} & £ 220 \text { to } £ 350 \\ & \text { (ack for detanis) } \end{aligned}$
PCbar	Auto-routing printed circuil: board drawing program output to a plotter (driver extra) of to Epson FX compatible printer. Very easy to use	$\begin{array}{\|l\|} \mathrm{BBC} \\ \mathrm{~A}_{\mathrm{C}} \mid \end{array}$	$\begin{aligned} & \text { DrS } \\ & \text { ADS } \\ & \text { emul } \end{aligned}$	Ideal for prototyping. hobbyists, and leachng Excellent quality prints (double size) fron dot-matrix printet.	$\begin{aligned} & \text { £25 } \\ & \text { imanual) } \\ & \text { i: } 85 \\ & \text { r } \text { Ite) } \end{aligned}$
vutrax s A A	A mulli-sheet schematic diawing systern with special features for drawing valldation. May be used for entry of circuits into ECA.	PC XT AT 640k 8.87 8C287	$\begin{aligned} & 005 \\ & 20 \\ & \text { or } \\ & \text { later } \end{aligned}$	A very powerful schematic circuit drawing program with extensive features much favoured by pro. lesslonal users.	New low price 2500 liface to [CA.2extra)
Those Engureers have been providing curcuif des sgners with micro-based sumulation and pcb layout sothware since 1983. We now have a broad rane of pachages coverng many apptications and running on machnes irom the $B B C$ Micro fo 385 based PCs. The chances are, If you want computer-based analysis solh ware or alayout sys to an engneet who will see it as his dury to advise you - our repulation is buit on service and not apportunistic sales. Access payment accepled - please add VAI to above prices. Those Engineeps [乌己 Tel:01-435 2771 Fax 01.4353757					

ENTER 28 ON REPLY CARD

Now you can measure the current in that tracs-- Down to 1 ma - Up to 1 amp - Independently of track width etc.

42

LAPLACE INSTRUMENTS LIMTED

Loplace Instrumen's Limited
PO Boz 14, Eramhall, Stockport SK7 2QS
Telephene: Dol 44J9579

TEKTRONIX 222 10Mhz digrial storage. New TEKTRONXX T922 15 MHz dual-trace IWATSUSS5710 60 MHz quad-rlace
TEKTRONIX 2465300 MHz dual trace HP 1740 A 100 MHz dual -race Dual timebase
PHILIPS PM 325675 MHz tugeedised partable PHILIPS PM 3256 75MHZ ruggedised portable
PHILIPS PM 3263 100MHZ UP-controlled dual timebase GOULD OS 25515 MHz dual-trace

MARCONI INSTRUMENTS

TF1152A1 RF power meter 0.25W 250 MHz TF 1245:1246 Q-Meter and oscillator TF2015/2171 UHF AM FM signal generator with Synchronise
TF 2162 MF attenuator 0.111 db in 0.1 db steps TF 2300A as above with deviation to 1.5 KHz isd TF2356 level oscillator 20 MHZ
TF2501 power meter $0.3 \mathrm{~W} / \mathrm{sa}$ DC. 1 GHz TF2600 milluvoltmeter AF $1 \mathrm{mV} \cdot 300 \mathrm{~V}$ isd TF 2600 B video vollmeter 1 mV -300V isd TF2604 electronic multi-meter
TF2807A PCM mutiplex tester
2828 A2829 digital simulator/analyser
2833 digital in- line montitor
TF2908 blanking \& sym
6460 RF power meter
6460/6420 power meter/microwave head TF22 13 A XY Y cr display
TF2015 AM/FM sis. gen. 10.520 MHz
2092 C noise receiver, many fiters avalable
$2091 / 2092 \mathrm{~A}$ nolse gentrecelver 8 filters
6600 A 6616 sweepet 8.124 GHz
2018 synthesized signal generator $80 \mathrm{kHz}-520 \mathrm{MHz}$ 6056B signal source 2-4GHz
TF $1313 \mathrm{~A} .0 .1 \%$ universal LCR bricge
TF2011 FM signal generator $130-180 \mathrm{MHz}$ TF2011 FM signal generator 130.180 MHzz
TF2012 FM signal generator $400-520 \mathrm{MHz}$
$2438(303 \mathrm{~J}) 520 \mathrm{MHz}$ universat counter-timer
$2438(303 \mathrm{~J}) 520 \mathrm{MHz}$ unive
TF2303 modulation meler
2019 syntinesized signal genera
TF2163S UHF allenuator 0.142do
TF2905/8 sine squared puise and bar generator
TF2370 spectrum analyser 110 MHz .75 ohm

11602 power unir for fet pro 8733A pin modulator

TEST \& MEASUREMENT EQUIPMENT

AVO BIST LCR universal bridge
LYONS PG 73 N Bipolar pulse generator
PHILIPS PM 15991 mHz -2 mHz zynth function ger
PHILIPSPM8235 mulipoin! pec recorder
RACAL 9102 DC-1 GHz 30 W power meter
RACAL 90832 2. tone signal source
RACAL 9084104 MHz synntesized sig. gen GPIB
WAYNE KERR B642 Auto Balance bridge
WALAEKER B642 Auto Balance bricge
AHODE \& SCHWARZ 1 kW 50 ohm load N. Iypes
BRUEL 8 KJAER 4428 noise dose. meter
RIKADENKI 3 pen chan recorder
SCHLUMBERGER SRTG.GA63 selective call test sel
TEK 2901 time. mark gen converter plug-rn
TEKTRONIX 1781 IC lixture $£ 250$.

TEXSCAN WB7130-950 sweep generator
TEXSCAN 9900 3000Mhz sweeperddisplay
PHILIPS PM2554 AF milli. voll meters
PHILIPS PM5324 RF generaior $0.1-110 \mathrm{MHz}$ AM FM
PHILIPS PM8043 XY才 Plotter A4
PHHLLIPS PM667 High-res' 120 MHz counter (LP 〔582) PHILIPS PM8220 single pen chat recorder
LEADER signal generatot LSG216 $0.1 \cdot 30 \mathrm{MHz} \& \quad 75-115 \mathrm{MHz}$
WANTED: Top quality high-end test equipment for slock or will sell on commission. Please call. post of Fax list. any
quantity. Signal generators, spectrum analysers etc urgently quantity. Signal generators. SD
required lor wating customers.

ALL OUR EQUIPMENT IS SOLO IN EXCELLENT, FULLY FUNCTIONAL CONDITION ANO GUARANTEEO FOR 90 OAYS. MAIL ORDERS AND EXPORT ENQUIRIES WELCOMED. PLEASE TELEPHONE FOR CARRIAGE QUOTE. ALL INSTRUMENTS ARE AVAILABLE EX-STOCK AS AT COPY OATE. GOOD QUALITY TEST
EOUIPMENT ALWAYS WANTEO FOR STOCK. PRICES OUOTED EQUIPMENT ALWAYS WANTEO FOR STOCK. PRICES QUOTED ARE SUBJECT TO ADOITIONAL VAT.

29A Lill-votmeter
10529A10526T Logic troubleshooter
331 A distortion meter
334A distortion meter
$382 \mathrm{~A}(\mathrm{P}) \mathrm{P}$-band attenuator 0.50 db
$415 E$ SWP meter
43188C/478A microwave power melers Irom
6516A power supplies 0-3KV 6 mA
8018(07) 2-pen XY ploter high-spee
0011 Tlogic roubleshooting kil
400 FL mV -meter
3585A spectrum analyser $20 \mathrm{~Hz} \cdot 40 \mathrm{MHz} .3 \mathrm{~Hz}$ resolution
8165A function 1MH2-50MH2
(Other heads available)
3581 A AF wave analyser
8756A scaler netwotk analyse
3575A gain/phase meter $1 \mathrm{~Hz}-13 \mathrm{Mhz}$
432A478A microwave RF power meter
8553 B 110 MHz speclium analyser plug-1

ADDITIONAL EX-STOCK T \& M KIT

VARIACS (Claude Lyons) $0-270 \mathrm{~V}$ 20A 100
GOULD DSAGO0 digital s,mhesizer analyser
TEKTRONIX 521 TV Vectorscope
PM5534 standard TV pattern generator. NTSC
PM5545 PAL 625 colour encoder
PN6302 RCL component bridge
PM2120 universal switches for syst 21
PM5580 IF modulators. Systerns B G \& M
PM5597 TV VHF modulators. Rack ol 5 . Sysiem G
FLUKE B060A digutal multi-meter
ELECTROVISUALS TV wavelorm
EV4010/EV4020 19 ' rackmounting 3!
ROHDE \& SCHWARZ SWOF III videoskop c/w sideband adapio SCHLUMBERGER 4010A stabilock' mobile radio test set If,500

ENTER 7 ON IREIPLY CARI)

TWO-WAY RADIO ENGINEERING SERVICES

UPGRADE ${ }_{\text {Pr85 Hand. }}$

portables 25 Khz to 12.5 Khz at less than 10% of 'new' price.

RETROEM Tone Signalling -

Any generation, any make.
SERVGGIG Two-way radio,
cellular, Band III.

REFURBISHMENT

to manufacturers' specifications.
DESIGN \& TEST
complete systems.

Private Moblle Radio Ltd. Industrial Estate,
Gwaelod-y-Garth,
Cardiff, CF4 8JN, U.K.
0222810999
Making Radio Work - Your Way

PCBTURBOVZ

- Rizia suppent - Cierlar ompul

INSTAGRAPHIC PRODUCTS LIMITED

Betrones EE: Designer running on an OlivettiMB80C

CAD - pitfalls and possibilities

Even the smallest companies can now afford the advantages of computer-aided design for PCBs. Jonathan Hewer of Betronex explains how to avoid making expensive mistakes.

TGhere is no doubt that the advantages of cad in terms of increased productivity and design efficiency, can be enormous. Time saving is one of the most important factors. Libraries of schematic symbols and/or P'CB layout components are usually included with the system, and these can be guickly arranged on screen. Connections can be made or deleted ats required and areas of circuitry that are to be used again can often be kept in the computer's memory as a macro, thus eliminating the need to "re-invent the wheel" every time a change is made to an existing section of a design. Any system worth its salt now includes autorouteing and automatic component placement in the PCD de-
sign area: and design-rule checking means that latorious manual checks for short circuits and the like are no longer necessary. I ogic and analogue simulation is now available with many systems and this, again. can greatly improve efficiency.

Nevertheless. there can be pitfalls along the way. and only by taking a catliols approach can these be avoided.

CHOOSINGASYSTEM

No two companies involved in electronics design are the same. Different products. different working practices and different mental attitudes make the electronics industry highly diversified in approach, which dictates that the soft-
ware availatle. especially at the lowcost end of the market. must be a compromise if it is to be suitable for the largest number of users. That is how producers have managed to reduce prices so drastically over the last few years. Mass production hats great finamcial benefits. but it means that the system you buy was not produced specifically tomeet your reguirements.

Although a cad salesman may take the view that his software is perfeet for your needs, nobody else knows what you need as well as you do. Think carefully about what you need the system to do for you, and make sure for yourself that the system you are considering does what you want, not what the sallesman thinks you should want.

Remember that there is a wide variety of cad systems available and taking the trouble to compare them can be all excellent investment in time.

A full demonstration of the software. by someone with enough technical knowledge to be able adequately 10 show the features that ate important to you. is a must. If the demonstrator doesn't know his product, but makes vague promises without full explanations of how they will he achieved. steer clear.

Your first step should be to colled as much written information as possible ahout all the systems you can find which appear to do what you want at a price you can afford. Examine the literature carcfully. and try to reduce the list of possibles down to about three or tour which warrant detailed investigation. Care should be taken at this eliminating stage. or you could find yourself walsting time on a white elephant or. worse still. ignoring a system which could have heen just right. Do not alsume that the vendor with the glossiest brochure or best known name should necessarily be andutomatic choice.

Specialist exhibitions can be an excellent place to narrow down the fied Here you can have a quick look at the many offerings available and ask a few pertinent questions face to face with the various producers. If the exhibitors ate buss. they won"t want to watse time any more than you do on trying to sell you a system which is totally wrong for you. Seeing all the options avaiatble at the same place in a very short period of time can greatly clarify the comparison process, hut try to make notes: otherwise. at the end of the day the alternatives may hecome blurred.

By the time voustart evaluating your chosen few in earnest. you must have a list of your minimum requirements. If there are features over and above your minimum. that's fine - you may be able to use them as well. But do mot be deflected from what you consider necessities. Think hard about the hoard size and density you produce. for example. Perhaps you produce large complex boards only occasionally. In this casc. it may be more cost-effective to go for a low-cost system yourself and subcontrat the more complex jobs.

When you hegin to amalyse the systems on your short-list in detait, make sure that anyone else who will have to use the system has a say in the fimal choice. Often. somebody else maly spor a flaw in a particular system which had escaped your notice. And do not forged that an operator who starts off with a
 Designer
negative attitude to the equipment he is using is unlikely to he as productive as one who has been involved in the decision-making process. It is casy for the user to pass off his own operational inadeguacies as fants with the system when he is onty grudgingly using it. Conversely, if he has given the equipment his blessing in advance. he th do everything in his power to try to demonstrate that it was the right choice.

While the system is being demonstrated. heware of euphoric statements about its capabilities. For example. there is a lot of talk at present about 100% aturorouteing. As soom as one vendor made this clatim. others were obliged to follow suit. 100% autoronteing is often possible and. in fact. practically any antorouter will complete 1010% if the parameters are generous enough. But at the same time no antorouter (and no human manual router) will succeed if an attempt has been made to squeeze an impossible amount of circuitry on to too small a board. The same applies to other chams which may be made on a system's hehalf. The salesman may be able to answer "yes" to your questions, but will the system perform the operations the way you want it to? Only a detailed demonstration of the functions will tell you.

You will probably find that after your demonstrations there is more that one contender that apparently lits the bill. Now is the time to look at the less technical aspects of your purchase. Obviously price must be amportant factor - after all, the system should be expected to pray for itself in productivity gains in a fairly short time. But kook further than initial cost alone. Some vendors make very high charges for maintenance agreements. They aim 10 be "locked in" to a large slice of your cad budget for years to come. Any maintenance agreement should include regular updates, as the electronics de-
sign industry is constantly changing and you do not want to be saddled with a system that rapidly becomes onsolete. The sottware should be "living" - constantly improving with the industrys demands. If you select equipment at the low-cost end of the market, make sure there is an upgrade path so that. as your reguirements increase to higher levels. you can transfer 10 a more advanced system.
Look into the support you will be given once you have bought the system. Stories of vendors "washing their hands" of users once the equipment has been paid for have been all too common in the past. Training facilities should he available, as well as written learning aids. and you should try to obtain an alssurance from the vendor that your telephone enguiries while you are familiarising yourself with the system will be welcomed and dealt with promptly. It cannot be stressed too strongly that. if

you are floundering around trying to overcome a string of minor difficultics. you will be wasting a great deal of valuable design time. Often, a quick telephone call. efficiently handled by the vendor's technical staff. can save hours of needless frustration.

One important point to remember about any system is that it is only ats good as the person who operates it. Some cad vendors encourage the belief that, if the user enters the sctematio information at one end and moves the mouse about a bit, a few minutes later a completed PCB design will emerge. as if by magic. at the other end. But the truth of the matter is that a novice will not be able to produce such good results ans a seasoned professionat. no matter how good the equipment he is given. The old saving at had workman blames his tools" certainly applies here.

For example, when an inexperienced
user sits down for the first time with an autorouter, he will often complain that an unacceptably low proportion of routeing is completed, or that the routeing has not heen carried out as he would have wished. This necessitates a mannal redesign which the operator blames on the autorouter. However, the truth is that the original design would have been unacceptable whatever the routeing method, and the autorouter has simply brought this to light early in the design process. Continual use of the system will soon indicate how toobtain the hest results.

There are many other factors to consider before making your final decision. Speed of autorouteing alone is not all important. but should be taken in the context of the complete pachage. If the routeing is like lighting, but requires a

great deal of mantal rerouteing afterwards to bring it up to an acceptable standard, the benefits are lost

Make sure that there is one integrated databasc to cover all your reguirements. A complete system written by a single vendor. which covers schematics. simulation. PCB layout. atutorouteing and manufacturing outputs is worth a lot more than a rag-bag of non-integrated bits and pieces, all of which may be all right by themselves. but as a complete solution are useless. Smooth transition from schematic to layout and back-annotation the other way can make the difference between a highly elficient design aid and an set of sofiware that causes you to tear your hairout.

Another factor which is becoming more important is the ability to exchange information with other cad systems. Look for DXF file production if you are going to wish to output your PCB information to one of the major drawing packages. To communicate with other electronics packages. the E1)IF (Electronic Design Interchange Format) standard is becoming accepted ats the norm. As more companies with whom you do husiness adopt cad it may be important to be able to exchange information. They may not use the same equipment as you, so the ability to use a common communications language is vital.

It is possible to spend a lot more on a cad system than is really necessary. Oloviously, the vendors at the top end of the price spectrum will encourage the
view that "you gets what you pays for". and to a certain extent this is true. But do not ignore the lower-cost offerings just hecause of their price atone. PCbased systems have improved beyond recogntion in the last few years, and if you go for software which can use expanded memory. for example, you overcome the limitations traditionally alsociated with systems priced at a more humble level. If you have a generous budget available. you could contemplate several neworked PCs with a complete. integrated design/ engincering system for each operator.

Make sure that the system you choose has been written specifically for electronics design. There are many "add-ons" for general draving packages which enable them to be used for this purpose. but it costs no more to buy a specialized PCE packinge which should do the joh much more efficiently.

So, there can be many pitfalls along the tortuous route of cad system purchase. but by a careful process of research and examination you should finally decide on a system which will be one of the best investments you can make. The time you will save once you are familiar with the system will enable you to increase your productivity or spend more time on other aspects of your business. Your output should be more professional, and the image you portray will be enhanced. Once the decision has been taken to step into the cad arena. It is a very rare occurrence to hear of a user reverting 10 old fashioned methods.

CODAS and PCS

Control systems, with calculations on the ir ansociated response charatcteristics and stability, form a specialised branch of engineering. Yet the ability to design and simulate performance of such systems reaches into many fields, not just electronic engineering. Traditionally. the performance of closed-loop systems has centred on establishing the damping, response time and general stability by means of the frequency and phase reponse characteristics and the alssociated transfer function. Each feedbach control system has an openloop as well as a closed-loop transfer function. given by.

$$
\mathrm{E}(\mathrm{~s})
$$

R(s) \qquad
$\frac{G(s)}{+G(s) \beta(s)}$
$1+\mathrm{G}(\mathrm{s}) \beta(\mathrm{s})$

In which $E(s) / R(s)$ is the closed-loop function and $G(s) \beta(s)$ is that for the open loop. The ability to plot the poles and zeros of the transter function. which ultimately derive from the laplace transform of the system (differential) equalions. remains an important part of the control engineers toolkit. Such plots are satisfactorv for stable systems. but do not yield much information about unstable systems. With a low enough open-loop gain. all systems are stable, so by plotting the pole/zero positions as a lunction of open-loop gain is it varies from zero to infinity, a root-locus graphic is ohtained on the "s" plane. showing the gain factor where instability sets in. In the practical
system. this enahles closed-loop design to be carried out with open-loop measurements.

Returning to the transfer function. this is at complex quantity. By replacing the variable s with $j \omega$. the sinusoidal resporse is obtained. The transfer function under this restriction now becomes the fregnency response and can be plotied in a variety of walys. One is amplitude against phase another is amplitude ws frequency. and a third possibility is of its real part against the imaginary part, with ${ }^{(6)}$ as a parameter, yielding the Nyquist plot. A modern powerful technique involves the state-space approach, in which vector and matrix relationships appear in the analysis and design procedures.

lilladilCAD

CODAS

The CODAS program from Golten and Verwer Parmers carries out many of the techniques outined ahove. It cloes timedomain step or impulse response and plots the frequency and phase response if reguired. It also outputs the Nyguist plot in response to a single-function key stroke and it carries out a root locus plot. It does not have vector matrix computing power for the state-space approach.

The program is designed for singleinput, single-output control systems and runs under MSDOS on PC-compatible machines. Because of this. multi-loops and inputs cannot be handled on CODAS. but the associated program PCS goes some way to obviate this timitaion.

The system equation is entered directly after " $\mathrm{C}_{\mathrm{c}}(\mathrm{s})=$ "in a horizontal window. The " N " key enters the numerator. the "D" key the denominator; no fraction har appears, hut there is no ambiguty. Control engineers analyse the plant performance with regard to frequency response, time delay. phase and so forth. then add a compensator or controller in the loop to add phase lags/leads to widen stability margins or otherwise doctor the overall system response. These notionally separate functions are clearly handled in CODAS the various plots giving immediate visual indications of the effects of changes in the patameters

The status ivindow along the top of the screen is clear, enabling the various plots to be called up instantly. The reviewer entered.

$$
G_{s}(s)=\frac{1}{s(s+1.5)(s+3)\left(s^{2}+2 s+2\right)}
$$

as a hypothetical control system transier function and obtained the plot in the illustration. This figure shows the quality of the graphics: clearly. EGA standards have heen used. The clear layout and sereen window structure as described can beseen.

Golten \& Verwer have concentrated on control systems engineers with this product. but clearly for clectronic engineers. the same processing can be imported for negative-feedhach amplifier design and. with some thought. to such systems as phase-loch-loop designing. OI course the ability to plot the impulse response and immediately to move into the frequency domain implies that Fourier relationships are embedded in this prograllo suite

On the other hand. some critical remarks could be made about the sketchy nature of the documentation for this material. The stim pamphlet has hardly

anv illustrations. (How of ten we see this even with fairly costly products!) The vendors would no doubt counter this by pointing out that the software was meant for experienced contol systems engineers. But is this the? There surely would be a very good market indeed among those electronics engineers mentioned above and centainly with educators and their students.

PCS

Coming from the same people this program "Process Control Simulation" in some ways complements COI)AS. The program could very well have formed an option in CODAS, but there are argumems for a "stand-alone" version such as this. The function of PCS is mainly to simulate typical threcterm controllers the three terms originating as the direct proportional componemt. plus the derivative tem. plas the integral action. The system can be modelled with outpuis to a simitar screen to CODAS and load changes. noise, other interference. together with control-elfort limiting etc. can all be investigated. Again, the manaat is even more stim than that for CODAS. Nevertheless. some convincing examples appear in the manual. showing the step response of three-term controllers when only one term (proportional control) is present. The offset and oscillatory tradeolts are clearly shown. Then introducing the integral term shows how the offise is completely removed.

One consideration potential customers need to look at would be how quichly the cost of COI)AS at $£ 35(1)$ and PCS at $£ 1(k)$ would be recovered in time saving. One
cost saving can be made if both programs are purchased together: hundled. they cost $£ 40$. The deeper consideration involves value for money. by considering non-dedicated soltware in nearcompetition to this product. The reviewer has in mind generat processing programs such as MATHCAD, which contain (for the same cost level) enormously more calculating power but much less immediate convenience. Users would have to write processing programs first. then use the plot power of say, the MATHCAD to yield similar results. A time penalty would te involved. As dedicated software for add in control and negative-feedback systems. CODAS and PCS are excellent il you can justify the investment.
K.L.S

CODAS and PCS

Golten and Verwer Partners, 33 Moseley Road,
Cheadle Hulme,
Cheshire SK8 5HJ
0614855435
CODAS £350 PCS $£ 100$

Using photovoltaic relays in multiplexers

Microelectronic power relays such as International Rectifier's PVA series are replacing electromechanical relays in many advanced multiplexer and instrument designs. Dave Moore of IR shows how they can provide designers with the benefits inherent in solid state performance.

Modern instrumentation system designs are almost entirely solidstate. One notable exception to this has been in ansalogue multiplexer imputs, which demand a level of performance that. until now. could only be met by the electro-mechanical relay (EMR)

The introduction of International Rectifiers photovoltaic relay (PVR) has brought a number of important benefits to multiplexing applications. These include greatly increased operating life, higher reliability and the ability to operate at higher scamning rates. In addition. measurement errors catased by thermally generated offet errors are climinated. Operating power is reduced. greater mechanical ruggedness is achieved, and instrument board sizes are minimized. PVRs can be used as replacements for reed relays. stepper switches, crossbar switches and mono-lithice-mos integratedcircuits.

These advantages are made possible by recent advances in mosfet technology which enable the nearly-ideal open closed contact parameters of EMRs to be essentially duplicaled by semiconductorstructures

This is achieved by combining the linear switching characteristios of a bitirectional power mosfet (Fig. 1) with the electrical isolation provided by a photovoltaic generator (PV(i) energized by aled (Fig. 2).

The PVC consists of a compate series connection of photodiodes in which p-n junctions are diffused into individual silicon wafers, stacked and alloyed logether (Fig. 3). This configurationcan generate several volts into an open circuit but can deliver only microamperes of output current (Fig. 4). The

Fig. I. Output characteristics of a tupical hidirectionati powor mosfet.

Fig. 2. I'hotovoltaic relay consists of hed plus photovoltaic generator plus bidirectional mosfet.
 teristics of a modern mosfer. which reguires several volts of signal for full conduction hut draws virtually zero steady-state current. Acharging current of only a few microamps can turn on a typiad moster in a few microseconds much faster than the response time of an electromechanical relay

The release time of a PVR can be greatly reduced by the use of additional. active circuit elements (Fig. 5). In this circuit, the source-to-gate charge on Tr_{1}

Fig..3. Ihotovoltaic gencrator is a stack of serins-comnected photodiodes. edgeillumim:ated.

Fïg. 4 . ()utput characteristics of a 12-cell plig.

Fig. 5. Gate discharge circuit greatly reduces the release time of the PIR.
is short-circuiled by Tr_{2} whenever the gate voltuge of $\mathrm{Tr}_{\text {, }}$ is signifreantly more positive than the voltage across the PVG

This configuration. requiring only a single PVG, achieves bounce-free dropout release times in the 10 to 50 us range.

By capitalizing on features that are unique to the PVR, the imnovative designer can now ereate higher performance systems of smaller size. For example. switching a 50 V .20 mA (IW) load load, the PVR achieves an operationg life in excess of 10^{10} operations. The hest reed delays achieve only $10^{\prime \prime}$ operations at much lower power switching levels evenafter screeningand burn-in.

Actuation power, typically 50 mW for a reed relay, isonly 3 mW for a PVR and therefore produces negligible heating The simple output structure of a PVR minimizes thermal junctions resulting in thermal offeet voltages of less than 0. $2 \mu \mathrm{~V}$. Solid state switching also engenders bounce-free switching al speeds of less than 50 fes, approximately twenty times faster thatn EMRs. Speeds of this order make higher scaming rates eminently practical and break-beforemake operation is assured by a special fast turn-off circuit integrated into the poweroutput stige.

Input drive, as well as requiring only 3 mW of power, is non-inductive. eliminationg the need for a coil suppression diode in the drive circuit. Greater packing density. too. can be achieved through both the small size of the PVR less than 0.0102 cubic inches per poleand its total insensitivity to orientation. external magnetic fied and magnetic crosstalk, as well as very high shoch and wibration resistance. Other features include up to 4000 V AC isolation. high voltage blocking capability, very low on-state resistance and total freedom from latch-up. The switches remain open when the logic power is removed. and signal sources remain isolated without disconnection or shont circuit protection precautions being necessaty.

MULTIPLEXING

Analogue mubiplexing requites an array of switches operating individually or in groups to conned each of several signal sources to a common amplifier or system. Multiplexing maly be in either random order or sequential order (sometimes refered to ass "scanning'). Figure 6 illustrates a low-level differential multiplexer using three switches per channel to comneet the signal and shield or guard to a measurement system comprising a high gain amplifier. sample-
and-hold. and an a-to-d converter.
Many important performance characteristics can be demonstrated using the simple test circuit of Fig. 7. This employs the PVA335t as the switching element in a single-ended. eightchamel multiplexer configuration. DC
leakage through individual switches can be observed by removing the logic drive power and connecting a 200 V supply to the multiplever (mus) common. A 10Mss input impedance voltmeter connected between any input and analogue ground will show the leakage cument as

Fig.6. Typical multipleversvetem.

Fig. 7. Eight-chamnel mulliphever lest circuit using photovoltaic relays.
the voltage drop ateros the lonss input impedance. Convericly, connecting all inpuls to a zOMN source and meandring the mux common output sieds the keakige through all eight switches. Typically, this measurement shows about $20 n \mathrm{~A}$. equal to an anerage offresistance perchamelof IO"s!

With logie power applied the binary counter and decoder scan all cight channels sequentially. Because of the make-before-break operation of the PVA, no delay is required between successive addresses. A zero-volt. 1kss source is connected to the chamel under test. By connecting the remaining chamel inputs to a 3 30) pk-pk square watce generator, the effects of crossatk and settling after extreme preconditions on the prevous channel can be simulated. By adjusting the control current limiting resistor. the effect of varying control curtent on switching speed can also be determined. The use of a spuate wate shows the effects of cronstatk ats a disturbance of the settedov signal.
()n turnom, a shon delay oceurs before the previous chamel is disconnected from the mux common. The mux drifts slowly toward OV matil the channet under test begins to turn on and rapid settling occurs. At turn-off, the short delay is experienced but the mux common does not appear to move until the next chamel begims to turn on. The full transition oceurs in less than 511 ms . The traces ate taken with the diode clamp circuit connected to prevent overtoating of the oscilloscope input.

Switching speed is dependent upon control current (Fig. 8) and speeds ill order of magnitude faster than a high qualtity reed switch can be readtily achiesed with a $7+1 . S$ series driver. The

Fig.s. Typical switching delay for the multiplever of Fig. 2.

Fig.9. Simplificed arrangement of T. switch mullighlexer.

Fig. 10. Equivalent or'T-switch circuit.

Figg. II. Fhing capacitor multiplexer: this offers excellent common mode rejection and isolation of the common mode source from the measurement sistem.
turn-aff delan remain fairls convant tuntil the drise puhe hecomes too narrow to allow complete charging of the fay turn-off circuit, extending the delat before turn-off occurs. (harging speed may be increased with greater control curcont or by mean of an R(circuit u peed charging whik limiting the steadly current toa nominal value.

The doned-circuit resistance of a P'R is greater than that of a metallic contact. The PVA.335t, for example - a bidirectional 3om' relay - has a typical on-resistance of 2ons. The PNABt, a 100M relan. offers a 5 ge resitance Comparable unidirectonal relas such as the 300V Piobsist and the bow
 1S2 reepectivels. I fowerer, althongh the on-resistance is ignificant it is comstant and stable and doen not degrade :hroughout the witching life of the ratay: This allow compensation to be made in the devign or ealibration of the s.stm.

MULTI-LEVEL MULTIPLEXING

The maximum voltage apparring acom :an opern witch man be limited tol las than the maximum blocking woltage in arder to presemt beakdown oxeming. A multi-level multiplexing sheme such ass that shown in lige ocan be used to doutbe the number of witcher in a circuit. thereby doubling the breakdownoltage

Ta athere a how meresistance a solid-state witeh reguire a targe area chip. This resuls in increaned capacibance which must be taten inter conside cration in waluating crosstalk for high fegunner sigmals. The nom-linear open circuit capacitance of al P'A serios
 appliced whtage. Larger bignals or signals with a large I)(bian therefore tend to redace capacitance and realt in Les cronstatk
(ansuading through two switching lewels.laneduceseros-talk. For example the wornt casc capacitive coupling for a at-channel mux in redaced by a ration of It 6.3 or - liadB oner a vingle lewnaltiplerer

THET-SWITCH

Where puberor high frequencics are to be multiplexed. improwed cromialk rejection call be obtained bs use of the T-switch contiguration , tomin in Fig. 9. By attenuatting the calpacitiacly-coupled noise vignal using whorting witch S_{i}, a much smather crror signal is pansol throush to the max output. The expuisakent circuit hown in Fig. 10 man be ued to calculate the worst ciace crosistalh for the P'へ.3ntclenice

FLYING CAPACITOR MULTIPLEXER

A flying capacitor multiplexer (Fig. II) uses two pairs of switches per chamnel to isolate both signals and return from the measurement system. Mainly used with low-level, low-frequency impuls such as thermocouples with accompanying high common mode voltages, this technifue offers excellent common mode rejection and isolation of the common mode source from the measurement system A low-pass filter. R_{1}, R_{2}, C_{1} is often used on the imput. The flying calpacitor C_{2} is initially charged through S_{1} and S_{2}. Resistors R_{3} and R_{4} are necessary to avoid pitting of the metallic contacts by limiting transiont currents on switch closure. The use of semiconductor switches eliminates the need for R_{3} and R_{4} and consequently also eliminates their scaling error. The PVR can easily handle switching transients and therefore has a greatly extended life compared with that of a high cuality reed switch.

(a)

(b)

(c)

Fig. I2. Applications of photovoltaic relays: (a) integrator time consfant and reset selector: (b) input selector: (c) high volfage selector.

VARIATIONS

Figure 12 illustrates three typical applications of PVA series relays. A1 (a) swith S_{1} provides a reset by shortening the teedback capacitor - an operation which can prove fatal to reed relay contacts. Switches S_{2} and S_{3} vary the integration time constant

Figure 12b illustrates an input selec-
for for use with an operational amplifier. Figure 12c illustrates how highvoltage signals can be attennated using PVRs to achieve accurate selection for multiple imputs. The 300 V blocking capability of the PVA3354, for example, allows a relatively high ratio of R_{2} and R_{1}, thereby mimiming loading and interference between channels.

Power Supplies

TS1541S
0.15 V 0.4A PRICE: $£ 165$ + VAT

TS3021S
0.30 V 0.2 A PRICE: M59 + VAT

TH3022S
DUAL 0.30 0-2A PRICE: G7 89 th IAT

1. 58.588

DUAL 0.30 0.2A
SINGLE 4.6 0-4A PRICE: \{\%8日 - V/i)

FEATURES:

- Dual 3.5 digit LCD display of V and I (TS3032S fari).
- Constant V or constant I modes.
- Protected output.
- Remote sensing.
- Line and load regulation 0.01\%
- Ripple and noise ImV.
- Low radiated and conducted interference
- Master-Slave (3023S)

 thandar ELECTRONICS LIMITED

For further details of these and other products in the Thandar range, please send for a catalogue.
Thandar Electronics Limited, 2 Glebe Road, Huntingdon, Cambridgeshire. PE18 7DX. Telephone (0480) 412451 Fax (0480) 411463 Telex 32250 Test G.

Exploiting millimetre waves

The DTI is seeking to encourage civil use of the enormous, still largely unused. radio spectrum above 30 GHz . But DTI still has not finalized the national frequency plan or the degree of regulation or deregulation to which such installations will be subject.
At present, apart from Defence systems not subject to DTI licensing, the only approved allocations appear to be the $49.2-50.2 \mathrm{GHz}$ band taken up by Mercury Communications and the 47 -$47.2,75.5-76,142-144$ and $248-250 \mathrm{GHz}$ allocations in the current UK amateur licence.

In September 1988 the Radiocommunications Division of the ITI published a $4(1)$-page consultative document "The use of the radio frequency spectrum above 30 GHz " and an associated article "Making the most of millimetres" (British Business Suplement 23 September. 1988). These drew attention to a considerable number of potential applications and invited potential users and manufacturers to suggest other uses and to report on the latest technical developments.

Altogether 41 responses were made: 12 from potential users: nine from manufacturers: nine from research organizations: 10 from standards/ regulatory bodies; 10 from central/local government: and three in other categories (some respondents fell into more than one category). The DTI considers that about 30 of these offered substantial comment.

A one-day IEE colloquium "Radio communication in the range $30-$ 60 GHz " gave an opportunity to review the current regulatory and technical situation at a time when the DTI is preparing to issue licences for two bands, one near 40 GHz (provisionally $37-39.5 \mathrm{GHz}$) and the other close to the 60 GHz oxygen absorption band (provisionally $5.25-58.2 \mathrm{GHz}$) which is attracting interest for short-range (12 km) broadhand radio networks. The excess attenuation of around $1(1-16 \mathrm{~dB} /$ km means that the same channel could be re-used within about 5 km or less where signals are screened by buildings or trees or the antenna dishes mounted on the sides of buildings in an urban environment. Oxygen absorption, unlike water vapour, is the same in all countries (Fig.1).

Range in the oxygen absorption band is reduced by a factor of ten compared to that about 40 GHz and this band is also of particular interest to the Defence

Fig. I. Aftenuation of millimetre-waves by atmospheric gases and rain. Oxygen $\left(\mathrm{O}_{2}\right)$ has a particularly sharp peak at about 60 GHz , cutting signal intensity by 95% for each kilometre. The effect of the various attenuations is cumulative.
services because of its resistance to interception or jamming. The colloquium chairman, Dr R.C.V. Macario. however was highly critical of what he felt to the an unduly pessimistic DTI assessment of frequency-reuse distances for other segments of the 3(1)60 GHz spectrum. L. Powis (Plessey Research) described potential applica-

Fig.2. AOGHz source developed at Leeds Polytechnic based on a I()(iHz fet IRR() and a times-four varactor diode multiplier.
tions of millimetre-wave communications to military systems in general rather than specific terms since most current projectsare classified.
In general. civilian applications tend to be stymied by the current cost of millimetric devices, for which costs are unlikely to come down until in quantity production - and this will not come about until the regulatory situation is determined, and specific frequencies released: even then there may be something of a "chicken and egg" situation.

Apart from broadhand local area networks and private building-to-building links in situations unsuitable for optical fibre cables. the most promising mass use of mm-waves appears to be by BT fornts M^{3} VIDS videodistribution system (see E\&WW December 1988, p. 1249 and December 1987, p. 1274) for which the Saxmundham demonstrator unit operates on 29 GHz but which seems likely to use $38-42 \mathrm{GHz}$ in service
This system was initially developed to provide local links for the SIS racecourse video coverage relayed via satellite to betting shops, some of which are unable to receive the satellite signals directly because of screening. BT believes that M^{3} VDS could be introduced by 1991: "It will be economic. It will harpen"

BTRL is making good progress with monolithic millimetric integrated circuits on GaAs wafers. At present the down-converter uses a chip set including a single-balanced mixer, two monolithic IF amplifier chips and a hybrid 27 GHz local oscillator using a chip fet

and a dielectric resonator mounted on an alumina ceramic substrate. This remains within $\pm 3 \mathrm{MHz}$ over a temperature range $-20 /+40^{\circ} \mathrm{C}$. Currently a Gatas monolithic oscillator is being developed and will be incorporated with the mixer and IF amplifier chips to produce a fully monolithic downconverter. Provided a reasonable yield call be achieved. BTRL believes that viewer terminal costs should be comparable to those for 12 GHz satellite television reception.

LEP of France has recently reported (Electronics Letters, 30 March. 1989. pp+42-3) monolithic LNAs for 1216 GHz with less than 2.5 dB noise figure, 9 dB gain, using high-electronmobility transistors (HEMTs) fabricated on MOVPE structures.

At the colloquium, R. Davies (Plessey Research) reviewed new mm-walve devices with particular reference to HEMT devices. By allying modern material growth techniques with advances in device physics. low noise performance has been demonstrated up to 94 GHz . While GaAs fets with $0.25 \mu \mathrm{~m}$ gate lengths can operate at up to about fo CHz , the latest generation of HEMTs offers the promise of high performance up to 1000 GHz with low cost in volume production. The use of indium phosphide (InP) for HEMTs has great potential although this is a difficult material to work with.
Millimetre-wave oscillators usually take the form of backward-watve or klystron valves or Gunn or impatt semiconductor diodes but Dr L, A. Trinogga
(Leeds Polytechnic) argued that the present solid-state sources suffer from excessive heat dissipation. poor frequency stability and modulation difficulties. He presented the design of a +(0) GHz source (Fig.2) comprising a 10 GH dielectric resonator based on a GaAs fet with a tuning range of 22.5 MHz (without varriation in output power) and having a stability of $2.76 p p m /{ }^{\circ} \mathrm{C}$ integrated with a modulator and followed by a four-times frequency multiplier using a high-Q GaAs varactor diode (type D5002-48, which has a breakdown voltage of -10 V and a cut-off frequency of $550(\mathrm{ill}(\mathrm{z}$ at $-(0 \mathrm{~V})$ with microstrip low-pass and band-pass filters.
RI: Connections is written by l'al Hawker.

Test circuit for overtone crystals

Progress in quartz crystal fabrication has resulted in crystals of ever higher fundamental frequencies, suitable for overtone operation and sometimes fundamental operation throughout the VHF spectrum. It is however still useful to be able to check quickly the suitability of older crystals for use at high overtones. Clint Bowman, a retired American engineer, has described in RF Design (January 1989. page 58) a novel test oscillator suitable for use over a range of about 65 to 200 MHz . initially intended to test fifth overtone crystals cut for 65 to 72 MHz at higher-order overtones, up to and including the 15th at about 200 MHz .

His circuit (Fig.3, below) is a variation of the classic "tuned-plate. tuned-grid" valve oscillator. where the grid circuit provides a selective filter to sustain oscillation, or not, dependent upon the filtering bandwidth and frequency relationship with the plate (anode) circuit. In this arrangement, feedback is provided to the unbypassed emitter circuit. When

Fig.3. Crystal test circuit.

the tank circuit is tuned to the fundamental or overtone frequency. oscillation is sustained. Since the 0.01 $\mu \mathrm{F}$ dise ceramic tank bypass capacitor becomes progressively less effective as the frequency increases, thus increasing the degree of feedback. while the 20 pF capacitor is placed close to the "cold" end of the tank circuit to provide additional feedback, it is clamed that the circuit provides reliable and repeatable oscillation to at least $2(0) \mathrm{MHIz}$ when
used with a suitable crystal. The upper frequency is limited by the shunt capacitance and/or activity of the individual crystals. Excessive shunt capacitance results in a broad area of uncontrolled oscillation, with some crystals showing this effect as low as 150 MHz . Correct operation results in stable. crystal-controlled oscillation as the tank circuit is tuned through each of the usable overtone frequencies with no output at intermediate frequencies.

Elevated vertical antennas

Radio Broadcast (E\&WW. August 1988. page 832) drew attention to an American computer study that confirms. in principle the experimental work carried out in the early 1980)s by a small group of retired engineers who were also radio amateurs: Archibald Doty. John Frey and Harry Mills. They investigated monopole antennas using elevated wire "counterpoise" radials rather than the conventional 120 or more buried radials favoured for medium-wave broadcasting since the classic work in the 1930's of the late Dr George Brown. The results showed the feasibility of using a few elevated wire radials and so of reducing the cost and complexity of MF and HF broadcast and communication antenna systems.

In effect, instead of buried radials. the antenna becomes the familiar "ground-plane" elevated vertical with three or four wire or rod radials widely used by radio amateurs on HF and for the base antennas of VHF land and sea
mobile services (Fig.4).
Practical development of this form of elevated vertical antenna is generally credited to Dr George Brown of RCA although an earlier description can be found in a series of patents: "Aerials: directive wireless signalling" awarded to Dr Maurice Ponte of CSF. France: French patent No 764.473 (1933). US patent No 2.026.652 (1933) and UK patent No 114.296 (1934).

About 1981. Dr Brown. on one of his many visits to London, told me the story of how he came to develop the groundplane antenna and how it was subsequently modified to make it more readiIy marketable. It is a story that could help to simplify the construction of elevated monopoles further.

He told me that the antema was devised in the 1930)s to meet an early requirement for communicating with American police cars, then using frequencies of the order of 30 to 4.5 MHz . Its success was immediately apparent
when. at the very first demonstration, the transmissions reached well beyond their expected service range. This original design used only two horizontal radials, but the RCA sales engineers soon reported that they could not persuade potential users that a two-radial antenna, with the radials resembling a half-wave dipole. would provide onmidirectional radiation. On the classic principle that the customer is always right. Dr Brown and his colleagues promptly added two more radials at right angles to the others in a contiguration that soon became firmly established. although there was little reason to suppose that either radiation efficiency or the horizontal radiation pattern was improved by the extra radials.

Since then it has become increasingly difficult to persuade people that configurations other than the four-rod or four-wire radials will form an effective ground-plane antenna. It also seems to be a common fallacy that the elevated ground-plane has the same 35Ω feedpoint impedance and vertical radiation pattern as the earthed-monopole with its "infinite" ground-plane. In fact, the elevated ground-plane with horizontal radials has a base impedance of roughly 19S, although this can be increased by sloping the radials downwards

During recent years there have been further investigations. some computerbased, that point to yet further simplification of elevated vertical antennas. For example. Les Moxon. G6XN. in "HF antennas for all locations" (RSGB. 1982) advocates the use of a single short loaded radial. Then there is the "zeroextent ground-plane" with no radials but with a lossy ferrite (or coaxial) choke on the co-axial feeder to stop RF current flowing down the outer braid. This form of antenna has been analysed in the book "Monopole elements on circular ground planes" by Melvin Weiner (Mitre Corporation) et al. (Artech House. 1987). Fig.5. The effect of the size of the ground-plane was also considered in some detail in a paper "The radiation patterns of ground rod antennas" by W.V. Tilston and A.H. Secord (Sinclair Radio Laboratories Lid. Canada) in Electronics and Commumications. August 1967, pages 27 to 30. This showed that the two common but conflicting assumptions about the vertical radiation pattern (VRP) of a ground rod antenna are both wrong. The radiation is neither always tilted up nor always directed towards the horizon. In fact the VRP of ground rod antennas varies markedly with changes in monopole and radial length and the degree to which current is kept off the

Fig.4. Elevated monopole ("ground plane") antennas: (a) original configuration as developed by Dr George Brown; (b) conventional four-rod antenna; (c) antenna with short loaded "counterpoise" as developed by Les Moxon; (d) zero-extent groundplane antenna.

Fig.5. Vertical radiation patterns showing effect of the extent of the ground plane, as analysed by Melvin Weiner. Diagrams show elevation directive gain pattern of a thin quarter-wave clement mounted on a ground plane of radius a: (a) $2 \pi a=\infty$ (i.e. wire radials in free space); (b) $2 \pi a / \lambda=3$; (c) $2 \pi a / \lambda=\downarrow$; (d) $2 \pi a / \lambda=\overline{5}$; (e) $2 \pi a / \lambda=\sqrt{2} 42$; (f) infinite ground plane (i.e. monopole over a perfiect earth such as sea water).
feeder line
Les Moxon has heen concerned primarily with the radiation efficiency rather than the VRP. He has found himself facing much the same situation as that which faced Dr Brown. It is proving difficult to convince others of the efficiency of short radials and of the value of just one radial, providing that it is short enough. His views seem to be regarded as heresy of the worst kind. The result is that much effort (amateur and professional) continues to be misdirected at "improving" multiple buried earth systems or using three or fourwire elevated radials. Such an appraach inflicts maximum inconvenience and cost and inhibits the construction of
directional arrays. Multiple quarter. wave elevated radials also have a major disadvantage since the rapid change of impedance close to resonance can cause severe problems of equalization
L.es Moxon insists that over a wide range there is no significant difference between short and long HF radials in respect of any important aspect of performance. In regard to the VRP for long-distance. low-angle radiation, it seems likely that a short or zero-extent ground plane would be better

Much of the confusion arises from considering the elevated ground-plane antenna as a monopole when in fact it is a bent dipole configuration with reduced radiation from one side.

PIONEERS
 31. Konrad Zuse: inventor of the first successful computer.

The world's first successful digital computer wats destroyed by all Allied bomb during a raid on Berlin in World War II. Now known as the Z3, it was designed by Konrad Zuse and built at home with the help of friends. Another Zuse computer aided the design of aircraft wings at the llenschel factory in Berlin and was the only German computer to see war service. An improved model was probably captured by the Russians when they overran Berlin in 1945 , though Zuse doubts that they knew what to do with it.

Surprisingly, Konrad Zuse is still relatively unknown, despite being recognized as the designer and builder of the first working computer. For a long time it was thought that the Americans had designed the first computers; but then came news of the British code-breaking machines, and then Zuse's work. In fact Zuse began his first design before the war started. He did much of the work in his spare time and even during the war there was relatively little official help. After the war he set up his own company and at one time he was the major continental manufacturer. His firm employed about a thousand people in its heyday.

Zuse is now approaching eighty, and one might expect him to look back reflectively over his life; but not so. He is a successful artist and painting vies with computers as his first love. Whilst he appreciates the honours heaped on him. he is still an active engineer and rather wishes people would give him problems to solve instead of passing him around "like a museum piece"

He was horn in Berlin on June 10. 1910, but his parents soon moved: first to Braunsberg in East Prussia and then to Hoyerswerda in Saxony, where his father was the local postmaster. It was here, about 35 miles north east of Dresden, that his school atwakened his interest in engineering at at time when his talent as an artist was also developing.

Professor I)r. mult. Konrad Zuse

This combination and rivalry between art and engineering caused him to drop out of university and is still a part of his life.

At the Technical University in BerlinCharlottenburg le found the work stuttifying. especially the tednical drawing. So he quit the university horrifying his parents in the process. and decided to become a commercial artist. He also turned to inventing. and devised a machine to develop and print colour photographsatomatically.

But times were hard, economies bad. and millions were out of work. So he did the "sensible" thing and went back to university, re-emerging in 1935 with al degree in civil engineering.

The mother of invention

The Henschel aircraft works in Berlin offered Zuse a job an a stress analyst. the beginning of an on-off relationship between the two. The work proved boring: it involved repetitious calculations for which, thought Zuse, there must be a better way - a machine. perhaps. It was not the first time he had entertained such thoughts because his degree course had exposed him to
equally tedious work with a slide rule.
It was not only the calculations that bothered him but also the "traffic control": noting intermediate solutions. transferring them to other parts of the problem, and so on. Wis first thoughts (around 1933-34) had been to devise pre-printed forms to control and record the flow of work in a standardized way for some common problems. This wats followed by ideas for punched cards and mechanical calculation. In fact, whilst still a university student. Zuse hatd already arrived at fundamental ideas for information control, the reduction of problems to a sequence of simple operations, and the concept that a machine could be huilt to carry out that sequence. By $193+$ he was using the terms "memory unit". "selector" and "control device". When work at the Henschel factory reinforced his thoughts he set ahout building a machine in his spare time using the living room of his parents" home in Berlin as his workshop ${ }^{2}$.
Necessity was not the mother of invention, says Zuse, it was laziness and boredom: the desire to rid himself of those tedious calculations ${ }^{3}$.

Launching the V1

One of his first decisions proved crucial to success: to use binary arithmetic instead of decimal. One of the friends whose help was enlisted. Watther Buttmann, was asked to research the published work of Gottried I iehniz in the Berlin University library. It was Liebniz who had first studied binary arithmetic in the 17 th century.

So in 1936 Zuse started making the component parts of his first allmechanical machine: using metal pins and slotted metal plates, the ends of the slots representing ones and zeroes. The memory was to hold ot binary numbers of 16 bits each and he successfully completed it with help from friends who laboured to make the thousands of parts by hand. However, the nore complex arithmetic unit required greater manu-
facturing precision than they could achieve. Programs were coded by punching series of up to eight holes into discarded 35 mm movie film, which was far cheaper than the commerciallyavailable paper tape.

This machine was named the Versuchsmodell-I (experimental model 1) or V1 for short. It was followed by a V2, both of which were later renamed the $\mathrm{Z1}$ and Z 2 to avoid confusion with the V 1 flying bomb and the V 2 rocket.

The Z 2 re-used the successful memory unit of the ZI but with an arithmetic unit made from second-hand telephone relays. Here another friend. Helmut Schrever. came into his own. Like others, Schreyer had done his share of cutting out metal plates for the Z1. Now he suggested using electromechanical relays instead of the mechanical pins and slots.
" $A_{\text {t first I thought it }}$ was one of, his student pranks...

New relays were expensive, and since funding was coming out of their own pockets and those of friends and friends' parents, every penny counted. A fully mechanical computer had proved impracticable and a full-sized relay machine would need thousands of relays: so a test model was built using just 200 second-hand relays.

By this time. Zuse had developed the design of his future computer to the stage where he had achieved the yes-no (binary) logical structure for the machine and recognized that it was independent of the physical methods used to build it.

An electronic computer

The possibilities for a relay computer looked optimistic when Schreyer suddenly suggested using electronic valves instead. Though they were not then commonly employed for switching between two states, valves could be used in that way and would be far faster than relays. "At first I thought it was one of his studem pranks - he was always full of fun and given to fooling around". Zuse has recalled. ${ }^{*}$

About 2000 valves would be needed. Asking for them, and getting them, were two different things in a Germany then at war. Private enterprise stood no chance so they talked to the German Army Command (OKH). Whilst the
initial reaction was favourable. the idea foundered when they said it would take about two years to huild. "And just how long do you think it'll take us to win the war?" they were asked.
So little help came. but by the end of the war Schrever had built an experimental computer with just 100 to 150 valves, and gained his doctorate on the way for his work on valve switching circuits. Like the other computers, this 100 was a casualty of the wat. After the war the development of electronic equipment was hanned in Germany and so Schreyer emigated to Brazil. It was there that he died in $1985{ }^{2.4}$

Whilst Schreyer worked part-time on the electronic machine Zuse completed the electromagnetic relay computer, the Z3. encouraged by the Experimental Aircraft Institute. The Z2 had convinced the Institute of the usefulness of Zuse s ideas and so it linanced the Z3. though Zuse still had to work alone and at home. And he had to escape a recall to active duty for service on the Eastern Front.

The Z 3 was the first general-purpose digital computer in the world. It was completed in 1943. It employed binary numbers. floating-point arithmetic and a 22-bit wordlength, and it has been estimated that it used around 2000 relays (and eight uniselector switches) and cost the equivalent of between $\$ 60000$ and $\$ 7000$. "The most important thing". says Zuse. "seemed to be to keep the frequency absolutely even. so that one cycle equatled one addition" ${ }^{4}$. This he achieved using a rotating disc or roller.

Konrad Zuse (right) and his friend Helmut Schreyer (left) at work in Zuse's parents a apartment in Berlin, c.1936. (Photographs in this article are by courtesy of K(mirad Zuse).

each revolution defïning one operation. As the disc's speed could be varied, so too could the operating speed of the computer. Sparking at the relay contacts was eliminated by making or breaking them before any current flowed. so increasing reliability. Postwar Zuse machines are said to have been "legendary" for their reliability. ${ }^{2}$

Although the Z.3 was completed (with the help of friends) it served mainly as an experimental machine and, according to Ceruzzi, it never went into routine use prohably because of the limited capacity of its memory. ${ }^{2}$ There are no doubts, however, that it was fully functional, because there are several witnesses to its operation. Though the original Z 3 was blitzed out of existence a reconstruction was made years later, based on the surviving patents. and is now in the Deutsches Museum in Munich.

The survivor

Somehow Zuse found time to build other computers as well. The SI was a non-programmable machine using hard-wired programs. It served in the design of the Henschel tlying homb HS-293, a pilotless aircraft guided by radio from a bomber. It replaced a dozen calculators. An improved design. the S2, was too late for routine service and is the one that Zuse thinks might have been captured by the Russian army. But the big one was the $\mathrm{Z} t$: a full-sized general-purpose computer, the only one to survive the war

Construction of the Z 4 began in 1943, even before the Z 3 was finished. For this large machine Zuse returned to his successful mechanical memory design. Whils this now seems a retrograde step it was the only way he could achieve a large memory ($102+32$-bit words) in a

reasonable volume. Using the Z 3 relays approach would have required 32 of the Z3 memory cabinets

Work on the computer began in Berlin but Allied bombing posed an everpresent threat. "My workshop was damaged several times, and three times during the war we had to move the Zt around Berlin." ${ }^{2}$ As allied bombing increased in 1945, the authorities decided to move Zuse and his new computer out of the capital to Göttingen, 160)
miles to the west. There construction was completed and on April 28, 1945. demonstration programs were run for the authorities. "This was the moment for which 1 had waited for 10 years when my work finally brought the success I desired." The irony for Zuse was that the machine was immediately dismantled, because the American army was by then just a few miles away.

The odyssey continued as they were ordered to underground works in the

The reconstructed $Z 3$ computer at the Deutsches Museum, Munich. Left, memory unit; right, control and arithmetic unit; front, keyboard/display with paper tape reader to the right. In the original were two cabinets for the memory unit, each measuring about $6 \times 3 \times 1$ feet. ${ }^{2}$

The Z.A at the Technical University, Zürich, 1950.

Harz mountains where the V1 and V2 weapons were being built. Zuse has described the conditions there as terrible. "We refused to leave the machine there." With great difficulty it was moved to an alpine village just north of the Austrian border where it was set up in a barn. There it stayed until 1949 when it was rescued, rebuilt and established in the Technical University in Zürich in 1950. For a time it was the only functional digital computer on the continemt. ${ }^{2}$ It too is now in the Deutsches Museum.

After the war

Zuse continued to develop his ideas for computers and planned what was probably the first algorithmic computer language. The game of chess served as a test subject.

In 1949 he re-established his own firm which became known as Zuse KG. With contracts initially from Switzerland and then Germany the firm prospered and for many years was second only to IBM in Germany. One of the first clients was the camera manufacturer Leitz, and by the mid-1950s Zuse KG almost had a monopoly in the area of scientific computers for the optical industry in central Europe. The Z series contimued with relay computers and then fully electronic machines. The last of the relay machines was the Z 11 which became a byword for reliability. As competition grew. and technology changed, so life got tougher and outside funding was required. This eventually led to the company's being absorbed by Siemens.

Zuse is still a consultant; but even more he is a painter, whose work has been described as "a synthesis of expressionism and surrealism, in brilliant colours that border on the psychedetic". One engineering task that he did take up in the 1980)s, however, was to rebuild the Zl from memory - as a museum piece.

References

1. Chip, December 1981. pltf-148. (In German)
2. P.E. Ceruzzi. Annals of the History of Compuring. Vol.3. No 3. 241-259. July 1981. This gives a carelul description of the development of "Zuse" sideas and work.
3. J. Dornberg. Northwest Orient Magazine. 58-64. September 1986.
4. K. Zuse. Symposium on computer design. past, present and future: Lund. Sweden. Octoher 2.1987.

New: Churtes Tilston Bright, Briush pioneer of submarine cubles.
Tonv Allierion is a principat lecturer an the IBA Harman Engineering Training College. Searon, Devor.

KESTREL ELECTRONIC COMPONENTS LTD.

ENTER 10 ON REPLY CARI)

SMAll SEIECTION ONLY IISTEQ EXPORT TRADE AND QUANTITY DISCOUNTS RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Cossor Oscilloscopes CDU150(CT531/3) $£ 150$ only Solid state general purpose bandwidth DC tc 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - delayed tume base - illuminated graticule - Beam finder - Calibrator - power 200V - 250 volts AC protection cover contarning polarized viewer and camera adaptor plate - probe (1) - mains lead Tested in farr condition with operating instructions. FEW AVAILABLE - NO PROTECTIVE COVER BUT MAINS LEAD + 1 PROBE - §125 -TESTED - Manual £ 15 extra.
Tektronıx 475 - 200Mc/s Oscillciscopes - tested from $£ 500$ less attachments to £750 as new c/w manual, probes etc
Telequipment D755-50Mc/s Oscilloscopes - Tested c/w 2 Probes - £250. Manual $£ 5$ extra.
Marconi TF2002AS - AM-FM Sı子nal Generator - $10 \mathrm{Kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}-£ 85$. Tested probekit - $£ 15$ extra-Manual $£ 10$ extra
Marconi TF2002B - AM-FM Signal Generator $-10 \mathrm{Kc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}$ - -5100 Tested to £150 as new - Probe kit £15 extra - Manual £10 extra
Marconi TF2008 - AM-FM Signal Generator - Also Sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ from §450 Tested to $£ 550$ as new with manual - Probe kh in wooden carrying box

- £50 ex:ra

Don 10 Telephone Cable - $1 / 2$ mile canvas contanners or wooden drum new from £20.
Army Whip Aerials screw type F sections and bases large qty available P.O.R
Test Equipment we hold a large stock of modern and old equipment - RF and AF Sıgnal Generators - Spectrum Analysers - Counters - Power Supplies - Scopes - Chart Recorders all speeds single to multipen - XY Plotters A4-A3

Racal Modern Encryption Eqtipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts - P.O.R.
All items are bought direct from H M Government being surplus equipment; price is ex-works. S A. E. for enquiries. Phone for appointment for demonstration of any items. also avallability or price change V.A.T. and carriage extra.

JOHNS RADIO, WHITEHALL WORKS,
84 WHITEHALL ROAD EAST, BIRKENSHAW,
BRADFORD BD11 2FR. TB NO. (0274) 684007. FAK: 651160
WANTED: REDUNDANT TEST EQUIPMENT - VALVES - PLUG\$ - SOCXETS - SYMCHMDS ITC. RECEIVING AND TRANSMITING EQUIPMENT - GENERAL ELECTRDNIC EQNIPMENT

Digital tv receivers for the satellite age

ITT Semiconductors' Digit 2000 system, launched in 1981, is still the only receiver system to offer all-digital processing of picture, sound and teletext. Hans G. Keller shows how the system has been updated to handle digital video recording and satellite transmission decoding.

In principle, it is possible to implement all the signal processing operations required in a to receiver digitally. However, technical limitations still exist in the high frequency and power range. At present therefore. digital signal processing only begins after the demodulation stage with the video and audio baseband signals and ends with the drive signals for the video and audio output stages.

An outline of ITT's Digit 2OK) receiver is shown in the block diagram below. Three digital processing blocks for video signals. picture processing and audio signals are arranged between A / D conversion of the input signal and D/A
conversion of the output signal. They are grouped around the ITT (Intermetall) communication bus (IM Bus), over which the entire video and audio data traffic takes place. In parallel, synchronization and deflection signal processing take place directly between the A/D and D/A converters.
The processing block contains a large number of expansion stages for every conceivable type of television receiver. from the low-cost standard unit to the full-feature, multi-standard satellite re-

ITT's Digit 2000 digital television receiver scheme.
ceiver incorporating a host of special functions.

Signals that are to be processed digitally arrive via the high-frequency section of the receiver. According to whether the input signals are analogue or already digital. they are fed to the signal processing sections in Digit 2000 via analogue-to-digital converters or digital-to-digital converters.

Video processing

In addition to the established PAL, SECAM and NTSC standards, the new D2-MAC and Nicam standard signals are now also processed in the video signal processing section. With the new

standards, the digital andio signal is contained in the baseband. It is separated and conditioned for further processing in the audio signal section.

Chrominance and luminance components of the video signal. Transmitted in time-division multiplex mode in any of the MAC standards (C-MAC. D)-MAC and D2-MAC), are expanded and converted to the standard format of the ITI communication bus. This is achieved by the new DMA $2280 / 2285$ multi-standard MAC decoder chip sel developed by ITT to fit all current European MAC standards. The DMA2280 decodes the signal and the DMA2285 is the descrambler IC. The set is automatically switched to the correct standard by its software. Hence the Digit 20) television set can receive satellite transmissions in ally European country.
Digital processing also permits digitally generated text and graphics to be represented on the television screen. The TPU2734, the latest text processing IC in the Digit 2000 system. aluomaticalty selects the appropriate character set. from the eight different national sets it is able to recognize.

The full Fastext teletext capability is now possible with just the TPU2734 and a single 16 K or $6+\mathrm{K}$ standard dynamic ram. The display control unit selects one of eight stored pages for display. Eight-bit character words are transformed into a 6×10 dot matrix with PAL. or 6×8 with NTSC, by a rom chatater generator of 96 characters.

Through the use of the picture memory described later on. the capacity of the teletext page memory can be increased to more than one hundred pages.
1TT's next generation of teletext ICs implements the additional features of Level 1.5 Teletext. including vertical teat scrolling. user-definable characters, and hardware magazine and page selection. To enhance the display, a higher resolution character matrix (10×12) and an optional 100 Hz flickerfree display mode ate provided
The text processing section can also be used to display information concerning the receiver sellings on the screen. to simplify the operation of the set
The video signal processing section also includes picture-in-picture processing. The PIP2250 processor allows it smaller, moving colour picture to he superimposed on the normal television pieture. This smaller picture can reproduce a programme being broadcast on

This proterype board, measming

 $8 \times 11 \mathrm{~cm}$, accommodithes the complete system for all stamdards: it includes fext processing and other fiunctions.another chanmel so that the viewer can see what is being hroadeast there without having to sivitch over. The processor works by converting the $\mathrm{Y} . \mathrm{R}-\mathrm{Y}$ and 13 - Y signals into a form which can be stored in a standard d-ram and presented at the appropriate time. The additional RGB inputs of the video control unit are used to create a horder around the smatl picture, the colour of which can be selected

The signal for the small picture maty also be derived from antexternal source. for example from a computer. video recorder, or from a camera monitoring another room. Additional RGB inputs for such external signals are incorporated into the IC.

Audio processing

With the new television standards (D2MAC. Nicam etc.) sattellite radio. new audio storage media (CD. DAT), and of course computers, the sound is already digital to start with. For this reason, digital audio signal processing is
essential nowalays even on otherwise analogue receivers

Auclio signal processing in the Digit Zonk system is designed for four channels as standard - two for the loudspeaker and two for the headphones. Amplilication, tone control and batance adjusiment are carried out and controlleddigitally. Mono. stereo and bilingual broadeasts ate identified automatically through the software. Thanks to the high resolution that is used in A / D and D/A conversion, the stereo sound quality is on a par with that of compact dise. There is also provision for artificially broadening the stereo image width to achieve full spatial sound without the need for additional loudspeakers. With mono broadcasts, the viewer can switch to pseudo-stereo

In top-of-the-range television sets. several audio processing sections may be used. for instance for processing multi-language stereo broadcasts simultaneously or even for emulating a graphicespualizer

Picture display techniques

The Digit $2(\mu)$ system contains a special picture processing section which does

From top to bottom: digital IIDTV. complex digital Iv, standard digital tv.
not exist in anatogue receivers.
With all television standards that use a composite video signal, such as PAL. NTSC and SECAM, the bandwidth of the chrominance signal is narrower than that of the luminance signal. This results in a visible degree of blurring at the colour transitions. To minimize this, the chrominance signal is adaptively measured. conditioned and matched to the luminance signal by the video memory controller IC. VMC2260).
In NTSC receivers, with their smaller number of picture lines. Digit 2000 improves the pieture quality dramatically by displaying each tine twice in succession at half the normal line spacing. By doubling the number of lines in this way. the otherwise conspicuous line structure of the picture becomes virtually invisible.
With the conventional television standards today. especially those with 50 Hz field frequency, large surfaces represented on screen give rise to troublesome flicker. This call only be avoided by increasing the pieture scan frequency. For this purpose, the IDigit $200(0)$ system hats provision for buffering
a field and then writing it on to the screen at twice the frequency, twice in succession.

The video memory controller also enables further picture improvements to be realised through, for example. distortion correction, noise suppression. and the prevention of edge flicker. Furthermore it can be used to advantage for implementing special features. For example the number of teletext pages that call be stored call be increased enormonsly. A detail of the centre of the picture can be enlarged by a factor of two (zoom facility) and, in conjunction with the picture-in-picture processing section. up to nine frecze frames from different programmes can be displayed simultaneously.

- Further information: contact ITT Semicondactors. Rosemount House. Rosemount Avenue, West Byflect. Surrey KT146NP(0)32-33616)

[^4]
COMMERCIAL QUALITY SCANNING RECEIVER

The IC-R7000, advanced technology, cantinous caverage cammunications ieceive has 99 piogiammable memories covering aurciafi, maine. FM broadcast, Amateur radio, television and weather satellite bands For simplified aperation and quick luning the IC - R7000 features direct keyboaid entiy Precise frequencies can be selected by pushing the diglt keys in sequence of the frequency ar by furming the main luning knab FM wide/FM naliow AM upper and lawer SSB mades with ofuning speeds $01,10,5,10,125$ and 25 kHz A sophisticated scanning system provides instant access to the most used fiequencies By depiessing the Auto-M swith the IC.R7000 automatically memorises trequencies that ore in use whilstit in in the scan mode this allows you to e ecall fiequencies that were in use Readout is cleatly shown on a dual-colout fluorescent display Options include the RC- 12 infio-red iemote contioller voice synthesizei and HP-1 headphones
 Icom (UK) Lid. Tel: 0227 363859. Telex: 965179 ICOM G N.B. Authorised Welsh distribution by:
M.R.S. Communications Lid. Cardiff. Tel: 0222224167.

Please send information on Icom products \& my nearest lcom dealer.
Name/address/postcode:

Status:
 ENTER 18 ON REPLYCARD

BROADCAST MONITOR? RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well
as being suited to communications use and news gathering from as being suited to communicatio
international short wave stations.
The modifications include four additional circuit boards providing: *Rechargeable memory and clock back-up *Balanced Audio line output "Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope "Mains safely improvements
The receiver is avallable in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $-20 \mathrm{~dB}, 10 \%$).
Stereo Disc Amplifier 3 and 5 *Peak Deviation Meter *Programme and Deviation Chart Recorders *Stabilizer *Frequency Shift Circuit Boards "10 Outlet Distribution Amplifier *Peak Programme Meter Illuminated Boxes, Circuit Boards and Movements *PPM5 Dual in-line Hybrid "Stereo Microphone Amplifier *Advanced Active Aerial *Stereo Coders and Boards *PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ scale *Stereo Variable Emphasis Limiter 3.

SURREY ELECTRONICS LTD
 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. Tel: 0483 275997. Fax: 276477

 LINE ADVERTISEMENTS (run on): $£ 6.00$ per line, minimum $£ 48$ (prepayable) (Please add on 15% V.A.T. for prepaid advertisements) BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the Box Number in the advertisement, co Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).PHONE: CHRISTOPHER TERO on 01-661 3033 (Direct Line).
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING and crossed

Are you looking for a secure shore-based job which offers a rewarding career in the forefront of modern Tele. communications technology .. then consicer joining GCHQ as a Trainee Radio Officer. Training involves a 32 week residential course, plus 6 weeks extra if you cannot fouch typel ofter which you will be appointed RADIO OFFICER and undertake o variety of speciclist duties covering the whole of the spectrum from DC 10 light. We offer you: Job Security • Good Career prospects • Opportunities for Overseas Service . Attractive Salaries and much more. To be eligible you must hold or hope to obtain on MRGC or HNC in a Telecommunications subject with an ability to read Morse at 20 wpm . City and Guilds 7777 at advanced level incorporating morse transcription would be advantogeous). Anyone with a PMG, MPT or 2 years relevant radio operating experience is also eligible. The Civil Service is an equal opportunity employer.
Salaries: Stating pay for trainees is age pointed to 21 years. For those aged 21 or over entry will be at $£ 7,162$. After Troining an RO will start af $£ 10,684$ rising by 5 annual increments to $£ 15,753$ inclusive of shift and weekend working ctlowance Write or telephone for an application form to:-

PTE/ETHE RECRUTTMENT OFPICE, GCHO, ROOM A/108 PRIORS ROAD, CHELTENHAN, GLOS GL52 5AJ R TELEPHONE (0242) 232912/3

Technical Services

TELECOMMUNICATIONS ENGINEERS

£14,475-£15,537 p.a. incl.

You will undertake the design of telecommunications projects and the supervision of the technical operation (by computer keyboard control) of the Council's telephone network, and electronic security systems.
To join a progressive group you should have a telecommunications or electronics qualification, or have acquired equivalent expertise. Additionally you will need at least three years' experience including supervision of staff.
Closing date: 14.6.89.
Ref: 278AR
Application forms obtainable from the Director of Personnel, Ealing Civic Centre, 14-16 Uxbridge Road, London W5 2HL.

WORKING FOR OUALITY AND EQUALITY

maxon

mobile radio

Maxon Europe Lid is an exciting growth company in the expanding radio communications market. Represented by a network of dealers and distributors throughout Europe, the Company has consistently increased its market share of portable and mobile radio equipment for the last five years.
To help to continue this planned expansion we require to expand our existing European development team.
RF Development Engineers with experience of circuit design for mobile and handheld radia transceivers operating at frequencies up to 1 GHz , surface mount technology, frequency synthesis techniques and CEPT specifications for land mobile radio.
Cellular Radio Test Englneer with experience of mobile and handheld cellular radios.
Customer Service Engineers with experience of fault finding and repairing mobile radio transceivers. These positions will include a significant amount of customer liaison and travel both in the UK and Europe
Senior Mechanical Design Engineer with experience of plastic and metal mouldings for volume production, design of subassemblies, PCB integration and the control of drawings for production.
In return for your efforls the Company offers a competitive salary, bonus system, non-contributory pension, health and life insurance scheme and BUPA membership
As we are an international Company there may be the need for occasional travel to our facilities in the USA and Korea.
Please write with CV and salary expectations (quoting reference 905) to:

Maxon Europe Ltd, Watford Business Park, Greenhill Crescent, Watford, Herts. WD1 8XJ.

EleCTRONIC ENGINEERS

Make your next career move a milestone not a millstone.
Irrespective of your career objectives - financial or geographical - let Cadmus put direction into your search. If you are a Qualified Service. Sales, Design, Production, Test or Quality Engineer, send your C.V. to the address below or telephone Norwich 761220 for an informal chat.

PERSONNEL LIMITED
Freepost, Sackuille Place 44.48 Magdalen Stree Norwich NR 3 IBR

ELECTRONICS ENGINEER

UK Paper (Technical Services) Limited is a small subsidiary of a large papermaking group. Situated near Gravesend, Kent, operating internationally as consultants, investigating problems caused by mechanical vibrations and hydraulic pulsations.

We require an Electronics Engineer for constructiontesting of prototypes, fault diagnosis and maintenance of existing equipment. The work will include some design and investigate work, requiring a good understanding of analogue and digital circuitrv.

A knowledge of micro-computers, microprocessors and associated software (preferably FORTH) would be a definite advantage.

Suitable candidates will probably have an HNCAHND Electronics or equivalent although applicants without these qualifications but with good, relevant experience should not be deterred from applying.

An attractive salary package will be offered to the successful applicant and will include 5 weeks annual holiday and the opportunity to join an excellent Pension and Life Assurance Scheme

Applications should be made by sending a C.V. or writing for an application form to Mr. L.B. Cotgrove,
UK Paper (Technical Services) Ltd.,
Bowes Business Estote, Meopham Green, Gravesend, Kent DA13 OQB.

FOR MORE DETAILS
 CALL:
 CHRIS TERO ON 661-3033

GARIBALDI

ICROWANE/RF TEST

 Several challenging positions for Eingneers With exp of compenint and sub system test ing of microstris based assemblies ATE ENGDNEERS yeard exp on DG Vova. Beaver or Gazelle based company at the forefront of avionic \& defence sortware molutionsRFDESIGNENGIIEER You will be dougnig LNA \& BA to casm ho GHz for oellular \&e mobile radio
 This highly sucooserul deaign house is ex pending still furthe - If you have HNC +2 years exp in active ca rcuit design to 20 GHz I want whear rom you agreat location too

COMTRACT
Rr doaden to 80 Ha orware (C, 88000) R teat io to 18 OHz

Henta/Herta heat to 100 Hz Weet Herts
For a full terhation discussion on these \& many other porpeasout \& oomtraed poations oontact st-an Lattroll 1580 on O4B4 Tropso or writo to

TECBRICAL RECEUTTMENT 100 Bollingiloa Roed Chemhn
Buoking hamahire Firs

GARIBALDI

Wanted urgently Practical people for the Third World.

Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.
You could make this priceless contribution by working with VSO.
Current requests include:

Studio
Electronics
Engineer
Hospital Electronics Engineers

Lecturers in Power and Communication

Refrigeration/Radio/ TV Engineers

Electrical Engineers for instruction/ installation

Electronics Instructors

Maintenance and repair Technician

For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.
Conditions of work: • Paybasedon local rates • Posts are for a minimum of 2 years - You should be without dependants - Many employers will grant leave of absence.

I'm interested. I have the following training/ experience:

Name

Address

Helping the Third World help itself.
32p S.A.E. appreciated.
Charity no. 313757

ANGEL RECORDING STUDIOS
requires a

SENIOR MAINTENANCE ENGIMEER

Experience in the recording industry essential. The position carries responsibility for the maintenance department and the successful candidate will be involved in the forward planning of future installations at the studios. Leadership and self-motivation are major requirements.
Salary negotiable.
Please contact: John Timperley Angel Recording Studios, 311 Upper Street, Islington, London N1 2TU

What makes you tick?

Marconi

DefenceSystems
Airborne Radar Group

If you can score top marks or at least answer yes to five of these questions, you've completed your check list and will be ready for a rewarding career.

Marconı Defence Systems, Aıborne Radar Group design and manufacture a variety of sophisticated electronics for both the defence and commercial market sectors. For example, one outstandingly successful project is the radar for Tornado aircraft

We now have interesting opportunities in the Electronics Test Team who ensure that this advanced radar comes up to our demanding standards.

You may never have worked in"electronics but you may have a keen interest, or you're already an Electromes TechmcianEngıneer. Either way, our on-the-נob training is ayallable for those keen to develop a career in electronics

We offer plenty of variety, and you'll work with a wide range of equipment including microprocessors microwave, digital and analogue electronics using both manual and ATE techniques.

The department has always been equipped with state-of-the-art technology - and we have recently moved into completely re-furbished premises. With major long-term contracts in, and new ones currently being signed, our future is assured. And yours could be too

You'll work $\exists 371 / 2$ jour week, enjoying an attractıve salary and benefits which include five weeks pand holıday, sıckness benefit, discounted private medical care, good pension and savings plans, subsidised restaurant and a very propular sports and social club which offers, amongst other thungs, football and tennis facilities, a solarıum, gymnasıum and even a 9-hole golf course

Find out more about joining the test team of one of the UK's top electronic's companies. Contact Derek Slater, Personnel Manager, Marcon Defence Systems Aırborne Radar Group, FREEPOST, Elstree Way, Borehamwood, Hertfordshıre WD6 IBR. (No stamp required). Telephone 0l-906 6230 Please quote reference MDS/89/005.

C OOKE INTEIR WTIONL SERHICES
UNIT 4. FORDINGBRIDGE SITE, MAIN ROAD. BARHAM. BOGNOR REGIS. WEST SUSSEX PO22 OEB, UK

new couipment
2OMHZ ENW DUAL TRACE OSCILLOSCOPESINSTOCK NOW VAT and Carriage EXTRA, Tel: (44) 0243545111 , Fax: (44) 0243542457

HAVING DIFFICULTY OBTAINING AN

 OBSOLETE VALVE/TRANSISTOR/IC? (or magnetron, Klystron, CRT, trav wave tube etc)- SPECIAL OFFER EEC83 93p + VAT (discount for 50pcs or more)
- RARE \& OBSOLETE TYPES \& SPECIALTTY!
* All popular types stocked at comptitive prices
- SPECIAL PRICES FOR WHOLESALE QUANTTIES
* OFFICIAL ORDERS FROM GVT DEPTS, MILTIARY, PLCs, OVERSEAS ETC. WELCOME
* PHONE/FAXTELEX FOR UP TO DATE PRICES ON YOUR REQUIREMENTS Visa - Barclaycard phone orders accepted

B_{V}
BILLINGTON VALVES
Good quality - Low price - Rarities a speciality
39 Highlands Road, Horsham, Sussex RH13 5LS, UK Phone: 0403210729 Fax: 040340214 Telex: 87271 Orfice hours Mon-Fri 9am-5.30pm Callers welcome but by appointment only

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS. TRANSISTORS, DIODES,
RECTIFIERS. THYRISTORS, etc. RESISTORS, C/F. M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE. C280, C296, DISC CERAMICS. PLATE CERAMICS, e ELECTROLYTIC CONDENSERS. SPEAKERS, CONNECTING WIRE, CABLES. SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN'S CAVE.
TELEPHONE: 445 0749/445 2713
R. HENSON LTD.

21 Lodge Lane, North Finchley, London N12.

UNIQUE HIGH SPEED COMPUTER CONTROL SYSTEM

Are You Efficient? Do You Progress Jobs?
Do You Carry Stock? Do You Have Answers for your Customers at your Fingertips?
We can offer you a totally tailored computer package which will revolutionise your business.
For information and prices, contact Martin at:

Dardsoft

25 The Auto Centre, Erica Road, Milton Keynes. Tel: (0908) 310226

TURN YOUR SURPLUS
ICs transistors etc into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
CDLES. HARDING \& Co
103 South Brink, Wisbech, Cambs.
Tel: L'945 584188 Fax: 0945588844

* ESTABLISHED OVER 15 YEARS 692

PCB ASSEMBLY \& OPTO termination
Small batch production. fast turnround. Orwell Electronics, Lynton House, Flowton, Ipswich, Suffolk IP8 4LG. を 047333595

B-Sweep

- 50 Hz to 20 KHz

Up to lv rms output
AC to DC converter Full listing details for your own easy modifications £115 includes: $40 / 80$ 51/4"disc
VAT \& P \& P VAT \& P \& P

Micro-controlled frequency sweep generator with response plotting, all from one compact unit plugged into your BBC B, B + or Master

MELFORD DESIGNS LTD

5 Bucknalls Drive, Bricket Wood.

St. Albans, Herts. AL2 3XJ Telephone:
Garston (0923) 672008 Fax: 0923679184
v 121

SALE OSCILLOSCOPES GENERAL TEST EQUIPMENT
Tektronix 475200 MHz dual time base $£ 599$
Telequipment D755 (Nato version of D75) $£ 275$
Philips PM 321835 MHz dual T/base £325
Marconi TF2914 insertion signal analyser

SPECIAL OFFER

MARCONI TF2603 RF MILLIVOLTMETER TO $1.5 \mathrm{GHz} 1 \mathrm{MV}-3 V$ FSD (C/W PROBE) £99 EACH

Tektronix 1481 waveform monitor, multi display 15 line VTR £1,499 Marconi TF2002AS Gig Gen AM/FM 10MHz-72MHz Marconi TF2008 Gig Gen AM/FM $10 \mathrm{MHz}-520 \mathrm{MHz}$ £125
Spon £575
Spectra Physics laser model 125 (inc 261 exciter) £2,850
Scientifica + Cook Laser (Argon) handheld unit! £175
Racal Dana 9915 M UHF frequency meter
Large stocks of Audio \& Video Test Equipment. Cameras,
Recorders, Monitors also. Optical Equipment - Lenses, Prisms, Mirrors etc. Many other scopes, Sig Gens etc. Phone or fax for latest stock list.

ANCHOR SURPLUS LTD

CATTLE MARKET ROAD NOTTINGHAM

Contact: Rob Taylor
Telephone: 0602864041 Fax: 0602864667

ALL PRICES + CARRIAGE AND VAT @ 15%
MENTION ELECTRONICS AND WIRELESS WORLD WHEN ORDERING A
FREE PROBE SET (ONE X1 AND X10 TO 100MHz)

QUARTZ CRYSTALS OSCILLA TORS AND FILTERS of all types Large stocks of standard items. Spe cials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru: design advice, prototype quantities, produc tion schedules. Golledge Electronics Merriott, Somerset TA16 5NS. Tel
045073718 . 045073718.

WANTED

REQUIRED

Sealed I.F. module for Dynatron Radiogram. Model LS 250 date about 1969.
Telephone Ian: 01-659 1664
WANTED: VALVES TRANSIS TOIRS I.Cs especially types KT66, KT88 PX4. PX251. Also plugs. sockets and complete factory clearance. If possible, send written list for offer by return. Billington Valves, phone: 0403 210729. Fax: 0403 40214. See adjoining advert.
COMPUTEK, TELEPHONE, RADIO COMPONENTS WANTED. Realistic prices offered for redundant surplus electronic components. Send lists or contact: J.B. Patrick, 14 Hill Road, Brentwood, Essex CM14 4QY Tel: 0277211410

SATELLITE TV BOOKS

worlo satturt almamac

THE woald of sareliti iv

HARRISON ELECTRONICS

FREQUENCY INTERMODULA. TION SOFI'WARE, Calculates intermodulaton products for frequencies between 1 Hz and 9996 ll z intermodulation order between 2 and 99. IBM PC or compatible. Necessary to predict interference in multiple radio transmitter installations. Price 430.00 dollars Canadian. Write for free demonstration diskette. B.Chomycz. 2023 Donald Street, Thunder Bay, Ontario. Canada. P7E5W9.

> FOR MORE DETAILS CALL: CHRIS TERO ON 661-3033

34" 720K DISK DRIVE AT $£ 49.50$ + VAT

Japanese-made (Y-E data) high reliability, modern, low component chassis drives. Surface mount design. These drives are ex-equipment in immaculate 'as new' condition, boxed, and carry a full 6 months
 (money-back-if-not-satisfied) guarantee.
$£ 49.50$ each (carriage $£ 3.00$), $£ 44.50$ for ten or more, 25 or more p.o.a. Box of ten $31 / 2^{\prime \prime}$ disks, £9.75

Racal V22 1200 Baud Modem

Micro controlled, BT approved modem very high quality. Auto answer 1200, 600, 300 Baud. Cased, uncased card or 15 cards in rack. Cased £55
 Uncased £24.95. 15 in rack $£ 375$ (carriage: $1 £ 3.50$; 15 £20).

Epson 12" TTL Mono Monitors (Green)

High resolution, IBM, Hercules compatible, TTL £48.50 (carriage £5.50)

Triumph-Adler Royal Daisy Wheel Printers

(few left only)
$20 \mathrm{cps}, 132$ column, variable pitch, all the feature you would expect from a quality printer. Six month guarantee, ribbon and typewheel included, £99.50 each (carriage £6.50) + VAT. NB: RS 232 printers only left.

HURRY! STOCKS COMING TO AN END!
VAT must be added to all prices.
Visa \& Access accepted 24 hour phone service
matmos
Matmos Ltd, Unit 11, Lindfield Enterprise Park, Lewes Road, Lindfield RH16 2LX. Tel: 0444454377,04447 2091/3830.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 739-743

PERFORMANCE

 \& QUALITY19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR PRICES FROM $£ 244.13$ (excluding VAT \& carriage) Prices CCIR/3 $£ 214.13$ CCIR/3-1 £273.67

WALLMOUNT DOUBLE SIDEBAND TELEVISION MODULATOR
PRICES FROM ONLY $£ 109.76$ (excluding VAT \& carriage)

Prices

CCIR/3 SPECIFICATION	
Power requirement Video Input Audio Input FM Sound Sub-Carrie: Modulation If Vision IF Sound Sound Pre-Emphasis Ripple on IF Saw Filter Output (any channel $47-860 \mathrm{MHz}$) Vision to Sound Power Ratio Intermodulation Spurious Harmonic Output	-240 V 8 Watt (available other voltages) - IV Pk-Pk 75 Ohm - 8 VV 600 Ohm -6 MHz (available 5.5 MHz) - Negative $-38.9 \mathrm{MHz}$ - 32.9 MHz (avallable 33.4 MHz) - 50 us $-6 \mathrm{~dB}$ $-+6 \mathrm{dBmV}(2 \mathrm{mV}) 75 \mathrm{Ohm}$ - 10 to 1 - Equal or less ithan 60 dB $--40 \mathrm{~dB}(80 \mathrm{~dB}$ if fifted with TCFLI filter or combined via TCFL4 Combiner/Leveller
CCIR/3-1	- Specification as above but output level 60 dBmV 1000 mV Intermodulation 54 dB
Other Opuons Available	- I.F. Loop/Stereo Sound/Higher Power Output
Alternatue Applications	CCTV Survellance up to 100 TV channels down one coax, telemetry camera control signals, transmitted in the same coax in the reverse direction
802 DEMODULATOR SPECIFICATION	
Frequency Range A.FC. Ccnirol Video Output Audio Output Audio Monitor Output Tunab Available	$-45.290 \mathrm{MHz}_{2}, 470.860 \mathrm{MHz}$ - $+/-1.8 \mathrm{MHz}$ - IV 75 Ohm - 75 V 600 Ohm unbalanced $-4 \mathrm{Ohms}$ le by internal preset for PAL System I or BG
Options	- Channel selection via remote switching Crystal Controlled Tuner. Stereo Sound.
CCIR/S MODULATOR SPECIFICATION	
Power Requirement Video lrput Audio Input Vision to Sound Power Ratio Output Modulation Audio Sub-Carries Frequency Stabiliny Intermodulation Sound Pe-Emphasis Double Sideband Modul.torunwa Combiner/Leveller)	- 240V - IV Pk-Pk 75 Ohms - IV rms 30 K Ohris Adjustable 4 to 12 - 1010 . $-6 \mathrm{dBmV}(2 \mathrm{mV}) 470-860 \mathrm{MHz}$ - Negative -6 MHz or 5.5 MHz - 25 Deg temperature change 150 KHz - less than 60dB - 50 us anted sideband can be suppressed using TCFL4
CHAKNEL COMBINER/FILTER/LEVELLER to combine outputs of modulators	
TCFL2 2 Channel Filter/C TCFL4 4 Channel Filte:/ TSKO Enables up to $4 \times$	Combiner/Leveller. Insertion loss 3.5 dB Combiner/Leveller. Insertion loss 3.5 dB TCFL4 or TCFL2 to be combined

TAYLOR BROS (OLDHAM) LTD.
BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TEL: 061-652 3221 TELEX: 669911
FAX: 061-626 1736

AN UNBEATABLE COMBINATION

F? I.R. GROUP AND TEKTRONIX

I.R. Group and Tektronix have teamed up to offer you the best possible combination - the quality of Tektronix oscilloscopes, plus the unique one-stop shop benefits and quality service of the I.R. Group
I.R. Group offers

- New equipment sales of a wide range of Tektronix portable oscilloscopes. No other distributor has such a quality range, all available from stock for next day delivery if needed.
- Rental of all these Tektronix oscilloscopes for your shortterm needs or for one-off projects. - Leasing, through our unique Lease Purchase Plan.
- Outstanding customer service. One telephone call puts you in touch with one person who can offer you all these services.

IR Group offers these Tektronix products:

- 2400B Series. The cream of oscilloscopes with real time scopes from the 150 MHz 2445 B up to the 400 MHz 2465 B and 2467 B . Digital storage models up to the $300 \mathrm{MHz}, 500 \mathrm{MS} / \mathrm{s} 2440$.
- 2300 Series. A. range of high quality 100 MHz field service oscilloscopes.
- 2200 Series. The best quality general purpose oscilloscopes available with real time and digital storage models ranging from 20 MHz up to 100 MHz .
Tektronix from I.R. Group
-it's an unbeatable combination designed to offer you,
our customers,
an unbeatable service.

[^0]: * See Pioneers: Charles Wheatstone, master of telegraphy, $E \& W W$ April 1987

[^1]: Analogue Action is written by Dr John Lidgey of Oxford Polytechnic.

[^2]: ENTER 17 ON REPLY CARII

[^3]: AUTOSKETCH Autodesk Ltd, 99 London Road, London SE16 6LN 01.928 7868

[^4]: Hans (3. Keller is with ITT Somiconductors at Freiburg in the Federal Republic of German:

